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�Introduction

Gestational diabetes mellitus (GDM) constitutes the most 
common metabolic disease of pregnancy, with a continu-
ously increasing prevalence [1, 2]. It has been associated 
with several maternal and fetal/neonatal complications [3, 
4]. Increased maternal age, increased pre-pregnancy body 
mass index (BMI), excessive weight gain during pregnancy, 
Aboriginal Australian, Middle Eastern and Pacific Islander 
ethnicity, positive family history of GDM, and parity are 
established risk factors for the development of GDM [5, 6]. 
GDM, similarly to type 2 diabetes mellitus (T2DM), is a 
multifactorial disease; its pathogenetic mechanisms are not 
yet fully understood. Genetic and acquired factors that affect 
insulin sensitivity and insulin secretion have been implicated 
to GDM development and determine the disease severity 
[7]. Hormonal, inflammatory, and immunologic factors con-
tribute to GDM pathogenesis. Suboptimal lifestyle, such as 
hypercaloric diet, unhealthy nutritional habits, and reduced 
physical activity, contributes to central obesity, a triggering 
factor for GDM [8, 9].

�Insulin Action and Sensitivity

A major pathogenetic mechanism for GDM is the reduced 
insulin sensitivity that occurs in normal pregnancy due 
to placental and maternal hormonal action. Insulin action 
is impaired at hepatic, muscle, and adipose tissue level 
[10–12]. Impaired post-receptor insulin signaling is mainly 
responsible for pregnancy-induced insulin resistance. 
Experimental studies showed impaired mRNA or protein 
expression of insulin signaling cascade components, such 
as insulin receptor substrate (IRS)-1 and (IRS)-2, as well 

as glucose transporter (GLUT)-1 and (GLUT)-4 in adipose 
tissue and muscle of women whose pregnancies were com-
plicated by GDM. Decreased IRS-1 tyrosine phosphoryla-
tion, decreased GLUT-4 insulin-induced translocation to the 
cell surface, and decreased glucose transport into the cell 
were also found in muscle and adipose tissue of women 
with GDM [13–16]. Similar post-receptor insulin defects 
have been found in the placenta of GDM-affected pregnan-
cies [17]. Chronic low-grade inflammation that character-
izes obesity, which often accompanies GDM pregnancies, 
contributes to insulin signaling impairment [18], as well as 
oxidative stress [19].

�Placental Hormones

Placental hormones, such as human placental lactogen 
(HPL) and placental growth hormone (GH), are opposed 
to insulin action [20]. HPL is produced by syncytiotro-
phoblast and is gradually increased during pregnancy until 
about 30th gestational week, when it reaches a plateau. It 
is correlated to fetal weight and well-being as well as pla-
cental function [21]. HPL is the main insulin resistance 
mediator during pregnancy. It acts as an “anti-insulin” 
agent in order to ensure adequate glucose supply to the 
embryo [22, 23]. HPL results in raised maternal blood 
glucose concentrations by increasing insulin resistance 
and raised free fatty acids concentrations by increasing 
lipolysis [24]. A sudden drop to HPL concentrations could 
indicate fetal distress [25–27]. Growth hormone (GH) is 
an anabolic hormone, involved in carbohydrate and lipid 
metabolism, and, when in excess, has diabetogenic proper-
ties, opposing insulin action [28]. Human placental GH is 
the main GH molecule produced during pregnancy, hav-
ing an effect on maternal insulin sensitivity [29]. It is pro-
duced mainly by placental syncytiotrophoblastic cells, and 
it is gradually increased by midpregnancy to term. Studies 
in transgenic mice showed severe insulin resistance induc-
tion by placental GH [30].
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�Maternal Hormones

