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Preface

This volume contains articles from the Brain-Lesion Workshop (BrainLes), as well as
the (a) International Multimodal Brain Tumor Segmentation (BraTS) challenge,
(b) Ischemic Stroke Lesion Segmentation (ISLES) challenge, (c) grand challenge on
MR Brain Image Segmentation (MRBrainS18), (d) Computational Precision Medicine
(CPM) challenges, and (e) Stroke Workshop on Imaging and Treatment Challenges
(SWITCH). All these events were held in conjunction with the Medical Image Com-
puting for Computer Assisted Intervention (MICCAI) conference during September
16–20, 2018, in Granada, Spain.

The papers presented describe research of computational scientists and clinical
researchers working on glioma, multiple sclerosis, cerebral stroke, traumatic brain
injuries, and white matter hyper-intensities of presumed vascular origin. This compi-
lation does not claim to provide a comprehensive understanding from all points of
view; however, the authors present their latest advances in segmentation, disease
prognosis, and other applications to the clinical context.

The volume is divided into seven parts: The first part comprises three invited papers
summarizing the presentations of the keynote speakers; the second includes the paper
submissions to the BrainLes workshop; the third through the seventh parts contain a
selection of papers presenting methods that participated at the 2018 challenges of
ISLES, MRBrainS, CPM, SWITCH, and BraTS, respectively.

The first chapter in these proceedings describes invited papers from the four keynote
speakers of the MICCAI BrainLes 2018 workshop (www.brainlesion-workshop.org).
The overarching aim of these papers is to give an updated review of the work done in
(a) the domain of machine learning applied in neuro-oncology diagnostics, (b) con-
nectomics of traumatic brain injury and brain tumors, (c) computational/memory
considerations for deep learning in medical image analysis, and (d) computed
tomography perfusion. The sequence of these papers reflects the order that they were
presented during the workshop.

The aim of the second chapter, focusing on the BrainLes workshop submissions, is
to provide an overview of new advances in medical image analysis in all of the
aforementioned brain pathologies. Bringing together researchers from the medical
image analysis domain, neurologists, and radiologists working on at least one of these
diseases. The aim is to consider neuroimaging biomarkers used for one disease applied
to the other diseases. This session did not have a specific dataset to be used.

The third chapter contains descriptions of a selection of algorithms that participated
in the ISLES 2018 challenge. The purpose of this challenge was to directly compare
methods for the automatic prediction of stroke lesion outcome from CT-perfusion
imaging. A dataset consisting of CT-perfusion image volumes acquired at acute and
3-month follow-up was released for training. A dedicated test set of cases was used for
evaluation. Test data were not released, but participants had to submit their segmen-
tation results to: www.isles-challenge.org.

http://www.brainlesion-workshop.org
http://www.isles-challenge.org


The fourth chapter includes a number of papers from MRBrainS 2018. The purpose
of this challenge is to directly compare methods for segmentation of gray matter, white
matter, cerebrospinal fluid, and other structures on 3T MRI scans of the brain, and to
assess the effect of (large) pathologies on segmentation and volumetry. Over 30 teams
participated and the challenge remains open for future submissions. An up-to-date
ranking is hosted on: http://mrbrains18.isi.uu.nl/.

The fifth chapter presents a selection of papers from the leading participants in the
two CPM 2018 challenges in brain tumors (http://miccai.cloudapp.net/competitions/).
The “Combined MRI and Pathology Brain Tumor Classification” challenge used
corresponding imaging and pathology data with the task of classifying a cohort of
“low-grade” glioma tumors (n = 52) into two sub-types of oligodendroglioma and
astrocytoma. This challenge presented a new paradigm in algorithmic challenges,
where data and analytical tasks related to the management of brain tumors were
combined to arrive at a more accurate tumor classification. In the challenge of “Seg-
mentation of Nuclei in Digital Pathology,” participants were asked to detect and seg-
ment all nuclei in a set of image tiles (n = 33) of glioblastoma and lower-grade glioma
extracted from whole slide tissue images. Data from both challenges were obtained
from The Cancer Genome Atlas/The Cancer Imaging Archive (TCGA/TCGA)
repository.

Finally, the sixth chapter of these proceedings contains scientific contributions of the
SWITCH workshop, which aims to bring together clinicians and medical imaging
experts to discuss challenges and opportunities for medical imaging in stroke care and
treatment. In 2018, three clinical keynote speakers addressed various aspects of stroke
and ischemic stroke treatment: Prof. Aad van der Lugt discussed imaging biomarkers
related to stroke, Prof. Matt Gounis shared his research on the development for stroke
devices, and Prof. Roland Wiest presented stroke mimics and chameleons. The sci-
entific contributions of the medical imaging field, addressing topics such as perfusion
parameter estimation and the relation between diffusion MRI and microstructural
changes in gray matter, were presented at the workshop in oral and poster presenta-
tions. All accepted full paper contributions are part of these proceedings.

The seventh chapter focuses on a selection of papers from the BraTS challenge
participants. BraTS 2018 made publicly available a large (n = 542) manually annotated
dataset of pre-operative brain tumor scans from 19 institutions, in order to gauge the
current state-of-the-art in automated glioma segmentation using multi-parametric
structural MRI modalities and to compare fairly between different methods. To pin-
point and evaluate the clinical relevance of tumor segmentation, BraTS 2018 also
included the prediction of patient overall survival, via integrative analyses of radiomic
features and machine learning algorithms (www.cbica.upenn.edu/BraTS2018.html).

We heartily hope that this volume will promote further exciting research on brain
lesions.

December 2018 Alessandro Crimi
Spyridon Bakas
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Abstract. Brain tumor localization and segmentation is an important
step in the treatment of brain tumor patients. It is the base for later clin-
ical steps, e.g., a possible resection of the tumor. Hence, an automatic
segmentation algorithm would be preferable, as it does not suffer from
inter-rater variability. On top, results could be available immediately
after the brain imaging procedure. Using this automatic tumor segmen-
tation, it could also be possible to predict the survival of patients. The
BraTS 2018 challenge consists of these two tasks: tumor segmentation
in 3D-MRI images of brain tumor patients and survival prediction based
on these images. For the tumor segmentation, we utilize a two-step app-
roach: First, the tumor is located using a 3D U-net. Second, another 3D
U-net – more complex, but with a smaller output size – detects subtle
differences in the tumor volume, i.e., it segments the located tumor into
tumor core, enhanced tumor, and peritumoral edema.

The survival prediction of the patients is done with a rather simple,
yet accurate algorithm which outperformed other tested approaches on
the train set when thoroughly cross-validated. This finding is consistent
with our performance on the test set - we achieved 3rd place in the
survival prediction task of the BraTS Challenge 2018.

Keywords: BraTS 2018 · Brain tumor · Automatic segmentation ·
Survival prediction · Deep learning

1 Introduction

Brain tumors can appear in different forms, shapes and sizes and can grow to
a considerable size until they are discovered. They can be distinguished into
glioblastoma (GBM/HGG) and low grade glioma (LGG). A common way of
screening for brain tumors is with MRI-scans, where even different brain tumor
regions can be determined. In effect, MRI scans of the brain are not only the
basis for tumor screening, but are even utilized for pre-operative planning. Thus,
an accurate, fast and reproducible segmentation of brain tumors in MRI scans
is needed for several clinical applications.
c© Springer Nature Switzerland AG 2019
A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 3–12, 2019.
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HGG patients have a poor survival prognosis, as metastases often develop
even when the initial tumor was completely resected. Whether patient overall
survival can be accurately predicted based on pre-operative scans by employing
knowing factors such as radiomics features, tumor location and tumor shape,
remains an open question.

The BraTS challenge [11] addresses these problems, and is one of the biggest
and well known machine learning challenges in the field of medical imaging. Last
year around 50 different competitors from around the world took part. This year,
the challenge is divided in two parts: First, tumor segmentation based on 3D-
MRI images, and second, survival prediction of the brain tumor patients based
on only the pre-operative scans and the age of the patients.

(a) T1 weighted (b) T1 post-contrast (c) Subtraction image

(d) T2 weighted (e) T2 Flair (f) T1 with labels

Fig. 1. Example of image modalities and groundtruth-labels in the BraTS 2018 dataset.
The subtraction image is calculated by subtracting the T1 image (a) from the T1
post-contrast image (b), as described in Sect. 3.1. For the labels, blue indicates the
peritumoral edema, green the necrotic and non-enhancing tumor, and red the GD-
enhancing core, as described in the BraTS paper [11]. (Color figure online)
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Similar to the BraTS 2017 dataset, the BraTS 2018 training dataset consists
of MRI-scans of 285 brain tumor patients from 19 different contributors. The
dataset includes T1, T1 post-contrast (T1CE), T2, and T2 Fluid Attenuated
Inversion Recovery (Flair) volumes, as well as hand-annotated expert labels for
each patient [1–3]. An example of a set of images can be seen in Fig. 1.

Motivated by the success of the U-net [14] in biomedical image segmentation,
we choose the 3D-adaptation [5] of this architecture to tackle the segmentation
part of the BraTS challenge. Two different versions are used, a first one to
coarsely locate the tumor, and a second one to accurately segment the located
tumor into different areas.

Concerning the survival prediction, we found that complex models using
different types of radiomics features such as shape and texture of the tumor and
the brain could not outperform a simple linear regressor based on just a few
basic features. Using only the patient age and tumor region sizes as features, we
achieve competitive results.

The code developed for this challenge is available online: https://github.com/
weningerleon/BraTS2018.

2 Related Work

In the last years, deep learning has advanced classification and segmentation
in many biomedical imaging applications, and has a preeminent role in current
publications.

In the BraTS Challenge last year, all top-ranking approaches of the segmen-
tation task [6,9,16,17] used deep convolutional neural networks. The employed
architectures vary substantially among these submission. However, a com-
mon ground seems to be the utilization of 3D-architectures instead of 2D-
architectures.

One key architecture for biomedical segmentation, which is also heavily used
throughout this paper, is the U-Net [14]. Both, 2D as well as 3D-variants [5] have
been successfully employed for various biomedical applications, and still achieve
competitive results in current biomedical image segmentation challenges [7,8].

3 Methods

3.1 Segmentation

We tackle the segmentation task in a two-step approach: First, the location
of the brain tumor is determined. Second, this region is segmented into the
three different classes: peritumoral edema (ed), necrotic tumor (nec), and GD-
enhancing core (gde).

https://github.com/weningerleon/BraTS2018
https://github.com/weningerleon/BraTS2018
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Fig. 2. Comparison of our segmentation result with the groundtruth labels.

Preprocessing. We first define a brain mask based on all voxels unequal to
zero, on which all preprocessing is carried out. On this brain mask, the mean
and standard deviation of the intensity is calculated, and the data normalized
accordingly. Since different MRI-scanners and sequences are used, we indepen-
dently normalize each image and modality based on the obtained values. Non-
brain regions remain zero.

