
Chapter 8
Combustion Stability Analysis

Abbreviations and Symbols

ACF Autocorrelation function
AMI Average mutual information
ANN Artificial neural networks
ASI Advanced spark ignition
ATDC After top dead center
BDC Bottom dead center
BTDC Before top dead center
CA Crank angle
CAD Crank angle degree
CCF Cross-correlation function
CCV Cycle-to-cycle variation
CEI Controlled electronic ignition
CI Compression ignition
CN Cetane number
CO Carbon monoxide
COI Cone of influence
COV Coefficient of variation
COVIMEP Coefficient of variation of indicated mean effective pressure
CR Compression ratio
CWT Continuous wavelet transform
CylTemp Cylinder surface temperature
DCO Dual coil offset
DET Determinism
DI Direct injection
EEGR External exhaust gas recirculation
EGR Exhaust gas recirculation
EVO Exhaust valve opening
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FNN False nearest neighbors
GDI Gasoline direct injection
GEV Generalized extreme value
GIE Gross indicated efficiency
GWS Global wavelet spectrum
HC Unburned hydrocarbon
HCCI Homogeneous charge compression ignition
ICA Independent component analysis
IMEP Indicated mean effective pressure
IVC Inlet valve closing
LAM Laminarity
LES Large eddy simulation
LNV Lowest normalized value
LOI Line of identity
LTC Low-temperature combustion
MBT Maximum break torque
MFB Mass fraction burning
MFBR Mass fraction burning rate
MHRR Maximum heat release rate
MI Mutual information
MSD Mean square displacement
OBD Onboard diagnostic
ON Octane number
PDF Probability density function
PFI Port fuel injection
PPRR Peak pressure rise rate
PRF Primary reference fuel
RCCI Reactivity controlled compression ignition
REGR Rebreathed exhaust gas recirculation
RMS Root mean square
rpm Revolution per minute
RQA Recurrence quantification analysis
RR Recurrence rate
RSM Response surface model
SDIMEP Standers deviation of indicated mean effective pressure
SI Spark ignition
SOC Start of combustion
SOI Start of injection
STD Standard deviation
STFT Short time Fourier transform
TCI Transistor coil ignition
TDC Top dead center
THR Total heat release
TP Throttle position
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TT Trapping time
VCR Variable compression ratio
WFT Windowed Fourier transform
WOT Wide open throttle
WPS Wavelet power spectrum
�CA Degree crank angle
max Maximum
CA50 Crank angle at which 50% of heat release occur
Af Flame front surface
Kc Asymptotic growth rate
Sc Turbulent combustion velocity
Ws Global wavelet spectrum
Rn Finite-dimension vector space
K Kurtosis
P Pressure (bar)
Q Heat release (J)
S Skewness
m Embedding dimension
f(α) Singularity spectrum
ρu Unburned density
Δα Broadness of a singularity spectrum
Δαc Combustion duration
θ Angle (degree)
λ Relative air-fuel ratio
σ Standard deviation
σ2 Variance
σP Standard deviation of pressure time series
τ Lag, time delay
ϕ Equivalence ratio
ψ(t) Wavelet function
ω Engine speed
Θ(x) Heaviside function

8.1 Combustion Stability in Reciprocating Engines

Emission legislation and automotive market demands have been a constant driving
force for significant increases in vehicle fuel economy to reduce petroleum use and
CO2 emissions. Achieving this goal while also continuing to reduce emissions of
traditional pollutants is a significant challenge. Increasing fuel conversion efficiency
while maintaining emissions performance is a necessary component of any solution.
An approach which has gained widespread adoption in the market is the combination
of engine downsizing with gasoline direct injection (GDI) and turbocharging utilized
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to maintain high torque output [1]. Another potential approach for future powertrain
is advanced low-temperature combustion (LTC) modes that meet the requirement of
higher engine efficiency and lower emissions [2]. Stability and combustion control
are potential roadblocks to the most efficient implementation of many advanced
combustion concepts due to higher cyclic combustion variability.

The cylinder pressure measurement for consecutive engine cycles depicts signif-
icant variations on a cycle-to-cycle basis (Fig. 8.1). Figure 8.1a shows the variation
in cylinder pressure with increasing amount of EGR (higher throttle opening angle)
in a homogeneous charge compression ignition (HCCI) engine [3]. In HCCI engine,
autoignition of well-mixed charge occurs in the combustion chamber. Increasing
exhaust gas recirculation (EGR) changes (increases) the specific heat of charge,
which lowers down the combustion temperature. Thus, autoignition reaction rate
decreases in the cylinder, and combustion phasing is retarded. The combustion

Fig. 8.1 (a) Variations in the cylinder pressure curve of 64 consecutive cycles for different EGR
operation (varied by a throttle angle; ΘD) in an HCCI engine [3] and (b) cylinder pressure for
100 consecutive engine cycle in an SI engine [4]
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variability increases with retarded combustion phasing [2]. Increasing the EGR
reaches to a point where cycle-to-cycle variations in the combustion process are
very high, and engine operation becomes rough and unstable and unburned hydro-
carbons increase rapidly. The engine operating condition at which this phenomenon
occurs defines the stable operating limit of the engine. Figure 8.1a depicts that some
of the engine cycles misfire or partially burn for highest EGR operating condition.
Similarly, variations in the cylinder pressure can be observed in spark ignition (SI)
engines (Fig. 8.1b). Significant variations in the cylinder processes (flow and
ignition characteristics) lead to the significant variation in the combustion process
because the pressure development is uniquely defined with the combustion process.
The cycle-to-cycle variations in the combustion process are the result of cyclic
variations of mixture motion in the combustion chamber at the time of spark, the
variations in air-fuel ratio in each cycle (due to variations in the amounts of air or fuel
or both), and cyclic variations in the mixing of fresh mixture and residual gases in the
combustion chamber particularly in the vicinity of spark plug [5].

Analysis of cycle-to-cycle variations in the SI engine combustion is more impor-
tant because engine operation is limited by extreme cyclic variations. Additionally,
the optimum spark timing is set for the average cycle. Thus, combustion cycle faster
than average cycle has effectively over-advanced spark timing, and cycles slower
than average cycles have retarded spark timings. The advanced or retarded spark
timings lead to a loss of power and efficiency [5]. Due to the spark timing set for the
average cycle, the faster cycles are more likely to have knocking tendency, and the
slower cycles are likely to be partial burn or misfire cycles. The slowest cycle
actually defines the lean operating limit of the engine and also the maximum EGR
tolerance of the engine.

Figure 8.2 illustrates the stable and unstable engine operating region and the edge
of combustion stability. The stable combustion is characterized by acceptable cyclic
variations in the combustion process. During engine operation in the lean and highly
diluted mixture (with air or EGR) or at lower loads and engine speeds (such as under
idle conditions), the cyclic variation increases and engine operation shifts to transi-
tion regime (partial burn), and in extreme conditions misfire can occur (Fig. 8.2). In
the transition period, the cyclic variations in the combustion process (COVIMEP) are
very high, and the engine efficiency decreases rapidly. Unintended excursions to the
unstable operating region may result in misfires and very strong “rebound” events
which could damage the engine and/or catalyst system [7]. Thus, to avoid
unintended excursions, practically engines need to operate well away from the
edge of stability. Cyclic combustion variations are governed by stochastic
(in-cylinder variations) and deterministic (cycle-to-cycle coupling) processes, and
deterministic mechanisms act as a nonlinear amplifier to stochastic variations. Cyclic
combustion variation can also amplify the cylinder-to-cylinder imbalances [7]. Thus,
improved understanding of instability mechanism is required for better control of the
engine.

Combustion stability is one of the main parameters on which researchers are
keenly interested in improving the drivability, fuel economy, and emissions. Com-
bustion stability (cyclic variations) can be quantified in terms of standard deviation
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of indicated mean effective pressure (SDIMEP), the coefficient of variation of IMEP
(COVIMEP), lowest normalized value (LNV), and standard deviation and coefficient
of variation of speed [8]. Figure 8.3 illustrates the cycle-to-cycle combustion vari-
ations in HCCI engine during stable and unstable operations.

Figure 8.3a shows that the stable operation of HCCI engine has small cyclic
combustion variation (COVIMEP¼ 3.56%) at average combustion phasing (CA50) of
13.4 �CA after TDC. In the stable operating condition, cyclic variations of the mass
and temperature of each gas content at intake valve closing (IVC) (mair,mfuel,mEEGR,
mREGR, Tair, Tfuel, TEEGR, TREGR) and the TIVC are also small. The EEGR denotes
external exhaust gas recirculation, and REGR denotes rebreathed exhaust gas
recirculation. Cyclic combustion variations for the stable operation are equally
distributed to values higher and lower than the average (Fig. 8.3a). In contrast, a
much larger spread around the average value in mair, mEEGR, mREGR, TREGR, and the
resulting TIVC is exhibited by several cycles during unstable engine operation
(Fig. 8.3b). The unstable engine operation has larger variations in combustion as
depicted by IMEP and CA50 in Fig. 8.3b. Some of the cycles partially burn in the
unstable engine operating region as illustrated in Fig. 8.2. The partial burn cycles can
be observed in unstable engine operation in Fig. 8.3b. The partial burn and misfire
cycles are discussed in Sect. 8.2. The manifestation of combustion variability and
sources of combustion variability are discussed in the next subsections.

Fig. 8.2 Stable and
unstable engine operating
regions (adapted from [6, 7])
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8.1.1 Manifestation of Combustion Variability

Cycle-to-cycle combustion variability phenomenon is significant during engine
operation typically at low load and speed conditions (particularly idle conditions),
high EGR operation, and highly diluted mixture. The two consecutive engine
combustion cycles are not exactly same similar to human fingerprints. There exist
cycle-to-cycle and cylinder-to-cylinder variations in developed torque along with
fluctuations in the engine speed.

The signs of combustion variability in automotive engines are summarized as
engine roughness, compromised torque/power, higher engine emissions, loss in
engine efficiency, lower fuel economy, lower knock resistance, compromised dilu-
tion tolerance, compromised spark/injection timing (injection point diesel), and
cyclic variations in torque and engine speed [9]. The significant cyclic variations
in the developed engine torque directly affect the drivability of the vehicle. There-
fore, minimization of cyclic combustion variations is essential for stable engine

Fig. 8.3 Illustration of (a) stable and (b) unstable engine operation in HCCI combustion [3]
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operation along with optimal engine performance in terms of emissions and fuel
economy.

Combustion variability influences the engine performance at all operating condi-
tions. Idle instability typically is governed by variations in fuel flow and exhaust
residuals. Part-load combustion variability is driven by fuel flow variations and
EGR. Wide open throttle (WOT) combustion instability is typically dictated by
variations in airflow [9]. The summarized general negative impacts of the cycle-to-
cycle variations in the combustion process on engine performance are presented in
Fig. 8.4. The cyclic variations in the combustion duration result in a condition where
the combustion process in some of the cycles is faster while in others is slower than
average cycle. The combustion variations are associated with losses in terms of
power and thermodynamic efficiency and fluctuations in the amount of work done.
The faster combustion cycles (than optimized) will have higher peak pressure and
the tendency of knocking. Thus, these cycles impose the lower limit for the allowed
fuel octane number and the upper limit for the engine compression ratio, which
compromises the thermodynamic efficiency. In the slow combustion cycles (than
optimized), the combustion may not be completed before exhaust valve opening
(EVO) timing, which leads to a high unburned hydrocarbon (HC) emissions as well
as high fuel consumption. This effect is significantly observed in with diluted
mixtures (either with EGR, with lean mixtures, or under throttled conditions)
[11]. The cyclic combustion variations also lead to the engine speed and torque
fluctuations which affect the overall engine performance characteristics, such as the
engine brake power and its specific fuel consumption. The speed and torque fluctu-
ations also result in poor drivability of the vehicle for some kinds of transmissions,
such as lockup torque converters and manual transmissions [12]. The cyclic varia-
tions also partially contribute to engine noise due to variations in cylinder pressure

Fig. 8.4 Effect of cyclic variations in the combustion process on engine performance (adapted
from [10])
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[10–12]. Thus, reduction in cyclic variations in combustion may also help in
mitigating the engine noise. Periodic oscillations in engine speed of a port fuel-
injected (PFI) SI engine at idle conditions are also found to be affected by combus-
tion perturbations [10, 11]. Considering the negative impacts of cyclic combustion
variations, it is important to determine the sources of variability and quantify
(characterize) the combustion variation. The origin of combustion variability in
reciprocating engines is discussed in the next subsection.

8.1.2 Sources of Cyclic Combustion Variability

The cycle-to-cycle combustion variations are evident from the beginning of the
combustion process (Fig. 8.1). Variations in burning rate are also apparent through-
out the combustion process. Combustion variability may be caused by various
factors including cyclic variations in gas motion in the cylinder during combustion;
variations in the amount of fuel, air, and residual gases inducted in every engine
cycle; gas charge motion and composition at the location and time of spark; mixing
homogeneity; fuel preparation (targeting, droplet size, swirl, cone angle); dispropor-
tionate dilution (by EGR or air); long combustion duration because of poor com-
bustion system hardware design; and low ignition energy or a small spark plug gap
[9]. Origins of cyclic combustion variations can be divided into two groups:
(1) prior-cycle effects (residual gas, etc., results of misfire and partial burn, wall
temperature) and (2) same-cycle effects (in-cylinder flow, etc., results of random
variations) [13]. Both prior-cycle and same-cycle effects are always present in
reciprocating engines. However, one effect may dominate depending on engine
operating conditions. The relative contribution of each process to overall cyclic
combustion variability is not known and may be different for different engines
depending on fuel injection system, engine geometry, and operating conditions.
The specific reasons for cyclic combustion variations depend on the charge prepa-
ration process and combustion mode. The sources of cyclic variation in spark
ignition and compression ignition engines are discussed in the next two subsections.

8.1.2.1 Causes of Cyclic Combustion Variations in SI Engines

Cyclic variations in the combustion process are generated due to the variations in
mixture motion within the combustion chamber; variations in the amounts of air and
fuel fed to the cylinder; variations in the mixing of fresh mixture and residual gases,
particularly in the vicinity of the spark plug, which determine mixing, stratification,
convection of spark kernel away from the electrodes, and heat loss from the kernel to
the electrodes; etc. [13]. It is proposed to divide all the sources of cyclic combustion
variation in SI engine into the four categories, namely, (1) mixture composition,
(2) spark and spark plug, (3) in-cylinder mixture motion, and (4) engine operating
factors/conditions [11, 12, 14]. Figure 8.5 presents the summary of all the major
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factors influencing the cycle-to-cycle variations in spark ignition engine. These
factors affect the different stages of combustion depending on their characteristics.
In spark ignition engine, the combustion process can be divided into four main
stages, namely, (1) sparking and flame initiation, (2) initial flame kernel develop-
ment, (3) turbulent flame propagation (main combustion stage), and (4) flame
termination [11]. Each of these stages of SI engine combustion may be influenced
by a different set of dominating factors, while each preceding stage affects the
subsequent ones. The last stage (flame termination) does not affect noticeably the
cyclic combustion variations.

There are several known factor responsible for creating cyclic combustion vari-
ation in SI engine including turbulent nature of the in-cylinder flow, mixture spatial
inhomogeneity, fluctuations in the mean flow vector at the spark gap, etc. (Fig. 8.5).
Other factors, such as spark plug orientation, electrode shape, overall equivalence
ratio, etc., though do not generate cyclic combustion variation but influence their
intensity [10]. The complexity of the phenomenon of cyclic combustion variations is
illustrated in Fig. 8.6. Solid lines in the figure represent the ways of the influence of
the factors which contribute to cyclic variation generation, and dashed lines show the
influence of the factors which only affect the extent of cyclic variations. Figure 8.6
shows how several factors affect the cyclic variations in the SI engine combustion
through different mechanism and stages of the combustion development. For exam-
ple, mixture spatial inhomogeneity causes cyclic variations in “first eddy burnt”
composition and thereby affects the initial flame kernel development stage. Besides
that, some of the factors are strongly interrelated [10]. The other observation is one
group of factors such as overall equivalence ratio, spark plug location, or fuel type do
not cause cyclic combustion variation themselves but affect the extent of cyclic
variation generated by other factors. Thus, understanding of the contribution of a
particular factor in cyclic variation and its mechanism of influence at a particular
stage of combustion is important.

Fig. 8.5 Summary of factors influencing the cyclic combustion variation in spark ignition engine
(adapted from [11, 12, 14])
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Mixture composition-related factors include the type of fuel, the overall equiva-
lence ratio (Φ) of the mixture and its cyclic variations, the overall fraction of diluents
and its cyclic variation, and the mixture equivalence ratio and diluent spatial
inhomogeneity. The fuel type affects the cyclic combustion variation through lam-
inar burning velocity, which significantly affects the initial flame kernel develop-
ment [11]. Two major characteristics of the fuel type affecting the cyclic combustion
variations are (1) magnitude of the maximum flame speed and (2) the equivalence
ratio at which it occurs [12]. It was found that fuel with very high laminar burning
velocity show closely repeated cycles (less cyclic variations) and the flame remained
centered at the spark gap [15]. Fuels having higher laminar flame velocity leads to
the higher burning rate, which results in relatively lower the cyclic combustion
variations. One more parameter by which one fuel can differ from another is its
heating value. This parameter can influence the burning rate through the expansion
rate of the flame and adiabatic flame temperature [11]. The overall equivalence ratio
of the mixture and its cyclic variations affect the combustion variations through the
laminar burning speed, which is highest in stoichiometric or slightly enriched
mixtures. Thus, any deviation from the engine operation at a stoichiometric ratio
leads to a decrease in the laminar burning velocity with a consequent increase in the
ignition delay time and the level of cyclic combustion variations [11, 12]. The
overall fraction of diluents and its cyclic variations reduces charge flammability
and the laminar burning rate. The amount of diluents can be varied by different
methods including throttle opening variation, skipping ignition in cycles, variation
of the extent of EGR, and the introduction of inert additives [12]. It is observed that
higher dilution reduces the burning rate which leads to higher cyclic combustion

Fig. 8.6 Mechanisms of the influence of the various factors involved in cyclic combustion
variations in SI engine performance (adapted from [10])
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variations. Mixture and diluent spatial inhomogeneity are created due to imperfect
mixing of charge components which includes air, fuel, and residual gases (internal or
external EGR). The spatial inhomogeneity in the charge leads to the cyclic variations
in local equivalence ratio and the diluent quantity in the vicinity of the spark
electrode gap which consequently leads to cyclic variations in the initial flame kernel
development stage [11, 14].

