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Security of Data Science and Data Science
for Security
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Abstract In this chapter, we present a brief overview of important topics regarding
the connection of data science and security. In the first part, we focus on the security
of data science and discuss a selection of security aspects that data scientists should
consider to make their services and products more secure. In the second part about
security for data science, we switch sides and present some applications where data
science plays a critical role in pushing the state-of-the-art in securing information
systems. This includes a detailed look at the potential and challenges of applying
machine learning to the problem of detecting obfuscated JavaScripts.

1 Introduction

Giants like Sony, Yahoo, and Anthem Inc., the second-largest US health insurance
company, heavily rely on big data and machine learning systems to efficiently store
and process huge amounts of data. But large enterprises are not the only ones; there
are more and more startups and SMEs whose business model focuses on data-centric
services and products. Unfortunately, where there is valuable data, there are also
hackers that want to get it or manipulate it for fun and profit. It is therefore important
that data scientists are aware of the fact that new services or data products should be
designed with security in mind. Many of the popular technologies and algorithms
used in their domain are not secure by default. They have to be used with care. For
example, recent research showed that access to the public API of a classification
service (e.g., face recognition) might be sufficient to steal or invert the underlying
model (Tramèr et al. 2016). We refer to these aspects as security of data science, that
is, issues related to the security of data science methods and applications.

On the other hand, data science methods and techniques help to address some of
the most challenging problems in this field such as the management of huge amounts
of log data and the identification of anomalies or other clues that might pinpoint
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activities posing a risk for an organization. It is therefore not surprising that
advancements in the field of data science lead to improvements of existing security
products. For instance, becoming better at detecting anomalies in credit card trans-
actions, network traffic, user behavior, and other types of data directly results in
improved products to protect today’s businesses. However, improvements to
existing products are not the only outcome of the already fruitful relation of data
science and security. It also led to the development of completely new solutions such
as next-generation antivirus products (Cylance 2017) . We refer to these aspects as
data science for security, that is, issues in the security domain that can be approached
with data science.

Despite the many benefits of data science, there are also some drawbacks and
challenges that come with the rapid evolution of the field. The short development life
cycles of new methods and products, be it a software, hardware, or a data product,
make it difficult to research whether these methods and products are secure or
whether they introduce new security problems and flaws. It is therefore not uncom-
mon (Pauli 2017b) that those methods and products have severe security loopholes.
Furthermore, due to the increasingly more centralized storage of large amounts of
data, cloud infrastructures and big data applications become attractive targets for
attackers. As a result of this, the probability that such infrastructures and applications
become the target of an advanced targeted attack with the goal of stealing or
manipulating large amounts of data is drastically increased. An advanced targeted
attack (ATA) or an advanced persistent threat (APT) (Easttom 2016) is an attack
where the attackers put a lot of effort, knowledge, and time into getting and
eventually also maintaining access to a system or data. Often, such attacks make
use of so-called zero-day exploits. These are exploits that are not yet known to the
security industry, which means it is unlikely that signature-based systems can detect
them. Detection is further complicated in that the attackers try to be as stealthy as
possible.

In addition, data science tools such as machine learning and the growing amount
of (publicly accessible) data can also be used by cyber criminals to improve their
attack methods and strategies. For example, being able to profile people based on
their activities on social media and determining what type and style of social
engineering attacks makes them do something they do not want to do would be
very useful to cyber criminals.

In the following, we discuss the opportunities and risks of data science in more
detail. First, we briefly introduce three key concepts of information security: confi-
dentiality, integrity, and availability. Next, we present a brief overview of important
topics related to security of data science and provide more details on some key topics
that data scientists should consider to make (applications of) data science more
secure. Then, we switch to the topic of data science for security, where we discuss
examples of applications of data science in security products. This discussion
includes a detailed look at the potential and challenges of applying machine learning
to the problem of detecting obfuscated JavaScripts. We then conclude the chapter
with a summary of topics every (security) data scientist should keep in mind when
working in this field.
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2 Key Concepts of Information Security

According to the Federal Information Security Management Act of 2002 (2012), the
term “information security” means protecting information and information systems
from unauthorized access, use, disclosure, disruption, modification, or destruction in
order to provide confidentiality, integrity, and availability (CIA):

• Confidentiality requires the implementation of authorized restrictions on access
and disclosure, which includes measures for protecting personal privacy and
proprietary information.

• Integrity means guarding against improper modification or destruction, and
includes information non-repudiation and authenticity.

• Availability finally means ensuring timely and reliable access to and use of
information.

For a cloud storage provider for example, confidentiality would mean that data
must be stored in encrypted form and that there is a key management scheme in place
that makes sure that only authorized entities should be able to decrypt it. In its
simplest form, a customer would do the encryption, decryption, and key manage-
ment in his or her own trusted infrastructure and send and receive encrypted files
only. However, this way, the cloud cannot look at the data and functionality such as
file indexing and searching. Thus, storing the same file submitted by multiple users
only once (de-duplication) cannot be done. To be able to do this, the key must be
known to the cloud, which means the cloud should be trusted. To keep the attack
surface small, access to the key stored in the cloud must happen on a need-to-know
basis and access should be logged. Furthermore, data in transit, when transferred
from or to the customer or when moved around in the cloud, should be encrypted
as well.

Simply encrypting data is not enough, however, as without integrity protections,
the employees of the cloud provider could still modify the encrypted files at the bit
and byte level without the customer easily noticing this when decrypting the files and
looking at them. And without enough resources to handle peak times or denial-of-
service attacks, a customer might be cut off from the data (for some time), which
could cause significant financial losses.

