
Chapter 5
On the Effectiveness of Higher-Order
One-Dimensional Models for Physically
Nonlinear Problems

I. Kaleel, M. Petrolo, E. Carrera and A. M. Waas

Abstract The chapter presents numerical assessments of physically nonlinear
problems through a class of refined one-dimensional theories based on the Carrera
Unified Formulation (CUF). CUF is a hierarchical formulation to generate refined
structural theories through a variable kinematic approach. Physical nonlinearities
include von Mises plasticity and cohesive interface modeling for delamination of
composites. This work aims to provide insights into the effect of kinematic enrich-
ment on the overall nonlinear behavior of the structure. Guidelines stem from the
evaluation of the accuracy and numerical efficiency of the proposed models against
analytical and numerical approaches from the literature.

5.1 Introduction

The engineering practice tends to use simple analytical and finite element models
for the stress analysis of structures to obtain computational efficiency and acceptable
levels of accuracy. One-dimensional models (1D)—referred to as beams—fall within
the scope of the analysis of slender structures such as columns, blades, and aircraft
wings. Classical models such as Euler–Bernoulli (EBBT) [4, 12] and Timoshenko
(TBT) [29] are common options for practical engineering analyses, but the effective-
ness of such models depend on many assumptions such as geometrical dimensions,
the prismatic nature of the structure, material homogeneity and isotropy. Since the
accurate resolution of displacement and stress fields serves as a precursor for reli-
able nonlinear simulations, the validity of classical models in the nonlinear regime
may be questionable and 2D, or 3D models are often mandatory with significant
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computational overheads. This chapter presents a novel approach in modeling the
physical nonlinearities through higher-order 1D. Over the past few decades, signif-
icant efforts have led to the development of 1D models to solve diverse classes of
physically nonlinear problems, and a brief overview follows.

Timoshenko and Gere extended the TBT to doubly-symmetric inelastic beams
[30]. Abambres et al. employed the Generalized Beam Theory (GBT), originally
developed by Schardt [25], for elastoplastic and post-buckling analyses of metallic
thin-walled beam structures [1]. A class of 1D models stemmed from the Variational
Asymptotic Beam Section Analysis (VABS), a variational asymptotic method which
replaces a 3D structural model with a reduced-order model via asymptotic series
[10]. The methodology also has nonlinear capabilities as shown by Pollayi et al. to
model matrix cracking in helicopter rotors or wind turbine blades [23]. Jiang and Yu
extended VABS to hyperelastic beams subjected to finite deformations and damage
analyses of composites [16, 17]. Groh and Tessler developed a computationally
efficient beammodel to capture the delamination in laminated composite beams [14]
via a nine degrees of freedom (DOF) and eight-DOF locking-free beam elements
employing a mixed form of a refined zig-zag theory capturing the transverse stress
field. Škec et al. [28] developed a 2D multilayered beam finite element for mixed-
mode delamination analyses. Eijo et al. presented a method based on a refined zig-
zag theory within a 1D finite element to model delamination in composite laminated
beams [11].

The chapter deals with extensions of 1D CUF models for analyzing physically
nonlinear problems and effectiveness concerning accuracy and computational effi-
ciency. CUF is a hierarchical formulation that reduces 3D problems to 2D or 1D in a
unified manner through a variable kinematic description [9]. The ability of 1D CUF
models to recover accurate 3D stress fields efficiently can solve broad categories of
physically nonlinear problems. Originally developed for plates and shells, 1D CUF
models can deal with nonlinearities due to large deflections and post-buckling [22],
elastoplastic and progressive damage analysis [8, 19, 20], and rotordynamics [13].

This chapter provides an overview of the nonlinear constitutive laws in Sect. 5.2,
describes the structural modeling and FE framework in Sect. 5.3, highlights the most
important aspects related to the solution schemes for nonlinear problems in Sect. 5.4,
and shows results and comments in Sects. 5.5 and 5.6.