Design of spark plug and the spark discharge characteristics are the dominant
parameters in the initial flame kernel development. The evolution of cylinder
pressure in the combustion chamber is strongly related with the initial flame kernel
development stage, and thus, spark plug design and its characteristics strongly affect
the engine performance [16, 17]. Spark and spark plug-related factors include spark
timing, spark discharge characteristics, spark plug design (electrode gap and shape),
and spark plug number and location. All the spark-related parameters affect the early
stage of flame development. In the later stage of combustion process, both the
location of the spark plug and their number play a significant role [11]. Minimum
cyclic variations in combustion and pressure development generally take place at
maximum brake torque (MBT) spark timing. The dependence of cyclic variations on
the spark timing is affected by overall mixture strength and location of spark plug.
The more prominent cyclic variations are observed for leaner mixtures or the large
spark plug offset from the center of the combustion chamber. The spark discharge
process also has an important influence on flame initiation. The initial flame devel-
opment plays an important role in cyclic variations. The quicker (fast) the flame
kernel reaches a certain critical size, the lower cyclic variations are observed.
Enhanced ignition increases the early flame development rates and thus results in
lower cyclic variations. The ignition system should be redesigned so that most of the
electrical energy is dissipated in the breakdown phase. This would ensure that energy
is transferred to the gas most efficiently and produce sharp temperature gradients and
the right plasma geometry to enhance the initial flame speed [18]. Spark duration and
spark energy are two characteristics that are typically used to characterize spark
discharge. Generally, these two are strongly coupled with each other, and varying
spark duration causes changes in the total spark energy. It is suggested that one of the
methods of reducing cyclic variations is by increasing the energy of the conventional
spark [17]. This implies that the spark energy has an effect on cyclic combustion
variations. The design of spark plug can affect the cyclic combustion variations
through several mechanisms. The number of spark plug electrode and their shape
govern the flame contact area fraction, which controls the heat losses into the body.
The electrode shape and number also influence the flow field characteristics within
the spark gap [19]. More favorable kernel heat balance is expected from thin and/or
sharply pointed electrodes. However, thin/sharply pointed electrodes are subjected
to relatively stronger erosion and therefore have less durability. Additionally, the
surface temperature of a thin or sharply pointed electrode will be higher. This creates
a danger of preignition at high engine load operations. Spark gap affects the
breakdown voltage and energy. Higher voltage is required for breakdown at larger
spark gap. Additionally, the spark plug gap also affects the energy loss from the
flame kernel to the electrodes by heat transfer. Increasing the spark gap leads to the
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larger ratio between flame kernel volume and “wetted” electrode surface area. Thus,
the electrode gap of spark plug affects the flame initiation and the stage of flame
kernel growth. Typically, the spark gap is required to be larger than the flame
quenching distance.

Mixture motion and turbulence are the causes deemed most responsible for the
cyclic variations in combustion and the subsequent pressure development.
In-cylinder measurements of flow are difficult to obtain so that the role of turbulence
and mixture motion in cyclic behavior of combustion has been largely inferred from
the nature of the physical changes made to the engine. This evidence, although
largely circumstantial, appears strong enough to single flow variations as being
instrumental in determining the character of the combustion from cycle-to-cycle.
Turbulence in the cylinder accelerates the combustion by increasing flame front area
and improving heat and mass transport between the burned and unburned parts of the
charge, which tend to decrease cyclic variations. On the other hand, turbulence leads
to fluctuation in the magnitude and direction of the charge velocity due to random
flow pattern in the spark gap vicinity which results in cyclic variations in early flame
kernel development [11].

Factors related to the mixture motion are (1) mean flow velocity vector in the
spark gap vicinity and its cyclic variations, (2) spark plug orientation with respect to
the mean flow velocity vector, (3) turbulence intensity and scales, and (4) overall
in-cylinder flow pattern. In the very early stage of sparking and flame initiation, the
mean flow velocity near the spark plug lengthens the discharge channel and
increases the electrical energy deposited into the flame kernel in the breakdown
phase. Later, in the initial flame kernel development stage, mean flow velocity can
convect flame kernel away from the electrodes which lower down the heat loss
[20]. This convection toward the electrodes of a spark plug or combustion chamber
walls is undesirable. The early flame kernel convection affects both ignition delay
time and flame kernel radius at the particular crank position. The cyclic variation in
the mean flow can lead to random convection which transports the kernel to different
locations around the spark plug. The flame propagation in a particular cycle depends
on the initial position of the early flame kernel center [11]. Gas dynamics conditions
in the early flame kernel growth stage are influenced by local flow field around the
electrodes which is governed by mean flow direction and location of the spark plug
in the combustion chamber. Several types of flow pattern can be achieved in the
combustion chamber of the reciprocating engine. The engine design parameters
(such as the shape of the combustion chamber and induction ports, and the type
and configuration of inlet valves) govern the actual flow in the cylinder. The
instantaneous flow also depends on the crank angle position (piston position) and
the engine operating conditions. Swirl, squish, and tumble are the three main
macrostructures found in the in-cylinder flow. Early flame development was more
affected than the main combustion period when swirl was present in the combustion
chamber. It was found that cyclic variations reduced by 30% at part load with
volumetric efficiency of 72% by swirl due to increase in burning rate [21]. Tumble
flow generates turbulence in the combustion chamber more effectively than does
swirl flow. Swirling flow reduces the cycle-by-cycle variability of the mean velocity
in the combustion chamber, which tends to be generated by tumble motion [22].
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Ambient conditions (such as intake temperature, coolant temperature, cold start,
etc.) and engine operating conditions (such as injection timings, engine speed,
load etc.) also significantly affect the cyclic variations. Increasing the inlet air
temperature improves the evaporation of fuel droplets and compensates for the
reduction of charge temperature because of the latent heat effect of fuel. It is
demonstrated that cyclic variations (COVIMEP) have optimal values in the inlet
temperature range of 60–70 �C [23]. Engine operating factors such as engine
speed also affect the cyclic variations as it influences the turbulence intensity.
Injection characteristics such as fuel spray patterns at the pressurized conditions
affect the combustion stability [24].

The physical factors leading to cyclic combustion variability are summarized in
Fig. 8.7. Cycle-to-cycle combustion variability in spark ignition engines limits the
use of lean mixtures, the amount of recycled exhaust the engine will tolerate, and
lower idle speeds because of increased emissions and poor engine stability.

Causes of cyclic combustion variations can be categorized into two groups: prior-
cycle effects (residual gas, etc., results of misfire and partial burn, engine thermal
state, EGR) and same-cycle effects (in-cylinder flow, etc., results of random varia-
tions) [13]. Prior-cycle effects are mainly due to residual gas in the cylinder and
thermal state of the engine. The residual gases from the previous cycle alter the
burning rates of burning and may even cause an engine misfire. The residual gases
consist of exhaust gases remained in the clearance volume of cylinder (internal) and
gases returned by backflow during the valve overlap period. Additionally, external
exhaust gas recirculation (EGR) through intake manifold also leads to prior-cycle
effect. Mass flow analysis of gases suggests that the major portion of residual gases
are contributed by the gases that remained in the clearance volume of cylinder. The
gases remained in the clearance volume are dependent on valve profile, flow

Fig. 8.7 Summary of physical factors leading to cyclic combustion variability in SI engine (adapted
from [25, 26])
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coefficients, and engine speed. Additionally, the gases exchanged during valve
overlap are governed by the gas dynamics in the manifold [27]. The pressure
fluctuations during valve overlap can result in variations in the fresh air-fuel mixture
and backflow of exhaust gases. This leads to variations in residual gases in the
cylinder which affect the succeeding combustion event [28]. The amount of residual
gases are influenced by several factors including the pressure difference across the
valves, valve characteristic, pressure, engine speed, and the gas dynamics during
valve overlap [29].

The same-cycle effects leading to cyclic variations are mainly governed by
variation in the flow of the air-fuel mixture as well as the quality of mixture which
is also partially based on the type of fuel injection system used in the engine. The
port fuel injection (PFI) as well as direct injection (DI) is typically used in commer-
cial vehicles using spark ignition engines. The fuel-air mixture changes by the way
gases flow through inlet manifold during transportation to the cylinder, particularly
in PFI engines. Therefore, the charge in the cylinder can vary in different cycles,
which leads to combustion variability. Physical study of the mixture preparation in
PFI engines showed that fuel puddles are located on the valves, downstream in the
intake port near the valve, upstream near the injector, and on the cylinder wall
[30]. These puddles of fuels lead to cyclic variations in the air-fuel mixture. Fuel
properties affect the puddles of fuels due to the difference in evaporation character-
istics [31]. Thus, different fuels will have a different level of variability in fuel-air
mixture. In PFI engines, fuel transportation process significantly depends on the
timing and duration of the fuel injector pulse. In some systems, the fuel spray is
targeted on the back of the intake valve, and fuel is injected in fully closed valve
conditions or partially open conditions. Thus, the backflow of hot residual gas leads
to the vaporization of liquid fuel off the valve and wall. The fuel can be drawn into
the cylinder as a liquid drop in some cases although the engine is running under fully
warm conditions [5]. Fuel transportation mechanism in the intake manifold can be
understood regarding impingement regimes of fuel. The impingement regimes are
divided into different categories: (1) stick, (2) spread, (3) rebound, (4) rebound with
a breakup, (5) boiling-induced with breakup, (6) breakup, and (7) splash [32]. These
regimes are influenced by different fuel parameters (droplet velocity, size, temper-
ature, the angle of wall hitting, and fuel properties) and manifold wall parameters
(temperature, surface roughness, and remaining fuel droplets). These effects signif-
icantly influence the air-fuel ratio before the start of combustion.

Additional factors such as turbulence intensity and scale, mean flow velocity at
spark plug, air-fuel ratio, variations in spark discharge characteristics (breakdown
energy, timing, type of spark plug, and spark orientation), variations in mass of
charge, leakage through valves, and crevice effects also influence the cyclic com-
bustion variation in spark ignition engine [13].

8.1.2.2 Causes of Cyclic Combustion Variations in CI Engines

Conventionally in compression ignition (CI) engines, the diesel fuel ignites sponta-
neously following the injection event. The combustion and fuel injection often
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overlap with a very short ignition delay period in conventional CI diesel engines.
Therefore, diesel engines offer superior combustion stability characterized by the
low cyclic combustion variations [33]. Diesel engine usually exhibits lower signif-
icant cyclic combustion variations because non-premixed combustion dominates the
overall combustion process, which is mainly governed by fuel-air mixing [34]. The
fuel-air mixing is governed by fuel injection system, which is the highly repeatable
system. Thus, there exists only a very small amount of time where combustion is
uncoupled with the injection or uncontrolled combustion that results in significantly
lower cyclic variations in comparison to homogeneous spark ignition engine. Modern
high-speed diesel engines are equipped with multiple pilot injections potential with an
objective of reducing the main injection ignition delay. The reduction in ignition
delay leads to mainly diffusion-dominated combustion in a modern diesel engine.
Cyclic variations in background turbulence (swirl, etc.) are minimal, and will not
affect the diesel combustion rate significantly because the intensity of background
turbulence is several times lower than the injection-generated turbulence [34].

However, cyclic combustion variability can also occur in CI engine mainly due to
instabilities in the fuel injection system or prolonged ignition delay. Cyclic varia-
tions in a diesel engine are observed due to variations in injection timing between
cycles because of rotary fuel pump used for fuel injection [35]. Recent studies also
demonstrated the cyclic combustion variations in diesel engine due to the variations
in the fuel path [36, 37]. Study showed that cyclic variations in the fuel injection
pressure (at a command pressure of 1000 bar) are between 1 and 9% which results in
variations in the needle lift that leads to variations in fuel delivery up to 23%. The
variations in the fuel delivery are correlated with the corresponding cyclic variations
in the IMEP and instantaneous angular velocity of the engine [36]. Cycle-to-cycle
variations demonstrate very fast dynamics. Among all the controlled inputs available
in diesel engines, the injector pulse or current profile, typically defined by start of
injection (SOI), fuel ratio, dwell time, etc., has the most immediate dynamic effect
on the combustion process [37].

In addition to instabilities of the fuel injection system, prolonged ignition delay
contributes to increase in cycle-to-cycle combustion variations. It is demonstrated
that the cyclic variations in the cylinder pressure cannot be fully explained by
variations in the fuel injection [38]. Prolonged ignition delay conditions created by
varying intake temperature, pressure (engine load), and fuel injection timings show
higher cyclic combustion variation in diesel engine [34]. Ignition characteristics of
fuel also affect the cyclic variations, and lower cetane number (CN) fuels exhibit
larger cyclic combustion variations. Cold start studies in diesel engines show that
colder in-cylinder conditions are resulting into a longer ignition delay period that
leads to larger cyclic variations [39]. Diesel cold starting is influenced by many
design and operating parameters, which affect the air temperature and pressure near
the end of the compression stroke. Such parameters include the ambient temperature,
cranking speed, injection parameters, and fuel properties particularly cetane number
and volatility. Combustion instability during the cold start of diesel engines is
influenced by several factors, most important of which are the ambient temperature,
injection timing, and the instantaneous engine speed during the cycle [40].
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Combustion instability was found to increase with the drop in temperature. Cycle-to-
cycle analysis suggested that the number of misfiring cycles increases with the drop
in ambient temperature. The cause of misfiring was found to be a mismatch between
the injection parameters and the instantaneous engine speed at the time of misfiring.
Combustion instability can be reduced if fast injection timing controls are devel-
oped. Ideally, the injection timing should be adjusted to suit the conditions in each
cylinder, which requires fast response fuel injection controls. [40]. It is found that the
cycle-to-cycle stability of IMEP is generally improved by using triple- or quad-pilots
over single and possible twin pilots [41]. Additionally, increasing the glow plug
temperature always improves stability, even when the best fuel injection strategy is
used. The number of pilot injections is more important than the total pilot quantity.
Total pilot quantity has been observed to have an influence which can produce a
deterioration or improvement in stability, and the direction of change may depend on
the number of pilot injections [41].

In well-mixed (homogeneous) charge compression ignition (HCCI) engine, the
cyclic combustion variation is typically lower than conventional spark igni-
tion (SI) engine, but it can be high in some of the operating conditions due to no
direct control on ignition timings [2]. Ignition timing in HCCI engines is sensitive to
inlet air temperature, equivalence ratio, residual gases/EGR, cylinder wall tempera-
ture, compression ratio, and chemical kinetics of fuel-air mixture. The HCCI com-
bustion in the engine cylinder is achieved using different strategies for autoignition of
charge. Typically, cyclic combustion variations and cylinder-to-cylinder variations in
HCCI engines depend on combustion phasing and strategies employed to control the
combustion [2, 42, 43]. Several factors affect the HCCI combustion, and the level of
cyclic combustion variations is governed by variations in several factors including
(1) equivalence ratio, (2) inlet air temperature and pressure, (3) mixture inhomoge-
neity (thermal and composition stratifications), (4) amount of EGR (external or
internal), (5) coolant and lubricating oil temperatures, (6) intensity of intake charge
motion and bulk turbulence, (7) fuel-air mixing and charge preparation strategies, and
(8) combustion completeness in the previous engine cycle [43]. Several strategies
(such as inlet air preheating, variable compression ratio (VCR), exhaust
recompression, exhaust reinduction, employing multi-fuel and multiple injection
strategies) can be used to control/minimize the cyclic variations in HCCI engine [44].

In HCCI engine, four major contributing sources of cyclic combustion variations
are identified, namely, (1) mixture composition stratification, (2) thermal stratifica-
tion, (3) cycle-to-cycle variations in fuel-air ratio, and (4) cycle-to-cycle variations in
diluents (residual gases and/or EGR) [45]. Spatial mixture composition inhomoge-
neity occurs in the cylinder due to inadequate mixing of air, fuel, and residual/
recirculated burned gas from the previous cycle. Homogeneity of charge is affected
by fuel injection strategy used for fuel-air mixture preparation [2]. Cyclic variations
in charge composition homogeneity (stratification) lead to the cyclic combustion
variations. Temperature stratification is created by heat transfer from surfaces (pis-
ton, valves, and cylinder head) having different temperatures and from the insuffi-
cient mixing of air, fuel, and residual gas [46]. The inhomogeneous heat release from
the low-temperature heat release (cool flame chemistry) can also contribute to the
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temperature stratification in the combustion chamber [47]. Delayed combustion
phasing significantly enhanced the thermal stratification in the combustion chamber
because of longer time available for developing the stratification [48]. Cyclic vari-
ations in the residual gas temperature can generate the cyclic thermal stratification in
the cylinder that results in cyclic combustion variations in HCCI engine
[2, 49]. Cyclic variations in the mean equivalence ratio of the charge can occur in
PFI engine [50], which is typically used for fuel injection in HCCI engine. Cyclic
variations in equivalence ratio can also be generated by variations in gas exchange
process as well as incomplete evaporation of fuel droplets. The cyclic variations in
mean equivalence ratio lead to cyclic combustion variations in HCCI engine.

The HCCI combustion phasing is typically controlled by internal (trapped resid-
uals) as well as external cooled EGR. Due to the incomplete mixing of EGR, thermal
stratification in the cylinder can be created. The level of dilution by EGR affects the
HCCI combustion, and thus, cycle-to-cycle variations in the amount and composi-
tion of diluents result in cycle-to-cycle variations in combustion. Both chemical and
thermal effects are responsible for cyclic combustion variation in HCCI engine when
EGR is used for dilution [3].

Figure 8.8 illustrates the unstable HCCI engine operation using EGR. The
number of cycles presented is zoomed version of Fig. 8.3b. It can be noticed from
Fig. 8.8d that a partial burn cycle is often followed by another partial burn cycle due
to a lower temperature at intake valve closing (TIVC) which is the result of the lower
temperature of rebreathed EGR. The lower temperature leads to delayed combustion
phasing, which increases the possibility of a second partial burn cycle with further
lower IMEP [3]. Figure 8.8d also shows the variations of IMEP do not well matched
with the variations of CA50 (particularly for the partial burn cycles). Additionally,
immediate cycle after an excessive partial burn cycle (the lowest IMEP cycle with
number 38 and 52) improves the IMEP toward the average value at substantially
lower TIVC and highly retarded CA50 timings. Engine cycles number 39 and
53 (Fig. 8.8d) have maximum IMEP at the highly retarded CA50 instead of the
lowest TIVC. The recovery of IMEP just after misfire cycle cannot be described by
thermal effects of the charge, and it suggests a chemical state of charge is responsible
(chemical enhancement of autoignition) [3]. The low-temperature heat release is
maximum for excessive partial burn cycle (Fig. 8.8c). It is suggested that trace
species produced during low-temperature heat release period are recirculated in the
next cycle, which is responsible for the sufficient enhancement of autoignition of
charge. Therefore, cycle-to-cycle variations in the EGR can lead to cycle-to-cycle
variations in combustion process through chemical effects also.

The low-temperature combustion (LTC) engines have higher sensitivity to cyclic
variations input parameters than conventional diesel combustion. The LTC engines
show higher cyclic variations than conventional diesel engines [2]. Figure 8.9 shows
the normalized contribution to cyclic variations in output parameters (IMEP, CA50,
gross indicated efficiency (GIE), and peak pressure rise rate (PPRR)) by several
input parameters in HCCI and reactivity controlled compression ignition (RCCI)
engines. The considered input parameters are temperature and pressure at intake
valve closing (Tivc, Pivc), PFI fuel mass (PFIFuelMass), EGR, cylinder surface
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Fig. 8.8 (a) Mass of in-cylinder air, external exhaust gas recirculation (EEGR), and rebreathed
exhaust gas recirculation (REGR) at IVC; (b) temperature of REGR and averaged charge temper-
ature (TIVC) at IVC: (c) fueling rate, total heat release, and low-temperature heat release; (d) CA50

and IMEP as a function of consecutive cycles of #32–#58 for the unstable HCCI operation [3]
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temperature (CylTemp), and direct injected fuel mass (CRFuelMass) in case of RCCI
combustion. Individual contributions of every input parameter are calculated by the
response surface model (RSM) by uncertainty propagation technique [51]. The
major contribution in cyclic variations of the output parameters is from four sources:
PFI mass, DI mass, trapped gas temperature, and EGR% (Fig. 8.9). The Pivc has an
only minor influence to the variation in RCCI combustion, but it is a significantly
contributing factor in cycle-to-cycle variation HCCI engine [51]. The combustion
phasing (CA50) is mainly affected by TIVC, PIVC, EGR%, and cylinder surface
temperature in the HCCI engine. The PFI fuel mass has a minimal effect on CA50

even though it has a very strong effect on IMEP and PPRR (Fig. 8.9a). The cyclic
variations in CA50 are mainly influenced by TIVC, direct injection fuel mass, and
EGR% in RCCI combustion (Fig. 8.9b). The accurate and consistent fuel delivery
systems are crucial to minimizing the cyclic variations in LTC engines. Additionally,
management of the temperature and EGR sensitivity is required to take the full
advantages of TLC engines [51].