The whole tumor is strongly visible in T1, T2 and Flair MRI-images. How-
ever, in practice, including all images seems to produce better results even for the
whole tumor localization. We also add another image as input, a contrast-agent
subtraction image, where the T1 image is subtracted from the T1CE image. This
should enhance the contrast-agent sensitive region, as can be seen in Fig. 1c.
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We construct a cuboid bounding box around the brain, and crop the non-
brain regions to facilitate training. The training target is constructed by merging
the three different tumor classes of the groundtruth labels.

For training of the tumor segmentation step, the 3D-images are cropped
around a padded tumor area, which is defined as the area of 20 voxels in every
direction around the tumor.

Network Architectures and Employed Hardware. For both steps, a 3D
U-net [5] with a depth of 4 is employed.

The first U-net uses padding in every convolutional layer, such that the input
size corresponds exactly to the output size. Every convolutional layer is followed
by a ReLU activation function. 16 feature maps are used in the first layer, and
the number of feature maps doubles as the depth increases. For normalization
between the different layers, instance-norm layers [15] are used, as they seem
to be better suited for normalization in segmentation tasks and for small batch
sizes. Testing different training hyperparameters, the Adam optimizer [10] with
an initial learning rate of 0.001 together with a binary cross entropy loss was
chosen for the tumor localization step. An L2-regularization of 1e−5 is applied
to the weights, and the learning rate was reduced by a factor of 0.015 after every
epoch. One epoch denotes a training step over every brain.

The U-net utilized in the second step has a similar architecture as the pre-
vious one, but with double as many feature maps per layer. To counteract the
increased memory usage, no padding is used, which drastically reduces the size
of the output as well as the memory consumption of later feature maps.

Here, we apply a multi-class dice loss to the output of our 3D U-net and
the labels for training, as described in [12]. A learning rate of 0.005 was chosen,
while weight decay and learning rate reduction remain the same as in step 1.

Our contribution to the BraTS challenge was implemented using pyTorch
[13]. Training and prediction is carried out on a Nvidia 1080 Ti GPU with a
memory size of 11 Gb.

Training. In the first step, we train with complete brain images cropped to the
brain mask. The brain mask is determined by all voxels not equal to zero. Using
a rather simple U-net, a training pass with a batch-size of one fits on a GPU
even for larger brains. Due to the bounding box around the brain, different sizes
need to be passed through the network. In practice this is possible using a fully
convolutional network architecture and a batch size of one.

For the second step, we choose the input to be fixed to 124× 124× 124. Due
to the unpadded convolutions, this results in an output shape of 36 × 36 × 36.
Hence, the training labels are the 36 × 36 × 36 sized segmented voxels in the
middle of the input. Here, a batch-size of two was chosen.

During training, patches are chosen from inside the padded tumor bounding
box for each patient. To guarantee a reasonably balanced train set, only training
patches which comprise all three tumor classes are kept for training.
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Inference. Similar to the training procedure, the first step is carried out directly
on a complete 5-channel (T1, T2, Flair, T1CE, and contrast-agent subtraction
image) 3D image of the brain.

Before the tumor/non-tumor segmentation of this step is used as basis in the
second step, only the largest connected area is kept. Based on the assumption
that there is only one tumorous area in the brain, we can suppress false positive
voxels in the rest of the brain with this method.

We then predict 36 × 36 × 36 sized patches with the trained unpadded U-
net. Patches are chosen so that they cover the tumorous area, and the distance
between two neighboring patches was set to 9 in each direction. This results
in several predictions per voxel. Finally, a majority vote over these predictions
gives the end result.

3.2 Survival Prediction

According to the information given by the segmentation labels, we count the
number of voxels of the tumor segmentation. This volume information about
the necrotic tumor core, the GD-enhancing tumor and peritumoral edema as
well as the distance between the centroids of tumor and brain and the age of the
patient were considered as valuable feature for the survival prediction task. We
tested single features, as well as combinations of features as input for a linear
regressor.

4 Results

4.1 Segmentation

For evaluation on the training dataset, we split the training dataset randomly
into 245 training images and 40 test images to evaluate our approach with
groundtruth labels. No external data was used for training or pre-training.

Based on our experience with the training dataset, we choose 200 epochs as an
appropriate training duration for the first step, and 60 epochs as an appropriate
training duration for the second step. We thus train from scratch on all training
images for the determined optimal number of epochs, and use the obtained net-
works for evaluation on the validation set. The results obtained by this method
can be seen in Table 1, and an exemplary result is visualized in Fig. 2.

4.2 Survival Prediction

For evaluating our approach on the training dataset, we fit and evaluate our
linear regressor with a leave-one-out cross-validation on the training images. We
compare the results obtained by solely using the age of the patient versus using
the age with a subset of the tumor region sizes as features. On top, we consider
the distance between the centroid of the tumor and the centroid of the brain as a
feature. Our finding is that all features other than the age of the patient increase
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Table 1. Results for the segmentation challenge. Train, validation and test errors
according to the online submission system, as available.

Dataset Dice Sensitivity Specificity Hausdorff 95

ET WT TC ET WT TC ET WT TC ET WT TC

Train set 0.763 0.860 0.817 0.747 0.784 0.787 0.998 0.998 0.998 5.63 7.01 7.88

Val set 0.712 0.889 0.758 0.757 0.887 0.735 0.998 0.995 0.998 6.28 6.97 10.91

Test set 0.621 0.844 0.728 * * * * * * 10.5 8.71 13.3

the error on left-out images. In Tables 2 and 3, we show the exact results for the
different input features on the training set (cross-validation) and on the test set
(according to the online portal).

In Fig. 3, the survival time in years is plotted against the age for all patients
with a resection status of ‘gross total resection’ in the train dataset. The linear
regressor fitted to this data and used for the challenge, is plotted as well. The
three classes used during the challenge, dividing the dataset into long, short, and
mid-survivors can also be seen.

This age-only linear regressor achieved the 3rd place in the BraTS challenge
2018 [4], with an accuracy of 0.558, a MSE of 277890 and a median SE of 43264
on the test data.

Table 2. Training Data: Mean Squared Error and Median Error for leave-one-out
cross-validation of the linear regressor. The different features considered are the age of
the patient, the volume in voxels of the enhancing tumor (gde), of the necrotic tumor
(nec), of the edema (ed) as well as the distance between the centroid of the tumor and
the centroid of the brain (dist).

Features MSE Median Err.

Age (submitted) 95082 216

Age + gde 100941 224

Age + ed 99693 221

Age + nec 98826 216

Age + dist 100928 215

Age + gde + ed + nec 109817 222

Table 3. Validation Data: Accuracy metrics according to the online portal.

Features Accuracy MSE Median SE stdSE SpearmanR

Age 0.5 97759.5 46120.5 139670.7 0.267

Age + gde + ed + nec 0.536 101012.0 51006.5 140511.5 0.258
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Fig. 3. Our linear regressor (blue) over the age of the tumor patients. The red points
are the training data, and the green lines indicate the boundaries between the classes
(long, mid, and short survivor), which are used for calculation of the accuracy metric.
(Color figure online)

5 Discussion and Conclusion

Our contribution submitted to the BraTS challenge 2018 was summarized in
this paper. We used a two-step approach for tumor segmentation and a linear
regression for survival prediction.

The segmentation approach already gives promising results. In practice, the
two-step framework helps eliminating spurious false-positive classifications in
non-tumorous areas, as only the largest connected area is considered as tumor.
However, this assumes that there is only one tumorous area in the brain. As there
is only one tumorous area in the vast majority of cases, this boosts the accu-
racy measured. Notwithstanding, it is a simplification that can lead to serious
misclassifications in single cases.

This simplification needs to be tackled in future development of the frame-
work. Furthermore, we will evaluate a broader variety of different network archi-
tectures, and will also include 3D data-augmentation techniques into our frame-
work.

Our algorithm for the survival analysis task is a straight-forward approach.
We considered other, more complex approaches, which were however not able to
beat this baseline algorithm.

On the validation set, our survival prediction algorithm ranks among the top
submissions, e.g., the age-only approach achieves the lowest MSE and second
highest accuracy according to the online portal.
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Finally, our top-placement (3rd place) in the challenge underlines the
strength of the age as feature for survival prediction. Other teams, using various
radiomics and/or deep learning approaches, could not perform much better than
our straight-forward approach. Hence, it can be concluded that pre-operative
scans are not well suited for survival prediction. However, other datasets could
be better suited for survival prediction, e.g., post-operative or follow-up scans
of the patient.
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Abstract. Gliomas are the most common primary brain tumors, and
their accurate manual delineation is a time- consuming and very user-
dependent process. Therefore, developing automated techniques for
reproducible detection and segmentation of brain tumors from mag-
netic resonance imaging is a vital research topic. In this paper, we
present a deep learning-powered approach for brain tumor segmenta-
tion which exploits multiple magnetic-resonance modalities and processes
them in two cascaded stages. In both stages, we use multi-modal fully-
convolutional neural nets inspired by U-Nets. The first stage detects
regions of interests, whereas the second stage performs the multi-class
classification. Our experimental study, performed over the newest release
of the BraTS dataset (BraTS 2018) showed that our method delivers
accurate brain-tumor delineation and offers very fast processing—the
total time required to segment one study using our approach amounts
to around 18 s.

Keywords: Brain tumor · Segmentation · Deep learning · CNN

1 Introduction

Gliomas are the most common primary brain tumors in humans. They are char-
acterized by different levels of aggressiveness which directly influences prognosis.
Due to the gliomas’ heterogeneity (in terms of shape and appearance) manifested
in multi-modal magnetic resonance imaging (MRI), their accurate delineation is
an important yet challenging medical image analysis task. However, manual seg-
mentation of such brain tumors is very time-consuming and prone to human
errors. It also lacks reproducibility which adversely affects the effectiveness of
patient’s monitoring, and can ultimately lead to inefficient treatment.

Therefore, automatic brain tumor detection (i.e., which pixels in an input
image are tumorous) and classification (what is a type of a tumor and/or which
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part of a tumor, e.g., edema, non-enhancing solid core, or enhancing structures
a given pixel belongs to; see examples in Fig. 1) from MRI are vital research
topics in the pattern recognition and medical image analysis fields. A very wide
practical applicability of such techniques encompasses computer-aided diagnosis,
prognosis, staging, and monitoring of a patient. In this paper, we propose a
deep learning technique to detect and segment gliomas from MRI in a cascaded
processing pipeline. These gliomas are further segmented into the enhancing
tumor (ET), tumor core (TC), and the whole tumor (WT).

T2-FLAIR T2 T1Gd

Fig. 1. Different parts of a brain tumor (detection is presented in the second row—
green parts show the agreement with a human reader) segmented using the proposed
method (third row) alongside original images (first row): red—peritumoral edema,
yellow—necrotic and non-enhancing tumor core, green—GD-enhancing tumor. (Color
figure online)

1.1 Contribution

The contribution of this work is multi-fold:

– We propose a deep learning technique for detection and segmentation of
brain tumors from MRI. Our deep neural networks (DNNs) are inspired by
the U-Nets [28] with considerable changes to the architecture, and they are
cascaded—the first DNN performs detection, whereas the second segments a
tumor into the enhancing tumor, tumor core, and the whole tumor (Fig. 1).
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– To improve generalization capabilities of our segmentation models, we build
an ensemble of DNNs trained over different folds of a training set, and average
the responses of the base classifiers.

