
Chapter 20
Economic Measures of Forecast Accuracy
for Demand Planning: A Case-Based
Discussion

Thomas Ott, Stefan Glüge, Richard Bödi, and Peter Kauf

Abstract Successful demand planning relies on accurate demand forecasts.
Existing demand planning software typically employs (univariate) time series
models for this purpose. These methods work well if the demand of a product
follows regular patterns. Their power and accuracy are, however, limited if the
patterns are disturbed and the demand is driven by irregular external factors such
as promotions, events, or weather conditions. Hence, modern machine-learning-
based approaches take into account external drivers for improved forecasting and
combine various forecasting approaches with situation-dependent strengths. Yet, to
substantiate the strength and the impact of single or new methodologies, one is left
with the question how to measure and compare the performance or accuracy of
different forecasting methods. Standard measures such as root mean square error
(RMSE) and mean absolute percentage error (MAPE) may allow for ranking the
methods according to their accuracy, but in many cases these measures are difficult
to interpret or the rankings are incoherent among different measures. Moreover, the
impact of forecasting inaccuracies is usually not reflected by standard measures. In
this chapter, we discuss this issue using the example of forecasting the demand of
food products. Furthermore, we define alternative measures that provide intuitive
guidance for decision makers and users of demand forecasting.

1 Introduction

1.1 Sales Forecasting and Food Demand Planning

Accurate demand forecasts are the backbone of successful demand planning. In
particular, for food products with short life cycles the choice of the most suitable
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forecasting method is of central concern for business and hence the question is a
driver for applied research activities. It does not come as a surprise that a plethora of
different forecasting methods have been developed and suggested for food demand
planning (e.g., Da Veiga et al. 2014; Žliobaitė et al. 2012; Taylor 2007). The most
prevalent methods are based on time series models or state space models, notably,
exponential smoothing, Holt-Winters method, ARIMA models, Kalman filters or
regression models [see, e.g., De Gooijer and Hyndman (2006) for an overview of the
most common methods]. Furthermore, artificial neural networks have been used for
demand planning for a long time (Doganis et al. 2006), while only more recently
other classes of machine learning techniques such as regression trees or random
forests (Bajari et al. 2014) have been utilized. Common commercial software
solutions for demand planning, such as Inform add*ONE or SAP APO (Vasumathi
and Shanmuga Ranjani 2013), typically employ one or more of these methods.

Demand planning takes more than good forecasts. For the actual planning, a
number of boundary conditions such as inventory constraints have to be considered.
Sales forecasting should focus on the demand of a product irrespective of these
constraints as they often distort the figures about the actual demand. In an opera-
tional setting we often face the problem of one-step-ahead forecasting, that is, for a
product we want to predict the demand at time step t based on the demand
observations from times t � 1, t � 2, . . . , t � n. In the following, we use Xi for
the actual demand and Fi for the respective forecast. In order to estimate the past
demand values Xi(i ¼ t � 1, t � 2, . . . , t � n) , the actual sales data is used. Special
care has to be taken in stock-out situations, as sales data underestimates the real
demand of the product. At the same time, the real demand of some substitute product
might be overestimated. Hence, the availability of accurate past demand data is
nontrivial. For the following considerations we will ignore this problem and assume
that Xi closely reflects the actual demand.

1.2 Successful Demand Forecasting: The Past and the Future
Inside

Statistical forecasting algorithms try to capture past sales patterns and project them
into the future. However, these patterns can be disturbed or can even undergo
disruptive changes. An experienced procurement manager has some intuition and
beliefs about the driving factors of structural interruptions and their impact on sales
quantities. Hence, she or he may adjust the forecasts manually, in accordance with
the assumed impact of the driving factors that she or he considers relevant in
advance. In practice, a manual intervention is often made when promotions are
planned or when an upcoming event or specific weather conditions are supposed to
influence sales. Clearly, human intuition can be an important source to incorporate
the impact of information about the future, and yet, human intuition is limited. For
instance, for humans it is often difficult to grasp cross-effects of many factors and, as
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a consequence, humans often tend to overestimate the influence of a single factor.
Hence, especially when dealing with a large product portfolio, a need for supporting
software solutions arises that evaluate and employ external drivers for enhanced
sales forecasting.