Hence, if information infrastructures do not have the desired properties with
respect to CIA, they might not work as expected. If these infrastructures are in the
big data domain, CIA issues might even be magnified by the velocity, volume, and
variety of big data (Cloud Security Alliance 2013b). This will be explored in more
detail in the next section.
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3 Security of Data Science

In this section, we discuss challenges and solution approaches related to the security
of data science methods and applications. Since any data product needs an infra-
structure to run on, a piece of software that implements it, data that fuels it, and
customers that feel comfortable using it, we provide a brief overview and references
to more in-depth material on (1) infrastructure security, (2) software security,
(3) data protection, and (4) data anonymization. Furthermore, we discuss (5) exam-
ples of attacks on machine learning algorithms.

3.1 Infrastructure Security

Infrastructure security is concerned with securing information systems against
physical and virtual intruders, insider threats, and technical failures of the infrastruc-
ture itself. As a consequence, some of the more important building blocks to secure
an infrastructure are access control, encryption of data at rest and in transit, vulner-
ability scanning and patching, security monitoring, network segmentation, firewalls,
anomaly detection, server hardening, and (endpoint) security policies. Resources
such as the NIST special publications series (National Institute of Standards and
Technology 2017) or the CIS top 20 security controls (Center for Internet Security
2017) provide guidance and (some) practical advice. However, getting all of this
right is far from easy and failing might carry a hefty price tag.

In 2007, for example, Sony was accused of having some serious security vulner-
abilities. In an interview, Sony’s senior vice president of information security stated:
“It’s a valid business decision to accept the risk of a security breach. I will not invest
$10 million to avoid a possible $1 million loss” (Holmes 2007). The data theft and
outage of the PlayStation network in 2011 cost Sony $171 million (Schreier 2011).
The Sony Pictures hack in 2014 (Risk Based Security 2014), where personal
information of employees were stolen, cost Sony $35 million. Nevertheless, as
Sony stated, it is indeed a valid business decision to limit investments in security.
But such decisions should be made in full awareness of the value of the assets that
are at stake, especially in light of the fact that massive amounts of user accounts or
data can pose a very attractive target for cyber criminals: they could steal or destroy it
and then ask for a ransom to restore it, they might sell it on the black market, or
misuse it to perform other crimes.

The fact that many companies have failed to secure their infrastructure can be
considered an anecdotal proof that this is a complex task and should not be done
without involving security experts. This is even more true when big data systems are
involved, since they might require the implementation of new use-case or product-
specific security measures (Moreno et al. 2016). For a checklist of what should be
considered when building and securing big data systems, check out the top 100 best
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practices in big data security and privacy (Cloud Security Alliance 2016). However,
note that many of the best practices also apply to “normal” information systems.

Fortunately, data scientists do rarely have to build and secure an infrastructure
from scratch. However, they often have to select, configure, and deploy base
technologies and products such as MongoDB, Elasticsearch, or Apache Spark. It is
therefore important that data scientists are aware of the security of these products.
What are the security mechanisms they offer? Are they secure by default? Can they
be configured to be secure or is there a need for additional security measures and
tools? Recent events have demonstrated that this is often not the case.

In January 2017, 30,000 MongoDB instances were compromised (Pauli 2017b)
because they were configured to accept unauthenticated remote connections. The
underlying problem was that MongoDB versions before 2.6.0. were insecure by
default. When installed, the installer did not force the user to define a password for
the database admin account, and the database service listened on all network
interfaces for incoming connections, not only the local one. This problem was well
known and documented (Matherly 2015), but apparently, many operators of such
instances didn’t know or didn’t care. Just one week later, the same hackers started to
attack more than 35,000 Elasticsearch instances with ransomware (Pauli 2017a).
Most of these instances were located on Amazon Web Services (AWS) and provided
full read and write access without requiring authentication.

It is important to keep in mind that many of these new technologies are designed
to facilitate easy experimentation and exploration, and not to provide enterprise-
grade security by default. The examples mentioned in the previous paragraph are
certainly not the only ones that illustrate this problem. A broader study in the area of
NoSQL databases revealed that many products and technologies do not support
fundamental security features such as database encryption and secure communica-
tion (Sahafizadeh and Nematbakhsh 2015). The general advice here is that before
setting up such a technology or product, it is important to check the security features
it offers and to verify whether the default configuration is secure enough. If problems
are identified, they should be fixed before the product is used.

3.2 Software Security

Software security sets the focus on the methodologies of how applications can be
implemented and protected so that they do not have or expose any vulnerabilities. To
achieve this, traditional software development life cycle (SDLC) models (Waterfall,
Iterative, Agile, etc.) must integrate activities to help discover and reduce vulnera-
bilities early and effectively and refrain from the common practice to perform
security-related activities only toward the end of the SDLC as part of testing. A
secure SDLC (SSDLC) ensures that security assurance activities such as security
requirements, defining the security architecture, code reviews, and penetration tests,
are an integral part of the entire development process.
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An important aspect of implementing an SSDLC is to know the threats and how
relevant they are for a specific product. This allows prioritizing the activities in the
SSDLC. For data products, injection attacks and components that are insecure by
default are among the biggest threats. Many data products are based on immature
cutting-edge technology. They process data from untrusted sources including data
from IoT devices, data from public data sources such as Twitter, and various kinds of
user input, to control and use the data product.

For instance, if the code assembles SQL queries by concatenating user input and
instructions for the database, this can turn out badly. As an example, consider the
following line of code where a SELECT query is built and where userinput is
provided by the user:

String query = "SELECT name, description from Product WHERE name
LIKE '%" + userinput + "%'";

If the user (an attacker in this case) specifies the following data as userinput,

' UNION SELECT username, password FROM User--

then the following query is built:

SELECT name, description from Product WHERE name LIKE '%' UNION
SELECT username, password FROM User--%'

This query is syntactically correct (note that—is used in SQL for comments,
which means that the part—%’ will be ignored by the database system) and will not
only return all products, but also all usernames and password that are stored in
table User.

