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Foreword

The following comments stemmed from a meeting held in Sestri Levante, Italy, on
June 2018, in which each first author of this book presented the chapter content
extensively to a scientific panel. The chairman was Prof. Erasmo Carrera
(Politecnico di Torino, FULLCOMP Coordinator), and the other members of the
panel were the FULLCOMP project supervisors and three external experts, namely
Prof. Olivier Allix (École normale supérieure de Cachan), Prof. J. N. Reddy (Texas
A&M University), and Doctor Evan Pineda (NASA).

Prof. Olivier Allix, École normale supérieure de Cachan

The meeting took place at the beginning of the last year of the Ph.D. projects. This
choice proved to be relevant to the students being able to deliver a significant
amount of results during their presentations. They lasted about one hour, and the
friendly atmosphere allowed the external participants to address their questions or
remarks straightforwardly. Moreover, the presence of most of the student super-
visors was also beneficial for very fruitful interactions.

The first striking aspect was the outstanding level of the students. It appears that
the different partners managed to attract, thanks to the Marie Sklodowska-Curie
fellowships, extremely talented students from all over the world. Moreover, the
level of cooperation between the students and the strong cohort spirit that emerged
from the meeting was noticeable and particularly pleasant; such an outcome is not
that common. Finally, presentations proved the flexibility of Carrera Unified
Formulation (CUF) to address a variety of complex physical problems at various
scales efficiently. Moreover, as can be seen from the following chapters, the sub-
jects selected both cover a wide range of topics and are at the same time coherent
and complementary, challenging and constitute essential topics regarding the design
of composite materials and structures.

The first part focused on high-fidelity and computationally efficient models for
multiphysics and design and presented the extension of the CUF via the intro-
duction of new and significant features. First set of new features concern the

v



coupling of CUF with the asymptotic numerical method for very fast buckling and
post-buckling analyses of structural parts including the investigation of bi-stable
structures, a hot topic today, and the analysis of sensitivity to imperfections. The
second set is the derivation of a multiscale version of CUF to model regular
microstructures concurrently with the macro- or mesostructures in the case of
composites.

The second part focused on failure analysis, impact, and health monitoring.
Outcomes deal with the analysis of the nonlinear response of composites at various
scales. For example, the use of CUF for the efficient 3D nonlinear analysis of
beam-like structures or the global-local nonlinear analysis. Such a global-local
strategy may use legacy codes at all scales or a legacy code at the global scale and
CUF at the local one, leading to a very precise determination of stresses. The results
presented during the meeting were encouraging. Some results concerning the glo-
bal–local analysis of the buckling and post-buckling response of complex com-
posite parts, including delamination, were particularly impressive. Several
challenging aspects remain unexplored for the CUF, i.e., discontinuities.

The third part focused on virtual characterization, manufacturing effects, and
uncertainty quantification. The results show extended insights on the sensitivity in
the post-buckling behavior of composite panels opening the door to robust design.
Moreover, several important and new aspects regarding the FULLCOMP project
are the multiscale identification in an inverse setting and uncertainty quantification
in the response of complex composite materials.

Dr. Evan Pineda, NASA

The use of composite materials in modern structural applications is already preva-
lent. However, the full potential of these materials has yet to be achieved.
Composites function more as “microstructures” than as “traditional” materials. As
such, there exists a great potential not only to design with the material but to design
the material itself, so that it is tailored specifically for enhanced and optimized
performances. Moreover, advanced composite materials can be used in multifunc-
tional applications which significantly expands the design space for next-generation
structures. The realization of such tremendous capabilities requires synergistic
approaches including multiscale and multiphysics modeling, characterization, and
validation testing. These methods must be employed at all stages of the composite’s
life cycle: from processing to performance. Only by integrating these stages, in an
optimized and coupled fashion, can the maximum ability of composites be exploited.
To facilitate such a transition in design, analysis, manufacturing, and experimen-
tation, there must be a paradigm shift in the research projects on composite materials,
and the projects themselves must be integrated and multidisciplinary.

The primary goals of the FULLCOMP project have been to conduct unified,
multidisciplinary, cutting-edge research on composite structures at all phases
included in the entire composite life cycle. Specifically, collaborative research topics
have targeted the areas of optimization, manufacturing, structural analysis, health
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monitoring, uncertainty quantification, failure prediction, multiscale and multi-
physics modeling, testing, prognosis, and prognostic. Not only is the research itself
versatile, but so are the academic and industrial research partners which consist of an
international team from throughout Europe, Australia, and the USA. Finally, the
project served to educate and train a number of students who will enter the workforce
with expertise in a wide range of disciplines related to advanced composite materials
and structures, further promoting this technology and its possibilities.

I was honored and excited to be invited by Prof. Erasmo Carrera to attend a
research retreat for FULLCOMP in Sestri Levante, Italy. Throughout the day and
one-half of meetings, I was exposed to the breadth and quality of research that was
conducted under FULLCOMP. I was equally impressed with the relevance and
synergy of the program—although the research may have been conducted at var-
ious locations throughout the world, the research was not conducted in isolation.
Each piece of research fits together to form part of a bigger puzzle. It is through the
multidisciplinary and integrated structure and management that FULLCOMP
should serve as a precedent for future research projects in composites, as well as
many other fields.

I am extremely pleased that the outcome of the FULLCOMP project has been
consolidated into a single, comprehensive manuscript. Within this volume are
several articles summarizing work aimed at filling technology gaps present within
the life cycle of composite structures. The book is broken up into three parts. In the
first part, high-fidelity, multiscale models are used to solve a variety of multiphysics
problems related to composites including piezoelectric composites, thermome-
chanical coupling, post-buckling, and multistability. The second portion covers
failure, impact, and health monitoring through the benchmarking of higher-order,
one-dimensional models to provide solutions for problems involving local plasticity
and progressive damage, computational modeling of coupling between panel
post-buckling and delamination, hyperelastic modeling of textile yarns under
impulse loading, and simulation of lamb waves with higher-order numerical
models. Papers on virtual characterization, manufacturing effects, and uncertainty
quantification are compiled in the third and final section of the manuscript.
Specifically the effects of gradation in material properties on post-buckling, an
inverse approach to multiscale characterization in-situ, anisotropic material prop-
erties, and uncertainty quantification utilizing metamodels.

Prof. J. N. Reddy, Texas A&M University

In general, the research being carried out by the FULLCOMP graduate students is
excellent. The presentations were, overall, very good and inspired many comments
and advice. The works presented are all excellent and have high scientific value,
and each early stage researcher must be the main ambassador of such a value.
Although contributions by most researchers around the world, for the most part, are
infinitesimal, one should take pride in what you do, however small it is, because
collectively we make an impact on the humanity. In doing so, a researcher must
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always have the big picture about what is doing and derive motivations from the
potential usefulness and impact of what does. Moreover, in a project like
FULLCOMP, it is essential to know the mathematical models the assumptions
made in deriving it, and the computational approach must include all of the sig-
nificant features of the mathematical model.
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Preface

The use of composite materials in engineering grows continuously together with a
multibillion market in which automotive, aerospace, and wind energy sectors are the
main players. Composites’ success stems from their superior specific properties and
the possibility of creating fit-for-purpose materials and structures. However, lack of
knowledge still undermines the cost-effectiveness of composites and overweight.
This book presents contributions tackling some of the current issues related to the
analysis of composite structures. For a given problem, each chapter offers detailed
theoretical descriptions and significant numerical examples.

The contributions of this volume are outcomes from the research project
FULLCOMP, FULLy integrated analysis, design, manufacturing, and health
monitoring of COMPosite structures. FULLCOMP is a Marie Sklodowska-Curie
project dedicated to the training of twelve Ph.D. students in the field of advanced
models for composite structures. The most relevant common thread of the contri-
butions is the augmented numerical efficiency with superior accuracy for given
computational costs than existing methods and methodologies.

FULLCOMP started in 2015 as an European Training Network composed by
Politecnico di Torino, University of Bristol, Leibniz Universität Hannover,
Ecole Nationale Superieure d’Arts et Metiers of Bordeaux, Luxembourg Institute of
Science andTechnology, ELAN-AUSYGmbH,Universidade do Porto, University of
Washington, and RMIT. The training through research of the Ph.D. students followed
five main work packages, namely analysis and computational methods, design and
optimization, damage and failure analysis, multiscale methods, and experimental
approaches. Other forms of training included three courses on entrepreneurship and
project management, four workshops on composite materials and structures, one
spring school, and some ten seminars or courses. Also, each student spent two sec-
ondment periods of several weeks in academic and non-academic institutions to
increase the multidisciplinarity, facilitate cross-fertilization, and the transfer of
knowledge toward industry.

The first authors of the following chapters are the FULLCOMP Ph.D. students
who, coherently with the meaning of a Marie Sklodowska-Curie project, are the
main actors of the entire network. Students and supervisors established individual
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career development plans at the beginning of the project, and this book aims to show
the scientific results of such plans. As anticipated in the foreword, the contents of
each chapter were subjects of extensive presentations held in Sestri Levante, Italy, on
June 2018, in which each Ph.D. student presented before a scientific panel chaired by
Prof. Erasmo Carrera (Politecnico di Torino, FULLCOMP Coordinator) and com-
posed by the FULLCOMP project supervisors and three external experts, namely
Prof. Olivier Allix (École normale supérieure de Cachan), Prof. J. N. Reddy (Texas
A&M University), and Dr. Evan Pineda (NASA).

This book intends to provide insights on some of the latest developments in the
virtual modeling of composite structures. The intended audience ranges from
graduate students to professionals from aerospace and mechanical engineering. The
theoretical parts are the most extensive in each chapter to furnish more details
related to the implementation aspects. The most significant numerical results close
each chapter to underline the capabilities of the developed models.

The European Union's Horizon 2020 Research and Innovation program is
acknowledged for the funding of Marie Sklodowska-Curie grant agreement
No. 642121.

Turin, Italy Marco Petrolo
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Chapter 1
Introduction

M. Petrolo

Abstract This chapter provides an overview of the book contents and the most
significant works from the literature on related topics. Each section of this chapter
deals with one of the main parts of the book, namely, advanced structural theories,
failure and damage analyses, virtual characterization and manufacturing. The first
part of this volume presents structural theories to deal with the anisotropy of com-
posites and to embed multifield and nonlinear effects to widen design capabilities.
The aim is to provide methods to augment the fidelity of structural theories and
lower computational costs with attention paid to the finite element method. The sec-
ond part handles the damage analysis. The multiscale and multicomponent nature
of composites leads to extremely complex failure mechanisms and predictive tools
require physics-based models to lower the need for fitting and tuning from costly and
lengthy experimental campaigns, and lower computational costs. Furthermore, the
proper monitoring of in-service damage is decisive in a damage tolerant perspective.
The third part presents recent advances to embed characterization andmanufacturing
effects in virtual testing. Higher cost-effectiveness claims the reduction of physical
characterization campaigns as well as higher fidelity for multiscale identification.
Variations of properties due to defects stemming from manufacturing can propa-
gate through scales and dramatically alter performances. The characterization of the
material requires proper uncertainty quantification tools based on stochastic models
and should embed metadata handling for informed virtual testing.

1.1 Advanced Structural Models

The first part of this book presents advanced one-dimensional (1D) and
two-dimensional (2D) models, commonly referred to as beams and shells, respec-
tively. The use of such theories enables the accurate prediction of 3D displacement

M. Petrolo (B)
MUL2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino,
Torino, Italy
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2 M. Petrolo

and stress fields and the reduction of computational costs if compared to classical
3D finite elements. The structural theories of this part stemmed from the use of the
Carrera Unified Formulation (CUF) [11] and employed for multifield analyses,
bistable structures and multiscale frameworks.

Traditional shell theories includeClassical Lamination Theory (CLT) based on the
Kirchhoff–Love hypotheses, First-Order Shear Deformation Theory (FSDT) using
the Mindlin–Reissner assumptions, and Higher-Order Theories (HOT) [65]. The
CUF [10, 11] is a general framework to develop continuum-based reduced models
in either an Equivalent Single-Layer (ESL) or Layer-Wise (LW) approach. Through
the fundamental nuclei (FNs), the finite element formulation has a compact form
facilitating the implementation of diverse theories of structures. CUF can deal with
various and miscellaneous theories and construct finite element models with vari-
able nodal kinematic capabilities through the Node-Dependent Kinematics (NDK)
technique for adaptable refinements. These features allow the improvement of the
numerical efficiency and accuracy and optimize the finite element mesh grids [44].
Advanced models are particularly relevant for multilayered shells of doubly curved
shells [42] and hygro-thermo-electro-mechanical couplings [5, 69].

In this book, one of the applications of advanced structural models deals with
bistable pre-buckled beam-like structures. Due to the release of energy and motion
provided by the snap-instability, bistable beam structures are of interest for energy
harvesting applications [78], actuators [62] and shape-adaptive structures [6]. Past
works used classical modeling approaches based on the Euler-Bernoulli or Tim-
oshenko kinematics [9, 17, 75]. More recently, developments of CUF led to a
class of refined one-dimensional models based on a Maclaurin expansion of the
displacement field through the beam thickness in the framework of an ESL approach
[12, 23, 32]. Such developments account for the geometrical nonlinearities to address
post-buckling and snap-through behaviors in a total Lagrangian formulation.

The use of advanced structural models is beneficial in a multiscale nonlin-
ear framework. Advances in this book fall within the FE2 method, see Feyel and
Chaboche [28] and Nezamabadi et al. [55] in which the analysis has a macro-
scopic/structural problem and a microscopic/material one. Concerning the geomet-
rically nonlinear problem, a promising tool is the Asymptotic Numerical Method
(ANM), see Damil and Potier-Ferry [21] and Cochelin et al. [18], that is more reli-
able and less time consuming when compared to classical iterative methods.

1.2 Damage and Failure

The second part of this book presents advances in the development of modeling tools
for damage and failure analysis of composites and a closing chapter on structural
health monitoring (SHM). The modeling strategies act at the theory of structures
level - e.g., by using CUF - to have highly accurate 3D stress fields with lower
costs, and coupling tools - such as global-local methods - to limit highly expensive
analysis into local areas and, therefore, extend the predictive tools to large and com-
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plex structures. The inclusion of material nonlinearities into 1D structural models
is desirable to lower the computational costs and mandatory to deal with damage
and failure. Among the others, papers particularly significant on this topic are by
Timoshenko and Gere for inelastic beams [73], Abambres et al. for the elastoplas-
ticity and post-buckling analyses of thin-walled beam structures [1] via the Gener-
alized Beam Theory (GBT), Pollayi et al. to model the matrix cracking in helicopter
rotors or wind turbine blades via the Variational Asymptotic Beam Section Analysis
(VABS) [64], Jiang andYu for hyperelastic beamsanddamage analyses of composites
[36, 37], Škec et al [68] for mixed-mode delamination analyses, Eijo et al. to model
delamination in composite laminated beams via Zig-Zag theories [26], and Pagani
and Kaleel for the extension of CUF to geometrical and material nonlinearities
[13, 38, 59].

A class of strategies to deal with progressive failure analyses exploits global-local
methods to accurately model the damage onset and propagation in localized areas at
reasonable computational effort. The submodeling technique, or so-called zooming
technique, was successful for having a detailed investigation at the local level ofmod-
elingwhile using a relatively coarse globalmodel. Examples are in theworks ofMote
[53], Noor [57], Mao and Sun [48], and Whitcomb [76]. In contrast, in a two-way
coupling, the information exchange is in both directions to account for interactions
of global and local effects. Recent global-local approaches are, for instance, the mul-
tiscale projection method by Löhnert and Belytischko [46], the adaptive progressive
damagemodeling technique byLabeas et al. [39], the homogenization-based iterative
two-way multiscale approach by Chrupalla et al. [16], the non-intrusive global-local
technique by Gendre et al.[31], and the two-way loose coupling method for intralam-
inar damage by Hühne et al. [35]. The efficient homogenization technique for the
matrix and fiber failure in the latter work [35] had a further enhancement in Akter-
skaia et al. [4] for large structures such as a curved multi-stringer composite panel.
In the context of interlaminar damage analysis, for the modeling of skin-stringer
debonding in stiffened panels, presently, mainly one-way coupling methods are in
use, such as the approaches of Reinoso et al. [66] based on cohesive elements, and
Orifici et al. [58] based on user-defined multi-point constraint elements in the frame-
work of the Virtual Crack Closure Technique. Akterskaia et al. [3] introduced a novel
two-way coupling method, in the spirit of [4], for modeling skin-stringer debonding
that ensures an appropriate exchange of information between the global and local
analysis levels.

One class of composites investigated in this project makes use of dry fabric lay-
ers. The modeling approach deals with hyperelastic constitutive laws for the yarn
structure and full characterization via experimental or numerical approaches avoid-
ing the numerical calibration. Various numerical models exist for dry fabric layers in
bibliography [70]. Among them, the so-called mesoscopic models resulted in being
the most successful since they offer a good compromise regarding accuracy and
computational costs. Since their introduction by Duan [24, 25], this type of models
remains substantially unvaried while adopted for different studies [15, 34, 56]. The
constitutive law universally adopted in mesoscopic models of dry fabrics is due to
Gasser [30] and consists of an anisotropic linear elastic law. The ability of the Gasser
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model in representing the yarn longitudinal behavior is the subject of various studies
[15, 25] while the modeling of the yarn transverse behavior remains an unsolved
problem. Unfortunately, this last aspect assumes a fundamental role in determining
ballistic performance of multilayer textiles [19, 56].

One of the tools to handle damage and defects is SHMas proved by the recent gain
of interest in the engineering community. SHM may serve as a tool for the on-line
monitoring of the structure, ensuring structural integrity during service, and reduc-
ing substantially the operating costs. In this framework, the guided ultrasonic waves
(GUW) are a suitable candidate to detect, localize and characterize the structural
defects using a network of actuators, sensors and on-board computers that elaborate
information [33]. Lamb waves, first described by Lamb [40], are a class of GUW
that propagate in plates with free surfaces. They are highly dispersive and exhibit
very short wavelengths, which makes them appropriate for the detection of small
defects in large areas. In laminated structures, the physical phenomena involved in
the propagation of Lambwaves are highly complex [41]. The anisotropy of the mate-
rial causes distorted wavefronts, and the heterogeneities of the multiphase materials
might result in mode couplings and continuous conversions. Numerical models are
essential to obtain the dispersion curves of Lamb waves in different media [22, 47].
Moreover, the simulation of the transient response in reinforced structures requires
the use of advanced finite element models to capture the scattering of the time signals
due tomaterial discontinuities and structural defects [77]. In this matter, higher-order
multi-layered theories based on the CUF [11] present many advantages for the wave
propagation analysis in composite laminates.

1.3 Virtual Characterization and Manufacturing Effects

Real structures are imperfect, despite advances in production processes and quality
control, manufactured structures deviate from the ideal geometry and properties.
This is due to variations in the manufacturing process throughout the production line
[45, 80]. The corresponding variations of the structure may lead to conservative
design procedures, such as using safety factors.

One of the contributions in this book presents advances towards a better under-
standing of the effects that spatial variations of structural properties can have on the
mechanical response of the structure. This can lead to more robust structures, and
potentially improve the performance of structures. Stochastic analyses are typical
in this field and most of them try to analyze the response of structures with given
stochastic parameters as input [60, 61, 67]. This approach relies on the availability
of accurate statistical parameters of the variations of the structure, which are usually
not available [43, 71]. Without accurate inputs, quantifying the variability of the
outputs is not possible. The method discussed in this book deals with the sensitivity
of the structural behavior concerning the spatial variations. Analyzing the correlation
of spatial variations of a material property with another measure - e.g., a structural
performance parameter such as the buckling load - may lead to map a type of non-
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dimensional sensitivity topology of the structure. These sensitivity topology maps
help with identifying areas in which variations have the most effect, areas for product
inspection, and improve the performance of a structure. By redistributing material
properties using a scaled version of the sensitivity topology map, it is possible to
improve the performance of the structure without increasing the mean value of the
property.

As shown in the last chapter of this book, themultiphase and heterogeneous nature
of composite materials make uncertainties related to constituents and various scales
significant for the overall response. Examples are the aleatory uncertainties related
to the matrix or fiber properties, but also the geometrical variability in lower scales.
Early efforts focused on the simulation of random fiber distributions for microme-
chanics [50], propagation of uncertainties though the scales and the response vari-
ability [14], and the introduction of probabilistic models for the fiber strength [20].
A classic review paper on uncertainty quantification [71] established the stochastic
perspective of composites by classifying sources of uncertainty,modeling approaches
and reliability methods for structural components. Recently, more and more stud-
ies have been dealing with the geometrical randomness such as random voids at
lower scales [72] or waviness of the fiber reinforcement in textiles [74]. However,
the major topic in stochastic analysis is the quantification of the random input. To
avoid non-physical assumptions, the current trend of this research field is focusing
on the statistical information of the input random parameters [8].

The multiscale nature of composites makes the characterization of the full set of
thematerial properties at each pertinent scale, e.g., themesoscopic scale of the consti-
tutive lamina and microscopic scale of constituent phases, mandatory for the design
and optimization of parts. From an industrial point of view, the cost reduction of
experimental characterization tests is of paramount importance. Usually, destructive
procedures are necessary for a significant number of samples and reliable results [2].
Concerning the mesoscopic scale, the most common tests are the ASTM tests - e.g.,
tension test for flat specimens, three/four points bending test - which cannot provide
the full set of 3D elastic properties but only the in-plane material properties together
with an approximated value of the out-of-plane shear moduli. Conversely, only a few
standard tests are available for themicroscopic scale, i.e., the single fiber test to obtain
the Young modulus along the fiber longitudinal direction - ASTM D3379 - and the
matrix tensile test - ASTM D638. To characterize the rest of the constitutive phase
properties, only non-standard tests are available in literature, e.g., the pull-out [54],
micro-indentation [49], fragmentation tests [27]. It is important to observe that uncon-
ventional destructive tests present some major shortcomings, such as the experimen-
tal set-up is quite complex, and the obtained results show a significant dispersion [49,
79]. In this book, to overcome the main restrictions imposed by destructive tests,
the approach presented focuses on the development of a multiscale identification
strategy (MSIS). The MSIS aims at identifying the full set of elastic properties
at both lamina-level and constitutive phases-level starting from the analysis of the
macroscopic dynamic response of a multilayer plate. In particular, the macroscopic
dynamic behavior stems from the non-destructive modal tests and the information
restrained in the harmonic spectrum response of the specimen leads to the multi-
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scale characterization process. This kind of approach is in the literature [29, 81] for
characterizing the elastic properties of the constitutive lamina.An assessment of these
approaches is available in [63]. Most of these techniques, e.g., [52], make use of an
optimization tool tominimize the difference between themeasured dynamic response
- typically a given set of natural frequencies - and the numerical one calculated via a
finite element model of the structure. However, this approach lacks generalization to
characterize the material and geometrical features of the microstructure of compos-
ite materials. In the framework of the MSIS, the multi-scale identification problem
derives from two optimization problems stated at different scales. The MSIS has
several original features. On the one hand, it relies on a special hybrid optimization
tool to perform the solution search [51]. On the other hand, a general numerical
homogenization scheme ensures the scale transition [7].
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Chapter 2
Variable Kinematic Shell Formulations
Accounting for Multi-field Effects for the
Analysis of Multi-layered Structures

G. Li, E. Carrera, M. Cinefra, E. Zappino and E. Jansen

Abstract This chapter presents refined shell finite element models with variable
kinematics for the analysis of multi-layered structures involved in four physical
fields: mechanical, electric, thermal, and hygroscopic. Variable kinematic models
in the framework of Carrera Unified Formulation (CUF) with various kinematic
assumptions are discussed. An efficient tool to realize adaptable refinement in finite
element models, Node-Dependent Kinematics approach, is introduced. Refined dou-
bly curved shell finite element formulations derived from the principle of virtual
displacements accounting for multi-field coupling effects are presented.

2.1 Introduction

Laminated shells are extensively utilized in modern engineering due to their high
capabilities in holding loads. Meanwhile, smart structures containing piezoelectric
sensing and actuating components have beenwidely applied in structural healthmon-
itoring, damage detection, shape control, and energy harvesting. Temperature and
moisture are important environmental factors for structures during their service life
that need to be investigated. The consideration of hygro-thermo-electro-mechanical
coupling effects will lead to more rigorous modeling of such problems.

A series of shell theories have been suggested and broadly adopted in structural
analyses. Traditional models include Classical Lamination Theory (CLT) based on
Kirchhoff–Love hypothesis [15], First-Order Shear Deformation Theory (FSDT)
built on the Mindlin–Reissner assumption [19, 22], and Higher-Order Theories
(HOT) [21]. Carrera [3] suggested the Unified Formulation (CUF) as a general
framework to develop continuum-based degenerated 2D models through either
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Equivalent Single-Layer (ESL) or Layer-Wise (LW) approach. CUF allows the gov-
erning equations of refined finite elements (FE) to be expressed compactly through
fundamental nuclei (FNs), core units of the stiffness matrix and load vector. The
forms of the FNs are independent of the selected kinematic assumptions [7] and can
facilitate the implementation of various theories of structures.

CUF provides convenience to carry out two levels of mathematical refinement,
namely the enhancement of structural theories and the enrichment of shape functions.
In theCUF framework, one can incorporate various andmiscellaneous approximation
theories into the plate/shell FE models [5, 6]. FE models with variable nodal kine-
matic capabilities can be constructed through Node-Dependent Kinematics (NDK),
and adaptable refinement can be realized. These features allow the numerical accu-
racy to be improved conveniently and fully exploit the potential of FE meshes
[17, 30].

The consistent multi-field constitutive equations can be derived from thermo-
dynamics as demonstrated by Ikeda [14] and Sih et al. [23]. Variational principles
for a series of multi-field couplings were discussed by Sung and Thompson [24],
Dökmeci [11], and Altay and Dökmeci [1], as well as other researchers. Regarding
the FE formulations, most 2D models are based on CLT or FSDT, besides the get-
ting popular HOT. 2D electromechanical models based on CUF were developed by
Carrera and Fagiano [8] and Carrera and Robaldo [9]. Cinefra et al. [10] reported
refined hygrothermal models. The main advantages of CUF-based models are their
high accuracy, high numerical efficiency, and adaptable refinement capability. In the
CUF framework, this chapter presents shell FE formulationswith variable kinematics
accounting for hygro-thermo-electro-mechanical interactions.

2.2 Basic Equations of Multi-field Problems

This section consists of the fundamental equations of the steady-state hygro-thermo-
electro-mechanical problems. The considered primary variables include displace-
ments ui , electric potential φ, temperature increment θ , and change of moisture
concentration c. Strain tensor εi j , electrical field Ei , temperature gradients ϑi , and
moisture gradients ϒi are given by the following gradient equations:

εi j = 1

2
(ui, j + u j,i ) (2.1)

Ei = −φ,i (2.2)

ϑi = − θ,i (2.3)

ϒi = − c,i (2.4)

where i, j = 1, 2, 3. The linear constitutive relations take the following form [1, 28]:
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σi j = Ci jklεkl − eki j Ek − λi jθ − ψi j c (2.5)

Di = eiklεkl + χik Ek + riθ + ιi c (2.6)

qi = κikϑk + ϕikϒk (2.7)

hi = γikϑk + ξikϒk (2.8)

wherein σi j indicates the stress tensor, Di the electric displacement vector, qi the
heat flux vector, and hi the moisture flux vector. The related material coefficients
include: elastic material coefficients Ci jkl , dielectric permittivity coefficients χi j ,
thermal stress coefficients λi j , hygroscopic stress coefficientsψi j , piezoelectric coef-
ficients eikl , pyroelectric coefficients ri , hygroscopic-electric coupling coefficients
ιi , thermal-hygroscopic coupling coefficient ζ , thermal conductivity κik , moisture
diffusivity ξik , moisture flux due to the thermal field γik (Soret effect), and heat
flux caused by the moisture field ϕik (Dufour effect). Note that λi j and ψi j can be
considered as:

λi j = Ci jklαkl (2.9)

ψi j = Ci jklβkl (2.10)

where αkl and βkl are the thermal and hygroscopic expansion coefficients, respec-
tively. In the above equations, i, j, k, l = 1, 2, 3.

The boundary conditions on the external sub-surfaces of the elastic body are:

ui = ui on Γu, φ = φ on Γφ,

θ = θ on Γθ, c = c on Γc.
(2.11)

σi j n j = pi on Γp, −Di ni = Dn on ΓD,

−qi ni = qn on Γq , −hi ni = hn on Γh .
(2.12)

in which ni are the outward unit normal vector of the bounding external surfaces,
ui , φ, θ , and c the essential boundary conditions, and pi , Dn , qn , and hn the natural
boundary conditions. The overbar symbol ( ¯ ) denotes prescribed values.

In the absence of body forces, free charge, internal heat source, and moisture
source, the equilibrium equations, conservation of charge (Gauss’s law), heat con-
duction equation (Fourier’s law), and moisture diffusion equation (Fick’s law) read:

σi j, j = 0 (2.13)

Di,i = 0 (2.14)

qi,i = 0 (2.15)

hi,i = 0 (2.16)
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2.3 Laminated Shell Models ConsideringMulti-field Effects

As illustrated in Fig. 2.1, the geometry of a typical shell structure with uniform
thickness can be described through the orthogonal curvilinear coordinates (α, β, z),
in which α and β indicate the lines of curvature on the middle surface and z the
thickness direction. The infinitesimal area dS parallel to the middle surface at z is:

dS = Hα Hβ dα dβ = Hα Hβ dΩ (2.17)

An elemental volume dV is given by:

dV = Hα Hβ Hz dα dβ dz . (2.18)

in which dΩ is the infinitesimal area on the middle surface of the shell. For shells
with constant radii of curvature, the metric coefficients Hα , Hβ , and Hz read:

Hα = (1 + z/Rα), Hβ = (1 + z/Rβ), Hz = 1 . (2.19)

where Rα and Rβ are the principal radii of curvature of the middle surface. For more
details about shell theories, the reader is referred to [16, 21].

The displacement vector in the kth layer is uk = {u, v,w}k�
. The differential

operator matrix b and gradient operator ∇ can be introduced:

Fig. 2.1 Models for doubly-curved laminated shells
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b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂α

Hα
0 1

HαRα

0 ∂β

Hβ

1
Hβ Rβ

0 0 ∂z

∂z − 1
HαRα

0 ∂α

Hα

0 ∂z − 1
Hβ Rβ

∂β

Hβ

∂β

Hβ

∂α

Hα
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.20)

∇ =
[

∂α

Hα

,
∂β

Hβ

, ∂z

]�
(2.21)

thus, engineering strain vector εk = {εαα, εββ, εzz, εαz, εβz, εαβ}k�
, electric field vec-

tor Ek = {Eα, Eβ, Ez}k�
, temperature gradient vector ϑk = {ϑα, ϑβ, ϑz}k�

, and

moisture gradient vector ϒk = {ϒα,ϒβ,ϒz}k�
can be obtained through:

εk = buk (2.22)

Ek = −∇φk (2.23)

ϑk = −∇θ k (2.24)

ϒk = −∇ck (2.25)

It is assumed that the laminae are homogeneous and orthotropic, and the stress
vector σ k = {σαα, σββ, σzz, σαz, σβz, σαεz }k�

, electric displacements vector Dk =
{Dα, Dβ, Dz}k�

, heat flux vector qk = {qα, qβ, qz}k�
, and moisture flux vector

hk = {hα, hβ, hz}k�
can be expressed through the constitutive relations in matrix

form:
σ k = Ckεk − ek

�
Ek − λk�

θ k − ψk�
ck (2.26)

Dk = ekεk + χ kEk + rk
�
θ k + ιk

�
ck (2.27)

qk = κkϑk + ϕkϒk (2.28)

hk = γ kϑk + ξ kϒk (2.29)

in which the material coefficients matrices used in the problem coordinate system
(α, β, z) are obtained by transforming their original forms in the material coordinate
system (1, 2, 3) according to the orientation of the kth layer.
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2.4 Variable Kinematic Shell Finite Elements

In the framework of CUF, the displacement field in a shell can be assumed to be:

u(α, β, z) = Fτ (z)uτ (α, β) (2.30)

in which uτ (α, β) represents the mid-surface displacement vector, and Fτ (z) are
determined by the theory of shell structures. The repeated index τ implies the appli-
cation of Einstein’s summation convention. When FE discretization is introduced,
shape functions Ni (α, β) are used to approximate uτ (α, β), and one gets:

u(α, β, z) = Ni (α, β)Fτ (z)uiτ (2.31)

where uiτ are the unknowns to be calculated.
In the CUF framework, both the refinement of shell theories and the enhancement

of shape functions can be carried out conveniently. This feature leads to a broad
spectrum of variable kinematic FE models.

2.4.1 Refined Theories of Shell Structures

Since Fτ (z) depends only on the thickness coordinate, they are also referred to as the
thickness functions. The highest order of Fτ (z) can be increased gradually till the
expected numerical convergence is reached. The thickness functions for laminated
shells can be formulated in two major frameworks, namely the Equivalent-Single
Layer (ESL) model and the Layer-Wise (LW) model, as shown in Fig. 2.2.

(a) Equivalent Single-Layer (ESL) (b) Layer-Wise (LW)

Fig. 2.2 Two types of models for multi-layered structures
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2.4.1.1 ESL Models Based on Various Series Expansions

When generating ESL models, Fτ (z) is expressed throughout the whole thickness
domain of multi-layered shells (z ∈ [− h

2 ,
h
2 ], h being the shell thickness), as illus-

trated in Fig. 2.2a. Taylor expansions (TE) can be utilized to formulate ESL models
by taking:

F0 = 1, F1 = z1, . . . , Fτ = zτ , . . . (2.32)

FSDT can be treated as a particular case of the complete linear TEmodel. TE theories
are most commonly used due to their inherent simplicity. Exponential series can be
employedby taking Fτ = e(zτ/h).Other theories such as trigonometric andhyperbolic
series can be implemented accordingly [5, 6, 10].

ESL models cannot guarantee the interfacial continuity of transverse shear
stresses. Murakami [20] suggested a zig-zag function as a remedy which reads:

Fk
Z (z) = (−1)kζk (2.33)

This zig-zag term can be appended to the expansions of refined ESL theories to
improve the approximation of interfacial connectivity of transverse stresses.

2.4.1.2 LW Models Adopting Polynomial Interpolation Theories

For LW models, the displacements can be assumed to be:

uk(α, β, ζk) = Fk
τ (ζk)uτ

k(α, β) (2.34)

where −1 ≤ ζk ≤ 1 is the adimensional thickness coordinate within layer k, as in
Fig. 2.2b. When Lagrange polynomial expansions (LE) are used, one has:

Fk
τ (ζk) =

N∏
i=0,i �=s

ζk − ζki

ζkτ
− ζki

(2.35)

where ζkτ
are located at prescribed interpolation points, which are usually equally

distributed through the thickness of a layer. ζk0 = −1 and 1 represent the bottom and
the top surfaces of the kth layer, respectively. Legendre and Chebyshev polynomials
can also be utilized to construct LW theories, as discussed in [5, 6].

In LW models, to enforce the displacement continuity at layer interfaces, the
following constraints should be introduced:

ut
k = ub

k+1, k = 1, . . . , Nl − 1. (2.36)

in which Nl is the number of layers. The interfacial continuity of transverse shear
stresses is not ensured but can be approximately achieved by refining Fk

τ [6].
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2.4.2 Various Finite Element Shape Functions

There are a great variety of shape functions for 2D FEs. The most commonly used
elements are quadrilateral Lagrangian elements Q4 (four-node) and Q9 (nine-node).
Some researchers also assessed higher-order Lagrangian elements such as Q25, Q49,
and Q81. Other 2D shape functions include Hermitian, serendipity, and hierarchical
elements, among others.

The p-version hierarchical shape functions [26] have drawn significant attention
due to their hierarchical characteristics and high numerical efficiency. When poly-
nomial degree p increases to p + 1, only the newly added shape functions and the
resulting matrices need to be introduced, and mathematical enrichment can be con-
veniently performed on the same meshes to improve the solution accuracy. Such
shape functions also provide the convenience of geometric mapping through blend-
ing functions [26]. Moreover, the shear and membrane locking phenomena can be
mitigated through the p-version refinement [25, 26]. An evaluation of hierarchical
shell elements in the analysis of laminated structures was reported by Li et al. [18].

2.4.3 Node-Dependent Kinematics

The dependency of thickness functions on the shape functions can be introduced
through:

u(α, β, z) = Ni (α, β)Fi
τ (z)uiτ (2.37)

The difference between Eqs. (2.37) and (2.31) is the additional superscript i , which
is the index of the “anchoring node”. Equation (2.37) leads to FE models with Node-
Dependent Kinematics (NDK). With NDK, shell FE models can be refined locally
on specific nodes, and adaptable local kinematic refinement can be performed conve-
niently. Different nodal kinematics will be blended naturally by the shape functions
within the element domain.

A typical application of NDK is the construction of global-local models. In the
example shown on the left-hand side of Fig. 2.3, the four-node element possesses
different theories on its four nodes. A series of such elements form a kinematic transi-
tion zoneΩr , which bridges the locally refined regionΩβ to the less refined outlying
area Ωα . Global-local models can be constructed conveniently without modifying
the mesh grid, and the same FE meshes can be re-used to build a family of models
for concurrent global-local analyses, as discussed in [17, 29].
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Fig. 2.3 Four-node Lagrangian finite element (Q4) model with Node-Dependent Kinematics

2.5 Weak-Form Governing Equations

For a unit volume in the kth layer in a shell element, by applying the principle of
virtual displacements one has:

δEp = δW (2.38)

in which

δEp =
∫
V
(σ k�

δεk − Dk�
δEk − qk�

δϑk − hk�
δϒk)dV (2.39)

δW =
∫

Γ

(δuk�
p̄ + δφk D̄n + δθ k q̄n + δck h̄n) dΓ (2.40)

In the above equations, Ep represents the potential energy, W the external work, p
the surface traction vector, Dn the surface charge per unit area, qn the normal heat
flux, and hn the normal moisture flux. In static cases, the inertial work is discarded.

