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This volume is dedicated to my parents, Lois
Elizabeth Krutsch Chupp and John Paul
Chupp, now both deceased. My mother was
the first in her family of immigrants from
Russia to attend college, and while she was a
mathematics student at Purdue University,
she had the good fortune to meet Dr. Lillian
Gilbreth. My father came from a humble
Swiss Amish farming stock, but his father had
advanced himself by earning a doctorate at
Cornell University and was then a professor
there for many years. My father, a PhD in
chemistry, was proud when I earned my
doctorate, making three generations of PhDs.
My parents’ examples and encouragement
facilitated my career in engineering
academia, and I am grateful to them for that,
as well as for so much more.



Foreword

Margaret L. Brandeau is the Coleman F. Fung Professor of Engineering and
Professor of Medicine (by Courtesy) at Stanford University. My research focuses on
the development of applied mathematical and economic models to support health
policy decisions. My recent work has examined HIV and drug abuse prevention
and treatment programs, programs to control the opioid epidemic, and preparedness
plans for public health emergencies.

My undergraduate studies were at MIT, in mathematics. I followed in my father’s
footsteps to MIT. However, while he studied electrical engineering, I chose math, a
subject I have always loved. I was finished with my degree by the end of junior
year, but did not want to graduate so soon, so I started taking some interesting
applied mathematics and systems analysis classes. Then, I found out that the courses
I was taking would fulfill the requirements for a master’s degree in operations
research—a discipline I had never heard of—so I also earned an MS degree in
operations research. After working for 2 years, I moved to Stanford, where I earned a
PhD in Engineering-Economic Systems—again taking interesting classes in applied
mathematics and systems analysis. Along the way, I published a number of papers
about the projects I was working on. I didn’t realize it then, but this was great
preparation for being a faculty member.
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viii Foreword

I joined the Stanford faculty in 1985 and have been there ever since, working on
interesting problems with amazingly talented students and colleagues. I wouldn’t
change a single day!

Broadly speaking, industrial engineering focuses on determining how best to
organize people, money, and material to produce and distribute goods and services.

Industrial engineering has its roots in the industrial revolution in the mid-18th
to early nineteenth century. As production shifted from small enterprises to large-
scale factories, and the production of goods became increasingly mechanized and
specialized, factory owners realized that improving the efficiency of these new
production processes could reduce waste and increase productivity.

One of the first scientific studies of work processes was The Principles of
Scientific Management by Frederick Taylor (1911). Taylor, who is known as the
father of industrial engineering, set forth principles for organizing, planning, and
standardizing work. Around this time, a young man named Frank Gilbreth, who
had started a job as a bricklayer’s helper, began to study the practices of different
bricklayers, trying to determine “the one best way” to perform the task. In 1904,
he married Lillian Moller, an engineer who also became his work partner in their
business and engineering consulting firm.

Lillian Moller Gilbreth was one of the first women engineers to earn a PhD (in
psychology). She worked for many years applying industrial engineering concepts
such as time and motion studies to improve work processes, first with her husband
and then on her own for many years after his death. Her work emphasized a human
approach to scientific management. During her career, Lillian Gilbreth published
numerous books and papers, some with her husband and some on her own. If
Frederick Taylor is the father of industrial engineering, Lillian Gilbreth is surely
the mother of industrial engineering. !

From this beginning nearly 100 years ago, it is wonderful to see an entire
volume of work by women industrial engineers. Since those early days, industrial
engineering has of course changed, and this is reflected in this volume. Once
focused on factory control, industrial engineering now focuses more broadly on
both manufacturing and services. Once focused on techniques such as time and
motion studies and Gantt charts, industrial engineering now includes a wide range
of modern computational and analytical techniques.

In this volume, 59 women (and 3 male coauthors) present their work in 25 chap-
ters covering such diverse topics as logistics costs in warehousing, container depot
operations, multimodal transportation systems, price contracts in manufacturing,
crop cultivation, food supply chains, healthcare operations, patient safety, clinical
decision-making, disease modeling, and education. Methodologies discussed in
these chapters are similarly broad and include human factors engineering, statistics,

ILillian Gilbreth also had 12 children. Her family life was famously immortalized in the book
Cheaper by the Dozen, written by two of her children, Frank Gilbreth Jr. and Ernestine Gilbreth
Carey. Growing up, this was one of my favorite books. In 1994, I had the great pleasure of meeting
Ernestine.
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decision analysis, graph theory, simulation, optimization, stochastic modeling, and
machine learning.

Industrial engineering has come a long way since its beginnings on the shop
floors of England. Looking to the future, services are forming an ever-increasing
share of economic output, both in the United States and elsewhere. Entire industries
are being rapidly transformed via analytics and computation. Digitization and
machine learning in the workplace are changing the nature and structure of work and
the nature and structure of organizations. Automation and robotics have replaced
many jobs once done by people. Increasing numbers of people are employed as
“knowledge workers.” Digital platforms that allow for spontaneously matching
customer needs with available resources are becoming more pervasive. Industrial
engineering has evolved and will continue to evolve in the face of these and other
changes.

I hope that, as industrial engineering evolves, the numbers and roles of women
in industrial engineering will also continue to evolve. The field of industrial
engineering has been greatly enriched by the contributions of women. Women bring
a diversity of experiences and viewpoints and, often, creative new ways of solving
problems. This book showcases the work of 59 such women. I hope that many more
amazing women will contribute to solving the important problems of the future—
and help us determine how best to organize people, money, and material to produce
and distribute goods and services in our changing world.
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Chapter 1 ®
Lillian Moller Gilbreth: An Industrial fesiie
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1.1 Introduction

Career interest tests. The butter dish, egg tray, and vegetable and meat drawers
in your refrigerator. The pump and return water hose on your washing machine.
The foot pedal trash can. The design of the kitchen triangle. Accommodations for
disabled people. What do these all have in common? They are the legacy of the
“First Lady of Engineering” also called “The Mother of Industrial Engineering,”
“the Mother of Ergonomics,” and “the greatest woman engineer in the world,”
one of the founders of the field of industrial engineering, Lillian Moller Gilbreth.
She and her husband, Frank Gilbreth, are considered two of the cornerstones of
the field of industrial engineering—a branch of engineering that is concerned with
optimizing complex systems, processes, and organizations. Frank’s focus was “The
One Best Way” to do any task or series of tasks. Lillian’s strength was bringing the
social sciences to bear in combination with the mathematical and physical sciences.

Popularized in books and movies as the mother of 12 children (Cheaper by the
Dozen and Belles on Their Toes), Gilbreth (see Fig. 1.1) was not only a mother but
also a significant force as a pioneering woman industrial psychologist and engineer.
Her story is fascinating and too rarely known (Des 2013; Lancaster 2004).

J. S. Tietjen (P<)
Technically Speaking, Inc., Greenwood Village, CO, USA
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Fig. 1.1 Portrait of Lillian
Moller Gilbreth. Courtesy of
Walter P. Reuther Library,
Wayne State University

Lillian M. GLlbreth

1.2 Early Years

Growing up in a conventional household of the day, Lillian Moller (Gilbreth) (1878—
1972) was the oldest of nine children, expected to conform to what was then deemed
proper behavior for women. Very gifted academically, she was able to convince her
father to let her attend the University of California while she lived at home and cared
for the family. The first woman in the university’s history to speak at commencement
in 1900, Lillian received her B.A. in literature at the top of her class (although she
did not make Phi Beta Kappa due to her gender). After briefly attending Columbia
University, she reentered the University of California, earned her master’s degree in
literature in 1902 and began work on her Ph.D. (Des 2013; Proffitt 1999).

As was also common for women of her social class of her day, Lillian took
a trip abroad before delving too deeply into her doctoral work. While in Boston
preparing to board her ship, the chaperone for the trip—Miss Minnie Bunker, who
was a teacher in the Oakland, California schools—introduced Lillian to her cousin
Frank, who owned a construction business. Frank Bunker Gilbreth, who had not
attended college and whose passion was finding the “One Best Way” to do any task,
and Lillian became enamored with each other. Frank and Lillian decided to marry—
embarking on the One Best Marriage—which involved a sharing of home life and
work life. After their engagement was announced but before their marriage—Lillian
on the West Coast, Frank on the East Coast—Lillian was already editing Frank’s
manuscripts for publication and critiquing his advertising brochures which he sent
to her for this exact purpose. She edited his confidential management booklet “Field
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System,” reorganized it, fixed the grammar, and added an index. They were married
in October 1904 (Des 2013; Lancaster 2004; Proffitt 1999; Yost 1943; Gilbreth Jr
1970).

1.3 The One Best Marriage

After their marriage, it became apparent that Lillian’s selected areas of study
for her Ph.D.—English and Comparative Literature—were not going to work for
the couple’s idea of shared work life. Instead, she became Frank’s engineering
apprentice, learning the types of work he used in his construction business. That
education began in earnest on their honeymoon. As their family began to grow,
much of that apprenticeship actually occurred at home. And, it was decided that
her Ph.D. would be in the field of industrial psychology (Proffitt 1999; Yost 1943,
1949).

As Frank wrote about his original work methods, Lillian served as editor, thus
learning the business thoroughly. She also took care of all client calls. In addition,
Lillian was the researcher. She also went on site visits and met Kate Gleason, one
of the very few, if not the only, woman heading an engineering company at the
time, during a visit to Rochester, New York. Lillian located and sifted through the
materials that would be incorporated in Frank’s speeches at universities and at pitch
meetings to clients. Her role of editor and writer was such that she should have
been acknowledged as the co-author of Frank’s books including Concrete System
(1908), Bricklaying System (1909), and Motion Study (1911). Concrete System and
Bricklaying System were two books that Lillian insisted be written to document
methods already in practice on Frank’s jobs and to expand the Gilbreth system.
Bricklaying System described what Frank called “Motion Study” to cut product costs
and increase efficiency. Frank and Lillian said “Motion Study” should be applied to
all industries so that workers and management would share the benefits (Des 2013;
Lancaster 2004; Yost 1943; Gilbreth Jr 1970).

Lillian also became convinced that human beings in the industry needed to be
approached through psychology. The tragic fire at the Triangle Shirtwaist Factory
in 1911 further reinforced her belief that the workers needed to be considered
and she worried that much damage had been done through the introduction of
efficiency mechanisms without consideration of the cost to human beings (Des
2013; Lancaster 2004; Yost 1943).

Her ideas began to appear in these works. For example, in Motion Study
(1911), there is mention of a worker’s physiology as well as his temperament and
contentment in the factory. Further, workers needed adequate tools, an environment
that was pleasing, some form of entertainment, and a clear understanding of the
reward and punishment system in place. [These same ideas appear in Lillian’s
first doctoral dissertation.] In Field System (1908), employers were encouraged
to set up suggestion boxes and to ensure that workers had periodicals that would
provide mental stimulation. All workers, including factory hands, office workers,
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schoolteachers, homemakers, farmers and store clerks—a much broader range
of “worker” than incorporated in the new field of Scientific Management—were
included in the Gilbreths’ writings (Des 2013).

Their home became their office and laboratory. Their children shared family
responsibilities that included investigating the One Best Way. These included the
One Best Way for dusting, for setting and clearing the dinner table and for washing
dishes, among others. During summers, their efforts were filmed and the children
could watch themselves to determine how to do a task more efficiently and in less
time. Sometimes the tasks applied to work projects that Frank and Lillian were
working on—such as the best way to pack soap in boxes. One time, it involved
picking berries—which turned out to be one of the earliest films ever made to
show motions in agricultural processes. Another time it involved touch typing. The
children tested two theories—one of which involved color coding keys and fingers—
and went to school with multi-colored fingernails! (Yost 1943; Gilbreth Jr 1970).

Each person was expected to participate according to his or her aptitudes and
abilities. The 3-year-old participated, but only to the extent that worked and made
sense. Lillian believed that personal capabilities were a sacred trust that each
individual should develop. She helped management and workers understand the
benefits of collaboration and to accept the responsibility for working together and
not at odds with each other. She became an expert in the areas of worker fatigue
and production. Her expertise and insights were of great benefit as these were the
years during which scientific management was being developed and just coming
into general use (Proffitt 1999; Yost 1943).

Lillian’s remarks at the Tuck School of Dartmouth College for the first Confer-
ence on Scientific Management in 1911 at which she was probably the only female
presenter, where she reported on the key tenets of her first Ph.D. dissertation, offered
the perspective that humans were the most important element of engineering tasks
and thus psychology needed to be considered by industrial engineers in putting
together their programs. She had been introduced for her turn at the podium as
“We have all been watching the quiet work of one individual who has been working
along lines apparently absolutely different from those being followed by another
worker in the scientific management field and I wonder if Lillian Gilbreth would
like to say a few words about her work™ (Des 2013; Proffitt 1999; Yost 1943, 1949).
Lillian remarks included (Lancaster 2004; Graham 1998):

1 did not expect to speak in this place but I feel as though I must. I feel that the gap between
the problems of academic efficiency and industrial efficiency, which is after all only an
apparent gap, can be easily closed if only we will consider the importance of the psychology
of management. I spent several years examining and studying it and it seems to me that
Scientific Management as laid down by Mr. Taylor conforms absolutely with psychology.
Principles of vocational guidance may be studied along psychological lines to train the
individual so he will know exactly what he does want to do. It is the place of the colleges to
train the man so that when he comes into his work there will be no jar. Since the underlying
aim is the same and since psychology is the method by which we are all getting there, isn’t it
merely a question of difference of vocabulary between academic work and scientific work?
Why not bridge this gap and all go ahead together?
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The audience was receptive to her comments and the Dartmouth Conference has
been referred to as Lillian’s “coming out.” The audience consisted of manufacturers
and businessmen and provided an opportunity for a dialogue with engineers who
had applied the principles of scientific management to industrial operations (Des
2013; Proffitt 1999; Yost 1943, 1949).

Lillian was interested in keeping people happy and eliminating antagonistic
behavior, as well as such questions as: if a trained pianist makes a faster typist
than an untrained pianist, what skills are transferable? In addition, she advocated
for having workers be responsible for ideas for greater efficiency as well as training
others on the new techniques (today what we call “buy-in”). Her emphasis on the
worker’s psychology made the Gilbreths different from the other scientific managers
and Frank’s emphasis on motion instead of time looked more humane than other
methods in vogue at the time (Des 2013; Proffitt 1999; Yost 1943).

Their process of evaluating work efforts relied on basic elements or “therbligs”
(very close to Gilbreth spelled backwards). These elements (which had associated
colors and symbols) are [Graham]:

e Search

¢ Find

e Select

e Grasp

e Transport Loaded

e Position

e Assemble

e Use

¢ Disassemble

* Inspect

* Preposition for Next Operation
¢ Release Load

e Transport Empty

* Rest for Overcoming Fatigue
¢ Wait (Unavoidable Delay)

* Wait (Avoidable Delay)

¢ Plan

This framework could be applied to any job whether in the classroom, kitchen,
or at an industrial plant. In a breakthrough application, the Gilbreths relied on films
from moving picture cameras that recorded movements of workers with a clock in
the frames. A film could be run over and over again, run in slow motion, stopped,
backed up. Machines could be redesigned to be operated far more safely and with
less fatigue to the workers. Chairs could be what we today call “ergonomically”
designed at a height to fit the motions of the operator so to keep him/her off his/her
feet and to reduce fatigue. They also measured a worker’s movement spatially
as well as with lights to make time-exposed photographs. Their motion studies
included process charts, micromotion photography, and chrono-cyclegraphs. This
led to “The One Best Way”—the least taxing method moving the fewest parts of the
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body in the least amount of space in the fastest time. Frank considered micromotion
study his most important contribution to motion study because it could be used
in any field—from surgery to loading a machine gun. The micromotion, chrono-
cyclegraph, and therbligs comprised the Gilbreth system (Des 2013; Gilbreth Jr
1970; Yost 1949; Goff 1946).

The Gilbreths introduced the process (or flow) chart to the field of scientific
management. The charts show graphically the arrival of materials at a factory and
each step in the “process” as those materials move from piece of equipment to piece
of equipment and result in a final product. Such a chart quickly and obviously
demonstrates bottlenecks and any backtracking that occurs. Like process charts,
the Gilbreths invented the chrono-cyclegraphs—this time to study the motions of
speed typists. A small flashing light was attached to a hand, finger, or moving
part of a machine and then a time-exposure picture was taken of the entire cycle.
The result of the time-exposure photography was a dotted white line on a black
background with the path of motion in two dimensions. It was possible to take
pictures stereoscopically to create three-dimensional images. Then the Gilbreths
were able to determine time and speed as well as acceleration and retardation
(Gilbreth Jr 1970).

Lillian became well known as an outstanding psychologist in scientific manage-
ment circles and was asked to present her views and work in print and at meetings
around the world. Her dissertation was completed and much to the Gilbreths’
surprise, rejected by the University of California at Berkeley in 1912 as university
officials decided that her residency requirement had not been waived (Des 2013;
Gilbreth 1990). She instead published the work serially under “L.M. Gilbreth” in the
journal Industrial Engineering as publishers were not willing to have what would
be obviously a woman-authored work published in the field. In 1914, it finally was
published in book form (authored by L.M. Gilbreth whom Frank humorously said he
was related to “only by marriage”) as The Psychology of Management: The Function
of the Mind in Determining, Teaching and Installing Methods of Least Waste and
then reprinted in 1917 and 1918. Its “human” approach to scientific management
attracted immediate attention (Des 2013; Lancaster 2004; Proffitt 1999; Yost 1943;
Gilbreth Jr 1970; Graham 1998).

A key quote from the book is: The emphasis in successful management lies in
the man, not the work. Efficiency is best secured by . . . modifying the equipment,
materials, and methods to make the most of the man. . . with knowledge will come
ability to understand the rights of others . . . lead the way to the true Brotherhood
which may some day come to be (Gilbreth Jr 1970).

In 1921, when she became an honorary member of the Society of Industrial
Engineers (the first honorary female member and the second in total—Herbert
Hoover being the first), it said (Des 2013; Yost 1949; Trescott 1983):

she was the first to recognize that management is a problem of psychology, and her book,
The Psychology of Management, was the first to show this fact for both the managers and
the psychologists. . . Today it is recognized as authoritative.
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Her book was the first time that anyone had brought together the basic elements
of management theory including (Trescott 1983):

. Knowledge of individual behavior
. Theories of groups

. Theories of communication

. Rational bases of decision-making

A~ LW~

She dealt with problem-solving, decision-making, planning, communicating,
measuring, and evaluating in various work and managerial environments. Her
book focused on group behavior and the coordination of activities among work
groups. She pioneered in considering the individuality of the work and focused
on individual teaching, incentives, and welfare. She even dealt with how workers
feel; a topic that had received little attention up to that point in time in scientific
management literature. Lillian set the groundwork for further developments in
modern management including the field of human relations (Des 2013; Lancaster
2004; Graham 1998).

In 1912, the Gilbreths moved to Providence, Rhode Island to work on a project
with the New England Butt Company which manufactured braiding machines for
shoelaces and wire insulation—one of the leading firms in this field. Lillian enrolled
at Brown University intent on completing her doctorate in the area of applied
management—a program of study created especially for her. She would have to do
additional coursework and write a new dissertation. When completed, this second
dissertation was titled “Some Aspects of Eliminating Waste in Teaching.” She
received the degree in 1915. Now that she had a Ph.D. after her name, her name
as well as Frank’s could appear on their professional papers; 50 were produced in
the next 9 years. She was the first of the scientific management pioneers to earn a
doctorate. And, she was now Phi Beta Kappa, having been elected an alumna of the
University of California at Berkeley (Des 2013; Lancaster 2004; Gilbreth Jr 1970).

Her efforts in validating teaching (as the focus of her dissertation), even though
it was women’s work, was important for the work she would become known for
later in her career. At her home, she established a micromotion laboratory for her
experiments with women. These initial experiments involved making beds and,
similarly to her Ph.D. work with teachers, would become important later in her
career (Des 2013).

In 1914, Lillian and Frank started the Summer School of Scientific Management.
Here, students learned new ideas about management with an emphasis on the
study of motion and psychology. The school filled the need that the Gilbreths saw
to teach the teachers—bridging the gap between the academic and the practical.
Professors were invited to attend so that they could obtain information on scientific
management and then use that material to develop courses at their home college or
university. They were exposed to the theories that Lillian had espoused in her first
doctoral dissertation: that the psychological element was the most important one in
scientific management and that workers needed to be taught properly in order for
scientific management to succeed. She addressed overfatigue from a psychological
viewpoint as well as insecurity that resulted from work inconsistencies or foremen
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who did not value the workers. Frank addressed the developing partnership between
his motion study approach and her psychological approach: “I did not know
anything about psychology until I was married, and Mrs. Gilbreth told me the
courses she had taken. The new animal psychology that has been put out by
Professor Thorndike and Professor Colvin has quite revolutionized the whole thing,
and I believe we are going to see that the psychology in this management is the big
thing.” The school operated for 4 years (Des 2013; Lancaster 2004; Proffitt 1999;
Yost 1949; Graham 1998; Gilbreth 1998).

She considered herself and was considered by others to be an expert in fatigue
study, in the study of skill and its transference among industries and jobs, in
precision in measurement, and in standardization of the work of both managers and
laborers, as well as in the psychological areas (Trescott 1983). Their book, Fatigue
Study, which came out in 1916, includes both of their names as authors and was
written primarily by Lillian. A second edition was published in 1917, and it sold
more copies than their other books. Many steps were recommended to improve
productivity by minimizing fatigue. As much as could be individualized to the
worker was seen as key—chairs, footrests, armrests, and an adjustable workbench.
Additional steps to reduce fatigue included improved lighting, sensible clothes,
supplies located close at hand, and regular rest periods. The book concluded: “The
good of your life consists of the quantity of ‘Happiness Minutes’ that you created
or caused. Increase your own record by eliminating unnecessary fatigue of the
workers!” (Des 2013; Lancaster 2004; Gilbreth Jr 1970).

The years prior to and during World War I called on the strengths of the Gilbreths
as industries and the country geared up for national defense. Believing that women
would be called on to support the industrial efforts, they wrote papers on how to
reorganize work and make it more efficient. Their motion study work was deemed
by the press to be the Gilbreths’ patriotic contribution to the country (Des 2013).

As part of their joint work, the Gilbreths showed how work could be adapted so
that a disabled person could perform jobs that previously had only been considered
possible for able-bodied individuals. This was particularly important in the after-
math of World War I and the many returning disabled veterans, especially amputees.
It was also important to provide employment opportunities for individuals who had
been injured in industrial accidents [Perusek]. The Gilbreths focused on individuals
with disabilities and ways to make work environments more accommodating so that
such individuals could be productive and efficient. Their work, Motion Study for the
Handicapped, was published in 1920, after the war and after Frank had recovered
from a significant illness (Des 2013).

Frank suffered his illness while he was in the Army at Fort Sill, Oklahoma. Prior
to getting sick, his job was to make training films on efficient ways to conduct
the business of the artillery such as loading a rifle or caring for a horse. Even in
this work, Lillian was his unofficial “Advisor on the Project.” She suggested ways
to make the films more effective and how to deal more tactfully with officers and
soldiers. When she was elected to honorary membership of the Society of Industrial
Engineers in 1921, the citation recognized her contribution in this area: “acted as
Consulting Psychologist in the field, working under the general Staff, standardizing
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the methods for teaching the 4,000,000 officers and men” (Des 2013; Lancaster
2004).

Lillian began lecturing independently on industrial psychology and time and
motion studies. Her first solo appearance was at the Massachusetts Institute of
Technology in 1918—her talk was titled “The Place of Motion Study and Fatigue
Study in Industrial Development.” A few months later, she substituted for Frank at
a meeting of the American Society of Mechanical Engineers and spoke about the
use of motion study films to retrain disabled veterans. During the rest of her career,
she would make hundreds of speaking appearances and occasionally broadcast on
the radio (Lancaster 2004). She was also invited to lecture at universities around the
USA including Stanford, Harvard, and Yale (Proffitt 1999).

During her lectures, she used the family and humorous events to illustrate her
speeches:

In our family, we make a game out of Motion Study and we all try to see how we can cut
down our own motions. This is especially important in the mornings when you have seven
or eight children to get ready for school. One of my young sons insists he could improve his
efficiency by at least fifty per cent, if we could eliminate baths and replace the back stairs
with a fireman’s pole. And a young daughter who has the job of setting the breakfast table
says the One Best Way to do her job is to have everybody go out into the panty and get
his own dishes and silver. Her suggestion, which was rejected by a ten-to-one vote in our
Family Council, bears out what our cook and handyman says about us, 1 fear. He says the
Gilbreth System is to get everyone else to do your work for you. (Gilbreth Jr 1970)

1.4 On Her Own

After Frank Gilbreth dropped dead of a heart attack in 1924, Lillian had the
responsibility of educating the 11 surviving children, all under the age of 19, and
carrying on the business of Gilbreth, Inc. And, carry on, she did. She decided
that she would work for the acceptance of the Gilbreth System and its creation of
Happiness Minutes for workers and the disabled (Gilbreth Jr 1970).

She went to Europe in the summer of 1924 as she and Frank had planned and
gave a talk on “First Steps in Fatigue Study.” She published her biography of Frank
The Quest of the One Best Way. She continued with the Family Councils (meetings
with the children and people who ran the household) and they decided to stay in
Montclair, New Jersey. She completed consultancy work for European clients. But,
all was not so easy in America (Lancaster 2004).

With Frank gone, Lillian was exposed to sexism, some blatant, some more subtle.
Major clients gave notice that they would not be renewing their contracts. They were
not willing to have a woman—no matter her level of competence—upsetting their
factories. She could not install the Gilbreth System in their plants due to her gender
(Gilbreth Jr 1970).

She was paid less than Frank had been when she lectured at universities. She
was turned away from venues where she was an invited guest or speaker due to
their male-only rules. Although some men whom she had worked with or knew
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professionally were willing to help her professionally, in general, engineers (who
were almost all men) were not going to hire Lillian to install the Gilbreth system in
their plants. She was going to have to use a different approach (Des 2013; Lancaster
2004).

One possibility was suggested to her by a vice president at Johnson and
Johnson—she could teach at a school of motion study for Johnson and Johnson
managers. Through press releases and letters, she described the course she would be
offering: (Des 2013; Proffitt 1999; Gilbreth Jr 1970; Yost 1949; Graham 1998)

... to prepare a member of an organization, who has adequate training in scientific method
and in plant problems, to take charge of Motion Study work in that organization. The
advantage of this Course is that his understanding of both plant problems and of plant
psychology usually insures cooperation and is a great assistance both in teaching and
maintaining the better methods involved by the Motion Study investigation. The cost of
the course is $1000. This Course can [as] desired be supplemented by a certain amount
of subsequent teaching, inspection or consultation on the Motion Study problems of the
organization sending the student. We also furnish reports and recommendations which are
in the nature of a Survey, based upon more or less extended investigations of members of
our staff. These indicate possible savings and outline methods.

Her first class in 1925 included managers from Johnson and Johnson, Borden
Milk and Barber Asphalt. The next semester students came from as far away as
Germany and Japan. Motion study techniques were being taught to “disciples” of
sorts and being spread around the world. She continued her classes—a total of seven
courses over a period of 6 years—until she saw that engineering schools were now
teaching time and motion complete with laboratories outfitted with photographic
devices and movement measurement tools (Des 2013; Proffitt 1999; Gilbreth Jr
1970; Yost 1949).

Lillian knew that membership in professional societies was needed for peer
recognition and she believed that membership in the American Society of Mechani-
cal Engineers (ASME) was imperative. She wrote to the Membership Committee to
determine if her application for membership would be received favorably. Although
initial reaction was mixed, she lectured at several ASME technical sessions
including in December 1925 when she spoke on “The Present State of Industrial
Psychology.” She was admitted to full membership in July 1926 (Lancaster 2004;
Graham 1998; Perusek 2000). Her description of her work experience in her
application for membership in the American Society of Mechanical Engineers reads:

I was also engaged in the perfecting of the methods and devices for laying brick by the
packet method, and in the design and construction of reinforced concrete work. This work
had to do with the management as well as the operating end.

In 1914 our company began to specialize in management work. I was placed in charge of
the correlation of engineering and management psychology, and became an active member
of the staff making visits to the plants systematized in order to lay out the method of attack
on the problems, being responsible for getting the necessary material for the installation
into shape, working up the data as they accumulated, and drafting the interim and final
reports. [ was also in charge of research and teaching, and of working up such mechanisms,
forms and methods as were needed for our type of installation of scientific management,
motion study, fatigue study and skill study. These had to do not only with the handling of
men, but with the simplification and standardization of the machinery and tools, for the use
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of both the normal and the handicapped. During Mr. Gilbreth’s frequent and prolonged
absences, both in this country and abroad, I was in responsible charge of all branches of
the work. This was also the case while he was in the service, and while he was recovering
from his long illness incurred therein.

Since Mr. Gilbreth’s death, June 14, 1924, I have been the head of our organization,
which consisted of Consulting Engineers and does work in management, and I have had
responsible charge of the research, installation and the teaching, in this country and abroad.
(Trescott 1983)

She began to make a name for herself in the field of industrial psychology. The
editors of Industrial Psychology and Iron Age asked her to contribute articles to their
magazines. Her expertise on the topic of women industrial workers had become
more widespread after her participation in the Woman’s Industrial Conference
of 1926 and her work for the U.S. Department of Labor’s Women’s Bureau.
Companies came to her with problems related to their women workers as well as
serving women customers (Des 2013).

She secured Macy’s as a client from 1925 to 1928 at a time when American
retailers were desperately trying to figure out how to appeal to the female customer.
Lillian’s status as a psychologist and a mother led others to believe that she
had the right combination of scientific thinking and intuition. Her work involved
revamping the physical layout of the aisles in the New York flagship store to make
it both more aesthetically pleasing and easier for customers to navigate. Her other
efforts included better systems for posting and filing employee records, different
light fixtures to reduce eye fatigue, padding walls to reduce noise, and eliminating
duplicate recording of sales checks. She introduced procedures to reduce counting
errors and to minimize the time that a customer needed to wait for change (Des
2013; Lancaster 2004).

Since management wanted to generate greater profits, an evaluation of the
psychology of the female work force was very important. Lillian found that the
information male researchers had uncovered in efforts before hers had not gotten
to the root of the issues facing the female workers. Very little of the workers’
issues related to the physical requirements of the job. Instead, they related to family
burdens or social plans after the work shifts. She recommended that managers
communicate with the sales clerks and endeavor to understand the wants and needs
of each employee on an individual basis. She understood that how individuals
related to the larger social group was also important. Although common practice
today, these recommendations were unheard of at the time! (Des 2013).

Her work with Johnson and Johnson expanded. She tackled a problem that no
male executive at Johnson and Johnson had been able to solve: how to develop
and market sanitary napkins. Lillian was the right woman for the job! She hired
female market researchers who gathered data from the targeted customers. They
found out that women wanted greater comfort, protection, and inconspicuousness
with a product that could be discreetly obtained and thrown away. At her home,
Lillian put together a consumer testing lab analyzing the products on the market
to come up with a design that met customer needs. In the end, the product that
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was developed—Modess—had a slogan that was accurate and effective: “Women
designed Modess. Johnson and Johnson made it” (Des 2013).

Her work at companies including The Dennison Company and Sears and
Roebuck involved understanding the psychology of the female work force and
undertaking time and motion studies on female employees. Companies in Belgium
wanted her to assist them in understanding and motivating their employees, too.
The study of women’s work around the USA and worldwide became her bread and
butter. By 1926, she was presenting herself as a role model on the compatibility
between marriage and a career. She interwove the theme of how scientific man-
agement could make this balance possible. Her position proved very popular in the
1920s (Des 2013; Lancaster 2004; Yost 1949).

Lillian began a long-lasting relationship with the Women’s Bureau of the U.S.
Department of Labor in 1926. She worked with Mary Anderson, the bureau’s
director, in enacting protective legislation for women workers. She attended the
Women in Industry conference and later served on the technical committee whose
function was to research the effects of labor legislation on women’s work (Lancaster
2004).

By 1926, Lillian had decided that the best way forward was to present herself
as an expert on women’s work. Her differentiating skills were in her concentration
on the minimization of fatigue and the application of psychology—what could be
termed “household engineering.” Her “coming out” of sorts occurred at a conference
she organized and directed at Teachers College, Columbia University in 1927. This
conference was the first organized effort to explain scientific management to home
economists. The home economists were impressed with the pairing of efficiency and
psychology (Lancaster 2004; Graham 1998).

A significant boost to her fortunes came in 1928 when the University of Michigan
made her an honorary master of engineering—the first time such a degree had been
awarded to a woman by any college. Now, she had an engineering credential in
addition to psychology (Gilbreth Jr 1970).

This was particularly fortuitous during and after the Great Depression. Her
work in classrooms and department stores would now move to the kitchen—with
her emphasis on frugality, efficiency, and psychology so relevant to those difficult
economic years. Lillian used her femininity to her—and women’s—advantage
by bringing efficiency to women’s domestic endeavors. She now undertook to
systematize women’s operations. By framing such innovations in the home as a
matter of economic necessity (helping out American families, not solely American
women), she was able to gain acceptance where others had been less successful. Out
of economic necessity and the reluctance of the scientific management profession
to accept her, Lillian reinvented herself as a domestic consultant (Des 2013).

Her timing was excellent—and Lillian had found a good niche. Indoor plumbing
and electricity were widely available. Women were beginning to demand labor-
saving appliances and efficiently designed kitchens. The days of servants were
diminishing which meant the lady of the house needed to do the work herself.
Refrigerators were just electric iceboxes without the shelves, drawers, and
accessories that we know today—Lillian came to the rescue. What did housewives
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use the most? Eggs, milk, and butter. Lillian applied therbligs and recommended
putting them at a level where the housewife wouldn’t need to stoop. Women did
not want to open a valve to drain soapy water bucket by bucket from an electric
washing machine—Lillian had the washing machine manufacturers install a pump
and wasterwater hose. Voila—more Happiness Minutes (Gilbreth Jr 1970; Graham
1998).

Her decision began to pay off. In 1927 and 1928, she published two books, The
Home-Maker and Her Job and Living with Our Children. In these volumes, she
advised on the One Best Way to can baby food and to design a workspace. The
One Best Way was communicated through radio addresses and, most successfully,
through her kitchen designs. In 1929, she designed the “Kitchen Practical” (which
was really the Gilbreth Motion Study Kitchen) for the Brooklyn Gas Company
which was unveiled at the national Women’s Exposition. Although that kitchen,
to meet the needs of her client, was outfitted with gas appliances, the one for
Narragansett Light Company had electrical outlets to display the company’s light
fixtures. She encouraged women to customize the arrangements and appliances to
their individual needs (Des 2013; Gilbreth Jr 1970).

Lillian designed not only the kitchens, but also items to go with them. These
included the “Door Closet” and the “Management Desk.” The closet was a thin
cabinet attached to the back of the kitchen door that housed mops, cleansers, and
associated items for ease of access. The desk had a clock, adding machine, radio,
telephone, children’s reference books, and charts to allow the person to organize
household chores. Homemakers and corporate men liked her designs—she designed
a Management Desk for IBM for the Chicago World’s Fair in 1933 (Des 2013).

Lillian saw the need for efficiency in both the home and the workplace. In fact,
she (Dr. Gilbreth, internationally famous industrial engineer—as she was referred
to in customer booklets) said that if homemakers would employ her recommended
methods in the kitchen that they could reduce the distance they traveled in a
year from twenty-six miles to nine! She recommended heights of shelves, stoves,
sinks, and counters to minimize fatigue. She also advocated for splitting housework
fifty-fifty (wife/husband) and her Teamwork Kitchen, with its ability to adjust for
height and lengths of workspaces, actually served to accommodate women, children,
and men. She designed a foot-pedaled trashcan to minimize kitchen movements.
She developed electric stoves, refrigerators, and washing machines. She designed
specially rigged kitchens for the American Heart Association that would benefit
wheelchair-bound women and women who suffered from heart disease (Des 2013;
Lancaster 2004; Gilbreth Jr 1970; Graham 1998).

A detour to politics occurred, however, along the way. An active supporter
of Henry Hoover’s campaign for President, she had been friends with both the
President and his wife Lou Henry Hoover, who were both engineers, since their
Stanford days at the turn of the century. She often was invited to events at the White
House after he won the office. Lou Henry Hoover asked her to join the Girl Scouts
national Board of Directors in 1930, an offer she accepted; she served until 1947. In
August of 1930, Hoover put her on a subcommittee of the National Conference on
Home Building and Home Ownership (Des 2013; Lancaster 2004; Gilbreth Jr 1970;
Yost 1949).
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Fig. 1.2 Dr. Lillian Moller
Gilbreth with Colonel Arthur
Woods, President’s
Emergency Committee on
Employment, 1930. Courtesy,
Library of Congress

In October 1930, President Hoover asked her to head the women’s division of
the President’s Emergency Committee on Employment (PECE) which required
her to spend much time in Washington, DC (see Fig. 1.2). Her children were
quite supportive of her accepting this assignment. Lillian instituted a “Spruce
Up Your Home” program where American homes who could afford “handymen”
were matched with unemployed workers with the requisite skills. She mobilized
nearly three million middle-class women to generate jobs. She developed a “Follow
Your Dollar” campaign to encourage women to buy American goods but also to
investigate the companies behind the products to ensure that they were working
to stabilize employment and make work better for their employees. During this
time, Lillian made Ida Tarbell’s list of the “Fifty Foremost Women of the United
States.” She was also one of 22 women featured in a Good Housekeeping readers’
poll to discover America’s 12 greatest living women; she did not make the final
cut. Following her service on PECE, she served on the President’s Organization on
Unemployment Relief. She left government service and returned to her non-political
life in 1931 (Des 2013; Lancaster 2004; Yost 1949).

In 1932, in a radio talk, she reported (Yost 1949):

.. .It was heartening to find that the best thinkers in the European group agree with ours
that what is needed today is not less but more planning. . . .The manufacturer must think
back to his raw materials, machines and men, and forward to the distribution and use of
his product. . . . The engineer has done a fine job of making things, possibly — it was felt —
too good a job. That is what he was asked to do, make things as cheaply and as well as
possible. The need to extend the same careful techniques to distribution and consumption
should be a challenge and not a warning, and not only to engineers but to industrial and
business leaders and to the consumers.

In 1934, Lillian designed three of the rooms in “America’s Little House” for
Better Homes of America: the kitchen, a clothery, and a nursery. These rooms were
designed to deal with “the food problem, the clothing problem, the care of the child
problem, and the problem of keeping the house clean and in order.” Columbia
Broadcasting System was a co-sponsor of the project and she broadcast from the
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house in February 1935. She investigated the correct height for kitchen equipment.
A somewhat hostile magazine article said that “Dr. Lillian Moller Gilbreth does a
man’s job in a woman’s sphere—the home” (Lancaster 2004).

After providing many guest lectures at Purdue University starting in 1924 and
looking for a source of steady income, Lillian joined the Purdue University faculty
in 1935 as a full Professor of Management in the School of Mechanical Engineering,
the first woman to be so appointed in an engineering school. After Amelia Earhart’s
death (leaving vacant the position as advisor on careers for women), Lillian took
over her position on the Staff of the Dean for Women. While at Purdue, she did
some consulting work in addition to her university duties. At Purdue, she lectured
on management engineering in all of the schools of engineering (Mechanical, Civil,
Electrical, and Chemical), created a motion study laboratory, and helped set up an
honors course where students worked in local industries. She was asked to retire
in 1948—at the age of 70! This freed her to consult for the Girl Scouts, serve as
one of two women on the Chemical Warfare Board, and serve on the Civil Defense
Advisory Council under President Harry S. Truman (Des 2013; Lancaster 2004;
Yost 1949).

During World War II, Lillian undertook three types of work: she served as a
government advisor, as a role model to other women, and as an ergonomics expert
(Lancaster 2004). She sat on the education subcommittee of the War Manpower
Commission, on the education advisory committee of the Office of War Information
and on the boards of the women’s army and navy auxiliaries—WACS and WAVES
(Des 2013). She also continued her association with the Women’s Bureau. Her
fingerprints are visible on a 1942 publication issued by the National Industrial
Information Committee titled “Recreation and Housing for Women War Workers.”
The Code of Ethics for Volunteers included as Appendix B incorporates language
that reads “I believe that all work should be carefully analyzed in order that work
methods may be standardized. I believe that people should be studied in order to
determine what jobs they can do and like to do and that, as far as possible, they
should be assigned to jobs they can do well and enjoy.” Her influence can also be
seen in “Employing Women in Shipyards” published in 1944 that includes in its
table of contents: “Select and place women carefully,” “schedule rest periods,” and
“set up an effective women counselor system” (Lancaster 2004).

One specific example of her consulting is illustrative. The Arma plant in
Brooklyn, New York had an all-male workforce of several hundred and was getting
ready to hire 8000 people, including 3000 women. They were panicked and didn’t
know what to do about the coming influx of women. They said to Lillian “We’ve
never had women in the shop before. We don’t know how to start. We’re counting
on you to tell us everything we have to do to get ready for them.” Her stunning
reply: “If that’s all my job is, I can finish it with this one sentence: Build separate
rest rooms” (Gilbreth Jr 1970).

She was called upon by President Franklin Delano Roosevelt to devise work
methods for crippled and female workers. Teaming with author Edna Yost, in 1944,
their book titled Normal Lives for the Disabled was published, in memory of Frank.
Lillian believed that her work for the handicapped had been her most important
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career achievement as she said it had done the most good (Perusek 2000). As she
lectured around the country as a psychologist and engineer, she said “The mental
state of the disabled is all-important. If a person has the normal American outlook,
the optimism, the belief in God, man and the future, it is a beginning.” She served
on committees for other Presidents as well including Eisenhower, Kennedy, and
Johnson dealing with topics including civil defense and the problems of aging
(Lancaster 2004; Gilbreth Jr 1970).

At the end of the postwar recession, she had numerous work assignments both
in the USA and overseas. She also was well known as a scientific researcher in
academic circles. Her work style was described thusly: (Lancaster 2004)

The pattern is always the same: first, Dr. Gilbreth has a helpful idea; next she inspires
someone to start a pilot project to explore the idea. She herself stands by to help if needed.
She offers few suggestions but asks many, many penetrating questions. As the pilot project
develops she spreads the news, mentions it in her talks, discusses it with people who have
something helpful to offer, particularly management people and generally stimulates an
exchange of ideas until finally the baby project is “born” into a welcoming climate where
it can grow and prosper and expand.

From 1954 to 1958, she worked with Harold Smalley to apply industrial
engineering to hospitals. In his textbook, issued in 1966, he stated “one of the most
significant developments in the methods improvement movement occurred in 1945
when Dr. Lillian M. Gilbreth . . . began to urge that hospitals take advantage of the
tools and techniques of industrial engineering.” With Smalley, Lillian researched
nursing, organization of hospital supplies and the best types of hospital beds
(Lancaster 2004).

Her postwar work also extended her efforts with the disabled; her audience was
now primarily “handicapped homemakers” in lieu of the “crippled soldiers” with
whom she was involved after World War I. For almost 10 years, she worked in
this area which she regarded as her most important contribution to motion study.
She demonstrated how disabled women could perform a variety of tasks around the
house including keeping house in a wheelchair, peeling a potato with one hand,
and making a bed while on crutches. The Heart Kitchen, which she developed
in collaboration with the New York Heart Association, was an outgrowth of the
Kitchen Practical where the kitchen was fitted to the height of its occupants. She
taught courses at Rutgers where students learned to place items requiring water near
the sink and those implements needed for cooking near the stove. She worked with
teams comprised of industrial engineers, home economists, rehabilitation experts,
psychologists, and architects to build a model kitchen. Many non-disabled people
would see the kitchen and wonder if it was possible for them to acquire the Heart
Kitchen (Lancaster 2004; Gilbreth Jr 1970).

From 1953 to 1964, Lillian served as a consultant to the University of Connecti-
cut. Originating from a conference she organized on work simplification for the
handicapped, Lillian helped the University procure a vocational rehabilitation grant
to study work simplification for handicapped homemakers. Part of the grant was
the production of a movie Where There’s a Will and Lillian appeared on camera
at the beginning and end of the film. Her efforts in work simplification led to
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her 1954 book Management in the Home: Happier Living Through Saving Time
and Energy. In 1957, she was instrumental in ensuring that a conference of home
economists and psychologists was organized to discuss the feasibility and contents
of a course on work simplification for working women. This led to a book issued
by the U.S. Office of Education titled Management Problems for Homemakers
(Lancaster 2004).

In 1955, the University of Wisconsin named her the Knapp Visiting Professor
(Lancaster 2004). She maintained a torrid pace of consulting, travel and lectures for
20 years after her “retirement”—from Purdue—until 1968 when her doctor forced
her to rest (Des 2013; Lancaster 2004).

In 1952, she was described as “The World’s Greatest Woman Engineer” because
of “her impact on management, her innovations in industrial design, her method-
ological contributions to time and motion studies, her humanization of management
principles, and her role in integrating the principles of science and management.
Although we may be unaware today, she influenced the way we work, the way we
arrange our houses, and our attitude toward time” (Lancaster 2004).

1.5 Honors and Awards

The recipient of 23 honorary degrees, her first honorary doctorate of engineering
degree came from the University of Michigan—the first time a woman was so
honored. The institution that had refused to grant her a Ph.D.—the University of
California at Berkeley—named her its Outstanding Alumnus in 1954, while praising
the work which they had refused to acknowledge earlier. In 1931, she received
the first Gilbreth Medal, awarded by The Society of Industrial Engineers, “For
distinguished contribution to management.” In 1940, she was made an honorary
life member of the Engineering Women’s Club of New York. That citation read:
“For your scientific achievements in the field of industrial psychology, for your
pioneer work in applying these principles to the practical problems of the efficiency
of human labor, for your intelligent womanhood, and for the esteem in which you
are held by your fellow members” (Des 2013; Lancaster 2004; Yost 1949; Goft
1946; Chaffin n.d.).

Lillian and Frank were both honored (Frank, posthumously) with the 1944
Gantt Gold Medal: “To Dr. Lillian Moller Gilbreth, and to Frank B. Gilbreth
posthumously . . . the 1944 Gantt Medal, in recognition of their pioneer work in
management, their development of the principles and techniques of motion study,
their application of those techniques in industry, agriculture and the home, and
their work in spreading that knowledge through courses of training and classes at
universities.” Lillian said receipt of the Gantt Gold Medal was the best news of her
life as it meant Motion Study and the Gilbreth System had been acknowledged by
the arbiter of professional accomplishment—the American Society of Mechanical
Engineers (Des 2013; Lancaster 2004; Gilbreth Jr 1970; Yost 1949; Goff 1946).
The Western Society of Engineers presented her with its Washington Award in
1954 “for accomplishments which pre-eminently promote the happiness, comfort
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and well-being of humanity” and for her “unselfish devotion to the problems of the
handicapped” (Lancaster 2004).

In 1965, Lillian became the first woman elected to the National Academy of
Engineering. In 1966, she received the prestigious Hoover Medal, an indication that
she was regarded by her peers as having achieved the pinnacle of the engineering
profession. This medal is jointly bestowed by four leading engineering organizations
(Des 2013). The citation read: Renowned engineer, internationally respected for
contributions to motion study and to recognition of the principle that management
engineering and human relations are intertwined; courageous wife and mother;
outstanding teacher, author, lecturer and member of professional committees under
Herbert Hoover and four successors. Additionally, her unselfish application of
energy and creative efforts in modifying industrial and home environments for the
handicapped has resulted in full employment of their capabilities and elevation of
their self-esteem (Lancaster 2004). She remained the only woman to have received
that medal until 2005 (Giges n.d.).

A strong supporter of the Society of Women Engineers (SWE), Dr. Gilbreth
was the first honorary member of the organization (see Fig. 1.3). Her membership

Fig. 1.3 Dr. Lillian Moller Gilbreth on the left of the head table at the 1957 Society of Women
Engineers National Convention, Houston, Texas. Courtesy of Walter P. Reuther Library, Wayne
State University
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Fig. 1.4 Barbara Jean
Kinney receiving the Lillian
Moller Gilbreth Scholarship
of the Society of Women
Engineers, 1965 from
President Isabelle French.
Courtesy of the Walter P.
Reuther Library, Wayne State
University

number was one. Upon accepting membership, she said “I appreciate the honor and
I hope that I will be a useful member of the Society.” A scholarship was established
in her name in 1958 and is still awarded annually by SWE today (see Fig. 1.4)
(Perusek 2000).