An example of such a software solution is PROGNOSIX Demand, which com-
bines various forecasting approaches and additionally incorporates the experience of
human experts in cases where not enough (or unreliable) data is available. The
methodology is based on the common experience that there is not a single best
forecasting method for everything. Depending on the product, available data and the
current sales situation, different methods are more or less suitable. Hence, it is
important to evaluate the methods in terms of performance, where the performance
is usually put into relation with the forecast error, or forecast accuracy, respectively,
evaluated over a certain period of time. Subsequently, there is a need for suitable
error or accuracy measures. In the following, we will thus first discuss common error
measures. However, in practice, one has to decide for one measure in order to judge
the performance of different methods and to select the best one. Does it matter which
error measure is used? What is the economic significance of the error? The answer is
not always clear when using conventional measures, as we will illustrate in the
subsequent sections.

1.3 Traditional Measures of Forecast Accuracy

The goal of good forecasting is to minimize the forecasting error(s).

et ¼ Ft � Xt ð20:1Þ

The error is positive, if the forecast is too high, and negative, if the forecast is too
low. Usually, the error is defined with opposite signs. Here, in the context of sales
forecasting, we prefer the convention in Eq. (20.1), as a positive error means that we
have some unsold products left (oversupply).

Traditional measures of forecast accuracy, also referred to as forecast error
metrics, can be subdivided into four categories (Hyndman 2006). We will quickly
review each by providing the most popular metrics for one-step ahead forecasts.

1. Scale-dependent metrics are directly based on the forecast errors et
The most popular measures are the mean absolute error (MAE):

MAE nð Þ ¼ 1
n

Xn
t¼1

etj j ð20:2Þ

and the root mean square error (RMSE):
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RMSE nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

et2

s
ð20:3Þ

Here and in the following we assume that the forecasting series is evaluated over a
period t ¼ 1, . . . , n.

2. Percentage error metrics aim at scale-independence, such as the widely used
mean absolute percentage error MAPE:

MAPE nð Þ ¼ 1
n

Xn
t¼1

j et
Xt

j ð20:4Þ

MAPE has the disadvantage of being asymmetric, as for a given forecast value
Ft and │et│, the penalty is heavier if et < 0. Therefore, a symmetric form of the
MAPE is used sometimes, where the denominator is replaced by XtþFtð Þ

2 , or alterna-
tive measures have been suggested (e.g., Kolassa and Schütz 2007).

3. Relative error metrics compare the error of the forecasting with the error of
some benchmark method. Usually, the naïve forecast (i.e., Xt � 1 for Ft) is used as
benchmark, where the forecast value for a one-step ahead forecast is simply the
last observed value. One of the measures used in this context is the relative mean
absolute error (RelMAE), defined as

RelMAE nð Þ ¼ 1
n

Xn
t¼1

j et j
j Xt � Xt�1 j ð20:5Þ

Here we assume that Xt � 1 is also available. Similarly, we can define the relative
RMSE, also known as Theil’s U (De Gooijer and Hyndman 2006).

4. Scale-free error metrics have been introduced to counteract the problem that
percentage error metrics and relative error metrics are not applicable if zeros
occur in the denominators. The mean absolute scaled error MASE
(Hyndman 2006) introduces a scaling by means of the MAE from the naïve
forecast, where the last value is used as forecast:

MASE nð Þ ¼ 1
n

Xn
t¼1

j et j
1

n�1

Pn
i¼2 Xi � Xi�1j j

 !
ð20:6Þ

All these measures come along with certain advantages and disadvantages. For
example, percentage error metrics are often recommended for comparing forecast
performance across different time series. Drawbacks are the inapplicability if a
demand value is zero and the vagueness of percentage values regarding the inter-
pretation of the economic impact. For sales forecasting, a MAPE of 1% may be
economically significant or insignificant, depending on the sales volume. The next
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sections will address the issue of the economic significance of errors on the basis of
concrete examples.