Maternal serum GH, other growth factors, such as insulin 
like growth factor-1 (IGF-1), their binding proteins, prolactin 
(PRL), progesterone, and cortisol are altered in women whose 
pregnancies are complicated by as compared with unaffected 
pregnant women [31, 32]. PRL is produced, mainly, by ante-
rior pituitary lactotroph cells and, secondary, by the central 
nervous system, immune cells, nonpregnant uterus, placenta, 
amnion, decidua, and the mammary gland. The most well-
known action of PRL is lactation. Other PRL effects are 
mammary epithelial proliferation, corpus luteum function, 
and immune response [33, 34]. Evidence about PRL’s effect 
on insulin sensitivity is contradictory. Hyperprolactinemia, as 
in patients with a prolactinoma, exacerbates insulin resistance 
to the nonpregnant state [35, 36]. The latter effect regresses 
after treatment with dopaminergic receptor agonist [37]. In 
contrary, studies in nonpregnant healthy women (with normal 
prolactin concentrations) showed that lower prolactin concen-
trations were correlated to decreased insulin sensitivity and 
increased risk for diabetes [38, 39]. During pregnancy, PRL is 
also produced by decidual cells and fetal pituitary. Maternal 
PRL is increased gradually by conception to term [40]. In 
pregnant rats, increased prolactin concentrations have been 
correlated to a post-receptor insulin defect [20]. In humans, 
higher concentrations of PRL during the third trimester of 
pregnancy have been associated with decreased glucose tol-
erance, implying a causative relationship between hyperpro-
lactinemia and GDM [41]. In contrary, in another study, no 
difference in PRL concentrations has been found between 
GDM and controls [42]. Maternal, placental, and fetal adre-
nal steroids, progesterone, cortisol, estrogen, and androgens, 
also contribute to pregnancy-induced insulin resistance 
[43]. Progesterone, produced initially by the corpus luteum 
and later by the placenta, inhibits insulin action in vivo and 
in vitro, mainly by inhibiting the PI3-kinase pathway of the 
insulin signaling cascade in the adipocytes [44]. Cortisol can 
also induce insulin resistance through post-receptor insulin 
defect [20]. Androgen receptors are overexpressed in placen-
tas of GDM-affected pregnancies as compared to controls 
[45]. Although it is known that estrogens regulate carbohy-
drate metabolism, the underlying mechanisms are not fully 
understood. In the nonpregnant state, estradiol (E2) partially 
affects insulin signaling through modification of mitochon-
drial function [46]. In GDM-affected pregnancies, estrogen 
concentrations are lower as compared to unaffected pregnant 
women [47].

�Maternal Adipokines

Maternal adipokines have a significant effect on insulin 
action. Adiponectin, an adipose tissue-derived plasma pro-
tein, has a beneficial effect on carbohydrate metabolism 

by increasing insulin sensitivity [48, 49]. It is produced 
mainly by white adipose tissue (WAT). Adiponectin seems 
to express protective properties for the vascular endothelium 
and the heart through anti-inflammatory action and suppres-
sion of the atherosclerotic processes [50–52]. Higher con-
centrations of adiponectin have been associated with lower 
risk of T2DM development in nonpregnant women [53]. 
In pregnancy, evidence about adiponectin concentrations is 
not consistent; placental production of adiponectin has not 
been confirmed by all investigators [54, 55]. Some studies 
have demonstrated an increase in adiponectin concentra-
tions in early pregnancy and a gradual decrease thereafter 
compared with the prepregnancy state [56, 57]. Although 
evidence regarding gestational concentrations of adiponectin 
and carbohydrate metabolism is less clear, a link between 
hypoadiponectinemia and insulin resistance exists [57, 58], 
as pregnant women with GDM have lower adiponectin levels 
than healthy controls [59].

