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Preface

This volume contains articles from the Brain-Lesion Workshop (BrainLes), as well as
the (a) International Multimodal Brain Tumor Segmentation (BraTS) challenge,
(b) Ischemic Stroke Lesion Segmentation (ISLES) challenge, (c) grand challenge on
MR Brain Image Segmentation (MRBrainS18), (d) Computational Precision Medicine
(CPM) challenges, and (e) Stroke Workshop on Imaging and Treatment Challenges
(SWITCH). All these events were held in conjunction with the Medical Image Com-
puting for Computer Assisted Intervention (MICCAI) conference during September
16-20, 2018, in Granada, Spain.

The papers presented describe research of computational scientists and clinical
researchers working on glioma, multiple sclerosis, cerebral stroke, traumatic brain
injuries, and white matter hyper-intensities of presumed vascular origin. This compi-
lation does not claim to provide a comprehensive understanding from all points of
view; however, the authors present their latest advances in segmentation, disease
prognosis, and other applications to the clinical context.

The volume is divided into seven parts: The first part comprises three invited papers
summarizing the presentations of the keynote speakers; the second includes the paper
submissions to the BrainLes workshop; the third through the seventh parts contain a
selection of papers presenting methods that participated at the 2018 challenges of
ISLES, MRBrainS, CPM, SWITCH, and BraTSs, respectively.

The first chapter in these proceedings describes invited papers from the four keynote
speakers of the MICCAI BrainLes 2018 workshop (www.brainlesion-workshop.org).
The overarching aim of these papers is to give an updated review of the work done in
(a) the domain of machine learning applied in neuro-oncology diagnostics, (b) con-
nectomics of traumatic brain injury and brain tumors, (c) computational/memory
considerations for deep learning in medical image analysis, and (d) computed
tomography perfusion. The sequence of these papers reflects the order that they were
presented during the workshop.

The aim of the second chapter, focusing on the BrainLes workshop submissions, is
to provide an overview of new advances in medical image analysis in all of the
aforementioned brain pathologies. Bringing together researchers from the medical
image analysis domain, neurologists, and radiologists working on at least one of these
diseases. The aim is to consider neuroimaging biomarkers used for one disease applied
to the other diseases. This session did not have a specific dataset to be used.

The third chapter contains descriptions of a selection of algorithms that participated
in the ISLES 2018 challenge. The purpose of this challenge was to directly compare
methods for the automatic prediction of stroke lesion outcome from CT-perfusion
imaging. A dataset consisting of CT-perfusion image volumes acquired at acute and
3-month follow-up was released for training. A dedicated test set of cases was used for
evaluation. Test data were not released, but participants had to submit their segmen-
tation results to: www.isles-challenge.org.


http://www.brainlesion-workshop.org
http://www.isles-challenge.org
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The fourth chapter includes a number of papers from MRBrainS 2018. The purpose
of this challenge is to directly compare methods for segmentation of gray matter, white
matter, cerebrospinal fluid, and other structures on 3T MRI scans of the brain, and to
assess the effect of (large) pathologies on segmentation and volumetry. Over 30 teams
participated and the challenge remains open for future submissions. An up-to-date
ranking is hosted on: http://mrbrains18.isi.uu.nl/.

The fifth chapter presents a selection of papers from the leading participants in the
two CPM 2018 challenges in brain tumors (http://miccai.cloudapp.net/competitions/).
The “Combined MRI and Pathology Brain Tumor Classification” challenge used
corresponding imaging and pathology data with the task of classifying a cohort of
“low-grade” glioma tumors (n = 52) into two sub-types of oligodendroglioma and
astrocytoma. This challenge presented a new paradigm in algorithmic challenges,
where data and analytical tasks related to the management of brain tumors were
combined to arrive at a more accurate tumor classification. In the challenge of “Seg-
mentation of Nuclei in Digital Pathology,” participants were asked to detect and seg-
ment all nuclei in a set of image tiles (n = 33) of glioblastoma and lower-grade glioma
extracted from whole slide tissue images. Data from both challenges were obtained
from The Cancer Genome Atlas/The Cancer Imaging Archive (TCGA/TCGA)
repository.

Finally, the sixth chapter of these proceedings contains scientific contributions of the
SWITCH workshop, which aims to bring together clinicians and medical imaging
experts to discuss challenges and opportunities for medical imaging in stroke care and
treatment. In 2018, three clinical keynote speakers addressed various aspects of stroke
and ischemic stroke treatment: Prof. Aad van der Lugt discussed imaging biomarkers
related to stroke, Prof. Matt Gounis shared his research on the development for stroke
devices, and Prof. Roland Wiest presented stroke mimics and chameleons. The sci-
entific contributions of the medical imaging field, addressing topics such as perfusion
parameter estimation and the relation between diffusion MRI and microstructural
changes in gray matter, were presented at the workshop in oral and poster presenta-
tions. All accepted full paper contributions are part of these proceedings.

The seventh chapter focuses on a selection of papers from the BraTS challenge
participants. BraTS 2018 made publicly available a large (n = 542) manually annotated
dataset of pre-operative brain tumor scans from 19 institutions, in order to gauge the
current state-of-the-art in automated glioma segmentation using multi-parametric
structural MRI modalities and to compare fairly between different methods. To pin-
point and evaluate the clinical relevance of tumor segmentation, BraTS 2018 also
included the prediction of patient overall survival, via integrative analyses of radiomic
features and machine learning algorithms (www.cbica.upenn.edu/BraTS2018.html).

We heartily hope that this volume will promote further exciting research on brain
lesions.

December 2018 Alessandro Crimi
Spyridon Bakas
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Abstract. Brain tumor localization and segmentation is an important
step in the treatment of brain tumor patients. It is the base for later clin-
ical steps, e.g., a possible resection of the tumor. Hence, an automatic
segmentation algorithm would be preferable, as it does not suffer from
inter-rater variability. On top, results could be available immediately
after the brain imaging procedure. Using this automatic tumor segmen-
tation, it could also be possible to predict the survival of patients. The
BraTS 2018 challenge consists of these two tasks: tumor segmentation
in 3D-MRI images of brain tumor patients and survival prediction based
on these images. For the tumor segmentation, we utilize a two-step app-
roach: First, the tumor is located using a 3D U-net. Second, another 3D
U-net — more complex, but with a smaller output size — detects subtle
differences in the tumor volume, i.e., it segments the located tumor into
tumor core, enhanced tumor, and peritumoral edema.

The survival prediction of the patients is done with a rather simple,
yet accurate algorithm which outperformed other tested approaches on
the train set when thoroughly cross-validated. This finding is consistent
with our performance on the test set - we achieved 3rd place in the
survival prediction task of the BraTS Challenge 2018.

Keywords: BraTS 2018 - Brain tumor - Automatic segmentation -
Survival prediction + Deep learning

1 Introduction

Brain tumors can appear in different forms, shapes and sizes and can grow to
a considerable size until they are discovered. They can be distinguished into
glioblastoma (GBM/HGG) and low grade glioma (LGG). A common way of
screening for brain tumors is with MRI-scans, where even different brain tumor
regions can be determined. In effect, MRI scans of the brain are not only the
basis for tumor screening, but are even utilized for pre-operative planning. Thus,
an accurate, fast and reproducible segmentation of brain tumors in MRI scans
is needed for several clinical applications.

© Springer Nature Switzerland AG 2019
A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 3-12, 2019.
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HGG patients have a poor survival prognosis, as metastases often develop
even when the initial tumor was completely resected. Whether patient overall
survival can be accurately predicted based on pre-operative scans by employing
knowing factors such as radiomics features, tumor location and tumor shape,
remains an open question.

The BraTS challenge [11] addresses these problems, and is one of the biggest
and well known machine learning challenges in the field of medical imaging. Last
year around 50 different competitors from around the world took part. This year,
the challenge is divided in two parts: First, tumor segmentation based on 3D-
MRI images, and second, survival prediction of the brain tumor patients based
on only the pre-operative scans and the age of the patients.

(a) T1 weighted (b) T1 post-contrast (c) Subtraction image

(d) T2 weighted (e) T2 Flair (f) T1 with labels

Fig. 1. Example of image modalities and groundtruth-labels in the BraT$S 2018 dataset.
The subtraction image is calculated by subtracting the T1 image (a) from the T1
post-contrast image (b), as described in Sect.3.1. For the labels, blue indicates the
peritumoral edema, green the necrotic and non-enhancing tumor, and red the GD-
enhancing core, as described in the BraTS paper [11]. (Color figure online)
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Similar to the BraT$S 2017 dataset, the BraT$S 2018 training dataset consists
of MRI-scans of 285 brain tumor patients from 19 different contributors. The
dataset includes T1, T1 post-contrast (T1CE), T2, and T2 Fluid Attenuated
Inversion Recovery (Flair) volumes, as well as hand-annotated expert labels for
each patient [1-3]. An example of a set of images can be seen in Fig. 1.

Motivated by the success of the U-net [14] in biomedical image segmentation,
we choose the 3D-adaptation [5] of this architecture to tackle the segmentation
part of the BraTS challenge. Two different versions are used, a first one to
coarsely locate the tumor, and a second one to accurately segment the located
tumor into different areas.

Concerning the survival prediction, we found that complex models using
different types of radiomics features such as shape and texture of the tumor and
the brain could not outperform a simple linear regressor based on just a few
basic features. Using only the patient age and tumor region sizes as features, we
achieve competitive results.

The code developed for this challenge is available online: https://github.com/
weningerleon/BraTS2018.

2 Related Work

In the last years, deep learning has advanced classification and segmentation
in many biomedical imaging applications, and has a preeminent role in current
publications.

In the BraTS Challenge last year, all top-ranking approaches of the segmen-
tation task [6,9,16,17] used deep convolutional neural networks. The employed
architectures vary substantially among these submission. However, a com-
mon ground seems to be the utilization of 3D-architectures instead of 2D-
architectures.

One key architecture for biomedical segmentation, which is also heavily used
throughout this paper, is the U-Net [14]. Both, 2D as well as 3D-variants [5] have
been successfully employed for various biomedical applications, and still achieve
competitive results in current biomedical image segmentation challenges [7,8].

3 Methods

3.1 Segmentation

We tackle the segmentation task in a two-step approach: First, the location
of the brain tumor is determined. Second, this region is segmented into the
three different classes: peritumoral edema (ed), necrotic tumor (nec), and GD-
enhancing core (gde).
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(b) T1 post-contrast

(¢) Groundtruth (d) Our prediction

Fig. 2. Comparison of our segmentation result with the groundtruth labels.

Preprocessing. We first define a brain mask based on all voxels unequal to
zero, on which all preprocessing is carried out. On this brain mask, the mean
and standard deviation of the intensity is calculated, and the data normalized
accordingly. Since different MRI-scanners and sequences are used, we indepen-
dently normalize each image and modality based on the obtained values. Non-
brain regions remain zero.

The whole tumor is strongly visible in T1, T2 and Flair MRI-images. How-
ever, in practice, including all images seems to produce better results even for the
whole tumor localization. We also add another image as input, a contrast-agent
subtraction image, where the T1 image is subtracted from the T1CE image. This
should enhance the contrast-agent sensitive region, as can be seen in Fig. lc.
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We construct a cuboid bounding box around the brain, and crop the non-
brain regions to facilitate training. The training target is constructed by merging
the three different tumor classes of the groundtruth labels.

For training of the tumor segmentation step, the 3D-images are cropped
around a padded tumor area, which is defined as the area of 20 voxels in every
direction around the tumor.

Network Architectures and Employed Hardware. For both steps, a 3D
U-net [5] with a depth of 4 is employed.

The first U-net uses padding in every convolutional layer, such that the input
size corresponds exactly to the output size. Every convolutional layer is followed
by a ReLU activation function. 16 feature maps are used in the first layer, and
the number of feature maps doubles as the depth increases. For normalization
between the different layers, instance-norm layers [15] are used, as they seem
to be better suited for normalization in segmentation tasks and for small batch
sizes. Testing different training hyperparameters, the Adam optimizer [10] with
an initial learning rate of 0.001 together with a binary cross entropy loss was
chosen for the tumor localization step. An L2-regularization of 1le—5 is applied
to the weights, and the learning rate was reduced by a factor of 0.015 after every
epoch. One epoch denotes a training step over every brain.

The U-net utilized in the second step has a similar architecture as the pre-
vious one, but with double as many feature maps per layer. To counteract the
increased memory usage, no padding is used, which drastically reduces the size
of the output as well as the memory consumption of later feature maps.

Here, we apply a multi-class dice loss to the output of our 3D U-net and
the labels for training, as described in [12]. A learning rate of 0.005 was chosen,
while weight decay and learning rate reduction remain the same as in step 1.

Our contribution to the BraTS challenge was implemented using pyTorch
[13]. Training and prediction is carried out on a Nvidia 1080 Ti GPU with a
memory size of 11 Gb.

Training. In the first step, we train with complete brain images cropped to the
brain mask. The brain mask is determined by all voxels not equal to zero. Using
a rather simple U-net, a training pass with a batch-size of one fits on a GPU
even for larger brains. Due to the bounding box around the brain, different sizes
need to be passed through the network. In practice this is possible using a fully
convolutional network architecture and a batch size of one.

For the second step, we choose the input to be fixed to 124 x 124 x 124. Due
to the unpadded convolutions, this results in an output shape of 36 x 36 x 36.
Hence, the training labels are the 36 x 36 x 36 sized segmented voxels in the
middle of the input. Here, a batch-size of two was chosen.

During training, patches are chosen from inside the padded tumor bounding
box for each patient. To guarantee a reasonably balanced train set, only training
patches which comprise all three tumor classes are kept for training.
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Inference. Similar to the training procedure, the first step is carried out directly
on a complete 5-channel (T1, T2, Flair, TICE, and contrast-agent subtraction
image) 3D image of the brain.

Before the tumor/non-tumor segmentation of this step is used as basis in the
second step, only the largest connected area is kept. Based on the assumption
that there is only one tumorous area in the brain, we can suppress false positive
voxels in the rest of the brain with this method.

We then predict 36 x 36 x 36 sized patches with the trained unpadded U-
net. Patches are chosen so that they cover the tumorous area, and the distance
between two neighboring patches was set to 9 in each direction. This results
in several predictions per voxel. Finally, a majority vote over these predictions
gives the end result.

3.2 Survival Prediction

According to the information given by the segmentation labels, we count the
number of voxels of the tumor segmentation. This volume information about
the necrotic tumor core, the GD-enhancing tumor and peritumoral edema as
well as the distance between the centroids of tumor and brain and the age of the
patient were considered as valuable feature for the survival prediction task. We
tested single features, as well as combinations of features as input for a linear
regressor.

4 Results

4.1 Segmentation

For evaluation on the training dataset, we split the training dataset randomly
into 245 training images and 40 test images to evaluate our approach with
groundtruth labels. No external data was used for training or pre-training.

Based on our experience with the training dataset, we choose 200 epochs as an
appropriate training duration for the first step, and 60 epochs as an appropriate
training duration for the second step. We thus train from scratch on all training
images for the determined optimal number of epochs, and use the obtained net-
works for evaluation on the validation set. The results obtained by this method
can be seen in Table 1, and an exemplary result is visualized in Fig. 2.

4.2 Survival Prediction

For evaluating our approach on the training dataset, we fit and evaluate our
linear regressor with a leave-one-out cross-validation on the training images. We
compare the results obtained by solely using the age of the patient versus using
the age with a subset of the tumor region sizes as features. On top, we consider
the distance between the centroid of the tumor and the centroid of the brain as a
feature. Our finding is that all features other than the age of the patient increase
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Table 1. Results for the segmentation challenge. Train, validation and test errors
according to the online submission system, as available.

Dataset | Dice Sensitivity Specificity Hausdorff 95

ET WT | TC ET WT | TC ET WT | TC ET WT | TC
Train set | 0.763 | 0.860 | 0.817 | 0.747 | 0.784 | 0.787 | 0.998 | 0.998 | 0.998 | 5.63 | 7.01 | 7.88
Val set 0.712 | 0.889 | 0.758 | 0.757 | 0.887 | 0.735 | 0.998 | 0.995 | 0.998 | 6.28 | 6.97 | 10.91
Test set | 0.621 | 0.844 | 0.728 | * * * * * * 10.5 |8.71|13.3

the error on left-out images. In Tables 2 and 3, we show the exact results for the
different input features on the training set (cross-validation) and on the test set
(according to the online portal).

In Fig. 3, the survival time in years is plotted against the age for all patients
with a resection status of ‘gross total resection’ in the train dataset. The linear
regressor fitted to this data and used for the challenge, is plotted as well. The
three classes used during the challenge, dividing the dataset into long, short, and
mid-survivors can also be seen.

This age-only linear regressor achieved the 3rd place in the BraTS challenge
2018 [4], with an accuracy of 0.558, a MSE of 277890 and a median SE of 43264
on the test data.

Table 2. Training Data: Mean Squared Error and Median Error for leave-one-out
cross-validation of the linear regressor. The different features considered are the age of
the patient, the volume in voxels of the enhancing tumor (gde), of the necrotic tumor
(nec), of the edema (ed) as well as the distance between the centroid of the tumor and
the centroid of the brain (dist).

Features MSE | Median Err.
Age (submitted) 95082 | 216
Age + gde 100941 | 224
Age + ed 99693 | 221
Age + nec 98826 | 216
Age + dist 100928 | 215
Age + gde + ed + nec | 109817 | 222

Table 3. Validation Data: Accuracy metrics according to the online portal.

Features Accuracy | MSE Median SE | stdSE SpearmanR
Age 0.5 97759.5  46120.5 139670.7 | 0.267
Age + gde + ed + nec | 0.536 101012.0 | 51006.5 140511.5 |0.258
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Fig. 3. Our linear regressor (blue) over the age of the tumor patients. The red points
are the training data, and the green lines indicate the boundaries between the classes
(long, mid, and short survivor), which are used for calculation of the accuracy metric.
(Color figure online)

5 Discussion and Conclusion

Our contribution submitted to the BraTS challenge 2018 was summarized in
this paper. We used a two-step approach for tumor segmentation and a linear
regression for survival prediction.

The segmentation approach already gives promising results. In practice, the
two-step framework helps eliminating spurious false-positive classifications in
non-tumorous areas, as only the largest connected area is considered as tumor.
However, this assumes that there is only one tumorous area in the brain. As there
is only one tumorous area in the vast majority of cases, this boosts the accu-
racy measured. Notwithstanding, it is a simplification that can lead to serious
misclassifications in single cases.

This simplification needs to be tackled in future development of the frame-
work. Furthermore, we will evaluate a broader variety of different network archi-
tectures, and will also include 3D data-augmentation techniques into our frame-
work.

Our algorithm for the survival analysis task is a straight-forward approach.
We considered other, more complex approaches, which were however not able to
beat this baseline algorithm.

On the validation set, our survival prediction algorithm ranks among the top
submissions, e.g., the age-only approach achieves the lowest MSE and second
highest accuracy according to the online portal.
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Finally, our top-placement (3rd place) in the challenge underlines the

strength of the age as feature for survival prediction. Other teams, using various
radiomics and/or deep learning approaches, could not perform much better than
our straight-forward approach. Hence, it can be concluded that pre-operative
scans are not well suited for survival prediction. However, other datasets could
be better suited for survival prediction, e.g., post-operative or follow-up scans
of the patient.
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Abstract. Gliomas are the most common primary brain tumors, and
their accurate manual delineation is a time- consuming and very user-
dependent process. Therefore, developing automated techniques for
reproducible detection and segmentation of brain tumors from mag-
netic resonance imaging is a vital research topic. In this paper, we
present a deep learning-powered approach for brain tumor segmenta-
tion which exploits multiple magnetic-resonance modalities and processes
them in two cascaded stages. In both stages, we use multi-modal fully-
convolutional neural nets inspired by U-Nets. The first stage detects
regions of interests, whereas the second stage performs the multi-class
classification. Our experimental study, performed over the newest release
of the BraTS dataset (BraTS 2018) showed that our method delivers
accurate brain-tumor delineation and offers very fast processing—the
total time required to segment one study using our approach amounts
to around 18 s.

Keywords: Brain tumor - Segmentation - Deep learning - CNN

1 Introduction

Gliomas are the most common primary brain tumors in humans. They are char-
acterized by different levels of aggressiveness which directly influences prognosis.
Due to the gliomas’ heterogeneity (in terms of shape and appearance) manifested
in multi-modal magnetic resonance imaging (MRI), their accurate delineation is
an important yet challenging medical image analysis task. However, manual seg-
mentation of such brain tumors is very time-consuming and prone to human
errors. It also lacks reproducibility which adversely affects the effectiveness of
patient’s monitoring, and can ultimately lead to inefficient treatment.
Therefore, automatic brain tumor detection (i.e., which pixels in an input
image are tumorous) and classification (what is a type of a tumor and/or which
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part of a tumor, e.g., edema, non-enhancing solid core, or enhancing structures
a given pixel belongs to; see examples in Fig.1) from MRI are vital research
topics in the pattern recognition and medical image analysis fields. A very wide
practical applicability of such techniques encompasses computer-aided diagnosis,
prognosis, staging, and monitoring of a patient. In this paper, we propose a
deep learning technique to detect and segment gliomas from MRI in a cascaded
processing pipeline. These gliomas are further segmented into the enhancing
tumor (ET), tumor core (TC), and the whole tumor (WT).

T2-FLAIR T2 T1Gd

Fig. 1. Different parts of a brain tumor (detection is presented in the second row—
green parts show the agreement with a human reader) segmented using the proposed
method (third row) alongside original images (first row): red—peritumoral edema,
yellow—necrotic and non-enhancing tumor core, green—GD-enhancing tumor. (Color
figure online)

1.1 Contribution
The contribution of this work is multi-fold:

— We propose a deep learning technique for detection and segmentation of
brain tumors from MRI. Our deep neural networks (DNNs) are inspired by
the U-Nets [28] with considerable changes to the architecture, and they are
cascaded—the first DNN performs detection, whereas the second segments a
tumor into the enhancing tumor, tumor core, and the whole tumor (Fig.1).
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— To improve generalization capabilities of our segmentation models, we build
an ensemble of DNNs trained over different folds of a training set, and average
the responses of the base classifiers.

— We show that our approach can be seamlessly applied to the multi-modal
MRI analysis, and allows for introducing separate processing pathways for
each modality.

— We validate our techniques over the newest release of the Brain Tumor Seg-
mentation dataset (BraTS 2018), and show that they provide high-quality
detection and segmentation, and offer instant segmentation.

1.2 Paper Structure

This paper is organized as follows. In Sect. 2, we discuss the current state of the
art in brain-tumor delineation. The proposed deep learning-based techniques
are presented in Sect. 3. The results of our experiments are analyzed in Sect. 4.
Section 5 concludes the paper and highlights the directions of our future work.

2 Related Literature

Approaches for automated brain-tumor delineation can be divided into atlas-
based, unsupervised, supervised, and hybrid techniques (Fig. 2). In the atlas-based
algorithms, manually segmented images (referred to as atlases) are used to seg-
ment incoming (previously unseen) scans [25]. These atlases model the anatom-
ical variability of the brain tissue [22]. Atlas images are extrapolated to new
frames by warping and applying non-rigid registration techniques. An important
drawback of such techniques is the necessity of creating large (and representa-
tive) annotated reference sets. It is time-consuming and error prone in practice,
and may lead to atlases which cannot be applied to other tumors because they
do not encompass certain types of brain tumors [1,6].

Automated delineation of brain tumors from MRI

Atlas-based Unsupervised Supervised Hybrid
[22,6,1] [9,29,7,33,35,14, 30, 19] [10,39,17,36,24,38,12,15]  [26, 31, 37]

Fig. 2. Automated delineation of brain tumors from MRI—a taxonomy.