– We show that our approach can be seamlessly applied to the multi-modal
MRI analysis, and allows for introducing separate processing pathways for
each modality.

– We validate our techniques over the newest release of the Brain Tumor Seg-
mentation dataset (BraTS 2018), and show that they provide high-quality
detection and segmentation, and offer instant segmentation.

1.2 Paper Structure

This paper is organized as follows. In Sect. 2, we discuss the current state of the
art in brain-tumor delineation. The proposed deep learning-based techniques
are presented in Sect. 3. The results of our experiments are analyzed in Sect. 4.
Section 5 concludes the paper and highlights the directions of our future work.

2 Related Literature

Approaches for automated brain-tumor delineation can be divided into atlas-
based, unsupervised, supervised, and hybrid techniques (Fig. 2). In the atlas-based
algorithms, manually segmented images (referred to as atlases) are used to seg-
ment incoming (previously unseen) scans [25]. These atlases model the anatom-
ical variability of the brain tissue [22]. Atlas images are extrapolated to new
frames by warping and applying non-rigid registration techniques. An important
drawback of such techniques is the necessity of creating large (and representa-
tive) annotated reference sets. It is time-consuming and error prone in practice,
and may lead to atlases which cannot be applied to other tumors because they
do not encompass certain types of brain tumors [1,6].

Automated delineation of brain tumors from MRI

Atlas-based Unsupervised Supervised Hybrid
[22, 6, 1] [9, 29, 7, 33, 35, 14, 30, 19] [10, 39, 17, 36, 24, 38, 12, 15] [26, 31, 37]

Fig. 2. Automated delineation of brain tumors from MRI—a taxonomy.

Unsupervised algorithms search for hidden structures within unlabeled
data [9,19]. In various meta-heuristic approaches, e.g., in evolutionary algo-
rithms [33], brain segmentation is understood as an optimization problem, in
which pixels (or voxels) of similar characteristics are searched. It is tackled in a
biologically-inspired manner, in which a population of candidate solutions (being
the pixel or voxel labels) evolves in time [7]. Other unsupervised algorithms
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encompass clustering-based techniques [14,29,35], and Gaussian modeling [30].
In supervised techniques, manually segmented image sets are utilized to train a
model. Such algorithms include, among others, decision forests [10,39], condi-
tional random fields [36], support vector machines [17], and extremely random-
ized trees [24].

Deep neural networks, which established the state of the art in a plethora
of image-processing and image-recognition tasks, have been successful in seg-
mentation of different kinds of brain tissue as well [12,16,21] (they very often
require computationally intensive data pre-processing). Holistically nested neu-
ral nets for MRI were introduced in [38]. White matter was segmented in [11],
and convolutional neural networks were applied to segment tumors in [13]. Inter-
estingly, the winning BraTS’17 algorithm used deep neural nets ensembles [15].
However, the authors reported neither training nor inference times of their algo-
rithm which may prevent from using it in clinical practice. Hybrid algorithms
couple together methods from other categories [26,31,37].

We address the aforementioned issues and propose a deep learning algorithm
for automated brain tumor segmentation which exploits a new multi-modal fully-
convolutional neural network based on U-Nets. The experimental evidence (pre-
sented in Sect. 4) obtained over the newest release of the BraTS dataset (BraTS
2018) shows that it can effectively deal with multi-class classification, and it
delivers high-quality tumor segmentation in real time.

3 Methods

In this work, we propose an algorithm which utilizes cascaded U-Net-based deep
neural networks for detecting and segmenting brain tumors. Our approach for
this task is driven by an assumption that the most salient features of a lesion
are not contained in a single image modality.

There are multiple ways to exploit all the modalities in deep learning-based
engines. One way is to store three (or four) modalities as channels of a single
image, like RGB (RGBA), and process it as a standard color image. Although
this approach has a significant downside—only the first layer (which extracts
the most basic features) has access to the modalities as separate inputs, it can
be successfully applied to easier computer-vision and image-processing tasks.
Consecutive layers in the network process the outputs of the previous layers—a
mix of features from all the modalities.

Hu and Xia processed each modality separately, and merged them at the
very end of the processing chain to produce the final segmentation mask, to
fully benefit from information manifested in each modality [8]. In this work, we
combine both techniques—we use merged modalities for brain-tumor detection,
and separate processing pathways for further segmentation of a tumor.
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3.1 Detection of Brain Tumors from MRI

The first stage of our image analysis approach involves taking the whole image
as an input (i.e., different modalities are stacked together as the channels of
an image), and producing a binary mask of the region of interest (therefore, it
performs detection of a tumor). This binary mask is used to select the voxels of all
modalities from the original images (rendering remaining pixels as background).
This region is passed to the segmentation unit by the U-Net in the second stage
for the final multi-class segmentation.

The architecture of our DNN used for detection is visualized in Fig. 3 (note
that we present multiple processing pathways which are exploited in segmen-
tation; for detection, only one pathway is used, and the sigmoid function was
applied as the non-linearity). The DNN prediction is binarized using a thresh-
old Tb . The binary mask is post-processed using the 3D connected components
analysis—the size of connected components is calculated, and the one with the
largest volumes remains. If the next (second) largest connected component is
at least Tcc (in %) of the volume of the largest, it is kept as well. The binary
masks resulting from the first stage are used to produce input to the second
stage. More details on the architecture of our deep network itself are presented
in the following subsection.

3.2 Segmentation of Detected Brain Tumors

Our DNN for brain tumor segmentation separates processing pathways and
merges them at the very bottom of the network, where the feature space is
compacted the most, and at each bridged connection (Fig. 3). By doing that, we
assure that the low- and high-level features are extracted separately for all modal-
ities in the contracting path. Those features can “interact” with each other in the
expanding path, producing high-quality segmentations. Our preliminary experi-
ments showed that the pre-contrast T1 modality carries the smallest amount of
information, therefore in order to reduce the amount of segmentation time and
resources (to make our method easily applicable in a real-life clinical setting), we
did not use that modality in our pipeline. However, the proposed U-Net-based
architecture is fairly flexible and allows for using any number of input modalities.

Our models are based on a well-known U-Net [28], with considerable changes
to the architecture. First, there are separate pathways for each modality, effec-
tively making three contracting paths. In the original architecture the number
of filters was doubled at each down-block, whereas in our model it is constant
everywhere, except in the very bottom part of the network (where the concatena-
tion and merging of the paths takes place) where it is doubled. The down-block
in our model consists of three convolutional layers (48 filters of the size 3 × 3
each, with stride 1). The second alteration to the original U-Net are the bridged
connections, which join (concatenate) activations from each pathway of the con-
tracting paths with their corresponding activations from the expanding path,
where they become merged. This procedure allows the DNN to extract high-
level features while preserving the context stored earlier. The expanding path is
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T2-FLAIR T2 T1Gd

Fig. 3. The proposed deep neural network architecture. Three separate pathways
(e.g., for FLAIR, T1c, and T2) are shown as a part of the contractive path. At each
level (each set of down blocks) the output is concatenated and sent to a corresponding
up block. At the bottom, there is a merging block, where all the features are merged
before entering the expanding path. The output layer is a 1 × 1 convolution with one
filter for the first stage (detection), and three filters for the second stage (segmentation).

standard—each up-block doubles the size of an activation map by the upsam-
pling procedure, which is followed by two convolutions (48 filters of 3 × 3 size
each, with stride 1). In the last layer, there is a 1 × 1 convolution with 1 filter in
the detection, and 3 filters in the multi-class classification stages, respectively.

The output of the second stage is an activation map of the size Iw × Ih × 3,
where the last dimension represents the number of classes, and Iw and Ih are
the image width and height, respectively. The activation is then passed through
a softmax operation, which performs the final multi-class classification.

4 Experimental Validation

4.1 Data

The Brain Tumor Segmentation (BraTS) dataset [2–5,20] encompasses MRI-
DCE data of 285 patients with diagnosed gliomas—210 high-grade glioblastomas
(HGG), and 75 low-grade gliomas (LGG). Each study was manually annotated
by one to four experienced readers. The data comes in four co-registered modal-
ities: native pre-contrast (T1), post-contrast T1-weighted (T1c), T2-weighted
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(T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR). All the pixels have
one of four labels attached: healthy tissue, Gd-enhancing tumor (ET), peritu-
moral edema (ED), the necrotic and non-enhancing tumor core (NCR/NET).

The data was acquired with different clinical protocols, various scanners, and
at 19 institutions, therefore the pixel intensity distribution may vary significantly.
The studies were interpolated to the same shape (240 × 240× 155, hence 155
images of 240 × 240 size, with voxel size 1 mm3), and they were pre-processed
(skull-stripping was applied). Overall, there are 285 patients in the training set
T (210 HGG, 75 LGG), 66 patients in the validation set V (without ground-
truth data provided by the BraTS 2018 organizers), and 191 in the test set Ψ
(unseen data used for the final verification of the trained models).

4.2 Experimental Setup

The DNN models were implemented using Python3 with the Keras library over
CUDA 9.0 and CuDNN 5.1. The experiments were run on a machine equipped
with an Intel i7-6850K (15 MB Cache, 3.80 GHz) CPU with 32 GB RAM and
NVIDIA GTX Titan X GPU with 12 GB VRAM. The training metric was the
DICE score for both stages (detection and segmentation), which is calculated as

DICE(A,B) =
2 · |A ∩ B|
|A| + |B| , (1)

where A and B are two segmentations, i.e., manual and automated. DICE ranges
from zero to one (one is the perfect score). The optimizer was Nadam (Adam
with Nesterov momentum) with the initial learning rate 10−5, and the optimizer
parameters: β1 = 0.9, β2 = 0.999. The training ran until DICE over the valida-
tion set did not increase by at least 0.002 in 10 epochs. The training time for
one epoch is around 10 min (similar for both stages). The networks converges
in around 20–30 epochs (the complete training for each fold takes 7–8 h). For
detection, we used the manually-tuned thresholds: Tb = 0.5, and Tcc = 20%.

Both networks are relatively small, which directly translates to the low com-
putational requirements during inference—one volume can be processed and
classified end-to-end within around 5 s. To exploit the training set completely,
and still be able to use validation subset to avoid over-fitting, the final predic-
tion was performed with an ensemble of five models trained on different folds of
the training set (we followed the 5-fold cross-validation setting over the training
set). Using an ensemble of five models (and averaging their outputs to elaborate
the final prediction) was shown to improve the performance, while extending the
inference time to around 18 s per full volume.

4.3 Experimental Results

In Table 1, we gather the results (DICE) obtained over the training and vali-
dation BraTS 2018 datasets (in the 5-fold cross-validation setting). The whole
tumor class represents the performance of the first stage of our classification
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system (evaluated on all the classes merged into one—exactly as the first stage
model is trained). Here, we report the average DICE for 5 non-overlapping folds
of the training set T , and the final DICE for validation V , and test Ψ sets
obtained using the ensembles of 5 base deep classifiers learned using training
examples belonging to different folds. Note that the ground-truth data (pixel
labels) for V and Ψ were not known to the participants during the BraTS 2018
challenge, hence they could not be exploited to improve the models.