8.2 Characterization of Cyclic Combustion Variations

The problem of cycle-to-cycle variations in engine operation is fundamentally a
problem of variation in combustion from one cycle to the next. The cyclic variations
can be characterized by the variations in the different combustion parameters.
Increase in cyclic variations eventually leads to deterioration of combustion stability
to unacceptable levels, which results in partial burning on some cycles, and in the
extreme, misfires or weak burn cycles occur that produce no work output. In this
section, indicators of cyclic variations and recognition of partial burn and misfire
cycles are discussed.

Fig. 8.9 Effect of several input parameters on the cyclic variations in output parameters (IMEP,
CA50, GIE, and PRRR) in (a) HCCI and (b) RCCI engines [51]
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8.2.1 Indicators of Cyclic Combustion Variations

Various parameters used as measures of combustion variability can be classified into
four main categories [5, 52]: (1) parameters related to characteristics of engine
cylinder pressure, (2) parameters related to characteristics of engine combustion,
(3) parameters related to characteristics of flame front, and (4) parameters related to
the concentration of engine exhaust gas.

The use of pressure-related parameters for cyclic variation analysis appears to be
a natural choice because these parameters can easily be measured using a pressure
transducer that can be usually integrated with the spark plug unit (SI engine) or glow
plug unit (CI engine). The technique of using pressure-related characteristics pro-
vides a link between the flame propagation process and the thermodynamics of the
SI engine cycle. Among the major pressure-related variables include (1) maximum
pressure (Pmax), (2) crank angle position corresponding to the maximum cylinder
pressure θPmaxð Þ, (3) maximum pressure rise rate ((dP/dθ)max), (4) crank angle
position corresponding to the maximum rate of pressure rise (θ(dP/dθ)max), and
(5) variations in the indicated mean effective pressure (IMEP).

The maximum cylinder pressure is the most widely characteristic variable for
cyclic combustion variability because of the relative ease with which it is measured.
The crank angle position of the maximum cylinder pressure θPmaxð Þ is also a useful
index for determining cyclic variability. Cyclic variations in Pmax respond to vari-
ations in the combustion phasing which is introduced by fluctuations in the initial
part of combustion. It also responds to cyclic variations in peak burn rate and in
fueling level or airflow (charging). This behavior suggests that care must be taken
while relating variations in Pmax to variation in the flame propagation process. The
maximum pressure is typically higher with higher burn rates and vice versa. Using
the location of peak pressure θPmaxð Þ as a measure of phasing of cyclic variation
analysis is similar to using peak pressures. The relationship between the maximum
in-cylinder pressure (Pmax) and the crank angle at which it occurs (CAPmax) is shown
in Fig. 8.10. The figure shows that the Pmax reduces and the corresponding crank

Fig. 8.10 Variation in
maximum cylinder pressure
and its corresponding crank
angle position at the various
levels of hydrogen
enrichments αH2ð Þ at
1400 rpm in a gasoline
engine [53]
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position for the Pmax first retards and then advances with the increase of excess air
ratio at a specified hydrogen enrichment (Fig. 8.10). This phenomenon illustrates
that the effect of piston motion on the Pmax is getting pronounced at extremely lean
conditions due to the further prolonged combustion duration [53]. It is also found
that the relationship between Pmax and θPmax is approximately linear for fast burn in
the entire range, while for the slow burn case this linearity prevails only up to a
certain retard. For further retarding, there is a “hook-back” region, which corre-
sponds to a very late phasing of combustion, when the effect of expansion due to the
piston movement becomes an important factor [5, 11].

The maximum pressure rise rate can be used for variation analysis as close to
TDC position the piston movement is not significant and maximum pressure rise
occurs close to constant volume condition. In this case, the maximum pressure rise
rate would be expected to be related to burning rate and hence to flame speed. A
combination of maximum pressure rise rate and its crank position in the cycle can
provide some discrimination between burning rate variations and initiation period
variations in much the same way that peak pressure and its location in the cycle
correspond to a unique burn rate and phasing variations. The interpretation is more
complex, however, and requires accurate estimation of the maximum pressure rise
rate ((dP/dθ)max) despite an inherent sensitivity to noise in the pressure data. Another
measure of cyclic variability is the variation in the work output in each cycle or the
variability in the IMEP. The coefficient of variation in IMEP (COVIMEP) is a widely
used parameter for determination of combustion stability. Figure 8.11 illustrates the
variations in COVIMEP with ignition timing at different excess air ratios and throttle
positions (TP) in a spark ignition engine. The figure shows that COVIMEP decreases
firstly and then increases with the retard of ignition timing, and thus, the ignition
timing should be set at the optimum timing with the lowest cyclic variations
[54]. Figure 8.11 also demonstrates that COVIMEP generally increases with the
increase of excess air ratio due to the slower flame propagation speed caused by
increased level of dilution mixture in-cylinder.

Fig. 8.11 The variations in COVIMEP with ignition timing at different excess air ratios and throttle
positions (TP) [54]
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Practically, the combustion-related parameters are derived from the measured
pressure data by using thermodynamic heat release model. The following are the
methods used to quantify cycle-to-cycle variations based on the combustion char-
acteristics: (a) maximum rate of heat release, (dQ/dθ)max, (b) total heat release rate,
(c) combustion duration, (d) ignition delay, (e) time period in crank angle degrees
from ignition to the point where a certain mass fraction is burned, and (f) maximum
rate of mass burning or maximum rate of change of mass burnt fraction in the
cylinder [5]. Combustion-related parameters, such as the ignition delay, the com-
bustion duration, the total heat release, and the crank angle period from ignition to a
certain heat release fraction (typically 10 and 50%), are frequently used. Ignition
delay is a good parameter to indicate the extent of cyclic combustion variations in
initial stages of combustion, and it is commonly accepted that both its mean value
and its variance to a great extent determine the cyclic variations [11].

Typically, flame front-related parameters such as (1) flame front position,
smoothed flame front area, or flame entrained volume at a specific crank angle,
(2) crank angle lapse between flame front arrival and two pre-specified different
locations in the cylinder, and (3) displacement of the flame kernel center from the
spark gap at different crank angles are used for the analysis of cyclic variations. In
exhaust gas-related parameters, generally the concentration of different components
in the exhaust gases is used for the analysis [11].

8.2.2 Recognition of Partial Burn and Misfire Cycles

In reciprocating engines, terms such as misfire and partial burn are used to indicate
an absence of combustion or weak combustion in the cylinder. Typically, engine
operation with diluted mixture leads to the increase in the duration of all the stages of
the combustion process, and in some of the engine cycles, there is no time to
complete the combustion within the cylinder. Further increasing the mixture dilution
may lead to a situation when the mixture never ignites and misfiring cycles occur
[55]. A cylinder misfire occurs when the injected fuel mass (diesel engines) or the
air-fuel mixture (port or direct injection gasoline engines) does not ignite, or it burns
incompletely. Misfire events can occur due to several reasons such as a fault in the
spark ignition or fuel injection control system, defective fuel injection and air intake
systems, insufficient ignition energy, bad fuel quality, excessive EGR, low temper-
ature, etc. [9, 56]. Besides the irregular engine running, further consequences of
regular misfires are long-term increases mainly in hydrocarbon (HC) and carbon
monoxide (CO) emissions. Sustained misfiring can also damage the catalytic con-
verter in the exhaust system [57]. Misfire can also lead to a sudden engine speed
decrease. Misfire cycles are undesirable since it can lead to speed and torque
fluctuations [58]. The misfire detection is one of the most important aspects of
onboard diagnostics (OBD). The diagnostic system must be able to detect a single
misfire and also to determine the specific cylinder in which the misfire event has
occurred. An alert must be generated whenever the rate of misfire exceeds a
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particular threshold (corresponding either to excessive catalyst temperature or
increased HC emissions) [56]. Thus, partial burn and misfire can be detected by
the cylinder pressure signal, and several methods are proposed for different com-
bustion modes [59–62].

Typically, two types of constraints (misfire limit and cyclic variability limits) can
be defined as combustion stability limits [2]. For a particular engine speed and fuel,
the HCCI engine operation is limited by three boundaries: misfire, partial burn, and
knock limit. Maximum achievable load in HCCI combustion is limited by misfire
operating conditions. Figure 8.12 illustrates the normal burn, partial burn, and
misfire cycles in unstable operating conditions of an HCCI engine. The figure
shows that at cyclic combustion variations are very high at unstable operating
conditions.

Figure 8.13 illustrates the three regions, normal, partial burn, and misfire, in the
HCCI engine. The figure shows that the IMEP and heat release in misfiring cycles

Fig. 8.12 Measured cylinder pressure and IMEP variations at an unstable operating condition in an
HCCI engine for 300 consecutive cycles [63]

Fig. 8.13 Percentage of
heat release as a function of
IMEP for 120 consecutive
cycles in HCCI engine [59]
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are far below the well-burning cycle and heat release of the misfire cycle is less than
50% compared to a well-burning cycle [59]. Typically, when IMEP of a cycle is
negative, then that particular operating cycle is considered a misfire cycle [60]. A
cycle is defined as a partial burn cycle if its total heat release is reduced by 10% or
more compared to a well-burning cycle [61]. A study defined partial burn and misfire
operating condition in an HCCI engine based on the estimation of partial burn cycles
[64]. An operating condition is defined as a partial burn operating condition if more
than 20% of the cycles are partial burn cycles (heat release is reduced more than 10%
from the previous cycle). Misfire operating condition is considered with more than
30% partial burn cycles at a particular engine operating condition. The COVIMEP is
typically used to define the partial burn or misfire conditions. A method combined
the COVIMEP and heat release method to determine the partial burn operating
conditions. It is found that all the operating conditions with COVIMEP more than
6% and higher than 14% partial burn cycles can be defined as the partial burn
operating conditions [62].

It was concluded that the operating conditions have a lower risk of misfire where
the coefficient of variation (COV) of IMEP is below 3.5% in HCCI engine [2]. The
value of IMEP is low at lower engine loads near idle operating conditions. In such
low IMEP conditions, the stable operating limit is defined in terms of the standard
deviation (STD) of IMEP instead of COV of IMEP, and the typical limit is 15 kPa of
IMEP for stable combustion [65]. Another stable HCCI operating criteria is devel-
oped as the operating conditions where the standard deviation of IMEP is below 2%
which correspond to the occurrence of less than one percent (<1%) partial burn
cycles [61]. Figure 8.14 illustrates the stable operating criteria for stable HCCI
combustion using isooctane and PRF80 fuel. The figure shows that the latest
acceptable CA50 is 373 �CA for isooctane HCCI operation. A high frequency of
partial burn cycles occurs for CA50 beyond 373 �CA. In contrast, the PRF80 fuel can
tolerate more retarded combustion phasing (Fig. 8.14) while maintaining stable
combustion due to low-temperature heat release (two-stage heat release fuel) [61].

Fig. 8.14 Standard
deviation of IMEP with
combustion phasing in
HCCI engine [61]
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Similarly, in SI engines, the leaner engine operation (dilution by air, residual, or
EGR) leads to an increase in flame development period and the duration of rapid
combustion phase along with higher cyclic combustion variations. Leaning of the
mixture can eventually lead to a condition where the engine becomes rough and
unstable with the rapid increase in unburned hydrocarbon emission. These engine
operating conditions are defined as a stable engine operating limit [5]. Leaner
mixture operations slow down the combustion process, and it may happen that
time is not sufficient for consuming the full charge by flame propagation before
the exhaust valve opening. This condition is considered as partial burn. With the
increase of EGR, slow burn, then partial burn, and then misfire cycles occur in SI
engine. The combustion is able to complete in slow burn cycles (typically after 80�

aTDC), and IMEP is low (between 85 and 46% of average value). The IMEP value is
less than 46% of average IMEP in partial burn cycles [66]. Typically, misfire
operating cycle has negative IMEP value. However, these values can be updated
based on the current acceptable limits. A more recent study used the occurrence of
partial burning cycles as burning cycle producing less than 70% of the mean IMEP
output, and it starts to be significant once the COVIMEP exceeds about 8% [67]. Fur-
ther increase of COVIMEP after 8% leads to an increase in partial burn frequency with
a reasonably linear variation and with a weak dependence on engine speed and load.
Misfire cycles are considered as cycles producing less than 5% of the mean IMEP
output, and it starts to occur at COVIMEP values of around 20%. Thus, characteri-
zation of partial burn and misfire is important for better engine performance. Several
methods are used in published literature for misfire recognition including cylinder
pressure sensor signal, crankshaft angular speed, ionization current or breakdown
voltage, and temperature and oxygen concentration.

In modern engines, sometimes rare partial burn and misfire conditions occur at
robust operating conditions also. Figure 8.15 illustrates the rare random partial burn
and misfire cycle in a spray-guided spark-ignited direct injection SI engine with
well-burned cycles comparable to those at spark timing (ST) at 31� bTDC. To
investigate the causes of the partial burn and misfire, the spatial equivalence ratio
and charge velocity near the spark plug are investigated along with spark energy and
spark duration. Figure 8.16 shows the variations of spatial-average equivalence ratio

Fig. 8.15 Random partial
burn and misfire in spray-
guided direct injection SI
engine [60]
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and velocity and range of spark duration and spark energy during well-burned,
misfire, and partial burn cycles in spray-guided direct injection SI engine. The values
for occurrence of partial burn and misfire are highlighted.

Figure 8.16a illustrates that there exists a very large cyclic variation of equiva-
lence ratio and velocity near the spark plug at the beginning of the discharge that
produces well-burning cycles. Additionally, the partial burn and misfires occur
within the range of equivalence ratio and velocity for well-burned cycles but are
heavily biased toward lean mixture and low velocities (less than 8 m/s). However,
these metrics are not sufficient by themselves to recognize the causes of partial burn
and misfire because these errant cycles occur in the same range of well-burning
cycles [60]. Figure 8.16b shows that partial burn and misfires are somewhat biased
toward the low-energy, short duration discharge (below the line).

Traditionally, partial burn and misfire detection are conducted by measuring the
in-cylinder pressure signal analysis and calculating IMEP. The other methods based
on cylinder pressure measurement are developed for determination of misfire and
partial burns [55, 59, 68, 69]. The pressure angular ratio (ratio of pressure at two
symmetric points before and after TDC) is used for the identification of partial
burning and misfire events [55]. When the pressure angular ratio (P(θ)/P(�θ)) is
greater than a pre-defined value, a partial burning event occurs and when less than

Fig. 8.16 (a) Spatial-
average equivalence ratio
and velocity and (b) range of
spark duration and spark
energy during well-burned,
misfire, and partial burn
cycles in spray-guided direct
injection SI engine [60]
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unity for misfire event. This method is able to determine the misfire event more
reliably than partial burn conditions. Skewness and kurtosis of in-cylinder pressure
data are found to have a desirable correlation with maximum heat release rate and
IMEP, and thus, it can be used for misfire detection in HCCI engine [69]. For misfire
detection, the values of skewness and kurtosis are compared with the data of normal
burn cycles.

Artificial neural networks (ANN) have been used for the detection of misfires in
SI and HCCI engines [59, 70]. Misfiring is directly related to the maximum heat
release rate in the cylinder [71]. The cylinder pressure values at different crank angle
positions (0�, 5�, 10�, 15�, 20� after TDC) well correlated with the maximum heat
release rate (MHRR) as illustrated in Fig. 8.17. The pressure values at crank
positions 0�, 5�, 10�, 15�, and 20� aTDC are designated as P0, P5, P10, P15, and
P20.

Figure 8.17 shows that the regression line fits in the center of the data points for
P10, P15, and P20 with a good correlation coefficient (R2 > 0.97). For cylinder
pressure at 5CAD after TDC (P5), the R2 is less than the value of P10, P15, and P20,
but for pressure at TDC position (P0), a scattering of the points is far from the
regression line (Fig 8.17a). The in-cylinder pressure variation at the TDC position
has significant variations (scatter in the data), and it is less sensitive to the variations
of the maximum heat release rate [59]. The pressure values at these points are used as
input of ANN model used for determination of misfire in HCCI engine. This model
is able to well differentiate between the normal burn cycles and misfire cycles.

Understanding the dynamics of cyclic combustion variation particularly in partial
burn and misfire regime helps in designing effective control of the engine. A
comprehensive ignition timing metric is required for effective control of the engine,
and that metric should be applicable over a wide range of engine operating condi-
tions particularly in partial burn operating conditions [2]. An additional requirement
of metric for engine control is that it needs to be computationally less expensive such
as θPmaxð Þ. Two combustion timing parameters θPmax and CA50 are compared for
determination of accurate and robust HCCI combustion timing over a wide range of
operating conditions (329 different engine operating conditions including both
normal and partial burn) [72]. Figure 8.18 illustrates the cyclic variations of θPmax

and CA50 in HCCI combustion in the particular operating condition. The figure
depicts that the cyclic variation of θPmax is higher than CA50 that indicates a higher
sensitivity of θPmax . Particularly, the θPmax is able to register a cycle of early ignition
timing with misfire occurs (cycle 44) which is not registered using CA50 (Fig. 8.18).
This observation is further validated, and θPmax is found to be a good ignition timing
criteria to differentiate between normal and misfire operation in HCCI engine
[72, 73]. When the standard deviation of CA50 is greater than 2 CAD, the combus-
tion phasing (CA50) is found to be a poor measure of cyclic variations.

388 8 Combustion Stability Analysis



Fig. 8.17 Cylinder pressure at different crank angle positions, (a) 0�, (b) 5�, (c) 10�, (d) 15�, (e)
20� after TDC, as a function of the maximum heat release rate in HCCI engine [59]
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8.3 Combustion Stability Analysis by Statistical Methods

Several factors (chemical (gas composition), mixing, turbulence, and spark
discharge-related) affect the cyclic combustion variation in engines (Sect. 8.1.2).
Measured cylinder pressure data and subsequently calculated combustion parame-
ters for a large number of consecutive engine cycles are used for analysis of
combustion stability. Based on measured cylinder pressure data, several indicators
are used for characterization of combustion stability such as peak pressure, IMEP,
crank angle of peak pressure, and maximum heat release rate, different combustion
phasing parameters, etc. Traditionally, statistical distributions of these indicators are
used as measures of combustion stability or cyclic combustion variability. Typically,
the statistical methods treat the indicators as independent random variables, which
ignore the possible temporal correlations in the data. The most common methods to
quantify cycle-to-cycle and cylinder-to-cylinder variability include the standard
deviation (σ) of IMEP and the standard deviation of engine speed. Several statistical
parameters generally used for quantification of cyclic and cylinder-to-cylinder
variations are coefficient of variation (COV) of IMEP, lowest normalized value
(LNV) of IMEP, root mean square (RMS) of the ΔIMEP, and IMEP imbalance
[9]. These parameters can be defined using the following equations:

StandardDeviation of IMEP σIMEPð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

�
IMEPi � IMEP

�vuut ð8:1Þ

Fig. 8.18 The variation of θPmax and CA50 in a HCCI engine operating at PRF0, 1000 rpm,
Ti ¼ 100 �C, ϕ ¼ 0.57, EGR ¼ 0%, Tcoolant ¼ 75 �C (adapted from [72, 73] Courtesy of Ahmad
Ghazimirsaied)
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where i is the sample of interest and N is the number of the samples. The mean of
IMEP is calculated by Eq. (8.2):

IMEP ¼
XN
i¼1

IMEPi
N

ð8:2Þ

The COV of IMEP (COVIMEP) is estimated using Eq. (8.3):

COVof IMEP ¼ σIMEP

IMEP
� 100 ð8:3Þ

For any combustion parameter, the COV can be calculated using Eq. (8.4):

COV xð Þ ¼ σ

�x
� 100% ð8:4Þ

�x ¼
Xn
i¼1

xi
n
; and σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

�
xi � �x

�2
n� 1ð Þ

vuut ð8:5Þ

The lowest normalized value (LNV) of IMEP is calculated by normalizing the
lowest IMEP value in a data set by the mean IMEP value as shown in Eq. (8.6) [9]:

LNV ¼ IMEPmin

IMEP
ð8:6Þ

A measure of cylinder-to-cylinder variations is defined by IMEP imbalance,
which is defined as Eq. (8.7). The IMEP imbalance is calculated by subtracting the
average IMEP in the weakest cylinder from the average IMEP in the strongest
cylinder and then normalizing by the mean IMEP [9]:

IMEPimbalance ¼ IMEPmax � IMEPmin

IMEPengine
ð8:7Þ

The root mean square (RMS) of the ΔIMEP (i.e., the difference between highest
and lowest IMEP reading in the cylinders) characterizes the difference in work
performed in each cylinder event (in the firing order) and calculated by Eq. (8.8) [9]:

RMSof ΔIMEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔIMEP2

nc � x� 1

s
ð8:8Þ

where nc is the number of cylinders and x is the number of cycles.
Commonly used statistical analysis of different combustion and performance

parameters are discussed in the following subsections.
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8.3.1 Time Series Analysis

The cyclic variation data series of different combustion parameters are calculated
from measured cylinder pressure over a large number of consecutive engine cycles.
The different types of pattern can be observed by simply plotting the data series with
respect to cycle number. Figure 8.19 depicts the three different types of pattern in
cycle-to-cycle variations of IMEP Pmax and start of combustion (SOC) in an HCCI
engine. The figure clearly illustrates that the cyclic combustion variations are not
always an unstructured random event. Figure 8.19a illustrates the normal variation
pattern, which does not follow a definite pattern and frequently occurs in the engine
[45]. A periodic pattern fluctuating within two limits in combustion data series can
appear (Fig. 8.19b), which can possibly due to fluctuation in equivalence ratio
[45]. Figure 8.19c illustrates another type of pattern with several weak/misfired
ignitions and some strong ignitions, and this engine operating condition has very
large cyclic combustion variations. The weak/misfire cycles are sometimes followed

Fig. 8.19 Cycle-to-cycle variation patterns of IMEP, Pmax, and SOC in HCCI combustion for (a)
normal variation (φ ¼ 0.40, Ti ¼ 121 �C, ON ¼ 20, Pi ¼ 119 kPa, 800 rpm); (b) periodic variation
(φ ¼ 0.36, Ti ¼ 133 �C, ON ¼ 20, Pi ¼ 125 kPa, 1003 rpm); (c) variations with weak (misfire)
cycles (φ ¼ 0.42, Ti ¼ 116 �C, ON ¼ 40, Pi ¼ 124 kPa, 907 rpm) [45]
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by a strong cycle, and the values of peak pressure and IMEP are very low in weak/
misfire cycles. The larger cyclic variations during these (weak/misfire pattern and
periodic pattern) operating conditions need to be eliminated by engine control.
However, for the normal cyclic variation pattern, the amplitude of the variation
needs to be minimized to improve the engine stability.

