
Chapter 17
Unsupervised Learning and Simulation
for Complexity Management in Business
Operations

Lukas Hollenstein, Lukas Lichtensteiger, Thilo Stadelmann,
Mohammadreza Amirian, Lukas Budde, Jürg Meierhofer,
Rudolf M. Füchslin, and Thomas Friedli

Abstract A key resource in data analytics projects is the data to be analyzed. What
can be done in the middle of a project if this data is not available as planned? This
chapter explores a potential solution based on a use case from the manufacturing
industry where the drivers of production complexity (and thus costs) were supposed
to be determined by analyzing raw data from the shop floor, with the goal of
subsequently recommending measures to simplify production processes and reduce
complexity costs.

The unavailability of the data—often a major threat to the anticipated outcome of
a project—has been alleviated in this case study by means of simulation and
unsupervised machine learning: a physical model of the shop floor produced the
necessary lower-level records from high-level descriptions of the facility. Then,
neural autoencoders learned a measure of complexity regardless of any human-
contributed labels.

In contrast to conventional complexity measures based on business analysis done
by consultants, our data-driven methodology measures production complexity in a
fully automated way while maintaining a high correlation to the human-devised
measures.

Lukas Hollenstein and Lukas Lichtensteiger have contributed equally.

L. Hollenstein (*) · L. Lichtensteiger · T. Stadelmann · M. Amirian · J. Meierhofer ·
R. M. Füchslin
ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
e-mail: hols@zhaw.ch; licn@zhaw.ch; stdm@zhaw.ch; amir@zhaw.ch; meeo@zhaw.ch;
furu@zhaw.ch

L. Budde · T. Friedli
Institute of Technology Management, University of St. Gallen, St. Gallen, Switzerland
e-mail: lukas.budde@unisg.ch; thomas.friedli@unisg.ch

© Springer Nature Switzerland AG 2019
M. Braschler et al. (eds.), Applied Data Science,
https://doi.org/10.1007/978-3-030-11821-1_17

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11821-1_17&domain=pdf
mailto:hols@zhaw.ch
mailto:licn@zhaw.ch
mailto:stdm@zhaw.ch
mailto:amir@zhaw.ch
mailto:meeo@zhaw.ch
mailto:furu@zhaw.ch
mailto:lukas.budde@unisg.ch
mailto:thomas.friedli@unisg.ch
https://doi.org/10.1007/978-3-030-11821-1_17

1 Introduction

One of the most important aspects of a data science project is the data itself. Its
availability is the necessary condition for any successful data product that at its core
relies on a successful analysis of this data. This fact seems obvious enough to be
considered a truism, but nevertheless is the proverbial “elephant in the room” of
countless data analytics projects. A recent survey among 70 data scientists showed
that on average 36% of their projects have been negatively impacted by the
unavailability of the data to be analyzed. The following paragraphs summarize the
results from this poll.1

The survey has been conducted among the associates of the ZHAWDatalab.2 The
typical negative impact reported has been a delay of the project in the order of
months, sometimes leading to a change of scope and goal up to the cancellation of
the complete project (see Fig. 17.1). “Unavailability of data” here refers to the
situation in which a data science project has been started under the requirement
that specific data will be available at a certain point in the timeline of the project. The
analysis of this data is the main part of the project and crucial to reach its goal, and all
reasonable measures have been taken upfront to secure its availability. According to
the survey, failing this requirement has usually one of the following reasons:

• Measurement issues: the data was meant to be collected in the course of the
project but resource problems for staff to conduct measurements, the absence of
specific events to be measured, or the unavailability of respective hardware hinder
its collection.

• Privacy issues: the data is there but cannot be shared among the project partners
due to new or unforeseen legal constraints.

• Quality issues: the raw data is available and shareable but the measurements
themselves or the human-provided labels lack the required precision.

The effect of the unavailability of data is manifold: usually, it not only stretches
the duration of an affected project by several weeks to years, it also leads to much
more work on data curation at the expense of less time for the actual analysis and
decreases the motivation on all parts of the project team, as was mentioned several
times in the survey. It forces the data scientist to revert to suboptimal methods (with
respect to the aspired project goal), and usually leads to lowered overall project goals
up to a total cancellation of the endeavor. The matter is even more severe if data is
not absent altogether, but some crucial parts are missing or its quality is far below the
necessary standard. This ultimately leads to the same issues as outlined above; the

1While the survey and its evaluation have been conducted under controlled circumstances specif-
ically for this chapter, we explicitly point out the small return rate of 10 questionnaires and hence
the limited generality of conclusions; we report them because of their good correlation with our
overall impression from numerous experiences with colleagues inside and outside our respective
institutions.
2See www.zhaw.ch/datalab for a list of associates.

314 L. Hollenstein et al.

http://www.zhaw.ch/datalab

more subtle form of the problem, however, may hinder project management to take
appropriate measures early on, as was pointed out by several participants in the
survey.

In this chapter, we provide a twofold contribution: first, we discuss a specific
approach to partially overcome the above-mentioned issues of data unavailability by
producing detailed data for machine learning out of a simulation model informed
only by high-level process descriptions. Second, we introduce a novel measure of
business operations complexity that can be evaluated fully automatically based on
data and holds potential to inform business owners on how to reduce unwanted
complexity. It exploits the idea that complexity and compressibility are highly
anticorrelated (Schmidhuber 2008). Our case study from the area of Industry 4.0 is
motivated by the assumption that in the time of growing mass customization in
production (Fogliatto et al. 2012), variability in the product range leads to increased
production complexity, which is a major driver of costs. (Note that there are
scenarios where this assumption does not hold, e.g., cases where the variability of
the product range enables the compensation of variabilities in the flow of resources.
For more about this discussion, see Sect. 2.)