The approximations of the primary variables are:

uk = Ni F
i
τ

k
u(k)
iτ , δuk = N j F

j
s
k
δu(k)

js . (2.41)

φk = Ni F
i
τ

k
φ

(k)
iτ , δφk = N j F

j
s
k
δφ

(k)
js . (2.42)

θ k = Ni F
i
τ

k
θ

(k)
iτ , δθ k = N j F

j
s
k
δθ

(k)
js . (2.43)

ck = Ni F
i
τ

k
c(k)
iτ , δck = N j F

j
s
k
δc(k)

js . (2.44)
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in which for ESL models u(k)
iτ = uiτ , and for LW models u(k)

iτ = uk
iτ . The same rule

also applies to the other variables. The essential boundary conditions are considered
through:

Ni F
i
τ

k
ū(k)
iτ = u on Γu, Ni F

i
τ

k
φ̄

(k)
iτ = φ on Γφ,

Ni F
i
τ

k
θ̄

(k)
iτ = θ on Γθ, Ni F

i
τ

k
c̄(k)
iτ = c on Γc.

(2.45)

By considering the above approximations, the gradient equations Eqs. (2.22)–(2.25)
and the constitutive relations Eqs. (2.26)–(2.29), Eq. (2.38) can be written into:

δu(k)
js

� : Kuu
i jτ s

ku(k)
iτ + Kuφ

i jτ s

k
φ

(k)
iτ + Kuθ

i jτ s
k
θ

(k)
iτ + Kuc

i jτ s
kc(k)

iτ = Pu
js
k

δφ
(k)
js : Kφu

i jτ s

k
u(k)
iτ + K φφ

i jτ s

k
φ

(k)
iτ + K φθ

i jτ s

k
θ

(k)
iτ + K φc

i jτ s

k
c(k)
iτ = Pφ

js

k

δθ
(k)
js : K θθ

i jτ s
k
θ

(k)
iτ + K θc

i jτ s
k
c(k)
iτ = Pθ

js
k

δc(k)
js : Kcθ

i jτ s
k
θ

(k)
iτ + Kcc

i jτ s
kc(k)

iτ = Pc
js
k

(2.46)

where the fundamental nuclei (FNs) of the generalized stiffness matrices are:

Kuu
i jτ s

k =
∫

Ω

∫
Ak

(bN j F
j
s
k
)�Ck(bNi F

i
τ

k
)HαHβdz

kdΩ (2.47)

Kuφ

i jτ s

k =
∫

Ω

∫
Ak

(bN j F
j
s
k
)�ek�

(∇Ni F
i
τ

k
)HαHβdz

kdΩ (2.48)

Kφu
i jτ s

k =
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�ek(bNi F

i
τ

k
)HαHβdz

kdΩ (2.49)

K φφ

i jτ s

k = −
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�χ k(∇Ni F

i
τ

k
)HαHβdz

kdΩ (2.50)

Kuθ
i jτ s

k = −
∫

Ω

∫
Ak

(bN j F
j
s
k
)�λk�

(Ni F
i
τ

k
)HαHβdz

kdΩ (2.51)

K uc
i jτ s

k = −
∫

Ω

∫
Ak

(bN j F
j
s
k
)��k�

(Ni F
i
τ

k
)HαHβdz

kdΩ (2.52)

K φθ

i jτ s

k =
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�rk�

(Ni F
i
τ

k
)HαHβdz

kdΩ (2.53)

K φc
i jτ s

k =
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�ιk

�
(Ni F

i
τ

k
)HαHβdz

kdΩ (2.54)

K θθ
i jτ s

k = −
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�κk(∇Ni F

i
τ

k
)HαHβdz

kdΩ (2.55)
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K θc
i jτ s

k = −
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�ϕk(∇Ni F

i
τ

k
)HαHβdz

kdΩ (2.56)

Kcθ
i jτ s

k = −
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�γ k(∇Ni F

i
τ

k
)HαHβdz

kdΩ (2.57)

Kcc
i jτ s

k = −
∫

Ω

∫
Ak

(∇N j F
j
s
k
)�ξ k(∇Ni F

i
τ

k
)HαHβdz

kdΩ (2.58)

The explicit expressions of Kuu
i jτ s can be found in [17].

FNs of loads accounting for both natural and essential boundary conditions read:

Pu
js
k =

∫
Γp

N j Fs p̄dΓ − Kuu
i jτ s

k ū(k)
iτ − Kuφ

i jτ s

k
φ̄

(k)
iτ − Kuθ

i jτ s
k
θ̄

(k)
iτ − Kuc

i jτ s
k c̄(k)

iτ

(2.59)

Pφ

js

k =
∫

ΓD

N j Fs D̄ndΓ − Kφu
i jτ s

k
ū(k)
iτ − K φφ

i jτ s

k
φ̄

(k)
iτ − K φθ

i jτ s

k
θ̄

(k)
iτ − K φc

i jτ s

k
c̄(k)
iτ

(2.60)

Pθ
js
k =

∫
Γq

N j Fsq̄ndΓ − K θθ
i jτ s

k
θ̄

(k)
iτ − K θc

i jτ s
k
c̄(k)
iτ (2.61)

Pc
js
k =

∫
Γh

N j Fs h̄ndΓ − Kcθ
i jτ s

k
θ̄

(k)
iτ − Kcc

i jτ s
k c̄(k)

iτ (2.62)

Note that the above boundary conditions should be considered at their corresponding
external sub-surfaces.

FNs are core units of the stiffness matrix and load vector. By looping on the
subscripts of FNs, the full stiffness matrix and load vector can be assembled step
by step. For a detailed description of the assembly technique, one is referred to the
works of Carrera et al. [7] and Zappino et al. [29].

In displacement-basedFEmodels, the equilibriumequations (seeEq. 2.13), stress-
free boundary conditions, and interfacial continuity of stresses are not satisfied rigor-
ously but approximately. Better satisfaction of these requirements can be approached
through the enrichment of FE models. The use of FNs facilitate the mathematical
refinements on both shape functions and thickness functions in shell FE models.

Besides the piezoelectric effects, the steady-state thermal conduction andmoisture
diffusion are accounted for in the presented formulations. Some particular cases
include partially coupled thermo-mechanical, hygro-mechanical, and fully coupled
electro-mechanical models.



24 G. Li et al.

2.6 Selected Numerical Examples

This section includes two examples demonstrating hygro-mechanical and electro-
mechanical simulations, respectively.

2.6.1 Hygro-Mechanical Modeling

Two-layered composite cylindrical panels with lamination sequence (0◦/90◦) (from
bottom to top) under hygroscopic load are studied. The cylindrical panels have arch
length a = 0.1m, axial length b = 0.1m, and mid-surface radii Rα = 0.1m and
Rβ = ∞. Radius-to-thickness ratios Rα/h = 2 and 500 are considered. Themechan-
ical properties of the lamina are listed in Table 2.1,moisture expansion and diffusivity
coefficients in Table 2.2. The panels are simply supported on their four edges. The
moisture concentration on the external surfaces reads:

c̄(α, β, z) = c̄A(z) sin(
πα

a
) sin(

πβ

b
) (2.63)

where c̄A( h2 ) = 1.0%, c̄A(− h
2 ) = 0%. Note that the moisture concentration is mea-

sured regarding percent weight of moisture absorption over the dry material.
The adopted elements are MITC9 (nine-node Lagrangian element with Mixed

Interpolation of Tensorial Components, Bathe et al. [2]). 10 × 10 rectangular shell
elements are used to model 1/4 of the shell with the help of symmetric boundary
conditions. The reference results are obtained through Navier-type closed-form ana-
lytical solution with fourth-order LE theory in LW approach. Two types of refined
ESL models are assessed, namely the nth-order kinematics TEn, and miscellaneous
assumptions combining a first-order model with trigonometric series that read:

u = u0 + zu1 + sin
(π z

h

)
u2 + cos

(π z

h

)
u3 + sin

(
2π z

h

)
u4

+ cos

(
2π z

h

)
u5 + · · · + (−1)ζkuk

N (2.64)

Table 2.1 Mechanical properties of T300/5208 lamina

E1(GPa) E2, E3(GPa) G12,G13(GPa) G23(GPa) ν12, ν13 ν23

181 10.3 7.17 2.39 0.28 0.43

Table 2.2 Hygroscopic properties of T300/5208 lamina [27]

β11 (wt.%H2O)−1 β22, β33 (wt.%H2O)−1 ξ11 (mm2/s) ξ22, ξ33 (mm2/s)

0 0.006 2.87 × 10−8 1.63 × 10−8
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Table 2.3 Displacement and stress evaluation of the cylindrical panels under hygroscopic load

Rα/h Kinematics w/10−3mm
( a2 , b

2 , h
2 )

σαα /MPa
( a2 , b

2 , h
2 )

σαβ /MPa
(a, b, h

2 )

σαz /MPa
(a, b

2 , h
4 )

2 FSDT 34.14 −75.38 −15.74 1.215

T11Z 113.9 −30.96 −20.40 2.214

T1S5C5Z 113.9 −30.94 −20.40 2.251

Analytical 113.21 −31.009 −20.209 2.4303

500 FSDT 76.64 −90.10 0.1480 0.05690

T7Z 43.36 −58.80 0.09777 0.08071

T1S3C3Z 43.36 −58.93 0.09777 0.08036

Analytical 43.359 −58.808 0.097332 0.080387

and suchmodels are denoted by T1SnCnZ, wherein n is the number of sinusoidal/co-
sinusoidal terms, andZ indicates the use ofMurakami’s zig-zag term. In the numerical
analysis, the number of expansions is increased until the relative difference between
ESL models with n and n − 1 is less than 5%. FSDT is also tested. The obtained
results are summarized in Table 2.3. It can be observed that FSDT fails to provide
an accurate estimation, while the refined ESL assumptions lead to results in high
agreement with the analytical solutions.

2.6.2 Electro-Mechanical Modeling

A two-layered cross-ply square laminated plate with PZT-4 piezoelectric layers
bonded to the top and bottom surfaces is considered. Both actuator and sensor cases
are studied. The length, width, and total thickness of the plate are a, b, and h, sepa-
rately. The material properties of the laminae and piezoelectric layers, and analytical
solutions can be found in [13].

In the current work, the structure is modeled with a single-element model employ-
ing eighth-order p-version shape functions and fourth-order LE thickness functions
in each layer. Specially, in the actuator case, to obtain the weighting coefficients φ̄k

iτ
(see Eq. 2.45) that satisfy the bi-sinusoidal electric potential boundary condition on
the top surface (k = 4, z = h

2 ), linear least squares fitting is adopted.
The obtained solutions are summarized in Table 2.4 and Fig. 2.4. For both actu-

ation and sensing mechanisms, most of the results agree well with the reference
solutions. Exceptionally, the obtained φ in the sensor case is close to that given by
D’Ottavio andKröplin [12] andCarrera et al. [4] but is about one-tenth of the solution
provided by Heyliger [13]. This might be caused by the dimensionalization factors
as commented by D’Ottavio and Kröplin [12].
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Table 2.4 Numerical evaluation of the laminated plate with two piezoelectric layers
Actuator Sensor

Mesh Ni Fτ u × 1012

(0, b
2 , h

2 )

φ ( a2 , b
2 , 0) σzz × 103

( a2 , b
2 , 0)

u × 1012

(0, b
2 , h

2 )

φ × 10
( a2 , b

2 , 0)
Dz × 1013

( a2 , b
2 , h

2 )

1 × 1 p = 8 LE4 −32.704 0.4477 −14.782 −47.620 0.0601 161.66

Heyliger [13] −32.764 0.4476 −14.612 −47.549 0.611 160.58

D’Ottavio and Kröplin [12] – – – – 0.0611 160.67

Carrera et al. [4] – 0.4473 −14.612 – 0.0611 160.58

(a) Actuator case, u(0, b2 ,z)×1012 (b) Sensor case, Dz( a2 ,
b
2 ,z)×1013

Fig. 2.4 Through-the-thickness variation of in-plane displacement (actuator case) and transverse
electric displacement (sensor case) of the laminated plate with piezoelectric layers
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Chapter 3
Bistable Buckled Beam-Like Structures
by One-Dimensional Hierarchical
Modeling

G. De Pietro, G. Giunta, S. Belouettar and E. Carrera

Abstract In the last few years, great interest has been shown in harnessing bista-
bility, or more generally multistability, as a source of energy and motion in engi-
neering applications, both at micro-scale (such as switches, relays, valves or pumps)
and macro-scale (shape-changing aerodynamic panels, variable geometry engine
exhausts and reconfigurable airplane wings). Bistability is a highly non-linear phe-
nomenon relying on the snap-through buckling, an elastic instability in which a
structure passes from one equilibrium configuration to another nonadjacent equilib-
rium state bymeans of a sudden displacement jump. The theoretical understanding of
such phenomenon plays a key role in the structural design optimization for practical
applications. To this aim, the development of accurate yet efficient computational
models for the analysis of bistable composite structures represents an important and
up-to-date research topic. This chapter addresses the development of a hierarchical
framework based on the Carrera Unified Formulation that allows the derivation of
several kinematic models by arbitrarily setting the polynomial order approximation
of the displacement field. The proposed approach is assessed towards reference and
commercial software finite elements solutions for the analysis of bistable buckled
beam-like structures, showing the capability of accurately yet efficiently predict-
ing stable configurations, snap-through load, force-displacement curves and stress
evolution in the geometrically non-linear regime.
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3.1 Introduction

In this chapter, a computationally efficient hierarchical framework for the modeling
of mechanically bistable beam-like structures is presented. Such particular kind of
structures can be obtained by properly designing the geometry, material, boundary
and loading conditions of a precompressed buckled beam. From the buckled config-
uration, a snap-instability phenomenon can be triggered by means of an appropriate
transverse load, allowing the beam structure to switch from one structural stable con-
figuration to another. A number of engineering applications harnessing the bistable
beam structures has been recently proposed in the literature, including energy har-
vesters [21], actuators [15] and shape-adaptive structures [1]. Especially in the design
of lightweight morphing applications, the use of composite materials is particularly
beneficial, due to their optimal stiffness-to-weight and strength-to-weight ratios as
well as their property tailoring capability. On the other hand, such advantages in terms
of structural performance and design flexibility come with a greater modeling com-
plexity. Therefore, in order to fully exploit the capabilities of such structures in indus-
trial applications, reliable and computationally efficient models able to describe the
complex kinematics of composites and deal with strong geometrical non-linearities
such as those involved in post-buckling and snap-through behaviors are needed. In
this respect, majority of prior research either adopted modeling approaches based
on classical structural theories (the Euler–Bernoulli or Timoshenko kinematics) and
mode superposition method or resorted to the use of computationally expensive 2D
and 3D commercial software finite elements. Vangbo [20] investigated the influence
of bending and compression energy in the snap-through of a doubly-clamped beam
as well as the influence of an additional central constraint along the beam axis to
prevent twisting during the snap. Based on [20], the influence of the ratio of ini-
tial deflection to beam thickness for the force-displacement relation in a stress-free
bistable compliant micromechanism was studied by Qiu et al. [17]. The mechanism
was fabricated using deep-reactive ion etching and predictions provided by the ana-
lytical solution showed a good agreement with the experimental tests. Beharic et
al. [5] studied the bistability of a buckled beam for different supporting angles of the
clamped edges, using MEMS for flexible and stretchable supports. A compressed
doubly-clamped bistable buckled beam actuated by a pure moment load was studied
in Cleary and Su [9]. In the analytical solution, the deformed shape of the buckled
beam was considered to be a combination of only the first two Euler–Bernoulli’s
buckling modes, since, for the analyzed cases, they could provide a fairly accurate
prediction of the actuation load. Camescasse et al. [6] proposed an elastica model
for a simply supported bistable buckled beam subject to a transverse force, where
large displacements and finite strains were accounted for. Governing equations were
derived from the principle of virtual work and they were solved via a shooting
numerical method in combination with a predictor-corrector scheme. The actuation
force required for snapping, its optimal location, as well as the influence of the ini-
tial compression and beam extensibility parameter were investigated. An analytical



3 Bistable Buckled Beam-Like Structures by One-Dimensional Hierarchical Modeling 31

model based on Euler–Bernoulli’s theory and first mode shape was adopted in Xu et
al. [21] for the design of bistable buckled simply supported piezoelectric beams for
broadband energy harvesting in the framework of self-power MEMS. Pontecorvo et
al. [16] proposed a novel application concept of bistable arch elements embedded in
honeycomb cellular structures for the morphing of a rotor blade. The authors studied
the effects of slenderness ratio, initial deflection and spring stiffness on the bistability
of cosine-shaped clamped arch restrained by a spring at one end. Classical beam and
shell finite elements solution were compared with experimental tests.

In the next section, a family of advanced one-dimensional models based on the
Carrera Unified Formulation (CUF) in the framework of an equivalent single layer
approach is proposed for studying bistable beam structures. The CUF approach
allows the derivation of several kinematic models, since the variation of the displace-
ment field along the beam thickness is approximated by some general through-the-
thickness functions which, in this work, are Maclaurin’s polynomials of an arbitrary
order N , which represents an input parameter of the analysis [7, 12, 13]. Locking phe-
nomena are tackled by Mixed Interpolation of the Tensorial Components (MITC).
Geometrical non-linearities in the Green–Lagrange sense are accounted for, since
large displacements capabilities are essential for the prediction of the post-buckling
behavior as well as for the snap-through analysis in bistable structures. A path-
following technique based on the Asymptotic Numerical Method (ANM) is adopted
as non-linear solver. In Sect. 3.3, the numerical results provided via the proposed for-
mulation for the prediction of load-displacement curves, snap-through load, stable
geometries and stress evolution in bistability analysis of prebuckled beam structures
are presented, showing that a higher-order cross-sectional kinematics is required for
an accurate prediction when dealing with moderately thick structures as well as for
an accurate stress prediction in composite materials. For these reasons, CUF-based
one-dimensional advanced models could represent an efficient alternative to state of
the art solutions as implemented within commercial software finite elements for the
analysis and design of multi-stable composite structures.

3.2 Geometrically Non-linear Hierarchical Models

3.2.1 Geometrical and Constitutive Equations

The initial geometry of the beam is defined by the length of its axis L , thickness h
and width b. A two dimensional approach with a fixed Cartesian reference system is
adopted, being the x coordinate coincident with the axis of the beam structure and
bounded such that 0 ≤ x ≤ L , whereas the z coordinate is the through-the-thickness
transverse direction, ranging from −h/2 to h/2. The generic two-dimensional dis-
placement field is:
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uT (x, z) = {
u (x, z) w (x, z)

}
(3.1)

u and w are the displacement components along the x- and z-axis, respectively,
whereas the superscript ‘T ’ represents the transposition operator. Let us introduce,
for the sake of convenience, the displacements gradient vector θ :

θ = {
u,x u,z w,x w,z

}
(3.2)

where the subscripts ‘x’ and ‘z’ preceded by comma represent the derivative versus
that coordinate.

In order to account for large displacements and rotations, a full geometrical non-
linearity based on Green–Lagrange strain-displacement relations is considered. The
strain vector E is given by:

ET = {
Exx Ezz Exz

}
(3.3)

where:

Exx = u,x + 1

2

(
u2,x + w2

,x

)

Ezz = w,z + 1

2

(
u2,z + w2

,z

)

Exz = u,z + w,x + u,xu,z + w,xw,z

(3.4)

The matrix form of Eq. (3.4) is:

E =
[
H + 1

2
A (θ)

]
θ (3.5)

being:

H =
⎡

⎣
1 0 0 0
0 0 0 1
0 1 1 0

⎤

⎦ (3.6)

A (θ) =
⎡

⎣
u,x 0 w,x 0
0 u,z 0 w,z

u,z u,x w,z w,x

⎤

⎦ (3.7)

By applying the virtual variation operator δ to Eq. (3.5), it can be shown that the
virtual variation of the strain vector becomes, see Crisfield [11]:

δE = δ

{[
H + 1

2
A (θ)

]
θ

}
= [H + A (θ)] δθ (3.8)

A linear elastic stress-strain relation is considered, therefore, the small strains hypoth-
esis is assumed:
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S = QE (3.9)

being S the vectorial form of second Piola–Kirchhoff’s stresses:

ST = {
Sxx Szz Sxz

}
(3.10)

In the framework of a plane stress analysis, the reduced material stiffness matrix Q,
in the generic case of an anisotropic material, reads:

Q =
⎡

⎣
Q11 Q13 Q15

Q13 Q33 Q35

Q15 Q35 Q55

⎤

⎦ (3.11)

For the sake of brevity, coefficients Qi j are not reported here and can be found
in Reddy [18]. By means of the Principle of Virtual Displacement, the governing
equations can be obtained:

δL = δLint − δLext = 0 (3.12)

whereL is the total work,Lint the internal work and Lext is the work done by the
external forces. In the framework of a total Lagrangian formulation, the internal work
can be written as the following integral over the volume of the reference undeformed
configuration V0:

δLint =
∫

V0

δETSdV (3.13)

An infinitesimal variation of the virtual internal work reads:

d (δLint ) =
∫

V0

[
δET dS + d

(
δET

)
S
]
dV (3.14)

which can be rearranged after few manipulations, see Crisfield [11], in the following
manner:

d (δLint ) =
∫

V0

[
δETQdE + δθT Ŝdθ

]
dV (3.15)

being Ŝ ∈ R
4×4:

Ŝ =

⎡

⎢⎢
⎣

Sxx Sxz 0 0
Sxz Szz 0 0
0 0 Sxx Sxz
0 0 Sxz Szz

⎤

⎥⎥
⎦ (3.16)

Finally, the virtual variation of the internal work is written in terms of the actual and
virtual variation of the gradient vector:
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d (δLint ) =
∫

V0

δθT
{[
HT + AT (θ)

]
Q [H + A (θ)] + Ŝ

}
dθdV (3.17)

3.2.2 CUF-Based Displacement Field

In the framework of the Carrera Unified Formulation, the through-the-thickness vari-
ation of the displacement field is approximated via the base functions Fτ (z), whereas
classical one-dimensional finite elements shape functions Ni (x) approximate the
displacements along the beam axis:

u (x, z) = Fτ (z) Ni (x) qu
τ i

w (x, z) = Fτ (z) Ni (x) qw
τ i

with τ = 1, 2, . . . , Nu, i = 1, 2, . . . , Ne
n (3.18)

beingqn
τ i : n = {u,w} the nodal unknowns. InEq. (3.18), Einstein’s compact notation

is used, i.e. a repeated index implicitly implies summation over its variation range.
Index τ varies over the number of terms Nu accounted in the expansion, whereas
the index i varies over the element number of nodes Ne

n . Both Nu and Ne
n are free

parameters of the formulation. Therefore, by CUF approach, a family of higher-
order displacement-based theories can be straightforwardly derived. The class of
expansion functions Fτ (z) adopted in thiswork areMaclaurin polynomials, therefore
the generic explicit form of the displacement field is:

ux = ux1 + ux2z + ux3z2 + · · · + ux(N+1)zN

uz = uz1 + uz2z + uz3z2 + · · · + uz(N+1)zN
(3.19)

An equivalent single layer approach is adopted. The displacements gradient vector in
terms of the expansion functions Fτ and shape functions Ni is obtained by replacing
Eq. (3.18) within Eq. (3.2):

θ = {
Fτ Ni,x q

u
τ i Fτ,z Niqu

τ i Fτ Ni,x q
w
τ i Fτ,z Niqw

τ i

} = Gτ iqτ i (3.20)

being:

Gτ i =

⎡

⎢⎢
⎣

Fτ Ni,x 0
Fτ,z Ni 0
0 Fτ Ni,x
0 Fτ,z Ni

⎤

⎥⎥
⎦ (3.21)

and:
qT

τ i = {
qu

τ i q
w
τ i

}
(3.22)
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3.2.3 Fundamental Nuclei of the Tangent Stiffness Matrix

By replacing Eq. (3.20) within Eq. (3.17), the variation of the virtual internal work
reads:

d
(
δL e

int

) = δqT
τ i

∫

V e
0

GT
τ i

{[
HT + AT (θ)

]
Q [H + A (θ)] + Ŝ

}
Gσ j dV dqσ j =

δqT
τ i

(
Kel

τσ i j + Ket1
τσ i j + Ket2

τσ i j

)
dqσ j

(3.23)
Superscript ‘e’ refers to a generic element, whereasKel

τσ i j K
et1
τσ i j K

et2
τσ i j ∈ R

2×2 are the
“fundamental nuclei” of the linear, initial-displacement and initial-stress contribution
to the tangent stiffness matrix:

Kel
τσ i j =

∫

V e
0

GT
τ iH

TQHGσ j dV

Ket1
τσ i j =

∫

V e
0

GT
τ i

[
HTQA + ATQ (H + A)

]
Gσ j dV

Ket2
τσ i j =

∫

V e
0

GT
τ i ŜGσ j dV

(3.24)

It should be noted that the expression of the nuclei is general and does not depend on
the CUF expansion order N , the class of approximating functions Fτ or the number
of nodes per element Ne

n . The explicit expressions of each fundamental nucleus are
provided below. The components of the linear stiffness matrix Kel

τσ i j are:

Kelxx
τσ i j = J 11

τσ Ii,x j,x + J 55
τ,zσ,z

Ii j + J 15
τ,zσ

Ii j,x + J 15
τσ,z

Ii,x j
K elxz

τσ i j = J 13
τσ,z

Ii,x j + J 15
τσ Ii,x j,x + J 35

τ,zσ,z
Ii j + J 55

τ,zσ
Ii j,x

K elzx
τσ i j = J 13

τ,zσ
Ii j,x + J 15

τσ Ii,x j,x + J 35
τ,zσ,z

Ii j + J 55
τσ,z

Ii,x j
K elzz

τσ i j = J 33
τ,zσ,z

Ii j + J 55
τσ Ii,x j,x + J 35

τσ,z
Ii,x j + J 35

τ,zσ
Ii j,x

(3.25)

where the term J gh
τ(,z)σ(,z) is the following integral over the beam element cross-

section Ωe:

J gh
τ(,z)σ(,z)

=
∫

Ωe

Qgh Fτ(,z) Fσ(,z) dΩ (3.26)

Ii(,x) j(,x) is the integral along the element axis length le of the product of the shape
functions and/or their derivatives:

Ii(,x) j(,x) =
∫

le

Ni(,x) N j(,x) dx (3.27)
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The components of the initial displacement contribution Ket1
τσ i j are:

Ket1xx
τσ i j = qu

tl

(
2J 11

τσ t Ii,x j,x l,x + J 13
τσ,z t,z Ii,x jl + J 13

τ,zσ t,z Ii j,x l + 2J 15
τσ t,z Ii,x j,x l+

2J 15
τσ,z t Ii,x jl,x + 2J 15

τ,zσ t Ii j,x l,x + 2J 35
τ,zσ,z t,z Ii jl + 2J 55

τ,zσ,z t Ii jl,x
)

+
J 55
τ,zσ t,z Ii j,x l + J 55

τσ,z t,z Ii,x jl
)

+
qu
tlq

u
sm

(
J 11
τσ ts Ii,x j,x l,xm,x + J 13

τσ,z ts,z Ii,x jl,xm + J 13
τ,zσ t,z s Ii j,x lm,x+

J 15
τσ ts,z Ii,x j,x l,xm + J 15

τσ,z ts Ii,x jl,xm,x + J 15
τσ t,z s Ii,x j,x lm,x + J 15

τ,zσ ts Ii j,x l,xm,x+
J 35
τσ,z t,z s,z Ii,x jlm + J 35

τ,zσ t,z s,z Ii j,x lm + J 35
τ,zσ,z t,z s Ii jlm,x + J 35

τ,zσ,z ts,z Ii jl,xm+
J 33
τ,zσ,z t,z s,z Ii jlm + J 55

τσ t,z s,z Ii,x j,x lm + J 55
τσ,z t,z s Ii,x jlm,x + J 55

τ,zσ ts,z Ii j,x l,xm+
J 55
τ,zσ,z ts Ii jl,xm,x

)

Ket1xz
τσ i j = qu

tl

(
J 13
τσ,z t Ii,x jl,x + J 15

τσ t Ii,x j,x l,x + J 35
τσ,z t,z Ii,x jl + J 55

τσ t,z Ii,x j,x l+
J 33
τ,zσ,z t,z Ii jl + J 35

τ,zσ t,z Ii j,x l + J 35
τ,zσ,z t Ii jl,x + J 55

τ,zσ t Ii j,x l,x
)

+
qw
tl

(
J 11
τσ t Ii,x j,x l,x + J 13

τσ,z t,z Ii,x jl + J 15
τσ t,z Ii,x j,x l + J 15

τσ,z t Ii,x jl,x+
J 15
τ,zσ t Ii j,x l,x + J 35

τ,zσ,z t,z Ii jl + J 55
τ,zσ t,z Ii j,x l + J 55

τ,zσ,z t Ii jl,x
)

+
qu
tlq

w
sm

(
J 11
τσ ts Ii,x j,x l,xm,x + J 13

τσ,z ts,z Ii,x jl,xm + J 15
τσ ts,z Ii,x j,x l,xm+

J 15
τσ,z ts Ii,x jl,xm,x + J 15

τσ t,z s Ii,x j,x lm,x + J 35
τσ,z t,z s,z Ii,x jlm + J 55

τσ t,z s,z Ii,x j,x lm+
J 55
τσ,z t,z s Ii,x jlm,x + J 13

τ,zσ t,z s Ii j,x lm,x + J 33
τ,zσ,z t,z s,z Ii jlm + J 35

τ,zσ t,z s,z Ii j,x lm+
J 35
τ,zσ,z t,z s Ii jlm,x + J 15

τ,zσ ts Ii j,x l,xm,x + J 35
τ,zσ,z ts,z Ii jl,xm + J 55

τ,zσ ts,z Ii j,x l,xm+
J 55
τ,zσ,z ts Ii jl,xm,x

)

Ket1zx
τσ i j = qu

tl

(
J 15
τσ t Ii,x j,x l,x + J 35

τσ,z t,z Ii,x jl + J 55
τσ t,z Ii,x j,x l + J 55

τσ,z t Ii,x jl,x+
J 13
τ,zσ t Ii j,x l,x + J 33

τ,zσ,z t,z Ii jl + J 35
τ,zσ t,z Ii j,x l + J 35

τ,zσ,z t Ii jl,x
)

+
qw
tl

(
J 11
τσ t Ii,x j,x l,x + J 15

τσ,z t Ii,x jl,x + J 15
τσ t,z Ii,x j,x l + J 55

τσ,z t,z Ii,x jl+
J 13
τ,zσ t,z Ii j,x l + J 35

τ,zσ,z t,z Ii jl + J 15
τ,zσ t Ii j,x l,x + J 55

τ,zσ,z t Ii jl,x
)

+
qw
tl q

u
sm

(
J 11
τσ ts Ii,x j,x l,xm,x + J 13

τσ,z ts,z Ii,x jl,xm + J 15
τσ ts,z Ii,x j,x l,xm+

J 15
τσ,z ts Ii,x jl,xm,x + J 15

τσ t,z s Ii,x j,x lm,x + J 35
τσ,z t,z s,z Ii,x jlm + J 55

τσ t,z s,z Ii,x j,x lm+
J 55
τσ,z t,z s Ii,x jlm,x + J 13

τ,zσ t,z s Ii j,x lm,x + J 33
τ,zσ,z t,z s,z Ii jlm + J 35

τ,zσ t,z s,z Ii j,x lm+
J 35
τ,zσ,z t,z s Ii jlm,x + J 15

τ,zσ ts Ii j,x l,xm,x + J 35
τ,zσ,z ts,z Ii jl,xm + J 55

τ,zσ ts,z Ii j,x l,xm+
J 55
τ,zσ,z ts Ii jl,xm,x

)

(3.28)
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Ket1zz
τσ i j = qw

tl

(
J 13
τσ,z t Ii,x jl,x + J 13

τ,zσ t Ii j,x l,x + 2J 15
τσ t Ii,x j,x l,x + 2J 35

τσ,z t,z Ii,x jl+
2J 35

τ,zσ t,z Ii,x jl + 2J 35
τ,zσ,z t Ii jl,x + 2J 55

τσ t,z Ii,x j,x l + J 55
τσ,z t Ii,x jl,x

)
+

J 55
τ,zσ t Ii j,x l,x + 2J 33

τ,zσ,z t,z Ii jl
)

+
qw
tl q

w
sm

(
J 11
τσ ts Ii,x j,x l,xm,x + J 33

τ,zσ,z t,z s,z Ii jlm + J 55
τσ t,z s,z Ii,x j,x lm+

J 55
τσ,z t,z s Ii,x jlm,x + J 55

τ,zσ ts,z Ii j,x l,xm + J 55
τ,zσ,z ts Ii jl,xm,x + J 13

τσ,z ts,z Ii,x jl,xm+
J 13
τ,zσ t,z s Ii j,x lm,x + J 15

τσ ts,z Ii,x j,x l,xm + J 15
τσ,z ts Ii,x jl,xm,x + J 15

τσ t,z s Ii,x j,x lm,x+
J 15
τ,zσ ts Ii j,x l,xm,x + J 35

τσ,z t,z s,z Ii,x jlm + J 35
τ,zσ t,z s,z Ii j,x lm + J 35

τ,zσ,z t,z s Ii jlm,x+
J 35
τ,zσ,z ts,z Ii jl,xm

)

Finally, the non-zero components of the initial-stress contribution Ket2
τσ i j are:

Ket2xx
τσ i j = Ket2zz

τσ i j = qutl

(
J 11τσ t Ii,x j,x l,x + J 15τσ t,z Ii,x j,x l + J 15τσ,z t Ii,x jl,x + J 55τσ,z t,z Ii,x jl+

J 15τ,zσ t Ii j,x l,x + J 55τ,zσ t,z Ii j,x l + J 13τ,zσ,z t Ii jl,x + J 35τ,zσ,z t,z Ii jl
)

qwtl

(
J 13τσ t,z Ii,x j,x l + J 15τσ t Ii,x j,x l,x + J 35τσ,z t,z Ii,x jl + J 55τσ,z t Ii,x jl,x +

J 35τ,zσ t,z Ii j,x l + J 55τ,zσ t Ii j,x l,x + J 33τ,zσ,z t,z Ii jl + J 35τ,zσ,z t Ii jl,x
)

1

2

(
qutlq

u
sm + qwtl q

w
sm

) (
J 11τσ ts Ii,x j,x l,xm,x + J 13τσ t,z s,z Ii,x j,x lm + J 15τσ t,z s Ii,x j,x lm,x +

J 15τσ ts,z Ii,x j,x l,xm + J 15τσ,z ts Ii,x jl,xm,x + J 35τσ,z t,z s,z Ii,x jlm + J 55τσ,z t,z s Ii,x jlm,x +
J 55τσ,z ts,z Ii,x jl,xm + J 15τ,zσ ts Ii j,x l,xm,x + J 35τ,zσ t,z s,z Ii j,x lm + J 55τ,zσ t,z s Ii j,x lm,x +
J 55τ,zσ ts,z Ii j,x l,xm + J 13τ,zσ,z ts Ii jl,xm,x + J 33τ,zσ,z t,z s,z Ii jlm + J 35τ,zσ,z t,z s Ii jlm,x +
J 35τ,zσ,z ts,z Ii jl,xm

)

(3.29)
The expressions of the integrals J gh

τ(,z)σ(,z)t(,z) , Ii(,x) j(,x)l(,x) , J
gh
τ(,z)σ(,z)t(,z)s(,z) and Ii(,x) j(,x)l(,x)m(,x)

in Eqs. (3.28) and (3.29) are:

J gh
τ(,z)σ(,z)t(,z) =

∫

Ωe

Qgh Fτ(,z) Fσ(,z) Ft(,z) dΩ (3.30)

Ii(,x) j(,x)l(,x) =
∫

le

Ni(,x) N j(,x) Nl(,x) dx (3.31)

J gh
τ(,z)σ(,z)t(,z)s(,z) =

∫

Ωe

Qgh Fτ(,z) Fσ(,z) Ft(,z) Fs(,z) dΩ (3.32)

Ii(,x) j(,x)l(,x)m(,x) =
∫

le

Ni(,x) N j(,x) Nl(,x) Nm(,x) dx (3.33)
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The integrals are all numerically evaluated through Gaussian quadrature. Due to the
total Lagrangian approach, the integrals are computed over the undeformedgeometry,
therefore they can be computed once and for all at the beginning of the solution
process. Once the CUF expansion order N is fixed, the element tangent stiffness
matrix Ke is obtained straightforwardly by assembling the previous fundamental
nuclei, in a similar manner to classical finite elements, as described in Carrera et
al. [7].

