
Chapter 24
Lessons Learned from Challenging Data
Science Case Studies

Kurt Stockinger, Martin Braschler, and Thilo Stadelmann

Abstract In this chapter, we revisit the conclusions and lessons learned of the
chapters presented in Part II of this book and analyze them systematically. The
goal of the chapter is threefold: firstly, it serves as a directory to the individual
chapters, allowing readers to identify which chapters to focus on when they are
interested either in a certain stage of the knowledge discovery process or in a certain
data science method or application area. Secondly, the chapter serves as a digested,
systematic summary of data science lessons that are relevant for data science
practitioners. And lastly, we reflect on the perceptions of a broader public toward
the methods and tools that we covered in this book and dare to give an outlook
toward the future developments that will be influenced by them.

1 Introduction

Part II of this book contains 16 chapters on the nuts and bolts of data science,
divisible into fundamental contributions, chapters on methods and tools, and texts
that apply the latter while having a specific application domain in focus. Some of
these chapters report on several case studies. They have been compiled with the goal
to stay relevant for the readership beyond the lifetime of the projects underlying the
specific case studies. To establish this book as a useful resource for reference in any
data science undertaking, this chapter serves as a key to unlock this treasure.

The chapter is organized as follows: Sect. 2 presents a taxonomy that covers the
main dimensions of content in the individual chapters previously presented in Part
II. In Sect. 3, we give concise summaries of all chapters and their learnings. On this
basis, we then provide an overall aggregation of the lessons learned in Sect. 4,
together with more general insights. Final conclusions are drawn in Sect. 5.
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2 Taxonomy

Table 24.1 provides a taxonomy covering the content of the case studies described in
Part II. The taxonomy highlights the main items of the individual chapters and serves
as a structured index for the reader to navigate Part II.

3 Concise Reference of Individual Lessons Learned

In this section, we provide a reference to the distilled lessons learned of each chapter
of Part II. The section can thus serve the readers to assess their level of data science
knowledge and pick out the most pertinent areas for further study.

Chapter 8: What Is Data Science?
A treatise of the fundamentals of data science and data science research from a senior
researcher’s perspective.

Lessons Learned:

• Data science is an emerging paradigm for accelerated discovery in any field of
human endeavor based on the automated analyses of all possible correlations. It
has no tools to establish causality between the observed relationships.

• Maturity of data science as a discipline is approximately a decade ahead and will
depend on (a) general principles applicable equally to all domains; and
(b) collaboration of experts across previous disciplinary silos (which needs a
“chief scientific officer” role).

• Based on the analysis of 150 use cases, a generic ten-step data science workflow
(in extension of the knowledge discovery process from Chap. 2) is presented and
exemplified based on three major scientific projects.

Chapter 9: On Developing Data Science
Suggests the twentieth-century hardware–software virtuous innovation cycle as a
role model for how data science projects and the discipline itself should be furthered.

Lessons Learned:

• Data science is inherently an applied science that needs to be connected to real-
world use cases: “necessity is the mother of invention,” and data scientists even in
research profit from solving pressing problems of businesses.

• Still, data science is more than doing data science projects, and data science
research units need to be more than the sum of their parts, contributing to data
science “per se” by developing software platforms and generally applicable
methodology across domains.
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• Several common misunderstandings regarding the adoption of data science in
businesses are addressed, including “data science is expensive” or “it is all about
AI.”

Chapter 10: The Ethics of Big Data Applications in the Consumer Sector
An introduction to and guidelines for ethical considerations in data science applica-
tions is given, helping with questions like “to whom does the data belong,” or “how
is (and should) autonomy, privacy, and solidarity (be) affected.”

Lessons Learned:

• A practical guideline regarding unwanted ethical effects is this: would customers
still use the product or provide the data if they knew what their data is used for?
What could incentivize them to continue doing it if they knew?

• Trust and acceptance of data science applications can be created by informing the
customers transparently, and by always providing an option to choose.

• Based on five case studies, a practical weighing of the core values of autonomy,
equality, fairness, freedom, privacy, property-rights, solidarity, and transparency
that can be adopted in a cookbook fashion.

Chapter 11: Statistical Modeling
A plea for the use of relatively simple, traditional statistical modeling methods (also
in contrast to “modern black box approaches”). How to maximize insight into model
mechanics, and how to account for human interventions in the modeling process?