Table 1. Segmentation performance (DICE) over the BraTS 2018 validation set
obtained using our DNNs trained with T1c, T2, and FLAIR images. The scores are
presented for whole tumor (WT), tumor core (TC), and enhancing tumor (ET) classes.
For the training set, we report the average across 5 non-overlapping folds, whereas for
the validation set—the results reported automatically by the BraTS competition server
(for validation, we used an ensemble of 5 DNNs trained over different folds).

Dataset Label DICE Sensitivity Specificity

Training ET 0.7365 0.8483 0.9981

WT 0.9268 0.9239 0.9956

TC 0.8779 0.8891 0.9973

Validation ET 0.7519 0.8373 0.9972

WT 0.8980 0.9096 0.9935

TC 0.8118 0.8142 0.9974

The results show that an ensemble of DNNs manifests fairly good generaliza-
tion capabilities over the unseen data, and it consistently obtains high-quality
classification. Interestingly, we did not use any data augmentation techniques in
our approach (which can be perceived as an implicit regularization), and even
without increasing the size and heterogeneity of the training data, the ensembles
were able to accurately delineate brain tumors in unseen scans. It also indicates
that data augmentation could potentially further improve the capabilities (both
detection and segmentation) of our deep models by providing a large number
of artificially created (but visually plausible and anatomically correct) training
examples generated using the original T .

In Table 2, we gather the results obtained over the unseen test set Ψ—we
report not only DICE, but also the Hausdorff distance (HD) given as

HD(A,B) = max (h(A,B), h(B,A)) , (2)

where h(A,B) is the directed Hausdorff distance:

h(A,B) = max
a∈A

min
b∈B

||a − b|| , (3)

and ||·|| is a norm operation (e.g., Euclidean distance) [32]. It can be noted
that this metric is quite sensitive to outliers (the lower HD, the higher quality
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Table 2. The results reported for the unseen test set Ψ show that our models can gen-
eralize fairly well over the unseen data (however, the results are worse when compared
to the validation set). We report DICE alongside the Hausdorff distance (HD).

Measure DICE (ET) DICE (WT) DICE (TC) HD (ET) HD (WT) HD (TC)

Mean 0.6493 0.8590 0.7342 7.3117 9.5128 11.5729

Std dev. 0.3021 0.1272 0.2604 12.8380 16.1665 15.1306

Median 0.7770 0.8983 0.8332 3.0000 4.1231 7.3485

25 quantile 0.6023 0.8376 0.6877 2.0000 2.4495 3.4783

75 quantile 0.8423 0.9299 0.9010 5.0500 7.8717 13.9277

segmentation we have in terms of contour similarity). The results show that our
deep-network ensemble can generalize quite well over the unseen data, however
the DICE values are slightly lowered when compared to the validation set. We
can attribute it to the heterogeneity of the testing data (as mentioned earlier,
we did not apply any data augmentation to increase the representativeness of
the training set). Interestingly, the whole-tumor segmentation remained at the
very same level (see DICE in Table 2), and our method delivered high-quality
whole-tumor delineation (we can observe the highest decrease of accuracy for the
enhancing part of a tumor, and it amounts to more than 0.08 DICE on average).
It also leads us to the conclusion that for tumor segmentation (differentiating
between different parts of a lesion), the deep models require larger and more
diverse sets (perhaps due to subtle tissue differences which cannot be learnt from
a limited number of brain-tumor examples) and potentially better regularization.

5 Conclusions

In this paper, we presented an approach for effective detection and segmenta-
tion (into different parts of a tumor) of brain lesions from magnetic resonance
images which exploits cascaded multi-modal fully-convolutional neural networks
inspired by the U-Net architecture. The first deep network in our pipeline per-
forms tumor detection, whereas the second—multi-class tumor segmentation.
We cross-validated the proposed technique (in the 5-fold cross-validation setting)
over the newest release of the BraTS dataset (BraTS 2018), and the experimental
results showed that:

– Our cascaded multi-modal U-Nets deliver accurate segmentation, and ensem-
bling the models (and averaging the response of base classifiers) trained across
separate folds allows us to build the final model which generalizes well over
the unseen testing data.

– We showed that our networks can be trained fairly fast (7–8 h using 1 GPU),
and deliver real-time inference (around 18 s per volume).

– We showed that our models can be seamlessly applied to both two- and multi-
class classification (i.e., tumor detection and segmentation, respectively).
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Our current research is focused on applying our techniques to different organs
and modalities (e.g., lung PET/CT imaging [23]), and developing data augmen-
tation approaches for medical images. Such algorithms (which ideally generate
artificial but visually plausible and realistic images) can be perceived as implicit
regularizers which help improve the performance of models over the unseen data
by introducing new examples into a training set [18,27,34].
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Abstract. Accurate segmentation of brain tumors is critical for clinical
quantitative analysis and decision making for glioblastoma patients. Con-
volutional neural networks (CNNs) have been widely used for this task.
Most of the existing methods integrate the multi-modality information
by merging them as multiple channels at the input of the network. How-
ever, explicitly exploring the complementary information among differ-
ent modalities has not been well studied. In fact, radiologists rely heavily
on the multi-modality complementary information to manually segment
each brain tumor substructure. In this paper, such a mechanism is devel-
oped by training the CNNs like the annotation process by radiologists.
Besides, a 3D lightweight CNN is proposed to extract brain tumor sub-
structures. The dilated convolutions and residual connections are used
to dramatically reduce the parameters without loss of the spatial reso-
lution and the number of parameters is only 0.5M. In the BraTS 2018
segmentation task, experiments with the validation dataset show that
the proposed method helps to improve the brain tumor segmentation
accuracy compared with the common merging strategy. The mean Dice
scores on the validation and testing dataset are (0.743, 0.872, 0.773) and
(0.645, 0.812, 0.725) for enhancing tumor core, whole tumor, and tumor
core, respectively.

Keywords: Brain tumor · 3D lightweight CNN ·
Complementary information · Segmentation · Multi-modality

1 Introduction

Glioblastoma is the most common primary malignant brain tumor [17]. Medi-
cal imaging technologies play an important role in the diagnosis, preoperative
planning, intraoperative navigation, and postoperative evaluation of the brain
cancer. Magnetic Resonance Imaging (MRI) is the most frequently used imaging
method in the clinical routine of brain tumors, because it is noninvasive and free
of radiation.
c© Springer Nature Switzerland AG 2019
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Brain tumor segmentation in multi-modality MRI scans is crucial for the
quantitative analysis in clinic. However, it is time-consuming and labor-intensive
for radiologists to manually delineate brain tumors. Automatic segmentation of
brain tumors in multi-modality MRI scans has a potential to provide a more
effective solution, but due to the highly heterogeneous appearance and various
shapes of brain tumors, it is one of the most challenging tasks in medical image
analysis. Figure 1 presents a brain tumor case and the corresponding label in the
BraTS 2018 training dataset.

(a) T1 (b) T2

(c) Flair (d) T1ce (e) Ground Truth

Edema (ED)

Enhancing
Tumor (ET)

Tumor Core (TC)

Fig. 1. A brain tumor example (named “Brats18 2013 2 1”) in BraTS 2018 dataset.
(a–d) show four slices with the same position (107th slice) in different MRI scans. The
manual segmentation results of the different substructures are shown in (e).

In recent years, convolutional neural networks (CNNs) have emerged as a
powerful tool for medical image segmentation tasks, including organ and lesion
segmentation, and achieved unprecedented accuracy. Benefiting from the mul-
timodal brain tumor segmentation challenge [15] which is long-term and com-
petitive, many CNN architectures have been proposed and also achieved state-
of-the-art performance. In [13], Kamnitsas et al. constructed an Ensemble of
Multiple Models and Architectures (EMMA) for robust brain tumor segmenta-
tion including two deepMedic models, three 3D FCNs, and two 3D U-Nets.
Wang et al. [19] developed a cascade of fully convolutional neural networks
to decompose the multi-class segmentation problem into a sequence of three
binary segmentation problems according to the brain tumor substructures hier-
archy and proposed anisotropic networks to deal with 3D images as a trade-off
among the receptive field, model complexity and memory consumption. The
multi-view fusion was used to further reduce noises in the segmentation results.
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Isensee et al. [12] modified the U-Net to maximize brain tumor segmentation
performance. The architecture consisted of a context aggregation pathway which
was used to encode increasingly abstract representations of the input and a local-
ization pathway which was designed to transfer the low level features to a higher
spatial resolution.

Most of the existing multi-modality brain tumor segmentation methods use
an early-fusion strategy which integrates the multi-modality information from
the original MRI scans. For example, four MRI modalities (T1, T2, T1ce, and
Flair) are simply merged as four channels at the input of the network [12,13,19].
However, as argued in [18] in the context of multi-modal learning, it is difficult
to discover highly non-linear relationships among the low-level features of dif-
ferent modalities. Besides, early-fusion methods implicitly assume that the rela-
tionship among different modalities is simple (e.g., linear) and the importance
among these modalities is equal for the segmentation of different brain tumor
substructures. In fact, when radiologists manually segment tumor substructures,
they pay different attention to different modalities. For example, when segment-
ing the tumor core, radiologists will pay more attention to T1ce modality rather
than Flair or T2 modalities. Thus, the importance of different modalities is not
the same when segmenting a specific tumor substructure; The complementary
information among these modalities plays an important role to the final brain
tumor labels. As far as we know, explicitly exploring the complementary infor-
mation among different modalities has not been well studied for brain tumor
substructures segmentation.

In this paper, we train the networks like the manual segmentation process by
radiologists to explicitly explore the complementary information among different
MRI modalities. Specifically, the pipeline design of the brain tumor segmentation
is guided by clinical brain tumor annotation protocol. In addition, we propose a
novel 3D lightweight Convolutional Neural Network (CNN) architecture which
captures high-level features from a large receptive field without the loss of resolu-
tion of the feature maps. The proposed lightweight CNN makes a good balance
between the 3D receptive field and model complexity. It has only ten hidden
layers and the number of parameters is only 0.5M . We evaluate the proposed
lightweight CNN architecture on the BraTS 2018 validation and testing dataset
and achieve the promising segmentation results. Besides, experiments show that
an improvement of segmentation accuracy is achieved by exploring the comple-
mentary information among different modalities.

2 Methods

2.1 MRI Modality Analysis and Selection of Brain Tumors

The MRI modality selection method is inspired by how radiologists segment
the brain tumor substructures. From [15], it can be found that different brain
tumor substructures are annotated by different strategies in clinic. Specifically,
the edema (belongs to the whole tumor) is segmented primarily from T2 images.
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Flair images are used to cross-check the extension of the edema. The enhanc-
ing tumor and the tumor core are identified from T1ce images. Motivated by
this annotation protocol, different modalities are selected for the segmentation
of different brain tumor substructures. Table 1 presents an overview of the used
modalities for different substructures segmentation. Briefly, like annotation pro-
cess by radiologists, we mainly use the Flair and the T2 modalities to segment
the whole tumor and use the T1ce modality to segment the enhancing tumor
and the tumor core.