5.2 Nonlinear Constitutive Equations

The adopted Cartesian coordinate system has the beam axis along the y-axis and the
cross-section along the x − z plane. The displacement vector at any given point in
the structural domain is

u (x, y, z) = [ux uy uz]T (5.1)
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The vectorial notations for strain and stress states are

ε = [εxx εyy εzz εyz εxz εxy]T ; σ = [σxx σyy σzz σyz σxz σxy]T (5.2)

Under the small strain assumption, geometrical and constitutive equations are

ε = b u; bT =
⎡
⎣

∂x 0 0 0 ∂z ∂y
0 ∂y 0 ∂z 0 ∂x
0 0 ∂z ∂y ∂x 0

⎤
⎦ ; σ = C ε (5.3)

where b is the differential operator and C reads a nonlinear generic constitutive
material matrix with 36 constants to describe the stress-strain behavior.

5.2.1 Plasticity

The von Mises (J2) theory hypothesizes that the material starts to yield when the J2
invariant of the stress tensor attains a certain threshold, often referred to as the yield
stress,

f = q(σ ) − σy(ε̄p) (5.4)

where f is the von Mises yield locus, q(σ ) is the von Mises stress and σy is the
yield stress which is a material input. A return mapping numerical scheme solves the
local nonlinear problem, as detailed in Carrera et al. for CUF models [8]. In addition
to metals, the nonlinear shear response exhibited by unidirectional laminates is due
to inelastic deformation incurred by matrix constituents, often modeled through the
von Mises based plasticity method.

5.2.2 Cohesive Modeling

Let us consider a domain Ω with a crack zone Γc as shown in Fig. 5.1. Essential
boundary conditions act along the boundary Γu and prescribed tractions τi along Γn .
The domain has two sub-domains, Ω+ and Ω−, along the crack boundary Γc, as
depicted in Fig. 5.1. The equilibrium equations within the domain Ω are

σi j, j + ρbi = 0 in Ω; σi j n j = ti in Γn

σi j n
+
j = τ+

i = −τ−
i = −σi j n

−
j n

−
j in Γc

(5.5)

where σi j is the stress field within the domain due to external loading ti , bi are the
body forces, ρ is the density of the material, and τ+

i , τ−
i are the closing tractions

acting along the cohesive surface. Via the Principle of Virtual Displacements (PVD)
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Fig. 5.1 Boundary value
problem for cohesive
formulation

and considering the additional contributions to work due to the cohesive crack, the
weak formulation reads

δLint + δLcoh − δLext = 0, δLint =
∫

Ω

�sδu : σ dV

δLcoh =
∫

Γc

δ[[u]] · tcdΓc, δLext =
∫

Ω

δu · bdΩ +
∫

Γn

δu · t dΓn

(5.6)

where δ indicates the virtual variation, Lint , Lcoh and Lext refer to the bulk strain
energy, work due to the cohesive crack, and external loading, respectively. [[u]]
denotes the displacement jump across the cohesive surface,

[[ui ]] = u+
i − u−

i (5.7)

where u+
i and u−

i denote the displacement of the given point i on the upper (Ω+)
and lower surface (Ω−) of the interface.

The cohesive constitutive law describes the relationship between the cohesive
traction τi and the displacement jump Δi across the interface,

τ j = Dji Δi (5.8)

where Dji is the constitutive operator and Δi is the displacement jump across the
interface in the local coordinate system. Formulated within the context of the damage
mechanics, the free energy density Ψ reads [27, 31]

Ψ (Δ, d) = (1 − d)Ψ 0(Δ) − dΨ 0(δ3i 〈−Δ3〉) (5.9)

where Ψ 0 is the free energy per unit surface. δi j is the Kronecker delta and d is
the scalar damage parameter accounting for decohesion. The operator < . > used in
Eq.5.9 is < x >= 1

2 (x + |x |). By differentiating Eq.5.9),

τi = (1 − d)D0
i jΔ j − dD0

i jδ3 j 〈−Δ3〉 (5.10)

where D0
i j is the undamaged stiffness tensor expressed in terms of the input penalty

parameter. Under mixed-mode loading, the decohesion onset follows the quadratic
criterion proposed by Ye [33],
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Fig. 5.2 Mixed-mode
cohesive criteria

(
< τ3 >

τ 0
I

)2

+
(

τ1

τ 0
I I

)2

+
(

τ2

τ 0
I I

)2

= 1 (5.11)

where τi refers to the cohesive traction in direction i , τ 0
I and τ 0

I I are the cohesive
strengths under mode I and mode II, receptively. A bilinear constitutive law defines
the cohesive traction and displacement jump [21]. The damage propagation criteria
uses the expression for the critical energy release rate for mixed-mode proposed by
Benzeggagh and Kenane [3],

Gc = Gc
I + (Gc

I I − Gc
I )

(
Gc

I

GT

)η

; GT = GI I

GI + GI I
(5.12)

where Gc
I and Gc

I I are the critical energy release rates under mode I and mode
II, respectively. η is an experimentally fitted parameter. As illustrated in Fig. 5.2,
the area under the traction-displacement jump relation equals to the fraction
toughness Gc.