Lessons Learned:

• Descriptive analysis requires explicit statistical models. This includes concrete
knowledge of the model formulation, variable transformations, and the error
structure.

• Statistical models can and should be verified: check if the fit is in line with the
model requirements and the subject matter knowledge.

• To obtain sound results and reliable interpretations, the data-generating mecha-
nism within the model developing process and during model assessment has to be
considered.

Chapter 12: Beyond ImageNet: Deep Learning in Industrial Practice
An introduction to various case studies on deep learning beyond classifying images:
segmentation, clustering, anomaly detection on documents, audio and vibration
sensor signals.

Lessons Learned:

• For designing a deep neural network, start with a simple architecture and increase
the complexity when more insights into the data and model performance are
gained. Generally, if a human expert sees the pattern in the data, a deep net can
learn it, too.
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• There are many options to deal with limited resources, especially limited training
data: transfer learning, data augmentation, adaptable model architectures, or
semi-supervised learning. Applying deep learning does not need gigabytes
of data.

• Deep models are complex, but far from being black boxes: in order to understand
the model performance and the learning process, “debugging” methods such as
visualizing the learned weights or inspecting loss values are very helpful.

Chapter 13: The Beauty of Small Data: An Information Retrieval Perspective
Discussion and case studies that show the different challenges between leveraging
small and big data.

Lessons Learned:

• Finding patterns in small data is often more difficult than in big data due to the
lack of data redundancy.

• Use stemming to increase the occurrences of terms in small document collections
and hence increase the potential redundancy to find patterns.

• Enrich data with additional information from external resources and synthesize
new, additional keywords for query processing based on relevance feedback.

Chapter 14: Narrative Information Visualization of Open Data
Overview of open data portals of the USA, the EU, and Switzerland. Description of
visualization applications on top of open data that enable narrative visualization: a
new form of web-based, interactive visualization.

Lessons Learned:

• Data preparation: The most time-consuming aspect of information visualization.
Data needs to be manually transformed, harmonized, cleaned, and brought into a
common data model that allows easy visualization.

• Visualization technology: High-level visualization frameworks that enable quick
prototyping often cannot be used out of the box. In order to get full visualization
flexibility, interactive information visualization, and especially narrative visual-
ization often require a development path from rapid prototyping using “out-of-
the-box” data graphics toward “customized” visualizations that require some
design and coding efforts.

Chapter 15: Security of Data Science and Data Science for Security
A survey on the aspect of computer security in data science (vulnerability of data
science methods to attacks; attacks enabled by data science), and on the use of data
science for computer security.

Lessons Learned:

• Protect your information systems with suitable security controls by rigorously
changing the standard privacy configurations, and using a secure software devel-
opment life cycle (SSDLC) for all own developments.
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• Guidelines are given in the “CIS top twenty security controls,” and current
security issues are posted, for example, in the “OWASP top 10” for web
applications.

• Also secure your models: anonymization is not perfect, analysis on encrypted or
anonymized data is still under research, and attackers might try to exploit data-
driven applications by data poisoning, model extraction, etc.

Chapter 16: Online Anomaly Detection over Big Data Streams
Various anomaly detection strategies for processing streams of data in an Apache
Spark Big Data architecture.

Lessons Learned:

• Make sure that data processing is performed efficiently since data can be lost in
case the stream processing buffers fill up.

• Pearson correlation and event counting work well for detecting anomalies with
abrupt data changes. For detecting anomalies based on gradually occurring
changes, use relative entropy measures.

• Use resampling techniques to determine statistical significance of the anomaly
measure. When annotated ground truth data is available, use supervised machine
learning techniques to automatically predict the anomaly type.

Chapter 17: Unsupervised Learning and Simulation for Complexity Manage-
ment in Business Operations
A study on developing a purely data-driven complexity measure for industrial
products in order to reduce unnecessary drivers of complexity, made difficult by
the unavailability of data.

Lessons Learned:

• In cases where low-level data is unavailable, available high-level data can be
turned into a simulation model that produces finer-grained synthetic data in
arbitrary quantity, which in turn can be used to train a machine-learning model
with the ability to generalize beyond the simulation’s discontinuities.

• Complexity of industrial product architectures and process topologies can be
measured based on the minimum dimensionality of the bottleneck layer of a
suitably trained autoencoder.

