
Chapter 19
Combining Exact Methods to Construct
Effective Hybrid Approaches to Vehicle
Routing

Rym M’Hallah

Contents

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
19.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
19.3 Problem Description and Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

19.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
19.3.2 Mixed Integer Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
19.3.3 Constraint Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
19.3.4 Enhancing MIP and CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

19.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
19.4.1 Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
19.4.2 Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

19.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
19.6 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

19.6.1 Single Versus Multiple Depots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
19.6.2 Distances and Travel Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
19.6.3 Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
19.6.4 Collection Versus Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
19.6.5 Packing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
19.6.6 Stochastic Travel Times and Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

19.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

19.1 Introduction

Globalization has fostered a prosperous climate for industrial growth. However,
this growth is coupled with new challenges: a fiercer competition, broadened
distribution networks, diversified supply chains, tighter profit margins, and more
exigent clients. These latter are demanding lower prices, requiring higher quality
levels, and imposing stricter deadlines. Consequently, the manufacturing, service,
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and transportation industries that are affected by this new order have to manage
their activities judiciously while dealing with more complex, larger-scale, real-
life systems. Managing these activities is equivalent to solving several inter-related
industrial engineering problems. Because of the new global environment, industries
can no longer address some abstract form of these problems or decompose them
into independent subproblems. They have to model the problems as closely as
possible to their true real-life context. Such models are important for three reasons.
First, they offer a better reflection of the problem. Second, they account for
more constraints, take into account the true nature of the variables, and build in
intricate interdependencies. Third and last, they enhance the chances of direct real-
life implementation of the resulting solutions without any modification and at no
supplementary cost.

The optimization of the new complex problems that have emerged is difficult
not only because of their compounded nature but most importantly because their
components are themselves difficult to solve. This chapter considers one such
problem: vehicle routing with multiple time windows (VRPMTW), a problem of
substantial impact. Its good management alleviates environmental concerns caused
by pollution, reduces costs, and offers better work conditions for drivers and
higher satisfaction for clients. In VRPMTW, every client specifies more than one
availability period for receiving delivery.

Unlike existing methods, which consider the routing and scheduling aspects of
VRPMTW independently, this chapter addresses the problem as a single entity. It
approximately solves VRPMTW in reasonable run times using an efficient search
technique that takes advantage of the advances of computing technologies. Larger
computer memories and faster processors allow the (near-)exact resolution of more
realistic problems, an unimaginable phenomenon few years ago.

The proposed approach uses exact techniques as approximate ones. It substitutes
difficult constraints with easier ones, and limits the search space to neighborhoods
that contain the optimum. Most importantly, it explores the respective strengths of
mixed integer programming, constraint programming, and search methods.

Section 19.2 reviews the literature. Section 19.3 defines and models the problem.
Section 19.4 details the proposed approach. Section 19.5 presents some results.
Section 19.6 discusses some practical considerations. Finally, Sect. 19.7 summarizes
this research and presents future extensions.

19.2 Literature Review

Because they occur in most services and industries, vehicle routing problems (VRP)
are continuously drawing the attention of researchers (Vidal et al. 2014). This is
clearly reflected by the extensive literature and numerous review papers (Adewumi
and Adeleke 2018; Braekers et al. 2016; Eksioglu et al. 2009, Gendreau et al. 2008,
Koç et al. 2016; Vidal et al. 2013). These surveys classify the literature according
to the problem constraints, mathematical models, and solution techniques. Most of
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them (e.g., Baldacci et al. 2012) single out cases where loads (Alba and Dorronsoro
2008; Gendreau et al. 1994; Minocha and Tripathi 2013; Nagata and Bräysy 2009;
Toth and Vigo 2002) and delivery times (Cordeau et al. 2001; Favaretto et al. 2007;
Fu et al. 2007; Figliozzi 2010; Moccia et al. 2012; Nagata et al. 2010; Nazif and Lee
2012; Solomon 1987) are constrained. These constraints fathom large parts of the
search space and thus eliminate a large number of potential nodes of any tree-based
procedure. However, they make finding feasible solutions much harder.

Hashimoto et al. (2006) and Ibaraki et al. (2005), to cite a few, consider VRP with
general time windows (TW). They associate to each client more than one delivery
window, but penalize the violation of these soft or flexible TWs, with penalties
that are not necessarily linear. Beheshti et al. (2015) consider a variant where the
multiple soft TWs are not specified by the clients but by the delivery company.
Clients rank the TWs in decreasing order of their preference. This variant, which
applies in rapid post deliveries, does not guarantee the suitability of the alternatives
with the clients’ constraints.

Belhaiza et al. (2013) address VRPMTW via a tabu search variable neighborhood
search (TSVNS) that minimizes the weighted sum of the trip duration and the
penalties associated to the TWs and capacity constraints. Belhaiza and M’Hallah
(2016) consider the multiple objective VRPMTW where the criteria are: drivers’
utility, total cost, and costumers’ utility. They speed their search by fathoming
all dominated solutions and investigate the space of solutions that satisfy the
Nash equilibrium conditions of a non-cooperative multiple-agent game. Finally,
Belhaiza et al. (2017) extend the single objective VRPMTW to the multiple-depot
heterogeneous fleet case with the objective of minimizing either the total travel time
or the total traveled duration. They address the problem using a multiple-start hybrid
genetic variable neighborhood search.

Unlike the techniques surveyed by Archetti and Speranza (2014), the proposed
method combines random search with mathematical/constraint programming. This
line of research is successfully applied in cutting and packing where the constraints
are non-linear (M’Hallah et al. 2013; Al-Mudhahka et al. 2011) and in timetabling
where the problem size is large and the planning horizon is long (M’Hallah and
Alkhabbaz 2013). Similarly, it is applied in scheduling where a steepest descent
heuristic (Laalaoui and M’Hallah 2016) calls iteratively a mixed integer program
to insert a job on a machine (M’Hallah 2007; M’Hallah and Al-Khamis 2012) or
to enhance an existing solution and assess its optimality gap (M’Hallah 2014) or
to choose jobs that will be exchanged among agents (Polyakovskiy and M’Hallah
2014). Recently, it is extended to bin packing where mixed integer/constraint
programs apply a look-ahead strategy that reserves areas in the bins for unpacked
items (Polyakoskiy and M’Hallah 2018). In all aforementioned applications, the
models are augmented with feasibility constraints and with bounds on the objective
function values forcing the solvers to only investigate feasible improving directions.
They are subject to runtime limits because in most cases, the incumbent is identified
at an early stage of the search while most of the computational effort is devoted to
proving optimality. Finally, they are fed with partial or complete initial solutions.
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19.3 Problem Description and Formulation

Section 19.3.1 defines VRPMTW. Sections 19.3.2 and 19.3.3 model it as a mixed
integer and as a constraint program. Finally, Sect. 19.3.4 discusses ways to enhance
the performance of both models.