5.3 Structural Theories and Finite Element Formulation

Within the 1D CUF formulation, u (x, y, z) becomes a generic expansion of primary
unknowns as follows:

u (x, y, z) = Fτ (x, z) uτ (y) ∀ τ = 1, 2, . . . , M (5.13)
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where Fτ is the expansion function that defines the kinematic field on x − z with
M number of terms. uτ (y) is the vector of generalized displacements along the
beam axis. The choice of the expansion function determines the class of 1D CUF
models. This chapter deals with two classes of expansion functions, namely (a)
Taylor Expansion (TE) and (b) Lagrange Expansion (LE). TE employ Maclaurin
polynomials of the kind xi z j [6], whereas LE use Lagrange polynomials [7]. Unlike
TE, LE have pure displacement variables as detailed in [9]. The discretization along
the y-axis follows the Finite Element Method (FEM),

u (x, y, z) = Ni (y) Fτ (x, z) uτ i (y) ∀ τ = 1, . . . , M i = 1, . . . p + 1

(5.14)

uτ i = [uxτ i u yτ i uzτ i ] (5.15)

where Ni is the i th shape function of order p [2] anduτ i is the FEnodal vector.Numer-
ical results employed three types of beam elements, B2 (two nodes), B3 (three nodes)
and B4 (four nodes) leading to linear, quadratic and cubic approximations, respec-
tively. The choice of shape functions used along the beam axis remains independent
of the expansions employed for the cross-section.

5.3.1 Nonlinear Governing Equations

Within a nonlinear FEM context, the original problem becomes a set of incremental
finite element equations solved at definite step instances,

fint (u) − fext = 0 (5.16)

where fint is the global internal force vector which is a function of global finite
element displacement vector u and fext refers to the external force vector. In CUF,
finite element arrays are

kS
i jτ suτ i − ps j = 0 (5.17)

where ki jτ s
s and ps j refer to Fundamental Nuclei (FNs) of the secant stiffness matrix

and the nodal loading vector, respectively. The strain vector relates to the generalized
nodal unknowns via the differential operator of Eq.5.3,

ε = Bτ i uτ i Bτ i = b(Ni Fτ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ni Fτ,x 0 0
0 Ni,y Fτ 0
0 0 Ni Fτ,z

0 Ni Fτ,z Ni,y Fτ

Ni Fτ,z 0 Ni Fτ,x

Ni,y Fτ Ni Fτ,x 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.18)
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Analogously for virtual variations,

δε = Bs j δus j (5.19)

The strain energy becomes

δLint = δus j

∫
V

{
BT
s jC

SBτ i dV
}
uτ i = δus jkS

i jτ suτ i (5.20)

where CS is the secant material matrix and the secant matrix kS
i jτ s is of size 3 × 3,

kS
i jτ s =

⎡
⎢⎣
kxxi jτ s k

xy
i jτ s k

xz
i jτ s

k yxi jτ s k
yy
i jτ s k

yz
i jτ s

kzxi jτ s k
zy
i jτ s k

zz
i jτ s

⎤
⎥⎦ (5.21)

Diagonal and off-diagonal terms have recurrent expressions stemming from the fol-
lowing:

kxxi jτ s = (CS
11Fs,x N j + CS

51Fs,z N j + CS
61Fs N j,y)Fτ,x Ni + (CS

15Fs,x N j + CS
55Fs,z N j +

CS
65Fs N j,y)Fτ,z Ni + (CS

16Fs,x N j + CS
56Fs,z N j + CS

66Fs N j,y)Fτ Ni,y

kxyi jτ s = (CS
12Fs,x N j + CS

52Fs,z N j + CS
62Fs N j,y)Fτ Ni,y + (CS

14Fs,x N j + CS
54Fs,z N j +

CS
64Fs N j,y)Fτ,z Ni + (CS

16Fs,x N j + CS
56Fs,z N j + CS

66Fs N j,y)Fτ,x Ni (5.22)

