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Abstract. Cardiovascular disease caused by coronary artery disease
(CAD) is one of the most common causes of death worldwide. Coro-
nary artery segmentation has attracted increasing attention since it is
useful for better visualization and diagnosis. Conventional lumen seg-
mentation methods basically describe vessels by a rough tubular model,
thus presenting inferiority on abnormal vascular structures and failing
to distinguish exact coronary arteries from vessel-like structures. In this
paper, we propose a context aware 3D fully convolutional network (FCN)
for vessel enhancement and segmentation in coronary computed tomog-
raphy angiography (CTA) volumes. Combining the superior capacity of
CNN in extracting discriminative features and satisfactory suppression
of vessel-like structures by spatial prior knowledge embedded, the pro-
posed approach significantly outperforms conventional Hessian vesselness
based approach on a dataset of 50 coronary CTA volumes.
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1 Introduction

Over the past decades, coronary artery disease (CAD), which is caused by ves-
sel calcification or atherosclerosis, is among the most common causes of human
deaths in the world [1]. Coronary computed tomography angiography (CTA) has
been widely utilized to diagnose CAD, such as plaque evaluation and stenosis
assessment, thanks to the advantage of noninvasive nature and high resolution
image acquisition. Most plaque evaluation and stenosis assessment, as well as
estimation of fractional flow reserve (FFR), which is used to measure the influ-
ence of stenosis impeding oxygen delivery to the heart muscle, rely on a semi-
automatic or automatic precise coronary artery segmentation. An inaccurate
artery tree extraction will result in improper stenosis assessment while manual
correction of wrong artery trees is very time-consuming.
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Accurate vascular segmentation in medical image is a widely researched topic,
yet remaining a challenging task because of the presence of calcifications, image
artifacts, insufficient contrast, and large anatomical variations among patients.
A complete vessel tree is usually considered as a combination of multi-scale
and multi-orientation tubular structures, in view of the appearance the vessels
present in CTA. This property is directly applied for vessel segmentation [2],
centerline extracting, and lumen diameter estimation. However, such approach
and similar ones fail to detect abnormal structures, namely bifurcations and
lesions (e.g., calcifications, atherosclerosis, aneurysms, stents, and stenoses), due
to the inferiority of using a rough tubular model [3]. To improve the segmenta-
tion performance, machine learning was applied to capture more powerful and
discriminative features [4,5]. Nonetheless, since the segmentation is regarded as
a voxel-wise classification problem, these approaches may generate a lot of leaks
(false positives) or holes (false negatives) in the final extraction result. Therefore,
fully convolutional network (FCN), U-Net and its 3D extension [6,7] have earned
increasing attention in medical image segmentation and represented better per-
formance because of the superiority of integrating high-level constraints within
the upsampling step. However, to the best of our knowledge, these networks
have not yet considered corresponding holistic anatomical information, such as
spatial distribution of coronary artery tree. In other words, the priori anatomical
knowledge is rarely incorporated to guide the segmentation procedure.

Inspired by the conventional vessel extraction algorithms and deep learning
framework, we propose an improved segmentation approach that adopts a 3D
fully convolutional network and spatial prior knowledge of coronary artery tree,
to predict the probability map of coronary arteries from the whole coronary CTA
images. We call it context aware because unlike original 3D U-Net, our network
utilizes the location information of input patches. Briefly, the main contributions
of our approach are summarized as: (1) a 3D UNet-like network is customized to
achieve coronary artery tree segmentation in the whole coronary CTA, and the
architecture of our network is tailored to identify small objects in 3D patches
by introducing a shortcut from low-level to high-level feature maps; (2) the
spatial prior knowledge of coronary artery tree, estimated from training images,
is incorporated to guide the segmentation within each local patch, thus reducing
the complexity of model learned and increasing the performance at the same
time. We evaluate our algorithm on 50 coronary CTA volumes by a five-fold
cross validation. The experimental results demonstrate that our framework is
robust for coronary artery segmentation and outperforms conventional Hessian
vesselness based approach.