19.3.1 Problem Definition

Consider a set I = {1, . . . , n} of n clients that are served, from a single depot d,
by a set K = {1, . . . , m} of m vehicles. The depot d, denoted also as client 0, is
located in position

(
oh

0 , ov
0

)
of the Cartesian coordinate system. It is open during the

time interval [�0, u0]; i.e., no vehicle leaves d prior to �0 or returns to d later than u0.
A vehicle may wait at the depot or at a client’s site. Let δi, j denote the travel times
between i and j, i ∈ I∗ , j ∈ I∗ , i �= j, where I∗ = I ∪ {0}.

Client i, i ∈ I, is characterized by its Cartesian coordinate system’s position(
oh
i , ov

i

)
, positive demand qi delivered by a single vehicle, known positive service

time si, and ordered set Wi = {
wi,1, . . . , wi,pi

}
of pi , pi ∈ N

∗, non-overlapping
availability TWs. TW p, p = 1, . . . , pi , of client i, i ∈ I, is wi, p = [�i, p, ui, p], with
0 < �i,1 < ui,1 < · · · < �i,p < ui,p < · · · < �i,pi

< ui,pi
< ∞.

Let Ik ⊂ I be the ordered subset of clients assigned to k. The subsets are mutually
exclusive; i.e., ∪k ∈ KIk = I, ∪k ∈ KIk = ∅. Thus, partial delivery is prohibited.
Vehicle k, k ∈ K, has a limited capacity Qk > 0. Its time out of d, including its
waiting time, should not exceed Dk > 0. Its travel duration Dk is the sum of its
travel and service time. It excludes any waiting time.

19.3.2 Mixed Integer Program

Herein, VRPMTW assigns the clients to the vehicles and schedules their respective
deliveries with the objective of minimizing the total travel time over all vehicles.
It can be formulated as a mixed integer program. The model is inspired from the
mixed integer program (MIP) of Belhaiza et al. (2013). It uses three types of positive
decision variables and three types of binary variables.

The first positive variable ωi, k denotes the waiting time of vehicle k, k ∈ K, at
client i, i ∈ I∗ . A vehicle may have to wait prior to starting delivery to a specific client
and may choose to wait at d in order to reduce its total time out of d. The second
positive variable ti, k indicates the time k, k ∈ K, reaches i, i ∈ I∗ . Consequently, k
starts delivery to i, i ∈ I, at ti, k + ωi, k. Finally, the third positive variable ci, k is the
departure time of k, k ∈ K, from i, i ∈ I∗ . It follows that c0, k is the departure time of
k from d and t0, k its return time to d.
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The first binary variable zi, k = 1 if client i, i ∈ I, is assigned to vehicle k, k ∈ K,
and 0 otherwise. The second binary variable xi, j, k = 1 if i, i ∈ I∗ , immediately
precedes j, j ∈ I∗ , j �= i, and both j and i are served by vehicle k, k ∈ K, and 0
otherwise. Finally, the binary variable vi, p = 1 if client i, i ∈ I, is served during
wi,p, p = 1, . . . , pi, and 0 otherwise.

Then, the VRPMTW using the above six types of decision variables follows.

Min
∑

k∈K

∑

(i,j)∈I∗×I∗
δi,j xi,j,k (19.1)

s.t.
∑

k∈K

zi,k = 1, i ∈ I (19.2)

∑

j∈I∗
xi,j,k −

∑

j∈I∗
xj,i,k = 0, i ∈ I ∗, k ∈ K (19.3)

2xi,j,k − zi,k − zj,k ≤ 0, i ∈ I, j ∈ I, i �= j, k ∈ K (19.4)

∑

k∈K

∑

i∈I∗
xi,j,k = 1, j ∈ I (19.5)

∑

k∈K

∑

j∈I∗
xi,j,k = 1, i ∈ I (19.6)

∑

i∈I

qizi,k = Qk, k ∈ K (19.7)

ci,k − ti,k − ωi,k − si + M
(
1 − zi,k

) ≥ 0, i ∈ I, k ∈ K (19.8)

tj,k − ci,k − δi,j − M
(
1 − xi,j,k

) ≤ 0, i ∈ I ∗, j ∈ I ∗, i �= j, k ∈ K (19.9)

tj,k − ci,k − δi,j + M
(
1 − xi,j,k

) ≥ 0, i ∈ I ∗, j ∈ I ∗, i �= j, k ∈K (19.9′)

ti,k + ωi,k − �i,p + M
(
1−zi,k

) + M
(
1−vi,p

) ≥ 0, i ∈ I, p ∈ {
1, . . . , pi

}
, k ∈K

(19.10)

ti,k + ωi,k − ui,p − M
(
1−zi,k

) − M
(
1−vi,p

) ≤ 0, i ∈ I, p ∈ {
1, . . . , pi

}
, k ∈K

(19.11)
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pi∑

p=1

vi,p = 1, i ∈ I (19.12)

c0,k ≥ �0, k ∈ K (19.13)

t0,k ≤ u0, k ∈ K (19.14)

t0,k − c0,k ≤ Dk, k ∈ K (19.15)

ωi,k ≥ 0, zi,k ∈ {0, 1} , i ∈ I, k ∈ K (19.16)

ci,k ≥ 0, ti,k ≥ 0, i ∈ I ∗, k ∈ K (19.17)

vi,p ∈ {0, 1} , i ∈ I, p ∈ {
1, . . . , pi

}
(19.18)

xi,j,k ∈ {0, 1} , i ∈ I ∗, j ∈ I ∗, i �= j, k ∈ K (19.19)

where M is a large positive number. Equation (19.1) defines the objective, which
minimizes the total travel time. Constraint (19.2) ensures that each client is assigned
to a single vehicle. Constraint (19.3) is the classical flow conservation. Constraint
(19.4) guarantees that client i may immediately precede client j if and only if both
are assigned to the same vehicle k. Constraints (19.5) and (19.6) ensure that each
client i is visited once: i has exactly one immediate predecessor and one immediate
successor. Constraint (19.7) guarantees that the quantity delivered by a vehicle does
not exceed the vehicle’s capacity. Constraint (19.8) defines the departure time of
vehicle k from client i as the sum of its arrival, service, and waiting time. This
equation holds when i is assigned to k, and is redundant otherwise. Constraints
(19.9) and (19.9′) compute the arrival time of k to client j as the sum of the departure
time of k from the immediately preceding client i and the travel time between i and j.
Constraints (19.10) and (19.11) impose that vehicle k starts delivery to client i during
TW p of i if and only if i is assigned to k and is served during p. They are redundant
otherwise. Constraint (19.12) imposes that delivery to client i occurs during exactly
one of the TWs of i. Constraints (19.13) and (19.14) impose that a vehicle k leaves
and returns to d during the open time of d, whereas constraint (19.15) limits the
time of k out of the depot to the maximal permissible threshold. Finally, constraints
(19.16)–(19.19) define the variable types. Solving the above MIP is a challenge.
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CPLEX fails to identify feasible solutions for instances with more than 20 clients
when allocated 3 h of runtime.

