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Abstract. Deep learning for regression tasks on medical imaging data
has shown promising results. However, compared to other approaches,
their power is strongly linked to the dataset size. In this study, we
evaluate 3D-convolutional neural networks (CNNs) and classical regres-
sion methods with hand-crafted features for survival time regression of
patients with high-grade brain tumors. The tested CNNs for regression
showed promising but unstable results. The best performing deep learn-
ing approach reached an accuracy of 51.5% on held-out samples of the
training set. All tested deep learning experiments were outperformed by
a Support Vector Classifier (SVC) using 30 radiomic features. The inves-
tigated features included intensity, shape, location and deep features.

The submitted method to the BraTS 2018 survival prediction chal-
lenge is an ensemble of SVCs, which reached a cross-validated accuracy
of 72.2% on the BraTS 2018 training set, 57.1% on the validation set,
and 42.9% on the testing set.

The results suggest that more training data is necessary for a sta-
ble performance of a CNN model for direct regression from magnetic
resonance images, and that non-imaging clinical patient information is
crucial along with imaging information.

Keywords: Brain tumor · Survival prediction · Regression ·
3D-Convolutional Neural Networks

1 Introduction

High-grade gliomas are the most frequent primary brain tumors in humans. Due
to their rapid growth and infiltrative nature, the prognosis for patients with
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gliomas ranking at grade III or IV on the Word Health Organization (WHO)
grading scheme [17] is poor, with a median survival time of only 14 months. Find-
ing biomarkers based on magnetic resonance (MR) imaging data could lead to
an improved disease progression monitoring and support clinicians in treatment
decision-making [10].

Predicting the survival time from pre-treatment MR data is inherently diffi-
cult, due to the high impact of the extent of resection (e.g., [18,23]) and response
of the patient to chemo- and radiation therapy. The progress in the fields of
automated brain tumor segmentation and radiomics have led to many different
approaches to predict the survival time of high-grade glioma patients. Further,
the introduction of the survival prediction task in the BraTS challenge 2017
[4,19] makes a direct performance comparison of methods possible. The current
state-of-the-art approaches can roughly be classified into

1. Classical radiomics: Extracting intensity features and/or shape properties
from segmentations and use regression techniques such as random forest
(RF) regression [6], logistic regression, or sparsity enforcing methods such
as LASSO [25].

2. Deep features: Neural networks are used to extract features, which are subse-
quently fed into a classical regression method such as logistic regression [7],
support vector regression (SVR), or support vector classification (SVC) [14].

3. A combination of classical radiomics and deep features (e.g., [15]).
4. Survival regression from MR data using deep convolutional neural networks

(CNNs) with or without additional non-imaging input (e.g., [16]).

Our experiments with 3D-CNNs for survival time regression confirmed obser-
vations made by other groups in last year’s competition (e.g., [16]), that these
models tend to converge and overfit extremely fast on the training set, but show
poor generalization when tested on the held-out samples. The top-ranked meth-
ods of last year’s competition were mainly based on RF. A reason for this may
be the relatively few samples to learn from. Classical regression techniques typ-
ically have fewer learnable parameters compared to a CNN and perform better
with sparse training data.

We present experiments ranging from simple linear models to end-to-end 3D-
CNNs and combinations of classical radiomics with deep learning to benchmark
new, more sophisticated approaches against established techniques. We believe
that a thorough comparison and discussion will provide a good baseline for future
investigations of survival prediction tasks.

2 Methods

2.1 Data

The provided BraTS 2018 training and validation datasets for the survival pre-
diction task consist of 163 and 53 subjects, respectively. The challenge ranking
is based on the performance on a test dataset with 77 subjects with gross total
resection (GTR).
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A subject contains imaging and clinical data. The imaging data includes
images from the four standard brain tumor MR sequences (T1-weighted
(T1), T1-weighted post-contrast (T1c), T2-weighted, and T2-weighted fluid-
attenuated inversion-recovery (FLAIR)). All images in the datasets are resam-
pled to isotropic voxel size (1× 1× 1 mm3), size-adapted to 240× 240× 155 mm3,
skull-stripped, and co-registered. The clinical data comprises the subject’s age
and resection status. The three possible resection statuses are: (a) gross total
resection (GTR), (b) subtotal resection (STR), and (c) not available (NA).