The virtual variation of external work is

δLext =
∫
V

δuT gdV +
∫
S
δuTqdS +

∫
l
δuT rdl + δuT Pm (5.23)

where g, q, r and Pm are body forces per unit volume, surface forces per unit area, line
forces per unit line and concentrated forces acting at point m, respectively. Within
the scheme of 1D CUF, the external load vector becomes

ps j =
∫
V
N j Fs g dV +

∫
S
N j Fs q dS +

∫
l
N j Fs r dl + N j Fs Pm (5.24)

For a generic, arbitrary higher-order beam elements of order p and expansion func-
tions with M terms, the global assembly exploits the expanding indices of FN
τ, s = 1, 2, . . . M and i, j = 1, 2, . . . p + 1,

KS =
nelem∑
n=1

p+1∑
i, j=1

M⋃
τ,s=1

kSi jτ s fint =
nelem∑
n=1

p+1∑
i=1

M⋃
τ=1

fintτ i p =
nelem∑
n=1

p+1∑
j=1

M⋃
s=1

pτ i (5.25)

where
∑

is the finite element assembly operator that sum the corresponding con-
tributions from all the elements based on the order of FE for given shared DOF.
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⋃
is the CUF assembly operator which sums the corresponding contributions based

on the theory of structure. KS , fint and p are the global assembled secant stiffness
matrix, global internal force vector and global external load vectors, respectively.
The internal force vector derives from the multiplication of the stiffness matrix and
the current displacement field. Therefore, Eq.5.17 becomes

KSu = p (5.26)

Readers are referred to the book by Carrera et al. [9] for detailed information on
assembly procedure within CUF framework.

5.3.2 CUF Cohesive Elements

Within CUF, the displacement field on the upper and lower faces of the cohesive
Lagrange element is

u+ = Fτ Niu+
τ i u− = Fτ Niu−

τ i [[u]] = Fτ Ni (u+
τ i − u−

τ i ) (5.27)

where u+ and u− are the displacement along the upper and lower edge of the CS
element, respectively. Figure 5.3 shows three classes of cohesive Lagrange cross-
section element, namely, (a) four-node CS4—linear, (b) six-node CS6—quadratic,
and (c) eight-node CS8—cubic. Therefore, the fundamental nuclei of cohesive forces
become

f +
cohτ i

=
∫

Γc

Fτ Ni u+
τ i t

+dΓc f −
cohτ i

=
∫

Γc

Fτ Ni u−
τ i t

−dΓc (5.28)

The derivation of the fundamental nuclei of the cohesive tangent nucleus makes
use of a generic constitutive cohesive law in the rate form,

ṫc = QDQT [[u̇]] = QDQT Fτ Ni (u+
τ i − u−

τ i ) (5.29)

(a) (b) (c)

Fig. 5.3 Cohesive Lagrange cross-section elements
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whereD is the cohesive tangentmaterialmatrix alongwith orthogonal transformation
matrix Q. The fundamental nuclei for the cohesive tangent matrix stems from the
linearization of the cohesive force vector (Eq. 5.28),

kcoh
ijτ s =

∫

c

FτNiQ D QTFsNjdc (5.30)

5.4 Nonlinear Solution Schemes

The nonlinear nature of the set of algebraic equations formulated in Eq.5.16 neces-
sitates iterative schemes such as the Newton-Raphson method (NR),

φres = KSu − p (5.31)

where φres is the unbalanced residual nodal vector. Next step requires the truncation
of the Taylor series expansion to linear terms of φres about a known solution (u,p),

φres(u + δu,p + δp) = φres(u,p) + ∂φres

∂u
δu + ∂φres

∂p
δλp = 0

= φres(u,p) + KT (u)δu − δλp = 0 (5.32)

whereKT (u) is the tangent stiffness matrix and λ is the load parameter (p = λpre f ).
Accounting for additional sets of constraint relationships for the load-scaling param-
eter λ within the global system of equation, the matrix form of Eq.5.32 becomes