Unsupervised algorithms search for hidden structures within unlabeled
data [9,19]. In various meta-heuristic approaches, e.g., in evolutionary algo-
rithms [33], brain segmentation is understood as an optimization problem, in
which pixels (or voxels) of similar characteristics are searched. It is tackled in a
biologically-inspired manner, in which a population of candidate solutions (being
the pixel or voxel labels) evolves in time [7]. Other unsupervised algorithms
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encompass clustering-based techniques [14,29,35], and Gaussian modeling [30].
In supervised techniques, manually segmented image sets are utilized to train a
model. Such algorithms include, among others, decision forests [10,39], condi-
tional random fields [36], support vector machines [17], and extremely random-
ized trees [24].

Deep neural networks, which established the state of the art in a plethora
of image-processing and image-recognition tasks, have been successful in seg-
mentation of different kinds of brain tissue as well [12,16,21] (they very often
require computationally intensive data pre-processing). Holistically nested neu-
ral nets for MRI were introduced in [38]. White matter was segmented in [11],
and convolutional neural networks were applied to segment tumors in [13]. Inter-
estingly, the winning BraTS’17 algorithm used deep neural nets ensembles [15].
However, the authors reported neither training nor inference times of their algo-
rithm which may prevent from using it in clinical practice. Hybrid algorithms
couple together methods from other categories [26,31,37].

We address the aforementioned issues and propose a deep learning algorithm
for automated brain tumor segmentation which exploits a new multi-modal fully-
convolutional neural network based on U-Nets. The experimental evidence (pre-
sented in Sect. 4) obtained over the newest release of the BraTS dataset (BraTS
2018) shows that it can effectively deal with multi-class classification, and it
delivers high-quality tumor segmentation in real time.

3 Methods

In this work, we propose an algorithm which utilizes cascaded U-Net-based deep
neural networks for detecting and segmenting brain tumors. Our approach for
this task is driven by an assumption that the most salient features of a lesion
are not contained in a single image modality.

There are multiple ways to exploit all the modalities in deep learning-based
engines. One way is to store three (or four) modalities as channels of a single
image, like RGB (RGBA), and process it as a standard color image. Although
this approach has a significant downside—only the first layer (which extracts
the most basic features) has access to the modalities as separate inputs, it can
be successfully applied to easier computer-vision and image-processing tasks.
Consecutive layers in the network process the outputs of the previous layers—a
mix of features from all the modalities.

Hu and Xia processed each modality separately, and merged them at the
very end of the processing chain to produce the final segmentation mask, to
fully benefit from information manifested in each modality [8]. In this work, we
combine both techniques—we use merged modalities for brain-tumor detection,
and separate processing pathways for further segmentation of a tumor.
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3.1 Detection of Brain Tumors from MRI

The first stage of our image analysis approach involves taking the whole image
as an input (i.e., different modalities are stacked together as the channels of
an image), and producing a binary mask of the region of interest (therefore, it
performs detection of a tumor). This binary mask is used to select the voxels of all
modalities from the original images (rendering remaining pixels as background).
This region is passed to the segmentation unit by the U-Net in the second stage
for the final multi-class segmentation.

The architecture of our DNN used for detection is visualized in Fig.3 (note
that we present multiple processing pathways which are exploited in segmen-
tation; for detection, only one pathway is used, and the sigmoid function was
applied as the non-linearity). The DNN prediction is binarized using a thresh-
old T}. The binary mask is post-processed using the 3D connected components
analysis—the size of connected components is calculated, and the one with the
largest volumes remains. If the next (second) largest connected component is
at least T, (in %) of the volume of the largest, it is kept as well. The binary
masks resulting from the first stage are used to produce input to the second
stage. More details on the architecture of our deep network itself are presented
in the following subsection.

3.2 Segmentation of Detected Brain Tumors

Our DNN for brain tumor segmentation separates processing pathways and
merges them at the very bottom of the network, where the feature space is
compacted the most, and at each bridged connection (Fig.3). By doing that, we
assure that the low- and high-level features are extracted separately for all modal-
ities in the contracting path. Those features can “interact” with each other in the
expanding path, producing high-quality segmentations. Our preliminary experi-
ments showed that the pre-contrast T1 modality carries the smallest amount of
information, therefore in order to reduce the amount of segmentation time and
resources (to make our method easily applicable in a real-life clinical setting), we
did not use that modality in our pipeline. However, the proposed U-Net-based
architecture is fairly flexible and allows for using any number of input modalities.

Our models are based on a well-known U-Net [28], with considerable changes
to the architecture. First, there are separate pathways for each modality, effec-
tively making three contracting paths. In the original architecture the number
of filters was doubled at each down-block, whereas in our model it is constant
everywhere, except in the very bottom part of the network (where the concatena-
tion and merging of the paths takes place) where it is doubled. The down-block
in our model consists of three convolutional layers (48 filters of the size 3 x 3
each, with stride 1). The second alteration to the original U-Net are the bridged
connections, which join (concatenate) activations from each pathway of the con-
tracting paths with their corresponding activations from the expanding path,
where they become merged. This procedure allows the DNN to extract high-
level features while preserving the context stored earlier. The expanding path is
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Fig.3. The proposed deep neural network architecture. Three separate pathways
(e.g., for FLAIR, Tlc, and T2) are shown as a part of the contractive path. At each
level (each set of down blocks) the output is concatenated and sent to a corresponding
up block. At the bottom, there is a merging block, where all the features are merged
before entering the expanding path. The output layer is a 1 X 1 convolution with one
filter for the first stage (detection), and three filters for the second stage (segmentation).

standard—each up-block doubles the size of an activation map by the upsam-
pling procedure, which is followed by two convolutions (48 filters of 3 x 3 size
each, with stride 1). In the last layer, there is a 1 x 1 convolution with 1 filter in
the detection, and 3 filters in the multi-class classification stages, respectively.

The output of the second stage is an activation map of the size I, X I, x 3,
where the last dimension represents the number of classes, and I, and I}, are
the image width and height, respectively. The activation is then passed through
a softmax operation, which performs the final multi-class classification.

4 Experimental Validation

4.1 Data

The Brain Tumor Segmentation (BraTS) dataset [2-5,20] encompasses MRI-
DCE data of 285 patients with diagnosed gliomas—210 high-grade glioblastomas
(HGG), and 75 low-grade gliomas (LGG). Each study was manually annotated
by one to four experienced readers. The data comes in four co-registered modal-
ities: native pre-contrast (T1), post-contrast T1-weighted (T1c), T2-weighted
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(T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR). All the pixels have
one of four labels attached: healthy tissue, Gd-enhancing tumor (ET), peritu-
moral edema (ED), the necrotic and non-enhancing tumor core (NCR/NET).

The data was acquired with different clinical protocols, various scanners, and
at 19 institutions, therefore the pixel intensity distribution may vary significantly.
The studies were interpolated to the same shape (240 x 240x 155, hence 155
images of 240 x 240 size, with voxel size 1 mm?), and they were pre-processed
(skull-stripping was applied). Overall, there are 285 patients in the training set
T (210 HGG, 75 LGG), 66 patients in the validation set V' (without ground-
truth data provided by the BraTS 2018 organizers), and 191 in the test set ¥
(unseen data used for the final verification of the trained models).

4.2 Experimental Setup

The DNN models were implemented using Python3 with the Keras library over
CUDA 9.0 and CuDNN 5.1. The experiments were run on a machine equipped
with an Intel i7-6850K (15 MB Cache, 3.80 GHz) CPU with 32 GB RAM and
NVIDIA GTX Titan X GPU with 12 GB VRAM. The training metric was the
DICE score for both stages (detection and segmentation), which is calculated as

2-]1ANB|

where A and B are two segmentations, i.e., manual and automated. DICE ranges
from zero to one (one is the perfect score). The optimizer was Nadam (Adam
with Nesterov momentum) with the initial learning rate 10~°, and the optimizer
parameters: 81 = 0.9, B2 = 0.999. The training ran until DICE over the valida-
tion set did not increase by at least 0.002 in 10 epochs. The training time for
one epoch is around 10 min (similar for both stages). The networks converges
in around 20-30 epochs (the complete training for each fold takes 7-8 h). For
detection, we used the manually-tuned thresholds: T, = 0.5, and T,.. = 20%.

Both networks are relatively small, which directly translates to the low com-
putational requirements during inference—one volume can be processed and
classified end-to-end within around 5s. To exploit the training set completely,
and still be able to use validation subset to avoid over-fitting, the final predic-
tion was performed with an ensemble of five models trained on different folds of
the training set (we followed the 5-fold cross-validation setting over the training
set). Using an ensemble of five models (and averaging their outputs to elaborate
the final prediction) was shown to improve the performance, while extending the
inference time to around 18s per full volume.

4.3 Experimental Results

In Table1, we gather the results (DICE) obtained over the training and vali-
dation BraTS 2018 datasets (in the 5-fold cross-validation setting). The whole
tumor class represents the performance of the first stage of our classification
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system (evaluated on all the classes merged into one—exactly as the first stage
model is trained). Here, we report the average DICE for 5 non-overlapping folds
of the training set T', and the final DICE for validation V', and test ¥ sets
obtained using the ensembles of 5 base deep classifiers learned using training
examples belonging to different folds. Note that the ground-truth data (pixel
labels) for V' and ¥ were not known to the participants during the BraTS 2018
challenge, hence they could not be exploited to improve the models.

Table 1. Segmentation performance (DICE) over the BraTS 2018 validation set
obtained using our DNNs trained with T1lc, T2, and FLAIR images. The scores are
presented for whole tumor (WT), tumor core (TC), and enhancing tumor (ET) classes.
For the training set, we report the average across 5 non-overlapping folds, whereas for
the validation set—the results reported automatically by the BraT$S competition server
(for validation, we used an ensemble of 5 DNNs trained over different folds).

Dataset Label | DICE | Sensitivity | Specificity
Training |ET | 0.7365 | 0.8483 0.9981
WT 0.9268 | 0.9239 0.9956
TC 0.877910.8891 0.9973
Validation | ET | 0.7519 | 0.8373 0.9972
WT |0.8980 | 0.9096 0.9935
TC 0.8118|0.8142 0.9974

The results show that an ensemble of DNNs manifests fairly good generaliza-
tion capabilities over the unseen data, and it consistently obtains high-quality
classification. Interestingly, we did not use any data augmentation techniques in
our approach (which can be perceived as an implicit regularization), and even
without increasing the size and heterogeneity of the training data, the ensembles
were able to accurately delineate brain tumors in unseen scans. It also indicates
that data augmentation could potentially further improve the capabilities (both
detection and segmentation) of our deep models by providing a large number
of artificially created (but visually plausible and anatomically correct) training
examples generated using the original T .

In Table2, we gather the results obtained over the unseen test set ¥—we
report not only DICE, but also the Hausdorff distance (HD) given as

HD(A,B) = max (h(A, B),h(B, A)), (2)

where h(A, B) is the directed Hausdorff distance:

h(A, B) = i —-b 3
(4, B) = maxmin [|a — b]|, 3)
and ||-]| is a norm operation (e.g., Euclidean distance) [32]. It can be noted

that this metric is quite sensitive to outliers (the lower HD, the higher quality
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Table 2. The results reported for the unseen test set ¥ show that our models can gen-
eralize fairly well over the unseen data (however, the results are worse when compared
to the validation set). We report DICE alongside the Hausdorff distance (HD).

Measure | DICE (ET) | DICE (WT) | DICE (TC) | HD (ET)|HD (WT) HD (TC)
Mean 0.6493 0.8590 0.7342 73117 | 9.5128 | 11.5729
Std dev. | 0.3021 0.1272 0.2604 12.8380 | 16.1665 | 15.1306
Median | 0.7770 0.8983 0.8332 3.0000 |4.1231 | 7.3485
25 quantile | 0.6023 0.8376 0.6877 2.0000 |2.4495 | 3.4783
75 quantile | 0.8423 0.9299 0.9010 50500 | 7.8717 | 13.9277

segmentation we have in terms of contour similarity). The results show that our
deep-network ensemble can generalize quite well over the unseen data, however
the DICE values are slightly lowered when compared to the validation set. We
can attribute it to the heterogeneity of the testing data (as mentioned earlier,
we did not apply any data augmentation to increase the representativeness of
the training set). Interestingly, the whole-tumor segmentation remained at the
very same level (see DICE in Table2), and our method delivered high-quality
whole-tumor delineation (we can observe the highest decrease of accuracy for the
enhancing part of a tumor, and it amounts to more than 0.08 DICE on average).
It also leads us to the conclusion that for tumor segmentation (differentiating
between different parts of a lesion), the deep models require larger and more
diverse sets (perhaps due to subtle tissue differences which cannot be learnt from
a limited number of brain-tumor examples) and potentially better regularization.

5 Conclusions

In this paper, we presented an approach for effective detection and segmenta-
tion (into different parts of a tumor) of brain lesions from magnetic resonance
images which exploits cascaded multi-modal fully-convolutional neural networks
inspired by the U-Net architecture. The first deep network in our pipeline per-
forms tumor detection, whereas the second—multi-class tumor segmentation.
We cross-validated the proposed technique (in the 5-fold cross-validation setting)
over the newest release of the BraTS dataset (BraTS 2018), and the experimental
results showed that:

— Our cascaded multi-modal U-Nets deliver accurate segmentation, and ensem-
bling the models (and averaging the response of base classifiers) trained across
separate folds allows us to build the final model which generalizes well over
the unseen testing data.

— We showed that our networks can be trained fairly fast (7-8 h using 1 GPU),
and deliver real-time inference (around 18s per volume).

— We showed that our models can be seamlessly applied to both two- and multi-
class classification (i.e., tumor detection and segmentation, respectively).
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Our current research is focused on applying our techniques to different organs

and modalities (e.g., lung PET/CT imaging [23]), and developing data augmen-
tation approaches for medical images. Such algorithms (which ideally generate
artificial but visually plausible and realistic images) can be perceived as implicit
regularizers which help improve the performance of models over the unseen data
by introducing new examples into a training set [18,27,34].
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Abstract. Accurate segmentation of brain tumors is critical for clinical
quantitative analysis and decision making for glioblastoma patients. Con-
volutional neural networks (CNNs) have been widely used for this task.
Most of the existing methods integrate the multi-modality information
by merging them as multiple channels at the input of the network. How-
ever, explicitly exploring the complementary information among differ-
ent modalities has not been well studied. In fact, radiologists rely heavily
on the multi-modality complementary information to manually segment
each brain tumor substructure. In this paper, such a mechanism is devel-
oped by training the CNNs like the annotation process by radiologists.
Besides, a 3D lightweight CNN is proposed to extract brain tumor sub-
structures. The dilated convolutions and residual connections are used
to dramatically reduce the parameters without loss of the spatial reso-
lution and the number of parameters is only 0.5M. In the BraTS 2018
segmentation task, experiments with the validation dataset show that
the proposed method helps to improve the brain tumor segmentation
accuracy compared with the common merging strategy. The mean Dice
scores on the validation and testing dataset are (0.743, 0.872, 0.773) and
(0.645, 0.812, 0.725) for enhancing tumor core, whole tumor, and tumor
core, respectively.

Keywords: Brain tumor - 3D lightweight CNN -
Complementary information - Segmentation - Multi-modality

1 Introduction

Glioblastoma is the most common primary malignant brain tumor [17]. Medi-
cal imaging technologies play an important role in the diagnosis, preoperative
planning, intraoperative navigation, and postoperative evaluation of the brain
cancer. Magnetic Resonance Imaging (MRI) is the most frequently used imaging
method in the clinical routine of brain tumors, because it is noninvasive and free
of radiation.
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Brain tumor segmentation in multi-modality MRI scans is crucial for the
quantitative analysis in clinic. However, it is time-consuming and labor-intensive
for radiologists to manually delineate brain tumors. Automatic segmentation of
brain tumors in multi-modality MRI scans has a potential to provide a more
effective solution, but due to the highly heterogeneous appearance and various
shapes of brain tumors, it is one of the most challenging tasks in medical image
analysis. Figure 1 presents a brain tumor case and the corresponding label in the
BraTS 2018 training dataset.

Edema (ED)

Enhancing

\
. / Tumor (ET)
| v;

(3

u=y\Tumor Core (TC)

(c) Flair (d) Tlce (e) Ground Truth

Fig.1. A brain tumor example (named “Brats18.2013_2_1”) in BraT$S 2018 dataset.
(a—d) show four slices with the same position (107th slice) in different MRI scans. The
manual segmentation results of the different substructures are shown in (e).

In recent years, convolutional neural networks (CNNs) have emerged as a
powerful tool for medical image segmentation tasks, including organ and lesion
segmentation, and achieved unprecedented accuracy. Benefiting from the mul-
timodal brain tumor segmentation challenge [15] which is long-term and com-
petitive, many CNN architectures have been proposed and also achieved state-
of-the-art performance. In [13], Kamnitsas et al. constructed an Ensemble of
Multiple Models and Architectures (EMMA) for robust brain tumor segmenta-
tion including two deepMedic models, three 3D FCNs, and two 3D U-Nets.
Wang et al. [19] developed a cascade of fully convolutional neural networks
to decompose the multi-class segmentation problem into a sequence of three
binary segmentation problems according to the brain tumor substructures hier-
archy and proposed anisotropic networks to deal with 3D images as a trade-off
among the receptive field, model complexity and memory consumption. The
multi-view fusion was used to further reduce noises in the segmentation results.
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Isensee et al. [12] modified the U-Net to maximize brain tumor segmentation
performance. The architecture consisted of a context aggregation pathway which
was used to encode increasingly abstract representations of the input and a local-
ization pathway which was designed to transfer the low level features to a higher
spatial resolution.

Most of the existing multi-modality brain tumor segmentation methods use
an early-fusion strategy which integrates the multi-modality information from
the original MRI scans. For example, four MRI modalities (T1, T2, Tlce, and
Flair) are simply merged as four channels at the input of the network [12,13,19].
However, as argued in [18] in the context of multi-modal learning, it is difficult
to discover highly non-linear relationships among the low-level features of dif-
ferent modalities. Besides, early-fusion methods implicitly assume that the rela-
tionship among different modalities is simple (e.g., linear) and the importance
among these modalities is equal for the segmentation of different brain tumor
substructures. In fact, when radiologists manually segment tumor substructures,
they pay different attention to different modalities. For example, when segment-
ing the tumor core, radiologists will pay more attention to T1ce modality rather
than Flair or T2 modalities. Thus, the importance of different modalities is not
the same when segmenting a specific tumor substructure; The complementary
information among these modalities plays an important role to the final brain
tumor labels. As far as we know, explicitly exploring the complementary infor-
mation among different modalities has not been well studied for brain tumor
substructures segmentation.

In this paper, we train the networks like the manual segmentation process by
radiologists to explicitly explore the complementary information among different
MRI modalities. Specifically, the pipeline design of the brain tumor segmentation
is guided by clinical brain tumor annotation protocol. In addition, we propose a
novel 3D lightweight Convolutional Neural Network (CNN) architecture which
captures high-level features from a large receptive field without the loss of resolu-
tion of the feature maps. The proposed lightweight CNN makes a good balance
between the 3D receptive field and model complexity. It has only ten hidden
layers and the number of parameters is only 0.5M. We evaluate the proposed
lightweight CNN architecture on the BraTS 2018 validation and testing dataset
and achieve the promising segmentation results. Besides, experiments show that
an improvement of segmentation accuracy is achieved by exploring the comple-
mentary information among different modalities.

2 Methods

2.1 MRI Modality Analysis and Selection of Brain Tumors

The MRI modality selection method is inspired by how radiologists segment
the brain tumor substructures. From [15], it can be found that different brain
tumor substructures are annotated by different strategies in clinic. Specifically,
the edema (belongs to the whole tumor) is segmented primarily from T2 images.
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Flair images are used to cross-check the extension of the edema. The enhanc-
ing tumor and the tumor core are identified from T1lce images. Motivated by
this annotation protocol, different modalities are selected for the segmentation
of different brain tumor substructures. Table 1 presents an overview of the used
modalities for different substructures segmentation. Briefly, like annotation pro-
cess by radiologists, we mainly use the Flair and the T2 modalities to segment
the whole tumor and use the Tlce modality to segment the enhancing tumor
and the tumor core.

Table 1. Overview of the used modalities for the segmentation of different brain tumor
substructures.

Substructures Used modalities

Whole tumor Flair and T2

Tumor core Tlce

Enhancing tumor | T'lce

2.2 Proposed 3D Lightweight CNN Architecture

Although for 3D volume data segmentation, traditional 3D architectures such as
3D U-Net and FCN, have high memory consumption in the training phase, the
3D context information would be degenerated if changing the inputs as 2D or
2.5D slices to relieve the computational burden. As a trade-off between memory
consumption and 3D context information, a 3D lightweight CNN architecture
(Fig. 2) is proposed for 3D brain tumor segmentation which integrates the dilated
convolution with different dilated rates and residual connections. Table 2 presents
the detailed configurations of the proposed architecture.
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= o =} =} =} = =} =} - o connection
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Fig. 2. The proposed 3D lightweight CNN architecture. The number 1, 2, and 4 denote
the corresponding dilated rates.
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Dilated Convolution with Increasing and Decreasing Dilated Rates.
Dilated convolutions have been verified as a very effective structure in deep
neural networks [6,21]. The main idea of dilated convolution is to insert “holes”
among pixels in traditional convolutional kernels to enlarge the respective field.
In order to obtain multi-scale semantic information, we employ different dilation
factors in the proposed architecture. The dilation factors are set to 1, 2, and 4
with the increasing and decreasing sequences which can avoid the gridding effect
of the standard dilated convolution [8,20].

Residual Connections. To train deep CNNs more effectively, residual connec-
tions were first introduced by He et al. [10]. The main idea of residual connections
is to learn residual functions through the use of identity-based skip connections
which ease the flow of information across units. Our proposed lightweight archi-
tecture adds residual connections to each dilated convolutional layer. In addition,
each convolutional layer is associated with a batch normalization layer [11] and
an element-wise parametric rectified linear Unit (prelu) layer [9] to speed up the
convergence of the training process.

Table 2. Configurations of the proposed lightweight CNN architecture. Note that each
“Conv” corresponds the sequence Conv-BN-ReLLU and a residual connection is added
to each “Dilated Conv”.

Layers Configurations (kernel size, channel number)
(3x3%x3),8
(3% 3%3), 16, dilated factor = 1
Dilated Conv | (3 * 3 x 3), 32, dilated factor = 2
Dilated Conv | (3 % 3 % 3), 64, dilated factor = 4
Dilated Conv | (3 * 3 % 3), 64, dilated factor = 4
Dilated Conv | (3 * 3 x 3), 64, dilated factor = 2

( )

( )

( )

( )

Conv
Dilated Conv

Dilated Conv | (3 x 3 x 3), 64, dilated factor = 1
3% 3x%3), 64
1x1x1), 64

1% 1% 1), 2 or 3 for binary/triple segmentation, respectively

Conv

Conv

Conv

2.3 Two-Stage Cascaded Framework

Cascaded strategy has been proved to be an effective way for brain tumor sub-
structures segmentation [19] in the BraTS 2017. Inspired by this work, we deal
with the task with a two-stage cascaded framework. Figure 3 presents the whole
pipeline. The lightweight CNN architecture is iteratively used to sequentially
segment brain tumor substructures. In the first stage, the whole tumor is seg-
mented from Flair and T2 modalities. The segmentation results of Flair and
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T2 modalities are merged by simply making an union to generate a bounding
box of the whole tumor region of interest (ROI). Besides, an extension with 5
pixels is applied to the whole tumor ROI bounding box so as to avoid possible
under-segmentation. Specifically, each side of the bounding box is relaxed by 5
pixels. The whole tumor segmentation from the Flair modality is used as the
final whole tumor segmentation result. Besides, we also try to use the union seg-
mentation from Flair and T2 modalities segmentation results as the final whole
tumor segmentation result, but there is no improvement of the accuracy. In the
second stage, the corresponding T1ce images in the ROI are used to train a new
3D lightweight CNN to make a triple prediction for the enhancing tumor and
the tumor core segmentation.