The goal of this case study hence has been twofold: first, to measure the inherent
complexity in the production processes of certain industrial goods based on the
analysis of production data; second, based on the complexity measurement, to
propose changes to these processes that reduce the complexity while being feasible
from a business and operations perspective. However, the necessary raw data from
the shop floor turned out to be largely unavailable in the expected form.

In this situation, the methodology of coupling simulation and learning (Abbeel
2017) proved useful. Simulating the known physical properties of the production
processes on an abstract level leads to many “observations” of the production of
goods. Training an unsupervised learning algorithm like a neural autoencoder
(Goodfellow et al. 2016) on this data converts the model from a physics-based
simulation to a machine learning model with similar content, but different properties.
The interesting property of the learned model with respect to the goal of the case study
is the following: it has learned a compressed representation (Bengio et al. 2013) of
the patterns inherent in the data, which is in the best case (a) able to generalize

30%

30%

20%

20%

<= 20% 0

weeks

months

project cancelled

limited results

≥ one year

1 2 3 4 5 6 7 8 9

80% or more
60-80%
ca. 50%
20-40%

Fig. 17.1 (Left) Survey results for the question “Which percentage of projects you worked on has
roughly been affected by the unavailability of the data?”. (Right) Answers to the question “How
long have the affected projects typically been delayed (multiple answers allowed) by the
unavailability of data?.” Overall, the survey produced a 17% return rate (12 people), out of which
10 answered the above questions

17 Unsupervised Learning and Simulation for Complexity Management in. . . 315

(Kawaguchi et al. 2017) beyond the limitations and discontinuations of the abstract
simulation; and (b) allows conclusions on how the original processes might be
compressed (i.e., simplified) out of an analysis of its own way of compressing
the learned information. Note that our two contributions—the suggestion to use
simulation to overcome data scarceness, and the novel complexity measure—are
independent of each other and only linked by the necessity of the case study under
consideration.

The remainder of this chapter is organized as follows: Sect. 2 introduces the case
study with its business background, showing the necessity and merit of a learned
complexity measure. Section 3 details our methodology of linking simulation to
unsupervised learning. Section 4 discusses the results of the case study before Sect. 5
concludes with several lessons learned on the problem of the unavailability of the
analysis data in general.

2 Case Study: Complexity Management in Business
Operations

The problem statement and solution approach described were applied in an industrial
shop floor environment of a large international enterprise based in Switzerland. The
factories are challenged with decisions about expanding the product portfolio for a
higher degree of differentiation and an extended skimming of market segments,
which is expected to yield higher revenues. However, it is obvious that even in the
context of a modular production strategy in which new product versions are based on
existing modules, increasing the product portfolio results in an increased complexity
of the business operations in production, therefore resulting in increased production
costs. Thus, there is a trade-off between higher revenue and higher costs. The
availability of a tool to assess the complexity of a given production scheme based
on measurable input data can provide a relevant support for the corresponding
management decisions. Such a tool matches the definition of a so-called data product
in the sense that it generates value from data for the benefit of another entity (i.e., the
shop floor management) by the application of data science skills (Meierhofer and
Meier 2017).

Product variety or complexity increase is often the outcome of the differentiation
strategy of companies to enter market niches and to achieve higher revenues and
market shares (Tang 2006). Beside the fulfillment of individual customer require-
ments and the outperforming of competitors (Lancaster 1990), researchers as well as
practitioners in various studies reveal that an increase of product complexity does not
equally lead to higher profitability and sustainable growth (Ramdas and Sawhney
2001). On the contrary, complexity is often associated with various negative effects
that come attached and are built up over years (Fisher et al. 1999; Kekre and
Srinivasan 1990). Several researchers claim the existence of an optimal level of
product complexity that companies need to approach (Budde et al. 2015; Orfi et al.

316 L. Hollenstein et al.

2012; Krishnan and Gupta 2001). But the definition of the optimal level of com-
plexity is not a trivial task because multiple factors need to be considered (Fisher
et al. 1999; Budde et al. 2015). Product portfolio decisions (e.g., new product
variants or new product developments) affect all steps along the value-chain, for
example, development, production, and even service operations. Even minimal
changes at the product architectures can have multiple impacts on the production
or service side. This is also why decision-making around the product portfolio, such
as decisions for new product development projects, product variants, or product
architectures, is seen as one of the most critical tasks of management due to its
uncertain and changing information, dynamic opportunities, and multiple and stra-
tegic considerations from different stakeholders along the value-chain (Closs et al.
2008).

Managers struggle to evaluate complexity out of a broader multifunctional
perspective due to a lack of system interdependency knowledge and information
asymmetries (Budde et al. 2015). This results in decisions that may be optimal for
one functional perspective but not always optimal for the company along the product
life cycle (Fisher and Ittner 1999; Closs et al. 2008; Lancaster 1990). Closs et al.
(2008) recognized the need of metrics that measure the relational and combinatorial
dimensions of complexity. These metrics should be able to predict various perfor-
mance outcomes. Developing such a metric and deriving decision support from it for
the case at hand was a central goal of our work.

In the given case study of the shop floor, data was available on the number of
product alternatives and how they are composed as well as on the number of
production steps required to produce those product types. However, within the
practically given time frame of the project, it was not possible to gather the detailed
data of the shop floor, for example, data about the sequence of the raw material or
semifinished products across the machines or data about the load fluctuations of the
individual machines. Higher effort than originally expected would have been nec-
essary to generate all required information out of the different IT systems: the
information was not directly available and not connected. Additionally, it was not
possible to conduct different interviews with product managers as well as with
experts from production or supply-chain departments due to organizational
constraints.