3.2.3.1 MITC-Based Locking Correction

Due to the coupling of the displacement components arising from the quadratic
terms in the geometrically non-linear strain-displacement relations, see Eq. (3.4),
membrane as well as shear locking need to be tackled. Especially when dealing with
slender structures and low-order shape functions, such phenomena will degrade the
performance of the finite element, see Reddy [19]. In order to mitigate the locking
phenomena, MITC method is introduced, consisting in the following interpolation
along the beam element axis of all the strain components, see Bathe et al. [3, 4]:

Exx = N pE
p
xx

Ezz = N pE
p
zz

Exz = N pE
p
xz

(3.34)

where the subscript p implicitly stands for a summation from 1 to Ne
n − 1. E p

xx ,
E p
zz and E p

xz are the strains computed at the pth tying point rT p expressed in
natural coordinates and N p are the assumed interpolating functions. The explicit
expressions of tying points and assumed interpolating functions for linear, quadratic
and cubic elements can be also found in Carrera et al. [8]. Finally, for beam ele-
ments with MITC-based locking correction, the I -integrals previously introduced in
Eqs. (3.27), (3.31), (3.33) should be replaced, respectively, by the following integrals:

I i(,x) j(,x) =
∫

le

N pN
p
i(,x)

NqN
q
j(,x)

dx (3.35)

I i(,x) j(,x)l(,x) =
∫

le

N pN
p
i(,x)

NqN
q
j(,x)

Nq
l(,x)

dx (3.36)

I i(,x) j(,x)l(,x)m(,x) =
∫

le

N pN
p
i(,x)

N p
j(,x)

NqN
q
l(,x)

Nq
m(,x)

dx (3.37)

3.2.3.2 ANM-Based Non-linear Solver

A path-following technique based on the Asymptotic Numerical Method (ANM) is
used, see Cochelin [10], in order to solve the resulting non-linear problem:
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K(θ)q = λF (3.38)

being K the global tangent stiffness matrix, q the global unknown vector and λF
the vector of the external forces. ANM is a perturbation technique in which, starting
from the known solution at the step j , the displacement vector u, the stress vector
S and the load factor λ are approximated as a n-order power series with respect to a
path parameter a:

u = u j + a pup = u j + au1 + a2u2 + · · · + anun
S = S j + a pSp = S j + aS1 + a2S2 + · · · + anSn
λ = λ j + a pλp = λ j + aλ1 + a2λ2 + · · · + anλn

(3.39)

with p ranging from 1 to n. The path parameter a is defined as a quasi-arc-length
parameter as follows:

a = u1(u − u j ) + λ1(λ − λ j ) (3.40)

being (u1, λ1) the tangent vector. The sign of the path parameter a sets the path
direction of the solution, therefore in snap-through analyses, a is taken positive when
the tangent stiffness matrix is positive definite and it is taken negative otherwise. By
taking into account Eqs. (3.9) and (3.18) and by replacing Eqs. (3.39) in Eq. (3.38)
and by equating the termswith the same powers of a, a set of 3n + 1 linear systems in
3n + 1 unknown vectors can be derived. A convergence criterion based on the ratio
between first order and n-order solutions is adopted in order to compute a posteriori
the step length amax :

amax =
(

ε
||u1||
||un||

) 1
n−1

(3.41)

being ε a tolerance parameter. The detailed complete formulation can be found in
Cochelin et al. [10]. ANM has been proven to conveniently handle post-buckling
and snap-through of elastic structures, since through the higher-order analytical rep-
resentation given in Eq. (3.39), a larger non-linear branch with only one stiffness
matrix inversion can be obtained. This leads to a more efficient solution procedure,
compared to classical predictor-corrector schemes, in which the non-linear path is
linearly approximated and iteratively corrected at each step. Moreover, since the
length of each step is automatically chosen a posteriori according to the displace-
ment criterion in Eq. (3.41), no choice of the step length or first increment (as in those
algorithms with auto-stepping) is required, therefore avoiding time-consuming and
case-dependent trial and error before a computationally efficient solution can be per-
formed. Finally, this method proofs to be robust in the case of branch-switching as
discussed in Baguet and Cochelin [2].
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3.3 Numerical Results

In the first study case, a clamped-simply supported beam (ux and uz = 0 at x = 0 and
uz = 0 at x = L) initially buckled due to an axial compressive load Fx applied at the
beam end (x = L , z = 0) is considered and starting from the deformed shape and full
pre-stress field generated by the buckling step, the structure is snapped downwards
into a reversed curvature configuration by means of a transverse load Fz applied at
(x = L/2, z = 0). In order to demonstrate the influence of higher-order theories on
the mechanics of bistable beams, a moderately thick beam is considered, being the
slenderness ratio S = L/h = 20 smaller than typical values found in literature. A
homogeneousmaterial (aluminumwith E = 75GPa and ν = 0.33) is considered and
the cross-section is square (h = b = 1m). Both the buckling and the snap-through
phases are investigated via geometrically non-linear analyses. The following dimen-
sionless parameters have been used for displacements, stresses and external loads:
ũ = u/L , σ̃ = σ2I

Fx Lh
, λx = − Fx L2

π2E I and λz = −Fz/Fx , being I the moment of inertia
of the beam cross-section. Stress results are given in terms of Cauchy’s stresses σ

expressed in the local reference system that are equivalent to the Piola–Kirchoff’s
stresses in the global reference systemS, under the assumption of small deformations.
Results provided by the proposed family of one-dimensional finite elements under
the hypothesis of plane stress, large displacements, large rotations and small strains
are assessed towards two-dimensional eight-nodes finite elements (“FEM2D”) based
on small strains assumption and developed using a total Lagrangian formulation, see
Hu et al. [14]. 121 nodes and cubic beam elements with MITC-based locking cor-
rection are used for the one-dimensional models, whereas a 120 × 12 mesh is used
for an accurate stress prediction via two-dimensional finite element solution. For
the proposed advanced one-dimensional models, the number of degrees of freedom
(NDOFs) as function of the CUF expansion order N and number of nodes along the
beam axis Nn is given by the following relation:

NDOFs = 2 · (N + 1) · Nn (3.42)

Table 3.1 provides the following displacements, axial and shear stresses at the end
of the non-linear buckling step: ũx (L , h/2), ũz(L/2,−h/2), σ̃xx (L/2,−h/2) and

Table 3.1 Displacements and stresses for a moderately thick (L/h = 20) clamped-roller beam.
Non-linear buckling step. λx = 2.6347

Structural model ũz × 10 −ũx × 102 −σ̃ xx × 102 σ̃xz × 103

FEM 2D 1.1951 3.6025 7.4363 4.6339

N = 5 1.2071 3.6956 7.5044 4.6517

N = 4 1.2015 3.6653 7.4731 4.6313

N = 3 1.1755 3.4891 7.3307 4.5319

N = 2 1.1356 3.2647 7.1131 3.1055
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Fig. 3.1 Transverse load λz versus axial displacement ũx in the snap-through analysis of a pre-
buckled clamped-simply supported beam. Slenderness ratio L/h = 20

σ̃xz(L/4, 0). A lower-order theory such as N=2 leads to some inaccuracies in
the mechanical prediction, being the relative difference with respect to the two-
dimensional finite elements solution as high as 9.4% for the displacements, 4.4% for
the axial stress and 33.0% for the shear stress. On the other hand, by enriching the
through-the-thickness kinematics of the model via a 4th order or 5th-order theory,
errors on the displacement prediction as high as 2.6% can be obtained and being
0.9%, at worse, on the axial and shear stresses. Figures3.1 and 3.2 show the force-
displacement curves for the snap-through step carried out starting from the buckled
configuration.

The evaluation points for the displacements in Figs. 3.1 and 3.2 are the same
as those used for Table 3.1. A qualitative color plot distribution of the respective
displacement component is also provided in Figs. 3.1 and 3.2. Markers in the line
plots do not correspond to the steps of the non-linear solution, since the accumulation
of steps in the proximity of the limit points provided by the ANM-based non-linear
solver is not shown, for the sake of clarity. The highly non-linear snap-through
buckling is well-described by higher-order theories such as N=4 and N=5. Starting
from the initial state (λz = 0), the overall phenomenon consists in the transition
from a first stable force-displacement region (increasing external force) to a second
stable region passing through an instability region (decreasing external force) by
means of a sudden displacement jump. From a mathematical point of view, the
stability of such regions is assessed by checking the positive definiteness of the
tangent stiffnessmatrix,whereas instability regions are characterized by the existence
of at least one negative eigenvalue of the tangent stiffness matrix. Finally, the two
stable configurations of the bistable structure are those states of equilibrium forwhich
the external load is zero. Table 3.2 shows that a refinement of the one-dimensional
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Fig. 3.2 Transverse load λz versus transverse displacement ũz in the snap-through analysis of a
pre-buckled clamped-simply supported beam. Slenderness ratio L/h = 20

Table 3.2 Snap-through load for a prebuckled clamped-roller beam, λx = 2.6347

Structural model Snap-through load 102 × λz Degrees of freedom (NDOFs )

FEM 2D 5.1738 9.2 × 103

N = 5 5.2111 1.5 × 103

N = 4 5.1915 1.2 × 103

N = 3 4.9553 9.7 × 102

N = 2 4.7726 7.3 × 102

model kinematics is recommended also for an accurate prediction of the snap-through
load, which is the maximum load that the structure can carry before snapping into the
second configuration and that represents one of the structural performance parameters
for application design. The error provided by a 2nd order theory with respect to the
reference solution, in fact, can be reduced from to 7.8 to 4.2% for N=3 and being
as high as 0.7% for N=4 and N=5. The stiffer structural behavior (i.e. higher snap-
through load) provided by the refined CUF-based models with respect to the lower-
ordermodels (such asN=2) is influenced by the prediction of the non-linear buckling
step, which provides a more shallow initial geometry for less refined models and,
therefore, lower actuation values λz . Table 3.2 also provides a summary concerning
the computational costs in terms of number of degrees of freedom (NDOFs) for all
the structural models used in the presented numerical results.

A final assessment is presented for the stress prediction of a prebuckled pinned-
roller composite beam (ux = uz = 0 at (0, 0) and uz = 0 at (L,0)). ANSYS plane
stress two-dimensional finite elements (“Plane183”) with a 120 × 12 mesh are used
for comparison. The structure is made of glass fibre epoxy resin composite (E-
Glass/913) with the following elastic properties: EL = 43.7GPa, ET = 7.5GPa,
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Fig. 3.3 Through-the-thickness distribution of the transverse normal stress σ̃zz at the mid-span of
the beam (x = L/2) in the prebuckled configuration (C1) and in the snapped configuration (C2).
Unidirectional [0] lay-up

Fig. 3.4 Through-the-thickness distribution of the axial stress σ̃xx at the mid-span of the beam
(x = L/2) in the pre-buckled configuration (C1) and in the snapped configuration (C2). Cross-ply
[0/90/0] lay-up
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GLT = 4.3GPa and νLT = 0.3. A beam with slenderness ratio L/h = 100 is con-
sidered, being the cross-sectional dimensions h = b = 1m. The axial precompres-
sion load is equal to Fx = λxπ

2EL I/L2, with λx = 1.1. A transverse actuation load
λz is applied at (L/2, 0) and the through-the-thickness transverse normal stress dis-
tribution at the beginning of the snap-through analysis (prebuckled configuration,
λz = 0) and at the end (snapped configuration, λz = 0.1265) is provided in Fig. 3.3
for a unidirectional lay-up. The through-the-thickness axial stress distribution in the
prebuckled configuration (λz = 0) and in the snapped configuration (λz = 0.1265)
for a three-layer cross-ply beamwith stacking sequence [0/90/0] is shown in Fig. 3.4.
As shown in the plots, a second-order theory is able to provide a fairly accurate esti-
mation of the axial stress profile before and after the snap-through instability of the
beam structure, whereas at least a third-order theory should be adopted to predict the
distribution of the transverse normal stress.

3.4 Concluding Remarks

The development of a hierarchical modeling framework based on the Carrera Uni-
fied Formulation for the analysis of bistable beam-like structures has been presented.
Geometrical non-linearities in a Green–Lagrange sense are accounted for in order to
address the post-buckling and snap-through behavior. Through the CUF-based mod-
eling approach, the significance of assuming higher-order terms in the cross-sectional
kinematics of pre-buckled bistable beams has been demonstrated for an accurate pre-
diction of the load-displacement curves, from which snap-through load and stable
geometries can be derived. The enrichment of the kinematics from a second-order
theory to a fifth-order theory leads to improvements of about 6.8% in the estima-
tion of the axial displacement and about 32.1% on the shear stress prediction in
the non-linear buckling phase, whereas a 7.1% improvement on the maximum load
prediction can be obtained in the snap-through phase. As far as computational costs
are concerned, the number of degrees of freedom for the reference two-dimensional
eight-nodes finite elements solution are about 83.7% higher than in a fifth-order one-
dimensional model, which is the most refined CUF-based theory used in this study.
Through higher-order theories, an accurate stress field evolution (including axial,
shear and transverse normal stresses) in strongly non-linear snap-through phenom-
ena can be also obtained. For these reasons, the proposed hierarchical framework
represents a reliable yet efficient modeling approach for the analysis of bistable
composite structures.
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Chapter 4
Multiscale Nonlinear Analysis of Beam
Structures by Means of the Carrera
Unified Formulation

Y. Hui, G. Giunta, S. Belouettar, H. Hu and E. Carrera

Abstract This chapter addresses a multi-scale analysis of beam structures using the
Carrera Unified Formulation (CUF). Under the framework of the FE2 method, the
analysis is divided into a macroscopic/structural problem and amicroscopic/material
problem.At themacroscopic level, several higher-order refined beamelements can be
easily implemented via CUF by deriving a fundamental nucleus that is independent
of the approximation order over the thickness and the number of nodes per element
(they are free parameters of the formulation). The unknownmacroscopic constitutive
law is obtained by numerical homogenization of a Representative Volume Element
(RVE) at the microscopic level. Vice versa, the microscopic deformation gradient is
calculated from themacroscopicmodel. Information is passed between the two scales
in a FE2 sense. The resulting nonlinear problem is solved through the Asymptotic
Numerical Method (ANM) that is more reliable and less time consuming when
compared to classical iterative methods. The developed models are used as a first
attempt to investigate the microstructure effect on the macrostructure geometrically
nonlinear response. Results are compared regarding accuracy and computational
costs towards full FEM solutions demonstrating the robustness and efficiency of the
proposed approach.
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4.1 Introduction

The relationship between microstructure and macroscopic properties is an important
factor for the optimization and design of lightweight, strong, tough materials. To
predict the macroscopic and microscopic behavior of heterogeneous materials, there
are several different information-passing/hierarchical multiscale methods. Under the
framework of micromechanics methods, a classification is made based upon the
solution type method used for solving Unit Cell (UC) or RVE problems: analytical,
semi-analytical and numerical methods. Thanks to the development of computers,
numerical methods for UC/RVE problems are easier to be solved. Therefore, these
methods (which are often referred to computational upscaling methods or computa-
tionally homogenizations) are widely developed and used.

Analyticalmethods are firstly adopted for solving theUC/RVEproblem.An effec-
tive medium approximation was established by Eshelby [9], and further developed
by Mori and Tanaka [16]. Based on this approach, the self-consistent approach was
developed by Hill [12], and its generalisation was presented by Dvorak and Bahei-
El-Din [7].

Semi-analyticalmethods are developed as another groupof solutions for determin-
ing global composite properties starting from the constituentmaterials. Fish et al. [11]
developed a theory based on the transformation field analysis (see Dvorak and Ben-
veniste [8]) and finite element method for nonlinear problems. Aboudi [1] developed
the method of cells. Furthermore, the Generalized Method of Cells (GMC) was pre-
sented by Aboudi [2], where a second-order displacement field is applied instead of
linear displacement field. GMC should be used on an orthogonal array of UCs for
simulating the geometry of the phases. To be noticed, thismethod requires a relatively
large number of cells to capture enough geometric features accurately. Pineda [19]
provided a novel progressive damage and failure model for fiber reinforced lami-
nated composites based on GMC. Under the same framework, a variational asymp-
totic method of unit cell homogenization was successfully applied for periodically
heterogeneous material by Yu and Tang [21].

Various numerical methods were developed to ensure computational efficiency
and accuracy. Ladevéze [15] proposed a novel multiscale computational strategy
based on the so-called LATIN method. Kouznetsova et al. [14] presented a second-
order computational homogenization method. In the framework of FE2, a RVE is

Fig. 4.1 Schematic diagram
of a multiscale FE2 approach
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assigned to each integration point at the macroscopic scale as shown in Fig. 4.1. As
a consequence, parallel computing can be applied to increase efficiency.

By using this approach, Feyel and Chaboche [10] presented a multiscale analy-
sis of long fiber reinforced SiC/Ti material. Xu et al. [20] proposed a 3D generic
FE2 method for modeling the pseudo-elasticity and the shape memory effects
of shape memory alloy fiber reinforced composites. Nezamabadi et al. [18]
developed an approach called Multiscale-ANM based on the FE2 and the ANM,
which aimed at dealing with instability phenomena in the context of heterogeneous
materials where buckling may occur at both macroscopic andmicroscopic scale. The
governing equations were derived by the virtual work principle, and their discrete
form was obtained within the framework of the finite element method. The nonlin-
ear system was solved by the ANM, see Damil and Potier-Ferry [6] and Cochelin
et al. [5]. As far as the nonlinear solver is concerned, ANM is a continuation method
that associates a perturbation technique with a discretization principle. Under this
framework, the computation of a solution path is achieved step-by-step, where at each
step the solution is represented by a truncated power series. Many studies presented
in the literature show that the ANM is more robust and efficient compared to classi-
cal nonlinear solvers (e.g., Newton-Raphson’s method, modified Newton-Raphson’s
method and Risks’ method).

Stemming from Nezamabadi et al. [18], a multiscale framework is proposed by
extending CUF non-linear beam formulation to the FE2 multiscale framework and
using ANM as a non-linear solver. At macroscopic scale, the kinematic field is
axiomatically assumed along the thickness through CUF, see Carrera et al. [4] and
Carrera and Giunta [3]. Because the approximation order is a free parameter, several
kinematic models can be directly derived. This chapter is organized as follows: in
Sect. 4.2, control equations, boundary conditions, and the kinematic models for
macroscopic and microscopic scales are described. In Sect. 4.3, numerical results
are shown and a final section presents some conclusions.

4.2 Theoretical Background

4.2.1 Macroscopic Scale

Preliminaries. A two-dimensional beam structure is considered at macroscopic
scale. Beam axial extension is l. The cross-section (�) is identified by intersecting
the beam with planes that are orthogonal to its axis. A Cartesian reference system is
adopted: y- and z-axis are two orthogonal directions laying on�. The x coordinate is
coincident to the axis of the beam, and it is bounded such that 0 ≤ x ≤ l. In order to
distinguish the macroscale model from the microscale one, the quantities belonging
to macroscopic scale are all addressed by an overlined symbol. The displacement
field is:

u (x, z) = {
ux (x, z) uz (x, z)

}T
(4.1)
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where ux and uz are the displacement components along x- and z-axis. Superscript
‘T ’ stands for the transposition operator. For two-dimensional problem, the gradient
of the displacement θ is expressed by a vector of four components:

θ(u) = {
u,x u,z w,x w,z

}T
(4.2)

Since geometrical nonlinearity is considered, the Green-Lagrange strain tensor as a
function of the displacement gradient is defined as:

E =

⎡

⎢⎢
⎣

Exx

Exz

Ezx

Ezz

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

u,x

u,z + w,x

u,z + w,x

w,z

⎤

⎥⎥
⎦ + 1

2

⎡

⎢⎢
⎣

u2,x + w2
,x

2u,xu,z + 2w,xw,z

2u,xu,z + 2w,xw,z

u2,z + w2
,z

⎤

⎥⎥
⎦ = E

l + E
nl

(4.3)

where El and Enl account for the linear and non-linear strains, respectively. In com-
pact matrix notation they read:

E
l = Hθ(u), E

nl = 1

2
A

(
θ(u)

)
θ(u) (4.4)

Matrices H and A
(
θ(u)

)
are defined by the following equations:

H =

⎡

⎢⎢
⎣

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎤

⎥⎥
⎦ (4.5)

A
(
θ(u)

)
=

⎡

⎢⎢
⎣

u,x 0 w,x 0
u,z u,x w,z w,x

u,z u,x w,z w,x

0 u,z 0 w,z

⎤

⎥⎥
⎦ (4.6)

A virtual variation of the Green-Lagrange strain vector E is:

δE = δ

{
Hθ(u) + 1

2
A

(
θ(u)

)
θ(u)

}
= Hδθ(u) + A

(
θ(u)

)
δθ(u) (4.7)

where δ stands for the virtual variation operator. The vectorial form of second Piola-
Kirchhoff’s stress tensor S can be written in the following form:

S = {
Sxx Sxz Szx Szz

}T
(4.8)

The weak form of the governing equations is derived by means of the Principle of
Virtual Displacement:
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δL = δL int − δL ext = 0 (4.9)

where L is the total work, and L int the internal one:

δL int =
∫

V0

δE
T
SdV (4.10)

V0 is the volume of the reference undeformed configuration since a total Lagrangian
formulation is considered. L ext is the work done by the external forces. Within the
used multiscale approach, in order to obtain the constitutive relation for macroscopic
scale, a tensor L is introduced. Its matrix form is as follows:

L =

⎡

⎢⎢
⎣

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎤

⎥⎥
⎦ (4.11)

Tensor L accounts for the geometry and constitutive relation computed at the micro-
scopic scale, and it plays a key role in transferring information from the microscopic
scale to the macroscopic one. The macroscopic constitutive relation is obtained by a
numerical finite element homogenization:

L = 1

ω

∫

ω

Ldω (4.12)

The explicit form of the microscopic tensor L will be discussed in the next section.
By introducing the tensor L, the internal virtual work of the macroscopic scale, then,
can be rewritten as (the details of its derivation can be found in Nezamabadi [17]):

δL int =
∫

V0

δθ(u)
T
Lθ(u)dV (4.13)

In the case of an external load proportional to a given load parameter λ, the external
virtual work takes the following form:

δL ext = λδuT f (4.14)

where λf is the external applied force. The Principle of Virtual Displacements finally
becomes:

δL =
∫

V0

δθ(u)
T
Lθ(u)dV − λδuT f (4.15)

Hierarchical beam elements. According to CUF, the displacement field is a-
priori assumed over the thickness, and it is written in the following manner:
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u (x, z) = F τ (z)uτ (x) with τ = 1, 2, . . . , Nu (4.16)

According to Einstein’s notation, a twice repeated subscript implicitly represents a
summation. Fτ (z) is a generic expansion function over the thickness and Nu is the
number of accounted terms. This kinematic formulation allows to account for several
beam theories since the choice of the expansion functions Fτ (z) and Nu are arbitrary.
In the case of MacLaurin’s polynomials (as used in this work), the explicit form of
a generic N -order displacement field reads:

ux = ux1 + ux2z + · · · + ux(N+1)zN ,

uz = uz1 + uz2z + · · · + uz(N+1)zN .
(4.17)

As far as the displacements variation along the beam axis is concerned, a one-
dimensional finite element approximation is used:

u (x, z) = Fτ (z) Ni (x) qτ i with τ = 1, 2, . . . , Nu and i = 1, 2, . . . , N
e
n

(4.18)
Ni (x) is a C0 shape function, N

e
n the number of nodes per element and qτ i the nodal

displacement unknown vector. The displacements gradient vector in the framework
of CUF reads:

θ = {
F τ Ni,x q

(u)
τ i Fτ,z N iq

(u)
τ i F τ Ni,x q

(w)
τ i Fτ,z N iq

(w)
τ i

} = Gτ iqτ i (4.19)

where Gτ i ∈ R
4×2 and qτ i ∈ R

2×1 are:

Gτ i =

⎡

⎢⎢
⎣

F τ Ni,x 0
F τ,z N i 0

0 F τ Ni,x

0 F τ,z N i

⎤

⎥⎥
⎦ (4.20)

qT
τ i = {

q(u)
τ i q(w)

τ i

}
(4.21)

Element tangent stiffness matrix. According to Eq. 4.13, the virtual internal work
for one element becomes:

δL
e
int =

∫

V e
0

δθ(u)
T
Lθ(u)dV

= δqT
τ i

∫

V e
0

G
T
τ iLGσ j dVqσ j

= δqT
τ i

(
K

el
τσ i j

)
qσ j

(4.22)

where V e
0 is an element reference volume and K

el
τσ i j is the fundamental nucleus

of the element stiffness matrix. This nucleus does not depend on the approximation
order over the thickness (Nu) nor the number of nodes per element along the beam
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axis (N
e
n), see Carrera et al. [4]. It is worth noting that the macroscopic geometric

nonlinearity is accounted for within the stiffness matrix in Eq. 4.22. The components

of the stiffness matrix nucleus K
el
τσ i j are:

K
elxx
τσ i j = J

11
τσ i,x j,x + J

22
τ,zσ,z i j + J

21
τ,zσ i j,x + J

12
τσ,z i,x j

K
elxz
τσ i j = J

14
τσ,z i,x j + J

13
τσ i,x j,x + J

24
τ,zσ,z i j + J

23
τ,zσ i j,x

K
elzx
τσ i j = J

41
τ,zσ i j,x + J

31
τσ i,x j,x + J

42
τ,zσ,z i j + J

32
τσ,z i,x j

K
elzz
τσ i j = J

44
τ,zσ,z i j + J

33
τσ i,x j,x + J

34
τσ,z i,x j + J

43
τ,zσ i j,x

(4.23)

The generic term J gh
τ(,z)σ(,z) is the following volume integral:

J
gh
τ(,z)σ(,z)i(,x) j(,x) =

∫

�e=he×be

∫

le

Lgh Fτ(,z) Fσ(,z) Ni(,x) N j(,x) d� dx (4.24)

where he, be and le are the element thickness, width and length, respectively.
Similarly, the external work of one element can be rewritten as following form:

δL
e
ext = λδqT

τ iP
el
τ i (4.25)

where Pτ i can be written as:

Pτ i = F
T
τ N

T
i F

el
(4.26)

being F
el
an external force.

Resulting nonlinear problem. The internal virtual work for the whole beam is
obtained by expanding the stiffness matrix nucleus for each element and assembling
the resulting matrix in a classical finite element fashion:

δL int = δqTKq (4.27)

where K is global stiffness matrix and q is the global unknown vector. The global
external virtual work δLext can be obtained in a similar manner:

δL ext = λqP (4.28)

4.2.2 Microscopic Scale

Preliminaries. In the framework of the FE2 method, the microscopic solution needs
as input the macroscopic strain. Hooke’s law for microscopic scale reads:
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S = CE = C[H + 1

2
A (θ(u))]θ(u) (4.29)

where C is the material stiffness tensor. As a result, the microscopic internal virtual
work reads:

δLint =
∫

ω

δETS dω =
∫

ω

δθ(u)T [H + A (θ(u))]TC[H + 1

2
A (θ(u))]θ(u)dω

(4.30)
where ω is the volume in microscopic scale. Periodic boundary conditions are con-
sidered for the homogenisation problem:

ũ+ − ũ− = X+ − X−, on ∂ω. (4.31)

where ũ is a constrained microscopic displacement, and X represents the coordinate
vector at microscale, which is a two components vector in two-dimensional problems
in a implicit form here.+ and− stand for a positive or negative boundary, respectively.
∂ω stands for the RVE frontier.

Homogenization and localization. The microscopic tensor L in Eq. 4.12 provides
the material constitutive behavior of the microscopic scale. It consists of the product
of the two unknowns H and A,x :

L = H (r)A,x (4.32)

H (r) is:
H (r) = βTC(r)β (4.33)

where Cr is the constitutive tensor for each material phase r in the RVE and β is
related with the derivative of the displacement field:

β = H + A (θ(u)) (4.34)

For two-dimensional problems, the second unknown term A is as follows:

A = [
ũ(11) ũ(12) ũ(21) ũ(22)

]
(4.35)

in which ũ(i j) (i, j = 1, 2), four two components vectors, are the solutions of
linear deformation condition and periodic boundary conditions. The linear defor-
mation boundary value problem is:

{
Lint (̃u(i j), δu) = 0, in ω.

ũ(i j) = X(i j), on ∂ω.
(4.36)

with
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X(11) =
[
1 0
0 0

]
X, X(12) =

[
0 1
0 0

]
X

X(21) =
[
0 0
1 0

]
X, X(22) =

[
0 0
0 1

]
X

(4.37)

The periodic boundary value problem is:

{
Lint (̃u(i j), δu) = 0, in ω.

ũ(i j)+ − ũ(i j)− = X(i j)+ − X(i j)−, on ∂ω.
(4.38)

with

X(11)+ − X(11)− =
[
1 0
0 0

]
(X+ − X−), X(12)+ − X(12)− =

[
0 1
0 0

]
(X+ − X−)

X(21)+ − X(21)− =
[
0 0
1 0

]
(X+ − X−), X(22)+ − X(22)− =

[
0 0
0 1

]
(X+ − X−)

(4.39)

in which the four types of boundary conditions account for the in-plane and shear
deformations. The process of exchanging information from macroscopic scale to
microscopic scale is performed by constructing A . In a two-dimensional case, the
linear part of displacement at microscopic scale ul can be considered as the sum of
four contributions:

ul = θ
(11)

ũ(11) + θ
(12)

ũ(12) + θ
(21)

ũ(21) + θ
(22)

ũ(22) = A θ(u) (4.40)

The nonlinear displacement part unl results from the following problem:

L (̃u(i j), δu) = F nl , in ω. (4.41)

The total displacement is obtained by combining the two contributions:

u = ul + unl (4.42)

Finite element discretization. For one element, the displacement field u in the
domain can be discretized as classically done:

u = Nqe (4.43)

where qe is the nodal displacement vector of the element, and N is a matrix whose
components are the considered shape functions [22]. The remaining quantities for
discretization of Eq. 4.30 can be written as:
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δu = Nδq,

θ(u) = Gqe,

δθ(u) = Gδqe.

(4.44)

in whichG is the shape function derivativesmatrix. According to Eq. 4.29, the virtual
work equation for a single element can be derived as follows:

∫

ωe

δqeG[H + A
(
θ(qe)

)]TSdω = 0 (4.45)

The right had side of previous equation is zero since no external force is considered
at microscale. Substituting Eq. 4.43 and Eq. 4.44 into Eq. 4.30, the second Piola-
Kirchhoff stress tensor becomes:

S = CHGqe + 1

2
CA

(
θ(qe)

)
Gqe (4.46)

For the sake of brevity, the following notation is introduced:

Bl = HG,

Bnl(qe) = A(θ(qe))G,

B = Bl + Bnl(qe).

(4.47)

By replacing Eq. 4.47, Eq. 4.45 and 4.46 are rewritten as follows:

∫

ωe

δqeT (Bl T + Bnl(q)
T
)Sdω = 0 (4.48)

S = CBlqe + 1

2
CBnl(qe)qe (4.49)

The problem for the whole RVE is obtained by a finite element assembly procedure
similarly to what done at macroscale.

4.2.3 Asymptotic Numerical Method

ANM is used to solve the resulting nonlinear problem. Themacroscale solution point

(u j+1,S
j+1

, λ
j+1

) at step j + 1 is determined from the point solution (u j ,S
j
, λ

j
) of

the previous step j as starting solution point. According to the perturbation technique,
an approached solution path at step j + 1 is represented by truncated power series
at the highest order Nmax :
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u j+1 = u j + a pup,

S
j+1 = S

j + a pSp, with p = 1, 2, . . . , Nmax

λ
j+1 = λ

j + a pλp.

(4.50)

p represents the number of the series expansion order. The problempresents 3Nmax +
1 unknowns (up,Sp, λp, a), but only 3Nmax equations are available. Therefore, a
complimentary equation needs to be introduced. The path parameter a is defined by
imposing it equal to the projection of the increment on the tangent direction (u1, λ1)

as follows:
a = u1(u − u j ) + λ1(λ − λ

j
) (4.51)

The validity range of truncated series is determined by the maximum value of the
path parameter amax :

amax = (ε
||u1||

||uNmax ||
)

1
Nmax−1

(4.52)

inwhich ε is a tolerancewhose value is chosen by the user and || · || is the vector norm.
amax decreases when ε decreases. Substituting the approached solution Eq. 4.50 in
Eq. 4.15, by collecting terms with the same powers of a, the algebraic equations for
order 1 up to order p at macroscale can be derived. At microscopic scale, solution
(u j+1,S j+1) is also represented by a truncated power series:

u j+1 = u j + a pup with p = 1, 2, . . . , Nmax

S j+1 = S j + a pSp with p = 1, 2, . . . , Nmax
(4.53)

By substituting the approached solution Eq. 4.53 in Eq. 4.48, and by collecting the
terms with the same expansion order of a, the algebraic equations for order 1 up to
order p at microscale can be obtained.

4.3 Results

Some numerical results are here presented. First, the proposed framework is validated
towards a case study presented in the literature, see Nezamabadi et al. [18]. Then,
more results are provided in a second case to show the comparison between the
proposed method and a full FE2 method, where two dimensional elements are used
at both macro and micro scales.

The case study consists of a heterogeneous cantilever rectangular beam under a
concentrated unit vertical force at the top point as shown in Fig. 4.2. The length of
the beam is 100 mm, and the thickness is 10 mm. At the microscale, the material
consists of a matrix with a circular inclusion (the volume fraction of the inclusion is
equal to 28%). Constituents material properties are presented in Table 4.1. Results
from Nezamabadi et al. [18] and computed via Ansys are presented.
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Fig. 4.2 Geometry of cantilever beam under static load with round inclusion RVE

Table 4.1 Material property of the constituents, first case

Matrix Inclusion

Young Modulus (MPa) 10,000 100,000

Poisson’s ratio 0.3 0.3

Volume fraction 0.72 0.28

Table 4.2 Effective properties estimations

E (GPa) G (GPa) v

Multiscale-CUFa 151.70 53.63 0.28

FE2b 153.27 54.01 0.28

ANSYSc 153.36 54.03 0.28
a 144 triangular 6 nodes elements
b 4132 triangular 6 nodes elements
c 4044 PLANE 183 elements

A convergence analysis of the effective properties determination is carried out
in Table 4.2. E stands for Young’s modulus, G for the shear modulus and v for
the Poisson ratio. The solution used here presents a mesh with 144 elements which
proofs to be a good compromise between accuracy and computational costs. The
comparison of degrees of freedoms between the proposed Multiscale-CUF model
with different beam theories (N = 2, 3, 4, 5) and the FE2 method from the reference
paper is shown in Table 4.3 where a clear reduction of the DOFs number can be
remarked.
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Table 4.3 DOFs comparison between Multiscale-CUF and FE2 models, where at macroscale
Multiscale-CUF model uses 40 quadratic elements whereas a mesh 40 × 4 (length×thickness)
is used for the FE2 solution

RVE number DOFs (Microscalea) DOFs (Macroscale)

Multiscale-CUF N = 5 720 439′200 972

Multiscale-CUF N = 4 600 366′000 810

Multiscale-CUF N = 3 480 292′800 648

Multiscale-CUF N = 2 360 219′600 486

FE2 1440 878′400 1′138
a DOFs (Microscale) is the number of RVEs multiplied by the DOFs of each RVE
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Fig. 4.3 Displacement uz at (l, h/2)

It is well-known that the FE2 method is much less computationally expensive
compared with a fully meshed model. Thanks to the proposed approach, even the
model with the highest order (N = 5) presents half of the DOFs of the FE2 model.
Furthermore, the results with N = 2 is already accurate as shown in Fig. 4.3, where
the macroscale transverse displacement is presented.

As a second problem, at the structural level, a concentrated load is applied at the
point (l, 0), where the length and thewidth of the beam are 10mand 1m, respectively.
At the microscopic scale, the same matrix-circular inclusion configuration as the
previous case is considered where the constituent material properties are presented
in Table 4.4. For this case, the load-displacement curves for ux and uz are presented
in Fig. 4.4. N = 2 yields accurate results.

Moreover, as shown in Fig. 4.5, results show an excellent agreement at the
microstructural level between the proposed model and the FE2 model.
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Table 4.4 Material Property
of RVE constituents, second
case

Matrix Inclusion

Young modulus (MPa) 100 1000

Poisson’s ratio 0.3 0.3

Volume fraction 0.72 0.28
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Fig. 4.5 Displacement ux at (l, h/2) and uz at (l,−h/2) of short cantilever beam at the last load
step
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Fig. 4.7 Stress Sxz at (z/ l = 0) of short cantilever beam at last load step

From Fig. 4.6, it can be concluded that the stress components require a higher-
order theory (N = 5) to get an accurate result. In Fig. 4.7, the shear stress at the
middle line (z/ l = 0) of the beam is plotted. The results with N = 3 and N = 5
compare well with the FE2 model.

4.4 Conclusions

In this chapter, a novel multiscale model based on the FE2 method and CUF is
proposed. The robust and efficient nonlinear solver ANM is applied for the geo-
metrically nonlinear problem. At the macroscopic scale, several higher-order beam
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theories have been derived straightforwardly. Results have been validated through
comparison with reference results and traditional FE2 method.The numerical inves-
tigation shows that, for the considered cases, results via a quadratic beam theory
already yield a good accuracy when displacements are sought. Besides, higher-order
theories with an expansion order as high as five are mandatory for predicting an
accurate shear stress field. It has been shown that the proposed approach possess
the capability to simulate the nonlinear response at both the microscopic and macro-
scopic scale efficiently and accurately.
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Chapter 5
On the Effectiveness of Higher-Order
One-Dimensional Models for Physically
Nonlinear Problems

I. Kaleel, M. Petrolo, E. Carrera and A. M. Waas

Abstract The chapter presents numerical assessments of physically nonlinear
problems through a class of refined one-dimensional theories based on the Carrera
Unified Formulation (CUF). CUF is a hierarchical formulation to generate refined
structural theories through a variable kinematic approach. Physical nonlinearities
include von Mises plasticity and cohesive interface modeling for delamination of
composites. This work aims to provide insights into the effect of kinematic enrich-
ment on the overall nonlinear behavior of the structure. Guidelines stem from the
evaluation of the accuracy and numerical efficiency of the proposed models against
analytical and numerical approaches from the literature.

5.1 Introduction

The engineering practice tends to use simple analytical and finite element models
for the stress analysis of structures to obtain computational efficiency and acceptable
levels of accuracy. One-dimensional models (1D)—referred to as beams—fall within
the scope of the analysis of slender structures such as columns, blades, and aircraft
wings. Classical models such as Euler–Bernoulli (EBBT) [4, 12] and Timoshenko
(TBT) [29] are common options for practical engineering analyses, but the effective-
ness of such models depend on many assumptions such as geometrical dimensions,
the prismatic nature of the structure, material homogeneity and isotropy. Since the
accurate resolution of displacement and stress fields serves as a precursor for reli-
able nonlinear simulations, the validity of classical models in the nonlinear regime
may be questionable and 2D, or 3D models are often mandatory with significant
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computational overheads. This chapter presents a novel approach in modeling the
physical nonlinearities through higher-order 1D. Over the past few decades, signif-
icant efforts have led to the development of 1D models to solve diverse classes of
physically nonlinear problems, and a brief overview follows.

Timoshenko and Gere extended the TBT to doubly-symmetric inelastic beams
[30]. Abambres et al. employed the Generalized Beam Theory (GBT), originally
developed by Schardt [25], for elastoplastic and post-buckling analyses of metallic
thin-walled beam structures [1]. A class of 1D models stemmed from the Variational
Asymptotic Beam Section Analysis (VABS), a variational asymptotic method which
replaces a 3D structural model with a reduced-order model via asymptotic series
[10]. The methodology also has nonlinear capabilities as shown by Pollayi et al. to
model matrix cracking in helicopter rotors or wind turbine blades [23]. Jiang and Yu
extended VABS to hyperelastic beams subjected to finite deformations and damage
analyses of composites [16, 17]. Groh and Tessler developed a computationally
efficient beammodel to capture the delamination in laminated composite beams [14]
via a nine degrees of freedom (DOF) and eight-DOF locking-free beam elements
employing a mixed form of a refined zig-zag theory capturing the transverse stress
field. Škec et al. [28] developed a 2D multilayered beam finite element for mixed-
mode delamination analyses. Eijo et al. presented a method based on a refined zig-
zag theory within a 1D finite element to model delamination in composite laminated
beams [11].