• Data-driven complexity measurement can be an alternative to highly qualified
business consultants, measuring complexity in a fundamentally different but
result-wise comparable way.

Chapter 18: Data Warehousing and Exploratory Analysis for Market
Monitoring
An introduction to data warehouse design, exemplified by a case study for an end-to-
end design and implementation of a data warehouse and clustering-based data
analysis for e-commerce data.
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Lessons Learned:

• Data warehouse design and implementation easily take 80% of the time in a
combined data preparation and analysis project, as efficiently managing a data-
base with dozens of tables of more than 107 records requires careful database
tuning and query optimization.

• Data from anonymous e-commerce users can be enriched using Google Analytics
as a source; however, the data quality of this source is not easily accessible,
making results based on this source to be best considered as estimates.

• When using clustering as an instance of unsupervised machine learning, the
necessary human analysis of the results due to the unavailability of labels can
be eased using sampling: verify a clustering by analyzing some well-known
clusters manually in detail.

Chapter 19: Mining Person-Centric Datasets for Insight, Prediction, and Public
Health Planning
A data mining case study demonstrating how latent geographical movement patterns
can be extracted from mobile phone call records, turned into population models, and
utilized for computational epidemiology.

Lessons Learned:

• Data processing for millions of individuals and billions of records require parallel
processing toolkits (e.g., Spark); still, the data needed to be stored and processed
in aggregated form at the expense of more difficult and expressive analysis.

• It is important to select the right clustering algorithm for the task (e.g., DBSCAN
for a task where clusters are expressed in different densities of the data points, and
K-means where clusters are defined by distances), and to deal with noise in the
measurements.

• Visualization plays a major role in data analysis: to validate code, methods,
results; to generate models; and to find and leverage to wealth of unexpected,
latent information and patterns in human-centric datasets.

Chapter 20: Economic Measures of Forecast Accuracy for Demand Planning:
A Case-Based Discussion
Methods for evaluating the forecast accuracy to estimate the demand of food
products.

Lessons Learned:

• Error metrics are used to evaluate and compare the performance of different
forecasting models. However, common error metrics such as root mean square
error or relative mean absolute error can lead to bad model decisions for demand
forecasting.

• The choice of the best forecasting model depends on the ratio of oversupply costs
and stock-out costs. In particular, a baseline model should be preferred over a
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peak model if the oversupply costs are much higher than the stock-out costs and
vice versa.

• Choosing the optimal observation time window is key for good quality forecasts.
A too small observation window results in random deviations without yielding
significant insights. A too large observation window might cause poor perfor-
mance of short-term forecasts.

Chapter 21: Large-Scale Data-Driven Financial Risk Assessment
Study of an approach to standardize the modeling of financial contracts in view of
financial analysis, discussing the scalability using Big Data technologies on real
data.

Lessons Learned:

• Computational resources nowadays allow solutions in finance, and in particular in
financial risk analysis, that can be based on the finest level of granularity possible.
Analytical shortcuts that operate on higher levels of granularity are no longer
necessary.

• Financial (risk) analysis is possible at the contract level. The analysis can be
parallelized and distributed among multiple computing units, showing linear
scalability.

• Modern Big Data technologies allow the storage of the entire raw data, without
pre-filtering. Thus, special purpose analytical results can be created quickly on
demand (with linear computational complexity).

• Frequent risk assessment of financial institutions and ultimately the whole finan-
cial system is finally possible on a level potentially on par with that of other fields
such as modern weather forecasts.

Chapter 22: Governance and IT Architecture
Governance model and IT architecture for sharing personalized health data.

Lessons Learned:

• Citizens are willing to contribute their health data for scientific analysis if they or
family members are affected by diseases.

• Data platforms that manage health data need to have highly transparent gover-
nance structures, strong data security standards, data fusion, and natural language
processing technologies.

• Citizens need to be able to decide by themselves for which purpose and with
whom they share their data.

Chapter 23: Image Analysis at Scale for Finding the Links between Structure
and Biology
End-to-end image analysis based on big data technology to better understand bone
fractures.
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Lessons Learned:

• Image data are well-suited for qualitative analysis but require significant
processing to be used in quantitative studies.

• Domain-specific quantitative metrics such as average bone thickness, cell count,
or cellular density need to be extracted from images before they can be correlated
to images and other data modalities.