2 Cost Error Metrics

2.1 Which Metric Is Best: A Toy Example

We first study a prototypical situation in demand forecasting by means of a slightly
caricatured toy example. For this, we created a random sequence of n¼ 100 samples
from a Gaussian distribution with mean μ ¼ 10 and standard deviation σ ¼ 1
(arbitrary units). This sequence is interpreted as the sales baseline. We then added
five random peaks with height of Δh ¼ 4μ, which represent the increased demand
due to external factors. Real-world examples of such factors are sales promotions/
special offers, holidays, special weather conditions etc. The generated sequence is
shown in Fig. 20.1. Furthermore, the output of two different forecasting models is
depicted. The first model is a perfect baseline model that, however, cannot anticipate
the peaks. The second model is able to perfectly predict the peaks, but is always
slightly overestimating the sales otherwise. We modeled this situation by a slight
upshift of the original time series by 1 unit.

Imagine a planner that has to decide which model to choose for future predictions.
She or he has to resolve the trade-off between hitting the peaks while being slightly

Fig. 20.1 Sales sequence (green) with five disruptive peaks, a perfect baseline model (red) that
misses the peaks and a perfect peak model (black) which is slightly shifted in between peaks
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wrong in the meantime and being accurate most of the time but missing the peaks.
For her or his decision, the planner evaluates the observed sequence using MAE,
RMSE, MAPE, and relMAE. The results of the evaluation are shown in Table 20.1.

The result is ambiguous. MAE and RMSE speak in favor of the peak model,
while MAPE and relMAE favor the baseline model. According to MAE, the time
series model seems to be about “twice as bad” as the peak model; according to the
RMSE, it seems to be even about “nine times as bad.” Similar arguments can be
produced for the comparison between MAPE and relMAE in favor of the baseline
model.

The example illustrates the limitation of forecast error metrics for decision
making. How can we resolve this issue? At the end of the day an economically
relevant metric is defined by cost, that is, the financial consequences that come along
with the prediction errors. Costs, however, can be highly product-specific and
market-specific. Moreover, they depend on stock-keeping processes, an aspect we
will discuss later.

2.2 Constructing Cost-Based Error Metrics

For now, let us assume that forecasting errors and costs are in direct relation. This is
typically the case for fresh food products that cannot be stored and for which cost are
directly related to sales. In consequence, a forecast that is too high results in costs for
food waste and a forecast that is too low yields costs for stock-out. For goods that can
be stored for an (un)limited time, there are storage costs instead of waste costs. In
most practical cases, there will be a mixture of these types of costs. In any case, we
assume that the forecast error et can be directly translated into costs c(∙) and the costs
do not depend on the history, that is,

c Xt;Ftð Þ; Xt�1;Ft�1ð Þ; Xt�2;Ft�2ð Þ; . . .ð Þ ¼ c etð Þ: ð20:7Þ

In the following, we will explain to what extend the metrics discussed above are
able to reflect these costs and what kind of adaption would be needed to better
account for real costs. We propose a generalized Mean Cost Error (MCE) of the
following form:

Table 20.1 Results of four different error metrics

MAE RMSE MAPE relMAE
Baseline model 2.0 8.9 0.04 0.05
Peak model 0.95 0.97 0.10 2.74

The best results are highlighted
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MCE nð Þ ¼ s
1
n

Xn
t¼1

c etð Þ
 !

, ð20:8Þ

where c(∙) is a cost function and s(∙) is a scaling function. Obviously, MCE defines a
general form of a scale-dependent metric; MAE and RMSE can be considered
special instances of MCE (see Fig. 20.2a, b).

If MAE and RMSE are interpreted in the framework of MCE, then it becomes
apparent that these metrics impose some specific assumptions on the costs that may
not be very natural in practice.

From the perspective of cost, a natural first approach is to neglect economies of
scale and assume proportionality. Hence, excess stock cost or food waste cost
(et > 0) increase proportional to the volume of the leftovers, that is, proportional
to the forecasting error. For instance, costs may increase proportional to the
manufacturing cost per unsold item or to the storage cost per unsold item (a: costs
per item for et > 0). Similarly, stock-out cost increases proportional to the stock-out,
for example, proportional to the unrealized profit or margin per item (b: costs per
item for et < 0). Consequently, a first model is a piecewise linear cost model.

