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Abstract. This article presents a convolutional neural network for the
automatic segmentation of brain tumors in multimodal 3D MR images
based on a U-net architecture. We evaluate the use of a densely connected
convolutional network encoder (DenseNet) which was pretrained on the
ImageNet data set. We detail two network architectures that can take
into account multiple 3D images as inputs. This work aims to identify
if a generic pretrained network can be used for very specific medical
applications where the target data differ both in the number of spatial
dimensions as well as in the number of inputs channels. Moreover in order
to regularize this transfer learning task we only train the decoder part
of the U-net architecture. We evaluate the effectiveness of the proposed
approach on the BRATS 2018 segmentation challenge [1–5] where we
obtained dice scores of 0.79, 0.90, 0.85 and 95% Hausdorff distance of
2.9 mm, 3.95 mm, and 6.48 mm for enhanced tumor core, whole tumor
and tumor core respectively on the validation set. This scores degrades
to 0.77, 0.88, 0.78 and 95% Hausdorff distance of 3.6 mm, 5.72 mm, and
5.83 mm on the testing set [1].
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1 Introduction

Automatic segmentation of brain tumor structures has a great potential for
surgical planning and intraoperative surgical resection guidance. Automatic seg-
mentation still poses many challenges because of the variability of appearances
and sizes of the tumors. Moreover the differences in the image acquisition pro-
tocols, the inhomogeneity of the magnetic field and partial volume effects have
also a great impact on the image quality obtained from routinely acquired 3D
MR images. However brain gliomas can be well detected using modern magnetic
resonance imaging. The whole tumor is particularly visible in T2-FLAIR, the
tumor core is visible in T2 and the enhancing tumor structures as well as the
necrotic parts can be visualized using contrast enhanced T1 scans. An example
is illustrated in Fig. 1.

In the recent years, deep neural networks have shown to provide state-of-the-
art performance for various challenging image segmentation and classification
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Fig. 1. Example of images from the BRATS 2018 dataset. From left to right: T1 image,
T2 image: the whole tumor and its core are visible, T2 FLAIR image: discarding the
cerebrospinal fluid signal from the T2 image highlights the tumor region only, T1ce:
contrast injection permits to visualize the enhancing part of the tumor as well as the
necrotic part. Finally the expected segmentation result is overlaid on the T1ce image.
The edema is shown in red, the enhancing part in white and the necrotic part of the
tumor is shown in blue. (Color figure online)

problems [6–10]. Medical image segmentation problems have also been success-
fully tackled by such approaches [11,12,14,15,19]. However training deep neural
networks can still be challenging in the case of a limited number of training
data. In such situations it is often necessary to limit the complexity and the
expressivity of the network. It has been observed that initializing weights of a
convolutional network that has been pretrained on a large data set improves its
accuracy on specific tasks where a limited number of training data is available
[16]. We evaluate in this work the accuracy of a U-net architecture [11,12] where
the encoder is a densely connected convolutional network [17] which has been
pretrained on the ImageNet data set [18]. We study an extreme case of transfer
learning where we fix the weights of the pretrained DenseNet encoder. Moreover
we consider a segmentation problem where the input data dimensionality does
not match the native input dimensions of the pretrained network. We will thus
make use of a fixed pretrained network trained on 2D color images in order to
segment 3D multimodal medical images. We will see that fixing the weights of
the encoder is a simple but effective way to regularize the segmentation results.

2 Method

This section details the proposed network architectures, the loss function used
to train the network as well as the training data preparation.

2.1 Convolutional Neural Network Architectures

The network processes 2D images of size (224, 224) pixels containing three chan-
nels. An input image is composed of three successive slices of the input volume
along one of the three anatomical orientations: either along the coronal, the
sagittal or the transverse plane. We use a pretrained network that has been
designed to take a single 2D color image as input. In order to be able to process
multi modal inputs, we have designed two distinct architectures:



A Pretrained DenseNet Encoder for Brain Tumor Segmentation 107

– the first solution (M1) consists in removing the stem of the original DenseNet
and only make use of the following convolutional layers which input is a tensor
of size (64, 112, 112). This architecture is illustrated in Fig. 2. The proposed
network is composed of a “precoder” which produces an adequate high dimen-
sional input tensor for the pretrained network. This architecture is illustrated
in Fig. 3. It processes independently each input images and concatenates the
resulting tensors. This approach is very flexible and could take as input an
image of any dimensions.