The solution to this so-called SQL injection problem seems simple: input data
must be sanitized so that if the data contains SQL commands, it is just interpreted as
textual data and not as a potentially harmful SQL command. Another safeguard to
protect from SQL injection is to use only minimal access rights for the technical
database user that executes the query. This cannot completely prevent SQL injection,
but in case of a vulnerability, it serves as a damage control mechanism to make sure
that the amount of data that can be accessed by the attacker is limited.

However, although the mechanisms to prevent SQL injection vulnerabilities are
well known, history shows that they are not used consistently in practice—even if
incidents related to SQL injection regularly make it into the headlines of mass media.
For instance, in 2008, SQL injection was used to steal more than 134 million credit
card data records from Heartland Payment Systems (Krebs 2009). Three years later,
Global Payment Systems faced the same problem and lost about $92.2 million
during the incident (Krebs 2012). Even now, the problem is still around. In 2016,
data of 55 million voters were stolen from Comelec, the Philippines Commission on
Elections (Estopace 2016), and an SQL injection vulnerability might also have
played an important role in the incident of the Panama Papers (Burgees and
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Temperton 2016), where 11.5 million financial documents about offshore entities
were leaked.

Clearly, SQL might not see widespread use in big data systems. New technolo-
gies such as NoSQL databases are far more prominent. However, their security
history does not look much better, as a recent paper demonstrated similar issues with
injection attacks as SQL (Ron et al. 2016).

One reason why it is difficult to get rid of such vulnerabilities is that preventive
measures have to be considered by the developers and integrated into the code. If
they are not aware of such risks and security is not a crucial part of the SDLC they
are employing, it is very likely that vulnerabilities creep into the code because
countermeasures are missing completely or are implemented incorrectly. There
exists also no magic bullet in the sense of tools or formal proofs that can easily
verify whether a piece of software is secure, although there exist tools that can detect
some vulnerabilities. A good overview in this context is provided in (Software
Testing Help 2017).

In general, the following steps help to address common software security prob-
lems when building a (software) product:

• Make sure that third party technology or products used are as mature as possible.
• Make sure that third party technology or products used offer a broad spectrum of

security features and access controls options.
• Make sure that you have an SSDLC in place.

A good starting point to learn more about how to develop secure software are the
SSDLC models of Microsoft (Microsoft 2017b) and the Open Web Application
Security Project OWASP (OWASP 2017a). For more specific advice on what to
consider when developing web services and web applications, OWASP (2017b) or
Li and Xue (2014) offer well-suited sources. OWASP (2017b) lists the top 10 (web-)
application security risks and provides technical guidance on how to test for them
and how to avoid them. Five important takeaways from there are that developers
should check their web applications and services for the following problems:

• Incorrect or lack of input validation and data sanitation so that an attacker can
trick an interpreter or query engine to do things that were not intended.

• Incorrect implementation of authentication and session management.
• Exposure of sensitive data because of problems like (1) insufficient or missing

data encryption at rest and in motion, (2) password stores that do not use strong
adaptive and salted hashing functions with a work factor (e.g., PBKDF21 or
bcrypt2), or data leakage in log files.

• Incorrect implementation of the mechanisms to restrict what an authenticated user
is allowed to do. For example, checks whether a user has the right permissions to
execute an action might be done for all actions that a user can trigger via URL

1https://tools.ietf.org/html/rfc2898#page-9
2https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node5.html

15 Security of Data Science and Data Science for Security 271

https://tools.ietf.org/html/rfc2898#page-9
https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node5.html


entries that are exposed in the web-interface—but not for actions that could be
triggered by accessing portions of a website that are not exposed by such entries
(forceful browsing).

• Use of insecure configurations as a result of insecure default configurations,
incomplete or ad hoc configurations, outdated configurations, open cloud storage,
misconfigured HTTP headers, verbose error messages containing sensitive infor-
mation, or other root causes.

3.3 Data Protection

A core activity in data science is the processing of (large amounts of) data. For most
processing tasks, the data must be available in unencrypted form. This has two main
drawbacks. The first one is that when security measures such as access control fail,
attackers can easily steal the data and make use of any information it contains. To
make this more difficult, the data should always be stored in encrypted form. This
way, the attacker must steal the data when it is being processed or manage to steal the
keys used to encrypt it.

The second drawback is that the vast amount of processing power available in
data centers around the world cannot be exploited if the data contains confidential
information or is subject to data protection laws prohibiting the processing by
(foreign) third parties. For such cases, it would have to be possible to do the
processing in the encrypted space. Searchable encryption and homomorphic encryp-
tion (Prasanna and Akki 2015) offer interesting properties with this regard.