Flair Lightweight

bl Whole Tumor
ROI

Lightweight Lightweight
= o [ e

Stage 1 Stage 2

Fig. 3. The two-stage cascaded framework for brain tumor substructures segmentation.

3 Experiments and Results

3.1 Preprocessing

The proposed method was evaluated on the Brain Tumor Segmentation Chal-
lenge (BraTS 2018) dataset [2—4]. The training dataset consisted of 210 cases
with high grade glioma (HGG), 75 cases with low grade glioma (LGG) and the
corresponding manual segmentation. Each case had four 3D MR modalities (T1,
T2, Flair, and Tlce).

Table 3. Data preprocessing methods.

Modality | Preprocessing methods

Flair z-score, histogram equalization, and scale to [0, 1]
T2 z-score and scale to [0, 1]

Tlce z-score and scale to [0, 1]

To enforce the MR volume data to be more uniform, the following prepro-
cessing strategies (Table 3) were applied to the used modalities. It can be seen
that the Flair modality is added an additional histogram equalization compared
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to the preprocessing methods for the remained modalities. This was because
the intensity distributions of the Flair images vary considerably across different
cases. Figure 4 presents two examples of Flair modalities in the training dataset.
Obviously, the intensity distributions of the two cases still differed remarkably
after the z-score normalization. Therefore, the histogram equalization was fur-
ther applied to make them share similar intensity distribution. For the T2 and
T1lce modalities, however, there were no such significant intensity differences
among different cases, so a simple z-score preprocessing was enough.

(a) Original (b) Z-score (c) Histogram equalization

Fig.4. Preprocessing results of two Flair images. The first row is the case
named “Brats18_TCIA02.135_1 (78th slice)” and the second row is the case named
“Brats18_TCIA02-283_1 (78th slice)”. After z-score normalization, there is still a great
difference between the two images (the 2nd column). Further, the histogram equaliza-
tion is applied to make them share similar intensity distributions (the 3rd column).

3.2 Implementation Details

The BraTS 2018 training dataset was randomly divided into training data (80%),
validation data (10%), and test data (10%) to find the proper parameters. After
that, all the training data were employed to train the final models which were
used for the official validation and testing dataset.

The proposed networks were implemented in tensorflow [1] and NiftyNet
[7,14]. The input 3D volume data was resized to 64 x 64 % 64 by the first order
spline interpolation. The predicted segmentation was also resized in the same
way to retrieve the original 3D volume. The batch size was set to 2 and the
maximum number of iterations was 10k. The optimizer was the adam with an
initial learning rate 0.001. The loss function was Dice coefficient [16] which can
deal with the data imbalance. A L2 weight decay of 10~® was used. No external
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data was used and data augmentation included random rotation, random spatial
scaling, and random flipping. The whole training process cost about 30h on a
desktop with an Intel Core i7 CPU and a NVIDIA 1080Ti GPU.

ferxy
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[euoIo)

(a) Flair (b) Tlce (c) Ordinary fusion (d) Complementary fusion

Fig. 5. Segmentation results of the brain tumor substructures from the BraTS 2018
validation dataset (named “Brats18_.CBICA_ALV_1") by the proposed method (com-
plementary fusion) and its variant (ordinary fusion). Green: edema; red: necrotic
and the non-enhancing tumor core; yellow: enhancing tumor core. The obvious mis-
segmentations of the non-enhancing tumor core are highlighted by white arrows. (Color
figure online)

3.3 Segmentation Results

We test our framework on the BraTS 2018 validation dataset with 66 new cases.
To evaluate whether the proposed method (termed as complementary fusion)
could improve the brain tumor segmentation results, we compare it with the
ordinary strategy which merges four MR modalities as four channels at the input
of the network. The whole pipeline is also a two-stage cascaded way and we refer
to it as ordinary fusion. Except the difference at the input of the network, all
the hyper-parameters of the ordinary fusion are the same with the proposed
complementary fusion strategy during the training process.

Table 4 presents quantitative evaluations of the proposed method (comple-
mentary fusion) and its variant (complementary fusion) on the BraTS 2018
validation dataset. For the ordinary fusion, the Dice scores are 0.709, 0.851,
and 0.751 for enhancing tumor core, whole tumor, and tumor core respectively.
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Table 4. Mean values of Dice and 95th percentile Hausdorff measurements of the
proposed method on the BraTS 2018 Validation dataset. EN, WT, and TC denote
enhancing tumor core, whole tumor and tumor core, respectively. The ordinary fusion
denotes that four modalities are simply merged as four channels at the input of the
network. The complementary fusion denotes that the proposed method which explicitly
explores the complementary information among different modalities.

Dataset Dice_ET | Dice-WT | Dice.TC | HAff95_ET | HAff95-WT | Hdff95_TC
Ordinary fusion 0.709 0.851 0.751 5.65 8.64 13.6
Complementary fusion | 0.743 0.872 0.773 4.69 6.12 10.4

For the proposed complementary fusion, an improvement is achieved, and the
Dice scores are 0.743, 0.872, and 0.773 for these substructures respectively.

Figure 5 shows an example for the brain tumor substructures segmentation
from the BraTS 2018 validation dataset. Three views are presented, including
the axial view, the sagittal view, and the coronal view. For the simplicity of visu-
alization, only the Flair and T1lce images are shown, because the two modalities
can clearly display the whole tumor, enhancing tumor, and tumor core. The first
and the second columns present the input images from Flair and T1ce modali-
ties, respectively. We have compared the proposed method with its variant that
employed the ordinary fusion method at the input. The third and the fourth
columns show the ordinary fusion and the complementary fusion segmentation
results, respectively. The green, red, and yellow colors show the edema, tumor
core, and enhancing tumor, respectively. It can be observed that the predic-
tions by the ordinary fusion seem to have an over segmentation (highlighted
by white arrows) of the tumor core. When using the complementary fusion, the
segmentation results are more accurate.

Table5 presents quantitative evaluations with the BraTS 2018 testing
dataset. It shows the mean values, standard deviations, medians, Dice, and 25
and 75 quantiles of the 95th Hausdorff distance. Compared with the performance
on the validation dataset, the performance on the testing dataset is lower, with
average Dice scores of 0.645, 0.812, and 0.725 for enhancing tumor core, whole

Table 5. Dice and the 95th percentile Hausdorff measure of the proposed method on
the BraTS 2018 Testing dataset. EN, WT, and TC denote enhancing tumor core, whole
tumor and tumor core, respectively.

Dataset Dice_ET | Dice.WT | Dice_.TC | HAff95_ET | HAff95_WT | Hdff95_T'C

Mean 0.645 0.812 0.725 41.1 10.0 28.6
StdDev 0.300 0.175 0.291 105 15.7 78.8
Median 0.768 0.875 0.855 3.00 5.39 5.20
25quantile | 0.541 0.829 0.678 1.73 3.74 2.83

75quantile | 0.844 0.910 0.921 10.2 8. 22 13.6
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tumor, and tumor core, respectively. The higher median values show that good
segmentation results are achieved for most cases, and some outliers lead to the
lower average scores. The ranking analysis is reported in [5].

4 Discussion and Conclusion

There are several advantages of the proposed framework. Firstly, the comple-
mentary information among different modalities is explicitly explored to segment
brain tumor substructures which can avoid the interference from other confus-
ing modalities as well as reducing the complexity compared with using all the
modalities as inputs simultaneously. Besides, the proposed 3D lightweight CNN
effectively uses the dilated convolutions to enlarge the receptive fields and to
aggregate the global information. The increasing and decreasing arrangement
of the dilate factors can alleviate the gridding effect caused by the standard
dilated convolutions. The architecture is very compact and computation efficient.
Finally, the cascaded CNNs, which have been proved to be an effective strategy,
can separate the complex multiple class segmentation into simper problems and
reduce false positives by spatial constrains of brain tumor anatomical structures.

In conclusion, we explicitly explore the complementary information among
different modalities according to the clinical annotation protocol. In addition, a
compact 3D lightweight CNN architecture is proposed and the number of param-
eters is only 0.5M. The proposed approach achieves a promising performance
on the BraTS 2018 validation and testing dataset. Experiments with the BraTS
2018 validation dataset show that the complementary fusion strategy helps to
improve the brain tumor segmentation accuracy compared with the ordinary
fusion method.
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Abstract. Precise 3D computerized segmentation of brain tumors remains,
until nowadays, a challenging process due to the variety of the possible shapes,
locations and image intensities of various tumors types. This paper presents a
fully automated and efficient brain tumor segmentation method based on 2D
Deep Convolutional Neural Networks (DNNs) which automatically extracts the
whole tumor and intra-tumor regions, including enhancing tumor, edema and
necrosis, from pre-operative multimodal 3D-MRI. The network architecture was
inspired by U-net and has been modified to increase brain tumor segmentation
performance. Among applied modifications, Weighted Cross Entropy
(WCE) and Generalized Dice Loss (GDL) were employed as a loss function to
address the class imbalance problem in the brain tumor data. The proposed
segmentation system has been tested and evaluated on both, BraTS’2018
training and validation datasets, which include a total of 351 multimodal MRI
volumes of different patients with HGG and LGG tumors representing different
shapes, giving promising and objective results close to manual segmentation
performances obtained by experienced neuro-radiologists. On the challenge
validation dataset, our system achieved a mean enhancing tumor, whole tumor,
and tumor core dice score of 0.783, 0.868 and 0.805 respectively. Other
quantitative and qualitative evaluations are presented and discussed along the

paper.

Keywords: Brain tumor segmentation + 3D-MRI - Machine learning-
Deep learning - Convolutional Neural Networks - U-net-
BraTS’2018 challenge

1 Introduction

Brain tumor segmentation in multimodal Magnetic Resonance Imaging (MRI) is
widely used as a vital process for surgical planning and simulation, treatment planning
prior to radiation therapy, therapy evaluation [1-5], and intra-operative neuro navi-
gation and image neurosurgery [6—8]. However, segmenting brain tumor manually is
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not only a challenging task, but also a time-consuming one, favoring therefore, the
emergence of computerized approaches.

Despite considerable research works and encouraging results in the medical
imaging domain, fast and precise 3D computerized brain tumors segmentation remains
until now a challenging process and a very difficult task to achieve because brain
tumors may appear in different size, shape, location and image intensity [2-5]. Many
recent research adopted deep learning methods [9], specifically Convolutional Neural
Networks (CNNs) [9-12]. CNN shown their effectiveness and were proved successful
to automatically classify the normal and pathological brain MRI scans in the past few
BraTS challenges as well as other semantic and medical segmentation problems.

This paper proposes an automated and efficient segmentation method of whole
tumor and intra-tumor structures, including enhancing tumor, edema and necrosis, in
multimodal 3D-MRL. It is based on 2D Deep Convolutional Neural Networks (DNNs)
using a modified U-net architecture [10]. The proposed DNN model is trained to
segment both High Grade Glioma (HGG) and Lower Grade Glioma (LGG) volumes.

The rest of the paper is organized as follows. First, Sect. 2 presents an overview of
the proposed segmentation method. Experimental results with their evaluations are
given in Sect. 3. Finally, a conclusion and future work are presented in Sect. 4.

2 The Proposed Method

The proposed segmentation system is entirely automated. The brain tumor segmenta-
tion process is based on deep learning more precisely on 2D Convolutional Neural
Networks. It includes the main following steps: pre-processing of the 3D-MRI data,
training using a U-net architecture, and brain tumoral structures prediction.

2.1 Data and Pre-processing

The BraTS’2018 challenge training dataset consists of 210 pre-operative multimodal
MRI scans of subjects with HGG and 75 scans of subjects with LGG, and the
BraTS’2018 challenge validation dataset includes 66 different multimodal 3D-MRI
[13—16]. Images were acquired at 19 different centers using MR scanners from different
vendors and with 3T field strength. They comprise co-registered native (T1) and
contrast-enhanced T1-weighted (T1Gd) MRI, as well as T2-weighted (T2) and T2
Fluid Attenuated Inversion Recovery (FLAIR) MRI. All 3D-MRI of BraTS’2018
dataset have a volume dimension of 240 x 240 x 155. They are distributed, co-
registered to the same anatomical template and interpolated to the same resolution (1
mm®). All MRI volumes have been segmented manually, by one to four raters, and
their annotations were approved by experienced neuro-radiologists. Each tumor was
segmented into edema, necrosis and non-enhancing tumor and active/enhancing tumor.

First, a minimal pre-processing of MRI data is applied, as in [11]. The 1% highest
and lowest intensities were removed, then each modality of MR images was normal-
ized by subtracting the mean and dividing by the standard deviation of the intensities
within the slice. To address the class imbalance problem in the data, data augmentation
technique [17] were employed. This consists in adding new synthetic images by
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performing operations and transformations on data and the corresponding manual
tumors segmentation images obtained by human experts (i.e., ground truth data). The
transformations comprise rotation, translation, and horizontal flipping and mirroring.

2.2 Network Architecture and Training

The CNN used in this study has a similar architecture as that of U-net [10]. Our
network architecture can be seen in Fig. 1. It consists of a contracting path (left side)
and an expanding path (right side). The contracting path consists of 3 pre-activated
residual blocks, as in [18, 19], instead of plain blocks in the original U-net. Each block
has two convolution units each of which comprises a Batch Normalization (BN) layer,
an activation function, called Parametric Rectified Linear Unit (PReLLU) [20],instead of
ReLU function used in the original architecture [10], and a convolutional layer, like in
[12], instead of using Maxpooling [10], with Padding = 2, Stride = 1 and a 3 x 3 size
filter. For down sampling, a convolution layer with a 2 x 2 filter and a stride of 2 is
applied. At each down sampling step, the number of feature channels is doubled. The
contracting path is followed by a fourth residual unit that acts as a bridge to connect
both paths. In the same way, the expanding path is built using 3 residual blocks. Prior
to each block, there is an upsampling operation which increases the feature map size by
2, followed by a 2 x 2 convolution and a concatenation with the feature maps cor-
responding to the contracting path. In the last layer of the expanding path, a 1 x 1
convolution with the Softmax activation function is used to map the multi-channel
feature maps to the desired number of classes.

In total, the proposed network model contains 7 residual blocks, 25 convolution
layers, 15 layers of BN and 10159748 parameters to optimize.

The designed network was trained with axial slices extracted from training MRI set,
including HGG and LGG cases, and the corresponding ground truth segmentations.
The goal is to find the network parameters (weights and biases) that minimize a loss
function. In this work, this can be achieved by using Stochastic Gradient Descent
algorithm (SGD) [17], at each iteration SGD updates the parameters towards the
opposite direction of the gradients. In our network model, we used a loss function that
adds Weighted Cross Entropy (WCE) [17] and Generalized Dice (GDL) [21] to address
the class imbalance problem present in brain tumor data. So, the two components of the
loss function are defined as follows:

L
WCE = — 3%, 3 Wigix 0g (pix) (1)
L
GDL — 1 — 2 22 .
Zi Wi Zk(gik +Pik)

where L is the total number of labels, K denotes the batch size. w; represents the weight
assigned to the ith label. As in [21], we set wi to L. pi and g representing the

(Zk g”")
value of the (ith, kth) pixel of the segmented binary image and of the binary ground
truth image, respectively.
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2.3 Brain Tumoral Structures Prediction

After network training, prediction may be performed. This step consists to provide the
network with the four MRI modalities of an unsegmented volume that it has never
processed or encountered before, and it must be able to return a segmented image.

3 Experimental Results and Discussion

In this study, we have tested and evaluated our segmentation system on pre-operative
multimodal MRI scans of both the training/testing and the validation datasets of the
BraTS’2018 challenge [22]. The results of automatically segmented tumors, denoted by
A, can be compared with manually segmented tumors by human experts, denoted by B,
which are considered as ground truth for evaluation. The results presented in subse-
quent sections, were obtained during the BraTS’ 2018 challenge, for training and val-
idation [22]. The top 63 approaches are further compared in terms of results (Dice,
Sensitivity and Specificity) and one surface measure based on the Hausdorff distance
(HD), in [23] on 191 cases. These measures allow to assess the segmentation results
accuracy, as well as measuring the similarity between the segmentations A and B [2,
24]. The Dice metric is computed as a performance metric. It measures the similarity
between two volumes A and B, corresponding to the output segmentation of the model
and clinical ground truth annotations, respectively. The Sensitivity metric measures the
proportion of positive voxels of the real brain tumor that are correctly segmented as
such, while Specificity metric indicates how well the true negatives are predicted.
Employing Sensitivity and Specificity can provide a good assessment of the segmen-
tation result. The HD metric indicates the segmentation quality at the tumor’s border by
evaluating the greatest distance between the two segmentation surfaces A and B, and is
independent of the tumor size.

3.1 Performance on 20% of BraTS’2018 Training Dataset (Testing Set)

Preliminary segmentation results for the 285 3D-MRI of the BraTS’2018 training data
set have been obtained using 80% of this data set (i.e., 228 subjects) for training and the
remaining 20% (i.e., 57 subjects) for validation purposes. Results obtained by our
automated system for 10 sample cases are shown in Figs. 2 and 3. Figure 2 shows
segmentation results from 5 multimodal MRI where HGG tumors are present and
Fig. 3 shows other segmentation results from other 5 MRI with LGG tumors. In these
figures, each row represents one clinical case. In the first four columns from left to
right, images show one axial slice of MRI acquired in Flair, T1, T1C and T2 modality,
respectively, used as input channels to our CNN model. In the fifth and the sixth
columns, images show the ground truth (GT) and the prediction labels respectively,
where we can distinguish intra-tumoral regions by color-code: enhancing tumor (yel-
low), peritumoral edema (green) and necrotic and non-enhancing tumor (red). As it can
be seen, tumors in the brain MRI of the 10 cases vary in size, shape, position and
intensity. By visual inspection, the proposed method usually generates segmentations
(Prediction) sensibly similar to the ones obtained by the experts (GT).
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Fig. 2. Intra-tumoral structures segmentation results from 5 multimodal 3D-MRI with HGG of
BraTS’2018 training dataset corresponding to 5 different subjects. (Color figure online)
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Fig. 3. Intra-tumoral structures segmentation results from 5 other multimodal 3D-MRI with
LGG of BraTS’2018 training dataset corresponding to 5 different subjects. (Color figure online)
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A quantitative evaluation of segmentation results of Enhancing Tumor (ET), Whole
Tumor (WT) and Tumor Core (TC) using the four previously mentioned metrics is
given in Tables 1 and 2. Mean, standard deviation, median and 25th and 75th per-
centile are given for Dice and Sensitivity metrics in Table 1 and for Specificity and
Hausdorff distance in Table 2. Values presented in Table 1 show high performance on
the Dice metric for WT region, but lower performance for ET and TC regions.
Moreover, the proposed method showed good performances for the segmentation of the
three intra-tumoral regions. However, the effectiveness, of the approach, is high-lighted
in the case of HGG tumors, when compared with the LGG ones.

Table 1. Quantitative evaluation of segmentation results on 20% of BraTS 2018 training dataset
(57 MRI scans) using Dice and Sensitivity metrics.

Dice Sensitivity
ET |WT |TC |ET |WT |TC
Mean 0.717|0.867 | 0.798 | 0.778 | 0.907 | 0.84

Std. Dev. |0.275]0.0780.226 | 0.3 | 0.107 | 0.223
Median 0.8310.887 | 0.889 1 0.912 | 0.943 | 0.927
25 quantile | 0.726 | 0.839 | 0.808 | 0.777 | 0.896 | 0.847
75 quantile | 0.859 | 0.926 | 0.935 | 0.951 | 0.974 | 0.961

Table 2. Quantitative evaluation of segmentation results on 20% of BraTS 2018 training dataset
(57 MRI scans) using Specificity and Hausdor{f distance metrics.

Specificity Hausdorff95
ET |WT |ET |WT |ET WT
Mean 0.999 10.998 | 0.999 | 4.742 | 8.706 | 6.4

Std. Dev. |0.001 |0.001|0.002|2.079 | 2.822|3.685
Median 1 0.999 | 1 4.123| 8.062|5.099
25 quantile | 0.999 | 0.998 | 0.999 | 3 6.442 | 3.871
75 quantile | 1 0.999 |1 6.633|10.951 | 8.303

3.2 Performance on BraTS’2018 Validation Dataset

For our participation to BraTS’2018 competition, 100% of the training, including the
previous testing dataset (i.e., 285 subjects) is used for training. The performance on
BraTS’2018 validation dataset, which is composed of 66 subjects, is diffused in the
challenge leaderboard Web site' and presented with more statistics in Tables 3, 4,
Figs. 4 and 5. In this context, we can compare the obtained segmentation results with
those of other participants. The method achieved a mean ET, WT, and TC dice score of
0.783, 0.868 and 0.805 respectively. These scores are close to those obtained by the top

! https://www.cbica.upenn.edu/BraTS 18/IboardValidation.html.
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performing methods. Also, an average HD scores of 3.728, 8.127 and 9.84 for ET, WT,
and TC, respectively were obtained. In addition, it was observed that our DNN model
maintains similar WT scores on both, 20% of BraTS’ 2018 training/testing set used for
validation and the final validation dataset proposed for the competition purposes.
However, a slight increase in performance on the validation dataset was observed in the
ET and TC compartments. It should be noted that this performance was not obtained by
overfitting the validation data (i.e., our DNN model has not previously trained on MRI
volumes of BraTS’2018 validation dataset).

Table 3. Quantitative evaluation of segmentation results on BraTS’2018 validation dataset (66
MRI scans) by using Dice and Sensitivity metrics.

Dice Sensitivity
ET |WT |TC |ET |WT |TC
Mean 0.783]0.868 | 0.805 | 0.826 | 0.895 | 0.807

Std. Dev. |0.2160.101 | 0.199 | 0.241 | 0.149 | 0.222
Median 0.846 | 0.898 | 0.891 | 0.901 | 0.955 | 0.895
25 quantile | 0.769 | 0.855 | 0.756 { 0.82 | 0.901 | 0.71
75 quantile | 0.893 | 0.919 | 0.928 | 0.969 | 0.971 | 0.965

Table 4. Quantitative evaluation of segmentation results on BraTS’2018 validation dataset (66
MRI scans) by using Specificity and Hausdorff distance metrics.

Specificity Hausdorff95
ET |WT |ET |WT |ET WT
Mean 0.99710.991 {0.997 |3.728 | 8.127| 9.84

Std. Dev. |0.004|0.007 | 0.003 | 4.471 | 10.426 | 15.385
Median 0.99810.99310.998 | 2.236 | 4.243 | 5.431
25 quantile | 0.997 | 0.988 | 0.997 | 1.637 | 3 2.871
75 quantile | 0.999 | 0.996 | 0.999 |3.317 | 7.778|10.728

This performance can be explained by the fact that the number of learned cases
(training dataset) used later for the segmentation of the validation dataset is larger than
the one used for the BraTS 2018 segmentation on the training/testing dataset. This
represents 285 and 228 cases for both trainings respectively. It is also possible that the
slight improvements obtained on the validation dataset, are due to the fact that this
latter contains more MRI with HGG tumors than MRI with LGG tumors. Indeed, the
segmentation efficiency obtained using the proposed network, is more evident on HGG
volumes when compared to LGG ones.