Still, the project pursued the goal to make the resulting complexity of different
production schemes measurable and thus to enable the assessment of different
scenarios of product and production constellations. As stated in the introduction,
the approach chosen here and explained in the following sections is based on training
an unsupervised learning algorithm on data from simulations, which in turn are
based on the scarcely available data and expert knowledge, thus transforming the
physical model into a machine learning model that can provide insights into the
inherent complexity on a more abstract level.

17 Unsupervised Learning and Simulation for Complexity Management in. . . 317

3 Linking Simulation and Learning

Even if there is no or insufficient data available to successfully train a machine
learning model, some knowledge of the underlying nature of the system is often
available from the domain experts. Here we discuss how for our case study we define
a simulation model that can provide the data needed for a proof of concept of our
complexity measure based on a neural autoencoder (Goodfellow et al. 2016).

3.1 Simulation Models Can Provide Data

Simulations, as opposed to machine learning, are based on expert knowledge of the
dynamics and rules of the complex system under analysis (Zeigler et al. 2000). Thus,
in the absence of observations of the system (the desired data) we can simulate the
behavior of the system by means of modeling its dynamics, running it (maybe many
times), and gathering the observational data. Clearly, a simulation model needs data,
too, but typically that data is of a higher level of abstraction, for example, the number
of processing steps and the duration of each step for a given product. So, even if we
do not have exact data for some of these values, like the durations, we can make
some reasonable assumptions by talking to shop floor domain experts.

Many different simulation modeling approaches are known and the choice
depends strongly on the system to be described and the knowledge we have about
it (Zeigler et al. 2000). Roughly speaking, models can be characterized with respect
to the following features: discrete versus continuous time/space, global versus local
decisions/behavior, and deterministic versus stochastic decisions/data. Some exam-
ples are as follows:

• Physical and chemical systems are often continuous in time and space, have local
forces (decisions), and are only rarely stochastic; this is why they are often
described by differential equations.

• Production, supply-chain and logistics systems are discrete in time and space,
decisions are often global, and they can be stochastic; thus, they are well-
described by discrete-event simulations.

• Economic and sociological systems are also discrete in time and space and can be
highly stochastic, however, often decisions and behavior is determined mainly
locally, which is why agent-based simulation models are well-suited in this case.

With the decision for the simulation approach at hand, one can go ahead and
determine the details of the model and what data is needed or needs to be generated
to feed it. Validation of the simulation model is just as important as in any other
simulation study. Since there is insufficient data available for direct validation, like
when simulating systems that do not exist yet, one has to validate by means of
consistency conditions provided by shop floor domain experts.

318 L. Hollenstein et al.

Finally, running the model (maybe many times) will generate the synthetic data
for the subsequent machine learning step. The machine learning model is then
trained on the generated data to faithfully reproduce the inputs, but with different
properties than the simulation model: our hypothesis (using the method detailed in
Sect. 3.3) is that a successfully trained network will abstract essential features of the
data used for training, and measuring the minimally required network complexity
for successfully learning a given dataset would be a good measure for the complex-
ity of the data itself.

Once the network model is established on synthetic data, the case study that
lacked data in the first place can now continue: the model trained on synthetic data
can be embedded in its application and one can start testing, using, and refining it,
until a freshly trained model can replace it once the real data is available.

Clearly, the fact that domain knowledge and high-level descriptions/data are
needed for this approach can be seen as a drawback. On the upside, in many cases

• domain knowledge will anyway be needed for a successful data analytics project;
• higher-level descriptions/data are either already available or are not so hard to

come by or estimate stochastically;
• the simulation modeling process leads to a deeper understanding of the domain

and its dynamics;

which is why we argue that building a simulation model can successfully mitigate
the issue of “unavailability of data” in the first place. The results obtained in that way
will then have to be validated by different means, for example, through investigation
by the original data owners.

3.2 A Concrete Example: The Job Shop Model

The goal of our case study was to measure the complexity of the manufacturing
processes based on production data rather than based on business analysis. The
production data desired by us would have been provided as an event log that traces
the processing steps that each order undergoes on its way through the production
system. Manufacturing systems like this are best modeled by discrete-event simula-
tions that model the orders being passed from one process to the next, producing a
discrete series of events in time—the exact data that we need in our case study.

In order to validate our complexity measure based on a neural autoencoder, we
chose to implement a relatively simple model of a production facility, called the job
shop model (Pinedo 2009); see the example depicted in Fig. 17.2. The job shop
model describes all production steps as so-called machines that are visited by jobs
that represent the orders for products to be produced. Machines can process only one
job at a time. Each job has a list of tasks, which are combinations of machines and
processing times of that job on the given machine. The tasks must be completed in
the given order. Different products may visit machines in different orders and the
number of tasks can vary as well. We do allow for recirculation, that is, a given job

17 Unsupervised Learning and Simulation for Complexity Management in. . . 319

may visit a given machine several times on its route through the system, and we
allow a changeover time to be accounted for before a new job can be processed on a
given machine. Determining the optimal sequence for a job shop is a classical
NP-hard optimization problem in operations research (Pinedo 2009).