Searchable encryption (SE) introduced by Song et al. (2000) [see Bösch et al.
(2014)] for an overview of different approaches) can be divided into many different
subgroups. The core logic mostly consists of building an encrypted keyword search
index on the client side. A search is then performed using trapdoor functions. A
trapdoor function is a function that is easy to compute in one direction, but that is
difficult to compute in the inverse direction unless one knows a secret. The most
basic algorithms allow only queries with a single keyword and have performance
issues when new data is added. If data is frequently modified, removed, or added,
dynamic data search algorithms are required. Fuzzy-keyword search extends the
algorithm to tolerate (some) spelling mistakes. There are also methods that support
multiple keywords per query. SE offers methods to perform ranked search, for
example, by taking the access history of a user and the access frequency into
account. Although some research prototypes have been developed and partly also
made available for general use and experimentation [e.g., Popa et al. (2011)], several
limitations must be overcome before SE can be used widely in practice. One of these
limitations is that algorithms based on secret (symmetric) key cryptography usually
require a key exchange over a secured channel and offer only limited search
capabilities compared to traditional search engines. Another one is that public key
cryptography-based approaches are insufficient for modern big data systems because
of substantial computational overhead.
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Homomorphic encryption (HE) addresses the challenge to perform general com-
putations on encrypted data. HE allows performing simple operations such as
additions, multiplications, or quadratic formulas on ciphertext. It generates an
encrypted result, which when decrypted, delivers the same result as if the operations
were performed on the plaintext. This offers the ability to run calculations on
untrusted devices without giving up on data privacy. Craig Gentry (2009) described
the first Fully Homomorphic Encryption (FHE) scheme. This scheme allows
performing any desirable function on encrypted data. Unfortunately, FHE is cur-
rently far away from practical use, as it increases memory consumption and
processing times of even basic operations by about 6–7 orders of magnitude
(Brown 2017). Therefore, Somewhat Homomorphic Encryption (SwHE) techniques
are proposed. Compared to FHE, they provide better efficiency but do not support all
operations [see, e.g., Gentry et al. (2012)]. On the implementation side, there are
some HE research prototypes available such as by Halevi (2017). However, given
the current state of HE technology, it is expected that several years of further
research are required before HE is ready for productive use.

3.4 Privacy Preservation/Data Anonymization

In many cases, data science analyzes data of human individuals, for instance, health
data. Due to legal and ethical obligations, such data should be anonymized to make
sure the privacy of the individuals is protected. Data anonymization basically means
that any data record in the data set should not be easily linkable to a particular
individual. Obvious solutions include stripping the real name or the detailed address
of individuals from the records, but experience teaches that this is usually not enough
to truly anonymize the data.

For instance, in 2006, Netflix started an open competition with the goal to find
algorithms that allow predicting user ratings for films. As a basis, Netflix provided a
large data set of user ratings as training data, where both users and movies were
replaced by numerical IDs. By correlating this data with ratings from the Internet
Movie Database, two researchers demonstrated that it is possible to de-anonymize
users (Narayanan and Shmatikov 2008). Another example is the Personal Genome
Project, where researchers managed to de-anonymize about 90% of all participants
(Sweeney et al. 2013). Their basic approach was to link information in the data
records (birth date, gender, and ZIP code) with purchased voter registration lists and
other publicly available information.

To overcome these issues, a more scientific approach toward anonymization is
required. The question is the following: Is it possible to modify data such that the
privacy of the participants is fully protected without losing the essence of the data
and therefore its utility? In this context, “privacy protection” means that an attacker
should not be able to learn any additional information about the individuals than
what is directly provided by the data records, even when this data is correlated with
other information. Past and more recent research activities have provided several
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approaches that can help to achieve this, including generalization (Sweeney 1997)
and suppression (Cox 1980), k-anonymity (Samarati and Sweeney 1998), and
differential privacy (Dwork 2006). Each method has its advantages and drawbacks.

Suppression is a basic form of trying to achieve anonymity by either deleting
attributes or substituting them with other values. Generalization describes the
approach to blur data by replacing specific values with categories or ranges of
values. An attribute containing the age of a person is then translated to a range, so
33 may result in 30–39. Combining these methods can lead to k-anonymity, which
means that each record cannot be distinguished from at least k � 1 other records
when considering the personally identifying information in the records.

As an example, assume that a data set includes data records of individual. Each
record includes gender, age range, and disease from which the person is suffering.
Assume there are three records with gender female and age range 50–59. This
basically corresponds to 3-anonymity, as these three records cannot be distinguished
from one another based on the attributes gender and age range. k-anonymity also has
its limitations, especially if the diversity of the non-anonymized attributes is low. In
the previous example, let us assume that the disease is heart-related in all three cases.
This implies that if an attacker knows that Angela, who is 55 years old, is included in
the data set, then he directly knows that she is suffering from heart-related health
problems, as all female persons between 50 and 59 in the data set are suffering
from it.

The basic idea of differential privacy is that the actual values of the attributes of
any single record in the data set should only have a very limited effect on the
outcome of any analysis performed on the data. If this is the case, an attacker,
when querying the data set, cannot learn anything about a specific individual in the
data set as the received outcome is possibly independent of the actual attributes of
this individual. This is basically achieved by adding some noise to the result before it
is presented to the analyst. For example, let us assume that there are 100 records of
100 persons in a data set and the attacker knows of 99 persons whether they have a
heart-related disease or not (we assume that 33 of them have such an issue), but he
doesn’t know this of the remaining person, which we name Alice. If the attacker
performs the query “how many persons have a heart-related disease,” then he
directly knows Alice’s condition: If the query returns 33, Alice has no heart-related
problem, if it returns 34, Alice has a heart-related issue. When using differential
privacy, the query would not return the actual value, but it would distort it a little bit,
that is, the query would return a value in the neighborhood of 33 or 34, such as
30, 32, or 35. What’s important is that the returned value does not indicate whether
the true value is 33 or 34, which implies the attacker cannot learn anything about
Alice’s condition.

Obviously, any data anonymization method has its price as it has a negative
impact on the quality of the data and the precision of the results when doing data
analysis. Suppressing and generalizing data removes information, which means that
the results of any analysis performed on the data will become less precise. And in the
case of differential privacy, we usually get results that are “close to the correct
result,” but that usually do not correspond to the exact result. But this is the price of
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protecting the privacy of the involved individuals and this also implies that in
practice, it is important to carefully balance the privacy of the individuals and the
required precision of the analyses. A concise overview about anonymization
methods is given by Selvi and Pushpa (2015). Detailed information about privacy-
preserving data publishing and corresponding research can be found in the survey by
Fung et al. (2010).