The chapter deals with extensions of 1D CUF models for analyzing physically
nonlinear problems and effectiveness concerning accuracy and computational effi-
ciency. CUF is a hierarchical formulation that reduces 3D problems to 2D or 1D in a
unified manner through a variable kinematic description [9]. The ability of 1D CUF
models to recover accurate 3D stress fields efficiently can solve broad categories of
physically nonlinear problems. Originally developed for plates and shells, 1D CUF
models can deal with nonlinearities due to large deflections and post-buckling [22],
elastoplastic and progressive damage analysis [8, 19, 20], and rotordynamics [13].

This chapter provides an overview of the nonlinear constitutive laws in Sect. 5.2,
describes the structural modeling and FE framework in Sect. 5.3, highlights the most
important aspects related to the solution schemes for nonlinear problems in Sect. 5.4,
and shows results and comments in Sects. 5.5 and 5.6.

5.2 Nonlinear Constitutive Equations

The adopted Cartesian coordinate system has the beam axis along the y-axis and the
cross-section along the x − z plane. The displacement vector at any given point in
the structural domain is

u (x, y, z) = [ux uy uz]T (5.1)
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The vectorial notations for strain and stress states are

ε = [εxx εyy εzz εyz εxz εxy]T ; σ = [σxx σyy σzz σyz σxz σxy]T (5.2)

Under the small strain assumption, geometrical and constitutive equations are

ε = b u; bT =
⎡
⎣

∂x 0 0 0 ∂z ∂y
0 ∂y 0 ∂z 0 ∂x
0 0 ∂z ∂y ∂x 0

⎤
⎦ ; σ = C ε (5.3)

where b is the differential operator and C reads a nonlinear generic constitutive
material matrix with 36 constants to describe the stress-strain behavior.

5.2.1 Plasticity

The von Mises (J2) theory hypothesizes that the material starts to yield when the J2
invariant of the stress tensor attains a certain threshold, often referred to as the yield
stress,

f = q(σ ) − σy(ε̄p) (5.4)

where f is the von Mises yield locus, q(σ ) is the von Mises stress and σy is the
yield stress which is a material input. A return mapping numerical scheme solves the
local nonlinear problem, as detailed in Carrera et al. for CUF models [8]. In addition
to metals, the nonlinear shear response exhibited by unidirectional laminates is due
to inelastic deformation incurred by matrix constituents, often modeled through the
von Mises based plasticity method.

5.2.2 Cohesive Modeling

Let us consider a domain Ω with a crack zone Γc as shown in Fig. 5.1. Essential
boundary conditions act along the boundary Γu and prescribed tractions τi along Γn .
The domain has two sub-domains, Ω+ and Ω−, along the crack boundary Γc, as
depicted in Fig. 5.1. The equilibrium equations within the domain Ω are

σi j, j + ρbi = 0 in Ω; σi j n j = ti in Γn

σi j n
+
j = τ+

i = −τ−
i = −σi j n

−
j n

−
j in Γc

(5.5)

where σi j is the stress field within the domain due to external loading ti , bi are the
body forces, ρ is the density of the material, and τ+

i , τ−
i are the closing tractions

acting along the cohesive surface. Via the Principle of Virtual Displacements (PVD)
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Fig. 5.1 Boundary value
problem for cohesive
formulation

and considering the additional contributions to work due to the cohesive crack, the
weak formulation reads

δLint + δLcoh − δLext = 0, δLint =
∫

Ω

�sδu : σ dV

δLcoh =
∫

Γc

δ[[u]] · tcdΓc, δLext =
∫

Ω

δu · bdΩ +
∫

Γn

δu · t dΓn

(5.6)

where δ indicates the virtual variation, Lint , Lcoh and Lext refer to the bulk strain
energy, work due to the cohesive crack, and external loading, respectively. [[u]]
denotes the displacement jump across the cohesive surface,

[[ui ]] = u+
i − u−

i (5.7)

where u+
i and u−

i denote the displacement of the given point i on the upper (Ω+)
and lower surface (Ω−) of the interface.

The cohesive constitutive law describes the relationship between the cohesive
traction τi and the displacement jump Δi across the interface,

τ j = Dji Δi (5.8)

where Dji is the constitutive operator and Δi is the displacement jump across the
interface in the local coordinate system. Formulated within the context of the damage
mechanics, the free energy density Ψ reads [27, 31]

Ψ (Δ, d) = (1 − d)Ψ 0(Δ) − dΨ 0(δ3i 〈−Δ3〉) (5.9)

where Ψ 0 is the free energy per unit surface. δi j is the Kronecker delta and d is
the scalar damage parameter accounting for decohesion. The operator < . > used in
Eq.5.9 is < x >= 1

2 (x + |x |). By differentiating Eq.5.9),

τi = (1 − d)D0
i jΔ j − dD0

i jδ3 j 〈−Δ3〉 (5.10)

where D0
i j is the undamaged stiffness tensor expressed in terms of the input penalty

parameter. Under mixed-mode loading, the decohesion onset follows the quadratic
criterion proposed by Ye [33],
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Fig. 5.2 Mixed-mode
cohesive criteria

(
< τ3 >

τ 0
I

)2

+
(

τ1

τ 0
I I

)2

+
(

τ2

τ 0
I I

)2

= 1 (5.11)

where τi refers to the cohesive traction in direction i , τ 0
I and τ 0

I I are the cohesive
strengths under mode I and mode II, receptively. A bilinear constitutive law defines
the cohesive traction and displacement jump [21]. The damage propagation criteria
uses the expression for the critical energy release rate for mixed-mode proposed by
Benzeggagh and Kenane [3],

Gc = Gc
I + (Gc

I I − Gc
I )

(
Gc

I

GT

)η

; GT = GI I

GI + GI I
(5.12)

where Gc
I and Gc

I I are the critical energy release rates under mode I and mode
II, respectively. η is an experimentally fitted parameter. As illustrated in Fig. 5.2,
the area under the traction-displacement jump relation equals to the fraction
toughness Gc.

5.3 Structural Theories and Finite Element Formulation

Within the 1D CUF formulation, u (x, y, z) becomes a generic expansion of primary
unknowns as follows:

u (x, y, z) = Fτ (x, z) uτ (y) ∀ τ = 1, 2, . . . , M (5.13)



72 I. Kaleel et al.

where Fτ is the expansion function that defines the kinematic field on x − z with
M number of terms. uτ (y) is the vector of generalized displacements along the
beam axis. The choice of the expansion function determines the class of 1D CUF
models. This chapter deals with two classes of expansion functions, namely (a)
Taylor Expansion (TE) and (b) Lagrange Expansion (LE). TE employ Maclaurin
polynomials of the kind xi z j [6], whereas LE use Lagrange polynomials [7]. Unlike
TE, LE have pure displacement variables as detailed in [9]. The discretization along
the y-axis follows the Finite Element Method (FEM),

u (x, y, z) = Ni (y) Fτ (x, z) uτ i (y) ∀ τ = 1, . . . , M i = 1, . . . p + 1

(5.14)

uτ i = [uxτ i u yτ i uzτ i ] (5.15)

where Ni is the i th shape function of order p [2] anduτ i is the FEnodal vector.Numer-
ical results employed three types of beam elements, B2 (two nodes), B3 (three nodes)
and B4 (four nodes) leading to linear, quadratic and cubic approximations, respec-
tively. The choice of shape functions used along the beam axis remains independent
of the expansions employed for the cross-section.

5.3.1 Nonlinear Governing Equations

Within a nonlinear FEM context, the original problem becomes a set of incremental
finite element equations solved at definite step instances,

fint (u) − fext = 0 (5.16)

where fint is the global internal force vector which is a function of global finite
element displacement vector u and fext refers to the external force vector. In CUF,
finite element arrays are

kS
i jτ suτ i − ps j = 0 (5.17)

where ki jτ s
s and ps j refer to Fundamental Nuclei (FNs) of the secant stiffness matrix

and the nodal loading vector, respectively. The strain vector relates to the generalized
nodal unknowns via the differential operator of Eq.5.3,

ε = Bτ i uτ i Bτ i = b(Ni Fτ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ni Fτ,x 0 0
0 Ni,y Fτ 0
0 0 Ni Fτ,z

0 Ni Fτ,z Ni,y Fτ

Ni Fτ,z 0 Ni Fτ,x

Ni,y Fτ Ni Fτ,x 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.18)
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Analogously for virtual variations,

δε = Bs j δus j (5.19)

The strain energy becomes

δLint = δus j

∫
V

{
BT
s jC

SBτ i dV
}
uτ i = δus jkS

i jτ suτ i (5.20)

where CS is the secant material matrix and the secant matrix kS
i jτ s is of size 3 × 3,

kS
i jτ s =

⎡
⎢⎣
kxxi jτ s k

xy
i jτ s k

xz
i jτ s

k yxi jτ s k
yy
i jτ s k

yz
i jτ s

kzxi jτ s k
zy
i jτ s k

zz
i jτ s

⎤
⎥⎦ (5.21)

Diagonal and off-diagonal terms have recurrent expressions stemming from the fol-
lowing:

kxxi jτ s = (CS
11Fs,x N j + CS

51Fs,z N j + CS
61Fs N j,y)Fτ,x Ni + (CS

15Fs,x N j + CS
55Fs,z N j +

CS
65Fs N j,y)Fτ,z Ni + (CS

16Fs,x N j + CS
56Fs,z N j + CS

66Fs N j,y)Fτ Ni,y

kxyi jτ s = (CS
12Fs,x N j + CS

52Fs,z N j + CS
62Fs N j,y)Fτ Ni,y + (CS

14Fs,x N j + CS
54Fs,z N j +

CS
64Fs N j,y)Fτ,z Ni + (CS

16Fs,x N j + CS
56Fs,z N j + CS

66Fs N j,y)Fτ,x Ni (5.22)

The virtual variation of external work is

δLext =
∫
V

δuT gdV +
∫
S
δuTqdS +

∫
l
δuT rdl + δuT Pm (5.23)

where g, q, r and Pm are body forces per unit volume, surface forces per unit area, line
forces per unit line and concentrated forces acting at point m, respectively. Within
the scheme of 1D CUF, the external load vector becomes

ps j =
∫
V
N j Fs g dV +

∫
S
N j Fs q dS +

∫
l
N j Fs r dl + N j Fs Pm (5.24)

For a generic, arbitrary higher-order beam elements of order p and expansion func-
tions with M terms, the global assembly exploits the expanding indices of FN
τ, s = 1, 2, . . . M and i, j = 1, 2, . . . p + 1,

KS =
nelem∑
n=1

p+1∑
i, j=1

M⋃
τ,s=1

kSi jτ s fint =
nelem∑
n=1

p+1∑
i=1

M⋃
τ=1

fintτ i p =
nelem∑
n=1

p+1∑
j=1

M⋃
s=1

pτ i (5.25)

where
∑

is the finite element assembly operator that sum the corresponding con-
tributions from all the elements based on the order of FE for given shared DOF.
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⋃
is the CUF assembly operator which sums the corresponding contributions based

on the theory of structure. KS , fint and p are the global assembled secant stiffness
matrix, global internal force vector and global external load vectors, respectively.
The internal force vector derives from the multiplication of the stiffness matrix and
the current displacement field. Therefore, Eq.5.17 becomes

KSu = p (5.26)

Readers are referred to the book by Carrera et al. [9] for detailed information on
assembly procedure within CUF framework.

5.3.2 CUF Cohesive Elements

Within CUF, the displacement field on the upper and lower faces of the cohesive
Lagrange element is

u+ = Fτ Niu+
τ i u− = Fτ Niu−

τ i [[u]] = Fτ Ni (u+
τ i − u−

τ i ) (5.27)

where u+ and u− are the displacement along the upper and lower edge of the CS
element, respectively. Figure 5.3 shows three classes of cohesive Lagrange cross-
section element, namely, (a) four-node CS4—linear, (b) six-node CS6—quadratic,
and (c) eight-node CS8—cubic. Therefore, the fundamental nuclei of cohesive forces
become

f +
cohτ i

=
∫

Γc

Fτ Ni u+
τ i t

+dΓc f −
cohτ i

=
∫

Γc

Fτ Ni u−
τ i t

−dΓc (5.28)

The derivation of the fundamental nuclei of the cohesive tangent nucleus makes
use of a generic constitutive cohesive law in the rate form,

ṫc = QDQT [[u̇]] = QDQT Fτ Ni (u+
τ i − u−

τ i ) (5.29)

(a) (b) (c)

Fig. 5.3 Cohesive Lagrange cross-section elements
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whereD is the cohesive tangentmaterialmatrix alongwith orthogonal transformation
matrix Q. The fundamental nuclei for the cohesive tangent matrix stems from the
linearization of the cohesive force vector (Eq. 5.28),

kcoh
ijτ s =

∫

c

FτNiQ D QTFsNjdc (5.30)

5.4 Nonlinear Solution Schemes

The nonlinear nature of the set of algebraic equations formulated in Eq.5.16 neces-
sitates iterative schemes such as the Newton-Raphson method (NR),

φres = KSu − p (5.31)

where φres is the unbalanced residual nodal vector. Next step requires the truncation
of the Taylor series expansion to linear terms of φres about a known solution (u,p),

φres(u + δu,p + δp) = φres(u,p) + ∂φres

∂u
δu + ∂φres

∂p
δλp = 0

= φres(u,p) + KT (u)δu − δλp = 0 (5.32)

whereKT (u) is the tangent stiffness matrix and λ is the load parameter (p = λpre f ).
Accounting for additional sets of constraint relationships for the load-scaling param-
eter λ within the global system of equation, the matrix form of Eq.5.32 becomes

[
Ktan −p
hT s

] [
δu
δλ

]
=

[
φres

−g

]
(5.33)

where g is the path following constraint equation. h and scalar s are

g(u0, λ0, δu, δλ) = 0; h = ∂g

∂u
; s = ∂g

∂λ
(5.34)

The constraint equation depends on the incremental scheme adopted. Standard incre-
mental schemes, such as the displacement-control method, require g(δu, δλ) = 0,
whereas, load-controlled methods require δλ = 0. Based on the pioneering work of
Riks, numerical strategies based on arc-length techniques are of interest to character-
ize complex equilibrium paths [24] and are powerful for nonlinear elastic problems
[5]. Traditional arc-length techniques often fail when the analysis involves mate-
rial instabilities with localized failure. Gutiérrez introduced a path-following con-
straint based on the energy-released rate for geometrically linear continuum damage
models [15]. Based on the assumption that the unloading behavior remains elastic,
the dissipation-based arc-length constraint equation is
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g = 1

2
pT (λ0Δu − Δλu0) − Δτ (5.35)

where λ0 and u0 are the last converged load factor and displacement vector and Δτ

is the path parameter. The derivatives required for the construction of the global
consistent tangent matrix (Eq.5.33) read [32]

h = ∂g

∂u
= 1

2
λ0pT , s = ∂g

∂λ
= −1

2
pTu0 (5.36)

The derivatives yield additional consistent tangent terms independent of the displace-
ment and load increment, thereby making it computationally attractive.

At each NR iteration, the system of equations is

[
Ktan −p
hT s

] [
du
dλ

]
=

[
φk
res

−gk

]
;

[
du
dλ

]
=

[
Δu
Δλ

]k+1

−
[
Δu
Δλ

]k

(5.37)

where k refers to the previous iteration andΔu andΔλ are the displacement and load
increments, respectively. It is evident from the Eq.5.37 that the banded structure of
the global consistent tangent matrix deteriorates due to the presence of additional
terms pertaining to constraint equations. Using the Sherman-Morrison formula, the
global consistent tangent (Eq.5.37) becomes [26, 32]

[
du
dλ

]
=

[
dI

−gk

]
− 1

hTdI I − s

[
(hTdI + gk)dI I

−hTdI − gk(1 + hTdI I − s)

]
(5.38)

where the vectors dI and dI I stem from the factorization of the structural tangent
matrix Ktan ,

Ktan dI = φres Ktan dI I = −p (5.39)

The amount of energy dissipated during a given load increment is always a mono-
tonically increasing quantity. However, the solver can run into numerical issues at
non-dissipative regions—such as pure elastic loading—on the equilibriumpath as the
path parameter can approach the machine precision. The addition of a robust switch-
ing algorithmbased on the introduction of threshold values can alleviate this problem.
The algorithm switches to displacement/force controlled loading in non-dissipative
regions and switches back to dissipation-controlled according to the energy thresh-
old. In addition, the path parameter Δτ needs adjustments during the course of
computation to limit the number of steps. The adjustment is automatic via setting
the optimal value of iterations per increment kopt . The path parameter for a given
increment i is [15]

Δτ i = Δτ i−1 kopt
ki−1

(5.40)

where ki−1 refers to the number of iterations required in the last converged load step.
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5.5 Numerical Applications

This section presents three numerical examples to assess the efficiency of higher-
order models. The first example deals with a multilayered cantilever beam under
bendingwith physical nonlinearitiesmodeled through the vonMises plasticitymodel.
The second numerical case deals with the delamination of a double cantilever beam
test through the cohesive-based models. A numerical case based on the nonlinear
micromechanical framework is the third numerical case.

5.5.1 Multilayered Cantilever Beam Under Bending

This example uses two configurations, (a) asymmetric two-layered and (b) symmetric
three-layered, see Fig. 5.4. Classical beam models–EBBT and TBT—and the linear
TE model (TE1) provide accurate responses in the linear regime whereas the lack of
accurate stress resolution invalidates their effectiveness beyond the elastic limit. The
results are consistent with findings by Carrera et al. for monolayered cantilever beam
examples [8]. Figure 5.4 and Table 5.1 show comparisons against 3D FEM solutions

(a)

(b)

Fig. 5.4 Nonlinear response ofmultilayered cantilever beam under bending: aGeometry, boundary
condition and material properties of the multilayered beam and b Comparison of equilibrium path
for two-layered and three-layered beam configuration using various models
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Table 5.1 Comparison of maximum accumulated equivalent plastic strain for different models for
the multi-layered cantilever beam under bending

Model Two layers Three layers

DOF ε̄max
p [×10−3] DOF ε̄max

p [×10−3]

3D FE models

ABQ-Coarse 21084 7.66 42210 4.79

ABQ-Refined 64260 8.07 63210 4.89

TE models

EBBT 363 – 363 –

TBT 605 – 605 –

TE1 1089 – 1089 –

TE2 2178 5.65 2178 3.57

LE models

8L4a/12L4b 5445 5.35 7623 3.99

8L9a/12L9b 16335 8.56 23595 4.87
aTwo layers
bThree layers

based on standard 8-node brick elements using ABAQUSwith varying mesh density.
Higher-order models can capture the nonlinear response with great computational
efficiency without deteriorating the accuracy.

5.5.2 Double Cantilever Test

This problem highlights the necessity to capture high-stress gradients and its effects
on the overall response. The geometry and boundary conditions along with material
properties are in Fig. 5.5a. The beam model has a 4 L9 cross-section along with
2 CS6 cohesive elements interfaced between the layers. DOF for the CUF models
are, 6290 for 180B2, 32490 for 360B2, and 16290 for 60B4. Verification makes use
of an analytical solution based on a classical beam theory [21]. From Fig. 5.5c, the
use of B4 proves to be effective whereas B2 tends to over-predict the results.

5.5.3 Nonlinear Response of Randomly Distributed RVE

This section deals with the inelastic pre-peak nonlinear response of a randomly
distributed Representative Volume Element (RVE). Kaleel et al. investigated the pre-
peak nonlinear and progressive failure analysis of fiber-reinforced composites for
various classes of RVE and material systems based on a nonlinear micromechanical
platform [18, 19]. The numerical examples focus on a twelve-fiber randomly dis-
tributed RVE equipped with the von Mises plasticity constitutive law to model the
shear-driven nonlinear behavior of the matrix. The fiber is linear elastic. As depicted
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Fig. 5.5 Double cantilever beam test of a composite beam a Geometry and material properties of
the DCB, b 3D deformed configuration for the 60B4 c Comparison of equilibrium curves along
with analytical solutions

Fig. 5.6 Randomly distributed RVE under applied out-of-plane shear ε̄13 of 0.02 a CUFmodeling,
b von Mises stress (σvm), c Accumulated plastic strain

in Fig. 5.6a, the RVE has 277 L9 elements with 2 B4 elements, 24801 DOF, and
subjected to an out-of-plane macro shear strain ε13 of 0.02 through periodic bound-
ary conditions. The contour plots for the von Mises stress and accumulated plastic
strain are in Fig. 5.6b, c, respectively. The results present severe local accumula-
tions of stress and strain requiring higher-order kinematics along the cross-section.
Kaleel et al. demonstrated that for the linear elastic homogenization CUF requires
a one-order magnitude of DOF less than standard 3D brick elements and multi-fold
decrease in computational time in the case of nonlinear analysis [18, 19].

5.6 Conclusion

This chapter has presented results on the nonlinear analysis of structures via refined
1D models. The physical nonlinearities consider plasticity and delamination effects.
The structural modeling adopts the CUF to generate 1D models with enriched dis-
placement field. The nonlinear structural analysis may benefit from the use of refined
1D models for two main reasons,



80 I. Kaleel et al.

• The proper detection of 3D effects is fundamental to capture local effects due,
for instance, to plasticity or delamination onsets. Classical models, such as
Euler–Bernoulli and Timoshenko, cannot detect such effects along the cross-
section of the structure and may lead to significantly wrong results.

• The need for iterative solution schemes leads to computational overheads limiting
the complexity of the structural configuration. The use of 1D models can decrease
such an overhead given that 10–100 times less unknown variables than 2D and 3D
models are necessary.

As general guidelines, the use of Taylor expansions is recommended when the global
response is of interest. The proper detection of highly 3D local effects requires the
use of Lagrange expansions. The latter, moreover, have only pure displacements as
DOF and can model the geometry and material characteristics of each component of
the structure accurately without homogenization procedures.
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Chapter 6
Post-buckling Progressive Failure
Analysis of Composite Panels Using
a Two-Way Global-Local Coupling
Approach Including Intralaminar
Failure and Debonding

M. Akterskaia, E. Jansen, S. R. Hallet, P. M. Weaver and R. Rolfes

Abstract A novel two-way global-local coupling approach to model progressive
separation of skin and stringer in combination with intralaminar damage in stiffened
CFRP panels under compression is presented. The methodology makes it possible to
examine the damage at two levels of accuracy, taking advantage of fast calculations
at the global level and assessing in detail the damage propagation at the local level.
The required appropriate information exchange between the global and local level in
both directions has been attained. This chapter presents an overview of this efficient
approach for progressive failure analysis of composite panels and illustrates the
approach on the basis of a one-stringer panel, in particular for the case of skin-
stringer debonding.

6.1 Introduction

Composite laminate stiffened panels are often used in aircraft design for fuselage
structures by virtue of their excellent material properties such as high strength and
high stiffness to weight ratio. In order to increase the failure load of these structures
and to exploit possible reserves, a reliable simulation capable for capturing the post-
buckling behavior of thin-walled structures is required. For this reason the accurate
prediction of the failure behavior of composite structures is of high importance.
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Global-local methods are attractive approaches that can reduce computational
effort on the one hand and accurately explore the damage onset and propagation
in localized areas on the other hand. The main characteristic of the global-local
strategy presented is its ability to perform progressive failure analysis of typical
panel-type composite structures. The approach demonstrated in this chapter uses
achievements from the work of Hühne et al. [24]. A two-way methodology was
formulated for intralaminar damage that includes matrix cracking and fiber breakage
and the approach was applied to a one-stringer composite panel. This work was
extended by Akterskaia et al. [2] and applied to investigate the effect of localized
predamage and to examine progressive damage in a multi-stringer panel. Later on
a novel global-local approach was developed by Akterskaia et al. [3] to simulate
the skin-stringer debonding by using cohesive and discrete interface elements at
the local and global level, respectively. The main challenge of the method was the
development of a reliable method to transfer degraded properties from the local to the
global level. A combination of intralaminar damage and skin-stringer debonding has
been considered in subsequent work [4] including a comparison with experimental
results.

The global-local method developed includes all critical failure modes observed
during various experiments performed for stiffened panels under compression
[16, 19, 32, 39, 49], such as intralaminar and interlaminar failure modes. Intralam-
inar damage distinguishes between fiber and matrix failure. Interlaminar damage in
the present work is assumed to be debonding between the skin and the flange of the
stringer. The main advantage of the global-local approach developed is that local
models can be easily allocated based on the information from the global model,
while the size of the local models can be adjusted and extended with damage evo-
lution through the coupling steps, and additional local models can also be created
and analyzed. Another important aspect of the approach is that the information about
the damage state obtained from the local model is transferred to the global model
in the form of corresponding degraded stiffness properties. This strategy ensures
that the damage progression is accounted for at the global level and a progressive
failure analysis can be executed. Due to the relatively small size of the local models
together with the simple geometry and material definition at the global model level
using shell elements, the saving in computational effort compared to an analysis with
a full model using solid elements is potentially significant. In view of the accuracy of
the damage modeling at the local level and including the resulting material nonlin-
earity at the global level, the approach developed thereby provides an efficient tool
for progressive failure analysis.

The flowchart of the two-way global-local coupling procedure is shown in Fig. 6.1.
First, the global model is analyzed with a linear material model. Afterwards, the crit-
ical areas where the damage might initiate are detected and based on this information
the local models are created. Making use of the results of the local model analysis,
new reduced properties are calculated and transferred back to the global model. The
global analysis is repeated to ensure that no new areas with damage appear or exist-
ing ones are extended due to the stress redistribution. If no new damage has been
identified, the prescribed load is increased and the next “coupling step” is started.
The global-local analysis is conducted until the final failure of the structure occurs.
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Fig. 6.1 Flowchart of
two-way coupling procedure
for intralaminar failure and
skin-stringer debonding

The objective of the current chapter is to present an overview of the global-local
approach developed and in particular to discuss the coupling procedure for intralam-
inar damage and skin-stringer debonding, respectively. The approach is illustrated
for the specific typical case of a one-stringer panel under compression, in which
skin-stringer debonding takes place.

6.2 Theory

Laminated fiber-reinforced composites consist of stacked laminae of different orien-
tations,where each lamina represents a single layer of polymermatrixwith embedded
uni-directional fibers. Composite laminates may experience various failure mecha-
nisms es a result of applied loads, boundary conditions or material properties of
constituents. These failure modes could be classified into two categories: intralam-
inar and interlaminar failure. Intralaminar failure includes matrix cracking, fiber
breakage and matrix-fiber decohesion. Interlaminar damage describes separation of
adjacent layers, called delamination. Failure criteria have been extensively developed
in order to determine the critical regions where the damage occurs, to identify failure
types and final loads that the composite structure could sustain. Material degradation
models have been suggested to account for a gradual or instant decrease of the load
carrying capacity simulating real failure mechanisms.
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6.2.1 Intralaminar Damage

Threemain types of intralaminar failure are to be distinguished:matrix cracking, fiber
breakage and debonding of the interface between matrix and fiber. Matrix cracking
usually is not a catastrophic failure mode which means that it does not usually
lead alone to a final collapse and the structure with matrix cracks can still bear
applied loads due to fiber reinforcement. However, matrix cracks tend to grow and
especially crack coalescence can provoke delamination of a composite laminate [50].
Fibers are themain constituents of the composite designed towithstand loads. Hence,
fiber failure is a crucial failure mechanism that can lead to a spontaneous structural
failure. Fiber-matrix interface decohesion is commonly a result of a fiber pull-out
from the matrix. Failure analysis of composite structures requires determination of
failure criteria in order to account for the damage initiation. Strength-based criteria
comprising different stress-based and strain-based criteria are generally used. These
criteria can be formulated as a global failure criteria defined by one equation or they
can distinguish between failuremodes aswell as between tension or compressive load
applied. An extensive overview and comparison of different failure criteria that have
been actively developed and extended since 1950s is given in World Wide Failure
Exercises (WWFE), see Hinton et al. [23], Kaddour and Hinton [27], Kaddour et al.
[28] and Kaddour et al. [29].

6.2.1.1 Intralaminar Damage Onset and Propagation

Matrix cracking and fiber breakage are the principal intralaminar damage modes
observed in composite panels under compression. In order to determine the initiation
of damage and to examine the propagation through the structure, the Linde criterion
[33] is chosen, which stems from the Puck criterion and distinguishes between fiber
andmatrix damage . It should be noted that the global-local approach is not restricted
to any particular damage criterion. The material damage model performs a gradual
degradation of material properties based on the fracture energies of the fiber and
matrix material. In the following, XT and XC are the longitudinal tensile and com-
pressive strength, respectively, and YT and YC denote the transverse in-plane tensile
and compressive strength, respectively, while SA is the axial shear strength and Ci j

are the components of the stiffness matrix. The appearance of the matrix and fiber
damage is detected by the following two equations:

fm =
√
YT

YC
(ε22)2 +

(
YT − Y 2

T

YC

)
ε22

C22
+

(
YT

SA

)2

ε212 >
YT

C22
(6.1)

f f =
√

XT

XC
(ε11)2 +

(
XT − X2

T

XC

)
ε11

C11
>

XT

C11
(6.2)
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where the strain components εi j correspond to the local material coordinates related
to the orientation of the fibers, index 1 refers to the fiber direction, while index 2
(in-plane) and index 3 (out-of-plane) refer to the transverse directions.

Linde et al. introduced two different damage parameters dm and d f to distinguish
between fiber failure and matrix failure:

dm = 1 − YT

fm
e
−

(
C22YT ( fm−YT )Lc

Gm

)
(6.3)

d f = 1 − XT

f f
e
−

(
C11XT ( f f −XT )Lc

G f

)
(6.4)

The characteristic element length LC is applied to alleviate the mesh dependency of
the degradationmodel.Gm andG f denote thematrix andfiber strengths, respectively.
The damage parameters dm and d f are used to calculate the effective elasticity tensor
Cd :

C =

⎛
⎜⎜⎜⎜⎜⎝

(1 − d f )C11 (1 − d f )(1 − dm)C12 (1 − d f )C13 0 0 0
(1 − dm)C22 (1 − dm)C23 0 0 0

C33 0 0 0
(1 − d f )(1 − dm)C44 0 0

symmetric C55 0
C66

⎞
⎟⎟⎟⎟⎟⎠ .

(6.5)

6.2.1.2 Global-Local Approach for Intralaminar Damage

Within the context of global-local methods, one-way coupling and coupling meth-
ods that solve global and models simultaneously prevail. The term one-way coupling
method usually refers to the global-local approaches where the information is trans-
ferred only in one direction, either from the global to local level, or, rarely, from the
local to global level. The submodeling technique or so-called zooming technique was
successfully used in the past for one-way global-local transition. Examples can be
found in the works of Mote [36], Noor [37], Mao and Sun [35], and Whitcomb [46].
Another type of the global-local techniques consists of embedding a finer localmodel
into the coarse global model and to solve the systems of equations concurrently. This
approach does not allow for any changes to the size or the location of the local model
being introduced during the calculations. Hence, it is impossible to account for the
damage progression or to create new local models during analysis. For the time being
only several methods have been elaborated that can treat global and local models
separately. The multiscale projection method by Löhnert and Belytschko [34] uses
XFEM to model fracture and crack propagation and to examine the macrocracks and
microcracks interactions leading to damage. Labeas et al. [31] presented the adap-
tive progressive damage modeling technique to predict the damage initiation and
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Fig. 6.2 Two-way global-local coupling procedure for intralaminar damage

evolution in composite structures based on progressive damage modeling tech-
nique and the submodeling procedure. The degraded material properties for the
global model were calculated based on the mean values of the local engineering
constants obtained after damage evolution. Chrupalla et al. [14] formulated the
homogenization-based iterative two-way multiscale approach (HIMSA) to account
for local effects on the global behavior of composite structures. The discussed above
methods mainly differ in the approach used to determine how to degrade material
properties and how to transfer them back from the local to the global level. The more
accurate homogenization technique for matrix and fiber failure proposed by Hühne
[24] was adopted by Akterskaia et al. [2] for the intralaminar damage. An extension
to this method for the local-global transition is demonstrated below.

A progressive failure analysis is carried out until the global failure of the structure
occurs. The skin and the stringer of the panel in the global model are represented by
conventional shell elements using one element through the thickness including all
laminate layers in order to reduce computational costs. The coarse model with linear
elasticity at the global level is used to identify the areas where matrix or fiber failure
are expected to take place by applying the Linde criterion, see Eqs. 6.1 and 6.2. Based
on these critical areas at the global level, local models with a finer solid element mesh
are created through the submodeling procedure with displacements from the global
solution serving as boundary conditions for the local models. These local models
include the discussed above material degradation model by Linde, see Eqs. 6.3–6.5.
After completion of the local models’ numerical analysis the degraded engineering
properties are extracted. The global-local procedure is illustrated in Fig. 6.2.

It is important to note that direct application of the degraded properties from the
local to global level is not possible due to the mesh size difference between two
models. For this reason, the homogenization approach formulated by Hühne et al.
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[24] is applied for this case to obtain the effective global degraded properties. Each
global element ply obtains each new reduced material property using the following
procedure: First, two tension and one shear tests are performed in order to deter-
mine the Young’s modulus in longitudinal and transverse directions, E11 and E22,
respectively, Poisson’s ratios ν12 and ν23, and the shear modulus G12. Then another
step proposed here is employed to transform obtained properties from the principal
material coordinates to the global coordinates for an orthotropic lamina [26]:

1

Ex
= 1

E1
cos4θ +

(
1

G12
− 2ν12

E1

)
sin2θcos2θ + 1

E2
sin4θ (6.6)
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)
(6.7)
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cos4θ (6.8)
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Gxy
= 2

(
2

E1
+ 2

E2
+ 4ν12
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− 1

G12

)
sin2θcos2θ + 1

G12
(sin4θ + cos4θ) (6.9)

Themain difference with amethodology employed byHühne et al. [24] is the way
these above equations transform angles, whichworks correctly even for±45◦ angles.
Previously the material with fiber orientation of ±45◦ was considered homogeneous
as it has the same Young’s modulus in these directions.

6.2.2 Interlaminar Damage

Laminated composite structures experience delamination and, in particular, skin-
stringer debonding as one of the prime failure mechanisms in stiffened panels under
compression [7, 13, 20, 40, 41, 45, 49].

Accurate modeling of the delamination of the full structure is computationally
expensive. That is the reason for the development of the reliable global-local proce-
dure that could be an efficient compromise allowing lower simulation time on the
one hand, and considering the damage onset and evolution at both levels, on the other
hand.

6.2.2.1 Delamination in Composite Materials

Delamination occurs under various combinations of loads leading to a signifi-
cant reduction of the load-carrying capacity of the structure. Two approaches are
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commonly used to numerically model delamination: Virtual Crack Closure
Technique (VCCT) and cohesive interface elements.

The VCCT is based on fracture mechanics and uses Irwin’s assumption to cal-
culate the energy released rate needed for the crack extension taking it equal to the
work required to close this crack back to its original length. This work is calculated
frommultiplication of nodal point forces and corresponding differences in nodal dis-
placements [30]. This approach was further elaborated by Rybicki and Kanninen for
application to the finite element analysis [42]. In order to determinewhether the crack
propagates, the calculated energy release rate has to be compared to the threshold
of the critical value. The main drawback of the VCCT is that it predicts only crack
propagation assuming that the crack initiation location is known in advance. Another
difficulty is related to the accurate calculation of the nodal variables for the energy
release rate. It either implies the requirement of a very fine three-dimensional solid
element mesh, or a remeshing technique should be applied during the analysis [44].

The Cohesive Zone Model approach (CZM) assumes existence of a softening
region in front of the crack tip, a cohesive damage zone. This idea originates from
Dugdale [17] and Barenblatt [8]. Dugdale suggested that there is a plastic area ahead
of the crack tip with constant stresses equal to the yield strength. Barenblatt in turn
assumed that the stresses vary during the deformation process. Hillerborg [22] pro-
posed a formulation based on this latter suggestion. The method of Hillerborg allows
the crack to grow and, more importantly, predicts the crack initiation, which takes
place when the tensile stress at the crack tip reaches the tensile strength. Interface
elements based on the CZM rely on the traction-separation law that is formulated in
terms of the traction versus displacement jumps at the interface of potential crack.
For the pure mode loading most commonly an initially linear behavior until the
tensile strength σmax is reached, is followed by the softening region until the crack
surfaces are completely separated which results in zero traction. Different shapes
of the softening curve, such as linear, exponential or trapezoidal, have been pro-
posed in the literature [15]. The fracture toughness Gc is equal to the area under the
traction-separation curve and total crack opening takes place when this toughness
is dissipated completely. The penalty stiffness has to be chosen as large as possible
because physically no degradation of the cohesive elements should take place at this
region and also quite low to avoid numerical issues [43].

Mixed-mode loading that could include interaction between normal and two shear
modes often takes place and requires additional attention. Initiation and growth crite-
ria should be chosen that are able to account for the interaction of complex loadings.
Usually stress-based criteria are preferred. One of the commonly used criterion pre-
dicting delamination onset is quadratic stress criterion:

(
< σn >

Nmax

)2

+
(

σs

Smax

)2

+
(

σt

Tmax

)2

= 1 (6.10)

Here < . . . > represents Macauley brackets operator applied here to remind that
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compression is generally not involved in interface separation. σn is a stress in the
pure normal mode, σs and σt are nominal stresses acting in the first and second shear
directions and Nmax , Smax , Tmax are the corresponding strengths.

One of the most commonly applied criterion for the delamination propagation
under mixed-mode loading is Benzeggagh and Kenane criterion [9] extended to
three dimensional cases.

Gc = GIC + (GI Ic − GIC)

(
GI I + GI I I

G I + GI I + GI I I

)η

(6.11)

where GIC and GI IC are mode I and II fracture toughness and GI , GI I , GI I I are
single mode energy release rates corresponding to fracture modes I, II and III. Their
sum is the total energy release rate. The parameter η is determined empirically [44].

A scalar damage variable d is usually utilized to identify the damage state. This
damage variable changes from 0 when no damage is detected to 1 when the crack
is fully opened. Camanho et al. [13] suggested to determine the damage variable for
the monotonic loading as following:

d = δ f ail(δ − δini t )

δ(δ f ail − δini t )
(6.12)

where d is a damage variable, δ is a current maximum relative displacement, δini t
corresponds to the displacement of the delamination beginning and δ f ail is a dis-
placement of the complete failure.

The stiffness of the cohesive element in linear traction-separation law is defined
as following [13]:

K =

⎧⎪⎨
⎪⎩
K0 δ < δini t

(1 − d)K0 δini t < δ < δ f ail

0 δ > δ f ail

(6.13)

where K0 is an initial penalty stiffness that is degraded after displacement δ reaches
the value of δini t and becomes 0 when the crack opening is equal to δ f ail .