Gilbreth has been inducted into the National Women’s Hall of Fame and honored
on a 1984 US postage stamp in the “Great American” series. Among her many other
honors and awards was the Gold Medal of the National Institute of Social Services
that included in its citation “distinguished service to humanity” (Gilbreth Jr 1970).

California Monthly (1944) summarizes her accomplishments thusly (Graham
1998):

Lillian Moller Gilbreth is a genius in the art of living. Known throughout the world as
an outstanding woman engineer who successfully combined her unique engineering career
with a delightful home life centering around a beloved husband and twelve well assorted
children, Dr. Gilbreth amazes one with the breadth of her interests, the sheer quantity of her
activities, the dynamic quality of her daily living and her own unassuming simplicity. One
feels conclusively that here is a woman whose history bears inspection . . .
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Jill S. Tietjen PE., entered the University of Virginia in the
Fall of 1972 (the third year that women were admitted as
undergraduates—under court order) intending to be a math-
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found engineering and made all of the arrangements necessary
to transfer. In 1976, she graduated with a B.S. in Applied
Mathematics (minor in Electrical Engineering) (Tau Beta Pi,
Virginia Alpha) and went to work in the electric utility industry.
Galvanized by the fact that no one, not even her Ph.D.
engineer father, had encouraged her to pursue an engineering
education and that only after her graduation did she discover
that her degree was not ABET-accredited, she joined the Society
of Women Engineers (SWE) and for almost 40 years has
worked to encourage young women to pursue science, technol-
ogy, engineering, and mathematics (STEM) careers. In 1982,
she became licensed as a professional engineer in Colorado.
Tietjen starting working jigsaw puzzles at age two and has
always loved to solve problems. She derives tremendous sat-
isfaction seeing the result of her work—the electricity product
that is so reliable that most Americans just take its provision
for granted. Flying at night and seeing the lights below, she
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knows that she had a hand in this infrastructure miracle. An
expert witness, she works to plan new power plants.

Her efforts to nominate women for awards began in SWE
and have progressed to her acknowledgement as one of the
top nominators of women in the country. Her nominees have
received the National Medal of Technology and the Kate Glea-
son Medal; they have been inducted into the National Women’s
Hall of Fame (including Lillian Moller Gilbreth in 1995) and
state Halls including Colorado, Maryland, and Delaware and
have received university and professional society recognition.
Tietjen believes that it is imperative to nominate women for
awards—for the role modeling and knowledge of women’s
accomplishments that it provides for the youth of our country.

Tietjen received her MBA from the University of North
Carolina at Charlotte. She has been the recipient of many
awards including the Distinguished Service Award from SWE
(of which she has been named a Fellow and is a National
Past President), the Distinguished Alumna Award from the
University of Virginia, and she has been inducted into the
Colorado Women’s Hall of Fame. Tietjen sits on the boards of
Georgia Transmission Corporation and Merrick & Company.
Her publications include the bestselling and award-winning
book Her Story: A Timeline of the Women Who Changed
America for which she received the Daughters of the American
Revolution History Award Medal.
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2.1 Introduction

For decades, enormous volumes of datasets have been routinely collected as part of
the everyday operation of any manufacturing enterprise, however these potentially
valuable knowledge resources have not been fully understood or exploited which
led to the “rich data but poor information” problem (Wang and McGreavy 1998).
Both volume and complexity of such data have generated a necessity of automated
analysis to extract knowledge in a form that can benefit the business. Therefore,
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data-driven discovery techniques, such as statistical/machine learning algorithms,
have begun to be utilized in manufacturing systems toward the end of twentieth
century (Lee 1993; Irani et al. 1993; Bertino et al. 1999), and have become
extremely important tools in the area. The use of these techniques produces
relatively modest reductions in equipment failures, better on-time deliveries, slight
improvements in equipment, and meets countless other goals that drive toward
better margins for the manufacturers. In recent years, with the 20-20-20 goals (i.e.,
20% increase in energy efficiency, 20% reduction of CO2 emissions, and 20%
renewables by 2020) proposal by the European Union, countries have announced
their development plans in manufacturing. For instance, the Industry 4.0 is the
current trend of automation and data exchange in manufacturing technologies
initiated by Germany. The advances in computing systems, the rapid maturation of
statistical/machine learning algorithms, advanced technologies and strategies like
Industry 4.0 have created new opportunities for intercross of statistical/machine
learning and manufacturing streams which provide manufacturers to ability to
collect, store, and analyze huge amounts of datasets, and consequently to gain
predictive insights into their production.

Machine learning (ML) is a type of artificial intelligence utilizing automatic
techniques to obtain deep insights, recognize unknown patterns, and create accurate
predictive models based on past observations. The field of ML has advanced signif-
icantly in recent years, in part due to need for handling large and complex amounts
of information. These advances have opened new avenues for strong collaborations
between materials scientists, computer scientists, and statisticians. Consequently the
past decade has been witnessed accelerated progress in the use of ML algorithms
that are designed to learn continually from data and seek optimized outcomes in
minutes rather than days or months. The primary categories of ML are supervised,
unsupervised, and semi-supervised learning. The supervised learning consists of
an outcome variable which is to be predicted from a given set of predictors
such as regression, decision tree, and random forest. In the unsupervised learning,
there is no outcome variable, and the primary goal is to segment observations in
different groups based on provided predictors such as K-means algorithm. Semi-
supervised learning falls between unsupervised learning and supervised learning
in the sense that some observations have outcome values whereas some do not.
Although unsupervised and supervised ML methods have already been mostly used
in manufacturing, the relatively recently introduced semi-supervised is expected
to be more popular in the near future. Unsupervised learning is generally utilized
for clustering, dimensionality reduction, data visualization, and outlier detection
in manufacturing applications whereas supervised learning is popular for fault
classification, quality improvement, process monitoring, quality prediction, and soft
sensor modeling. In addition to these three categories, reinforcement learning is
another algorithm that discovers through trial and error. Although it is considered
as a special form of supervised learning by some researchers, it differs from
unsupervised and supervised learning in the sense that learner has to also discover
which actions are needed to generate the best results. Regardless of the category,
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these data-driven approaches are able to find highly complex patterns in data, which
are then applied for prediction, detection, classification, regression, or forecasting.

Statistical learning (SL) refers to a collection of tools for modeling and under-
standing complex datasets (Hastie et al. 2009). Even though SL theory was initially
based on purely theoretical analysis of the problem from a given data, new types
of learning algorithms have been emerged in the late 90s and it has started to blend
with developments in ML. Statistical and machine learning, although sometimes
used interchangeably, have subtle differences (Breiman 2001b). SL involves making
assumptions which are validated after building the models, and it emphasizes the
statistical inference (confidence intervals, hypothesis tests, optimal estimators).
In contrast, ML requires no prior assumptions about the underlying relationships
between the variables and mainly focuses on producing predictions rather than
drawing calculations from data. Despite these differences, both approaches share
the same goal of learning from data using mathematical techniques to solve
problems. ML provides quick and automatic algorithms to produce models that
can analyze bigger, more complex data and deliver faster, more accurate results.
However, statistical inference has become less important and asymptotics are
underrepresented for most of these immense computer-based ML algorithms. Given
the importance of common dialogue between these two learning approaches, this
chapter provides not only a summary of some promising methods in the overlap of
both statistical and machine learning communities, but also provides information on
making inferences.

This chapter presents a very general overview of statistical/machine methods
and their applications in manufacturing. The remainder of the chapter is organized
as follows: Sect. 2.2 reviews the commonly used learning algorithms, including
random forests, support vector machine, sparse modeling, dimension reduction, and
deep learning. Section 2.3 reviews the developments in inference theory for the
algorithms since inferential justifications are very important aspect of a statistical
analysis. The concluding remarks are given in Sect. 2.4.

2.2 A Review of Statistical/Machine Learning Algorithms

This section reviews prominent ML tools, and provides an overview for interested
readers. For the sake of brevity, we only included a small part of the related
and relatively new literatures on ML applications in manufacturing. The growth
and popularity of R programming (R Core Team 2016) has been helping data-
driven organizations succeed for years. In this paper, we provide citations for
the commonly used R packages that implement the machine learning algorithms
described in this section.
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2.2.1 Random Forests

A decision tree is a type of directed (acyclic) graph in which the nodes represent
decisions, and the edges or branches are binary values (yes/no, true/false) repre-
senting possible paths from one node to another. Random forest (RF) algorithm
is a supervised regression and classification algorithm proposed by Leo Breiman
(2001a), and as the name suggests, it creates a forest based on the aggregation of
a large number of decision trees. The algorithm constructs an ensemble of trees
from a training data to predict the outcome for future observations. Given the
training dataset, the decision tree algorithm will come up with some set of rules
which can be used to perform the prediction on a test dataset. This approach also
ranks variables with respect to their ability to predict the outcome using variable
importance measures (VIMs) that are automatically computed for each predictor
within the RF algorithm. This is an important asset given that the selection of the
most relevant variables is a crucial task for high-dimensional data. The review by
Genuer et al. (2008) provides practical guidelines for understanding the method.
In the original RF method, each tree is considered as a standard classification
or regression tree (CART) which uses a numerical criterion to split. Each tree is
constructed from a bootstrap sample drawn with replacement from the original
dataset, and the predictions of all trees are finally aggregated through majority
voting. The main idea in RF is reducing the variance by averaging and reducing bias
using bootstrapping. In general, the higher the number of trees in the forest gives
the more accuracy results for the RF classifier while having more trees in the forest
does not result in an overfit model. RF algorithm can be used both for classification
and the regression of problems (where the system is trained to output a numerical
value, rather than “yes/no” classification), and has the ability to handle both missing
values and high dimensionality. The R implementations of RF are available in the
package “randomForest” (Liaw and Wiener 2002).

Applications

RF algorithm has a variety of applications in manufacturing including classification
of sensor array data (Pardo and Sberveglieri 2008), machine fault diagnosis (Yang
et al. 2008), fault detection (Auret and Aldrich 2010; Puggini et al. 2016). Another
important application of RF is the tool wear classification which is one of the
important factors for guaranteeing the reliability and stability of manufacturing
systems since the excessive wear of cutting tools will result in a sharp increase in
cutting forces. Wu et al. (2017) realized tool wear prediction in milling operations
by utilizing RFs, and showed that RFs performed better than its other close
competitors.
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2.2.2  Support Vector Machine

Support vector machines (SVMs) introduced by Vladimir Vapnik (1995) are
supervised learning techniques that are intuitive, theoretically well-founded, and
have shown to be practically successful for classification and regression analysis.
In addition to performing linear classification and regression, SVMs can efficiently
perform a non-linear classification and regression using kernel functions by implic-
itly mapping their inputs into high-dimensional feature spaces. In general, the basic
idea for a classification problem is to find a hyperplane which separates the multi-
dimensional data perfectly into its two (or more) classes using the notion of a
kernel that maps the original data points into a higher dimensional feature space
in which they can be separated by a linear classifier. Since the projection of a
linear classifier on the feature space is non-linear in the original space, users have
the ability to generate non-linear decision boundaries using methods designed for
linear classifiers. Compared to other widely used supervised learning methods such
as artificial neural networks, SVM may have better generalizations under many
cases. An excellent overview of the SVM algorithms can be found in Vapnik
(1995), Scholkopf et al. (1999). The “el071” package in R can be used for the
implementation of the algorithm (Meyer et al. 2017).

Applications

Due to its good generalization and ability to produce a smooth classifier, SVM has
been a popular tool in industrial applications. A major application area of SVM in
manufacturing is monitoring, such as machine condition and quality monitoring,
fault detection, and tool wear prediction (Cho et al. 2005; Ribeiro 2005; Widodo
and Yang 2007; Zhang 2008; Xiao et al. 2014; You et al. 2015; Tian et al. 2015;
Benkedjouh et al. 2015). SVMs are also successfully applied to other problems,
including—but not limited to—identification of damaged products (Caydas and
Ekici 2010), classification of gasoline (and gases) in oil industry (Saybani et al.
2011), control chart pattern recognition (Xanthopoulos and Razzaghi 2013), bearing
faults detection (Saidi et al. 2015), soft sensor developments and quality prediction
(Jain et al. 2007; Ge and Song 2010; Yu 2012; Zhang et al. 2013).

2.2.3 Sparse Modeling

Given the massive amount of data collected from industrial processes, it is inevitable
to have many redundant, irrelevant, and noisy variables in the data leading to
unreliable inferences. Although regression models are useful to build models for
prediction in manufacturing process, classical methods such as ordinary least
squares (OLS) lead to an over-fitted, or more often an under-fitted system of
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equations when data consist of correlated and very few quality measurements.
Sparse (regularized) modeling aims to achieve best predictability with the most
parsimonious model, i.e. with fewest predictors. In other words, regularized models
simultaneously perform variable selection and prediction. Ridge regression (Hoerl
and Kennard 1970) based on L2 penalty and least absolute shrinkage (LASSO,
Tibshirani 1996) based on L1 penalty are well-known examples of penalized
regression models. Zou and Hastie (2005) proposed elastic-net penalty which is a
linear combination of L1 and L2 penalties, and such method emphasizes a grouping
effect, where strongly correlated predictors tend to be in or out of the model together.
In general, it has been argued that a good penalty procedure should have oracle
property that it performs as well as if the true model were given in advance. The
LASSO can perform automatic variable selection since it uses L1 penalty that
is singular at the origin. On the other hand, the LASSO penalty may produce
inefficient estimation and inconsistent variable selection results in linear regression
modeling due to uniformly imposed penalty to all features without considering
importance of each feature. It is known that the LASSO penalty may introduce
a substantial amount of bias to the estimators of the large coefficients (Fan and
Li 2001), thus, the oracle property does not hold for the LASSO estimator. To
overcome this problem, Zou (2006) proposed an adaptive version of the LASSO
in which data dependent weights are used for penalizing different coefficients in the
L1 penalty and showed that the adaptive LASSO possesses the oracle property while
having computational easiness of optimizing a convex function. Although there are
a variety of regularization methods available, aforementioned methods have been
predominantly used for application. The R package “glmnet” includes procedures
for fitting LASSO or elastic-net regularization path for linear regression, logistic
and multinomial regression models (Friedman et al. 2010).

Applications

A complex modern semi-conductor manufacturing process is normally under
consistent surveillance via the monitoring of signals/variables collected from
sensors and/or process measurement points. However, not all of these signals are
equally valuable in a specific monitoring system. The measured signals contain a
combination of useful information, irrelevant information as well as noise. It is often
the case that useful information is buried in the latter two. Engineers typically have
a much larger number of signals than are actually required. If we consider each type
of signal as a feature, then feature selection may be applied to identify the most
relevant signals. The process engineers may then use these signals to determine
key factors contributing to yield excursions downstream in the process. This will
enable an increase in process throughput, decreased time to learn and reduce the per
unit production costs. In general, since the semiconductor manufacturing process
consists of a huge amount of (relevant and irrelevant) predictors that are correlated
and relatively very few observations, predictions of quality and/or yield using OLS
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are very complicated. To address these issues, penalized regression methods are
utilized in the literature for the semiconductor manufacturing process.

Chang and Mastrangelo (2011) underlined the collinearity problem in semi-
conductor environment, and suggested to address multicollinearity using variable
elimination, orthogonal transformation, and adoption of biased estimates such
as ridge regression. In semiconductor manufacturing plants, although monitoring
physical properties of all wafers is crucial to maintain good yield and high quality
standards, such approach is too costly, and in practice, only few wafers in a lot are
actually monitored. Virtual metrology (VM) systems allow to partly overcome the
lack of physical monitoring. Susto and Beghi (2013) utilized least angle regression
to overcome the problem of high dimensionality and model interpretability for VM
module. Similarly, Melhem et al. (2016) compared regularized linear regression
methods based on dimension reduction and variable selection methods to predict
the wafer quality based on the production equipment data. Motivated by the adverse
effects of outliers on the modeling, monitoring, and diagnosis of profile monitoring
data, Zou et al. (2014) proposed an outlier detection method based on the penalized
regression. For semiconductor packaging process, the final step of semiconductor
manufacturing, Lim et al. (2017) predicted the final failure of a printed circuit
board lot based on observed event sequences in the wire bonding process step using
LASSO.

2.2.4 Dimension Reduction

Multi-parameter setting in multi-stage of the modern manufacturing industry brings
about the curse of dimensionality, leading to the difficulties for feature extraction,
learning, and quality modeling. One imperative way of addressing this issue is to
enhance feature extraction capability using a dimension reduction technique that
helps to reduce invalid information interference. The main goal of the dimension
reduction is to explore the data, and to look for some hidden structure among
them, and it is mainly used for information extraction, data visualization, and outlier
detection for industry applications. Principal component analysis (PCA) is the most
popular statistical procedure aiming to find an orthogonal transformation of data to
transform a set of correlated variables into linearly uncorrelated variables that are
fewer than the number of original variables (Jolliffe 2002). The original PCA is an
unsupervised and linear method, but its different variations that can handle these
limitations. There are also other dimension reduction methods used in the literature
such as independent component analysis (ICA), partial least squares (PLS), and
isometric mapping (Isomap). ICA is an extension of PCA that not only reduces
the variables into a set of independent components by decorrelation but also makes
them as independent as possible (Hyvorinen et al. 2001). ICA exploits inherently
non-Gaussian features of the data and employs higher moments which distinguish
it from PCA utilizing the first and second moments of the measured data, hence
relying heavily on Gaussian features. PLS is a supervised dimension reduction
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technique aimed to find a compromise between the explanation of factors space
and the target variable (Wold 1975; de Jong 1993). Isomap is a representation of
manifold learning technique (Tenenbaum et al. 2010), and is a non-linear dimension
reduction method. R packages “stats” (prcomp or princomp functions, R Core Team
2016), “FactoMineR” (PCA function, Le et al. 2008) for PCA; “pls” (plsr function,
Mevik et al. 2016) for PLS; “fastICA” for ICA (Marchini et al. 2017), and “vegan”
(isomap function, Oksanen et al. 2017) can be used for the implementation of these
techniques.

Applications

Regardless of the differences among them, all mentioned dimension reduction
techniques are beneficial to explore sophisticated relationships between the multi-
parameter manufacturing information and the quality. PCA and some of its vari-
ations have been used frequently for process monitoring which is a critical
requirement in any manufacturing process as producing quality products within
specification reproducibly is required from an economically viable process (Thorn-
hill et al. 2002; Qin 2003; Lee et al. 2004; Zhang et al. 2012; Yao and Wang
2015). A comprehensive review of this literature can be found in de Ketelaere
et al. (2015). In addition to that, there are a variety of PCA applications that have
been used for dimensionality reduction, data visualization (Dunia et al. 2013), and
outlier detection (Chiang et al. 2003). Although PCA is the most commonly utilized
dimension reduction technique in literature, there are many applications of ICA,
PLS, and Isomap as well. For instance, Kao et al. (2016) used multi-stage ICA to
extract independent components from the monitoring process data to distinguish
unnatural control chart patterns from the normal patterns. Zhang et al. (2010) used
kernel PLS method for the quality prediction in complex processes. Bai et al.
(2018) compared promising dimension reduction techniques on two experimental
manufacturing data, and demonstrated that Isomap might be a better first option for
the multi-parameter manufacturing quality prediction.

2.2.5 Deep Learning

Artificial neural networks (ANNs) are a family of models inspired by biological
neural networks, and are presented as systems of interconnected “neurons” that
exchange messages between each other. Numeric weights are assigned to the
connections in an adaptive way to inputs that makes the method capable of learning.
With advances in hardware and the emergence of big data, we can create neural
networks with many layers, which is known as deep learning neural networks.
Most ML algorithms mainly focus on function optimization, and the solutions do
not necessarily always explain the underlying trends nor give the inferential power
aimed by artificial intelligence. Therefore using ML algorithms often becomes a
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repetitive trial and error process, in which the choice of algorithm across problems
yields different performance results. Deep learning can be considered as the subfield
of ML that is devoted to building algorithms that explain and learn data that classical
ML algorithms often cannot. In other words, the deep learning algorithms do not
only have predictive and classification ability, but they also have the ability to
learn different levels of complex patterns in large amounts of data. The single layer
perceptron (SLP) model is the simplest form of neural network and the basis for the
more advanced models that have been developed in deep learning. Most commonly
used deep learning models are convolutional neural network (CNN), restricted
Boltzmann machine (RBM), deep belief network (DBN), auto encoder (AE), and
recurrent neural network (RNN). CNN is the most frequently used for computer
vision and image processing (Lecun et al. 1998). RBM is a two-layer neural network
where the connections between units form a directed cycle, and often used for
speech and handwriting recognition (Smolensky 1986). DBN is constructed by
stacking multiple RBMs to reduce computational complexity (Hinton et al. 2014).
Deng et al. (2010) proposed AE by adding more hidden layers to deal with highly
non-linear input. The idea behind RNN is to make use of sequential information.
RNNS are called recurrent because they perform the same task for every element of
a sequence, with the output being depended on the previous computations (Hihi and
Bengio 1996). A detailed overview of the deep learning algorithms can be found in
Schmidhuber (2015). The “keras” package in R (Allaire and Chollet 2018) can be
used for the implementation of deep learning algorithms.

Applications

With automatic feature learning and high-volume modelling capabilities, deep
learning provides an advanced analytics tool for smart manufacturing in the big
data era. Deep learning is a field of study within computer science that aims to equip
machines with the capability to think more like human beings. In other words, its
main goal is to provide machines with the ability to think and learn such as self-
driving cars. From the point view of manufacturing, these algorithms can help com-
panies to develop machines that have capability to determine when a possible defect
occurs. Consequently, producers could automatically take corrective action before
a defect was likely to occur. Despite these advantages, the use of deep learning is
relatively new compared to aforementioned learning methods. Some of the manu-
facturing applications implementing deep learning are surface integration inspection
(Weimer et al. 2016), machinery fault diagnosis (Yu et al. 2015; Janssens et al. 2016;
Jia et al. 2016), predictive analytics, and defect prognosis (Malhi et al. 2011; Wang
et al. 2017). The paper by Wang et al. (2018) presents a comprehensive survey of
commonly used deep learning algorithms, and discusses their advantages over tra-
ditional ML and their applications toward making manufacturing “smart.” Undoubt-
edly, deep learning provides advanced analytics tools for processing and analyzing
big manufacturing data. We believe that increasing consumer demand for better
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products and companies seeking to leverage their resources more efficiently will
lead to increasing research effort of deep learning in applications of manufacturing.

2.3 Developments in Inferential Analyses of New Algorithms

There are two aspects of statistical analysis: algorithmic and inferential. We can
give very broad definitions for these two aspects. Algorithms are what statisticians
do while inference labors to rationalize these algorithms (Efron and Hastie 2016).
To differentiate between these two aspects, we can give a very simple example.
Assume that we observed defective chips manufactured in 20 production lines in a
technology factory, we are interested in summarizing these observed data in a single
number, which is the most popular and simplest statistics, the average, and then we
wish to know the accuracy of this number. Here averaging is an algorithm which
comes generally first in data analysis. Then we wish to know how accurate this
number is. Namely, we are concerned about the algorithm’s accuracy. Therefore,
as an accuracy measure, for instance, the standard error is calculated to provide an
inference of the algorithm’s accuracy.

Due to advancements in computer technology, researchers collect massive
datasets which require new innovative computer-based algorithms. Consequently,
there has been an upsurge in the developments of algorithmic inventions in
computer-age period—from the 1950s to the present—where the traditional bot-
tleneck of statistical applications became faster and easier. All of these algorithms
focus on prediction. Prediction is certainly an interesting subject. However, one
should be careful in using these algorithms by only focusing on prediction. For
instance, estimation and testing are a form of prediction: “In a sample of 25 chips
material A (used for manufacturing chip) outperformed material B; would this still
be true if we went on to test all possible chips?” The answer for this question does
require inferential study.

Inferential aspects of these new algorithms have not been developed in the same
pace as in these algorithmic inventions. However, recently there has been great
effort among statisticians to contribute to statistical inferential aspects of these new
algorithms. Statistical inference (SI) is a very important topic that powers all these
algorithmic inventions. In this section, we will give a brief survey on these advances.

2.3.1 Large-Scale Hypothesis Testing

In many complicated manufacturing lines, usually more than one attribute quality
variable needs to be monitored simultaneously. For example, delamination is one of
the most critical damage modes observed in laminated carbon/epoxy structures in
semiconductor packaging lines. It is very important for the manufacturers to monitor
the number of delamination of different positions of one product at the same time (Li
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and Tsung 2012). There is a need to carry out many simultaneous hypothesis tests,
done with the prospect of finding only a few interesting ones among a haystack of
null cases.

There is a substantial theory of simultaneous inference which was developed
aiming at the frequentist control of family-wise error rates for a small number of
hypothesis tests, maybe up to 20 (Miller 1981; Westfall and Young 1993). The
breakthrough method which was given in Benjamini and Hochberg’s seminal 1995
paper is a false discovery rate (FDR) control approach for multiple hypothesis
testing for large-scale datasets involving thousands of simultaneous tests. This
method was inspired for microarray applications first, then applied to many areas
including manufacturing and engineering. FDR is used to quantify the expected
ratio of incorrect rejections to the number of all the rejected hypotheses. Benjamini
and Hochberg (1995) theoretically proved that when all the null hypotheses are true,
controlling the FDR is equivalent to controlling the type I error rate. Also, when
some of the alternative hypotheses are true, controlling the FDR would provide
much higher detection power, especially when the number of hypotheses is large.
There is an excellent reference on large-scale simultaneous testing method by Efron
(2010). All of these methods have great deal of mathematical originality.

The R package, “locfdr” on CRAN is an R program that provides FDR estimates
for large-scale hypothesis testing procedures (Efron et al. 2015).

2.3.2 Random Forests

Due to rapid developments in computer technology, prediction has become a major
task in recent data analysis problems. There are two problems in this context.
The first one is how to construct an effective prediction rule which is more
algorithmic, the second one is how to estimate the accuracy of its predictions
which is more inferential. For the prediction assessment (more inferential), there
are nonparametric approaches such as cross-validation (Hastie et al. 2009), and
model-based approaches such as Mallows’ C,, (Mallows 1973) and the Akaike
information criteria (Akaike 1974) that are developed in the 1970s for prediction
error assessment.

Many classical prediction algorithms cannot easily handle massive datasets,
even if they can, their predictive power is generally either too modest or poor.
The method of RF (one of the ensemble methods) has become very popular as
learning algorithms that have good predictive performance. Some other ensemble
methods, such as boosting and bagging, in addition to RF have also been developed
to handle big datasets and improved the predictive performance. They fit models
of breathtaking complexity compared with classical linear regression, or even with
standard generalized linear modeling. They are routinely used as prediction engines
in a wide variety of industrial and scientific applications. We will give some recent
studies focused on statistical inferential aspects of these algorithms.
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Wager et al. (2014) studied the variability of predictions made by RFs, and
showed how to estimate standard errors for these methods. This work builds on
variance estimates for bagging that are based on the jackknife and the infinitesimal
jackknife (1J). Moreover, the sampling distributions of the jackknife and 1J variance
estimates were studied. Most existing theoretical results about RFs aim to establish
the consistency of RF predictions (e.g. Biau et al. 2008; Mentch and Hooker 2014).
There has been much less work, however, on understanding the sampling variance
of RFs. Wager and Athey (2018) studied an RF model based on subsampling, and
showed that RF predictions are asymptotically normal under certain conditions on
the sample size. The asymptotic variance can be consistently estimated by using an
1J for bagged ensembles recently proposed by Efron (2014). Mentch and Hooker
(2016) have also developed a formal SI procedure for predictions generated by
supervised learning ensembles. Although the ensemble methods have improved the
predictive accuracy of individual trees, they failed to provide a framework in which
distributional results can be derived easily. They showed that the estimator obtained
by averaging over trees built on subsamples of the training set has the form of U-
statistic. Consequently, predictions for individual feature vectors are asymptotically
normal, allowing for confidence intervals to accompany predictions.

In summary, all of these efforts take a step towards making RFs tools for SI
instead of just being black-box predictive algorithms.

2.3.3 Sparse Modeling

In recent years, there has been a booming interest in ML research community to
model the variable selection problem in high dimensional systems (n < p) using
sparse linear models after the seminal research of Tibshirani (1996) proposing
LASSO. The focus of these new methods is mostly on building interpretable
models for prediction, with little attention paid to inference. Inference is generally
difficult for adaptively selected models based on these new regularized regression
techniques. Classical regression theory aimed for an unbiased estimate of each
predictor variable’s effect. High dimensional datasets (n < p), often with enormous
number of predictors p, make that an unattainable goal. These methods, by
necessity, use shrinkage methods, biased estimation, and sparsity.

After we do the selection (which is the algorithmic approach), we would be
interested in their SIs, such as confidence intervals for the parameters, statistical
properties (consistency, oracle property, etc.) of the estimators in the final model,
determining the accuracy of the final model. This is called post-selection inference
(Efron and Hastie 2016). We will briefly attempt to summarize the issues in post-
selection inference and the recent studies on the inferential aspects of these methods.

Suppose we have fit a LASSO regression model with a particular value for the
tuning parameter, leading to selecting a subset of k of the p (k < p) available
variables. The question arises as to whether we can assign p-values to these selected
variables, and produce confidence intervals for their coefficients. In this context,
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one question that arises is that whether we are interested in making inferences
about the population regression parameters using the full set of p predictors, or
only the subset of k variables. For the first case, it has been proposed that one
can view the coefficients of the selected model as an efficient but biased estimate
of the full population coefficient vector. The idea is to then debias this estimate,
allowing inference for the full vector of coefficients. For the second case, the
idea is to condition on the subset with £ variables and then perform conditional
inference on the unrestricted (i.e. not LASSO-shrunk) regression coefficients of
the response on only the variables in the subset (Efron and Hastie 2016). Most
of the activities around post-selection inference were inspired by the work of
Berk et al. (2013) which is based on investigating the post-selection inference
for linear models where statistical tests and confidence intervals are pursued after
variable selection. Under certain conditions and assumptions, for instance, Gaussian
homoscedastic model errors and the design matrix to be rank-deficient, they showed
that valid post-selection inference is possible through simultaneous inference. For
the debiasing approach, Zhang and Zhang (2014) proposed methodologies for SI
of low-dimensional parameters with high-dimensional data, such as construction of
confidence intervals for individual coefficients and linear combinations of several
of them in a linear regression model. The theoretical results include sufficient
conditions for the asymptotic normality of the proposed estimators along with a
consistent estimator for their finite-dimensional covariance matrices. Further, van
de Geer et al. (2014) proposed asymptotically optimal confidence regions and
tests for high-dimensional models. Javanmard and Montanari (2014) proposed
an efficient algorithm for constructing confidence intervals with nearly optimal
size, and hypothesis testing with nearly optimal power. The conditional inference
approach was developed first by Lockhart et al. (2014). A series of papers (e.g., Lee
et al. 2016) was published on this approach following the work in Lockhart et al.
paper. The R package called “selectivelnference” implements some of the selective
inference methods described in this section (Tibshirani et al. 2016).

234 SVM

The support vector machine has been successful in a variety of applications. Also on
the theoretical front, statistical properties of the support vector machine have been
studied quite extensively with a particular attention to its Bayes risk consistency
under some conditions.

In nonparametric classification and regression problems, regularized kernel
methods, in particular support vector machines, attract much attention in theoretical
and in applied statistics. In an abstract sense, regularized kernel methods (simply
called SVMs here) can be seen as regularized M-estimators for a parameter in a
(typically infinite dimensional) reproducing kernel Hilbert space. For smooth loss
functions, Hable (2012) showed that the difference between the estimator and the
theoretical SVM is asymptotically normal, converges weakly to a Gaussian process
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in the reproducing kernel Hilbert space. Several researchers studied the Bayes risk
consistency of the SVM (e.g. Lin 2002; Zhang 2004; Steinwart 2005) and its rate
of convergence to the Bayes risk (Lin 2000; Blanchard et al. 2004; Scovel and
Steinwart 2004; Bartlett et al. 2006).

2.3.5 Dimension Reduction

There have been extensive work on studying the statistical inferential aspects
of dimension reduction methods since the 1960s. We will attempt to provide a
summary of these activities on this topic.

PCA is the oldest dimension reduction method. Anderson (1963) is the first
statistician who studied the inferential aspect of this method. He provided the
asymptotic distribution of characteristic roots and vectors of a sample covariance
matrix under the assumption of multivariate normality. Dauxois et al. (1982) studied
the limiting distribution of the eigenvalues and eigenvectors based on the results of
convergence by sampling in linear PCA (of a random function in a separable Hilbert
space). Karoui and Purdom (2016) studied the properties of the bootstrap as a tool
for inference concerning the eigenvalues of a sample covariance matrix. Through
a mix of numerical and theoretical considerations, they showed that the bootstrap
performs as it does in finite dimension when the population covariance matrix is
well-approximated by a finite rank matrix. There are some further studies based
on the inferential aspect of PCA. We can give one or two references within this
framework. Critchley (1985) studied the theoretical influence function and various
sample versions were developed to provide methods for the detection of influential
observations in PCA. Further, Boente (1987) studied the asymptotic distribution
of the eigenvalues and eigenvectors of the robust scatter matrix, many activities
followed these papers.

The derivation of statistical properties for PLS regression (PLSR) has been a
challenging task. The reason is that the construction of latent components from the
predictor variables also depends on the response variable. While this typically leads
to good performance and interpretable models in practice, it makes the statistical
analysis more involved. Not many studies can be found in the SI for PLSR until
recently. Kriemer and Sugiyama (2011) studied the intrinsic complexity of PLSR
and assessed an unbiased estimate of its degrees of freedom. They have established
two equivalent representations that rely on the close connection of PLS to matrix
decompositions and Krylov subspace techniques. They have also showed that how
this newly defined degrees of freedom estimate can be used for the comparison
of different regression methods. A recent development, consistent PLS (PLSc)
has been introduced to correct for bias (Dijkstra and Henseler 2015). Aguirre and
Ronkko (2017) employed bootstrap confidence intervals in conjunction with PLSc.

ICA has been widely used for blind source separation in many fields, such
as brain imaging analysis, signal processing, telecommunication, and monitoring
process. Chen and Bickel (2006) analyzed ICA using semiparametric theories
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and proposed an asymptotically efficient estimate under moderate conditions. Wei
(2015) studied the asymptotic normality and derived a closed-form analytic expres-
sion of the asymptotic covariance matrix of the generalized symmetric FastICA
estimator using the method of estimating equation and M-estimator. Sokol et al.
(2014) studied the consistent estimation of the mixing matrix in the ICA model
when the error distribution is close to (but different from) Gaussian. Miettinen
et al. (2015) investigated IC functionals based on the fourth moments in detail,
starting with the corresponding optimization problems, deriving the estimating
equations and estimation algorithms, and finding asymptotic statistical properties
of the estimates.

2.3.6 Deep Learning

Deep learning has attracted tremendous attention from researchers in various fields
of information engineering such as artificial intelligence, computer vision, and
language processing, and even more traditional sciences such as physics, biology,
and manufacturing. Neural networks, image processing tools such as convolutional
neural networks, sequence processing models such as recurrent neural networks,
and regularization tools such as dropout, are used extensively. However, fields
such as physics, biology, and manufacturing are ones in which representing model
uncertainty is of crucial importance.

With the recent shift in many of these fields towards the use of Bayesian
uncertainty, new needs arise from deep learning. Yarin (2016) developed tools to
obtain practical uncertainty estimates in deep learning, casting recent deep learning
tools as Bayesian models without changing either the models or the optimization.
First, he developed the theory for such tools and tied approximate inference in
Bayesian models to dropout and other stochastic regularization techniques, and
assess the approximations empirically. He also discussed what determines model
uncertainty properties, analyzed the approximate inference analytically in the linear
case, and theoretically examined various priors.

Mohamed, senior research scientist at Google DeepMind in London, constructed
a view of deep feed-forward networks as a natural extension of generalized linear
regression formed by recursive application of the generalized linear form (http://
blog.shakirm.com/ml-series/a-statistical-view-of-deep-learning, 2015). Maximum
likelihood was shown to be the underlying method for parameter learning. He
also showed that auto-encoders address the problem of SI, and provide a powerful
mechanism for inference that plays a central role in our search for more powerful
unsupervised learning.

It is clear that there are great efforts to develop the SI of these methods or finding
connections between these and their SI. We believe all of these statistical inferential
advances towards these methods will power these algorithms. Furthermore, they will
not be named with black-box predictive algorithms.
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2.4 Discussion

In this chapter, data-driven methodologies in the manufacturing industry and their
statistical inferential aspects are reviewed. The main advantage of ML algorithms
in manufacturing is the ability to handle high dimensional data. Especially with the
increasing availability of complex data, this feature will intuitively become even
more important in the future. In addition, ML algorithms are very advantageous to
discover implicit knowledge, and increased availability of source programs imple-
menting the algorithms has allowed easy applications on real datasets. Although
ML algorithms generally are very feasible for big data, there are still challenges
to remain such as impact of redundant information (due to high-dimensionality)
and pre-processing of data on the performance of learning algorithms, selection of
an appropriate ML algorithm depending on the question of interest, and correct
interpretation of the results. The developments in SI aspects of ML algorithms build
strong foundations for the use of these algorithms beyond prediction. Prediction
is definitely very important topic, however there are other questions that the
researchers would be interested in such as interpretation of the results, estimation,
statistical accuracy of ML algorithms, determining causal factors, significance of
discovered patterns and so on, which require the use of SI methods.

We would like to end our chapter with an excellent example on how these fast
algorithms may provide misleading results which may affect the society in general.
In 2008, Google Flu Trends claimed it can tell us whether “the number of influenza
cases is increasing in areas around the U.S. earlier than many existing methods.”
The algorithm, based on counts of internet search terms, outperformed traditional
medical surveys in terms of speed and predictive accuracy. In 2013, Google Flu
Trends was predicting more than double the proportion of doctor visits for flu than
the Center of Disease Control (CDC). The algorithm badly failed by overestimating
what turned out to be a nonexistent flu epidemic! This is an excellent example
of why the predictive accuracy and the speed of the algorithms should not be the
main focus. Disregarding inferential justification of any type as massive datasets
have become available from the internet can yield quite dangerous results as in
the case of Google Flu Trends. It is clear that purely empirical approaches are
ultimately unsatisfying without some form of principled justification. The goal of
Sl is to connect ML algorithms to the central core of well-understood methodology.
The connection process has already started. For instance, Efron and Hastie (2016)
showed very elegantly how Adaboost (RF algorithm), the original ML algorithm,
could be defined in the framework of logistic regression. All of the challenges that
ML and SI communities possess demonstrate the astounding opportunities that lie
ahead for collaboration in developing new powerful ML techniques equipped by the
SI tools. Given the multi-disciplinary aspect of ML applications in manufacturing,
it is very important to make efforts to develop connections between SI and ML to
allow experts from different cultures to get together and tackle problems in a more
efficient and accurate way.
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3.1 Introduction

Each day, a flowergirl must decide on a quantity of fresh flowers to purchase at the
wholesale cost before finding out how many she is able to sell at the retail price
that day. Unlike her brother, the newsboy, she is able to hold onto some fraction of
unsold inventory—flowers that remain fresh enough to sell on the following day. Her
daily problem is to choose a purchase quantity to maximize profit over a sequence
of days. If she buys too many, she wastes money on flowers that cannot be sold. If
she buys too few, then she either incurs an opportunity cost of uncollected revenue
(Casimir 1990) or is forced to pay the retail price to make up the difference (Pflug
and Pichler 2014). Having operated this business for a while, she has data on past
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Fig. 3.1 Stochastic modeling and optimization process

demand that she can combine with knowledge about future events such as holidays
to estimate a joint probability distribution for demand in the days ahead. The ability
to carry inventory means that, unlike the newsboy, she cannot simply compute and
purchase a critical fractile of the demand distribution for a single day.'

A rolling strategy for solving problems such as the flowergirl’s is depicted in
Fig. 3.1. At each time, ¢, given a decision problem with uncertain parameters,
we fit a stochastic process model using the data available at that time. Next, we
approximate the space of possible realizations, keeping solution procedures in mind,
and solve the approximated problem. The solution procedure itself may introduce
further levels of approximation. Finally, we implement the decisions that must be
taken at time ¢, roll forward to time ¢ + 1, and repeat the process.

Errors can enter the process at any step—in fact, they are deliberately introduced
in the form of approximations employed for computational tractability. For the deci-
sion maker to accept the sequence of decisions suggested, she must be persuaded
that the whole process of modeling, approximation, and solution is sound. Given
that, in an uncertain world, more or less sound decisions can be followed by either
good or bad consequences, the best decision justification we can offer is that we
continually did the best we could with the information we had available. How can
we support this claim with data?

Generally I prefer the gender-neutral term “newsvendor,” but in this book chapter I wish to
emphasize that the professional problem solved by the woman may be more complicated than
the one her male counterpart faces!
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The following sections describe research on various aspects of this rolling
process for decision making under uncertainty conducted over the past three
decades. Recurring themes that pervade this work include the use of data-driven
methods to specify instances, an emphasis on optimizing the initial one of a
sequence of decisions, and a reliance on approximation and solution methods that
decompose the stochastic optimization problem according to the possible future
realizations of the uncertain parameters. A section is devoted to each step of the
rolling process, culminating in some recent efforts to comprehensively assess the
whole cycle. Forecasters test the quality of outputs by backcasting; i.e., testing how
accurately their methods would have predicted values in a historical dataset, while
financial traders test trading strategies by backtesting them on historical datasets.
Similarly, I argue that the process depicted in Fig. 3.1 should be assessed by re-
enactment over a sequence of historical instances. This process is distinguished from
simulation by the use of actual observations rather than randomly generated data.
The chapter concludes with research needs.

3.1.1 Recurring Applications

Much of the work described in this chapter has focused on two types of resource
management problems, one with a long term orientation and the other having a
short term perspective. Planning for the long term inherently involves uncertainty
because of the difficulty of forecasting demands and costs in advance. Uncertainty
is also present in short-term scheduling of assets when they rely on variable inputs
while demand is governed by both physical processes and consumer decisions. Both
applications concern the provision of services where the impracticality of either
storing inventory or delaying delivery mandates that demand is satisfied when it is
experienced.

Capacity Expansion Planning capacity additions to meet a growing demand for
service is challenging because the rate of future demand growth is difficult to
predict, while the facilities that can be employed to meet the demand typically
are not continuously expandable. Capacity comes in chunks because of physical
constraints and/or scale economies. Different types of facilities may exist with
various combinations of investment levels, operational costs, and lead times for
building or installing them. Demand may vary continuously over time and be
spatially distributed with physical limits on transportation from the facilities to
the demand locations. The time value of money affects the relationship between
immediate and future costs. Ryan et al. (2011) summarized challenges of resource
planning in the electric power industry.

Unit Commitment In electric power systems, thermal generating units are subject
to operating constraints and cost characteristics that limit their flexibility to change
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production levels. Unit commitment is the problem of scheduling which units will
run at each future time point in view of these considerations, which take the form
of minimum up- and downtime constraints; limits on how quickly units can start
up or shut down and how fast production can ramp up or down when they are
running; and fixed costs for producing at any positive level, which result in minimum
economically feasible production levels in addition to upper limits imposed by their
capacities. Different types of units vary in the severity of these constraints as well as
in their variable production costs, which mostly depend on fuel cost. The deepening
penetration of variable renewable generation, such as wind and solar energy, has
increased the uncertainty in the net demand for electricity that thermal units are
required to supply. At the same time, wholesale market rules impose strict limits
on the amount of time available for optimizing the unit commitment schedule. The
challenge is to build a credible model of uncertainty and produce a high-quality
solution within the time limits.

3.2 Stochastic Process Modeling

Ryan (1988) used an indirect approach to addressing uncertainty in optimization
problems, such as production planning or capacity expansion, formulated over
indefinite time horizons. This work began with a deterministic formulation of a
dynamic optimization problem over an infinite time horizon and used the concepts
of a forecast horizon and a solution horizon. A forecast horizon is a time horizon
sufficiently long that any information pertaining to events after it ends has no impact
on the decision that is optimal to implement immediately. Under the assumption
of a unique optimal initial decision, a forecast horizon was defined in Ryan and
Bean (1989) as a time horizon length such that, if the problem is solved over a
finite horizon at least that long, the (unique) optimal decision will coincide with the
optimal initial decision for the infinite horizon problem. Relaxing the uniqueness
assumption, Ryan et al. (1992) defined a (general) solution horizon as a time horizon
long enough that, if the problem is solved over a finite horizon at least that long, any
optimal initial decision identified is guaranteed to be optimal for the infinite horizon
problem. The underlying assumption in this work is that events can be forecast with
reasonable accuracy over some initial time period. The question was, how long
must that initial time period be for a decision maker to confidently implement an
initial decision? If future costs are discounted sufficiently, then future uncertainties
diminish in importance.

Ryan et al. (1992) continued in this vein by developing a method for breaking ties
among alternative optimal solutions so that a solution horizon could be identified.
This paper included a numerical study of capacity expansion assuming a finite
set of facility types characterized by their capacities and fixed costs, as well as
a known function for the cumulative demand for capacity over time, eventually
bounded by an exponential function with a rate less than the interest rate used
to continuously discount future costs. Because facility costs exhibited economies



3 Probabilistic Inputs for Prescriptive Models 53

of scale, eventually a “turnpike” facility, offering the most cost-efficient capacity
growth per unit time, would be adopted. However, finding the initial sequence of
optimal installations before this turnpike policy took effect required optimization.
The numerical results indicated that solution horizons could be substantially shorter
than forecast horizons, so that an optimal initial decision could be identified easily
even under almost complete uncertainty about demand growth in the long run.

Experience with forecasting demand growth for use in expansion planning in the
utilities division of a large chemical manufacturer prompted me to consider how to
model uncertainty in a realistic way that managers would appreciate. This division
was responsible for producing steam used for process heat, to run mechanical
equipment, and to cogenerate electric power. While electricity generation was
supplemented by outside purchases, steam production was entirely internal to the
plant. Because having insufficient steam pressure could result in product quality
degradation or even force a partial plant shutdown, planning sufficient boiler
capacity was critical. The existing planning process was to annually generate a five-
year forecast for demand growth. To protect against forecast errors and allow for the
lead time required to procure and install equipment, a fixed margin was added to the
forecast. The need to expand capacity was signaled if the augmented demand growth
was projected to equal or exceed existing capacity within this five-year planning
horizon.

Two major features appeared to be important to include in a model for uncertain
demand growth for use in such an environment. One was to explicitly represent
forecast revisions that occurred in response to demand data observed each year.
The other was to replace the fixed margin with a probabilistic envelope around the
forecast that would reflect the increase in uncertainty associated with forecasts of
more remote time periods. The utility managers were comfortable with statistical
confidence intervals and had retained historical records of monthly steam usage.
Some questions that arose were how often to update the forecast and what would
be a suitable confidence level to use in constructing prediction intervals. These two
model parameters are related because less frequent forecast revisions could decrease
the accuracy of the prediction limits, while requiring a higher confidence level
would magnify the effect of inaccurate point forecasts. Ryan (1998) describes an
empirical study in which a time series model was fit to the historical data and the
process of repeatedly generating forecasts with the latest available data was re-
enacted, augmented by either a fixed or a probabilistic margin. Upon each forecast
revision, the optimization problem to determine the optimal timing of additional
boiler installation was solved using the augmented demand and implementation of
any capacity increment to occur before the next roll forward was recorded. The
resulting re-enacted capacity expansion policies were compared according to their
combinations of total discounted cost and measures of insufficient capacity. Based
on an efficient frontier constructed with these two performance measures, the value
of more frequent forecasts became apparent while cost-risk profiles of the different
capacity margins could be assessed. By assigning a penalty value to capacity
shortages, McAllister and Ryan (2000) used first-order stochastic dominance in an
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expanded simulation study to select the best combination of forecast frequency and
capacity margin.