As a special class of MCE, we thus define the linear MCE (linMCE) as

linMCE ¼ 1
n

Xn
t¼1

cab etð Þ with cab etð Þ ¼ aet if et � 0
�bet if et < 0

�
ð20:9Þ

The measure is usually asymmetric as a 6¼ b in general. In this setting, MAE is a
special symmetric instance of linMCE (c.f. Fig. 20.2a, c).

Furthermore, we define a generalized class of scale-independent metrics that we
call Mean Cost Percentage Error MCPE, as follows:

Fig. 20.2 Cost function of MAE, RMSE, and linMCE as special instances of MCE
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MCPE nð Þ ¼ s
1
n

Xn
t¼1

c etð Þ
p Xtð Þ

 !
, ð20:10Þ

where p(∙) is given by some reference costs that are in connection with the real
demand at time t. In the linear approach, we may for instance assume that p(Xt)
is proportional to the sales price of a product and to the number of items sold, that is,
p(Xt) ¼ p � Xt. Hence, we define the linear MCPE as

linMCPE ¼ 1
n

Xn
t¼1

cab etð Þ
p � Xt

with cab etð Þ ¼ aet if et � 0
�bet if et < 0

�
ð20:11Þ

The measure can be interpreted as the mean of the costs due to the forecasting
error in relation to the sales volume per forecasting period. MAPE is a special case of
linMCPE with a ¼ b ¼ p ¼ 1.

2.3 Sensitivity Analysis for linMCE

In order to calculate linMPE, we need to specify the parameters a (oversupply cost)
and b (stock-out cost) for each product. Therefore, the costs per item for oversupply
and for stock-out have to be made explicit. In practice, the parameters may be
difficult to quantify exactly as, for instance, the oversupply cost can consist of a
variable mixture of costs for food waste and storage. Thus, we may be interested in a
more general comparison of forecasting methods or models with respect to the
parameters a and b. For this sensitivity analysis we dissect the linMCE in an a-
part and a b-part [i.e., using the Heaviside step function h(∙)]:

linMCE ¼ 1
n

Xn
t¼1

cab etð Þ ¼ a � 1
n

Xn
t¼1

eth etð Þ
 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

linMC Ea�0

�b � 1
n

Xn
t¼1

et 1� h etð Þð Þ
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

linMC Eb�0

ð20:12Þ

We can then study the relative performance of two forecasting models, M1 and
M2, in dependence on the ratio x of a and b as follows:
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f x ¼ a

b

� �
¼ linMCEM1

linMCEM2 ¼
a � linMCEM1

a � b � linMCEM1
b

a � linMCEM2
a � b � linMCEM2

b

¼ x � linMCEM1
a � linMCEM1

b

x � linMCEM2
a � linMCEM2

b

ð20:13Þ

with the restriction that x � 0. Model 1 outperforms model 2 if f(x) < 1. Hence, as a
critical condition for x we obtain

xcrit ¼ linMCEM1
b � linMCEM2

b

linMCEM1
a � linMCEM2

a

ð20:14Þ

In practice, one has to perform a case-by-case analysis to decide whether the
critical point is in the relevant range x� 0 and to determine the values of f(x). Hence,
it is more convenient to plot this function, as we will discuss in the next section.

3 Evaluation

3.1 Calculating the Linear MPE: Toy Example Revisited

For our toy example we calculate the function f(x) in a straightforward manner. The
time series consists of n ¼ 100 observations and 5 peaks with peak height
Δh ¼ 4μ ¼ 40. The peak model is shifted by Δv ¼ 1 off the peaks. Hence, for the
comparison of the baseline model (M1) and the peak model (M2), we get

f x ¼ a

b

� �
¼ linMCEbaseline

linMCEpeak ¼ 2b
0:95a

¼ 2:11
x

ð20:15Þ

which is derived from the following analysis of the linMCE (Table 20.2).
As a cross-check we see that the values for the MAE in Table 20.1 are retrieved

for a ¼ b ¼ 1. The function f(x) in Eq. (20.15) is continuously decreasing and the
critical point is at x ¼ 2.11. Therefore, the baseline model should be preferred if
a> 2.11 � b (x> 2.11) and the peak model is the right choice if a< 2.11 � b. That is,
the peak model performs better if the oversupply (food waste/storage) costs per item
are smaller than about two times the stock-out costs per item. This is due to the fact
that a larger b in comparison to a, and hence a smaller x, puts a heavier penalty on
stock-out situations that occur for the baseline model during peaks.