Once the sequence of the jobs to be processed and their task lists with the
processing times are fixed, the model is fully deterministic. The simulation yields
a log of events, each with timestamp, job ID, machine ID, and event-type, for
example,

• Job entered in waitlist, job selected from waitlist
• Capacity blocked, capacity released
• Changeover started, changeover ended
• Processing started, processing ended

Thus, for given job sequences, the simulation model provides raw production
data from a synthetic shop floor that can be fed into the machine learning model.

3.3 A Novel Neural Net-Based Complexity Measure
of Industrial Processes

In this section, we propose a novel measure to estimate complexity in production
lines, based on a neural network, as well as an unsupervised approach to compute the
measure. The goal is that for a given production line this complexity measure can be
evaluated completely automatically without any human intervention and in (near)
real time. The concept of complexity can be followed in compression theory
(Henriques et al. 2013), learning theory (Zhu et al. 2009), and computational
complexity theory (Park and Kremer 2015). The complexity of production lines is
evaluated statically (Park and Kremer 2015) and dynamically (Fischi et al. 2015) in
state-of-the-art research in order to improve manufacturing performance. Moreover,
complexity can be evaluated for an entire dataset (Bousquet et al. 2004) or samples
(Pimentel et al. 2014).

In our view, the complexity of a system can be quantified by how much a dataset
containing an implicit full description of that system can be compressed without
losing information about the system. For example, if the data describing all ongoing
processes in a factory is very redundant, it can easily be compressed into a much
shorter description, and the complexity of such a factory would be low. On the other

M

M

M

M

M

Fig. 17.2 A job shop model
with five machines,
M1–M5, and two jobs,
the sequences of solid and
dashed arrows, respectively

320 L. Hollenstein et al.

hand, for a factory where most ongoing processes are random, the description given
by the data would be close to random and thus very hard to compress, and we would
quantify this as a highly complex system.

In other words, our complexity measure for a system is the minimum description
length or, equivalently, the maximum compression factor that can be achieved on
datasets fully describing that system, without loss of information.3 In principle, any
compression algorithm could be used; however, the compression performance of
those algorithms generally depends on the nature of the input data. For example, a
compression algorithm that can achieve high compression factors for still images
might perform quite badly on data consisting of moving images (i.e., video
sequences). Since we are interested in the maximum compression rate, we need
compression algorithms that are working well for the specific kind of input data we
have. One way would be to hand-design good compression algorithms for our data;
however, this would require obtaining a deep understanding of the underlying
structures in our data by hand, which would be very labor-intensive.

For this reason, we chose to use neural networks for data compression.
Unsupervised training of neural networks provides a fully automated way to extract
such underlying structures from data, which are needed for good compression
performance. The system is adaptive to a large degree, that is, for data with different
characteristics it will automatically find the underlying structures that are better
suited there. There is no need to hand-tune the compression algorithm as would be
the case with classical, nonadaptive algorithms. Of course, training the network on a
specific dataset requires time, but hand-tuning algorithms—in addition to time—
would also require deep knowledge about the underlying data structures. Neural
networks, on the other hand, once trained, can be used to discover such high-level
structures and features in underlying data (while this promises to be a very interest-
ing extension of our approach, this is beyond the scope of the current chapter and
referred to future work).

In this chapter, we hence propose to measure the complexity of a production line
using neural networks, specifically autoencoders (Goodfellow et al. 2016). The
proposed measure evaluates the complexity of an entire production process. This
approach is fully unsupervised and does not need any labeled data. However, a
sufficient amount of data is required in order to train the autoencoder.

An autoencoder is trained to produce a replica of its input at the output layer. The
structure of this type of neural network consists of a number of hidden layers
connecting the input and output layer. In general, autoencoders contain a code
layer as well as an encoding and a decoding function. The code is a representation
of the input learned through the unsupervised training procedure. The dimensionality
of the code is smaller than both input and output in undercomplete (“compressing”)

3In principle, the compression does not need to be lossless in the strict meaning of the word. While
on the noise-free simulation data used in experiments below, maximum compression while
maintaining losslessness provides a natural threshold for the degree of compression in our measure,
some degree of loss might even be desirable on real-world data to get rid of inherent noise from
measurement errors, etc.

17 Unsupervised Learning and Simulation for Complexity Management in. . . 321

autoencoders. In this case, the code forms an information bottleneck between the
encoding and decoding networks, as depicted in Fig. 17.3.

The complexity measure we propose here is the minimal bottleneck dimensionality
for the autoencoder to yield lossless reconstruction. Its value does not directly
represent any features of the production line process but rather reflects its overall
complexity in an abstract way. The production line data from the simulation (see Sec.
3.2) is considered a source of information for lossless compression and reconstruction.
Each job in the job shop is represented as a certain temporal sequence of processing
steps on several machines and is encoded as a two-dimensional matrix, where one
dimension is the discretized process time and the other dimension is the ID of the
process machine (see Fig. 17.5). An entry in the matrix is set to one if the
corresponding machine is active at that time step, and set to zero otherwise. These
matrices can be interpreted as patterns or images, and the set of all patterns of all jobs
occurring in a given job shop provides a representation of the complete activity of this
job shop. The autoencoder tries to compress the set of all these patterns as much as
possible, without loss of information. The minimum code length (i.e., the size of the
smallest bottleneck layer) that can achieve this is related to the information content in
the activity patterns, and is chosen as our complexity measure for this job shop.

Based on Shannon’s source coding theorem (Shannon 2001), it is possible to
asymptotically obtain a code rate that is arbitrarily close to the Shannon entropy
(Shannon 2001) in lossless compression of a source of information. The code rate
refers to the average number of bits per symbol (products in production lines) in this
definition. Importantly, lossless compression of a source is not possible with a code
rate below the Shannon entropy (Shannon 2001). The dynamics of the production
line is initially represented in the form of images containing temporal information as
well as machine identification numbers. The autoencoder subsequently performs a
lossless compression of these images. Therefore, the code rate in this context
corresponds to the compression ratio of images (information of production lines)
to code (bottleneck of the autoencoder).