19.3.3 Constraint Program

Alternatively, VRPMTW can be modeled as a constraint program. Let ζ i, k be an
optional interval variable indicating the activity of visiting client i using vehicle k.
Let the interval variable hi represent the activity of visiting client i. In addition, let
xk denote the route of k; that is, xk is the sequence of interval variables ζ i, k. Then,
the CP model follows.

Min
∑

k∈K

∑

i∈I∗
δij : next (xk, i) = j (19.20)

s.t. ui,1 ≥ startOf (hi) ≥ �i,1 ‖. . . ∥
∥ui,pi

≥ startOf (hi) ≥ �i,pi
, i ∈ I (19.21)

startOf
(
ζ0,k

) ≥ l0&&u0 ≥ startOf
(
ζn+1,k

)
, k ∈ K (19.22)

noOverlap (xk, δ) , k ∈ K (19.23)

first
(
xk, ζ0,k

)
, k ∈ K (19.24)

last
(
xk, ζn+1,k

)
, k ∈ K (19.25)

∑

i∈I

qi presenceOf
(
bk
i

)
≤ Qk, k ∈ K (19.26)

endOf
(
ζn+1,k

) − startOf
(
ζ0,k

) ≤ Dk k ∈ K (19.27)

alternative
(
hi, ζi,k

)
, k ∈ K, i ∈ I (19.28)

where || denotes the exclusive “or” operator, && the “and” operator, δ the travel
matrix expressed in time units, and n + 1 the depot d. Equation (19.20) minimizes
the total travel time. Constraint (19.21) ensures that service to client i starts within
exactly one of the TWs of i while constraint (19.22) guarantees that a vehicle leaves
and returns to d when d is open. Equation (19.23) makes the subsets of clients served
by different vehicles mutually exclusive. Equations (19.24) and (19.25) force each
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vehicle to start and end its tour at d. Equation (19.26) imposes that the load of a
vehicle be less than or equal to the vehicle’s capacity. Equation (19.27) limits the
time out of d of vehicle k. Finally, Eq. (19.28) is the alternative constraint, which
assigns every client to a single vehicle. CP obtains near-global optima for some
benchmark instances, in particular, when the TWs are wide.

19.3.4 Enhancing MIP and CP

We use the above models as stand-alone heuristics by allocating fixed runtimes to
their commercial solvers. To enhance their solvability, we couple them with some
strategies.

• First, we reduce the size of the problem by imposing logical assumptions
that truck drivers adopt when constructing their solutions. A client j can’t
immediately follow a client i on the route of vehicle k if the travel time δij is too
large. Both MIP and CP formulations are augmented by the constraint xijk = 0 if∣∣∣oh

i − oh
j

∣∣∣ > oh

m
or

∣∣∣ov
i − ov

j

∣∣∣ > ov

m
or δij > δ, where oh = max

(i,j)∈I∗×I∗

{
oh
i − oh

j

}
,

ov = max
(i,j)∈I∗×I∗

{
ov
i − ov

j

}
, and δ is a maximal threshold time.

• Second, we start the solvers from several feasible solutions. The multitude of
starting points guards against the stagnation in local optima that are far from the
global optimum.

• Third, we iteratively fix clients to vehicles, deliveries to TWs, and solve the
resulting problems. This avoids the need for disjunctive constraints and the
sensitivity of solvers to the choice of M. At each iteration, we augment the
model with the tightest known bounds. We obtain the lower bound by removing
all TW-related constraints, thus reducing the problem to a series of single
machine scheduling problems with sequence-dependent setup times and due date
windows. The upper bound is updated every time a VRPMTW feasible solution
is obtained.

• Fourth, we iteratively divide the clients and vehicles into two or more disjoint
subsets, solve the corresponding subproblems, merge their solutions, and com-
pute the total travel time.

• Fifth, we solve MIP with emphasis on constraint satisfaction rather than on
optimization. This yields better quality solutions while tackling larger problems.

19.4 Solution Approach

To apply the above enhancements in a more systematic manner, we approximately
solve VRPMTW via a two-stage approach. Stage 1 constructs a pool of initial
solutions, where a solution assigns each client to a vehicle and sequences the clients
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of every vehicle. Stage 1 obtains solutions by one of nine constructive heuristics.
These solutions are inspired from the way truck drivers construct their routes. They
divide clients into sectors and choose the clients of a single vehicle from adjacent
sectors. They construct the routes logically along the grid, a feature that enhances
their chance of real-life implementation.

Stage 2 enhances the solutions of Stage 1 by perturbing the incumbent using a
steepest descent neighborhood search. The search uses MIP to reassign clients to
vehicles and CP to search for a feasible route of a vehicle. It embeds a look-ahead
strategy that guards against infeasible/non-improving search directions. Sections
19.4.1 and 19.4.2 detail these two stages.

19.4.1 Stage 1

Because of the different distributions of the clients around the depot and of the
varying number of vehicles and clients, it is difficult for a single heuristic to
consistently generate good initial solutions. Therefore, we propose a panoply of
constructive heuristics CH1, . . . , CH9. They all impose a maximal travel time
δ between any (i

′
, i+) when appending location i+ to the current location i

′
of

a vehicle. In addition to constraining the search space, this conforms to the way
drivers plan their routes. Drivers prefer balanced routes; they would rather have
equal stretches than a long haul followed/preceded by a series of small hauls. The
constructive heuristics differ in the way they assign clients to trucks and how they
route them. For example, CH1, CH7, and CH8 start from the closest client to the
depot while CH2, . . . , CH6 select the first client randomly.