[
Ktan −p
hT s

] [
δu
δλ

]
=

[
φres

−g

]
(5.33)

where g is the path following constraint equation. h and scalar s are

g(u0, λ0, δu, δλ) = 0; h = ∂g

∂u
; s = ∂g

∂λ
(5.34)

The constraint equation depends on the incremental scheme adopted. Standard incre-
mental schemes, such as the displacement-control method, require g(δu, δλ) = 0,
whereas, load-controlled methods require δλ = 0. Based on the pioneering work of
Riks, numerical strategies based on arc-length techniques are of interest to character-
ize complex equilibrium paths [24] and are powerful for nonlinear elastic problems
[5]. Traditional arc-length techniques often fail when the analysis involves mate-
rial instabilities with localized failure. Gutiérrez introduced a path-following con-
straint based on the energy-released rate for geometrically linear continuum damage
models [15]. Based on the assumption that the unloading behavior remains elastic,
the dissipation-based arc-length constraint equation is
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g = 1

2
pT (λ0Δu − Δλu0) − Δτ (5.35)

where λ0 and u0 are the last converged load factor and displacement vector and Δτ

is the path parameter. The derivatives required for the construction of the global
consistent tangent matrix (Eq.5.33) read [32]

h = ∂g

∂u
= 1

2
λ0pT , s = ∂g

∂λ
= −1

2
pTu0 (5.36)

The derivatives yield additional consistent tangent terms independent of the displace-
ment and load increment, thereby making it computationally attractive.

At each NR iteration, the system of equations is

[
Ktan −p
hT s

] [
du
dλ

]
=

[
φk
res

−gk

]
;

[
du
dλ

]
=

[
Δu
Δλ

]k+1

−
[
Δu
Δλ

]k

(5.37)

where k refers to the previous iteration andΔu andΔλ are the displacement and load
increments, respectively. It is evident from the Eq.5.37 that the banded structure of
the global consistent tangent matrix deteriorates due to the presence of additional
terms pertaining to constraint equations. Using the Sherman-Morrison formula, the
global consistent tangent (Eq.5.37) becomes [26, 32]

[
du
dλ

]
=

[
dI

−gk

]
− 1

hTdI I − s

[
(hTdI + gk)dI I

−hTdI − gk(1 + hTdI I − s)

]
(5.38)

where the vectors dI and dI I stem from the factorization of the structural tangent
matrix Ktan ,

Ktan dI = φres Ktan dI I = −p (5.39)

The amount of energy dissipated during a given load increment is always a mono-
tonically increasing quantity. However, the solver can run into numerical issues at
non-dissipative regions—such as pure elastic loading—on the equilibriumpath as the
path parameter can approach the machine precision. The addition of a robust switch-
ing algorithmbased on the introduction of threshold values can alleviate this problem.
The algorithm switches to displacement/force controlled loading in non-dissipative
regions and switches back to dissipation-controlled according to the energy thresh-
old. In addition, the path parameter Δτ needs adjustments during the course of
computation to limit the number of steps. The adjustment is automatic via setting
the optimal value of iterations per increment kopt . The path parameter for a given
increment i is [15]

Δτ i = Δτ i−1 kopt
ki−1

(5.40)

where ki−1 refers to the number of iterations required in the last converged load step.
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5.5 Numerical Applications

This section presents three numerical examples to assess the efficiency of higher-
order models. The first example deals with a multilayered cantilever beam under
bendingwith physical nonlinearitiesmodeled through the vonMises plasticitymodel.
The second numerical case deals with the delamination of a double cantilever beam
test through the cohesive-based models. A numerical case based on the nonlinear
micromechanical framework is the third numerical case.

5.5.1 Multilayered Cantilever Beam Under Bending

This example uses two configurations, (a) asymmetric two-layered and (b) symmetric
three-layered, see Fig. 5.4. Classical beam models–EBBT and TBT—and the linear
TE model (TE1) provide accurate responses in the linear regime whereas the lack of
accurate stress resolution invalidates their effectiveness beyond the elastic limit. The
results are consistent with findings by Carrera et al. for monolayered cantilever beam
examples [8]. Figure 5.4 and Table 5.1 show comparisons against 3D FEM solutions

(a)

(b)