Segmentation: For our experiments, we rely on segmentations of the three
brain tumor sub-compartments (i.e., enhancing tumor, edema, and necrosis com-
bined with non-enhancing tumor). In the validation and testing dataset, the
segmentation is not provided due to the overlap with the data of the BraTS
2018 segmentation task. To obtain the required segmentations, we thus employ
the cascaded anisotropic CNN by Wang et al. [26]. Their method is publicly
available1 and contains pre-trained models on the BraTS 2017 training dataset,
which is identical to the BraTS 2018 [2,3,5] training dataset. This enables us to
compute the segmentations with the available models without retraining a new
segmentation network.

2.2 Deep Survival Prediction and Deep Features

Two different CNNs are built for the survival regression task (see Fig. 1). CNN1
consists of five blocks with an increasing number of filters, each block has two
convolutional layers and a max pooling operation. The last block is connected
to two subsequent fully connected layers. CNN2 consists of three convolutional
layers with decreasing kernel sizes with intermediary max-pooling, followed by
fully-connected layers connected to the single value regression target. To include
clinical information into the CNN2, the age and resection status were appended
to the first fully-connected layers of CNN2, which we refer to as CNN2+Age+RS.

Both CNN variants take the four MR sequences and additionally the corre-
sponding segmentation (see Sect. 2.1) as input, and output the predicted survival
in days. We observed no performance gain by the additional segmentation input
but it improved the training behavior of the network. Instead of regressing the
survival days, we also tested direct classification in long-, mid-, and short-term
survival, but without improvements.

We trained the CNNs with the Adam optimizer [13] and a learning rate of
10−5, and performed model selection based on Spearman’s rank coefficient on
a held-out set. Batch normalization and more dropout layers did not lead to
improvements, neither on the training behaviour nor the results.

Deep Feature Extraction: For the extraction of deep features, the size of
the two last fully connected layers are decreased to 100 and 20 elements. The
activations of these two layers serve as deep feature sets.
1 https://github.com/taigw/brats17.

https://github.com/taigw/brats17
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Fig. 1. Summary of the tested methods for GBM patient survival predictions. Left: The
architectures of our CNNs for direct survival regression. CNN2 was additionally used
to extract deep features from the fully connected layers. For direct regression, the two
last fully connected layers of CNN2 had 2048 and 384 elements. Right: Combination of
classical radiomics, shape, and atlas features. The top 30 features were used to predict
survival classes with a SVC.

2.3 Classical Survival Prediction

Feature Extraction: We extract an initial set of 1353 survival features from
the computed segmentation together with the four MR images (i.e., T1, T1c,
T2, and FLAIR).

Gray-Level and Basic Shape: 1128 intensity and 45 shape features are com-
puted with the open-source Python package pyradiomics2 version 2.2.0 [11]. It
includes shape, first-order, gray level co-occurrence matrix, gray level size zone
matrix, gray level run length matrix, neighbouring gray tone difference matrix,
and gray level dependence matrix features. Z-score normalization and a Lapla-
cian of Gaussian filter with σ = 1 is applied to the MR images before extraction.
A bin width of 25 is selected and the minimum mask size set to 8 voxels. The
features are calculated from all MR images and for all tumor sub-compartments
provided by the segmentation (i.e., enhancing tumor, edema, necrosis combined
with non-enhancing tumor).

Shape: 15 additional enhancing tumor shape features previously used as predic-
tors for survival [12,21] complement the basic shape features from pyradiomics.
These features are the rim width of the enhancing tumor, geometric heterogene-
ity, combinations of rim width quartiles and volume ratios of all combinations
of the three tumor compartments.

