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Abstract. We utilize an ensemble of the fully convolutional neural net-
works (CNN) for segmentation of gliomas and its constituents from mul-
timodal Magnetic Resonance Images (MRI). The ensemble comprises of
3 networks, two 3-D and one 2-D network. Of the 3 networks, 2 of them
(one 2-D & one 3-D) utilize dense connectivity patterns while the other
3-D network makes use of the residual connection. Additionally, a 2-D
fully convolutional semantic segmentation network was trained to dis-
tinguish between air, brain, and lesion in the slice and thereby localize
the lesion the volume. Lesion localized by the above network was multi-
plied with the segmentation mask generated by the ensemble to reduce
false positives. On the BraTS validation data (n = 66), the scheme uti-
lized in this manuscript achieved a whole tumor, tumor core and active
tumor dice of 0.89 0.76, 0.76 respectively, while on the BraTS test data
(n = 191), our scheme achieved the whole tumor, tumor core and active
tumor dice of 0.83 0.72, 0.69 respectively.
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1 Introduction

Manual tracing, detection of organs and tumor structure from medical images
is considered as one of the preliminary step in diseases diagnosis and treatment
planning. In a clinical setup this time-consuming process is carried out by radi-
ologists, however, this approach becomes infeasible as the number of patients
increases. This necessitates the scope of research in automated segmentation
methods.

Diffused boundaries of the lesion and partial volume effects in the MR images
makes automated segmentation of gliomas from MR volumes a challenging task.
In the recent year’s convolutional neural networks (CNN) have produced state
of the art results for the task of segmentation of gliomas from MR images [6,9].
Typically, medical images are volumetric, organs being imaged are 3-D enti-
ties and henceforth we exploit the nature of 3-D CNN based architectures for
segmentation task.
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The segmentation generated by a trained network has an associated bias and
variance. Ensembling the predictions generated by multiple models or networks
aids in the reduction of the variance in the generated segmentation. In this
manuscript, we make use of 3 networks (two 3-D networks and one 2-D network)
for the task of segmentation of gliomas from MR volumes. Additionally, a 2-D
fully semantic segmentation network was trained to delineate the air, brain, and
lesion in a slice of the brain. The aforementioned network was used to reduce the
false positive generated by the ensemble. The predictions were further processed
by conditional random fields (CRF) & 3-D connected components analysis.

2 Materials and Methods

An ensemble of fully convolutional neural network were utilized to segment
gliomas and its constituents from multi modal MR volume. The ensemble com-
prises of 3 networks (two 3-D networks and one 2-D network). Two networks
(a 3-D and a 2-D network) utilizes dense connectivity patterns while the other
3-D network comprises of residual connection. The networks with dense con-
nectivity pattern were semantic segmentation networks and predicts the class
associated with all pixels or voxels that form the input to the network. The
network with residual connectivity pattern was composed of inception modules
so as to learn multi-resolution features. This multi-resolution network unlike the
other networks in the ensemble classifies only a subset of voxels.

A 2-D fully convolutional semantic segmentation (Air-Brain-Lesion Network)
was trained to delineate air, brain and lesion from axial slice of the MR volumes
and thereby localize the lesion in the volume. The predictions generated by the
ensemble were smoothened by using Conditional random fields. The smoothened
prediction and the output generated by the Air-Brain-Lesion network were used
in tandem to reduce the false positives in the prediction. The false positives in
the predictions were further reduced by incorporating a class-wise 3-D connected
component analysis in the pipeline. The pipeline utilised for segmentation of
glioma is illustrated in Fig. 1.

Fig. 1. Proposed pipeline for segmentation of Brain tumor and its constituents from
Magnetic Resonance Images.
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2.1 Data

Brats 2018 challenge data was used to train the networks [1–4,8] was used in this
manuscript for segmentation task. The training dataset comprises 210 high-grade
glioma volumes and 75 low-grade gliomas along with expert annotated pixel
level ground truth segmentation mask. Each subject comprises 4 MR sequences,
namely FLAIR, T2, T1, T1 post contrast.

2.2 Data Pre-processing

As a part of pre-processing, the volumes were normalized to have zero mean and
unit standard deviation.

2.3 Segmentation Network

The 3-D networks used in ensemble accepts 3-D patches as input while the 2-D
network accepts an axial slice of the brain as the input. The architecture, training
and testing regime associated with each network in the ensemble is explained in
the following paragraphs.