3.5 Machine Learning Under Attack

The combination of sophisticated algorithms and untrusted data can open the door
for different kinds of attacks. In the 2010 Flash Crash (Kirilenko et al. 2017), the
New York Stock Exchange experienced a temporary market loss of one trillion
dollar caused by market manipulations. The trader Navinder Singh Sarao rapidly
placed and canceled orders automatically so that high-frequency trading firms
interpreted the signs incorrectly. In the beginning, they bought the spoof orders
and absorbed the sell pressure. Few minutes later, these long-term positions were
forcefully sold leading to a feedback loop. In times of big data, trading algorithms
often take news feeds like business publications, SEC filings, and Twitter posts into
account to make predictions. In 2013, this led to a loss of $130 billion in stock value
due to a fake Twitter message from the associated press about an explosion in the
White House (Foster 2013).

Mozaffari-Kermani et al. (2015) propose a method to generate data, which, when
added to the training set, causes the machine learning algorithms to deliver wrong
predictions for specific queries. Thus, this method could, for example, be used to
compromise the effectiveness of a system to diagnose cancer or to identify anomalies
in computer networks. Their method consists of two algorithms. The first one creates
data sets that statistically belong to the attacked class but are labeled like the target
class to which a bias should be created. The second algorithm then evaluates which
data set has the highest impact on the degradation of the model. For their method to
work well, the attacker must know the statistics of the training data set, the feature
extraction process, and the machine learning algorithms used. However, the only
true requirement is knowledge on the feature extraction process that maps a sample
onto a feature vector. If the training set is not public or based on publicly available
data and cannot be stolen, an attacker could construct a proxy training data set by
querying the predictor with artificial test instances and by observing its responses
(Nelson et al. 2008). And if the machine learning algorithm is not known, their
approach can be modified to cope with this case at the cost of some of its effective-
ness. A good countermeasure to this kind of attack is the use of a threshold value for
the returned accuracy metrics. At first, one might think that because an attacker must
be able to add training data to the training set, this poisoning attack is rather
impractical. However, in many cases, the training data and/or its labels do come
from untrusted sources or can at least be influenced by them. And even if the sources
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are trusted, consider that an attacker might have hacked one or multiple of those
sources because they were easier to hack than the system with the data product itself.

In recent years, machine-learning-as-a-service (MLaaS) has become a huge trend.
Tech giants such as Amazon Web Services (2017), Google (2017), Microsoft
(2017a), and many others offer customers to create and run machine learning
algorithms in the cloud, offering different services like facial recognition and natural
language processing. Some of these publicly accessible tools may contain sensitive
data within their model that has to be protected. Fredrikson et al. (2015) show how
confidential information of a machine learning model can be extracted by inverting
it. The authors are able to reconstruct the images of the training data of a facial
recognition system. For each image submitted, the system responds with a list of
names together with their confidence value. This allows an attacker to treat it as an
optimization problem finding the input that maximizes the confidence of a target
class. The time for reconstruction depends on the model and varies between 1.4 s and
21 min. The attack is also applicable if nothing about the model is known (black-
box) but takes significantly longer. Tramèr et al. (2016) improve the computation
time by starting with stealing the model using prediction APIs and then running the
inversion attack on the copy of the model. They further show how decision trees,
logistic regression-based classifiers, and neural networks can be stolen by just using
the provided interfaces and the rich information returned by MLaaS solutions.

4 Data Science for Security

After having discussed some of the security challenges a data scientist might face
when developing and using modern data science technologies, this section deals
with the opportunities of using data science to help solve major challenges in
information security. In this context, we are looking at three general application
areas: (1) anomaly detection, (2) malware detection and classification, and (3) threat
detection. In the next chapter, we are going to take a more detailed look at a specific
case study where machine learning was applied to detect obfuscated JavaScript code.

4.1 Anomaly Detection

The detection of anomalies is a major challenge in information security and has
many applications such as network intrusion detection, credit card fraud detection,
insurance claim fraud detection, insider trading detection, and many others. An
anomaly describes a single point or a set of data points within a large data set that
does not match the normal or usual behavior. In a network intrusion detection
system, this could be a large amount of login attempts or an attacker who scans
systems for open ports to get information about a targeted infrastructure. In credit
card fraud detection, this could be an anomalous transaction over a significantly
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larger amount than what is usually spent by the credit card holder. Another example
is using the credit card in a different context than usual, for instance in a different
country. In credit card fraud detection, this is a serious challenge due to the vastly
increased amount of online transactions that are difficult to assign to specific
locations. A third example of anomalous credit card usage would be a huge amount
of small transactions in a short time.

A broader overview about this topic and the performance of different machine
learning algorithms for anomaly detection is given in the survey by Chandola et al.
(2009). They show how machine learning can contribute to solve different anomaly
detection-based challenges. Their core conclusion is that there is currently no “one
size fits all” solution. Nearest neighbor and clustering-based techniques suffer when
data is high dimensional, because the distance measures cannot differentiate between
normal and abnormal behavior anymore. Classification-based algorithms deliver
good results but labeled data is often rare. Mahmud et al. (2016) give an overview
of machine learning algorithms and their performance in credit card fraud detection.
They achieve a classification accuracy of 98.25%, but the fraud detection success
rate is below 50% because the fraction of fraudulent credit card transactions in the
data set they used was small. According to the results, the highest detection rate is
achieved using RotationForest, KStar, and RandomTree models. Finally, Gulenko
et al. (2016) have evaluated machine learning algorithms for anomaly detection in
cloud infrastructures. They come to the conclusion that high precision and recall
rates can be achieved but the models suffer from aging effects. Therefore, models
have to be periodically retrained and updated. Specific answers about the required
periodicity are not given, however, and left open as future research.