Table 1. Overview of the used modalities for the segmentation of different brain tumor
substructures.

Substructures Used modalities

Whole tumor Flair and T2

Tumor core T1ce

Enhancing tumor T1ce

2.2 Proposed 3D Lightweight CNN Architecture

Although for 3D volume data segmentation, traditional 3D architectures such as
3D U-Net and FCN, have high memory consumption in the training phase, the
3D context information would be degenerated if changing the inputs as 2D or
2.5D slices to relieve the computational burden. As a trade-off between memory
consumption and 3D context information, a 3D lightweight CNN architecture
(Fig. 2) is proposed for 3D brain tumor segmentation which integrates the dilated
convolution with different dilated rates and residual connections. Table 2 presents
the detailed configurations of the proposed architecture.
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Fig. 2. The proposed 3D lightweight CNN architecture. The number 1, 2, and 4 denote
the corresponding dilated rates.
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Dilated Convolution with Increasing and Decreasing Dilated Rates.
Dilated convolutions have been verified as a very effective structure in deep
neural networks [6,21]. The main idea of dilated convolution is to insert “holes”
among pixels in traditional convolutional kernels to enlarge the respective field.
In order to obtain multi-scale semantic information, we employ different dilation
factors in the proposed architecture. The dilation factors are set to 1, 2, and 4
with the increasing and decreasing sequences which can avoid the gridding effect
of the standard dilated convolution [8,20].

Residual Connections. To train deep CNNs more effectively, residual connec-
tions were first introduced by He et al. [10]. The main idea of residual connections
is to learn residual functions through the use of identity-based skip connections
which ease the flow of information across units. Our proposed lightweight archi-
tecture adds residual connections to each dilated convolutional layer. In addition,
each convolutional layer is associated with a batch normalization layer [11] and
an element-wise parametric rectified linear Unit (prelu) layer [9] to speed up the
convergence of the training process.

Table 2. Configurations of the proposed lightweight CNN architecture. Note that each
“Conv” corresponds the sequence Conv-BN-ReLU and a residual connection is added
to each “Dilated Conv”.

Layers Configurations (kernel size, channel number)

Conv (3 ∗ 3 ∗ 3), 8

Dilated Conv (3 ∗ 3 ∗ 3), 16, dilated factor = 1

Dilated Conv (3 ∗ 3 ∗ 3), 32, dilated factor = 2

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 4

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 4

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 2

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 1

Conv (3 ∗ 3 ∗ 3), 64

Conv (1 ∗ 1 ∗ 1), 64

Conv (1 ∗ 1 ∗ 1), 2 or 3 for binary/triple segmentation, respectively

2.3 Two-Stage Cascaded Framework

Cascaded strategy has been proved to be an effective way for brain tumor sub-
structures segmentation [19] in the BraTS 2017. Inspired by this work, we deal
with the task with a two-stage cascaded framework. Figure 3 presents the whole
pipeline. The lightweight CNN architecture is iteratively used to sequentially
segment brain tumor substructures. In the first stage, the whole tumor is seg-
mented from Flair and T2 modalities. The segmentation results of Flair and
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T2 modalities are merged by simply making an union to generate a bounding
box of the whole tumor region of interest (ROI). Besides, an extension with 5
pixels is applied to the whole tumor ROI bounding box so as to avoid possible
under-segmentation. Specifically, each side of the bounding box is relaxed by 5
pixels. The whole tumor segmentation from the Flair modality is used as the
final whole tumor segmentation result. Besides, we also try to use the union seg-
mentation from Flair and T2 modalities segmentation results as the final whole
tumor segmentation result, but there is no improvement of the accuracy. In the
second stage, the corresponding T1ce images in the ROI are used to train a new
3D lightweight CNN to make a triple prediction for the enhancing tumor and
the tumor core segmentation.

Flair

T2

Lightweight 
CNN

Lightweight 
CNN

Whole Tumor
ROI

T1ce ROI Lightweight 
CNN

WT

ET & TC

Stage 1 Stage 2

Fig. 3. The two-stage cascaded framework for brain tumor substructures segmentation.

3 Experiments and Results

3.1 Preprocessing

The proposed method was evaluated on the Brain Tumor Segmentation Chal-
lenge (BraTS 2018) dataset [2–4]. The training dataset consisted of 210 cases
with high grade glioma (HGG), 75 cases with low grade glioma (LGG) and the
corresponding manual segmentation. Each case had four 3D MR modalities (T1,
T2, Flair, and T1ce).

Table 3. Data preprocessing methods.

Modality Preprocessing methods

Flair z-score, histogram equalization, and scale to [0, 1]

T2 z-score and scale to [0, 1]

T1ce z-score and scale to [0, 1]

To enforce the MR volume data to be more uniform, the following prepro-
cessing strategies (Table 3) were applied to the used modalities. It can be seen
that the Flair modality is added an additional histogram equalization compared
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to the preprocessing methods for the remained modalities. This was because
the intensity distributions of the Flair images vary considerably across different
cases. Figure 4 presents two examples of Flair modalities in the training dataset.
Obviously, the intensity distributions of the two cases still differed remarkably
after the z-score normalization. Therefore, the histogram equalization was fur-
ther applied to make them share similar intensity distribution. For the T2 and
T1ce modalities, however, there were no such significant intensity differences
among different cases, so a simple z-score preprocessing was enough.

(a) Original (b) Z-score (c) Histogram equalization

Fig. 4. Preprocessing results of two Flair images. The first row is the case
named “Brats18 TCIA02 135 1 (78th slice)” and the second row is the case named
“Brats18 TCIA02 283 1 (78th slice)”. After z-score normalization, there is still a great
difference between the two images (the 2nd column). Further, the histogram equaliza-
tion is applied to make them share similar intensity distributions (the 3rd column).

3.2 Implementation Details

The BraTS 2018 training dataset was randomly divided into training data (80%),
validation data (10%), and test data (10%) to find the proper parameters. After
that, all the training data were employed to train the final models which were
used for the official validation and testing dataset.

The proposed networks were implemented in tensorflow [1] and NiftyNet
[7,14]. The input 3D volume data was resized to 64 ∗ 64 ∗ 64 by the first order
spline interpolation. The predicted segmentation was also resized in the same
way to retrieve the original 3D volume. The batch size was set to 2 and the
maximum number of iterations was 10k. The optimizer was the adam with an
initial learning rate 0.001. The loss function was Dice coefficient [16] which can
deal with the data imbalance. A L2 weight decay of 10−5 was used. No external
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data was used and data augmentation included random rotation, random spatial
scaling, and random flipping. The whole training process cost about 30 h on a
desktop with an Intel Core i7 CPU and a NVIDIA 1080Ti GPU.

(a) Flair (b) T1ce (c) Ordinary fusion (d) Complementary fusion

A
xial

Sagittal
C

oronal

Fig. 5. Segmentation results of the brain tumor substructures from the BraTS 2018
validation dataset (named “Brats18 CBICA ALV 1”) by the proposed method (com-
plementary fusion) and its variant (ordinary fusion). Green: edema; red: necrotic
and the non-enhancing tumor core; yellow: enhancing tumor core. The obvious mis-
segmentations of the non-enhancing tumor core are highlighted by white arrows. (Color
figure online)

3.3 Segmentation Results

We test our framework on the BraTS 2018 validation dataset with 66 new cases.
To evaluate whether the proposed method (termed as complementary fusion)
could improve the brain tumor segmentation results, we compare it with the
ordinary strategy which merges four MR modalities as four channels at the input
of the network. The whole pipeline is also a two-stage cascaded way and we refer
to it as ordinary fusion. Except the difference at the input of the network, all
the hyper-parameters of the ordinary fusion are the same with the proposed
complementary fusion strategy during the training process.

Table 4 presents quantitative evaluations of the proposed method (comple-
mentary fusion) and its variant (complementary fusion) on the BraTS 2018
validation dataset. For the ordinary fusion, the Dice scores are 0.709, 0.851,
and 0.751 for enhancing tumor core, whole tumor, and tumor core respectively.
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Table 4. Mean values of Dice and 95th percentile Hausdorff measurements of the
proposed method on the BraTS 2018 Validation dataset. EN, WT, and TC denote
enhancing tumor core, whole tumor and tumor core, respectively. The ordinary fusion
denotes that four modalities are simply merged as four channels at the input of the
network. The complementary fusion denotes that the proposed method which explicitly
explores the complementary information among different modalities.

Dataset Dice ET Dice WT Dice TC Hdff95 ET Hdff95 WT Hdff95 TC

Ordinary fusion 0.709 0.851 0.751 5.65 8.64 13.6

Complementary fusion 0.743 0.872 0.773 4.69 6.12 10.4

For the proposed complementary fusion, an improvement is achieved, and the
Dice scores are 0.743, 0.872, and 0.773 for these substructures respectively.

Figure 5 shows an example for the brain tumor substructures segmentation
from the BraTS 2018 validation dataset. Three views are presented, including
the axial view, the sagittal view, and the coronal view. For the simplicity of visu-
alization, only the Flair and T1ce images are shown, because the two modalities
can clearly display the whole tumor, enhancing tumor, and tumor core. The first
and the second columns present the input images from Flair and T1ce modali-
ties, respectively. We have compared the proposed method with its variant that
employed the ordinary fusion method at the input. The third and the fourth
columns show the ordinary fusion and the complementary fusion segmentation
results, respectively. The green, red, and yellow colors show the edema, tumor
core, and enhancing tumor, respectively. It can be observed that the predic-
tions by the ordinary fusion seem to have an over segmentation (highlighted
by white arrows) of the tumor core. When using the complementary fusion, the
segmentation results are more accurate.

Table 5 presents quantitative evaluations with the BraTS 2018 testing
dataset. It shows the mean values, standard deviations, medians, Dice, and 25
and 75 quantiles of the 95th Hausdorff distance. Compared with the performance
on the validation dataset, the performance on the testing dataset is lower, with
average Dice scores of 0.645, 0.812, and 0.725 for enhancing tumor core, whole

Table 5. Dice and the 95th percentile Hausdorff measure of the proposed method on
the BraTS 2018 Testing dataset. EN, WT, and TC denote enhancing tumor core, whole
tumor and tumor core, respectively.

Dataset Dice ET Dice WT Dice TC Hdff95 ET Hdff95 WT Hdff95 TC

Mean 0.645 0.812 0.725 41.1 10.0 28.6

StdDev 0.300 0.175 0.291 105 15.7 78.8

Median 0.768 0.875 0.855 3.00 5.39 5.20

25quantile 0.541 0.829 0.678 1.73 3.74 2.83

75quantile 0.844 0.910 0.921 10.2 8. 22 13.6
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tumor, and tumor core, respectively. The higher median values show that good
segmentation results are achieved for most cases, and some outliers lead to the
lower average scores. The ranking analysis is reported in [5].