Some of the constructive heuristics (e.g., CH3 and CH4) use the notion of a
sector. When the number of vehicles is large, the grid is divided into a series
of radial sectors, where sector k, k = 1, . . . , m, is delimited by the angles
2(k−1)π

m
and 2kπ

m
, with sectors m + 1 and m + 2 coinciding with sectors k = 1

and k = 2, respectively. Client i, i ∈ I, is part of sector k if its polar coordinate

θi = tan−1
(

ov
i −ov

0
oh
i −oh

0

)
falls in the sector of k. When the number of vehicles is

small, the grid is split into m guillotine rectangular adjacent bands, with sector k

corresponding to the band delimited by oh = (k−1)
(
oh−oh

)

m
and oh = k

(
oh−oh

)

m
,

where oh = min
(i,j)∈I∗×I∗

{
oh
i − oh

j

}
.

Let F denote the set of free clients. Unless differently stated, F is initially set to
I. In addition, let Ik = {[1], . . . , [nk]} denote the ordered set of nk=|Ik| clients of k
where I ∗

k = Ik ∪ {d} with [nk + 1] = [0] = d signaling the end and the beginning
of the tour at the depot. Using these definitions, we detail below each of the nine
constructive heuristics.
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CH1 considers the vehicles sequentially starting with k = 1. For the current
vehicle k, it initializes the vehicle’s current capacity Qcurrent

k = 0 and the index of
its current location i

′ = d. Iteratively, it assigns to k a free client i+ ∈ F such that

C1. i+ is the closest client to i
′
,

C2. Qcurrent
k + qi+ ≤ Qk —i.e., appending the demand of i+ to the current load of

k does not violate the load capacity of k,
C3. delivery to i+ may start during one of the TWs of i+, and upon completing

delivery to i+, vehicle k may reach the depot
C4. on-time (prior to u0),
C5. without exceeding its own maximal time out of the depot Dk .

Consequently, CH1 updates the vehicle’s current load: Qcurrent
k = Qcurrent

k + qi+ ,
current location: i

′ = i+ and the set of free clients: F = F � {i+}. When CH1 fails to
append any of the free clients to the current route of k, it considers the next vehicle:
it sets k = k + 1.

Generally, CH1’s total travel distance is smaller than those of all other construc-
tive heuristics; however, it may induce large waiting times. It is greedy and myopic
by nature.

CH2 assigns all clients of a given sector to a same vehicle. Then, for each vehicle
k, it applies CP to search for a feasible route; i.e., it applies Eqs. (19.20)–(19.25)
and (19.27) of CP for K = {k}. When CP fails to identify a feasible route, we relax
Eq. (19.25).

CH2 identifies good quality solutions when the sectors concord with the geo-
graphical clusters. CH2 offers balanced routes with every vehicle having to eventu-
ally serve those far away clients of its sector.

CH3 mimics CH2 except that it considers the clients of a sector sequentially. It
assigns each vehicle k ∈ K to sector k. It then considers the vehicles sequentially
starting with k = 1. For the current vehicle k, it initializes Qcurrent

k = 0 and the
index of its current location i

′ = d. Iteratively, it assigns to vehicle k a free client i+
from sector k such that δi′i+ < δ, and constraints (C1)–(C5) hold. Consequently, it
updates Qcurrent

k , i
′
, and F.

When it fails to heuristically append any of the free clients of sector k to the
current route, CH3 tries to insert a free client using an exact model. Let f ∈ F
denote the free client to be inserted in the route of k. Let the binary decision variable
χ [i] = 1, [i] ∈ I ∗

k , if client f is inserted immediately before client [i] on the route of
k, and 0 otherwise. Let the positive decision variables t[i], ω[i] , and c[i] denote,
respectively, the time k reaches [i], waits before delivery, and ends delivery to
[i], [i] ∈ Ik, and (c0, t0) the time k leaves and returns to d. Finally, let parameter
	[i] = δ[i − 1]f + δf [i] − δ[i − 1][i] denote the net travel time change caused by
inserting client f immediately before client [i]. In fact, k no longer travels between
[i − 1] and [i]. Instead, it travels from [i − 1] to f to [i]. Using the above parameters
and decision variables, MIPf tries to insert iteratively every free client f, f ∈ F, that
satisfies C3 to the route of k using the following mixed integer program.
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Min
∑

i∈Ik

	[i]χ[i] (19.29)

s.t.
∑

i∈Ik

χ[i] = 1 (19.30)

c[i] − t[i] − ω[i] − s[i] = 0, i ∈ Ik (19.31)

t[i+1] − c[i] − δ[i][i+1]
(
1 − χ[i+1]

) + Mχ[i+1] ≥ 0, i ∈ Ik (19.32)

t[i+1] − cf − δf [i+1]χ[i+1] − M
(
1 − χ[i+1]

) ≥ 0, i ∈ Ik (19.32′)

t[i] − cf − δf [i]χ[i] + M
(
1 − χ[i]

) ≥ 0, i ∈ Ik (19.33)

t[i] + ω[i] − �[i]p + M
(
1 − v[i]p

) ≥ 0, i ∈ Ik, p ∈ {
1, . . . , p[i]

}
(19.34)

t[i] + ω[i] − u[i]p − M
(
1 − v[i]p

) ≤ 0, i ∈ Ik, p ∈ {
1, . . . , p[i]

}
(19.35)

p[i]∑

p=1

v[i]p = 1, i ∈ Ik (19.36)

c0 ≥ �0 (19.37)

t0 ≤ u0 (19.38)

t0 − c0 ≤ Dk (19.39)

ω[i] ≥ 0, c[i] ≥ 0, t[i] ≥ 0, [i] ∈ Ik (19.40)

v[i]p ∈ {0, 1} [i] ∈ Ik, p ∈ {
1, . . . , p[i]

}
(19.41)
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χ[i] ∈ {0, 1} i ∈ I ∗
k . (19.42)

Equation (19.29) chooses the position of the free client f on the route of vehicle
k. It minimizes the additional net travel time. Equation (19.30) imposes that f be
inserted in exactly one position. It is possible that f can’t be inserted without
violating the TWs of the already routed clients. In such a case, MIPf is infeasible.
Equation (19.31) relates the arrival, waiting, service and departure times for client
[i]. Equations (19.32) and (19.33) compute the arrival time to a client relative to
the departure time of the vehicle from the preceding client. Constraints (19.34)–
(19.36) ensure that any client’s service starts within exactly one of the client’s TWs.
Equations (19.37)–(19.39) restrict the vehicle’s departure from, return to, and time
out of d. Finally, constraints (19.40)–(19.42) define the variable types.

