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�Introduction

The two main categories of lymphomas are Hodgkin’s dis-
ease (HD) and non-Hodgkin lymphomas (NHL). Together 
they not only comprise the most common malignancies in 
western countries, but, next to leukemias and brain tumors, 
also the third largest group of neoplasms in children up to 
14 years as well as the largest one in teenagers up to 24 years 
of age [1–3]. In 0–14-year-old children, NHL is slightly 
more common than Hodgkin lymphoma, whereas the con-
verse is true for teenagers and young, 15–24-year-old adults. 
Based on their specific biological, (immuno)phenotypic, and 
genetic features, the recently updated World Health 
Organization (WHO) classification guidelines distinguish 
already a large number of different NHL sub-entities [4], 
although the literature available for this review is still based 
on a more crude classification that merely comprises B- or 
T-cell lymphoblastic lymphoma, follicular (FL), diffuse 
large B-cell (DLBCL), Burkitt (BL), and anaplastic large 
cell lymphoma (ALCL), a system that hitherto has also 
formed the essential basis the prognostic classification and, 
consequently, the allocation to particular forms of 
treatment.

In children, lymphomas evolve in a tension field, in which 
a maturing immune system needs to arrange and familiarize 
itself with its own body’s intrinsic components and, at the 
same time, also to get accustomed to a multitude of environ-
mental exposures, not least various infectious agents [5]. A 
flawless genetic make-up of all contributing constituents is 
thus of crucial importance to guarantee the appropriate 

assembly of the encoded components and their efficient inter-
action in functional pathways and the required participation 
in the proper development of the immune system. Equally, 
dysfunctional or weakened germline components, be it in the 
form of major single-gene defects or perhaps likewise vital, 
but less well-recognized genetic modifiers, can easily inter-
fere with the normal physiological development in this par-
ticularly vulnerable stage and tilt the balance, among others, 
also toward neoplastic transformation. Part of these more or 
less clearly definable genuine heritable preconditions are also 
normally inert variants in constituents of a well-adapted 
immune system, which only become relevant under particular 
circumstances, for instance, the fortuitous exposure to par-
ticular environmental hazards. Such either overstimulating or 
disruptive conditions are chronic infections, primarily those 
with Epstein-Barr (EBV), human immunodeficiency (HIV) 
as well as human papillomaviruses (HPV), chronic inflamma-
tions, autoimmune diseases, treatments with certain drugs, 
and organ transplantations (Fig. 8.1) [5–14].

Considering the above, the identification and character-
ization of predisposing factors has thus rightfully become the 
focus of special interest especially also in lymphoma research 
[15]. The recognition and definition of such disease-
associated genetic variants is increasingly required for the 
management and care of patients not least because it often 
guides the appropriate choice and adaptation of therapy [16–
19]. Even when treated successfully, these patients require 
further surveillance, because they can develop second or sec-
ondary neoplasms. The distinction between de novo or inher-
ited disease-relevant germline mutations is a vital prerequisite 
for assessing the potential consequences for the patient her-
self as well as her respective family members and, therefore, 
also for enabling appropriate counseling [13, 20–22]. Last, 
but not least, the in-depth individual analysis together with 
the more general screening for such genetic determiners not 
only satisfies our scientific curiosity. It also broadens our 
overall knowledge and understanding of the normal 
physiological function and pathologic consequences of the 
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respective immune system components and their role in dis-
ease mechanisms, which in turn again inevitably enables us 
to continuously improve and personalize the treatment of the 
respective patients.

�Ascertainment of Genetic  
Predisposing Factors

There are different tactics one can use to search for and 
ascertain distinct or more general genetic predisposition fac-
tors (Table 8.1) [23]. The special choice of the appropriate 
mode is primarily a matter of the individual demands and 
opportunities as well as overall intentions. It can focus on 
either patient/family-relevant, gene-related, disease-
associated or population-based aspects. Whether and when 
such a predisposing condition is thus suspected and when it 
becomes apparent depends mainly on the respective screen-
ing and verification procedures, which in turn rely on the 
particular severity and overall consequences of the respec-
tive gene defects. In case these generate also obvious physi-
cal malformations or other clinical symptoms, such as 
disturbances of the hematological and/or immune system, 
they are often known already before lymphoma onset. 
Conversely, such conditions might only be suspected only 
once lymphoma is diagnosed. In such scenarios, the careful 
assessment of medical records and the patient’s family his-
tory together with his/her physical examination and key lab-
oratory findings will not only help to secure the cause of a 
preexistent genetic susceptibility but often also provide 

already those relevant hints, which can ease the identification 
of the responsible defective gene or at least the category or 
pathway to which it belongs to [15]. The most relevant indi-
cators comprise dysmorphic features, short stature, various 
types of cytopenias and immunodeficiencies, specific histo-
pathological lymphoma forms, and/or unproportional treat-
ment toxicities [1, 2, 24–29].