The Shannon entropy of a source of information determines the lower band of the
code rate. Therefore, the minimum code rate can be used as an approximation for the
Shannon entropy. Assuming a source with fixed input length in the encoder, and
specifically the autoencoder, the code rate only depends on the code length or the

Fig. 17.3 The structure of a deep autoencoder with encoder, decoder, and the code (bottleneck) in
between. As in the picture, we also encoded our data in image format (see Sect. 4.2)

322 L. Hollenstein et al.

bottleneck dimensionality. Therefore, the Shannon entropy of the source of infor-
mation (production line) is proportional to the minimum dimensionality of the
bottleneck in the autoencoder. Feldman and Crutchfield (1998) explain why the
Shannon entropy is a measure of statistical complexity. Recently, Batty et al. (2014)
used this measure to analyze spatial information and complexity. The proposed
measure of complexity in this work, minimum dimensionality of the autoencoder
bottleneck (code), is directly proportional to the entropy, which is a measure of
complexity. It reflects the temporal usage patterns of the machines in the production
line; the more different patterns that are needed to represent the system dynamics, the
more complex it is.

4 Experiments and Discussion

Here we provide and discuss a proof of concept for our neural-network-based
complexity measure for production systems. To show its validity, we generate a
series of instances of the job shop model, produce the simulation event logs, and
measure the complexities of each scenario in two ways: first, using a conventional
complexity measure based on business analysis (see Sect. 4.3), and second, com-
puted with our neural-network-based measure discussed in Sect. 3.3. Since the data
for the original case study was not available, we used the job shop simulation model
to produce the data required for the proof of concept.

4.1 Scenarios

We investigate the complexity of a series of instances of the job shop model. Starting
from a simple base scenario, we vary several features in different directions,
targeting different complexity drivers, namely, the number of processing steps, the
number of products, the percentage of dedicated production lines, and the
manufacturing stability. Introducing these variations leads to different production
complexities for each scenario.

The base scenario has machines grouped in three stages that all jobs visit in the
same order, reflecting the realistic situation where products typically go through
stages like setup, assembly, and packaging. We generate 800 jobs that have tasks
sampling all possible combinations of machines in those three stages, all with the
same processing times. See Fig. 17.4 for an illustration of the base scenario with two
machines per stage.

To produce different scenarios, we focus mainly on the second stage and change
the number of machines available, the processing times of jobs on individual
machines, the availability of machines, or the processing time depending on the
choice of machine in the first stage. In addition, we enlarge the base scenario to
encompass three and four machines per stage, respectively, and generate variations
analogous to those described above.

17 Unsupervised Learning and Simulation for Complexity Management in. . . 323

4.2 Data Preprocessing and Autoencoder Network Topology

Before being fed into the autoencoder for complexity analysis, the data from the job
shop has to be preprocessed. We do this in a way that allows automated integration
in real factory settings in an Industry 4.0 environment later, namely, using
timestamps of process steps. When jobs pass through the simulated job shop, each
process step produces a timestamp when it is started and when it is stopped, together
with the ID of the machine on which it is run (see Sect. 3.2).

For each job, we generate a two-dimensional matrix from this information, where
one dimension is indexed by machine ID and the other by elapsed (discrete) time
steps since the job started. If the machine with ID j is processing the given job at time
step k, then in the corresponding matrix the entry at position (j, k) is set to +1,
otherwise to �1. In other words, the processing of a job in the job shop can be
represented as a two-dimensional pattern of black and white pixels, where white
pixels indicate active machines at the corresponding time step, black pixels indicate
inactive machines, and process steps are represented by horizontal white lines of
different lengths (see Fig. 17.5). Each of these patterns constitutes a training pattern
for the autoencoder, and each pixel position in the pattern is fed into a corresponding
neuron in the input layer of the autoencoder. In our simulations, we use a maximum
number of 16 machines and 61 time steps, so all our input patterns have a fixed size
of 16� 61 pixels. Note that not every machine or time step is used in every scenario;
unused entries will simply be zero. We chose to keep the input dimensions fixed over
all scenarios so that the number of weights in the neural networks would not depend
on the scenario, allowing better comparability between scenarios. Thus, the input
dimensions are just chosen large enough to accommodate the maximum number of
machines and time steps in any of the scenarios.

While it would be possible to use a classical autoencoder (with fewer and fully
connected hidden layers as the one depicted in Fig. 17.3) directly on these input data,
for these fully connected networks the relatively large number of inputs
(16� 61¼ 976) leads to a rather large number of weights, resulting in slow learning
and large training data requirements. Therefore, we decided to use a different
network topology for our autoencoder: immediately after the input layer we use a
stack of three convolutional layers, followed by two fully connected layers with a
central hidden layer (the actual autoencoder), and finally a stack of three “transpose

M M M

M

stage 1 stage 2 stage 3

M M

Fig. 17.4 The base scenario
with two machines per
stage. Each job visits the
three stages in the same
order and can be assigned to
either machine per stage.
Here, the arrows represent
all possible paths of jobs
through the system

324 L. Hollenstein et al.

convolutional” layers to revert the action of the convolutional layers (Stadelmann
et al. 2018).