Table 20.2 Dissection of linMCE for the toy example (cf. Fig. 20.1)

a � linMCEa �b � linMCEb linMCE

Baseline model (M1) 0 5 � Δh � bn ¼ 2b 2b

Peak model (M2) n� 5ð Þ � Δv � an ¼ 0:95a 0 0.95a
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3.2 Real World Example

In this section, we turn the focus on a real world example. Figure 20.3 depicts the
demand data for a food product (weekly sales of a fruit juice) from a retail supplier.
The sales sequence (blue curve) comprises of n¼ 146 values with mean x ¼ 18,266
and standard deviation σ ¼ 3783 (units). The time series shows some characteristics
that are typical for many food products, that is, there are characteristic peaks and
dents due to promotions and the series exhibits a falling trend and, hence, is not
stationary.

Following the toy example introduced above, we chose and fitted two models for
one-step-ahead predictions. Both models are based on regression trees. However,
they show a rather complementary behavior comparable to the models in the toy
example before (cf. Fig. 20.3). One model can be considered as baseline model (red
curve, model 1). It is able to predict the general development of the time series, but
misses the peaks. In contrast, the second model (peak model; black dotted curve,
model 2) takes into account additional external information and hence, is able to
predict most peak demands. The price to pay is a reduced reliability between peaks.
The model even predicts peaks that do not occur at all in the actual sales sequence.

With regard to the traditional error measures we observe the same picture as for
the toy example (cf. Table 20.1). MAE and RMSE favor the peak model, whereas

Fig. 20.3 Typical sales sequence and two different forecasts for a food product

Table 20.3 Results of four different error metrics for the real world example

MAE RMSE MAPE relMAE
Baseline model 2134.85 3234.45 0.1125 3.7248
Peak model 2080.34 2951.00 0.1253 6.2250

The best results are highlighted
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MAPE and relMAE suggest using the baseline model (Table 20.3). In fact, relMAE
even indicates that the naïve model should be used. The error measures were
computed over the whole sequence.

The sensitivity analysis based on linMCE again allows for a clearer picture. In
Fig. 20.4, the function f according to Eq. (20.13) is depicted. The critical point,
highlighted by a red vertical line, is at xcrit ¼ 1.105. We can conclude that the
baseline model should be used in case a/b > 1.105, that is, if the stock-out cost per
item is clearly smaller than the oversupply cost per item. In case a/b < 1.105, the
peak model performs better since the stock-out costs per item are almost equal or
larger than the oversupply costs per item. Again, for ratios a/b < 1.105, stock-out
situations that occur for the baseline model during a peak are penalized more heavily
and the costs for the baseline model are increased accordingly.

For the comparison of more than two models we suggest pairwise comparisons of
each model with a benchmark, for example, the naïve prediction (last value is used as
predicted value), which allows for a ranking of the models for each value of x by
comparing the functions:

bmodel x ¼ a

b

� �
¼ linMCEmodel

linMCEbenchmark ð20:16Þ

The result of this comparison for the baseline model and the peak model is shown
in Fig. 20.5. We can identify three different regimes:

1. 0 < x < 1.105, that is, if the oversupply costs per item are less than 1.105 times
the stock-out costs, the peak model outperforms the baseline model and the
benchmark model, the benchmark model is the worst choice.

2. 1.105 < x < 2.050, the baseline model outperforms the peak model and the
benchmark model, and the benchmark model is the worst choice.

0

0.
8

1.
0

1.
2

1.
4

f(
x)

1.
6

1.
8

2.
0

2 4 6

x = a/b

8 10

Fig. 20.4 Comparison of baseline model versus peak model as a function of the ratio a/b. On the
right side of the critical point (red line), the baseline model should be preferred
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3. x> 2.050, that is, if the oversupply costs are more than 2.050 times larger than the
stock-out costs, the baseline model is best, the peak model is worst.