Fig. 2. Network architecture (M1). The network is composed of a “precoder” produc-
ing a high order tensor which is fed to a pretrained densely connected convolutional
network. Several intermediate layers are then used to reconstruct a high resolution
segmentation map.

Fig. 3. Precoder architecture (M1). The precoder architecture process independently
the input images by a sequence of multiple residual blocks (R1, R2) and concatenates
the resulting output tensors. A residual block (R) is also illustrated. All convolution
operations are computed with (3 × 3) kernels.

– the second solution (M2) consists in evaluating the different input modality
separately through the original DenseNet encoder. Each input image modality
is processed with the same encoder which shares its weights across the differ-
ent modalities. Outputs at different scales are then concatenated and fed to
the decoder. This architecture is illustrated in Figs. 4 and 6. This architecture
does not permit to vary the number of input slices but has the advantage to
fully leverage the original DenseNet weights.
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For both architectures, the decoder consists in upsampling a low resolution
layer, concatenate it with a higher resolution layer before applying a sequence
of convolution operations. The first convolutional layer reduces the number of
input channels by applying a (1× 1) convolution. Following layers are composed
of spatial (3 × 3) convolutions with residual connections.

Fig. 4. Encoder architecture (M2). The network processes the different input image
modality with the same encoder, a DenseNet composed of 121 layers. Intermediate
layers of the encoder are used to feed the decoder network.

We give here additional details about the network architectures:

– each sample 3D image y is normalised so that voxels values falls in the interval
[0, 1].

– batch normalisation is performed after each convolutional layer using a run-
ning mean and standard deviation computed on 5000 samples:

– each layer is composed of residual connections as illustrated in Fig. 6,
– the activation function used in the network is a rectified linear unit,
– convolutions are computed using reflective border padding,
– upsampling is performed by nearest neighbor interpolation (Fig. 5).

2.2 Training

We used the BRATS 2018 training and validation sets for our experiments [2–5].
The training set contains 285 patients (210 high grade gliomas and 75 low grade
gliomas). The BRATS 2018 validation set contains 66 patients with brain tumors
of unknown grade with unknown ground truth segmentations. Each patient con-
tains four modalities: T1, T1 with contrast enhancement, T2 and T2 FLAIR. The
aim of this experiment is to segment automatically the whole tumor, the tumor
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Fig. 5. Decoder architecture of the first model (M1). The decoder consists in a sequence
of upsampling and residual convolution operations in order to produce a high resolution
segmentation map.

core and the tumor enhancing parts. Note that the outputs of our neural network
corresponds directly to the probability that a pixel belongs to a tumor, the core
of a tumor and the enhancing part of the tumor. The last layer of the proposed
architecture is thus composed of three independent (1 × 1) convolutional layers
because we directly model the problem as a multi-label segmentation problem
where a pixel can be assigned to multiple classes. Note that only weights of
the “precoder” and the decoder are learned. Original weights of the pretrained
DenseNet-121 stay fixed during the training procedure.

The network produces a segmentation maps by minimizing a loss function
defined as the combination of the mean cross entropy (mce) and the mean Dice
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coefficients (dce) between the ground truth class probabilities and the network
estimates:
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Fig. 6. Decoder architecture of the second model (M2). The decoder concatenates the
encoding layers of each modalities. The segmentation is produced with a sequence of
upsampling and convolution operations.
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Note that we exclude the background class for the computation of the dice
coefficient. The network is implemented using Microsoft CNTK1. We use stochas-
tic gradient descent with momentum to train the network and L2 weights reg-
ularization. We use a cyclic learning rate where the learning rate varies from
0.0002 to 0.00005. An example of the evolution of the accuracy and the learning
rate is illustrated in Fig. 7. We train the network for 160 epochs on a Nvidia
GeForce GTX 1080 GPU. A full epoch consists in analyzing all images of the
BRATS training data set and extracting 20 2D random samples from the 3D
MR volumes.

Fig. 7. Network training. Illustration of the cyclic learning rate schedule (top). Evo-
lution of the sum of the dice coefficients of the three classes during training (bottom).