Further analysis of time data series of different combustion parameter reveals
important information regarding combustion characteristics. Variation in one param-
eter can be analyzed with respect to another parameter. Figure 8.20 depicts the
variation of maximum pressure (Pmax) with a crank angle corresponding to maxi-
mum pressure (CA(Pmax)), which is also sometimes referred as Matekunas diagrams
[52]. The large eddy simulation (LES) and experimental results are compared for the
stable and two unstable conditions (created by dilution by residual and dilution by air
to produce lean mixture). The experimental results are colored by their probability of
reaching their instantaneous values [74]. Three zones are identified by Matekunas in
their study [52] which include (1) a linear zone where Pmax and CA(Pmax) vary
linearly for fast burning cycles, (2) a hook-back area where Pmax varies much more

Fig. 8.20 Variation of maximum pressure with crank angle position corresponding to maxi-
mum pressure in (a) unstable operating conditions by dilution with nitrogen, (b) unstable operating
condition using lean mixture (reducing Φ), and (c) stable operating condition [74]
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than CA(Pmax), and (3) a return zone with only small variations of Pmax. Figure 8.20
illustrates that the stable engine operation occurs in the linear zone in Pmax versus
CAPmax plot. In the unstable engine operating conditions, the clear deviation from
the linear region is observed for both the conditions (Fig. 8.20a, b).

The cyclic variations in stable and unstable operating condition can be explained
in terms of the variations in flame initiation, flame development, and flame propa-
gation stage of combustion. The variation in these stages of combustion leads to the
cyclic variations in pressure- and corresponding combustion-related parameters.

Figure 8.21 illustrates the cyclic variations by depicting the flame surface varia-
tions at 35 crank angle degrees after ignition in six consecutive engine cycles for an
unstable lean operating condition. The flame surface is visualized using an

Fig. 8.21 Flame surface visualization using an iso-surface of the reaction rate (50 mol m3 s�1)
colored by the velocity (blue, 0 m/s; red, 20 m/s) at 35 crank angle degrees after ignition for six
consecutive cycles in an unstable lean operating condition [74]
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iso-surface of the reaction rate (50 mol m3 s�1) colored by the velocity (blue, 0 m/s;
red, 20 m/s). The cylinder pressure trace for respective cycles is also presented to
differentiate between slow and fast burning cycles. Figure 8.21 shows typically
faster propagation toward the exhaust side (negative x-direction) as a result of the
tumbling flow. The cycle number 15 occupies a small volume of the cylinder and is
very elongated toward the exhaust side. Another cycle (number 16) shows a more
isotropic shape, which is also the fastest combustion cycle [74]. The trend variations
in cylinder pressure follow the trend in the flame surface (area and velocity).

8.3.2 Frequency Distribution and Histograms

Data series of combustion parameters are typically characterized with both univar-
iate statistics and linear temporal analysis. In the traditional statistical analysis, each
measurement is assumed to be independent random events, and probability density
function (PDF) of these events is characterized [75]. Typically, characteristics of
PDF include skewness, kurtosis, LNV, and COV. However, these statistical param-
eters do not consider the temporal pattern in the data series, which might be present
in the data series obtained from engine combustion.

Histogram is a graphical presentation of a time series showing the frequencies of
different values in the data. Histograms typically reveal a qualitative assessment of
the underlying distribution of the data series. Figure 8.22 shows the histograms of
heat release data for different equivalence ratio in an SI engine. The distributions in
the histogram have either a Gaussian or non-Gaussian shape. Figure 8.22 illustrates
that the cyclic variations closely follow a Gaussian distribution for engine operation
at the near-stoichiometric fuel-air ratio. Normally distributed data typically indicates
a strong presence of independent random sources in the data [75]. It can be
reasonably presumed that nearly normal distribution at stoichiometric conditions
means the cyclic variations are stochastic in nature at these operating conditions.
This would be possible according to the central limit theorem if the cyclic combus-
tion variations are the result of a large number of different independent effects
leading to a Gaussian distribution [76].

Relatively larger cyclic variations are observed as the fuel-air mixture becomes
leaner than stoichiometric, and histogram significantly deviated from Gaussian
distribution (Fig. 8.22). The non-Gaussian distribution is asymmetric with a peaked
maximum and broad tail [76]. Further leaning of the charge (ϕ < 0.67), the variations
in heat release data tends to move back toward Gaussian distribution but with
substantial asymmetry (Fig. 8.22g). Non-Gaussian distribution of the data indicates
that there are not many dominant independent random sources in the data [75].

Three statistical parameters, namely, standard deviation (σ), skewness (S), and
kurtosis (K ), are used for quantitative estimation of the data distribution with respect
to normal distribution [76, 77]. The standard deviation is a measure of the data
spread about the mean of the distribution. Skewness quantifies the asymmetry of the
data distribution about the mean and is defined as third moment about the mean of

8.3 Combustion Stability Analysis by Statistical Methods 395



Fig. 8.22 Histograms of heat release data for different equivalence ratios (a)Φ¼0.91, (b)Φ¼0.83,
(c) Φ¼0.77, (d) Φ¼0.67, (e) Φ¼0.63, (f) Φ¼0.59, (g) Φ¼0.53 in an SI engine [76]
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data distribution (Eq. 8.10). Variance (σ2) is defined as the second moment about the
mean (Eq. 8.9), and it also basically depicts the spread of distribution about the
mean. Kurtosis characterizes the shape of distribution (flatness) around the mean
with respect to normal distribution and defined by the fourth moment about the mean
(Eq. 8.11).

σ2 ¼
PN
i¼1

�
xi � �x

�2
N

ð8:9Þ

S ¼
PN
i¼1

�
xi � �x

�3
N � 1ð Þ � σ3 ð8:10Þ

K ¼
PN
i¼1

�
xi � �x

�4
N � 1ð Þ � σ4 ð8:11Þ

The values of skewness and kurtosis are usually zero for normally distributed
data. Skewness values can be positive and negative. A positive value of skewness
suggests the existence of right asymmetric tails longer than the left tail which means
data distribution has the frequency bias above the mean value. The negative value of
skewness shows the reverse trend. Kurtosis is a measure of whether the data is
peaked (leptokurtic or super-Gaussian distribution) (K > 3) or flat (platykurtic or
sub-Gaussian distribution) (K < 3) relative to a normal distribution [77]. Figure 8.22
shows the largest kurtosis and lowest skewness values at ϕ ¼ 0.67.

The probability distribution functions (PDF) can be further characterized by
fitting the different probability distribution models in the experimental data
[78, 79]. Figures 8.23 and 8.24 show the best fit probability distribution models
for IMEP and combustion duration in RCCI and HCCI engines, respectively. The
goodness of fit is analyzed using Kolmogorov-Smirnov test. Figure 8.23 shows that
IMEP variations in RCCI engine are relatively close to a normal distribution (with
certain deviation) at near TDC diesel injection timings, and deviation from normal
distribution that increases at advanced diesel injection timings. Methanol/diesel
RCCI combustion has a relatively more significant deviation from normal distribu-
tion than gasoline/diesel RCCI combustion. Among all distributions fitted to the
experimental data, generalized extreme value (GEV) and Johnson SB distribution
cover the entire range of distribution shapes observed in IMEP ensemble at different
RCCI operating conditions.

The GEV distribution provides a continuous range of shapes by combining three
simpler distributions (Gumbel, Frechet, and Weibull) into a single form. The prob-
ability density function for this model is based on three main parameters including a
location parameter (mean), a scale parameter (standard deviation), and a shape
parameter:
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where σ is the scale parameter, μ is the location parameter, and k is the shape
parameter. This distribution can be used to model the cyclic variation in RCCI
engine.

Similarly, GEV distribution is also the best fitting distribution in the range of
distribution shapes in HCCI combustion duration data series at different HCCI
operating conditions (Fig. 8.24) [78].

Fig. 8.24 The PDF plots for combustion duration in an HCCI engine for misfire and normal
operating conditions [78]

Fig. 8.23 The PDF plots for IMEP in gasoline/diesel RCCI and methanol/diesel RCCI operation at
advanced diesel injection timings
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In case of large data set, plotting of cumulative percentage occurrence of the
coefficient of variations with a certain parameter can reveal some useful global
information regarding the cyclic variability. Figure 8.25 illustrates the cumulative
percentage of occurrence for COVIMEP for a different range of CA10 (crank angle
position corresponding to 10% heat release) and COV of combustion duration for

Fig. 8.25 Cumulative occurrence for (a) COVIMEP for different CA10 positions and (b) COV of
combustion duration for different CA90–10 [78]
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different combustion duration for 273 engine operating conditions in an HCCI
engine by varying fuel, engine speed, inlet temperature, and air-fuel ratio. The
occurrence percentage is calculated by counting the number of engine operating
conditions out of all the test conditions with a particular interval of CA10, or
combustion duration has the same range of cyclic variations.

Figure 8.25a depicts that advanced CA10 operating conditions have lower cyclic
variations in IMEP in comparison to the retarded CA10 positions. This observation is
confirmed by the fact that 80% operating conditions having CA10 in the range of
�5.5 and� 2 CAD show the COVIMEP less than 3.5% and 60% operating conditions
with CA10 in the range of �2 and 2.5 CAD show COVIMEP lower than 3.5%
(Fig. 8.25a). The COVIMEP less than 3.5% is considered as an acceptable range.
Similarly, Fig. 8.25b shows the cumulative occurrence for COV of combustion
duration, and shorter combustion duration seems to have lower cyclic variations in
combustion duration. The longer combustion duration is the lowest curve showing
lower cumulative occurrences at a particular variation (Fig. 8.25b).

8.3.3 Normal Distribution Analysis

To describe the patterns of cycle-to-cycle variations in reciprocating engines, the
data series combustion parameters (IMEP, combustion phasing, combustion dura-
tion, etc.) using a large number of consecutive engine cycles are calculated and
further analyzed. This ensemble of combustion parameters shows different types of
distribution shapes depending on engine operating conditions. Knowledge of the
distributions provides valuable information to be able to find high cyclic variability
regions of engines. The time series of any combustion parameter at a particular
engine operating condition can be used to form a probability distribution. For
statistical analysis, the normal distribution is the most commonly used probability
distribution function. The normal probability plot is a good graphical tool to test
whether or not a data series follows a normal distribution. Experimental data points
are plotted against a theoretical normal distribution. The data series have normal
distribution that closely follow the theoretical normal distribution line, and the level
of departures from normality is judged by how far the points vary from the straight
line [2, 80]. Figure 8.26 shows the normal probability plots of IMEP for gasoline/
diesel RCCI and methanol/diesel RCCI operation at very advanced diesel injection
timings. A large deviation from the normal distribution is found for the very
advanced diesel injection timings for both gasoline and methanol RCCI
(Fig. 8.26). However, relatively close to a normal distribution is observed for close
to TDC diesel injection timings [79].

Similarly, Fig. 8.27 depicts the normal probability graphs for combustion dura-
tion time series at normal stable, misfire, and knocking conditions in an HCCI
engine. A large deviation from the normal distribution is observed in combustion
duration distribution during knocking (RI ¼ 12.9 MW/m2) and misfire range
(COVIMEP ¼ 12.55%) operating conditions in HCCI engine (Fig. 8.27). During
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knocking operating condition, a stretched C-shape distribution and in misfire oper-
ating condition a V-shape distribution of combustion duration are observed. How-
ever, in the stable HCCI engine operating condition, close to a normal distribution is
found (Fig. 8.27c). As discussed in Sect. 8.3.2, the normal distribution conditions
may have a strong presence of independent random sources in the data. Thus, cyclic
variations are stochastic in nature. The deviation from the normal distribution depicts

Fig. 8.26 Normal probability plots of IMEP for gasoline/diesel RCCI and methanol/diesel RCCI
operation at very advanced diesel injection timings. (a) RCCI-GD-single diesel injection—60 CAD
bTDC. (b) RCCI-MD-single diesel injection—40 CAD bTDC
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dependency of sources in the data, or some deterministic pattern is present in the
data. Thus, HCCI operation in misfire or knocking condition or RCCI combustion
with advanced diesel injection timings (Figs. 8.26 and 8.27) has some dependent
sources of variation, and not many dominant independent random sources in the
data.

8.3.4 Coefficient of Variability and Standard Deviation

Standard deviation and coefficient of variability (COV) are statistical parameters
used for analysis of combustion variability, and their values are calculated using
Eqs. (8.4) and (8.5). Typically, the standard deviation and COV of IMEP are used as
a measure of the statistical instability of combustion. It was demonstrated that the
COVIMEP values greater than 10% in SI engine leads to drivability issues [5] and
more stringent values are suggested for idle operating conditions [81]. However, the
acceptable COVIMEP for advanced premixed combustion mode is typically 3.5%

Fig. 8.27 Normal probability plots using time series of burn duration (a) normal stable, (b) misfire,
and (c) knocking engine operating conditions in the HCCI combustion [78]
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[2]. The COV and standard deviation of IMEP are measures of the roughness or
unsteadiness of engine combustion [81]. The fast burn engine cycles typically have
acceptable levels of COV and standard deviation of IMEP. Burning rate depends on
the several engine operating parameters such as equivalence ratio, turbulences,
overall flow pattern, etc.

Figure 8.28 demonstrates the effect of flow field (high and low tumble) on the
COVIMEP, dilution limit, heat release, and fuel economy of SI engine. The improve-
ment of fuel consumption is constrained at excessive dilution by reducing the
laminar burning speed, which finally reaches to a dilution limit where flame prop-
agation fails. Cylinder flow structures (such as tumble) are used to intensify the
turbulence intensity and enhance the flame propagation. Figure 8.28 shows that the
high tumble has stable combustion (lower COVIMEP) and improves the fuel econ-
omy. High tumble flow increases the dilution limit in comparison to low tumble by
stabilizing the combustion. However, further increase of dilution may lead to misfire
in some of the cycles (Fig. 8.28).

Typically, the COV of maximum pressure (Pmax) and IMEP is used to charac-
terize the cyclic variations in the combustion. Figure 8.29 shows the COVPmax and
COVIMEP with excess air ratio at different hydrogen enrichment fractions. The figure
shows that the variations of COVPmax and COVIMEP with excess air ratio have
different trends.

The COVPmax first increases with excess air ratio and reaches to a peak and then
starts decreasing at particular hydrogen enrichment condition. However, the
COVIMEP always increases with excess air ratio (Fig. 8.29). This interesting trend
can be explained by the fact that the COVIMEP is affected by the entire combustion
process and COVPmax is only symbolized by the maximum cylinder pressure. The
combustion rate decreases with an increase in excess air ratio, and prolonged
combustion duration increases the cyclic combustion variations. Thus, COVIMEP

distinctly increases with leaner mixtures. Comparatively, the maximum cylinder

Fig. 8.28 The effect of tumble flow on heat release, combustion stability, and fuel economy [82]
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pressure is influenced by both combustion and piston motion [53]. Due to different
trends in variations of COVPmax and COVIMEP, the combustion stability limits should
be decided carefully looking at the operating conditions.

The values of COV for the stable operating condition can also depend on a
parameter selected for the analysis. Figure 8.30 illustrates the variations of COV

Fig. 8.29 The variation of (a) COVPmax and (b) COVIMEP with excess air ratio for different
hydrogen enrichment αH2ð Þ at 1400 rpm and a MAP of 61.5 kPa in SI engine [53]
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for four different combustion parameters (Pmax, IMEP, mass fraction burning rate
(MFBR), and combustion duration (Δαc)) in SI engine at 1500 rpm. The figure
clearly illustrates that the COV values of all the parameters increase with leaner
mixture. The trend ofCOVPmax is different from Fig. 8.29 due to the selected range of
equivalence ratio of engine operation for the study. The COV of the mass fraction
burning rate (MFBR) is calculated for 50% mass fraction burned, and it has the
highest cyclic variation relative to other three parameters. The mass fraction burning
rate is related to the combustion velocity, and it is calculated by Eq. (8.13) [83]:

MFBR αð Þ ¼ d MFB αð Þð Þ
dα

¼ _m b

m � ω ¼ ρu αð ÞA f αð Þ
m � ω Sc αð Þ ð8:13Þ

where ρu is the unburned density, Af is the flame front surface, Sc is the turbulent
combustion velocity, m is the total mass, and ω is the engine speed.

Using Eq. (8.13), the turbulent fluctuation of the combustion speed (Sc) can be
determined from the variations in MFBR. Figure 8.31 illustrates the variations in the
standard deviation in MFBR at different engine speed and equivalence ratio. The
figure illustrates that the equivalence ratio has almost no effect (very weak depen-
dence) on the variation of MFBR, but significant differences with variation in engine
speed for a particular mass fraction burned value. The variation in MFBR is a
function of mass fraction burned (MBF), and it reaches to maxima in the range of
30–60% of MFB of the charge (Fig. 8.31).

Fig. 8.30 The variations of COV with equivalence ratios for different combustion parameters in SI
engine [83]
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The standard deviation of MFB is also dependent on the ignition system. Fig-
ure 8.32 shows the variations in combustion phasing (5% MFB position) with
transistor coil ignition (TCI), advanced spark ignition (ASI), and corona ignition
with combustion duration (the difference between 5 and 50% MBF). The main
difference between conventional TCI and ASI system is that ASI has longer appli-
cable spark duration and it can provide sufficient current level for the longer duration
[84]. The ASI system has relatively higher dilution tolerance than a conventional
system. The TCI and ASI systems become unstable for the longer main duration at
12 �CA and 14 �CA, respectively. However, with corona ignition system, stable
region lasts for even more longer duration, and almost no scattering is observed in
combustion phasing (Fig. 8.32). Thus, the ignition system also has the significant
effect on the combustion of spark ignition, and it can be effectively observed by
statistical parameters.