For the uncoupled behavior of normal and shear components of stresses Abaqus
[1] provides the following stress-strain relation for the elastic behavior:

⎛
⎝σn

σs

σt

⎞
⎠ =

⎛
⎝Kn 0 0

0 Ks 0
0 0 Kt

⎞
⎠

⎛
⎝εn

εs
εt

⎞
⎠ = K ε (6.14)

where σn is an out-of-plane stress, σs and σt are shear stresses and the same holds
for the corresponding strains εn , εs and εt . Kn is a normal stiffness that is related
to the Mode I delamination, Kt and Ks are in-plane stiffnesses responsible for the
Mode II and III damage behavior respectively. Here strains are defined as separation
displacements divided by initial thickness t of the cohesive element:
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εn = δn

t
, εs = δs

t
, εt = δt

t
(6.15)

The Cohesive Zone Model could be implemented by means of the continuum
(CCZM) or discrete (DCZM) approaches. To apply CCZM continuum type inter-
face elements are used to model the cohesive process zone in front of the crack
tip. This technique was widely examined and extended by Allix and Ladeveze [6],
Turon et al. [43], Camanho and Dávila [13] among others. One of the drawbacks
of CCZM is a high number of cohesive elements required to mitigate mesh sen-
sitivity. DCZM method consists of using point-wise discrete elements instead of
continuum elements. This method was applied and developed by Borg et al. [12],
Wisnom and Chang [47], Xie and Waas [48], Hallett and Wisnom [21], Jiang et al.
[25]. To accurately predict the delamination onset and evolution the DCZM requires
accurate calculation of forces or stresses in nodes of the elements which also involves
high computational costs. Therefore, a multi-scale approach could be regarded as a
desirable methodology allowing reduction of the computational time while keeping
a required accuracy of the delamination modeling.

6.2.2.2 Global-Local Approach for Skin-Stringer Debonding

As for the case of the interlaminar damagemainly one-way coupling approaches exist
nowadays for the modeling skin-stringer debonding in stiffened panels. Reinoso et
al. [39] applied solid elements at the global level and cohesive elements at the local
level to represent the interface layer. The information was transferred from the global
to local levels through the submodeling procedure. Bertolini et al. [10] suggested
global-local one-way coupling approach to model skin-stringer debonding in stiff-
ened panels subjected to different loads. VCCT technique was utilized. Global-local
analysis by Orifici et al. [38] employed user-defined multi-point constraint (MPC)
elements controlled by Virtual Crack Closure Technique (VCCT) for the interface
layer and the ply damage degradation. Local models were defined based on the
stress distribution. Alesi et al. [5] presented a global-local method based on coupling
with multipoint constraints. Faggiani and Falzon [18] elaborated an optimization
technique based on a genetic algorithm to improve the damage resistance for the
skin-stringer interface in the postbuckling regime of stiffened panels by finding an
optimized stacking sequence. The authors made use of a global-local method in their
optimization analysis. A substitution method by Bettinotti et al. [11] for the multi-
scale analysis of delamination under high-velocity impact allows a concurrent run
of global and local analyses. The main limitations of existing coupling approaches
usually relate to efficient detection of critical areas at the global level and information
transition from the local to the global level, thus not allowing to observe the damage
evolution. That is the reason of the development of a novel global-local method by
Akterskaia et al. [3] that ensures accurate exchange of information between both
levels to perform an accurate progressive failure analysis.
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Fig. 6.3 Two-way global-local coupling procedure for skin-stringer debonding

Fig. 6.4 Shell elements connected by connector elements

The global-localmethod formulated byAkterskaia et al. [3] is illustrated inFig. 6.3
and it consists of several coupling loops repeated consecutively until the final collapse
occurs. First, the global model is created using a coarse mesh and shell elements to
model the structure. Discrete elements of the connector type in Abaqus [1] tie the
corresponding nodes of shell elements as shown in Fig. 6.4. These elements enable
the definition of stiffness in three directions. Following the stiffness definition, the
normal and shear stiffness are calculated as:

Kn = E A

t
(6.16)
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Ks = GA

t
(6.17)

where E and G are the Young’s modulus and shear modulus of the adhesive zone,
respectively, A is the area associated with a node and t is the interface thickness.

Normal and shear stresses at the nodes of connector elements are calculated from
forces in connector elements distinguishing between free edge and internal nodal
areas that are tied by connector elements:

σi3 = Fi
Ael

, i = 1, 2, 3 (6.18)

where Fi is a nodal force, Ael determines a nodal area of applied force and taken
as the sum of one quarter of each element area tied to that node. Therefore, Ael

either represents the full in-plane area of the shell element Aint , referring to Fig. 6.4
for interior connectors, or a half of this area denoted as Aext corresponding to the
case when connectors tie the edges, or a quarter if connectors tie corner elements.
Index i specifies local Cartesian directions. σ33 corresponds to the normal stress that
acts through the thickness, σ13 and σ23 are two in-plane shear stresses. In Eq.6.16,
the penalty stiffness definition includes non-material parameters, such as nodal area
A and thickness t. The force Fi from Eq.6.18 is proportional to the corresponding
stiffness which means that the stresses σi3 are independent from the nodal area and
depend only on the thickness of the adhesive layer. Connector elements that tie four-
node 2D shell elements are presented in Fig. 6.4, indicating the nodal areas Aext and
Aint .

Based on the areas detected as probable damaged regions, the localmodels are cre-
ated with a finer mesh and solid elements are used to capture full three-dimensional
stress states. The interface layer is modeled with cohesive elements with a bilin-
ear traction-separation law to simulate delamination. Displacements as kinematic
boundary conditions are transferred to the boundaries from the global to the local
model through a submodeling procedure. Moreover, the stress-based criterion, see
Eq.6.10, is used to predict the initiation of delamination, while the Benzeggagh and
Kenane criterion, see Eq.6.11, is applied for modeling the delamination propagation.

In order to transfer degraded stiffness back from the local to the global level, a
special procedure is required that accounts for the mesh difference between two lev-
els. First, to calculate the degraded stiffness of each connector element, an averaged
local stiffness is calculated for each area that corresponds to one connector element:

Klocal =

N∑
i=1

Klocal,i

N
=

N∑
i=1

(1 − di )Klocal,0

N
= Klocal,0

⎛
⎜⎜⎜⎜⎜⎝1 −

N∑
i=1

di

N

⎞
⎟⎟⎟⎟⎟⎠ (6.19)
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where Klocal,0 is the initial stiffness of a cohesive element at the local level, i is one
of N local cohesive elements with corresponding damage variable di . The damage
multiplication factor in brackets of Eq.6.19 is utilized to reduce the global interface
stiffness. Thus, the information about the damage state is transferred from the local
to the global level. After reduction of the global interface stiffness of each damaged
connector element, the global analysis is conducted again to verify if the stress
redistribution provokes further skin-stringer debonding. During this global analysis,
the initial interface stiffness is used until the time increment where the damage
criterion was met, since that point the updated stiffness is applied.

6.3 Application of the Two-Way Coupling Procedure
to a One-Stringer Composite Panel

In order to demonstrate the application of the global-local approach described above,
a stiffened composite panel with one T-stringer under compression shown in Fig. 6.5
is analyzed with particular attention to a skin-stringer debonding. The results are
described by Akterskaia et al. [3]. The unidirectional layups of the skin and the
stringer are symmetrical [0, 90]s of a nominal thickness of 0.25 mm and the interface
layer has a thickness of 0.2mm. One of the transverse edges is fully clamped, except
for the longitudinal direction, and displacement is prescribed in compression at the

Fig. 6.5 Geometry of the
tested one-stringer stiffened
panel
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opposite edge. The panel’s length is 100mmand thewidth is 40mm, the stringer has a
width of 20mm and a height of 8mm.Material properties of the composite layup are
the following: Young’s modulus in longitudinal direction E11 = 146.5GPa, Young’s
modulus in transverse direction E22 = 9.7GPa, shear modulus G12 = 5.1GPa and
Poisson’s ratio ν12 = 0.28. The interface layer is characterized by the Young’s mod-
ulus Eint = 3.0GPa and νint = 0.4, similar to [24].

6.3.1 Reference Model

The reference model corresponds to a three-dimensional solid element model of the
stiffened panel. Solid linear elementswith an in-plane side-length of 1mmare used to
model the skin and the stringer of the panel and cohesive non-zero thickness elements
for the interface layer. One element per lamina in thickness direction is used resulting
in 0.25mm size in out-of-plane. The application of the higher order solid elements
does not demonstrate any improvements in accuracy while detecting the damage
onset or the collapse load. A material degradation model, see Eqs. 6.3–6.5, was
utilized through theUMATprocedure available in theAbaqus finite element software
[1]. A bilinear traction-separation law was used for cohesive elements. Interface
element stiffness was assumed to be 106 N/mm3, and τI = 61MPa, τI I = 61MPa
are interfacial strength in mode I and mode II, respectively. Four cohesive elements
per side of the solid element were used to decrease the size of one cohesive element
to 0.25mm which was recommended after parametric studies. The quadratic stress
criterion given in Eq.6.10 and the Benzeggagh and Kenane criterion from Eq.6.11
were applied to determine the cohesive elements behaviour. A constraint is utilized
(the *Tie constraint in Abaqus [1]) to connect cohesive elements to the solid elements
of skin and stringer foot. Based on parametric studies, a viscous damping parameter
has been used in this nonlinear analysis [1] to mitigate the convergence difficulties
related to cohesive elements and their softening behavior. The first eigenmode of the
linear buckling analysis for the stiffened panel was applied as an imperfection in the
nonlinear analysis.

6.3.2 Global Model: Linear Material Model

The global model with a coarse mesh and shell elements with reduced integration
was built for the skin and the stringer with a side length of 5mm. Connector elements
of Cartesian type [1] represented the connection between these panel components.
In order to calculate the real distances and forces at nodes, the shell reference sur-
faces were offset from the middle surfaces towards the lower and upper surfaces
respectively.

The quadratic stress criterion given in Eq.6.10 was used to determine the
critical regions, where the onset of skin-stringer separation may take place. Buckling
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was triggered similarly as for the reference model by applying an initial geomet-
rical imperfection as the first eigenmode of the linear buckling analysis. To avoid
interpenetration of the skin and the stringer layers, a *Clearance option available in
Abaqus is utilized [1]. When the local models analyses are performed, the reduced
stiffnesses of connector elements are obtained following Eq.6.19. Afterwards the
global analysis is started again in order to verify if the reduction in the stiffness of
interface elements would not lead to the new damaged areas. Initial stiffnesses in
connector elements are used until the displacement of the debonding initiation, from
that moment the updated stiffnesses are applied. If there is no new damage onset or
propagation is detected, then the prescribed displacement is further increased.

6.3.3 Local Model: Skin-Stringer Debonding

Local models are created based on the information about critical areas obtained from
the global model analysis. These local models include the skin and the stringer to
capture the skin-stringer debonding initiation and evolution in details. With an aim
of comparison, the local model mesh size and the element type were chosen the same
as for the reference model. Thus, the linear solid elements are used to model the skin
and the stringer, while cohesive elements with bilinear traction-separation law are
employed for the interface layer. After completion of the local models analyses, the
degraded damage variables d, described in Eq.6.12, are extracted for each cohesive
element during the post-processing procedure.

6.3.4 Local-Global Transition

A special averaging procedure has been proposed, see Eq.6.19, in order to enable the
transfer of the information about the skin-stringer debonding from the local to the
global level. Due to the different mesh sizes in the global and local models a special
mapping technique is required, see Eq.6.19. First, by using coordinates of local
and global elements the corresponding cohesive elements to one global connector
element are found and then the degraded stiffnesses are recalculated.

6.3.5 Results

The final collapse was attained through six coupling steps (Fig. 6.1) with consecutive
increase of the prescribed displacement: 0.56, 0.58, 0.60, 0.63, 0.67mm and finally
until 0.82mm. With each increase of the applied load either new local critical areas
were determined, or old localmodelswere increased in size to account for the damage
evolution as was discussed by Akterskaia et al. [3]. Each coupling step includes also
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Fig. 6.6 Coupling step 1 with applied displacement of 0.56mm. Global model (left) and connector
elements with damage predicted in red (right)

several iteration analyses at the same load level in order to ensure that no new
damage happens due to the stress redistribution that corresponds to the reduction
of the interface stiffness properties. The onset of the skin-stringer separation at free
edges on both longitudinal sides of the panel was detected through the criterion from
Eq.6.10 at a displacement level of 0.56mm and led to the creation of two local
models as demonstrated in Fig. 6.6. The comparison between the local model and
solid element reference model at the same displacement level is shown in Fig. 6.7. In
both the local model and the reference model the skin-stringer debonding starts at a
free edge and the cohesive element degradation and deletion occur in a very similar
manner.

The subsequent local analyses confirmed the onset and the evolution of debonding
between the skin and the stringer. After reduction of the corresponding interface
stiffness, the results were returned to the global model, in this way connecting the
two different model levels. Each of the following coupling steps also resulted in the
interface stiffness degradation, which in turn led to a decrease in the load-bearing
capacity of the whole structure. The load-displacement curves of the global-local
analysis together with the reference analysis results are shown in Fig. 6.8, where
each drop of the global-local curve corresponds with the reduction of the global
interface stiffness properties [3]. During the last coupling loop with the applied
displacement of 0.82mm the final failure, which is characterized by the sudden drop
of the load-displacement curve, was attained.

The reference three-dimensional solid element model and the global-local
approach curves demonstrate a good agreement with regard to the prediction of
the structural stiffness and the maximum load reached. First buckling took place at a
displacement of 0.147mm for the global-local analysis and for the reference model
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Fig. 6.7 Coupling step 1 with applied displacement of 0.56mm. Local model 1 and reference
model (left), and corresponding cohesive elements (right)

Fig. 6.8 Load-displacement curve for progressive failure analysis of stiffened panel



100 M. Akterskaia et al.

at 0.167mm leading to slightly different, although parallel, curves. The maximum
load level of 20.68kN determined by the global-local procedure is relatively close
to the reference solution load level of 20.54kN. The displacements associated with
total failure of the panel are also in good agreement, being 0.76 and 0.78mm for the
global-local approach and reference model solution, respectively.

6.4 Concluding Remarks

The global-local approach developed allows the modeling of the damage onset and
propagation up to structural failure including two main damage mechanisms, skin-
stringer separation and intralaminar damage. This method represents a reliable and
efficient strategy not only to investigate the detailed damage evolution at the local
level, but it ensures that damage is accounted for at the global level as well. This
allows performing a progressive damage analysis up to final failure by means of this
global-local approach. The full potential of the approach can be seen in the case of
larger panels where localized damage will result in relatively small local models,
corresponding to a significant reduction of the computational effort as compared to
a three-dimensional solid element model analysis.
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Chapter 7
Mesoscale Hyperelastic Model of a Single
Yarn Under High Velocity Transverse
Impact

P. Del Sorbo, J. Girardot, F. Dau and I. Iordanoff

Abstract In this chapter the modellisation of a single dry yarn under impact load
as an homogeneous hyperelastic continuous body will be treated. In the first part,
a preliminary introduction to dry fabrics mesoscopic models in impact applica-
tions will be performed. In the second part, an hyperelastic constitutive law for
yarn structures continuous modeling will be presented. The proposed constitutive
behaviour aims to the modellisation of the yarn transverse cross section evolution
during an impact which is actually obliged in the classical linear elastic formulation.
A theoretical introduction to the hyperelastic law is followed by its validation using
the numerical model of transversely impacted yarn as benchmark test. The obtained
results are compared with those from microscopic and classic linear elastic meso-
scopic studies. A good agreement is obtained from the comparison with the different
approaches. Moreover, the ability of the proposed model in representing yarn trans-
verse behavior and formulate multiaxial failure criteria compared to the linear elastic
approach universally adopted is remarked.

7.1 Introduction

High performance polymeric fibers as aramid (Kevlar and Twaron) and UHMWPE
(Dyneema and Spectra) are actually employed in different ballistic applications in the
form of composites panels and dry woven textile layers. These applications include
flexible protective garments, armored vehicles protection and helmets. Aim of these
structures is to provide the required level of protection from high velocity colliding
object while limiting to the minimum their weight contribution to the global struc-
ture. The current design process of ballistic panels consist in a trial-and-error process
where the design choices are validated experimentally by costly impact tests. The
effectiveness of this process could be drastically increased if a predictive numerical
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model of these structure would be adopted. Limiting our discussion to dry fabric
layers, different numerical models have been proposed for this type of structures
[21]. Among them, the so called mesoscopic models resulted to be the most success-
ful since they offer a good compromise in terms of accuracy and computational costs.
Since their introduction by Duan [9, 10], this type of models remains substantially
unvaried while adopted for different studies [3, 12, 17]. Here weaving geometry is
explicitly represented and fabric yarns are modeled as a continuous medium whose
constitutive law should make them behave as an aligned fibers bundles. The constitu-
tive law universally adopted in mesoscopic models of dry fabrics under impact loads
was proposed byGasser [11]. It consists in a anisotropic linear elastic behavior where
the Young modulus in fibers direction is determined according to physical strategies
while the other parameters are numerically adapted to provide yarn flexibility and
simulation stability. The ability of the Gasser model in representing the yarn longitu-
dinal behavior has been assessed by different studies [3, 10] while the modelisation
of yarn transverse behavior remains an unsolved problem. Unfortunately, this last
aspect assumes a fundamental role in determining ballistic performance of multi-
layer textiles [6, 17]. In the current chapter an hyperelastic constitutive law for yarn
structure is introduced. The proposed law can be fully characterized using experi-
mental or numerical approach avoiding the numerical calibration typical of the linear
elastic model. At the same time the following approach opens new possibilities in
terms of failure modeling making possible the formulation of physical multiaxial
failure criteria. In the first part of the chapter the fundamental theory behind the
proposed hyperelastic constitutive law is introduced. Here the concept of hypere-
lasticity, physical invariants and the adopted elementary strain energy functions are
presented. This first theoretical part ends with the formulation of failure criteria in
terms of invariants. The second part of the chapter focus on the application of the
proposed hyperelastic constitutive law to the benchmark problem of a single yarn
transversely impacted by an high velocity projectile. Here the results obtained using
the proposed constitutive law are compared with those by linear elastic mesoscopic
and microscopic approaches. In the final part the possibility of formulating a multi-
axial failure criterion are exploited.

7.2 Theory

7.2.1 General Notions of Transverse Isotropic Hyperelasticity

The total mechanical energy per unitary volume of a body is a composed by the
kinetic energy K and the potential energyW . The value assumed byW is a measure
of the energy stored in the material as a result of a deformation process and it is even
referred as strain energy density. For an hyperelastic material, the relation between
the second Piola–Kirchoff stress tensor S and the right Cauchy–Green tensor C is
defined by:
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Fig. 7.1 Yarn as an
transverse isotropic medium

S = 2
δW (C)

δC
(7.1)

Where is assumed that the strain energy is a scalar-valued tensor function of the
only deformation state. Since yarn microstructure is composed by a large number of
slightly twisted fibers all oriented in a preferential direction, a transverse isotropic
constitutive behavior will be considered. For a transversely isotropic hyperelastic
material the general strain energy function W can be written in the following form
[13]:

W (C) = W (I1, I2, I3, I4, I5)

I1 = trc(C) I2 = 1

2
(trc(C)2 − trc(C2)) I3 = det (C) I4 = C : M I5 = C2 : M

(7.2)

Where I1, I2, I3, I4, I5 aremathematical invariants of the tensorsM andC. The tensor
M = m ⊗ m is the structural tensor associated to the transverse isotropy symmetry
group. The unitary vectorm specifies the fiber orientation in the initial configuration
and is orthogonal to the isotropy plane, Fig. 7.1.

7.2.2 The Notion of Physical Invariants

The advantage of using the mathematical invariants for the formulation of the strain
energy function relies in the fact that the desired form of anisotropy is automatically
obtained. On the other side, this type of entities have no direct physical counterpart
for the material and are difficult to relate with results of experimental tests.

An alternative set of invariants for hyperelastic transversely isotropicmaterial was
recently proposed by Charmetant [2].

Following the previous work of Criscione et al. [5], the deformation gradient F in
each point of an transverse isotropic deformed body can be written into a particular
orthonormal basis B = {m,n1,n2} where it assumes the following form:
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F =
⎡
⎣
fm fm1 fm2

0 f11 0
0 0 f22

⎤
⎦ (7.3)

With the tensor in this form, the following multiplicative decomposition can be
applied:

F = Fel · Ftc · Ftd · Fld (7.4)

Fel =
⎡
⎣
fm 0 0
0 1 0
0 0 1

⎤
⎦ Ftc =

⎡
⎣
1 0 0
0

√
f11 f22 0

0 0
√

f11 f22

⎤
⎦

Ftd =

⎡
⎢⎢⎣
1 0 0

0
√

f11
f22

0

0 0
√

f22
f11

⎤
⎥⎥⎦ Fld =

⎡
⎢⎣
1 fm1

fm
fm2

fm

0 1 0
0 0 1

⎤
⎥⎦

The important point about this representation relies in the physical meaning behind
the decomposition. The global deformation is seen as a combination of four
elementary deformation modes namely represented by the four tensorial terms
Fel ,Ftc,Ftd ,Fld , Fig. 7.2. More specifically:

• Fel represents an elongation along the fibre direction
• Ftc represents a transverse section variation in terms of area, i.e. fiber crushing
and section rearrangement

• Ftd represents a transverse section variation in terms of shape, i.e. fiber crushing
and section rearrangement

Fig. 7.2 Multiplicative decomposition and elementary deformation modes
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• Fld represents a shear deformation along the fibres direction, i.e. fiber-fiber slip-
page.

Each tensor of the decomposition, then each deformation mode, is represented by a
single scalar with the only exception of longitudinal shear:

Fel =
⎡
⎣

αel 0 0
0 1 0
0 0 1

⎤
⎦ Ftc =

⎡
⎣
1 0 0
0 αtc 0
0 0 αtc

⎤
⎦

Ftd =
⎡
⎣
1 0 0
0 αtd 0
0 0 1

αtd

⎤
⎦ Fld =

⎡
⎣
1 αldαel cos γ αldαel sin γ

0 1 0
0 0 1

⎤
⎦

αel = fm αtc = √
f11 f22 αtd =

√
f11
f22

αld =
√

f 2m1 + f 2m2

fm
tan γ = fm1/ fm2

The idea at this point is to build a strain energy function taking advantage of this
decomposition.

Firstly the longitudinal elongation and longitudinal shear are considered to be
uncoupled, in this way αld is assumed to be fully representative of the longitudinal
shear mode. Then a normalization is applied to the scalars in order to make them all
zeros in rigid body motions:

Iel = ln(αel) Itc = ln(αtc) Itd = ln(αtd) Ild = αld

These new parameters are usually called physical invariants [2, 5].
Their values are a quantitative description of the contribution of a singularmode to

the global deformation of the material and can be directly related to the mathematical
invariants with some algebra.

Iel = 1

2
ln I4 Itc = 1

4
ln

I3
I4

Itd = 1

2
ln

⎛
⎝ I1 I4 − I5

2
√
I3 I4

+
√(

I1 I4 − I5
2
√
I3 I4

)2

− 1

⎞
⎠ Ild =

√
I5
I 24

− 1 (7.5)

Finally the global strain energy function is assumed as a linear combination of sin-
gular strain energy functions individually associated to each deformation mode:

W = Wel(Iel(I4)) + Wtc(Itc(I3, I4)) + Wtd(Itd(I1, I3, I4, I5)) + Wld(Ild(I4, I5))
(7.6)

From the physical point of view the strain energy stored within the material is
assumed to be a composition of that stored by fiber elongation, Wel , by transverse
deformation,Wtc + Wtd , and by fiber-fiber slipping, Wld .
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Finally, the resultant second Piola–Kirchoff stress tensor can be written as:

S = Sel + Stc + Std + Sld

Sel = 2
δWel

δ Iel

δ Iel
δC

Stc = 2
δWtc

δ Itc

δ Itc
δC

Std = 2
δWtd

δ Itd

δ Itd
δC

Sld = 2
δWld

δ Ild

δ Ild
δC

Where Sel ,Stc,Std ,Sld are the contribution of the different elementary energies.

7.2.3 The Material Model

In the current part, the form assumed for the elementary strain energy function
Wel ,Wtc,Wtd ,Wld and their relative material parameters will be presented.

7.2.3.1 Longitudinal Elongation

According to the results available in bibliography, a linear relation among stress
and strain is sufficient to accurately describe the yarn longitudinal behavior under
uniaxial tension [3, 10]. This linear relation results in a quadratic form of the energy
for the universally adopted linear elastic model:

W = 1

2
Eε2 (7.7)

where E is the yarn longitudinal modulus and ε is the deformation in the longitudinal
direction. In the same way Wel is assumed as a quadratic function of Iel :

Wel = 1

2
kel I

2
el for Iel > 0

Wel = 0 for Iel < 0

Where kel is a material parameter to determine.
The contribution of this deformation mode to the tensor S is indicated with Sel

and is equal to:

Sel = 1

I4
Mkel Iel for Iel > 0 else 0
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7.2.3.2 Transverse Compaction

The strain energy function for transverse compaction is presented as the a power
based function [2]:

Wtc = ktc ‖Itc‖p for Itc < 0

Wtc = 0 for Itc > 0

For this specific mode two parameter have to be identified, ktc and p.
It is worth to notice that zero energy is assumed when the associated invariant Itc

is greater then zero. From the physical point of view this is representative of the fact
that no energy is stored in the yarn when fibers are separated from each other. The
contribution of transverse compaction to the second Piola–Kirchoff stress tensor is
indicated with Stc and is equal to:

Stc = −p

2
ktc ‖Itc‖p−1

(
C−1 − M

I4

)
for Itc < 0 else 0 (7.8)

7.2.3.3 Transverse Distortion

For the transverse distortion strain energy is assumed the same form proposed by
Charmetant for static applications [2]:

Wtd = 1

2
ktd I

2
td

where ktd is a material parameter which have to be identified.
The contribution of this mode to the second Piola–Kirchoff stress tensor is indi-

cated with Std and is equal to:

Std = 2ktd Itd
2I4I − (I1 I4 − I5)C−1 +

(
I1 + I5

I4

)
M − 2(C · M + M · C)

4
√

(I1 I4 − I5)2 − 4I3 I4
(7.9)

Where I is the identity tensor.

7.2.3.4 Longitudinal Shear

This form of energy is physically representative of the internal energy stored in the
yarn while it is sheared in those plane which include its longitudinal axis. It is mostly
related to fiber-fiber sliding and is assumed to be negligible compared to the others
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modes. Due to this assumption, its contribution to the global energy absorption will
be neglected:

Wld = 0 (7.10)

7.2.4 Failure Modelling Using Physical Invariants

In this part an invariant based failure criteria equivalent to the maximum longitudinal
elastic stress/strain usually adopted [3, 12, 17] will be presented. The proposed
criterion will be successively enriched with the longitudinal properties degradation
effect related to transverse deformation.

7.2.4.1 Longitudinal Elongation Failure Criterion Using Physical
Invariants

The length of the unitary vector m after the deformation is indicated by λm and is
equal to:

λm = √
Cm · m = √

C : M = √
I4 (7.11)

While the longitudinal strain in the fiber direction is defined as:

εm = λm − ||m||
||m|| = λm − 1

1
= λm − 1 (7.12)

Using the definition of Iel we obtain:

Iel = ln(εm + 1) (7.13)

It gives the physical interpretation of the longitudinal elongation invariant which
is equal to true strain in the fiber direction.

Writing the previous relation in terms of maximum elongation strain εlimel it
becomes:

I limel = ln(εlimm + 1) (7.14)

And the relative purely longitudinal failure criteria is written as:

Iel < I limel (7.15)

According to this criterion, the material will fail if the invariants associated to the
longitudinal elongation will be greater than the limit true strain along fibers recorded
during a uniaxial traction test.

This type of criterion is the invariant counterpart of that normally used in the
linear elastic orthotropic model, usually formulated in terms of stress.
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7.2.4.2 Inclusion of Transverse Effects

Different questions have been posed concerning the necessity of a multiaxial failure
criterion for yarn structure. Thanks to the current approach is it possible to include
the effect of transverse modes on the material failure [14, 22].

In this case the following failure criterion is proposed to take into account the
damage induced by fibers transverse deformation:

Iel < I limel (1 − α ‖Itc‖ − β Itd) for Itc < 0

Iel < I limel (1 − β Itd) for Itc > 0

Where I limel is the limit longitudinal elongation invariant adopted for the uniaxial
criterion and α, β are material parameters.

This criterion is equivalent to the uniaxial one if the yarn cross section remains
undeformed or expanded, however a reduction of the axial failure properties is con-
sidered when yarn transverse compaction and distortion is recorded. This reduction
can be physically attributed to fiber damage due to permanent transverse deforma-
tions. The parameters α and β regulate the decrease of axial strain limit and have to
be identified using experimental or numerical approaches.

7.3 Case of Study: Single Yarn Transverse Impact

The current section is dedicated to the study of the transverse impact on a single yarn
using a mesoscopic numerical model.

This type of impact scenario has been successfully modeled using linear elastic
mesoscopic and microscopic approaches [3, 8, 10, 16]. Both of them have proved
their abilities in modelling the inertial and longitudinal properties of the yarn, how-
ever the representation of the transverse section evolution of the structure remains
confined to the seconds. For the previously mentioned reasons, this study can be used
as a benchmark which assesses the correct representation of the yarn longitudinal,
transverse and inertial properties.

The proposed hyperelastic constitutive law here is adopted. In the first part, the
impact scenario and the relative finite element model will be presented. Then clas-
sical results universally attributed to the yarn longitudinal and inertial properties as
projectile speed trend or yarn kinematic will be validated using those obtained by
linear elastic mesoscopic and microscopic approach. To validate the response of the
material, no failure criteria will be implemented in the first part of this study.

Finally, failure criteria will be included in the model. Yarn penetration and projec-
tile residual speed will be compared for the three approaches while the new oppor-
tunities offered by the proposed constitutive law in terms of failure modeling will be
presented.
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7.3.1 Impact Scenario

In order to validate the hyperelastic constitutive law, the same impact scenario
assumed in previous microscopic studies will be considered [8, 16].

It consist of a straight 25.4mm length Kevlar KM2 600 yarn clamped at the
extremities and impacted transversely in the centre by a cylindrical projectile, Fig. 7.3.

This type of yarn is composed of 400 circular fibers with a diameter of 12µm.
The 9.91mg projectile has an height h of 2mm, a diameter φ of 2.2mm and an initial
velocity V of 120ms−1.

The finite element model has been implemented in the commercial software
LS-DYNA. The symmetry of the problem has been exploited, then just half of the
yarn has been modeled.

The yarn cross section is elliptical with major and minor axis respectively equal
to 0.5337 and 0.115mm which results into a yarn volume fraction ν of 0.93848.

Twelve elements have been used to discretize the whole cross section which
results in 1200 eight-nodes reduced integration hexahedral solid elements for the
whole yarn.

Symmetry boundary condition has been imposed to the nodes at the yarn center
while those on the extremity have been perfectly clamped.

The proposed transverse isotropic hyperelastic material model has been adopted
for the yarn. The material parameters identification is presented in Appendix7.5 and
its results are resumed in Table7.1.

Fig. 7.3 Finite element
model

Table 7.1 Properties of hyperelastic Kevlar KM2 yarn model

kel (GPa) ktc (GPa) p ktd (GPa)

82.341 1.055 2.2 0.649
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The density ρ of the yarn is obtained multiplying the density of a fiber ρ f

1.440g/cm3 for the yarn volume fraction and is equal to 1.351g/cm3.
In order to avoid contact problem between the two parts, the whole projectile

has been modeled. Since symmetry conditions are applied, projectile mass has been
divided by two and its displacement have been limited to the impact direction. As in
the microscopic case, the projectile is assumed to be a rigid.

An automatic surface-to-surface contact has been chosen for the projectile-yarn
interaction with a friction coefficient of 0.18.

7.3.2 Results

7.3.2.1 Yarn Kinematic, Projectile Speed and Energy Balance: Model
Validation

Here results of the proposed model are compared with those obtained by a micro-
scopic model and a mesoscopic linear elastic approach.

For the linear elastic mesoscopic study the same numerical model has been used,
but a linear elastic anisotropic material has been adopted for the yarn. Material
properties adopted for the yarn in the linear elastic case are reported in Table7.2:

Table 7.2 Properties of linear elastic Kevlar KM2 yarn model

E1 (GPa) E2 = E3 (GPa) ν23 = ν12 = ν13 G23 = G13 = G12 (GPa)

79.414 0.794 0 0.126

The longitudinal elastic modulus has been obtained multiplying the fiber modulus
84.62GPa for the yarn volume fraction, the transverse moduli have been assumed
to order of magnitude lower the longitudinal one and shear moduli have been set
according to the work of Duan [9].

Figure7.4 reports the yarn kinematic in the impact plane for the hyperelastic
mesoscopic model.

Thepropagationof the transversewave is observed.This particularwave is directly
related to the yarn longitudinal behaviour, inertial properties and strain state along
the fiber direction. The transverse wave travels from the impact point toward the
extremities of the yarn, 0–18µs, it is reflected and then come back to the impact
zone, 18–30µs.

The same kinematic has been obtained by the microscopic and the linear elastic
model.

The coherence of the linear elastic model with the microscopic simulation is not
a surprise [3, 9]. On the other side, the observation of this same kinematic in the
hyperelastic model is a validation of the good representation of the yarn longitudinal
and inertial properties,which is theminimum requirement for a correct representation
of an impact phenomenon at the fabric level.
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(a)

(b)

(c)

Fig. 7.4 Y displacement [mm] and transverse wave propagation in hyperelastic mesoscopic model
at 0µs (a), 10µs (b), 25µs (c)

Concerning the behavior in the x-z plane, the three models are not equivalent.
Figure7.5 reports the yarn configuration in this specific plane during the impact.

The hyperelastic model as the microscopic one presents the propagation of a
spreading wave which is not observed in the linear elastic one. It represents the
reorganization of the yarn fibers within the cross section which travels outside the
impact zone, then its related to yarn transverse mechanical behavior.

Up to know, this wave was typical of the microscopic approaches and has never
been observed in any other yarn continuum model.

The last step of the validation is the analysis of the internal and kinetic energy
stored during the impact. These energies are presented in Fig. 7.6.

Even in this case a good agreement among the models is obtained. The coherence
of these trends gives an explicit indication about the correct representation of the
mass and the mechanical properties of the system.

Another validation of the global kinematic is given by the time in which the trends
of the energies are inverted. Those instant correspond to transverse wave reflection,
then they mark the time required by the wave to travel form one side of the yarn to
the other. Since those instant are the same for the three models, the wave speed will
be equal in all the three cases, which is another prove of the good representation of
the yarn kinematic.
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(a)

(b)

(c)

Fig. 7.5 X displacements and spreading wave propagation in microscopic [8] and mesoscopic
models at 10µs

Fig. 7.6 Internal and kinetic
energies
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7.3.2.2 Failure Parameters Identification

In this final part the choice of the failure criterion for the proposed hyperelastic model
is treated.
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In the frame of the previously presented impact scenario both the criteria presented
in Sect. 7.2.4 have been tested and compared with the results obtained using linear
elastic mesoscopic and microscopic approach.

A themaximum longitudinal strain criterion has been assumed as basic failure cri-
terion for the two mesoscopic models. Maximum strain value εlimel has been assumed
equal to those of the Kevlar fibers, 4.58%, which is equivalent to a maximum longi-
tudinal elongation invariant I limel of 0.044782.

This criterion has been implemented in the linear elastic model as the classical
maximum stress failure criterion. Here themaximum stress σlim is equal to 3.637GPa
and has been obtain multiplying the yarn longitudinal modulus for the maximum
strain in the fiber direction.

Concerning the multiaxial failure criteria, this is obviously implemented just for
the hyperelastic case and the parameters α and β have been optimized in order to
minimize the discrepancy among the proposed model and the microscopic simula-
tion.

Table7.3 reports the ballistic limit study for the three different failure criteria,
maximum longitudinal strain (mesoscopic hyperelastic, microscopic), maximum
stresses (mesoscopic linear elastic), multiaxial (mesoscopic hyperelastic). The cases
for which no penetration occurs are indicated by “NP” while no performed cases are
indicated by “–”.

According tomicroscopic results, projectile residual velocity for an impact speeds
over 120ms−1 is 64ms−1, while for lower velocities yarn failure doesn’t appear. As
it possible to see, classical mesoscopic approach predicts yarn failure for an impact
speed of 100ms−1 which is inconsistent with results obtained at the microscale
where no failure occurs. The proposed model overestimate the yarn resistance if the
purely longitudinal criterion is adopted. No penetration is observed for an impact
speed of 120ms−1 but penetration occurred for 140ms−1 with a residual speed of
18ms−1. It is interesting to observe how a real uniaxial failure criterion, adopted by
the hyperelastic model, differs in the results from a principal stress based criterion.

On the other side, it is possible to get a very good coherence among themicroscopic
and mesoscopic response if the multiaxial failure criterion is adopted.

Table 7.3 Projectile Residual Speed for different models and failure criteria (ms1)

In. Velocity
(ms−1)

Micro [8, 16] Meso Lin. El. Meso Hyp. UF Meso Hyp. MF
α = 1.8 β = 0.0

80 NP NP NP NP

100 NP 40 NP NP

120 64 74 NP 64

140 – – 18 –
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7.4 Conclusions

In the present chapter a novel hyperelastic constitutive law for yarn mesoscopic
models has been presented. Aim of the proposed model is to take into account the
yarn transverse behavior during mesoscopic simulations and opens new possibilities
in terms of yarn failure modeling. Firstly, a theoretical introduction to the model and
the adopted failure criteria has been presented. Secondly, the benchmark test of a yarn
transversely impacted by an high velocity projectile has been used to validate the
proposed law. The obtained results have been compared to those of microscopic and
linear elastic mesoscopic models. Results shown how the mesoscopic hyperelastic
model is in very good agreement with microscopic and linear elastic mesoscopic
ones. The energy absorption process and transverse wave propagation are equivalent
for the two mesoscopic models, however they differ for the kinematic of the yarn
cross section and projectile residual speed. Compared to the linear elastic approach,
the proposed hyperelastic model is able to represent the propagation of the spreading
wave and is much closer to microscopic projectile residual speed when a proper
multiaxial failure criterion is adopted.