3-D Densely Connected Semantic Segmentation Network

Architecture: The network is a fully convolutional semantic segmentation net-
work. The network accepts input cubes of size 643 and predicts the class asso-
ciated with all the voxels in the input cube fed to the network. The network is
composed of an encoding and decoding section. The encoding section is composed
of Dense blocks and Transition Down blocks. The Dense blocks are composed of
a series of convolutions followed by non-linearity (ReLU) & each convolutional
layer receives input from all the preceding convolutional layers in the block. This
connectivity pattern leads to the explosion of a number of feature maps with the
depth of the network which was circumvented by setting the number of output
feature maps per convolutional layer to a small value (k = 4). The Transition
down blocks are utilized in the network to reduce the spatial dimension of the
feature maps.

The decoding or the up-sampling pathway in the network comprises of the
Dense blocks and Transition Up blocks. The Transition Up blocks are composed
of transposed convolution layers to upsample feature maps. The features from
the encoding section of the network are concatenated with the up-sampled fea-
ture maps to form the input to the Dense block in the decoding section. The
architecture of the network is given in Fig. 2.

Patch Extraction: Patches of size 643 were extracted from the brain. The class
imbalance among the various classes in the data was addressed by extracting
relatively more number of patches from lesser frequent classes such as necrosis.
Figure 3 illustrates the number of patches extracted for each class.
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Fig. 2. Densely connected convolutional network used for segmentation task. TU: Tran-
sition Up block; TD: Transition Down block; C: Concatenation block

The 3-D dense fully connected network accepts an input of dimension 643

and predicts the class associated to all the voxels in the input. The network com-
prises 77 layers. The dense connection between the various convolutional layers
in the network aids in the effective reuse of the features in the network. The pres-
ence of dense connections between layers increases the number of computations.
This bottleneck was circumvented by keeping the number of convolutions to a
small number say 4. Figure 2 shows the network architecture used in semantic
segmentation task.

Training: Stratified sampling based on the grade of the gliomas was done to
split the dataset into training, validation, and testing in the ratio 70: 20: 10.
The network was trained and validated on 182 and 63 HGG & LGG volumes
respectively. To further address the issue of class imbalance in the network, the
parameters of the network were trained by minimizing weighted cross entropy.
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Fig. 3. Histogram of patches sampled surrounding certain class

The weight associated with each class was equivalent to the ratio of the median
of the class frequency to the frequency of the class of interest [5]. The number of
samples per batch was set at 4, while the learning rate was initialized to 0.0001
and decayed by a factor of 10% every-time the validation loss plateaued.

Testing: During inference, patches of the dimension of 643 were extracted from
the volume and fed to the network with the stride of 32. CNN’s being a deter-
ministic technique is bound to generate predict the presence of the lesion in
physiologically impossible place.

2-D Semantic Segmentation Network

Architecture: The architecture of this network is similar to that of the archi-
tecture of the 3-D network. The only difference between the networks is the
usage of 2-D convolutions rather than 3-D convolutions. The network comprises
77 layers. The network accepts inputs of dimension 240 × 240 and predicts the
class associated with all the pixels in the input.

Slice Extraction: In the given dataset, apart from the T1 post contrast, sequences
such as FLAIR, T2 & T1 were 2-D sequences. Majority of the 2-D sequences in
the given dataset were acquired axially and thus had good resolution along the
axial plane. The 2-D network was trained on the axial slices of brain. The class
imbalance in the dataset was addressed by extracting slices which comprise of
at least one pixel of the lesion in it.

Training: The parameters of the network were initialized using Xavier initializa-
tion and the parameters of the network were learned by reducing the hybrid loss
(cross entropy & dice loss). The imbalance among the various classes was fur-
ther reduced by using weighted cross entropy rather than vanilla cross entropy.
The weights assigned to each class were determined as explained earlier. Hyper-
parameters such as batch size, learning rate, and learning rate decay etc. were
similar to the ones used to train the 3-D network.
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Testing: During inference, axial slices from the 3-D volume were fed to the
trained network to generate the segmentation maps.

3-D Multi-resolution Segmentation Network

Architecture: The architecture comprises of the two pathways viz high-resolution
pathway and low resolution like [6]. 3-D patches of size 253 were input to the
high-resolution pathway while 513 resized to 193 were input to the low-resolution
path in the network. The network predicts the class of the center 93 voxels of the
input. The feature maps in the low resolution pathway were upsampled using
transposed convolutions, to match the dimension with the feature maps from
high-resolution path. This network, unlike the previously explained two other
networks, differs by:

1. Predicting the class associated to a subset of voxels in the input 3-D patch.
2. Making use of dual pathway to captures associated global and local features.
3. Making use of inception module [10] (3 × 3, 5 × 5 & 7 × 7) so as to learn

multi-resolution features.