2 Methods

In this paper, we aim to extract complete coronary artery tree from coronary
CTA volume. A statistical model is obtained first to estimate the spatial distri-
bution of coronary arteries, which contributes to the reduction of false positives
and false negatives. Then our proposed segmentation network utilizes this prior
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knowledge as an additional input channel and produce voxel-wise probability
map, which is thresholded to obtain the final segmentation result. No morpho-
logical post-processing is used to clean up small disconnected components. The
schematic illustration of our framework is shown in Fig. 1.
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Fig. 1. Network architecture of our proposed framework.

2.1 Spatial Distribution Prior

Normally, the coronary arteries start from the coronary ostia, then bifurcat-
ing into two main branches along the heart surface. Obviously, this anatomical
knowledge can be introduced as an auxiliary constraint to help to reject most
wrong extractions scattered out of the heart or inside. In order to acquire the spa-
tial distribution model, all the annotated labels in training dataset, are aligned
to the same coordinate system defined by three anatomical landmarks, namely,
the ostium of left coronary artery, the ostium of right coronary artery, and the
left ventricle apex. These landmarks are extracted using a boosting-based detec-
tion algorithm [8]. As shown in Fig. 2, the origin is defined as the middle point
between the ostia of left and right coronary artery. The z axis is defined as the
direction pointing from the origin to the left ventricle apex. The y axis is defined
as the vector perpendicular to the z axis and lies inside the plane determined
by three landmarks. Then the x axis is defined as the cross product of previous
two axes. After the alignment, a spatial probability map of coronary arteries
is obtained by some non-parametric kernel density estimation, such as Parzen
window. Therefore, given a test volume, the corresponding coordinate system
attached is estimated following detecting the three cardiac landmarks. Then
the statistical priori distribution, transformed based on the coordinate system
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Fig. 2. (a) Normalized coordinate system defined by three anatomical landmarks: the
ostium of left and right coronary artery and the left ventricle apex. (b) Generated
spatial distribution of coronary arteries shown in two different viewpoints.

defined previously, is used as an additional input channel for training our net-
work. A typical improvement of using this prior knowledge is shown in Sect. 3.
Moreover, the convergence becomes faster due to the constraints introduced by
priori spatial distribution.

2.2 Network Architecture

Illustrated as Fig. 1, our proposed context aware network is customized from the
original 3D U-Net [6]. Similar to its standard version, our main network is com-
posed of 3D convolution, max pooling, up sampling (deconvolution), and short-
cut connections from layers in down-sampling path to the ones in up-sampling
path with equal resolution. However, considering the growth of model depth and
number of trainable parameters in 3D kernels, training the network mentioned
can be extremely difficult owing to the vanishing of forward and backward prop-
agating signals. Therefore, residual skip connection is added between the input
and output of each layer block to preserve flowing signals in our network. Each
layer is composed of batch normalization, ReLU activation, and convolution in
order, according to its superiority demonstrated in previous study [9]. Moreover,
max pooling rather than convolution with stride 2 is utilized to reduce the res-
olution of feature maps, thus leading signals flowing directly from feature maps
with high-resolution to the ones with low-resolution. In addition, the kernel size
adopted in our network is set to 33 to keep the number of trainable parameters
at a low level while preventing performance declining significantly.