Although the use of fixed or probabilistic capacity margins was partially
motivated by the lead times required to expand capacity, those lead times had not
been modeled explicitly in optimization models, going all the way back to classical
work by Manne (1961) and Freidenfelds (1981). The model formulated in Ryan
(2003) considered them as fixed constants while representing demand according
to a time series model with parameters that could be estimated from data. The
choice of an integrated moving average model allowed different aspects of the
uncertainty in demand; namely, its autocorrelation which results in nonstationary
expected growth and its random variation about the expectation, to be isolated. The
presence of lead times suggested that expansions should be based on the capacity
position, similar to the inventory position commonly used in inventory models, that
includes not only existing capacity but any capacity in the process of being added.
The optimality of an expansion timing policy based on the proximity of uncertainty-
inflated demand to this capacity position could then be proved. An approximation
for the optimal expansion size was found by adapting a continuous-time optimal
expansion policy to the discrete time setting compatible with the demand growth
model. Simulation studies revealed the effects of autocorrelation and randomness
in the demand growth on the threshold of excess capacity position that would
optimally trigger an expansion. The main conclusion was that failing to account
for autocorrelation (or nonstationarity) in the demand growth model could lead to
overestimating the randomness and expanding capacity too early, resulting in higher
than necessary discounted costs.

To explore the effect of expansion lead times analytically, Ryan (2004) modeled
demand growth as following a geometric Brownian motion (GBM) process, in line
with earlier work by Manne (1961) and Bean et al. (1992), and showed how to
optimize expansions to minimize their expected discounted cost subject to a service
level constraint. Meanwhile, real options models had been rapidly increasing in
popularity as a way to assess the value of the flexibility provided by some investment
alternatives to respond to uncertain future events. Motivated by the success of the
Black-Scholes formula for the value of a European call option on a stock along
with analogies between financial options and operational flexibility, many authors
formulated models for investment or even operational decision problems that relied
on an explicit or implicit assumption that the value of some “underlying asset”
would follow a GBM process. In the engineering economic analysis literature,
some examples of such GBM-following variables cited by Marathe and Ryan
(2005) included both sales volume and price of a product; internal production,
outsourcing and delivery costs of a product; prices of commodities derived from
natural resources; present values of cash flows pertaining to equipment operation;
and various other physical asset values. Such assumptions did not frequently
appear to be based on any analysis of data. Relying heavily on Ross (1999), we
proposed simple statistical tests of historical time series data that would verify
the fundamental assumptions of the GBM model and allow for reliable estimates
of the model’s parameters. Applying them to historical data concerning electricity
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consumption, airline passenger enplanement, revenue from cell phone subscriptions
and number of Internet hosts, we found that the data were consistent with the GBM
assumptions in the first two instances but not the last two. It would be interesting
to re-examine updated data concerning demand for capacity in the two then-nascent
industries for which we found the GBM model to not fit well. Meanwhile, Marathe
and Ryan (2009) employed formulas for pricing exotic options to evaluate the
potential for shortage during the lead time required to add capacity, assuming GBM
demand growth.

The capacity expansion studies described above employed stochastic process
models directly in continuous-time dynamic programming problem formulations.
The formulations were simple enough that at least some aspects of the form of
an optimal policy could be derived analytically and only modest computation was
necessary to find optimal solutions. Sample paths of the stochastic process models
were generated only for the purpose of simulating or re-enacting the process of
estimating parameters, constructing forecasts and probability limits, and computing
the corresponding decision sequences. In situations where operational costs vary
widely according to the investment decisions chosen, stochastic programming
models are more suitable. Efforts to discretize stochastic process models in order
to generate scenarios are described more in Sect. 3.3. While the emphasis shifts to
finding a relatively small set of scenario paths that well represent the whole space
of possible future realizations, it is important to not neglect the identification of an
appropriate stochastic process. For example, Jin et al. (2011) applied the statistical
tests suggested by Marathe and Ryan (2005) to validate the use of GBM models for
both demand for electricity and the price of natural gas before applying a moment-
matching procedure to generate scenarios for a two-stage model of electricity
generating capacity expansion.

This section concludes with a recent effort to build a stochastic process model
that can be used to generate probabilistic scenarios for short-term planning. Feng
and Ryan (2016) combined various methods including a functional regression
method based on epi-splines (Royset and Wets 2014) to develop a model of demand
for electricity based on a day-ahead weather forecast while capturing typical
temporal patterns and accounting for seasonal and geographic information. While
the accuracy of the forecast can be assessed according to the usual measures of mean
squared error and mean absolute percentage error, the shape of the distribution of
forecast errors plays an important role in generating probabilistic scenarios based on
the model. Our approach resulted in both tighter and less skewed error distributions
than commonly used benchmark models.

3.3 Discretization

Once a stochastic process model for the evolution of uncertain parameters is
identified, the next step is to find a tractable representation of it for use in
optimization. With a few exceptions, such as the infinite horizon generic capacity
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expansion models described in Sect. 3.2, a continuous-time and -state stochastic
process model cannot be used directly in optimization. The process of formulating
a discrete set of future realizations, with associated probabilities, has been investi-
gated under the label of scenario generation. One popular approach is to randomly
generate a large collection of sample paths and then apply so-called scenario
reduction procedures to identify a representative subset. While some methods for
stochastic optimization embed the scenario generation or sampling process within
the optimization procedure, I focus attention on methods where the representation
of uncertainty is completed before the solution procedure commences.

Study of a medium-term energy planning problem sparked my interest in this
issue. Quelhas et al. (2007) had formulated a multiperiod generalized network
flow model for bulk energy flows in the US, and Quelhas and McCalley (2007)
had validated it against actual utilization of different primary energy sources to
meet the demand for electric energy over a year. While coal prices were quite
stable, the volatility in the prices of natural gas and crude oil made the assumption
of deterministic fuel costs seem unrealistic. In the first few years of the twenty-
first century, natural gas generation had grown to account for a significant share
of electricity generation in the US because of the relative flexibility and lower
emissions of gas-fired generating units compared to coal-fired ones. However,
before innovations in shale gas extraction took hold, the price of natural gas was
generally increasing with considerable volatility from year to year. Our goal in
Wang and Ryan (2010) was to add a representation of the fuel cost uncertainty to
the network flow model and investigate the impact of this uncertainty on resource
utilization decisions. Because the model of Quelhas et al. (2007) was formulated
on a discrete-time basis, a natural approach was to formulate the deterministic
equivalent of a two-stage stochastic program where flows for one period composed
the first-stage decisions and flows for later periods composed the recourse decisions
that could be delayed until after the fuel prices for those periods were realized. We
adopted a receding horizon approach to simulate the process of monthly decision
making with updates on the fuel price forecasts. We used just three possible values
of natural gas price in each month, corresponding to the point forecast and its lower
and upper confidence limits according to forecasts published by the US Department
of Energy. Even so, the assumption of independence between periods resulted in a
large number of scenario time series. When they were combined with the thousands
of nodes and arcs in the original deterministic formulation, the extensive form of the
deterministic equivalent became prohibitively large.

Several approaches exist for managing the computational difficulties associated
with solving with the large-scale deterministic equivalent, and most realistic
applications require a combination of them. One is to apply decomposition methods,
such as those based on scenario decomposition as described in Sect. 3.4 or Benders
decomposition as applied by Wang and Ryan (2010). Another is to limit the number
of scenarios used, as described in Sect. 3.3.1. Both of these approaches assume
the deterministic formulation is fixed and approximate either the joint probability
distribution of the uncertain parameters (in the form of a scenario tree) or the
optimal solution of the problem based on a given scenario tree. A third approach,
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discussed in Sect. 3.3.2, is to consider more carefully the relative value of detail in
the deterministic formulation as opposed to the scenario tree.

3.3.1 Scenario Reduction

Wang (2010) investigated the existing scenario reduction approaches based on
probability metrics (Dupacova et al. 2003; Heitsch and Romisch 2003) and deemed
them unsatisfactory because they operate entirely within the probability space of
the stochastic process realizations without considering the optimization context.
In fact, they are motivated by results concerning the stability of the optimal first-
stage decisions with respect to the discrete approximations of the continuous
probability distributions for the uncertain parameters. However, there are two
levels of approximation present in these, by now, “classical” methods of scenario
reduction. First, proximity of the solution found using the reduced scenario set to
the true optimal solution is expressed in terms of an upper bound on the distance
in cost, not the distance itself. Second, the optimization problem to find a reduced
scenario set that minimizes this upper bound is only approximately solved using fast
heuristics such as fast forward selection (Heitsch and Romisch 2007)—otherwise,
the scenario reduction procedure could be less tractable even than the optimization
problem it is intended to simplify. To inject some information about the optimization
context into the reduction procedure, Wang developed a heuristic approach that
employed the forward selection heuristic within clusters of scenarios identified on
the basis of their similarity in terms of their optimal first-stage decisions.

Feng and Ryan (2013) elaborated this idea and applied it to the electricity
generation expansion planning model of Jin et al. (2011). The moment-matching
procedure was simplified to take advantage of the stationarity property of the GBM
processes. However, even with only two or three branches in the scenario tree each
period, the number of scenario paths was too large to allow for solving the extensive
form of the deterministic equivalent over a realistic time horizon. As Wang had
proposed, we solved the deterministic “wait-and-see” subproblem for each scenario,
characterized the optimal decision in terms of a few summary descriptors, and then
clustered the scenarios based on similarity of these descriptors for the resulting
optimal decisions. By applying fast forward selection to choose one scenario from
within each cluster, we obtained a reduced set of scenarios that performed similarly
to a set of the same size found by applying fast forward selection to the whole set of
scenarios. However, the time required for our reduction procedure was much lower
and, unlike forward selection, remained approximately constant regardless of the
desired number of scenarios in the reduced set.

For stochastic unit commitment, limiting the number of scenarios is critical for
obtaining high quality commitment schedules in the limited time allowed by market
rules on the day before the target day. Feng et al. (2015) combined segmentation
of similar days with epi-spline functional regression to develop stochastic process
models for the hourly load, incorporating the uncertainty associated with weather
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forecasts. Rather than generating randomly sampled paths, we carefully constructed
probabilistic scenarios by approximation using conditional expectations. Probabilis-
tic scenarios for wind energy generation were obtained from a commercial vendor
based on numerical weather prediction models. The net load scenarios, representing
possible time series of load less the wind generation amounts, were formed by
crossing the two sets of scenarios. Thus, although the sets of scenarios had been
carefully constructed to be small, we still ended up with large sets of net load
scenarios. To reduce their number, Feng and Ryan (2016) further developed the
approach of Feng and Ryan (2013). In this variant, scenarios were clustered based
on the major components of the objective function; namely, the production cost and
the positive or negative imbalance between energy produced and the net load in each
hour. Compared with the unit commitment schedules found by using fast forward
selection, those produced by optimization with our reduced scenario set provided
more reliable electricity delivery and were more similar to the schedules produced
by using the whole set of scenarios.

3.3.2 Comparative Granularity

Quelhas and McCalley (2007) validated their deterministic model by comparing its
optimal network flows with the actual amounts of fuel transported and utilized for
electricity generation as well as the electricity transmitted among regions in case
studies of two separate past years. They attributed differences between the optimal
and actual network flows to the spatial and temporal aggregation necessitated by
limitations in the available data and the absence of market interactions in the
model, as well as the lack of representation of uncertainty and future expectations
by decision makers. Wang and Ryan (2010) attempted to represent uncertainty in
fuel costs, as well as changing expectations concerning them, by re-enacting the
solution of a stochastic program where the scenarios represented both the forecasts
and the associated levels of uncertainty, with forecast updates included in the
receding horizon procedure. When this was done, the multiperiod flows comprising
the sequence of first-stage decisions that would be implemented in the receding
horizon procedure were quite similar to the actual decisions that had been made.
As we concluded in the paper, “When model validation is unsatisfactory, analysts
frequently strive to include more temporal or spatial detail. Our results suggest
that incorporating stochastic variability may be another practical way to improve
model fidelity, especially when historical forecasts are available but disaggregated
temporal and spatial data are not.”

Similar issues arise in infrastructure planning, specifically electricity generation
and transmission expansion planning. Practitioners advocate a procedure called
scenario planning, where they define a scenario as a description of possible
future conditions under which the infrastructure would be operated, usually at a
single future time point. Electricity system resource planners sometimes use the
word “future” instead, where a future could describe global system characteristics
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and policy choices such as degree of penetration of renewable energy; and the
presence or absence of carbon emission regulations, large-scale energy storage,
and demand response mechanisms. A detailed deterministic operational model is
used to optimize investments in infrastructure for each future, with the goal of
identifying investment decisions that are common across all futures. Mufioz et al.
(2014) provide a clear description and critique of this approach, as compared
with stochastic programming, in a transmission expansion planning case study
for the western US. The weaknesses of scenario planning include the lack of any
assessment of the relative likelihood of the futures considered and the possibility
that a decision that is optimal for each scenario individually is not optimal when
they are considered simultaneously.

However, the intuitive appeal of this approach has led to its widespread adoption
and the related assumption that operational models must be sufficiently detailed
to accurately assess the value of infrastructure investments. Including a high level
of operational detail produces a large scale multiperiod optimization model, with
both high-dimensional decision variables, some of which are discrete to represent
nonconvexities, and many constraints to capture the details of system operation
under temporal variation. As a result, planners are reluctant to consider many
different futures or scenarios because simulating operation with each one is so
expensive computationally. In such a context, a stochastic program with multiple
probabilistic scenarios to be considered simultaneously appears impractical. Jin
et al. (2014) formulated a stochastic program for thermal generation expansion
planning with probabilistic scenarios representing availability of wind power in a
typical year. To control the size of the extensive form, we compared the results
of different simplifications. One was to decrease the stochastic granularity by
reducing the number of wind energy scenarios considered and the other was to
decrease the temporal granularity by dropping the nonconvex unit commitment
constraints while retaining the continuous ramping restrictions. In case studies
comparing the results of both approximations with the full model, we found that the
more granular stochastic representation combined with coarse-grained operational
constraints resulted in more accurate solutions and more efficient computation
than the coarse-grained stochastic representation combined with highly detailed
operational constraints. Accuracy of the solution was judged according to similarity
with the solution obtained by solving the full model with high detail in both the
stochastic and temporal representations.

3.4 Solution Methods

Both capacity expansion and unit commitment are naturally formulated as stochastic
mixed integer programs (SMIPs) because of the discrete character of the primary
decisions. In capacity expansion, increments of capacity typically are not available
in continuous sizes because of economies of scale and other design considerations
for durable equipment or the construction of major facilities. The decision variables
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that describe operations may also be discrete because of minimum run-time or
production level constraints, discontinuities in marginal cost, or nonlinearities that
are approximated as piecewise linear. In unit commitment, binary decision variables
are used to express the fundamental on/off decisions as well as nonlinear or
nonconvex operational features. In realistically scaled instances, the deterministic
subproblem for a single scenario may be challenging to solve in a reasonable amount
of time. In both application contexts, considerable research has been devoted to
devising reformulations and decomposition methods to solve the deterministic
instances efficiently.

Including multiple probabilistic scenarios for parameter values exacerbates the
computational challenge and motivates the development of approximate solution
methods. Various decomposition methods have been explored including Benders
(stage-wise) decomposition and Dantzig-Wolfe decomposition (column genera-
tion), as well as Lagrangian relaxation of “complicating constraints.” We have
focused on scenario decomposition, which can be viewed as relaxation of the
nonanticipativity that is expressed either implicitly or explicitly in the formulation
of a SMIP. Nonanticipativity is expressed implicitly by formulating the problem in
terms of decision stages, where the decision variables in a given stage can depend
on realizations of uncertain parameters observed in that stage or earlier, but not
on values to be revealed in future stages. In a scenario formulation, all decision
variables are scenario-dependent, but explicit nonanticipativity constraints are intro-
duced to force agreement in a given stage for all decision variables corresponding
to scenarios that agree up to that stage. When the nonanticipativity constraints are
relaxed, the problem decomposes into separate deterministic scenario subproblems
that can be solved efficiently using all the solution technology developed for
deterministic instances in that application. For example, software for solving
unit commitment combines mixed integer programming solvers with specialized
constraint management and acceleration techniques such as warm starting.

Scenario decomposition algorithms for solving SMIPs typically produce approx-
imate solutions because exact methods based on branch-and-bound (Carge and
Schultz 1999) converge too slowly to be practical or because guarantees of
convergence to optimality that exist in the continuous case (Rockafellar and Wets
1991) fail to hold for nonconvex problems. Focusing without loss of generality
on cost-minimization problems, lower bounds on the optimal objective function
value are essential, either to employ in branch-and-bound algorithms or to assess
the quality of a terminal solution. In the scenario decomposition method known as
progressive hedging, Gade et al. (2016) derived a lower bounding approach using the
information available in any iteration of the algorithm and demonstrated its practical
use in two-stage stochastic server location as well as stochastic unit commitment.
Cheung et al. (2015) employed these lower bounds, in stochastic unit commitment
instances of the scale typically solved daily by US independent system operators,
to demonstrate that parallel progressive hedging could obtain high-quality solutions
in a practical length of time. For two-stage SMIPs, Guo et al. (2015) exploited the
correspondence between this progressive hedging lower bound and one based on
Lagrangian relaxation of the nonanticipativity constraint to speed up convergence of
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the exact branch-and-bound algorithm of Carge and Schultz (1999). Guo and Ryan
(2017) extended the progressive hedging lower bound to certain time-consistent
formulations of risk-minimizing multi-stage stochastic programs.

3.5 Comprehensive Assessment

Following the sequence of activities discussed in the previous three sections, we
have

1. formulated a stochastic process model for uncertain parameters in our optimiza-
tion model, informed by observational data and allowing parameter estimates to
be updated as additional data are collected;

2. carefully discretized the models to produce a modest number of probabilistic
scenarios, considering tradeoffs between the amount of detail included in
operational considerations and the granularity of the stochastic discretization;
and

3. developed a method to assess the quality of an approximate solution to the
resulting stochastic mixed integer program.

Steps 2 and 3 have emphasized the role of scenario subproblems. Scenario
reduction methods developed for use in Step 2 employed them to characterize and
cluster scenarios in terms of the optimal decisions for the associated deterministic
subproblems. The lower bound in Step 3 was developed for solution procedures
based on scenario decomposition. This section describes approaches to assess the
quality of scenario sets and the solutions obtained by optimizing against them.
As in the previous work, we employ scenario decomposition and emphasize the
influence of different scenarios on the decisions to be implemented at once. In
settings where instances of the same problem are solved repeatedly with continually
updated parameter values, we argue that re-enactment is an appropriate data-driven
approach for assessment and develop computationally efficient shortcuts for it. Here
we use the term scenario generation method (SGM) to denote “any combination of
stochastic process modeling, approximation, sampling and reduction techniques that
results in a set of probabilistic scenarios based on the information available at the
time [when] the [stochastic program] is to be solved” (Sar1 Ay and Ryan 2018).

3.5.1 Direct Assessment of Scenario Generation Methods

Before describing methods for assessing scenario generation methods, let us
consider some related concepts that have been rigorously defined and tested in the
closely related, but not identical, context of probabilistic forecasting. As defined
by Gneiting and Katzfuss (2014), “a probabilistic forecast takes the form of a
predictive probability distribution over future quantities or events of interest.” A
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probabilistic forecast is called calibrated, or equivalently, reliable if the probabilities
associated with predicted values correspond closely to their observed frequencies.
The goal for a probabilistic forecaster is to produce predictive distributions that are
as concentrated, i.e., sharp as possible, subject to reliability. The combination of
reliability and sharpness is called skill (Pinson and Girard 2012). Precise definitions
and metrics for these and other desirable characteristics of probabilistic forecasts of
scalar quantities have been developed. Various “scoring functions,” which measure
the distance between a probabilistic forecast and the observed value, are used to
compare the predictive performance of competing forecasting methods. Although
the observed value could be viewed as a random variable with a degenerate
distribution, the probability metrics used for scenario reduction are not mentioned in
the probabilistic forecast assessment literature. Moreover, as Gneiting and Katzfuss
(2014) note, corresponding metrics and scoring functions for assessing probabilistic
forecasts of multidimensional quantities (e.g., scenarios for stochastic programs)
are lacking. Many of those that exist were developed in the context of weather
forecasting where, typically, equally likely sample paths, called ensemble forecasts,
are generated by running multiple replications of numerical weather prediction—
simulation—models under different conditions or assumptions. Pinson and Girard
(2012) applied some statistical metrics for reliability and skill to evaluate equally
likely scenario time series for wind energy production over the short term.

It is important here to note a distinction between the so-called “probability
metrics” used in scenario reduction in the stochastic programming literature and
the “statistical metrics” used in probabilistic forecast verification. For stability of
the optimal solution to a stochastic program, the discretized or reduced scenario set
should minimize the distance to the “true” distribution in terms of the Wasserstein
distance. Given two cumulative distribution functions (CDFs), F' and G for a real-
valued random variable, the simplest variant of the Wasserstein distance is (Pflug
2001):

0]

dw (F, G) :/ |F(u) — G(u)|du, 3.1)

—00

that is, the total absolute deviation between the CDFs. This distance measure is
often called the mass transportation or earth mover’s distance because, for discrete
distributions, it can be computed by solving a linear transportation problem to move
the probability mass from one distribution to the other with minimal work (defined
as mass times distance). On the other hand, in the nonparametric goodness-of-fit
testing literature, the distance between empirical distributions is often measured
using the energy distance (Székely and Rizzo 2013):

dg(F, G):/OO(F(u)—G(u))zdu=2E|X—Y|—E|X—X/|—E|Y—Y/|, (3.2)

where X and X’ are independent random variables distributed as F and Y and Y’ are
independent random variables distributed as G. The name comes from a relation to
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Newtonian potential energy within a gravitational space. The energy score used to
evaluate probabilistic forecasts is based on the energy distance between the forecast
CDF and the observation (Gneiting and Raftery 2007). When probabilistic forecasts
and the corresponding observations are available for a collection of historical
instances, the skill of the forecasting method can be evaluated in terms of the
average energy score over the instances. Both the Wasserstein distance and the
energy distance can be computed easily for joint distributions of several discrete
variables, such as time series, by solving the corresponding mass transportation
problem or evaluating the corresponding expectations as probability-weighted sums.

Another distance-based approach for assessing the reliability of ensemble fore-
casts of multidimensional quantities, which can be seen as multiple equally likely
scenarios, is based on minimum spanning trees (Wilks 2004). Given a collection
of historical instances, the idea is to quantitatively assess the degree to which
the observation is indistinguishable from an ensemble member. For each instance
d = 1,..., D, a complete graph is constructed with nodes for each ensemble
member, s = 1, ..., S, as well as the observation where edge lengths are computed
according to a suitable distance measure, usually Euclidean distance. Next, a
minimum spanning tree (MST) is constructed to connect all the ensemble members
and its total edge length is recorded, say as Zg. Then, for each ensemble member
s = 1,..., S, the observation is substituted for member s and the length of the
resulting MST over those S nodes, not including member s, is recorded as Zf . The
S + 1 MST lengths for instance d are sorted in increasing order and the rank of £
is recorded as r;. Finally, a histogram with bins for the possible values 1, ..., S+ 1
of the ranks {ry,d = 1, ..., D} is constructed and evaluated for uniformity. A flat
histogram indicates that the observation is equally likely to fall in the middle of
the ensemble or its outer reaches. Overpopulation of the lower-valued bins occurs
if the ensemble is either underdispersed or biased because the observation tends
to be more distant from the ensemble members than they are from each other.
A disproportionate number of higher rank values indicates that the ensemble is
overdispersed so that the observation falls too often in the middle. Uniformity of the
rank distribution can be quantified using a goodness-of-fit statistic but the graphical
histogram is appealing because its shape helps diagnose the nature of the errors in
ensemble forecasts (or sets of equally likely scenarios).

When a scenario generation method employs approximation rather than gen-
erating sample paths of the stochastic process model, or when scenario reduction
methods are used, the resulting scenarios generally are not equally likely. To
assess the reliability of unequally likely scenarios, Sar1 et al. (2016) developed
a rank histogram based on the Wasserstein distance. The mass transportation
distance (MTD) rank histogram (Sar1 and Ryan 2016) is constructed similarly to
the MST rank histogram with the following three differences. First, Eg is computed
as the minimum cost of transporting the probability mass from the scenarios to
the observation. Second, when the observation is substituted for scenario s, it is
assigned the probability of that scenario and Zf is computed as the minimum cost of
transporting all the probability mass, including that mass having been re-assigned
to the observation, to scenario s. Finally, MTDs are sorted in decreasing order to
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find ¢ as the rank of Zg . In simulation studies, we demonstrated that the MTD rank
histogram has a similar shape to the MST histogram under the same conditions of
bias, overdispersion or underdispersion. The MTD values can be computed directly
(even more efficiently than greedy-algorithm-based MST lengths) as the sum of
probability-weighted distances. We applied the MTD rank histogram, as well as
energy scores and event-based scores, to assess two different methods for generating
wind power scenario time series on the day ahead and found that it could distinguish
among scenario sets based on their autocorrelation levels as well as their bias and
dispersion.

3.5.2 Assessing Solutions by Re-enactment

While reliability of scenario sets may be seen as a necessary condition for obtaining
good solutions to stochastic programs, it may not be sufficient. In fact, there seem
to be few studies that have “closed the loop” and examined how well the solution
to a stochastic programming performs in the target context. The stochastic process
modeling step can be assessed by comparing sample paths generated by the model
to observed realizations, but studies of this type are rarely reported. Scenario
reduction procedures, operating entirely in the realm of probability models, aim to
approximate a continuous or highly granular discrete model with a coarse-grained
discrete one. We return to the idea of re-enactment as a data-driven approach for
assessing the quality of solutions obtained by the whole process of formulating a
stochastic program, generating scenarios and obtaining approximate solutions.

The term re-enactment has been used recently, to describe a procedure to assess
prediction intervals for wind energy generation, as “a walk forward through date-
times in the past, computing prediction intervals using only data available prior to
that date-time. In doing so, we compute prediction intervals using only relevant
historical information, and are able to assess prediction interval quality using actual
observations not used in the computation of those prediction intervals” (Nitsche
et al. 2017). Staid et al. (2017) used a similar procedure to evaluate scenarios
for wind power time series in terms of energy scores, MST rank histograms, and
other metrics. In the context of stochastic unit commitment, Sar1 and Ryan (2017)
extended this idea to re-enact the process of not only generating scenarios but also
solving the extensive forms of the stochastic programs. For each historical day d, we
generated scenarios by competing methods, including some variants, using the data
available through day d — 1, then solved the stochastic program to obtain an optimal
commitment schedule, and finally simulated dispatching the committed units to
meet the observed net load on day d. We found that the variant of the scenario
generation method that would be selected according to energy score, MTD rank
histogram and some event-based scores produced the lowest average cost over the
set of historical days.
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Encouraged by these empirical results but cognizant of the computational burden
of repeatedly solving stochastic programs to conduct this type of re-enactment,
Sar1 Ay and Ryan (2018) proposed solution assessment methods for two-stage
stochastic programs (SPs) based on MTD rank histograms of the costs of solutions
to scenario subproblems. As described in that paper, “for each [historical] instance,
a single-scenario version of the SP is solved to find a candidate first-stage solution.
Then, for each scenario as well as the observation, the second-stage solution
is optimized assuming the candidate solution has been implemented, and the
total cost for the scenario is computed. Reliability assessment is then applied to
these costs. Variants of this approach differ according to whether the expected
value (EV) scenario, perfect information (PI, i.e., the observation), or a randomly
selected (RS) scenario is used to find the candidate solution.” The use of an RS
scenario is consistent with the notion that members of a reliable scenario set are
statistically indistinguishable from the corresponding observation. We simulated
this process using synthetic data for stochastic server location as well as stochastic
unit commitment instances and then applied it to a case study of stochastic unit
commitment with uncertain wind energy production. We concluded, “Simulation
studies demonstrate that reliability of SGMs can be assessed accurately by the EV-
based method. The stochastic unit commitment case study indicated that the PI-
and RS-based methods can be used to distinguish between higher and lower quality
SGMs, as have been identified by re-enactment” (Sar1 Ay and Ryan 2018).

3.6 Conclusions

My current interest in re-enactment as a data-driven strategy for evaluating the entire
modeling and solution process depicted in Fig. 3.1 arose while conducting a project
on stochastic unit commitment for the Advanced Research Projects Agency-Energy
(ARPA-E) of the US Department of Energy. Because of the funding source, the
project emphasized engagement with end users to enable transfer of the technology
developed. Our team, which included personnel from two universities, a software
developer, and a national laboratory in partnership with an independent system
operator, readily identified two major barriers to adoption of stochastic optimization
by electricity system operators. One was mistrust in the scenario generation process
and the other was doubt that high quality solutions could be found within realistic
time limits. Some of the research described in Sect. 3.3.1 was aimed at overcoming
the former barrier while the work outlined in Sect. 3.4 addressed the latter. The
pair of papers by Feng et al. (2015) and Cheung et al. (2015) summarize this
project’s major accomplishments. However, the real test of our project came when
we were asked to demonstrate the cost savings that the system operator might enjoy
by replacing their current deterministic optimization with our proposed stochastic
programming procedure. To estimate them, our team conducted a detailed and
careful re-enactment of daily unit commitment over a year’s time. For the stochastic
programming model, this process included stochastic process modeling and scenario
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generation using the data available up to the target day, followed by dispatch of
the committed units to satisfy the observed net load on the target day. The results
demonstrating savings of a few percent have been presented at conferences but,
unfortunately, not documented in a published paper.

While writing this chapter I was surprised to recall that one of the first papers
I independently conceived and wrote (Ryan 1998) involved a similar process of
re-enactment with actual data to test different ways of modeling uncertainty in
a capacity expansion problem. About a decade later, after spending some time
on queuing models of manufacturing systems, I began working on stochastic
mathematical programming and, again, used re-enactment to explore the impact of
uncertainty on an optimization model intended to simulate actual decision making
(Wang and Ryan 2010).

For this form of validation of the stochastic modeling and optimization process
to be widely accepted and used, it must developed rigorously. For this development,
we need an underlying probability model for the observed data that first inform the
stochastic modeling process and later are used to evaluate solutions. The detailed
re-enactment procedure is predicated on the idea that a higher quality scenario
generation method should result in lower re-enacted costs. Because the cumulative
cost over the re-enactment period is a random variable that depends on the observed
data collected, comparisons of the costs incurred by different modeling and solution
approaches can only be claimed in probabilistic terms. Sar1 Ay and Ryan (2018)
presented evidence that our faster approach for scenario and solution assessment is
itself reliable, but formal proofs of this claim await completion.

In the long run I envision open-source software tools that could streamline
the conduct of re-enactment studies. Our R package to compute the MTD rank
histogram (Sar1 and Ryan 2016) is a tiny step in this direction. The PySP package
in Pyomo (Hart et al. 2017) has helped to structure the way I think about a
stochastic program, as a deterministic model accompanied by a scenario tree. This
structure facilitates the repeated re-formulation of problem instances that differ
only according to the scenarios included, which is also necessary for re-enactment.
The easy parallelization and inclusion in Pyomo of an extension that computes
the progressive hedging lower bound both facilitate scenario decomposition as a
fast and effective strategy for repeatedly solving re-enacted optimization models.
Transparent validation methods, made easier by software tools, could expand the
use of stochastic optimization and result in better decisions in a world of uncertainty.
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4.1 Introduction

4.1.1 Representation Learning

Representation learning has recently become a research trend in graph mining
domain, which can be attributed to multiple reasons. First, the notion of representa-
tion learning helps to design a variety of deep architectures. Second, representation
learning algorithms share statistical information across various tasks, that is, infor-
mation learned from either unsupervised or semi-supervised tasks can effectively
be exploited to perform supervised tasks. Third, they efficiently handle scarce data,
where very few labeled examples exist for training. Thus, the model learns from
labeled and unlabeled data, which in turn avoids overfitting. Fourth, they help to
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resolve the issue of initial poor representations. One typical example of this is the
use of word embeddings, where each word is represented using one-hot vector. Such
representations do not convey useful information, as any two different vectors have
the same distance from each other. It is important to note that representation learning
incorporates two different aspects: (1) The choice of initial parameters of deep
architecture can substantially enhance model optimization; and (2) Understanding
the input distribution can help to learn about the mapping function from the input
space to the output space, which in turn allows generalization over various tasks.

4.1.2 Need and Challenges for Representation Learning

Real-world information networks (a.k.a. graphs), such as social networks, biological
networks, co-authorship networks, and language networks are ubiquitous. Further,
the large size of networks—millions of nodes and billions of edges—and the
massive amount of information they convey (Easley et al. 2010) have led to a
serious need for efficient and effective network mining techniques. Modeling the
relationships and interactions among network entities enables researchers to better
understand a wide variety of networks in a systematic manner. Generally speaking,
any model we employ for graph analysis operates on the graph corresponding
adjacency matrix or on the learned vector space. Recently, because methods that
exploit learned representations can generalize over a broad variety of tasks, they
have become widely popular. Basically, the learned representations are ultimately
used as an input to the model and parameters are learned using training data.
However, it is worth mentioning that learning graph representations has never been
an easy task. This can be rooted in multiple challenges (Goyal and Ferrara 2017):

1. Choice of property. A good vector representation of a node well-preserves local
and global network structure. Therefore, given a plethora of properties defined
for graphs, the large number of applications, and the wide variety of tasks, the
challenge comes when we need to choose proper properties that embeddings
must preserve.

2. Robustness. Because of the randomness attached to the ways of generating node
representations, it has become more challenging to generate representations that
are or near robust. As a result, such embeddings suit single-graph related tasks,
while they are inappropriate for multi-graph tasks.

3. Embedding dimensionality. Choosing the optimal number of dimensions for
the learned representation is not trivial. Intuitively, having a higher number of
dimensions may, on the one hand, improve the reconstruction precision, while it
would increase time and space complexity, on the other. In addition, what makes
the process even more difficult is that the choice of the number of dimensions
may be task-dependent. That is, if the number of dimensions is sufficient for one
downstream process performance, it can be unsatisfactory for another.
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4. Scalability. Because the majority of real-world networks involve millions of
nodes and billions of edges, representation learning algorithms should be
scalable to operate on such large-scale graphs. It is important to point out that
defining a scalable model is more complicated when the aim is to preserve
network global structure.

4.1.3 Evolution of Network Representation Learning

Under the umbrella of dimensionality reduction, since the early 2000s, researchers
have developed different graph embedding methods (Goyal and Ferrara 2017). The
essence of graph embedding is to map the nodes from a higher dimensional space
D to a lower dimensional space d, where d <« D. The embedding functions
aim to embed similar nodes close to one another in the lower dimensional space
based on the constructed similarity graph using generated node neighborhoods.
As similar nodes can be connected through observed or unobserved connections,
distinct connectivity patterns that emerge in real-world networks—i.e., homophily
and structural equivalence (Grover and Leskovec 2016), should be preserved in
similarity graph. Under the homophily assumption, nodes that are highly intercon-
nected and belong to the same community should be embedded closely together.
On the other hand, under the structural equivalence assumption, nodes that play
the same structural roles—i.e., serve as hops to their corresponding communities
should be mapped close to one another in the lower-dimensional space. The large
size of today’s real-world graphs make scalability a major issue for the earliest
generated embedding algorithms, such as Laplacian eigenmaps (Belkin and Niyogi
2002) and locally linear embedding (Roweis and Saul 2000). Further, inspired by the
recent advancements in the domain of natural language processing (Le and Mikolov
2014; Mikolov et al. 2013a,b), where two word2vec models (Mikolov et al. 2013a)
have been proposed, namely continuous bag of words (CBOW) and Skipgram,
and the analogy in context, various algorithms have been developed to learn graph
representations, such as node2vec (Grover and Leskovec 2016), DeepWalk (Perozzi
et al. 2014), LINE (Tang et al. 2015), Walklets (Perozzi et al. 2016), and many
others.

4.1.4 Taxonomy of Network Representation Learning
Algorithms

Representation learning algorithms can be broadly divided into four different
categories (Goyal and Ferrara 2017):

1. Factorization-based Algorithms. In such algorithms, a matrix is initially uti-
lized to represent the connection among nodes—i.e., adjacency matrix, Laplacian
matrix, and others. A factorization technique is employed afterwards that may
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vary depending upon the properties of the matrix to obtain the embeddings, such
as eigendecomposition and gradient descent. Recently, locally linear embed-
ding (Roweis and Saul 2000), Laplacian eigenmaps (Belkin and Niyogi 2002),
graph factorization (Ahmed et al. 2013), among others have been proposed to
obtain graph embeddings using factorization.

2. Random Walk-based Algorithms. Random walks are known to be very benefi-
cial in cases like handling large-scale graphs or when observing the complete
graph is impossible. Therefore, random walks have been widely employed
to approximate node centrality (Newman 2005) and node similarity (Fouss
et al. 2007) in graphs. DeepWalk (Perozzi et al. 2014) and node2vec (Grover
and Leskovec 2016) are among the most recent random walk-based proposed
algorithms.

3. Deep Learning-based Algorithms. Due to the positive impact deep learn-
ing research has played, especially in modeling non-linear relationships, deep
learning-based algorithms have been largely used to mining graphs (Wang et al.
2016; Cao et al. 2016). In particular, Bengio et al. (2013) has harnessed deep
autoencoders for dimensionality reduction. Recently, SDNE (Wang et al. 2016)
and DNGR (Cao et al. 2016) have utilized deep autoencoder architectures to
generate graph embeddings.

4. Other Algorithms. LINE (Tang et al. 2015) is a representation learning algo-
rithm, which does not fall under any of the previously listed categories. It
learns the representations in two separate phases, where each phase learns d/2
dimensions, where ultimately the learned representations are concatenated to
have d—dimensional representation. The first phase preserves local structure
using first order proximity measure, while the second phase preserves global
structure using second-order proximity measure, by sampling nodes that are
merely 2-hops away from each node.

Inspired by the recent advances in natural language processing (NLP), and
the analogy in context, various algorithms have been developed to learn graph
representations (Perozzi et al. 2014; Tang et al. 2015; Grover and Leskovec 2016).
However, some recently proposed algorithms fail to clearly define and optimize
an objective that is tailored for graph nature (Perozzi et al. 2014). Further, they
employ completely random walks (Perozzi et al. 2014, 2016) or biased (Grover
and Leskovec 2016) random walks to obtain node neighborhoods, which remain
unsatisfactory in performing downstream processes. In addition, state-of-the-art
algorithms share a major stability issue that makes them less useful and applicable,
especially for multiple graph problems. In other words, it seems that while baseline
representation learning algorithms strive to preserve similarities among nodes to
generate and learn node representations, they fail to maintain similarities across
runs of any of the algorithms, even when using the same data set. Therefore, they
are not beneficial for canonical multi-graph tasks, such as graph similarity (Koutra
et al. 2013).

It is worth mentioning that the quality of the learned representations is heavily
influenced by the preserved local and global structure. Consequently, we need
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to properly and neatly identify node neighborhoods. In this study, we develop
a robust graph embedding algorithm that follows the fourth category of the
embedding algorithms we list above, and can preserve connectivity patterns unique
to undirected and (un)weighted graphs using connection subgraphs (Faloutsos
et al. 2004). Connection subgraphs are proved to be useful in different real-world
applications. In social networks, connection subgraphs can help us identify the
people that have been infected with a specific disease. In addition, connection
subgraphs can indicate the presence of any suspicious relationships that link an
individual with a group of people in a terrorism network. For biological networks,
connection subgraphs can assist to identify the connection exists between two
different proteins or genes, in a protein—protein interaction network or a regulatory
network. Further, in a world wide web network, using the hyper-link graph,
connection subgraphs help to summarize the connection between two web sites.

Connection subgraphs avail the analogy with electrical circuits, where a node
is assumed to serve as a voltage source and an edge is assumed to be a resistor,
where its conductance is considered as the weight of the edge. When forming
the connection subgraph, we concurrently capture the node local and global
connections, and account for the node degree imbalances by downweighing the
importance of paths through high-degree nodes (hops) and by accounting for both
low- and high-weight edges. Further, using connection subgraphs allows to account
for meta-data that is not well-exploited by existing embedding algorithms. It is
important to note that our goal in forming connection subgraphs is to maximize
the flow between pairs of non-adjacent nodes along with avoiding long paths, where
generally information is lost, therefore, the formation process is distance and flow-
driven. Our contributions are as follows:

1. Novel Flow-based Formulation. We propose a graph embedding approach that
robustly preserves network local and global structure using GRCS algorithm to
learn graph representations using the notion of network flow to produce approxi-
mate but high-quality connection subgraphs between pairs of non-adjacent nodes
in undirected and (un)weighted large-scale graphs.

2. Stable Representations. Contrary to all state-of-the-art methods, which involve
randomness that is reflected on the embeddings and their quality, we propose a
deterministic algorithm that produces consistent embeddings across independent
runs. We experimentally demonstrate the benefits of stability.

4.2 Related Work

Representation Learning Recent work in network representation learning has
been largely motivated by the new progress in NLP domain (Mikolov et al. 2013a,b;
Le and Mikolov 2014), because of the existing analogy among the two fields, where
a network is represented as a document. One of the NLP leading advancements
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is attributed to the SkipGram model, due to its efficiency in scaling to large-
scale networks. However, merely adopting the SkipGram model for graph learning
representations is insufficient, because of the sophisticated connectivity patterns
that emerge in networks but not in corpora. For that, we propose to preserve
linear and non-linear proximities while generating neighborhoods and before even
being learned by the SkipGram model. Recently proposed algorithms that adopted
the SkipGram model, despite their better performance than other methods, are
still incapable to satisfactorily and properly capture node neighborhoods in a
network (Perozzi et al. 2014; Tang et al. 2015; Grover and Leskovec 2016).
Specifically, DeepWalk (Perozzi et al. 2014), for instance, employs random walks to
attain the node neighborhoods in a graph, which ultimately introduces noise to the
search process. Furthermore, LINE (Tang et al. 2015) captures the network local and
global structure using first- and second-order proximities, respectively, along with
an edge-sampling algorithm to overcome the limitations of the optimization using
stochastic gradient descent. However, the sampling process ignores the strength of
weak ties, where crucial information generally flows (Easley et al. 2010). A more
recent approach, node2vec (Grover and Leskovec 2016), preserves graph unique
connectivity patterns, homophily and structural equivalence, by using biased ran-
dom walks, which is a more flexible search strategy to identify node neighborhoods.
However, relying on such biased walks to identify node neighborhoods introduces
some randomness that compromises task performance.

Connection Subgraphs The work on connection subgraphs (Faloutsos et al. 2004),
which captures proximity among any two non-adjacent nodes in arbitrary undirected
and (un)weighted graphs, is the most relevant to ours. In a nutshell, Faloutsos et al.
(2004) includes two prime phases: candidate generation, and display generation.
In the candidate generation phase, a distance-driven extraction of a much smaller
subgraph is performed to generate candidate subgraph. At a high level, candidate
subgraph is formed by gradually and neatly ‘expanding’ the neighborhoods of
any two non-adjacent nodes until they ‘significantly’ overlap. Therefore, candidate
subgraph contains the most prominent paths connecting a pair of non-adjacent
nodes in the original undirected and (un)weighted graph. The generated candidate
subgraph serves as an input to the next phase, i.e., the display generation. The
display generation phase removes any remaining spurious regions in the candidate
subgraph. The removal process is current-oriented; it aims to add an end-to-end path
at a time between the two selected non-adjacent nodes that maximizes the delivered
current (network flow) over all paths of its length. Typically, for a large-scale graph,
the display subgraph is expected to have 20-30 nodes. Connection subgraphs have
also been employed for graph visualization (Faloutsos et al. 2004). Our work is
the first to leverage connection subgraphs to define appropriate neighborhoods for
representation learning.
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4.3 Proposed Method: GRCS

In this section, we describe our proposed method, GRCS, a deterministic algorithm
that is capable of preserving local and global—beyond two hops—connectivity
patterns. It consists of two main steps: (1) Neighborhood definition via connection
subgraphs, and (2) Node representation vector update. We discuss the two steps in
Sects. 4.3.1 and 4.3.2, respectively. We note that GRCS is deterministic, and thus
can be applied to multi-graph problems, unlike previous works (Perozzi et al. 2014,
2016; Grover and Leskovec 2016) that employ random processes, such as random
walks.

Our method operates on an (un)weighted and undirected graph G(V, &), with
[V| = n nodes and |E] = m edges. For a given node u, we define its 1-hop
neighborhood as A (u) (i.e., set of nodes that are directly connected to u).

4.3.1 GRCS—Step 1: Neighborhood Definition

The heart of learning node representations is to obtain representative node neigh-
borhoods, which preserve local and global connections simultaneously. Inspired by
Faloutsos et al. (2004), we propose to define node neighborhoods by leveraging
the analogy between graphs and electrical circuits, and adapting the connection
subgraph algorithm (discussed in Sect.4.2) to our setting. In Table 4.1, we give a
qualitative comparison of GRCS and the connection subgraph algorithm (Faloutsos
et al. 2004), highlighting our major contributions.

The notion of connection subgraphs is beneficial in our setting, since they allow
us to: (1) Better control the search space; (2) Benefit from the actual flow, meta-
data, that is being neglected by state-of-the-art algorithms; (3) Exploit the strength
of weak ties; (4) Avoid introducing randomness caused by random/biased walks;
(5) Integrate two extreme search strategies, breadth-first search (BFS) and depth-
first search (DFS) (Zhou and Hansen 2006); (6) Address the issue of high-degree

Table 4.1 Qualitative comparison of the connection subgraph algorithm (Faloutsos et al. 2004) vs.
GRCS

Connection subgraph GRCS

Purpose Node proximity (for only 2 nodes) Neighborhood definition (for the
whole graph)

Step 1 Candidate generation (distance-driven) Neighborhood expansion
(distance-driven)

Step 2 Display generation (delivered current-driven) | Neighborhood refinement
(current-driven)

Efficiency | Inefficient (for the whole graph) More efficient (for the whole graph)

Source u; YueVv

Target uj Universal sink node z
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Fig. 4.1 A description of GRCS algorithm neighborhood definition step main phases: (a) Neigh-
borhood expansion of node u through n —hop neighbors to generate Ng (1) on distance basis. Node
z indicates the grounded universal sink node. (b) Neighborhood refinement of Ng () to generate
Ng(u) on current basis

nodes; and (7) Better handle non-adjacent nodes that are ubiquitous in real-world
large-scale graphs.

The neighborhood definition step consists of two phases: (A) Neighborhood
expansion, and (B) Neighborhood refinement. We provide an overview of each phase
next, and an illustration in Fig. 4.1. The overall computational complexity of GRCS
is O(V?).

* Phase A: Neighborhood Expansion—Np (). Given a node u, we propose to
gradually expand its neighborhood on a distance basis. Specifically, we employ
the analogy with electrical circuits in order to capture the distances between u
and the other nodes in the network, and then leverage these distances to guide its
neighborhood expansion.

Graph Construction We first construct a modified network G’ from G by
introducing a universal sink node z (grounded, with voltage V, = 0), and connect
all the nodes (except from u) to that, as shown in Fig. 4.1a. The newly added edges
in G’ for every node v € {V\ u} are weighted appropriately by the following weight
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or conductance (based on the circuit analogy):

Cw.)=a Y Cw), (4.1)
weN (u)\z

where C (v, w) is the weight or conductance of the edge connecting nodes v and
w, N'(u) is the set of 1-hop neighbors of u, and @ > 0 is a scalar (set to 1 for
unweighted graphs).

In the modified network G, the distance, or proximity, between the given node
u and every other node is defined as:

deg® ()
D(u’ U) — log C2(u,v)’ forv € N(u) (42)
log D(u, ¢) + D(c,v), forv ¢ N(u), andu,v € N(c).

where deg(u) is the weighted degree of u (i.e., the sum of the weights of its incident
edges), and the distance for non-neighboring nodes u and v is defined as the distance
from each one to their nearest common neighbor ¢ € V. This distance computation
addresses the issue of high-degree nodes (which could make ‘unrelated’ nodes seem
‘close’) by significantly penalizing their effects in the numerator.