MIPf is much easier to solve than MIP. First, the clients’ sequence is fixed.
Second, the number of alternative positions for inserting f is small. Third and
last, for every client [i], [i] ∈ Ik, many TWs can be removed from the model by
preprocessing the data. For p ∈ {

1, . . . , p[i]
}
, v[i]p = 0, if

u[i]p ≤
[i]∑

[j ]=1

δ[j−1][j ] +
[i−1]∑

[j ]=1

s[j ]. (19.43)

When the insertion of a free client of the current sector into the route of k deems
impossible (i.e., MIPf is infeasible), CH3 appends it to sector k + 1.

CH3 is less sensitive to the physical limits imposed by the sectors while it yields
good results when the clients are clustered. It maintains low traveled times per
vehicle and makes the evolution of the route progress logically.

CH4 proceeds as CH3 does except that it considers clients from larger areas.
It assigns to vehicle k a free client i+ from sectors k − 1, k, and k + 1 such that
δi′i+ < δ and C1–C5 hold. It generally obtains as good routes as CH3 or better,
but may require more calls to MIPf (depending on the distribution of the clients on
the grid and of the TWs) as it considers more free clients for each vehicle k, k ∈ K.
CH4 is particularly useful in the presence of a mixture of clustered and randomly
distributed clients.

CH5 and CH6 are similar to CH3 and CH4 except that they build a route from
both ends: assigning simultaneously two clients to the route: the client that is closest
to the previous position of the truck and a client that is closest to the next position
in the return path of the truck.

CH7 assigns each client i, i ∈ I, to a vehicle k, k ∈ K, where k is randomly
selected from the discrete uniform [1, m]. It then applies Eqs. (19.20)–(19.25) of
CP to sequence the clients of each vehicle. CH7 is a blind random search. As such,
it can’t be competitive when the clients are clustered. It can be used as part of a
diversification strategy with a population-based meta-heuristic. Alternatively, it can
be applied a fixed large number of times, and its best feasible solution is retained
for further use. Obviously, it is useful when the clients are uniformly distributed.
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CH8 balances the number of clients per truck. It considers the m trucks
sequentially, assigning to each truck k, k ∈ K, the client that is closest to the previous
location of k. It reiterates through the m trucks until all clients are assigned. When
n
m

is integer, all trucks have an equal number of clients; otherwise, the numbers
of clients for any two trucks do not differ by more than one. It then reduces the
violations of the TWs of the clients of each route by applying CP.

CH9 is inspired from CH8 in that it assigns an equal number of clients to each
truck except that it only considers clients from the sector of vehicle k, k ∈ K. When
it exhausts the clients of its sector, vehicle k chooses clients of sector k + 1. Any
unassigned clients of a sector k are automatically appended to sector k + 1. CH9
uses MIPf to insert each client to the route of k.

CH3–CH9 apply a look-ahead search strategy that prohibits the search in
infeasible directions. They abort constructing a solution if the demand of the free
clients can’t be assigned to the residual capacities of the vehicles or the residual
travel time can’t accommodate visiting them. This is guaranteed by solving a binary
multiple choice multiple knapsack problem (MCKP) whose decision variables
yf, k = 1 if the demand of free client f, f ∈ F, can be loaded to vehicle k, k ∈ K, during
one of the next iterations. MCKP is also used to choose the subset of free clients that
may potentially be appended to the current route of the vehicle k when applied with
K = {k}. Let ccurrent

k be the current total travel time of k and δi = min
i′∈I∗{i}

{δii′ } be the

smallest travel time from i, i ∈ I∗ , to any other client i’, i’ ∈ I∗{i}. MCKP follows.

Max
∑

k∈K

∑

f ∈F

yf,k (19.44)

s.t.
∑

k∈K

qf yf,k ≤ Qk − Qcurrent
k , k ∈ K (19.45)

ccurrent
k +

∑

f ∈F

(
δf + sf

)
yf,k + δ0 − t0 ≤ Dk, k ∈ K (19.46)

∑

k∈K

yf,k ≤ 1, f ∈ F (19.47)

yf,k Binary, f ∈ F, k ∈ K (19.48)

Equation (19.44) provides an upper bound to the number of free clients that
can be inserted. Equation (19.45) ensures that the demand of the clients that could
be assigned to a vehicle will not exceed the vehicle’s residual capacity. Equation
(19.46) guarantees that the additional travel time caused by the assignment of free
client to a vehicle will not exceed that vehicle’s residual travel time. Equation
(19.47) reinforces that a free client is served by at most a single vehicle. Finally,
Equation (19.48) defines the binary nature of the assignment variable; that is, no
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partial delivery to a client. When the objective function equals the number of free
clients, it may be possible to find a feasible solution to VRPMTW, without any
guarantee that such a solution exists. On the other hand, a zero upper bound signals
an infeasible direction of the search and halts the construction process. As this
problem is solved a large number of times, its integer programming form is only
considered when its linear relaxation succeeds in packing all free items.

19.4.2 Stage 2

Stage 2 enhances each solution of Stage 1 by perturbing the incumbent using a
steepest descent neighborhood search and using CP to define both feasible and
infeasible directions of the search. Three perturbation mechanisms are used:

• Merge Ik and Ik’ for k and k
′

serving adjacent sectors and apply CP for |K| = 2
and I = Ik ∪ Ik′ ,

• Remove every client i, i ∈ Ik, and insert i into Ik′ , k �= k
′
, using MIPf

• Remove i1 and i2 from Ik and insert them, respectively, into Ik′ and Ik′′ using
MIPf

Inserting client i into the route of vehicle k
′

is tested if (1) the residual capacity
Qk′ − Qcurrent

k′ of k
′

exceeds demand qi, (2) the slack time of k
′

is less than the
minimal additional travel and service times caused by the insertion of i, and (3)
the minimal variation 	 of the travel time caused by the swap is negative. That
is, CP and MIPf are only applied when the perturbation may lead to an improving
solution. A neighbor is improving if it (1) reduces the fitness of the incumbent or
(2) is feasible while the incumbent is not.

19.5 Results

We applied the resulting heuristic on benchmark instances, which have randomly
distributed (rm) clients, clustered (cm) clients, randomly distributed clusters of
clients (rcm), tight (1) and wide (2) TWs. The tighter the TWs, the larger the number
of vehicles is. The heuristic was run on a laptop with a 2.90 GHz Intel Core i7
processor and a 16.0 GB RAM. It was allocated a maximal runtime of 9 min per
initial solution per instance. All calls to CP and MIP were allocated 3 and 10 s of
runtime with all travel times rounded to their nearest integer.