If we finally want to decide which model to use for our product, we need to make
assumptions about the parameters a and b. For our example product (fruit juice), a
per unit price of 1 CHF has to be paid to the producer and the product is sold for 1.2
CHF. Hence, the margin per unit is 0.2 CHF and this value is used to estimate the
stock-out cost (b� 0.2). The oversupply parameter a is a bit harder to estimate in this
case. As the time of permanency of this product is relatively large in comparison to
the supply circle, an oversupply leads to an increase in stock rather than to food
waste. The stock-keeping costs are estimated to be 10% of the average stock value,
that is, 0.1 CHF per unsold unit per cycle. Hence, according to a first approximation,
we choose a � 0.1.

In conclusion, we have x ¼ a/b � 0.5 and hence the sensitivity analysis suggests
to use the peak model.

3.3 Stock-Keeping Models: Beyond Simple Cost Measures

The measures for forecast costs presented so far were functions of demands/sales Xt

and forecasts Ft. These measures are applicable in straightforward manner for goods
with short expiration times as in this case, the parameters a and b are relatively easy
to estimate (a corresponds to the production/base prize and b corresponds to the
margin per unit). The estimations become more complicated for products with a
longer time of permanency. In this case, as we have seen in the example above, we

Fig. 20.5 Comparison of models versus naive model: green line: bbaseline, blue line: bpeak, black
line: benchmark. The red lines indicate preference regimes of different models
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have to make further assumptions about the stock-keeping process as the proposed
measures do not take into account storage capacities. In general, for goods that can
be stored, storage capacities, storage cost, and logistics strategies should be taken
into consideration for a more reliable evaluation of the economic impact of fore-
casting algorithms. In the following, we present a simple stock-keeping model
including stock capacities, service level, storage cost, ordering times, and product
margins.

An important key figure in logistics is the beta service level, defined as the
probability that an arbitrary demand unit is delivered without delay. Typical target
values for the beta service level are at 0.99 or even higher. From the service level, a
safety stock level can be derived, depending on assumptions about the demand
distribution and the forecast accuracy. Intuitively, the more reliable the forecasts are,
the lower the safety stock level can be, given a certain beta service level. Typically,
the demand distribution is not known, but has to be estimated indirectly through the
sales distribution (not yielding information about, e.g., potential stock-outs), as we
pointed out earlier.

To compute the safety stock level in practice, normally distributed forecast errors
et ¼ Ft � Xt are usually assumed (Brown 1967). From these errors, the root mean
square error RMSE(et) can be computed. Defining

tbeta ¼ 1� betað Þ Dð Þ
beta

ffiffiffiffiffi
Lt

p
RMSE etð Þ� � , ð20:17Þ

where D is the average demand and Lt the average lead time, we compute w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 25

tbeta2

� �r
and approximate the safety stock factor kbeta as (according to Brown

1967)

kbeta ¼ �5:3926þ 5:6611� w� 3:8837� w2 þ 1:0897� w3

1� 0:725� wþ 0:5073� w2 þ 0:06914� w3 � 0:0032� w4
� ð20:18Þ

From kbeta, the safety stock level is computed as safety stock level ¼ kbeta
sigma

ffiffiffiffiffi
Lt

p
, with sigma denoting the standard deviation of the forecast errors et.

Details on the derivation of the safety stock level can be found in Brown (1967).
With these foundations (simplifying Lt ¼ 1), a stock-keeping model can be

defined through

Orders for time t þ 1 ¼ Ftþ1 þ safety stock level � stock at time t:

To evaluate different forecasting strategies, Xtþ1 can be used as simulated
demand and costs for stock-keeping and lost sales can be simulated for each
forecasting model.
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Applied to the example presented in Fig. 20.3, assuming again a per unit price of
1 CHF paid to the producer, a per unit price of 1.2 CHF paid by the customer, an
average lead time Lt ¼ 1 time period, a safety stock factor kbeta ¼ 0.99, and annual
stock-keeping costs of 10% of the average stock value, Table 20.4 shows a compar-
ison between the baseline model and the peak model (146 periods). Note that more
complex inventory models would allow for further parametrizations of expiration
times for a product and correspondingly for estimations of waste cost.