Distance-Based Expansion After constructing the circuit-based graph, we can
leverage it to expand u’s neighborhood. Let EX be the set of expanded nodes
that will form the expansion graph Ng(u) (initialized to {u}), and P be the set
of pending nodes, initialized to u’s neighbors, A/ («). During the expansion process,
we choose the closest node to u (except for z), as defined by the distance function in
Eq. (4.2). Intuitively, the closer the expanded node v to the source node u, the less
information flow we lose. Once a node v is added to the expansion subgraph, we add
its immediate neighbors to P, and we repeat the process until we have |EX| = e
nodes, where e is a constant that represents the desired size of expanded subgraph.
We show the neighborhood expansion pseudocode in Algorithm la. The procedure
of computing the Ng (1) takes O()) time.

Example 1 Figure 4.2 shows one example of generating Ng(u) for an undirected,
unweighted graph G, in which the original edges have conductance (weight) equal
to 1, and the size of the expanded neighborhood is set to e = 5. The conductances
for the new edges in G’ (red-dotted lines), computed via Eq. (4.1), are shown in
Fig.4.2a. Based on the distances between u and every other node, which are defined
by Eq. (4.2) and shown in Fig. 4.2f, the neighborhood of u is expanded on a distance
basis.

e Phase B: Neighborhood Refinement—Ng(u). As shown in Fig.4.1b, the
neighborhood refinement phase takes an expanded subgraph as an input and
returns a refined neighborhood subgraph as an output, which is free of spurious
graph regions. Unlike the previous phase that is based on distances, the refined
subgraph is generated on a network flow (current) basis.
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Fig. 4.2 Neighborhood expansion example

In a nutshell, in this phase, we first link the nodes of the expansion subgraph
NEg (u) (except for node u) to the previously introduced grounded node z. Then, we
create the refined neighborhood subgraph by adding end-to-end paths from node z
to node u one at a time, in decreasing order of total current. The underlying intuition
of the refinement phase is to maximize the current reaches to node z from the source
node u. By maximizing the current, we maximize the information flow between the
source node u and node z, which ultimately serves our goal of including proximate
nodes to the source node u in its Ng(u). The process stops when the maximum
predetermined refined subgraph size, | Ng (u)|, is reached. Each time a path is added
to the refined subgraph, only the nodes that are not already included in the subgraph
are added. We use dynamic programming to implement our refinement process,
which is like a depth first search (DFS) approach with a slight modification.

To that end, we need to calculate the current / flows between any pair of
neighbors in the expanded subgraph. In our context, / indicates the meta-data or
network flow that we aim to avail. We compute the current / flow from source node
s to target node # using Ohm’s law:

I(s,t) =C(s,t)-[V(s) = V()] (4.3)

where the V (s) > V(¢) are the voltages of s and ¢, satisfying the downhill constraint
(otherwise, there would be current flows in the opposite direction). In order to
guarantee this satisfaction, we need to sort subgraph’s nodes in a descending order,
based on their calculated voltage values, before we start current computations. The
voltage of anode s € V is defined as:

V(0)-Cs,
%, V nodes s # u, z.

Vis) =11, s =u. (4.4)

0, s =2z.
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Fig. 4.3 Neighborhood refinement example

where C (s, v) is the conductance or weight of the edge between nodes s and v, as
defined in Eq. (4.1).

Example 2 Given the expanded neighborhood Npg(u#) in Example 2, the second
phase of GRCS gradually refines it on a current basis, as shown in Fig.4.3. We
first compute the voltages by solving the linear system in Eq.(4.4), and include
them in the nodes of (b). Then, the current flow of each edge connecting nodes
in the expanded neighborhood Ng(u) is computed using Eq. (4.3) such that the
‘downhill constraint’ is satisfied (current flowing from high to low voltage), as
shown over the red-dotted edges in (b). Given the current values, we enumerate
all possible paths between nodes u and z, and give their total current flows in (f).
The paths are then added in descending order of total current values into Ng(u)
until the stopping criterion is satisfied. In (c), we show the first path we add,
where the highest current flows (as mentioned in b). Assuming that the size of
the refined neighborhood, |Ng(u)] = r = 3, the final neighborhood is given
in (d).

Remark 1 (GRCS Neighborhood vs. Context in Baseline Methods) Unlike existing
representation learning methods:

(1) We preserve the local and global structure of network by accounting for
the immediate neighbors and neighbors at increasing distances of the source node
u to identify its neighborhood; (2) We generate neighborhoods on distance and
network flow bases; (3) We address the issue of high-node degree distribution; (4)
We concurrently identify neighborhoods while maximizing proximity among non-
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Algorithm 1: GRCS Algorithm—Step 1

a: Neighborhood Expansion

Input : Graph G(V, &)

u: node to expand

e (default : 1200): max size of N (u)
Output: Ng (u): expanded neighborhood

Add grounded node z to G(V, &)
Connect all nodes u € V (except u and z) to z
Initialize EX = {u}
Initialize P = N (u) = {v1, va, ..., Uy}
while |EX| < e do
minDist = 00
for p € P do

newDist =D(u, p) =Eq. (4.2)

if minDist > newDist then

‘ minDist = newDist

end
end
Add node(minDist)to EX
Remove node(minDist) from P
Add neighbors of node(minDist) to P

o 0 QAN AW N =

e =
W N =

J—
9]

end

Remove node z from G(V, £)

return Ng(u): subgraph of G induced on EX
: Neighborhood Refinement

ik
T 9

Input : Ng(u)
r (default : 800): max size of Ng(u)
u : node to refine

Output: Ng(u): refined neighborhood

19 Add node z to graph Ng (u)

20 Connect all nodes in Ng (u) (excl. u, z) to z

21 Initialize voltages V(u) = 1 and V(z) =0

22 Initialize Ng ={ }

23 Calculate voltage & current for each u € Ng(u)
24 while |[Ng(u)| < r do

25 Add all the nodes along the path that

26 maximizes the current I (u, z) to Ng

27 end

28 return Ny (u)
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adjacent nodes, which are abundant in real-world networks; and (5) We design our
algorithm such that it yields consistent stable representations that suit single and
multi-graph problems.

Remark 2 (GRCS vs. Connection Subgraph Algorithm (Faloutsos et al. 2004)) It
is important to note that the computations of ‘current’ (in GRCS) and ‘delivered
current’ (in Faloutsos et al. (2004)) are different. The computation of current is
not as informative as delivered current, but is more efficient. The use of delivered
current was not a major struggle in Faloutsos et al. (2004), because that algorithm
only processes one subgraph. However, we find that it is problematic for generating
multiple neighborhoods due to: (1) The large size of the expanded subgraph,
INE(u)]; (2) The large size of refined subgraph, |Ng(u)| (order of 800), compared
to the display generation subgraph size capped at 30 nodes; and (3) The extremely
large number of subgraphs (equal to the number of nodes |V| = n) that need to be
processed, to ultimately generate node neighborhoods.

4.3.2 GRCS—Step 2: Node Representation Vector Update

After identifying node neighborhoods in a graph, we aim to learn node represen-
tations via the standard SkipGram model (Mikolov et al. 2013a). However, since
GRCS yields completely deterministic representations, we avoid the randomness
implied by the SkipGram model by using the same random seed every time we
employ it. The Skipgram objective maximizes the log-probability of observing the
neighborhood generated during the neighborhood definition step, given each node’s
feature representation:

max ) log(Pr(Nr(w) | £(w) 45)

ueV

where Ng(u) is the refined neighborhood of node u, and f(u) is its feature
representation. Following common practice, we make the maximum likelihood
optimization tractable by making two assumptions:

Assumption 1 (Conditional Independence) We assume that the likelihood of
observing node u’s neighborhood is independent of observing any other neighbor-
hood, given its feature representation f(u):

Pr(Ng@) | fu) =[] Prw] f) (4.6)

weNR (u)

where w represents any node that belongs to node u’s refined neighborhood.

Assumption 2 (Symmetry in Feature Space) The source node # and any node
w in its refined neighborhood Ng(u) have a symmetrical impact on each other in
the continuous feature space. Therefore, the conditional probability, Pr(w | u), is
modeled using the softmax function:
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exp(f(w) - f(u))

Pr(w| f(u) = > ey exp(f (V) - f ()

4.7)

Based on the above two assumptions, we can simplify the objective in Eq. (4.5)
as follows:

m?XZ[—ngeXp(f(v)-f(u)H > f(w)~f(u)} (4.8)

ueV veV weNR (1)

It is important to note that performing such calculations for each node in large-
scale graphs is computationally expensive. Therefore, we approximate the function
using negative sampling (Mikolov et al. 2013b). We optimize the objective shown
in Eq. (4.8) using stochastic gradient decent.

4.4 Experiments

In this section, we aim to answer the following questions: (Q1) How does GRCS
perform in multi-label classification compared to baseline representation learning
approaches? (Q2) How stable are the representations that GRCS and baseline
methods learn? Before we answer these questions, we provide an overview of the
datasets, and the baseline representation learning algorithms that we use in our
evaluation.

Datasets To showcase the generalization capability of GRCS over distinct
domains, we use a variety of datasets, which we briefly describe in Table 4.2.

Baseline Algorithms We compare GRCS with three state-of-the-art baselines:
DeepWalk (Perozzi et al. 2014), node2vec (Grover and Leskovec 2016), and
Walklets (Perozzi et al. 2016). The reason why we choose these state-of-the-
art methods is the way they adopt for neighborhood definition using random
walks. On the contrary, in GRCS, we follow a completely deterministic man-
ner, which makes our method applicable for single and multi-graph problems.
Table 4.3 lists the parameters settings of GRCS, DeepWalk, node2vec, and Walk-
lets, respectively. For GRCS, we set the expansion neighborhood subgraph size,

Table 4.2 A brief description of evaluation datasets

Dataset # Vertices # Edges # Labels Network type
PPI (Breitkreutz et al. 2007) 3,890 76,584 50 Biological
Wikipedia (Mahoney 2011) 4,777 184,812 40 Language
BlogCatalog (Tang et al. 2012) 10,312 333,983 39 Social
CiteSeer (Sen et al. 2008) 3,312 4,660 6 Citation

Flickr (Tang et al. 2012) 80,513 5,899,882 195 Social
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Table 4.3 Parameter settings used for GRCS, DeepWalk, node2vec, and Walklets, respectively

Algorithm |Ng (u)| |Ng )| d w l K )4 q k
GRCS 1,200 800 128

DeepWalk 128 80 10 10

node2vec 128 80 10 10 1 1
Walklets 128 80 10 2

|Ng(u)|, the refinement neighborhood subgraph size, |Ng(1)|, and the number of
dimensions of the feature representation, d. For DeepWalk, we set the number of
walks per node, w, walk length, /, neighborhood size, s, and d. For node2vec,
we set w, [, s, and d. In addition, we set the return parameter, p, the in-out
parameter, g, in order to capture the homophily, and the structural equivalence
connectivity patterns, respectively. With respect to Walklets, we set w, [, d, and
the feature representation scale, k, which captures the relationships captured at
scale 2.

Experimental Setup For GRCS parameter settings, we set the expansion neigh-
borhood subgraph size |Ng(u)| = 1,200. In order to compare with the baseline
methods, we set the refinement neighborhood subgraph size, |Ng(u)| = 800, and
the number of dimensions of the feature representation, d = 128, in line with the
values used for DeepWalk, node2vec, and Walklets.

4.4.1 QI: Multi-Label Classification

Setup Multi-label classification is a single-graph canonical task, where each node
in a graph is assigned a single or multiple labels from a finite set £. We input the
learned node representations to a one-vs-rest logistic regression classifier with L2
regularization. We perform tenfolds cross validation and report the mean Micro-F1
score results. We omit the results of other evaluation metrics—i.e., Macro-F1 score,
because they follow the exact same trend. It is worth mentioning that multi-label
classification is a challenging task, especially when the finite set of labels L is large,
or the fraction of labeled vertices is small (Rossi et al. 2017).

Results In Table 4.4, we demonstrate the performance of GRCS algorithm and
compare it to the three representation learning state-of-the-art methods. Our results
are statistically significant with a p-value < 0.02. Overall, GRCS outperforms or is
competitive with the baseline methods, while also having the benefit of generalizing
to the multi-network problems that the other methods fail to address. Below we
discuss the experimental results by dataset.

PPI: It is remarkable that using various percentages of labeled nodes, GRCS
outperforms all the baselines. For instance, GRCS is more effective than
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DeepWalk by 36.85% when the labeled nodes are sparse (10%), 19.08% for 50%
of labeled nodes, and 17.55% when the percentage of labeled nodes is 90%.

Wikipedia: We observe that GRCS outperforms the three baseline algorithms by
up to 10.48% when using 90% of labeled nodes. In the only case where GRCS
does not beat node2vec, it is ranked second.

BlogCatalog: We observe that GRCS has a comparable or better performance
than DeepWalk and Walklets for various percentages of labeled nodes. Specifi-
cally, it outperforms DeepWalk by up to 4.55% and Walklets by up to 19.75%,
when the percentage of labeled nodes is 90%. For more labeled nodes, GRCS
achieves similar performance to node2vec.

CiteSeer: Similar to Wikipedia, GRCS outperforms the state-of-the-art algo-
rithms, and achieves a maximum gain of 7.13% with 90% of labeled nodes.

Flickr: We perceive that GRCS outperforms the other three baselines by up to
6.79%, when using 50% of labeled nodes.

Discussion From the results, it is evident that GRCS mostly outperforms the base-
line techniques on PPI, Wikipedia, CiteSeer, and Flickr networks, with exceptions,
where GRCS was very close to the best method. This can be rooted in the fact
that GRCS is more capable in preserving the global structure in such networks. On
the other hand, although GRCS has a very comparable performance with node2vec
on BlogCatalog dataset, it might be that the 2nd order biased random walks of
node2vec are slightly more capable in preserving the homophily, and the structural
equivalence connectivity patterns in social networks.

4.4.2 (Q2: Representation Learning Stability

Setup Surveying the existing node representation learning methods, we perceive
that the tasks for which such algorithms are being evaluated on are limited to
single graph-related tasks—i.e., prediction, recommendation, node classification,
and visualization. Since many tasks involve multiple networks (e.g., graph
similarity (Koutra et al. 2013), graph alignment (Bayati et al. 2009), temporal
graph anomaly detection (Koutra et al. 2013), brain network analysis for a group of
subjects (Fallani et al. 2014)), we seek to examine the similarity of representations
learning approaches to multi-network settings. Heimann and Koutra (2017) states
that existing embedding algorithms are inappropriate for multi-graph problems,
and attribute this to the fact that different runs of any algorithm yield different
representations every time the algorithm is run even if the same dataset is used. To
that end, GRCS is fully deterministic, with the goal of achieving stable and robust
outcomes. We evaluate its representation stability by verifying the similarity of the
learned vectors across different independent runs of the algorithms. Ideally, a robust
embedding should satisfy such a criteria.
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Results Figure 4.4 shows the embeddings of two different runs of each approach
against each other for a randomly selected set of nodes. For d = 128, we visualize
the results for three randomly selected dimensions of node2vec, DeepWalk, and
Walklets. For GRCS, we intentionally choose the same three dimensions randomly
selected for each of the baseline methods. In the interest of space, we only show
the visualization results of GRCS using the same three dimensions (39, 55, 111)
used for Walklets dataset. The results are equivalent for all the dimensions. If all
points fall on (or close to) the diagonal, this indicates stability, which is a desirable
attribute of a robust graph embedding. Figure 4.4a, b and ¢ shows that, as expected
node2vec, DeepWalk, and Walklets suffer from significant variation across runs.
To the contrary, Fig. 4.4d shows that GRCS obtain perfectly consistent embeddings
across runs, and thus it is robust.

4.5 Conclusions

We propose a novel and stable representation learning algorithm, GRCS, using con-
nection subgraphs. GRCS includes two steps: (1) Neighborhood identification using
connection subgraphs, which represents our contribution, and (2) Representation
vector update using the established SkipGram model. In essence, our contribution
lies in the first step, where we generate node neighborhoods using connection
subgraphs. For that, we divide the neighborhood generation process into two phases:
(1) Neighborhood expansion, where we extract a much smaller subgraph from
original graph to capture proximity between any two non-adjacent nodes in the
graph on distance basis, and (2) Neighborhood refinement, where we perform extra
pruning to the expanded subgraph in the previous phase using information flow
(current) basis. It is worth mentioning that even though connection subgraphs are
designated to attain proximity among two non-adjacent nodes, they are still capable
of addressing local connectivity between a pair of such nodes. This can be attributed
to the nature of the neighborhood generation process.

In contrast to existing representation learning baseline algorithms, GRCS gen-
erates entirely deterministic representations, which makes it more appealing for
single and multi-graph problems. We empirically demonstrate GRCS efficacy and
stability over state-of-the-art algorithms, showing that GRCS is more or as effective
as baseline algorithms and is completely stable using multi-label classification
problems.

In addition to improving the quality of neighborhoods generated, which ulti-
mately affect the quality of embeddings, we also focus on remedying the issue
of randomness of generated embeddings. However, the way we generate the
neighborhoods imposes a scalability limitation, where GRCS has higher runtime
comparing to baseline methods, which makes it less appealing to scale to large-
scale networks. Further, for classification problems, the accuracy results remain
unsatisfactory. Therefore, in the future work, we will work to enhance scalability
and accuracy. Further, we will account for the interpretability that has never been
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Fig. 4.4 PPI data: Comparison of embeddings per dimension for a random sample of 100
nodes. node2vec, DeepWalk, Walklets, and GRCS are run two times. The x-axis represents first
run representations values, and the y-axis represents second run representations values. Three
dimensions are selected randomly for each algorithm. The GRCS-based representations are robust
across runs (perfectly fall on a straight line y = x), which is not the case for node2vec, DeepWalk,
and Walklets. The results are consistent for all the datasets. (a) Node2vec. Dimension from left:
21, 48, 68. (b) DeepWalk. Dimension from left: 39, 55, 111. (¢) Walklets. Dimension from left:
39, 55, 111. (d) GRCS. Dimension from left: 39, 55, 111



90 S. A. Al-Sayouri and S. S. Lam

addressed yet. We will also address the issue of embedding update, especially
for a recently joined nodes that have no evident connections. This problem is
very related to the “cold-start” problem in recommendation systems, where a
new user joins the system, and we seek external information for them, in order
to properly compute their profile. Similarly, we propose to explore different
forms of external context and meta-data for the recently joined nodes, which
can help us address connection sparsity. Further, we will examine how vertices
connectivity would impact the selection of expansion and refinement subgraphs
sizes.
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The word combinatorial is derived from the word combinatorics which is a branch
of discrete mathematics. On the other hand, combinatorial optimization is related
with the combinatorics field and operations research. In combinatorial optimization
problems (COPs), the desired result is found in the set of possible search space
which is a finite or possibly countably infinite set. This is an integer number, a
subset, a permutation, or a graph structure (Sait and Youssef 1999). COP, as an
abstract representation, can be defined as finding a minimum weight feasible subset:
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Developing a suitable algorithm to find the “best” configuration of a set of
decision variables with discrete values to achieve one or more than one goal for a
COP is an important process and depends on the problem structure. Due to the many
applications of COP in the real world, many algorithms have been developed. These
algorithms are either complete or heuristic algorithms. While complete algorithms
find an optimal solution, heuristic algorithms are not guaranteed to find an optimal
but near optimal one. If COP is an NP-hard, no polynomial time algorithm exists.
Therefore the field of metaheuristics for the application to COPs has been a rapidly
growing field of operations research during the last 40 years.

5.2 Metaheuristics and the Parameter Tuning Problem

Since there is no polynomial time algorithm for COP that is NP-hard, exact
optimization methods with exponential computation time are not practical to
solve the large scale real-world COPs. Even though heuristic methods cannot
guarantee the optimality, they are effective in finding approximate solutions within
a reasonable computer time. For the last 40 years, researchers have been striving
for the development of better heuristics to get highly qualified solutions in shorter
computer times. The term metaheuristic was first introduced by Glover (1986).
Metaheuristics provide a dynamic balance between diversification through the
search space and intensification through the search process using different methods
and meta-level strategies. Sorensen et al. (2017) give a comprehensive historical
survey on metaheuristics including the recent innovations in this field.

As asserted in the no free lunch theorem (Wolpert and Macready 1997),
there doesn’t exist a single heuristic method that is superior to all others for all
possible decision problems. Therefore, selection of an appropriate metaheuristic
for a specific problem as well as setting the parameters of selected metaheuristic
is crucial to attain the best performance for the desired solution. In the litera-
ture, determination of the best parameter set for a certain heuristic algorithm is
called, interchangeably, parameter setting, parameter tuning, parameter calibration,
parameter configuration or parameter optimization since this task, itself, is an
optimization problem. If P is the performance metric that depends on parameter
vector X, selected from all possible combinations of parameters X, parameter
optimization problem can be described as max{P(x): x € X}. Mutual influences and
also interrelated influences of parameters which may vary on different instances of
the decision problem make parameter optimization a complex and time-consuming
task. To deal with the parameter optimization problem, the parameters are either
fine tuned before the execution of the underlying algorithm by offline techniques,
or they are allowed to change dynamically or adaptively throughout the execution
by online techniques. However, online techniques may still exhibit parameters
which must be determined a priori. In the current literature of offline techniques,
automatic algorithm configuration gets an increasing interest since it automates the
tuning process. Automatic algorithm configuration methods involve experimental
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design and statistical modeling techniques (Coy et al. 2000; Adenso-Diaz and
Laguna 2006; Bartz-Beielstein 2006; Dobslaw 2010; Arin et al. 2011), racing
algorithms (Barbosa et al. 2015; Birattari et al. 2002; Balaprakash et al. 2007;
Lépez-Ibafiez et al. 2016), and meta-optimization approaches which tune the
parameters using any other heuristic (Eberhart and Kennedy 1995; Nannen and
Eiben 2006; Meissner et al. 2006; Hutter et al. 2007, 2009; Smith and Eiben 2009;
Neumiiller et al. 2011). Offline techniques have two main drawbacks. Firstly, the
best values of parameters depend on the problem and even its various instances and
therefore, should be instance specific (Ries et al. 2012). Secondly, the effectiveness
of a pre-defined parameter set may change during the progress of search and
different parameter values should be selected at different moments of the search
(Eiben et al. 2007). Online techniques, also known as parameter control techniques,
aim to tune the parameters during the execution of the algorithm to overcome these
drawbacks. These techniques, mainly, consists of dynamic update and adaptive
update approaches. A dynamic update changes the parameter value using a rule
which does not take into account the progress of search while an adaptive approach
updates the parameter value using feedback from the current search state. In the
literature of genetic algorithms, if the parameters are incorporated into the solution
representation, the approach is called self-adaptive parameter control. Thus, the
parameter values are allowed to evolve as the population evolves. Robert et al.
(1996), Eiben et al. (1999), Smith (2003), Krasnogor and Gustafson (2004) are
some examples of self-adaptive parameter control in genetic algorithms. Readers
are also referred to representative studies of Eiben et al. (1999), De Jong (2007),
Battiti and Brunato (2010), Battiti and Tecchiolli (1994), Hansen and Ostermeier
(2001), and Battiti et al. (2008) for the online techniques. Although these techniques
aim to provide less parameter configuration, they still have parameters that need
to be initialized. Hence, parameter-less metaheuristics have been one of the recent
interests in the related literature. “Parameter-less” mainly emphasizes the algorithms
which are completely free from parameter tuning and therefore, they are sufficiently
simple to use in practice. Most of the efforts on parameter-less algorithms are based
on genetic algorithms (Harik and Lobo 1999; Lobo and Goldberg 2004; Lima and
Lobo 2004; Nadi and Khader 2011). Despite the amount of works on parameter
tuning, parameter-less heuristics would be preferred by many practitioners even a
parameterized heuristic could give a better performance.

As metaheuristic algorithms get complicated, in general, the number of parame-
ters increases. Therefore, the parameter optimization problem of these algorithms
also becomes more complex. If two algorithms show similar performance but
one is significantly simpler, the simpler one will be, obviously, superior to the
other in terms of simplicity (Silberholz and Golden 2010). Based on this fact,
Alabas (2004) proposed a simple local search algorithm with a single parameter.
Moreover, this single parameter, called acceptance parameter, is adaptively tuned
during the progress of search without any need of initialization. Some useful
feedback from the search process such as the number of improvement solutions
and improvement rate of the initial cost is used to update the acceptance parameter.
Therefore, the proposed algorithm, named self-adaptive local search (SALS) is a
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simple and parameter-free heuristic. Although the acceptance parameter is tuned
using the feedback from search process, it is called self-adaptive to emphasize
its independence of parameter tuning. An application of SALS to the classical
permutation flow shop scheduling problem was presented in Dengiz et al. (2009).
Alabas-Uslu and Dengiz (2014) showed that SALS successively solves problems
of quadratic assignment, classical vehicle routing and topological optimization of
backbone networks. Dengiz and Alabas-Uslu (2015) also gave a detailed application
of SALS to the topological optimization problem. Furthermore, the multi-objective
application of SALS was presented by Alabas-Uslu (2008) for a bi-objective vehicle
routing problem.

In this study, SALS algorithm, firstly, is explained for single objective and
multi-objective COPs. Also, the application of SALS to a single objective and bi-
objective vehicle routing problem is investigated further to show that it is able to
perform better or at least similarly compared to several sophisticated metaheuristics
proposed in the related literature.

5.3 Description of SALS for Single Objective COPs

SALS algorithm is based on local search. It starts at a given initial solution
and explores the solution space iteratively through neighborhoods of the current
solution. Let X = [x1, x2, ..., x,] be the current solution which corresponds to a
vector of decision variables in a COP and © > 1 be the adaptive parameter of SALS.
At any iteration, a neighbor solution X’ is randomly selected from the neighborhood
of the current solution, N(X). If neighbor X’ satisfies the acceptance condition of
f(X) < ©6f(X), then it replaces the current solution X, where f(.) denotes cost of
the given solution. It is assumed that the cost cannot be negative. In the case of
f(X) > 6f(X), the neighbor solution is rejected. Searching in the neighborhood
of X is continued until a trial neighbor solution satisfies the acceptance condition.
Whenever the current solution is replaced, the algorithm progresses to the next
iteration.

The essential property of SALS is the adaptive calculation of ©. For this purpose
two indicators are used: Improvement rate of the initial solution (¢ 1) and rate of the
number of accepted neighbors to the current iteration number («7). Indicators o
and «, are computed as given by Egs. (5.1) and (5.2), where X,(]’) is the best solution
observed until iteration i and X is the initial solution. C(L%") is a simple counter of
the number of improvements in the best solution encountered until iteration i.

0
ay = % (5.1)

C (L®)

1

o) = 5.2)
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Decreasing values of o] represent that the solution quality of the best solution
is improved when compared to the initial solution. On the other hand, constantly
decreasing values of oy may indicate flat regions of the solution space, while its
fluctuating values may indicate many local minima. At each iteration, o1 and «
are updated and parameter O is adaptively calculated as given in Eq. (5.3) using
the updated values of o and 3. Additionally, if the number of rejected neighbors
reaches the size of N(X) at any iteration, the acceptance condition is relaxed by
increasing © by o1 - ap only for that iteration. Parameter © determines the border
of the search region surrounding the current solution X in terms of the objective
function value. In the first iteration, i = 1, initial value of © is 2 by definition,

since f (XEP) = f(X;) and C(L?”) = 1. © tends to take smaller values as the

iteration number increases. Obviously, as © approaches 1, the acceptance condition
forces the search to find better solutions.

O=14a o (5.3)

The pseudo-code of SALS is given in Figs. 5.1 and 5.2 also helps to better
figure out the searching behavior of the algorithm. Our pre-experiments on each
test instance of the classical vehicle routing problem (VRP) showed that as ©
approaches 1, the search also approaches highly qualified solutions. As an example,

i 1,C(LY) « I;
Randomly create initial solution X_;
X « X5 XY «X;
Repeat
f(Xg,i) ) C(L(i))

ay < T oy

S(X) i

O« l+ay-ay;

B

1< itl;r<0;

Repeat
Select a neighbor solution X' randomly from the N'(X);
rer+1;
Ifr=INX)| then © « 0 + cuaw;

Until AX") < 6f(X)

IffiX") < f(Xg,l)) then C(LY) <~ C(LY) + 1, X « X';

X« X",

Until (© — 1)or(Another termination condition is met)

Fig. 5.1 Pseudo-code of SALS for single objective COPs
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current solution X \ O o
o 5 If f(X") < ©f(X) then o O o
x o —_— Xex' next iteration O o
e} Update a, az e} ®)
O ° O O =1+ o0, o 1) O
o o © ©
le) If f(X') >Bf(X) then

L

select a new neighbor

rér+1
Ifr=|N(X)| then
O < 6+ oo

Fig. 5.2 Searching behavior of SALS algorithm
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Fig. 5.3 (a) Convergence of © in the first 1500 iterations of SALS. (b) Convergence of the
deviation from the best solution in the first 1500 iterations of SALS
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Fig. 5.4 (a) Convergence of © in the last 1500 iterations of SALS. (b) Convergence of the
deviation from the best solution in the last 1500 iterations of SALS

Fig. 5.3a shows the values of © in the first 1500 iterations of SALS when applied to a
moderate sized VRP instance and correspondingly deviations from the best solution
obtained throughout these iterations are given in Fig. 5.3b. Similar figures are also
shown in Fig. 5.4a, b for the last 1500 iterations to see the convergence of both
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O and deviation from the best solution more clearly. Even though, neighborhood
structures embedded in SALS algorithm have an impact on the solution quality as
in all of the local search based heuristics, SALS is able to yield qualified solutions
without any tuning effort. Therefore, the success of the algorithm mainly stems from
the adaptive parameter ©.

5.4 Description of SALS for Multi-objective COPs

SALS algorithm needs neither a composite function of the objectives nor preemp-
tively solving the problem according to priorities of the objectives in the case of
multi-objective COPs. Instead, the objective functions are minimized simultane-
ously using the acceptance condition which is adapted from implementation of
SALS in single objective problems explained in Sect. 5.3. The adapted acceptance
condition is as follows where X’ is a neighbor solution of the current solution X and
k is the number of objectives:

If (i(X) < ©1AX) A (BX) < OHX) A .. A (X)) < Ofi(X)) then
X<«<X

Function fj(.) is the jth objective function assuming that all functions are
nonnegative cost functions. ©;, for j = 1,..., k, are the adaptive parameters of
SALS. Exploration in the neighborhood of current solution X is maintained until
a neighbor solution satisfies the acceptance condition. Once a neighbor solution
is accepted, the algorithm replaces the current solution with the neighbor and
progresses to the next iteration. If the total number of sampled neighbors reaches
the neighborhood size, |[N(X)|, value of parameter ©; (for all j) is increased by
aj1-ajp only for the exploration in the current neighborhood. Here, a1 and «j are
the indicators used to adaptively compute parameter ©; as given in Egs. (5.4) and
(5.5). ©; is re-computed using Eq. (5.6) in each iteration for all j.

i (X[(;])) for j =1 k 5.4)
ajj=——= forj=1,..., .
ARTTC SR
c (1)
aj2=l+ forj=1,...,k (5.5)
Oj=1+auap forj=1,...,k 5.6)
In Eq. (5.4), ng) (G =1,..., k) is the best solution observed until iteration i

according to the jth objective function and X is the initial solution. In Eq. (5.5),



100 C. Alabas-Uslu and B. Dengiz

i<« 1,C(L"Y) « 1forj=1,...k
Randomly create initial solution X_;
X X.; XJ) « X_ forj=1,...k

Repeat
(X oL.®
Forj=1,...kdo a, <—f{(7b’), a,, €, ),6j<— l+a, a,;
‘ fiX) i S

i<« i+l;r<0;
Repeat

Select a neighbor solution X' randomly from the N'(X);

r<—r+1

Ifr=NX)| then Forj=1,...kdo ©; < 6;+ a, -a,,;
Until (11(X")<01£1(X)) A (R(X"N<02H(X) A ... A (f(X")<Of(X))
Forj=1,..kdo if f(X")< f,(X{") then C(LI")«-C(L") + 1, X{ « X';
X« X'
Until (©1 — 1) A ... A (Bk — 1)or(Another termination criterion is met)

Fig. 5.5 Pseudo-code of SALS algorithm for multi-objective COPs

C (LJ-(i) ) gives the number of improvements in the best solution of jth objective

function until iteration i. Similarly with the single objective implementation of
SALS, parameters O; determine the border of the search region surrounding the
current solution X respecting the solution quality (j;) and the ratio of improvement
solutions to the iteration number (ej2).

Pseudo-code of SALS for multi-objective COPs is given in Fig. 5.5. The pre-
experiments conducted for the problem of minimizing both the number of vehicles
and the maximum length of routes in VRP showed that as ©; G = 1,..., k)
approaches to 1, SALS forces the search to find higher qualified solutions. The
experimental results obtained from multi-objective implementation of SALS are
consistent with that of single objective implementation.

5.5 Application of SALS to VRP

In this section, the classical VRP and a bi-objective VRP were briefly explained and
used to represent the application of SALS.

The Classical VRP The problem is designed for optimal delivery routes from
one depot to a number of customers under the limitations of side constraints for
minimization of total traveling cost. According to its graph theoretic definition,
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G = (V, A) is a complete graph in which V = {1, ..., n + 1} is the set of vertices and
A is the set of arcs. Vertices i = 2, ..., n + 1 correspond to the customers, whereas
vertex 1 corresponds to the depot. A nonnegative cost, c;j, associated with each arc
(i, j) € A represents the travel cost between vertices i and j. Each customer i has a
known nonnegative demand, d;, to be delivered. Side constraints of the problem are
given as follows:

» The total demand assigned to any route cannot exceed the vehicle capacity, Q.

* A fleet of m identical vehicles is located at the depot.

* Each vehicle must follow a single route such that it starts and terminates at the
depot.

» Each customer must be served exactly once by exactly one vehicle.

The Bi-objective VRP In the literature of multi-objective VRP, different types of
objective functions are taken into consideration such as number of vehicles, total
traveling distance/cost, the longest route (from/to depot), and total waiting time. In
this study, an application of VRP to school bus routing is considered. The school
bus routing problem can be represented by G = (V, A) where vertices i = 2,...,
n 4+ 1 € V correspond to bus stops and vertex i = 1 represents the school. Each
arc (i, j) € A is associated with a travel time between bus stops i and j. Each bus
stop (i = 2,..., n + 1) is associated with a number of students, d;, to be picked
up at bus stop i. Identical m buses with capacity of Q students are located at the
school. In addition to the side constraints of the classical VRP, solving this real-life
problem involves minimization of the number of buses and also minimization of the
maximum time spent by a given student in the route (that is, minimization of the
longest route). The first objective is related to the transportation cost while the other
ensures to provide higher quality service. Obviously, these objectives are in conflict.

Moving Mechanisms The only design step of SALS algorithm to apply any COP
is to define moving mechanisms. A moving mechanism is a perturbation scheme
which converts the current solution into its neighbors. Different neighborhoods can
be created by using different moving mechanisms. In the application of SALS
algorithm to VRP for both single and bi-objective cases, permutation solution
representation is used to code a solution point: A solution point X = [x1, x2, ...,
xp] corresponds to a sequence of locations (depot and customers, or school and bus
stops), where D =n + m + 1. As an example, X =[12465813795810 1]
means that first route (i.e., first vehicle) starts from depot 1, visits locations 2, 4, 6,
5, 8 in the given order and goes back to depot 1; second vehicle departs from depot
1, visits customers 3,7, 9, 5, 8, 10, successively, and returns depot 1. SALS benefits
from various five moving mechanisms to create a diversification effect on the search
process: adjacent swap (Mas), general swap (Mgs), single insertion (Msy), block
insertion (Mpy), and reverse location (MR ). Definitions of the move types are given
in Table 5.1.

Initial Solution and Preventing Infeasibility SALS algorithm is initialized with a
feasible initial solution. Initial feasible solution is constructed by assigning one
vehicle to one location (customer or bus stop) assuming that the number of vehicles
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Table 5.1 Definition of moving types

Type | Definition

Mas | Nodes x; and xj1 are interchanged with probability 0.5 else nodes x; and xj_| are
interchanged, fori=2,...,D — 1

Mgs | Nodes x; and x;j are interchanged, for7,j =2,..., D — 1 and abs(i — j) > 1

Ms; | Node x; is inserted between nodes xj and xj1, fori=2,...,D —2andj=i+2,...,
D—-1

Mg | A subsequence of nodes from x; to x;4p, is inserted between nodes x; and xj1, for
i=2,...,D-2—-b,j=i+b+1,...,.D—1landb=1,...,D -4

MRy | A subsequence of nodes from x; to x; is sequenced in the reverse order for i, j = 2, ...
D — 1and abs(i —j) > 1

Table 5.2 Performance of SALS on the classical VRP instances of Christofides and Elion (1969)

n (# of customers) Reference cost BD%* AD%" Ccve ARTY
50 524.61 0 0.0008 0.0125 1.1483
75 835.26 0.02 1.2 0.0081 3.1150
100 826.14 0.5 0.8 0.0029 3.9508
100 819.56 0 0 0 4.1258
120 1042.11 0 04 0.0019 5.5717
150 1028.42 1.1 1.6 0.0057 8.7982
199 1291.29 29 3.98 0.0095 16.3203
0.65 1.14 0.0058 6.1472

2The best percentage deviation from the reference cost out of 10 experiments
b Average percentage deviation from the reference cost over 10 experiments
“Coefficient of variation over 10 experiments

4 Average run time over 10 experiments in minutes

is not restricted. A trial neighbor solution is found in two steps: First, selecting
one of the five move types defined above randomly and then, perturbing the
current solution according to that type of move randomly. Additionally, feasibility
of each neighbor solution is always maintained by avoiding perturbations which
result in infeasibility. According to the permutation solution representation adapted,
all neighbor solutions satisfy the side constraints of VRP, except the capacity
constraint, unless the first and the last elements (x; and xp) in current solution X
are replaced with other locations (customers/bus stops). Therefore, the feasibility
is preserved for these constraints. On the other hand, the neighbors that violate
capacity constraints are just rejected.

5.6 Computational Study

Experimental Results on the Classical VRP Performance of SALS on the clas-
sical VRP instances, firstly, is represented on the seven well-known instances of
Christofides and Elion (1969). As given in Table 5.2, SALS finds the reference
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cost in at least one of the 10 experiments for three instances out of 7. For the
remaining instances, the best percentage deviation from the reference cost (BD)
shows that the best costs generated by SALS are very close to the reference costs.
Average deviation from the reference cost (AD) is also very small for each instance.
Additionally, the coefficient of variation (CV) of the 10 experiments of SALS is
substantially small for each instance and it reveals that SALS yields robust results.
Average run time (ART) requirement of SALS also indicates that it can be used in
solving of real-world problems.

Twenty large-sized instances of the classical VRP by Golden et al. (1998) are
used to compare the SALS with the metaheuristics listed in Table 5.3, after the
performance of SALS has been demonstrated on the relatively small instances of
Christofides and Elion (1969). Table 5.3 also includes the number of parameters
of these metaheuristics and their abbreviations. As outlined in the table, all listed
algorithms require the parameter tuning process for a number of parameters
changing from 1 to 20. All the heuristics in Table 5.3 are stochastic algorithms
which need to be replicated to provide a certain confidence level. Since the number
of replications and the complete set of solution costs are not available for each
heuristic and each instance, BD is used as a common comparison measure. BD
results of all the heuristics are shown in Table 5.4. As seen from the table, SALS has
higher solution quality, on average, than five of the metaheuristics out of thirteen.
Though MB-AGES algorithm gives quite good results for each instance, GGW-
PRRTjp algorithm, which is a parallel implementation of record-to-record algorithm
and integer programming, outperforms all algorithms. However, large parameter

Table 5.3 Some successful algorithms for the classical VRP and their parameters

Algorithm Number of
Study Algorithm abbreviation parameters
Xu and Kelly (1996) Tabu Search XK-TS 20
Golden et al. (1998) Record-to-Record Travel GWKC-RRT 3
Tarantilis and Kiranoudis | Adaptive Memory TK-AMP 7
(2002) Programming
Tarantilis et al. (2002a) Threshold Accepting TKV-TA1 7
Tarantilis et al. (2002b) Threshold Accepting TKV-TA2 1
Toth and Vigo (2003) Tabu Search TV-TS 7
Prins (2004) Evolutionary Algorithm P-EA 7
Reimann et al. (2004) Ant Colony RDH-AC 9
Tarantilis (2005) Adaptive Memory T-AMP 8
Programming
Li et al. (2005) Record-to-Record Travel LGW-RRT 5
Mester and Braysy (2007) | Active Guided Evolution MB-AGES 11
Strategy
Groér et al. (2011) Parallel Algorithm GGW-PRRTIP |13

Combining Record-to-record

travel with Integer
Programming
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Table 5.5 The results of SALS for the bi-objective VRP instances of Christofides and Elion (1969)

n (# of customers) | Besttmax/m | Averagetmax/m | CV of tpax | CVofm | ART (min)

50 101.43/6 104.58/5.9 0.074 0.054 1.597
126.31/5

75 91.04/11 91.65/11.0 0.011 0.000 3.705

100 110.60/9 120.75/8.1 0.060 0.039 5.030
115.82/8

100 120.73/10 126.03/10.0 0.021 0.000 2.260

120 199.93/8 202.66/8.0 0.010 0.000 7.335

150 103.36/13 111.75/12.7 0.105 0.038 9.110
111.84/12

199 102.68/18 109.03/17.6 0.079 0.029 13.280
104.17/17

sets of MB-AGES and GGW-PRRTp make these algorithms complicated to apply
different instances. Also it should be noted that the best cost results reported by
the researchers, except T-AMP, are all obtained using well-tuned parameter sets.
Only T-AMP uses a common parameter set for all the instances. The most important
advantage of SALS, on the other hand, is its parameter tuning free structure which
let it be simple to apply different instances.

Experimental Results on the Bi-objective VRP Performance of SALS in solving of
the bi-objective VRP is tested in the instances of Christofides and Elion (1969) by
taking fmax (the longest route) and m (the number of vehicles) into account as the
two objectives to be minimized. Table 5.5 shows the results of 10 experiments of
SALS for the problem instances. SALS generates two alternative solutions for the
four instances while it generates a single solution for the remaining problems. The
average fmax and m values are close to the best values with small CVs and it is an
indication of obtaining a good quality solution by this algorithm with reasonable
time even for the biggest problem size.

Once the capability of SALS is tested on the instances of Christofides and Elion
(1969) considering the bi-objectives, the algorithm is compared with the scatter
search algorithm of Corberan et al. (2002), CFLM-SS, and the tabu search algorithm
of Pacheco and Marti (2006), PM-TS, on the school bus routing problem. A total
of 16 instances of school bus routing problem was taken from Corberan et al.
(2002). Corberén et al. (2002) propose constructive methods for the school bus
routing problem. The solutions obtained from the constructive methods are also
improved and combined within the framework of scatter search. On the other hand,
Pacheco and Marti (2006) develop different constructive methods from Corberan
et al. (2002) and improve the constructed solutions using a tabu search algorithm.
The considered tabu search algorithm includes an intensification phase based on
the path relinking. Because the maximum number of buses in a solution is equal to
the number of pickup points, assigning one bus to each pickup point. The solution
approach used in both CFLM-SS and PM-TS is to minimize #y,x for possible values
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of m. SALS is also run for the possible values of m by minimizing of fy,x for
the comparison of two algorithms on the same base line. Comparative results are
given in Table 5.6. Column 2 represents fyax/m values. Column segments (3-7),
(8-12), (13—17) contain #y,x values generated by CFLM-SS, PM-TS, and SALS,
respectively, for a particular value of m (m — 1 to m + 3). Note that m in columns
3-17 corresponds to the current value of m given in column 2. As seen from the
table, SALS provides either the same or better #,x than the other algorithms for all
instances except the one. It is clearly shown that the performance of SALS algorithm
is superior to the two algorithms in terms of the solution quality. Another advantage
of SALS is that its implementation is simpler than both CFLM-SS with 7-parameter
and PM-TS with 4-parameter in terms of the point of parameter tuning.

5.7 Conclusions

Combinatorial optimization is an important mathematical topic that is related with
combinatorics to find an optimal solution from a finite set of search space. Many
problems we face in real life are modeled as combinatorial optimization. There
is an increasing interest among researchers to develop heuristic algorithms for
combinatorial optimization problems, because enumeration based search is not
feasible for them. So, obtaining global optimum solutions for these problems, within
a reasonable time, is extremely time consuming by exact algorithms. Particularly
in recent years, high-level metaheuristics have been developed for combinatorial
optimization problems. On the other hand, it is known that metaheuristic or heuristic
algorithms are controlled by a set of parameters so the best parameter set reveals
better performance in terms of solution quality and computation times.

In this chapter while a survey is carried out about parameter tuning approaches
in metaheuristics/heuristics, the performance of SALS algorithm which is a novel
algorithm, is investigated on the vehicle routing problem considering both the single
and multi-objectives on a large scale suit of test problem. The main focus of the
algorithm is to reduce the effort of the parameter optimization/tuning to be able to
find an optimal or near optimal solution. State-of-the art techniques are introduced
and then it is shown that the SALS algorithm performs better or at least similarly
according to several sophisticated heuristics which exist in related literature.
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6.1 Introduction

Real world problems are often extremely complicated and involve uncertainty,
making decision-making a challenge. For these complex problems, a closed form
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approach to estimate the performance of complex systems. A computer simulation
may be deterministic, as in a finite element analysis, or stochastic, such as a discrete-
event simulation of a complex queueing network.

In order to optimize a complex system, many approaches using simulation
optimization have been developed (e.g., see Fu 2015; Fu et al. 2008). Most of the
simulation optimization algorithms focus on approximating a local or global optimal
solution. Instead of just providing a single solution, our approach is to provide a
set of solutions that achieves a target quantile (e.g., best 10%), allowing decision
makers to make trade-offs between simulated performance and other issues. Others
have also looked at methods to relax the objective of finding a single optimal
solution. Ordinal optimization (Ho et al. 2000, 2007) introduced the concept of
“goal softening” which finds at least one solution out of the best m solutions. Also,
instead of finding the best design, indifference-zone procedures focus on obtaining
a design with a “good” performance (Kim and Nelson 2001; Nelson et al. 2001;
Rinott 1978; Shi and Olafsson 2009).

Our approach, called probabilistic branch and bound (PBnB), has been developed
over several years and involved several doctoral students (Huang 2016; Prasetio
2005; Wang 2011). It was originally motivated by research in air traffic flow
management where weather had a large impact on delay. The research team wanted a
method, apart from classical design of experiments, to optimize a detailed discrete-
event simulation of air traffic with delay propagation due to weather events. The
motivation was to provide a set of solutions that would give the decision-makers
insight into the sensitivity of good policy decisions.

The PBnB algorithm was developed in Prasetio (2005), Wang (2011), Zabinsky
et al. (2011) for both continuous and discrete optimization problems with black-
box noisy function evaluations. This work used partitioning and sampling to prune
subregions and concentrate subsequent sampling on promising subregions. Order
statistics were used to determine the quality of each subregion for pruning and
branching decisions. In Huang (2016), Huang and Zabinsky (2013), the concept of
“maintaining” a subregion with statistical confidence was introduced. This chapter
presents PBnB with maintaining and pruning for level set approximation, with a few
words on variations of PBnB for global optimization.

PBnB is a random search algorithm that uses sampling and partitioning of
the solution space, similar to a nested partitioning optimization framework (see
Olafsson 2004; Shi and Olafsson 2000, 2009). The algorithm iteratively updates its
confidence interval on the value of the target quantile, and seeks the target level set,
that is, the set of solutions within the target quantile (e.g., all solutions in the best
10%). As the algorithm proceeds, each subregion is statistically identified as: (1)
contained within the target level set, called maintained; (2) no intersection with the
target level set, pruned; or (3) there is not sufficient evidence to decide. Probability
bounds are derived on the maximum volume of incorrectly determined regions at
each iteration, providing useful information to the user on the quality of solutions
provided.

The benefit of estimating a level set in simulation optimization in contrast to a
single solution is that decision makers can consider information that is not evaluated
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in the simulation model. For instance, flexible threshold design problems (Pintér
1990) can use a level set solution to ensure that a threshold tolerance is met. Csendes
and Pintér (1993) also considered a level set as an approach to sensitivity analysis.
When there is noise in the performance measure (as is typically the case in discrete-
event simulation), decision makers may be indifferent to small differences in the
estimate of the objective function. By providing a set of solutions, PBnB enables
decision makers to explore other aspects of the solutions that are in the target
level set.