The cyclic variations in IMEP also depend on the combustion phasing (CA50) and
combustion duration (CA90–10). Important trend can be extracted by observing
simultaneously. Figure 8.33 illustrates the variations of COVIMEP as a function of
combustion phasing and combustion duration in a HCCI engine employing gasoline
and ethanol. Both fuels have higher cyclic variations of IMEP for longer combustion
duration and late combustion phasing (Fig. 8.33). The contour lines represent the
constant variation lines. Contour lines of COVIMEP are almost horizontally inclined
for ethanol, which suggest that cyclic variation in IMEP has more dependency on
combustion duration than combustion phasing (Fig. 8.33). However, in case of
gasoline HCCI combustion, the variation depends on both combustion phasing
and duration.

In modern direct injection spark ignition, the injection and ignition timings,
engine load and speed, compression ratio, and injector configuration significantly
affect cyclic combustion variations. Since the COVIMEP characterizes the engine

Fig. 8.31 Variations in the standard deviation of MFBR with mass fraction burned for different
engine speeds and equivalence ratio [83]
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Fig. 8.33 The COVIMEP as a function of combustion phasing and combustion duration in an HCCI
engine using gasoline and ethanol [78]

Fig. 8.32 Variations in combustion phasing with transistor coil ignition (TCI), advanced spark
ignition (ASI), and corona ignition with combustion duration [84]
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roughness, it can be used to optimize the injection and ignition timings. Figure 8.34
shows the variation of COV with injection timing and spark timing in a direct
injection SI engine using methanol at 1200 rpm. The figure depicts that the COV
value is minimum in the middle of the map (at an injection timing of 37� bTDC and
an ignition timing of 17� bTDC) and the COV increases with deviation in the
ignition or injecting timing corresponding to the minimum value. This is possibly
due to the fact that the mixture distribution in the cylinder is ideal and the flame
propagation is the fastest at an injection timing of 37� bTDC and an ignition timing
of 17� bTDC [85].

Combustion stability can be quantified in terms of variation in engine speed.
Weak combustion events are considered to be one of the primary causes for poor
combustion stability. Severe weak combustion events can lead to misfire, in which
there will be no work done by the piston. This will act as an impulse load to the
structure of the vehicle which starts to vibrate on its natural frequency giving an
unpleasant feeling to passengers and the driver [8]. Figure 8.35 illustrates the
variation of idle engine speed with ignition timing and air-fuel ratio. The ignition
timing is varied from 0� (TDC) up to an advance of 16� bTDC. Higher idle speed
shows higher engine stability with variation in both ignition timing and an air-fuel
ratio (Fig. 8.35). Fluctuations in speed are higher at lower idle engine speed. Ignition
timing close to TDC and air-fuel ratio close to stoichiometric are found to be more
stable. Advancing the ignition timing leads to misfire and, thus, increases in COV of
idle speed [8].

8.3.5 Lowest Normalized Value

The lowest normalized value (LNV) is defined as the lowest single IMEP in the total
cycles divided by the mean IMEP (Eq. 8.6). LNV can predict the misfire or partial
burning tendency of the engine. The concept of LNV in judging the combustion

Fig. 8.34 The map of
COVPmax in a direct injection
SI engine using methanol at
full load and 1200 rpm [85]
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stability found that the minimum permissible value of LNV is around 75% [81]. To
achieve acceptable levels of LNV, typically “fast burn” engines are required. The
LNV is of great importance for transient engine operation because it reveals better
the driver feeling during acceleration. In transient engine operation, increased
tolerance of the mixture in the combustion chamber can be witnessed because the
gas exchange flow varies from stationary conditions. Temperature and pressure
relevant to the gas exchange are away from their equilibrium state. This can lead
to EGR rate overshoots; nevertheless a continuous evolution of the torque is
expected [86]. Typically the LNV value should drop below 80%. Figure 8.36
shows the typical variations of LNV and COV with an increase in EGR at different
ignition energy and ignition system. The TCI (transistor coil ignition) is still
dominating ignition system of a passenger car in spite of the tremendous variety of
ignition concepts and their competition. Figure 8.36 compares the TCI system with
DCO (dual coil offset) and CEI (controlled electronic ignition) systems at a different
spark energy. The CEI and DCO systems facilitate shifting the combustion stability
limit by around ΔEGR ¼ 5% applying a COV limit of 5%, but benefit vanishes
compared to the 80 mJ case if the full engine COV limit of 3% is selected (Fig. 8.36).

8.3.6 Autocorrelation and Cross-Correlation

Statistical parameters such as skewness, kurtosis, LNV, and COV do not consider
the temporal variation in the data. The autocorrelation and power spectrum functions

Fig. 8.35 Variation of COV of engine speed with ignition timing and air-fuel ratio for different idle
speed (adapted from [8])
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can reveal temporal structure effectively in linear systems, but the complete descrip-
tion is not revealed when underlying dynamics are inherently nonlinear [75]. The
autocorrelation is defined as the amount of linear correlation a time series has with
itself. Serial coupling between elements of a data series is quantified by the auto-
correlation function (ACF), which can be calculated by Eq. (8.14):

ACF τð Þ ¼
XN�τ

i¼1

�
xi � �x

��
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i¼1
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ð8:14Þ

where τ is lag and N is the number of elements in the data series.
Non-zero values of autocorrelation suggest the degree of serial coupling in time.

Some important features of a time series (e.g., power spectrum, stationarity, or
decorrelation time) can be extracted by the autocorrelation function. The autocorre-
lation function is analogous to the power spectrum, which can be employed to
observe oscillations in a time series [75]. According to the Wiener-Khinchin theo-
rem, the power spectrum of a data series can be obtained by applying the Fourier
transform to the autocorrelation function [87]. When autocorrelation of a data series
exponentially decays toward zero as the lag approaches infinity, the data series is
most likely to be stationary. A system or process is said to be stationary if its
statistical and dynamical properties remain constant over time. A nonstationary or
periodic time series has a non-zero autocorrelation value at very large lag times
[75, 88]. The decorrelation time is defined as the first zero crossing (or minimum in
the case of a nonstationary time series) of the autocorrelation function [75, 89]. Espe-
cially this feature of the autocorrelation function is helpful in highlighting the
“memory” effect between cycles of combustion data.

Figure 8.37 shows the autocorrelation of heat release data series while
transitioning from stable combustion to increased levels of internal EGR. An
element in a time series will correlate perfectly with itself, and thus, the correlation

Fig. 8.36 Variation of COV and LNV with external EGR in a SI engine at 1500 rpm [86]
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coefficient at lag zero is one (Fig. 8.37). Figure 8.37 shows the persistent
anticorrelated oscillations start developing between successive cycles when EGR
is increased from the point of stable combustion. This oscillating trend depicts a
clearly deterministic “memory” between cycles [90]. The anticorrelation occurs due
to the small variation in the degree of dilution of the inlet charge by residual gases
from prior cycles. This dilution by residual can lead to either better or worse SI in the
following cycles. Additionally, other factors such as pressure fluctuations in the
intake and exhaust manifolds in the injection system can also contribute to the
correlation of heat release.

Figure 8.38 shows the autocorrelation in the IMEP data series at different engine
speeds in a diesel engine. The figure shows that the autocorrelation reduces at a
different rate depending on the engine speed. The IMEP data series has a relatively
low and high degree of autocorrelation between adjacent and near-adjacent data at
1200 rpm and 2000 rpm, respectively. The autocorrelation undergoes fast modula-
tion at the intermediate speed of 1600 rpm (Fig. 8.38). The slow decay of the
autocorrelation curve suggests the presence of nonstationarity in the IMEP data [91].

The cross-correlation function reveals information very similar to the autocorre-
lation function but between two data series. Cross-correlation is used to quantify the
temporal coupling between two variables instead of one which is used in autocor-
relation. The cross-correlation can be calculated using Eq. (8.15) [75]:

Fig. 8.37 Autocorrelation
of heat release data series
while transitioning from (a)
stable combustion to (b) and
(c) increased levels of
internal EGR [90]
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where CCF (τ) is the cross-correlation function at lag τ, �x and �y is the average of the
first and second data series, and N is the number of samples in the data series.

8.3.7 Principal Component Analysis

To further analyze the combustion variations and possible sources, statistical
methods such as principal component analysis, factor analysis, and independent
component analysis are typically used [37, 92]. The principal component analysis
uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called
principal components. Assuming X is a dataset with the row is the variable, the
column is the observations. Its transpose XT is an n � m matrix. The singular value
decomposition of X defined in Eq. (8.16) is a principal component analysis of these
variables:

X ¼ WΣVT ð8:16Þ

where W is an n � m matrix of eigenvectors of the covariance matrix XXT; the
nonnegative real entries on the diagonal of matrix ∑ are the eigenvalues; and V is an
n � n matrix of eigenvectors of XTX. Each eigenvector represents a variation pattern
in X. The ratio of its eigenvalue over the sum of all eigenvalues gives the important
information of this variation pattern [37].

Fig. 8.38 Autocorrelations
in the IMEP for different
engine speeds in a diesel
engine [91]
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Independent component analysis (ICA) is applied to cycle-resolved images of
luminosity in SI engine combustion [92]. The independent components related to the
underlying phenomena of the combustion process are identified using ICA. The
components (and corresponding coefficients) are used to characterize the morpho-
logical evolution of the luminous combustion during a particular cycle and over a
number of cycles. The three components identified from the images are representa-
tive of ignition and radial-like flame propagation (first component) and erratic
luminous combustion (second and third component) occurring subsequently [92].

8.4 Combustion Stability Analysis Using Wavelets

Cyclic combustion variations are typically quantified by using statistical and chaotic
methods [78, 93–96]. These methods are used for determination of variation patterns
and their possible correlation as well as deterministic contents. Conventional statis-
tical approaches normally use the coefficient of variation (COV) to measure the
cycle-to-cycle variations in combustion parameters such as IMEP, peak cylinder
pressure (Pmax), heat release, etc. The key limitation of traditional statistical
approaches is that they only provide the temporal variations present in the data
series. Traditional statistical methods are unable to consider the spectral character-
istics (frequency domain) of the data. Typically, the frequency content of the data is
analyzed using Fourier transform. Constituting frequencies of the signal is revealed
(and calculated) by the Fourier transform. Inverse Fourier transform is typically
applied to back convert the signal from frequency domain to the time domain. Using
Fourier transform, measured signal can be represented in terms of sine and cosine
functions. Information regarding the frequency content of a signal is generated by
Fourier transform. However, Fourier transform is unable to provide the information
on variation of frequency with time if the frequency content of the signal is changing
with time. Fourier transform of a transient or rapidly varying signal can provide the
information regarding the frequencies present in the signal, but it cannot reveal any
facts about the time of appearance of these frequencies as well as the duration of
occurrences of frequencies [97]. Fourier analysis is sufficient if the signal to be
analyzed is stationary and if the time period is accurately known. However, Fourier
analysis may not be appropriate if the signal has nonstationary characteristics such as
drifts and frequency trends [98]. To overcome the disadvantages of Fourier trans-
form, short time Fourier transform (STFT) or windowed Fourier transform (WFT) is
proposed to get the information on the frequencies present in the signal at different
time locations. The STFT or WFT divides the original signal into smaller segment
signal of equal time length, which subsequently apply the Fourier transform on each
smaller segments of original signal. For each shorter segment, Fourier spectrum is
calculated and presented as a function of time [99]. The sampling of signals may
produce leakages, which are also denoted as aliases. Sampling (for creating seg-
ments for STFT) may lead to aliasing, which makes different signals to become
indistinguishable. The STFT uses a fixed window size leading to fixed frequency and
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the time resolution, which results in poor temporal or spectral resolution. Aliasing of
low- and high-frequency constituents, which does not occur in the frequency range
of window, may lead to inaccuracies [100]. The fixed size of the window is the main
drawback of STFT.

The wavelet transform is introduced to overcome the difficulties of Fourier
transform. Fourier transform does not represent the abrupt changes and functions
are not localized in space and time. This limits their applications for signals with
slowly changing and transient fluctuating trends. Wavelet analysis eliminates the
difficulties related to STFT by using adaptive usage of long windows for retrieving
low-frequency information and short windows for high-frequency information. The
ability to perform the flexible localized analysis is one of the main features of the
wavelet transform. Wavelet analysis is successfully used in characterizing the cyclic
combustion variations in reciprocating engines [79, 101–103]. Wavelets are used to
determine the amplitude as well as periodicities of cycle-to-cycle variations in
combustion engines because wavelet transform offers good spectral and temporal
resolution.

A wavelet function is defined as rapidly decaying small oscillation or wave. A
function with zero mean and finite energy can be characterized as a wavelet, and the
admissibility condition of a function ψ(t) to be considered as the wavelet is shown in
Eq. (8.17):

ð1
�1

ψ tð Þdt ¼ 0; and
ð1
�1

ψ tð Þj j2dt < 1 ð8:17Þ

Wavelet transform is fundamentally an integral transform. The basis functions
which are localized in both frequency as well as time domains are used in wavelet
transform. It decomposes the original signal into frequency bands (or scales) at
various resolutions by scaling the basis functions. The original signal is projected on
a set of basis functions called mother wavelets [104]. The scale and translation
parameters make the difference between various wavelet functions. Originally,
Morlet thought the wavelets as a family of functions generated from translations
and dilations of a single function (known as mother wavelet) [105]. Daughter
wavelet in terms of mother wavelet is presented by Eq. (8.18) [104]:

ψa,b tð Þ ¼ 1ffiffiffiffiffiffi
aj jp ψ

t � b

a

	 

, a,b 2 R, a 6¼ 0 ð8:18Þ

where ψ(t) is the mother wavelet with unit energy, ψa,b (t) is daughter wavelet
created by mother wavelet (ψ(t)) by scaling and translating, and parameters “a” and
“b” are the scaling (or dilation) and translating factors, respectively. Compressed or
compacted version of the mother wavelet is created when |a| > 1, while enlarged or
widened version of the mother wavelet is created when scaling factor is less than one
(|a| < 1). Stretched wavelet or small scales are used for slowly changing signal, and
compressed wavelet is used for abrupt changes in signal. The translating parameter
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“b” governs the time location of the wavelet, and wavelet is shifted depending upon
the sign of translating parameter. The shifting of the function on the real axis is
termed as translating the function. The factor 1ffiffiffiffi

aj j
p is used, so that the function ψa, b(t)

has the same energy for all scale “a.”Wavelets can vary their time width by varying
the scale “a,” which means wavelets are adaptive of their frequencies. Scaling
parameter allows the wavelets to fine-tune the width at higher frequencies in the
signal and increase the width while focusing on smaller frequencies, similar to a
zoom lens [99]. Wavelet transform can have combinations of time-frequency repre-
sentations with different resolutions of the same signal. Thus, wavelet transform is
preferably used over Fourier transform.

The continuous wavelet transform (CWT) with respect to a wavelet ψ(t) is given
by Eq. (8.19) [99]:

CWT a; bð Þ ¼ 1ffiffiffiffiffiffi
aj jp ð1

�1
x tð Þψ∗ t � b

a

	 

, a,b 2 R, a 6¼ 0 ð8:19Þ

where x(t) is continuous signal, ψ(t) is a mother wavelet with unit energy, and ψ∗

indicates its conjugate. Equation (8.19) can be rewritten in terms of a daughter
wavelet as in Eq. (8.20):

CWT a; bð Þ ¼
ð1
�1

x tð Þψ∗
a,b tð Þ ð8:20Þ

Practical applications such as cyclic variations in engines involve a discrete time
series signal. Continuous wavelet transform (CWT) [106] on a discrete time series xn
is represented in Eq. (8.21):

CWTn sð Þ ¼ δt

a

	 
1
2 XN�1

n0 ¼0

xn0ψ
∗ n

0 � n
� �

δt

a

" #
ð8:21Þ

where xn0 is the discrete time series, “a” is the scaling parameter, ψ(t) is the wavelet
function, ψ∗ is its conjugate, and “n” is the localized time index. From Eq. (8.21)
“N” different signals are achieved that are combined using convolution to get a
single continuous wavelet transform [100]. To approximate the continuous wavelet
transform, the convolution (8.21) should be done “N” times for each scale, where
“N” is the number of points in the time series. “N” simultaneous convolutions
performed using discrete Fourier transform in Fourier space [100]. The discrete
Fourier transform is used on the time series xn0 which is shown in Eq. (8.22):

x̂k ¼ 1
N

XN�1

n¼0

xne
�2πikn=N ð8:22Þ

where k ranges from 0, 1, 2, . . ., N � 1. Using Eq. (8.22), Eq. (8.21) can be
represented as Eq. (8.23):
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CWTn að Þ ¼ δt

a

	 
1
2 XN�1

k¼0

x̂kψ̂
∗ sωkð Þeiωknδt ð8:23Þ

where the angular frequency ωk is given by Eq. (8.24) [100]:

ωk ¼
2πk
Nδt

k � N

2

� 2πk
Nδt

k >
N

2

8>><
>>: ð8:24Þ

The CWT at all the n time indices can be calculated using Eqs. (8.22)–(8.24).
Mexican hat wavelet and the Morlet wavelet more often used continuous wave-

lets. The mathematical representation of the Morlet wavelet [100, 102] is represented
in Eq. (8.25):

ψ ηð Þ ¼ π�1=4eiω0ηe�η2=2 ð8:25Þ

where ω0 is chosen as 6 to satisfy the admissibility condition and π�1/4 is a
normalizing factor. The chosen value ofω0 allows to obtain good time and frequency
localization, and in this case Fourier period and the scale are equal. Similar value of
ω0 was also chosen for yielding good results in reference [102].

The wavelet power spectrum (WPS) reveals the information about the fluctua-
tions of variances at different scales or frequencies. The magnitude of signal energy
at a particular scale “a” and certain position “n” is computed by the squared modulus
of CWT. This is denoted as WPS and is also presented as scalogram. The WPS is
normalized by dividing with σ2 such that the power relative to white noise is
achieved. The WPS is calculated by Eq. (8.26):

WPS ¼ CWTn að Þj j2 ð8:26Þ

The normalized WPS is depicted in Eq. (8.27):

WPSn ¼ CWTn að Þj j2
σ2

ð8:27Þ

where σ is the standard deviation. The continuous wavelet transform is typically a
complex function (real and imaginary part), and thus, modulus would actually mean
the amplitude of continuous wavelet transform. The WPS depends on the time and
scale (frequency) represented by a surface. The contours of the surface can be plotted
on a plane to obtain a time scale representation of WPS. Through WPS important
information can be obtained such as events with higher variances and the frequency
of their occurrences and the duration of time for which they persist. This information
can be used to modify and control the system. The wavelet power spectrum is the
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distribution of energy within the data, so by observing the WPS regions of large
power can be identified, which will provide a better understanding as to the features
that are important in the signal. As wavelet has a changing window size in compar-
ison to that of a fast Fourier transform, the variations in frequency of occurrence can
be visualized in a WPS. The WPS is contour plot, which has the cycles number
(data series) on the x-axis and the Fourier period on the y-axis, and the intensity of
the variations in the data series represented in the contour plot. The stronger color in
the contour plot indicates a higher variation of the parameter (Fig. 8.39). The period

Fig. 8.39 WPS and GWS of THR at compression ratios (a) 16, (b) 17, and (c) 18, respectively, at
no load conditions
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(on y-axis) at which the higher variation occurs, indicates the frequency of stron-
ger variations and the x-axis shows the occurrence of these stronger variations. The
color bar in the figures is the logarithm (base 2) of the WPS. For example, a value of
�4 on the color scale bar indicates that the WPS is 2^(�4) ¼ 1/16. Similarly, if the
value is þ4, it indicates the WPS of 16.