• Rather than removing data samples with missing values, data quality issues can
be handled by imputation, bootstrapping, and incorporating known distributions.

4 Aggregated Insights

On the basis of the individual lessons learned that we described in the previous
section, we will now provide an overall condensation of the lessons learned. We feel
that these points are highly relevant and that they form a concise set of “best
practices” that can gainfully be referenced in almost every data science project.

• Data science is an inherently interdisciplinary endeavor and needs close collab-
oration between academia and business. To be successful in a wide range of
domains, close collaboration and knowledge exchange between domain experts
and data scientists with various backgrounds are essential.

• Building a trust relationship with customers early on by providing transparent
information about the data usage along with rigorous data security practices is key
to guarantee wide adoption of data products. Let the customers choose which data
they want to share with whom. Part of building trust is also to care for potential
security issues in and through data analysis right from the start.

• Data wrangling, which includes transforming, harmonizing, and cleaning data, is
not only a vital prerequisite for machine learning but also for visualization and
should thus be a key effort of each data science project. Ideally, data wrangling
should be automated using machine learning techniques to ease the burden of
manual data preparation.

• Leverage existing stream processing frameworks for enabling data wrangling and
analysis in real time.

• When choosing a machine learning model to solve a specific problem, start with
simple algorithms where only a small number of hyperparameters need to be
tuned and a simple model results. Increase the complexity of the algorithms and
models if necessary and as more insights into the data and model performance are
gained.

• Use visualization to gain insights into data, track data quality issues, convey
results, and even understand the behavior of machine learning models (see also
below).

• Modern big data technology allows storing, processing, and analyzing vast
amounts of (raw) data—often with linear scalability. Restricting models to
representative data samples for the sake of reducing data volumes is not strictly
necessary any more.
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• Leveraging small data with low redundancy requires different and maybe more
sophisticated approaches than leveraging big data with high redundancy.

In condensing the lessons learned to best practices that are generalizable, there is
a danger of losing the surprising, inspiring insights that only more detailed looks at
specific contexts can bring. By necessity, it is impossible to exhaustively compile
such “inspiration” in a list. However, we very much think that much of this
inspiration can be found between the covers of this book. In reflecting on the journey
of the book’s creation, on our own experiences with data science projects over the
years, and on the collaboration with the excellent colleagues that have contributed to
this volume, we want to emphasize some of these “highlights” that we found:

Data science education has to be interdisciplinary and above Bachelor level
to ensure the necessary skills also for societal integration. What are useful
outcome competencies for data scientists? The answer to this question differs for
data scientists focusing on the engineering aspect compared to those specializing in
business aspects or communication or any application domain. But they all will have
the following in common: an understanding of the core aspects and prospects of the
main methods (e.g., machine learning), tools (e.g., stream processing systems), and
domains (e.g, statistics) as well as experience in hands-on projects (in whatever role
in an interdisciplinary team). This, combined with the maturity that comes with
completed discipline-specific studies during one’s Bachelor years, enables a data
scientist to ponder and weigh the societal aspects of work in a responsible and
educated manner.

Data-driven innovation is becoming increasingly fast, yet not all innovation
is research-based; that is why networks of experts are becoming more impor-
tant to find the right ideas and skills for any planned project. In the area of
pattern recognition, for example, we see a usual turnover time from published
research result at a scientific conference to application in an industrial context of
about 3 months. Many of the results there are driven by deep learning technology,
and the lines between fundamental and applied research have become reasonably
blurred in recent years [with companies producing lots of fundamental results, and
universities engaging in many different application areas, compare e.g. Stadelmann
et al. (2018)]. This speaks strongly for collaborations between scientists and engi-
neers from different organizations and units that complement each other’s knowl-
edge and skills, for example, from the academic and industrial sector. Simultaneity
in working on the fundamental aspects of methods (e.g., furthering deep learning per
se) and making it work for a given problem by skillful engineering (e.g., by clever
problem-dependent data augmentation and a scalable hardware setup) seems to
be key.