Table 19.1 illustrates the variation of the solution values obtained by the
constructive heuristics for 24 benchmark instances. Columns 1–5 display the label
of the instance, the minimal and maximal number of TWs p and p, the minimal and
maximal time gap τ and τ between two consecutive TWs, the minimal and maximal
ranges w and w of the TWs, and the number of vehicles m. Columns 6 and 7 display
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Table 19.1 Variation of the solution values of Stage 1

(p,p) (τ ,τ ) (w,w) m z∗ σ 	 (%) CH

rm101 (5,9) (10,30) (10,30) 10 1013.81 39.18 4.49 6
rm102 (5,7) (10,30) (10,30) 9 969.87 25.93 4.81 4
rm103 (4,7) (10,50) (10,30) 9 918.82 36.88 4.23 5
rm104 (3,6) (10,70) (10,30) 9 907.67 28.41 1.54 4
rm105 (2,6) (10,100) (10,30) 9 890.13 29.57 0.33 9
rm106 (2,3) (50,100) (30,50) 9 912.34 35.19 1.27 1
rm107 (1,3) (50,150) (30,50) 9 900.26 33.57 1.72 1
rm108 (1,2) (100,200) (50,100) 9 960.05 26.23 4.80 2
Average 2.90
rcm101 (5,10) (10,30) (10,30) 10 1097.26 49.27 3.17 4
rcm102 (5,7) (10,30) (10,50) 10 1186.83 48.02 5.24 3
rcm103 (3,7) (10,50) (10,50) 10 1174.08 59.79 3.73 5
rcm104 (3,5) (10,50) (10,50) 10 1208.73 37.17 8.72 3
rcm105 (2,5) (10,70) (10,70) 10 1253.75 38.26 5.72 8
rcm106 (2,4) (30,70) (30,70) 10 1281.41 48.09 7.38 7
rcm107 (1,3) (30,100) (30,70) 11 1370.62 72.74 6.44 1
rcm108 (1,3) (30,100) (30,100) 11 1406.69 74.68 5.56 9
Average 5.75
cm201 (5,10) (100,150) (50,100) 5 937.26 29.27 3.79 3
cm202 (5,7) (100,200) (50,100) 6 816.80 36.56 3.29 9
cm203 (3,7) (100,300) (50,100) 5 962.22 33.03 1.64 1
cm204 (3,5) (100,500) (50,100) 5 852.61 40.65 2.45 3
cm205 (2,5) (200,500) (100,200) 4 1058.42 32.04 3.86 1
cm206 (2,4) (200,700) (100,200) 4 941.89 38.84 3.58 7
cm207 (1,3) (200,1000) (100,300) 4 1173.93 27.34 3.60 5
cm208 (1,3) (500,1000) (100,500) 4 964.94 33.85 3.70 3
Average 3.24

z and s, the average and standard deviation of CH1 to CH9 solution values. Column
7 reports 	 = (z−zu)

zu 100%, the percent deviation of z from the upper bound zu

obtained by TSVNS while column 8 indicates the index of the CH yielding the best
solution value.

Table 19.1 suggests that none of the constructive heuristics obtains the best initial
solution value consistently. Each of them is adapted to a particular class of TWs and
tailored to a different distribution of clients on the grid. Table 19.1 further indicates
that the initial solutions are reasonably good with a 3.96% average 	 from zu.

Table 19.2 assesses the heuristic’s performance. Columns 1–5 and 6–10 display
the label of the instance, the number of vehicles m, the heuristic’s best solution value

z∗ , the known bound zu, and 	∗ = (z∗−zu)
zu 100%the percent deviation of z∗ from zu.

None of the constructive heuristics makes stage 2 systematically obtain the best
traveled time. This suggests that the nine local optima identified by stage 2 are not
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Table 19.2 Heuristic’s performance on benchmark instances

Instance m zu z∗ 	∗ (%) Instance m zu z∗ 	∗ (%)

rm101 10 970.23 951 −2.02 rm201 3 686.42 688 0.23
rm102 9 925.34 921 −0.47 rm202 2 684.35 670 −2.14
rm103 9 881.49 883 0.17 rm203 2 674.01 657 −2.59
rm104 9 893.88 879 −1.69 rm204 2 664.88 657 −1.20
rm105 9 887.16 881 −0.70 rm205 2 651.30 648 −0.51
rm106 9 900.90 899 −0.21 rm206 2 672.80 659 −2.09
rm107 9 885.07 896 1.22 rm207 2 657.27 657 −0.04
rm108 9 916.04 912 −0.44 rm208 2 663.59 653 −1.62
Average −0.52 −1.25
cm101 10 1101.16 1147 4.00 cm201 5 903.08 886 −1.93
cm102 11 1139.73 1190 4.22 cm202 6 790.81 825 4.14
cm103 12 1120.47 1152 2.74 cm203 5 946.67 979 3.30
cm104 14 1248.04 1251 0.24 cm204 5 832.21 834 0.21
cm105 10 1010.23 1096 7.83 cm205 4 1019.10 1069 4.67
cm106 10 982.22 999 1.68 cm206 4 909.37 930 2.22
cm107 11 1056.50 1059 0.24 cm207 4 1133.13 1179 3.89
cm108 10 967.33 968 0.07 cm208 4 930.54 980 5.05
Average 2.63 2.69
rcm101 10 1063.52 1069 0.51 rcm201 2 778.68 738 −5.51
rcm102 10 1127.68 1160 2.79 rcm202 2 815.90 757 −7.78
rcm103 10 1131.84 1124 −0.70 rcm203 2 721.97 695 −3.88
rcm104 10 1111.81 1128 1.44 rcm204 2 698.41 701 0.37
rcm105 10 1185.89 1184 −0.16 rcm205 2 754.51 711 −6.12
rcm106 10 1193.37 1196 0.22 rcm206 2 769.62 764 −0.74
rcm107 11 1287.67 1310 1.70 rcm207 3 749.78 756 0.82
rcm108 11 1332.57 1340 0.55 rcm208 2 742.70 681 −9.06
Average 0.79 −3.99

in the same vicinity. Indeed, their delivery plans differ in terms of routes and clients’
sequencing. Thus the importance of the multiple restart of the heuristic.

The nine constructive heuristics are fundamental to building good initial starting
points. Stage 2 obtains consistently lower traveled distances when initiated from
these nine solutions than when initiated randomly. The comparison of the solution
values obtained in Tables 19.1 and 19.2 highlights the importance of stage 2 in
identifying a near-global optimum.

The proposed heuristic lowers the travel time for 22 out of 48 benchmark
instances with the reduction reaching 9.06% for rcm208. All the time reductions
were recorded for rm and rcm classes. The analysis of the results further showed
that the best known solutions zu correspond to solutions that are on the edge of
feasibility. For instance, any slight increase of the travel time between pairs of clients
may cause the violation of the TW constraints. This questions the validity of the best
known solutions in a real-life context, as explained below.
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19.6 Practical Considerations

Rincon-Garcia et al. (2018) discuss barriers to the implementation of VRP-related
solutions in real-life contexts. Herein, we enumerate few such barriers and explain
how the proposed model can handle them.