A first global impression about the type and frequency of 
the various disorders in children and adolescents with NHL 
can be obtained from information that can be extracted from 
three large lymphoma trial groups, the “European Intergroup 
for Childhood NHL (EICNHL),” the “International Berlin-
Frankfurt-Münster (i-BFM) Study Group,” and the “NHL-
Committee of the Italian Association of Pediatric Hematology 
Oncology (AIEOP)” [1, 2, 30].

Depending on the likelihood that a respective genetic 
defect is indeed present and directly or indirectly responsible 
for lymphoma development, the particular conditions can be 
subdivided into those in which such a connection is undoubt-
edly established, in which it has not yet been explicitly proven 
and in which it is either most likely unjustified and/or only an 
incidental concurrence of two otherwise unrelated events [1, 
2]. According to these studies, one can expect that at least 
60% of lymphoma cases in children and adolescents occur on 
the basis of bona fide predisposing genetic germline defects 
that are even commonly associated with already clinically 
recognizable syndromes. Compared to that, the group of het-
erogeneous and hitherto less clear-cut primary immunodefi-

Fig. 8.1  Relevant factors that contribute and participate to lymphoma 
development in children [5]

Table 8.1  Strategies to ascertain genetic factors that predispose to 
lymphoma

Based on distinctive or conspicuous clinical features
 � Ataxia telangiectasia
 � Nijmegen breakage syndrome
 � Constitutional mismatch repair syndrome
 � Primary immunodeficiency syndromes
 � Other rare DNA repair syndromes
Based on familial predisposition
 � Twin studies
 � Familial aggregation
 �   Case-control studies
 �   Cohort studies
 �   Registry-based studies
Based on genetic risk factors
 � Linkage studies
 � Genetic association
 �   Candidate genes
 �   Genome-wide association studies (GWAS)
Based on disease
 � Hodgkin’s disease
 � Non-Hodgkin lymphoma
 �   Diffuse large B-cell lymphoma (DLBCL)
 �   Burkitt lymphoma (BL)
 � Anaplastic large cell lymphoma (ALCL)

Adapted according to Cerhan and Slager [23]
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ciency conditions is with up to 15% much smaller, whereas 
other non-risk syndromes or not unambiguously classifiable 
conditions make up another 20% and 10%, respectively [2].

�Monogenic Disorders

The two main closely intertwined categories of monogenic 
disorders that not only predispose to lymphoma development 
but, with a certain propensity also to various other types of 
malignancies, are the DNA repair deficiency syndromes and 
inborn errors of immunities that include severe primary 
(SCID) as well as combined immunodeficiency (CVID) syn-
dromes. Apart from these two groups, the respective lym-
phoma treatment studies contain also a number of otherwise 
well-defined genetic syndromes and nongenetic conditions, 
such as those with merely one or more organ malformations, 
which seem to be hardly relevant in this context. Given an 
estimated overall lifetime risk for developing lymphoma of 
approximately 2%, the frequency of the various disorders 
and the rarity of their coincidental occurrence, one can 
expect that this may be an unfortunate pure chance event. 
Until at least conceptually understandable or proven, any 
such assumed causal link must therefore remain completely 
speculative.

Among the noteworthy findings that became apparent in 
these and other more disease- or condition-specific oriented 
publications is the unequal distribution of histological sub-
types in the different groups. Approximately 85% of patients 
with ataxia telangiectasia (AT) develop mature B-cell NHLs 
[5, 30–32], of which diffuse large cell forms (DLBCL) are 
roughly three times more common than Burkitt lymphoma 
(BL). Approximately 25% of patients with Nijmegen break-
age syndrome (NBS) develop peripheral T-cell lymphoma 
(PTCL) [17, 28, 30, 33, 34], and approximately 80% of 
patients with constitutional mismatch repair deficiency 
(CMMRD) develop T-cell lymphoblastic lymphoma (T-LBL) 
[26, 35–37]. In contrast, approximately 60% of B-cell lym-
phoproliferations that take place in patients with primary or 
secondary immunodeficiencies are oligoclonal and polymor-
phic [5, 30]. Of note is also the overall inferior prognosis and 
increased risk of treatment-related toxicity and death in such 
patients compared to those with sporadic forms of lymphoid 
malignancies [2].