The convolutional layers are very good at extracting information from
two-dimensional pictures with geometric features such as our horizontal process
step lines, while requiring relatively few weights due to weight sharing. Further-
more, since we use a stride of 2 in each layer, also the dimensions of the input
patterns are reduced accordingly. Using 3 � 3 filters, we compared different filter
numbers and found that for 2, 4, and 8 filters in the 1st, 2nd, and 3rd convolutional
layer, respectively, the network could learn to map all input patterns for all scenarios
to the correct output patterns, using less than 10 neurons4 in the central hidden layer
in all cases. It should be pointed out that in spite of the larger number of layers, our
network actually has much fewer weights than a traditional autoencoder: for exam-
ple, for a case with 8 neurons in the bottleneck layer, the simplest traditional three-
layer autoencoder would require 16,600 weights, whereas our network topology
only requires 2961 weights to be learned for that case.

Fig. 17.5 Example of four input patterns for the autoencoder, generated from four different jobs
from the simulated job shop. In each pattern, each row of pixels corresponds to the activity of a
certain machine during the processing of that job (only 6 out of 16 potentially active machines per
job are shown in this illustration). The horizontal axis represents (discrete) time passed since the
start of that job. White pixels denote the corresponding machine being active at the corresponding
time step, black pixels represent inactive machines

4This specific number depends on the concrete data used and can be determined experimentally for
any real data.

17 Unsupervised Learning and Simulation for Complexity Management in. . . 325

For comparability, we decided to fix the convolutional layers at the configuration
described above and only vary the number of neurons in the central hidden layer.
The minimum number of hidden neurons for which the network could still learn the
correct input–output mappings for all patterns (jobs) in a given scenario was then
chosen as the complexity number for that scenario. In other words, the network had
to map all input patterns (representing all jobs in the production line) successfully
back to the same input patterns while passing this information through a small
bottleneck layer, and the minimum size of the bottleneck layer for which this was
possible was chosen as the complexity number. It should be noted that this is only a
relative complexity measure, since changing the network configuration of the
convolutional layers will affect the minimal number of hidden neurons required. In
other words, how the data is preprocessed affects how easily it can be learned
(Lichtensteiger and Pfeifer 2002). Here, having less filters in the convolutional
layers will require more neurons in the central hidden layer for still being able to
learn successfully. However, since we are not yet able to quantify this influence
appropriately, for this study we decided to fix the convolutional network topology at
a configuration that was shown to work well and focus only on the number of
neurons in the central hidden layer for our complexity measure.

In order to verify the self-consistency of our complexity measure, we did a second
full run of experiments where we used different weight initializations for the
networks and added strong multiplicative random noise in the neural activities of
the bottleneck layer. In addition, we varied the size of input patterns by adding
different amounts of zero padding. Our first results show that in spite of these rather
substantial changes to the network, the resulting complexity measures do not change
significantly, indicating the robustness of our approach. With regard to computa-
tional runtime, on a desktop PC equipped with an Intel Xeon Processor E5-2620
running at 2.40 GHz and an NVIDIA Quadro M4000 GPU, learning the correct
input–output mappings for all patterns (jobs) in a given scenario required around
1–5 min. When the number of neurons in the bottleneck layer was changed, the
system had to learn again. Since calculating complexity required finding the mini-
mum number of neurons in the bottleneck layer for which learning was successful,
using, for example, binary search around 5–10 variations of neuron numbers were
needed. Therefore, calculating our complexity measure for a given scenario took
around 10–50 min on our hardware configuration.

4.3 Results

To validate our neural-network-based complexity measure we compare it to a state-
of-the-art conventional method (Friedli et al. 2013). It is computed as a weighted
sum over contributions from the following factors (complexity drivers): number of
process steps, percentage of dedicated production lines, number of changeovers,
flexibility upside, and number of batches. These factors are measured for all simu-
lated job shop scenarios and normalized to the interval between 0 and 1. Note that we

326 L. Hollenstein et al.

did not consider manufacturing stability as a driver of complexity here, since the
scheduling of the job shops is static and therefore the simulations are deterministic.
For the weights of the individual complexity drivers we take the results from Friedli
et al. (2013), and renormalized them to 1 after neglecting the weight for manufactur-
ing stability.

Figure 17.6 shows the averages of our autoencoder-based complexity values from
the two experimental runs plotted against the complexity values obtained using the
conventional method. The error bars show standard deviations as conservative
indicators of the variability of our approach, see discussion in the end of Sect. 4.2.
The Pearson correlation coefficient is p ¼ 0.637, which indicates a fair correlation.
This shows that our autoencoder-complexity measures at least partly the same
features as the conventional method does, rendering it a valuable tool in the analysis
of production and process analysis while being determined completely in a data-
driven manner. This result is to be understood as a first proof-of-concept. To improve
the understanding of the relation between the two complexity measures and the
dependency of the autoencoder complexity on the features of the production pro-
cesses and product architectures, a complete study based on larger job shops and,
preferably so, real data is needed and aimed for.

Fig. 17.6 The complexity values for all scenarios from the autoencoder (minimal number of
bottleneck neurons) is plotted against the conventional complexity normalized over all scenarios.
The Pearson correlation coefficient is p ¼ 0.637 (“fair correlation”). The error bars show the
standard deviation of two different series of experiments (see end of Sect. 4.2)

17 Unsupervised Learning and Simulation for Complexity Management in. . . 327

5 Conclusions

We claim that data analytics projects need data to be analyzed. Often taken for
granted and not seriously planned as a potential showstopper, the unavailability of
data of the right quality, at the right granularity, and in a reasonable project time
frame may put entire projects at risk. The message is clear: gathering the right data is
not to be underestimated and can make up by far the majority of the project time.