Boxplots showing the dispersion of Dice and Sensitivity scores are represented in
Fig. 4 and boxplots of the dispersion of Specificity and HD scores are represented in
Fig. 5. In these figures, boxplots show quartile ranges of the scores; whiskers and dots
‘@’ indicate outliers; and ‘x’ indicates the mean score.
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Fig. 4. Dispersion of Dice and Sensitivity scores for results segmentation of ET, WT, and TC in
multimodal MRI scans of the 66 subjects of BraTS’2018 validation dataset.
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Fig. 5. Dispersion of Specificity and Hausdorff distance scores for results segmentation of ET,
WT, and TC in multimodal MRI scans of the 66 subjects of BraTS’2018 validation dataset.

4 Conclusion and Future Work

In this paper, a fully automatic and accurate method for segmentation of whole brain
tumor and intra-tumoral regions using a 2D deep convolutional network based on a
well-known architecture in medical imaging called “U-net” is proposed. The con-
structed DNN model was trained to segment both HGG and LGG volumes.

The proposed method was tested and evaluated quantitatively on both BraTS’2018
training and challenge validation datasets. The total learning computation time of the
285 multimodal MRI volumes of BraTS’2018 training dataset is 185 h on a Cluster
machine with Intel Xeon E5-2650 CPU@ 2.00 GHz (64 GB) and NVIDIA Quadro
4000448 Core CUDA (2 GB) GPU. The average segmentation time of a brain tumor
and its components from a given MRI volume is about 62 s on the same GPU. The
different tests showed that the segmentation results were very satisfactory, and the
evaluation measures confirm that our results are very similar to those manually
obtained by the experts, although the proposed method can be further improved.
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As future work, a more powerful GPU to further accelerate learning phase of DNN
is planned. Thus, a larger number of CNN topologies as well other data augmentation
methods may be tested. Also, other interesting perspective consists to use ensemble
learning methods, like Stacking and Blending, to improve segmentation performance in
tumor core and active tumor regions. Finally, a future work possibility may focus on
refining the segmentation results by reducing the false-positive rate using post-
processing techniques, such as: applying a conditional random field (CRF) and
removing small connected components.
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Abstract. In this work, we propose a novel cascaded V-Nets method to seg-
ment brain tumor substructures in multimodal brain magnetic resonance imaging
(MRI). Although V-Net has been successfully used in many segmentation tasks,
we demonstrate that its performance could be further enhanced by using a
cascaded structure and ensemble strategy. Briefly, our baseline V-Net consists of
four levels with encoding and decoding paths and intra- and inter-path skip
connections. Focal loss is chosen to improve performance on hard samples as
well as balance the positive and negative samples. We further propose three
preprocessing pipelines for multimodal MRI images to train different models.
By ensembling the segmentation probability maps obtained from these models,
segmentation result is further improved. In other hand, we propose to segment
the whole tumor first, and then divide it into tumor necrosis, edema, and
enhancing tumor. Experimental results on BraTS 2018 online validation set
achieve average Dice scores of 0.9048, 0.8364 and 0.7748 for whole tumor,
tumor core and enhancing tumor, respectively. The corresponding values for
BraTS 2018 online testing set are 0.8761, 0.7953 and 0.7364, respectively. We
further make a prediction of patient overall survival by ensembling multiple
classifiers for long, mid and short groups, and achieve accuracy of 0.519, mean
square error of 367239 and Spearman correlation coefficient of 0.168.

Keywords: Deep learning - Brain tumor - Segmentation - V-Net

1 Introduction

Gliomas are the most common brain tumors and comprise about 30% of all brain
tumors. Gliomas occur in the glial cells of the brain or the spine [1]. They can be
further categorized into low-grade gliomas (LGG) and high-grade gliomas (HGG) ac-
cording to their pathologic evaluation. LGG are well-differentiated and tend to exhibit
benign tendencies and portend a better prognosis for the patients. HGG are undiffer-
entiated and tend to exhibit malignant and usually lead to a worse prognosis. With the
development of the Magnetic Resonance Imaging (MRI), multimodal MRI plays an
important role in disease diagnosis. Different MRI modalities are developed sensitive to
different tissues. For example, T2-weighted (T2) and T2 Fluid Attenuation Inversion
Recovery (FLAIR) are sensitive to peritumoral edema, and post-contrast T1-weighted
(T1Gd) is sensitive to necrotic core and enhancing tumor core. Thus, they can provide
complementary information about gliomas.
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Segmentation of brain tumor is a prerequisite while essential task in disease
diagnosis, surgical planning and prognosis [2]. Automatic segmentation provides
quantitative information that is more accurate and has better reproducibility than
conventional qualitative image review. Moreover, the following task of brain tumor
classification heavily relies on the results of brain tumor segmentation. Automatic
segmentation is considered as a powered engine and empower other intelligent medical
application. However, the segmentation of brain tumor in multimodal MRI scans is one
of the most challenging tasks in medical imaging analysis due to their highly hetero-
geneous appearance, and variable localization, shape and size.

As the rapid development of deep leaning techniques, state-of-the-art performance
on brain tumor segmentation have been achieved. For example, in [3], an end-to-end
training using fully convolutional network (FCN) showed a satisfactory performance in
the localization of the tumor, and patch-wise convolutional neural network (CNN) was
used to segment the intra-tumor structure. In [4], a cascaded anisotropic CNN was
designed to segment three sub-regions with three Nets, and the segmentation result
from previous net was used as receptive field in the next net.

Inspired by the good performance of V-Net in segmentation tasks and the cascaded
strategy, we propose a cascaded V-Nets method to segment brain tumor into three
substructures and background. In particular, the cascaded V-Nets not only take
advantage of residual connection but also use the extra coarse localization and
ensemble of multiple models to boost the performance.

2 Method

2.1 Dataset and Preprocessing

The data used in experiments come from BraTS 2018 training set and validation set [5—
8]. The training set includes totally 210 HGG patients and 75 LGG patients. The
validation set includes 66 patients. Each patient has five MRI modalities including T1-
weighted (T1), T2, T1Gd, FLAIR, and a ground truth label of tumor substructures. We
use 80% of the training data as our training set, other 20% of the training data as our
local testing set. All data used in the experiments are preprocessed with special
designed procedures. A flow chart of the proposed preprocessing procedures is shown
in Fig. 1, as follows:

(1) Apply bias field correction N4 [9] to T1 and T1Gd images, normalize each
modality using histogram matching with respect to a MNI template image, and
rescale the images intensity value into range of —1 to 1.

(2) Apply bias field correction N4 to all modalities, compute the standardized z-
scores for each image and rescale 0-99.9 percentile intensity values into range of
=1 to 1.

(3) Follow the first method, and further apply affine alignment to co-register each
image to the MNI template image.
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Fig. 1. The flow chart of the preprocessing procedures.

2.2 V-Net Architecture

V-Net was initially proposed to segment prostate by training an end-to-end CNN on
MRI [10]. The architecture of our V-Net is shown in Fig. 2. The left side of V-Net
reduces the size of the input by down-sampling, and the right side of V-Net recovers
the semantic segmentation image that has the same size with input images by applying
de-convolutions. The detailed parameters about V-Net is shown in Table 1. By means
of introducing residual function and skip connection, V-Net has better segmentation
performance compared with classical CNN. By means of introducing the 3D kernel
with a size of 1 * 1 * 1, the numbers of parameters in V-Net is decreased and the

memory consumption is greatly reduced.
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Fig. 2. The architecture of the used V-Net.

2.3 Proposed Cascaded V-Nets Framework

Although V-Net has demonstrated promising performances in segmentation tasks, it
could be further improved if incorporated with extra information, such as coarse
localization. Therefore, we propose a cascaded V-Nets method for tumor segmentation.
Briefly, we (1) use one V-Net for the brain whole tumor segmentation; (2) use a second
V-Net to further divide the tumor region into three substructures, e.g., tumor necrosis,
edema, and enhancing tumor. Note that the coarse segmentation of whole tumor in the
first V-Net is also used as receptive field to boost the performance. Detailed steps are as
follows.

The proposed framework is shown in Fig. 3. There are two networks to segment
substructures of brain tumors sequentially. The first network (V-Net 1) includes models
1-3, designed to segment the whole tumor. These models are trained by three kinds of
preprocessed data mentioned in part of 2.1, respectively. V-Net 1 uses four modalities
MR images as inputs, and outputs the mask of whole tumor (WT). The second network
(V-Net 2) includes models 4-5, designed to segment the brain tumor into three sub-
structures: tumor necrosis, edema, and enhancing tumor. These models are trained by
the first two kinds of preprocessed data mentioned in part of 2.1, respectively. V-Net 2
also uses four modalities MR images as inputs, and outputs the segmented mask with
three labels. Note that the inputs of V-Net 2 have been processed by using the mask of
WT as region of interest (ROI). In other words, the areas out of the ROI are set as
background. Finally, we combine the segmentation results of whole tumor obtained by
V-Net 1 and the segmentation results of tumor core (TC, includes tumor necrosis and
enhancing tumor) obtained by V-Net 2 to achieve more accurate results about the three
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substructures of brain tumor. In short, the cascaded V-Nets take advantage of seg-
menting the brain tumor and three substructures sequentially, and ensemble of multiple
models to boost the performance and achieve more accurate segmentation results.

Table 1. The detailed parameters of the used V-Net, as shown in Fig. 2. The
the output dimensions are the same with input dimensions.

symbol ‘-’ means

Blocks

Sub-blocks or layers

Input dimensions

Output
dimensions

Input Block

Conv(k =3,p=1,s=1) + BN + ReLU

96 * 96 * 96 * 4

96 * 96 * 96 * 16

Down Conv(k =2,p=0,s=2)+ BN + ReLU 96 * 96 * 96 * 16 | 48 * 48 * 48 * 32
Block 1 Residual Conv(k =3,p=1, 48 * 48 * 48 * 32 | -
Block s=1)+ BN
(input + output) + ReLU 48 * 48 * 48 # 32 | -
Down Conv(k =2, p=0, s = 2) + BN + ReLU 48 * 48 * 48 * 32 | 24 % 24 * 24 * 64
Block 2 Residual Conv Block * 2 24 % 24 % 24 * 64 | -
Block (input + output) + ReLU 24 % 24 % 24 % 64 | -
Down Conv(k =2, p=0, s =2) + BN + ReLU 24 % 24 % 24 % 64 | 12% 12 % 12 % 128
Block 3 Residual Conv Block * 3 12%12%12% 128 | -
Block (input + output) + ReLU 12%12%12% 128 | -
Down Conv(k =2, p=0, s = 2) + BN + ReLU 12%12%12%128 |6 * 6 * 6 * 256
Block 4 Residual Conv Block * 3 6%6%6%256 |-
Block (input + output) + ReLU 6*6%*6*256 -
Up Block 1 | Conv(k =2, p=0, s = 2) + BN + ReLU 6%6%6*256 | 12%12%12%128
Residual Cat(output, skip) 12%12%12% 128 | 12 % 12 %12 * 256
Block Conv Block * 3 12%12% 12 %256 | -
(input + output) + ReLU 12% 12 % 12 % 256 | -
Up Block 2 | Conv(k =2, p=0, s = 2) + BN + ReLU 12 %12 % 12 % 256 | 24 * 24 * 24 * 64
Residual Cat(output + skip) 24 *# 24 %24 * 64 | 24 ¥ 24 * 24 * 128
Block Conv Block * 3 24 %24 %24 % 128 | -
(input + output) + ReLU 24 *24 %24 * 128 | -
Up Block 3 | Conv(k =2, p=0, s =2) + BN + ReLU 24 %24 %24 % 128 | 48 * 48 * 48 * 32
Residual Cat(output + skip) 48 ¥ 48 * 48 * 32 | 48 * 48 * 48 * 64
Block Conv(k =3,p=1, 48 * 48 * 48 * 64 | -
s =1) + BN + ReLU
Conv(k =3,p=1, 48 * 48 * 48 * 64 | -
s=1)+BN
(input + output) + ReLU 48 * 48 * 48 * 64 | -
Up Block 4 | Conv(k =2, p=0, s = 2) + BN + ReLU 48 * 48 * 48 * 64 | 96 * 96 * 96 * 16
Residual Cat(output + skip) 96 * 96 * 96 * 16 | 96 * 96 * 96 * 32
Block Conv(k=3,p=1,s=1)+ BN 96 * 96 * 96 * 32 | -
(input + output) + ReLU 96 * 96 * 96 * 32 | -
Out Block Conv(k =1, p=0, s = 1) + BN + ReLU 96 * 96 * 96 * 32 | 96 * 96 * 96 * 4

Softmax

96 * 96 * 96 * 4

96 * 96 * 96 * 1

Note: Each Conv sub-block contains three convolution layers: Convl(k =1, p=0, s = 1), Conv2(k =3, p = 1,
s = 1), and Conv3(k = 1, p = 0, s = 1). k, kernel size; p, padding; s, stride.
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Fig. 3. The proposed framework of cascaded V-Nets for brain tumor segmentation.

2.4 Ensemble Strategy

Our ensemble strategy is simple but efficient. It works by averaging the probability
maps obtained from different models. We use ensemble strategy twice in the two-step
segmentation of the brain tumor substructures. For example, in V-Net 1, the probability
maps of WT obtained from Model 1, Model 2, and Model 3 are averaged to get the
final probability map of WT. In V-Net 2, the probability maps of tumor necrosis,
edema, and enhancing tumor obtained from Model 4 and Model 5 are averaged to get
final probability maps of brain tumor substructures, respectively.

2.5 Network Implementation

Our cascaded V-Nets are implemented in the deep learning framework PyTorch. In our
network, we initialize weights with kaiming initialization [11], and use focal loss [12]
illustrated in formula (1) as loss function. Adaptive Moment Estimation (Adam) [13] is
used as optimizer with learning rate of 0.001, and batch size of 8. Experiments are
performed with a NVIDIA Titan Xp 12 GB GPU.

Focal Loss (p,) = —a(1 — p,)"log(p;) (1)

where, o denotes the weight to balance the importance of positive/negative samples,
and r denotes the factor to increase the importance of correcting misclassified samples.
p: is the probability of the ground truth.
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In order to reduce the memory consumption in the training process, 3D patches
with a size of 96 * 96 * 96 are used. And the center of the patch is confined to the
bounding box of the brain tumor. Therefore, every patch used in training process
contains both tumor and background. The training efficiency of the network has been
greatly improved.

2.6 Post-processing

The predicted segmentation results are post-processed using connected component
analysis. We consider that the isolated segmentation labels with small size are prone to
artifacts and thus remove them. After the V-Net 1, the components with total voxel
number below a threshold (T = 1000) are discarded and these over a threshold
(T = 15000) are retained in the binary whole tumor map. For others, their average
segmentation probabilities are calculated, and will be retained if over 0.85. After the V-
Net 2, masks of different labels are used in the connected component analysis.
Moreover, if all the connected components are less than 1000 voxels, we will retain the
largest connected component.

2.7 Prediction of Patient Overall Survival

Overall survival (OS) is a direct measure of clinical benefit to a patient. Generally,
brain tumor patients could be classified into long-survivors (e.g., >15 months), mid-
survivors (e.g., between 10 and 15 months), and short-survivors (e.g., <10 months).
From the multimodal MRI data, we propose to use our tumor segmentations and
generate imaging markers through Radiomics method to predict the patient OS groups.

From the training data, we extract 40 hand-crafted features and 945 radiomics
features in total. The detailed extracted features are shown in Table 2. All features are
normalized into range of O to 1. Pearson correlation coefficient is used for feature
selection. We use support vector machine (SVM), multilayer perceptrons (MLP),
XGBoost, decision tree classifier, linear discriminant analysis (LDA) and random forest
(RF) as our classifiers in an ensemble strategy. Fl-score is used as the evaluation
standard. The final result is determined by the vote on all classification results. In order
to reduce the bias, a ten-fold cross-validation is used. For the validation and testing
data, these selected features are extracted and prediction is made using the above
model.
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Table 2. Selected features in the training data for the prediction of patient overall survival.

Features Number of
features
Age 1
Volume of whole brain 1
Volume of whole tumor 1
Volumes of three tumor substructures 3
Ratio of the whole tumor in whole brain 1
Ratios of three tumor substructures in whole tumor 3
Extent of lesion in x, y, z directions 3
Center coordinates of the whole tumor 3
Means and variances of three tumor substructures in four MR modalities | 24
First order statistics features of three tumor substructures 411
Shape-based features of three tumor substructures 78
Gray level cooccurence matrix features of three tumor substructures 180
Gray level run length matrix features of three tumor substructures 96
Neigbouring gray tone difference matrix features of three tumor 96
substructures
Gray level dependence matrix features of three tumor substructures 84

3 Experimental Results

3.1 Segmentation Results on Local Testing Set

We use 20% of all data as our local testing set, which includes 42 HGG patients and 15
LGG patients. Representative segmentation results are shown in Fig. 4. The green
shows the edema, the red shows the tumor necrosis, and the yellow shows the
enhancing tumor. In order to evaluate the preliminary experimental results, we cal-
culate the average Dice scores, sensitivity and specificity for whole tumor, tumor core
and enhancing tumor, respectively. The results are shown in Table 3. The segmentation
of whole tumor achieves best results with average Dice score of 0.8505.

3.2 Segmentation Results on MICCAI BraTS 2018 Validation Set
of 66 Subjects

The segmentation results on BraTS 2018 online validation set achieve average Dice
scores of 0.9048, 0.8364, 0.7768 for whole tumor, tumor core and enhancing tumor,
respectively. That performance is slightly better than that in local testing set, while the
whole tumor still has best results and enhancing tumor is the most challenging one. The
details are shown in Table 4.
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(b) Ground truth

Fig. 4. The comparison of segmentation results and ground truth on four representative cases
from local testing set. (a) The segmentation results of brain tumor. (b) The ground truth of the
brain tumor. (Color figure online)

Table 3. Dice, Sensitivity and Specificity measurements of the proposed method on local
testing set.

Whole tumor Tumor core Enhancing tumor
Dice mean £+ SD 0.8505 £ 0.0972 | 0.7842 + 0.1919 | 0.7426 £+ 0.2080
Sensitivity mean £ SD | 0.9180 =+ 0.1091 | 0.7596 & 0.2199 | 0.7174 £ 0.2337
Specificity mean £ SD | 0.9981 + 0.0012 | 0.9996 + 0.0008 | 0.9997 £ 0.0003

3.3 Segmentation and Prediction Results on MICCAI BraTS 2018
Testing Set of 191 Subjects

The segmentation results on BraTS 2018 online testing set achieve average Dice scores
of 0.8761, 0.7953, 0.7364 for whole tumor, tumor core and enhancing tumor,
respectively. Compared with the Dice scores on MICCAI BraTS 2018 validation set,
the numbers are slightly dropped. The details are shown in Table 5. The prediction of
patient OS on BraTS 2018 testing set achieve accuracy of 0.519 and mean square error
(MSE) of 367239. The details are shown in Table 6. The BraTS 2018 ranking of all
participating teams in the testing data for both tasks has been summarized in [14],
where our team listed as “LADYHR” and ranked 18 out of 61 in the segmentation task
and 7 out of 26 in the prediction task.
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Table 4. Dice, Sensitivity, Specificity and Hausdorftf95 measurements of the proposed method
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on BraTS 2018 validation set.

Whole tumor

Tumor core

Enhancing tumor

Dice mean + SD

Sensitivity mean + SD
Specificity mean & SD

0.9048 + 0.0648
0.9146 + 0.0949
0.9945 + 0.0041
5.1759 £ 7.3622

0.8364 + 0.1609
0.8453 + 0.1781
0.9971 £ 0.0041
6.2780 + 7.7681

0.7768 + 0.2355
0.8166 + 0.2382
0.9977 £ 0.0032
3.5123 £ 4.5407

Hausdorff95 mean + SD (mm)

Table 5. Dice and Hausdorff95 measurements of the proposed method on BraTS 2018 testing
set.

Tumor core
0.7953 4+ 0.2543
6.7262 + 11.8852

‘Whole tumor
0.8761 + 0.1247
7.0514 + 11.5935

Enhancing tumor
0.7364 £ 0.2592
3.9217 + 6.1934

Dice mean 4 SD
Hausdorff95 mean + SD (mm)

Table 6. The prediction of patient OS on BraTS 2018 testing set.

Scores
Accuracy 0.519
Mean squared error (MSE) 367239.974
Median square error (Median SE) | 38416
Standard deviation square error | 945593.877
Spearman R 0.168

4 Discussion

In this paper, we propose a cascaded V-Nets framework to segment brain tumor. The
V-Nets are trained only using provided data, data augmentation and a focal loss for-
mulation. We achieve state-of-the-art results on BraTS 2018 validation set. The
experimental results on BraTS 2018 online validation set achieve average Dice scores
of 0.9048, 0.8364, 0.7768 for whole tumor, tumor core and enhancing tumor respec-
tively. The corresponding values for BraTS 2018 online testing set are 0.8761, 0.7953
and 0.7364, respectively. Generally, all the three average Dice scores degenerate in
testing set compared with validation set. Three are two possible reasons: (1) the testing
set includes more cases than validation set, and (2) the thresholds in post-processing
maybe more suitable for validation set. Therefore, our future work is to make the
models to be more robust.

There are several benefits of using a cascaded framework. First, the cascaded
framework breaks down a difficult segmentation task into two easier subtasks.
Therefore, a simple network V-Net can have excellent performance. In fact, in our
experiment, V-Net does have better performance when segment the tumor substruc-
tures step by step than segment background and all the three tumor substructures
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together. Second, the segmentation results of V-Net 1 helps to reduce the receptive field
from whole brain to only whole tumor. Thus, some false positive results can be avoid.

In addition to cascaded framework, ensemble strategy contributes to the segmen-
tation performance. In our cascaded framework, V-Net 1 includes models 1-3 and V-
Net 2 includes models 4-5. Every model uses the same network structure V-Net.
However, the training data is preprocessed with different pipelines mentioned in part of
2.1. According to our experimental experience, the Dice scores will greatly decrease
due to the false positive results. While we did try several ways to change the pre-
processing procedures for the training data, or change the model used in the seg-
mentation task, the false positive results always appear. Interestingly, the false positive
results appear in different areas in terms of different models. Therefore, ensemble
strategy works by averaging probability maps obtained from different models.

Moreover, we find three interesting points in the experiment. Firstly, for multi-
modal MR images, the combination of data preprocessing procedures is important. In
other words, different MRI modalities should be preprocessed independently. For
example, in our first preprocessing pipeline, bias field correction only applied to T1 and
T1Gd images. The reason is that the histogram matching approach may remove the
high intensity information of tumor structure that has negative impact to the seg-
mentation task. Secondly, we use three kinds of preprocessing methods to process the
training and validation data, and compared their segmentation results. As a result, there
is almost no difference between preprocessing methods in the three average Dice scores
for whole tumor, tumor core and enhancing tumor, respectively. However, after the
ensemble of the multiple models, the three average Dice scores all rose at least 2%.
This suggests that data preprocessing methods is not the most important factor for the
segmentation performance, while different data preprocessing methods are comple-
mentary and their combination can boost segmentation performance. Thirdly, the post-
processing method is also important that it could affect the average Dices scores
largely. If the threshold is too big, some of small clusters will be discarded improperly.
If the threshold is too small, some false positive results will be retained. In order to
have a better performance, we test a range of thresholds and choose the most suitable
two thresholds as the upper and the lower bounds. For the components between upper
and lower bounds, their average segmentation probabilities are calculated as a second
criterion. Of course, these thresholds may not be suitable for all cases.