Since we will only superficially portray the most common 
and prominent representative examples in each of these cat-
egories, we refer the interested reader to the many excellent 
and extensive reviews of individual disease forms that can be 
found in the scientific literature as well as in several internet 
resources and compendia, such as “Online Inheritance of 
Man (https://www.omim.org/),” “Orphanet (www.orpha.
net/),” and “Gene Reviews (www.ncbi.nlm.nih.gov/books/
NBK1116/).”

�Ataxia Telangiectasia

This autosomal recessive disorder has an estimated world-
wide prevalence of 1:40.000–1:100.000. It is caused by 
mutations in the ATM gene, whose protein product is a prom-
inent coordinating member of cellular signaling pathways 
that respond to DNA double-strand breaks as well as to oxi-
dative and other genotoxic stress situations [31, 38]. The 
clinical consequences of a constitutional ATM-deficient 
DNA damage response are cerebellar degeneration, telangi-
ectasia, immunodeficiency, cancer susceptibility, and radia-
tion sensitivity (X- and gamma-rays), the latter of which has 
to be especially accounted for in the medical management of 
affected patients.

About two-thirds of AT patients suffer from immune sys-
tem abnormalities, such as reduced T and B cells and low 
levels of one or more immunoglobulin classes. The lifetime 
risk to develop cancers is approximately 25%. The most 
common ones in those less than 20 years of age are lympho-
mas and leukemias, whereas adults also develop solid tumors 
including breast, liver, gastric, and esophageal carcinomas 
[31, 32, 39, 40].

�Nijmegen Breakage Syndrome (NBS)

NBS is a similarly well-characterized and clinically recogniz-
able autosomal recessive disorder that is caused by mutations 
in the NBN gene [33]. Although such cases can occasionally 
be encountered in any part of the world, a specific Slavic ori-
gin founder mutation (NM_02485.4:c.657_661del5) makes 
this mutation particularly common among Central and 
Eastern European populations. This circumstance facilitates 
its easy genetic verification especially in these geographic 
regions. The NBN gene encodes a subunit of the Mre11–
Rad50–NBN (NMR) DNA double-strand break (DSB) repair 
complex [41]. Affected children are exceptionally sensitive 
to ionizing radiation or radiomimetics and share a strong pre-
disposition to develop malignancies of predominantly lym-
phoid origin and, to a lesser extent, also brain tumors, such 
as medulloblastoma and glioma. Thus, more than 50% 
(56/105) of patients in the Polish NBS registry had devel-
oped a malignant disease, more than 90% (51/56) of which 
were lymphomas [28, 34]. Moreover, compared to sporadic 
lymphomas in children and in individuals with primary or 
secondary immunodeficiency disorders, they are primarily 
mature DLBCLs and BL or T-cell LBL/acute leukemias 
[28]. The estimated lymphoma risk is exceptionally high in 
NBS patients. Whereas it is increased already 70–250-fold in 
AT patients, it is increased more than 1.000-fold in NBS 
patients and therefore without doubt the highest among all 
the chromosome breakage and immunodeficiency syn-
dromes [28].
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The prognosis is generally poor because NBS patients 
experience an extremely high rate of malignancies and sig-
nificant treatment-related toxicities as well as infectious 
complications. Nevertheless, long-term survival can be 
achieved already in a substantial number of affected children 
when one accounts for their specific vulnerability during 
treatment and transplantation, a procedure that will also rees-
tablish their immunity again [17, 34].