Fig. 5.4 Nonlinear response ofmultilayered cantilever beam under bending: aGeometry, boundary
condition and material properties of the multilayered beam and b Comparison of equilibrium path
for two-layered and three-layered beam configuration using various models
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Table 5.1 Comparison of maximum accumulated equivalent plastic strain for different models for
the multi-layered cantilever beam under bending

Model Two layers Three layers

DOF ε̄max
p [×10−3] DOF ε̄max

p [×10−3]

3D FE models

ABQ-Coarse 21084 7.66 42210 4.79

ABQ-Refined 64260 8.07 63210 4.89

TE models

EBBT 363 – 363 –

TBT 605 – 605 –

TE1 1089 – 1089 –

TE2 2178 5.65 2178 3.57

LE models

8L4a/12L4b 5445 5.35 7623 3.99

8L9a/12L9b 16335 8.56 23595 4.87
aTwo layers
bThree layers

based on standard 8-node brick elements using ABAQUSwith varying mesh density.
Higher-order models can capture the nonlinear response with great computational
efficiency without deteriorating the accuracy.

5.5.2 Double Cantilever Test

This problem highlights the necessity to capture high-stress gradients and its effects
on the overall response. The geometry and boundary conditions along with material
properties are in Fig. 5.5a. The beam model has a 4 L9 cross-section along with
2 CS6 cohesive elements interfaced between the layers. DOF for the CUF models
are, 6290 for 180B2, 32490 for 360B2, and 16290 for 60B4. Verification makes use
of an analytical solution based on a classical beam theory [21]. From Fig. 5.5c, the
use of B4 proves to be effective whereas B2 tends to over-predict the results.

5.5.3 Nonlinear Response of Randomly Distributed RVE

This section deals with the inelastic pre-peak nonlinear response of a randomly
distributed Representative Volume Element (RVE). Kaleel et al. investigated the pre-
peak nonlinear and progressive failure analysis of fiber-reinforced composites for
various classes of RVE and material systems based on a nonlinear micromechanical
platform [18, 19]. The numerical examples focus on a twelve-fiber randomly dis-
tributed RVE equipped with the von Mises plasticity constitutive law to model the
shear-driven nonlinear behavior of the matrix. The fiber is linear elastic. As depicted
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(a)

(b)

(c)

Fig. 5.5 Double cantilever beam test of a composite beam a Geometry and material properties of
the DCB, b 3D deformed configuration for the 60B4 c Comparison of equilibrium curves along
with analytical solutions

Fig. 5.6 Randomly distributed RVE under applied out-of-plane shear ε̄13 of 0.02 a CUFmodeling,
b von Mises stress (σvm), c Accumulated plastic strain

in Fig. 5.6a, the RVE has 277 L9 elements with 2 B4 elements, 24801 DOF, and
subjected to an out-of-plane macro shear strain ε13 of 0.02 through periodic bound-
ary conditions. The contour plots for the von Mises stress and accumulated plastic
strain are in Fig. 5.6b, c, respectively. The results present severe local accumula-
tions of stress and strain requiring higher-order kinematics along the cross-section.
Kaleel et al. demonstrated that for the linear elastic homogenization CUF requires
a one-order magnitude of DOF less than standard 3D brick elements and multi-fold
decrease in computational time in the case of nonlinear analysis [18, 19].

5.6 Conclusion

This chapter has presented results on the nonlinear analysis of structures via refined
1D models. The physical nonlinearities consider plasticity and delamination effects.
The structural modeling adopts the CUF to generate 1D models with enriched dis-
placement field. The nonlinear structural analysis may benefit from the use of refined
1D models for two main reasons,
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• The proper detection of 3D effects is fundamental to capture local effects due,
for instance, to plasticity or delamination onsets. Classical models, such as
Euler–Bernoulli and Timoshenko, cannot detect such effects along the cross-
section of the structure and may lead to significantly wrong results.

• The need for iterative solution schemes leads to computational overheads limiting
the complexity of the structural configuration. The use of 1D models can decrease
such an overhead given that 10–100 times less unknown variables than 2D and 3D
models are necessary.

As general guidelines, the use of Taylor expansions is recommended when the global
response is of interest. The proper detection of highly 3D local effects requires the
use of Lagrange expansions. The latter, moreover, have only pure displacements as
DOF and can model the geometry and material characteristics of each component of
the structure accurately without homogenization procedures.
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