Lesson Learned #1 For future projects, special attention needs to be paid to the
measurement and gathering of the specifically required data out of the production
systems.

The research conducted in this chapter showed a feasible way of how to deal with
unavailable data when one is hit by it. Specifically, available high-level data can be
turned into a simulation model (using extra help from domain experts) that produces
finer-grained synthetic data in arbitrary quantity (but in quality bound to the explic-
itly modeled aspects of the simulation). This finer-grained data (independent of
originating from direct measurements or simulations) can in turn be used to train a
machine-learning model with intriguing properties: it inherits the properties of the
simulation model while being able to generalize beyond its discontinuities. This
study used state-of-the-art unsupervised learning schemas (deep convolutional
compressing autoencoders) for this task.

Lesson Learned #2 Coupling simulation and machine learning to “convert”
models of the real world and thus get access to the intriguing properties of each
method is a powerful tool. In the presented scenario we show how simulation can be
used to provide missing input data, at least until the real data can be provided. In an
age where data is considered extremely valuable, yet sometimes still scarce if too
specialized, this is an important methodology in many domains from sociology to
traffic, energy, and health.

We specifically introduced a novel complexity measure for industrial product
architectures and process topology based on the minimum dimensionality of the
bottleneck layer of our trained autoencoder. We computed this complexity measure
for a range of production line scenarios, inspired by real situations in our case study.
Comparing those values to the state-of-the-art complexity measures based on con-
ventional complexity drivers suggested by business experts, we find that the two
measures are fairly correlated (see Fig. 17.6), which we interpret as a proof of
concept for the autoencoder approach. As opposed to the conventional measure
that is based on expert knowledge and extensive human effort (qualitative interviews
and subsequent work of economists), our measure has the advantage of being
learned completely in an unsupervised fashion from timestamped process data
alone. Note that we are not suggesting to always use this complexity measure in
conjunction with a respective simulation model of the production system in question.
On the contrary, the aim for further work is to establish our complexity measure by
testing it in real-world situations with real shop floor data, using it as a tool to
identify unwanted complexity and suggest changes in process structures and product
architecture that reduce this complexity and the associated costs.

328 L. Hollenstein et al.

Lesson Learned #3 The paradigm of data-driven decision support can even enter
the domain of a highly qualified business consultant (that would usually estimate the
classical complexity measure manually), delivering the quantitative results neces-
sary to ponder informed management decisions.

Neither the complexity measure itself, nor the neural autoencoder architecture, or
the necessary data, are highly sophisticated. They are based on available information
and common-sense ideas, implemented and thoroughly verified but not much
changed from the original idea. While a first prototype like this case study shows
the traits of a research project, nothing hinders its direct application by engineers in
business in the next scenario that is somewhat similar.

Lesson Learned #4 It is merely the knowledge of what methods and technologies
are possible and available that currently hinders the faster adoption of the data-driven
paradigm in businesses.

Neither the involved simulation methods, nor the used machine learning tech-
niques, nor the idea of bootstrapping machine learning with simulation per se are
novel. Nevertheless, the data-driven complexity measure is new and arises simply as
a straightforward combination of available technologies and methodologies. Inno-
vation in this project arose from the collaboration of experts, not from individual
novel developments [see also Swiss Alliance for Data-Intensive Services (2017)].

Acknowledgments The authors are grateful for the support by CTI grant 18993.1 PFES-ES, and
for the participation of our colleagues from the ZHAW Datalab in the conducted survey.

References

Abbeel, P. (2017). Pieter Abbeel: Deep learning-to-learn robotic control [video-file]. Retrieved
from https://youtu.be/TERCdog1ddE

Batty, M., Morphet, R., Masucci, P., & Stanilov, K. (2014). Entropy, complexity, and spatial
information. Journal of Geographical Systems, 16(4), 363–385.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),
1798–1828.

Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning theory. In
Advanced lectures on machine learning (pp. 169–207). Heidelberg: Springer.

Budde, L., Faix, A., & Friedli, T. (2015). From functional to cross-functional management of
product portfolio complexity. In Presented at the POMS 26th Annual Conference, Washington,
DC.

Closs, D. J., Jacobs, M. A., Swink, M., &Webb, G. S. (2008). Toward a theory of competencies for
the management of product complexity: Six case studies. Journal of Operations Management,
26(5), 590–610. https://doi.org/10.1016/j.jom.2007.10.003.

Feldman, D. P., & Crutchfield, J. P. (1998). Measures of statistical complexity: Why? Physics
Letters A, 238(4–5), 244–252.

Fischi, J., Nilchiani, R., & Wade, J. (2015). Dynamic complexity measures for use in complexity-
based system design. IEEE Systems Journal, 11(4), 2018–2027. https://doi.org/10.1109/JSYST.
2015.2468601.

17 Unsupervised Learning and Simulation for Complexity Management in. . . 329

https://youtu.be/TERCdog1ddE
https://doi.org/10.1016/j.jom.2007.10.003
https://doi.org/10.1109/JSYST.2015.2468601
https://doi.org/10.1109/JSYST.2015.2468601

Fisher, M. L., & Ittner, C. D. (1999). The impact of product variety on automobile assembly
operations: Empirical evidence and simulation analysis. Management Science, 45(6), 771–786.

Fisher, M., Ramdas, K., & Ulrich, K. (1999). Component sharing in the management of product
variety: A study of automotive braking systems. Management Science, 45(3), 297–315.

Fogliatto, F. S., Da Silveira, G. J., & Borenstein, D. (2012). The mass customization decade: An
updated review of the literature. International Journal of Production Economics, 138(1), 14–25.