PBnB has been used in several applications to provide insight to decision-makers.
In Prasetio (2005), an early version of PBnB was applied to weather forecasting and
its impact on air traffic flow management. Zabinsky et al. (2011) applied PBnB to
a parameter estimation problem, formulated as a maximum likelihood optimization
problem that was nonlinear. In Huang et al. (2016), PBnB was used to perform
a sensitivity analysis on a hepatitis C screening and treatment budget allocation
problem, where the shape of the level set indicates which time period for the
budget allocation has stronger impact on the health utility gain. Huang and Zabinsky
(2014), developed a version of PBnB adapted to multiple objective functions.
This version of PBnB approximates the Pareto optimal set of solutions to support
decision makers in investigating trade-offs between objective functions. PBnB
for multiple objective functions was used to study allocating portable ultrasound
machines and MRI usage for orthopedic care in a hospital system (Huang et al.
2015). Two objectives of cost and health utility loss were evaluated via a discrete-
event simulation, and a Pareto optimal set was approximated. More recently, PBnB
was applied to a water distribution network using a simulator to identify the set of
feasible solutions for decision makers (Tsai et al. 2018).

A partition based approach is used here for approximating a level set since it
can provide a collection of subregions forming the approximation. Partition based
algorithms have been used for finding global optimal solutions. The nested partition
algorithm (Olafsson 2004; Shi and Olafsson 2000, 2009) partitions solution sets
into multiple subregions and finds a promising subregion with a high likelihood of
containing the global optimal solution. In contrast to nested partition, our algorithm
does not narrow in on the global optimum, but creates a set of subregions considered
“maintained” because there is statistical confidence at every iteration that the
maintained region is contained in the target level set.

In addition, our algorithm considers subregions when determining whether
implementing further samples is computationally warranted. A similar concept is
used in optimal computing budget allocation (OCBA) algorithms, where a fixed
number of simulation runs is given, and the algorithm evaluates the objective
function at different solutions (Chen et al. 2008, 2010; Chen and Lee 2011).
Also, ranking and selection algorithms group solutions and perform ranking and
selection procedures for a maximum sample size (Xu et al. 2016). Another partition
based algorithm, named empirical stochastic branch and bound (ESBnB), calculates
empirical bounds for each subregion on future sampled performance (Xu and Nelson
2013).
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Simulation optimization algorithms often provide asymptotic convergence
results to a local or global solution, and maximize the probability of correct
selection or minimize a computation budget. Also, stochastic approximation, nested
partitioning, and model-based algorithms ensure convergence asymptotically (Fu
et al. 2008; Hu et al. 2007; Olafsson 2004). However, in practice, decision makers
may want to run the algorithm for a while, and decide to continue or terminate.
In contrast to asymptotic results, we derive bounds on the performance of the
algorithm at any iteration. Finite time results help decision makers interpret the
quality of the reported solutions, and decide when to terminate the algorithm.

An overview of PBnB for level set approximation is introduced in Sects. 6.2,
and 6.3 describes the details of the algorithm. Section 6.4 provides guidelines
and discussions of implementing PBnB. Section 6.5 presents several theorems that
describe the quality of the level set approximation provided by the algorithm with
probability bounds. Numerical results are presented in Sect. 6.6, and conclusions are
in Sect. 6.7.

6.2 Framework of Probabilistic Branch and Bound (PBnB)
for Level Set Approximation

The proposed algorithm aims to approximate a level set with respect to a perfor-
mance function f(x) for a black-box simulation model, where the optimization
problem is

(&) min f (x) (6.1)

and f(x) = Ez[g(x, & )] is the expected value of a black-box simulation or a noisy
function g(x, &), and &, is the random variable representing the noise. Typically,
&, is assumed to be normally distributed since the sample mean is often used to
estimate f(x), and the central limit theorem can be applied (Chen and He 2005).
The design variable x is a vector in n dimensions, and the values may be integer or
real-valued. In this chapter, the feasible set S is defined by upper and lower bounds
on x, which makes partitioning easy and the volumes of the subregions (hyper-
rectangles) easily computed.

We are interested in the § quantile associated with f(x), denoted y(§, S),
defined as

y(8, S) = argmin{P(f(X) <y) > 8}, for0 <8 < 1, 6.2)
y

where X is a random variable uniformly distributed on the domain S. We recognize
that y (8, S) can also be expressed in terms of probability as

v(x : f(x) =¥6.5).xeSph _

P(f(X) =y, 9) = o(5)

(6.3)
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Fig. 6.1 Procedure of PBnB for level set approximation

v(x - f(x) < ¥G. 5).x €SP _

P(f(X) <y, 9) = 2(5)

, 6.4)

where v(S) denotes the n-dimensional volume of set S. Also, we let L(3, S) be our
desired set of best §-quantile solutions, where

LG, S)={xeS:f(x)<y@i,9)}, for0<d < 1. (6.5)

The PBnB algorithm for level set approximation has two primary components,
as illustrated in Fig. 6.1. The first component has three steps to develop a confidence
interval for the target quantile y(§, S). In Step 1, the algorithm samples over all
current subregions. The number of sample points and replications depends on the
desired confidence level and the size of the current subregion. In order to rank the
samples correctly under noise, we apply a two-stage procedure based on Bechhofer
et al. (1954) to update the replication number, in Step 2. We estimate the target
quantile with confidence intervals in Step 3.
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The second component focuses on processing subregions of the solution space,
by maintaining, pruning, or branching. Based on the confidence interval, Step 4 finds
the elite and worst subregions which have a potential to be maintained or pruned, and
implements further sampling in the elite and worst subregions to statistically confirm
the maintaining and pruning. In Step 5, the algorithm updates the maintained
subregions, the pruned subregions and branches the rest of the subregions to create
the current set of subregions.

PBnB for level set approximation has a straightforward stopping condition, route
(1) in Fig.6.1. It proceeds until all subregions are either maintained, pruned, or
reach a user-defined minimum size that we term “unbranchable.” In this chapter, a
hyper-rectangle is “unbranchable” when the length of its longest side is less than
a percentage (e.g., 4%) of the length of the shortest side of S. The size of an
“unbranchable” hyper-rectangle impacts the precision of the level set approximation
as well as the computation. In high dimensional problems, it could be difficult to
achieve a tight approximation, and the user could terminate the algorithm by other
methods, such as the volume of maintained subregions and/or a number of iterations.

If the algorithm does not terminate, it decides whether to update the quantile
estimation, route (2) in Fig.6.1, or to continue branching and sampling with
the current quantile estimation, route (3) in Fig.6.1, based on the number of
consecutive iterations with unsuccessful maintaining and pruning. This balances the
computation between reducing the number of current subregions (by maintaining or
pruning), and narrowing the confidence interval of the quantile estimation for future
maintaining and pruning.

Consider a two-dimensional sphere function as an example. The function details
are described in Sect. 6.5 in Eq.(6.40). Figure 6.2 illustrates the progress of the
algorithm with maintained, pruned, and branched subregions, overlaid on the
contours of the sphere objective function, at iterations 6, 8, and 10. The target
quantile is set to 10%, and the associated contour is bolded in Fig. 6.2. The white
rectangles indicate the pruned subregions, and the numbers in the rectangles indicate
the iteration at which they were pruned. The light gray (green) rectangles represent
the maintained subregions that are contained in the target level set, and the dark
gray (blue) rectangles are the current undecided subregions. As the algorithm
progresses, the undecided subregions form the boundary of the target level set.
In the example, at the sixth iteration, PBnB already pruned the outer part of the
solution space. By iteration 8, four subregions in the center of the level set are
maintained, and at iteration 10, several smaller subregions are maintained, and the
current undecided subregions trace the level set boundary. Figure 6.3a shows the
shrinking quantile interval estimation (upper and lower bounds on y(§, S)), and the
bold line indicates the true quantile value y (8, S) of the sphere function. Figure 6.3b
shows the fractional volume of the maintained, pruned, and undecided subregions,
for iterations 1 to 10 of the algorithm on the sphere function. Notice the volume
of the undecided region tends to decrease while the volume of the maintained and
pruned regions increases with iteration.



6 Partition-Based Optimization Approach for Level Set Approximation: PBnB 119

(a) (b)
,@=0.05, §=0.1, =10, M=2, # pts=3500, iter.=6
|

a=0.05, §=0.1, e=10, M=2, # pts=4538, iter.=8

(c)

10

a=0.05, §=0.1, e=10, M=2, # pts=4863, iter.=10

Fig. 6.2 PBnB for level set approximation on a two-dimensional sphere function, at iterations 6,
8 and 10
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Fig. 6.3 (a) Quantile interval estimation (upper and lower bounds) on y(§, S) for iterations
1,2,...,10. The bold line in (a) indicates the true value of y(§, S). (b) The ratios of volumes
of the maintained, pruned, and undecided subregions to the volume of S. The bold line in (b)
indicates the target 10% on the two-dimensional sphere function
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6.3 Algorithm Details of PBnB for Level Set Approximation

The input parameters to PBnB defined by the user include: §, «, €, kp,, B, ¢, and R?.
The parameter §,0 < § < 1, 1is used to define a §-quantile for the target level set. For
example, the user may be interested in the set of solutions in the best 10%, in which
case § = 0.1. The user does not have to specify a range on the objective function.
If a specific value is known a priori, the algorithm can be modified to accommodate
the information.

The following two parameters, « and €, are used to determine the quality of the
level set approximation. The approximation can be wrong in two ways: it could
prune a portion of the level set or it could maintain some area that is not in the level
set. The parameter o, 0 < o < 1, is used in the confidence level of the estimation
of ¥(8, §) and in the probabilities of incorrectly pruning or maintaining. The choice
of o will influence the sample size and number of replications. As the confidence
level (1 — «) increases, a larger sample size and more replications are needed to
achieve the confidence level. The parameter € > 0 is the volume of solutions that
can be tolerated to be categorized incorrectly. We also expect that a high confidence
level (low o) will have fewer incorrectly pruned or maintained subregions, since the
probability of the incorrect volume exceeding € decreases.

The main results of the analysis are stated in Theorems 4, 5, and 6 giving
probability bounds on the quantile estimation, on incorrectly pruning a volume of
size €, and on incorrectly maintaining a volume of size €, respectively, for functions
f(x) that can be evaluated exactly (with no noise). Corollaries 1, 2 and 3 provide
the same probability bounds for noisy functions where f(x) is estimated by f (x).

The parameter k;, is the maximum number of consecutive iterations without
maintaining or pruning before further overall sampling for quantile estimation. The
branching scheme is defined by B, B > 2, which is the number of evenly sized
subregions to create when a subregion is branched, c is the incremental sample size
for each estimation of quantile when route (2) in Fig. 6.1 is taken, and R? is the
initial replication number at iteration 1.

The algorithm provides two results, a §-quantile estimation and an approximation
of the target level set. The §-quantile is estimated by a confidence interval
[CI;, C1,], and the interval bounds are estimated by CI; = f(z(r)) and CI, =
f (z(s)), where f (z()) and f (z(5)) are the rth and sth ordered samples at the last
iteration. The level set approximation consists of the maintained region, denoted
by ,ﬁ” , and illustrated as the light gray (green) rectangles in Fig. 6.2. In the analysis,
we provide statistical confidence that f],ﬁ” is contained in the target level set up to
a maximum error volume of €. In addition to the maintained region, the algorithm
also provides the undecided region flkc shown as the dark gray (blue) rectangles
in Fig.6.2, and the pruned region f],f shown as white rectangles in Fig.6.2.
The analysis provides the opposite information for the pruned region; statistical
confidence that it is not in the target level set up to an error of €.
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Probabilistic Branch and Bound (PBnB) for Level Set Approximation

Step 0. Initialization:  Input user-defined parameters, 3, o, €, kp, B, ¢, and RO,
Also, initialize the maintain, prune, and current subregion collections and
iterative counters as X; = {S}, EIC =S, fl{"[ =, f)lp =0, =68, = %,
€6 = %, Ro = R°,and k = 1,k = kp,c1 = c. The set Xj provides a
way to keep track of the subregions that are not pruned or maintained, and f]lc
indicates the union of those subregions. Also, f]{” and ¥ IP indicate the union
of all maintained and pruned subregions, respectively, and both are empty at
iteration 1.

Step 1. Sample cy points in current subregions with updated replication number:
For the current undecided subregion ikc uniformly sample additional points
over the entire f],f such that the total number of points in f],f is cx. For each
subregion o; € X, denote the sample points as x; ; € o;, for j = 1,..., N,i
andi =1, ..., || Zk]||, where || Zk]|| is the number of subregions in set X;. Note
that lejk” N,i = . For notational convenience, let Ny = ck. If f(x) is noisy,
PBnB evaluates g(x, §) with Ry_; replications. Specifically, for each x; ; € o,
j=1,..., N,i andi =1,..., || 3]|, perform Ry_; replications of g(x, £}), and
evaluate the sample mean and sample variance,

>4 g (i g €

f (x,',j) = Re_ and 512? (xi,j)
Ri—1
1 r 7 P 2
~mon L (b)) 6o

Step 2. Order samples in each subregion and over all subregions:  For each sub-
regioni,i = 1,...,||Zl|, order the sampled points, x; (1), ..., X; iy by their
estimated function value so that

fia) < faie) < < f(xi,(le,))‘

Similarly, order all sampled points, z(1), - . ., Z(n;), in all current subregions in
%k by their function values, so that

f(Z(l)) < f(Z(z)) <... < f(Z(Nk))-

If g(x, &) is noisy, check the ordering with further replications calculated as
follows.

(2.A) Calculate the differences between ordered samples, let d;; =
f(x,;(jﬂ)) — f(xi’(j)), where i = 1, ey ||Ek|| andj = 1, P Nli — 1.
Determine
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d* = min ) dl"j and
=1 ISl =1 N1
§*2 = max S;A(.xi’(j)).

i=1,ee0 1Tkl j=1,.0, N}

tup 25"\ 2
d*]2 ’

(2.B) Calculate the updated replication number R; = max {Rk_ 1, (
where zy, /7 is the 1 — oy /2 quantile of the standard normal distribution.
Perform R; — Ry—1 more replications for each sample point. Re-estimate
the performance of each sample point with Ry replications by f(x; ;) =

Ry Cer
2o g<x’-1’§ﬂ:./)
Ry :

Within each subregion o; € X, rank all the sample points x; ; as x;(j)

representing the jth best point in subregion, according to the estimated function

value, and also update the entire order of all current samples with updated
replications, so that

f(xi,(l)) < f(xi,a)) == f(’ci,(zv,i))v and f(Z(l))

< f(Z(z)) <. = f(Z(Nk))'

Step 3. Build confidence interval for y(8, S): To build the confidence interval of
quantile y(8, S), first, calculate the lower and upper bounds of & as

v(i,ﬁ”)e

A8 = 8+ ———k 2
=T 5w (B9)

(6.7)

Then calculate the confidence interval lower bound CI; = f (z()) and the upper
bound C1, = f (z(s)), where r and s are selected by

r—1
N, . .
maxr : Z ( ,") ) (1 = 8)M—1 < “—2" and (6.8)
i=0 !
. s—1 Nk i N G
mins Z ) k) (1 = S )M > 1 — o> (6.9)
l
=0

The choice of r and s in constructing the confidence interval is discussed in
Theorem 1.

Step 4. Find elite and worst subregions, and further sample with more replications:
Step 4 identifies the indices of elite and worst subregions as e and w, representing
the subregions that are likely to be maintained or pruned. The sets e and w are
defined with the quantile confidence interval as
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e =il fx ) < Chi, fori e 1. [} (6.10)

w={i|feia) > Cl, forie 1[5} (6.11)

Statistically confirm maintaining and pruning for each elite or worst subregion
by sampling points up to N;, where

N} = L“ke , foralli € {e Uw). (6.12)

For each new sample, perform R replications, and evaluate the sample mean and
variances as in (6.6). Reorder the sampled points in each subregion o;, and update

%\ 2
d* and $*? as in (2.A). As in (2.B), perform max {Rk, (Z‘Zf*/izs ) } — Ry more

replications for each new sample point, where z¢, /2 is the 1 — oy /2 quantile of

the standard normal distribution. Update f (X)) = x_rr;ieltlf _ f (xi,7), f (xl.’( N/i)) =
i,j i

. S\ 2
max f(x; ;) fori € {e Uw}, and update Ry < max {Rk, (%) } — Rg.
Xi, j €0

Step 5. Maintain, Prune, and Branch: ~ Update the maintaining indicator functions
M;, for i € e, and the pruning indicator functions P;, fori € w, as

M, = 1, if f(xi*.(Nli)) <CI and P, = 1, if f(x,'"(l)) > Cl, (6.13)
0, otherwise 0, otherwise.

Update the maintained set s ,ﬁl and the pruned set s ,f) L1as
sh =5 Jss and Tf, =50 6L (6.14)

~k _ . ~k _ X ..
where 6,, = U;cop,=1 01 and 6, = ;¢ p.—1 0i» and branch the remaining

current subregions in the following manner.

(1) If all subregions o; € Xj are not branchable, terminate the algorithm.

Else, if 0; is branchable, and if 0;,i = 1, ..., | 2|, has not been maintained
or pruned, then partition o; to 61.1, e, 6iB and update the current set of
subregions

2¢., = {5/ : Vi tobebranched, j = 1,..., B} and £,

B
_ —J
- U (U
j=1

i to be branched
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Determine §;1 by

Spal = 8w (EF) = Xt v(01) 615
’ v (EIS) - ZiiP[:l U(O'l') - Zi:M,‘:l U(O'l') ’ )

Set

ke = ke + 1,06 D iee Mi+ 3 i Pi =0 (6.16)
0 , otherwise.
Setapy1 = ¥, éky1 = %, cky1 = cx + ¢, and increment k < k + 1.
(2) If ko > kp, set k. = 1 and go to Step 1.
3) If k. < kp, go to Step 4.

6.4 Implementation of Probabilistic Branch and Bound

Probabilistic branch and bound includes several user decisions to effectively apply
the algorithm for different problems. This section provides guidelines for using
PBnB for level set approximation, and discusses a variation for global optimization.
The PBnB source code is available on GitHub at: https://github.com/ddlinz/PBnB.

Section 6.4.1 discusses the implementation of PBnB for level set approximation
and Sect. 6.4.2 focuses on the variant for global optimization.

6.4.1 Implementation of PBnB for Level Set Approximation

The user-defined parameters of PBnB affect the computational efficiency and the
quality of solutions ensured. Parameters §, «, and ¢ impact the quality of the
approximated level set provided by PBnB, and indirectly the computational effort.

The target quantile level §, 0 < § < 1, represents the desired level set, where
a user could choose with several different viewpoints. It can be chosen with a
particular quantile in mind, such as the best 10% solutions, or by considering
how much the performance can be relaxed and still be considered good enough.
In numerical results section, § is used to represent the level set as a proportion of the
domain, e.g., the top 10% solutions. However, the user can provide a specific value
of performance to define a level set. The only change of the algorithm is to replace
the quantile estimation with estimating the specific performance value.

The two parameters o and e provide the statistical quality of the approximated
level set. There is a trade-off between quality and efficiency; the higher the quality,
the larger the sample size. The choice of « defines a confidence level (1 — «), where
the quality of the approximated level set is probabilistically defined with (1 — «).
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As mentioned in Sect. 6.3, the parameter € is the volume of solutions that can be
tolerated to be categorized incorrectly. If € is interpreted as a fraction, e.g., 0.2, of
the volume of the initial region, then one interpretation of the result is; if a point is
randomly selected from the approximated level set, the probability it is not in the
true level set is less than that fraction, e.g., 0.2. The user can choose € based on the
risk tolerance while implementing one solution from the approximated level set in
the real world. The details of the statistical quality are discussed in Sect. 6.5.

Another major factor that can heavily influence the effectiveness of PBnB is
the partitioning scheme. If a partitioning scheme can quickly identify the shape
of the target level set, it significantly increases the speed of PBnB. The reason for
the potential increase of efficiency is due to the possibility that the subregions are
simply not small enough to capture the shape of the level set, even though PBnB
may have enough samples. However, most of the time we have no information of
the shape of the target level set since it is the goal intended to be approximated.
There are potential research opportunities in developing a smart partitioning scheme
and embedding it into PBnB algorithm. Linz et al. (2015) proposed a look-ahead
approach to provide a potential lead to smart partitioning. In the numerical results
section in this chapter, a straightforward empirical partitioning scheme is imple-
mented. To be specific, it partitions the dimension of undecided subregions that has
the longest length. Consequently, each variable of an undecided subregion will be
partitioned into B subregions. If the user has no information about the problem, this
type of empirical scheme is suggested. However, for higher dimensional problems,
it may be beneficial to partition more than one variable at each iteration, since there
are some many variables to be partitioned.

Other than the parameters defining the approximated level set and the partitioning
scheme, the stopping condition is another user-defined setting for PBnB. In
Sect. 6.3, the algorithm stops when the undecided subregions are unbranchable,
where the definition of unbranchable is specified by the user. In general, an
unbranchable subregion represents the smallest size of a subregion which is
meaningful for its input variables. Hence, if different variables have different scales,
the unbranchable subregion can be defined with a set of length for each decision
variable. Other than using unbranchable as a stopping condition, there are other
settings for users with different requirements. For instance, if the computational
resource is limited, the stopping condition could be the total number of sample
points. Also, changing the stopping condition does not affect the quality of solutions
provided in the next section. The only trade-off is that the approximated level
set may be smaller than desired. For high dimensional problems, it may be too
computationally expensive to approximate the entire target level set and the user
may simply seek a good enough solution, where the performance is bounded by the
estimated quantile. In this case, a recommended stopping condition is when the first
subregion is maintained.
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6.4.2 Implementation of PBnB for Global Optimization

The main difference between PBnB for level set approximation and for global
optimization lies in the maintained subregions. Once a subregion is considered to be
maintained, i.e., within the target level set, PBnB for level set approximation stops
sampling there. To apply PBnB for global optimization, it is possible to turn off the
maintaining feature, and just keep sampling in the good subregions until a stopping
condition is met. The details of the probabilistic analysis in this case can be found
in Zabinsky et al. (2011) and Wang (2011).

The global optimization version of PBnB is implemented in a similar way to
the level set approximation version with parameters §, «, partitioning scheme and
stopping condition. The major difference is the output of the global optimization
version, which uses the best sampled solution as the approximated global optimal
solution. The global optimization version does not provide maintained subregions
of the level set, but statistically ensures the approximated global optimal solution is
inside the § level set, meaning it is good enough.

6.5 Performance Analysis

We analyze the performance of PBnB for level set approximation by deriving
confidence intervals on y(4, S) and probablhty bounds on the relationship of the
pruned set, Ek , and the maintained set, M ¢ » with the desired level set, L(8, ), at
every iteration k > 1. This analysis is more complete than an earlier analysis that
appeared in Huang and Zabinsky (2013).

First, in Sect. 6.5.1, we analyze the performance assuming the objective function
f(x) can be evaluated exactly, that is, there is no noise in observing f(x). In
Theorem 1, we derive the interval estimation of the target quantile y(d, S) by
mapping the &§; quantile over the current region fkc at iteration k, to the § quantile
over S. This enables us to estimate the § quantile over S even though the subregions
change in size iteratively. Speciﬁcally, Theorem 1 develops bounds on y(8, S) using

v (8, ZE) and y (8xu, £F) assuming upper bounds on the incorrect maintaining
and pruning volumes and then provides a confidence interval on the target quantile,
(8, S), using the volume of subregions maintained and pruned. We provide the
quality of the level set approximation by deriving probability bounds on the
volume of incorrect pruning and maintaining in Theorems 2 and 3, for a single
iteration. Theorem 4 considers the sequence of iterations from 1 to k, and provides
quantile lower and upper bounds for one-sided interval estimation, while accounting
for the impact of the volume of incorrect pruning and maintaining. Theorems 5
and 6 provide probability bounds on incorrect pruning and maintaining regions of
maximum volume ¢, for the sequence of iterations 1 to k.

Section 6.5.2 discusses the impact of noise on the performance analysis. We
estimate f(x) with f (x), and in Theorem 7, we derive the impact of noise on the
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probability of correctly ordering the samples. By incorporating the probability of
correctly ordering the samples, Corollary 1, corresponding to Theorem 4, derives
the probability that the sequence of interval quantile estimation up to iteration k
captures the true target quantile when the function is noisy. Similarly, Corollaries 2
and 3 propose noisy versions of Theorems 5 and 6.

6.5.1 Analysis on a Function with Exact Evaluation (No Noise)

In Theorem 1, we let €}/ = v (i,ﬁ"’) —v (LG, SN f],f”) denote the volume of f,ﬁ”
that is incorrectly maintained, and let e,f = (L 5,9nN ¥ ,f ) denote the volume of
s ,f that is incorrectly pruned at iteration k. Since volume is always non-negative,
zero is a natural lower bound on e,f’[ and e,f) . Upper bounds on 6,?/[ and e,f) are used
in Theorem 1 to obtain upper and lower bounds on the target quantile and provide
an interval estimation.

Theorem 1 For any iteration k > 1, suppose there is no noise and 0 < E]f) <

(Z/)
v(S)

M
and 0 < 6,?4 < Evv((zsk) ). Then the bounds of the target quantile are

v (8. ) = 6.9 = v (81 £F) 6.17)
where 8 and Sy, are from (6.7). Therefore, an interval estimate of the quantile is
P(f(ze) =36, 9) = fze) = 1 — e, (6.18)

where z(1y, . .., Z(Ny) are the Ny uniform samples from the current region Ekc at
iteration k, ordered by function values (as in Step 2), 0 < ax < 1, and r and s

satisfy (6.8) and (6.9).

Proof The full proof is available in the appendix, and here we provide a sketch of
the proof. We consider the iterative effect of §; on the estimation of the original §
as subregions are pruned or maintained. In the algorithm, (6.15) is used to update
8 assuming that the maintained regions are in the level set and pruned regions
are out of the level set. To incorporate the potential maximum volume error € of
incorrect maintaining and pruning at iteration k, we provide bounds in (6.7) such that
y ((Sk;, f)kc) <y,8) <y ((Sku, flkc) Since samples are independent and uniformly
distributed in the current set ikc, each sample acts like a Bernoulli trial and falls in
a O or Oy level set with & or &, probability, respectively. Using properties of a
binomial distribution (see Conover 1999), we can build a 1 — o quantile confidence
interval as f(z¢)) < ¥(8,5) < f(z(s) With y (8, F) and y (8ku, EF), where
f(z¢y) and f(z(s)) are the rth and sth order samples, yielding



128 Z. B. Zabinsky and H. Huang

P(reh) =y (50 5F) =369 = v (80, 5) = ) 2 1- .
(6.19)
O

Theorem 1 analyzes the impact of incorrect prumng and maintaining on shlftmg
the 8 quantile to correspond to the current set, . Theorem 1 assumes that ek is

M
bounded by v(( ) £ , which we denote as event

Al = {v (L((S, HNEM) = v (8 - evv(é;”)}

and that ek is bounded by

which is represented by event

o (5) }

(S) ’

AP = :v (L(a, $HN i,{’) <=5

The event that y (Skl, ) and y (Sku ) are bounded correctly is denoted by
AT = {f(z(,)) < Y@, Z) <y (8w, EF) < f(zlgs))]. All three events, denoted

Ar={al nal nag'l, (6.20)

ensure that y(6, S) is bounded correctly on iteration k, i.e., f(z](‘r)) <y (5k1, ikc) <
Y8, 8) <y (s ZF) < f(2fy).

We next analyze the quality of pruned subregions and maintained subregions
for a single iteration in Theorems 2 and 3 assuming event Aj. Probability bounds
on interval estimations of the target quantile from iteration 1 to k are derived in

Theorem 4. The final performances of the algorithm are derived in Theorems 5
and 6.

Theorem 2 Consider any iteration k of PBnB on Problem (£?) where there is no
noise, and suppose 5}; =U; cw:p,—1 0i has been pruned on the k' iteration. Also,
we condition on the event Ay in (6.20) being true. Then, the event that the volume of
the incorrectly pruned region, i.e., v(L(§, S) N Uk) is less than or equal to Dpek,
where Dk is the number of subregions pruned at iteration k, with probability at
least 1 — ay, that is

P (v (L((S, $HN o[’g) < D,fek|Ak) >1—q. 6.21)
Proof The full proof is available in the appendix, and here we provide a sketch

of the proof. The proof uses the quantile definition to bound the probability that
the pruned set does not incorrectly contain the target set up to a maximum error,
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conditioned on the event Ax. The probability statement from Theorem 1 coupled
with order statistics for the best sample in the subregion is used to further bound
the desired probability. The sample size used in Step 4 is determined to achieve the
desired 1 — oy probability bound. O

Theorem 3 Consider any iteration k of PBnB on Problem (£?) where there is no
noise, and suppose 6X = |, cw:M, =1 Oi has been maintained on the kth iteration.
Also, suppose Ay in (6.20) is true. Then, the volume of the correctly maintained
region is greater than or equal to v(&,ﬁ) — D,f” €k, where D,jcw is the number of
subregions pruned at iteration k, with probability at least 1 — o, or, in other words,
the volume of the incorrectly maintained region is less than or equal to D,ﬁw € with

probability 1 — oy,
P (v (5,’;, \ L, S)) < D,ﬁ”ekmk) >1—o. (6.22)

Proof The proof is similar to Theorem 2.

M $P
Theorem 1 assumes 0 < M < Evv((s’g ) and 0 < ¢ < Evv((—sk)'), and Theorems 2

and 3 assume Aj. Now, in Theorem 4, we remove these conditions.

Theorem 4 For any iteration k > 1, suppose there is no noise and use Sy and
Sy from (6.7) to estimate target quantile y(38, S). The probability that all interval
estimates from iteration 1 to k capture the original quantile y(6, S) is bounded as

P s (&) =ve. 9 =7 (dy)}) 20— (6.23)

where zér) and zé 5 are from Step 3, using (6.8) and (6.9) at iteration i.

Proof Without loss of generality, suppose that the algorithm builds a confidence
interval every iteration, that is k, = 1.

Because we estimate the target quantile using y(Sgy, f?kc) and y (g, )ikc) as
upper and lower bounds in Step 3, we consider a lower bound for a single estimation
at iteration k as

P(r() =y 9 =71 ()
=P ({£ () = v (5. 56) = 96,9 = v (0 £6) = £ () })

and when the conditions of Theorem 1 are satisfied, that is, the incorrect maintained

ev(x))

volume is less than or equal to — OB and the incorrect pruned volume is less than
()
v(S)

or equal to then y (Bkl, ikc) <y@6,8 <y ((Sku, ikc) so we get
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S ——

o(S)
N{(eoonsr) = =GP N ) =5 05)
=y (5 ) = 7 (z](‘s))}> =P ({alf naf nag}). (6.24)

Now, working towards (6.23), we derive a lower bound on the probability that the
quantile interval estimate captures the target quantile at every iteration from 1 to &,
using (6.24), that is

P 7 (dn) =069 = £ (2)]) = P (Rl {4 naf nal)).
(6.25)
We start proving (6.25) by using mathematical induction to show that
k—1 k—1 k
P(N_, {AIM nAP N A,.C’}) >[Ja-en [Ja-an ] —an.  (626)
i=1 i=1 i=1

Fork = 1, P(AM n AP n AST) = PAY nAP|ASTHPAST) = 1- (1 -
ap) = (1 —ay), where P (A7) > (1 — «) because the bounds are built with (6.8)
and (6.9), and P ({AII"I N Af |A1C1 }) = 1 since Z{"I and Ef are empty set.

Suppose k = j holds, we have

i=1 j=1 j
P(n {alnalnacl) = E(l —ai) E(l - a,-)E(l —a). (6.27)

Fork =j+1,

p(nHar nal nafl) = p({at,

j M P CI j M P CI
-‘0{21 {Ai NA;7 N AS })P(H{ZI {Ai NA;7 NA;S })

P ci
NAj N Aj+1}

_ M P J M P Ccl Cl
=p({ak nal}|nl {a nal naf’}nac)

P (Ahinl {a nal nalt)) p(nl {4l nal nactl).

. j+1 & j+1
Note, AG{, is {f (zf,) ) < (5j+1z, E.,CH) <y (8j+1u, E,.CH) <f (z{s) )}

which is selecting bounds for y(8j+11,2f+1) and y(8j+1u,§jc+l) with a
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predetermined & 1; and &1 1. Therefore, all Af"l and AIP ,fori < j, only affect the
development of 6;1; and &1, but do not have any impact on A]Cf-l- Furthermore,
since the j 4+ 1 iteration reuses samples from previous iterations, we have

P (A0l {a nal nactl) = p(aSh).
Therefore,
L[ AM A AP A ACT
P (m{_l {a¥ nalnac))
M ~ AP A ACI
({Aj+l j+l} I {Ai NA; NA; } A;+1)

P (A7) P (ohas [V AT Af).

and since the elite and worse subregions are mutually exclusive and the samples
used for pruning and maintaining are sampled from separate subregions, A?’{H and

A f .1 are independent, thus we have

M P Ccl
P(A¥ 0L, (A nal nalt)nadl)

M P Cl
P( ]+1|m] I{Ai mAi mAi } A]-H) (A]-H)
P (0 [l nal nag'))

and by separating the subregions that have been maintained and pruned on iteration
j + 1 from previous iterations 1 to j (Z"il =6, N EM andEPJrl = a,, N E )
and since the probabilities are conditioned on A?’I and Af , we get a lower bound
by considering the volumes of incorrect pruning and maintaining only on the last

iteration,
>p <v(&nf; \L(.5) < D¥e;| nl_, {A,M N AP mA,.C’} N A/+1)

P (v, Ne) = el [l nal nalhnadl)

(AJ+1) (m{zl{A{”mAiPmAiC’}),

and since removing the conditioning on the event A;: 4’_1 and on the events for prior

iterations, i < j, {AIM N Af N AZCI }, can allow for more incorrect pruning and
maintaining on the current iteration, we have
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P (u(&,{; \ LG, $) < DY [Aj” nafn AJCI})
~J P M P Cl
P(v(L(a,S)map)ng ej|{Aj N AL (1 AS })

cI i M P cI
P (ASL) P (nf {al nal nact))
and using Theorems 2 and 3, (6.19) and (6.27), we have

Jj—1 Jj—1

> (I—ap)(l—ap)(Il—aj) [Ja —a) [JO =) H(l — ;)

i=1 i=1 i=1
Jj+1

J
H(l — ) H(l — ) H(l — )

Hence, (6.27) holds for k = j 4+ 1, and by mathematical induction (6.26) holds.
Using (6.26) to lower bound (6.25) yields

P (N s (<) = 6.9 = £ (2)) 2 1‘[(1—%)1‘[(1—%)]‘[(1—%

k—1

=0 - [J0 =)’

i=1
and in order to establish a pattern, and since (1 — ox) < 1, we write

k—1

> (1—a®(l —a® (1 —a)® [](1 — @)’

i=1
and by applying Bernoulli’s inequality, and since oy = %, we get

k—1
> (1 —a ) - =) [ =)
i=1
k—2

=1 - [0 —an)?

i=1

and now, since B > 2, the pattern starts to repeat as
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k—2
> (- )P - DPAd =) [ [ =)’
i=1

and by repeatedly applying Bernoulli’s inequality,

> (1—a)’. (6.28)

O

Theorem 5 For any iteration k > 0 of PBnB on (&?) when there is no noise, the
volume of the incorrectly pruned region is at most € with probability at least (1—a)*,
that is

P (v (L(a, SN S,fH) < e) > (1 —a)*. (6.29)

Proof First consider the conditional probability of the incorrectly pruned volume,
given all confidence intervals capture the true quantile by A; foralli = 1, ...k,

and by the definition of f],irl, v (LG, SN ilfﬂ) = (ufleL(g, )N (};)’ we
have

P (v (L(a, $)N §,§°+1) < e‘ Nk, A,-) ,

=P (v(ULL6.9HN5) =€ Nl 4)) (6.30)
and at each iteration, at D;” subregions are pruned, yielding

= P (N (L6.$)N6}) < Dfe)

05(:1 A,’)

considering a lower bound that every subregion is pruned with probability bounds
as given in Theorem 2,

k k—1

= l0-e0=T10-5)= (05 TI(0-5).

i=1 i=1 i=1

B
and by applying Bernoulli’s inequality, (1 - %) > (1 — B%), repeatedly

> (1 _ %)B >1—a 6.31)
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Combining (6.23) from Theorem 4 with (6.31), we get

P (v (L(a, $HN i,{;l) < e) > (1 —a)*. (6.32)
O

Theorem 6 For any iteration k > 0 of PBnB on () when there is no noise, the
volume of the incorrectly maintained region is at most € with probability at least
(1 —a)*, that is

P (v (S,ﬁl \ LG, S)) < e) > (1 —a)*. (6.33)

Proof The proof is similar to Theorem 5. O

6.5.2 Analysis on a Noisy Function

In the previous analysis, we assume the objective function f(x) can be evaluated
exactly, without noise, and in this section we account for noise in the estimated
function f (x). Theorem 7 provides probability bounds for correctly ordering the
estimated function values. Theorem 8 combines all iterations from 1 to k and gives
a probability bound of 1 — « on the correct ordering. Corollaries 1, 2, and 3 provide
noisy versions of Theorems 4, 5, and 6.

We use the analysis of a two-stage replication approach, by Bechhofer et al.
(1954), in Theorem 7, which has following assumption:

(A1) The function g(x, &) itself is a random variable, due to the random variable
&:, and we assume g(x, &) is normally distributed with an unknown common
variance o2, and at each solution z; € S, the variance can be expressed as
a;o% where g; is a known constant for each i.

In PBnB, the constants a; are not known, hence, we cannot exactly implement
their two-stage replication approach. Our modified two-stage replication approach
is described after Theorem 7.

Theorem 7 (cf. Bechhofer et al. 1954) With Assumption (Al), the probability of
correctly ordering all samples in the current region at iteration k is

P(f (Z,(cl)) = f(zl({z)> == f(ZIEN,))If (Zl(‘l)) <f (zfz)>

< f (ZI(CN;{))) > 1 — o, (6.34)

IA

given that we have a;Ry as the first stage replication number for each sample
. . . 2 1 Ne 1024, .
point to estimate the common variance by S5 = N Zi:l a_,-Sf(Z(l)) and set

up the minimum difference desired to be separated as d*, and sampling Ry =
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max{a; R, 2(%)2} in the second stage of the procedure, where h is a value in
the H c.d.f. of a multivariate student t’s distribution with Ny — 1 dimensions such
that H(h) =1 — ay.

Proof See Bechhofer et al. (1954). O

For any iteration k, we take a conservative approach to achieve the 1 — oy
probability of correct ordering by separating each estimated performance mean
f(z@y) with its neighbor by the smallest difference d* = min;—1, n,—1d; of any
two neighbors. We also use the largest variance $*2 = max;—; Ny S;(z(i)) so that

all ordering is conservative. Specifically, the implemented two-stage procedure for
any iteration k is in (2.A) and (2.B) in Steps 2 and 4. For the implemented two-
stage procedure, we drop the assumption of a common variance with ;o> and only
assume the noise is normally distributed. In Step 2 of the implemented two-stage
procedure we use Zq, /2, the 1 — o /2 quantile of the standard normal distribution,
together with d* and S* so that the correct ordering of two function values separated
by d* with $*2 variance is achieved with probability at least 1 — o.

The following Theorem 8 considers Assumption (A1) and Theorem 7 to derive
a bound on the probability of correctly ordering the estimated function values for
iteration 1 to k.

,,,,,

Theorem 8 With Assumption (Al), the probability of correct ordering from itera-
tion 1 to iteration k is

<ﬁ< (Zﬂ)) ( i2>> == f(zl(M)))> >1-a, (6.35)

where zl(j) is the j'" ordered sampled point at iteration I.

Proof The probability of correct ordering from iteration 1 to iteration k can be
expressed using conditional probabilities as

P<6<f (ct) = F (<) = = £ (el 17 (<00
<f (zl(z)) <--<f (zl(N,))>>

where Ry is non-decreasing and Ry is chosen so that Theorem 7 is satisfied, hence
the probability the ordering is correct on iteration / given that the ordering was
correct on the previous iterations is greater than or equal to the unconditioned
probability that the ordering is correct on iteration /, therefore,

P (f (zl(l)) < f(zl(z)) <. < f(ziNl)) |f (zl(l))

=

=
!

1
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= f(zlu)) == f<ZiNl>)>

and by Theorem 7 and applying Bernoulli’s inequality repeatedly

zﬁ(l—%)zl—a. (6.36)

O

With the probability bound of correct ordering, we next derive the probability
that the sequence of interval estimation is correct in Corollary 1. In Corollaries 2
and 3, we derive versions of Theorem 5 and Theorem 6 with noise.

Corollary 1 Consider any iteration k > 1 of PBnB on (£?) where (Al) is assumed.
The probability that all one-sided interval estimates from iteration 1 to k capture
the original quantile y(8, S) is bounded by

P(Af () =369 = £ (dy)) z 0 - 6.37)

where zés) and zér) are selected as in Step 3 for iterationi = 1, ..., k.

Proof Theorem 4 considers the probability of a sequence of interval estimations
until iteration £ with no noise in the objective function. Theorem 4 holds under
the condition that each iteration’s ordering of samples is correct, however when the
objective function is noisy, the order of samples may be incorrect. Therefore, the
probability bounds for a noisy function should include the probability of correct
ordering, as in Theorem 8, which requires including a (1 — «) probability term in
the original bound. O

Corollary 2 Consider any iteration k > 1 of PBnB on (&) where (Al) is assumed.
The probability of incorrectly pruning a volume of at most € is bounded by

P (v (L(S, SN i,fH) < e) > (1 —a). (6.38)

Corollary 3 Consider any iteration k > 1 of PBnB on (£?) where (Al) is assumed.
The probability of incorrectly maintaining a volume of at most € is bounded by

P (v (i,ﬁl \ LG, S)) < e) > (1—a). (6.39)
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6.6 Numerical Results

In this section, we test PBnB for level set approximation with several test functions:
sphere function, Rosenbrock’s function, the centered sinusoidal function, and the
shifted sinusoidal function, defined as follows.

e Sphere function (—10 < x; < 10,i =1,...,n)
n
go(x) =Y x}. (6.40)

The global optimum is located at x, = (0, ..., 0) with g;(x,) = 0.

¢ Rosenbrock’s function (=2 < x; <2,i =1,...,n)
n—1 2
g1(x) = Z [(1 — xi)? + 100 (x,-+] — x?) ] ) (6.41)
i=1
The global optimum is located at x,, = (1, ..., 1) with g;(x,) = 0.
¢ Centered Sinusoidal function (0 < x; < 180,i =1,...,n)
" TX; ~ X
. 1 . 1
g3(x) = —2.5 E sin (@> - ,U sin (%) (6.42)
The global optimum is located at x, = (90, ..., 90) with g2(x,) = —3.5.
¢ Shifted sinusoidal function (0 < x; < 180,i =1, ...,n)

g30r) = _251—[ <n(x,1;(—)60)> HSin(w>' (6.43)
i=1

The global optimum is located at x, = (30, ..., 30) with g4(x,) = —3.5.

First consider the sphere function. We numerically evaluate the quality of the
level set approximation and compare with theoretical results in Sect.6.6.1. In
Sect. 6.6.2, test functions (6.41)—(6.43) are tested in the “no noise” setting and
the performance is evaluated for 2-, 3-, 5-, 7-, and 10-dimensional problems.
Section 6.6.3 focuses on the influence of a normal noise added to the test functions.
In Sect. 6.6.4, we demonstrate how the algorithm performs with integer variables
by discretizing the sinusoidal function (as in Ali et al. 2005). The parameters of the
algorithm are set as follows, § = 0.1, B = 2, @ = 0.05, € = 0.025v(S), kp = 2,
cx = 1000, and R, = 20 when the function is noisy. A subregion is unbranchable
when the length of its longest side is less than four percent of the length of the
domain’s side. Also, we apply an upper bound of the sample size for each subregion

by the density of sample points as UI(\;) < L(()(S)';




138 Z. B. Zabinsky and H. Huang

Table 6.1 Solution quality for noisy sphere function with 100 runs

Number of runs Number of runs Number of runs Number of runs
n | incorrect maintain > 0 | incorrect maintain > € | incorrect prune > 0 | incorrect prune > €
2 10 0 5 0
310 0 0 0

6.6.1 Sphere Function with Normal Noise

The true level set of a sphere function can be easily calculated for two- and three-
dimensional problems and used to compare the numerical performance with the
theoretical analysis of Theorems 5, 6, Corollaries 2 and 3. The algorithm was run
100 times under no noise condition, and no run incorrectly pruned or maintained
a region of volume larger than €. In fact, the volume of incorrectly pruned or
maintained for all 100 runs was zero—the result was perfect. Therefore, we focus
on the function with N (0, 1) noise. Table 6.1 lists the number of runs (out of 100)
that had incorrectly maintained and pruned volumes greater than 0 and €. For all
100 runs of PBnB for level set approximation on the sphere function with N (0, 1)
noise, no run’s incorrect maintained volume exceeded the user-defined parameter,
€ = 0.025v(S). For n = 2, only 5 runs have an incorrectly pruned volume greater
than 0. The theoretical probability bounds of (1 — «)> would allow an average of
23 runs out of 100 that could be incorrect by an € amount. Since we observed
zero runs that were incorrect by an € amount, this suggests that the sample size
used in the algorithm is conservative and the bounds in Corollaries 2 and 3 are not
tight.

6.6.2 Continuous Test Functions with No Noise

In this section, we illustrate the pruning and maintaining subregions in Fig. 6.4 for
the 10th iteration of PBnB on a single run on the Rosenbrock’s function, the centered
sinusoidal function, and the shifted sinusoidal function in two dimensions without
adding noise. In Fig. 6.4, the dark gray (blue) boxes are the current undecided
subregions, the white boxes represent the pruned subregions, the light gray (green)
boxes are the maintained subregions, and the bold line represents the target level
set (as in Fig. 6.2). The maintained subregions are clearly contained in the target
level set, and the current subregions form the boundary of the level set. Practically
speaking, there is a chance that some pruned subregions contain part of the target
level set. However, the algorithm ensures that the volume is bounded by the user-
defined parameter € with probability bounds in Corollaries 2 and 3. From the
two-dimensional problems, we can observe that the interaction of the test function’s
level set and the partition scheme affects the volume maintained and confirmed as a
part of the level set at iteration 10 in Fig. 6.4.
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Fig. 6.4 Approximating the level set bounded by the 0.1 quantile on the tenth iteration of PBnB
for two-dimensional (a) Rosenbrock’s function, (b) centered sinusoidal function, and (¢) shifted
sinusoidal function by the maintained green (light gray) subregions

Figure 6.5 illustrates the updates of interval quantile estimations for the two-
dimensional Rosenbrock’s function, centered sinusoidal function, and shifted sinu-
soidal function. This interval estimation, [f (), f (z((s))], represents the per-
formance bound of the target level set as a reference for decision makers. The
estimation updates for Rosenbrock’s functions narrow the interval width to help
pruning and maintaining. For the shifted sinusoidal function, there are subregions
pruned or maintained for every iteration from k = 3. Hence, the quantile estimation
does not update with new estimations. The centered sinusoidal function’s interval
estimation shrinks at the first update but loosens at the second update because more
pruned and maintained subregions widen the 8k, and ;. Currently, ¢ increases
linearly with iterations. However, for difficult functions, a non-linear increasing of
cx may provide tighter confidence intervals considering the use of the §;, and &;.

Figure 6.6 demonstrates the relative volume of solutions pruned, maintained, and
undecided for iteration 1 to 10. In two dimensions, almost the entire target level
set is captured as illustrated in Fig. 6.4. Three- and five-dimensional test functions,
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Fig. 6.5 Volume maintained and pruned by PBnB approximating the level set bounded by the 0.1
quantile for two-dimensional (a) Rosenbrock’s function, (b) centered sinusoidal function, and (c)
shifted sinusoidal function

n = 3,5, are also used to test the algorithm, and the summary results are shown
in Table 6.2. For all test functions, the algorithm still approximates the target
10% quantile level set and achieves between 4 and 6% maintained volume before
terminating. Also, we can observe that the shifted sinusoidal function requires fewer
samples for 2- and 3- dimensional problems. It is possible that the structure of the
function allows the algorithm to prune a large portion of the solution space earlier
than other two functions, as shown in Fig. 6.6.