Typically, measured data is discrete and finite length time series. In this particular
case, time series of combustion parameters such as IMEP, Pmax, θPmax , etc. of finite
number of cycles are typically used for wavelet analysis. The finite length time series
can lead to errors at the start and end of the wavelet power spectrum due to the
assumption of cyclic data by Fourier transform. To overcome this issue, the original
signal is padded with zeroes at the end of the data series, and these are eliminated
after applying wavelet transform. The data series is padded with zeroes to create the
total length of data series equal to next nth power of 2, which speed up the Fourier
transform and limit the edge effects [100]. Zero padding introduces some disconti-
nuities, and it leads to a decrease in amplitude at the edges. The edge effects become
important in cone of influence (COI) region. The COI is characterized as the
e-folding time for autocorrelation of wavelet power spectrum at every scale
[100]. The e-folding time is considered in such that the magnitude of wavelet
power decreases by a factor e�2 at the edges where discontinuities are present.
Therefore, the region inside the COI is considered for wavelet analysis and the
outside region is not used for extracting information about time series [100].

Global wavelet spectrum (GWS) is the time average of the WPS and calculated
by Eq. (8.28):

GWS ¼ W s ¼ 1
N

XN
n¼1

CWTn að Þj j2 ð8:28Þ

The global wavelet spectrum is represented by Ws. The peak locations in the
global wavelet spectrum give an indication about the dominant periodicities in the
time data series.

Figure 8.39 shows the time scale representation of the wavelet power spectrum of
THR at no load conditions for three different compression ratios 16, 17, and 18. The
thick contour lines represent the 5% significance level below which denotes the cone
of influence (COI). The COI is the region where edge effects become important and
the region inside the COI is considered for analysis and the region outside COI is
ignored from analysis.

Figure 8.39a shows that the strongest intensity of variance occurs in the periodic
band 221–625 cycles along the COI during 690–1665 cycles. Other weaker bands
are 128–315 and 39–157 spanning in the ranges of 545–920 and 1440–1800 cycles,
respectively. The presence of strong periodic band over a large number of cycles
indicates a high cyclic variability in the no load condition at compression ratio
(CR) 16. With the increase in the compression ratio (from 16 to 17), the maximum
GWS power decreases from 5250 to 1930, which indicates a decrease in cyclic
variations. The period at which maximum GWS power is obtained also shifts from
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512 to 16 with an increase in compression ratio (Fig. 8.39), which suggests that
frequency of variation also increases with compression ratio. Figure 8.39b shows the
WPS and GWS of CR 17, and the strongest intensity bands are found in the period
14–20 cycles in cycles ranging from 50 to 410, 570 to 880, 925 to 955, 1020 to 1070,
1180 to 1550, and 1655 to 1880. As the CR increased to 18, the cycle-to-cycle
variations shift to higher period indicating the cyclic variations are occurring with
lower frequencies. The WPS of THR at CR 18 is depicted in Fig. 8.39c. The
strongest intensity band is observed in the 10–16 periodic band intermittently in
161–347, 453–731, 909–987, 1057–1122, 1230–1319, and 1391–1631 cycles. The
GWS indicates a power of 1025 which is lower than the previous cases and
symbolizes a decrease in the cycle-to-cycle variations with an increase in compres-
sion ratio at no load condition. With the increase in compression ratios, combustion
temperature increases, which results in better combustion stability (lower cyclic
variations). With the increase in compression ratio, combustion temperature
increases along with advanced combustion phasing. The sensitivity of combustion
variation decreases at advanced combustion phasing (near TDC) due to high tem-
perature and slow piston speed. Higher combustion temperature in particular com-
bustion cycle leads to higher residual temperature and wall temperature, which
affects the next consecutive cycles.

Figure 8.40 shows the time scale representation of the wavelet power spectrum of
Pmax at no load conditions for different compression ratios. For CR 16, the strongest
intensity periodic band 128–625 period occurs in the cycle range of 433–1834
adjacent to the COI, and other weaker periods are observed in the period 32–64
for the cycles ranging in between 467–692, 815–1035, and 1801–1886, respectively
(Fig. 8.40a). Maximum GWS power of 4.89 at the period around 350 is shown by
GWS in Fig. 8.40a. For an increase in CR to 17, the bands with the highest power are
scattered over the entire WPS (Fig. 8.40b). Few of the strong intensity bands are
observed in the periods 55–78, 55–96, 96–156, and 156–315 cycles ranging from
1316 to 1420, 826 to 952, 212 to 419, and 1085 to 1631 cycles, respectively. A GWS
power of 1 (at period 256) is observed in this case (CR 17), which indicates lower
cycle-to-cycle variations, in comparison to 16 compression ratio. Figure 8.40c
indicates that the maximum GWS power further decreases to 0.75 (at period 128)
for CR 18, which implies that cycle-to-cycle variations have been further dimin-
ished. The period at which maximum GWS occurs also decreases with an increase in
compression ratio, and a similar trend is observed for THR. Very few strong
intensity bands are observed and occur in the period of 46–64, 55–110, and 256–-
312 cycles and stretch in between 85–215, 1305–1720, and 1327–1536 cycles,
respectively, at compression ratio 18.

The WPS and GWS of IMEP for various diesel start of injection (SOI) timings for
gasoline/diesel RCCI operation is illustrated in Fig. 8.41. In the WPS, the horizontal
axis depicts the number of cycles (time scale), and the vertical axis shows the
periodicity (frequency scale) of the time series. In the GWS, the peaks of the
power depict the prevailing periodicities in the time series. The areas above this
COI are only significant and considered in the analysis. Figure 8.41 reveals that
variations in IMEP occur at multiple time scales in RCCI engines. Figure 8.41a
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illustrates the WPS and GWS of IMEP for diesel SOI timing at 10 CAD bTDC for
gasoline/diesel RCCI operation. The figure depicted that periodic band of the 4–8
period having higher variations in the cycle ranging from 48 to 68 and 398 to
422 (red color patches represent the higher cyclic variations). Similarly, a periodic
band of the 8–16 period has higher variations between the cycles ranging from 70 to
84, 121 to 142, 271 to 284, and 732 to 747. A periodic band of 128–256 period
shows higher variations during the cycles 538–660. The periodic band with strong
intensity (dark red color) reveals higher variations.

Fig. 8.40 WPS and GWS of Pmax at compression ratios (a) 16, (b) 17, and (c) 18, respectively, at
no load conditions
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Fig. 8.41 WPS and GWS of IMEP for various diesel SOI timings for gasoline/diesel RCCI
operation. (a) WPS of IMEP; Diesel SOI—10 CAD bTDC. (b) WPS of IMEP; Diesel SOI—30
CAD bTDC. (c) WPS of IMEP; Diesel SOI—50 CAD bTDC. (d) WPS of IMEP; Diesel SOI—60
CAD bTDC
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Figure 8.41b shows the WPS and GWS of IMEP for diesel SOI timing at 30 CAD
bTDC. The figure shows that a periodic band of the 4–16 period with moderate
intensity is observed intermittently throughout the cycles. Peak power in the GWS
with advanced injection timing, i.e., 30 CAD bTDC (Fig. 8.41b), in comparison to
diesel SOI timing at 10 CAD bTDC (Fig. 8.41a) is slightly higher, which indicates
higher cyclic variations. Higher cyclic variations are mainly due to lower mean
combustion temperature and retarded combustion phasing with advanced diesel
injection timing. Further advancing in diesel injection timing from 30 CAD bTDC
to 50 CAD bTDC, the peak of the GWS increases which depicts higher cyclic
variations. Additionally, the band of period 4–16 with strong intensity of variance
observed in the cycle ranging from 24 to 57, 213 to 263, 418 to 486, 563 to 662, 695
to 738, and 829 to 863. Periodicity with strong intensity throughout the combustion
cycles reveals to higher cyclic variations. Similarly, Fig. 8.41d shows the periodic
band with strong intensity of period 8–16 occurs in the cycles between 13–70,
122–162, 630–686, and 743–765. The peak power in the GWS is also increased
for diesel SOI timing at 60 CAD bTDC. It is interesting to note that in the condition
of 50 CAD bTDC and 60 CAD bTDC, a significant portion of the spectrogram is
empty (white), which means these frequencies are not present. This may be due to
misfires (very high cyclic variations or poor combustion efficiency) occurring
intermittently throughout the combustion cycles [79]. It is very interesting to note
that (Fig. 8.41) the period at which the peak GWS power obtained for conventional
dual fuel combustion (retarded combustion timing condition) is shifting from
256 period to 8–16 periodic band for gasoline/diesel RCCI operation. This indicates
that the frequency of variations increases with advanced diesel injection timing. In
conventional dual fuel operation, combustion initiates with diesel pilot injection,
which means the variations in the start of combustion is possible due to the variation
in injection parameters. In modern CRDI system, the variations are very minimal at
constant demand/setting. Hence, in conventional dual combustion operation, the
variations are mainly due to long-term effect (such as wall temperature), which leads
to higher period band (lower-frequency) variations. However, in premixed RCCI
combustion (advanced DI timings), even combustion initiation is controlled by local
equivalence ratio, reactivity, and temperature, where cyclic variations are very
likely, which leads to higher-frequency variations. In premixed case, the variations
in local equivalence ratio, reactivity, and temperature depends on various conditions
such as flow conditions, evaporation of diesel, mixing of droplets and distribution of
droplets, etc. even at constant DI timings.

WPS and GWS of IMEP for multiple diesel injections in gasoline/diesel RCCI
operation are presented in Fig. 8.42. By keeping pilot diesel injection timing
constant at 55 CAD bTDC, main diesel injection timing is swept from 10 to
50 CAD bTDC. Figure 8.42a shows the WPS and GWS of IMEP for diesel main
injection timing 10 CAD bTDC. WPS depicts that the strong intensity periodic band
of 16–32 and 32–64 period occurs in the cycles ranging from 665 to 708, 722 to
747, and 692 to 734, respectively. The WPS and GWS of IMEP for diesel main
injection timing 30 CAD bTDC are illustrated in Fig. 8.42b. The WPS indicates that
periodic band with strong intensity of 16–32 and 32–64 period occurring in the
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cycles ranging from 450 to 575 and 754 to 786, respectively. It is interesting to note
that for the same diesel injection timing (i.e., after 30 CAD bTDC) of single and
double injection strategy, double injection strategy has a lower peak for GWS. This
depicts that double diesel injection has lower cyclic variations in comparison to
single injection strategy, which is also confirmed by statistical technique [79]. Sim-
ilarly, a strong intensity periodic band of 32–64 period occurs in the cycle ranging
from 600 to 698 (Fig. 8.42c). For same diesel injection timing of 50 CAD bTDC,
double diesel injections have a lower peak of GWS in comparison to single injection
strategy. Figures 8.41 and 8.42 also show that in the case of a single diesel injection
strategy, the cyclic variations are mainly concentrated in the periodic band of
8–16 (for advanced DI timing), while in the case of double injection strategy, the
cyclic variations are distributed in the different periodic bands. This indicates that
frequency of variation is higher for single diesel injection strategy in comparison to

Fig. 8.42 WPS and GWS
of IMEP for various main
diesel SOI timings for
gasoline/diesel RCCI
operation. (a) WPS of
IMEP; Main DI—10 CAD
bTDC. (b) WPS of IMEP;
Main DI—30 CAD bTDC.
(c) WPS of IMEP; Main
DI—50 CAD bTDC
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double injection strategy. In double injection strategy, the fuel injected by pilot
injection at very early timings mixes with gasoline mixture and creates partial
reactivity stratification, but combustion initiation is mainly triggered by the main
injection. Thus, periods of variations will be higher, but periods decrease with
advanced main injection timings (Fig. 8.42) because of mainly premixed combustion.

8.5 Nonlinear and Chaotic Analysis of Combustion
Stability

The nonlinear dynamics in the combustion variations can be revealed through
nonlinear analysis. Traditional statistical methods are not able to provide the infor-
mation regarding the temporal variations. The autocorrelation and Fourier transform
can provide the linear temporal correlations. However, nonlinear factors can govern
the combustion variation dynamics in the reciprocating engines. Thus, nonlinear
time series analysis methods such as return maps, Poincare sectioning, mutual
information, modified Shannon entropy, data symbolization, etc. can provide addi-
tional information/features which are not revealed by traditional measures. Table 8.1
compares the linear and nonlinear signal processing methods [107].

Table 8.1 Comparative analysis of linear and nonlinear signal processing [107]

Linear signal processing Nonlinear signal processing

Finding the signal—signal separation
Separate broadband noise from the narrowband
signal using spectral characteristics. System
known: make a matched filter in the frequency
domain

Finding the signal—signal separation
Separation broadband signal from broadband
“noise” using deterministic nature of signal.
System known: Use manifold decomposition.
Separate two signals using statistics on
attractor

Finding the space—Fourier transform
Use Fourier space method to turn differential
equations or recursion relations into algebraic
forms
X(n) is observed
X( f ) ¼ ∑x(n)exp[i2πnf] is used

Finding the space—phase space reconstruc-
tion
Time lagged variables form coordinates for a
phase space in dE dimensions:
Y(n) ¼ [x(n), x(n + T ), . . ., x(n þ (dE � 1)T )]
dE and time lag T are determined using mutual
information and false nearest neighbors

Classify the signal
Sharp spectral peaks
Resonant frequency of the system
Quantity independent of initial conditions

Classify the signal
Invariants of orbits. Lyapunov exponents;
various fractal dimensions; linking number of
unstable periodic orbits; Quantities indepen-
dent of initial conditions

Make models, predict
X(n þ 1) ¼ ∑cjx(n � j)
Find parameters cj consistent which invariant
classification—Location of spectral peaks

Make models, predict
y(n) ! y(n þ 1)
At time evolution
y(n þ 1) ¼ Fy(n), a1, a2, . . ., ap]
Find parameter aj consistent with invariant
classifiers—Lyapunov exponents and fractal
dimension. Models are in local dynamical
dimensions dL; form local false nearest neigh-
bors. Local or global models
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Nonlinear analysis techniques are used to detect the information linked to tem-
poral correlations, and it is used to discern prior-cycle effects. Nonlinear analysis
methods for combustion stability analysis in reciprocating engines are discussed in
the following subsections.

8.5.1 Phase Space Reconstruction

The phase space (or state space) of a dynamical system is a mathematical space with
orthogonal coordinate directions representing each of the variables needed to specify
the instantaneous state of the system [108]. Several approaches in nonlinear data
analysis fundamentally start with the construction of a phase space portrait of the
considered system. Phase space of a dynamical system is defined as a finite-
dimension vector space Rn, and a state is specified by a vector x 2 Rn [109]. A
point in phase space diagram represents a completely defined state of the system
[87]. Thus, the time series of the system occurs as an orbit or trajectory in the phase
space representing the time evolution, the dynamics, of the system. The shape of the
trajectory of points in the phase space provides guidance regarding the characteris-
tics of the dynamical system such as periodic or chaotic systems. Chaos has a
structure in phase space [107].

In systems like reciprocating engines, a time series of measured in-cylinder pres-
sure or calculated combustion parameters on crank angle basis or cycle-to-cycle
basis is available for analysis. The observed time series needs to be converted into
state vectors for phase space reconstruction. The conversion into state vectors is
typically done by time delay embedding, derivative coordinates, or principal com-
ponent analysis [109]. A d-dimensional system is possible to be reconstructed in am-
dimensional phase space by using time delays and m � 2d þ 1 for an adequate
reconstruction [110]. Time delay embedding comprises of creating a state space
trajectory matrix X from the measured time series x by the time delay (τ) coordinates
as shown in Eq. (8.29):

X1 ¼ x tð Þ,
X2 ¼ x t þ τð Þ,
⋮
Xm ¼ x t þ m� 1ð Þτð Þ:

8>>><
>>>:

ð8:29Þ

Alternatively, derivative coordinates can be used for phase space reconstruction
(Eq. 8.30). The derivative coordinates have the advantage of their clear physical
meaning [109]:

X1 ¼ x tð Þ,
X2 ¼ dx tð Þ

dt
,

⋮

Xm ¼ dm�1x tð Þ
dtm�1 :

8>>>>>><
>>>>>>:

ð8:30Þ

8.5 Nonlinear and Chaotic Analysis of Combustion Stability 425



Figure 8.43 shows the phase spaces generated using measured cylinder pressure
data of 100 cycles for different equivalence ratios (Φ ¼ 0.781, 0.677, 0.595, 0.588,
and 0, respectively) in a spark ignition engine. Phase spaces are created using
derivative coordinates as shown in Eq. (8.31):

X ¼ p φð Þ,

Y ¼ dp φð Þ
dφ

,

Z ¼ d2p φð Þ
dφ2

:

8>>>>>><
>>>>>>:

ð8:31Þ

Figure 8.43a depicts that the part of the phase space diagram shows very small
variations of different trajectory cycles and close to the peak pressure position, with

Fig. 8.43 Phase spaces reconstructed using measured pressure time series at different equivalence
ratio [109]. (a) Case A1. (b) Case A2. (c) Case A3. (d) Case A4. (e) Case A5
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an obvious divergence between each cycle. Figure 8.43a, b shows well-developed
combustion at the point of peak pressure because the trajectories disperse adequately
at that point. However, the well dispersion part in projection plans is pushed to the
area after the point of peak pressure (Fig. 8.43c, d). With the decrease in equivalence
ratio, both the beginning and the end of combustion phase are delayed. Figure 8.43a–d
shows that, although the curves in phase space diagram show obvious cyclic varia-
tions, these curves are rather well confined in the phase space and well organized.
Therefore, cylinder pressure evolution could be possibly governed by a dynamics with
deterministic components [109]. Poincaré section can be used to reduce the dimension
of the phase space and reveal a structure, which can further identify the patterns of the
dynamical behavior of time series.

Two of the most important parameters are time lag (τ) and embedding dimension
(m) in the process of phase space reconstruction. Figure 8.44 shows the effect of time
delay on the phase space portrait of cylinder pressure of a spark ignition engine. The
normalized in-cylinder pressure time series is used to avoid the influence of pressure
units. In case of too short time delay, the coordinates P(i) and P(i + τ) will not be
independent enough, which means not enough time will have evolved for the
dynamical system to have explored enough of its state space to generate the new
information about that state space. In case of too large time delay, any connection
between the measurements P(i) and P(i + τ) is numerically equivalent to being
random with respect to each other because chaotic systems are intrinsically
unstable [107].

The simple way to determine the time delays is the autocorrelation function
method, and it is commonly used although a linear method [87, 111]. This method
is relatively simple for calculation (Eq. 8.32), and it can be used as the phase space
reconstruction is not so sensitive to time delay [111]:

C τð Þ ¼
P

P0 iþ τð ÞP0 ið Þ½ �
N

ð8:32Þ

Fig. 8.44 Phase space portrait of normalized cylinder pressure for time lag of (a) τ ¼ 1, (b) τ ¼ 48,
and (c) τ ¼ 92 in SI engine operated at stoichiometric mixture [111]
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The optimal time lag (τ) value is chosen when the value of the autocorrelation
function (C(τ)) decreases to C(0)/e. It was found that the value of autocorrelation
function decreases to C(0)/e and zero at 48 and 92, respectively (Fig. 8.44). The
figure shows that the attractor of the combustion process is fully unfolded when
time delay τ ¼ 48, and thus, the optimal τ value can be determined at which C(τ) ¼
C(0)/e [111].

An alternative method of time lag determination is the average mutual informa-
tion (AMI) [112]. However, AMI needs a larger scale of calculations. The time lag at
which the first minimum of mutual information occurs can be considered as time lag
for phase space construction [107]. Mutual information is an analysis tool based on
information theory that measures univariate temporal coupling (i.e., the predictabil-
ity in a signal). Mutual information-based method for detecting temporal relation-
ships is more powerful than autocorrelation because it is equally sensitive to linear
and nonlinear structure [75].