The class imbalance problem that Mahmud et al. (2016) faced when they
developed their credit card fraud detection system is fairly common in anomaly
detection: the number of normal items, events, or observations is usually much larger
than those of anomalous ones. If this imbalance in the distribution of the normal and
the abnormal class(es) is not taken into account, a detector might perform poorly.
Two examples where this imbalance tends to be quite strong are credit card fraud
detection and network intrusion detection. Pozzolo et al. (2015) work with a data set
with credit card transactions from European cardholders in September 2013. This
data set has only 492 cases of fraud in the total of 2,84,807 transactions. Shiravi et al.
(2012) present a reference data set (the ISCX data set) for validating network
intrusion detection systems where, according to Soheily-Khah et al. (2017), attack
traffic accounts for only 2% of the overall traffic. While 2% is quite low, it might
easily be much lower, for example 0.01%, as in the application layer denial-of-
service data set of Viegas et al. (2017).

Fortunately, many techniques exist to handle such imbalanced class distributions.
One way to address the problem is to resample the training data to turn it into a more
balanced data set. In the example with the credit card transaction data mentioned
before, Pozzolo et al. (2015) performed a study on the impact of undersampling on
classification accuracy and probability calibration. They found that randomly
selecting and removing legitimate transactions to get a more balanced data set can
indeed increase classification accuracy. However, for some of the other data sets they
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used, this was not the case. An overview of this very active area of research—mainly
with focus on binary classification—can be found in Branco et al. (2016).

Another way to approach the problem is to make use of machine learning
algorithms that can cope better with (strongly) imbalanced class distributions.
Traditional methods like support vector machines or decision trees have a bias
toward the majority class since “. . . rules that correctly predict those instances are
positively weighted in favor of the accuracy metric, whereas specific rules that
predict examples from the minority class are usually ignored (treating them as
noise), because more general rules are preferred. In such a way, minority class
instances are more often misclassified than those from the other classes” (Galar
et al. 2012). Or in other words, if a credit card fraud detector would classify all
transactions as not fraudulent, the classifier could achieve 99% accuracy for a data
set where 1% of the transactions are fraudulent.

According to Krawczyk (2016), the most popular branch of machine learning
algorithms that aims at addressing this problem is cost-sensitive approaches where
learners are modified to incorporate penalties for (some) classes. “This way by
assigning a higher cost to less represented set of objects we boost its importance
during the learning process (which should aim at minimizing the global cost
associated with mistakes)” (Krawczyk 2016). However, for most of these
approaches, profound theoretical insights into why and how well they perform
with arbitrary imbalanced data sets is lacking. An overview over related work on
this topic can be found in Branco et al. (2016) or Galar et al. (2012).

The most important takeaway from this discussion is that one should be aware of
the imbalance problem when developing anomaly detection solutions.

A good starting point for a more in-depth study is Branco et al. (2016) and/or
Krawczyk (2016). Furthermore, another takeaway is that retraining is an overall
important task in anomaly detection as the normal behavior defined in the past will
usually not sufficiently represent the future. This question is also addressed in
general in novelty detection, which is the task of classifying data that differ in
some respect from the data that are available during training [Pimentel et al. (2014)].

4.2 Malware Detection and Classification

In the past few years, hundreds of millions of new and unique malware samples have
been found every year. However, most of these samples are very similar and belong
to a few thousand malware families only (Check Point 2016). One of the reasons for
this is that today, most malware authors modify and/or obfuscate their malware on a
per victim basis. This way, they can evade simple signature-based antivirus scan-
ners. To mitigate this problem, samples from known families should be recognized
and filtered, and only new ones or samples that are “different enough” should have to
be analyzed by malware analysts (if at all). Machine learning and big data seem to be
capable solutions to handle such a large amount of continuously evolving data and to
perform highly accurate classification tasks on it. For example, the next-generation

278 B. Tellenbach et al.



antivirus software from Cylance makes use of “. . . data-mining techniques to
identify the broadest possible set of characteristics of a file. These characteristics
can be as basic as the file size or the compiler used and as complex as a review of the
first logic leap in the binary” (Cylance 2017). They claim to extract the uniquely
atomic characteristics of the file depending on its type (.exe, .dll, .com, .pdf, .doc,
etc.).

The importance of this task for the research and anti-malware industry was
stressed by the fact that in 2015, Microsoft (2015) launched a contest to get new
inputs on how to do the classification of malware samples into malware families
from the community. The contestants were given a labeled training and a test data
set, each consisting of 10,000 samples from nine different malware families. The
results of this contest suggested that this task can be solved with very low multiclass
loss (around 0.003). However, to achieve this, the contestants had data such as the
assembly code of the binaries, which is difficult to extract without using dynamic
code analysis. Furthermore, modern malware hides its true nature and unpacks or
decrypts its malicious code only when run outside of an analysis environment. This
and scalability problems when having to run all suspicious binaries make approaches
based on dynamic code analysis less attractive than those based on static analysis.

Static code analysis describes all information about an application that can be
gained without running it. On Android systems, this is usually the apk file, where
security-relevant information such as API calls and even the source code itself can
easily be accessed. This is good news since G DATA (2016) reported an average of
9468 new malicious applications for Android per day during the first half of 2016. It
seems that due to their increased usage for mobile payment, mobile ticketing, and
many other business cases, mobile devices became a very attractive target for cyber
criminals.