19.6.1 Single Versus Multiple Depots

Even though MIP and CP are given for a single depot, extending them to a multiple-
depot case is straightforward. Two cases are possible: Subsets of vehicles are already
allocated to each of the depots or the vehicles are allocated to the depots once an
optimal solution to the problem is obtained. The former case is the more prevalent
because vehicles are generally tagged to depots and goods are already stocked in
specific depots. Such a case reduces to solving several single-depot problems. The
latter case can be handled by defining I∗ as the union of the set of depots and the set
of clients. Then, Equations (19.9) and (19.9′) will apply to all i ∈ I∗ while (19.12)–
(19.14) will be defined for each of the depots d ∈ I∗ \I. The same applies to Equations
(19.22)–(19.24) of CP.

19.6.2 Distances and Travel Times

In MIP and CP, the time matrix δ may be the result of a transformation into time
units of the Euclidean distances that separate any pair of locations (i, j) ∈ I∗ × I.
These distances are an accurate estimation of the true distances in the absence of
natural or human made barriers or when locations are very far away, i.e., when the
time needed to cover the travel distance is much larger than delays that may be
caused by local traffic or the routing within the neighborhood of either i or j. In this
case, transforming the distances into time units can be based on the average speed
of the vehicle (on the highway). On the other hand, when the depot and clients are
within the same city, a more relevant measure may be the actual distance the vehicles
have to travel. For example, in newer cities, these distances could be estimated by the
sum of the distances along the two axes because of the grid structure of the streets.
In older cities, these distances should correspond to the true route that the vehicle
will use. For instance, they can be approximated using Google Maps or similar
software. Their transformation into time units should account for local traffic. The
actual travel times are stochastic in nature because of traffic, weather conditions,
road construction, unforeseen accidents, driver’s state of mind, time of day, etc.
Consequently, the time estimates corresponding to the traveled distances should be
worst case estimates. This will avoid generating solutions that are on the edge of
feasibility and that will cause tardy deliveries.



452 R. M’Hallah

In the proposed models, travel times are not necessarily symmetric. Even when
distances are equal, travel times may differ. In this sense, the above models are
general. Travel time can always be expressed as a polynomial relationship of trip
time.

19.6.3 Time Windows

The TWs are herein defined as hard; i.e., they must be satisfied for any solution to be
feasible. This may be the case for vehicles in cities with travel bans or for deliveries
in downtown areas or for private households. To ensure that their deliveries be on-
time, constructors tend to account for possible traffic delays and reduce the range
of their TWs. That is, their declared TWs are much tighter than their true TWs. For
businesses, TWs are either soft or slightly flexible. Businesses tend to wait few extra
minutes hoping to receive a delivery rather than to have it postponed. Similarly,
households give conservative/tighter TWs than their true availability. They may
resort to the help of a neighbor or a family member to receive the delivery. All
these factors can be easily accommodated by altering Equations (19.9)–(19.14) and
(19.21)–(19.22), e.g., by adding a flexibility factor ϕ and studying the sensitivity of
the solutions to the size of ϕ.

19.6.4 Collection Versus Distribution

Both models apply whether the goods are being delivered or collected. However, for
a distribution problem, items requested by a customer could be in different depots.
In this case, the problem can be divided into two steps: Collecting all goods into a
single depot (or moving from a national depot to a local one), then distributing the
cumulated goods (i.e., delivery from a local depot to customers). Both steps can be
perceived as VRPMTW with the clustering solved as in the generalized traveling
salesman problem.

19.6.5 Packing Constraints

Equations (19.7) and (19.22) are loading constraints, expressed in terms of the
capacity of the vehicle. They assume that the loads are shapeless volumes. However,
unless the goods are liquid (e.g., petroleum for gas stations, water), these constraints
are a relaxation of three-dimensional non-overlap and envelopment constraints. In
some instances, the packing has to also account for the accessibility of the items
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as a function of their order of delivery. Adding such constraints eliminates a large
number of alternative solutions and reduces the search space.

19.6.6 Stochastic Travel Times and Time Windows

In MIP and CP, the travel times are deterministic. Yet, delays always occur. Travel
times may vary according to time of day, traffic, weather conditions, etc. Even
though delays are generally undesirable, they may be used in some circumstances
to the advantage of the vehicle. When a vehicle is delayed on a route that doesn’t
include enough slack time to compensate for it, deliveries may have to be postponed
to a later TW for a particular client but may allow an earlier delivery to another
client. In such circumstances, it is judicious to apply a dynamic rerouting of the
non-served clients with the objective of minimizing the travel time and the violation
of TW penalties. This is of course only possible in small cities where deliveries are
within the same vicinity.

Because travel times are non-deterministic, the above models assume that travel
times and TWs correspond to worst case scenarios rather than average or modal
values. In real life, these bounds are fuzzy. Vehicles reaching clients early may be
able to start service immediately. Similarly, those reaching few minutes late may
still get a chance to serve their clients during the intended TWs. Again, clients are
generally willing to wait few extra minutes for the arrival of a delivery and may be
available prior to the TW; i.e., the TWs’ bounds are very conservative (i.e., tightest
bounds).

When the average in lieu of the worst case performance is sought, a stochastic
VRPMTW is at hand. It can be addressed via a stochastic program, which deter-
mines the routes that minimize the expected total travel time. The stochastic model
can be tackled using a sample average approximation (Al-Khamis and M’Hallah,
2011) that iteratively determines the optimal routes of the vehicles for given samples
of uncertain travel times and TWs. This method converges to the optimal travel time
in the expected sense as the number of sampled scenarios increases. Each sample
corresponds to a deterministic VRPMTW.

An alternative is to apply robust optimization (Mulvey et al. 1995). This method
identifies solution robust (near-optimal) model robust (almost feasible) delivery
plans. These plans are less sensitive to the uncertainty of the problem. They
bound the infeasibility of the plans corresponding to the different scenarios and
their distances from the optima by transforming the uncertain problem into a goal
program. The weighted goal reflects the tradeoff between feasibility and optimality
under all possible scenarios with the weights reflecting the likelihood of each
scenario. Despite its attractiveness, robust optimization may become intractable for
VRPMTW because of the very large number of possible scenarios, a number that
increases with the number of clients, of TWs, and vehicles.