The mutual information between two time series at time delay τ in bits can be
calculated by Eq. (8.33):

MI τð Þ ¼
XN
xi¼1

XN
x j¼1

p xi ; x j

� �
log2p xi ; x j

� ��XN
xi¼1

p xið Þlog2p xið Þ �
XN
x j¼1

p x j

� �
log2p x j

� �
ð8:33Þ

where xi is the time series value at time t, xj is the time series value at time t + τ, p(xi)
is the individual probability density for xi, p(xj) is the individual probability density
for xj, and p(xi, xj) is the joint probability density for xi and xj. The probability
functions can be calculated by binning the data and constructing histograms [75].

One of the most common methods to determine the value of the embedding
dimension (m) is the false nearest neighbors (FNN) [113]. The m value is selected as
the embedding dimension at which the percentage of FNN decreases to approxi-
mately 0%. The FNN can be calculated as shown in Eq. (8.34):

f m ið Þ ¼ R2
mþ1 ið Þ � R2

m ið Þ
R2
m ið Þ

� �1=2
¼ p0 iþ mnð Þ � p

0MM iþ mnð Þ�� ��
Rm ið Þ ð8:34Þ

where p0(i) is the normalized time series of pressure data, n is equal to τ/t, t is the
sampling time interval, p0MM(i) is the nearest neighbor of p0(i), and Rm(i) represents
the distance between p0(i) and p0MM(i) when the embedding dimension is m [111].

8.5.2 Poincaré Section

To determine the structure in the attractor, the Poincare section is used to reduce the
dimension of the phase space. This method reduces one dimension of the phase
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space portrait. An invertible map can be constructed on the section by following the
trajectory of the flow. The iterates of the map are given by the points where the
trajectory intersects the section in a specified direction [109]. It is easier to analyze
the distribution of these points because the Poincaré section has a lower dimension.
Figure 8.45 shows the Poincare section of phase spaces shown in Fig. 8.43. Poincaré
section reduces the dimension of the earlier phase space (Fig. 8.43) to a
two-dimensional representation, which can be used to identify patterns of the
dynamical behavior. Poincaré sections defined by Eq. (8.35) are shown in Fig. 8.45:

X
XZ

¼ X; Yð Þ2 ℜ2
��Y ¼ 0; Z � 0

� 

: ð8:35Þ

Fig. 8.45 Poincare sections in corresponding phase spaces in Fig. 8.43 for case1-case5 [109]

8.5 Nonlinear and Chaotic Analysis of Combustion Stability 429



Figure 8.45a shows that the combustion strongly dominates the cylinder pressure
development and a straight band of points with inverse ratio indicating linear
deterministic characteristics in the Poincaré section. The Poincaré section reveals a
bifurcation structure (Fig. 8.45b), in which a short branch appears at the upside of the
main band. This structure suggests an unstable trend of combustion [109]. A more
obvious bifurcation occurs with a decrease in equivalence ratio, which suggests that
the domination of deterministic components to the cylinder pressure development is
weakened further (Fig. 8.45c). Further reduction in equivalence ratio, the Poincaré
section displays a more erratic structure with high levels of dynamic noise indicating
stronger stochastic characteristics (Fig. 8.45d) [109].

8.5.3 Return Maps

Most commonly used phase spaces are return maps, which have embedding dimen-
sion of two and delay time selected to one. Return map provides a simple way to
study the interactions between consecutive events. In reciprocating engines, the
return maps can be used to determine the inherent deterministic interaction between
combustion cycles qualitatively [2, 114]. Consecutive engine cycles are not interre-
lated in random time series of combustion events, and the return map shows an
unstructured cloud of data points collected around a fixed point. The return map
reveals more structures such as dispersed data points about a diagonal line when the
deterministic coupling between combustion cycle exists [90]. In return maps, pairs
of consecutive data series values of combustion parameters (cycle i versus cycle
i þ 1) are plots with each other (Fig. 8.46). Data point of each cycle relates to the
next successive cycle through the general statistical picture of the whole cycles
interrelation using return map plots [71].

Figures 8.46 and 8.47 show the return maps θPmax and heat release for HCCI
combustion using primary reference fuel (PRF) where octane number (ON) varies
from 3 to 7. Return maps for octane number three (ON ¼ 3) show an unstructured
cluster of circular data collected around a fixed point (Figs. 8.46a and 8.47a),
indicating stochastic variations in the combustion cycle. The combustion is rela-
tively stable with octane number three as relatively lower dispersion. Further
increasing the octane number, the fixed concentrated points (as with ON ¼ 3) start
to destabilize in certain directions of the return map, and the highest levels of
destabilization occur for ON 6 and 7 (Figs. 8.46 and 8.47). The data points scattered
over diagonal line. The structured patterns of return map can be attributed to the
deterministic coupling between consecutive cycles [71]. The functional form
(Eq. 8.36) at cycle (i) using previous cycles can be used to characterize the dynamics
of a combustion parameter (e.g., θPmax ):

θPmax ið Þ ¼ f θPmax i� 1ð Þ; θPmax i� 2ð Þ; . . . ; θPmax i� L� 1ð Þð Þð Þ ð8:36Þ
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Chaotic methods like return maps and symbol sequence techniques (see Sect.
8.5.4) are used to estimate the approximate function f and value of L. A random time
data series having an unstructured cluster of data points on return map tends to
produce a high-dimensional function f [90]. Thus, the return maps of ON 5–7
(Fig. 8.46) suggest a relatively low value of L. Additionally, Fig. 8.46 indicates
that the function f is a nonlinear function [71]. Pattern in the return map is also

Fig. 8.46 Return map of θPmax for different octane numbers (ON) in HCCI combustion for 3000
consecutive engine cycles [71]
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dependent on the combustion parameters (Figs. 8.46 and 8.47) in the unstable
combustion zone. Combustion parameters such as Pmax, IMEP, combustion dura-
tion, combustion phasing, etc. can also be used for generating a return map for
combustion stability analysis.

Typically, low-temperature combustion (LTC) engines have intrinsically high
sensitivity for small fluctuations in the engine running conditions. Thus, the control
system is required which should be able to satisfactorily respond to such

Fig. 8.47 Return map of heat release for different octane numbers (ON) in HCCI combustion for
3000 consecutive engine cycles [71]
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disturbances on cycle-to-cycle basis [2]. Figure 8.48 shows the complex dynamics of
heat release using return maps during SI to HCCI combustion mode transition. The
differences in combustion modes can be observed from the heat release return maps
(Fig. 8.48). Data points are collected in a small unstructured cluster of around a fixed
point in SI combustion (Fig. 8.48a) which shows the nominal flame propagation heat
release [90].

In typical port fuel-injected SI combustion, data is slightly dispersed on the return
map indicating the stochastic or high-dimensional component (Fig. 8.48a). With the
increase in internal EGR during the transition, the cyclic variations increases, and
data points on return map scatter in particular directions (Fig. 8.48b), which indicates
unstable manifolds in low-dimensional phase space [90, 107]. The level of destabi-
lization reaches to a maximum with a further increase in EGR (Fig. 8.48c), and
combustion again starts to become more stable (Fig. 8.48d). Finally, in HCCI
combustion mode, combustion is stabilized, and scatters in return map is eliminated
with concentrating the data points around a fixed point (Fig. 8.48e).

Figure 8.49 shows the return map of combustion phasing (CA50) at different
relative air-fuel ratio (λ) in an HCCI engine. For lean combustion (λ ¼ 2.8), return
map of combustion phasing shows a circular cloud indicating stochastic component.
For rich combustion (λ¼ 2.3), the return map of the combustion phasing distribution
shows flat distribution along the diagonal line. In this case, it is difficult to find
correlation as skewed distributions can also produce dispersed data leading to
complication in the return map analysis [2]. Generation of return map using nor-
malized value (or quantile values) can solve this issue of visualization on the return

Fig. 8.48 Heat release return maps during the transition from (a) stable SI combustion to (e) HCCI
operation using increased levels of internal EGR [90]
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map. The dataset of N values can be converted into another data set of N quantile
values by replacing the lowest data value to 1/N, next lowest to 2/N, such that the
maximum data value is assigned a value of 1 (N/N ¼ 1). However, it is essential to
ensure that the sequence of data is not disturbed. During this process, all the data
points are converted into values between 0 and 1. In this process, highly skewed
distribution is converted to a uniform distribution of data points evenly distributed
between 0 and 1 [115]. Thus, an uncorrelated data will show a uniform density of
data points on the return map using quantile values, and correlated data have
nonuniform (higher and lower) densities of data points on the map [115]. Return
maps using quantile values of combustion phasing for the lean and rich condition is
shown in the right of Fig. 8.49. The figure shows that the leaner mixture has a
relatively uniform distribution of data points and richer mixture has uneven distri-
bution in the density. The nonuniform densities of data points indicate a determin-
istic dependency on the previous combustion cycles [2].

Fig. 8.49 Return maps for combustion phasing with a lag of one cycle for different λ in HCCI
engine
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8.5.4 Symbol Sequence Statistics

Symbol sequence statistics method is very useful for time series data analysis, which
can provide important insight into the behavior of different combustion parameters
of reciprocating engines. Deterministic and stochastic behaviors can be identified
with this approach. The presence of determinism in combustion parameters indicates
that intelligent control of the system can extend the limits of engine operation over a
wide range [2]. The deterministic information can be effectively used by controllers,
and small variations in control input parameters/actuators can shift back the engine
to stable operating conditions [116]. Control of cyclic variations in HCCI engine is
demonstrated using symbol-statistics predictive approach [71]. Symbol generation
process and histogram analysis are discussed in the following subsections.

8.5.4.1 Symbolization

Symbolization of combustion data of the engine can be very advantageous and
effective to analyze the pattern when data contains measurement noise and/or has
measurement errors. For correctly selected partition number, symbolization can also
correctly estimate the deterministic effect of the previous cycle or inherent structure
in the time series. A dynamic noise appears if the number of partition is higher.
Symbolization of data can also act as a data compression methodology, which leads
to relatively faster data processing during data acquisition. These characteristics of
symbolization make it an effective tool for real-time control and onboard diagnostics
of the engine [117, 118].

Symbolization of data converts it into a series of data with symbols. Figure 8.50
illustrates the process of symbolization of data using the binary partition. The times
series data first divides the data into two equiprobable partitions in such a way that
both the partitions contain the same number of data points. The data above the
partition line is assigned a symbol “1,” and below is assigned symbol “0” (Fig. 8.50).
This data conversion results in a series of binary symbols. After data conversion into
symbols, the frequency of occurrence of particular sequence length (3 in Fig. 8.50) is
computed. The total number of possible sequences “Nseq” is dependent on the
number of partition (npart) or number of symbols and selected symbol sequence
length “L.” The total number of possible sequences can be calculated by Eq. (8.37):

Nseq ¼ npart
� �L ð8:37Þ

For three sequence length in the binary partition (Fig. 8.50), six (23) sequences are
possible that can be presented in a binary or decimal format (as shown in Fig. 8.50).
To generate a histogram, the number of occurrences of every sequence is counted
and presented as bar as illustrated in Fig. 8.50b.

Figure 8.51 further illustrates the symbolization of 1000 combustion phasing
(CA50) data using the binary partition. Binary partition is the simplest partition,
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where data is divided into two equiprobable partitions using the median of the data.
The combustion phasing values below the median are assigned symbol “0” and
above the median “1.” More than two partitions can also be possible leading to a
different number/symbol system (e.g., 0, 1, 2, 3, 4, 5, 6, and 7 for npart ¼ 8). The
sequence of symbols depicts important information regarding the combustion
dynamics. The relative frequency corresponding to each possible sequence number
is shown in Fig. 8.51 for sequence length of six. Sixty-four possible numbers (26) are
represented in the decimal format on the x-axis of Fig. 8.51b. In this method, the
relative frequency of truly random data is equal due to an equal number of values in
each partition. All histogram bins will be equally probable within the uncertainty due
to the finite data set. Therefore, significant deviation from equiprobability (for truly
random data) indicates the deterministic structure or time correlation in the data
[118]. The baseline frequency Fb for purely random data can be calculated using
Eq. (8.38) [116]:

Fb ¼ 1
npart

	 
L

ð8:38Þ

This baseline frequency for the combustion phasing data in Fig. 8.51b is
represented by the thick red line. Therefore, the sequences appearing as peaks rising
above the red line (Fb) corresponds to repeating deterministic events on the histo-
gram plot (Fig. 8.51b). However, selection of appropriate sequence length and
partition is essential for accurate analysis using symbolization method.

Fig. 8.50 Illustration of
symbol generation process
and presenting a symbol
sequence histogram
[117]. (a) Data series. (b)
Symbol-sequence histogram
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8.5.4.2 Modified Shannon Entropy

Shannon entropy is a statistic derived from information theory that measures the
degree of predictability in a time series, and it is useful for detecting dynamic
patterns [75]. The optimal sequence length for creating a symbol sequence histogram
can be computed using a modified form of Shannon entropy. A modified form of
Shannon entropy is used to quantify the deviation of symbol statistics from random-
ness [116, 119]. Modified Shannon entropy value “1” indicates a purely random data
series and for values less than “1” suggests a correlation between sequential points.
The modified Shannon entropy (Hs) can be calculated by Eq. (8.39):

Hs ¼ 1
lognseq

X
k

pk logpk ð8:39Þ

where pk is the probability with which sequence “k” occurs and nseq is a total number
of sequence with non-zero probability.

Fig. 8.51 (a) Symbolization of combustion phasing, (b) relative frequency of symbols using
sequence length of six
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Figure 8.52 shows the variation of modified Shannon entropy with symbol
sequence length for different octane numbers in HCCI engine (conditions shown
in Fig. 8.46). In this calculation, the octal partition is used. The value of modified
Shannon entropy varies as the sequence length, and it is found minimum at a
sequence length of 3. Thus, it can be assumed that it is an optimal sequence length
for this partition and combustion parameter. Another method based on joint proba-
bility distribution to predict the next cycle occurrence using previous cycle infor-
mation is used to determine the optimal sequence length [71]. The joint probability
histograms provide the maximum likelihood probability of the next cycle based on
the occurrence of previous cycles. Then, based on a comparison of the one-cycle
ahead predictions for different values of L, an optimal value of L can be determined.

The optimal combination of a number of partition and sequence length is required
in symbol sequence method for effective control strategy. To determine the optimal
combination of number of partition and sequence length, a matrix of values for both
ranging 2–10 is calculated as shown in Fig. 8.53. The figure shows that for binary
partition the optimal sequence length (minimum Shannon entropy) seems to be 8 or
9 for all the test condition. For 6–8 number of partitions, the optimal sequence length
seems to be 3 where Shannon entropy is minimum. Figure 8.53 shows that the
optimal combination of a number of partition and sequence length depends on the
engine operating conditions [120].

8.5.4.3 Symbol Sequence Histograms

The symbol sequence histogram is used to find the sequence with a higher frequency
above the baseline frequency for purely random data. The highest frequency pro-
vides the most repeated pattern in the data series. Figure 8.54 shows the symbol
sequence histogram for combustion duration and IMEP data series at different

Fig. 8.52 The variation of
modified Shannon entropy
with symbol sequence
length for different octane
numbers in HCCI engine
[71]
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relative air-fuel ratio using octal partition and sequence length 3. Sequence having
higher relative frequency than baseline frequency shows the determinism in the data
series. Figure 8.85a shows that frequency of sequence number increases more as the
engine is operated at the richer mixture. The relative frequency at richer mixture is
highest for the richest mixture (λ ¼ 2.0) in case of combustion duration data series.
However, with IMEP data series, the number of sequence numbers having a higher
frequency than baseline are higher for leanest mixture operation (λ¼ 2.6), indicating
a higher number of deterministic patterns. Thus, two combustion parameters com-
bustion duration and IMEP behave differently for the determination of deterministic
patterns. Therefore, it is important to select a right number of partitions and sequence
length for a particular combustion parameter [120].

Figure 8.55 shows the symbol sequence histograms of combustion phasing for
different λ in HCCI engine at 1800 rpm using octal partition and sequence length
3. The figure shows that the richest mixture has a higher number of sequences above
baseline frequency indicating more deterministic patterns. The sequence codes that
occur more frequently with higher frequency are 0, 8, 16, 64, 128, 276, and 511.
These numbers when converted from decimal to octal number corresponds to
sequence 0–0–0, 0–1–0, 0–2–0, 1–0–0, 2–0–0, 4–2–4, and 7–7–7. The two

Fig. 8.53 Variation of modified Shannon entropy with sequence length and number of partition at
(a) λ ¼ 2.0, (b) λ ¼ 2.2, (c) λ ¼ 2.4, and (d) λ ¼ 2.6 in a HCCI engine [120]
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sequences 0–0–0 and 7–7–7 represent the steady behavior of combustion timing.
Other patterns indicate that advanced-to-retard and retard-to-advanced timing com-
bustion events are dominant.

8.5.4.4 Time Irreversibility

Time irreversibility is defined such that a qualitative or quantitative description of a
time series is indistinguishable from a time-reversed version of itself [75]. Qualita-
tively time irreversibility can be depicted from the return map, which shows sym-
metry about diagonal for reversible data and significant bias for irreversible data.
Nonstationarity in the data increases the possibility of observing time irreversibility.

Time irreversibility can be quantified using symbol sequence histograms because
the relative frequencies will shift when the data series is used in backward time.
There should be no significant variation in the histogram for the backward time
series if the data measures are time symmetric. To compare forward- and reverse-
time histograms, a quantified statistic can be defined by Eq. (8.40) [75, 121]:

T irr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

F � Rð Þ2
r

ð8:40Þ

Fig. 8.54 Symbol sequence histograms of (a) combustion duration (b) IMEP for different λ using
octal partition and sequence length 3 [120]
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where “i” is indexed over all possible sequence codes. F and R are the symbol
sequence histogram frequencies for the forward- and reverse-time analyses, respec-
tively. The magnitude of Tirr quantifies the level of time irreversibility.

8.5.5 Recurrence Plot and Its Quantification

Recurrence plot (RP) method is first introduced by Eckmann et al. [122] in 1987 to
visualize the time-dependent behavior of the dynamics of systems, which were used

Fig. 8.55 Symbol sequence
histograms of combustion
phasing for different λ at
1800 rpm using octal
partition and sequence
length 3
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later for the identification of nonlinear systems with various possible behaviors
[123–126]. A recurrence plot is a useful tool to visualize recurrences of phase
space trajectories, and it provides a qualitative description of the dynamics of a
time series. The recurrence plot efficiently visualizes recurrences mathematically
expressed by matrix given by Eq. (8.41) [123, 127]:

Rm, E
i, j ¼ Θ E� Xi � X j

�� ��� �
, i,j ¼ 1, . . . ,N ð8:41Þ

where N is the number of measured points Xi, ε is a threshold distance, Θ (٠) the
Heaviside function (i.e., Θ (x) ¼0, if x < 0, and Θ (x) ¼1 otherwise), and ||٠|| is a
norm. For the analysis of combustion cycles of reciprocating engines, Xi can be heat
release, combustion phasing, or IMEP based time series data. The phase space
vectors for one-dimensional cycle-based time series observations can be
reconstructed by using time delay method, Xi ¼ (xi, xi+τ, . . ., xi þ (m�1)τ), where τ
is the time delay and m is the embedding dimension [110]. The dimension m can be
determined using the method of false nearest neighbors [125]. Since Ri,i ¼ 1
(i ¼ 1, . . ., N ) by definition, the recurrence plot has a black main diagonal line,
the line of identity (LOI), with angle of π/4 [127]. It is possible to classify the
dynamics of the system by its characteristic patterns showing diagonal, vertical, or
horizontal structure of lines using recurrence plot method [126, 128]. This method
(applied to time series) is capable of distinguishing chaotic and stochastic behavior
[126]. A pattern for a stochastic system is based on uniform distribution of points in
the recurrence plot, while a chaotic system possesses structure of lines with finite
lengths. On the other hand, in a case of the intermittent motion [129], a vertical stripe
structure is expected [121–131]. In recurrence plot, the abrupt changes in dynamics
and extreme events are characterized by white areas or bands, and oscillating
systems have diagonally oriented or periodic recurrent structures (i.e., diagonal
lines or checkerboard patterns) [91].