Tam et al. (2017) provide a comprehensive overview of the challenges encoun-
tered when trying to detect and classify malicious Android applications. The authors
find that in 2012, popular antivirus systems had a detection rate from around
20–79.6%. In all cases, complex malware was not detected. In particular, the systems
often failed when the malware was obfuscated or when malicious Java code was
executed after it was dynamically loaded during runtime. They show that new
approaches from the data science domain can (easily) surpass traditional ones.
This is confirmed by Arp et al. (2014), where the proposed DREBIN method
achieves a detection rate of 97% with a low false-positive rate by combining
statistical analysis with support vector machines.

On platforms where the source code is not easily available, static analysis gets
more difficult. Narayanan et al. (2016) assess the performance of different machine
learning and pattern recognition algorithms on imaginary representations of malware
binaries. They find that samples from the same families result in a similar image
texture. With this approach, it was possible to achieve results that were nearly as
good as those of the winners of the Microsoft contest, but without having to extract
the assembly code of the malware.
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4.3 Threat Detection

Security information and event management (SIEM) (Zuech et al. 2015) technology
supports threat detection and security incident response through the (real-time)
collection and historical analysis of security events from a wide variety of events
and contextual data sources. Such events might include failed and successful
authentication attempts, the number of packets dropped by a firewall, or a report
by an antivirus program about the identification and blocking of a malicious file.

In 2016, the security operations center of IBM recorded more than 20 billion
security events per day (IBM 2016). This is still quite moderate when compared to
the numbers from fortune 100 telecommunication providers, which can face up to
one million events per second and up to 85 billion events per day (IBM 2013).
Traditional SIEM solutions relying on structured databases and (mostly) manual
definition of what is normal and malicious and/or abnormal behavior have difficul-
ties scaling up to these large amounts of data.

The use of big data solutions and machine learning is therefore the next logical
step in the evolution of such systems. Technologies such as Apache Hadoop and
Apache Spark offer fast and scalable methods to analyze vast amount of data.
According to Dark Reading (2012),

in an environment where its security systems generate 3 terabytes of data a week, just
loading the previous day’s logs into the system can [. . .] take a full day

and

searching among a month’s load of logs could take anywhere between 20 minutes to an hour
[. . .]. In our environment within HIVE, it has been more like a minute to get the same deal.

This is why companies such as HP and IBM put a lot of effort into the develop-
ment of systems using new data science technologies (IBM 2013). However,
determining which events are related to activities that are harmless, for example
because they stem from an attack that failed, and which are related to real threats, is a
challenging problem. In a large-scale experiment from HP, which had the goal to
identify malicious domains and infected hosts, more than 3 billion HTTP and DNS
Requests where collected from 900 enterprises around the world. They showed that
high true-positive rates are possible using decision trees and support vector machines
with a very limited amount of labeled data by simultaneously keeping the false-
positive rates low (Cloud Security Alliance 2013a). Another work demonstrates the
usage of a system called Beehive, which analyzed around 1 billion log messages in
an hour and successfully detected violations and infections that were otherwise not
noticed (Yen et al. 2013).
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5 Case Study: Detecting Obfuscated JavaScripts

To demonstrate the potential and the challenges of applying machine learning to
detect malware, this section describes in more detail the results of a recent analysis
that was done by Tellenbach et al. (2016).

JavaScript is a common attack vector to probe for known vulnerabilities and
subsequently to select a fitting exploit or to manipulate the Document Object Model
(DOM) of a web page in a harmful way. The JavaScripts used in such attacks are
often obfuscated to make them hard to detect using signature-based approaches. On
the other hand, since the only legitimate reason to obfuscate a script is to protect
intellectual property, there are not many scripts that are both benign and obfuscated.
A detector that can reliably detect obfuscated JavaScripts would therefore be a
valuable tool in fighting JavaScript-based attacks.

To evaluate the feasibility and accuracy of distinguishing between different
classes of JavaScript code, a classic machine learning approach was used. In the
first step, a data set was collected that contains JavaScripts and correct labels
(obfuscated or non-obfuscated). Next, 45 features were selected and extracted
from the JavaScripts in the data set. These features capture various aspects such as
frequency of certain keywords, number of lines, characters per line, number of
functions, entropy, and more. Based on this, several classification algorithms were
trained and evaluated. The following sample code was used to make visitors of a
hacked website connect to a server hosting the CrimePack exploit kit (Krebs 2017).
The script is obfuscated to hide the fact that it injects an iframe and to obfuscate the
URL it connects to:

tmssqrcaizo = "WYTUHYjE3cWYTUHYjE69WYTUHYjE66";
var makvvxmaqgh = "WYTUHYjE72";
var nlsysoyxklj =
"WYTUHYjE61WYTUHYjE6dWYTUHYjE65WYTUHYjE20WYTUHYjE6eWYTUHYjE61WYTU
HYjE6dWYT
UHYjE65WYTUHYjE3dWYTUHYjE22";
var zezugacgoqg =
"WYTUHYjE6eWYTUHYjE6fWYTUHYjE6aWYTUHYjE72WYTUHYjE73WYTUHYjE65WYTU
HYjE72WYT
UHYjE66WYTUHYjE6cWYTUHYjE72WYTUHYjE6f";
var nmcwycmeknp =
"WYTUHYjE22WYTUHYjE20WYTUHYjE77WYTUHYjE69WYTUHYjE64WYTUHYjE74WYTU
HYjE68WYT

(not shown)

var vbvvhagnggg = new Array();
vbvvhagnggg[0] = new Array(
tmssqrcaizo +
makvvxmaqgh +
nlsysoyxklj +

(not shown)

15 Security of Data Science and Data Science for Security 281



xmzvkbtpiof);
document[

"WYTUHYjEwWYTUHYjErWYTUHYjEiWYTUHYjEtWYTUHYjEeWYTUHYjE".replace(
/WYTUHYjE/g,
""

)
](

window[
"WYTUHYjEuWYTUHYjEnWYTUHYjEeWYTUHYjEsWYTUHYjEcWYTUHYjEaWYTUHYjEpW
YTUHYjEeWYTUHYjE".
replace(

/WYTUHYjE/g,
""
)
](vbvvhagnggg.toString().replace(/WYTUHYjE/g, "%"))

);

The script below is the unobfuscated version of the above script (URL is not the
original one). The de-obfuscated code is significantly easier for a security researcher
or any programmer to analyze:

document.write(
'<iframe name="nojrserflro" width="1" height="0"
src="http://localhost/index.php" marginwidth="1" marginheight="0"
title="nojrserflro" scrolling="no" border="0" frameborder="0"></
iframe>'
);

In general, there are many different ways how a script can be made hard to read
and understand.