Friedli, T., Basu, P., Bellm, D., & Werani, J. (Eds.). (2013). Leading pharmaceutical operational
excellence: Outstanding practices and cases. Heidelberg: Springer. https://doi.org/10.1007/
978-3-642-35161-7.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.
Retrieved December 22, 2017, from http://www.deeplearningbook.org

Henriques, T., Gonçalves, H., Antunes, L., Matias, M., Bernardes, J., & Costa-Santos, C. (2013).
Entropy and compression: Two measures of complexity. Journal of Evaluation in Clinical
Practice, 19(6), 1101–1106.

Kawaguchi, K., Kaelbling, L. P., & Bengio, Y. (2017). Generalization in deep learning. CoRR,
1710, 05468. Retrieved December 22, 2017, from https://arxiv.org/abs/1710.05468

Kekre, S., & Srinivasan, K. (1990). Broader product line: A necessity to achieve success? Man-
agement Science, 36(10), 1216–1232.

Krishnan, V., & Gupta, S. (2001). Appropriateness and impact of platform-based product devel-
opment. Management Science, 47(1), 52–68.

Lancaster, K. (1990). The economics of product variety: A survey. Marketing Science, 9(3),
189–206.

Lichtensteiger, L. & Pfeifer, R. (2002). An optimal sensor morphology improves adaptability of
neural network controllers. In J. R. Dorronsoro (Ed.), Proceedings of the International Confer-
ence on Artificial Neural Networks (ICANN 2002), Lecture Notes in Computer Science LNCS
2415 (pp. 850–855).

Meierhofer, J. & Meier, K., (2017). From data science to value creation. In St. Za, M. Drăgoicea, &
M. Cavallari (Eds.) Exploring Services Science, 8th International Conference, IESS 2017,
Rome, Italy, May 24–26, 2017, Proceedings (pp. 173–181). Cham: Springer.

Orfi, N., Terpenny, J., & Sahin-Sariisik, A. (2012). Harnessing product complexity: Step 2—
measuring and evaluating complexity levels. The Engineering Economist, 57(3), 178–191.
https://doi.org/10.1080/0013791X.2012.702197.

Park, K., & Kremer, G. E. O. (2015). Assessment of static complexity in design and manufacturing
of a product family and its impact on manufacturing performance. International Journal of
Production Economics, 169, 215–232.

Pimentel, D., Nowak, R., & Balzano, L. (2014, June). On the sample complexity of subspace
clustering with missing data. In 2014 IEEE Workshop on Statistical Signal Processing (SSP)
(pp. 280–283). IEEE.

Pinedo, M. L. (2009). Planning and scheduling in manufacturing and services (2nd ed.). Dordrecht:
Springer.

Ramdas, K., & Sawhney, M. S. (2001, January 1). A cross-functional approach to evaluating
multiple line extensions for assembled products [research-article]. Retrieved January 15, 2014,
from http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.1.22.10667

Schmidhuber, J. (2008). Driven by compression progress: A simple principle explains essential
aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity,
art, science, music, jokes. In Workshop on anticipatory behavior in adaptive learning systems
(pp. 48–76). Heidelberg: Springer.

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1), 3–55.

Stadelmann, T., Tolkachev, V., Sick, B., Stampfli, J., & Dürr, O. (2018). Beyond ImageNet - deep
learning in industrial practice. In M. Braschler, T. Stadelmann, & K. Stockinger (Eds.), Applied
data science: Lessons learned for the data-driven business. Heidelberg: Springer.

330 L. Hollenstein et al.

https://doi.org/10.1007/978-3-642-35161-7
https://doi.org/10.1007/978-3-642-35161-7
http://www.deeplearningbook.org
https://arxiv.org/abs/1710.05468
https://doi.org/10.1080/0013791X.2012.702197
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.1.22.10667

Swiss Alliance for Data-Intensive Services. (2017). Digitization & innovation through cooperation.
Glimpses from the digitization & innovation workshop at “Konferenz Digitale Schweiz”.
Retrieved April 26, 2018, from https://data-service-alliance.ch/blog/blog/digitization-innova
tion-through-cooperation-glimpses-from-the-digitization-innovation-workshop

Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of
Production Economics, 103(2), 451–488. https://doi.org/10.1016/j.ijpe.2005.12.006.

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation (2nd ed.).
Orlando, FL: Academic Press.

Zhu, X., Gibson, B. R., & Rogers, T. T. (2009). Human rademacher complexity. In Advances in
neural information processing systems (pp. 2322–2330). Cambridge, MA: MIT Press.

17 Unsupervised Learning and Simulation for Complexity Management in. . . 331

https://data-service-alliance.ch/blog/blog/digitization-innovation-through-cooperation-glimpses-from-the-digitization-innovation-workshop
https://data-service-alliance.ch/blog/blog/digitization-innovation-through-cooperation-glimpses-from-the-digitization-innovation-workshop
https://doi.org/10.1016/j.ijpe.2005.12.006

	Chapter 17: Unsupervised Learning and Simulation for Complexity Management in Business Operations
	1 Introduction
	2 Case Study: Complexity Management in Business Operations
	3 Linking Simulation and Learning
	3.1 Simulation Models Can Provide Data
	3.2 A Concrete Example: The Job Shop Model
	3.3 A Novel Neural Net-Based Complexity Measure of Industrial Processes

	4 Experiments and Discussion
	4.1 Scenarios
	4.2 Data Preprocessing and Autoencoder Network Topology
	4.3 Results

	5 Conclusions
	References