Another approach to approximate a level set is to perform a grid search, where
all grid points in the domain are evaluated. To achieve an approximation to a level
of significance comparable to that of the numerical experiments with PBnB, we
would divide each dimension into 100 points. Then the number of grid points to
be evaluated is 100", where n is the number of decision variables. In the two-
dimensional examples in Fig. 6.4, the numbers of function evaluations by PBnB are
roughly between 10° and 10%, which is comparable to a grid search with 100> = 10*
function evaluations. However, as dimension increases, we see that PBnB uses much
fewer function evaluations than a grid search. In Table 6.3, the number of function
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Fig. 6.6 Volume maintained and pruned by PBnB approximating the level set bounded by the 0.1
quantile for two-dimensional (a) Rosenbrock’s function, (b) centered sinusoidal function, and (c)
shifted sinusoidal function

Table 6.2 Comparison of Rosenbrock, centered and shifted sinusoidal functions with number of
samples and ratio of volume maintained (VM)

Test function | Rosenbrock Centered Sinusoidal Shifted Sinusoidal
Dimension | # sampled | Ratio of VM | # sampled | Ratio of VM | # sampled | Ratio of VM
n=72 6004 4.30% 10,195 4.29% 3254 4.49%
n=3 159,655 5.83% 212,563 4.87% 104,825 5.38%
n=>5 71,529,641 5.77% 126,702,225 | 4.14% 130,595,965 | 4.67%

evaluations for n = 10 is between 10° and 103, whereas a grid search would require
100! = 10?° function evaluations. The advantage of PBnB is that it focuses on
where to sample, thus requiring fewer function evaluations than enumeration as in
grid search.

In higher dimensional problems (» = 7 and 10), approximating the entire
target level set may be computationally expensive. As the dimension increases,
the number of subregions increases significantly. PBnB for level set approximation
allows early termination to capture a part of the target level set. As in Fig. 6.6, the
volume of maintained subregions increases with more iterations and sample points.
In Table 6.3, the number of iterations and sample points are shown for the first
subregion maintained for each test dimensions, n = 2,3, 5,7, and 10. The result
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Table 6.3 Comparing the iteration for first maintaining a subregion for Rosenbrock, centered and
shifted sinusoidal functions, with number of samples and iteration of first maintained subregion

Test function | Rosenbrock Centered Sinusoidal Shifted Sinusoidal
Dimension # sampled Iteration | # sampled Iteration | # sampled | Iteration
n=2 5707 9 11,009 9 1972 7

n=73 25,531 10 33,315 10 3057 7

n=>5 101,880 11 473,366 13 10,970 8

n="7 1,228,908 14 5,589,142 16 20,962 9
n=10 92,448,129 |20 229,773,645 |21 108,073 11

indicates that PBnB can maintain the first subregion fairly quickly. Specifically, the
centered sinusoidal function takes more iterations and sample points to first maintain
a subregion. The shifted sinusoidal function consistently maintains a subregion
before the other two test functions. It shows the speed of maintaining a subregion
is related to the shape of the target level set of the function. Since maintaining
and pruning subregions is only possible when some subregions are branched small
enough to be fully in/out of the level set, the shape of the target level set (highly
related to the non-convexity of the test functions) and the branching scheme are
major factors impacting the algorithm’s effectiveness.

6.6.3 Continuous Test Functions with Normal Noise

In order to illustrate the impact of noise, we apply N (0, 1) noise to each test
function. Figure 6.7 illustrates the pruned and maintained subregions in a two-
dimensional solution space on the tenth iteration. The undetermined subregions for
the noisy functions in Fig. 6.7 are larger than the non-noisy counterparts in Fig. 6.4.
Although the shifted function performed well in the non-noisy condition, PBnB for
level set approximation only captures a small part of the shifted sinusoidal function’s
target level set with noise, because N (0, 1) noise is relatively large for the function
value of the sinusoidal function. Howeyver, it is possible to maintain more subregions
with further iterations that have smaller partitioned subregions and larger number of
sample points.

6.6.4 Integer Test Functions

The PBnB algorithm for level set approximation can handle both integer and
real-valued decision variables. The partitioning scheme on a discrete set must be
adapted so that any discrete point belongs to only one subregion. The experiment
in this section discretized the two-dimensional centered sinusoidal function at
two levels of discretization. The centered sinusoidal function is motivated by an
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Fig. 6.7 Approximating the 0.1 level set on the tenth iteration of PBnB for two-dimensional (a)
Rosenbrock function, (b) centered sinusoidal function, and (c) shifted sinusoidal function with
N(0,1) noise by the maintained green (light gray) subregions

optimal composite structure design problem (Zabinsky 1998; Ali et al. 2005) that
is interested in different levels of discretization. Specifically, we consider two
discretization scenarios; the difference between points is 5 and 10 (as shown in
Fig. 6.8). For the discretized sinusoidal function, we perform the same PBnB for
level set approximation with a modified definition of how to branch the subregions
in order to ensure that any discrete point belongs to exactly one subregion. The sub-
region in this discrete setting is (/, u], where / and u are the lower and upper points
of the box. Based on this definition, the results for the two-dimensional centered
sinusoidal function are shown in Fig. 6.8. Although the maintained subregions in
Fig. 6.8 seem to contain some regions outside of the level set, the discrete points
in the maintained subregions actually are contained in the level set. Therefore, the
PBnB algorithm is still viable for discretized problems. However, the partitioning
scheme needs to be designed carefully to ensure one discrete point belongs to one
subregion.
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Fig. 6.8 Results of discretized sinusoidal function on the sixth iteration of PBnB with (a) 5
differences between points and (b) 10 differences between points.

6.7 Conclusions

We developed the PBnB algorithm to approximate a target level set for stochas-
tic global optimization problems. A set of solutions allows decision makers to
gain some understanding of their problem. The algorithm is capable of handling
problems with mixed continuous and discrete variables. PBnB for level set approx-
imation iteratively partitions the solution space into subregions, and prunes or
maintains subregions based on the interval estimation of the target quantile. With the
dynamically allocated computational resources, the algorithm provides an interval
estimation of the desired quantile [ f (), f (z((s))], a pruned set $P and a
maintained set ¥ with probability bounds and tolerable loss. The analyses of
the probability bounds are provided in Sect. 6.4, where Theorems 5 and 6 assume
the objective function can be evaluated exactly (no noise), and Corollaries 2 and 3
consider estimation of the objective function when it includes normal noise. The
numerical results demonstrate the capability of PBnB to approximate a target level
set, and the required sample size is less than grid search especially when the
dimension increases since the samples are more concentrated around the target level
set instead of spread out among the domain.

Currently, PBnB uses a very conservative two-stage approach to incorporate
the simulation replications into the theoretical analysis (as in Theorem 8). The
efficiency of PBnB has the potential to be improved by implementing existing
computational budget allocation methods, such as optimal computing budget
allocation (OCBA) (Chen et al. 2010; Chen and Lee 2011). A challenge is how
to adapt OCBA when budget allocation is required to achieve more than one goal.
For instance, in each subregion, it is important to identify the minimum sample, the
maximum sample, and the rth and sth merged samples correctly at the same time.
Future research in combining OCBA and PBnB may provide an improvement to the
efficiency of PBnB, while preserving the theoretical analysis.
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The algorithm can be further improved by adapting parameters to increase the
efficiency. For example, the sample size c; is kept constant, however, we are
investigating a dynamic update for ¢ during the course of the algorithm. Also,
an intelligent partitioning scheme might be introduced to help PBnB branch the
dimension that has more potential to maintain or prune partitioned subregions.
Applying a more intelligent approach to determine the replication number could
also benefit the algorithm for noisy functions.
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Appendix

Proof of Theorem 1

Proof We consider the iterative effect on & as subregions are pruned or maintained.
We use the superscript k£ to denote the iteration that subregions are pruned {aik :
P; = 1} or maintained {oik : M; = 1}. By (6.15) in the algorithm, we have

kv (B0 = Limmr v (Uikil)

8/{ =
v(ic )—Z v(ok! =Y kv okl
k—1 iiP=1 i M =1 i

and removing the pruned and maintained subregions from i,f_ | yields the next
current set of subregions € used in the denominator, then

Sk—1v (gkc_l) =2 im=1 v (Gik_l>

v ()

and invoking (6.15) in the algorithm again to replace §;—; with its equivalence in
terms of 8;_> (assuming that the maintained regions are in the level set and pruned
regions are out of the level set), we have

SC k=2
8i-2v(3(_,) —2im;=1 U<Ji

W) )” (ikc—l) = 2im=1V (Uik_l)
v (Z()
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_ Ok 2v( ) — Zz —k—2 i;M,:l”(Uil)
v(Zf)

_ S (EIC) - 5{:_11 D imi=1V (“il)
v (5F)

and by the initial setting of §; and flc,

_ $v(S) — ;:1] Zi:M;:l v (Gil)
- v(Ef)

and Y7\ Y —1 v (0)) = v (EM) since it denotes the volume of all maintained
subregions at the end of the k — 1 iteration, therefore,

_su(s) —v (EY) (6.4
() '

Based on the definition of quantile, and when X is uniformly sampled on S, we have

y(,8) = argmin {P(f(X)<y|X e€S) =6}
ye{f(x):xeS}

— argmin {v({x eS: f(x) <yh - 5}
v(S)

ye{f(x):xeS}

SM
1)(2)(—S)+Ek from both sides and multiplying — (

and subtracting on both sides,

)
, v(x e S f@) <yD—v(EP)+ e — ¢
= argmin =c
ye{f(x):xes} v (Zk )
- (SU(S)—U( ,f’l)+e£’1—e,f

- v(2F)

MZ

and by (6.44), also v ({x € SPfx) < y}) =¢l andv ({x € SMfx) < y}) =

v (E) -,
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<P =M.
= argmin {v({x € S\ U}ék b <))
ye{f(x):xeS} v (Ek )
GM EP
PP S |
= k+v(EkC) v(EkC)}

~

andsince £ = S\{E} U EM}, and X is uniformly distributed in £ and £ C S,

. c eM 4
= argmin PlfX)<y|lXeXZy ) =&+ SOy T (50
yelf(xeSe) v(ZF) v (%)

SM P
M €Xy P €%y
i and 0 < ¢ < 58y an upper bound of

M P ~ . iM
y <5k + U—(%g — T(;kkT)a Ekc can be achieved when elf = 0 and e,ﬁ” = GUU((S’S ),
yielding
v (iliw) SC $C
(6,8 SY(5k+—~,Zk ZY(aku»Zk)- (6.45)
S ()
Similarly, we have a lower bound when €}/ = 0 and €/ = évv((zs) ) yielding
V(57 o -
¥, 8) zy(sk——ic,EkC) = v (. £5). (6.46)
50 (5] (

Note, if e,ﬁ” = 0 and e,f = 0, that is, there is no error in pruning and maintaining,
then y(8, $) = y (8k, Z°).

At the beginning of any iteration k, the current set flkc is uniformly sampled
for Ny = ¢ samples. Since the samples are independent and uniformly distributed
in the current set flkc, each sample acts like a Bernoulli trial and falls in a 8 or
Ory level set with 8 or 8k, probability, respectively. Therefore, using properties
of a binomial distribution, we can build a 1 — o quantile confidence interval as
fzey) < ¥@,8) < f(ze) (Conover 1999) with y (8, £F) and y (8eu, F)
based on (6.45) and (6.46), where f(z()) and f(z()) are the rth and sth order
samples that have the following binomial properties

r—1

P(fae >y (5. 50)) <2 <Al-]k>(5kl)i (1= )™ (647)

i=0



148 Z. B. Zabinsky and H. Huang

s—1

HUEOEICT I EDS (7") G (1= 8™ (6.48)

i=0

The 1 — o; confidence interval can be approximated by two one-sided intervals. We
split ot into two halves, and allocate one half to each probability bound. Therefore,
find the maximum r for which (6.47) is less than or equal to 0‘7" and the minimum s
for which (6.48) is greater than or equal to 1 — 0‘7", that is

r—1
N, . .
maxr : Z( ,") i) (1 =8Nt < 2 and (6.49)
£ 1 2
=0
s—1 N ) ) o
mins : Z( ,k>(5ku)'(1 — )Nt > = 2k (6.50)
I 2

Combining (6.47)-(6.50), as in Conover (1999), we have
P(rhy) = v (00 50) = v (00 50) = £ () 2 1w 65D)

P SM
When there is no noise, 0 < e,f < Evv((?;) and 0 < 6,?/1 < %, the 1 — o
confidence interval of y(8, §) is given by [ f(z()), f(z(5))] based on (6.45), (6.46),

and (6.51), that is

P(fze) <96, 9) < flzw) = 1 — o

Proof of Theorem 2

Proof We note that the event v (L(S, SHnN &;f) < D,f € is equivalent to the

event v ([x L F) < 95, 8), x € &;}) < DPe; by the definition of L (8, S), and

therefore, the probability of that event, that is, that the volume of the incorrectly
pruned region is less than or equal to D,f €k, can be expressed as

P (v (L((S, $)N a};) < D,f’ek|Ak) —p (v <{x L f(x) < y(8, ), x € &I’g})
< D,f’ek|Ak> . (6.52)

Now, consider the probability expression of quantile in (6.4) from the main article,

and let §, = —Z&=. We first prove the theorem under the special case that
P
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v(8, ) is continuous in § and y(5,, 6)/;) is continuous in §,, which implies that
v ({x cfx)=y,x € 8;;}) = 0, Vy and that (6.4) holds at equality. When X is a

uniform sample in 6¥

s We have

v(frirm<y(et).xest]) pra

:8]7 =T,
(44) (o)

then multiplying v(&,’f ) on both sides, we have

P (f(X) <y (5,,, a,’;)) -

v ({x Cfx) <y <8p,6[]§> ,X € 8}5}) = D,fek.

Hence, we have
D,fek = v({x Cfx) <y (8p,6§
=v({x:f(x)§y(8p, Allj ,X € A;f

—v(frirw =y (5,65) . x e 6t})
(

and in the special case that v ({x : f(x) =y, x € 6;;}) =0, Yy, we have

- ({x Cf) <y (5,,, 35) xe 61’;}). (6.53)

We substitute the expression for D,f € from (6.53) into the probability expression
in (6.52), yielding

P (v ({x fx) <y, 9),x € 6;}) < D,fek}Ak)
—p (v ({x Cf(x) <y, S),x € a}j}) < ( {x L f(x)
<y (85.5F). v e5h}) i)

and from the properties of level sets, if y(5§,S) < y (3p, 6}';), then {x : f(x) <

V@, S)x ek Cix: f) <y (ap, ag) ,x € 6%}, therefore,
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=P (y6.9 =y (5, 55)| 4)
and in the special case that v ({x cfx)=y,x¢€ &;ﬁ}) =0, Vy, we have that

=P (y(S, S) <y (81,,5;)‘ Ak>,

and by~the condition Aj; and the pruned assumption, we have y(5,S) <
y ((Sku, Ekc) < fze) < fxp),q)), where x,) (1) is the best sample out of
D,f N, ,f independent samples in & [’,‘, therefore,

v

P (f(x(p),(l)) <y (817’ 61]§>’ Ak)

1—-P <f()C(1,)’(1)) >y <5[,, &[];)‘ Ak) s

and since each of the D,f N, ,f independent uniform samples X in 6}7‘ satisfies

>1-(1 —ap)Dkap. (6.54)

P P
Diex _ Die ¢

4= = = where o; 18
v(0p) DFv(oy) v(oi)’ !

Since N} = Ln“l“%—‘ in Step 4, and §,, =

a subregion pruned at the kth iteration, and D,f > 1, we know N If > 1<11“—°‘/;k> =
al1—

v(o;)

PP PP
m?]l—f’jsp) = In(1- é‘p)Dk M < oy = (1- (Sp)Dk N < 4. Multiplying —1 on

P A7P
both sides and adding one to both sides, the inequality becomes 1— (1 -6 p)Dk Ne >
1 — ay, hence

P (v(te: f0 = 36.9).x €55)) < Dl el )
> 1 — . (6.55)

This and (6.52) yield the theorem statement in (6.21) in the special case.
Now, in the more general case where y (8, S) and y(5,, &I’,‘ ) may have disconti-

nuities, the v ({x cfx)=y,x € 6;})

the proof is the same, however, the possibility of discontinuities changes equalities

may be positive for some y. The flow of

to inequalities while accounting for v ({x tfx)=y,x € &5 ]), as follows.
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When X is a uniform sample in &5, the probability expression of quantile in (6.4)

. DFe
with §, = ﬁ now can be expressed as
v|\o
5)

(e s <smdbireat]) op

~k —Yp — ~ky’
V(&) V(&%)

P(re0 <y (5,.65)) =
then multiplying v(&;f) on both sides, we have

v ({x CF0) <y (5,,,5§) x € a;f}) < DFe.
Hence, we have
pfezv({x: re <y (s,65).xe6kl)
=v({x:r@ =y (s,.6) v e6t])
—v<{x : f(x):y(a,,,&,ﬁ),x e&,’;}). (6.56)

We substitute the expression for D,f € from (6.56) into the probability expression
in (6.52), and due to the possibility of discontinuities, this is a stricter event, yielding
an inequality in the probability as follows:

P(v(te: f0) = 6.9, x € 55)) = D exlAr)

v

P (v ({x L f(x) < ¥(6.8).x € oﬁ})
v(lx D fx) < y<8p,&§> ,X € 8;})
—v ({x fx) = y(Sp,(%I]j) ,X € &;f]))Ak)

and since v({x L )<y (5,,, a,’;) ,xe&[’;}) —v ({x C Fo)=y (5,,, &,’;) ,xe&§}>
:v({x f(x) < y(&,,,&llﬁ),x e&;,‘})

IA

= P(v ({x D fx) <y, 9),x e6§}> =< v({x :f(x)

<y (SP,&;f),x € 6;}) ‘Ak)
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and now comparing the level sets associated with y(4, S) and y (8 P 6;), we see
that, if y(6,5) < y (SP, &1]§>’ then even in the presence of discontinuities, {x :

f&) < y6,8),x €68} C{x: flx) < y<8p,6[]§>,x € &4}, so we have the

following

= P (36,9 <y (8,.64)] A).
and by the condition A; and the pruned assumption, we have y(3,S) <

V(Sku )~Skc) < f(zi) < f(xp),a)), where x(p) 1) is the best sample out of
D,f N, ,f independent samples in 6,’,‘, therefore,

> P (f(X(p),(l)) <y <5p, 6,’5)‘ Ak)

=1-P (f(x(p),m) >y (5!” “ﬁﬂ A") '

and since each of the D,f N, ,f independent uniform samples X in 85 satisfies

P (f(X) >y (ap,5§)) —1—P (f(X) <y (ap,6§)) <1-6,

we have
PP
>1—(1—8,)%M% (6.57)
which is the same inequality as in (6.54).
P
As in the special case, since N,f = ln(lln—“ik) in Step 4, and §, = % =
_ »

v(o;)
DkPék &
DFv(o) — vlai)’
we have that

where o; is a subregion pruned at the kth iteration, and D,f > 1,

P({x: f(x) <y, ), x €55} < D{ el Ap)
>1—a (6.58)

which yields the theorem statement in (6.21) in the general case, too. O
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7.1 Introduction

Producing successful engineers has become increasingly important to the United
States. The nation needs to respond more effectively to the existing and future needs
of a technology-driven global society. This goal, of course, requires our nation’s
colleges of engineering to develop and graduate students in a variety of disciplines
to meet those needs. As such, student success continues to be a pressing concern for
higher education administrators, researchers, and policymakers.

In this context, the term “student success” is most often defined by graduation
rates, which, overall, have not changed significantly in the United States in the
last 5 years. (U.S. Department of Education DOE, National Center for Educational
Statistics 2017). We note that the use of graduation rates, especially four-year
graduation rates, as the definition of student success has implications for equity
when applied cross-culturally (Bowman 2010; Pérez et al. 2017). For this context,
however, we will use this definition with the understanding of the associated caveats.

For engineering students, it is estimated that less than half of the first year
students who initially enroll in engineering go on to earn their bachelor’s degree
within 5 years. Moreover, underrepresented minorities (URM) (i.e., African Amer-
icans, Hispanics, and Native Americans) drop out at even higher rates than their
majority peers (Chen 2013; U.S. Department of Education DOE, National Center
for Educational Statistics 2017). The increasing difficulty of retaining engineering
students has contributed to the decline in graduation rates. As a result, effective
institutional practices to improve this trend are essential for enhancing student
success in our nation’s colleges of engineering (Tinto 2010).

7.2 Purpose

Since the establishment of the formal education system, researchers have been
attempting to unravel the complexities associated with enhancing student success in
higher education (Berger and Lyon 2005). This research has resulted in theoretical
perspectives (Astin 1984; Bean 1980, 1983; Bean and Eaton 2000; Kuh 2001, 2009;
Tinto 1993), which provide a better understanding of why some students decide to
leave, and to some extent why others persist on to graduation. Despite a sizable body
of knowledge that has identified various factors associated with student success
in higher education, little work has been devoted to translating various theoretical
findings into institutional action that improves student success outcomes (Tinto and
Pusser 2006; Tinto 2006, 2010).

While these theories have provided most of the empirical and conceptual
knowledge that has shaped institutional practices (Berger and Lyon 2005; Kuh et
al. 2006; Tinto and Pusser 2006); Tinto (2006) asserted that these perspectives are
not suited for guiding institutional action; largely because knowing why students
leave does not directly explain why students persist. Furthermore, these perspectives
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do not provide an understanding of direct actions institutions can take to help
students remain in college and succeed. A lack of direct and impactful actions is
further exacerbated by the abstraction levels associated with the operationalization
of variables. These abstractions fall short of addressing practical outcomes that
institutions can directly impact.

To overcome these limitations, this study puts forward the premise that insti-
tutional leaders must first have a well-founded understanding of the needs of the
students they serve. Identifying the need is germane to most, if not all, engineering
system design efforts as the basis for developing optimal solutions to satisfy an
identified need. In the context of higher education, having an understanding of
student success needs can form the basis from which institutional practices can be
designed to meet those needs.

Specifically, the purpose of this study is to develop a statistically verified model
of engineering student success needs. The basic premise of the model is that
there are academic, psychological, environmental, financial, and social factors that
impact student success. Based on these factors, the following seven dimensions
of student success needs were developed in this study: Classroom Learning,
Faculty Interaction, Sense of Community, Student Interaction, Financial, Skill, and
Workload Management needs. This model identifies the dimensions and associated
actionable need statements that impact student satisfaction, which is a measure
of student success that is useful in determining the quality of the educational
experience (Kuh et al. 2000).

The Engineering Student Needs Questionnaire (ESNQ) development and val-
idation process is presented in order to develop the model. Based on the results
of a questionnaire completed by 213 students at the University of Maryland,
College Park, the relationships between model variables were tested to determine
the dimensions that institutional decision-makers can target to meet the needs of
their engineering students.

7.3 Student Success Theoretical Perspectives

This study uses a collection of student success theoretical perspectives as a
framework to develop the model of engineering student success needs. A high
level summary of the most comprehensive and influential theoretical perspectives
is presented in Table 7.1. The summary provides an understanding of the research
that explains why students decide to leave college and, to some extent, why students
persist on to graduation.

In reviewing the array of literature, consistent patterns have emerged from
across the various theoretical perspectives. First, these theoretical perspectives
emphasize that student characteristics/behaviors and institutional conditions impact
student success. Student behaviors include: involvement in extracurricular activities,
interaction with faculty and peers, motivation, and commitment. Institutional
conditions include the resources and educational practices that facilitate positive
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student behavior (Kuh et al. 2006). Since institutions vary considerably in their
size, culture, and student demographics, an understanding of the unique needs of
the students within a particular campus environment is needed in order to allow
institutions to tailor their practices to address their needs (Berger and Lyon 2005).
Secondly, a multitude of variables have been identified as a result of the
theoretical perspectives identified in Table 7.1. These variables consist of both pre-
entry and post-entry variables, which have been operationalized as abstract concepts
that the institution does not directly impact. In terms of pre-entry variables, for
example, the high school experience and socio-economic status are factors that have
been identified from each of the theoretical perspectives. While this information is
indirectly useful in providing insight into the student population, it does not provide
actionable information that guides institutions in determining how to specifically
tap into issues of socio-economic status. In terms of post-entry variables, Tinto’s
(1993) widely studied social and academic integration construct has been useful
in informing decision-makers about the importance of integration; however, this
insight does not directly provide decision-makers with guidance on what actions
should be carried out to achieve academic and social integration (Tinto 2006).
Lastly, each of these theoretical perspectives (with the exception of the involve-
ment/engagement perspective) focused on retention and persistence. Even though

Table 7.1 Relevant student success theoretical perspectives

Source
Tinto (1993)

Theory
Student

Perspective Purpose

The Sociological Describes the influence of the

Perspective Integration Model social forces and the academic
structure on student departure
decisions

The Student Attrition Bean (1980, 1983) | Concentrates on the impact

Organizational Model that the institution (i.e.,

Perspective organization) has on the
socialization and satisfaction
of students

The Psychological | Student Attrition Bean and Eaton Focuses on the role of

Perspective Model (2000) psychological characteristics

that distinguish between those
students that persist and those
that depart

The Financial
Perspective

The Minority
Perspective

The Involve-
ment/Engagement
Perspective

Financial Nexus
Model

Student/
Institution
Engagement
Model
Theory of
Involvement;
Student
Engagement

St. John et al.
(2005)

Nora (2003)

Astin (1984); Kuh
(2009)

Highlights the role that
finances play in persistence
decisions

Emphasizes the unique
challenges that diminish the
quality of minority students’
college experience

Focuses on the behaviors that
students engage in while in
college
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these perspectives have provided an immense understanding of the factors that
impact college retention and persistence, few studies used the student success theo-
retical perspectives to directly understand student needs. Therefore, this research
shifts the focus from trying to understand why students leave/stay in college to
examining how to satisfy student needs in the context of the student success
theoretical perspectives.

7.4 Engineering Student Needs Questionnaire Development
and Validation Process

This section describes the development and validation of ESNQ, which was
designed to comprehensively assess the needs of engineering students in the context
of the student success theoretical perspectives. While system design methods and
performance improvement tools were embedded into the questionnaire development
process, the questionnaire validation process followed recommended standard
procedures that are consistent with the extant literature (Churchill 1979; Clark and
Watson 1995; DeVillis 1991; Netemeyer et al. 2003; Nunnally 1978). Figure 7.1
summarizes the ESNQ development and validation process.

Questionnaire Development Questionnaire Validation

Y v
1. Specify the Domain of Constructs 4. Perform Expert Review
v v
2. Define Student Needs 5. Conduct Pilot Study
€ <
3. Specity Questionnaire Items & Layout 6. Assess Reliability and Validity

8. Test Model Relationships

7. Develop Model

Fig. 7.1 ESNQ development and validation process



164 T. W. Gilbert et al.
7.4.1 Step 1. Specify the Domain of Constructs

The first step in the questionnaire development process was to delineate what should
be included in the domain of the construct (Churchill 1979). Determining what
should be included, as well as what should be excluded, were critical steps because
sources of invalidity can originate in the construct definition process (Netemeyer et
al. 2003). The incorporation of this initial stage is based on a review of the literature
and the importance of the student satisfaction construct. This refers to the student’s
satisfaction with an institution’s ability to meet their needs related to aspects of the
college experience that impact student success.

The multitude of variables from each of the student success theoretical per-
spectives reviewed led to the development of the typology of student success
factors. This typology specifies the domain of constructs, which broadly categorizes
variables as academic, social, psychological, environmental, and financial factors.
Pre-entry variables are outside of the scope of this study since institutions have
limited ability to directly impact pre-entry variables. Only post-enrollment variables
were considered. By specifying the domain of the construct, it is clear that additional
needs, such as transportation, housing, food, and facilities, are outside of the scope
of this research.

7.4.2 Step 2. Define Student Needs

To provide actionable information that can be used for decision-making, a student
success-oriented participatory design method was used to capture the voice of the
student. This is the goal of any engineering design problem: to translate the voice
of the customer into a description of what needs to be improved (Blanchard and
Fabryky 2017). Therefore, the second step in the questionnaire development process
is to define the true needs of the students.

A need is neither a solution (e.g., a summer bridge program) nor a physical
measurement (e.g., number of tutoring services offered by the university). Following
this assertion, a need can be defined as a detailed description of what is required
of institutional practices that contribute to the success of engineering students. To
capture student needs, a participatory design method was developed to identify the
needs as voiced by the students. A total of 21 undergraduate engineering students
from the University of Maryland, College Park participated in four participatory
design meetings (i.e., 4—6 participants per meeting). Participants were asked to share
their experiences in a guided group discussion over the course of a 2-h period.

The objective of these meetings was to utilize a functional decomposition process
in which student needs were systematically elicited and decomposed into actionable
need statements. The design skills of abstraction, persistent questioning, identifying
critical performance areas, and factorization were infused into the meetings to facil-
itate the analysis-synthesis-evaluation cycle. As a result, the meeting process was
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structured to capture ideas, which were organized such that actionable information
for decision-making.

The typology of student success factors from the literature was used to iden-
tify enablers and hinders of student success. These enablers and hinderers were
translated into a comprehensive pool of student need categories and student need
statements for each student success factor. As a result, the dimensions of student
success needs and associated need statements were developed to provide the content
for the ESNQ.

7.4.3 Step 3. Develop Questionnaire Items and Layout

Based on the output from Step 2, a comprehensive pool of questionnaire items
were developed for inclusion in the ESNQ. These items were cross-checked with
the following sources to ensure that the domain was comprehensively covered:
Pittsburgh Freshman Engineering Attitudes Survey (Besterfield-Sacre et al. 2001),
Persistence in Engineering (PIE) survey instrument (Eris et al. 2005), Engineering
Fields Questionnaire (Lent et al. 2005), National Survey of Student Engagement
(Kuh 2001), Student Satisfaction Inventory (Schreiner and Juillerat 2010), and
Institutional Integration Scales (Pascarella and Terenzini 1980).

Although existing questionnaires from both undergraduate education and engi-
neering education provided a knowledge base of existing scales that address student
success, questionnaire items could not be taken directly from the literature because
the ESNQ is designed uniquely to provide actionable need statements. Similar to
requirements, these need statements are short phrases that describe the functionality
or actions that institutional practices should deliver in order to help students
succeed.

Furthermore, the ESNQ involved an examination of students’ perception of the
importance of their needs, as well as their satisfaction level with the performance
of the institution in meeting their needs. While traditional methods tend to examine
satisfaction and importance independently, these concepts were merged and used
together. Similar to the Noel Levitz Student Satisfaction Inventory (Schreiner and
Juillerat 2010), a 7-point Likert-type scale format is used to capture both the
importance and the satisfaction.

7.4.4 Step 4. Perform Expert Review

Following the questionnaire development process, the instrument underwent two
rounds of expert reviews with students and student success researchers and prac-
titioners. First, a focus group meeting to carry out the student expert panel review
was conducted with four undergraduate engineering students, who were considered
experts based on their knowledge about the undergraduate engineering experience.
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Students were asked to complete an initial draft of the questionnaire. While
completing the questionnaire, they were also instructed to edit the questionnaire
items to ensure appropriateness of language, clarity, and readability. Additionally,
a Q-sort procedure was used to improve the construct validity of the first round of
the expert review (Moore and Benbasat 1991) with students. A group discussion
followed, which allowed the participants to collectively determine whether (1)
additional categories should be added or renamed; (2) additional items should be
added to a particular category; and (3) if any improvements should be made to the
questionnaire.

Next, a second expert panel review was conducted with eight student success
researchers and practitioners. A worksheet was emailed to the expert reviewers, and
returned to the researcher electronically. The goals of the practitioner expert panel
review were the same as the student panel review: to review the questionnaire and
provide feedback to ensure that the questionnaire comprehensively and concisely
addressed the needs that are critical to engineering student success. However,
the format was different to accommodate a review from participants that were in
distributed locations.

7.4.5 Step 5. Administer Questionnaire

Once the two rounds of expert reviews were completed by the students and the prac-
titioners, the questionnaire was administered electronically using the Qualtrics™
online survey tool. First, the questionnaire was administered as a pilot test to collect
actual data to purify the instrument prior to its final administration. A total of 241
undergraduate engineering students from a doctoral granting institution completed
the pilot questionnaire. Based on the results of pilot study, the final version of the
ESNQ was administered at another doctoral granting institution. A total of 213
undergraduate engineering students completed the final version of the questionnaire.

7.4.6 Step 6. Assess Validity and Reliability

Pearson correlations were computed for each item. Then the Kaiser-Meyer-Olkin
(KMO) measure of sampling was used to determine the suitability of factor analysis.
The KMO value of 0.87 exceeded the recommended value of 0.60 (Kaiser 1970),
and Bartlett’s test of sphericity was significant, 2 (630) = 3779, p < 0.001 (Bartlett
1954). Based on the results of the correlation analysis, KMO measure, and Bartlett’s
test of sphericity, the ESNQ was considered suitable for exploratory factor analysis.

As a result, a factor analysis was conducted using varimax rotation. The eigen-
value greater than 1 rule was used to determine the number of factors. Nine factors
had an eigenvalue greater than 1. However, the seventh, eighth, and ninth factors
accounted for less than 5% of the variance, respectively (Hair et al. 1998). As a
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result, a six factor model solution was retained for rotation in Table 7.1, which shows
the factor loadings, eigenvalues, % variance explained, and the cumulative variance
explained by the factor analysis for the rotated factor solution. As illustrated, five
factors initially best represented the data in terms of variance explained (51%). The
dimensions of Resources and Professional Development needs were deleted from
the analysis. Furthermore, Faculty Interaction/Sense of Community needs were
divided into two separate dimensions, as well as Classroom Learning/Workload
Management needs. Conceptually, these dimensions represented unique aspects of
student success. Moreover, items were eliminated, which were grayed out and the
dimensions and associated items for the ESNQ are shown in Table 7.2.

Next, Cronbach’s Alpha coefficient was used to assess the reliability of the
dimensions of student success needs from Table 7.2. Following convention, a
Cronbach Alpha coefficient of 0.7 or greater was the threshold for an internally
consistent, reliable dimension (Nunnally 1978). If the dimension did not meet the
threshold, the effect of removing each item in the dimension was investigated
using the “if item deleted method.” Table 7.3 depicts the results of the reliability
assessment. Six of the alpha coefficients were above the 0.7 threshold, ranging
from 0.75 to 0.89. However, the Classroom Learning needs dimension was slightly
below the threshold (o« = 0.62). The “if item deleted method” was examined for
this dimension; however, the largest increase resulted from deleting item #01—4
(a = 0.69), which still did not meet the threshold. Therefore, none of the four items
were deleted from this dimension. While this is less than the desired threshold,
Devillis (1991) suggests that 0.6 is acceptable for newly developed dimensions. As
a result, the four items were retained in this analysis for the Classroom Learning
needs dimension. Furthermore, the results reported in Table 7.3 indicate that the
dimensions of student success needs for the ESNQ are reliable and demonstrate an
acceptable degree of internal consistency.

7.4.7 Step 7. Develop Model

Based on the results, evidence of statistical validity was demonstrated for the
reliability and validity assessment. This indicated that the final ESNQ measured
what it was intended to measure. Furthermore, a statistically verified research model
of engineering student success needs (Fig. 7.2) was developed.

The basic premise of the model is that there are academic, psychological,
environmental, financial, and social factors that impact student success. Based
on these factors, the seven dimensions of student success needs, the dependent
variables, have been refined as a result of the main study. Overall satisfaction, which
is the independent variable, is used to measure student success. The definition of the
research model variables are described below:
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Table 7.2 Exploratory factor analysis results

Main
questionnaire
Classroom
Learning (4
items)

Faculty
Interaction
(4 items)

Sense of
Community
(4 items)

Need statements

To have classes that
stimulate interest in my
field of study

To have relevant
assignments (e.g., HW,
labs, exams) that
reinforce what I am
learning in class

To connect what I am
learning in class to the
engineering profession
To comprehend class
material

To have class concepts
communicated in a
manner that I
understand

To have approachable
faculty members that I
can discuss issues of
interest and importance
to me

To have faculty
members who
demonstrate flexibility
and responsiveness to
my needs

To have faculty
members who are
interested in engaging
me in their fields

To receive timely
feedback front faculty
members (e.g., grades,
homework, exams)

To have a welcoming
environment where I
feel a sense of
belonging

To have a supportive
group of people who
provide help and
encouragement

To have an environment
where I receive fair and
unbiased treatment

1
0.09

0.10

0.51

0.41

0.43

0.72

0.70

0.73

0.52

0.66

0.40

0.60

2
0.51

0.49

0.38

0.53

0.61

0.15

0.17

0.06

0.20

0.13

0.20

0.03

0.07

—0.09

0.20

0.16

0.24

0.12

0.29

0.33

0.15

0.17

—0.05

0.13

—0.06

0.03

0.13

0.22

0.17

0.07

0.09

0.06

0.12

0.17

0.19

0.25

T. W. Gilbert et al.

5 6
0.07 | —-0.04
—-0.05 | -0.12
—0.02 0.04
—0.14 | -0.24
—0.05 | -0.19
0.07 0.19
0.16 0.03
0.12 | —-0.02
0.16 | —0.38
0.34 | —0.04
0.35 0.37
0.22 0.01

(continued)
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Table 7.2 (continued)

Main
questionnaire

Student
Interactions
(3 items)

Financial (4
items)

Skills (4
items)

Need statements 1

To have opportunities 0.59
outside of class to

cultivate relationships

with the engineering
community on campus

To have relationships 0.38
with students who

share my interests

To have opportunities 0.45
to exchange ideas and

gain knowledge from

other students

To have opportunities 0.24
to socialize with

students from diverse
backgrounds

To ease my financial 0.25
burden

To have opportunities 0.14
to earn money in order

to offset my expenses

(e.g., jobs, work study)

To be informed about 0.14
financial assistance
opportunities

To have financial 0.18
assistance available to

me (e.g., scholarships,

grants)

To develop research 0.05
skills and experiences

To develop basic 0.16

academic skills (e.g.,

study skills, time
management)

To develop teamwork 0.09
skills

To develop 0.08
communication skills

(e.g., verbal and

written)

To develop 0.18
problem-solving skills

To develop technical 0.24
skills (e.g.,

programming

languages, software
applications)

0.06

—0.04

—0.05

—0.05

0.08

0.02

0.08

0.15

—0.03

0.33

0.23

0.13

0.07

0.01

3
0.17

0.12

0.24

0.16

0.11

0.18

0.14

0.13

0.13

0.31

0.46

0.72

0.73

0.55

4
0.28

0.32

0.24

0.27

0.81

0.78

0.84

0.81

0.07

0.15

0.02

0.02

0.09

0.17

5
0.17

0.55

0.59

0.57

0.13

0.17

0.14

0.12

0.11

0.52

0.42

0.21

0.29

0.13

169

0.34

0.20

0.01

0.17

—0.10

0.08

0.12

0.01

0.60

0.01

0.05

0.00

—0.15

0.16

(continued)
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Table 7.2 (continued)

Main

questionnaire | Need statements 1 2 3 4 5 6
To develop job or 0.30 0.13 0.59 0.15 0.21 | —-0.07
work-related skills and
experiences

Resources To get help with 036 | —0.08 0.50 0.22 | -0.11 0.14

(4 items) post-graduation
planning (e.g., graduate
school, career
opportunities)
To get help with 0.24 0.03 0.66 0.17 | -0.11 0.14
academic planning
(e.g., degree
requirements, course
scheduling)
To get help with 0.09 026 | —0.05 | —0.01 0.12 0.67
personal development
(e.g., personal
concerns, social issues)
To get help with 0.04 0.68 0.13 0.11 | —0.11 0.42
mastering course
concepts
To have resources —0.03 0.59 0.11 | -0.05 | —-0.07 0.43
available to help me
(e.g., reference
materials, equipment,
software)

Workload (4 | To keep up with the —0.08 0.73 0.00 0.08 0.13 0.38

items) pace of my courses
To have a manageable 0.12 0.70 | —-0.01 0.05 0.26 0.13
workload

To cope with stress 0.04 0.53 0.21 0.07 0.51 0.20

To have a balanced 0.19 0.56 0.09 0.15 0.36 0.01
social personal and
academic experience

Total 4.76 4.18 342 341 2.65 2.10
% Variance 13.21 11.61 9.50 9.49 7.36 5.83

Cumulative 13.21 24.82 3431 |43.80 |51.16 |56.98
%

* Classroom Learning (CL) needs—this variable describes the extent to which
students are satisfied with the institution’s efforts in providing a classroom
experience that enhances their ability to acquire knowledge in their field of study.

* Faculty Interaction (FI) needs—this variable describes the extent to which
students are satisfied with the institution in providing opportunities to have
quality interactions with faculty members.
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Fig. 7.2 Model of engineering student success needs

e Student Interaction (SI) needs—this variable describes the extent to which
students are satisfied with the institution in providing opportunities to have

quality interactions with other students.

* Sense of Community (SC) needs—this variable describes the extent to which
students are satisfied with the institution’s efforts to create a welcoming envi-
ronment, such that students experience a sense of belonging with the engineering

community on campus.

e Financial (F) needs—this variable describes the extent to which students are
satisfied with the institution in providing available and accessible financial

assistance.
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* Workload Management (WM) needs—this variable describes the extent to which
students are satisfied with the institution in helping to cope with the demands of
their engineering major.

e Overall Satisfaction (OS)—this variable describes the extent to which students
are satisfied with their overall college experience.

7.4.8 Step 8. Test Model Relationships

The third and final test of predictive validity tested the hypothesized relationships
between the model variables. A hierarchical multiple regression analysis was
used to understand how the dimensions of student success needs impact the
students’ overall satisfaction with their college experience. Before the analysis was
conducted, a number of assumptions were tested to ensure that there were not any
errors in the model specification. Collinearity, outliers, normality, linearity, and
homoscedasticity assumptions were explored to ensure that there were no errors in
the model specification. The correlation matrix, residual scatterplots, outliers, and
statistics confirmed that these assumptions were not violated (Tabachnick and Fidell
2007).

A hierarchical multiple regression analysis was then used to test the hypothesized
relationships in the research model, while controlling for background variables.
First, the set of background variables (Gender, Ethnicity, Race, Grades, Class Level,
International Student Status) were entered into block 1 in order to statistically
control for these variables. Then the dimensions of student success needs, the
independent variables, were entered into block 2 to determine the relationship
between the dimensions of student success needs and overall satisfaction after the
potential confounding relationships were removed from block 1 (Cohen et al. 2014).
The results of the hierarchical regression model are summarized in Table 7.4.

The background variables were entered into block 1, which explained only 1.4%
of the variance in overall satisfaction. The dimensions of student success needs
were then entered into block 2, which explained 20.2% of the variance. As a result,
the model as a whole accounted for 21.6% of the variance in Overall Satisfaction,
F(12, 199) =4.192, p = 0.000. However, there were only two significant predictors
of Overall Satisfaction, in which the beta weights were used to determine the
relative weights of the dimensions in the regression model. In order of importance,
the dimensions of Classroom Learning (beta = —0.27, p < 0.001) and Workload
(beta = —0.19, p < 0.05) needs were significant predictors of overall satisfaction.
However, no other dimensions had a statistically significant contribution to the
model at p < 0.05.
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Table 7.4 Results of the multiple regression analysis

Standardized
Model Unstandardized coefficients coefficients T P
B SE Beta

1 (Constant) 5.873 1.249 4.702 0.000
Gender 0.073 0.273 0.019 0.266 0.791
Ethnicity/race | 0.127 0.143 0.062 0.891 0.374
Grades —0.065 0.051 —0.089 —1.274 0.204
Class level —0.033 0.124 —0.018 —0.265 0.791
International 0.035 0.505 0.005 0.068 0.945

2 | (Constant) 7.323 1.183 6.192 0.000
Gender —0.100 0.256 —0.026 —0.391 0.697
Ethnicity/race | 0.189 0.134 0.092 1.405 0.162
Grades —0.013 0.049 —0.018 —0.266 0.791
Class level 0.039 0.117 0.022 0.337 0.737
International | —0.279 0.485 —0.039 —0.575 0.566
Classroom —0.670 0.206 —0.271 —3.247 0.001**
Learning
Workload —0.259 0.109 —0.186 —2.384 0.018*
Manage-
ment
Faculty 0.030 0.133 0.021 0.224 0.823
Interaction
Sense of —0.104 0.138 —0.073 —0.754 0.452
Community
Student 0.104 0.119 0.075 0.879 0.381
Interaction
Financial 0.035 0.085 0.033 0.413 0.680
Skill —0.199 0.140 —0.113 —1.414 0.159

#p < 0.05, **p < 0.001

7.5 Example Application

The final version of the ESNQ was used as the basis to understand student needs
for a doctoral-granting institution’s women in engineering (WIE) and Minorities in
(Science) and Engineering Programs (MEP). Although the WIE and MEP programs
are at the program level of the institution, the ESNQ can also be used as the basis for
developing improvement practices across a range of student populations at various
institutional levels.

Once data were collected from the ESNQ, an Importance score, a Satisfaction
score, an Unmet Need score, and an Unmet Student Need Index (USNi) were
calculated for each questionnaire item, as well as the means scores for each
dimension. The Importance score and the Satisfaction score indicated the student’s
level of satisfaction and importance with the dimensions of student success needs.
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URM Females Asian Females White Females Other Females All Females
mCL 1.85 1.17 1.47 1.25 1.45
WM 1.38 1.04 1.50 1.17 1.36
S 0.34 0.13 0.44 -0.53 0.52
uFl 0.62 0.07 0.63 0.17 0.47
mF 0.05 0.52 0.69 -0.25 0.42
Ne 0.58 0.03 0.58 0.25 0.35

u sl -0.16 -0.37 -0.07 -0.22 -0.16

Fig. 7.3 Mean unmet need scores of female engineering students

The Unmet Need score was calculated by subtracting the satisfaction score from the
importance score (Unmet Need score = Importance score — Satisfaction score).

The Unmet Need score provided critical information to decision-makers. This
score specified how the needs of students were being fulfilled. A large unmet
need score indicated that the institution was not meeting the needs of its students.
Conversely, a smaller unmet need score suggested that the institution was meeting
the needs of its students. Furthermore, a negative unmet need score implied that the
institution was exceeding the needs of the students.

Figure 7.3 shows the results of the mean Unmet Need scores for the 105
female engineering students. The highest unmet need scores for the dimensions of
Classroom Learning (M = 1.45, SD = 0.98) and Workload Management (M = 1.36,
SD = 1.24).

These scores indicate that these needs required the greatest attention because
they were not being met by the institution. Conversely, the lowest unmet need
score for female engineering students—indicating that the institution was meeting
the needs of female engineering students—was the Student Interaction Needs
(M = —0.16, SD = 1.43). Moreover, the aggregated results held true across all
of the subgroups. The highest unmet need scores were reported by White female
engineering students for Workload Management (M = 1.50, SD = 1.13). All
subgroups reported high unmet need scores for Workload Management; however,
the highest reported score for URM female engineering students was Classroom
Learning (M = 1.85, SD = 1.18).
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Fig. 7.4 Mean unmet need scores (ethnicity/race)

Figure 7.4 shows the unmet needs scores across ethnicities/races for the MEP
program. Similar to the female engineering students, each group reported that their
needs were not being fulfilled in the needs dimensions of Classroom Learning
and Workload Management. Among the ethnicities/races, URM students reported
the highest levels for the needs dimensions of Classroom Learning (M = 1.51,
SD = 1.07) and Workload Management (M = 1.36, SD = 1.46).

Table 7.5 provides an example of how the ESNQ was used to design institutional
practices to address the needs of the students. A focus group with six MEP
students and seven WIE students was conducted. The function-means tree was
extended to include needs (functions), design characteristics, current practices, and
improvement practices (means).