Another adipokine, leptin, is strongly involved to meta-
bolic issues affecting insulin secretion and action as well as 
tissue insulin sensitivity [60, 61]. Leptin is produced mainly 
by WAT adipocytes, proportionally to adipose tissue mass 
[62]. In a lesser degree, it is produced by brown adipose tis-
sue (BAT), placenta, skeletal muscle cells, ovaries, and gas-
tric cells. Leptin’s primary action is the regulation of energy 
homeostasis [63]. Leptin reduces insulin synthesis and 
secretion, whereas it increases insulin sensitivity [61, 64]. 
Obesity is associated with resistance to leptin action [65]. 
During pregnancy, placenta-derived leptin results in nearly 
a 100% increase in maternal serum concentrations [66, 67]. 
Further increased leptin concentrations have been found in 
GDM-affected women as compared to non-affected pregnant 
women [68, 69]. Both adiponectin and leptin gene polymor-
phisms have been correlated to GDM occurrence [70]. Low 
adiponectin and high leptin concentrations during the first 
trimester may predict GDM occurrence during later preg-
nancy [71, 72].

Fetuin B, a recently identified adipokine, impairs insulin 
action. Women with GDM-affected pregnancies have higher 
fetuin B concentrations as compared with controls [73]. 
Data on resistin, visfatin and apelin concentrations, and their 
association with GDM are not consistent. Other novel adipo-
kines, such as omentin and chemerin, have been associated 
to GDM development, and a causal effect is implied by some 
investigators [74].

�Immunological Changes and Low-Grade 
Inflammation

Normal pregnancy is accompanied by immunological 
changes and a low-grade inflammation that is occurred 
to the benefit of the fetus [75, 76]. Inflammation is exac-
erbated by obesity, a common risk factor of GDM, and 
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affects insulin sensitivity through post-receptor signaling 
defect. Inflammatory cytokines, such as tumor necrosis 
factor-α (TNF-α), have a direct adverse effect on insu-
lin action in healthy nonpregnant women, inducing insu-
lin resistance [77]. TNF-α is a transmembrane protein 
produced mainly by activated macrophages in response 
to immunological stimulus [78]. In a lesser degree, it is 
expressed by other cells, such as lymphoid cells, cardiac 
myocytes, endothelial cells, and adipocytes. It expresses 
a cytotoxic effect on many cells; simultaneously, it has 
a regenerative effect on tissues [79, 80]. TNF-α induces 
phosphorylation of the IRS-1, thus preventing the inter-
action of insulin with the insulin receptor and impairing 
insulin action. Interleukin-6 (IL-6) is a pro-inflammatory 
cytokine and an anti-inflammatory myokine expressed by 
immune cells, such as T-cells and macrophages, visceral 
adipocytes, osteoblasts, and vascular smooth muscle cells. 
It is the main stimulator of the production of many acute-
phase proteins. It impairs insulin-induced insulin receptor 
and IRS-1 phosphorylation, resulting to inhibition of the 
insulin signaling cascade [81]. C-reactive protein (CRP) is 
an acute-phase protein of hepatic origin that is increased 
in response to inflammation and IL-6 secretion. It acts 
through activation of the complement system, triggering 
phagocytosis by immune cells. CRP is associated to insu-
lin resistance in healthy individuals; high concentrations 
of high-sensitivity (hs)-CRP are indicative of higher risk 
for metabolic, cardiovascular, and cerebrovascular disease 
[82]. The Generation R Study showed that increased CRP 
concentrations during early gestation are associated to 
high risk of neonatal complications [83]. During normal 
pregnancy, low-grade inflammatory markers, such as CRP, 
IL-6, TNF-α, and GlycA, have found to be increased, sug-
gesting an upregulation of systemic maternal inflammation 
[75, 84]. In contrast to this normal maternal adaptation, a 
further increase of some inflammatory markers is consid-
ered a risk factor for adverse pregnancy outcomes, includ-
ing GDM. Specifically, it has been shown that women with 
GDM-affected pregnancies have increased IL-6 concen-
trations as compared to controls [85]. In a recent meta-
analysis, TNF-α has been found to be higher in GDM 
pregnancies compared to controls, independently of BMI 
[69]. CRP has been associated with GDM; an increase in 
its concentrations during early pregnancy is predictive of 
GDM development later in pregnancy [86, 87].