�Constitutional Mismatch Repair Deficiency 
(CMMRD)

CMMRD can be caused by mutations in four genes, MLH1, 
MSH2, MSH6, and PMS2, that regulate DNA mismatch 
repair [25, 42]. The autosomal-dominant Lynch syndrome 
(LS) results from heterozygous monoallelic germline loss-
of-function mutations that predispose to the development of 
colorectal cancer, endometrial carcinoma, and other malig-
nancies in adults. The distinct autosomal recessive childhood 
version of CMMRD, on the other hand, is caused by bi-
allelic compound heterozygous or homozygous mutations 
that affect primarily the PMS2 gene (60%) [25, 26, 35, 37, 
43–46]. Affected children develop leukemias and lympho-
mas, brain (especially glioblastoma) and embryonic type, as 
well as LS-associated tumors [37]. Their overall prognosis is 
generally poor, not least because multiple such neoplasms 
often occur syn- or metachronously [36]. In contrast to AT 
and NBS patients, those with CMMRD experience no exces-
sive treatment toxicity and the clinical effects of their immu-
nodeficiency remain much subtler. Since one can often find 
particular physical attributes, i.e., café-au-lait spots, skin 
hypopigmentation, and pilomatricomas, in these patients that 
may otherwise also be encountered in other predisposing 
conditions, such as AT, Fanconi anemia, neurofibromatosis 
type 1, Li-Fraumeni syndrome, or Peutz-Jeghers syndrome, 
their differential diagnostic work-up requires clinical exper-
tise and genetic scrutiny. T-cell malignancies in patients with 
pigment anomalies and consanguine parents are thus a virtu-
ally unmistakable indicator for an underlying causative 
CMMRD.  Although several consortia put together helpful 
criteria and guidelines to support the diagnostic evaluation 
and surveillance of patients with CMMRD, their clinical 
utility has not yet been fully evaluated [25, 43–45]. One of 
the relevant recommendations put forward is that genetic 
testing in minors at risk is only warranted in case parents opt 
for surveillance or to exclude CMMRD prior to hematopoi-
etic stem cell donation [42].

So far, 56 patients with CMMRD and hematological 
malignancies in 48 families are known in the literature, 
approximately one-third of which had lymphomas or leuke-
mias [35, 45]. Their median age at diagnosis was 6  years 
(range 0.4–30  years). With 41 cases, lymphomas are the 

most frequent malignancies; 27 of them were of T- and 10 of 
B-cell origin (including 2 BL, 2 DLCBL, and 1 post-
transplant lymphoproliferative disease). Of special note is 
not only the high proportion of T-cell lymphomas but espe-
cially also their unique and hitherto unexplainable mediasti-
nal predilection. Approximately two-thirds of these patients 
were homozygotes and one-third compound heterozygotes. 
58% of the mutations affected the PMS2, 25% the MSH6, 
and 17% each the MLH1 and MSH2 gene [35, 44].

�Immunodeficiency Syndromes

The recent 2017 update of the “Primary Immunodeficiency 
Committee” of the “International Union of Immunological 
Societies” lists and categorizes 344 genetic defects that cause 
354 distinct disorders of immunity [47, 48]. Of these, more 
than 20 are known to predispose to lymphoma (Table 8.2). 
Since an in-depth review of all these lymphoma-predisposing 
disorders is beyond the scope of our review, we will only 
briefly touch some relevant points in three representative 
examples. The overall sketchy general conclusions one can 
draw from publications dealing with this subject are that PID 
patients have a 1.42-fold excess to develop cancer, which is 
largely due to lymphoma in specific PID populations [49, 
50]. The overall risk of individuals with PID to develop a 
malignant disease is 4–25%, which after infections consti-
tutes their second leading cause of death. With nearly 60% 
(8.4% HD and 49.6% NHL) lymphoma is the predominant 
cancer subtype and thus a considerable problem in primary 
as well as acquired immunodeficiency syndromes [5, 51]. 
The predominant type of lymphoma is of B-cell origin, of 
which many of the small cell types are EBV-related 
[51–55].

�Perforinopathies
The recently conceived term “perforinopathies” refers to a 
related group of perforin-deficient hyperinflammatory disor-
ders with an increased cancer susceptibility, which may 
either result from rare congenital gene-impairing mono- or 
bi-allelic mutations or, in less severe forms, also be due to 
more common hypomorphic alleles [56–58]. Bi-allelic per-
forin gene (PRF1) mutations, in particular, are the cause of 
the familial hemophagocytic lymphohistiocytosis type 2 
(FHL2) [59], a disease that shares some of its typical pre-
senting features with ALCL and accounts for approximately 
10–15% of all pediatric NHL [7, 60–63]. Approximately a 
quarter of these lymphoma patients carry monoallelic PRF1 
mutations but, remarkably, virtually none in SH2D1A or 
UNC13D, genes that are implicated in two other forms of 
FHL [60]. Mutations in SH2D1A are best known for causing 
the X-linked lymphoproliferative disease (XLP), which 
makes affected male carriers particularly vulnerable to 
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Epstein-Barr virus (EBV) infections [64]. One of the severe 
complications of the accompanying and uncontrollable lym-
phoproliferations are B-cell lymphomas that develop in a 
quarter of the respective patients [64]. Noteworthy in this 
context is also the postulated predisposing role of an other-
wise common activity-diminishing PRF1 gene variant (SNP 
A91V; rs35947132) in the nasal form of NK/T-cell lym-
phoma in adults, which is the most frequent EBV-related 
NK/T-cell malignancy [63].