On the other hand, only one-third of data-driven innovation needs novel research
to happen in order to take place—two-thirds are implementable based on existing
technology and tools once the party in need of the innovation gets to know the
availability or feasibility of the endeavor, given that resources are available (Swiss
Alliance for Data-Intensive Services 2018). If two-thirds of the innovation potential
in a country like Switzerland are achievable by education (informing stakeholders
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about possibilities) and consulting (bringing in expert knowledge on how to
approach the sought innovation), this is a strong argument for every interested
party to team up with like-minded organizations and individuals, again to comple-
ment each other’s skills and know-how to “together move faster.”1

The paradigm of data parallelism that is enabled by state-of-the-art big data
technology makes designing parallel programs relatively easy. However, fully
understanding their performance remains hard. Writing scalable, parallel, or
distributed programs has generally been considered hard, especially when data is not
read-only but can be updated. The main challenge is how to solve the “critical
section” (Quinn 2003), that is, how to avoid that two program threads update a
specific data item at the same time and thus result in data inconsistency. Different
communities use different approaches to tackle this problem. One of the lowest level
concepts for parallel programming is to use multithreading, which requires explicit
handling of the “critical section” via semaphores (Kleiman et al. 1996). The high-
performance community typically uses a higher level of abstraction based on
“message passing” where parallel processes communicate via explicit messages
(Gropp et al. 1999). Both approaches require highly skilled people to write efficient
programs that scale and do not result in deadlocks. The paradigm of data parallelism
deployed by state-of-the-art big data technology such as Apache Spark enables
implicit parallelism (Zaharia et al. 2016). By design, the core data structures such
as Resilient Distributed Datasets or Dataframes enable parallel processing based on
the MapReduce paradigm where the programmer has only little design choices to
influence the program execution. This implicit parallelism has the great advantage
that even people without deep knowledge of parallel programming can write pro-
grams that scale well over tens or hundreds of compute nodes. However, the implicit
parallelism also comes with a big disadvantage, namely, the illusion that programs
scale “by default” and that “parallel programming becomes easy.” The hard part of
writing good parallel programs with novel big data technology is to fully understand
the complex software stack of a distributed system, the various levels of distributed
memory management and the impact of data distribution on the runtime of SQL
queries or machine learning algorithms. Hence, detailed performance analyses of the
workloads and manual optimization techniques such as task repartitioning based on
workload characteristics is often the best solution to overcome potential performance
problems. The important takeaway message is that understanding and tuning the
performance of big data applications can easily take a factor of 10 more time than
writing a program that leverages big data technology.

Let machine learning and simulation complement each other. The traditional
scientific approach is often based on experimentation and simulation (Winsberg
2010). Experiments are carefully designed based on a specific model. Once data is
available or produced by (physical) experiments, the certain phenomena of interest
can be evaluated empirically. In addition, simulation is used to complement

1See https://data-service-alliance.ch/ for an example of implementing this principle in a way the
three authors of this chapter are involved in.
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experimentation. Hence, simulation can be used to verify experiments, and experi-
ments can be used to adapt the simulation model. By comparing experimental
outcomes with those from simulation, the degree of current understanding of the
observed phenomenon (as encoded in the simulation) can be assessed. However, the
disadvantage of this approach is that building experiments can be very time-
consuming and costly. For instance, building a high-energy physics experiment
end-to-end can take more than 10 years (Brumfiel 2011). Moreover, there might
not be enough data available to run statistically significant experiments. Finally,
building simulation models might become extremely complex, in particular, when
some physical, chemical, or biological processes are not fully understood yet.

Hence, machine learning can be applied as an additional pillar. In traditional
experimental science, machine learning can be used to learn a model from both the
experimental and simulated data. The resulting model has the potential to generalize
beyond the discontinuities of the simulation model, thus relieving one from making
the simulation overly complex. This is not to replace experimentation and simula-
tion, but in addition. On the other hand, in other fields of data science, simulation can
serve as a means to data synthesis, thus enhancing the available training data for
machine learning approaches. This is heavily used under the umbrella term of “data
augmentation,” for example, in the field of deep learning.

Models learned from data need to be robust and interpretable to facilitate
“debugging” and make them acceptable to humans. Statistical or machine learn-
ing models are usually subject to a comprehensive empirical evaluation prior to
deployment; the results of these experiments have the power to both show the
respective strengths and weaknesses of the model as well as to demonstrate their
reliability and generalization capabilities to a critical reviewer (e.g., a business
owner, customer, or human subject to a machine-supported decision). Yet, we as
humans feel generally uncomfortable when we are subject to processes that we
cannot fully grasp and at the mercy of which we feel we are (Lipton 2018); and as
developers, having no insight into complex processes like machine learning pipe-
lines and training processes hinders debugging and effective optimization of the
model (Stadelmann et al. 2010).