5 Conclusions

In conclusion, we propose a cascaded V-Nets framework to segment brain tumor into
three substructures of brain tumor and background. The experimental results on BraTS
2018 online validation set achieve average Dice scores of 0.9048, 0.8364, 0.7768 for
whole tumor, tumor core and enhancing tumor, respectively. The corresponding values
for BraTS 2018 online testing set are 0.8761, 0.7953 and 0.7364, respectively. The
state-of-the-art results demonstrate that V-Net is a promising network for 3D medical
imaging segmentation tasks, and the cascaded framework and ensemble strategy are
efficient for boosting the segmentation performance.
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Abstract. Automatic brain tumor segmentation plays an important
role for diagnosis, surgical planning and treatment assessment of brain
tumors. Deep convolutional neural networks (CNNs) have been widely
used for this task. Due to the relatively small data set for training, data
augmentation at training time has been commonly used for better per-
formance of CNNs. Recent works also demonstrated the usefulness of
data augmentation at test time, in addition to training time, for achiev-
ing more robust predictions. We investigate how test-time augmentation
can improve CNNs’ performance for brain tumor segmentation. We used
different underpinning network structures and augmented the image by
3D rotation, flipping, scaling and adding random noise at both train-
ing and test time. Experiments with BraTS 2018 training and validation
set show that test-time augmentation can achieve higher segmentation
accuracy and obtain uncertainty estimation of the segmentation results.

Keywords: Brain tumor - Convolutional neural network -
Segmentation - Data augmentation

1 Introduction

Gliomas are the most common primary brain tumors that start in the glial cells
of the brain in adults. They can be categorized according to their grade: Low-
Grade Gliomas (LGG) exhibit benign tendencies and portend a better prognosis
for the patient, while High-Grade Gliomas (HGG) are malignant and lead to
a worse prognosis [22]. Medical imaging of brain tumors plays an important
role for evaluating the progression of the disease before and after treatment.
Currently the most widely used imaging modality for brain tumors is Magnetic
Resonance Imaging (MRI) with different sequences, such as T1-weighted, con-
trast enhanced T1-weighted (T1ce), T2-weighted and Fluid Attenuation Inver-
sion Recovery (FLAIR) images. These sequences provide complementary infor-
mation for different subregions of brain tumors [24]. For example, the tumor
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region and peritumoral edema can be highlighted in FLAIR and T2 images, and
the tumor core region without peritumoral edema is more visible in T1 and T1ce
images.

Automatic segmentation of brain tumors and substructures from medical
images has a potential for accurate and reproducible delineation of the tumors,
which can help more efficient and better diagnosis, surgical planning and treat-
ment assessment of brain tumors [5,24]. However, accurate automatic segmen-
tation of the brain tumors is a challenging task for several reasons. First, the
boundary between brain tumor and normal tissues is often ambiguous due to
the smooth intensity gradients, partial volume effects, and bias field artifacts.
Second, the brain tumors vary largely across patients in terms of size, shape,
and localization. This prohibits the use of strong priors on shape and localiza-
tion that are commonly used for robust segmentation of many other anatomical
structures, such as the heart [12] and the liver [30].

In recent years, deep Convolutional Neural Networks (CNNs) have achieved
the state-of-the-art performance for multi-modal brain tumor segmentation [16,
28]. As a type of machine learning approach, they require a set of annotated train-
ing images for learning. Compared with traditional machine learning approaches
they do not rely on hand-crafted features and can learn features automatically.
In [13], a CNN was proposed to exploit both local and global features for robust
brain tumor segmentation. It replaces the final fully connected layer used in tra-
ditional CNNs with a convolutional implementation that obtains 40 fold speed
up. This approach employs a two-phase training procedure and a cascade archi-
tecture to tackle difficulties related to the imbalance of tumor labels. Despite the
better performance than traditional methods, this approach works on individual
2D slices without considering 3D contextual information. DeepMedic [17] uses a
dual pathway 3D CNN with 11 layers to make use of multi-scale features for brain
tumor segmentation. For post-processing, it uses a 3D fully connected Condi-
tional Random Field (CRF) [20] that helps to remove false positives. DeepMedic
achieved better performance than using 2D CNNs. However, it works on local
image patches and therefore has a relatively low inference efficiency. In [28],
a triple cascaded framework was proposed for brain tumor segmentation. The
framework uses three networks to hierarchically segment whole tumor, tumor
core and enhancing tumor core sequentially. It uses a network structure with
anisotropic convolution to deal with 3D images, taking advantage of dilated con-
volution [31], residual connection [7] and multi-scale fusion [29]. It demonstrated
an advantageous trade-off between receptive field, model complexity and mem-
ory consumption. This method also fuses the output of CNNs in three orthogonal
views for more robust segmentation of brain tumors. In [16], an ensemble of mul-
tiple models and architectures including DeepMedic [17], 3D Fully Convolutional
Networks (FCN) [21] and U-Net [2,26] was used for robust brain tumor segmen-
tation. The ensemble method reduces the influence of the meta-parameters of
individual CNN models and the risk of overfitting the configuration to a specific
training dataset. However, it requires much more computational resources to
train and run a set of models.
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Training with a large dataset plays an important role for the good perfor-
mance of deep CNNs. For medical images, collecting a very large training set
is usually time-consuming and challenging. Therefore, many works have used
data augmentation to partially compensate this problem. Data augmentation
applies transformations to the samples in a training set to create new ones, so
that a relatively small training set can be enlarged to a larger one. Previous
works have used different types of transformations such as flipping, cropping,
rotation and scaling training images [2]. In [32], a simple and data-agnostic data
augmentation routine termed mizup was proposed for training neural networks.
Recently, several studies have empirically found that the performance of deep
learning-based image recognition methods can be improved by combining pre-
dictions of multiple transformed versions of a test image, such as in pulmonary
nodule detection [15] and skin lesion classification [23]. In [14], test images were
augmented by mirroring for brain tumor segmentation. In [27], a mathematical
formulation was proposed for test-time augmentation, where a distribution of the
prediction was estimated by Monte Carlo simulation with prior distributions of
parameters in an image acquisition model. That work also proposed a test-time
augmentation-based aleatoric uncertainty estimation method that can help to
reduce overconfident predictions. The framework in [27] has been validated with
binary segmentation tasks, while its application to multi-class segmentation has
yet to be demonstrated.

In this paper, we extend the work of [27,28], and apply test-time augmenta-
tion to automatic multi-class brain tumor segmentation. For a given input image,
instead of obtaining a single inference, we augment the input image with differ-
ent transformation parameters to obtain multiple predictions from the input,
with the same network and associated trained weights. The multiple predictions
help to obtain more robust inference of a given image. We explore the use of dif-
ferent CNNs as the underpinning network structures. Experiments with BraT$S
2018 training and validation set showed that an improvement of segmentation
accuracy was achieved by test-time augmentation, and our method can provide
uncertainty estimation for the segmentation output.

2 Methods

2.1 Network Structures

We explore three network configurations as underpinning CNNs for the brain
tumor segmentation task: (1) 3D UNet [2], (2) the cascaded networks in [2§]
where a WNet, TNet and ENet was used to segment whole tumor, tumor core
and enhancing tumor core respectively, and (3) adapting WNet [28] for one-pass
multi-class prediction without using cascaded prediction, which is referred to as
multi-class WNet.

The 3D U-Net has a downsampling and an upsampling path each with four
resolution steps. In the downsampling path, each layer has two 3 x 3 x 3 convo-
lutions each followed by a Rectified Linear Unit (ReLU) activation function, and
then a 2 x 2 X 2 max pooling layer was used for downsampling. In the upsampling
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path, each layer uses a deconvolution with kernel size 2 x 2 x 2, followed by two
3 x 3 x 3 convolutions with ReLLU. The network has shortcut connections between
corresponding layers with the same resolution in the downsampling path and the
upsampling path. In the last layer, a 1 x 1 x 1 convolution is used to reduce the
number of output channels to the number of segmentation labels, i.e., 4 for the
brain tumor segmentation task in the BraTS challenge.

The WNet proposed in [28] is an anisotropic network that considers a trade-
off between receptive field, model complexity and memory consumption. It
employs dilated convolution [31], residual connection [7] and multi-scale predic-
tion [29] to improve segmentation performance. The network uses 20 intra-slice
convolution layers and four inter-slice convolution layers with two 2D down-
sampling layers. Since the anisotropic convolution has a small receptive field in
the through-plane direction, multi-view fusion was used to take advantage of
the 3D contextual information, where the network was applied in axial, sagittal
and coronal views respectively. For the multi-view fusion, the softmax outputs
in these three views were averaged. In [28], WNet is used to segment the whole
tumor. TNet for tumor core segmentation uses the same structure as WNet,
and ENet for enhancing core segmentation is a variant of WNet that uses only
one down-sampling layer. Compared with multi-label prediction, the cascaded
networks require longer time for training and testing. To improve the train-
ing efficiency, we compare the cascaded networks [28] with the use of multi-class
WNet, where a single WNet for multi-label prediction is employed without using
TNet and ENet. Therefore, for this variant we change the output channel number
from 2 to 4. Multi-view fusion is also used for this multi-class WNet.

2.2 Data Augmentation for Training and Testing

From the point view of image acquisition, an observed image is only one of
many possible observations of the underlying anatomy that can be observed with
different spatial transformations and noise. Direct inference with the observed
image may lead to a biased result affected by the specific transformation and
noise associated with that image. To obtain a more robust prediction, we consider
different transformations and noise during the test time. Let 3 and e represent
the parameters for spatial transformation and intensity noise respectively. We
assume that 3 is a combination of f;, r and s, where f; is a random variable for
flipping along each 3D axis, r is the rotation angle along each 3D axis, s is a
scaling factor. We consider these parameters following some prior distributions:
fi ~ Bern(0.5), r ~ U(0,27), s ~ U(0.8,1.2). For the intensity noise, we assume
e ~ N(0,0.05) according to the reduced standard deviation of a median-filtered
version of a normalized image [27].

For data augmentation, we randomly sample 3 and e from the above prior
distributions and use them to transform the image. We use the same distributions
of augmentation parameters at both training and test time for a given CNN. For
test-time augmentation, we obtain IV samples from the distributions of 3 and e
by Monte Carlo simulation, and the resulting transformed version of the input
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was fed into the CNN. The N prediction results were combined to obtain the
final prediction based on majority voting.

2.3 Uncertainty Estimation

Both model-based (epistemic) uncertainty and image-based (aleatoric) uncer-
tainty have been investigated for deep CNNs in recent years [18]. The epistemic
uncertainty is often obtained by Bayesian approximation-based methods such
as test-time dropout [10]. In [27], test-time augmentation was used to estimate
the aleatoric uncertainty of segmentation results in a consistent mathematical
framework. In this paper, we use test-time augmentation to obtain segmentation
results as well as the associated aleatoric uncertainty according to [27].

The uncertainty estimation is obtained by measuring the diversity of the pre-
dictions for a given image. Both the variance and entropy of the distribution can
be used to estimate uncertainty. Since variance is not sufficiently representative
in the context of multi-modal distributions, we use entropy for the pixel-wise
uncertainty estimation desired for segmentation tasks. Let X denote the input
image and Y denote the output segmentation. We use Y to denote the predicted
label for the i-th pixel. With the Monte Carlo simulation described in Sect. 2.2,
a set of values for Y’ are obtained V' = {y¢,v4,...,y%}. The entropy of the
distribution of Y is therefore approximated as:

H(Y'X) =~ Z Pt In(pl) (1)
where p¢ is the frequency of the m-th unique value in Y.

3 Experiments and Results

Data and Implementation Details. We used the BraTS 2018 [3-6,24]
dataset for experiments. The training set contains images from 285 patients,
including 210 cases of HGG and 75 cases of LGG. The BraTS 2018 validation
and testing set contain images from 66 and 191 patients with brain tumors of
unknown grade, respectively. Each patient was scanned with four sequences: T1,
T1ce, T2 and FLAIR. As a pre-processing performed by the organizers, all the
images were skull-striped and re-sampled to an isotropic 1 mm? resolution, and
the four modalities of the same patient had been co-registered. The ground truth
were provided by the BraT$S organizers. We uploaded the segmentation results
obtained by our method to the BraTS 2018 server, and the server provided quan-
titative evaluations including Dice score and Hausdorff distance compared with
the ground truth.

We implemented the 3D UNet [2], multi-class WNet and cascaded net-
works [28] in Tensorflow? [1] using NiftyNet?* [11]. The Adaptive Moment

! http://www.med.upenn.edu/sbia/brats2018.html.
2 https://www.tensorflow.org.

3 http://niftynet.io.

4 https://github.com /taigw /brats18.
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3D UNet 3D Unet + TTA

Cascaded networks Cascaded networks + TTA

Fig. 1. An example of brain tumor segmentation results obtained by different networks
and test-time augmentation (T'TA). The first row shows the four modalities of the same
patient. The second and third rows show segmentation results. Green: edema; Red:
non-enhancing tumor core; Yellow: enhancing tumor core. (Color figure online)

Estimation (Adam) [19] strategy was used for training, with initial learning rate
1073, weight decay 10~7, and maximal iteration 20k. The training patch size
was 96 x 96 x 96 for 3D UNet and 96 x 96 x 19 for multi-class WNet. The batch
size was 2 and 4 for these two networks respectively. For the cascaded networks,
we followed the configurations in [28]. The training process was implemented on
an NVIDIA TITAN X GPU. As a pre-processing, each image was normalized by
the mean value and standard deviation. The Dice loss function [9,25] was used
for training.

At test time, the augmented prediction number was set to N = 20 for all the
network structures. The multi-class WNet and cascaded networks were trained
in axial, sagittal and coronal views respectively, and the predictions in these
three views were fused by averaging at test time.
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FLAIR

Multi-class WNet Multi-class WNet + TTA 3D UNet

3D Unet + TTA

Cascaded networks Cascaded networks + TTA

Fig. 2. Another example of brain tumor segmentation results obtained by different
networks and test-time augmentation (TTA). The first row shows the four modalities
of the same patient. The second and third rows show segmentation results. Green:
edema; Red: non-enhancing tumor core; Yellow: enhancing tumor core. (Color figure
online)

Segmentation Results. Figurel shows an example from the BraTS 2018 val-
idation set. The first row shows the input images of four modalities: FLAIR, T1,
Tlce and T2. The second and third rows present the segmentation results of
3D UNet, multi-class WNet, cascaded networks and their corresponding results
with test-time augmentation. It can be observed that the initial output of the 3D
UNet seems to be noisy with some false positives of edema and non-enhancing
tumor core. After using test-time augmentation, the result becomes more spa-
tially consistent. The output of multi-class WNet also seems to be noisy for
the non-enhancing tumor core. A smoother segmentation is obtained by multi-
class WNet with test-time augmentation. For the cascaded networks, test-time
augmentation also leads to visually better results of the tumor core.

Figure 2 shows another example from the BraTS 2018 validation set. It can
be observed that the 3D UNet obtains a hole in the tumor core, which seems
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Cascaded networks Cascaded networks + TTA Uncertainty

Fig. 3. An example of segmentation result and uncertainty estimation obtained by
cascaded networks [28] with test-time augmentation.

to be an under-segmentation. The hole is filled after using test-time augmen-
tation and the result looks more consistent with the input images. The initial
prediction by multi-class WNet seems to have an over segmentation of the non-
enhancing tumor core. After using test-time augmentation, the over-segmented
regions become smaller, leading to higher accuracy. Test-time augmentation also
helps to improve the result of cascaded networks. Figure 3 shows a case from the
BraTS 2018 testing set, where test-time augmentation obtains a better spatial
consistency for the tumor core. In addition, it leads to an uncertainty estimation
of the segmentation output. It can be observed that most uncertain results focus
on the border of the tumor and some potentially mis-segmented regions.

A quantitative evaluation of our different methods on the BraTS 2018 val-
idation set is shown in Table 1. The initial output of 3D UNet achieved Dice
scores of 73.44%, 86.38% and 76.58% for enhancing tumor core, whole tumor
and tumor core respectively. 3D UNet with test-time augmentation achieved
a better performance than the baseline of 3D UNet, leading to Dice scores of
75.43%, 87.31% and 78.32% respectively. For the initial output of multi-class
WNet, the Dice score was 75.70%, 88.98% and 72.53% for these three structures
respectively. After using test-time augmentation, an improvement was achieved,
and the Dice score was 77.70%, 89.56% and 73.04% for these three structures
respectively. For the cascaded networks, test-time augmentation leads to higher
accuracy for the enhancing tumor core and tumor core. Table2 presents the
performance of our cascaded networks with test-time augmentation on BraTS
2018 testing set. The average Dice scores for enhancing tumor core, whole tumor
and tumor core are 74.66%, 87.78% and 79.64%, respectively. The corresponding
values of Hausdorff distance are 4.16 mm, 5.97 mm and 6.71 mm, respectively.
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Table 1. Mean values of Dice and Hausdorff measurements of different methods on
BraTS 2018 validation set. ET, WT, TC denote enhancing tumor core, whole tumor
and tumor core, respectively. TTA: test-time augmentation.

Dice (%) Hausdorff (mm)

ET |WT |TC |ET WT |TC
3D UNet 73.44 1 86.38 | 76.58 | 9.37 | 12.00 | 10.37
3D UNet + TTA 75.4387.3178.32|4.53 | 5.90| 8.03
Multi-class WNet 75.70 | 88.98 | 72.53|4.24 | 4.99 12.13
Multi-class WNet + TTA | 77.07 | 89.56 | 73.04 | 4.44 | 4.92|11.13
Cascaded networks 79.19190.31|85.40|3.34| 5.38 6.61
Cascaded networks + TTA | 79.72]90.21 | 85.83 | 3.13| 6.18| 6.37

Table 2. Dice and Hausdorff measurements of our cascaded networks with test-time
augmentation on BraTS 2018 testing set. ET, WT, TC denote enhancing tumor core,
whole tumor and tumor core, respectively.

Dice (%) Hausdorff (mm)

ET |WT |TC |ET WT | TC
Mean 74.66 | 87.78|79.64 | 4.16 | 5.97| 6.71
Standard deviation | 25.85|11.92 | 24.97 | 7.07 | 8.56 | 10.27
Median 83.38 191.33|89.68 1 2.00 | 3.32| 3.16
25 Quantile 72.87186.69|78.24|1.41|2.24| 2.00
75 Quantile 88.64 | 94.09 | 93.58 | 3.00 | 5.48 | 6.40

4 Discussion and Conclusion

For test-time augmentation, we only used flipping, rotation and scaling for spa-
tial transformations. It is also possible to employ more complex transformations
such as elastic deformations used in [2]. However, such deformations take longer
time for testing and have a lower efficiency. The results show that test-time aug-
mentation leads to an improvement of segmentation accuracy for different CNNs
including 3D UNet [2], multi-class WNet and cascaded networks [28]. Test-time
augmentation can be applied to other CNN models as well. The uncertainty
estimation obtained by our method can be used for downstream analysis such
as uncertainty-aware volume measurement [8] and guiding user interactions [29].
It would be of interest to assess the impact of test-time augmentation on CNNs
trained with state-of-the-art policies such as in [14]. By using test-time aug-
mentation, we investigated the test image-based (aleatoic) uncertainty for brain
tumor segmentation. It is of interest to investigate how ensemble of CNNs [16]
can produce epistemic uncertainty for this task. For a comprehensive study of
uncertainty, it is promising to combine ensemble of models or test-time dropout
with test-time augmentation. This will be left for future work.
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In conclusion, we explored the effect of test-time augmentation on CNN-
based brain tumor segmentation. We used 3D U-Net, 2.5D multi-class WNet
and cascaded networks as the underpinning network structures. For training and
testing, we augmented the image by 3D rotation, flipping, scaling and adding
random noise. Experiments with BraTS 2018 training and validation set show
that test-time augmentation helps to improve the brain tumor segmentation
accuracy for different CNN structures and obtain uncertainty estimation of the
segmentation results.
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Abstract. Several deep learning architectures are combined for brain
tumor segmentation. All the architectures are inspired on recent 2D mod-
els where 2D convolution have been replaced by 3D convolutions. The
key differences between the architectures are the size of the receptive
field and the number of feature maps on the final layers. The obtained
results are comparable to the top methods of previous Brats Challenges
when median is use to average the results. Further investigation is still
needed to analyze the outlier patients.

Keywords: Brain segmentation - Brats + 3D inception + 3D VGG -
3D densely connected - 3D Xception

1 Introduction

Brain tumor segmentation is an important problem which has received a con-
siderable attention by the research community and particularly since the advent
of deep learning.

Glial cells are the cause of gliomas that are the most common brain tumors.
Gliomas are usually classified into low-grade gliomas (LGG) and high grade
gliomas (HGG) which are malignant and more aggressive.

Brain tumors are usually imaged using several Magnetic Resonance
(MR) sequences, such as T1l-weighted, contrast enhanced T1-weighted (Tlc),
T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) images. From
a pure pattern recognition point of view, these modalities provide complimen-
tary information and can be used as different feature input maps. In other words,
image modalities play a role similar to color planes of RGB natural images.

The Multimodal Brain Tumor Segmentation Challenge 2018 provided a set
of MR sequences for training and evaluation of brain tumor segmentation algo-
rithms. Ground truth for all the scans have been manually provided by expert
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board-certified neuroradiologists, so that every voxel is categorized into these
classes [11]:

— Label 0: background.

— Label 1: necrotic and non-enhancing tumor.
— Label 2: edema.

— Label 4: enhancing tumor.

We did not pay much attention on the medical details of this problem. Our
main contribution was to extend some of the recent approaches used for 2D
image classification: VGG, inception, Xception, densely connected models to be
used with 3D data in a real segmentation problem.

2 Methods

Our approach uses an ensemble of deep neural networks with different architec-
tures. The idea is that the ensemble provides a more robust solution with less
variance compared to individual methods. Also, some architectures may compen-
sate for other architectures weaknesses and thus improve the global performance.
The idea of using an ensemble with multiple architectures was also used by the
winning method of the last Brats competition [9)].

This section describes the different architectures used in our approach. All
the architectures have in common that every voxel is independently labeled using
a deep neural network architecture. We are aware that better results could had
been obtanied if some post processing that considered the spatial constraints
had been used, similar to the CRF proposed in [10].

The key differences between the architectures are the number of parameters,
the number of feature planes and the size of the receptive field associated to each
voxel. These hyper-parameters were chosen as a trade-off usually limited by the
memory of the GPU. More specifically, we mixed four different architectures in
our final ensemble: VGG-Like, inception-2, inception-3 and densely connected.
These models are described in detail in the following subsections.

2.1 VGG-like Model

This model is inspired on the well known VGG model proposed by [12]. The
differences between our approach and the original VGG are:

— 2-D convolutions are replaced by 3-D convolutions.

— Maxpool layers are not used.

— The network is replicated in a convolutional way so that every pixel is labeled
independently.

Table 1 describes in detail the layers used in this model. Note that all con-
volutional layers are preceded by batch normalization and followed by a ReLU
activation function, except the last layer which is followed by a softmax activa-
tion function.
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Table 1. Description of our VGG-like architecture.

Layer name | Kernel size | Num filters
conv_1_1 3x3Ix3 30
conv_1_2 I3x3Ix3 30
conv_2_1 3x3Ix3 60
conv_2_2 3x3Ix3 60
conv_3_1 3x3Ix3 |120
conv_3_2 3x3Ix3 [120
conv_4_1 3x3x3 [240
conv_4_2 3x3x3 240

fe 1 1x1x1 |400
fc_2 1x1x1 |200
logits 1x1x1 4

2.2 Dense-Like Model

This architecture is inspired by the recent work [8]. The key difference between
the original method and the one used in this paper, is that 2D convolutions
are replaced by 3D convolutions. The advantage of densely connected networks
(compared to VGG like models) is that features are reused on subsequent layers
and each layer adds a few new features only. This allows to increase the number
of layers and therefore the size of the receptive field associated to each voxel.
This architecture also allows to combine features with relatively small receptive
fields (first layers) with features with large receptive fields (last layers). This is
particularly useful in segmentation problems, where large receptive fields provide
context information and small receptive fields provide fine-grained information
that helps to increase the precision of the segmentation.