Instead of designing specific improvement practices, abstraction was used to
emphasize the essential characteristics of student success practices. Therefore,
students were asked to identify design characteristics of student success practices
that fulfilled student needs. According to Pahl and Beitz (2013), this process
provides participants an opportunity to search for and develop other solutions
that contain the identified characteristics. This approach also supports systematic
thinking and creativity, thereby opening up the solution space to allow participants
to consider range of ideas without being fixated on traditional ideas. Additionally,
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Table 7.5 Improvement practices matrix
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ESNQ unmet | To have a manageable To stimulate interest in
need workload (WIE) your field (MEP)
Characteristics | Doable work Help coping with | Provide more Real world
stress exposure immersion
Practices Office Hours Advisors/Mentors | Career Fairs Study
Informal Study Advice Companies (Engineering)
Groups coming to Abroad
campus
Strengths Save time by Gain Knowledge | Lots and Diverse | Well-Advertized
asking questions. | from others’ Good program
Better experience Well liked
information with
informal
interaction
Shortcomings | Professors are not | Doesn’t really May not get hired | Many students
available. address coping just networking are not able to
Sometimes it with stress participate
takes longer to directly
get something
done with a
larger group
Improvements | Offer formal and | Tips sent out over | Help us (i.e., Field trips to
flexible tutoring | email on how to | students) create research labs on
to everyone cope/ stress personal campus
management relationships with
workshop industry

analyzing existing practices was also useful in stimulating new ideas. Therefore,
incorporating these elements into the Improvement Practice Matrix in Table 7.5 was
intended to guide the focus group through the process of synthesizing information
to develop improvement practices that could address the needs of students.

7.6 Summary and Key Principles

This research is intended to bridge the gap between theory and practice. Critical to
this approach is the development of tools that focuses on the conceptual system
design stage of the systems engineering life cycle. Conceptual system design
represents a process that begins with the identification of a need and progresses
through a series of phases to generate optimum solutions to satisfy the identified
need (Blanchard and Fabryky 2017). This process results in an action plan that links
working steps to design phases that can be adapted in a flexible manner to solve
complex problems (Pahl and Beitz 2013).
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Although recent research has been conducted to improve the design process,
many approaches are either too abstract or too narrowly focused. Thus, it makes
it difficult to apply them to a nontechnical area (i.e., student success), which
has been largely unexplored in the system design literature. Compounding the
problem is the fact that there is a plethora of methods, processes, and tools that
facilitate only portions of the conceptual system design. Given that these approaches
were developed in technical domains, little structure, and guidance is available to
institutional decision-makers who wish to employ the conceptual design process
as a whole in higher education settings. These significant gaps highlight the need
to integrate improved methods and tools into a unified framework that can guide
institutional leaders in designing effective practices that facilitate student success,
while at the same time meeting the unique needs of their students.

This study described the development, validation, and application of the ESNQ.
The development process consisted of three steps. First, the domain of constructs
was determined using the typology of student success factors that was developed
based on a literature review. Second, a participatory design method was used to
conduct four meetings with 21 students to develop the initial pool of questionnaire
items. Based on the results of the meetings, the questionnaire layout and question-
naire items were developed to specify actionable need statements. Furthermore,
the questionnaire layout was designed to assess the students’ importance and
satisfaction with the institution in meeting their needs.

Then, the questionnaire validation process was presented to assess both the
validity and reliability of the ESNQ. Two expert panel reviews were conducted
with four students and eight student success practitioners, respectively, to purify
the instrument. As a result of these reviews, a final questionnaire emerged for
pilot testing. A pilot test was conducted with 241 participants to collect data
to assess the reliability and validity of the ESNQ. As a result of these steps, a
conceptual research model emerged that defined the initial variables, which were
subsequently refined into a research model that was developed and validated in order
to identify student success needs that relate to student satisfaction. This model led
to the development of a new ESNQ, which was used to assess the student success
needs of engineering students. This questionnaire shifted the current paradigm of
student success theoretical research from trying to understand why students decide
to leave/stay in college to understanding the needs of engineering students.

In this study, the model was tested based on the responses of undergraduate
engineering students at a doctoral granting institution. The dimensions of Classroom
Learning and Workload Management needs were significantly related to Overall
Satisfaction. However, the dimensions of Faculty Interaction, Sense of Community,
Student Interaction, Financial, and Skill needs did not demonstrate a statistically
significant relationship with Overall Satisfaction. These results suggest that the
institutional leaders at the research site can use the findings to target improvements
related to classroom learning and workload management.
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7.6.1 Key Principles

At the core of the proposed approach is a design philosophy that is based on five
fundamental principles that have been adapted from the systems engineering and
student success theoretical perspective:

1. Student Orientation: Satisfying the needs of students is the driving force behind
the design of institutional practices.

2. Analysis-Synthesis-Evaluation: Structures the improvement process based on
core phases of conceptual design to ensure that student needs are identified and
solutions are developed to improve institutional practices that meet their needs

3. Participatory: Requires a team approach that empowers the institutional leaders
and students to be actively involved in the design of improvement efforts

4. Holistic Framework: Provides a unifying structured framework to guide institu-
tional leaders throughout the translation of student needs into a plan of action

5. Vital to Student Success: Focuses the design process on those aspects that are
critical to student success.

7.7 Future Work

Based on the results, future research will utilize the ESNQ to help decision-makers
identify and prioritize the needs of engineering students as the basis for developing
a framework of action to facilitate student success. Future work can be devoted to
two areas

7.7.1 Expanding the Operationalization of Student Success

This research focused on student satisfaction, which is an often-overlooked outcome
that is useful in determining the quality of the educational experience (Kuh et al.
2006), as a measure of student success. As Braxton et al. (2006) noted, although
there are several measures of student success, the most frequently cited theories
define student success in college in terms of persistence, educational attainment,
and obtaining a degree (Kuh et al. 2006). Future research should investigate the
relationship between satisfying student needs and additional measures of student
success (e.g., attrition rates, persistence rates, GPA, graduation rates).

7.7.2 Strengthening the Validity and Reliability of the ESNQ

Although the ESNQ met the recommended thresholds for reliability and validity,
additional items can be tested to strengthen the dimensions of Classroom Learning
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and Skill needs. Additionally, test-retest reliability can also be used (in addition to
Cronbach Alpha’s coefficient used in this research) to administer the instrument to
the same respondents on different occasion. By using this statistical technique to
determine if the correlation between the two administrations is high, the reliability
of the instrument reliability can be strengthened. Furthermore, the cultural validity
of the instrument should be assessed with a larger sample size in order to assess
the unique needs of women and underrepresented student populations. By doing so,
future research can examine the socio-cultural influences that shape how URM and
female engineering students make sense of the ESNQ items and respond to them
(Solano-Flores and Nelson-Barber 2001).
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8.1 Introduction

Critical thinking is the intellectually disciplined process of actively and skillfully
conceptualizing, applying, analyzing, synthesizing, and evaluating information
(Facione 2000). Emerging business intelligence and analytics requires the ability to
understand and interpret the burgeoning volume of data (Chiang et al. 2012; Chen
et al. 2012). A report by the McKinsey Global Institute (Manyika 2011; Siemens
and Long 2011) predicted that by 2018, the United States alone will face a shortage
of 140,000-190,000 people with deep analytical skills (Yazici 2016). Along with
mastery of subject, critical thinking ability is among the learning outcomes adopted

H. J. Yazici (<)

Lutgert College of Business, Florida Gulf Coast University, Fort Myers, FL, USA
e-mail: hyazici@fgcu.edu

L. A. Zidek

U.A. Whitaker College of Engineering, Florida Gulf Coast University, Fort Myers, FL, USA
e-mail: 1zidek @fgcu.edu

H. St. Hill

Marieb College of Health and Human Services, Florida Gulf Coast University, Fort Myers,
FL, USA

e-mail: hsthill@fgcu.edu

© Springer Nature Switzerland AG 2020 185
A. E. Smith (ed.), Women in Industrial and Systems Engineering,
Women in Engineering and Science, https://doi.org/10.1007/978-3-030-11866-2_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11866-2_8&domain=pdf
mailto:hyazici@fgcu.edu
mailto:lzidek@fgcu.edu
mailto:hsthill@fgcu.edu
https://doi.org/10.1007/978-3-030-11866-2_8

186 H. J. Yazici et al.

and reinforced by ABET (2015) and AACSB (2013). Furthermore, in addition
to strong analytical skills fundamental to engineering practice, a diverse set of
interdisciplinary skills are required (Lattuca et al. 2017). As acknowledged in the
Engineer of 2020 (National Academy of Engineering 2004), and emphasized in
ABET (EC2000 criteria), the increasingly interdisciplinary nature of engineering
practice calls for preparing engineers to work in cross-disciplinary teams and
settings.

As engineering curriculum needs to be reassessed to focus more on skills,
capabilities, and techniques as well as cultivating ethical values and attitudes, more
research is needed to understand what contributes to critical thinking skills, and
overall to higher academic achievement. The study of critical thinking skill in
engineering education is lacking. An underlying theme is that critical thinking
is not taught, rather it is developed through experiential learning and systematic
approaches to problem solving.

Furthermore, previous research in engineering education brought the significance
of successful collaboration of engineers with non-engineers, or social scientists
(Borrego and Newswander 2008; Borrego et al. 2014; Lattuca et al. 2017). In
engineering, the emphasis on multidisciplinary teamwork in accreditation criteria
has contributed to the interest in multidisciplinary and interdisciplinary learning
and competencies. Research in interdisciplinary learning examined the effect of
interdisciplinary experiences on students’ development of generic cognitive skills,
such as critical thinking, problem solving, and creativity (Lattuca et al. 2017;
Borrego et al. 2014). As Lattuca et al. (2017) concluded, there is a further need
to investigate the value of interdisciplinary education in engineering and identify
educational experiences that support the positive effects of these experiences.

Higher order thinking skills are affected by students’ experiences, beliefs, and
attitudes (Greeno et al. 1996; Johri et al. 2014; Terenzini and Reason 2010; Lattuca
et al. 2017). Thus, learning and thinking styles may explain how an individual
performs as a critical thinker, comprehends subject knowledge and constructs
knowledge when faced with real-life scenarios (Yazici 2004, 2005, 2016). Although
learning and thinking styles have been addressed for decades, the question arises as
to how they relate to critical thinking skills.

Thus, based on the questions raised above, the purpose of this chapter is
to explore the relationship of thinking styles and critical thinking performance
when engineering students are exposed to an education experience within a
cross-disciplined team. Students from engineering and non-engineering disciplines
participated in an innovative assignment which consists of analyzing, critiquing,
and re-designing a process using a case study. Process analysis methods with value
stream mapping approach were applied.

This chapter describes the assignment, the critical thinking performance of
engineering students in association with their thinking styles and in relation to
education utilizing cross-disciplinary teamwork.
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8.2 Background

Critical thinking involves scrutinizing, differentiating, and appraising information as
well as reflecting on the information that will be used to make judgments (Banning
2006; Behar-Horenstein and Niu 2011). Critical thinking processes require active
argumentation, initiative, reasoning, envisioning, analyzing complex alternatives
(Simpson and Courtney 2002). Thus, critical thinking skills require self-correction
and reflexivity (Behar-Horenstein and Niu 2011). This was earlier indicated by
Sternberg (1997) by defining critical thinking as mental self-governance allowing
individuals to use experienced and value judgments. Ability to raise significant ques-
tions and problems clearly and concisely, acquiring and interpreting information
and formulating well-reasoned solutions and conclusions were defined as traits of
critical thinker (Paul and Elder 2010).

Critical thinking is the basis for reasoned decision-making and is therefore
central to engineering education and practice. Although engineers are expected to
have the ability to use math and science in their thinking, this thought process is
not oriented toward theory, but design and discovery (Sheppard et al. 2008). As
Bonney and Sternberg (2016) pointed out, and studied in detail by Agdas (2013),
one of the significant tasks of the instructor is to teach students how to learn
and become critical thinkers not solely transferring the knowledge. This very well
agrees with the Blooms Taxonomy. Bloom (1956) explains that mastery of concepts
occurs, when learners are able to advance through the six hierarchical levels:
knowledge, comprehension, application, analysis, synthesis, and evaluation. In so
doing, learners are able to identify issues, define and evaluate possible solutions, and
communicate problems through critical thinking. As an example, active learning, or
PBL (problem-based learning) are utilized to teach students’ how to learn materials
and relate the learned content to problem solve and hence demonstrate the ability to
think critically.

Several inventories exist to measure critical thinking. California Critical
Thinking Disposition Inventory(CCTDI), California Critical Thinking Skills Test
(CCTST), Watson and Glaser’s Critical Thinking Appraisal, or the American
Association of Colleges and Universities (AACU)’s VALUE rubric are used by
previous researchers (Agdas 2013; Behar-Horenstein and Niu 2011; Ghanizadeh
2017; Yazici 2016). The AAC&U Critical Thinking VALUE Rubric (2009)
measures critical thinking performance via five criteria: explanation of issues,
evidence, influence of content and assumption, student’s position (perspective,
thesis/hypothesis), and conclusion (implication, consequence).

Another significant element of teaching critical thinking is how engineers collab-
orate with engineers and non-engineers incorporating their expertise relevant to the
problem at hand and the importance of collaboratively seeking the most optimum
solution. So, reasoned decisions are rooted in knowledge from various sources and
backgrounds that are interrelated, which in turn requires critical thinking. Although
critical thinking is significant within and across disciplines, there is a need to
address causal links associated with thinking styles and student learning outcomes
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relevant to critical thinking. Lattuca et al. (2017) concluded the critical role of
the interdisciplinary thinking and habits of mind, along with the significance of
co-curricular activities that bring engineering students with non-majors to build
interdisciplinary competence.

Engineering education has expanded in recent years to include not only the
study of interdisciplinary educational conditions and outcomes, but also studying
the design of interdisciplinary courses (Newswander and Borrego 2009; Coso
et al. 2010; Boden et al. 2011). Several studies examined learning experiences
of limited duration and with small group of students, or in the context of an
assigned performance task. Lattuca et al.’s study (Lattuca et al. 2017) focused
on interdisciplinary competence in a broad cross section of engineering students
(Borrego and Newswander 2008) defined engineering education collaborations
as multidisciplinary and interdisciplinary. A truly interdisciplinary collaboration
occurs when researchers or disciplines join to work in a common question or
problem with a continuing interaction afterwards, rather than splitting apart. They
reported increased satisfaction and quality of work fostering form interdisciplinary
teamwork.

In engineering education, personal and social experiences, beliefs and prefer-
ences are considered as possible factors of learner success. Similar to leaning
preferences, thinking styles may show the differences among learners in adapting
to leaning environments, when engaged in critical thinking activities. Watson and
Glaser (Watson and Glaser 1980, 2002) Critical Thinking Appraisal and California
Critical Thinking Disposition Inventory are used by several researchers (Behar-
Horenstein and Niu 2011; Agdas 2013; Ghanizadeh 2017). Watson—Glaser also
developed thinking styles inventory (Watson and Glaser 1980). Thinking styles
are positive habits that contribute to better critical thinking, problem solving, and
decision-making. While no one thinking style is better than another, a balance
of the various styles results in better decision-making. After completing the
assessment, individuals receive a report that shows them what thinking styles they
prefer and gives a clear picture of their strengths and weaknesses in decision-
making. Armed with this insight, they can learn to properly balance the use of
all the thinking styles and, ultimately, become better critical thinkers and decision-
makers. Watson—Glaser thinking styles rank the preferred styles under seven cate-
gories: Analytical, insightful, inquisitive, open minded, systematic, timely, and truth
seeking.

8.3 Methodology

To explore the role of cross-disciplinary teamwork and individual thinking styles
on critical thinking performance, senior bioengineering students (n = 49) enrolled
in a healthcare engineering course are studied over the course of two semesters.
The course covered several topics including applied statistics, and an overview of
operations management as applied to healthcare and healthcare policy.
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The critical thinking assignment involved a healthcare case study to improve
the flow of maternity patients (Heizer and Render 2014, Principles of OM, 9th
edition, page 293). The instructor covered the relevant material related to process
analysis, value stream mapping and process management concepts and methods. An
online course module is designed specifically for the assignment by the engineering
and non-engineering discipline instructors. First, engineering students are asked to
individually identify the issues of the current process, recognize the assumptions,
and provide evidence from the case. Then, engineering students are placed randomly
into group of five with non-engineering students to share their views of the issues
of the process and brainstorm improvement plans via online discussion forums.
Following their interaction with non-engineering students, engineering students
with their cross-disciplinary group members developed an improved process flow,
described the improvements made by supporting with value stream mapping
metrics, facts from the case, and information from external sources. Then, students
provided their final recommendation. As students from engineering and non-
engineering disciplines worked on an assignment and in short term, according to
Borrego and Newswander (2008), this is considered a multidisciplinary education
experience, rather than interdisciplinary.

Prior to the assignment, students took the Watson and Glaser thinking styles
appraisal based on 90 questions about their approach for thinking with a scale of: 3:
clearly describes me; 2: somewhat describes me; 1: describes me a little; O: does not
describe me. As a result, Watson generates learners’ thinking styles in ranked order,
number 1: the top ranked learning style and 7: the lowest ranked learning styles, and
the numbers between.

8.4 Results and Discussion

8.4.1 Engineering Students’ Thinking Styles

Based on Watson—Glaser (Watson and Glaser 1980) thinking style inventory
results, engineering students ranked high to medium (ranks 1-4) as open minded
(intellectually tolerant and fair minded), systematic (conceptual, process oriented,
and intuitive), insightful (prudent, humble, reflective, and strategic), inquisitive
(curious, alert, and interested in the surrounding world), and analytical (clear
thinking, orderly, and rational). Engineering students were ranked low (ranks 5-7)
as truth seeking (independent, tough minded, and skeptical), and timely (efficient,
reliable, and responsive).

Figure 8.1 shows the percentage of highest frequencies for all thinking styles.
78% of learners were ranked high to medium (ranks 1-4) as Open minded and
as Systematic, 63% ranked high to medium as Analytical, and 56% as Inquisitive.
75% of learners ranked low (ranks 5-7) as Timely and 69% ranked low (ranks 5—
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7) as Truth Seeking. These results are comparable to previous research findings
with engineering students. For instance, Agdas (2013) found that the mean score
of Analyticity, Inquisitiveness, Open mindedness, and Systematicity was higher
compared to Truth Seeking and Maturity of Judgment dispositions measured with
CCTDI where subjects were senior Civil Engineering students.

8.4.2 Critical Thinking Performance

Learners’ critical thinking performance is assessed based on AAC&U VALUE
rubric. Two points were assigned for each measure of individual critical thinking
performance and three points per measure for the group critical thinking. Among
the critical thinking measures, learners did well (mean score of 1.91/2) in terms
describing the problem, explaining the process issues, showing a correct and
complete process flow, and providing evidence (1.75/2) from the case and other
sources to defend their point of view. This showed that students performed well in
analyzing the problem and data presented to them. However, when students worked
on the improvement suggestions, citing external sources for possible solutions
(1.54/2), defending their point of view on how the process can be improved (1.53/2),
and providing a thorough synthesis of the problem and alternative solutions (1.46/2),
a lower performance was detected. This is a deficiency consistently observed
throughout the programs that needs to be improved.

Following their individual assignments, students worked with their cross-
disciplined group members. Engineering students were able to discuss, brainstorm,
and share information via online discussion forums. Critical thinking skills
following the interdisciplinary education experience are comparable to individual



8 A Study of Critical Thinking and Cross-Disciplinary Teamwork. . . 191

Table 8.1 Engineering students’ critical thinking performance results

Influence of Conclusions
Explanation context and | Student’s | and related
of issues Evidence |assumptions | position | outcomes
Individual mean, 1.91,0.19 1.75,0.28 | 1.54,0.31 1.53,0.39 | 1.46,0.38
standard deviation
Cross-disciplined 1.54,0.49 1.31,0.60 |1.37,0.49 1.37,0.5 | 1.41,0.46
mean, standard
deviation
Critical thinking mean performance
2.50
2.00 1.91
" 1.75
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c
3
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0.00
Explanation of Evidence Influence of Context  Student's Position Conclusions and
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Fig. 8.2 Critical thinking individual and cross-disciplined group performances

critical thinking performance, but lower (t: 2.56, p < 0.02). Analyzing each measure
of critical thinking, Table 8.1 and Fig. 8.2 summarize the individual and cross-
disciplined group critical thinking performance mean scores.

Engineering students’ individual critical thinking performance was higher com-
pared to non-engineering students. But, when students worked with their cross-
disciplined groups, this did not positively contribute to learners’ performance. This
may be due to the online setting of the assignment with minimum face-to-face
interaction, or in some cases, group members relying on other students’ work,
a typical downside of student teams. It is also likely that the cross-disciplined
experience was limited to one assignment only, so not a long-term interdisciplinary
experience.

The challenges with cross-disciplinary teamwork were also identified in a
combined engineering/business course. Junior level engineering students taking
engineering entrepreneurship class teamed up with senior business students enrolled
in a business planning class finding a solution to the need developer prototype and
developing a business plan ensuring that there was a market for the solution. Student
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team evaluations indicated a propensity to assign tasks with little to no collaborative
effort. Engineering students also reported that the cross-disciplinary nature of the
class detracted from the learning environment. Thus, providing further evidence that
the engineering students do not positively engage in interdisciplinary teamwork.

Some of the research results were presented at previous conferences, chrono-
logically, at ASAHP (St. Hill et al. 2015), in POMS (Yazici and St. Hill 2016b),
in the IISE Annual Conference and Expo (Yazici and St. Hill 2016a), and in the
IISE Annual Conference and Expo (Yazici 2017) in the Engineering Education
Track. During the 2017 IISE, Interactive Education session, the audience consisting
of academicians, industry practitioners/consultants, and engineering students raised
important points about critical thinking:

1. At course level, educators indicated exposing students to critical thinking
assignments and the use of engineering reasoning guidebook. At capstone level,
this was done through thesis or capstone project report. Among the challenges,
getting faculty to consistently apply the critical thinking model, and finding ways
to persuade the leadership to address CT in programs school wide was reported.

2. Industry perspective emphasized strongly the importance of defining a problem,
recognizing issues and current state with all the facts prior to implementing
solutions, knowing how to gather evidence and how to work in teams. It is also
indicated that recent grads usually need a couple of years of experience/training
before they fully function as critical thinkers. Integrating critical thinking training
into subject-based staff training will be useful.

3. From student perspective, important points were made: Critical thinking can be
an asset and gives headway by identifying problems that may be overlooked
by the management. By communicating with industry and working on research
projects with industry educational institutions can adapt to industry needs.

8.5 Conclusions

The results of this study indicate a deficiency in engineering education with respect
to interdisciplinary skills. Critical thinking and interdisciplinary teamwork skills
are critical to professional engineers. While engineering students performed well
in problem definition and process identification skills that map directly to the
engineering design process, they performed poorly in collaborative solutions.

The results are similar to self-reported peer evaluations in a separate course
which paired engineers and business students. In both cases, engineering students
contributed to the problem definition, but took little to no credit for solution
development, synthesis, and justification. While the data indicates that engineering
students have well-developed critical thinking skills, interdisciplinary teamwork
is lacking. As previous research showed (Ghanizadeh 2017; Lattuca et al. 2017),
higher order thinking skills, reflective thinking, and self-regulation significantly
influence academic achievement, thus, engineering students need to be systemati-
cally exposed to these in the curriculum. It is important that these skills are gained
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over time with engaging students on long-term basis, and throughout the curriculum.
This will play a role in developing interdisciplinary skills and building competence.
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9.1 Patient Centered Sustainability Defined

Every decision made by a healthcare team has first a patient-centered impact on
health and second a cascading downstream (outside the hospital due to burning of
fuels to make electricity) impact on that same patient’s public or cumulative health.
Thus, each patient-care decision has a resulting environmental shadow of energy and
material use that create the secondary or unintended (and potentially suboptimal)
impact on patients and the community through the environment (air, water, and
land). At this time, these cascading impacts are hard to see for the healthcare
providers and so they cannot participate in finding improvements. Patient-centered
decisions include selection of diagnostic studies, choice of procedures, consumption
of pharmaceuticals or medical consumables, and use of equipment and devices, etc.
The patient’s health, impacted by direct medical decisions or indirectly downstream,
is directed by the Hippocratic Oath. Both impacts are governed by the Hippocratic
Oath, which for hospital sustainability can be interpreted as “we seek what is good
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for the patient and that achieves energy improvement which is then good for the
patient’s public health.”

Now it may be time for the healthcare community to explicitly understand and
begin to incorporate the environment into their patient-centered decision analysis
(Harper 2014; Overcash and Twomey 2013). The medical focus on the patient sitting
in front of the healthcare provider must include (1) how will the patient benefit
from the health decisions made by healthcare professional, but (2) also how will
the patient and the community be impacted by the indirect or cascading impact
from the environment born from those same healthcare decisions? This article
defines a new avenue for healthcare energy and cost improvement, initiated as full
conceptual approach at Wichita State University in 2012 (Overcash and Twomey
2012). This new concept is referred to as energy improvement in patient-centered
and downstream care and is defined as

the health interventions built on clinical decisions for patient-centered care that also improve
downstream patient public health. Said differently, when the choice between 2 or more
treatments or procedures have equivalent patient outcomes, is it now time for healthcare
providers to consider the environment?

Other terms defined for this article are

» Life cycle analysis: The quantitative tool for calculating and comparing energy
use for a device, product, drug, service, or system. This is the definitive method
to establish downstream unanticipated benefits (or harm) of patient-centered
care choices. Life cycle can integrate both hospital energy (electricity, natural
gas, etc.) and energy used to generate hospital energy and the manufacture of
consumables (disposables and reusables) into a new energy profile.

* Energy and material use for patient-centered care: Each intervention to improve
patient health results that uses energy (a machine, monitor, lighting, etc.) and
materials (whether disposable like an IV bag) or reusable such as a laryngeal
mask airway.

» Patient-care alternatives: Choices (single or multiple) made by healthcare
providers that achieve equivalent patient-care outcomes within economic limits.

Examples of the downstream impacts or medical shadows:

* The selection of a surgical anesthetic engages a long supply chain that uses
fossil resources and inorganics such as fluorine in a series of chemical plants
that produce emissions from energy and chemical inefficiency. The anesthesia
use results in gas exhalation and venting from the hospital, another emission
(Sherman et al. 2012).

* A CT study of an abdomen utilizes electrical power over fixed time of the scan as
well as power through out all the 365 late night shifts in a year, while on standby.
The patient CT study also consumes materials that are produced in long supply
chains and the necessary packaging, all with cascading energy and chemical
emissions (Twomey et al. 2012).

» The range of general surgical procedures involves direct electrical use by the
instruments as well as about 20 kg of used materials per case (MacNeill et al.
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2017). This entire mass of consumables are manufactured in dozens of chemical
plants, converting fossil resources (oil, natural gas, etc.) into these surgical OR
materials.

e Inan OR,in an ICU, or for isolation requirements in a patient room, the patient-
care teams utilize gowns and drapes to control hospital-acquired infections.
These are manufactured globally, shipped tens of thousands of km, sterilized
with steam, ethylene oxide, or gamma radiation and delivered to the hospital.
The decreased energy use and chemical losses of all these steps are directly
coupled to the hospital decisions for using reusable perioperative textiles thus
creating an unanticipated benefit versus selecting the suboptimal disposable
option (Overcash 2012).

* Long-term dialysis directly improves patient quality of life using membrane
technology and substantial amounts of water to remove blood byproducts. Thus,
electrical energy is used to pump fluids, consumables are required for patient
safety, and water is treated before discharge to rivers. This nephrology profile
identifies new supply chains with energy and chemical emissions required to
deliver successful hemodialysis. This may change when delivered at home versus
at a medical center (Connor et al. 2010; Soltani et al. 2015).

These five examples illustrate the direct relation between benefits of patient-
centered care and the secondary effects of health impact on these same patients and
society from the environment, which is a new chapter in healthcare sustainability.
Most work in this field is still in research and so answers are yet to be developed.
Success in achieving energy improvement and unexpected public health benefits
will be a collaborative effort of engineering and medical professions over a
substantial period of time and with significant resource needs.

Healthcare is growing as a percent of each national economy globally and is
clearly a large economic sector. This size creates a dual responsibility, (1) achieves
positive patient outcomes, but (2) society expects progress to lower healthcare
impact on the environment, the downstream footprint of patient-care success
(Overcash and Twomey 2013; Harper 2014). Many healthcare organizations have
begun sustainability awareness programs that stimulate concepts such as energy
improvement (Healthy Hospitals Initiative (HHI) is an excellent example of these
awareness efforts). Society expects more of the medical community, and so why
not make medical decisions that improve the patient and hospital as well as public
health?

9.2 Model of Analysis and Improvement

An effective way to discuss the total consequence of medical decisions aimed at
successful patient outcomes is in the context of hospitals. The complex facility of a
large urban hospital consumes energy (typically electricity and natural gas), utilizes
materials (reusables and disposables), and importantly delivers medical services
based on patient conditions. The complexity of a hospital is the diversity of services,



202

Table 9.1 Healthcare service areas of hospital (U.S. EPA 2005)

1. Diagnostic services
(a) Endoscopy

(b) Radiology

(c) Cardiac cauterization
(d) Nuclear medicine

(e) Sleep studies

4. Critical care services
(a) Surgical intensive care
(b) Medical intensive care
(c) Pediatric intensive care
(d) Cardiac intensive care
(e) Burn care

(f) Neonatal intensive care

7. Dialysis

10. Oncology/cancer care
services

(a) Radiation oncology

(b) Chemotherapy

13. Nutrition services

2. Surgical services

(a) Ambulatory out-patient
(b) Surgery

(c) Post-anesthesia care
(d) Preoperative services
(e) Anesthesia

5. Emergency care services

8. Physical therapy

11. Laboratory services
(a) Hematology

(b) Microbiology

(c) Chemistry

(d) Surgical pathology
(e) Histology

J. Twomey and M. Overcash

3. In-patient care

(a) Orthopedic

(b) Neurology

(c) Medical surgical
(d) Urology

(e) Cardiac

(f) Psychiatric/behavioral
(g) Geriatric

(h) Palliative

(i) Maternal/child care
(j) Pediatric

(k) Cancer

(1) Rehabilitative

6. Respiratory care services

9. Out-patient services
(a) Women’s health

(b) Family practice

(c) General medicine
(d) Rehabilitative

12. Perioperative and patient
textile management

and hence there are a wide range of important medical decisions. One catalogue
of hospital services is given in Table 9.1. These categories are important building
blocks to learn in each service area the relation of patient-centered medical decisions
and the downstream energy and material impacts. With this information for each
service, one can then assemble these blocks to reflect an entire hospital, where each
block can achieve energy improvement in patient-centered and downstream care.

When examining hospital sustainability and energy improvements, three con-
cepts or areas are defined, two of these have been making progress for two decades
and one area, energy improvement in patient-centered and downstream care is very
new, Fig. 9.1.

Area A is characterized as largely architectural and design-oriented. This
community is principally focused on the hospital building envelope. As such, once
the healthcare facility is completed there are few further improvements. This area is
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A Building B Operating C services for
Envelope the Building Patient
Structure — Envelope Outcomes
evidence-based inside the
healthcare Building
design Envelope

Fig. 9.1 General areas of healthcare improvement from engineering

thus referred to as construction and reconstruction and uses evidence-based design.
Topics often included are as follows:

. Improvements in materials, sitting, building design
. Windows and views

. Noise

. Hand washing stations

AW N =

The Center for Healthcare Design (Harris et al. 2008) and Prevention through
Design (Schulte and Heidel 2009) are primary examples of this community.

Area B is the operating aspects of the building envelope and is often character-
ized as the electricity and fuel use of the entire building, also known as heating,
ventilation, and air conditioning (HVAC). These are often referred to as non-
healthcare or overhead energies. Topics often included are as follows:

. Building design for lower energy use

. Advances in lighting efficiency

. Insulation and heat loss

. Substitution of renewable sources of electricity

O R N

Important organizations working in Area B are Practice GreenHealth (2011),
American Society of Healthcare Engineering (http://www.ashe.org), and Health
Systems Engineering Alliance (https://www.purdue.edu/discoverypark/rche/
partners/hsea.php).

Area C is new and distinctive in that the focus is on energy improvement related
to health interventions by informed clinical decisions for patient-centered care. Area
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C can be referred to as the actual healthcare services inside the building envelope
(Area A), but not the operation of the building envelope (Area B). The work at
Wichita State University is part of the national effort to improve healthcare services
in Area C as a new domain for sustainability research (Overcash and Twomey 2012).

Area C is the first substantial environmental chapter for hospitals in which the
healthcare providers (physicians, nurses, and administrators) have a direct opportu-
nity to participate. Their participation can make major improvements in innovation,
implementation, and as future informed decision-makers. Another important aspect
of Area C research is that both direct energy (usually electricity) and all materials
used (consumables) can be included together to achieve sustainability improvement.
This is a distinct aspect of Area C because most hospital material use (a part of
which becomes solid waste) is connected to the patient-centered care, but is not
visualized in energy terms.

In order to fully improve the energy use of the entire hospital, it is necessary
to subdivide this complex service facility into parts with the separate patient-
centered decisions and resulting downstream impacts, Table 9.1. The services shown
do not include administrative support, facilities management, dentistry, animal
research, and clinical research. The overall objective and strategy is to build an
understanding of the entire energy improvement in patient-centered and downstream
effects, on a service block-by-service block basis, in order to then assemble these
into an integrated view of healthcare facilities. The first phase at Wichita State
University has covered radiology, medical textiles, and dialysis services. The Energy
Information Agency data, last reported in 2003, indicate that the Area C energy for
the 8000 in-patient US hospitals surveyed (comprising 1.9 billion square feet of
space) is about 140 trillion BTU/year. The energy use and carbon footprint of the
patient-centered care in just these 8000 hospitals is about 17 billion kg of carbon
dioxide equivalent emissions per year in the USA. Thus, there may be potential
gains in research for patient-centered and downstream energy improvement in Area
C (about two million kg CO2eq per hospital per year). The National Health Service
of Great Britain and Ireland reported that up to 30% of hospital energy is for surgical
services, Fig. 9.2 (ASGBI 2011).

With the national impetus for considering healthcare energy improvement and the
concept of subdividing a hospital into service blocks, what might be the healthcare
sustainability roadmap in this new field? First, it is clear that the patient-care team
is today substantially limited by a lack of data, in any integrated sense, regarding
the relation between their direct patient-centered health decisions and the cascading
environmental impacts that lead to the unanticipated effects on patient public health.
Thus, the first priority is the necessary research to provide basic preliminary profiles
of medical-based decisions and energy and materials use. This is not at a general
level (such as the overall hospital), but at the patient-care level, where actual
decisions are made. This level of granularity is a key to understanding the different
impacts of equivalent patient outcomes. In a medical analogy, the needed level of
granularity or information is to know the cellular functions of the liver rather than
just the overall symptoms of liver disease on a patient.
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Diagnostic

Surgical

Inpatient care

Critical care
Emergency care
Respiratory care
Oncology/cancer care
Food service

LN UL R WNR

Physical therapy

10. Outpatient

11. Laboratory

12. Dialysis

13. Nutrition

14. Perioperative & patient textile
management

Fig. 9.2 General service categories in hospital (ASGBI 2011)

To be effective in this research (at multiple organizations world-wide) toward the
overall understanding of energy improvement in patient-centered and downstream
effects, the following three principles will be important:

1. Since many of the downstream effects on patients and society (as patients) will
occur outside the hospital as a result of decisions within the hospital, a life cycle
approach will be essential for this research.

2. Great benefit will be gained by simplifying the first phase of research information
collection regarding the hospital and the medical procedure energy impacts. The
first simplification is Table 9.1 which subdivides hospital services. The second is
to select small, but frequently used (or publically recognizable) examples within
each service area to study. This principle will add substantially to how to conduct
such research in many specialties and add to the efficiency of adding more
examples later. Since it is unlikely that all medical procedures, materials, patient
conditions, etc. can ever be studied with these life cycle tools, the preliminary
selection is a compromise of resources and curiosity.

3. The focus on overall hospital improvement suggests that the many studies must
be structured to be easily additive, thus forming the large hospital system. This
is referred to as the LEGO™ principle in which various studies can be different
(color, shape, function), but are known to attach together to form a structure (in
this case, the hospital energy and material efficiency model). A protocol for the
uniform information content would thus be beneficial.

How can we anticipate the kind of improvements that can result for the life
cycle energy improvement in patient-centered and downstream care? If we look
at virtually every patient-care decision, a basic framework is as follows:
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(a) There are alternatives (whether procedures, studies, pharmaceuticals, linens,
operational policies, etc.) that can be used to achieve equivalent patient
outcomes (type of anesthesia, location of dialysis, imaging study, etc.) or

(b) There are virtually no alternatives and so the set of patient-centered care
decisions is fixed.

Both of these scenarios can achieve improvement in hospital energy (and in
many cases costs) and in downstream patients’ public health, while managing for
a successful patient outcome.

With alternative pathways for equivalent patient outcomes (case a), there are two
spheres for improvement. The first sphere is to understand which of the multiple
choices has a lower environmental impact (the result of life cycle research studies),
while still achieving equivalent patient outcomes. Then using an additional criterion
of also improving patients’ public health (downstream), the better alternative can be
chosen. The second sphere is research on technological improvement within any
one alternative. In this way, each alternative and each technology lead to lower
energy and material use. As an example, the research of Sherman et al. (2012),
on anesthesia life cycle improvement illustrates case (a) the results define that in
cases where morbidity and mortality are equivalent among several gases, the use
of the specific anesthesia gas Desflurane should be avoided to achieve a substantial
patient public health improvement. This is an example of choice among alternatives
that leads to sustainability improvement. Secondly, when any of the anesthesia gases
is selected, reducing the fresh gas flow rate, even with the use of a carbon dioxide
absorbent, leads to a net life cycle improvement. This second example illustrates
improvement within a given gas choice. Thus, a two-fold dimension of improvement
is involved with patient-centered care decisions; the first is which alternative gas,
and the second is what technological improvements (less fresh gas flow) to lower
energy and material use.

When there is only one patient-care choice (case b) for achieving the successful
patient outcome, then sustainability improvement can still be achieved by seeking to
improve the technology or practices associated with the necessary alternative. So in
a sense, this range of improvements is lower when there are not multiple patient-care
choices. As an example, Campion et al. (2012) have used a life cycle approach of
obstetric alternatives for delivering a baby. In general, the two procedures (vaginal
and cesarean) are not alternatives and so each method was studied to provide
information by which improvement might still be made. The use of surgical drapes
and gowns for vaginal delivery was documented and so the improvement of shifting
to reusable perioperative textiles (Overcash 2012) is a direct improvement in patient
public health as measured by lower life cycle energy use. However, the patient-
centered care choice of delivery remained the same.
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9.3 Roadmap for Research Community

This roadmap for developing LEGO™-like research for the range of hospital
services field is explained below. As a first step for a new research study, use Fig.
9.2 to select a hospital service for the proposed study. Next forms a collaborative
team. Currently, a team with clinicians defining the medical system involving
patient care (e.g., procedures for hysterectomies, imaging by ultrasound, MRSA
laboratory testing) and engineers undertaking the life cycle analysis appears to be
very effective. Select one or more related medical procedures that are frequently
used in most hospitals (and might be viewed as alternatives) as the initial study.
A goal, in each service of Fig. 9.2, is to undertake sufficient procedures, studies,
devices, etc. that represent 50% of the various types of practices as a means of
understanding the variability and to increase the mechanisms for improvement.

Next the team invests in power measuring tools, material use cataloguing
procedures, and locations for these studies. Plug studies with monthly energy use
are of little value, as more granularity to tie energy and consumables to specific
patient treatment must be made. The studies have begun (Twomey et al. 2012). The
purpose of these studies is not just the energy and material values, but to establish a
direct link to patient-care conditions and to the variables with potential for change
that reduce energy and material use thus improving public health.

As with any new initiative and research, it is valuable to plan how such
information can affect hospital services behavior or technology change. For patient-
centered care energy analyses, there are several mechanisms for motivating change.
In the medical arena, the information on the downstream environmental benefit
to the patient of alternative choices that lower environmental impact at equivalent
patient-care outcomes might be adopted or featured in annual meetings of related
societies (ACOG, IARS, American Society of Hematology, etc.). These professional
organizations might adopt guidelines; use medical-based energy information in
online guides or teaching tools; develop working groups to refine and expand the
understanding of sustainability implications of such decisions for residents; or work
with hospital management or insurance groups to foster change.

Within the fixed medical choices or technologies (case b), information on
lowering patient exposure to environmental impacts can be used by equipment
consortia, manufacturing R& D organizations, or university and other organization
researchers. Thus, patient downstream health benefits can be achieved with existing
medical practices. In addition, this is an excellent area for behavioral studies groups
to contribute by clarifying the mechanisms for change, simplifying implementation,
and encouraging early adopters.
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9.4 Conclusions

Medical decisions for quality patient care represent a new dimension for hospital
energy sustainability improvement. Such patient health medical decisions have
both a direct energy use (in-the-hospital) plus an outside-the-hospital public health
impact from the environmental emissions (air, water, and land) related to generation
of energy and manufacturing of consumables. All of the areas of hospital services
(Table 9.1) can contribute in energy and consumable reduction. The goal is to
engage the healthcare specialists and to use their ingenuity and creativity to
examine procedures, patient-based decisions, and other avenues to seek hospital
sustainability improvements. Energy improvement will come from selecting patient
medical alternatives that give quality care, but at lower environmental burden plus
from changes to the technology and operational procedures used in all areas of the
hospital services. The resulting improvements in sustainability will address societal
expectations of environmental sustainability of this important economic sector.
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10.1 Care Transitions at Rural and Urban Hospitals

During the course of an illness, patients may require care from multiple healthcare
professionals and settings, and thus need transitions across different locations or
different levels of care under the same location. These locations could include
hospital inpatient unit, hospital emergency department, ambulatory service, post-
acute nursing facilities, patient’s home, primary and specialty care offices, and
assisted living and long-term care facilities (Coleman and Boult 2003). During this
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transition period, there is risk for discontinuity of care. A number of studies (Clancy
2006; Coleman and Berenson 2004; Moore et al. 2003; Coleman et al. 2005; Forster
et al. 2003; Kripalani et al. 2007) have documented that care transitions can lead
to an increased probability for negative impact upon patient safety, care quality,
and care cost due to ineffective communication, high medication errors, and lack of
follow-up care.

Critical Access Hospitals (CAHs) are certified rural hospitals by the Centers for
Medicare and Medicaid Services (CMS) with cost-based Medicare reimbursement
structure (CAHs n.d.). CAHs are an integral part of the US healthcare delivery
system providing access to necessary care for rural residents and frequently serving
as patient advocates in the coordination of regional health resources. Care transitions
might be more prevalent in rural settings, since rural patients may require care that
is not locally available necessitating CAHs to transfer patients to providers outside
their community. Transfer has been identified as one of the top priorities for patient
safety in rural community (Coburn et al. 2004). Most of the transferred patients
will experience two care transitions: the CAH to larger hospitals and post-discharge
from the hospital. Compared to transfer from CAHs to a higher level setting, it is
more challenging when patients are discharged back to their local community due to
differences in healthcare systems, barriers to communication, and lack of insurance
(Prasad et al. 2011). Therefore, rural communities have additional challenges in the
care transition process. Emergency department (ED) at CAHs is a critical healthcare
access point for rural residents and disproportionately account for patient volumes,
expenses, quality, and patient satisfaction when compared to larger urban and
suburban hospitals (2013 National Rural Emergency Department Study 2013). One
study has found that 54% of all ED visits to CAHs were categorized as semi/less-
urgent and non-urgent (2013 National Rural Emergency Department Study 2013).
Using ED for non-emergent conditions may lead to excessive healthcare spending,
unnecessary testing and treatment, and risk for discontinuity of care.

While it is important to understand ED use in CAHs to reduce unnecessary
health expenses and improve quality of care for rural residents, prior research in this
area has been limited. Most of the existing research on rural hospitals focused on
evaluating the quality of the care provided and not so much on the care coordination
aspect (Casey et al. 2010, 2012, 2013; Joynt et al. 2011a; Henriksen and Walzer
2012). Among the few studies that looked at ED utilization, one study focused
on examining factors associated with any ED use (Fan et al. 2011), three studies
quantified the frequency of ED transfers but did not investigate situations upon
discharge back to the community (National Rural Emergency Department Study
2013; De Freitas et al. 1998; Michelle Casey 2014), and only one study (National
Rural Emergency Department Study 2013) identified the non-emergent use of ED
in CAHs.

On the other hand, hospital readmissions may represent a more prevalent care
transition issue in larger urban hospitals, especially readmissions happened within
30 days of previous hospital discharge. Twenty percent of Medicare patients were
readmitted within 30 days of discharge with an estimated cost of 17 billion (Jencks
et al. 2009). Thirty-day readmission is used by CMS as a quality measure and
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hospitals with excess risk-standardized readmission rates are subject to financial
penalties. CAHs are not considered in this readmission reduction policy. Hospitals
have developed and employed various care transition interventions to reduce
readmission rates. Readmission prediction models were proposed to help efficiently
target at-risk patients and design tailored interventions. While most studies have
focused on examining the significance of patient-related risk factors such as age,
gender, race, comorbidities, clinical condition, and healthcare utilization (Hasan
et al. 2009; Jiang et al. 2005; Brand et al. 2005; Allaudeen et al. 2011; Kansagara
et al. 2011; Donzé et al. 2013), a number of studies suggested that factors
representing hospital characteristics and community differences such as hospital
teaching status, ownership, bed size, socioeconomic status, social support, access to
care, and geographic location were also associated with early readmission (Herrin
et al. 2015; Calvillo-King et al. 2012; Lindenauer et al. 2013; Arbaje et al. 2008; Hu
et al. 2014; Weissman et al. 1994; Joynt and Jha 2013a; Joynt et al. 2011b). Fifty-
eight percent of the variation in publicly reported hospital 30-day readmission rates
was found attributable to county-level factors (Herrin et al. 2015). Patients living in
neighborhoods with high poverty level, low education, and low household income
were found to have greater readmission risk (Hu et al. 2014). Patients living alone
were found to have a higher likelihood of 60-day readmission (Arbaje et al. 2008).

Despite the significant findings, the current CMS readmission measure did
not adjust for hospital and community characteristics. The rationale is that risk-
standardized readmission rate is a measure for quality of care, hospitals should not
be treated with different standards due to variation in demographic and socioeco-
nomic characteristics (Kansagara et al. 2011; Medicare Hospital Quality Chartbook
2012; Horwitz et al. 2012). However, some scholars have raised concerns about
the level of accountability and the appropriateness of the current reimbursement
policy as they argue that readmissions are largely influenced by the community
environment and post-discharge care that are not within hospital’s control (Herrin
et al. 2015; Joynt and Jha 2013b; Axon and Williams 2011). Knowing more
about the role of community characteristics could inform collaborative projects
between hospitals and local communities aimed at reducing readmissions (Herrin
et al. 2015). Prior research into hospital and community factors has been limited.
Research findings have been from observational studies that used publicly reported
readmission rates without directly adjusting for patient-level risks (Herrin et al.
2015; Joynt and Jha 2013a), they have been confined to specific diseases (Calvillo-
King et al. 2012), or they examined only socioeconomic factors (Lindenauer et al.
2013; Arbaje et al. 2008; Hu et al. 2014; Weissman et al. 1994).

In this chapter, we presented two studies that focused on two important care
transition issues with rural and urban hospitals. One study (Xie 2018) examined ED
transfers and the use of ED for non-emergent care at CAHs. Another study assessed
the impact of various hospital and community characteristics on 30-day readmission
among general medicine patients while accounting for patient-level factors. Both
studies aimed to provide insights to help identify patients who would be most likely
to benefit and design targeted interventions to improve care transitions by stratifying
patients into different risk groups.
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10.2 ED Utilization in CAH

In this study, we examined two major issues with ED utilization in CAHs: (1) ED
transfers to short-term general hospitals, service utilization upon discharge back to
the community and factors associated with revisit within 60 days of ED transfers;
(2) non-emergent ED visits and associated cost. We performed retrospective analysis
using data collected from five CAHs in Indiana for 2006-2009. The data included
patient utilization of four hospital service units: ED, inpatient unit (IP), observation
bed (OBS), and swing bed (SWD). Our study focused on utilization for ED. Certain
visits were excluded from the analyses including visits resulted in death, visits
discharged to hospice care or left against medical advice, visits with incomplete
records, and visits discharged to places other than short-term general hospitals
or home. The resultant data set contained two subsets, visits transferred to short-
term general hospitals (5029 visits for 4384 patients) and visits discharged to home
(106,222 records for 52,215 patients). These two categories consisted of 99% of the
ED visits. The subset of visits discharged to home was used to study non-emergent
care.