2 https://github.com/Radiomics/pyradiomics.

https://github.com/Radiomics/pyradiomics
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Atlas Location: Tumor location has previously been used for survival predic-
tion (e.g., [1]), therefore atlas location features are included. Affine registration is
used to align all subjects to FreeSurfer’s [8] fsaverage subject and its subcortical
segmentation (aseg) is used as the atlas. The volume fraction of each anatomical
region occupied by the contrast enhancing tumor is used as a feature, resulting
in 43 features in total.

Clinical Information: The two provided clinical features resection status and
age are further added to the feature set.

Feature Selection: Since the number of extracted features (n = 1353) is much
higher than the available samples (n = 163), a subset of features needs to be used.
Apart from being necessary for many machine learning methods, a reduction of
the feature space improves the interpretability of possible markers regarding
survival [20].

We analyzed the following feature selection techniques to find the most infor-
mative features: (a) step wise forward/backward selection with a linear model,
(b) univariate feature selection, and (c) model-based feature selection by the
learned feature weights or importances. We observed a rather low overlap among
the selected features by the different techniques, or even the parameterization
of the techniques. Consequently, we chose the feature subsets according to their
performance on the training dataset for different classical machine learning meth-
ods (e.g., linear regression, SVC, and RF). The best results were obtained by
the feature subset produced by the model-based feature selection from a sparse
SVC model, which consists of the features listed in Table 1.

Our model-based feature selection identified age by far as most important
feature. Additionally, a majority of the 30 selected features are intensity-based,
but the subset also contains shape and atlas features. We note that none of the
120 deep features was retained.

Feature-Based Models: Although the BraTS survival prediction task is set up
as a regression task, the final evaluation is performed on the classification accu-
racy of the three classes: short-term (less than 10 months), mid-term (between
ten and 15 months), and long-term survivors (longer than 15 months). As a con-
sequence, we include classification models in addition to the regression models in
our experiments. Since the prediction is required in days of survival, the output
of the classifiers needs to be transformed from a class (i.e., short-term, mid-term,
long-term) to a day scalar. We do this by replacing each class by its mean time
of survival (i.e. 147, 376, 626 days).

For our experiments, we consider the following feature-based regression and
classification models [9]:

– Linear and logistic regression
– RF regression and classification
– SVR and SVC
– SVC ensemble
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Table 1. Selected feature set with feature category (Cat.), tumor sub-compartment
(Comp.), and the MR image (Img.) in decreasing order of importance. ED: Edema, ET:
Enhancing tumor, NCR/NET: Necrosis and non-enhancing tumor. Feature importance
is decreasing from top to bottom.

Feature Cat. Comp. Img.

Age Clinical

Sphericity Shape ED

Optic chiasm Atlas

Small area low gray level emphasis Intensity ED T2

Correlation Intensity CE Flair

Cluster shade Intensity NCR/NET T1c

Small dependence high gray level emphasis Intensity CE T1c

Correlation Intensity NCR/NET T1

Maximum Intensity ED T1

Maximum Intensity ED T1c

Left amygdala Atlas

Information measure of correlation 1 Intensity NCR/NET T1

Large dependence low gray level emphasis Intensity NCR/NET T1c

Cluster shade Intensity ED T2

Inverse variance Intensity ED T1

Small dependence high gray level emphasis Intensity CE T2

Median Intensity CE T2

Busyness Intensity ED T1

Correlation Intensity NCR/NET T1c

Right-vessel Atlas

Large area low gray level emphasis Intensity ET Flair

Right caudate Atlas

Difference variance Intensity ED Flair

Right cerebellum cortex Atlas

Cluster prominence Intensity ED T2

Maximum 2D diameter slice Intensity ED

Inverse difference normalized Intensity CE Flair

Skewness Intensity ED Flair

Median Intensity ET T1

Right ventral diencephalon Atlas

We use 50 trees and an automatic tree depth for the RF models and linear
kernels for the support vector approaches, SVR, and SVC. To handle the multi-
class survival problem we employ the one-versus-rest binary approach for SVC
and logistic regression. The ensemble method consists of 100 SVC models that



DL vs. Classical Regression for Brain Tumor Patient Survival Prediction 435

are separately built on random splits of 80% of the training data. The final class
prediction is performed by majority vote. We choose an ensemble to increase
robustness against outliers or unrepresentative subjects in the training set. All
classical feature-based models are implemented with scikit-learn3 version 0.19.1.