4 Discussion and Conclusion

There are several advantages of the proposed framework. Firstly, the comple-
mentary information among different modalities is explicitly explored to segment
brain tumor substructures which can avoid the interference from other confus-
ing modalities as well as reducing the complexity compared with using all the
modalities as inputs simultaneously. Besides, the proposed 3D lightweight CNN
effectively uses the dilated convolutions to enlarge the receptive fields and to
aggregate the global information. The increasing and decreasing arrangement
of the dilate factors can alleviate the gridding effect caused by the standard
dilated convolutions. The architecture is very compact and computation efficient.
Finally, the cascaded CNNs, which have been proved to be an effective strategy,
can separate the complex multiple class segmentation into simper problems and
reduce false positives by spatial constrains of brain tumor anatomical structures.

In conclusion, we explicitly explore the complementary information among
different modalities according to the clinical annotation protocol. In addition, a
compact 3D lightweight CNN architecture is proposed and the number of param-
eters is only 0.5M . The proposed approach achieves a promising performance
on the BraTS 2018 validation and testing dataset. Experiments with the BraTS
2018 validation dataset show that the complementary fusion strategy helps to
improve the brain tumor segmentation accuracy compared with the ordinary
fusion method.
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Abstract. Precise 3D computerized segmentation of brain tumors remains,
until nowadays, a challenging process due to the variety of the possible shapes,
locations and image intensities of various tumors types. This paper presents a
fully automated and efficient brain tumor segmentation method based on 2D
Deep Convolutional Neural Networks (DNNs) which automatically extracts the
whole tumor and intra-tumor regions, including enhancing tumor, edema and
necrosis, from pre-operative multimodal 3D-MRI. The network architecture was
inspired by U-net and has been modified to increase brain tumor segmentation
performance. Among applied modifications, Weighted Cross Entropy
(WCE) and Generalized Dice Loss (GDL) were employed as a loss function to
address the class imbalance problem in the brain tumor data. The proposed
segmentation system has been tested and evaluated on both, BraTS’2018
training and validation datasets, which include a total of 351 multimodal MRI
volumes of different patients with HGG and LGG tumors representing different
shapes, giving promising and objective results close to manual segmentation
performances obtained by experienced neuro-radiologists. On the challenge
validation dataset, our system achieved a mean enhancing tumor, whole tumor,
and tumor core dice score of 0.783, 0.868 and 0.805 respectively. Other
quantitative and qualitative evaluations are presented and discussed along the
paper.

Keywords: Brain tumor segmentation � 3D-MRI � Machine learning�
Deep learning � Convolutional Neural Networks � U-net�
BraTS’2018 challenge

1 Introduction

Brain tumor segmentation in multimodal Magnetic Resonance Imaging (MRI) is
widely used as a vital process for surgical planning and simulation, treatment planning
prior to radiation therapy, therapy evaluation [1–5], and intra-operative neuro navi-
gation and image neurosurgery [6–8]. However, segmenting brain tumor manually is
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not only a challenging task, but also a time-consuming one, favoring therefore, the
emergence of computerized approaches.

Despite considerable research works and encouraging results in the medical
imaging domain, fast and precise 3D computerized brain tumors segmentation remains
until now a challenging process and a very difficult task to achieve because brain
tumors may appear in different size, shape, location and image intensity [2–5]. Many
recent research adopted deep learning methods [9], specifically Convolutional Neural
Networks (CNNs) [9–12]. CNN shown their effectiveness and were proved successful
to automatically classify the normal and pathological brain MRI scans in the past few
BraTS challenges as well as other semantic and medical segmentation problems.

This paper proposes an automated and efficient segmentation method of whole
tumor and intra-tumor structures, including enhancing tumor, edema and necrosis, in
multimodal 3D-MRI. It is based on 2D Deep Convolutional Neural Networks (DNNs)
using a modified U-net architecture [10]. The proposed DNN model is trained to
segment both High Grade Glioma (HGG) and Lower Grade Glioma (LGG) volumes.

The rest of the paper is organized as follows. First, Sect. 2 presents an overview of
the proposed segmentation method. Experimental results with their evaluations are
given in Sect. 3. Finally, a conclusion and future work are presented in Sect. 4.

2 The Proposed Method

The proposed segmentation system is entirely automated. The brain tumor segmenta-
tion process is based on deep learning more precisely on 2D Convolutional Neural
Networks. It includes the main following steps: pre-processing of the 3D-MRI data,
training using a U-net architecture, and brain tumoral structures prediction.

2.1 Data and Pre-processing

The BraTS’2018 challenge training dataset consists of 210 pre-operative multimodal
MRI scans of subjects with HGG and 75 scans of subjects with LGG, and the
BraTS’2018 challenge validation dataset includes 66 different multimodal 3D-MRI
[13–16]. Images were acquired at 19 different centers using MR scanners from different
vendors and with 3T field strength. They comprise co-registered native (T1) and
contrast-enhanced T1-weighted (T1Gd) MRI, as well as T2-weighted (T2) and T2
Fluid Attenuated Inversion Recovery (FLAIR) MRI. All 3D-MRI of BraTS’2018
dataset have a volume dimension of 240 � 240 � 155. They are distributed, co-
registered to the same anatomical template and interpolated to the same resolution (1
mm3). All MRI volumes have been segmented manually, by one to four raters, and
their annotations were approved by experienced neuro-radiologists. Each tumor was
segmented into edema, necrosis and non-enhancing tumor and active/enhancing tumor.

First, a minimal pre-processing of MRI data is applied, as in [11]. The 1% highest
and lowest intensities were removed, then each modality of MR images was normal-
ized by subtracting the mean and dividing by the standard deviation of the intensities
within the slice. To address the class imbalance problem in the data, data augmentation
technique [17] were employed. This consists in adding new synthetic images by
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performing operations and transformations on data and the corresponding manual
tumors segmentation images obtained by human experts (i.e., ground truth data). The
transformations comprise rotation, translation, and horizontal flipping and mirroring.

2.2 Network Architecture and Training

The CNN used in this study has a similar architecture as that of U-net [10]. Our
network architecture can be seen in Fig. 1. It consists of a contracting path (left side)
and an expanding path (right side). The contracting path consists of 3 pre-activated
residual blocks, as in [18, 19], instead of plain blocks in the original U-net. Each block
has two convolution units each of which comprises a Batch Normalization (BN) layer,
an activation function, called Parametric Rectified Linear Unit (PReLU) [20],instead of
ReLU function used in the original architecture [10], and a convolutional layer, like in
[12], instead of using Maxpooling [10], with Padding = 2, Stride = 1 and a 3 � 3 size
filter. For down sampling, a convolution layer with a 2 � 2 filter and a stride of 2 is
applied. At each down sampling step, the number of feature channels is doubled. The
contracting path is followed by a fourth residual unit that acts as a bridge to connect
both paths. In the same way, the expanding path is built using 3 residual blocks. Prior
to each block, there is an upsampling operation which increases the feature map size by
2, followed by a 2 � 2 convolution and a concatenation with the feature maps cor-
responding to the contracting path. In the last layer of the expanding path, a 1 � 1
convolution with the Softmax activation function is used to map the multi-channel
feature maps to the desired number of classes.

In total, the proposed network model contains 7 residual blocks, 25 convolution
layers, 15 layers of BN and 10159748 parameters to optimize.

The designed network was trained with axial slices extracted from training MRI set,
including HGG and LGG cases, and the corresponding ground truth segmentations.
The goal is to find the network parameters (weights and biases) that minimize a loss
function. In this work, this can be achieved by using Stochastic Gradient Descent
algorithm (SGD) [17], at each iteration SGD updates the parameters towards the
opposite direction of the gradients. In our network model, we used a loss function that
adds Weighted Cross Entropy (WCE) [17] and Generalized Dice (GDL) [21] to address
the class imbalance problem present in brain tumor data. So, the two components of the
loss function are defined as follows:

WCE ¼ � 1
K

P
k

PL

i
Wigik log pikð Þ ð1Þ

GDL ¼ 1� 2
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i
wi
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k
gikpik

PL
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P
k
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where L is the total number of labels, K denotes the batch size. wi represents the weight
assigned to the ith label. As in [21], we set wi to 1P

k
gikð Þ2. pik and gik representing the

value of the (ith, kth) pixel of the segmented binary image and of the binary ground
truth image, respectively.
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Fig. 1. Architecture of the proposed Deep Convolutional Neural Network.
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2.3 Brain Tumoral Structures Prediction

After network training, prediction may be performed. This step consists to provide the
network with the four MRI modalities of an unsegmented volume that it has never
processed or encountered before, and it must be able to return a segmented image.

3 Experimental Results and Discussion

In this study, we have tested and evaluated our segmentation system on pre-operative
multimodal MRI scans of both the training/testing and the validation datasets of the
BraTS’2018 challenge [22]. The results of automatically segmented tumors, denoted by
A, can be compared with manually segmented tumors by human experts, denoted by B,
which are considered as ground truth for evaluation. The results presented in subse-
quent sections, were obtained during the BraTS’2018 challenge, for training and val-
idation [22]. The top 63 approaches are further compared in terms of results (Dice,
Sensitivity and Specificity) and one surface measure based on the Hausdorff distance
(HD), in [23] on 191 cases. These measures allow to assess the segmentation results
accuracy, as well as measuring the similarity between the segmentations A and B [2,
24]. The Dice metric is computed as a performance metric. It measures the similarity
between two volumes A and B, corresponding to the output segmentation of the model
and clinical ground truth annotations, respectively. The Sensitivity metric measures the
proportion of positive voxels of the real brain tumor that are correctly segmented as
such, while Specificity metric indicates how well the true negatives are predicted.
Employing Sensitivity and Specificity can provide a good assessment of the segmen-
tation result. The HD metric indicates the segmentation quality at the tumor’s border by
evaluating the greatest distance between the two segmentation surfaces A and B, and is
independent of the tumor size.

3.1 Performance on 20% of BraTS’2018 Training Dataset (Testing Set)

Preliminary segmentation results for the 285 3D-MRI of the BraTS’2018 training data
set have been obtained using 80% of this data set (i.e., 228 subjects) for training and the
remaining 20% (i.e., 57 subjects) for validation purposes. Results obtained by our
automated system for 10 sample cases are shown in Figs. 2 and 3. Figure 2 shows
segmentation results from 5 multimodal MRI where HGG tumors are present and
Fig. 3 shows other segmentation results from other 5 MRI with LGG tumors. In these
figures, each row represents one clinical case. In the first four columns from left to
right, images show one axial slice of MRI acquired in Flair, T1, T1C and T2 modality,
respectively, used as input channels to our CNN model. In the fifth and the sixth
columns, images show the ground truth (GT) and the prediction labels respectively,
where we can distinguish intra-tumoral regions by color-code: enhancing tumor (yel-
low), peritumoral edema (green) and necrotic and non-enhancing tumor (red). As it can
be seen, tumors in the brain MRI of the 10 cases vary in size, shape, position and
intensity. By visual inspection, the proposed method usually generates segmentations
(Prediction) sensibly similar to the ones obtained by the experts (GT).
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Fig. 2. Intra-tumoral structures segmentation results from 5 multimodal 3D-MRI with HGG of
BraTS’2018 training dataset corresponding to 5 different subjects. (Color figure online)
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Fig. 3. Intra-tumoral structures segmentation results from 5 other multimodal 3D-MRI with
LGG of BraTS’2018 training dataset corresponding to 5 different subjects. (Color figure online)
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A quantitative evaluation of segmentation results of Enhancing Tumor (ET), Whole
Tumor (WT) and Tumor Core (TC) using the four previously mentioned metrics is
given in Tables 1 and 2. Mean, standard deviation, median and 25th and 75th per-
centile are given for Dice and Sensitivity metrics in Table 1 and for Specificity and
Hausdorff distance in Table 2. Values presented in Table 1 show high performance on
the Dice metric for WT region, but lower performance for ET and TC regions.
Moreover, the proposed method showed good performances for the segmentation of the
three intra-tumoral regions. However, the effectiveness, of the approach, is high-lighted
in the case of HGG tumors, when compared with the LGG ones.