Apparently, class imbalance, namely the background in cardiac CT volume
vastly outnumbering the coronary arteries to be extracted, results in serious mis-
classifications. To deal with the problem and mitigate easy example dominant,
the focal loss, proposed in [10], is modified as follows in our framework.
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LαFocal(X ;W) = − 1
|X |

∑

y

∑

x

α(1 − pt)γ log(pt) (1)

pt = yp + (1 − y)(1 − p), α = 1 − |Xy|
|X |

Given an input patch X , |X | is the size of patch X , and |Xy| is the size of
class y within patch X similarly. W are the parameters to be trained within
the network proposed. y and p denote the ground truth label and corresponding
probability prediction of sample x after softmax, respectively. Besides, we use a
trade-off parameter w to balance the importance of positive/negative examples,
and γ, which is set as 2 in this paper, is introduced to mitigate easy example
dominant and focus on hard examples consequently. In addition, we also employ
a two-stage training strategy to train such an imbalance problem. We extract
patches whose centers have a 0.8 probability of being on foreground initially, and
decrease it to 0.5 after certain epochs.

In deep network, early layers are always under-tuned because of gradient
vanishing problem. The residual structure mentioned above alleviates this prob-
lem by adding skip paths. On the other hand, enhancing the gradient flow for
shallow layers with deep supervision is also demonstrated to be effective in seg-
mentation task. Similar to [11], we incorporate three side-paths auxiliary loss to
shorten the backpropagation path of gradient flow signals. So as to obtain the
final formulation of loss function in our proposed network.

L(X ;W) = LαFocal(X ;W) +
∑

s=1,2,3

βsLs
αFocal(X ;ws) (2)

where βs is the weight of different side-paths ws and set as 0.3, 0.6, 0.9 from
coarse to fine.

3 Experiments and Results

Our proposed approach is evaluated on a total of 50 coronary CTA volumes,
which are collected from different scanners, by a five-fold cross validation. The
images are randomly divided into 5 groups, and one of them is selected for
testing then the rest for training in turn. In term of ground truth, some public
datasets, such as Rotterdam Coronary Artery Algorithm Evaluation Framework,
only provide annotated contours on cross-sections of some main branches. It is
not feasible to use these annotations for training or testing our networks. In
this paper, therefore, the complete coronary artery trees in 50 CTA volumes
are annotated by radiologists from cooperative hospital. And the spatial prior
calculated uses only training cases in each of the five folds of cross validation.
Considering the variations of image spacing, we resampled these images to the
same voxel size of 0.43 mm3. Moreover, data augmentation is applied on 30
percent training samples, including ±25 degrees rotation around z axis and ±10
pixels translation along orthogonal axes.
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3.1 Implementation Details

We implemented our 3D network using a NVIDIA GeForce 1080Ti in Tensor-
flow. Considering the limitation of available GPU memory and superiority of
training on mini-batch, cropped 64× 64× 64 sub-volumes are randomly selected
as the input to train our network with a batch size of 6. We update the weights of
network using an Adam optimizer with initial learning rate of 0.001 and momen-
tum of 0.5. To avoid overfitting, a L2 regularization is used in our network with
the value of 5e−4. Finally, the whole network is trained from scratch, and the
weights are initialized from a normal distribution N (0, 0.01). Within the test
stage, we adopted sliding windows with an overlapping ratio of 0.4 to generate
input patches from the whole volume, and consequently overlap-tiling strategy
is utilized to reconstruct the whole predicted probability map.

3.2 Results

Three metrics are used to evaluate the segmentation performance of our pro-
posed approach, including dice similarity coefficient (DSC), precision, and recall.
Quantitative comparison of our proposed network with/without spatial pri-
ori distribution (Ours with/no prior) and Hessian vesselness based method
(Frangi) [2]1, is shown in Fig. 3 and Table 1.

Fig. 3. The quantitative performance comparison of our proposed algorithm and multi-
scale Hessian vesselness based method [2]. The curves of Frangi filtering are consistent
with its performance reported in [4].