7.5 Appendix: Constitutive Law Parameters Identification

The identification of material parameters which characterize an hyperelastic consti-
tutive behavior is usually formulated as an inverse problem. This problem consists
in the identification of the optimal set of parameters which minimize a defined error
among the experimental data curves and the analytical material response.

This problems can be formulated in term of stresses [18, 19], load-displacement
curves [1, 15] or energy [7]. In this work the latest approach will be adopted.

For the proposed constitutivemodel, the strain energy function is a combination of
three independent parts respectively related to three deformation modes. Following
this idea, it is ideally possible to identify separately the parameters related to Wel ,
Wtc andWtd . In order to do this, three set of data which express the elementary strain
energy as a function of its relative invariants are required.

In the present appendix the strategy adopted for the identification of these data
sets is explained and the parameters identified by curve fitting are presented.

Longitudinal Elongation Mode

The effectiveness of the linear elastic orthotropic model in describing the yarn lon-
gitudinal behaviour has been largely assessed, then it is possible to use this model to
get the data for the determination of the parameter kel .

Let’s induce into a mesoscopic hyperelastic yarn material block a pure homo-
geneous longitudinal strain state imposing the following boundary condition on the
external faces, Fig. 7.7:
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Fig. 7.7 Energetic equivalence for the identification of kel

u = Fx

F =
⎡
⎣

λ 0 0
0 1 0
0 0 1

⎤
⎦

Where u is the displacement vector of the point on the faces, x is their position vector
in the proposed reference system and F is the homogeneous deformation gradient
induced written in the proposed reference system.

Under this condition all the physical invariants are equal to zerowith the exception
of Iel , then the strain energy stored within the block is reduced to the contribution of
the longitudinal elongation mode:

Iel �= 0 Itc = Itd = 0

W̃ = W̃el

For this strain state, the infinitesimal strain tensor ε and the longitudinal elongation
invariants are written:

ε = 1

2
(FT + F) − I =

⎡
⎣

ε f 0 0
0 0 0
0 0 0

⎤
⎦

Iel = ln(ε f + 1)

Where ε f = λ − 1 is the infinitesimal strain in the fiber direction.

If the Gasser constitutive model would be adopted for the same block under the
same boundary conditions, the strain energy function will have the following form:

Wlin = 1

2
E f ν f ε

2
f (7.16)
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Where E f is the young modulus of the fiber in the longitudinal direction and ν f

is the fiber volume fraction of the yarn. These parameters are usually known, then
the strain energy associated to a generic ε f can be easily evaluated.

The previous relation can be written as a function of the physical invariant Iel :

Wlin = 1

2
E f ν f (e

Iel − 1)2 (7.17)

At this point the energetic equivalence among the two models is assumed:

W̃el = Wlin = 1

2
E f ν f (e

Iel − 1)2 (7.18)

This relation is obviously different from the quadratic form previously assumed,
however a good approximation of this function can be obtained with the optimum
choice of the parameter kel .

The relation (7.18) has been used to generate a sufficiently large number of couples
to provide a good fitting of the hyperelastic model to the linear elastic orthotropic one
under pure longitudinal strain condition. Figure7.8 reports the results of the curve
fitting for a Kevlar KM2 yarn whose properties are listed in Table7.4 which led to
kel = 82.341GPa.

The strain energy W̃el has been evaluated up to the invariant value forwhich failure
is expected.

Fig. 7.8 Identification of the
parameter kel
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Table 7.4 Longitudinal Properties of Kevlar KM2 yarn

Elong fiber (GPa) Yarn volume fraction εmax

84.62 0.9385 4.58%
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Transverse Compaction Mode

For the parameters identification of transverse compaction and transverse distortion
the procedure is similar to that adopted for the longitudinal elongation, however here
the energetic equivalence is assumed with a numerical yarn RVE.

If a pure transverse compaction mode would be induced within the continuum
material block, the following boundary condition should be applied on the six faces:

u = Fx

F =
⎡
⎣
1 0 0
0 λ 0
0 0 λ

⎤
⎦

and:
Itc = ln(λ) Iel = Itd = 0 (7.19)

Under this condition the strain energy stored within the block is reduced to the
contribution of the transverse compaction mode, Fig. 7.9a:

W̃ = W̃tc (7.20)

From a numerical point of view, the same homogeneous strain state is obtained
for a bidimensional plain strain problem where the displacement are applied by four
rigid walls in contact with the mesoscopic material, Fig. 7.9b,

The relation among the displacement δ of thewall i and the scalarλ, representative
of the strain state, is given by:

Li − δi = λLi (7.21)

Where Li is the length of the relative side.
At this point the energetic equivalent model is introduced.
A group of fibers arranged into an hexagonal close packing configuration has been

chosen as the energetic counterpart of the mesoscopic model [16, 20]. A plain strain
finite element model of 115 fibres arranged into an HCP configuration subjected to
the wall load previously described have been developed.

According to previous results [20], each fiber has been modeled using 108 plain
strain four nodes bi-dimensional elements. This mesh density assures a correct rep-
resentation of the fiber transverse behaviour.

For the specific case of Kevlar fibers, a linear elastic transversely isotropic behav-
ior has been used, Table7.5. No friction is considered for contact among fibres and
walls while a friction coefficient of 0.2 has been assumed for fiber-fiber contact.
The model has been implemented in the finite element software LS-Dyna while an
implicit integration scheme has been adopted to solve the non-linear static analysis.
Figure7.9c reports the Von Mises stresses during the simulation. Boundary condi-
tion effects are clearly in those fibers directly in contact with the rigid plates. Those
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Fig. 7.9 Energetic
equivalence for the
identification of ktc and p

(a)

(b)

(c)

Table 7.5 Properties of Kevlar KM2 fiber

Density
(kg/m3)

E1 (GPa) E2 = E3
(GPa)

ν23 ν12 = ν13 G23 (GPa) G13 = G12
(GPa)

1440 84.62 1.34 0.24 0.6 0.540 24.4

present the highest values of stresses while a periodic solution is obtained at the RVE
center.

The strain energy has been recorded in the central zone of the numerical specimen
where the solution appears to be periodic while the associated invariant has been
computed using relations (7.21)–(7.19).

Figure7.10 reports the evolution of the strain energy density stored within the
RVE as a function of the transverse compaction invariant and the fitting results from
which ktc and p resulted equal to 1.055GPa and 2.2 respectively.
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Fig. 7.10 Identification of
the parameter ktc, p
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Transverse Distortion Mode

The strategy adopted for the parameters identification of transverse distortion is based
on the same procedure and the same FE model adopted for transverse compaction.
The only difference relies in the boundary conditions.

In this specific case a uniaxial compression is applied using wall displacement
which induce the following strain state:

F =
⎡
⎣
1 0 0
0 1 0
0 0 λ

⎤
⎦ (7.22)

where the relation among the λ and the wall displacement δ is always given by
Eq.7.21. For this strain state two physical invariants are different from zeros:

Itc = √
λItd =

√
1

λ
(7.23)

and the strain energy function W is given by the combination of two different com-
ponents Wtc and Wtd (Fig. 7.11).

The values of strain energy associated to the transverse distortion mode can be
obtained subtracting the transverse compaction strain energy, evaluated using the
parameters previously identified, to the global strain energy density measured in the
FE analysis.:

W̃td = W̃ − W̃tc (7.24)

Figure7.12 reports the results of the curve fitting for aKevlar yarn and the energies
recorded during the test. From this procedure ktd resulted equal to 0.64974GPa.
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Fig. 7.11 Energetic
equivalence for the
identification of kld

(a)

(b)

(c)

Fig. 7.12 Identification of
the parameter ktd
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Chapter 8
Structural Health Monitoring:
Numerical Simulation of Lamb Waves
Via Higher-Order Models

A. G. de Miguel, A. Pagani and E. Carrera

Abstract This chapter proposes a numerically efficient method to simulate Lamb
waves in laminated structures in the framework of structural health monitoring
(SHM). Due to the high frequencies involved in Lamb wave problems, time-domain
analyses call for very fine spatial and temporal discretizations of the numericalmodel.
As a consequence, standard models based on the finite element method (FEM)might
become extremely large, and new efficient simulation tools must be introduced.
A series of multi-layered plate elements for the wave propagation problem are pro-
posed. Equivalent single layer (ESL) and layer wise (LW) kinematics based on hier-
archical assumptions are tested. Exploiting their superior convergence rates, higher-
order polynomials are used as shape functions of the finite elements. Numerical
examples of composite plates are included to show the advantages of each model
proposed.

8.1 Lamb Wave-Based Damage Detection Systems

The use of guided ultrasonic waves (GUW) to detect structural defects is receiving
vast attention among the research community [7]. Unlike off-line non-destructive
tests (NDT), the main advantage of this technique is that the structure can be contin-
uously and autonomously monitored on-line, ensuring its integrity during service.
In aeronautics for instance, this capability would allow the airliners to optimize the
inspection and repair works, which could have a major impact in the maintenance
costs. Indeed, it is expected that this kind of structural health monitoring (SHM)
systems will be introduced in a large scale in the latest composite aircrafts, for which
there is less failure experience than in conventional metallic ones.

The deployment of robust SHM systems in composite structures requires a good
knowledge of themechanics of elasticwaves. Therefore, the fundamental characteris-
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Fig. 8.1 SHM methodology

tics of the propagation of guidedwaves in thin-walledmediamust be fully understood
as an initial step in the design [11]. Figure8.1 illustrates the basic methodology of
GUW-based damage detection, where one can get an idea of the complex physical
phenomena that are involved in the problem, such as the propagation and reflection of
the waves in reinforced structures and their scattering under the presence of defects.
All this information must be acquired and transfer into on-board computers for the
evaluation of the location and severity of the damage.

Lamb waves, first described by Lamb [10], are a class of GUW propagating in
plates with free surface conditions that produce an elliptical motion of the mate-
rial particles. This type of waves appears due to the reflections of longitudinal and
transversal waves in the stress-free boundaries of the plate. As a consequence of
the combination of these two waves, various modes might appear which can be
classified into symmetric (S0, S1, . . .) and antisymmetric (A0, A1, . . .). The conve-
nience of Lamb waves for on-line damage detection is twofold: first, they are able
to travel long distances with low attenuation, therefore large areas can be inspected;
and second, they feature very short wavelengths, making it possible to detect small
defects of different nature, such as impacts, debonds, delaminations, etc. When deal-
ing with the GUW in anisotropic media and layered structures, the dynamic response
of the thin-walled structure becomes more cumbersome. In addition to the out-of-
plane symmetric and antisymmetric modes of Lambwaves, in-plane shear horizontal
waves (SH) might be excited as well. Figure8.2 illustrates the displacement profiles
of the fundamental modes of GUW in anisotropic media. Moreover, due to the direc-
tionality of the mechanical properties in anisotropic materials, the phase and group
velocities are not constant over the plane of propagation and, as a result, the excited
modes travel faster in certain directions. In laminates, the heterogeneities of the mul-
tiphase materials and the interaction between layers have substantial effects on the
resulting modes, which might be coupled and exhibit continuous conversion along
the wave paths.
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Fig. 8.2 Representation of the fundamental modes of guided waves in an anisotropic layer, from
left to right: Lamb symmetric (S0), Lamb antisymmetric (A0), shear horizontal symmetric (SH-S0)
and shear horizontal antisymmetric (SH-A0)

8.2 Numerical Modeling of Lamb Waves

The basic methodology of Lamb wave-based SHM is based on the processing of the
time of flight of the wave packets along different paths over the structure. Eventual
variations in the time signals are evaluated to infer the existence and severity of
the damage. In this matter, the development of simulation techniques is necessary to
obtain fundamental characteristics of thewave propagation in differentmedia, such as
the wavelength, the wavenumber or the phase and group velocities. In the last years,
researchers have introduced a family efficient models to solve the wave problem
in the frequency domain and provide the dispersion curves for generic composite
materials. Some of these methods are the transfer matrix method [13], the global
matrix method [15], the local interaction simulation approach (LISA) [5] and the
semi-analytical finite element (SAFE) [4].

The analysis of the transient phenomena and the scattering of Lambwaves usually
calls for time-domain numerical models, which are able to provide the time signals at
any point of the structure. The finite element method (FEM) and similar techniques
can be used to support direct measurements and to extract essential information about
the response of the structure under different kinds of defects [8]. Nevertheless, the
implementation of weak-form solutions for the analysis of ultrasonic waves is highly
challenging. The high frequencies involved in the dynamic problem require fine
spatial and temporal resolutions. Indeed, for standard FEM solutions, values as low
as 1

20 were suggested for ratio between the element size and theminimumwavelength
[14]. Also, due to the high dispersion of Lamb waves, large spatial domains have
to be accounted in the analysis, making the model extremely expensive in terms of
computational cost.

Example 8.1 Let’s consider the propagation ofLambwaves in an aluminumstrip, see
Table8.1. In the case of elastic isotropic materials, the wavenumber of the symmetric
and antisymmetric modes can be obtained analytically [7] from the Rayleigh–Lamb
equations:

tan
(
b h
2

)

tan
(
a h
2

) = −
[

4abk2

(k2 − b2)2

]±1

, (8.1)
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Table 8.1 Mechanical
characteristics of the
Aluminum plate in
Example8.1

Thickness, h 4mm

Young’s modulus, E 70 × 109 Pa

Poisson ratio, ν 0.33

Density, ρ 2700kg/m3

Longitudinal speed, c1 6197m/s

Transversal speed, c2 3121m/s

a and b being
a2 = ω2/c21 − k2, b2 = ω2/c22 − k2, (8.2)

where ω is the angular frequency and k the wavenumber. The sign of the power
of the right-hand term of Eq.8.1 denotes whether the solution is symmetric (+) or
antisymmetric (−). Once we have the relation between k and ω, it is possible to
obtain the dispersion curve of the phase velocity, cp, and the group velocity, cg , as
follows:

cp = ω/k, cg = c2p

(
cp − ω

∂cp
∂ω

)
. (8.3)

Considering an excitation of central frequency, f = 2π/ω, equal to 0.5MHz, the
analytical phase and group velocities result:

cpS0 � 4757, cgS0 � 3062, (8.4)

cpA0 � 2674, cgA0 � 3126, (8.5)

units in m/s. The wavelengths, λ = 2π/k, of the two modes are then:

λS0 � 9.51 mm, λA0 � 5.34 mm, (8.6)

From these values, it is possible to infer that the most critical mode for a FEMmodel
is the antisymmetric. To provide some figures: to accurately simulate the A0-wave
in a plate of 1m × 1m, accounting for 20 elements per wavelength, the total number
of elements along each direction raises up to 3746. Furthermore, regarding the time
step size, the Courant–Friedrich–Levy condition [3] states:

Δt ≤ le
cg

, (8.7)

where Δt is the time increment and le is the size of the finite element. Accordingly,
for the present example we obtain Δt ≤ 2 × 10−7 s.

As a consequence of these numerical requirements, the simulation of SHM sys-
tems in real structures become an extremely demanding task, and therefore, more
efficient tools are needed. In this line, many research works have been directed
towards the implementation of higher-order models for wave propagation. It is well-
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(a) In-plane mesh (b) Transverse order

Fig. 8.3 Convergence rates of the solutions for increasing polynomial orders of a the longitudinal
mesh and b the transverse assumptions

known that higher-order methods including p-refinement schemes exhibit better
convergence properties compared to standard h-methods. Figure8.3a shows the con-
vergence rate of linear, quadratic and cubic order for a metallic strip similar to that
of Example8.1. One can observe how the numerical error, calculated as the ratio
between the computed cg and the analytical one, diminishes substantially faster
when higher-order shape functions are employed. Based on this concept, several
advanced weak-form solutions can be found in the literature, such as the spectral
element method (SEM) [9], the finite cell method [6] and the p-version of FEM [17].

To bring the computational cost down, the geometrical features of thin-walled
structures are usually exploited to derive dimensionally reduced models, such as
plates and shells. This approach allows one to substitute the discretization along the
thickness direction by certain kinematic assumptions, thus reducing the size of the
numerical problem and making it possible to extend the aforementioned methods to
larger problems [16]. However, one must be aware of the fact that the classical theo-
ries describing the kinematics of the plate elements have inherent limitations when
simulating Lambwaves. First, they do not account for the stretching effects, therefore
the symmetric modes are neglected. Also, by removing the FEM approximation in
the transverse direction, the displacement fields of the antisymmetric modes cannot
be accurately simulated, introducing a numerical error in the analysis. Figure8.3b
shows the numerical error of Mindlin-based elements (A0 Classical) and higher-
order theories (p-theory). Higher-order structural theories are able to overcome the
limitations of the linear assumptions of classical theories and to compute a 3D-like
resolution in the displacement solutions.
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8.3 Multi-layered Elements for Wave Propagation

The main goal of the present chapter is to propose advanced multi-layered elements
for the efficient GUW analysis. To this end, the two possible FEM-based solutions
for the Lambwave propagation in laminated structures are: (1) large scale 3Dmodels
that account for the stack of plies using amesh of solid elements over the volume; and
(2) plate elements based on first shear deformation theories (FSDT), which reduce
the size of the numerical problem. The goal of this research is to extend the latter
approach to account for 3D effects, keeping the computational costs in a low range
without compromising the level of detail in the analysis.

In this section, we consider a Cartesian reference system in which the mid-surface
of the laminate lies on the xy-plane, being z the thickness coordinate. First we
introduce two types of kinematics for the multi-layered structure, namely equivalent
single layer (ESL) and layer wise (LW). Then, a class of higher-order plate elements
is proposed and the fundamental matrices are depicted. Finally, the choice of the
time integration scheme is discussed.

8.3.1 Multi-layered Theories

The structural theories for multi-layered materials can be classified in equivalent sin-
gle layer (ESL), in which the kinematic assumptions are independent of the number
of layers, and layer wise (LW), in which the number of degrees of freedom (DOF)
is proportional to the number of layers.

8.3.1.1 Equivalent Single Layer

One of the simplest plate models for multi-layered structures is the FSDT, which is
based in the Mindlin kinematics:

ux (x, y, z, t) = ux0(x, y, t) + z φy(x, y, t), (8.8)

uy(x, y, z, t) = uy0(x, y, t) − z φx (x, y, t), (8.9)

uz(x, y, z, t) = uz0(x, y, t). (8.10)

The FSDT accounts for 5 DOF (3 displacements and 2 rotations) and it is imple-
mented inmost standard FEM codes. In order to overcome the aforementioned issues
of classical theories, the Carrera’s unified formulation (CUF) [1] is employed to gen-
erate arbitrary expansions of the thickness coordinate, expressing the kinematics of
the plate as:

uuu(x, y, z, t) = Fτ (z) uuuτ (x, y, t), τ = 1, . . . , M, (8.11)
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where Fτ are arbitrary functions of the z-coordinate, and M is the total number of
expansion terms in the kinematic field. A Taylor-class theory is implemented in this
work to build higher-order ESL models. In this manner, the expansion functions
take the form of Fτ = z p, being p the polynomial order. If a second order model is
chosen, the displacement field can be described as

ux (x, y, z, t) = ux0(x, y, t) + z ux1(x, y, t) + z2 ux2(x, y, t), (8.12)

uy(x, y, z, t) = uy0(x, y, t) + z uy1(x, y, t) + z2 uy2(x, y, t), (8.13)

uz(x, y, z, t) = uz0(x, y, t) + z uz1(x, y, t) + z2 uz2(x, y, t), (8.14)

which accounts for 9 DOF in total among constant, linear and quadratic terms. Note
that Taylor-class expansions include stretching terms in the kinematics (Eq. 8.14),
therefore the symmetric modes can be captured. Also, by increasing the order of the
expansion, the distribution of the displacements across the laminate can be better
approximated.

8.3.1.2 Layer Wise

On the other hand, LW models make use of independent expansions for each layer,
allowing it to capture the intralaminar deformations with higher resolution. The price
comes in the form of the extra DOF associated to each layer. Non-local hierarchical
expansions are chose here as Fτ . These can be obtained from the 1D set of Legendre
polynomials:

L0 = 1, (8.15)

L1 = s, (8.16)

L p = 2p − 1

p
sL p−1(s) − p − 1

p
L p−2(s), p = 2, 3, 4, . . . (8.17)

Subsequently, a set of 1D thickness functions can be defined as:

F1(r) = 1

2
(1 − r), (8.18)

F2(r) = 1

2
(1 + r), (8.19)

Fp(r) =
√
2p − 1

p

∫ r

−1
L p−1(r) dr, p = 2, 3, 4, . . . , (8.20)

where the first two functions correspond to the top and bottom nodal expansions,
and the rest are obtained from the normalized integrals of the Legendre polynomials.
Note that the variable r is defined in the natural domain [−1, 1], therefore a Jacobian
transformation is needed to compute the integrals of the energies in the global domain.
The C0 continuity of the displacements is imposed via assembly in the element
matrices.
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Fig. 8.4 Possible deformations of FSDT, ESL and LW models

Figure8.4 illustrates the mechanical response that can be expected from each of
the studiedmodels. From left to right in the figure, it is clear thatmore physical effects
are added to the model at the expense of extra DOF. One additional advantage of LW
modes lies in the fact that displacement unknowns are placed at the top and bottom
of the layers. This property is convenient for the simulation of the excitation forces
generated by piezoelectric transducers, and also for the simulation of interlaminar
defects such as delaminations.

8.3.2 Higher-Order Plate Elements

The weak-form of the dynamic problem can be derived from the principle of virtual
displacements, which reads:

∫

V
δuuuTρ üuu dV +

∫

V
δεεεT σσσ dV =

∫

S
δuuuT PS dS +

∫

V
δuuuT PV dV, (8.21)

where the first two terms correspond to the virtual inertial work and the elastic energy,
and the last two to the virtual work done by the surface, PS , and volume, PV , forces.
In this expression, it is common to write the strain and stress tensors in vectorial
form as:

εεεT = {
εxx εyy εzz εxz εyz εxy

}
,

σσσ T = {
σxx σyy σzz σxz σyz σxy

}
.

(8.22)

For the present implementation, both physical and geometrical linear theories are
used. Therefore, for the relation between strains and displacements, we have:

εεε = Duuu, (8.23)

where D is the following differential operator, defined as:

DT =
⎡

⎢
⎣

∂
∂x 0 0 ∂

∂z 0 ∂
∂y

0 ∂
∂y 0 0 ∂

∂z
∂
∂x

0 0 ∂
∂z

∂
∂x

∂
∂y 0

⎤

⎥
⎦ . (8.24)
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The constitutive relations are obtained from the Hooke’s law, which reads:

σσσ = Cεεε, (8.25)

whereC is the 6× 6 stiffnessmatrix of thematerial. In the generic case of anisotropic
materials, C is full and should be written in the global framework.

In FEM applications, the domain of the analysis is divided into smaller sub-
domains, where the displacement unknowns are approximated by sets of shape func-
tions. In the present formulation, the generalized unknowns of the plate problem, uuuτ

(Eq. (8.11)), are interpolated over the 2D domain as follows:

uuuτ (x, y, t) = Ni (x, y) uuuτ i (t), i = 1, . . . , N , (8.26)

where N is the number of nodes in the element anduuuτ i are the generalized unknowns
of the dynamic problem. For the wave propagation problem, 2D Lagrange-class
polynomials of higher-order are chosen as the shape functions of the plate element.
This set is constructed as the product of the 1D Lagrange polynomials:

Ni (ξ, η) = φm(ξ) φn(η), ξ, η ∈ [−1, 1], (8.27)

where

φm(ξ) =
pFE∏

m=1,m �=n

ξ − ξm

ξn − ξm
, m, n = 1, . . . , pFE + 1, (8.28)

with pFE being the order of the plate element. The roots ξm of the Lagrange polyno-
mials are chosen to be equidistant. Now, making use of Eqs. (8.11) and (8.26), one
can write:

uuu = Fτ Niuuuτ i , (8.29)

δuuu = FsN juuus j . (8.30)

Introducing these expressions into Eqs. (8.23), (8.25) and (8.21), the equation of
motion can be written as:

δuuuT
s j M

i jτ s üuuτ i + δuuuT
s j K

i jτ s uuuτ i = δuuuT
s j P

iτ , (8.31)

where Ki jτ s andMi jτ s are 3 × 3 building blocks of the stiffness and mass matrices,
respectively, and Piτ is the 3 × 1 force vector. Only surfaces loads are accounted at
this point. These so-called fundamental nuclei are defined as:

Mi jτ s =
∫

h

∫

Ω

Fs N j ρ Fτ Ni dΩ dz, (8.32)

Ki jτ s =
∫

h

∫

Ω

(D Fs N j )
T CD Fτ Ni dΩ dz, (8.33)
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Piτ =
∫

Ω

Fτ Ni PS dΩ. (8.34)

Note that the integrals of the components of these matrices can be split into the
in-plane and the thickness domains, respectively:

Ii(,x)(,y) j(,x)(,y) =
∫

Ω

Ni(,ξ)(,η)
N j(,ξ)(,η)

|JJJΩ |dξdη, (8.35)

Eτ(,z)s(,z) =
∫

h
Fτ(,z) Fs(,z)dz, (8.36)

where JJJΩ is the Jacobian matrix of the finite element and the subindices (, x), (, y)
and (, z) refer to the eventual derivatives of the shape functions and the expansion
polynomials. Standard Gaussian quadrature is used to compute all the integrals. It is
worth noting that the integrals of the expansion functions, Eτ(,z)s(,z) , vary depending
on the multi-layered theory selected:

• ESL, over the laminate thickness:

∫

h
. . . dz =

nl∑

l=1

∫ ztl

zbl

. . . dz, (8.37)

where zbl and ztl are the bottom and top coordinates, respectively, of layer l and nl
is the total number of layers.

• LW, for each layer: ∫

h
. . . dz =

∫ +1

−1
. . . |JJJ z| dr, (8.38)

where JJJ z is the Jacobian of the transformation between r and z.

Finally, by expanding the fundamental nuclei over τ , s, i and j , the system of
equations reads:

MÜ + KU = P, (8.39)

where M, K and P are the global arrays of the dynamic problem and U and Ü are
the vectors of the displacement and acceleration unknowns, respectively. For more
information about the derivation of the finite element matrices in the framework of
CUF, the reader is referred to [2].

8.3.3 Time Integration Scheme

In time-domain analyses, the equation of motion has to be discretized in time as
well. Due to the high frequency regimes involve in GUW problems, the time steps
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are usually small (see Example8.1). For this reason, explicit time schemes are pre-
ferred along with an appropriate mass lumping method which allow it to obtain the
solution of the system at each time step using only matrix multiplications. This capa-
bility is advantageous for GUW problems in which the number of steps increases
considerably. However, since explicit solvers are conditionally stable one must be
careful when defining the time step size.

Since in the present research we compare different higher-order plate theories,
it is not always possible to diagonalize the mass matrix, therefore explicit solvers
do not present any advantage. For this reason, an efficient implicit solver based
on the Newmark method is implemented. Using the Newmark time scheme, the
displacements and velocities at a certain time step are defined as:

U̇t+Δt = U̇t + [(1 − γ )Üt + γ Üt+Δt ],
Ut+Δt = Ut + U̇tΔt + [(1/2 − β)Üt + βÜt+Δt ]Δt2,

(8.40)

where γ and β are the parameters controlling the stability and accuracy of the solver.
An unconditionally stable solver is obtained for γ = 1/2 and β = 1/4. The linear
assumptions of the formulation imply that the stiffness and mass matrices do not
vary along the time, which can be exploited to devise an efficient integration scheme
as follows:

1. Assembly of the mass matrix M and stiffness K (the damping is neglected)
2. Assignation of the time step Δt and computation of the dynamic stiffness matrix

K̄ = K + 1

Δt2β
M (8.41)

3. Initialization of U0, U̇0 and Ü0 for t = t0.
4. Factorization of the dynamic stiffness matrix K̄ = LDLT

5. Start the loop on the time steps
6. Computation of the dynamic force vector at t + Δt :

P̄t+Δt = Pt+Δt + M
(

1

Δt2β
Ut + 1

Δtβ
U̇t +

(
1 − 1

2β

)
Üt

)
(8.42)

7. Solution at current time step Ut+Δt = K̄−1 P̄t+Δt

8. Computation of U̇ and Ü at current step:

U̇t+Δt = γ

Δtβ
(Ut+Δt − Ut ) +

(
1 − γ

β

)
U̇t +

(
1 − γ

2β

)
Δt Üt (8.43)

Üt+Δt = 1

Δt2β
(Ut+Δt − Ut ) − 1

Δtβ
U̇t +

(
1

2β
− 1

)
Üt (8.44)

In this manner, the solution travels in time making only multiplications, therefore
reducing the computational effortmassively. Lumpingmethods such as row summing
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or Gauss–Lobatto–Legendre nodal grids (characteristic of SEM) could be imple-
mented in the current framework for Lagrange-based polynomial expansions. In that
case, explicit schemes such as the central difference method could be employed.

8.4 Laminate Examples

This section shows some numerical applications of the proposed formulation for
the simulation of Lamb waves in laminated structures. A squared composite plate
made of T300/F593 material is studied. The material properties are taken from
[12], being: E1 = 128.1GPa, E2 = E3 = 8.2GPa, G12 = G13 = 4.7GPa, G23 =
3.44GPa, ν12 = ν13 = 0.27GPa, ν23 = 0.2 and density ρ = 1570kg/m3. The over-
all dimensions are 500× 500× 1.72, in mm. Three different lay-ups are considered:
(1) an unidirectional ply, (2) a [02/902]S cross-ply and (3) a [45/−45/0/90]S quasi-
isotropic laminate. A wave packet is excited in all cases by means of a Hanning win-
dow of 100kHz and 5 cycles. The fundamental modes are generated bymeans of two
unitary forces applied at top and bottom in the center of the plate. The forces applied
in-phase excite the antisymmetric modes, whereas when applied out-of-phase, the
symmetric modes appear.

Since the purpose of this study is to test and compare the different multi-layered
theories here proposed, a refined mesh of 6400 cubic plate elements is employed,
ensuring a minimal numerical error from the FE discretization. The quality of the
numerical results produced by the FSDT and higher-order theories is evaluated in
laminate (1) through the computed value for the group velocity, cg , of the A0 mode
in the x-direction. This value is obtained from the peak of the envelope of the time
signal evaluated at x = 150mm on the central axis. Table8.2 includes the results
compared to those of a 3D SEM model of the same case [12]. It can be noticed that
the symmetric terms in the thickness expansion (HL2, HL4) do not have an effect
in the solution when only antisymmetric responses are present in the solution. The
contour plots of the waves propagating over the plate are shown in Figs. 8.5 and 8.6.
Note that in the latter, for a symmetric excitation both S0 and SH0 are visible.

Multi-layered structures represent a much bigger challenge for the numerical
model. LW models can be used to provide 3D solutions but the computational costs
rise up considerably as the number of layers increases. Figure8.7 shows the computed
A0-waves in laminates (2) and (3). It is possible to observe that the existence of ±45

Table 8.2 Computed group
velocities of the A0-wave
propagating in the
unidirectional laminate

Model Group velocity (A0) (m/s) Error (%)

SEM 3D [12] 1794 –

FSDT 1884 5.04

HL1 1884 5.04

HL2 1884 5.04

HL3 1773 1.17

HL4 1773 1.17
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Fig. 8.5 Displacements (uz) at t = 7.5 × 10−5 s showing the A0-wave propagating over the T300
ply. Model HL3

(a) ux (b) uy

Fig. 8.6 Displacement fields at t = 5 × 10−5 s showing a the S0-wave and b the SH0-wave. Model
HL3

plies at top and bottom in laminate (3) has a notable effect on the shape of the
wavefront. More efficient ESL models are tested and compared LW solutions to
evaluate under what circumstances they can provide satisfactory results. It is found
that for the two multi-layered plates considered, the FSDT models differ from the
LW solutions in 14.7% for the [02/902]S and in 10.6% for the [45/−45/0/90]S . If
a third-order ESL model is employed, these errors go down to 5.7% for the cross-
ply and 0.5% for the quasi-isotropic laminate. These results show that higher-order
ESL elements outperform FSDT elements in GUW problems, showing high levels
of accuracy as the number of plies increases.
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(a) Cross-ply (b) Quasi-isotropic

Fig. 8.7 Screenshots of the A0-wave in a the [02/902]S cross-ply at t = 7.5 × 10−5 s and b
[45/−45/0/90]S laminate at t = 1.125 × 10−4 s

8.4.1 Damage Detection

The capabilities of the proposed multi-layered elements for the modeling of com-
posite damage is also addressed. For that, a defect is simulated in the quasi-isotropic
laminate by removing the uppermost ±45 plies in a sector of dimensions 37mm ×
37mm. Using a LW approach based on Legendre expansions, the modeling of this
defect can be done straightforwardly, as only two expansion domains are removed in
the correspondent elements. A screenshot of the traveling as it propagates over the
damaged area is included in Fig. 8.8. It is possible to observe the distortion of the

Fig. 8.8 Scattering of the
A0-wave in the
quasi-isotropic laminate with
a defect (uppermost ±45
missing in the sector marked
with the dashed line)
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wavefront, which is slowed down at the damaged region. LW solutions like the one
included here are necessary to acquire knowledge of the scattering of Lamb waves
under different types of defects.

8.5 Conclusions

This chapter has shown the implementation of multi-layered structural theories for
the analysis of ultrasonic waves in composites with applications to structural health
monitoring (SHM). Two classes of plate kinematics are confronted, namely equiv-
alent single layer (ESL) and layer wise (LW). Widely used first shear deformation
theories (FSDT) can be generated as a particular case of the former one. Higher-order
polynomials are used as interpolation functions. The purpose of this dissemination
is to propose solutions for the time-domain analyses of Lamb waves which can fill
the gap between standard FSDT plates and solid models. It is demonstrated that LW
solutions are able to provide a 3D resolution in the computation of wave propaga-
tion. Higher-order ESL solutions are able to show LW-like levels of accuracy as the
number of plies increases.
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Chapter 9
Improving the Static Structural
Performance of Panels with Spatially
Varying Material Properties Using
Correlations

S. van den Broek, S. Minera, E. Jansen, A. Pirrera, P. M. Weaver
and R. Rolfes

Abstract This chapter introduces an approach to systematically analyze
stochastic distributions of spatially varying material properties in structures. The
approach gives insight into how spatial variations of material properties affect the
mechanical response of a structure. If sufficient knowledge of the production pro-
cesses is available, this allows designers to analyze the probability that a certain
design criterion (e.g. a certain buckling load level) is met. Stochastic structural anal-
yses can be used to analyze how variations are correlated to a structural measure.
This gives information on the sensitivity of the structure with respect to variations. In
the present work, this is used to improve the structural performance by distributing
a material pattern according to a pattern based on the sensitivity topology. This
approach is illustrated by redistributing the material properties of an axially loaded
panel on the basis of the correlation of the spatially varying Young’s modulus with
the linear buckling load of the panel.

9.1 Introduction

9.1.1 Background and Motivation

Spatial variations of structural and material properties are important aspects which
should be included in the design of structures. Mainstream structural engineering
practice is for geometric imperfections of a structure to be taken into account by
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using buckling mode shape imperfections within stability analyses. Structures are
usually analyzed with the assumption of homogeneity of material properties. This
chapter focuses on the effect of spatially varying material properties with respect to
thin-walled structures. There are a variety of phenomena that can affect the mate-
rial properties of a composite structure. Differences in the chemical composition
of materials and processes such as curing, introducing air voids [18], can affect the
mechanical properties of materials. Misalignments in the fiber angle also exist within
a lamina [40]. The effects of these variations are studied in the field of reliability [5].
Quantifying these variations in real structures is not trivial. Many of these variations
are highly dependent on the materials used, as well as the production processes uti-
lized [10]. There has been recent work related to finding properties to characterize
the shape of these distributions [25, 33] and statistical properties of FRP composite
panels [15, 32].

Getting a better understanding of the variations of material properties makes
it possible to quantify the probability of mechanical response characteristics. This
quantification can directly lead tomore robust structures, which are reliable within an
expected range of parameter variation. The information generated in these analyses
also has the potential to identify the sensitivity of a structural response characteristic
with respect to spatial variations. These sensitivities can be used to determine points
which may be critical for inspection, or be used to selectively reinforce sensitive
areas and thereby increase the overall performance of the structure.

9.1.2 Previous Work

Imperfections can have a significant effect on the post-buckling response of struc-
tures. This is particularly prominent in buckling of imperfection-sensitive structures,
the cylindrical shell being a well-known example. A lot of work has been done to
analyze the effect of geometric imperfections on the buckling behavior of thin-walled
structures.

Stochastic analysis and optimization of structures prone to buckling have been
carried out by making use of buckling modes and by alternative ways to describe
spatially random geometric imperfection patterns, [3, 4, 12, 13, 17, 26, 27, 37].

The geometric imperfections of a structure are not the only factor affecting the
post-buckling response. Variations in thickness, material properties, boundary con-
ditions and loads can also have a significant effect [2, 7, 13, 22, 23]. All of these
factors play a role in actual structures, due to manufacturing processes and approxi-
mations made in the design processes. The analysis of these variations is not trivial,
and difficult to achieve in most commercial finite element software.

Systematic analysis of these variations is done within the Stochastic Finite Ele-
ment Method (SFEM) [5, 6]. The main issue with approaching stochastic structural
problems is the necessity of accurate statistical and stochastic data of structures.
There is only a limited amount of experimental data available which analyzes the
material variations [25, 33]. Having full statistical and correlation data of material
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data, force imperfections, boundary imperfections, thickness variation and geometric
variation of a structure requires extensive experimental research.

Many authors instead focus on analyzing different distributions, in an effort to
find a critical, worst case distribution [22, 24, 28]. This approach can give engineers
information on which distributions to avoid if possible, and can be used for design
guidelines. It does not, however, lead to quantitative results which can be used to
estimate the reliability of a structural performance measure.

9.1.3 Current Work

Theapproaches discussed thus far have focusedonquantifying the structural response
given certain input parameters. An alternative approach presented in this chapter is
to gain a better understanding of how sensitive a structure is to spatial variations.
This approach looks at the effect of a spatially varying parameter on the structural
response, and finds the correlation of this parameter with a structural performance
measure on the topology of the structure. The analysis shown in this chapter shows
how correlations of Young’s modulus variations can be used to improve the linear
buckling load.