�Wiskott-Aldrich Syndrome (WAS)
This rare X-linked genetic disorder is caused by heteroge-
neous mutations in the WAS gene, which is exclusively 
expressed in hematopoietic cells [65–68]. So far, approxi-
mately 300 different mutations are known, which are scat-
tered over the entire gene. The encoded gene product (WASp) 
belongs to a family of proteins that relay signals from the cell 
surface to the actin cytoskeleton [69]. The wide spectrum of 
clinical symptoms and hematopoietic effects one encounters 
in this disorder can be clearly attributed to the different types 
and location of the respective mutations and which are there-
fore also directly responsible for the severity of the disease. 
The ensuing problems range from only mild forms of iso-
lated micro-thrombocytopenia or neutropenia to severe 
forms of eczema, recurrent infections, and autoimmune and 
neoplastic diseases. The prevalence of malignancy in retro-
spective studies of patients with severe clinical presentations 
and an average age of onset of 9.5 years has been estimated 
to be around 20% and to especially affect those with autoim-
mune manifestations [65]. The most frequent, often EBV-
associated forms of neoplasms are extra-nodal NHLs [65]. 
One of the postulated mechanisms that apparently facilitate 
lymphoma development and progression in this disorder is 
that malfunctioning dendritic, T and NK cells are incapable 
to keep virally infected or otherwise altered preneoplastic B 
cells under control and to eliminate them properly [65, 67].

�Interleukin (IL)10 and IL-10 Receptor
Interleukin-10 (IL-10) and IL-10 receptor (IL-10R) deficien-
cies are the first recognized monogenic causes of very early 
onset severe inflammatory bowel disease [18, 70–72]. This 
immunoregulatory disorder predisposes to the development 
of unique monoclonal EBV-negative DLBCL subtypes of 
germinal center origin that are characterized by a constitu-
tive activation of the NF-kB pathway and a defective local 
T-cell immune response. Taking into account all 35 reported 
patients with IL-10 deficiency (5 with IL-10, 11 with 
IL-10R1, and 19 with IL-10R2), the likelihood to develop 
lymphoma is estimated to be 36% (5 of 14) at the age of 
7 years [72]. These observations clearly indicate that a defec-
tive IL-10 pathway is causatively involved in lymphoma 
development, although one also needs to point out that 
apparently neither gut inflammation itself nor a distinct pat-

tern of inflammation seems to be the essential causative fac-
tor. The increased risk might rather be more connected with 
the immunosuppressive therapy in the form of azathioprine, 
which four of the five patients reported by Neven et al. had 
received [72]. In line with this observation is that thiopurine 
treatment of inflammatory bowel diseases in adult patients 
also increases the risk for such lymphoproliferative disorders 
significantly [73].

�Genetic Factors Predisposing  
to “Sporadic” NHL

Despite the large number of hitherto already identified pre-
disposing monogenic causes, it is clear that even in these 
instances, the development of lymphoma is a multifactorial 
process with some probabilistic elements that depend on and 
involve a liable genetic architecture as well as the participa-
tion and interaction of a multitude of other intrinsic (as 
regards the respective cells, organs, and organism) as well as 
extrinsic environmental triggers [74]. So far, our understand-
ing of all these lymphoma-initiating and lymphoma-
promoting processes primarily derive from such rare 
monogenic subtypes. However, it is to be expected that the 
continuous systematic analyses of the rich source of “spo-
radic” cases, i.e., those in which such a definable genetic 
component is not (yet) known, will without doubt provide us 
with a plethora of novel findings and relevant insights. The 
best evidence that the class of sporadic lymphoma may 
indeed encompass many more distinct genetic sub-entities is 
the growing numbers of novel mutations that are still identi-
fied especially in rare forms of immunodeficiencies. The 
notion of a polygenic causation and possible inheritance of 
such sporadic cases derives, among others, mainly from the 
observation that lymphoma risk can aggregate in families, 
albeit without evidence of a clear-cut Mendelian segregation 
trait. One common interpretation of this phenomenon is that 
each lymphoma arises in a particular individual based on the 
combined risk-contributing effects of a large number of oth-
erwise irrelevant modifying genetic variants.