�Oxidative Stress

Normal pregnancy is considered a condition of increased 
oxidative stress. Several pathologic conditions during preg-
nancy, including GDM, are associated with a further aggra-
vation of oxidative stress. It is believed that oxidative stress 
is caused either by increased reactive oxygen species (ROS) 

production or by a reduction of the antioxidant capacity [19]. 
Both an increase in oxidative stress markers and a decrease 
in antioxidative factors have been found in GDM-affected 
pregnancies. ROS induce inflammatory response and inflam-
matory protein expression, aggravating the normal low-
grade inflammation and insulin resistance during pregnancy. 
Furthermore, increased protein oxidation due to enhanced 
oxidative stress could be implicated to GDM pathogenesis 
[87, 88].

�β-Cell Dysfunction and Insulin Secretion

�β-Cell Dysfunction

During normal pregnancy, pancreatic cell adaptation occurs 
to compensate for the increased need for insulin. β-cell 
expansion and hyperfunctioning occur early in pregnancy 
in order to cope with the decreased insulin sensitivity that 
occurs after the second half of pregnancy [89]. GDM is char-
acterized by decreased insulin response to oral glucose and 
protein, sluggish first-phase insulin secretion, and delayed 
peak insulin secretion [90]. Subclinical pre-existing β-cell 
dysfunction, rather than a gradual decline of β-cell function 
during pregnancy, and the effect of maternal hormones and 
inflammatory mediators (see Sect. 2) on β-cell function con-
stitute main mechanisms for the occurrence of GDM [91, 
92]. Pre-existing β-cell dysfunction, due to genetic predis-
position, does not allow for compensatory pancreatic β-cell 
hyperfunction to counter-regulate for the increased insulin 
resistance of pregnancy (Fig. 14.1) [93]. β-cell dysfunction 
in pregnancies complicated by GDM persists postpartum as 
compared to controls. Given the normalization of insulin 
sensitivity after delivery, only a small percentage of women 
with GDM remain within diabetic ranges; nevertheless, the 
risk for developing T2DM in later life remains increased 
(Fig. 14.2) [94].
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Fig. 14.1  Pathogenesis of GDM: combination of maternal and placen-
tal hormonal alteration, genetic predisposition, and suboptimal life-
style. (Adapted from: Poulakos et al. [93])
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�Vitamin D Deficiency

Hypovitaminosis D, defined as low serum concentrations 
of 25-hydroxy- vitamin D3 [25(OH)D3], has been corre-
lated to β-cell dysfunction in the nonpregnant state; vita-
min D supplementation has been shown to improve insulin 
secretion in rats [95, 96]. During pregnancy, lower 25(OH)
D3 concentrations have been associated with GDM [97]. 
Moreover, lower 25(OH)D3 concentrations postpartum 
have been associated with impaired β-cell function in 
women with a history of GDM [98]. Increased parathy-
roid hormone (PTH) concentrations have been implicated 
to GDM pathogenesis, partially through insulin secretion 
impairment [99].

�Maternal Hormones

The effect of maternal hormones on β-cell function and 
proliferation during pregnancy is still not completely 
understood, and some results are contradictory. Despite 
that PRL is considered as a major regulator of β-cell 
expansion and hyperfunction during pregnancy, higher 
prolactin concentration has been correlated to decreased 
glucose tolerance during late pregnancy [41, 100]. PRL 
receptor-null mice have shown β-cell maladaptation dur-
ing pregnancy [101]. Moreover, PRL has been found to 
reduce menin concentrations, a known tumor suppression 
factor that also suppresses β-cell proliferation and may be 
implicated to GDM development in pregnant mice [102]. 
17β-estradiol is seemed to be involved to β-cell adaptation 
and insulin secretion during pregnancy, specifically β-cell 
survival [103, 104]. Progesterone receptor-knockout mice 

have increased insulin secretion probably due to increased 
β-cell mass [105]. The latter is in accordance with another 
experimental study that showed an apoptotic action of 
progesterone to pancreatic β-cells through an oxidative 
stress-dependent mechanism [106]. HPL stimulates insu-
lin secretion and may have a central role to regulation of 
islet function during pregnancy [107]. Recent data suggest 
a leptin-induced decrease of insulin secretion by direct 
action on β-cells. Moreover, leptin affects β-cell prolif-
eration and apoptosis and inhibits insulin gene expression 
[108].