Recent research and development into model interpretability (see, e.g., Ng 2016,
Shwartz-Ziv and Tishby 2017, or Olah et al. 2017) not only allows the statement that
even the most seemingly opaque machine learning models like deep neural networks
can be comprehended to a large degree by humans. The respective work also opens
up many more possible developments in research (through a better understanding of
what goes wrong) and specific high-risk application domains like automated driving
or clinical health (due to the ability to fulfill regulations and bring about necessary
performance gains). Thus, trust can be built in applications that directly face a human
customer; and better understanding by developers also brings about more robust
models with less peculiar behavior (compare Szegedy et al. 2013 with Amirian et al.
2018). Moreover, the understanding possible through introspection into models
enables data scientists that are mere users of machine learning to select the best
fitting approach to model the data at hand—a task that otherwise needs intimate
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knowledge of the inductive biases (Mitchell 1997, Chap. 2) of many potential
methods as well as of the structure of the given data.

5 Conclusions

Data science is a highly interesting endeavor, breaking new ground in many ways.
Due to the young age and the wide range of the discipline, a number of myths have
already taken deep hold, most prominently those that lead to exasperated outbursts
along the lines of “no one knows how these algorithms work” or “no one can
understand why the output looks like this.” We claim that this is plainly untrue,
and the various case studies covered in Part II of this book are an excellent testament
to this: there is a wide range of scientific literature, and an abundance of tools and
methods available to data science practitioners today; there is a wealth of well-
founded best practices on how to use them, and there are numerous lessons learned
waiting to be studied and heeded.

5.1 Deconstructing Myths by the Example of Recommender
Services

If we look at the disruptive players in the information space and their platforms, such
as Facebook, Google, Amazon, and others, they also very much rely on these tools
and methods to drive their services. Many of the phenomena that, for example,
recommender services exhibit in their selection of items are indeed fairly easily and
conclusively interpretable by those that have studied the relevant, well-documented
algorithms.

It follows that discussions about whether such machine learning components
exhibit unwanted biases are certainly very pertinent, but oftentimes not led in the
most effective manner [see, e.g., the discussion on biases in word embeddings by
Bolukbasi et al. (2016)]. The rapidly increasing use of recommenders based on
machine learning to support many knowledge-intensive processes such as media
consumption, hiring, shopping, etc., is observed with anxiety by some of those that
used to enjoy influence in these fields. Unfortunately, however, these discussions on
the merits of machine-generated recommendations are many times led under the
wrong pretext. Often the starting point is whether the operators of the recommender
service follow a sinister agenda, for example, feeding consumers a steady diet of
questionable information of very little variety [“filter bubble”—see Pariser (2011)].
In this view, compounding the sinister agenda of the operator is, again, the fact that
“nobody knows what they are doing and how they do it.” Scenarios such as
“artificial intelligence is already making hiring decisions and your every blink is
going to influence your chances” are talked up.
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Looking at the situation more soberly, and abstracting from the source of a
decision—be it human or machine—the question should be: What do we really
want as the output? And does a human (as the chief alternative to the AI-based
recommender system) deliver it better and with less bias? In a sense, algorithms can
exhibit traits that are very human: if the data used for training exhibits unwanted
biases, so will the output of the recommender. A widely reported instance of this was
the Microsoft chatbot “Tay” that quickly learned abusive and racist language from
Twitter feeds (Hunt 2016).

Reflecting on the filter bubble, the narrow focus of the information stream
delivered to some consumers can easily be an expression of overfitting—of the
hard problem to generalize to things unseen in prior training, and in incorporating
aspects beyond mere item similarity, such as novelty, diversity, etc., into the
selection mechanism.

Which closes the circle and brings us back to the all-important question: What do
we want from our data? Do we want a “superhuman result”—insight that a human
could not have gleaned from the data, or behavior that a human would not exhibit?
Or do we want to emulate the (competent) human, producing the same decision a
human expert would have arrived at, potentially faster or at lower cost? Are we open
to new insights, and can machine-generated recommendations augment human
decision making by delivering complementary information, being able to leverage
(volumes of) information that humans cannot process? Can it even help to overcome
human bias?