Table 2 summarizes the architecture of our densely connected network. Note
that each layer concatenates all the output features from the previous layers, for
this reason the number of input feature grows steadily until layer conv_20. Then
two fully connected layers similar to the VGG architecture are used.

2.3 Inception-Like Model

This architecture is inspired by some of the ideas proposed in [14] and [13]. The
key idea proposed by the inception model is to replace convolutional layers by
several parallel structures with different kernel shapes. This reduces the number
of parameters (regularization) and forces diversity on the output features of each
layer.

We took these ideas and adapted them to the problem of brain segmentation.
The main limitation of inception layers is that they require much GPU memory
because each layer is composed of several simpler sub-layers, for instance some
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Table 2. Description of our Dense-like architecture.

Layer name | Kernel size | Num inputs | Num output filters
conv_1 3x3x3 4 8
conv_2 3x3Ix3 12 8
conv_3 3x3Ix3 20 8
conv_4 3x3x3 28 8
conv_5 3x3Ix3 36 8
conv_6 3x3Ix3 44 8
conv_7 3x3x3 52 8
conv_8 3x3Ix3 60 8
conv_9 3x3x3 68 8
conv_10 3x3x3 76 8
conv_11 3x3x3 84 8
conv_12 3x3x3 92 8
conv_13 3x3Ix3 |100 8
conv_14 3x3x3 |108 8
conv_15 3x3x3 |106 8
conv_16 3x3x3 114 8
conv_17 3x3x3 122 8
conv_18 3x3x3 [130 8
conv_19 3x3Ix3 |138 8
conv_20 3x3x3 |146 8
fc 1 1x1x1 |154 400
fc_2 1x1x1 |400 200
logits Ix1x1 |200 4

inception layers use 1-D convolutions along each spatial dimension. In the case
of 2D convolutions, this option doubles the number of layers and the required
memory used to store intermediate results and gradients. In the case of 3D
segmentation, this problem is even worse because the use of 1-D convolutions
implies to use three times more memory.

For this reason, we created two simplified GoogLenet-like models with a few
inception layers before the fully connected layers as detailed in Table 3.

Figure 1 shows the internal structure of the inception layers. As it can be seen,
four different branches are used. The first layer extracts new features and reduces
the dimensionality. The second and third branches introduce spatial convolution;
the fourth brach is an average layer without pooling. This structure is similar to
the structure of Fig.5 in [13].
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Table 3. Description of the inception architectures used in the final ensemble.

Layer name|kernel size|num filters
conv_l_1l |3 x3x3 30
conv_12 |3 x3x3 30
conv2.1 [3x3x3 60
conv2.2 |3 x3x3 60
conv3_l |3 x3x3 120
conv.32 |[3x3x3 120
inception |[see. Fig. 1 240
inception |see. Fig. 1 240
inception [see. Fig. 1 240

fc 1 1x1x1 400

fc_2 1x1x1 200

logits 1x1x1 4
Inception2 Inception 3

Layer name |kernel size|num filters
convll |3 x3x3 30
conv_12 |3 x3x3 30
conv 2.1l |3 x3x3 60
conv22 |[3x3x3 60
conv3.l |3 x3x3 120
conv32 |3 x3x3 120
inception |[see. Fig. 1 240
inception |see. Fig. 1 240

fc 1 1x1x1 400
fc_2 Ix1x1 200
logits 1x1x1 4

2.4 Other Architectures Not in the Final Ensemble

We also made experiments with other architectures not included in the final
ensemble for their lower performance on our training data using cross-validation.

The most innovative structure in this group was based in the Xception archi-
tecture presented in [6]. This architecture assumes that correlation in feature
planes can be decoupled from spatial correlation, and therefore separability is
applied. We implemented this separable 3D spatial filters from scratch in Ten-
sorflow (the library only provides this feature for 2D images).

We also made experiments with other inception architectures similar to those
presented in Figs.6 and 7 of [13]. However, the results on our cross-validated
training set were not good enough.

The main limitation of these other inception architectures and also the Xcep-
tion layers is that they require more GPU memory compared to the simpler VGG
architecture, for this reason total number of layers needs to be reduced so that
the model fits into memory. The main advantage of these architectures in 2D
images is that they require a smaller number of parameters which help to reg-
ularize the model. However, we found that overfitting was not the problem for
any of our models (the training cost and training error was not negligible), and
therefore models with many parameters (as the VGG) could be trained without
overfitting.

Finally, we also made experiments with field bias correction of the input
data [15]. In these experiments, we corrected the bias of the T1 and Tlce input
modalities and compared the performance without the field bias correction and
the same neural network architecture. The results with the bias correction were
always worse compared to using the original raw data with the same model
architecture, and for this reason we omitted field bias correction.
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Fig. 1. Structure of the inception layers used in the models of Table 3. Each box shows
the kernel size and the number of output features.

2.5 Number of Parameters and Receptive Field Size

Table 4 shows the number of parameters and receptive field size for the models
included in our final ensemble. The model that requires more parameters is the
VGG-like. This constraint limits the number of layers of the VGG model to
avoid GPU memory problems. This is the reason why the VGG-like model has
the smallest receptive field size.

The inception models halve the number of parameters (the latter layers are
the ones with more parameters) and have a larger receptive field.

Finally, the densely connected model is the model with less parameters and
largest receptive field.

The idea of our ensemble is to be able to combine models with large recep-
tive field (more context), as the densely connected model, with very expressive
models, i.e. models with many deep features (VGG-like) so that each model
compensate for the weaknesses of the others.

Table 4. Number of parameters and receptive field size for the models used in our
ensemble

Model #parameters | Receptive field size
VGG-like 3270252 17 x 17 x 17
Inception2 1375872 21 x 21 x 21
Inception3 1611882 25 x 25 x 25
Densely connected | 494220 41 x 41 x 41
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3 Experiments and Results

3.1 Data

Our system was evaluated on the data from the Brain Tumor Segmentation
Challenge 2018 (BRATS) [2—4,11]. As in previous editions, the training set con-
sists of 210 cases with high grade glioma (HGG) and 75 cases with low grade
glioma (LGG), for which manual segmentations are provided. The segmentations
include the following tumor tissue labels: (1) necrotic core and non enhancing
tumor, (2) edema, (4) enhancing core. Label 3 is not used. The validation set
consists of 66 cases, both HGG and LGG but the grade is not revealed. For each
subject, four MRI sequences are available, FLAIR, T1, T1 contrast enhanced
(T1ce) and T2. The datasets are pre-processed by the organisers and provided
as skull-stripped, registered to a common space and resampled to isotropic lmm3
resolution. Dimensions of each volume are 240 x 240 x 155.

3.2 Implementation Detais

We implemented everything in python. Input/output data for MRI scans was
handled with the nibabel library [7] and neural networks were implemented using
tensorflow [1]. The code used in this work has been dockerized and released to
the challenge organizers so it will be available to the community.

We did not try any bias field correction of the input scans. The only intensity
normalization that we used was z-score normalization of the input scans using
the mean and standard deviation of the brain volume only (so the mean and std
deviation are not dependent of the brain size).

Models were trained using crops of the original MRI scans. As in [10], the
size of each crop was larger than the size of the receptive field. More specifically,
the size of the crop is set (9 +r¢) x (9 +rf) x (9 + rf), where ry is the size
of the receptive field. Thus, each crop contributes to the cost function with
9 x 9 x 9 voxels. This approach increases the computational efficiency (reuses
many computations) and we think that it also acts as a regularizer, forces the
model to be smooth during labeling. For each mini batch, we increased the
number of crops to fill the GPU memory (12Gb in our machine). These crops
were randomly sampled using a uniform distribution among the four classes:
healthy, oedema, core and enhancing core. During evaluation the size of the crops
were increased and consecutive crops had some overlap to handle the reduced
size of the network output (we used convolutions with only valid support).

Training was done using gradient descent with the Adam optimizer using
a constant learning rate of 0.0001 for about 40k steps. We did not observed
any overfitting during training, and for this reason we did not investigate into
adding any L2, L1 regularization, learning rate decay.... Perhaps one of the reason
why we did not observed overfitting is because we implemented a strong data
augmentation that generated affine 3D transformations of the MRI scans on
the fly.
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3.3 Training Results

We split the training data in two random sets, so that one of the sets that
contained 20% of the patients was used to evaluate the training progress. For
each model architecture we generated two different training partitions using
different random seeds, so that all training data was used by the models in the
ensemble.

We ranked the model architectures using the Dice scores on our validation
subset. Table 5 shows the Dice scores for our best models on our validation split.
As it can be seen the differences among models are very small, however since
the receptive field size and number of parameters is very different we think that
the models might have captured complimentary information.

The last row in Table6 shows the results on the Brats test set that we
obtained on the challenge. The results on this set are clearly worse than those
obtained for the validation set, this fact could be a clear symptom of some
overfitting on the training and validation sets. However, we suspect that there
could be also some differences due to other factors, such as different acquisition
conditions because we did not made any model selection on the validation set
and in that case we did not observed any difference with the results on our cross
validation partition.

Table 5. Results of the selected model architectures on our validation split

Model name Dice_.WT | Dice_.TC | Dice.ET
VGG-like 0.880 0.771 0.689
Inception2 0.882 0.792 0.685
Inception3 0.880 0.789 0.695
Densely connected | 0.883 0.787 0.683

3.4 Results on the Validation and Test Sets

We submitted the predicted labels for each of the described models and also for
the ensemble model for the validation set. There ensemble model averages the
probabilities of 8 trained models (one for each architecture, and two random
partitions of the training set).

Table 6 shows the results provided by the Brats evaluation platform on the
blind validation dataset. The results are quite consistent with the results shown
on Table 5, and hence we can conclude that we did not overfit the training dataset
and the models generalize quite well on new data. However, the evaluation on the
Brats platform shows an interesting point, median values of the Dice scores are
much larger than the mean values. This confirms the existence of image outliers.
The last row in Table 6 shows the results on the contest test set, the results for
all other contest participants can be found in [5].
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Table 6. Results of the selected model architectures on the validation set

Model Set Mean Mean Mean Median |Median |Median
name Dice.WT |Dice.TC |Dice.ET |Dice_WT |Dice.TC |Dice_.ET

VGG-like |Validation|0.872 0.760 0.751 0.900 0.837 0.844
Inception2 |Validation|0.877 0.773 0.7533 0.909 0.866 0.858

Inception3 |Validation|0.873 0.776 0.781 0.907 0.852 0.858

Densely Validation|0.874 0.755 0.729 0.903 0.837 0.846
connected

Ensemble |Validation|0.881 0.777 0.773 0.912 0.873 0.860
Ensemble |Test 0.850 0.740 0.723 0.894 0.856 0.828

4 Discussion and Conclusion

In this paper, we have extended some well known architectures for 2D image
classification to the problem of 3D image segmentation. This can be easily done
by replacing 2D convolutions by their 3D counterparts and adjusting the number
of layers and number of feature maps to more appropriate ranges so that models
can be fitted in memory.

We selected four model architectures so that we had models with large/small
receptive fields, many/less parameters. The idea is that different configurations
can capture complimentary information and an ensemble model can outperform
each separate model.

The results on the validation set, show that there no exist many perfor-
mance differences between the different model architectures, however the ensem-
ble model outperforms each model. These results confirms our hypothesis and
are also consistent with the results that we had previously obtained on the train-
ing data. The results on the Brats test set are clearly worse, we think that the
cause of this behaviour is that there are some differences in the image acquisition
and our method is not robust enough to deal with these variations.

We also tried other models, not included in the final ensemble, such as the
3D Xception that assumes independence between spatial and feature dimensions.
We also tried to use bias field correction however our results showed that this
was not useful for our models.

Finally, it is worth to highlight that the obtained results shows the existence
of image outliers that are not well segmented. This issue severely drops our
global performance as shown by the huge difference of using the mean or median
metrics. We need to make further research on the causes of these outliers.
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Abstract. Every year, about 238,000 patients are diagnosed with brain
tumor in the world. Accurate and robust tumor segmentation and pre-
diction of patients’ overall survival are important for diagnosis, treat-
ment planning and risk factor characterization. Here we present a deep
learning-based framework for brain tumor segmentation and survival pre-
diction in glioma using multimodal MRI scans. For tumor segmentation,
we use ensembles of three different 3D CNN architectures for robust per-
formance through majority rule. This approach can effectively reduce
model bias and boost performance. For survival prediction, we extract
4524 radiomic features from segmented tumor region. Then decision tree
and cross validation are used to select potent features. Finally, a random
forest model is trained to predict the overall survival of patients. On 2018
MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS),
our method ranks at second place and 5th place out of 60+ participat-
ing teams on survival prediction task and segmentation task respectively,
achieving a promising 61.0% accuracy on classification of long-survivors,
mid-survivors and short-survivors.

Keywords: Survival prediction - Brain tumor segmentation -
3D CNN - Multimodal MRI

1 Introduction

Brain tumor is cancerous or noncancerous mass or growth of abnormal cells in
the brain, malignant brain tumor is one of the most aggressive and fatal tumors.
Originated in the glial cells, gliomas are the most common brain tumor. [6]
Depending on the pathologic evaluation of the tumor, gliomas can be catego-
rized into glioblastoma (GBM/HGG) and lower grade glioma (LGG). Gliomas
contain various heterogeneous histological sub-regions, including peritumoral
edema, necrotic core, enhancing and non-enhancing tumor core. Magnetic reso-
nance imaging (MRI) is commonly used in radiology to portray the phenotype
and intrinsic heterogeneity of gliomas, since multimodal MRI scans, such as T1-
weighted, contrast enhanced T1-weighted (T1c), T2-weighted and Fluid Atten-
uation Inversion Recovery (FLAIR) images, provide complementary profiles for
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different sub-regions of gliomas. For example, the enhancing tumor sub-region is
described by areas that show hyper-intensity in T1Gd scan when compared to
T1 scan.

Accurate and robust prediction of overall survival through automated algo-
rithms for patients diagnosed with gliomas can provide valuable guidance for
diagnosis, treatment planning and outcome prediction. However, the selection of
reliable and potent prognostic is difficult. Medical imaging (e.g. MRI, CT) can
provide radiographic phenotype of tumor, and it has been exploited increasingly
to extract and analyze quantitative imaging features. [7] Clinical data, includ-
ing patient age, resection status and others, also provide important information
about patients’ outcome.

Segmentation of gliomas in pre-operative MRI scans, conventionally done by
expert board-certified neuroradiologists, can provide quantitative morphological
characterization and measurement of gliomas sub-regions. It is also pre-requisite
for survival prediction since most potent features are derived from the tumor
region. This quantitative analysis has great potential for diagnosis and research,
as it can be used for grade assessment of gliomas and planning of treatment
strategies. But this task is challenging due to the high variance in appearance
and shape, ambiguous boundaries and imaging artifacts. Until now, automatic
segmentation of brain tumors in multimodal MRI scans is still one of the most
difficult tasks in medical image analysis. In recent years, deep convolutional
neural networks (CNNs) have achieved great success in the field of computer
vision. Inspired by the biological structure of visual cortex, CNNs are artificial
neural networks with multiple hidden convolutional layers between the input and
output layers. They have non-linear property and are capable of extracting higher
level representative features. CNNs have been applied into a wide range of fields
and achieved state-of-the-art performance on tasks such as image recognition,
instance detection, and semantic segmentation.

In this paper, we present a novel deep learning based framework to segment
brain tumor and its subregion from MRI scans, then perform survival prediction
based on radiomic features extracted from segmented tumor sub-regions as well
as clinical feature. Our automatic framework for brain tumor segmentation and
survival prediction ranks at second place and 5th place out of 60+ participating
teams on survival prediction task and segmentation task on 2018 MICCAI BraTS
Challenge respectively, achieving a promising 61.0% accuracy on classification
of long-survivors, mid-survivors and short-survivors.

2 Methodology

2.1 Overview

Our proposed framework for survival prediction using MRI scans consists of the
following steps, as illustrated in the figure below. First, tumor subregions are
segmented using an ensemble model comprising of three different convolutional
neural network architectures for robust performance through voting/majority
rule. Then radiomics features are extracted from tumor sub-regions and total
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tumor volume. Next, decision tree regressor with gradient boosting is used to
fit the training data and rank the importance of each feature based on variance
reduction, and cross validation is used to choose the optimal number of top-
ranking features to use. Finally, a random forest model is used to fit the training
data and predict the overall survival of patient (Fig.1).
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Fig. 1. Framework overview

2.2 Data Preprocessing

Since the intensity value of MRI is dependent on the imaging protocol and scan-
ner used, we applied intensity normalization to reduce the bias in imaging. More
specifically, the intensity value of each MRI is subtracted the mean and divided
by the standard deviation of the brain region. In order to reduce overfitting, we
applied random flipping and random gaussian noise to augment the training set.

2.3 Network Architecture

In order to perform accurate and robust brain tumor segmentation, we use
an ensemble model comprising of three different convolutional neural network
architectures. A variety of models have been proposed for tumor segmentation.
Generally, they differ in model depth, filter number, connection way and others.
Different model architectures can lead to different model performance and behav-
ior. By training different kinds of model separately and merge the result, the
model variance can be decreased and the overall performance can be improved.
[11] We use three different CNN models and fuse the result by voting/majority
rule. The detailed description of each model will be discussed as follows.
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CA-CNN. The first network we employ is Cascaded Anisotropic Convolutional
Neural Network (CA-CNN) proposed by Wang et al. [17]. The cascade is used to
convert multi-class segmentation problem into a sequence of three hierarchical
binary segmentation problems. The network is illustrated as follows (Fig. 2):
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Fig. 2. Cascaded framework and architecture of CA-CNN

This architecture also employs anisotropic and dilated convolution filters,
which are combined with multi-view fusion to reduce false positives. It also
employs residual connections [8], batch normalization [9] and multi-scale predic-
tion to boost the performance of segmentation. For implementation, we train the
CA-CNN model using Adam optimizer, and set Dice coefficient as loss function.
We set initial learning rate to 1 x 1073, weight decay 1 x 10~7, batch size 5, and
maximal iteration 30k.

DFKZ Net. The second network we employ is DFKZ Net, which was proposed
by Isensee et al. [10] from German Cancer Research Center (DFKZ). This net-
work is inspired by U-Net. It employs a context encoding pathway that extracts
increasingly abstract representations of the input, and a decoding pathway used
to recombine these representations with shallower features to precisely segment
the structure of interest. The context encoding pathway consists of three con-
tent modules, each has two 3 x 3 x 3 convolutional layers and a dropout layer
with residual connection. The decoding pathway consists of three localization
modules, each contains a 3 x 3 x 3 convolutional layer followed by a 1 x 1 x 1
convolutional layer. For the decoding pathway, the output of layers of differ-
ent depth is integrated by elementwise summation, thus the supervision can be
injected deep in the network (Fig. 3).

For implementation, we train the network using Adam optimizer. To address
the problem of class imbalance, we utilize the multi-class Dice loss function [10]:

-~ Z ui(k)vi( ) (1)
kEK Z uz (k) + Z Uz(k

where u denotes output possibility, v denotes one-hot encoding of ground truth,
k denotes the class, K denotes the total number of classes and (k) denotes the
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Fig. 3. Architecture of DFKZ Net

number of voxels for class k in patch. We set initial learning rate 5 x 10~* and
use instance normalization. We train the model for 90 epochs.

3D U-Net. U-Net [5,14] is a classical network for biomedical image segmen-
tation. It consists of a contracting path to capture context and a symmetric
expanding path that enables precise localization with extension. Each pathway
has three convolutional layers with dropout and pooling. And the contracting
pathway and expanding pathway are linked by skip-connections. Each layer con-
tains 3 x 3 x 3 convolutional kernels. The first convolutional layer has 32 filters,
while deeper layers contains twice filters than previous shallower layer.

For implementation, we use Adam optimizer [12], and we use instance nor-
malization [15]. In addition, we utilize cross entropy as loss function. The initial
learning rate is 0.001, the model is trained for 4 epochs.

Ensemble of Models. In order to enhance segmentation performance and
reduce model variance. We use voting/majority rule to build an ensemble model.
During training process, different models are trained separately. In the testing
stage, each model independently predicts the class for each voxel, the final class
is determined by majority rule.

2.4 Feature Extraction

Quantitative phenotypic features from MRI scans can reveal the characteristics
of brain tumors. Based on the segmentation result, we extract radiomics features
from edema, non-enhancing solid core and necrotic/cystic core and the whole
tumor region respectively using Pyradiomics toolbox [16] (Fig. 4).

The modality used for feature extraction is depended on the intrinsic prop-
erty of tumor subregion. For example, edema features are extracted from FLAIR
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Fig. 4. Illustration of feature extraction

modality, since it is typically depicted by hyper-intense signal in FLAIR. Non-
enhancing solid core features are extracted from T1c modality, since the appear-
ance of the necrotic (NCR) and the non-enhancing (NET) tumor core is typically
hypo-intense in T1-Gd when compared to T1. Necrotic/cystic core tumor fea-
tures are extracted from T1lc modality, since it is described by areas that show
hyper-intensity in T1Gd when compared to T1.

The features we extracted can be grouped into three categories. The first
category is first order statistics, which includes maximum intensity, minimum
intensity, mean, median, 10th percentile, 90th percentile, standard deviation,
variance of intensity value, energy, entropy and others. These features charac-
terize the grey level intensity of tumor region.

The second category is shape features, which include volume, surface area,
surface area to volume ratio, maximum 3D diameter, maximum 2D diameter
for axial, coronal and sagittal plane respectively, major axis length, minor axis
length and least axis length, sphericity, elongation and other features. These
features characterize the shape of tumor region.

The third category is texture features, which include 22 grey level co-
occurrence matrix (GLCM) features, 16 gray level run length matrix (GLRLM)
features, 16 Grey level size zone matrix (GLSZM) features, five neighboring gray
tone difference matrix (NGTDM) features and 14 gray level dependence matrix
(GLDM) Features. These features characterize the texture of tumor region.

Not only do we extract features from original images, but we also extract
features from Laplacian of Gaussian (LoG) filtered images and images gener-
ated by wavelet decomposition. Because LoG filtering can enhance the edge of
images, possibly enhance the boundary of tumor, and wavelet decomposition can
separate images into multiple levels of detail components (finer or coarser). More
specifically, from each region, 1131 features are extracted, including 99 features
extracted from the original image, and 344 features extracted from Laplacian
of Gaussian filtered images, since we use 4 filters with sigma value 2.0, 3.0, 4.0,
5.0 respectively, and 688 features extracted from 8 wavelet decomposed images
(all possible combinations of applying either a High or a Low pass filter in each
of the three dimensions). In total, for each patient, we extract 1131 x 4 = 4524
radiomic features, these features are combined with clinical data (age and resec-
tion state) for survival prediction. The values of these features are normalized
by subtracting the mean and scaling to unit variance.
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2.5 Feature Selection

A portion of features we extracted are redundant or irrelevant to survival pre-
diction. In order to enhance performance and reduce overfitting, we applied
feature selection to select a subset of features that have the most predictive
power. Feature selection is divided into two steps: importance ranking and cross
validation. We rank the importance of features by fitting a decision tree regres-
sor with gradient boosting using training data, then the importance of features
can be determined by how effectively the feature can reduce intra-node stan-
dard deviation in leaf nodes. The second step is to select the optimal number
of best features for prediction by cross validation. In the end, we select 14 fea-
tures and their importance are listed as follows: (Abbreviations: wt = edema,
tc = tumor core, et = enhancing tumor, full = whole tumor; The detailed fea-
ture definition can be found at https://pyradiomics.readthedocs.io/en/latest/
features.html, last accessed on 30 June 2018) (Table1).