1 Public implementation by Kroon, D.J. https://ww2.mathworks.cn/matlabcentral/
fileexchange/24409-hessian-based-frangi-vesselness-filter.

https://ww2.mathworks.cn/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
https://ww2.mathworks.cn/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
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Table 1. Quantitative evaluation for coronary segmentation

Metrics Frangi Frangi + mask Ours no prior Ours + mask Ours with prior

DSC[%] 2.5 ± 0.9 9.5 ± 3.6 74.7 ± 5.6 75.8 ± 4.7 79.5 ± 3.6

Precision[%] 1.3 ± 0.5 5.2 ± 3.2 70.2 ± 8.5 72.0 ± 7.2 78.5 ± 6.0

Recall[%] 74.1 ± 10.9 74.0 ± 10.9 80.9 ± 7.6 80.9 ± 7.6 81.3 ± 3.6

To explore the effectiveness of spatial prior knowledge usage as well as the
way of incorporating prior knowledge, our generated priori spatial distribution is
thresholded as a binary mask to reduce negative voxels (Frangi + mask, Ours
+ mask), thereby achieving a fair comparison with our proposed context aware
method. It is observed that our proposed network gets an obvious improvement,
compared with Hessian vesselness based method. Concentrating on the usage of
spatial prior knowledge, we notice that utilizing the priori spatial distribution
by just using it as a binary mask is inferior to incorporating it as an additional
input channel.

In Fig. 4, the probability maps predicted by different approaches are thresh-
olded to visually compare the performance. Similarly, we could observe that sat-
isfactory performance is achieved by our proposed approach, in which the false
extractions are significantly less than the ones in Hessian vesselness based method
with binary priori mask. Besides, some disconnected segments caused by artifacts
or insufficient contrast could also be reconnected due to the prior knowledge incor-
porated. It is reasonable to assume that the priori spatial distribution, estimated
from finite samples, may not be consistent with the coronary arteries distribution
within a new image exactly. Therefore, compared with using the prior knowledge
as a binary mask, taking it as an additional input channel achieves better perfor-
mance, especially on those segments referred by red arrows in Fig. 4.

(a) (b) (c) (d) (e)

Fig. 4. Qualitative comparison of different algorithms on one example. No morpholog-
ical post-processing is used to clean up small disconnected components. (a) annotated
label, (b) filtered result of Frangi [2] using mask, (c) result of our network without
prior knowledge, (d) filtered result of (c) using mask, (e) result of proposed method.
(Color figure online)

For a better view of results, contours of arteries segmented by different
approaches on some 2D planes, including common, calcified, and bifurcated, are
shown in Fig. 5. Compared to Hessian vesselness based method, our proposed



92 Y. Duan et al.

(a) (b) (c) (d)

Fig. 5. Comparison of segmented lumen on 2D planes, including annotations (green),
Hessian vesselness (yellow), our segmentation with (red) and without (blue) prior.
(a) common, (b) calcifications, (c)(d) bifurcations from different projections. (Color
figure online)

method is highly consistent with manual annotations, especially on those abnor-
mal vascular structures. Note that the DSC and Precision in Table 1 are not that
high. It is because the radiologists are somewhat conservative, thereby omitting
many thin vessels in annotations, while the algorithms extract the complete
coronary tree (including thin vessels).

Average segmentation time of our approach for the complete coronary Artery
tree is about 159 seconds per volume on a computer with a NVIDIA GeForce
1080Ti GPU. The Hessian vesselness method consumes about 226 seconds per
volume on a computer with 2.1 GHz CPU.

4 Conclusion

In this paper, we propose a context aware 3D fully convolutional network for
extracting coronary artery tree in the whole cardiac 3D CTA volumes. The
proposed approach integrates the strength of deep networks in extracting effec-
tive features and spatial prior knowledge constraint in guiding segmentation
procedure, thus reducing vast majority negative voxels. Our evaluation on 50
CTA volumes shows obvious suppression of vessel-like structures and accurate
segmentation of coronary arteries. For further improvement, the spatial prior
distribution could be estimated by a more accurate heart alignment algorithm.
Besides, Zheng et al. have proved that it is effective to use extracted heart sur-
face as a constraint of coronary artery segmentation [4]. We intend to introduce
the heart surface as another anatomical prior knowledge to achieve a further
improvement.
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