Again, there are multiple ways to assess a familial predis-
position and to identify germline susceptibility loci. These 
include twin, case-control, and registry-based studies for the 
former and linkage and genetic association studies for the 
later [23, 75]. Based on a comprehensive overview of such 
studies, Cerhan et al. reported that in the United States, the 
estimated overall lifetime risk for developing NHL outside of 
rare hereditary syndromes is 1 in 48 (2.1%) [23]. The relative 
risk for first-degree relatives is 1.7-fold elevated, whereas 
their absolute lifetime risk is 3.6%. The absolute risk is even 
lower for specific lymphoma subtypes. One noteworthy 
observation was that there is apparently both commonality 
and heterogeneity for risk factors by NHL subtype [10].

8  Genetic Predisposition to Non-Hodgkin Lymphoma
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�Familial Predisposition

Although family history is commonly used to identify indi-
viduals with a possible heritable predisposition, especially 
within the pediatric cancer population, it is hardly able to 
predict such a susceptibility in most patients [76, 77], a prob-
lem that has many reasons, in particular incomplete informa-
tion on family history, small family size, de novo mutations, 
and incomplete penetrance. Moreover, parents and other 
first- or second-degree relatives are often still young and can-
cer may not have developed yet. Notwithstanding all these 
obstacles, multiple lines of data nevertheless suggest that a 
family history of lymphoma is indeed associated with an 
increased risk of lymphoma. Familial risk is elevated for 
multiple lymphoma subtypes and familial risk does not seem 
to be confounded by nongenetic risk factors, although there 
are likely unidentified environmental risk factors and cluster-
ing of known (and unknown) such risk factors within fami-
lies that are difficult to exclude. This suggests that at least 
some lymphoma subtypes share a genetic etiology. Moreover, 
genetic factors are also likely to be subtype-specific because 
a family history of a particular subtype is also most strongly 
associated with a risk for the same lymphoma subtype.

�Twin Studies
The largest twin study that aimed to elucidate a genetic sus-
ceptibility to HD comprised altogether 187 dizygotic and 
179 monozygotic twins [78]. Compared to background rates, 
this study found a 100-fold higher risk for a monozygotic 
twin to also be affected by HD but no excess risk for a dizy-
gotic twin. The relatively young average age at diagnosis of 
the twins concordant for HD and the relatively short average 
interval between diagnoses in each pair of twins further cor-
roborate the importance of genetic factors in this context. 
There was also a 23-fold higher risk of NHL for a patient’s 
monozygotic twin but only a 14-fold higher risk for a 
patient’s dizygotic twin, which indicates that in these 
instances a shared environment is probably more relevant for 
their increased NHL susceptibility.

�Familial Aggregation
Case-control, cohort, and registry-based studies investigate 
whether and to which extent an inherited genetic risk to a 
particular disease, in this instance lymphoma, aggregates 
within families. Such studies are to a certain extent compli-
cated by the impossibility to reliably separate a shared 
genetic background from the impact of a shared environment 
as well as the need to also account for family size.

The largest case-control study available to date was per-
formed by the “International Lymphoma Epidemiology 
Consortium.” This meta-analysis comprised 17.471 NHL 
cases and 23.096 controls from 20 case control studies and 
found a 1.8-fold increased risk for patients who had a first-
degree blood-related family member with NHL. Albeit less 

pronounced, this risk was also elevated for those who had a 
first-degree relative with HD or leukemia [10, 23].

Owing to the fact that only few large cohort studies with a 
sufficient number and detailed information of familial lym-
phoma cases are available, the risk for specific NHL subtypes 
is difficult to assess. A Swedish study that covered 3.5 million 
people over a 35 years period found a 7.2- and 8.8-fold higher 
risk in children and young adults to develop HD if a parent or 
sibling also had HD [79], whereas another study reported a 
six-fold higher risk for siblings [80]. A cohort study that 
included 120.000 female teachers in California concluded 
that a history of lymphoma in a first-degree relative was asso-
ciated with a 1.7-fold higher risk of B-cell NHL [81].