�Low-Grade Inflammation

As mentioned above, the low-grade inflammation that charac-
terizes GDM affects glucose metabolism through an increase 
to insulin resistance. Additionally, an impairment on adipo-
kines production, possibly due to this inflammation, has also 
been correlated to β-cell dysfunction and decreased insulin 
secretion [69, 109]. Specifically, GDM-affected women have 
lower adiponectin concentrations as compared with controls 
[69, 110]. This hypoadiponectinemia of GDM pregnancy 
has been associated to β-cell dysfunction [111]. As part of 
the low-grade inflammation, GDM-affected women have 
increased TNF-α concentrations [69]. Beyond insulin resis-
tance, TNF-α has a pro-apoptotic effect on β-cells [112]. 
The latter could contribute to the reduced insulin secretion 
of GDM. As mentioned above, GDM-affected women have 
lower concentrations of 25(OH)D3. Vitamin D deficiency has 
also been associated to increased concentrations of inflam-
matory markers that could further deteriorate β-cell function 
[113].
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Fig. 14.2  T2DM development 
in women with prior 
GDM. Women with a history of 
GDM have increased probability 
of developing GDM in later life 
due to genetic predisposition and 
suboptimal lifestyle. (Adapted 
from: Poulakos et al. [93])
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�Oxidative Stress

Beyond insulin resistance, oxidative stress per se or as a 
consequence of inflammation and hyperglycemia has been 
linked to decreased insulin secretion during the nonpreg-
nant state [114]. GDM is characterized by increased oxida-
tive stress as it is determined by increased concentrations 
of advanced glycosylated end-products (AGEs) and other 
markers of oxidative lipid and protein damage [88, 115]. 
Recently, a furan fatty acid metabolite, 3-carboxy-4-methyl-
5-propyl-2-furanpropanoic acid (CMPF), has been recog-
nized as a possible negative regulator of β-cell function, 
inhibiting insulin synthesis and secretion through oxidative 
stress and mitochondrial dysfunction in human and mouse 
islets. Women with GDM have increased concentrations of 
CMPF as compared with controls [116]. Moreover, in GDM-
affected women, CMPF predicted lower β-cell function indi-
ces [92].

�Autoimmunity

A rare cause of GDM is an autoimmune destruction of 
pancreatic β-cells, similar to that of type 1 diabetes melli-
tus (Τ1DM). Autoimmune GDM consists in less than 10% 
of cases. GDM-affected women with autoimmune form of 
diabetes often develop Τ1DM soon after pregnancy or latent 
autoimmune diabetes of adulthood (LADA) some years after 
delivery [117]. In a Swedish population, antibodies impli-
cated in Τ1DM pathogenesis [glutamic acid decarboxylase 
antibodies (GADA), islet cell antigen-2 antibodies (ICA)/
tyrosine phosphatase antibodies (IA2)] have been detected 
in 6% of women with GDM [118]. Specifically, the preva-
lence of GADA in GDM-affected women has been shown 
to extend between 0% and 11%, of ICAs between 1% and 
35%, of insulin autoantibodies (IAA) between 0% and 6%, 
and that of anti-IA2 between 0% and 6% [119]. Moreover, 
pancreatic autoantibodies may be developed in some GDM 
women postpartum [117]. GADA were positively associated 
with postpartum development of diabetes in women diag-
nosed with GDM [120]. As a consequence, positive GADA 
and other pancreatic autoantibodies in GDM-affected women 
can be predictive of postpartum T1DM development [121]. 
A recent meta-analysis has shown an association between 
HLA class II variants, which consists of up to 30–50% of the 
pathogenesis of Τ1DM, and GDM. Specifically, DQB1*02 
and DRB1*1302 alleles have been significantly associ-
ated with increased risk of developing GDM.  In contrary, 
DQB1*0602 seems to be a protective allele against GDM 
development [122]. HLA-DR6 alleles were also positive 
correlated to GDM development, whereas other haplotypes, 
such as HLA-DR2 and HLA-DR51, seem to be protective. 