This approach can help engineers in identifying areas of a structure sensitive to
spatial variations. This information can be used to make product inspection more
effective. Another use for this sensitivity information is to enhance the performance
of the structure. The sensitivities obtained, when properly normalized, can be seen
as a performance gradient and can be used to improve the correlated structural per-
formance measure. When these sensitivities are used to change the nominal design
it is possible to enhance the structure to make it more effective with respect to the
corresponding design criterion.

9.2 Applying Material Property Variations to a Structure

The approach used in the current chapter is to apply material property imperfections
using randomfields. Randomfields are fields in n-dimensional spacewhich distribute
a parameter in space with a distribution (usually Gaussian). These points are not
completely random, but are correlated with each other. There is a large variety of
methods which can be used to generate random fields [31]. These methods have their
own advantages and disadvantages. This section gives a brief overview of the basics
of random fields and describes the method used to generate the fields in this chapter.
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9.2.1 Basics

The values of a random field are usually generated as a (log)normal distribution with
an associated mean (μ) value and standard deviation (σ ). These points are correlated
in space, thereby giving a relationship to a point’s value and those in its vicinity. The
mathematical definition of correlation is

ρX,Y = cov(X,Y )

σXσY
= E[(X − μX )(Y − μY )]

σXσY
(9.1)

which is bound between −1 ≤ ρ ≤ 1 where −1 would represent perfect inverse
correlation (y = −x for example) and 1 perfect correlation (x = y for instance).
For the generation of fields it is useful to switch to a more convenient definition
of correlation which can be used as an input of a function. The two most common
definitions of correlation functions found in literature are

ρexp = e− ΔL
Lc (9.2)

ρsexp = e
−

(
ΔL
Lc

)2

, (9.3)

which are known as the exponential and squared exponential definitions. The expo-
nential type has a sharper initial decrease in the correlation moving away from a
point. The squared type has a comparatively smoother correlation moving away
from a point. The squared however does reduce correlation faster than the exponen-
tial type after the correlation length has been reached. They have the same value for
correlation at the correlation length (e−1). A graph comparing the value of correlation
ρ over distance for both functions a value of Lc = 5 and Lc = 10 can be found in
Fig. 9.1.

Fig. 9.1 Comparison
between correlation
functions
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9.2.2 Generating Fields

There are numerous approaches to generate random fields, which can be continuous
or discretized. Continuous methods are usually based on a series expansion, such as
the Karhunen-Loève (KL) expansion [14, 30]. A limitation to these approaches is
that they usually have numerical problems at boundaries [1, 16].

The approach taken in this approach uses discretized fields. There are many dis-
crete approaches, such as Fourier Transformation approaches1 [29] or local average
subdivision [9]. The approach taken in this work is one based on covariance matrix
decomposition (CMD). This done due to the simplicity to change the correlation
function, flexibility in discretization, potential to easily implement geodesic length
and fewer numerical difficulties than FFT-type approaches [8, Chap. 2].

9.2.2.1 Discretized Spatially Correlated Random Values

Discretized approaches use spatial grids which are usually constantly spaced. The
space between nodes should be in the range of Lc

10 to
Lc
5 for the exponential definition

(Eq. (9.2)) and between Lc
4 to Lc

2 for other definitions [16].
A field can be defined as

zc = zc(xi ) =
⎡
⎢⎣
zc(x1)

...

zc(xn)

⎤
⎥⎦ . (9.4)

in which x has the dimension�m,m = 1, 2, 3 and n the number of points in the field.
This means that a 2D field can be represented through a matrix of scalar elements.
The approach used in this section generates fields with a zero mean, unit standard
deviation (X). These fields can be transformed to the desired field using

Y = μ + σX (9.5)

whereY is the correctly scaled randomfield. Thefields used in thiswork are generated
using the covariance matrix decomposition method.

9.2.2.2 Covariance Matrix Decomposition

Covariance matrix decomposition makes it possible to generate a field using explicit
correlation values of points relative to other points. This done by first assembling a
correlation matrix, a symmetric positive definite matrix in which the correlation of

1These are classified as discrete approaches as they are evaluated at discrete points, and do not
result in a continuous function.



148 S. van den Broek et al.

points within field are defined

Ri j = cov(yi , y j )√
σyi σy j

→ R =

⎡
⎢⎢⎢⎣

1 ρ(y1, y2) . . . ρ(y1, yn)
ρ(y2, y1) 1 . . . ρ(y2, yn)

...
. . .

...

ρ(yn, y1) ρ(y2, yn) . . . ρ(yn, yn)

⎤
⎥⎥⎥⎦ , (9.6)

in which ρ(yi , y j ) = ρ(y j , yi ). Note that the correlation here can be calculated using
Eqs. (9.2) or (9.3).

The covariance matrix decomposition method (CMD) generates random fields
using

zc(xi ) = Lχ, (9.7)

in which L is a decomposed version of the R matrix, and χ a vector with zero mean
and unit variance. Taking the definition of covariance in Eq. (9.2), it is possible to
show that R can be decomposed into two matrices

R = cov[x, x] = E(x, xT ) − 0 · 0
= E(LχLχT ) = LE(χχT )LT = LILT = LLT . (9.8)

This decomposition operation can be done using differentmethods, themost common
methods are Cholesky factorization and eigenmode factorization. Cholesky decom-
position is found in many books on linear algebra and computational methods, e.g.
[38, Ch. 7]. Eigenmode decomposition can be done as

R = QΛQ, (9.9)

in which Λ is a diagonal matrix with the eigenvalues of R on the diagonal, and Q
contains the eigenvectors of the matrix. The matrix L can be extracted from

R = QΛ̂Λ̂Q = LLT → L = QΛ̂, (9.10)

in which Λ̂ = diag(
√

λ). As the correlation matrix grows, it can become ill-
conditioned, becoming very close to being singular, causing numerical problems.
In such cases, the Cholesky decomposition may fail, as eigenvalues which are (close
to) 0 might show up as negative values in the algorithm. This results in imaginary
eigenvalues, which are not realistic. This can be partially resolved by setting eigen-
values which are below a certain threshold to zero. A comparative study showed that
that eigenmode decomposition is slightly more accurate in generating the random
fields [11, Sect. 4.2]. A further advantage is that random fields can be generated by
only calculating the dominating eigenvectors [31, 36]. Though it is necessary to first
analyze the error relative to the field size to make sure that the field is not unduly
constrained.
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In general the decomposing of thematrix is themost time consuming computation
within this method. Once thematrix has been decomposed, it is fairly straightforward
and fast to compute new random fields. All that is required is a new random unit
variance vector to be multiplied with the decomposed matrix (Eq. 9.7). It is also
possible to sample these random fields in a more clever way, using spectral or Latin
Hypercube Sampling (LHS) related methods [39].

9.2.3 Random Field Discretization and Mapping
of Variations to Structure

The fields from Sect. 9.2.2.1 are generally not discretized in the same points as
the random field mesh. There are a variety of methods to calculate the value at an
element or integration point found within a field. A random field is ideally located in
such a way to have the finite element/integration point between random field nodes
(mapping techniques can be used if this is not the case). These techniques are not
very easy to combine with complex structures, and in the case of integration points
requires a random field mesh much finer than the structural mesh.

Other methods are less dependent on the positioning of the meshes with respect
to each other. The shape function (SF) method for instance, uses a shape function in
the form of

Ĥ(x)
q∑

i=1

Ni (x)zc(xi ) x ∈ Ωe,

where Ni is the shape function (usually polynomial),Ωe is the domain of an element
and xi are the coordinates of the i th node [35]. An extension of this is the Optimal
Linear Estimation (OLE) method, in which a continuous surface is made of the
random field by minimizing the variance of the approximation error at each point
[16].

Another approach is taken by the Spatial Average method (SE). In this method the
field over an element is described by the spatial average of a field over the element

Ĥ(x) =
∫
Ωe

H(x)dΩe∫
Ωe

dΩ
= z̄c(xc). (9.11)

This creates step-wise discontinuities along the boundaries of the elements [35].
There are a few limitations to this method, its nature makes it very hard to be used for
anything other than Gaussian distributions [20]. The averaging process also reduces
the variance in the spatially averaged field [6, 34, Sect. 7.6].

It should finally be noted that not all discretization methods can be combined
with all random field generation methods. The CMDmethod is easy to combine with
the OLE and SA methods. The OLE uses an eigendecomposed covariance matrix to
find the optimal shape functions, which is also used in the CMD method. Similarly,
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the SA method can be easy to implement in the CMD, as it can use the covariance
between two local averages.

9.2.4 Post-processing Results

The results generated using the previous methods have to be post-processed in order
to find interesting patterns or variations in the structure. This section discusses how
these can be recovered from stochastic runs, and how these can be applied to improve
a structural performance measure.

9.2.4.1 Analyzing Structural Measures

Results of structural analyses can be recovered through various structural measures,
including both input parameters and response measures. These measures can for
example correspond to input parameters such as material properties, and to structural
response measures such as stress, strain, displacement and linear buckling load or an
expression combining these. Analyzing one of these properties at a certain coordinate
will result in a list of n values. These values will give a statistical mean and standard
deviation, and can also be used to generate an estimation of the probability density
function of the response.

It is often of interest to find relationships between these properties, for instance
how material property variations affect the linear buckling load. In these cases it
is possible to analyze the correlation of two parameters. In some cases it is more
relevant to analyze the average of a measure throughout a structure. When analyzing
the linear buckling load the structure’s average Young’s modulus may be of interest,
as well as the local effect of these variations.

9.2.4.2 Finding Patterns of Correlation

As mentioned in the introduction, stochastic variations can also be used to identify
areas which affect a structural measure. To do this, fields should be applied to vary a
chosen parameter. It is then possible to calculate the correlation of every point related
to a measure. The resulting pattern forms a sensitivity topology, showing the relative
sensitivity of the structure to local variations.

An example would be to find the distribution of correlation of the Young’s
modulus to the linear buckling load. This would give a topology of a non-dimensional
sensitivity of the effect of perturbations.
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9.2.5 Perturbing Structure to Improve Performance

The patterns generated using the structural correlation analyses of the previous
section represent a sensitivity of a structural measure to parameter redistribution.
These patterns are non-physical, and can be interpreted to a sensitivity field to redis-
tribution. Negative values in the field indicate that the measure will increase by
moving e.g. material from there to an area which has a positive value.

One approach to apply these non-dimensional fields Fpt is by renormalizing the
fields to Fpt,n ∈ �|0 ≤ Fpt,n ≤ 1, where the mean has an expected value of 0.5. The
actual mean will vary depending on the minima and maxima of the field. These fields
can then be applied to a structure to vary a parameter using as

apt = amin + (amax − amin)Fpt,n, (9.12)

where amin and amax are the minimum and maximum value of the parameter.
In certain cases it may be of interest to scale the fields to localize variations,

smoothen them or affect to mean value of the field. This can be achieved by raising
the field to an exponent

apt = amin + (amax − amin)F
m
pt,n, (9.13)

where m is a scaling parameter. The mean value, range and scaling parameter are all
linked. To find a specific mean value for a certain range a unique m value has to be
computed numerically. Due to the nature of the fields it is not trivial to apply these
patterns onto a structure.

9.3 Numerical Example

The approach of the previous section is demonstrated through a numerical example.
This example is analyzed to find the mechanical response, the linear buckling load
is then increased by using a redistributed Young’s modulus.

This example is run using the covariance matrix decomposition method described
in Sect. 9.2.2.2. The fields are generated on a shellmeshwithin a 3Dmesh, and used to
map to the integration points of a 3D mesh using shape functions. The 3D structural
solver is based on a Serendipity Lagrange Unified Formulation developed at the
University of Bristol [21]. This mapping procedure is illustrated in Fig. 9.2. The
random field is used to evaluate values which are part of the structural mesh. Shape
functions are used during matrix assembly to assign the correct material properties
to each integration point in the structure.
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Fig. 9.2 Mapping between random field and 3D structural mesh

9.3.1 Description of the Structure

The analyses used as an example are performed on a curved panel with the geometry
shown in Fig. 9.3. The structure is isotropic, and has a Young’s modulus of 181
GPa and ν = 0.3. The panel is restricted to load-direction displacement at the loaded
edges. Rigid body modes in the load direction are removed by applying two point
constraints in the center of the panel along the straight edges (at L = 0.075). The
baseline linear buckling load, without material variations is 178 930 N, which was
verified using a commercial FE solver.

9.3.2 Linear Buckling Analysis

The linear buckling analysis was run 2000 times with a correlation length Lc = 0.01
m and a standard deviation of the Young’s modulus of Eσ = 9.05 GPa, which is
equivalent to a 5% coefficient of variation. The results show a spread of the linear
buckling load of σ = 897.6 N with a mean of μ = 178 731 N. This is a lower mean

Fig. 9.3 Geometry of curved panel
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than in the baseline homogeneous results, meaning that most variations result in a
lower linear buckling load. A significant amount of results have a linear buckling
load that is higher than the baseline result. The probability density and cumulative
density functions can be found in Fig. 9.4.

The results shown make it possible to determine a probability that a certain linear
buckling load is achieved. This does however require that the field characteristics,
both in the form of statistical distribution and correlation function are well defined,
which is not the case formost structures.Using the approach described in Sect. 9.2.4.2
a pattern of sensitivities can be found. The pattern associated with the first buckling
load is shown in Fig. 9.5.

When comparing the pattern of correlation of Young’s modulus to the first buck-
ling mode, shown in Fig. 9.6, it is clear that there is some relationship between the
correlation pattern and the buckling mode. The locations associated with a higher
sensitivity to the buckling load correspond to the areas in which buckles are formed.
Areas in which buckling mode deformations are limited are relatively unaffected by
the material property variations.

9.3.3 Enhancement of Linear Buckling Behavior

Using the pattern of sensitivities of the previous section it is possible to redistribute
material properties as described in Sect. 9.2.5. In this hypothetical scenario the objec-
tive is to increase the buckling load of a structure using functionally graded materials
(FGM), without increasing the mean Young’s modulus of the structure. FGM are
materials that have varying material properties throughout the structure, through the
thickness, in-plane, or selectively within additive manufacturing. In this example the
Young’s modulus will be varied between 108 and 254 GPa. This is an estimated

Fig. 9.4 Probability functions of the buckling load of the curved panel under compression
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Radial

A
xi
al

Fig. 9.5 Correlation of E with first linear buckling load

Fig. 9.6 First linear eigenmode

range of the Young’s modulus from the Ti64Al4V/TiC functionally graded materials
described in [19]. These are materials that can be printed, allowing for tuned levels
of material stiffness throughout the structure. To retain the mean stiffness and make
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it a reasonable study, an additional boundary condition is added for the mean value
of the Young’s modulus, forcing it to remain the same as the baseline study (181
GPa).

Using Eq. (9.13) to apply material properties an exponent of m = 0.56 is used in
order to fully utilize the range, andmaintain the original mean. The resultingYoung’s
modulus distribution is found in Fig. 9.7. This distribution leads to an increase in
linear buckling load of 10.2%.

Additional studies have been done in which, while retaining the average Young’s
modulus the range was varied by either increasing the minimum or decreasing the
maximumYoung’s modulus. The results from this analysis can be found in Table 9.1.
The results indicate that decreasing the maximum Young’s modulus has a more
significant effect than increasing the minimum. This seems plausible as this limits
the stiffness locally, while varying the minimum has the effect of limiting the area
in which stiffening can take place, while maintaining the mean stiffness constraint.

Fig. 9.7 Young’s modulus distribution
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Table 9.1 Improvement range by varying the range of Young’s modulus within the Emin = 108
GPa and Emax = 254 GPa range

Variation of minimum Young’s modulus Variation of maximum Young’s modulus

Emin , GPa m Fcrit increase (%) Emax , GPa m Fcrit increase
(%)

108 0.56 10.2 190 0.08 1.8

120 0.64 9.8 200 0.17 3.5

130 0.75 9.4 210 0.25 4.9

140 0.98 8.8 220 0.33 6.3

150 1.08 8 230 0.40 7.6

160 1.43 6.9 240 0.47 8.9

170 2.19 5 250 0.56 10.2

9.4 Concluding Remarks

Using the techniques presented in this chapter it is possible to analyze the properties
of structures affected by spatially varying material properties. This does however
require the input of accurate statistical and correlation properties of these parameters,
which are often not directly available for real structures. What can be recovered is a
mapping of the structure’s sensitivity to variations. These variations can be used to
redistribute material properties or to change the geometry of the structure. This can
lead to enhanced structural performance.

The current results in the example of the curved panel were generated using a
linear pre-buckling assumption. In certain cases non-linear effects can influence the
pre-buckling state and buckling load and consequently influence the pattern of cor-
relation. In these cases correlation patterns can be generated using a bifurcation
buckling analysis on the nonlinear pre-buckling state or for the limit-point buckling
load. In non-linear analyses it would also be possible to use other structural perfor-
mance parameters, such as the slope of the load-displacement curve, to optimize the
structure to be stiffer or more compliant. This is of particular interest in the tailoring
of post-buckling responses of structures.
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Computing Research Centre, University of Bristol—http://www.bris.ac.uk/acrc/ as well as compu-
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Chapter 10
Multiscale Identification of Material
Properties for Anisotropic Media:
A General Inverse Approach

L. Cappelli, M. Montemurro, F. Dau and L. Guillaumat

Abstract This work deals with the problem of characterizing the material
properties of a composite plate, made of unidirectional fiber-reinforced laminae,
at each pertinent scale (microscopic and mesoscopic ones). The characterization is
achieved through a single non-destructive harmonic test performed at the macro-
scopic scale of the specimen. A general multi-scale identification strategy (MSIS)
is proposed to accomplish this goal. The multi-scale identification problem is split
into two interdependent sub-problems which are stated, at both levels, as constrained
minimization problems. At the first level the lamina properties are retrieved by min-
imizing the distance between the numerical and the reference harmonic responses
of the multilayer plate. Conversely, the second-level problem aims at characterizing
fiber andmatrix elastic properties by exploiting the results of the first step. The whole
procedure is based on a special global hybrid optimization algorithm and on the strain
energy homogenization method of periodic media as well. The effectiveness of the
approach is illustrated through a meaningful numerical benchmark.

10.1 Introduction

Nowadays, composite materials are widely used in several fields, from automotive
applications to aerospace ones, and engineers are continuously looking for strate-
gies that allow increasing performances, designing complex geometry and providing
stiffness and strength where needed.

In order to properly conceive optimized solutions, the characterization of the
composite material properties at each pertinent scale is a mandatory task. One of the
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main issues of compositematerials is related to the difficulty of characterizing the full
set of elastic properties at the lower scales, i.e. microscopic (that of the constitutive
phases) and mesoscopic (the lamina level) ones.

From an industrial point of view, it is interesting to investigate about the cost
reduction of experimental characterization tests, which are usually destructive pro-
cedures that must be carried out on a significant number of samples in order to get
reliable results [1]. Moreover, as far as concerns the characterization of the elas-
tic properties of the constitutive phases, a large data dispersion is obtained during
micro-scale experimental tests, due to the difficulty to properly set the experiment
and to handle the microscopic constituents [10].

Concerning the experimental (destructive) tests, they can be divided into meso
and micro-scale characterization tests. The most important meso-scale tests are the
ASTM tests (e.g. tension test for flat specimens, three/four points bending test etc.).

Nevertheless, ASTM standard tests conducted at the lamina level are not able
to provide the full set of 3D elastic properties: only the in-plane material properties
togetherwith an approximated value of the out-of-plane shearmoduli can be retrieved
through these tests.

Conversely, only few standard tests can be carried out at the microscopic scale:
single fiber test to obtain the Young’s modulus along the fiber longitudinal direction
(ASTM D3379) and the matrix tensile test (ASTM D638). In order to characterize
the rest of the constitutive phases properties only non-standard tests are available
in literature: pull-out [19], micro-indentation [10], fragmentation tests [7], etc. It is
noteworthy that unconventional destructive tests present some major shortcomings:
the experimental set-up is quite complex and the obtained results show a significant
dispersion, see [24].

In order to go beyond the main restrictions imposed by destructive tests, the
research activity here presented focuses on the development of a multi-scale iden-
tification strategy (MSIS), based on a non-destructive test, able to characterize the
elastic properties of the composite at each relevant scale.

The main idea behind this approach is quite simple: the proposed MSIS aims at
identifying the whole set of elastic properties at both lamina-level and constitutive
phases-level starting from the analysis of the macroscopic dynamic response of
a multilayer plate. In particular, the macroscopic dynamic behavior can be easily
obtained by means of non-destructive modal tests: the information restrained in the
harmonic spectrum response of the specimen can be then exploited to carry out the
multi-scale characterization process.

It is noteworthy that the utilization of identification strategies exploiting the infor-
mation restrained in a macroscopic modal analysis is not new. Such an approach has
already been applied in literature [8, 25] for characterizing the elastic properties
of the constitutive lamina. An assessment of these approaches is available in [20].
Usually these techniques, make use of an optimization algorithm in order to mini-
mize the difference between the measured dynamic response (typically a given set
of natural frequencies) and the numerical one calculated via a finite element model
of the structure [18].
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However, to the best of the authors’ knowledge, this approach has never been
generalized to characterize the material and geometrical features of the microstruc-
ture of composite materials. Indeed, in the context of the MSIS, the material charac-
terization problem is split into two distinct (but related) sub-problems. The first level
of the procedure focuses on the transition frommacroscopic scale to mesoscopic one
and aims at minimizing the distance between the reference harmonic response of the
structure and its numerical counterpart: the goal is to search for the elastic proper-
ties of the constitutive ply minimizing this distance. The second step focuses on the
transition frommesoscopic scale to microscopic one: the goal is the determination of
both geometrical and elastic properties of the constitutive phases meeting the lamina
elastic properties resulting from the first-level inverse problem.

The MSIS is characterized by several original features. On the one hand, it
relies on a special hybrid optimization tool to perform the solution search, i.e. an
in-house code made by the union of a special genetic algorithm (GA) (able to deal
with problems characterized by a variable number of design variables [11]) and of
a classical gradient-based one. On the other hand the link between the two identi-
fication problems is ensured by a general numerical homogenization scheme: the
one utilizing volume-averaged stresses determined on a suitable representative vol-
ume element (RVE) of the material in the framework of the strain energy method of
periodic media [2].

The Chapter is structured as follows: the problem and the MSIS are introduced
in Sect. 10.1. The mathematical formulation of the first-level inverse problem and
the related numerical aspects are discussed in Sect. 10.2.3, while the micro-scale
characterization problem as well as the numerical homogenization scheme (and the
related FE model) are presented in Sect. 10.2.4. The numerical results of the MSIS
are illustrated and discussed in Sect. 10.3. Finally, Sect. 10.4 ends the Chapter with
some conclusions and perspectives.

10.2 Multi-scale Identification of Composite Elastic
Properties

10.2.1 Problem Description

Themulti-scale inverse approach presented in this study is applied to a referencemul-
tilayer composite plate made of unidirectional laminae whose geometry is illustrated
in Fig. 10.1.

The constitutive ply is made of carbon-epoxy fiber Hexcel T 650/F584 pre-
impregnated tapes, with a fiber volume fraction V f = 0.555: the material properties
of the constitutive phases composing the ply (taken from [21]) are listed in Table 10.1.
As it can be noticed, the fiber has a transverse isotropic behavior, while the matrix
is isotropic.
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Fig. 10.1 Geometry of the multilayer composite plate (sizes in (mm))

Table 10.1 Micro-scale reference material properties for the fiber T 650/35 − 3K and the matrix
F584 (taken from [21])

Fibre properties Matrix properties

E f
1 (MPa) E f

2 (MPa) ν
f
12 ν

f
23 G f

12 (MPa) Em (MPa) νm

276000.0 17300.0 0.250 0.428 11240.0 4140.0 0.350

The reference laminate is constituted of eight identical plies (i.e. same material
and thickness) arranged according to the following stack [0◦/ − 45◦/45◦/90◦]S. The
thickness of the lamina is tply = 0.28225 mm. The orientation angle of the generic
ply is positive according to counter-clockwise rotation around the z-axis: x-axis
indicates the 0◦ orientation.

The analysis presented in this work constitutes a numerical validation of the
MSIS: the reference response of the structure (at each scale) is determined by means
of a multi-scale numerical analysis on the reference configuration of the laminate
described above.
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In particular, as described in Sect. 10.3, the reference material properties of the
constitutive phases are used in order to calculate, on the one hand, the reference
effective elastic properties of the lamina at the mesoscopic scale and, on the other
hand, the reference harmonic response and the reference natural frequencies of the
multilayer plate.

Concerning themicroscopic scale the following hypotheses apply: (a) thematerial
of both constitutive phases has a linear elastic behavior, (b) perfect bonding condition
at the fiber-matrix interface is considered, (c) the damping capability of both phases
is disregarded.

As far as mesoscopic and macroscopic scales are concerned, the following
assumptions are made: (a) the constitutive lamina has an elastic orthotropic behavior,
(b) perfect bonding condition at the interface between two consecutive plies is con-
sidered, (c) the damping behavior of the ply is neglected, (d) the laminate kinematic
is described in the framework of the first-order shear deformation theory (FSDT).

10.2.2 Description of the MSIS

Themain goal of theMSIS is to find thematerial properties of the considered structure
at each relevant scale by exploiting the information restrained in the macroscopic
dynamical response of the composite. This reference response can be provided either
by a non-destructive harmonic test or by a numerical harmonic analysis conducted
on a reference structure. This latter is the case considered in the present study: the
reference configuration of the multilayer plate as well as the reference dynamical
results are presented in Sect. 10.3.

In this background, the problem of characterizing the elastic properties of the
composite at different scales can be split into two distinct (but related) inverse prob-
lems.

• First-level inverse problem. This phase involves the transition frommacroscopic
scale (laminate-level) to mesoscopic one (ply-level): the goal is to characterize the
ply elastic properties (the design variables of this phase) minimizing the distance
between the numerical harmonic response of the multilayer plate and the reference
one.

• Second-level inverse problem. This step focuses on the transition from meso-
scopic scale to microscopic one (that of the constitutive phases): the goal is to find
the optimum value of elastic properties of both fiber and matrix (the optimization
variables of this phase) meeting the set of the lamina elastic properties provided
by the first-level problem. In this second phase, the link between the two scales is
ensured bymeans of a homogenization analysis performed on the numerical model
of the RVE of the material in order to compute the effective elastic properties of
the ply.
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10.2.3 Mathematical Formulation of the First-Level Inverse
Problem

10.2.3.1 Optimization Variables, Objective Function and Constraints

The aim of the first-level inverse problem is the characterization of the elastic prop-
erties of the constitutive lamina. In this background, the identification problem is
formalized as a classical inverse problem. The goal is to find the set of elastic prop-
erties of the ply (3D case) minimizing the distance between the reference dynamic
response of the structure and that provided by the numerical model of the structure.

All the ply material parameters can be collected into the vector of design variables
xI as follows:

xI =
{
E1, E2,G12,G23, ν12, ν23

}
. (10.1)

Six parameters have to be identified, according to the general hypotheses recalled
in Sect. 10.2 and by considering the five planes of orthogonal symmetry of the
RVE illustrated in Fig. 10.3. In particular, the following equalities hold E2 = E3,
G12 = G13 and ν12 = ν13.

It is noteworthy that the ply elastic properties cannot get arbitrary values, rather
they have to satisfy a set of existence constraints in order to ensure the positive
definiteness of the lamina stiffness tensor:

gI1(x
I) = |ν12| −

√
E1

E2
< 0,

gI2(x
I) = |ν23| −

√
E2

E3
< 0,

gI3(x
I) = 2 · ν12 · ν13 · ν23 · E3

E1
+ ν2

12 · E2

E1
+ ν2

23 · E3

E2
+ ν2

13 · E3

E1
− 1 < 0. (10.2)

Moreover, the lamina elastic constants vary within the design space defined in
Table 10.2, i.e. by introducing suitable lower and upper bounds for each design vari-
able. The lower and upper bounds are chosen equal to 80 and 120% of the reference
material properties of the lamina, respectively (which are given in Table 10.4). The
only exception is ν23 whose lower and upper bounds are set equal to 85 and 115%
of the reference counterpart.

Table 10.2 First-level inverse problem: design variables lower and upper bounds

Ply elastic properties E1 (MPa) E2 (MPa) ν12 ν23 G12 G23

Lower bound 124022.7 6558.3 0.232 0.433 3069.7 2626.2

Upper bound 186034.1 9837.4 0.348 0.586 4604.5 3939.3
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Concerning the expression of the first-level objective function, an error estimator
of the least-square type has been chosen:

ΦI(xI) = 1

Np · Ns

Np∑
q=1

Ns∑
r=1

(
fr − f refr

f refr

)2

+
(
Hr,q(xI) − H ref

r,q

H ref
r,q

)2

. (10.3)

In the previous equation, fr is the r -th sampled frequency, while Hr,q is the fast
Fourier transform (FFT) of the frequency response function (FRF) determined at the
q-th sample point of the multilayer plate and evaluated at the r -th sampled frequency.
Of course, f refr , H ref

r,q are the same quantities evaluated on the reference configuration
of the laminate.

Ns and Np are the number of sampled frequencies and of sample points over the
laminate (where the FRF is computed/measured), respectively.

In order to get a numerical harmonic spectrum really close to the reference one
(and also to match the reference natural frequencies) a set of constraints on the
laminate eigenfrequencies is considered:

gI3+ j

(
xI

) =
∣∣∣∣ f jn − f jn ref

f jn
ref

∣∣∣∣ − ε j ≤ 0, j = 1, ..., n f . (10.4)

In Eq. (10.4) n f is the overall number of natural frequencies involved in the
analysis (i.e. in the frequency range used for the determination of the FRF), whilst
f jn and f jn

ref are the j-th numerical and reference eigenfrequency, respectively. ε j

is a user-defined tolerance on the relative error for each natural frequency: in this
study a maximum relative error equal to 0.005 has been considered.

Finally, the first-level inverse problem can be stated as a classical constrained
non-linear programming problem (CNLPP):

minxI ΦI
(
xI

)
,

subject to :
gIj

(
xI

) ≤ 0, j = 1, ..., n f + 3. (10.5)

10.2.3.2 Macroscopic Finite Element Model

A picture of the FE model of the multilayer plate at the macroscopic scale together
with the applied loads and boundary conditions (BCs) is illustrated in Fig. 10.2.
Such a FE model (developed within ANSYS®environment) is built by using
ANSYS®SHELL281 layered shell elements with eight nodes and six degrees of
freedom (DOFs) per node. The kinematic model is that of the FSDT.

During the optimization process of the first step of the MSIS, two FE analyses
are invoked for each point in the design space: firstly, a modal analysis to extract
the first n f natural frequencies and, secondly, a linear harmonic analysis in order to
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Fig. 10.2 FE model of the multilayer plate and the related BCs

determine the harmonic response of the laminate. This latter is obtained bymeasuring
the displacement uz in each one of the q sample nodes of the mesh, at every sampled
frequency fr .

Subsequently, the FRF for each sample point is obtained by evaluating the ratio
between the FFT of the displacement uzq ( fr ) and that of the applied force Fz ( fr ),
namely Hr,q = uzq ( fr ) /Fz ( fr ).

Before starting the optimization process, a sensitivity analysis has beenperformed,
to investigate the influence of the number of sample points Np on the overall FRF of
the multilayer plate. It has been observed that an overall number of Np = 62 sample
points is sufficient to properly evaluate the global FRF of the structure, also in terms
of computational effort.

Finally, as far as the linear harmonic analysis is concerned, the FFT of the structure
in each sample point has been evaluated in the frequency range [500, 6000] Hz
wherein Ns = 82 sampled spectrum frequencies have been considered, according to
the strategy detailed in Sect. 10.3.

10.2.3.3 The Numerical Strategy

Problem(10.5) is highly non linear and non-convex in terms of both objective and
constraint functions, see Eqs. (10.2)–(10.4).

For inverse problems, the uniqueness of the solution is not a priori guaranteed: the
set of parameters matching a given observed state may not be unique. Nevertheless,
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no proved theoretical rules exist in literature [22, 23] to define the number of data
points Np for a given number of unknowns (n) to be identified. Generally, the inverse
problem is stated as a CNLPP and it can be viewed as an over-determined system of
equations [22, 23]. Since more observation points than parameters exist (Np � n)
there are more equations than unknowns. If an optimal point exists it may be not
unique, thus implying the existence of many combinations of parameters that result
to be equivalent solutions for the CNLPP at hand.

Considering all these aspects and according to the practice always employed in
literature, in this work a number of observed states (i.e. sample points Np) greater
than two times the number of design variables n has been considered. As previously
stated, the number of sample points has been inferred by means of a numerical
sensitivity analysis of the FRF of the plate with respect to parameter Np: as a results
Np = 62 has been chosen to properly perform the optimization calculations.

Taking into account the previous aspects, a hybrid optimization tool composed
of the GA ERASMUS (EvolutionaRy Algorithm for optimiSation of ModUlar Sys-
tems) [5, 6, 12], interfaced with the MATLAB fmincon algorithm, has been used.
The GA ERASMUS has already been successfully applied to solve different kinds
of real-world engineering problems, e.g [6, 13–15].

The optimization procedure for problem (10.5) is split in two phases. During the
first phase, solely the GA ERASMUS is used to perform the solution search. Due
to the strong non-linearity of problem (10.5), the aim of the genetic calculation is
to provide a potential sub-optimal point in the design space, which constitutes the
initial guess for the subsequent phase, i.e. the local optimization,where theMATLAB
fmincon tool is employed to finalize the solution search. The optimization algorithm
is the active-set which is a Quasi-Newton method making use of an approximation
of the Hessian matrix to estimate the descent direction.

For the resolution of the first-level inverse problem, both optimization algorithms
have been interfaced with the FE model of the multilayer plate. For each individual
at each generation, the optimization tool performs two FE analyses: a modal analysis
to extract the n f natural frequencies followed by a linear harmonic analysis for the
evaluation of the FRF of the laminate. Then, the GA elaborates the results provided
by the two FE analyses in order to execute the genetic operations on the basis of
the current values of both objective and constraint functions. These operations are
repeated until the GA meets the user-defined convergence criterion.

The number of design variables and that of constraint functions is six and n f + 3,
respectively. The generic individual of the GA ERASMUS represents a potential
solution for the problem at hand. The genotype of the individual for problem (10.5)
is characterized by only one chromosome composed of six genes, each one coding
a component of the vector of design variables, see Eq. (10.1).
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10.2.4 Mathematical Formulation of the Second-Level
Inverse Problem

10.2.4.1 Optimization Variables, Objective Function and Constraints

As stated previously, the purpose of the second-level inverse problem is the charac-
terization of the elastic properties of fiber and matrix, by minimizing the distance
between the effective elastic properties of the constitutive lamina (determined numer-
ically) and the optimum values provided by the first-level inverse problem, which
represent the reference response for this phase.

Of course, the effective elastic properties of the laminamust be evaluated bymeans
of a suitable homogenization procedure. To this purpose a FEmodel of theRVEof the
composite is built in order to carry out the numerical homogenization calculations
which allow determining the equivalent ply properties as a function of those of
the constitutive phases. Both geometrical and material parameters of the constitutive
phases affect the equivalent material properties at meso-scale. Nevertheless, the fiber
volume fraction is set a priori, because it is always provided by the supplier in the
specification sheet.

Considering the general hypotheses described in Sect. 10.2.1, the fiber has a linear
elastic transverse isotropic behavior, while the matrix has a linear elastic isotropic
behavior: only seven material parameters need to be identified. Therefore, these
quantities are collected into the vector xII as follows:

xII =
{
E f
1 , E f

2 ,G f
12, ν

f
12, ν

f
23, Em, νm

}
. (10.6)

Similarly to the first-level inverse problem, the constitutive elastic properties can-
not assume arbitrary values, but they have to fulfill a set of existence constraints to
guarantee the positive definiteness of the fiber and matrix stiffness tensors:

gII1 (xII) = |ν f
12| −

√√√√ E f
1

E f
2

< 0,

gI I
2 (xI I ) = |ν f

23| − 1 < 0,

gII3 (xII) = E f
1

E f
2

·
(
2 · ν

f
23 · ν

f
12

2 + 2 · ν
f
12

2
)

− 1 < 0,

gII4 (xII) = −Em < 0,

gII5 (xII) = νm − 1

2
< 0,

gII6 (xII) = −νm − 1 < 0. (10.7)
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Table 10.3 Second-level inverse problem: design variables lower and upper bounds

Micro-scale
elastic properties

E f
1 (MPa) E f

2 (MPa) ν
f
12 ν

f
23 G f

12 Em (MPa) ν
f
m

Lower bound 220800.0 13840.0 0.200 0.343 8992.0 3312.0 0.280

Upper bound 331200.0 20760.0 0.300 0.514 13488.0 4968.0 0.420

Furthermore, the components of the design variables vector vary in a design
space defined in Table 10.3, in which appropriate lower and upper bounds for each
design variable are assigned. The lower and upper bounds are chosen equal to the
80 and 120% of the reference material properties of the constitutive phases (listed in
Table 10.1).

Moreover, regarding the objective function expression, an error estimator of the
least-square type has been chosen:

Φ II(xII) = 1

6

[(
E1 − E I

1

E I
1

)2

+
(
E2 − E I

2

E I
2

)2

+
(
G12 − GI

12

GI
12

)2

+ · · · (10.8)

+
(
G23 − GI

23

GI
23

)2

+
(

ν12 − νI
12

νI
12

)2

+
(

ν23 − νI
23

νI
23

)2]
. (10.9)

In the previous equation, superscript “I” indicates the optimum value of the ply
elastic properties provided by the first-level inverse problem. Also in this case the
second-level inverse problem can be formalized as a classical CNLPP:

minxII ΦII (xII) ,

subject to :
gIIj

(
xII

) ≤ 0, j = 1, ..., 6. (10.10)

10.2.4.2 Microscopic Finite Element Model

The link between microscopic and mesoscopic scales is represented by a homog-
enization phase, performed on the RVE of Fig. 10.3. The lamina effective elastic
properties are computed, by means of the well-known strain energy homogeniza-
tion technique of periodic media described in [2]. This homogenization scheme has
proven to be an efficient numerical homogenisation procedure able to determine the
equivalent material properties of different heterogeneous materials characterized by
complex RVE topologies. The strain energy homogenization technique of periodic
media based on volume averaged stresses has already been used in other works,
see [4, 13, 16].