In the Utah Cancer Registry, which linked population-
based family registry with cancer registry data, the risk of 
NHL was increased 1.7-fold in first-degree relatives of a pro-
band with NHL [82]. The most comprehensive data available 
on familial aggregation by lymphoma subtypes compared 
the cancer experience in first-degree relatives of lymphoma 
patients with that of relatives and matched population con-
trols. First-degree relatives of HD patients had a 3.1-fold 
increase in risk of HD whereas risk of HD was not associated 
with a family history of NHL [83]. One striking finding in 
these studies is the NHL subtype-specific clustering of risk 
as exemplified by the fact that first-degree relatives of indi-
viduals with DLBCL had a 9.8-fold increased risk of also 
being affected by DLBCL.

�Genetic Risk Factors

Linkage studies, which use multi-case families or sib pairs to 
search for shared regions of inherited alleles among affected 
individuals in an unbiased manner, were so far little reward-
ing as regards lymphoma research, a failure that might be 
due to small sample sizes or the lack of single high-penetrant 
variants in the investigated cohorts.

Genetic association studies, which rely on high-throughput 
genotyping of sequence variation in germline DNA became 
the predominant analytical method in genetic epidemiology. 
The two major types of association studies are candidate gene 
and genome wide association studies (GWAS).

Candidate gene studies are mainly driven by the a priori 
biologic knowledge of lymphoma and lymphoma-associated 
diseases, such as infectious or autoimmune ones, as well as 
those which derive from other cancers. Genes of particular 
interest in this context are those which are involved in 
immune function, cell cycle/proliferation, apoptosis, DNA 
repair, and carcinogen metabolism pathways. However, for a 
variety of reasons, most of these studies had only very lim-
ited success in identifying susceptibility loci in adult 
NHL. The most robust risk association was found between a 
tumor necrosis factor (TNF; rs1800629)/lymphotoxin-alpha 
(LTA; rs909253) haplotype and DLBCL [84], a SNP 
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(rs3789068) in the proapoptotic BCL2L11 gene and B-cell 
NHL, as well as a SNP (rs3132453) in PRRC2A in the HLA 
class III region and B-cell NHL [85].

GWAS uses dense microarrays with several hundred 
thousand SNPs that are distributed over the entire genome. 
As all loci are considered equally, such an analytic approach 
is considered as being hypothesis-free or “agnostic” [23]. To 
date, such GWAS studies have successfully identified 11 
regions that are associated with follicular lymphoma and 6 
with DLBCL risk in adults (Table 8.3). The respective com-
mon SNPs define loci with a minor allele frequency below 
5%, have small effect sizes, and are of largely unknown 

function. Moreover, so far hardly any of these loci have been 
also verified in replicate studies.

�Genetic Testing, Screening,  
and Counseling Issues

Although all these epidemiologic and “agnostic” mass screen-
ing methods for assessing, exploring, and defining genetic risk 
factors for lymphoma development have certainly their merits, 
they are hardly of any value for the daily management of indi-
vidual lymphoma patients. Compared to that, the hitherto pur-
sued approach to search for and verify a genetic cause in 
particular individuals, which relied primarily on the recogni-
tion of associated symptoms and, as such, on the a priori 
knowledge and alertness of the treating physicians, was still 
much more rewarding [15, 27, 51]. However, the growing 
awareness of the high frequency and heterogeneity of such 
underlying conditions, some of which are also often difficult 
to recognize and delineate, as well as the continuous improve-
ment of cost-efficient sequencing methods and bioinformatic 
tools, will definitely lead to a change in the diagnostic evalua-
tion tactic [77, 86]. Given the increasing interest in the role of 
germline cancer susceptibility in general and in the pediatric 
setting in particular, it is to be expected that the assessment of 
lymphoma-associated genetic predisposition factors will soon 
be performed in a more systematic manner. It is somehow sur-
prising that, to our knowledge, suitable screening programs 
have not yet been considered or implemented in current lym-
phoma treatment studies. Given what is known so far and 
given the high number and variety of such vastly unexplored 
predisposing immunodeficiencies, it is expected that com-
pared to other cancer and leukemia predisposing conditions 
such an endeavor must be especially worthwhile in the lym-
phoma setting. Several pilot projects dealing with other malig-
nancies in children provide some ideas how such programs 
could be installed [77, 86, 87]. As outlined in Fig. 8.2, there 

Table 8.3  GWAS-discovered loci predisposing to follicular and dif-
fuse large B-cell lymphoma in adults of diverse ethnic origin [86]