Not surprisingly, age has the most predictive power among all features. The
rest of features selected come from both original images and derived images.
And we found that most features selected are come from images generated by
wavelet decomposition.

2.6 Survival Prediction

Based on the 14 features selected, we trained a random forest regressor for final
survival prediction. We set the number of base regressor as 100, and bootstrap
samples when building trees.

Table 1. Selected most predicative features

Extracted from Name Subregion | Score

clinical age NA 0.037375134
wavelet-LHL glem_ClusterShade wt 0.036912293
log-sigma-4.0mm-3D | glem_Correlation tc 0.035558309
log-sigma-2.0mm-3D | gldm_LargeDependenceHighGrayLevelEmphasis | tc 0.026591038
wavelet-LHL glem_Informational Measure of Correlation et 0.022911978
wavelet-HLL firstorder_-Maximum et 0.020121927
wavelet-LHL firstorder_Skewness et 0.019402119
original image glem_Autocorrelation et 0.014204463
wavelet-HHH gldm_LargeDependenceLowGrayLevelEmphasis | full 0.014085406
log-sigma-4.0mm-3D | firstorder_Mwtian wt 0.013031814
wavelet-HLH glem_JointEntropy wt 0.013023534
wavelet-LHH glem_ClusterShade tc 0.012335471
wavelet-HLL glszm_LargeAreaHighGrayLevelEmphasis full 0.011980896
original image firstorder_10Percentile wt 0.011803132
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3 Experiments

3.1 Dataset

We utilize the BraTS 2018 dataset [1-4,13] to evaluate the performance of our
methods. The training set contains images from 285 patients, including 210 HGG
and 75 LGG. The validation set contains MRI scans from 66 patients with brain
tumors of unknown grade. The test set contains images from 191 patients with
brain tumor, in which 77 patients have resection state of Gross Total Resection
(GTR) and are evaluated for survival prediction. Each patient was scanned with
four sequences: T1, Tlc, T2 and FLAIR. All the images were skull-striped and
re-sampled to an isotropic 1 mm? resolution, and the four sequences of the same
patient had been co-registered. The ground truth was obtained by manual seg-
mentation results given by experts. Segmentation annotations comprise of the
following tumor subtypes: Necrotic/non-enhancing tumor (NCR), peritumoral
edema (ED), and Gd-enhancing tumor (ET). Resection status and patient age
are also provided. The overall survival (OS) data, defined in days is also included
in training set (Fig.5).

3.2 Segmentation Result

We train the model using the 2018 MICCAI BraTS training set with methods
described above. Then we applied the trained model for prediction on validation
set and test set. We compared the segmentation result of ensemble model with
individual model on validation set, the result demonstrates that the ensemble
model performs better than individual models on enhancing tumor and whole
tumor, while CA-CNN performs marginally better on tumor core (Table 2).

Table 2. Evaluation result of ensemble model and individual model

Model Enhancing tumor | Whole tumor | Tumor core
CA-CNN 0.77682 0.90282 0.85392
DFKZ Net 0.76759 0.89306 0.82459

3D U-Net 0.78088 0.88762 0.82567
Ensemble model | 0.80522 0.90944 0.84943

The predicted segmentation labels are uploaded to the CBICA’s Image Pro-
cessing Portal (IPP) for evaluation. BraTS Challenge uses two schemes for eval-
uation: Dice score and the Hausdorff distance (95%). In test phase, we rank at
5th place out of 60+ teams. The evaluation result of segmentation on validation
set and test set are listed as follows (Table 3).
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Table 3. Evaluation result of ensemble model for segmentation

Stage Metric Enhancing tumor | Whole tumor | Tumor core

Validation | Mean Dice 0.80522 0.90444 0.84943
Mean Hausdorff95 (mm) | 2.77719 6.32753 6.37318

Test Mean Dice 0.71712 0.87615 0.79773
Mean Hausdorff95 (mm) | 4.97823 7.20086 6.47348
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Ground truth
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Prediction result

Fig. 5. Examples of segmentation result compared with ground truth Green:
edema, Yellow: non-enhancing solid core, Red: enhancing core (Color figure online)

3.3 Survival Prediction Result

Based on the segmentation result of brain tumor subregions, we extract features
from brain tumor sub-regions segmented from MRI scans and trained the sur-
vival prediction model as described above. Then we use the model to predict
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patient’s overall survival on validation set and test set. The predicted overall
survival is uploaded to the IPP for evaluation. We use two schemes for evalu-
ation: classification of subjects as long-survivors (>15months), short-survivors
(<10months), and mid-survivors (between 10 and 15 months) and median error
(in days). In test phase, we rank at second place out of 60+ teams. The evalua-
tion result is listed as follows (Table4).

Table 4. Evaluation result of survival prediction

Stage Classification accuracy | Median error
Validation | 46.4% 217.92
Test 61.0% 181.37

4 Conclusion

In this paper, we present an automatic framework for prediction of survival in
glioma using multimodal MRI scans and clinical features. Firstly deep convolu-
tional neural network (CNN) is used to segment tumor region from MRI scans,
then radiomics features are extracted and combined with clinical features to
predict overall survival. For tumor segmentation, we use ensembles of three dif-
ferent 3D CNN architectures for robust performance through voting/majority
rule. This approach can effectively reduce model bias and boost performance.
For survival prediction, we extract shape features, first order statistics and tex-
ture features from segmented tumor sub-region, then use decision tree and cross
validation to select features. Finally, a random forest model is trained to predict
the overall survival of patients. On 2018 MICCAI BraT$S Challenge, our method
ranks at second place and 5th place out of 60+ participating teams on survival
prediction task and segmentation task respectively, achieving a promising 61.0%
accuracy on classification of long-survivors, mid-survivors and short-survivors.
In the future, we will explore different network architectures and training strate-
gies to further improve our result. We will also design new features and optimize
our feature selection methods for survival prediction.

References

1. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-GBM collection. Cancer Imaging Arch. 286 (2017)

2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

4. Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for
brain tumor segmentation, progression assessment, and overall survival prediction
in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)


http://arxiv.org/abs/1811.02629

Tumor Segmentation and Survival Prediction in Glioma with Deep Learning 93

5.

10.

11.

12.

13.

14.

15.

16.

17.

Cigek, 0., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424-432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8_49

Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: Estimates
of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12),
2893-2917 (2010)

Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures,
they are data. Radiology 278(2), 563-577 (2016)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778 (2016)

Toffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain
tumor segmentation and radiomics survival prediction: contribution to the BRATS
2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.)
BrainLes 2017. LNCS, vol. 10670, pp. 287-297. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75238-9_25

Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust
brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes,
M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450-462. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75238-9_38

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging 34(10), 1993 (2015)

Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234-241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingre-
dient for fast stylization. arxiv 2016. arXiv preprint arXiv:1607.08022

Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the
radiographic phenotype. Cancer Res. 77(21), e104—107 (2017)

Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmenta-
tion using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas,
S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp.
178-190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16


https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_38
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1607.08022
https://doi.org/10.1007/978-3-319-75238-9_16

)

Check for
updates

1

Gliomas are the most common and aggressive malignant brain tumors originat-
ing in the glial cells of the central nervous system. Based on their aggressiveness
in infiltration, they are broadly classified into two categories, viz. High-Grade
Glioma or GlioBlastoma Multiforme (HGG/GBM) and Low-Grade Glioma
(LGG). Magnetic Resonance Imaging (MRI) has been extensively employed over
the last few decades, in diagnosing brain and nervous system abnormalities;
mainly due to its improved soft tissue contrast. Typically the MR sequences
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the decoder network localize and recover the object details more effec-
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include T'1-weighted, T2-weighted, T'1-weighted Contrast enhanced (T'1C'), and
T2-weighed with FLuid-Attenuated Inversion Recovery (FLAIR). The rationale
behind using all four sequences lies in the fact that different tumor regions
become more visible in different sequences; thereby enabling more accurate
demarcation of the tumor [5,6].

Accurate delineation of tumor regions in MRI sequences is of great impor-
tance since it allows: (i) volumetric measurement of the tumor, (%) monitoring
of tumor growth in patients between multiple MRI scans, over treatment span
and (4ii) treatment planning with follow-up evaluation, including the predic-
tion of overall survival (OS). Manual segmentation of tumors from MRI is a
highly tedious, time-consuming and error-prone task, mainly due to factors such
as human fatigue, overabundance of MRI slices per patient, and an increasing
number of patients. Such manual operations often lead to inaccurate delineation.
The need for an automated or semi-automated Computer Aided Diagnosis thus
becomes apparent [7,8,15]. The large spatial and structural variability among
brain tumors makes automatic segmentation a challenging problem. The distinc-
tive segmentation of both HGG and LGG by the same model is also a difficult
proposition.

Inspired by the success of Convolutional Neural Networks (ConvNets) [9,12],
we develop a novel ConvNet model with spatial-pooling called Spatial-ConvNet.
This can preserve the edge information during automated segmentation of
gliomas from multi-sequence MRI data. The segmented Volume of Interest (VOI)
or tumor is used to extract two categories of Radiomic features [10,11,18], viz.
“semantic” and “agnostic”, for predicting the OS of patients. A new loss function
helps in class imbalance handling.

The rest of the paper is organized as follows. Section 2 provides details about
the data, preparation of patch database for the ConvNet training, the proposed
multi-planar ConvNet model with spatial-pooling layer, the aggregated loss func-
tion for imbalanced segmentation, and radiomic analysis of the segmented VOI
for OS prediction. Section 3 describes the experimental results of the segmenta-
tion and OS prediction, demonstrating their effectiveness both qualitatively and
quantitatively. Finally, conclusions are provided in Sect. 4.

2 DMaterials and Methods

In this section we discuss the BRATS 2018 data, and the steps of tumor seg-
mentation and survival rate prediction. The proposed segmentation method com-
prises of extraction of patches, training and testing of the segmentation model,
post-processing, radiomic feature extraction for overall survival prediction,
followed by training and testing of the classifier for OS prediction.

2.1 Dataset

Brain tumor MRI scan datasets and patient Overall Survival (OS) data, used
in this research, were provided by BraTS 18 Challenge [1-4,13]. It consists of
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210 HGG/GBM and 75 LGG glioma cases as training dataset and 66 combined
cases of HGG/GBM and LGG as validation dataset. The OS data was included
with correspondences to the pseudo-identifiers of the GBM/HGG imaging data
having 163 and 53 validation data points respectively. Each patient MRI scan
set consist of four MRI sequences or channels, encompassing native (7'1) and
post-contrast enhanced T'1-weighted (T'1C), T2-weighted (T'2), and T2 FLuid-
Attenuated Inversion Recovery (FLAIR) volumes, having 155 slices of 240 x 240
resolution images. The data is already aligned to the same anatomical tem-
plate, skull-stripped, and interpolated to 1 mm?3 voxel resolution. The manual
segmentation of volume structures have been performed by experts following
the same annotation protocol, and their annotations revised and approved by
board-certified neuro-radiologists. Annotation labels included are the gadolin-
ium enhancing tumor (ET), the peritumoral edema (ED), and the necrotic and
non-enhancing tumor (NCR/NET). The predicted labels are evaluated by merg-
ing three regions, viz. whole tumor (WT: all the three labels), tumor core (TC:
ET and NCR/NET) and enhancing tumor (ET).

The OS data is defined in terms of days, and also includes the age of patients
along with their resection status. Only these subjects with resection status GTR
(Gross Total Resection) are considered for evaluating OS prediction. Based on
the number of survival days, the subjects are grouped into three classes viz.
long-survivors (>15 months), short-survivors (<10 months), and mid-survivors
(between 10 to 15 months).

2.2 Multi-planar ConvNet with Spatial-Pooling for Segmentation

MRI scans are volumetric and can be represented in three-dimensions using
multi-planar representation along axial (X-Z axes), coronal (Y-X axes), and
sagittal (Y-Z axes) planes. Taking advantage of this multi-view property, we
propose a deep learning based segmentation model that uses three separate Con-
vNets for segmenting the tumor along the three individual planes at slice level.
These are then combined using a consensus fusion strategy to produce the final
volumetric segmentation of the tumor and its sub regions. It is observed that
the integrated prediction from multiple planes is superior, in terms of accuracy
and robustness of decision, with respect to the estimation based on any single
plane. This is perhaps because of utilizing more information, while minimizing
the loss.

The ConvNet architecture, used for slice wise segmentation along each plane,
is an encoder-decoder type of network. The encoder or the contracting path
uses pooling layers to down sample an image into a set of high-level features,
followed by a decoder or an expanding part which uses the feature information
to construct a pixel-wise segmentation mask. The main problem with this type
of networks is that, during the down sampling or the pooling operation the
network loses spatial information. Up sampling in the decoder network then
tries to approximate this through interpolation. This produces segmentation
error around the boundary of the region-of-interest (ROI) or volume-of-interest
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(VOI). Tt is a major drawback in medical image segmentation, where accurate
delineation is of utmost importance.

In order to circumvent this problem we introduce an elitist spatial-max-
pooling layer, which can retain the maximum locations to be subsequently used
during unpooling through the spatial-max-unpooling layer. The procedure is
illustrated in Fig. 1. We also incorporate shortcut connections to copy and con-
catenate the receptive fields (after convolution block) from the encoder to the
decoder part, in order to help the decoder network localize and recover the object
details more effictively. These connections allow the network to simultaneously
incorporate high-level features with the pixel-level details. The entire segmenta-
tion model architecture is depicted in Fig. 2.

0.1 05 18 0.7

UE NN 0.5 1013 Spatial-Max-Pooling
04 07 0.1 02
0.6 01 05 03 X
X

Max locations X 09 18
5 o i3 0 X 0.7 0.5
0.9 0 0 0 |
0 0.7 0 0 Spatial-Max-Unpooling
0 0 0.5 0

Fig. 1. Spatial-pooling and unpooling operations.

Tumors are typically heterogeneous, depending on cancer subtypes, and con-
tain a mixture of structural and patch-level variability. Applying a ConvNet
directly to the entire slice has its inherent drawbacks. Since the size of each slice
is 240 x 240, therefore if we train the ConvNet on the whole image/slice then the
number of parameters to train will be huge. Moreover, very little difference is
observeable in adjacent MRI slices at the global level; whereas patches generated
from the same slice often exhibit significant dissimilarity. Besides, the segmen-
tation classes are highly imbalanced. Approximately 98% of the voxels belong
to either the healthy tissue or to the black surrounding area. The NCR/NET
volumes are of the lowest size amongst all the three classes, as depicted in Fig. 3.
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Fig. 2. Multi-planar ConvNet architecture for segmentation.
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Fig. 3. Tumor sub-class distribution for a sample MRI slice.

Each ConvNet is trained on patches of size 128 x 128 x 4, extracted from all
four MRI sequences corresponding to a particular plane. A randomized patch
extraction algorithm, developed by us, is employed. The patch selection is done
using an entropy based criterion. The three ConvNets (along the three planes)
are trained end-to-end/pixel-to-pixel, based on the patches extracted from the
corresponding ground truth images. During testing the stack of slices are fed
to the model, to produce pixel-wise segmentation of the tumor along the three
planes. The training performance is evaluated using Dice overlap score [14], for
the three segmented sub-regions WT, ET and TC. Since the dataset is highly
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imbalanced therefore standard loss functions used in literature are not suitable
for training and optimizing the ConvNet. This is because most classifiers focus
on learning the larger classes, thereby resulting in poor classification accuracy
for the smaller classes. Hence we propose a new loss function, which is an aggre-
gation of two loss components; viz. — Generalized Dice loss [17] and Weighted
Cross-entropy [16].

2.3 Overall Survival Prediction Based on Radiomic Features

For the OS prediction task we extract two types of Radiomic features, viz.
“semantic” and “agnostic” [5]. The former includes attributes like size, shape,
location, vascularity, spiculation, necrosis; and the latter attempts to capture
lesion heterogeneity through quantitative descriptors like histogram, texture,
etc. We extracted 33 semantic and 50 agnostic features from each segmented
VOI. These are provided as input to a Multilayer Perceptron (MLP), having
two hidden layers, to predict the number of survival days; which is further used
to determine the survival class (short, mid or long).

3 Preliminary Experimental Results

The ConvNet models were developed using TensorFlow, with Keras in Python.
The experiments were performed on the Intel AI DevCloud platform having
cluster of Intel Xeon Scalable processors. Codes developed for our experiments
will soon be made available. The proposed segmentation model is trained and
validated on the corresponding training and validation datasets provided by the
BraT$S 2018 [1-3] organizers.

The preliminary quantitative evaluation results obtained by our segmenta-
tion model on the BraTS 2018 training and validation datasets are displayed
in Table 1. The box-and-whisker plots in Fig. 4 reports the detailed quantitative
segmentation results generated on 66 patients from the BraTS 2018 validation
dataset. Quantitative metrics used for evaluating the segmentation results w.r.t.
the gold standard (in case of training) and through the Leaderboard/blind test-
ing (in case of validation) are (i) Dice score, (ii) sensitivity, (ii) specificity and
(iii) Hausdorff distance computed for WT, TC and ET. The box-and-whisker
plots report the minimum, lower quartile, median upper quartile and maximum.
Points which fall outside 1.5 times the interquartile range are considered as
outliers. It is evident from the box-and-whisker plots, that in most cases our
algorithm produces significantly good segmentation accuracy w.r.t the manual
segmentation by the radiologists for most of the cases. Qualitative segmentation
results, obtained by our method for sample HGG and LGG patients from the
BraTS 2018 training dataset and for a sample patient from the BraTS 2018
validation dataset, are shown in Figs.5 and 6.
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Table 1. Performance evaluation of proposed method on the BraTS 2018 training and
validation datasets.

Evaluation metrics Dice Sensitivity Specificity Hausdorff95
Training ET |'WT | TC |[ET |WT|TC |ET |[WT |TC |[ET WT TC
Mean 0.83/0.91/0.89|0.86|0.89/0.92|1.00 1.0 |1.00|3.144.24|5.84

StdDev 0.160.08|0.10|/0.17,0.11 |/ 0.09 | 0.00 | 0.00 | 0.00 | 5.00 | 7.94 | 12.31
Median 0.8710.92/0.92/0.91/0.92/0.95|1.00|1.00|1.00 | 1.41 |3 3

25quantile | 0.80 |0.90 | 0.86 | 0.84|0.870.92|1.00 | 1.00 | 1.00 | 1.41 | 2 2
75quantile | 0.91 | 0.95|0.94 | 0.96 | 0.96 | 0.97 | 1.00 | 1.00 | 1.00 | 2.24 | 4.24 | 4.47
Validation | Mean 0.77/0.8810.800.840.86/0.79|1.00 | 1.00 | 1.00 | 4.29 | 4.90 | 6.59
StdDev 0.2410.13|0.24|0.25/0.17/0.26 | 0.00 | 0.00 | 0.00 | 3.90 | 4.71 | 6.10
Median 0.86/0.91/0.90/0.90/0.91/0.91|1.00|1.001.00|2.00|3.16 | 4.12
25quantile | 0.80 |0.88 |0.78 | 0.80|0.86|0.72|1.00 | 1.00 | 1.00 | 1.41 | 2.24 | 2.00
75quantile | 0.90 |0.93]0.94 | 0.97|0.95|0.96 | 1.00 | 1.00 | 1.00 | 2.87 | 5.10 | 9.11
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Fig. 4. Box-and-whisker plot of segmentation accuracy of the three sub-regions ET,
WT and TC observed with Dice score, Sensitivity, Specificity and Hausdorff95.

Preliminary results of the proposed OS prediction method is reported in
Table 2. We used 80% of the training data (130 patients) for training, and the
remaining 20% (33 patients) for validation. The model was finally tested on
28 patients, having resection status GTR from the validation set, through the
Leaderboard blind testing.
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Table 2. OS prediction result on the BraTS 2018 validation dataset.

Accuracy | MSE medianSE | stdSE SpearmanR
0.54 180959.429 | 44665.0 340939.903 | 0.273
Proposed Ground-truth

101

Axial Sagittal

Coronal

Axial

Sagittal

Coronal

Fig. 5. Example segmentation result for five patients from the BraTS 2018 training
dataset. The green label is edema, the red label is nonenhancing or necrotic tumor
core, and the yellow label is enhancing tumor core. (Color figure online)
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Fig. 6. Segmentation result for a sample patient (ID: BraTS18 CBICA_AAM_1) from
BraTS 2018 validation data. The green label is edema, the red label is nonenhancing or
necrotic tumor core, and the yellow label is enhancing tumor core. The Dice coefficients
for the ET, WT and TC segmentation for this patient are 0.92, 0.90, 0.93 respectively
(Color figure online)

4 Conclusion

We have designed a new deep learning based method for the automatic delin-
eation/segmentation of brain tumors from multi-sequence MR images. The
encoder-decoder type ConvNet model for pixel-wise segmentation performed
better than other patch-based models. Integrated prediction from multiple



Multi-planar Spatial-ConvNet for Segmentation and Survival Prediction 103

anatomical planes (axial, sagittal and coronal) was superior, in terms of accu-
racy and robustness of decision, with respect to the estimation based on any
single plane. Novel concepts such as spatial-pooling and unpooling reduced seg-
mentation error around the boundary of the VOI. We also incorporated shortcut
connections to copy and concatenate the receptive fields, from the encoder to
the decoder parts, to help the decoder network localize and recover the object
details more effectively. Very good validation accuracy was obtained for the seg-
mentation task. We are currently exploring some other new features and feature
selection methods, in order to improve the accuracy of predicting OS.
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Abstract. This article presents a convolutional neural network for the
automatic segmentation of brain tumors in multimodal 3D MR images
based on a U-net architecture. We evaluate the use of a densely connected
convolutional network encoder (DenseNet) which was pretrained on the
ImageNet data set. We detail two network architectures that can take
into account multiple 3D images as inputs. This work aims to identify
if a generic pretrained network can be used for very specific medical
applications where the target data differ both in the number of spatial
dimensions as well as in the number of inputs channels. Moreover in order
to regularize this transfer learning task we only train the decoder part
of the U-net architecture. We evaluate the effectiveness of the proposed
approach on the BRATS 2018 segmentation challenge [1-5] where we
obtained dice scores of 0.79, 0.90, 0.85 and 95% Hausdorff distance of
2.9mm, 3.95mm, and 6.48 mm for enhanced tumor core, whole tumor
and tumor core respectively on the validation set. This scores degrades
to 0.77, 0.88, 0.78 and 95% Hausdorff distance of 3.6 mm, 5.72 mm, and
5.83 mm on the testing set [1].

Keywords: Brain tumor - Convolutional neural network -
Densely connected network - Image segmentation

1 Introduction

Automatic segmentation of brain tumor structures has a great potential for
surgical planning and intraoperative surgical resection guidance. Automatic seg-
mentation still poses many challenges because of the variability of appearances
and sizes of the tumors. Moreover the differences in the image acquisition pro-
tocols, the inhomogeneity of the magnetic field and partial volume effects have
also a great impact on the image quality obtained from routinely acquired 3D
MR images. However brain gliomas can be well detected using modern magnetic
resonance imaging. The whole tumor is particularly visible in T2-FLAIR, the
tumor core is visible in T2 and the enhancing tumor structures as well as the
necrotic parts can be visualized using contrast enhanced T'1 scans. An example
is illustrated in Fig. 1.