2.3 Testing

Segmentation results are obtained by evaluating the network along slices
extracted from the three anatomical orientations and averaging the results. A
segmentation map is then obtained by assigning to each voxel the label having
the maximum probability among the three classes: tumor, tumor core or enhanc-
ing tumor. Finally connected components composed of less than 100 voxels are
removed. We are not making use of test time image augmentation or ensembling
methods.

1 https://www.microsoft.com/en-us/cognitive-toolkit/.

https://www.microsoft.com/en-us/cognitive-toolkit/
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3 Results

We uploaded our segmentation results to the BRATS 2018 server2 which evalu-
ates the segmentation and provides quantitative measurements in terms of Dice
scores, sensitivity, specificity and Hausdorff distances of enhanced tumor core,
whole tumor, and tumor core. Results of the BRATS 2018 validation phase
are presented in Table 1. The validation phase is composed of 66 datasets with
unknown ground truth segmentations.

Table 1. BRATS 2018 Validation scores, dice coefficients and the 95% Hausdorff dis-
tances in mm. Our results corresponds to the team name “Stryker”. (M1) results
corresponds to the precoder approach, (M2) corresponds to the direct use of a fixed
pretrained DenseNet-121.

Dice ET Dice WT Dice TC Dist. ET Dist. WT Dist. TC

Mean M1 0.768 0.892 0.815 3.85 4.85 7.56

Mean M2 0.792 0.899 0.847 2.90 3.95 6.48

StdDev M1 0.241 0.065 0.187 5.43 4.28 12.56

StdDev M2 0.223 0.074 0.130 3.59 3.38 12.06

Median M1 0.849 0.905 0.889 2.23 3.67 3.74

Median M2 0.864 0.919 0.891 1.73 3.08 3.30

25% quantile M1 0.792 0.881 0.758 1.68 2.23 2

25% quantile M2 0.789 0.890 0.796 1.41 2.23 2

75% quantile M1 0.888 0.933 0.930 3.16 5.65 8.71

75% quantile M2 0.906 0.939 0.932 2.82 4.41 6.65

Results of the BRATS 2018 testing phase are presented in Table 2. The testing
phase is composed of 191 datasets with unknown ground truth segmentations.

Table 2. BRATS 2018 Testing scores, dice coefficients and the 95% Hausdorff distances
in mm.

Dice ET Dice WT Dice TC Dist. ET Dist. WT Dist. TC

Mean M2 0.776 0.878 0.786 3.63 5.72 5.83

StdDev M2 0.223 0.104 0.257 5.29 7.31 7.93

Median M2 0.828 0.908 0.891 2.23 3.60 3.46

25% quantile M2 0.749 0.857 0.796 1.41 2.23 2.1

75% quantile M2 0.895 0.935 0.924 3.0 6.08 6.13

2 https://www.cbica.upenn.edu/BraTS18/lboardValidation.html.

https://www.cbica.upenn.edu/BraTS18/lboardValidation.html
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Fig. 8. Segmentation result obtained on a image of the testing data.

4 Discussion

The validation and testing results obtained on the BRATS segmentation chal-
lenge show that the proposed approaches are indeed efficient. Despite the fact
that the used encoder has been trained on natural color images, it turns out that
the learned features can be leveraged for a large class of applications including
segmentation of medical images. Using a fixed encoder is thus an effective way to
regularize the neural network. Note that we did not make use of advanced image
augmentations or ensembling methods. The two approaches produce comparable
results and have both advantages and drawbacks. The model (M1) is more versa-
tile since it can use any number of input modalities (channels) and any number
of spatial dimensions. However current experiments shows that the model (M2),
despite its simplicity, produces slightly better results. A major limitation of the
proposed approach is the lack of 3D spatial consistency (Fig. 8).
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5 Conclusion

We have studied an extreme version of transfer learning by using a fixed pre-
trained network trained on 2D color images for segmenting 3D multi modal med-
ical images. We have presented two simple approaches for leveraging pretrained
networks in order to perform automatic brain tumor segmentation. We obtained
competitive scores on the BRATS 2018 segmentation challenge3. Future work
will concentrate on several possible improvements by additionally fine tuning
the pretrained encoder. A fixed large expressive 2D neural network is thus an
interesting alternative to a relative small task specific 3D neural networks.
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