The architecture of the network is given in Fig. 4(a) and the building block
of each unit in the network is illustrated in Fig. 4(b).

Patch Extraction: Patches of sizes 253 and 513 centered around voxels were
extracted to form the training data to the network. The degree of class imbalance
was reduced by extracting more patches from under-represented classes.

Training: Parameters in the network were initialized with Xavier initialization
technique. The network was trained using the similar hyper-parameters that were
used for the other two other networks proposed in the ensemble. The network
was trained for 50 epochs and model that yielded lowest validation error was
utilized for inference.

Testing: For testing, the stride was set to 93 and patches of 253 and 513 were
extracted from the MR volume and input to the trained network to produce the
segmentation mask.

2.4 Post-processing

Air-Brain-Lesion Network. The Air-Brain-Lesion (ABL Net) network was
2-D network densely connected the fully convolutional network. The network
was trained to delineate lesion, air and the brain in a volume. The prediction
made by this network was used to reduce the false positives generated by the
segmentation network.

Architecture: The architecture of the network is similar to the 2-D network
utilized in the segmentation ensemble model.
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(a)

(b)

Fig. 4. 3-D Multi-Resolution Network for segmentation of gliomas from MR volumes.
(a) The architecture of the network. The top portion of the network accepts high-
resolution patches (253) while the bottom pathway accepts low-resolution input (513

patches resized to 193) as input. Both the high and low-resolution pathway is composed
to inception modules so as learn multi-resolution features. TC in the network stands
for transposed convolution and is used to match the spatial dimension of the features
in low-resolution pathway with those learned in the high-resolution path. (b) The
building block of the network. In the block, the dimension of the feature map in an
inception module was maintained by setting the padding to 0, 1, 2 for 3× 3, 5× 5 &
7× 7 respectively.

Slice Extraction: The Network was trained using axial slices as they correspond
to the highest resolution. Various constituents of the lesion were clubbed to form
the lesion while air and brain class labels were determined using a threshold on
the volume Fig. 5 illustrates the slice of the brain with the aforementioned classes.

Training and Testing: The training & testing regime were similar to the ones
used for the 2-D Densely connected segmentation network.

CRF. To the smoothen the segmentation predicted by the models a fully con-
nected conditional random fields with Gaussian edge potentials as proposed by
Krähenbühl et al. [7] was utilized. The posterior probabilities generated by each
model in the ensemble were averaged to form the unary potentials for the CRF.
The CRF was implemented by using open source code from the pydenscrf1. The
1 pydensecrf: https://github.com/lucasb-eyer/pydensecrf.

https://github.com/lucasb-eyer/pydensecrf
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(a) (b) (c) (d) (e)

Fig. 5. Data for training the Air-Brain-Lesion network. (a) FLAIR, (b) T1, (c) T2, (d)
T1ce, (e) Modified Ground truth. In image (e), black, gray and white represent Air,
Brain and lesion respectively.

output obtained after smoothening using CRF and the output predicted from
air-brain-lesion model were multiplied to reduce false positives in the generated
segmentation mask.

Connected Components. False positives in the segmentation mask were fur-
ther reduced by performing class-wise 3-D connected component analysis. All
components within each class which composed more than 12,000 voxels were
retained while the rest were discarded.

3 Results

The performance of the network was tested on 3 different namely: held out test
data (n = 40), BraTS validation data (n = 66) & BraTS testing data (n = 191)
(Table 1).

3.1 Performance of the Segmentation Networks on the Held Out
Test Data

On the held out test data (n = 40), the performance of each of the network in the
segmentation ensemble is given in Table 2(a, b, c). Table 2(d) showcases the per-
formance on the held out test data post ensembling the networks. Comparing the
whole tumor, tumor core and active tumor core dice score it was observed that
ensembling of networks aided in reducing the variance and increasing the overall
performance of the network. Figure 6 illustrates the segmentation generated by
a trained network.