3.2 Performance on BraTS’2018 Validation Dataset

For our participation to BraTS’2018 competition, 100% of the training, including the
previous testing dataset (i.e., 285 subjects) is used for training. The performance on
BraTS’2018 validation dataset, which is composed of 66 subjects, is diffused in the
challenge leaderboard Web site1 and presented with more statistics in Tables 3, 4,
Figs. 4 and 5. In this context, we can compare the obtained segmentation results with
those of other participants. The method achieved a mean ET, WT, and TC dice score of
0.783, 0.868 and 0.805 respectively. These scores are close to those obtained by the top

Table 1. Quantitative evaluation of segmentation results on 20% of BraTS’2018 training dataset
(57 MRI scans) using Dice and Sensitivity metrics.

Dice Sensitivity

ET WT TC ET WT TC

Mean 0.717 0.867 0.798 0.778 0.907 0.84
Std. Dev. 0.275 0.078 0.226 0.3 0.107 0.223
Median 0.831 0.887 0.889 0.912 0.943 0.927
25 quantile 0.726 0.839 0.808 0.777 0.896 0.847
75 quantile 0.859 0.926 0.935 0.951 0.974 0.961

Table 2. Quantitative evaluation of segmentation results on 20% of BraTS’2018 training dataset
(57 MRI scans) using Specificity and Hausdorff distance metrics.

Specificity Hausdorff95

ET WT ET WT ET WT

Mean 0.999 0.998 0.999 4.742 8.706 6.4
Std. Dev. 0.001 0.001 0.002 2.079 2.822 3.685
Median 1 0.999 1 4.123 8.062 5.099
25 quantile 0.999 0.998 0.999 3 6.442 3.871
75 quantile 1 0.999 1 6.633 10.951 8.303

1 https://www.cbica.upenn.edu/BraTS18/lboardValidation.html.

44 A. Kermi et al.

https://www.cbica.upenn.edu/BraTS18/lboardValidation.html


performing methods. Also, an average HD scores of 3.728, 8.127 and 9.84 for ET, WT,
and TC, respectively were obtained. In addition, it was observed that our DNN model
maintains similar WT scores on both, 20% of BraTS’2018 training/testing set used for
validation and the final validation dataset proposed for the competition purposes.
However, a slight increase in performance on the validation dataset was observed in the
ET and TC compartments. It should be noted that this performance was not obtained by
overfitting the validation data (i.e., our DNN model has not previously trained on MRI
volumes of BraTS’2018 validation dataset).

This performance can be explained by the fact that the number of learned cases
(training dataset) used later for the segmentation of the validation dataset is larger than
the one used for the BraTS’2018 segmentation on the training/testing dataset. This
represents 285 and 228 cases for both trainings respectively. It is also possible that the
slight improvements obtained on the validation dataset, are due to the fact that this
latter contains more MRI with HGG tumors than MRI with LGG tumors. Indeed, the
segmentation efficiency obtained using the proposed network, is more evident on HGG
volumes when compared to LGG ones.

Boxplots showing the dispersion of Dice and Sensitivity scores are represented in
Fig. 4 and boxplots of the dispersion of Specificity and HD scores are represented in
Fig. 5. In these figures, boxplots show quartile ranges of the scores; whiskers and dots
‘●’ indicate outliers; and ‘x’ indicates the mean score.

Table 3. Quantitative evaluation of segmentation results on BraTS’2018 validation dataset (66
MRI scans) by using Dice and Sensitivity metrics.

Dice Sensitivity

ET WT TC ET WT TC

Mean 0.783 0.868 0.805 0.826 0.895 0.807
Std. Dev. 0.216 0.101 0.199 0.241 0.149 0.222
Median 0.846 0.898 0.891 0.901 0.955 0.895
25 quantile 0.769 0.855 0.756 0.82 0.901 0.71
75 quantile 0.893 0.919 0.928 0.969 0.971 0.965

Table 4. Quantitative evaluation of segmentation results on BraTS’2018 validation dataset (66
MRI scans) by using Specificity and Hausdorff distance metrics.

Specificity Hausdorff95

ET WT ET WT ET WT

Mean 0.997 0.991 0.997 3.728 8.127 9.84
Std. Dev. 0.004 0.007 0.003 4.471 10.426 15.385
Median 0.998 0.993 0.998 2.236 4.243 5.431
25 quantile 0.997 0.988 0.997 1.637 3 2.871
75 quantile 0.999 0.996 0.999 3.317 7.778 10.728
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4 Conclusion and Future Work

In this paper, a fully automatic and accurate method for segmentation of whole brain
tumor and intra-tumoral regions using a 2D deep convolutional network based on a
well-known architecture in medical imaging called “U-net” is proposed. The con-
structed DNN model was trained to segment both HGG and LGG volumes.

The proposed method was tested and evaluated quantitatively on both BraTS’2018
training and challenge validation datasets. The total learning computation time of the
285 multimodal MRI volumes of BraTS’2018 training dataset is 185 h on a Cluster
machine with Intel Xeon E5-2650 CPU@ 2.00 GHz (64 GB) and NVIDIA Quadro
4000–448 Core CUDA (2 GB) GPU. The average segmentation time of a brain tumor
and its components from a given MRI volume is about 62 s on the same GPU. The
different tests showed that the segmentation results were very satisfactory, and the
evaluation measures confirm that our results are very similar to those manually
obtained by the experts, although the proposed method can be further improved.

Fig. 4. Dispersion of Dice and Sensitivity scores for results segmentation of ET, WT, and TC in
multimodal MRI scans of the 66 subjects of BraTS’2018 validation dataset.

Fig. 5. Dispersion of Specificity and Hausdorff distance scores for results segmentation of ET,
WT, and TC in multimodal MRI scans of the 66 subjects of BraTS’2018 validation dataset.
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As future work, a more powerful GPU to further accelerate learning phase of DNN
is planned. Thus, a larger number of CNN topologies as well other data augmentation
methods may be tested. Also, other interesting perspective consists to use ensemble
learning methods, like Stacking and Blending, to improve segmentation performance in
tumor core and active tumor regions. Finally, a future work possibility may focus on
refining the segmentation results by reducing the false-positive rate using post-
processing techniques, such as: applying a conditional random field (CRF) and
removing small connected components.
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Abstract. In this work, we propose a novel cascaded V-Nets method to seg-
ment brain tumor substructures in multimodal brain magnetic resonance imaging
(MRI). Although V-Net has been successfully used in many segmentation tasks,
we demonstrate that its performance could be further enhanced by using a
cascaded structure and ensemble strategy. Briefly, our baseline V-Net consists of
four levels with encoding and decoding paths and intra- and inter-path skip
connections. Focal loss is chosen to improve performance on hard samples as
well as balance the positive and negative samples. We further propose three
preprocessing pipelines for multimodal MRI images to train different models.
By ensembling the segmentation probability maps obtained from these models,
segmentation result is further improved. In other hand, we propose to segment
the whole tumor first, and then divide it into tumor necrosis, edema, and
enhancing tumor. Experimental results on BraTS 2018 online validation set
achieve average Dice scores of 0.9048, 0.8364 and 0.7748 for whole tumor,
tumor core and enhancing tumor, respectively. The corresponding values for
BraTS 2018 online testing set are 0.8761, 0.7953 and 0.7364, respectively. We
further make a prediction of patient overall survival by ensembling multiple
classifiers for long, mid and short groups, and achieve accuracy of 0.519, mean
square error of 367239 and Spearman correlation coefficient of 0.168.

Keywords: Deep learning � Brain tumor � Segmentation � V-Net

1 Introduction

Gliomas are the most common brain tumors and comprise about 30% of all brain
tumors. Gliomas occur in the glial cells of the brain or the spine [1]. They can be
further categorized into low-grade gliomas (LGG) and high-grade gliomas (HGG) ac-
cording to their pathologic evaluation. LGG are well-differentiated and tend to exhibit
benign tendencies and portend a better prognosis for the patients. HGG are undiffer-
entiated and tend to exhibit malignant and usually lead to a worse prognosis. With the
development of the Magnetic Resonance Imaging (MRI), multimodal MRI plays an
important role in disease diagnosis. Different MRI modalities are developed sensitive to
different tissues. For example, T2-weighted (T2) and T2 Fluid Attenuation Inversion
Recovery (FLAIR) are sensitive to peritumoral edema, and post-contrast T1-weighted
(T1Gd) is sensitive to necrotic core and enhancing tumor core. Thus, they can provide
complementary information about gliomas.
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Segmentation of brain tumor is a prerequisite while essential task in disease
diagnosis, surgical planning and prognosis [2]. Automatic segmentation provides
quantitative information that is more accurate and has better reproducibility than
conventional qualitative image review. Moreover, the following task of brain tumor
classification heavily relies on the results of brain tumor segmentation. Automatic
segmentation is considered as a powered engine and empower other intelligent medical
application. However, the segmentation of brain tumor in multimodal MRI scans is one
of the most challenging tasks in medical imaging analysis due to their highly hetero-
geneous appearance, and variable localization, shape and size.

As the rapid development of deep leaning techniques, state-of-the-art performance
on brain tumor segmentation have been achieved. For example, in [3], an end-to-end
training using fully convolutional network (FCN) showed a satisfactory performance in
the localization of the tumor, and patch-wise convolutional neural network (CNN) was
used to segment the intra-tumor structure. In [4], a cascaded anisotropic CNN was
designed to segment three sub-regions with three Nets, and the segmentation result
from previous net was used as receptive field in the next net.

Inspired by the good performance of V-Net in segmentation tasks and the cascaded
strategy, we propose a cascaded V-Nets method to segment brain tumor into three
substructures and background. In particular, the cascaded V-Nets not only take
advantage of residual connection but also use the extra coarse localization and
ensemble of multiple models to boost the performance.

2 Method

2.1 Dataset and Preprocessing

The data used in experiments come from BraTS 2018 training set and validation set [5–
8]. The training set includes totally 210 HGG patients and 75 LGG patients. The
validation set includes 66 patients. Each patient has five MRI modalities including T1-
weighted (T1), T2, T1Gd, FLAIR, and a ground truth label of tumor substructures. We
use 80% of the training data as our training set, other 20% of the training data as our
local testing set. All data used in the experiments are preprocessed with special
designed procedures. A flow chart of the proposed preprocessing procedures is shown
in Fig. 1, as follows:

(1) Apply bias field correction N4 [9] to T1 and T1Gd images, normalize each
modality using histogram matching with respect to a MNI template image, and
rescale the images intensity value into range of −1 to 1.