10.2.1 Analysis

For patients transferred to short-term general hospitals, we analyzed the top
diagnoses for transfers. Principal diagnoses code were categorized into higher
level diagnosis categories based on Agency for Healthcare Research and Quality’s
(AHRQ) single-level Clinical Classifications Software (CCS) (Elixhauser et al.
2013). For patients who had a revisit to CAHs within 60 days of the transfer,
we examined the factors associated with this revisit and the types of services
utilized for this revisit. The difference in baseline characteristics between the groups
with and without a 60-day revisit was tested by Chi-square test. Logistic regres-
sion was used to estimate the association. Factors serving as predictor variables
included age, gender, race, marital status, AHRQ CCS categories, comorbidities,
and hospital. Elixhauser comorbidity variables were created based on the secondary
diagnoses provided in the data with the published algorithm (Elixhauser et al. 1998).
Comorbidity variables with frequency count more than 20 were included in the
model to avoid quasi-complete. As 90% of the patients had only one transfer, each
transfer was considered as an independent event. The interaction effects among the
predictors were tested. Due to relatively small sample size, model performance was
cross-validated.

For patients discharged to home, their visits were classified into different
urgency levels based on the International Classification of Diseases, 9th Revision
(ICD-9) codes given by the New York University (NYU) algorithm (Faculty and
Research|[NYU Wagner n.d.). The algorithm also identified visits related to alcohol,
drug, injury, and mental health. ICD-9 codes that did not have enough sample size
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to evaluate were categorized as unclassified. Since the algorithm assigned multiple
probabilities for each ICD-9 code, we chose the highest probability to represent
the final category for that ICD-9 code. After identifying the categories, we also
quantified charges associated with non-emergent ED visits.

10.2.2 Results: ED Transfers to Short-Term General Hospitals

Among all the ED visits, 2.74% were transferred to short-term general hospitals.
Top ten diagnosis categories are presented in Table 10.1, where 12% of the transfers
were for chest pain, and 5% were for paralysis. Table 10.2 compared the baseline
characteristics between groups with and without 60-day revisit. No significant
difference was found for gender and race. Age, marital status, and hospital were
all significant. 20.6% of the transfers had a revisit within 60 days. Service types for
the revisit are presented in Fig. 10.1, 86% of the revisit was for ED services, and 9%
were admitted to the inpatient unit.

Results on predictor variables that were statistically significant at a significance
level of 0.10 are reported in Table 10.3.

Patients between 18 and 44 years old had a higher likelihood of 60-day revisit
compared to patients aged 65 and above (OR 1.48,95% CI 1.17-1.87). Patients who
were divorced or single had higher odds of revisit compared to patients who were
married. CCS categories that had a higher risk of revisit as compared to the most
frequently transferred diagnosis chest pain were listed. Patients transferred with
complication of device were most likely to have a 60-day revisit. In addition, certain
comorbidities also contribute to higher risk of revisit. Patients with neurological
disorders, renal failure, or depression were more likely to visit CAHs after transfer
compared to patients without these comorbidities. Finally, each hospital represented
different risk profile in terms of 60-day revisit; multiple comparisons were computed
for the five hospitals (Fig. 10.2). The 95% Wald confidence limits were calculated
based on Wald statistic, a standard method that uses the likelihood function

Table 19-1 Top ten AHRQ CCS category Frequency | Percent

diagnosis categories for ED ;

transfers Chest pain 601 11.95
Paralysis 267 5.31
Acute cerebrovascular disease | 188 3.74
Acute myocardial infarction 187 3.72
Coronary atherosclerosis 181 3.6
Pneumonia 165 3.28
Dysrhythmia 155 3.08
Secondary malignancies 138 2.74
Congestive heart failure 128 2.55
Gastrointestinal (GI) 113 2.25

hemorrhage
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Table 10.2 Baseline characteristics of patients who had ED transfer
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Variables No revisit n = 3991 Revisit n = 1038 P value
Age, % <0.001
0-17 10.5 6.7
18-44 24.8 31.6
45-64 32.1 31.5
>65 32.7 30.2
Gender, % 0.844
Female 50.1 50.5
Male 49.9 49.5
Race, % 0.368
White 96.9 96.3
Nonwhite 3.1 3.7
Marital status, % 0.003
Married 45.1 40.9
Divorced 10.5 14.3
Single 33.4 343
Widow 11.0 10.5
Hospital, % 0.021
A 31.2 31.1
B 16.0 16.5
C 25.3 20.9
D 14.2 16.9
E 13.3 14.6
Fig. 10.1 Service utilization ~ 90%
at CAHs for 60-day revisit
80%
70%
60%
50%
40%
30%
20%
10%
0%
ED IP OBS SWD

to perform statistical inference for large-sample categorical data (Agresti 2013).
Hospital C had a lower risk compared to hospital A, B, D, and E; and hospital D

had significantly higher risk than hospital A.
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Table 10.3 Association of population characteristics with 60-day revisit

Odds ratio (95% CI)

Variables

Age
>65
0-17
18-44
45-64

Marital status
Married
Divorced
Single
Widow

AHRQ CCS category
Chest pain
Complication of device; implant or graft
Pancreatic disorders (not diabetes)
Pulmonary heart disease
Heart valve disorders

Comorbidities
Neurological disorders
Renal failure
Depression

Hospital
A

oo Qw

10.2.3 Results: ED Visits for Non-emergent Care

Reference

0.88 (0.62-1.26)
1.48 (1.17-1.87)
1.06 (0.87-1.30)

Reference

1.51 (1.20-1.90)
1.18 (0.98-1.43)
1.13 (0.87-1.46)

Reference

3.62 (1.33-9.90)
2.66 (1.15-6.14)
2.04 (0.88-4.71)
1.98 (0.96-4.12)

1.57 (0.94-2.62)
2.71 (1.61-4.56)
2.29 (1.24-4.23)

Reference

1.04 (0.83-1.30)
0.78 (0.64-0.97)
1.32 (1.06-1.65)
1.13 (0.90-1.43)

P value

0.496
0.001
0.549

0.001
0.083
0.374

0.012
0.022
0.096
0.066

0.083
0.000
0.008

0.753
0.022
0.015
0.300
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ED visits discharged to home were stratified into different categories as shown in
Fig. 10.3. For all the CAHs, non-emergent cases consisted of more than 30% of the
ED visits, more than 20% of the visits could be prevented with primary care (PC
treatable), and only 7% of the visits require ED care and not preventable.

We grouped both non-emergent visits and visits could be prevented with primary
care as non-emergent cases and computed the average charges for those visits across
4 years as a percentage of total hospital charges and percentage of total ED charges.
As reported in Fig. 10.4, more than 10% of the total hospital charges were for non-
emergent ED visits, and those visits represent around 20% of the charges associated

with ED utilization.
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Odds Ratios with 95% Wald Confidence Limits
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Fig. 10.2 Odds ratio for multiple comparisons of hospitals
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Fig. 10.3 Categories of ED utilization for five CAHs
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Fig. 10.4 Average yearly charges of non-emergent visits for five CAHs

10.2.4 Discussion

This stud assessed how rural residents utilized ED services. It was found that 2.74%
of ED visits were transferred to short-term general hospitals for higher level care,
this number is lower than the average transfer rate for rural EDs as reported by
a previous study but still higher than the average transfer rate—1.8% for all US
hospitals (National Rural Emergency Department Study 2013). This could be that
the CAHs included in this study are all from Indiana State, while the previous study
has covered a much larger and varied sample. High transfer rate was also reported to
have an impact on how CAHs calculate their quality measures (Casey and Burlew
2006). The top diagnoses and other common conditions for transfers found in our
study were very similar to a prior study (Michelle Casey 2014) that examined ED
transfers of Medicare patients from CAHs.

While patient transfer was likely clinically appropriate, the issue is whether
CAHs and larger urban hospitals have systems in place to provide coordination of
care upon the patients’ return to their home community. We examined the types
of contact with CAHs for those patients who returned to their local Indiana CAHs
within 60 days of the transfer. To the best of our knowledge, no prior research has
studied this problem. It was found that 20% of the ED transfers had a revisit to
CAHs within 60 days. Among those revisits, 85% were for ED care, and 9% were
admitted to the inpatient unit. This observation may be an indication that patients
were trying to use ED as a substitute for primary care, and there is an opportunity
for improving the transition of care communication between CAHs and short-term
general hospitals.
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We further examined the factors associated with 60-day revisits. It was found
that patients aged between 18 and 44 years old had a higher likelihood of returning
to their local CAH compared to patients above 65 years old. One hypothesis
could be that patients within this age group were more likely to be uninsured as
compared to patients above 65 years of age who were at least covered by Medicare
insurance. This partially supports the previous hypothesis that patients might be
using ED as a substitute for primary care. Patients who were divorced or single had
higher odds or 60-day revisit compared to patients who were married. The same
findings were observed in readmission studies. A possible explanation could be that
patients who are married could receive better care and support to help with their
recovery.

Regarding diagnosis, patients transferred for complication of device, pancreatic
disorders, pulmonary heart disease, and heart valve disorders were more likely to
seek care upon return to their local community compared to patients with chest
pain. This could be that these disease types subject to a higher likelihood of
complications and infection thus require more intensive follow-up care or in other
words are more vulnerable to ineffective transitions of care. Patients with depression
and neurological disorders were at higher risk of revisit. Some studies about 30-
day readmission had similar findings. This may be because these patients were
more likely to have drug abuse problems or psychological issues that increased
their probability of seeking care. Hospital was entered as a fixed effect to assess
the impact of hospital differences. The odds ratio comparisons among hospitals
suggested that patients transferred from different hospitals were subject to different
risk levels. One hypothesis could be that the location of CAH, their network with
regional health resources, and their adoption of health information technology all
contribute to the effectiveness of care coordination at the time of transfer and upon
patient discharge back to the local community.

Differentiating ED visits for emergent and non-emergent care could help reduce
unnecessary health spending and improve patient care. The implicit assumption
is that ED may not have the infrastructure to provide the same level of care
continuity as a primary care provider. Our study has found that for each CAH,
more than 30% of the ED visits were classified as non-emergent, an additional
20% were visits could be prevented with effective primary care. A previous study
had the same finding where more than 50% of the ED visits in CAHs were
less-urgent or non-urgent (National Rural Emergency Department Study 2013).
Rural hospitals were reported to have increased ED visits due to restricted access
to primary care (Hines et al. 2011; Gresenz et al. 2007). Finally, the charges
associated with non-emergent care were studied. By grouping both non-emergent
visits and visits could be prevented with primary care, we found that the non-
emergent cases constitute more than 10% of the total hospital charges and 20% of
the ED charges. While reducing non-emergent ED visits could reduce unnecessary
healthcare spending and improve patients’ continuity of care, it challenges the
financial viability of the CAHs as those ED visits represent potential revenue for the
hospitals.
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Our study focused on CAHs in Indiana State. More data on ED utilization
from other geographic areas would help validate the findings and make the
conclusion more generalizable. Also, we did not have information on activities
after ED transfers. The gaps in transitions of care could be better evaluated if more
information were available on patients’ stay at short-term general hospitals and how
they have utilized local health resources upon return to their local community.

10.3 Hospital and Community Characteristics Affecting
30-Day All-Cause Readmission

In this study, we used the Healthcare Cost and Utilization Project (HCUP) state
inpatient data for Arkansas and Washington State from 2008 to 2009 to iden-
tify risk factors that associate with 30-day all-cause hospital readmissions. We
chose these states because they both participated in HCUP and provided unique
patient identifiers that enabled identification of readmission; and, the two states
represented very different health profiles; Washington was ranked among the
top ten while Arkansas was ranked among the bottom ten (America’s Health
Rankings n.d.). Forty-one and 43 short-term general hospitals were identified in
Arkansas and Washington, respectively. This study included adult patients aged
18 years or above. Patients discharged to hospice care were excluded. We also
excluded certain admissions based on the CMS hospital-wide all-cause unplanned
readmission measure (YNHHSC/CORE 2014), which include admissions that
resulted in death, admissions for psychiatric diagnoses, admissions for cancer
treatment, admissions for transplant, chemotherapy or radiotherapy, childbirth-
related hospitalizations, admissions for rehabilitation, and admissions left against
medical advice. We also excluded admissions that transferred to another hospital
on the same day of admission. For same-day transfers happened within a hospital,
admissions were merged as extended inpatient hospitalization rather than two
separate admissions. Admissions during December were excluded due to insuf-
ficient follow-up period. The final data set contained 1,049,330 admissions for
773,727 patients. We split the data into 70% training (734,531) and 30% testing
(314,799).

We selected the common patient risk factors that associated with readmission
risk as identified from the relevant literature. We also obtained hospital and county
related characteristics through American Hospital Association (AHA) database
and Health Resources and Services Administration’s Area Resource File (ARF)
using Federal Information Processing Standard (FIPS) county code. Overall, factors
serving as predictor variables can be grouped into three categories: (1) patient-level
factors including age, gender, Charlson comorbidity index score (Quan et al. 2005,
2011) (calculated based on the secondary diagnoses provided in the data), length
of stay, utilization of emergency service, and discharge disposition; (2) hospital
characteristics including number of beds, teaching status, and ownership; (3)
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community characteristics including state, median household income represented
as state quartile, number of primary care physicians per capita (include general
practice, general internal medicine, and family medicine physicians), and percent
of residents with high school education. Primary care physician ratio was adjusted
based on county population (x 100,000).

10.3.1 Analysis

The study outcome was all-cause 30-day readmission or admission to the same
hospital within 30 days of discharge from the index admission. Since the unit
of analysis is admission, a single individual in the data set could have multiple
admissions and readmissions. The difference in baseline characteristics between
the groups with and without 30-day readmission was tested by Chi-square test
for categorical variables and Wilcoxon test for continuous variables (Table 10.4).
We used multilevel logistic regression to estimate the risk of 30-day readmission.
Admissions were nested within hospitals and hospitals were nested within counties.
As 83% of the patients had only one admission, each admission was considered as
an independent event. The prediction model was constructed based on the training
data and evaluated using the testing data.

10.3.2 Results

As shown in Table 10.4, all predictor variables had a significant difference between
the readmitted and not readmitted groups. Among the training cohort, 9.3% of
admissions resulted in 30-day readmission. We then estimated the association
between risk predictors and 30-day readmission by controlling for other covariates
using multilevel logistic regression. The model was evaluated using a separate
testing set and had an area under the curve (AUC) of 0.64. Results on predictor
variables that were statistically significant at a significance level of 0.10 are reported
in Table 10.5.

All patient-level factors were significant in predicting readmission risk. Female
patients were less likely to be readmitted than male. Age had a positive relation-
ship with risk of 30-day readmission, where the older the individual, the higher
likelihood of readmission. Variables that indicative of disease severity including
the length of stay, Charlson index score, and utilization of emergency services
were positively associated with 30-day readmission. Patients discharged to skilled
nursing facility, or home health care had higher readmission risk compared to
patients discharged to home (OR 1.08 and 1.29, respectively). For hospital and
county level factors, individuals treated at major teaching hospitals were more likely
to be readmitted compared to patients treated at minor or non-teaching hospitals.
Patients from areas with higher median household income had lower likelihood of
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Table 10.4 Baseline characteristics of training cohort
Variables No readmission n = 671,954 | Readmission n = 62,577 | p value
Female sex, % 60.1 56.0 <0.001
Age (years), mean (SD) 57.3 (20.5) 62.1 (19.0) <0.001
Length of stay, mean (SD) 3.9 (4.8) 5.2(5.9) <0.001
Charlson index score, mean 1.1 (1.6) 1.8 (1.9) <0.001
(SD)
Emergency service used, % | 51.8 65.1 <0.001
Discharge disposition, %
Routine discharge 76.6 68.1 <0.001
Skilled nursing facility 9.7 13.9
Home health care 8.2 11.8
Other 5.5 6.2
Bed size, % <0.001
<200 29.2 27.9
200-399 36.1 354
>400 34.7 36.7
Teaching status, % <0.001
Major 6.6 8.3
Minor 63.1 60.9
Non-teaching 30.3 30.8
Ownership, % <0.001
Government, non-federal 14.1 14.8
Non-government, 74.9 74.5
not-for-profit
Private, for-profit 11.0 10.7
Median household income <0.001
(state quartile), %
1 27.7 29.0
2 27.3 28.5
3 24.7 24.4
4 20.3 18.1
State, % <0.001
Arkansas 35.8 39.8
Washington 64.2 60.2
Primary care 48.9 (14.0) 48.8 (14.1) <0.001
physicians/100 k, mean (SD)
Percent of residents with high | 87.9 (5.2) 87.4(5.4) <0.001

school education, mean (SD)

Median household income: 1-4, indicating the poorest to wealthiest populations

readmission. Patients admitted in Washington State were less likely to have 30-day
readmission as compared to patients from Arkansas State (OR 0.84). Also, patients
from communities with higher primary care physician ratio and higher percentage
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Table 10.5 Factors associated with 30-day hospital readmission

Variables
Female sex
Age (per 10 years)
Length of stay
Charlson index score
Emergency service used
Discharge disposition
Routine discharge
Skilled nursing facility
Home health care
Other
Teaching status
Major
Minor
Non-teaching
Median household income

QOdds ratio (95% CI)
0.97 (0.95-0.99)**
1.05 (1.04-1.05)**
1.02 (1.02-1.03)**
1.16 (1.16-1.17)**
1.51 (1.49-1.54)%**

Reference

1.08 (1.05-1.11)**
1.29 (1.25-1.32)**
0.88 (0.84-0.91)**

Reference
0.69 (0.50-0.95)*:
0.64 (0.45-0.91)**

1 Reference

2 0.98 (0.96-1.00)**

3 0.95 (0.93-0.97)**

4 0.91 (0.88-0.94)**
State

Arkansas Reference

Washington 0.84 (0.71-0.99)**
Primary care physicians/100 k (per 10 physicians) 0.96 (0.92-1.00)**
Percent of residents with high school education 0.99 (0.98-1.00)*

Significance level: *p < 0.1; **p < 0.05
CI confidence interval

of residents with high school education were less likely to be readmitted within
30 days.

10.3.3 Discussion

Using data from multiple hospitals across two very different states, this study
examined the impact of hospital and community characteristics on 30-day read-
mission while controlling for patient demographics and illness severity. Arkansas
and Washington represent two extremes of the health profile such as smoking,
drinking, obesity, and mortality. Most patient-level factors identified as significant
predictors were consistent with prior literature. Older adults and patients with more
severe conditions, as indicated by longer length of stay, higher Charlson comorbidity
index score and use of emergency service before admission, tend to have higher
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readmission risk (Hasan et al. 2009; Donzé et al. 2013; Arbaje et al. 2008; Van
Walraven et al. 2010; Coleman et al. 2004; Halfon et al. 2006). The effect of gender
was mixed, where some studies (Halfon et al. 2006; Krumholz et al. 1997) found
that female patients were less likely to be readmitted than male patients, which are
consistent with our finding, others (Yazdany et al. 2014; Bohannon and Maljanian
2002) found opposite results. Patients discharged to home health care were found
at greater risk of readmission compared to patients discharged to home, which was
similar to a previous study (Philbin and DiSalvo 1999) about patients with heart
failure. This finding is somewhat surprising as home health care is supposed to
provide additional support. It is possible that home health care could introduce
additional risk if transitions of care were not properly coordinated. On the other
hand, patients discharged to home health care may have more severe conditions than
patients discharged to home and the variation was not captured by other predictors
in our model.

After controlling for patient-level risks, we found that major teaching hospitals
were associated with increased readmission risk. This finding was consistent with a
prior study (Joynt and Jha 2013a) that examined the relationship between hospital
characteristics and 30-day readmission. Although the underlying cause is not clear,
one explanation could be that major teaching hospitals are more likely to encounter
patients with medically complex conditions and diverse mix of socioeconomic
background than minor or non-teaching hospitals.

Patients in our study living in a community with lower median household income
were found at greater risk of being readmitted. Previous studies (Hu et al. 2014;
Amarasingham et al. 2010) that investigated a community-level socioeconomic
effect had a similar conclusion—patients from communities with low household
income or in the lowest socioeconomic quintile had higher odds of 30-day read-
mission. We also found that patients from communities with higher proportion of
residents with high school education had lower likelihood of 30-day readmission.
This finding is similar to a previous study (Hu et al. 2014) that looked at the
association between neighborhoods with low education and risk of readmission.
The effects of these socioeconomic variables measured at the community level could
be explained by the availability of healthcare resources, access to primary or post-
discharge care services, and presence of social support.

Finally, primary care physician ratio was found to have a negative association
with readmission risk, where patients living in community with higher ratio of
primary care physicians were less likely to have 30-day readmission. One possibility
is that with more available primary care physicians, patients may receive better
follow-up care and hence reduce the likelihood of readmission. Patients from
Washington State were found to have lower readmission risk than patients from
Arkansas State. One hypothesis could be that Washington has heavy managed care
penetration. As reported by Kaiser Family Foundation (State HMO Penetration Rate
n.d.), the health maintenance organization (HMO) penetration rate in Washington
was more than two times higher than Arkansas (31.5% vs. 14.2% in January 2016).
A previous study (Zhan et al. 2004) has found that increased HMO penetration was
significantly associated with reduced preventable hospitalizations.
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Our study had several limitations. The data was from 2008 and 2009, but
readmission concerns still exist as indicated by high readmission rates. In addition,
hospital and community factors are understudied, and thus findings from this study
can still provide insights towards a more accurate readmission measure. Patient
illness severity was captured by conventional measures such as length of stay,
Charlson comorbidity index, and emergency service usage. However, our data
lacked clinical and medical information such as blood pressure, hemoglobin level,
and adverse drug events, which were found to be associated with risk of readmission
(Donzé et al. 2013; Forster et al. 2005). Having said that, this information may
be more applicable for disease-specific studies than a study focuses on diverse
medical conditions. We were not able to cluster admissions within patients due to
convergence issues, but 83% of the patients in our data had only one admission, and
thus we assumed each admission as an independent event. Finally, our use of county
as a unit of analysis may fail to take into account considerable variation in access
to care, socioeconomic status, or other key differences between subunits (cities or
neighborhoods) within these counties.

10.4 Conclusions

In summary, we examined important care transition issues at rural and urban
hospitals and provided insights to help target at-risk patients. Efforts and resources
targeted towards ED transfers and non-emergent ED visits may improve the quality
of care for rural residents. Rural areas need a better model to provide primary care
access, which is the key to improve patients’ continuity of care. The quality of ED
transfers need careful evaluation, and necessary protocols and guidelines should be
implemented. Hospital characteristics and patients’ environment following hospital
discharge are significantly associated with readmission risk. This finding under-
scores the concerns about the current public reporting and reimbursement policies
and to what extent hospitals should be held accountable for higher readmission rates
that could be attributed at least in part to their community characteristics. Financial
incentives may lead to unintended consequences and exacerbate health disparities
if hospitals try to avoid readmissions by limiting access for low-income patients
or patients with complex health needs. Understanding more about the influence of
community characteristics could inform collaborative programs between hospitals
and local communities and deliver effective readmission reduction strategies.
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11.1 Introduction: Dr. Julie Simmons Ivy

This chapter presents an overview of non-traditional applications of industrial
and systems engineering that have served as the basis for my research and is a
collaborative effort with six of my female former doctoral students. Their research is
highlighted in the form of vignettes that summarize the decision approached used to
address human-centered problems in the areas of health, humanitarian logistics, and
education. The National Academy of Engineering’s Grand Challenges challenged
the engineering community to “Engineer better medicines,” “Improve health infor-
matics,” and “Advance personalized learning,” our research begins to address these
challenges and extends them to include engineering a better future for our poorest
citizens. This research develops theory as derived from these real-world problems
particularly in the areas of stochastic modeling, Markov decision processes (MDPs),
semi-Markov decision processes (SMDPs), partially observable Markov decision
processes (POMDPs), and Bayesian decision analysis. Simulation, deterministic
optimization, robust optimization, and stochastic programming methods are also
incorporated. These methods are used to personalize solutions to the needs of the
individual.

The theme of this chapter is to be healthy, wealthy, and wise. Each section reflects
the voice of one of the researchers in the form of a case study. Each case study
introduces a complex societal issue related to health, poverty, or education, presents
a summary of the researcher’s contributions in that area focusing on the role of
decision modeling, highlighting unique challenges associated with addressing the
particular challenge, and summarizes the researcher’s vision for future work in the
area. These vignettes are designed to stand-alone.

In the context of health, four vignettes are presented in the areas of (1)
medical/clinical decision-making related to birth and the care of complex patients,
(2) care delivery related to bedside patient rescue, and (3) clinical operations related
to pharmaceutical inventory management. Current policies are “one size fits all,” the
goal of this research is to develop personalized screening, intervention, treatment,
and disease management policies and strategies. Unfortunately, we do not have a
magic recipe for wealth so instead in the context of wealth, we present the fifth
vignette in which we consider the inverse problem of satisfying hunger need in
a community. In the context of education, we present the sixth vignette in which
we characterize elementary and middle school student performance on standardized
exams over time optimizing student outcomes. Each of these societal challenges
involves complex decision-making with multiple attributes under conditions of
uncertainty. The research presented seeks to inform this decision-making, improve
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decision quality, and hopefully improve outcomes in the process. A brief overview
of each section is presented in the discussion that follows.

Section 11.2.1 introduces the research of Dr. Karen Hicklin who has modeled
decision-making related to birth with a focus on the decision to have a cesarean
section as a function of the patient’s current state and future risk. This research
develops various decision models to capture decision-making during labor. It
takes a novel look at the value of information using Bayesian decision theory to
determine not only the value of information but also the conditions under which
the information has most value. In addition, a discrete event simulation model is
developed to replicate birth progression for a population of women. This simulation
model served as the data seed for the Bayesian decision model and a MDP model
developed to capture the dynamic nature of decision-making during labor.

Section 11.2.2 introduces the research of Dr. Nisha Nataraj, which considers the
management of complex patients, patients with one or more comorbid conditions,
in the context of diabetes management and sepsis diagnosis and treatment. This
research integrates cluster analysis, logistic regression, and simulation: (1) to
characterize the impact of diabetic medication management on diabetic women’s
risk for developing breast cancer; and (2) to model the stochastic evolution of
the sepsis trajectory of comorbid patients is modeled, to evaluate the impact of
interventions such as fluids and anti-infectives, and to identify those comorbidities
that behave similarly in patients along sepsis. This research was conducted in
collaboration with Mayo Clinic and Christiana Care Health System in partnership
with the NSF-sponsored S.E.P.S.I.S. research collaborative (NSF I1S1522107).

Section 11.2.3 introduces the research of Dr. Muge Capan and is at the intersec-
tion of medical decision-making and care delivery. This research in collaboration
with Mayo Clinic models decision-making related to in-hospital patient deteriora-
tion. This research developed personalized models to capture patient deterioration in
order to optimize response. In particular, this research focused on decision-making
as it relates to Rapid Response Teams (RRT), these are teams of physicians with
a higher level of expertise from the intensive care unit who may be called to the
general floor to assist with patient care in response to patient deterioration. This
research used electronic medical records to develop patient-specific SMDP models
to capture patient condition dynamics and the significant role time plays in response
to deterioration to identify personalized policies for RRT activation. This research
has motivated and served as a testbed for an NSF-sponsored Smart and Connected
Health collaborative research project with Mayo Clinic and Christiana Care Health
System on sepsis (NSF IIS1522107).

Section 11.2.4 introduces the research of Dr. Ana Vila-Parrish in the area of
healthcare delivery and logistics focusing on pharmaceutical inventory management
and policy development. This research identifies hospital-based pharmaceutical
inventory management policies considering patient condition dynamics and drug
perishability. Additional studies incorporate the impact of patient condition dynam-
ics during an influenza outbreak on hospital pharmaceutical inventory management
and the impact of centralized and decentralized pharmacy structure on pharmaceu-
tical inventory management.
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Section 11.3.1 introduces the research of Dr. Irem Sengul Orgut that focuses
on humanitarian logistics particularly as it relates to hunger relief. This research is
based on a close to 8 year collaboration with the Food Bank of Central and Eastern
North Carolina that has led to an NSF-funded collaborative research project with
Dr. Lauren Davis of North Carolina A&T University (CMMI 1000828) and a new
NSF-supported smart service system project, EE.E.E.D. This research considers the
equitable and effective distribution of donated food considering capacity constraints.
Through this research the critical role that capacity constraints play in equitable food
distribution was identified and the concept of a “bottleneck™ county that constrains
distribution if there are equity requirements was introduced.

Section 11.4.1 introduces the research of Dr. Amy Craig Reamer in the area of
education. This research develops stochastic models of the evolution of elementary
and middle school student end-of-grade (EOG) exam performance in mathematics
over time. EOG exam data from 1996 to 2009 for students in third through eighth
grade in North Carolina is used to inform the understanding of student performance
on annual standardized tests in mathematics over time with the goal of determining
strategies for when and how to optimally intervene to improve performance. Further,
the research considers the impact of student attributes on performance to inform how
to personalize mathematics education.

This collection of six vignettes highlights the potential for using industrial
and systems engineering methods and tools to address some of society’s greatest
challenges in health care, hunger relief, and education. Analytical thinking, math-
ematical and computer modeling, and optimization methods provide a structural
underpinning necessary for addressing these complex decision problems. With the
increasing availability of data, the rise of analytics, and advances in computational
capability, it is now more possible for modeling to capture the complexities
associated with these problems and to influence how researchers and practitioners
address complex societal issues, such as health and education disparities, hunger
relief, and personalized medical decision-making.

11.2 To Be Healthy

11.2.1 Mode of Delivery: Dr. Karen Hicklin
Introduction

Thirty-three-year-old Robin and her husband, Randy, are expecting their first child.
They went to parenting classes, consulted with the obstetrician about the labor
process, and felt prepared. At 38 weeks gestation, they knew that any day now they
would be the proud parents of a baby boy. One night at approximately 10:00 pm,
Robin began to experience contractions. Not too worried, she decided that if the
contractions persisted, they would head to hospital. A few hours later, around
2:00 am, they head to the hospital and upon arriving, they were informed that Robin
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was 1-2 cm dilated and since she was having persistent contractions they would
admit her to the hospital. Around 7:00 am, there were no further dilation changes
and the doctor decided to break her water and start her on pitocin (a drug used
to speed up labor). She received an epidural shortly after and had no pain until
afternoon. At 1:00 pm, Robin started to experience more intense and continuous
contractions but was measured to be only 3 or 4 cm dilated. Robin and Randy
were told that Robin was not progressing, and they should think about a C-section.
Although she would be given the opportunity to labor an additional 10 h, Robin was
informed that there may not be much progress. Around 1:30 pm, although afraid
and unprepared, it was decided that Robin would undergo a cesarean delivery.

This story provokes questions of whether that decision was the best and was the
timing of the decision appropriate.

Each day millions of women enter labor and in 2016, there were approximately
3.9 million births in the United States (Hamilton et al. 2017). When a woman enters
labor, she will deliver in one of two ways: vaginal delivery (or normal delivery)
or cesarean delivery (C-section). A C-section is a surgical procedure in which an
incision is made in the mother’s abdomen and uterus for the delivery of a fetus.
The current rate of cesarean delivery is 31.9% (Hamilton et al. 2017), which is
more than triple the rate suggested by the World Health Organization who believe
a rate between 10 and 15% leads to the best health outcomes for the mother and
child (World Health Organization Human Reproduction Programme 2015). The first
cesarean rate was 5.0% and was recorded in 1965 (Taffel et al. 1987). Despite the
increase in the number of C-sections over the years, there has not been a decrease
in the number of morbidities as one might expect.

For some women, a C-section is the most appropriate delivery mode due to
factors such as multiple gestations, hypertensive disorders, fetal distress, or labor
arrest. However, there are concerns regarding the number of unnecessary C-sections.
Those would be C-sections given to patients who were ideal candidates for vaginal
delivery but received a C-section instead. A large proportion of these births are due
to the notion of failure-to-progress or labor arrest. A C-section due to a failure-
to-progress diagnosis means it was determined that the patient will not progress
to full cervical dilation within a particular time frame deemed necessary for safe
delivery. Dr. Emmanuel Friedman was one of the first obstetricians to divide labor
into phases and stages with the goal of identifying abnormal labor. His work led
to the Friedman Curve, which was established in the mid-1950s. The two major
outcomes of this curve stated that (1) nulliparous women (women giving birth for
the first time) should have cervical dilation progression of 1.2 cm per hour and
multiparous women (women who have given birth before) (Hamilton et al. 2017)
should have cervical dilation progression of 1.5 cm per hour and (2) no cervical
dilation change in 2 h is an indication of labor arrest. Although the Friedman Curve
had been used to diagnose abnormal labor for many years, many believe its use may
be outdated and that following such a curve may have played a part in the increase of
C-sections due to failure-to-progress (Zhang et al. 2010a, b). A retrospective study
across 19 US hospitals conducted by the Consortium on Safe Labor showed that
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women are not laboring as once believed and some women need more time in labor
before deciding a C-section is needed (Zhang et al. 2010a).

Labor is often described in three stages. The first stage is the time period from the
onset of labor until 10 cm, the second stage is the period from 10 cm to the delivery
of the baby, and the third stage is the delivery of the placenta. At any time during the
first or second stages of labor, a C-section may be performed to ensure safe delivery
of the fetus. For women who indeed need a C-section, performing the procedure
as early as possible is best. This timely decision is necessary to avoid adverse
complications to the mother or child by prolonging labor for a woman whose best
delivery mode is to have a C-section. However, for women where the decision
of remaining in labor is unclear, allowing more time in labor provides additional
insight into how the patient is progressing. Deciding to perform a C-section for
such a patient could lead to an unnecessary C-section and also increase the risk of
future complications as well as increase the need for subsequent C-sections in future
pregnancies. The decision may also change depending on the stakeholder and his or
her preferences, experience, and valuation of the two delivery modes (i.e., utility).
Due to this complicated decision process, we have developed a simulation model
and stochastic decision models to evaluate the conditions for when a C-section is
needed considering a failure-to-progress diagnosis.

Modeling Approaches

Discrete Event Simulation Discrete event simulation is used to model the natural
progression of labor. This model has two goals—to model the natural progression
of labor in the absence of C-sections and to model various stopping rules for ending
labor for a C-section and the effect those rules have on the C-section rate and
rate of expected complications. In order to model the natural labor process, we
used percentiles of how long a woman is expected to be at a particular dilation
state as reported in publicly available literature sources (Harper et al. 2012; Zhang
et al. 2010b). Using these values in a percentile matching procedure, we were
able to develop probability distributions for each dilation state for three different
laboring types: (1) spontaneous labors, (2) augmented labors, and (3) induced
labors. By modeling the natural progression of labor, we were able to identify
the average length of active labor (i.e., time from 3 cm to vaginal delivery). This
work also provided insight into the length of labor for different labor patterns (i.e.,
spontaneous, augmented, and induced labors). By evaluating the expected risk of
complications for remaining in labor and the C-section rate as a function of various
stopping rules, we have been able to identify stopping rules that could lead to lower
C-section rates while also lowering the rate of complications (Hicklin 2016). The
discrete event simulation not only provides insight into labor progression but was
also used as input into stochastic decision models, which will be discussed in the
subsequent sections.

Bayesian Decision Analysis In the theory of Bayesian statistics, there is a belief
regarding the “true value” of a particular parameter and that belief is updated as
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more information is collected. In the context of the mode of delivery decision, there
is a true mode of delivery and the decision-maker has a belief as to what that mode
should be. Each woman who enters labor will either deliver vaginally or through
cesarean delivery. However, the optimal mode of delivery is not always apparent
during the labor process. In a Bayesian decision model, we determine the optimal
mode of delivery as a function of the belief that the patient will have a successful
vaginal delivery. We evaluate the trade-off between making the decision of delivery
mode with information currently available (prior) or prolong labor in order to learn
more about the patient before making a decision (posterior). The decision-maker
learns more about the patient by taking observations of labor progression. This
model provides insight into the value of information in the context of waiting in
labor.

We tested our modeling framework using three different methodologies. In the
first methodology, we assume labor progression (in the context of cervical dilation
changes) can be modeled as an exponential probability distribution and define an
observation to be whether there is change in dilation from 1 h to the next. In the
second approach, we still define an observation to be change or no change but model
labor progression according to a lognormal probability distribution. The state space
of the first and second approaches are more simplistic than the third, in which an
observation is not only whether there is change in dilation but how much change
occurred in an hour. That is, for a patient currently reported to be 7 cm, that
patient may remain at 7 cm, move to 8, 9, or 10 cm, or delivery during the next
hour. This model uses the same probability distribution as the second approach, but
accounts for a more dynamic observation space and provides additional insight to
better inform the model. The probability is calculated based on the discrete event
simulation discussed previously. In each approach, the results provide the belief
values in which it is optimal to (1) continue labor with routine monitoring, (2)
continue labor with caution, and (3) end labor for a C-section. In the case where
the decision is to continue labor with caution, the decision of best delivery mode is
not certain and more information is needed before for delivery mode is determined
(Hicklin et al. 2017).

Markov Decision Process In order to evaluate the trade-off between continuing
labor and performing a C-section considering preferences and risk, we develop
an infinite-horizon MDP. In this model, the objective is to maximize the expected
utility of health outcomes for the mother and child as a function of time in labor
and delivery mode. The state is defined by three elements: (1) current dilation state
(i.e., 3 cm, 4 cm, ..., 10 cm) or delivery mode (i.e., vaginal delivery, C-section,
emergency C-section), (2) time spent in the first stage of labor, and (3) time spent
in the second stage. Similar to the Bayesian model, the probability of transitioning
from one state to another is derived from the discrete event simulation model, which
assumes labor progression is log-normally distributed. We calculate the expected
value of health outcomes considering four different scenarios. The first scenario is
when both the mother and child are healthy and have no complications, the second
scenario is when the mother is healthy, but the child has a complication, the third
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scenario is when the mother has a complication and the child is healthy, and the last
scenario is when both the mother and child have complications. Using probability
estimates of complications for each patient and allocating the highest preference
(value of 1) to the first scenario, lowest preference (value of 0) to the last scenario,
and equal weighting for the second and third scenario (value of 0.5), we calculate the
expected utility of health outcomes. From this utility value, we subtract a disutility
value that represents delivery mode. Once delivery is achieved in this model, the
expected rate of complications as a function of total time in both stages is subtracted
from the net utility. The action (i.e., continue labor or C-section) which results in
the maximum value of utility provides the optimal decision for that time period.
The results provide the total number of hours a patient should remain in labor at
each cervical dilation state for varying disutility values for delivery modes. If we
fix the disutility of vaginal delivery to be the lowest (value of 0) and the disutility
of emergency C-section to be the highest (value of 1) and vary the disutility for C-
section, the decision is to allow patients to remain in labor longer for higher values
of C-section disutility.

Implications and Next Steps

Each model provides a significant connection to understanding what factors prompt
the decision-maker to decide a laboring woman needs a C-section due to the notion
that she is not progressing in a manner in which she will achieve vaginal delivery
within a time frame deemed for safe delivery. The simulation model allows us to
understand how long labor can last if not interrupted and if labor is not interrupted
what are the resulting complications. In turn, this leads to the question of whether
those probable complications outweigh the short- and long-term complications for
the mother and child of performing a C-section. The Bayesian and Markov models
both evaluate trade-offs of allowing labor to continue versus ended labor for a C-
section. The Bayesian model provides insight into the value information associated
with waiting in labor and the MDP provides an understanding of how long a patient
can be expected to remain in labor in order to achieve a particular utility value
considering the resulting disutility of expected complications that may arise. Given
the value each model provides, we have also developed a Bayesian MDP model
that looks at the total time a woman can safely remain in labor as a function of the
decision-maker’s belief of the patient’s success as a candidate for vaginal delivery.
Our contributions in this area have provided many platforms to help stakeholders
make wiser and better decisions for women’s health. It has also provided a means
to facilitate shared decision-making in which both patients and providers are able
to share their concerns and determine the best decision together. The ultimate goal
of this work has been to develop interfaces that allow providers to consult real-time
for assistance in decision-making or to be used between patients and providers to
understand the potential risk and complications that may arise before labor occurs.
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11.2.2 The Care of Complex Patients: Using Simulation
Frameworks to Study Decisions—Dr. Nisha Nataraj

Introduction

With advances in personalized medicine, accounting for heterogeneity in patient
care is becoming more attainable. Still, an aging population, changing lifestyles
and social structures, and the growing burden of chronic disease (Anderson and
Horvath 2004) have resulted in a growth in the number of complex patients. Com-
plexities may arise due to a variety of factors, including biological, environmental,
demographic, socioeconomic, behavioral, and cultural factors (Safford et al. 2007;
Schaink et al. 2012; Loeb et al. 2015), making diagnosis and treatment more
difficult.

One of the most common manifestations of complexity is multimorbidity
(Schaink et al. 2012), the presence of multiple conditions in an individual.
Often used synonymously with comorbidity (the simultaneous presence of one
or more conditions with respect to an index disease), multimorbidity is highly
prevalent—Approximately one in four US adults have two or more chronic
conditions (Ward et al. 2014). Consequently, the economic burden of multimorbidity
and associated resource utilization are also high. In fact, 71% of all total healthcare
spending in the United States in 2010 was on patients with multiple chronic
conditions (MCC) (Gerteis et al. 2014). In 2010, individuals with MCC contributed
to 88% of all home health care visits, 83% of all prescriptions, 70% of all inpatient
stays, and 64% of all clinician visits (Gerteis et al. 2014). This burden extends
beyond the strain on healthcare spending and resources. Individuals with MCC have
a higher risk for preventable hospitalizations and complications (Wolff et al. 2002),
generally lower quality of life (Vogeli et al. 2007), and greater mortality risk (Chang
et al. 2012; Nunes et al. 2016). The management of MCC can also strain primary
care-givers and family, partly due to limited mobility and increased expenditures
(Giovannetti et al. 2012). Polypharmacy is also a major concern because individuals
are often on several different medications at once, making keeping track of adverse
reactions and medication interactions challenging (Marengoni and Onder 2015;
Mannucci et al. 2014).

Decision Uncertainty

There is a pressing need to evaluate how comorbidities impact prognosis and
outcomes for patients with multiple conditions. Shifting to a multiple disease
perspective will enable a more accurate representation of the impact and the
interaction of the diseases on costs, resource allocation, treatment priorities, etc.
However, there are several difficulties from a decision-making standpoint when
trying to capture the impact of more than one disease in individuals. From a
clinical perspective, heterogeneity in patients, comorbidities, difficulty translating
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disease-specific guidelines for applicability in a multi-disease setting, and lack of
data are some of the barriers present (Caughey et al. 2011). From a modeling
perspective, adequately representing more than one disease poses unique challenges,
including determining how to account for comorbidity, interactions between the
diseases, and cause of death for multiple diseases, as well as limitations in the
availability of comprehensive data sources. While statistical models can be a useful
way of characterizing comorbidity (Zhang et al. 2013; Nataraj et al. 2018), they
have limited applicability for decision-making and studying disease trajectories
at an individual level. Simulation has several advantages that make it particularly
amenable to the modeling of complex patients, such as being able to account for
(1) multiple sources of stochasticity, (2) complex systems with numerous moving
pieces, and (3) the critical role played by humans (Brailsford 2007).

In this case study, we present two perspectives outlining the use of simulation
frameworks for modeling complexity. The details of these studies are available
in Nataraj (2017). We examine multimorbidity from a systems standpoint by
discussing how simulation models can be used to study the impact of comorbidity
from two different index-disease perspectives, diabetes and sepsis. We restrict
our attention to these conditions since patients with diabetes and sepsis are both
complex, partly due to increased prevalence of comorbidities and the risk of com-
plications. While there are some similarities, complexity can manifest differently
in these two conditions, making for challenging disease management and care.
Diabetes, a metabolic disease that affects the way in which the body can process
glucose, is a chronic condition where decisions are typically made over a longer
time horizon, over months and, possibly, years. Conversely, sepsis, the body’s
inflammatory response to infection, is an acute complication that can quickly result
in organ failure and a high likelihood of death (Liu et al. 2014). With sepsis,
decisions must be made swiftly—on an hourly and daily basis. Therefore, the
separate study of these conditions can offer valuable insights into decision-making
for complex patients.

Perspective 1: Sepsis as an Index Disease

One particularly challenging aspect of sepsis is the difficulty in detecting the
condition. This is primarily due to the lack of a gold-standard diagnostic test.
Additionally, the lines between the transitions along the sepsis trajectory are often
not clear-cut, for the purposes of clinical decision-making as well as definition. As a
result, a significant focus of the international community has been on addressing the
challenge of defining sepsis clinically (Czura 2011; Vincent et al. 2013; Singer et
al. 2016) using physiological (patient vitals) and cellular (lab results) markers of the
condition. Patients can deteriorate rapidly through states along the sepsis spectrum
making timely intervention both critical and difficult—sepsis can progressively
worsen to severe sepsis, i.e., organ dysfunction and septic shock. The condition can
present and progress very differently in patients depending on their comorbidities
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(Wang et al. 2012; Iskander et al. 2013) as well as their age, race, and gender (Esper
et al. 2006).

Objective Recent efforts to better define the sepsis spectrum clinically have
resulted in multiple criteria for the identification of the onset of sepsis (Vincent
et al. 2013; Singer et al. 2016). The trajectory of a sepsis patient is difficult
to clearly map, particularly because fragmented care makes it challenging for
providers to take into account a patient’s medical history (Cox and Wysham 2015).
Using patient and visit-level electronic health records (EHR) data from a large
hospital system, the study uses a simulation framework to understand how relevant
dynamic physiological and cellular attributes evolve over time after a therapeutic
intervention in patients with sepsis, while considering patient heterogeneity through
age, gender, race, and comorbidity. The framework is designed to allow the
comparison and quantification of the impact of different clinical definitions on the
timely identification of sepsis states, given the implementation of recommended
therapeutic interventions.

Methods Inpatient EHR data from a large hospital system was used to develop a
comprehensive discrete event simulation (DES)-based framework to study patient
trajectories along the sepsis spectrum in a cohort of individuals with ICD-9-CM
coded sepsis. The framework allows us to study the evolution of patient trajectories,
specified by different sepsis definitions and driven by recommended therapeutic
interventions (Fig. 11.1). Inputs to the framework consist of (1) a database of septic
patients, derived from EHR data, (2) definitions for sepsis identification with clinical
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Fig. 11.1 Overview of the comprehensive DES framework modeling the impact of definition
and interventional guidelines on sepsis patient trajectories. Text in blue represents inputs to the
framework, gray boxes indicate inputs to the simulation, navy boxes represent model components,
and the yellow box indicates the simulation component
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markers for component states distinctly described, and (3) Timing-based guidelines
for therapeutic interventions. First, heterogeneity in the population is addressed by
using hierarchical clustering to identify important comorbidities in subpopulations
stratified by age, gender, and race. Patients at the visit level are then simulated from
the EHR data by sampling patients’ static and dynamic clinical, demographic, and
comorbidity-related attributes in their entirety. Patient episodes, defined as a portion
of a patient’s visit specified by a hospital unit such as the ED or ICU, are tracked.
The EHR data is also employed to estimate percent changes in patients’ vitals and
labs in the hours prior to and following an intervention, given their demographic
and comorbidity-related features. These are then fit to distributions to determine the
impact of a therapeutic intervention in each subpopulation.

The simulated patients, comorbidity clusters, and fitted distributions then become
inputs to the DES component of the framework. Using dynamic clinical attributes
from the EHR data, the simulation model (1) tracks the trajectory of patients over
time, as categorized into states by the different clinical definitions specified; (2)
simulates the first impact of a therapeutic intervention for each state within an
episode (timed i