The main hypothesis of this technique is that the repetitive unit of the periodic
structure and the corresponding volume of the homogeneous solid undergo the same
deformation having, hence, the same strain energy.At themesoscopic scale (i.e. at the
ply level) the heterogeneous medium is then replaced by an equivalent homogeneous
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Fig. 10.3 The reference RVE with its FE model

anisotropic virtual material characterized by the elastic properties determined during
the homogenization phase and which will depend upon the geometrical and material
parameters of the RVE. In this study, the real random micro-structure of the lamina
(which is usually characterized by misalignments of the fibers, porosity, damaged
zones, etc.) is not taken into account and the topology of the RVE is described by a
perfect hexagonal array, see Fig. 10.3.

The FE model of the RVE has been realized within the commercial FE code
ANSYS®. A 20-nodes solid element (SOLID186) with three DOFs per node has
been used. The model together with its structured mesh is illustrated in Fig. 10.3.

In order to evaluate the components of the stiffness matrix [C] of the lamina, the
RVE is submitted to an average strain field ε0i j (tensor notation). The six components
of the average strain are applied by considering the classical periodic boundary
conditions (PBCs) on the RVE. For more details on the application of the PBCs in
the framework of the second-level inverse problem, the reader is addressed to [2, 3].
The engineering moduli of the constitutive lamina at the mesoscopic scale can be
calculated starting from the components of the compliance matrix [S] = [C]−1.

10.2.4.3 The Numerical Strategy

Problem (10.10) is a non-convex CNLPP in terms of both constraint and objective
functions, see Eqs. (10.7) and (10.8). The number of variables is equal to seven.
The existence of the optimum solution may not be unique because the number of
observed states is lower than that of design variables to be identified. Therefore, the
transition from mesoscopic to microscopic scale is governed by non-bijective rela-
tionships which can give rise to a significant amount of equivalent optimum solutions
for the problem at hand. In order to find a solution for the second-level inverse prob-
lem, the two-step optimization is adapted to the transition from mesoscopic scale to
microscopic one.
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For the resolution of the second-level inverse problem, the optimization algorithm
has been interfaced with the FE model of the RVE at micro-scale, to perform the
numerical homogenization, inwhich six static analyses are performed: these analyses
allow determining the components of the ply stiffness tensor, for each individual
at each generation. Then, the optimization tool elaborates the results provided by
the FE analyses in order to execute the optimization operations on the basis of
the current values of both objective and constraint functions (both for the GA and
the deterministic algorithm). These operations are repeated until the user-defined
convergence criterion is satisfied. Concerning the GA, the genotype of the individual
for problem (10.10) is characterized by only one chromosome composed of seven
genes, each one coding a component of the vector of design variables of Eq. (10.6).

10.3 Numerical Results: Characterization of Elastic
Properties by MSIS

10.3.1 Determination of the Harmonic Response
for the Reference Configuration

Before launching the optimization process, the reference harmonic response must
be determined. The geometry as well as the material properties of the reference
configuration have been introduced in Sect. 10.2.1. The reference harmonic response
is calculated by performing two successive analyses (modal analysis followed by a
linear harmonic one) on the macroscopic FE model of the multilayer plate discussed
in Sect. 10.2.3. Of course, at the macroscopic scale both the reference FRF of the
laminate and the set of reference natural frequencies have been calculated by using
the geometrical properties of the reference structure and by considering the ply elastic
properties listed in Table 10.4. These material parameters are obtained by means of
a preliminary homogenization analysis through the FE model of the RVE of the
composite (see Sect. 10.2.4) in which the reference values of Table 10.1 for the
elastic properties of both fiber and matrix are used.

The frequency samples used for the determination of the structure FRF vary
between fLB = 500 Hz and fU B = 6000 Hz: n f = 8 natural frequencies falls in this
interval which are extracted to evaluate the optimization constraints of Eq. (10.4).
Their reference values are listed in Table 10.5. The FRF of the multilayer plate is
sampled ten times between two consecutive natural frequencies; only the first and
the last interval are sampled six times. It must be noticed that the sampling intervals

Table 10.4 Reference values of the lamina material properties

Ply properties

E1 (MPa) E2 (MPa) ν12 ν23 G12 (MPa) G23 (MPa) ρ (kg/m3)

155028.4 8197.9 0.290 0.510 3837.1 3282.8 1770.0
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Table 10.5 Reference natural frequencies

Nat. freq. f ref1n f ref2n f ref3n f ref4n f ref5n f ref6n f ref7n f ref8n

Value [Hz] 760.98 1847.19 1997.35 2966.36 3770.59 3856.76 4605.93 5061.77

Table 10.6 Optimization parameters for first and second-level inverse problem

(a) Genetic algorithm parameters (for both first-level and second-level inverse problems)

Parameters First-level Second-level

N. of individuals 120 140

N. of populations 2 2

N. of iterations 130 130

Crossover probability 0.85 0.85

Mutation probability 0.06 0.07

Isolation time 10 10

(b) Gradient-based algorithm parameters (for both first-level and second-level inverse problems)

Parameters Value

Solver algorithm Active-set

Max function evaluation 10,000

Tolerance on the objective
function

10−15

Tolerance on the gradient norm 10−15

used for the definition of the FRF and, hence, of the objective function of the first-
level inverse problem of Eq. (10.3), have been properly parametrized in terms of
the current value of the structure natural frequencies f jn, j = 1, ..., n f . Moreover,
since damping is neglected, a small range of frequencies in the neighborhood of each
natural frequency f jn has been excluded from the sampling sequence (by considering
a “small” interval of length δ = 1Hz centered at each natural frequency). The exciting
nodal force has a value Fz = 1 N .

Finally, as discussed in Sect. 10.2.3, the FRF is calculated at each one of the 62
reference points defined over the laminate.

10.3.2 Results of the First-Level Inverse Problem
(Meso-Scale)

In this section, the results of the first-level inverse problem are shown and discussed.
After carrying out a statistic analysis in order to evaluate the effect of the optimization
parameters on the optimum solutions, according to [16], the main parameters tuning
the behavior of both the GA and the active-set algorithm (used to carry out global
and local optimization, respectively) are set as listed in Table 10.6.
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Table 10.7 Optimum solution of the first-level inverse problem provided by the GA and the
gradient-based algorithm; the percentage difference between the solution and the ply reference
data are given in parentheses

Meso-scale elastic
properties

Reference data GA results Gradient-based results

E1 (MPa) 155028.4 153846.0 (−0.762) 155027.5
(−6.45 × 10−04)

E2 (MPa) 8197.9 8103.3 (−1.15) 8197.7
(−1.95 × 10−03)

ν12 0.290 0.284 (−1.94) 0.290 (3.45 × 10−03)

ν23 0.510 0.480 (−5.76) 0.480 (−5.78)

G12 (MPa) 3837.1 3906.9 (1.82) 3837.1 (0)

G23 (MPa) 3282.8 3291.1 (0.254) 3282.5
(−7.62 × 10−03)

Table 10.8 First eight
natural frequencies for the
optimum solution of the
first-level inverse problem;
for each value, the percentage
difference with respect to the
reference counterpart is
indicated in parentheses

Nat. freq. f refin (Hz) fin (Hz)

f1n 760.98 760.97 (3.51 × 10−04)

f2n 1847.19 1847.18 (3.82 × 10−04)

f3n 1997.35 1997.34 (3.83 × 10−04)

f4n 2966.36 2966.34 (3.99 × 10−04)

f5n 3770.59 3770.57 (4.20 × 10−04)

f6n 3856.76 3856.74 (4.23 × 10−04)

f7n 4605.93 4605.91 (4.27 × 10−04)

f8n 5061.77 5061.74 (4.58 × 10−04)

For this first case, theGAperform the exchange of information among populations
through a ring-type operator every 10 generations, with a probability which is auto-
matically evaluated by the GA itself. Moreover, concerning the constraint-handling
technique for the first-level inverse problem, the Automatic Dynamic Penalisation
(ADP) method has been considered, see [17].

The choice of using multiple populations of small size, i.e. with a small number of
individuals, is motivated by the fact that here the goal is to find the global minimum
(for the objective function of the problem at hand) without increasing too much the
computational effort. Indeed, the exchange of information between best individuals
belonging to different populations (through the use of the ring-type operator), and
hence the possibility of crossing them, allows theGA for exploring the feasible design
domain and for handling the genetic information in the best way. More details about
the use of multiple populations can be found in [11].

The optimum solutions found at the end of both the genetic calculation and the
local gradient-based optimization are summarized in Table 10.7, whilst the value of
the eigenfrequencies for the optimum solution at the end of the optimization process
are listed in Table 10.8. As it can be easily inferred from the analysis of these results,
the ply elastic properties of the optimum solution are in good agreement with the
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reference data: the absolute percentage difference ranges from 0% for G12 to 5.78%
for ν23. This is a quite expected result because, due to the kinematicmodel at the basis
of the first-order shear deformation theory, the effect of ν23 on both the displacement
field and the natural frequencies is negligible. The plate is not thick enough to observe
a significant influence of ν23 on its dynamic response.

Nevertheless, both the eigenfrequencies and the FRF, in all sample points, are
very well estimated. The numerical results found at the end of the optimization
perfectly match the reference data with an absolute percentage difference ranging
from 3.51 × 10−4% (for the 1-st mode) to 4.58 × 10−4% (for the 8-th mode).

10.3.3 Results of the Second-Level Inverse Problem
(Micro-scale)

The second-level inverse problem is solved by considering a fibre volume fraction
VF = 0.555 [21] and a fibre diameter equal to d f = 6.8 µm.

The parameters tuning the behavior of both the GA and the active-set algorithm
for the second-level inverse problem are listed in Table 10.6. As in the case of the
first-level inverse problem, the Automatic Dynamic Penalisation (ADP) method has
been considered for handling constraints [17].

The optimum solutions of the second-level problem found at the end of both
the genetic calculation and the local gradient-based optimization are summarized in
Tables 10.9 and 10.10.

As it can be easily inferred from the analysis of these results, the elastic properties
of the constitutive phases for the optimumsolution are in agreementwith the reference
data. In particular, Young’s and shear moduli for both fiber and matrix are estimated
with a very good accuracy: the absolute percentage difference ranges from 0.254%
for E f

1 to 5.56% for E f
2 .

Table 10.9 Optimum solution of the second-level inverse problem provided by both the GA and
the active-set algorithm; the percentage difference between the solution and the reference material
properties are given in parentheses

Micro-scale elastic
properties

Reference data GA results Gradient-based results

E f
1 (MPa) 276000.0 276701.0 (0.254) 276701.0 (0.254)

E f
2 (MPa) 17300.0 18277.5 (5.65) 18262.1 (5.56)

ν
f
12 0.250 0.274 (9.76) 0.275 (9.83)

ν
f
23 0.428 0.487 (13.6) 0.486 (13.4)

G f
12 (MPa) 11240.0 10807.1 (−3.85) 10780.7 (−4.09)

Em (MPa) 4140.0 4108.4 (−0.763) 4108.4 (−0.763)

νm 0.350 0.315 (−9.99) 0.315 (−9.99)
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Table 10.10 Ply material properties at the end of the first-level inverse problem (used as target
values) and those related to the optimum solution resulting from the second-level inverse problem;
the percentage differences are indicated in parentheses

Ply elastic properties First-level problem results Optimum results

E1 (MPa) 155027.5 155392.0 (0.235)

E2 (MPa) 8197.7 8170.8 (−0.328)

ν12 0.290 0.290 (0.0)

ν23 0.480 0.480 (0.0)

G12 (MPa) 3837.1 3837.2 (2.87 × 10−3)

G23 (MPa) 3282.5 3289.0 (0.196)

Conversely, the estimation of the Poisson’s ratio (for both phases) is characterized
by a higher discrepancy: the maximum absolute percentage difference is 13.4% on
ν
f
23. However, this is a quite expected result because, as stated above, the Poisson’s
ratio ν23 of the lamina has a negligible influence on the laminate dynamic response.
Indeed, the related sensitivity of both objective and constraint functions of the first-
level problem to the variable ν23 is not significant at all. Therefore, the relatively
small absolute percentage error on ν23 at the end of the first-level inverse problem
(5.78%) is amplified when looking for the optimum solution of the second-level
inverse problem in terms of Poisson’s ratios of both fiber and matrix (the associated
optimization problem is non-linear).

Finally, the quality of the optimum solution of the second-level inverse problem
is very good: the objective function value is 2.0519 × 10−5 at the end of the local
gradient-based optimization.

10.4 Conclusions and Perspectives

In this work a multi-scale identification strategy able to characterize the elastic prop-
erties of composite materials, at each characteristic scale, is presented. The MSIS is
characterized by several original features that make it a very general methodology
for characterizing the elastic properties of anisotropic media.

In the context of the MSIS, the problem of characterizing the elastic properties
of the composite at different scales is split into two distinct (but related) inverse
problems. The first-level inverse problem involves the transition from macroscopic
scale (laminate-level) tomesoscopic one (ply-level): the goal is to characterize the ply
elastic properties minimizing the distance between the numerical harmonic response
of the multilayer plate and the reference one. Conversely, the second-level inverse
problem focuses on the transition from mesoscopic scale to microscopic one (that of
the constitutive phases): the goal is to find the optimum value of elastic properties of
both fiber and matrix matching the set of the lamina elastic properties provided by
the first-level problem.
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The overall identification process relies on a single non-destructive harmonic
test performed at the macroscopic scale. The MSIS makes use of the strain energy
homogenization technique of periodic media to carry out the scale transition as well
as of a hybrid optimization tool to perform the solution search for both first-level and
second-level inverse problems. The effectiveness of the MSIS is evaluated through
a numerical benchmark: a multilayer plate made of unidirectional carbon/epoxy
pre-preg plies T 650/F584, whose elastic properties are taken from literature, is
considered as a reference structure and its numerical harmonic response has been
taken as a reference one.

At the mesoscopic scale the results of the identification process are very good: the
maximum absolute percentage error is observed on the ply transverse Poisson’s ratio
ν23 and is about 5.78%. At the microscopic scale all elastic properties are identified
with a good level of accuracy, except the fiber and matrix Poisson’s ratios: those of
the fiber, i.e. ν f

12 and ν
f
23, are affected by a absolute percentage error of about 10%

and 14%, respectively, whilst that of the matrix, νm , is characterized by a percentage
error of about 10%. The relatively small error on the transverse Poisson’s ratio of
the lamina is due to the very low sensitivity of the objective function to this material
property. Moreover, this error propagates at the lower scale and affects the Poisson’s
ratios of both fiber and matrix.

Nevertheless, thanks to the MSIS, it is possible to retrieve both longitudinal and
transversal elastic properties of the constitutive phases of the RVE and this task
cannot be easily performed by means of standard ASTM tests. Moreover, such a
result has been obtained by using a unique macroscopic non-destructive harmonic
test. Of course, the proposed methodology must be generalized and improved in
order to catch the true behavior of the material of the constitutive phases at the
microscopic scale. To this purpose, research is ongoing in order to include into the
MSIS the viscoelastic behavior of matrix, the variability effects and the geometrical
features of the RVE of the composite material (e.g. parameters of the inclusions
shapes).
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Chapter 11
Metamodel-Based Uncertainty
Quantification for the Mechanical
Behavior of Braided Composites

G. Balokas, B. Kriegesmann, S. Czichon, A. Böttcher and R. Rolfes

Abstract This chapter presents an uncertainty quantification framework for
triaxially braided composites simulation, dealing with the stochastic stiffness pre-
diction via numerical multiscale analysis. Efficiency is achieved by using various
metamodeling techniques, such as neural networks, polynomial chaos expansion and
Kriging modeling. Uncertainties accounting for material and geometric randomness
are propagating through the scales to the final scatter of the mechanical properties of
the macroscale. Information about the stochastic input and the dominating uncertain
parameters is offered via application of a variance-based global sensitivity analysis.
All methods employed in this work are non-intrusive, hence the framework can be
used for all sorts of composite materials and numerical models. The need for realistic
uncertainty quantification is highlighted.

11.1 Introduction

The considerable influence of inherent uncertainties on the behavior of a physical
system has led the scientific community to recognize the importance of a stochas-
tic approach to engineering problems. The rational treatment of those uncertainties,
achieved by means of probability theory and statistics, cannot be addressed rigor-
ously when following the traditional deterministic approach. Especially for com-
posite structures, the use of deterministic approaches for design and analysis may
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undermine their utilization and optimization potential and result in higher safety
factors. Therefore, even though relative research work is rather limited for composite
materials and especially textiles, a probabilistic framework allowing for uncertainty
propagation and uncertainty quantification (UQ) is essential [12].

One of the first probabilistic approaches [4] introduced a Weibull model for the
fiber strength in composite materials, which is still used in progressive damage stud-
ies. Simulation of the random fiber distribution in unidirectional composites [7] has
always attracted stochastic methods as opposed to typical fibre-packing arrange-
ments for micromechanics. The direction drawn by Chamis [3] was crucial as the
uncertainties of the constituents from lower scales were taken into account, leading
to variability assessment of the composite behavior and to reliability of composite
structures. A classic review paper on uncertainty quantification [11] sets the basis for
the stochastic perspective of composites by distinguishing epistemic and aleatoric
uncertainty, classifying multiscale approaches and reporting studies in reliability
assessment of macro-structures.

More recently, compositematerial studies of probabilistic nature evolved and cov-
ered topics like random inclusions in lower scales [13], geometric and material ran-
domness in the microscale [5] and effects on the probability of failure for macroscale
problems [8] and simulation of the random waviness of the fiber reinforcement from
experimental data [15, 16]. However, a major topic is the statistical information of
the random input. Whether the uncertainty concerns material or geometry informa-
tion, in most cases groundless assumptions are made about the variance, type of
distribution or even the number of uncertain parameters to be taken into account.
Therefore, the way forward for the probabilistic analysis of composites should be
the endeavor for quantification of uncertainties regarding material input, geometry
or even manufacturing parameters.

As a first step towards the quantification of uncertainties for braided composite
materials, the current study presents a methodology for identifying the most signifi-
cant parameters in terms of variability regarding the elastic behavior. A probabilistic
framework for a 3D triaxially braided model is described based on a multiscale
scheme, able to predict the stiffness tensor of the macroscale starting form the prop-
erties of each constituent. A variance-based global sensitivity analysis (VBGSA)
technique is described and applied, whichmakes use of the normalized Sobol indices
to determine the contribution of each input parameter to the output scatter. The obsta-
cles set by the numerical burden of the high-fidelity finite element model and the
repetitive procedure ofMonte Carlo analysis coupled with the VBGSA, are bypassed
by applying metamodels/surrogate models. Three different models are presented
(artificial neural networks, Kriging and polynomial chaos expansion) and com-
pared in terms of accuracy and efficiency. Furthermore, several comments are made
throughout the chapter emphasizing on the importance of realistic UQ and the advan-
tages non-intrusive metamodeling techniques can offer to engineering sciences.
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11.2 Formulation and Methodology

11.2.1 Homogenization-Based Multiscale Model

For composites and generally for heterogeneous materials, themechanical properties
of the individual components along with other lower-scale parameters defining their
spatial and size distribution (e.g. volume fractions etc.), govern in fact the overall
mechanical behavior. Hence, attributes of the micro and the mesoscale are extremely
important for a better understanding of the elemental properties of those materials.
Due to their nature, textile composites exhibit a greater level of inhomogeneity than
conventional engineering materials and composite laminates. So for an accurate
prediction of the mechanical behavior, multiscale schemes accounting for both the
fiber and the yarn level are necessary.

In this work, a hybrid two-step homogenization method is applied in order to
predict the elastic properties of a single 3D triaxially braided layer. The first step
consists of homogenizing the properties of the yarns at the level of individual fibers
(≈10−6m).On that account, theChamismicromechanicalmodel is employed, assum-
ing of course that each yarn locally behaves as a unidirectional continuous fiber rein-
forced composite. The elastic properties can be obtained from the properties of each
phase as follows:

E11 = YV f E f11 + (
1 − YV f

)
Em (11.1)

E22 = E33 = Em

1−√
YV f

(
1− Em

E f22

) (11.2)

G13 = G12 = Gm

1−√
YV f

(
1− Gm

G f12

) (11.3)

G23 = Gm

1−YV f

(
1− Gm

G f23

) (11.4)

ν12 = ν13 = νm + YV f
(
ν f12 − νm

)
(11.5)

ν23 = E22
2G23

− 1 (11.6)

where E f11 , E f22 , G f12 , G f23 , ν f12 and ν f23 are the transversely isotropic material
properties of the fibers, Em , Gm and νm are the isotropic material properties of the
polymer matrix and YV f is the yarn volume fraction (percentage of the volume of
fibers inside the volume of the yarn). The accuracy of this analytical model against
the classical FE homogenization of a representative volume element (RVE) is shown
in Fig.11.1 for the cases of E11 and E22,33 and for various levels of the yarn volume
fraction.

For the second step, a numerical homogenization is performed with a mesoscale
RVE generated by TexGen [6]. This software allows easy modeling of the yarns as
solid volumes representing the approximate bounds of the fibers contained within
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(a) Longitudinal modulus (b) Transverse modulus

Fig. 11.1 Comparison of Chamis criterion against numerical homogenization via FEM

them. The properties calculated at the first step are provided to the yarns and a
voxel mesh is created with ABAQUS for the numerical solution of the six load
cases corresponding to the orthotropic stiffness tensor of themacroscale. Appropriate
periodic boundary conditions are applied to the RVE so that Hill’s energy averaging
theorem is valid at all times:

σ ∗ · ε∗ = 1

|V |
∫

V
σ · ε dV (11.7)

The above equation describes that the strain energy of the homogenized continuum
with stress and strain tensors σ ∗ and ε∗ respectively, has to be equal to that of the
RVE, with σ and ε being the corresponding quantities of the lower scale.

The model subjected to the aforementioned scheme is a typical 3D triaxially
braided layer consisting of axial and weft yarns interlaced according to the pattern
shown in Fig. 11.2a. The RVE is presented in Fig. 11.2b. The fibers forming the yarns
are AS4 carbon while an EPON 9504 matrix is used. The material properties of each

(a) Braiding pattern and RVE (b) RVE mesoscale model

Fig. 11.2 Triaxial braiding pattern: a Top view, b TexGen RVE mesoscale model
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Table 11.1 Material properties of braided model

Property Symbol Value

Longitudinal fiber modulus E f1 227.53 GPa

Transverse fiber modulus E f2 16.55 GPa

In-plane shear fiber modulus G f12 24.82 GPa

Out-of-plane shear fiber modulus G f23 6.89 GPa

In-plane fiber Poisson’s ratio ν f12 0.2

Out-of-plane fiber Poisson’s ratio ν f23 0.25

Matrix Young’s modulus Em 3.5 GPa

Matrix Poisson’s ratio νm 0.38

Yarn volume fraction YV f 80%

Braid angle BA 45◦

Undulation angle UA 57◦

phase are reported in Table 11.1. With those properties as an input and by using the
described multiscale methodology, the macroscale stiffness properties extracted are
the following: E11 = 30.09 GPa, E22 = 10.72 GPa, E33 = 6.92 GPa, G12 = 6.46
GPa,G13 = 2.87 GPa,G23 = 3.28 GPa, ν12 = 0.54, ν13 = 0.07 and ν23 = 0.54. For
further information on the multiscale scheme and the model, the reader is referred
to [1].

All codes developed herein are parametric and account for uncertainties for the
following input parameters: E f1 , E f2 , G f12 , for material uncertainty and YV f , BA
and UA for geometric uncertainty. All uncertain input parameters are considered to
follow a Gaussian distribution with 10% coefficient of variation (COV). The final
scatter of the output will be discretized and linked to each input parameter via the
VBGSA, which is described in the next section.

11.2.2 Variance-Based Global Sensitivity Analysis

This technique offers a classification of importance among the input parameters in
terms of variance. The output variance of the probabilisticmodel is fully decomposed
into terms corresponding to the input parameters and their interactions. Consider a
model y = f (x1, x2, ... xk) with y a scalar. Given that f is a square integrable
function over the k-dimensional unit hypercube Ωk , the model may be decomposed
as [10]:

f = f0 +
∑

i

fi +
∑

j>i

fi j + · · · + f12...k (11.8)

where fi = fi (xi ), fi j = fi j (xi , x j ) etc. Since all the terms are orthogonal, they can
be calculated using the conditional expectations of y as:
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f0 = E(y) (11.9)

fi = E(y|xi ) − E(y) (11.10)

fi j = E(y|xi , x j ) − fi − f j − E(y) (11.11)

If each term in Eq. 11.8 is squared and integrated (due to the orthogonality of the
function, integrals of mixed terms vanish):

∫
f 2dx − f 20 =

∑

i

∫
f 2i dxi +

∑

j>i

∫
f 2i j dxidx j + · · · +

∫
f 212...kdx1dx2...dxk

(11.12)
where the left part is the total variance of y and the terms on the right are decomposed
variances with respect to the input xi . With the aid of Eqs. 11.9–11.11 the final
expression for the variance decomposition is reached:

Var(y) =
k∑

i=1

Vi +
k∑

j>i

Vi j + · · · + V12...k (11.13)

where Vi = Varxi (Ex∼i (y|xi )) (11.14)

Vi j = Varxi j (Ex∼i j (y|xi , x j )) − Vi − Vj etc. (11.15)

The x∼i notation indicates the set of all variables except xi . By dividing the term of
interest by the unconditional variance Var(y) the first-order sensitivity index or first
order Sobol index is obtained as a fractional contribution:

Si = Vi

Var(y)
(11.16)

In practice, most models cannot be solved analytically, thus estimators have to be
applied within a sapling procedure. The following estimator is used herein for the
first order index:

Vi = Varxi (Ex∼i (y|xi )) ≈ 1

N

N∑

j=1

f (B) j ( f (A
i
B) j − f (A) j ) (11.17)

In the above equation, A and B are two (N , k)matrices with random samples from
the input space, where k is the input dimension and N is the number of evaluations.
Matrix Ai

B is identical with A, except that its i th column is substituted with the i th
column of B (i = 1, ..., k). Estimators of this sort require excessive realizations in
order to converge, so surrogate modeling is inevitable for high-fidelity FE models.
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11.2.3 Surrogate Modeling Techniques

Metamodels or surrogate models are mathematical models able to perform rapid
mapping between given input and output quantities, when trained appropriately via
several samples. Once trained, they can produce extreme amounts of approximative
resultswith trivial computational effort. In this study, the surrogatemodels are used to
map the uncertain parameters reported in Sect. 11.2.1 with the stiffness properties of
the braided material in the macroscale. In the following subsections, the formulation
behind neural networks, Kriging and polynomial chaos will be presented. In this
context, the random input vector will be denoted as x = {xi , i = 1, ..., M}where M
is the total amount of input random variables, which are assumed to be independent.
Let the model to be bypassed denoted by Ω . By propagating the uncertainty in x
multiple times (random realizations), the random variable of the output Y is obtained:

Y = Ω(x) (11.18)

All techniques reported are non-intrusive, meaning that they can be applied to every
model regardless the knowledge about its inner structure. To that end, the training
of the surrogate is based on repeatedly evaluating the model Ω over a set of input
realizationsX = {x(i) ∈ R

M , i = 1, ..., N }. This set is essentially the training dataset
and is called experimental design (ED).

11.2.3.1 Artificial Neural Networks

Artificial neural networks (ANN) are being used as a Machine Learning method
for many applications. Their massively parallel structure makes them a very fast
information-processing system, so they can eliminate the limitations set by high
dimensional or high-fidelity models.

An ANN consists of at least three layers: the input, the output and one (or more)
hidden layer. The nodes inside every layer are called neurons while the links between
them are called synapses. The most common type of ANN in engineering is the
multilayer feed-forward network. Such a configuration with a single hidden layer is
presented in Fig. 11.3a. The input neurons (squares) do not process information and
only connect the network to the external environment. The neurons of the hidden
layer (circles) process information coming from a previous layer and feed their output
to the next layer. Information is propagated only in a single direction (feed-forward).

For every synapse there is a weight parameterwi j corresponding to the importance
of the preceding neuron. The neuron then processes the information for every input
xi according to the following formula:

z j =
M∑

i=1

xiwi j + b (11.19)
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Input 

Hidden layer 

Output 
x1 

x2 

xM 

neuron j

(a) Architecture of a single layer feed-forward
neural network

(b) Training monitoring of a neural network

Fig. 11.3 Artificial neural networks architecture and training

where b is a bias term allowing the neuron to cover a wider range. Each result is
going through an activation function where the nonlinearity of the decision boundary
is introduced (usually of sigmoid type).

The learning procedure is based on a general function optimization problem,
where the objective function is the sum squared error between the predicted output
t (w) and the target output y0:

E(wi j ) = 1

2

∑
[t (wi j ) − y0]2 (11.20)

In the minimization process, the weights of all the synapses are modified until the
desired error level is achieved or the maximum number of cycles is reached. The
weights are updated through an iterative procedure:

w(t+1)
i j = w(t)

i j + �wi j (11.21)

where�wi j is the correction of the weight at the t th learning step, which is calculated
by the following formula:

�wi j = −n
∂E

∂wi j
(11.22)

where n is a small parameter adjusting the correction each time, called learning
rate. Since the error is spread back to the neurons and the weights are adjusted, the
above algorithm is known as the back-propagation algorithm [14]. In order to avoid
overfitting, a fraction of the sample data is used as a validation dataset and the error
is monitored over the iterations to stop the training early enough.

For the purpose of this study, an ANN is trained for each component of the
stiffness response of the macroscale, in order to make use of the costly estimator of
Eq. 11.17 for the VBGSA. The neural network tool of Matlab is used and a graph
with a satisfactory training procedure is presented in Fig. 11.3b.
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11.2.3.2 Kriging

The basic assumption ofKriging (a.k.a. Gaussian processmodeling) is that the output
Y can be approximated by a single realization of a Gaussian random field [9]:

Y ≈ Ω(x) = βT f(x) + σ 2Z(x) (11.23)

The first term βT f(x) characterizes the trend of the field, with β being the first vector
of hyper parameters to be computed and f the set of P-order regression functions.
The second term includes the Kriging variance σ 2 (second hyper parameter) and a
zero-mean, unit variance Gaussian random field Z(x).

Parameters β and σ 2 are calibrated via the generalized least-squares method, for
a specific value of the correlation length parameter of the Gaussian field θ̂ , as:

β(θ̂) = (FTR−1F)−1FR−1Y (11.24)

σ 2
y (θ̂) = 1

N (Y − Fβ)TR−1(Y − Fβ) (11.25)

whereF is the regressionmatrix andR is the correlationmatrix at the input ED points
of size N . For the calculation of the optimum correlation length θ̂ , a minimization
procedure is applied in either of the formulas:

θ̂ML = argmin
[

1
N (Y − Fβ)TR−1(Y − Fβ)(detR)

1
N

]
(11.26)

θ̂CV = argmin
[
Y TR−1diag(R−1)−2R−1Y

]
(11.27)

where ML stands for Maximum Likelihood and CV for Cross-Validation. Predicting
the mean and variance of a new point x0 /∈ X = {x(i) ∈ R

M , i = 1, ..., N } of the
input space, is done via the following equations:

μ(x0) = f(x0)Tβ + r(x0)TR−1(Y − Fβ) (11.28)

σ 2
ŷ (x0) = σ 2

y

(
1 − 〈

f(x0)T r(x0)T
〉 0 FT

F R
f(x0)
r(x0)

)
(11.29)

where r(x0) = R(|x0 − xi|; θ̂) is the correlation between the unknown point x0 and
the ED X, while f(x0) is the set of regression functions evaluated at x0. It is noted
that Kriging is an exact interpolator:

μ(x(i)) = Ω(x(i)), σ 2
ŷ (x

(i)) = 0, ∀x(i) ∈ X (11.30)

The use of Kriging as a surrogate relies on using the predictorμ for points outside
the ED. Parameters to be tuned for a good training are the ED size and the order of f .
The coefficient of determination Q2 (1−error percentage) is presented in Fig. 11.4
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(a) Coefficient of determination against
experimental design size

(b) Coefficient of determination against order of
regression polynomials

Fig. 11.4 Training of Kriging

against both these parameters, so that the user can decide the optimum solution. By
using μ the necessary realizations for the costly VBGSA estimator of Eq. 11.17 can
be performed.

11.2.3.3 Polynomial Chaos Expansions

Assuming that the output variableY has a finite variance and that the input parameters
in x = {xi , i = 1, ..., M} are independent, the polynomial chaos expansion (PCE)
of Y expresses the model Ω as an infinite series of orthonormal polynomials in X:

Y ≈ Ω(x) =
∑

α∈NM

yα�α(X) (11.31)

where M is the size of the input vector X, yα are coefficients to be computed, α

is a M-dimensional multi-index (M-tuple) and �α(X) are multivariate orthonormal
polynomials. The orthonormal basis of the expansion is constructed as a product of
univariate orthogonal polynomials P:

�α(X) =
M∏

i=1

P (i)
αi

(xi ) (11.32)

There is a direct correspondence between known probability distributions and poly-
nomial families (e.g. Legendre for Uniform, Hermite for Gaussian etc.)

The challenging part is to choose a finite subset ofmulti-indiceswhich can approx-
imate the model output sufficiently within certain error measures. The simplest trun-
cation scheme consists of limiting the total degree of polynomials with an upper
bound:

AM,p = {α ∈ N
M : |α| ≤ p} (11.33)
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(a) Error against experimental design size and
polynomial order

(b) Error against reduced q-norm scheme and
polynomial order

Fig. 11.5 Training of polynomial chaos expansion

where |α| = ∑M
i=1 αi is the total degree of polynomials and p is themaximumdegree.

The cardinality of this subset is given by:

card AM,p ≡ P = (M + p)!
M !p! (11.34)

which means that the set size grows polynomially both in M and p (e.g. for M =
6 and p = 5, P = 210). The ED size needs to be n times the card AM,p, hence
this scheme can be expensive for problems with high stochastic dimension. A sort
of order reduction may be achieved with the use of hyperbolic index sets based on
q-norms [2]:

AM,p
q = {α ∈ N

M :
( M∑

i=1

α
q
i

) 1
q

≤ p} (11.35)

where 0 < q < 1. This technique is suitable for problems with low interactions
between the stochastic input. Parametric studies should always be performed for the
optimal tuning of the polynomial order p, coefficient n (ED size) and the q-norm,
as in Fig. 11.5.

The unknown PCE coefficients are gathered into a vector Ŷ and computed by
minimizing the mean square error between the prediction and the model response
for each sample of the ED:

Ŷ = argminE
{[ P−1∑

j=0

y j� j (X) − Ω(X)
]2}

(11.36)
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The problem can be solved analytically by least-square minimization:

Ŷ = (ATA)−1ATΩ (11.37)

where A = Ai j = � j (x (i)) for {i = 1, ..., M; j = 0, ..., P − 1} is the experimental
matrix and Ω is the vector of true responses within the ED.

An essential difference of PCE compared to ANN and Kriging is that the Sobol
indices can be derived immediately after training, without using the expensive for-
mula of Eq. 11.17, simply by post-processing the computed coefficients:

Si =
∑

a∈Ai
y2a

Var(Y )
(11.38)

where Ai = {a ∈ N
M : ai > 0, a j �=i = 0} and Var(Y ) = ∑

a∈NM , a �=0 y
2
a .

11.3 Results

When sufficiently trained, all three surrogate models presented are able to emu-
late the stochastic elastic response of the braided composite model of Sect. 11.2.1.
A practical way to verify these models and examine the stochastic accuracy is to
extract estimations for the probability density function (PDF) of the response and
correlate with a histogram of a brute force Monte Carlo simulation for a fair amount
of realizations. The PDF contains fully the probabilistic information of a response.
Such a comparison is given in Fig. 11.6 for the uniaxial stiffness moduli E1, E2

and E3. It can be seen that all models can capture the true stochastic response with
high accuracy. For this problem, 1000 realizations were found adequate for a smooth
histogram and PDF description.

In terms of efficiency, metamodels are judged mostly by the number of model
evaluations necessary for a good training, hence the size of the ED. Herein, the
ANN needed around 30–50 samples, the Kriging 20–40 samples and the PCE 150–
200 samples. However this is surely not the sole criterion. As mentioned in the
Sect. 11.2.3.3, althoughPCEmodels needmore evaluations due to the stochastic input
and polynomial order dependency, the Sobol indices can be calculated immediately
after training. So depending on the model, this option could still be faster than a
cheap metamodel (ANN, Kriging) which uses the very expensive estimator for the
VBGSA (Eq. 11.17).

The Sobol indices were calculated with all available metamodels and the com-
parative results are presented in Fig. 11.7, for the same components of the elastic
macroscale response (E1, E2, E3). Convergence between the metamodels is satis-
factory for most cases, while the discrepancies can be explained by the summation
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(a) E1 (b) E2

(c) E3

Fig. 11.6 Prediction for probability distribution of Young’s moduli E1, E2 and E3

of approximations of the models and the Sobol estimator of Eq. 11.17. Regarding
the physical interpretation of the uncertainty quantification results, it is evident that
for all cases the sum of the Sobol indices reaches unity, which means there are not
any interactions among the stochastic input parameters chosen. The behavior of the
longitudinal direction is partitioned between the longitudinal fiber modulus, the yarn
volume fraction and the braiding angle. The transverse response of E2 is governed
by the geometrical variability of the braiding angle, while E3 is dominated by the
yarn volume fraction. Hence, the fiber architecture has more impact on the variabil-
ity of the homogenized stiffness than the material stiffness properties of the fibers.
However, this finding is based on the assumption that the coefficient of variation is
10% for all random parameters. The actual variability, especially of fiber architecture
parameters (YVf,BA,UA), still needs to be determined experimentally. Furthermore,
it should be once again highlighted, that such sensitivity analysis results would not be
available without the use of surrogate modeling, since the Sobol estimator requires
hundreds of thousands samples in order to converge.
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(a) E1 (b) E2

(c) E3

Fig. 11.7 Sobol indices for Young’s moduli E1, E2 and E3

11.4 Conclusions

An uncertainty quantification framework applied on a triaxially braided composite
modelwas presented in this chapter. The effects of various aleatory uncertaintieswere
studied and the fiber longitudinal modulus, braiding angle and yarn volume fraction
were identified as themost important variable parameters via a variance-based global
sensitivity analysis. Three popular metamodeling techniques were described, applied
and compared to overcome the computational burden of the procedure. Attention
should be aimed to the training process and the parameters to be tuned (number
of neurons for ANN, order of polynomials for Kriging and PCE), since efficient
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and reliable monitoring offers room for order reduction efforts, however there is
not a universal answer for the ”best” metamodel, as the choice is always problem
dependent.
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