As expected from Fig. 20.3, the peak model is more valuable in terms of
opportunity costs than the baseline model. For stock-keeping cost, the baseline
model is slightly more profitable. The effective beta service level “effective beta
service level” is close to 99% for both models, indicating that forecast error
distributions are in accordance with the assumptions stated above. The decision
upon which model should be used can now be based on total costs. In this example,
the peak model is to be preferred. This finding is in line with our result based on
the linMCE analysis, where we found a

b e0:5. The stock-keeping model, however,
allows for a more robust estimate of the economic significance of the two forecasting
models. From Table 20.4 we see that choosing the right model helps reduce the costs
by almost 60%, when changing from the baseline model to the peak model. Or in
other words, if the decision would have been based on either MAPE or relMAE, the
cost due to forecasting errors of the chosen model would have been at least 2.4 times
as high as necessary in the case of the optimal decision.

4 Conclusions and Lessons Learned

Error metrics are used to evaluate and compare the performance of different fore-
casting models. The traditional, most widely used metrics such as MAE, RMSE,
MAPE, and relMAE come along with certain disadvantages. As our examples from
food demand forecasting illustrated, their values are often difficult to interpret
regarding the economic significance and they may yield incoherent accuracy rank-
ings. In practice, economically relevant metrics are linked to the costs that are caused
by the prediction errors. We introduced a class of such measures that allow for

Table 20.4 Stock-keeping model results for the example presented in Fig. 20.3

Quantity Baseline model Peak model

Average stock level (units) 22,544 23,164

Safety stock level (units) 3886 3415

Effective beta service level (%) 98.08 99.92

Stock-keeping costs (CHF) 6329 6504

Opportunity costs (CHF) 10,266 385

Stock-keeping þ opportunity costs (CHF) 16,595 6889

At a margin of 20% (0.2 CHF), stock-keeping cost differences are by magnitudes lower than the
differences in opportunity costs for the two models
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considering different weights for oversupply/excess stock costs and stock-out costs.
It turns out that traditional measures can be interpreted as special cases in this class
with specific cost configurations. In practice, costs for oversupply or stock-out might
be difficult to determine. In order to cope with this issue, we introduced a method
that enables a straightforward sensitivity analysis. It allows for choosing the optimal
forecasting method on the basis of a relatively rough estimate of cost ratios.

The proposed cost error metrics, however, have no memory. That is, they assume
that there is no stock available at the beginning of each step and the demand is equal
to the supply of goods. This assumption is reasonable for the approximate evaluation
of a forecasting method. However, real costs may not always directly reflect this
performance, for example, for stocked goods a too low demand forecast does not
necessarily lead to stock-out cost. It might even help reducing stocks and hence a bad
forecast can have a positive effect on the costs. In order to better approximate real
costs, simplified stock-keeping models can be used.

We illustrated the discussed aspects by means of a toy and a real world example.
From these case studies we learned the following:

• The choice of the best forecasting model depends on the ratio of oversupply costs
and stock-out costs.

• In particular, a baseline model should be preferred over a peak model if the
oversupply costs are much higher than the stock-out costs and vice versa.

• Common error metrics do not account for this observation and can lead to bad
model decisions.

• A bad model decision can easily result in an increase of the cost or the nonrealized
earning potential by a factor of 2.4 for a single product.

An important aspect regarding the choice of optimal models that has not been
discussed is the length of the evaluation time window. On the one hand, if the
evaluation window is too short, random deviations without any significance can be
predominant. On the other hand, if this window is too long, the good performance of
a model in the distant past might masque structural disruptions that can cause a poor
performance in the near future. For the model selection process, we thus generally
suggest introducing an additional optimization loop that regularly adjusts the opti-
mal length of the evaluation window. There is clearly not a unique optimally
performing forecasting algorithm for everything. Similarly, to assess the qualities
and economic values of forecasts, there is not a unique best forecast error measure.
Different aspects, mainly involving costs of stock-keeping, stock-out, and waste, but
also supply chain and marketing strategies (customer satisfaction, ecologic reputa-
tion, transport optimization, etc.) should be considered when evaluating forecasting
procedures. The strategies presented here may provide a contribution to the goal of
creating more economic value from demand forecasting.
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