To collect the non-obfuscated samples in the data set, JavaScripts were extracted
from the jsDelivr3 content delivery network, which contains many JavaScript librar-
ies) and the Alexa4 Top 5000 websites. This resulted in 25,837 non-obfuscated
samples, which includes both regular JavaScripts (as they have been written by the
developers) and minified JavaScripts (where whitespace have been removed and
function- and variable names have been shortened to reduce the overall size). To
collect the obfuscated samples in the data set, two different strategies were used.
First, a set of truly malicious (and obfuscated) JavaScript samples was received from
the Swiss Reporting and Analysis Centre for Information Assurance MELANI.5

However, this consisted of only 2706 samples. Therefore, additional obfuscated
samples were synthetically generated by obfuscating the non-minified JavaScripts
from the collected non-obfuscated samples. For this, six different, publicly available

3https://www.jsdelivr.com
4http://www.alexa.com
5http://www.melani.admin.ch
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obfuscators were used, which delivered an additional 73,431 samples. Overall, this
resulted in 76,137 obfuscated samples.

Based on this data set, the best classification performance could be achieved with
a boosted decision tree classifier. With this classifier, only 1.03% of the
non-obfuscated scripts were classified as obfuscated (false positives) and only
0.32% obfuscated scripts were classified as non-obfuscated (false negatives). Over-
all, boosted decision tree was the only classifier that achieved F1-scores above 99%
for both classifying obfuscated and non-obfuscated JavaScripts, demonstrating that
machine learning works well on this task.

Next, it was analyzed how well classification works to detect obfuscated
JavaScripts if the corresponding obfuscator is not used for any of the JavaScripts
that are used to train the classifier. The purpose of this analysis was to get an
understanding about how well the classifier can “learn about obfuscation in general.”
The results of this analysis varied greatly depending on the specific obfuscator left
out from the training set. For one obfuscator, the F1-score remained almost the same.
For the other obfuscators, the F1-score was impacted by a few percent up to almost
100%. Finally, it was analyzed how well the truly malicious JavaScripts can be
detected if the training set only includes the non-obfuscated and the synthetically
generated obfuscated JavaScripts. In this case, less than 50% of the malicious
JavaScripts were classified correctly as obfuscated.

This case study exhibits several interesting results and provides some lessons
learned when using machine learning to detect malware or malicious activity in
general:

• In general, classifying obfuscated and non-obfuscated JavaScripts works well,
provided that the obfuscators used for the obfuscated JavaScripts are also
represented in the data set used to train the classifier.

• Detecting obfuscated JavaScripts that use obfuscators not represented in the
training set is more difficult. While this might be improved somewhat by using
better-suited features, it clearly demonstrates that it is paramount to include
samples that use a wide range of obfuscators in the data set so the classifier can
learn a wide range of properties employed by different obfuscators. Generalizing
this to other scenarios indicates that it is important to use representative malicious
samples, whether it is actual malware or malicious activity in general.

• This directly leads to another challenge: It is difficult to get a large number of
truly malicious samples. This is not only the case for malicious JavaScripts, but in
general for “samples” that capture malicious behavior (e.g., network or system
intrusions). While creating synthetic malicious samples may help to a certain
degree, this has its limitations as it can usually not capture the full range of truly
malicious samples, as demonstrated by the final analysis described above.
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6 Conclusions and Lessons Learned

With respect to security, data science is a double-edged sword. On the one side, it
offers many new opportunities and a lot of potential to significantly improve
traditional security algorithms and solutions. Recent advances in challenging
domains such as anomaly detection, malware detection, and threat detection under-
line the tremendous potential of security data science.

On the other side, it comes with many challenges. Most of them, including
questions related to infrastructure and software security, can be addressed with the
following practices:

• Protect your information system with suitable security controls. Get an idea of the
complexity of the topic by checking out guides like the CIS top 20 security
controls (Center for Internet Security 2017) and consult with or hire experts to
protect your infrastructure.

• Implement an SSDLC to make sure that the software and services you develop are
as secure as possible and that they remain secure.

• Check out the top security problems related to a specific technology or service.
For example, the OWASP top 10 (OWASP 2017b) for web applications and
services.

• Study the default configuration and all of the configuration options of a compo-
nent to avoid insecure configurations.

• Keep in mind that anonymization is not perfect; whenever data privacy is critical,
one has to choose the anonymization method with care and balance the privacy of
the individuals and the required precision of the analyses.

• Check whether your system is susceptible to any of the various ways attackers
might try to exploit data-driven applications (data poisoning, model extraction,
etc.).

Nevertheless, recent incidents show that these practices are not widely used yet.
One of the reasons is that today’s security measures for data science heavily rely on
security by afterthought, which is not acceptable as security aspects have to be
considered during all steps of the development and product and data life cycle.

Other challenges require more research before they can be widely adopted,
including questions related to perform computations on encrypted or
anonymized data.
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