In the recent years, deep neural networks have shown to provide state-of-the-
art performance for various challenging image segmentation and classification

© Springer Nature Switzerland AG 2019
A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 105-115, 2019.
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Fig. 1. Example of images from the BRATS 2018 dataset. From left to right: T1 image,
T2 image: the whole tumor and its core are visible, T2 FLAIR image: discarding the
cerebrospinal fluid signal from the T2 image highlights the tumor region only, T1lce:
contrast injection permits to visualize the enhancing part of the tumor as well as the
necrotic part. Finally the expected segmentation result is overlaid on the T1lce image.
The edema is shown in red, the enhancing part in white and the necrotic part of the
tumor is shown in blue. (Color figure online)

problems [6-10]. Medical image segmentation problems have also been success-
fully tackled by such approaches [11,12,14,15,19]. However training deep neural
networks can still be challenging in the case of a limited number of training
data. In such situations it is often necessary to limit the complexity and the
expressivity of the network. It has been observed that initializing weights of a
convolutional network that has been pretrained on a large data set improves its
accuracy on specific tasks where a limited number of training data is available
[16]. We evaluate in this work the accuracy of a U-net architecture [11,12] where
the encoder is a densely connected convolutional network [17] which has been
pretrained on the ImageNet data set [18]. We study an extreme case of transfer
learning where we fix the weights of the pretrained DenseNet encoder. Moreover
we consider a segmentation problem where the input data dimensionality does
not match the native input dimensions of the pretrained network. We will thus
make use of a fixed pretrained network trained on 2D color images in order to
segment 3D multimodal medical images. We will see that fixing the weights of
the encoder is a simple but effective way to regularize the segmentation results.

2 Method

This section details the proposed network architectures, the loss function used
to train the network as well as the training data preparation.

2.1 Convolutional Neural Network Architectures

The network processes 2D images of size (224, 224) pixels containing three chan-
nels. An input image is composed of three successive slices of the input volume
along one of the three anatomical orientations: either along the coronal, the
sagittal or the transverse plane. We use a pretrained network that has been
designed to take a single 2D color image as input. In order to be able to process
multi modal inputs, we have designed two distinct architectures:
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— the first solution (M1) consists in removing the stem of the original DenseNet
and only make use of the following convolutional layers which input is a tensor
of size (64, 112, 112). This architecture is illustrated in Fig. 2. The proposed
network is composed of a “precoder” which produces an adequate high dimen-
sional input tensor for the pretrained network. This architecture is illustrated
in Fig. 3. It processes independently each input images and concatenates the
resulting tensors. This approach is very flexible and could take as input an
image of any dimensions.

T1(3220220)

Encoder Input (64,112,112)

Precoder (DenseNet-121)

Tice (3.224.226)

uuuuuu

Output oupus | outputs o
(5122828) | (10281029) (102477)

Output (3224.228)
— Decoder

Fig. 2. Network architecture (M1). The network is composed of a “precoder” produc-
ing a high order tensor which is fed to a pretrained densely connected convolutional
network. Several intermediate layers are then used to reconstruct a high resolution
segmentation map.

T1(3.220228)
2(3.22226)
1 Output (64,112,112)

FLAIR (3224,224)

TICE (3.226224)

Fig. 3. Precoder architecture (M1). The precoder architecture process independently
the input images by a sequence of multiple residual blocks (R1, R2) and concatenates
the resulting output tensors. A residual block (R) is also illustrated. All convolution
operations are computed with (3 x 3) kernels.

— the second solution (M2) consists in evaluating the different input modality
separately through the original DenseNet encoder. Each input image modality
is processed with the same encoder which shares its weights across the differ-
ent modalities. Outputs at different scales are then concatenated and fed to
the decoder. This architecture is illustrated in Figs. 4 and 6. This architecture
does not permit to vary the number of input slices but has the advantage to
fully leverage the original DenseNet weights.
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For both architectures, the decoder consists in upsampling a low resolution
layer, concatenate it with a higher resolution layer before applying a sequence
of convolution operations. The first convolutional layer reduces the number of
input channels by applying a (1 x 1) convolution. Following layers are composed
of spatial (3 x 3) convolutions with residual connections.

utputs-1 (1024,7,7) Outputs-1 (256,7,7)

T1(3220228) .
1" it ||| o
-1 (256,56 ) Output2-1 (64,56,56)

Output1-1 (16,112,112)

Outputs-2 (256,7,7)

T2(3220226) 14, TS Outputd-2 (256,14,14)
a— .28, ) Output3-2 (128,28,28)

-2 (256,56 Output2-2 (64,56,56)
Output1-2 (16,112,112)

Outputs-3 (256,7,7)

FLAIR (3224,224) utpute-3 (1026,14 Outpute-3 (256,14,14)
BN-relu-Conv. peisg

N | (1x1) Output3-3 (128,28,28)

put2- Output2-3 (64,56,56)

Output1-3 (16,112,112)

Outputs-4 (256,7,7)

[T1CE (3,224,224) - 14, Outputd-4 (256,14,14)
’ = G (202838
utput2-4 (256,56,56) Output2-4 (64,56,56)

utputi-4 (64,112,112) Output1-4 (16,112,112)

e

Fig. 4. Encoder architecture (M2). The network processes the different input image
modality with the same encoder, a DenseNet composed of 121 layers. Intermediate
layers of the encoder are used to feed the decoder network.

We give here additional details about the network architectures:

— each sample 3D image y is normalised so that voxels values falls in the interval
[0, 1].

— batch normalisation is performed after each convolutional layer using a run-
ning mean and standard deviation computed on 5000 samples:

— each layer is composed of residual connections as illustrated in Fig. 6,

— the activation function used in the network is a rectified linear unit,

— convolutions are computed using reflective border padding,

— upsampling is performed by nearest neighbor interpolation (Fig.5).

2.2 Training

We used the BRATS 2018 training and validation sets for our experiments [2-5].
The training set contains 285 patients (210 high grade gliomas and 75 low grade
gliomas). The BRATS 2018 validation set contains 66 patients with brain tumors
of unknown grade with unknown ground truth segmentations. Each patient con-
tains four modalities: T1, T'1 with contrast enhancement, T2 and T2 FLAIR. The
aim of this experiment is to segment automatically the whole tumor, the tumor
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[
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Fig. 5. Decoder architecture of the first model (M1). The decoder consists in a sequence
of upsampling and residual convolution operations in order to produce a high resolution
segmentation map.

core and the tumor enhancing parts. Note that the outputs of our neural network
corresponds directly to the probability that a pixel belongs to a tumor, the core
of a tumor and the enhancing part of the tumor. The last layer of the proposed
architecture is thus composed of three independent (1 x 1) convolutional layers
because we directly model the problem as a multi-label segmentation problem
where a pixel can be assigned to multiple classes. Note that only weights of
the “precoder” and the decoder are learned. Original weights of the pretrained
DenseNet-121 stay fixed during the training procedure.

The network produces a segmentation maps by minimizing a loss function
defined as the combination of the mean cross entropy (mce) and the mean Dice
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coefficients (dce) between the ground truth class probabilities and the network

estimates:
CB—Z( nylogpz ) (1)

where yf and pf represent respectively the ground truth probability and the
network estimate for the class k£ at location i.

o= 3 (0 s s e) (2)

k0

Output5-1 (256, 7,7)
Output5-2 (256,7,7)
Outputs-3 (256,7,7)
Output5-4 (256,7,7)

Outputd-1 (256, 14,14)
Outputd-2 (256, 14,14)
Output4-3 (256, 14,14)
Outputd-4 (256, 14,14)

Output3-1 (128, 28,28)
Output3-2 (128, 28,28)
Output3-3 (128, 28,28)
Output3-4 (128, 28,28)

Output2-1 (64, 56,56)
Output2-2 (64, 56,56)
Output2-3 (64, 56,56)
Output2-4 (64, 56,56)

Output1-1 (16,112,112)
Output1-2 (16,112,112)
Output1-3 (16,112,112)
Output1-4 (16,112,112)

Fig. 6. Decoder architecture of the second model (M2). The decoder concatenates the
encoding layers of each modalities. The segmentation is produced with a sequence of
upsampling and convolution operations.
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Note that we exclude the background class for the computation of the dice
coefficient. The network is implemented using Microsoft CNTK'. We use stochas-
tic gradient descent with momentum to train the network and L2 weights reg-
ularization. We use a cyclic learning rate where the learning rate varies from
0.0002 to 0.00005. An example of the evolution of the accuracy and the learning
rate is illustrated in Fig.7. We train the network for 160 epochs on a Nvidia
GeForce GTX 1080 GPU. A full epoch consists in analyzing all images of the

BRATS training data set and extracting 20 2D random samples from the 3D
MR volumes.

0.000 2000 40.00 6000 80.00 100.0 1200 1400 1600

0.000 2000 40.00 6000 2000 1000 1200 1400 160.0

Fig. 7. Network training. Illustration of the cyclic learning rate schedule (top). Evo-
lution of the sum of the dice coefficients of the three classes during training (bottom).

2.3 Testing

Segmentation results are obtained by evaluating the network along slices
extracted from the three anatomical orientations and averaging the results. A
segmentation map is then obtained by assigning to each voxel the label having
the maximum probability among the three classes: tumor, tumor core or enhanc-
ing tumor. Finally connected components composed of less than 100 voxels are

removed. We are not making use of test time image augmentation or ensembling
methods.

! https://www.microsoft.com/en-us/cognitive-toolkit /.
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3 Results

We uploaded our segmentation results to the BRATS 2018 server? which evalu-
ates the segmentation and provides quantitative measurements in terms of Dice
scores, sensitivity, specificity and Hausdorff distances of enhanced tumor core,
whole tumor, and tumor core. Results of the BRATS 2018 validation phase
are presented in Table 1. The validation phase is composed of 66 datasets with
unknown ground truth segmentations.

Table 1. BRATS 2018 Validation scores, dice coefficients and the 95% Hausdorff dis-
tances in mm. Our results corresponds to the team name “Stryker”. (M1) results
corresponds to the precoder approach, (M2) corresponds to the direct use of a fixed
pretrained DenseNet-121.

Dice ET | Dice WT | Dice TC | Dist. ET | Dist. WT | Dist. TC

Mean M1 0.768 0.892 0.815 3.85 4.85 7.56
Mean M2 0.792 0.899 |0.847 |2.90 3.95 6.48
StdDev M1 0.241 0.065 0.187 5.43 4.28 12.56
StdDev M2 0.223 0.074 0.130 3.59 3.38 12.06
Median M1 0.849 0.905 0.889 2.23 3.67 3.74
Median M2 0.864 0.919 0.891 1.73 3.08 3.30
25% quantile M1 | 0.792 0.881 0.758 1.68 2.23 2
25% quantile M2 | 0.789 0.890 0.796 1.41 2.23 2
75% quantile M1 | 0.888 0.933 0.930 3.16 5.65 8.71
75% quantile M2 | 0.906 |0.939 0.932 |2.82 4.41 6.65

Results of the BRATS 2018 testing phase are presented in Table 2. The testing
phase is composed of 191 datasets with unknown ground truth segmentations.

Table 2. BRATS 2018 Testing scores, dice coefficients and the 95% Hausdorff distances
in mm.

Dice ET | Dice WT | Dice TC | Dist. ET | Dist. WT | Dist. TC
Mean M2 0.776 0.878 0.786 3.63 5.72 5.83
StdDev M2 0.223 0.104 0.257 5.29 7.31 7.93
Median M2 0.828 0.908 0.891 2.23 3.60 3.46
25% quantile M2 | 0.749 0.857 0.796 1.41 2.23 2.1
75% quantile M2 | 0.895 0.935 0.924 3.0 6.08 6.13

2 https://www.cbica.upenn.edu/BraTS18/Iboard Validation.html.
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Fig. 8. Segmentation result obtained on a image of the testing data.

4 Discussion

The validation and testing results obtained on the BRATS segmentation chal-
lenge show that the proposed approaches are indeed efficient. Despite the fact
that the used encoder has been trained on natural color images, it turns out that
the learned features can be leveraged for a large class of applications including
segmentation of medical images. Using a fixed encoder is thus an effective way to
regularize the neural network. Note that we did not make use of advanced image
augmentations or ensembling methods. The two approaches produce comparable
results and have both advantages and drawbacks. The model (M1) is more versa-
tile since it can use any number of input modalities (channels) and any number
of spatial dimensions. However current experiments shows that the model (M2),
despite its simplicity, produces slightly better results. A major limitation of the
proposed approach is the lack of 3D spatial consistency (Fig. 8).
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5 Conclusion

We have studied an extreme version of transfer learning by using a fixed pre-
trained network trained on 2D color images for segmenting 3D multi modal med-
ical images. We have presented two simple approaches for leveraging pretrained
networks in order to perform automatic brain tumor segmentation. We obtained
competitive scores on the BRATS 2018 segmentation challenge®. Future work
will concentrate on several possible improvements by additionally fine tuning
the pretrained encoder. A fixed large expressive 2D neural network is thus an
interesting alternative to a relative small task specific 3D neural networks.
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Abstract. For many segmentation tasks, especially for the biomedical
image, the topological prior is vital information which is useful to exploit.
The containment/nesting is a typical inter-class geometric relationship.
In the MICCAI Brain tumor segmentation challenge, with its three hier-
archically nested classes ‘whole tumor’, ‘tumor core’, ‘active tumor’, the
nested classes relationship is introduced into the 3D-residual-Unet archi-
tecture. The network comprises a context aggregation pathway and a
localization pathway, which encodes increasingly abstract representation
of the input as going deeper into the network, and then recombines these
representations with shallower features to precisely localize the interest
domain via a localization path. The nested-class-prior is combined by
proposing the multi-class activation function and its corresponding loss
function. The model is trained on the training dataset of Brats2018,
and 20% of the dataset is regarded as the validation dataset to deter-
mine parameters. When the parameters are fixed, we retrain the model
on the whole training dataset. The performance achieved on the valida-
tion leaderboard is 86%, 77% and 72% Dice scores for the whole tumor,
enhancing tumor and tumor core classes without relying on ensembles
or complicated post-processing steps. Based on the same start-of-the-art
network architecture, the accuracy of nested-class (enhancing tumor) is
reasonably improved from 69% to 72% compared with the traditional
Softmax-based method which blind to topological prior.

Keywords: Topological prior - Nested classes - 3D-residual-Unet -
Multi-class activation function

1 Introduction

Glioma are the most common family of brain tumors, and forms some of highest-
mortality and economically costly diseases of brain cancer [1-3]. The diagnosed
method is highly relayed on manual segmentation and analysis of multi-modal
MRI scans by bio-medical experts. Nevertheless, this diagnosed way is severely
© Springer Nature Switzerland AG 2019

A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 116-127, 2019.
https://doi.org/10.1007/978-3-030-11726-9_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11726-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-11726-9_11

Hierarchical Multi-class Segmentation of Glioma Images 117

limited by the labor-intensive character of the manual segmentation process and
disagreement or mistakes between manual segmentation. Consequently, there
exists a great need for a fast and robust automated segmentation algorithm.
Convolutional neural networks (CNNs) have been verified to be extremely effec-
tive for a variety of semantic segmentation tasks [4].

While CNN segmentation algorithms are abundant in biomedical imaging,
only very few make use of nested-topological prior information. Among the few
that do [5—11], we find three different approaches. First, the use of cascaded
algorithms where the network consists of successive segmentation networks. Sec-
ond, the information on the nested-classes is incorporated into the loss function,
imposing penalties on solutions that do not respect the nested geometry rela-
tions. Third, Markov random fields are used to formalizing class relationship in
the post-processing of the network output. Here, we make use of a new activation
function [12] that is directly implementing class hierarchy in the network training
and generalize it to 3 nested classes. For the glioma labels we assume that active
tumor regions are always contained in the tumor core which is surrounded by
the tumor edema, resulting in a hierarchical three-class model. In sharp contrast
with nested-class method, the softmax-based method of multi-class ignores the
geometric prior between different classes, and assumes the classes are mutually-
exclusive, meaning one pixel cannot belong to different classes at the same
time, which absolutely discards the topological information and sometimes leads
the unreasonable segmentation results. The comparison of Dice score criteria
between two different methods is implemented and it obviously indicates the
nested-class method achieves higher accuracy than the softmax-based method,
especially for the internal-classes.

In the following, we introduce a brief overview of start-of-the-art 3D-residual
U-net architecture and multi-class-nested activation and loss function. We then
propose and evaluate our model architectures for Brats tumor segmentation.
Finally, we implement the comparison between two main avenues and illustrate
the multi-level activation performs better especially in the inter-class.

2 Methodology

2.1 Network Architecture

The nested-classes relationship between different labels are shown in Fig. 2. The
general network structure shown in Fig. 1 is stemming from the previously used
glioma segmentation network by Isensee [13] to process large 3D input blocks of
144 x 144 x 144 voxels. The original network is inspired by the U-net [14] which
allows the network to intrinsically recombine different scales throughout the
entire network. This vertical depth is set as 5, which balances between the spatial
resolution and feature representations. The context module is a pre-activation
residual block, and is connected by 3 x 3 x 3 convolutions with input stride 2. The
purpose of the localization pathway is to extract features from the lower levels of
the network and transform them to a high spatial resolution by means of a simple
upscale technology. The upsampled features and its corresponding level of the
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context aggregation feature are recombined via concatenation. Furthermore, the
localization module, consisting of a 3 x 3 x 3 convolution followed by a 1 x 1 x 1
convolution, is designed to gather these features.

I 3x3x3convolution I Upsampling module I Multi-level Sigmold f upscale
D Context module I Localization module ® Element-wise sum
144x144x144 I3x3x3stride 2 convolution ] Segmentation layer © concatenation

Input
image

Fig. 1. Network architecture from [13]: Context pathway (left) aggregates high level
information; Localization pathway (right) localizes precisely

The deep supervision is introduced in the localization pathway by integrating
segmentation layers at different levels of the network and combining them via
elementwise summation to form the final network output. The output activa-
tion layer is multi-level Sigmoid layer instead of softmax layer in the Isensee’s
network which converting the multi-class problem to binary ones. Intrinsically,
the multi-level activation is the assemble of multi-sigmoid function and then
straightforwardly maps to multi-class segmentation incorporating the topologi-
cal prior. Consequently, it overcomes the softmax-based method’s shortcoming
which is blind to the geometric prior.

2.2 Crop Preprocessing

For 3D network architecture, the larger patch size of training dataset contains
more continuous context knowledge and localization information which are ben-
eficial to improve the segmentation accuracy. In order to acquire to the larger
cube size patch of 3D image, the valuable knowledge in the MRI is extracted as
much as possible while the meaningless information is cropped. Then the crop
processing is implemented, and the maximum size of cube patch is selected as
[144, 144, 144].
The crop preprocessing equation is defined as:

array = [amin - (bsize - a)/2 D Qmin + (bsize + a)/2}

a4 = Qmaz — Omin

(1)
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Fig. 2. Schematic description of the nesting of classes in the BRATS challenge, which
respects the following hierarchy: Enhancing Tumor (ET) € Tumor core € Tumor

where a,,i, and a,,q, are the min and max non-zero information index of MRI
image, and a represents the length of non-zero information. by;,. is the cube
patch size and selected as 144.

The index is recorded and used in the image post-processing stage to recov-
ery back to the original shape [155,240,240]. However, a little of meaningful
information which exceeds the cube patch size 144 is unavoidably ignored and
have little effect on the segmentation result. In order to equally compare the
softmax-based with the multi-level method, no data augmentation operation is
used in the stage of image pre-processing.
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Fig. 3. Multi-class activation function, Eq. (1) with m+1=4, h=0.8 and k=10
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2.3 Multi-level Method

Here, we use one output channel and a multi-class-nested activation function, as
first proposed in [12]. The multi-level method is inspired by continuous regres-
sion, and thereby generalizing logistic regression to hierarchically-nested classes.
It is shown in Fig. 3 and defined as

= > olhle+ hln = 35 @

Where o is the sigmoid function, k is the steepness and h is the spacing
between consecutive Sigmoids. For Brain tumor segmentation challenge 4-classes
nested label case, we have m+1=4, and we take h=0.5 and steepness = 10.
The corresponding loss function, called Modified Cross-Entropy (MCE) in [12],
is defined as

Lyce = *Niot Z Z y; wlog(Pla(z;)]) (3)

pizel i classes c

co

where w® is the weight of corresponding label, which we take as w°*(w
(%)a), where Ny, is the sum number of pixels, N, the number of pixels in
each class, and where y¢ = 1 for the ground-truth label ¢ of pixel i and y¢ =0
otherwise. Furthermore, the mapping function P¢ is defined as

P=a)=1-a/3

P=a) =aO(1 —a)+ (3 —a)/20(a — 1) @
P=2(a) = a/20(2 — a) + (3 — a)O(a — 2)

P=3(a) = a/3.

Where O(x) is the Heaviside function. The other one loss function, called
Normalized Cross-Entropy (N CE) in [12], is defined as

Lyce = —Nwt > D yiwlog(€[a(wy))) (5)

pizel iclasses

Furthermore, the mapping function Q¢ is defined as

(a) =aB(1—a)+s(2—a)O(a—2)
P=%(a) =s(a—1)0(2 —a) + (3 —a)O(a — 2)
(a)

where s is the softplus function, and ©(x) is the Heaviside function.

Weighted modified and Normalized cross-entropy losses are naturally com-
bined with standard cross-entropy loss and mitigate the class unbalance problem.
They also have the ability to encode of any hierarchical and mutually-exclusive
topological relationship of classes in a network architecture.
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2.4 Evaluation Metrics

In the task for BRATS, the number of positives and negatives are highly unbal-
anced. Consequently, four typical different metrics are used by the organizers to
evaluate the performance of the algorithm and then rank the different teams.
Give a ground-truth segmentation map G and a segmentation map corre-
sponding one class generated by the algorithm. The four evaluation criteria are
defined as following.
Dice similarity coefficient (DSG):

2(G N P)

DSC ="t
G| + [P

(7)

The Dice similarity coefficient measures the overlap in percentage between

G and P.
Hausdorff distance (95th percentile) is defined as:

H(G, P) = maz(supin focc yepd(z,y), supin fyepaccd(z,y)) (8)

where d(z,y) denotes the distance of x and y, sup denotes the supremum and
inf for the infimum. This measures how far two subsets of a metric space are
from each other. As used in this challenge, it is modified to obtain a robustified
version by using the 95th percentile instead of the maximum (100 percentile)
distance.

Sensitivity (also called the true positive rate) measures the proportion of
actual positives that are correctly identified. Specificity (also called the true
negative rate) measures the proportion of actual negatives that are correctly
identified. Assume P is the number of real positive prediction pixel of lesion and
N is the number of real negative prediction pixel of lesion. Condition positive
P consists with true positive T'P and false negative F'N. Besides, the condition
negative N is also divided into T'N true negative and F'P false positive.

Then, the metrics of Sensitivity and Specificity are illustrated as:

TP

S = )
P TP+ FN

Sensitivity =
TN TN
N TN+FP
Then the values of those four metrics were computed by the organizers inde-
pendently and made available in the validation leaderboard.

Speci ficity = (10)

3 Experiment Results

In BRATS 2018 dataset [15-19], there are four types, Necrotic core, Edema,
Non-enhancing core and Enhancing core that form the three tumor classes
in Fig.2. The dataset contains 4 different modalities for MRI, native (T1),
post-contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid Attenuated



122 X. Hu et al.

(c) Prediction (d) Ground-truth

(a) Tlimage

(b) Flair image
L < TR

Fig. 4. Segmentation results, for five different validation cases. The tumor class is
depicted in red, tumor core in green and enhancing tumor in blue. (Color figure online)

Inversion Recovery (FLAIR) which are all used as different input channels. We
train the networks using ADAM optimizer with an initial learning rate of 0.0005,
and to regularize the network, we use early stopping when the precision on the
20% of the training dataset reserved for validation is no longer improved, and
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dropout (with rate 0.3) in all residual block before the multi-class sigmoid func-
tion. Some slices of segmentation results containing the tumor, tumor core and
enhancing core are shown in Fig.4. We observe that the topology geometry