2.4 Evaluation

We evaluated the classical feature-based approaches by 50 repetitions of a strat-
ified five-fold cross-validation on the BraTS 2018 training dataset. These repe-
titions allowed us to examine the models’ robustness besides their average per-
formance. The CNN approaches were evaluated on a randomly defined held-out
split of the training set, consisting of 33 subjects. This held-out set was also
used to evaluate a subset of the feature-based methods in order to compare
classical approaches to the CNN approaches. Moreover, the classical and CNN
models were evaluated on the BraTS 2018 validation set. This dataset contains
53 subjects but only the 28 subjects with resection status GTR are evaluated.
Finally, we selected the best-performing model to predict survival on the BraTs
2018 challenge test dataset, which consists of 77 evaluated subjects with GTR
resection status (out of 130 subjects).

3 Results

In this section, we compare the performance of the CNN to the classical feature-
based machine learning models on the BraTS 2018 training and validation
datasets, and present the BraTS 2018 test set results. We introduced a refer-
ence baseline for the comparison of the different models. This baseline consists
of a logistic regression model solely trained on the age feature. This minimal
model provides us with a reference for the training and validation set.

Table 2 lists the results of the different models on the training dataset. To
ensure a valid comparison, the table is subdivided by the two evaluation types,
repeated cross-validation (CV) and hold-out (HO) (see Sect. 2.4). The results
from the CV analysis highlights that by far the best results are achieved by
the logistic regression, SVC, and ensemble SVC models, which performed very
similarly. Except for the RF model, the classification models clearly outper-
formed their regression counterparts. The results from the HO analysis (Table 2,
bottom) additionally reveals that well-performing classical methods (logistic
regression and SVC) outperform all three CNN approaches (CNN1, CNN2,
CNN2+Age+RS) by a large margin.

Table 3 presents the results obtained on the validation dataset. We can
observe similar patterns as for the training set results: the classification models
outperform the regression models with respect to the accuracy (except the RF),
the SVC models (i.e., SVC ensemble and SVC) achieve the best performances,

3 http://scikit-learn.org/stable/index.html.

http://scikit-learn.org/stable/index.html
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Table 2. Results achieved on the BraTS 2018 training dataset by 100 stratified five-fold
cross-validation (CV) runs (reported as mean ± standard deviation) and on one split
with 33 held-out (HO) samples. The baseline consists of a logistic regression model with
age as single feature. Best results per metric and evaluation type (Eval.) are presented
in bold. Acc.: Accuracy, MSE: Mean squared error, rS: Spearman’s rank coefficient,
RS: Resection status.

Eval. Method Acc. MSE/days2 rS

CV Baseline 0.489 ± 0.06 136323 ± 44378 0.300 ± 0.14

Linear regression 0.552 ± 0.08 260706 ± 647176 0.573 ± 0.12

SVR 0.554 ± 0.08 257542 ± 637062 0.574 ± 0.12

RF regression 0.444 ± 0.08 117320 ± 42503 0.332 ± 0.17

Logistic regression 0.721 ± 0.07 93158± 35665 0.617± 0.12

SVC 0.722± 0.07 93571 ± 35861 0.612 ± 0.12

RF 0.512 ± 0.07 136334 ± 47392 0.324 ± 0.15

SVC ensemble 0.720 ± 0.07 93485 ± 35652 0.617± 0.12

HO Logistic regression 0.697 30756 0.579

SVC 0.727 28226 0.616

CNN1 0.515 50598 0.298

CNN2 0.424 56496 0.235

CNN2+Age+RS 0.394 61798 −0.194

Table 3. Results achieved on the BraTS 2018 validation dataset (28 samples). The
baseline consists of a logistic regression model with age as single feature. Best results per
metric are presented in bold. Acc.: Accuracy, MSE: Mean squared error, rS: Spearman’s
rank coefficient, RS: Resection status.