Besides HLA-DR3 gene and HLA-DR6/DR9 heterozygote 
were associated to GDM severity and prognosis [123]. Other 
studies found no significant differences to the distribution of 
HLA class II polymorphism between GDM, impaired glu-
cose tolerance (IGT), and unaffected pregnant women [124]. 
It is obvious that the evidence about the relationship between 
GDM and autoimmunity is still controversial and more stud-
ies are needed to establish it.

�Genetic Causes

A rare cause of GDM is maturity-onset diabetes of the young 
(MODY) gene mutations. Several MODY gene mutations 
are present in GDM-affected women. MODY is an inherited 
form of diabetes resulting by a mutation of a single, autoso-
mic, dominant gene that disrupts insulin secretion. It may 
be inherited to the offspring by both maternal and paternal 
origin; less frequently, it can be caused by de novo gene 
mutation. Nowadays, several types of MODY have been 
recognized. Genes that are implicated to MODY develop-
ment are hepatocyte nuclear factor-1 homeobox a (HNF1a) 
gene that is responsible for MODY 3 development, glucoki-
nase (GCK) gene for MODY 2, hepatocyte nuclear factor-4 
homeobox a (HNF4a) gene for MODY 1, hepatocyte nuclear 
factor-1 homeobox b (HNF1b) gene that cause diabetes and 
renal cysts (MODY 5), insulin promoter factor (HPF1) gene 
for MODY 4, insulin gene for MODY 10, ABCC8 gene [sul-
fonylurea receptor-1 (SUR1) subunit] for MODY 12, potas-
sium inwardly rectifying channel subfamily J member 11 
(KCNJ11) gene for MODY 13, neurogenic differentiation-1 
gene (NEUROD1) for MODY 6, kruppel-like factor 11 (KLF 
11) gene for MODY 7, carboxyl ester lipase (CEL) gene for 
MODY 8, paired box-4 (PAX4) gene for MODY 9, and BLK 
gene for MODY 11 [125–133]. These monogenic forms of 
diabetes constitute less than 10% of GDM; MODY 2 has 
been recognized as the most frequent type associated with 
GDM [134]. Several other mutations of MODY genes have 
been detected in GDM women such as HNF1a, IPF1, insulin 
gene, and KCNJ11 gene [135–139]. However, a causal rela-
tionship between MODY and GDM has not been established 
yet. Further investigation is needed regarding the possible 
clinical implications of MODY gene mutations on maternal 
and fetal health [134].

�Conclusions

GDM is the most common metabolic complication of preg-
nancy. Its prevalence has been increasing over the years and 
parallels the increasing obesity trend. The main pathogenetic 
mechanism is insulin resistance as a result of maternal and 
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placental hormone alteration, maternal adipokine alteration, 
low-grade inflammation, and oxidative stress that accom-
pany both pregnancy and obesity. An additional pathoge-
netic mechanism is β-cell dysfunction either pre-existing, as 
a result of occult genetic predisposition, or due to hormonal 
and inflammatory effect of pregnancy and obesity. Less fre-
quent causes of GDM are autoimmune destruction of pan-
creatic β-cells (similarly to T1DM) and impaired insulin 
secretion caused by gene mutations, such as MODY.