Chromosomal location SNP Nearest gene References
Follicular lymphoma
3q28 rs6444305 LPP [119]

6p21.32 rs10484561 MHC class II [120]

6p21.32 rs2647012 HLA- [121]

6p21.32 – HLA-DRß1 Glu [119]

6p21.32 rs17203612 HLA-DRA [119]

6p21.33 rs3130437 HLA-C [119]

6p21.33 rs6457327 C6orf15 et al. 
(STG)

[119]

8q24.21 rs13254990 PVT1 [119]

11q23.3 rs4938573 CXCR5 [119]

11q24.3 rs4937362 ETS1 [119]

18q21.33 rs17749561 BCL2 [119]

Diffuse large B-cell lymphoma (DLBCL)
2p23.3 rs79480871 NCOA1 [122]

3q27 rs6773854 BCL6/LPP [123]

6p21.33 rs2523607 HLA-B [122]

6p25.3 rs116446171 EXOC2 [122]

8q24.21 rs13255292 PVT1 [122]

8q24.21 rs4733601 PVT1 [122]

Fig. 8.2  Diagnostic approaches 
for the genetic assessment of pre-
disposing risk factors in lym-
phoma patients, whose individual 
and combined values, advantages, 
and disadvantages are outlined in 
the main text
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are several stepwise possibilities to do so. The most compre-
hensive one would be of course to sequence and compare 
DNA samples from the respective lymphoma together with 
one from the germline as well as the patient’s parents. 
Depending on the infrastructural possibilities as well as cost/
benefit calculations, one could perform such analyses either 
simultaneously or consecutively. The former is certainly more 
expensive but has the advantage that one can immediately 
compare the inheritance patterns of any identified abnormal 
results and thereby assess their validity and relevance in a 
rapid manner. The latter is probably cheaper because, in prin-
ciple, one can concentrate only on the comparative confirma-
tion of a smaller number of potentially relevant preselected 
markers. However, this approach could turn out to be more 
work- and also more time-consuming to obtain the essential 
information. Finally, there is also the question what one looks 
for and what one wants or needs to achieve in such a setting. 
For simple, clear-cut and easy to resolve diagnostic question, 
such as verification of a Nijmegen breakage syndrome or car-
rier screening for already known mutations, simple PCR anal-
yses are clearly sufficient. For any other diagnostic evaluation, 
we consider targeted screening as the nowadays necessary 
minimal and also most cost-efficient standard, whereby the 
respective screening panel should cover at least all those genes 
that have already been implicated in lymphoma development 
[88–90]. More extensive sequencing methods that will eventu-
ally also aid the discovery of novel variants of potential rele-
vance and interest, include whole exome sequencing (WES), 
which sooner or later will in any case most likely replace tar-
get sequencing, as well as whole genome sequencing (WGS), 
which has the advantage that it can also identify mutations in 
the non-coding extragenic part of the genome [86]. Moreover, 
a hitherto largely unexplored area in the field of lymphoma 
predisposition research is the conceivable contribution of the 
multitude of structural and copy number variations in the 
genome, especially of those which affect lymphoma-relevant 
gene regions. Although at present, these variants can be best 
assessed with DNA arrays, it is foreseeable that also this tech-
nique will eventually be replaced by whole genome as well as 
long-range sequencing procedures. With the appropriate bio-
informatic support, these tools are not only able to signifi-
cantly improve and refine these analyses, but at the same time, 
they will eventually also allow the simultaneously evaluation 
of associated epigenetic modifications, such as methylation.

Naturally, these remarkable technological advances and 
foreseeable developments in the diagnosis and research of 
lymphoma susceptibility also cause a large number of novel 
legal, ethical, social, and counseling problems, which can 
only be successfully resolved in a close interdisciplinary col-
laboration on a national but, even more so, on an international 
level. The particular topics that eventually need to be regu-
lated comprise the informed consent and assent for minors 
undergoing testing, the ensuing implications for healthy sib-

lings and parents of our patients, the timing of referral for 
genetic testing as well as the provision of a continuous educa-
tional and counseling support. All these issues are currently 
already addressed and discussed by a large number of experts 
from many countries who work together in two large recently 
established consortia, namely, the EU-funded COST Action 
“LEukaemia GENe Discovery by data sharing, mining and 
collaboration (LEGEND)” and the “IBFM Leukemia & 
Lymphoma Genetic Predisposition Committee.”
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