Method Acc. MSE/days2 rS

Baseline 0.464 128841 0.288

Linear regression 0.464 89059 0.426

SVR 0.464 89035 0.426

RF regression 0.393 80980 0.342

Logistic regression 0.5 90791 0.393

RF 0.357 169782 -0.058

SVC 0.536 85471 0.501

SVC ensemble 0.571 79381 0.556

CNN1 0.370 172821 0.104

CNN2 0.394 157617 −0.112

CNN2+Age+RS 0.444 137912 −0.005
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and the CNNs remain behind the feature-based methods and the baseline. Addi-
tionally, we observe an overall decrease in performance compared to the training
set results.

The results of CNN1 on our validation split (accuracy of 0.515) could not
be replicated on the BraTS validation set, where it performed poorly with an
accuracy of 0.37. CNN2 showed worse results on our validation split than the
deeper CNN1, but performed better on the BraTS validation set.

Overall, the SVC ensemble performed best on the training and validation set
and we consequently selected it for the challenge, where our method achieved
an accuracy of 0.429, a mean squared error of 327725 days2 and a Spearman’s
rank coefficient of 0.172.

4 Discussion

In this section, we discuss the presented results and highlight findings from the
deep learning, and classical regression and classification experiments.

CNNs: The two CNNs overfit very fast on the training data, and showed highly
variable performance between epochs. Model selection during training was there-
fore challenging, since both the accuracy and Spearman’s rank coefficient were
very unstable.

We postulate that more data would be needed to fully benefit from direct
survival estimation with 3D-CNNs. When inspecting the filters of CNN1 and
CNN2, most of the learning took place at the fully connected layers and almost
none at the first convolutions layer. This effect and the fast overfitting of the CNN
models indicate the lack of samples and are reasons for the poor performance on
unseen data.

Classical Regression and Classification: Using classical regression tech-
niques with hand-crafted features has the advantage of better interpretability.
Models with fewer learnable parameters, such as the classical regression methods
we tested, typically achieve more robust results on unseen data when only few
training samples are available.

The atlas used for feature extraction most likely has too many regions for the
number of training samples. Small anatomical structures, such as the optic chi-
asm, may not be accurately identified by simple registration to an atlas. Figure 2
shows the distribution of the contrast enhancing tumor segmentation per sur-
vival class. The short survivors with large contrast enhancing tumor loads con-
tribute highly to the overall cumulative occurrence in the training data. The
class-wise occurrence maps suggest that more training samples are needed to
detect predictive location patterns (e.g. as reported in [22,24]). Additionally, a
coarser atlas subdivision driven by clinical knowledge is in order. In the light
of this caveat, the location features used here should be seen as approximate
localization information with limited clinical interpretability.
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Fig. 2. Cumulative occurrence of the contrast enhancing tumor. Columns, from left to
right: Overall across all three survival classes, short survivors (<10 months), medium
survivors (≥10 months and ≤15 months), and long survivors (>15 months). Rows:
Projection along axial, coronal and sagittal axes.

Performance on the Testing Data: The accuracy of 72.2% and 57.1% on
the training and validation set could not be maintained on the testing data. The
large performance drop might be caused by still too many features compared to
the training set size. Other possible reasons may include a lack of feature robust-
ness or different class distribution compared to the training data. Moreover, the
survival time distributions within classes do not drop at the class boundaries,
such that a small shift in the prediction can cause a large accuracy difference
because ending up in a different class.

In conclusion, classical machine learning techniques using hand-crafted fea-
tures still outperform deep learning approaches with the given data set size.
The robustness of features regarding image quality and across MR imaging cen-
ters needs close attention, to ensure that the performance can be maintained
on unseen data. We hypothesize that adding post-treatment imaging data and
more clinical information to the challenge dataset would boost the performance
of the survival regression.
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