5.2 Outlook to a Data-Driven Society

In an abstract perspective, a recommendation—be it made by a human or a
computer—is the output of a function of the case-specific inputs plus a number of
parameters inherent to the instance making the recommendation, such as preferences
and previous history. Two human experts will produce different recommendations
given the same inputs. Analogously, the output of an algorithm will change as we
change the parametrization. Human decision makers are often bound by rules and
regulations in their freedom to make decisions. In the course of the evolution of
civilization, there has been constant debate on how to shape these rules and regula-
tions, whom to grant the power to define them, and who to task with enforcing them.
Unsurprisingly, we are not at the end of this road. We see no fundamental reason
why similar rules and regulations cannot influence the parametrization, and thus the
operation of, for example, recommender services.

Data science in general has not only the ability to automate or support decision
processes previously reserved to capable humans only, at scale; it also has the
potential to alter the ways our societies work in disruptive ways. Brooks (2017)
skillfully disarms unsubstantiated fears of mass unemployment in the next decade,
and multitudes of humanoid robots or the rise of human-level artificial intelligence
are nowhere to be seen. But the current technological possibilities paired with
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contemporary economic incentives make it quite clear that society will be impacted
on a fundamental level: How can this debate be held in a constructive way in the face
of the opinion economy on social media? How to distribute work when repetitive
jobs (e.g., medical diagnose, legal case research, or university-level teaching) get
digitized to some degree? How to fill one’s time in a meaningful way and distribute
the gain from increased economic efficiency fairly if it is generated by algorithms in
large corporations?

With these exemplary questions above we do not foremost promote to engage in
research on “data science for the common good” (see, e.g., Emrouznejad and Charles
2018), although this is important. We rather suggest that much more than thinking
about rules of how humans and technology can get along and interact in the future,
the possibilities presented to us through a wider deployment of data science will
bring us to deal with an age-old topic: How do we want to get along with our fellow
human beings? It is a question of society, not technology, to decide on how we share
the time and other resources made available to us through the value generated from
data; whom we let participate (education), profit (economy), and decide (politics). A
big challenge lies ahead in having such a meaningful dialog between technological
innovators (and chiefly among them, data scientists), and stakeholders from govern-
ment and society.

As it is hard not only to predict, but also to imagine a future that deviates largely
from a simple extrapolation of today, it is very helpful to recall some of the scenarios
that researchers and thinkers have created. Not because they are necessarily likely or
desirable, but because seeing a vivid mental picture of them could help in deciding if
these scenarios are what we want—and then take respective action. There is
Kurzweil’s (2010) vision of a superhuman artificial intelligence that controls every-
thing top-down. It can be contrasted with the bottom-up scenario of digitally enabled
self-organization suggested by Helbing (2015) that is based on today’s technology.
Pearl and Mackenzie’s (2018) observe as well that current artificial intelligence is
limited as long as it cannot use causation (and thus cannot imagine new scenarios),
thus outruling superintelligence in the medium term. Harari (2016) puts future
influences of massively applied data science on the job market in the center,
exploring the possibilities of how humans augment (instead of supersede) them-
selves with biotechnology, robotics, and AI, but creating a new class of unemploy-
ables. Future “class” differences are also a major outcome of the data-driven
analyses of Piketty (2014). Precht’s (2018) utopia finally reestablishes the human-
itarian ideal of working just to better ourselves and the rest of humanity, funded by
the profit generated by increasing automatization. We encourage the reader to dive
into the original sources of these heavily abbreviated scenario descriptions to see
potential consequences of today’s developments in pure (and thus often extreme,
thus unrealistic) form.

In the end, these sophisticated scenarios may suggest the following prime chal-
lenges of society when dealing with the opportunities and risks of data science
applied largely and at scale: the “shaping of the future” is not a technical-scientific
undertaking, but takes larger efforts (foremost politically, to change regulatory
frameworks that still work but are unfit for changed circumstances as are likely to
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happen). Change could be driven by a societal consensus on how collaboration in the
future should function (the digital technology works as a means to this collabora-
tion), when we overcome the urge to let short-time gains in convenience take us
down a path of advancement to an unimagined end. Opportunities, both for individ-
ual stakeholders in businesses and industry as well as for societies, are large. Risks
exist, mitigations likewise. We suggest taking the lessons learned so far, some of
them collected in this volume, and creating places—at work, at home, on earth—
worthy of living in and working for.
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