The post-processing which included CRFs & 3-D class-wise connected com-
ponents aid in reducing the false positives generated by the networks. Figure 7
illustrates the effect post-processing on segmentation. The contribution of the
various the components in the post processing pipeline (CRF, ABL Net, & Con-
nected Components) are illustrated in Table 2.
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Table 1. Performance of individual networks and ensemble on held out test data (n =
40). In the table WT, TC, AT stand for the whole tumor, tumor core & active tumor
respectively.

3-D Densely connected network
WT TC AT

Mean 0.88 0.78 0.72
Std 0.10 0.26 0.31

Median 0.92 0.92 0.86

2-D Densely connected network
WT TC AT

Mean 0.88 0.72 0.69
Std 0.11 0.30 0.28

Median 0.91 0.88 0.82

3-D Multi-Resolution network
WT TC AT

Mean 0.88 0.74 0.73
Std 0.21 0.26 0.32

Median 0.89 0.81 0.83

Ensemble of network
WT TC AT

Mean 0.89 0.78 0.78
Std 0.08 0.21 0.20

Median 0.92 0.89 0.86

Table 2. The contribution of all the components used in post processing pipeline. (CC:
3-D Connected Components)

No post-processing
WT TC AT

Mean 0.85 0.76 0.71
Std 0.10 0.18 0.29

Median 0.88 0.86 0.84

CRF post-processing
WT TC AT

Mean 0.86 0.77 0.73
Std 0.09 0.19 0.28

Median 0.89 0.85 0.84

CRF + ABL Network
WT TC AT

Mean 0.86 0.79 0.74
Std 0.12 0.19 0.28

Median 0.91 0.85 0.84

CRF + ABL + CC
WT TC AT

Mean 0.89 0.78 0.78
Std 0.08 0.19 0.28

Median 0.92 0.89 0.86

(a) (b) (c) (d) (e)

Fig. 6. (a) FLAIR, (b) T2, (c) T1c, (d) Prediction, (e) Segmentation. In images d and
e, Green, Yellow & Red represent Edema, Enhancing Tumor and Necrosis present in
the lesion. (Color figure online)
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(a) (b) (c) (d)

Fig. 7. (a) FLAIR, (b) Without Post-processing, (c) With Post-processing, (d) Ground
truth. In images b, c and d, Green, Yellow & Red represent Edema, Enhancing Tumor
and Necrosis present in the lesion. (Color figure online)

3.2 Performance on the BraTS Validation Data

On the BraTS validation data (n = 66), the performance of each of the networks
that form the ensemble is listed in Table 3 respectively. Similar to the observation
seen in the held out test data, it was observed that ensembling prediction from
multiple networks helped in achieving better segmentation results by lowering
variance in the predictions.

Table 3. Performance on validation data (n = 66)

3-D Densely connected network
WT TC AT

Mean 0.85 0.74 0.71
Std 0.11 0.22 0.28

Median 0.88 0.82 0.83

2-D Densely connected network
WT TC AT

Mean 0.87 0.73 0.71
Std 0.10 0.27 0.27

Median 0.90 0.86 0.82

3-D Multi-Resolution network
WT TC AT

Mean 0.85 0.73 0.71
Std 0.17 0.26 0.30

Median 0.90 0.83 0.85

Ensemble of network
WT TC AT

Mean 0.89 0.76 0.76
Std 0.07 0.23 0.25

Median 0.91 0.86 0.86

3.3 Performance on BraTS Test Data

The performance of the proposed scheme on the BraTS test data (n = 191) is
illustrated in Table 4. It was observed that the network achieved good segmen-
tation on unseen data.



3-D Densely Connected CNN 495

Table 4. Performance of the Ensemble of Segmentation on the test data (n = 191)

Whole tumor Tumor core Active tumor

Mean 0.83 0.72 0.69

Std 0.19 0.29 0.29

Median 0.90 0.87 0.80

4 Conclusion

We made use of an ensemble of convolutional neural networks for segmentation
of gliomas. From the experiments carried out it was observed that the ensem-
ble aids in reducing the variance associated in the prediction and also helped
in increasing quality of the segmentation generated. The false positives gener-
ated by the network were minimized by using multiplying the predictions with
network trained to delineate lesion from MR volumes. The segmentation was
further post-processed by utilizing CRF & 3-D connected component analysis.
On the BraTS 2018 validation data (n = 66), the network achieved a competi-
tive dice score of 0.89, 0.76 and 0.76 for the whole tumor, tumor core and active
tumor respectively. On the BraTS test data, the network used in the manuscript
achieved a mean whole tumor, tumor core and active tumor dice of 0.83, 0.72
and 0.69 respectively.
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