�Multiple-Choice Questions

	 1.	 Gestational diabetes mellitus constitutes:
	(a)	 A rare disease
	(b)	 The most common metabolic disease of pregnancy
	(c)	 A disease that begins when healthy blood cells 

change and grow uncontrollably
	(d)	 The onset of Type 2 diabetes in pregnancy
	(e)	 A monogenic form of diabetes occurring in 

pregnancy
	 2.	 In gestational diabetes mellitus-affected pregnancies, 

estrogen concentrations are:
	(a)	 Equal as compared to unaffected pregnant women
	(b)	 Higher as compared to unaffected pregnant women
	(c)	 Lower as compared to unaffected pregnant women
	(d)	 Abolished during pregnancy
	(e)	 Are highly dependent of insulin concentrations

	 3.	 The Generation R Study showed that increased CRP 
concentrations during early gestation are associated to 
high risk of:
	(a)	 Asthma
	(b)	 Neonatal complications
	(c)	 Weight loss
	(d)	 Hypoglycemia
	(e)	 Maternal cardiovascular disease

	 4.	 Which is the main pathogenetic mechanism of gesta-
tional diabetes mellitus?
	(a)	 Insulin resistance as a result of maternal and placen-

tal hormone alteration, maternal adipokine altera-
tion, low-grade inflammation, and oxidative stress 
that accompany both pregnancy and obesity

	(b)	 Insulin as a result of maternal and placental hor-
mone alteration, maternal adipokine, low-grade 
inflammation and oxidative stress that accompany 
the obesity

	(c)	 Autoimmune destruction of pancreatic β-cells (sim-
ilarly to T1DM) and impaired insulin secretion 
caused by gene mutations, such as MODY

	(d)	 Insulin resistance in skeletal muscle resulting from 
physical inactivity during pregnancy

	(e)	 High levels of counter-regulatory hormones
	(f)	 Maternal overweight and obesity

	 5.	 Placental hormones, such as human placental lactogen 
(HPL) and placental growth hormone (GH) are:
	(a)	 Opposed to insulin action
	(b)	 Excellent drugs to treat gestational diabetes 

mellitus
	(c)	 Acts as a “pro-insulin” agent
	(d)	 Opposed to glucagon action
	(e)	 Supportive to insulin action

	 6.	 Inflammatory cytokines, such as tumor necrosis factor-α 
(TNF-α), have a direct adverse effect on insulin action in 
healthy nonpregnant women, inducing:
	(a)	 Insulin resistance
	(b)	 Gestational diabetes mellitus
	(c)	 C-reactive protein decrease
	(d)	 Lower risk for metabolic, cardiovascular, and cere-

brovascular disease
	(e)	 Beta-cell failure

	 7.	 Maternal, placental, and fetal adrenal steroids, proges-
terone, cortisol, estrogen, and androgens, also contribute 
to pregnancy-induced insulin resistance.
	(a)	 False
	(b)	 True

	 8.	 An anabolic hormone, involved in carbohydrate and 
lipid metabolism, when in excess, has diabetogenic 
properties, opposing insulin action.
	(a)	 Growth hormone
	(b)	 Epinephrine
	(c)	 Estrogens
	(d)	 Progesterone
	(e)	 Leptin

	 9.	 Inflammation resulting from impaired adipokine synthe-
sis has been correlated to β-cell dysfunction and 
decreased insulin secretion.
	(a)	 False
	(b)	 True

	10.	 In nonpregnant healthy women (with normal prolactin 
concentrations), lower prolactin concentrations are asso-
ciated with:
	(a)	 Decreased insulin sensitivity and lower risk for 

diabetes.
	(b)	 Decreased insulin sensitivity and high risk for 

diabetes.
	(c)	 Increased insulin sensitivity and low risk for 

diabetes.
	(d)	 Increased insulin sensitivity and high risk for 

diabetes.
	(e)	 No associations have been documented.

�Correct Answers

	 1.	 (b) The most common metabolic disease of pregnancy
	 2.	 (c) Lower as compared to unaffected pregnant women
	 3.	 (b) Neonatal complications
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	 4.	 (a) Insulin resistance as a result of maternal and placen-
tal hormone alteration, maternal adipokine alteration, 
low-grade inflammation, and oxidative stress that 
accompany both pregnancy and obesity

	 5.	 (a) Opposed to insulin action
	 6.	 (a) Insulin resistance
	 7.	 (b) True
	 8.	 (a) Growth hormone
	 9.	 (b) True
	10.	 (b) Decreased insulin sensitivity and high risk for 

diabetes
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