Figure 8.56 shows the recurrence plot for IMEP at different engine speeds of
1000, 1200, 1400, 1600, 1800, and 2000 rpm, respectively, in a diesel engine.
Figure 8.56a, c–e shows several vertical lines identifying the presence of intermit-
tency in the IMEP time series. A series of lines with unit slope parallel to the main
diagonal line is observed at engine speed of 1200 rpm (Fig. 8.56b), which indicate a
more regular oscillatory behavior [91]. Interestingly, the recurrence plot has a
checkerboard structure indicating a regular oscillatory behavior also at the maximum
speed of 2000 rpm (Fig. 8.56f) similar to Fig. 8.56b.

Recurrence quantification analysis (RQA) provides measures of complexity
quantifying structures in a recurrence plot [123]. The first measure of RQA is the
recurrence rate (RR) or percent of recurrences given by Eq. (8.42), which counts the
black dots in the recurrence plot [127]. It is a measure of the density of recurrence
points:

RR Eð Þ ¼ 1

N2

XN
i,j¼1

Rm, E
i, j ð8:42Þ
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RQA can be used to identify vertical or diagonal lines through the maximal
lengths Lmax and Vmax for diagonal and vertical lines, respectively, given by
Eqs. (8.43) and (8.44) [123]:

Lmax ¼ max li; i ¼ 1; . . . ;Nlf gð Þ ð8:43Þ
Vmax ¼ max vi; i ¼ 1; . . . ;Nvf gð Þ ð8:44Þ

Fig. 8.56 Recurrence plots of the IMEP for different engine speeds (n ¼ (a) 1000, (b) 1200,
(c) 1400, (d) 1600, (e) 1800, and (f) 2000 rpm) in a diesel engine [91]
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RQA also enables to perform probability p(l ) or p(v) distribution analysis of lines
according to their length l or v (for diagonal and vertical lines). Practically they are
calculated by Eq. (8.45) [126, 127]:

p xð Þ ¼ PE xð ÞPN
x¼xmin

PE xð Þ ð8:45Þ

where x ¼ l or v depending on diagonal or vertical structures in the specific
recurrence diagram and Pε (x) is probability for a given threshold value ε.

The measures of entropy refer to the Shannon entropy of the frequency distribu-
tion along the diagonal and vertical line length given by Eqs. (8.46) and (8.47) and
reflect the complexity of the deterministic structure in the system [123, 126,
127]. The larger value indicates more complex deterministic structure.

LENTR ¼ �
XN
l¼lmin

p lð Þlnp lð Þ ð8:46Þ

VENTR ¼ �
XN
v¼vmin

p vð Þlnp vð Þ ð8:47Þ

Other measures of RQA like determinism (DET) are given by Eq. (8.48), calcu-
lated using probabilities. Determinism (DET) is the measure of the predictability of
the examined time series that gives the ratio of recurrent points formed in diagonals
to all recurrent points. It can be noted that in a periodic system, all points would be
included in the lines [123].

DET ¼
PN

l¼lmin
lPE lð ÞPN

i,j¼1 R
m,ε
i, j

ð8:48Þ

Laminarity (LAM) is a similar measure which corresponds to points formed in
vertical lines, given by Eq. (8.49). This measure is telling about dynamics behind
sampling point changes. For small point-to-point changes, the consecutive points
form a vertical line [123]. It indicates the extent of laminar phases or intermittency in
the time series [91].

LAM ¼
PN

v¼vmin
vPE vð ÞPN

v¼1 vP
E vð Þ ð8:49Þ

Trapping time (TT) is given by Eq. (8.50) calculated using probabilities:

TT ¼
PN

v¼vmin
vPE vð ÞPN

v¼vmin
PE vð Þ ð8:50Þ
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Trapping time (TT) refers the average length of vertical lines measuring the time
scale (in terms of sampling intervals) of these small changes in the examined time
history [123]. This parameter describes how long the system remains in a specific
laminar phase.

Figure 8.57 shows the different RQA parameters with engine speed for a recur-
rence plot shown in Fig. 8.56. The figure shows that LENTR is largest at 1800 rpm
engine speed indicating higher structural complexity [91]. Additionally, at this speed
(1800 rpm), the parameters LAM and TT have their minimum values, while DET
shows its minimum value at 2000 rpm. The small value of DET indicates low
predictability, whereas the small values of LAM and TT, respectively, indicate a
dominance of large fluctuations and a short duration of time spent in a laminar phase
in the intermittent dynamics [91].

Fig. 8.57 Variations of (a) DET and LAM, (b) LENTR and VENTR, and (c) TT with engine speed, for
the same value of RR ¼ 0.2 [91]
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8.5.6 0–1 Test

The 0–1 test is proposed for investigation of the dynamical system and tests whether
the system is regular or chaotic [132–134]. In comparison to conventional methods,
the advantages of 0–1 test are as follows: (1) it can be applied to any deterministic
dynamical system directly and universally, (2) this method does not require the
phase space reconstruction, (3) this method requires relatively less computational
effort, and (4) the output is intuitive with only one value, approximately equal to 0 or
1, based on whether the system is regular or chaotic [135]. The errors due to the
selection of embedding dimensions and time lag are eliminated in this method
because it does not require the phase space construction.

Combustion instability is typically analyzed using measured cylinder pressure.
The measured cylinder pressure time series P( j) is converted into new coordinates (u
(n), v(n)) by Eq. (8.51) [135]:

u nð Þ ¼
Xn
j¼1

P jð Þ cos jcð Þ and v nð Þ ¼
Xn
j¼1

P jð Þ sin jcð Þ ð8:51Þ

where c in range (0, π) is a random frequency and n ¼ 1, 2, 3. . . .
The form of coordinates is changed to reduce the effect of potential resonance

caused by the choice of c frequency. Suitable choice of c is crucial in the application
of 0–1 test. Normalized pressure values are used to remove the effect of pressure
units. The final coordinates used for combustion analysis is computed using
Eq. (8.52) [135]:

u nð Þ ¼
Xn
j¼1

P0 jð Þ cos ψ jð Þð Þ and v nð Þ ¼
Xn
j¼1

P0 jð Þ sin ψ jð Þð Þ ð8:52Þ

ψ jð Þ ¼ jcþ
Xj
h¼1

P hð Þ and P0 jð Þ ¼ P jð Þ � Pmean

σP
ð8:53Þ

where Pmean is the mean value of the pressure time series and σP is the standard
deviation of pressure time series.

Quantitative characterization of function in Eq. (8.52) is performed by the mean
square displacement (MSD), which is calculated by Eq. (8.54) in the new (u, v)
plane:

MSD nð Þ ¼ lim
N!1

1
N � n

XN
j¼1

u jþ nð Þ � u jð Þ½ �2 þ v jþ nð Þ � v jð Þ½ �2
n o

ð8:54Þ

Distribution characteristics of MSD characterized the regular and chaotic time
series. The MSD is bounded in time for regular time series, while it grows linearly
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with time for chaotic time series. The dynamics of the time series can be further
characterized by computing the asymptotic growth rate Kc, which can be calculated
by Eq. (8.55):

Kc ¼ cov n;MSD nð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var nð ÞVar MSD nð Þð Þp ð8:55Þ

where cov(n, MSD(n)) is the covariance of two different time series and var(n) is the
cov(n, n). Averaging the Kc values on c in (0, π), the final 0–1 test result K is
calculated. The K values provide the quantitative information regarding the dynam-
ics of the process. The K value is close to 0 for regular time series, while it
approaches to 1 for chaotic time series. Typically, K � 0.7–0.8 is considered as
the chaotic regions [133, 135–137].

Figure 8.58 shows the cylinder pressure time series (u, v) planes at c ¼ 2.5 for
motoring and different fuel injection timings in natural gas SI engine. Figures 8.59
and 8.60 show the corresponding MSD versus n (at various c values) and Kc

(asymptotic growth rate) versus c. In the motoring engine operating conditions
(Fig. 8.58a), the pressure time series shows the bounded behavior indicating a
regular time series. However, the cylinder pressure time series at different injection
timings (Fig. 8.58b–h) show unbounded Brownian (random) behavior in u–v plane.
Similarly, all the MSDs for different injection timings (Fig. 8.59b–h) show an
approximately linear increase (unbounded) with n for various c values. The MSD
values show bounded behavior for motoring condition (Fig. 8.59a), indicating
regular behavior. The Kc values for different injection timings (Fig. 8.60b–h) show
close to 1 for all the cases with a certain level of fluctuations. The observations from
Figs. 8.58 to 8.60 clearly indicate that the combustion process of this engine is a

Fig. 8.58 The (u, v) planes of cylinder pressure time series for motoring condition (a) and different
injection timings (b) 0 �CA, (c) 15 �CA, (d) 30 �CA, (e) 45 �CA, (f) 60 �CA, (g) 75 �CA, and
(h) 90 �CA, respectively, after intake TDC in SI engine [135]
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chaotic dynamical system [135]. In motoring engine operation, the K value is 0.077,
which clearly indicates that this process is regular. It can be further observed that
K value first increase and then decreases with increasing injection timings and has
larger K values for 45–60 �CA injection timing after intake TDC. The larger K values
indicate the stronger chaotic behavior at those particular fuel injection timings.

Fig. 8.59 The variation of MSD (n) with n for different injection timings in SI engine. The cases
(a)–(h) are defined in Fig. 8.58 [135]

Fig. 8.60 The value of Kc for different values of c for different injection timings in an SI
engine. The cases (a)–(h) are defined in Fig. 8.58 [135]
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8.5.7 Multifractal Analysis

The multifractal analysis provides a method to analyze the signals having nonlinear
power-law behavior that depends on higher-order moments and scale. Multifractals
are used to explain the dynamics of complex processes exhibiting multiple time
scales in addition to a range of oscillation amplitudes [76]. A monofractal process is
self-similar in such a way that its dynamics can be fully explained by one power-law
time-scaling exponent (such as Hurst exponent) and its complexity can be described
by single fractal dimension. The multifractal process needs a spectrum of scaling
exponents to fully describe the complex dynamics, and it can be considered as
locally self-similar. One method to explain such multifractal spectrum is to use
Hölder exponent [76, 138]. The singularity spectrum ( f(α)) is created by calculating
the average relative contribution of the different possible Hölder exponents over the
observation window (i.e., the overall time series). The broadness of the singularity
spectrum is one measure of the complexity of the process [76]. Engine combustion
process is analyzed using multifractals based on cylinder pressure measurement
[76, 139–141].

Figure 8.61 shows the multifractal spectrum at different engine operating condi-
tions in SI engine. Figure 8.61a illustrates the method to determine the coefficient of
the multifractal spectrum. Calculated exponential distribution f(α) (red points) is
found using multifractal analysis, and then it is interpolated with a polynomial trend
line. Two main characteristics of multifractal spectrum are typically used for anal-
ysis. First is the value of the Hölder exponent, α¼ α0, at the peak of f(α), and second
is the broadness, Δα, that is defined as the distance between the (extrapolated) points
of intersection of the spectral curve with the α-axis [76, 141]. The parameter, α0,
signifies the most dominant fractal exponent in the data series, and it shows the
correlation or degree of persistence in the data series. Persistent or positively
correlated process has α0 > 0.5, and anti-persistent or negatively correlated process
has α0 < 0.5. The two cases, α0¼ 0.5 and α0¼ 0, represent a Brownian random walk

Fig. 8.61 (a) Illustration of method for determination of coefficients of multifractal spectrum using
IMEP time series [141] and (b) multifractal spectrum at different equivalence ratio ϕ ¼ 0.91, 0.83,
0.77, 0.67, 0.63, 0.59, and 0.53 using heat release time series [76]
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and Gaussian random process, respectively. The Gaussian process is considered as
the series of random numbers, while the Brownian walk is characterized by random
steps. The broadness of a singularity spectrum (Δα) reflects the range of possible
fractal exponents. Therefore, the complexity of the process is characterized by the
distribution of α, and Δα provides a measure of multifractality or complexity in the
data [76, 141]. A large value of Δα shows a richer multifractal structure, whereas a
small value approaches a monofractal limit. Figure 8.61b depicts that as the fuel-air
mixture becomes leaner (decrease in ϕ), the broadness (Δα) first increases to reach a
maximum at ϕ ¼ 0.67, and further leaning of charge decreases the broadness. This
observation suggests the highest degree of multifractal complexity in heat release
time series when the engine is operated at ϕ ¼ 0.67.

Figure 8.62 shows the variation of α0 and Δα (obtained by multifractal analysis)
at different engine operating conditions with hydrogen enrichment. The engine
operating conditions at which experiments are conducted are shown in the right of
Fig. 8.62. The optimal conditions are indicated by a full line on the left-hand side of
Fig. 8.62. Engine operating points 8 and 10–12 have higher Δα (broadness) with
higher peaks, which suggests the IMEP time series is characterized by higher cycle-
to-cycle interactions [141]. It means the IMEP oscillations depend on the IMEP in
the previous cycle when the engine is fueled with hydrogen at an engine load of
85 kPa (Fig. 8.62). The highest value of α0 indicates the lowest negative correlations
in the anti-persistent walk. The most expected value of α0 is below 0.2 and a range of
critical Δα below 0.7 for the IMEP time series. Figure 8.62 clearly indicates that
there is no change in the combustion process with hydrogen addition at low engine
load (operating points 1–4). Thus, in summary, the multifractal analysis provides the
quantitative information of the combustion process using persistence and complexity
measures. This information can be used in the design of effective engine control
strategy [141].

Fig. 8.62 Result of multifractal analysis of IMEP data series with the most expected exponent
α0 and a range of critical exponents Δα (right) with measurement points (left) [141]
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8.6 Steps to Improve Combustion Stability

Combustion stability in reciprocating engines can be analyzed using statistical
methods or chaotic methods using measured cylinder pressure data. The quantitative
measures are defined to determine the levels of the cyclic combustion variability.
After characterizing the cyclic combustion variations, the methods can be suggested
to improve the combustion stability and control strategy of engine to minimize the
cyclic variations. Generally, the combustion stability in reciprocating engines
improve with (1) higher engine load and speed, (2) higher compression ratio,
(3) lower valve overlap, (4) higher energy of ignition system, (5) higher tempera-
tures, and (6) lower humidity [9]. Typically, combustion stability improves with
parameters, which tends to increase the combustion rate of the engines, and faster
combustion has typically lower cyclic variations. Therefore, the cylinder pressure-
based combustion stability methods can help to see the effect of design changes on
the combustion stability. The engine operating parameters and combustion mode can
be tuned for lower cyclic variability by combustion stability analysis using cylinder
pressure measurement.

Discussion/Investigation Questions

1. Why measurement and characterization of cycle-to-cycle variations are impor-
tant in internal combustion engines? Discuss the reason for cycle-to-cycle
variations in SI, CI, and LTC (HCCI, RCCI, etc.) modes of engine operation.

2. Define the combustion stability in a reciprocating internal combustion engine.
Discuss how cyclic combustion variability manifests in the engine performance.

3. Discuss the mechanism on how mixture composition (a type of fuel, overall
equivalence ratio, and an overall fraction of diluents) affects the cycle-to-cycle
variations (CCV) in SI engine. Describe the stage of combustion (sparking and
flame initiation, initial flame kernel development, and turbulent flame propaga-
tion) most affected by each parameter. Explain how each parameter can be
adjusted to minimize the CCV in SI engine.

4. Explain why cycle-to-cycle variations in conventional diesel engines are rela-
tively lower than the conventional spark ignition engines.

5. Discuss the mechanism on how spark characteristics (spark plug gap vicinity,
electrode shape, spark plugs number, and location) affects the cycle-to-cycle
variations (CCV) in SI engine. Describe the stage of combustion (sparking and
flame initiation, initial flame kernel development, and turbulent flame propaga-
tion) most affected by each parameter. Explain how each parameter can be
adjusted to minimize the CCV in SI engine. Discuss the advantage in terms of
cyclic variations gained by advanced ignition systems such as laser ignition.

6. Discuss the mechanism on how in-cylinder mixture motion (mean flow vector at
the spark plug gap vicinity, overall in-cylinder flow pattern, turbulence intensity,
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and scale) affects the cycle-to-cycle variations (CCV) in SI engine. Describe the
stage of combustion most affected by each parameter and also explain how each
parameter can be adjusted to minimize the CCV in SI engine. Suggest the engine
design changes for minimization of cyclic combustion variability.

7. Discuss the reasons why low-temperature combustion modes (HCCI, RCCI,
etc.) typically have relatively higher cyclic combustion variations than conven-
tional diesel engines.

8. Discuss the effect of cyclic variations in equivalence ratio (ϕ), diluents, mean
flow vector, spark discharge characteristics, and in-cylinder charging on cycle-
to-cycle combustion variations in SI engine. Comment on the combustion stage
which is most affected by the variations in each parameter.

9. Discuss the prior-cycle effects and same-cycle effects contributing to the cyclic
combustion variations in homogeneous spark ignition engines and compression
ignition engines.

10. Describe the sources of cyclic combustion variability in homogeneous and
heterogeneous charge compression ignition engines.

11. Describe why fast burn operating conditions typically have lower cycle-to-cycle
variations in reciprocating engines.

12. Explain the different indices based on in-cylinder pressure and heat release used
for characterization of the combustion stability in reciprocating internal com-
bustion engines. Discuss the significance of each parameter with respect to
information revealed by each parameter.

13. Write the causes of partial burn and misfire cycles in reciprocating internal
combustion engines.

14. How can you determine partial burn operation or misfire in SI and HCCI engine
using in-cylinder pressure-based measurement methods?

15. Discuss the difference between statistical and nonlinear dynamics approach of
combustion stability analysis. Write the advantages of both the approaches of
cyclic variation analysis.

16. Define skewness and kurtosis of a data series, and discuss the significance of
these statistical parameters with respect to the kind of information revealed.
Discuss the different methods that can be used to test whether an engine data
series has Gaussian or non-Gaussian distribution.

17. Define the coefficient of variation and lowest normalized value of IMEP data for
a large number of engine cycles. Discuss the information revealed by COVIMEP

and LNV parameter at particular engine operating conditions.
18. Discuss the advantages of wavelet transform over Fourier transform. Write the

typical applications of continuous wavelet transform and discrete wavelet trans-
form. Explain how wavelets can be used for characterization of cycle-to-cycle
variations under different engine operating conditions.

19. Discuss the differences between linear and nonlinear signal processing methods.
Describe the additional features of engine cyclic combustion variations which
can be extracted from the nonlinear analysis that are not available in the
traditional statistical analysis.
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20. Describe the methods to find the optimal embedding dimension and the time lag
during phase space reconstruction. Describe the information depicted by phase
space reconstruction, Poincare section, and return map.

21. Discuss the patterns by which return maps can reveal deterministic or stochastic
component in the variation. Discuss the significance of quantile return map with
normalized value.

22. Explain the methods that can be used to determine whether cyclic variations are
random or deterministic in nature. Why this information is important for the
engine designer and how these methods can be used to improve engine
performance?

23. Explain the advantages of data symbolization. Discuss the methods to find the
optimal sequence length and number of partition in symbol sequence analysis.
Write the major issues with an inappropriate number of partition in the data.

24. Discuss the steps that can be taken during engine design and calibration to
improve the combustion stability in SI, CI, and HCCI engines. Describe the
effects of fuel on the combustion stability of engine and suggest fuel character-
istics/properties for improving the combustion stability.
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