454 R. M’Hallah

19.7 Conclusions

This chapter proposed a general framework for solving a complex compounded
problem. This framework explores the complementary strengths of constraint and
mixed integer programming. It builds and enhances solutions using constraint/mixed
integer programming-based neighborhood search. The search is guided by feasibil-
ity constraints and look-ahead strategies that fathom large parts of the infeasible
search space and focuses the search towards improving solutions. This framework
was illustrated on the vehicle routing problem with multiple time windows. It can
be extended to other compounded problems such as vehicle routing with packing
constraints, bin packing with due dates, scheduling with cutting constraints or
assembly limitations or resource unavailability.

This framework has several advantages. It requires no tuning and guarantees
the reproducibility of the results. These two features can’t be achieved by meta-
heuristics that rely on seeds of random numbers. Such meta-heuristics include
genetic algorithms, simulated annealing, ant colonies, swarm optimization, and bee
colonies. Such techniques are generally assessed via their “average performance,” a
practice that is not justifiable in the service industry.
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Koç Ç, Bektaş T, Jabali O, Laporte G (2016) Thirty years of heterogeneous vehicle routing. Eur J
Oper Res 249(1):1–21

Laalaoui Y, M’Hallah R (2016) A binary multiple knapsack model for single machine scheduling
with machine unavailability. Comput Oper Res 72(8):71–82

M’Hallah R (2007) Minimizing total earliness and tardiness on a single machine using a hybrid
heuristic. Comput Oper Res 34(10):3126–3142

M’Hallah R (2014) Minimizing total earliness and tardiness on a permutation flow shop using VNS
and MIP. Comput Ind Eng 75:142–156

M’Hallah R, Alkhabbaz A (2013) Scheduling of nurses: a case study of a Kuwaiti health care unit.
Oper Res Healthcare 2(1–2):1–19

M’Hallah R, Al-Khamis T (2012) Minimizing total weighted earliness and tardiness on parallel
machines using a hybrid heuristic. Int J Prod Res 50(10):2639–2664

M’Hallah R, Alkandari A, Mladenovic N (2013) Packing unit spheres into the smallest sphere
using VNS and NLP. Comput Oper Res 40(2):603–615

Minocha B, Tripathi S (2013) Two phase algorithm for solving VRPTW problem. Int J Artif Intel
Expert Syst 4:1–16

Moccia L, Cordeau JF, Laporte G (2012) An incremental tabu search heuristic for the generalized
vehicle routing problem with time windows. J Oper Res Soc 63(2):232–244

Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper
Res 43(2):264–281

Nagata Y, Bräysy O (2009) Edge assembly-based memetic algorithm for the capacitated vehicle
routing problem. Networks 54(4):205–215

Nagata Y, Bräysy O, Dullaert W (2010) A penalty-based edge assembly memetic algorithm for the
vehicle routing problem with time windows. Comput Oper Res 37(4):724–737

Nazif H, Lee L (2012) Optimized crossover genetic algorithm for capacitated vehicle routing
problem. Appl Math Models 36(5):2110–2117

Polyakoskiy S, M’Hallah R (2018) A hybrid feasibility constraints-guided search to the two-
dimensional bin packing problem with due dates. Eur J Oper Res 266:819–839

Polyakovskiy S, M’Hallah R (2014) A multi-agent system for the weighted earliness tardiness
parallel machine problem. Comput Oper Res 44(4):15–136

Rincon-Garcia N, Waterson BJ, Cherrett TJ (2018) Requirements from vehicle routing software:
perspectives from literature, developers and the freight industry. Transp Rev 38(1):117–138



456 R. M’Hallah

Solomon M (1987) Algorithms for the vehicle routing and scheduling problems with time window
constraints. Oper Res 35(2):254–265

Toth T, Vigo D (2002) Models, relaxations and exact approaches for the capacitated vehicle routing
problem. Discret Appl Math 123:427–512

Vidal T, Crainic TG, Gendreau M, Prins C (2013) Heuristics for multi-attribute vehicle routing
problems: a survey and synthesis. Eur J Oper Res 231(1):1–21

Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-attribute
vehicle routing problems. Eur J Oper Res 234(3):658–673

Rym M’Hallah is currently a professor at the Department of
Statistics and Operations Research at Kuwait University, and
a professor of Quantitative Methods and Information System
at the University of Sousse, Tunisia. She joined academia after
industrial experience in Tunis, Tunisia. Dr. M’Hallah has earned
degrees in industrial engineering and operations research, all
from Pennsylvania State University.

Dr. M’Hallah’s research focuses on modeling and opti-
mizing large-scale systems using operations research tech-
niques: mathematical programming, meta-heuristics, simula-
tion, scheduling, and quality control. Applications include
health care, manufacturing and transportation, scheduling, and
cutting and packing. She has an extended international research
collaboration network. Her current interest is enhancing health
care systems and service industries using optimization tech-
niques.

Dr. M’Hallah’s choice of career was influenced at a very
early stage by her grandmother and parents who persuaded
her of the limitless benefits of a scientific career: notoriety
along with a life style that involved discovering new worlds
and making a difference in people’s lives. Dr. M’Hallah was
naturally gifted in Mathematics. Opting for engineering was
a matter of luck: She got a scholarship to study in the USA.
She was a natural optimizer, which made improving processes
and enhancing designs a perfect match. She has been blessed
with unconditionally supportive parents, inspiring women role
models, enlightening scientific mentors, an encouraging hus-
band and two loving wise kids. Her resilience and determination
to succeed have garnered her more than 45 peer-reviewed
journal papers. Today, she remains in the field of Science and
Engineering as an educator, researcher, and mentor. She likes
the challenges that real-life problems bring: the continuous/life-
time/independent learning, the personal growth, and the interna-
tional collaborations with the friendships they build and the new
experiences they offer. Last but not least, she appreciates the
freedom of time management and of investigating her research
interests.


	19 Combining Exact Methods to Construct Effective Hybrid Approaches to Vehicle Routing
	Contents
	19.1 Introduction
	19.2 Literature Review
	19.3 Problem Description and Formulation
	19.3.1 Problem Definition
	19.3.2 Mixed Integer Program
	19.3.3 Constraint Program
	19.3.4 Enhancing MIP and CP

	19.4 Solution Approach
	19.4.1 Stage 1
	19.4.2 Stage 2

	19.5 Results
	19.6 Practical Considerations
	19.6.1 Single Versus Multiple Depots
	19.6.2 Distances and Travel Times
	19.6.3 Time Windows
	19.6.4 Collection Versus Distribution
	19.6.5 Packing Constraints
	19.6.6 Stochastic Travel Times and Time Windows

	19.7 Conclusions
	References