(2) Apply bias field correction N4 to all modalities, compute the standardized z-
scores for each image and rescale 0–99.9 percentile intensity values into range of
−1 to 1.

(3) Follow the first method, and further apply affine alignment to co-register each
image to the MNI template image.
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2.2 V-Net Architecture

V-Net was initially proposed to segment prostate by training an end-to-end CNN on
MRI [10]. The architecture of our V-Net is shown in Fig. 2. The left side of V-Net
reduces the size of the input by down-sampling, and the right side of V-Net recovers
the semantic segmentation image that has the same size with input images by applying
de-convolutions. The detailed parameters about V-Net is shown in Table 1. By means
of introducing residual function and skip connection, V-Net has better segmentation
performance compared with classical CNN. By means of introducing the 3D kernel
with a size of 1 * 1 * 1, the numbers of parameters in V-Net is decreased and the
memory consumption is greatly reduced.

Fig. 1. The flow chart of the preprocessing procedures.
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2.3 Proposed Cascaded V-Nets Framework

Although V-Net has demonstrated promising performances in segmentation tasks, it
could be further improved if incorporated with extra information, such as coarse
localization. Therefore, we propose a cascaded V-Nets method for tumor segmentation.
Briefly, we (1) use one V-Net for the brain whole tumor segmentation; (2) use a second
V-Net to further divide the tumor region into three substructures, e.g., tumor necrosis,
edema, and enhancing tumor. Note that the coarse segmentation of whole tumor in the
first V-Net is also used as receptive field to boost the performance. Detailed steps are as
follows.

The proposed framework is shown in Fig. 3. There are two networks to segment
substructures of brain tumors sequentially. The first network (V-Net 1) includes models
1–3, designed to segment the whole tumor. These models are trained by three kinds of
preprocessed data mentioned in part of 2.1, respectively. V-Net 1 uses four modalities
MR images as inputs, and outputs the mask of whole tumor (WT). The second network
(V-Net 2) includes models 4-5, designed to segment the brain tumor into three sub-
structures: tumor necrosis, edema, and enhancing tumor. These models are trained by
the first two kinds of preprocessed data mentioned in part of 2.1, respectively. V-Net 2
also uses four modalities MR images as inputs, and outputs the segmented mask with
three labels. Note that the inputs of V-Net 2 have been processed by using the mask of
WT as region of interest (ROI). In other words, the areas out of the ROI are set as
background. Finally, we combine the segmentation results of whole tumor obtained by
V-Net 1 and the segmentation results of tumor core (TC, includes tumor necrosis and
enhancing tumor) obtained by V-Net 2 to achieve more accurate results about the three

Fig. 2. The architecture of the used V-Net.
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substructures of brain tumor. In short, the cascaded V-Nets take advantage of seg-
menting the brain tumor and three substructures sequentially, and ensemble of multiple
models to boost the performance and achieve more accurate segmentation results.

Table 1. The detailed parameters of the used V-Net, as shown in Fig. 2. The symbol ‘-’ means
the output dimensions are the same with input dimensions.

Blocks Sub-blocks or layers Input dimensions Output
dimensions

Input Block Conv(k = 3, p = 1, s = 1) + BN + ReLU 96 * 96 * 96 * 4 96 * 96 * 96 * 16

Down
Block 1

Conv(k = 2, p = 0, s = 2) + BN + ReLU 96 * 96 * 96 * 16 48 * 48 * 48 * 32

Residual
Block

Conv(k = 3, p = 1,
s = 1) + BN

48 * 48 * 48 * 32 -

(input + output) + ReLU 48 * 48 * 48 * 32 -

Down
Block 2

Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 * 48 * 48 * 32 24 * 24 * 24 * 64

Residual
Block

Conv Block * 2 24 * 24 * 24 * 64 -

(input + output) + ReLU 24 * 24 * 24 * 64 -

Down
Block 3

Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 * 24 * 24 * 64 12 * 12 * 12 * 128

Residual
Block

Conv Block * 3 12 * 12 * 12 * 128 -

(input + output) + ReLU 12 * 12 * 12 * 128 -

Down
Block 4

Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 * 12 * 12 * 128 6 * 6 * 6 * 256

Residual
Block

Conv Block * 3 6 * 6 * 6 * 256 -

(input + output) + ReLU 6 * 6 * 6 * 256 -

Up Block 1 Conv(k = 2, p = 0, s = 2) + BN + ReLU 6 * 6 * 6 * 256 12 * 12 * 12 * 128

Residual
Block

Cat(output, skip) 12 * 12 * 12 * 128 12 * 12 * 12 * 256

Conv Block * 3 12 * 12 * 12 * 256 -

(input + output) + ReLU 12 * 12 * 12 * 256 -

Up Block 2 Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 * 12 * 12 * 256 24 * 24 * 24 * 64

Residual
Block

Cat(output + skip) 24 * 24 * 24 * 64 24 * 24 * 24 * 128

Conv Block * 3 24 * 24 * 24 * 128 -

(input + output) + ReLU 24 * 24 * 24 * 128 -

Up Block 3 Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 * 24 * 24 * 128 48 * 48 * 48 * 32

Residual
Block

Cat(output + skip) 48 * 48 * 48 * 32 48 * 48 * 48 * 64

Conv(k = 3, p = 1,
s = 1) + BN + ReLU

48 * 48 * 48 * 64 -

Conv(k = 3, p = 1,
s = 1) + BN

48 * 48 * 48 * 64 -

(input + output) + ReLU 48 * 48 * 48 * 64 -

Up Block 4 Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 * 48 * 48 * 64 96 * 96 * 96 * 16

Residual
Block

Cat(output + skip) 96 * 96 * 96 * 16 96 * 96 * 96 * 32

Conv(k = 3, p = 1, s = 1) + BN 96 * 96 * 96 * 32 -

(input + output) + ReLU 96 * 96 * 96 * 32 -

Out Block Conv(k = 1, p = 0, s = 1) + BN + ReLU 96 * 96 * 96 * 32 96 * 96 * 96 * 4

Softmax 96 * 96 * 96 * 4 96 * 96 * 96 * 1

Note: Each Conv sub-block contains three convolution layers: Conv1(k = 1, p = 0, s = 1), Conv2(k = 3, p = 1,
s = 1), and Conv3(k = 1, p = 0, s = 1). k, kernel size; p, padding; s, stride.

Multimodal Brain Tumor Segmentation Using Cascaded V-Nets 53



2.4 Ensemble Strategy

Our ensemble strategy is simple but efficient. It works by averaging the probability
maps obtained from different models. We use ensemble strategy twice in the two-step
segmentation of the brain tumor substructures. For example, in V-Net 1, the probability
maps of WT obtained from Model 1, Model 2, and Model 3 are averaged to get the
final probability map of WT. In V-Net 2, the probability maps of tumor necrosis,
edema, and enhancing tumor obtained from Model 4 and Model 5 are averaged to get
final probability maps of brain tumor substructures, respectively.

2.5 Network Implementation

Our cascaded V-Nets are implemented in the deep learning framework PyTorch. In our
network, we initialize weights with kaiming initialization [11], and use focal loss [12]
illustrated in formula (1) as loss function. Adaptive Moment Estimation (Adam) [13] is
used as optimizer with learning rate of 0.001, and batch size of 8. Experiments are
performed with a NVIDIA Titan Xp 12 GB GPU.

Focal Loss ptð Þ ¼ �a 1� ptð Þrlog ptð Þ ð1Þ

where, a denotes the weight to balance the importance of positive/negative samples,
and r denotes the factor to increase the importance of correcting misclassified samples.
pt is the probability of the ground truth.

Fig. 3. The proposed framework of cascaded V-Nets for brain tumor segmentation.
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In order to reduce the memory consumption in the training process, 3D patches
with a size of 96 * 96 * 96 are used. And the center of the patch is confined to the
bounding box of the brain tumor. Therefore, every patch used in training process
contains both tumor and background. The training efficiency of the network has been
greatly improved.

2.6 Post-processing

The predicted segmentation results are post-processed using connected component
analysis. We consider that the isolated segmentation labels with small size are prone to
artifacts and thus remove them. After the V-Net 1, the components with total voxel
number below a threshold (T = 1000) are discarded and these over a threshold
(T = 15000) are retained in the binary whole tumor map. For others, their average
segmentation probabilities are calculated, and will be retained if over 0.85. After the V-
Net 2, masks of different labels are used in the connected component analysis.
Moreover, if all the connected components are less than 1000 voxels, we will retain the
largest connected component.

2.7 Prediction of Patient Overall Survival

Overall survival (OS) is a direct measure of clinical benefit to a patient. Generally,
brain tumor patients could be classified into long‐survivors (e.g., >15 months), mid‐
survivors (e.g., between 10 and 15 months), and short‐survivors (e.g., <10 months).
From the multimodal MRI data, we propose to use our tumor segmentations and
generate imaging markers through Radiomics method to predict the patient OS groups.

From the training data, we extract 40 hand-crafted features and 945 radiomics
features in total. The detailed extracted features are shown in Table 2. All features are
normalized into range of 0 to 1. Pearson correlation coefficient is used for feature
selection. We use support vector machine (SVM), multilayer perceptrons (MLP),
XGBoost, decision tree classifier, linear discriminant analysis (LDA) and random forest
(RF) as our classifiers in an ensemble strategy. F1-score is used as the evaluation
standard. The final result is determined by the vote on all classification results. In order
to reduce the bias, a ten-fold cross-validation is used. For the validation and testing
data, these selected features are extracted and prediction is made using the above
model.
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3 Experimental Results

3.1 Segmentation Results on Local Testing Set

We use 20% of all data as our local testing set, which includes 42 HGG patients and 15
LGG patients. Representative segmentation results are shown in Fig. 4. The green
shows the edema, the red shows the tumor necrosis, and the yellow shows the
enhancing tumor. In order to evaluate the preliminary experimental results, we cal-
culate the average Dice scores, sensitivity and specificity for whole tumor, tumor core
and enhancing tumor, respectively. The results are shown in Table 3. The segmentation
of whole tumor achieves best results with average Dice score of 0.8505.

3.2 Segmentation Results on MICCAI BraTS 2018 Validation Set
of 66 Subjects

The segmentation results on BraTS 2018 online validation set achieve average Dice
scores of 0.9048, 0.8364, 0.7768 for whole tumor, tumor core and enhancing tumor,
respectively. That performance is slightly better than that in local testing set, while the
whole tumor still has best results and enhancing tumor is the most challenging one. The
details are shown in Table 4.

Table 2. Selected features in the training data for the prediction of patient overall survival.

Features Number of
features

Age 1
Volume of whole brain 1
Volume of whole tumor 1
Volumes of three tumor substructures 3
Ratio of the whole tumor in whole brain 1
Ratios of three tumor substructures in whole tumor 3
Extent of lesion in x, y, z directions 3
Center coordinates of the whole tumor 3
Means and variances of three tumor substructures in four MR modalities 24
First order statistics features of three tumor substructures 411
Shape-based features of three tumor substructures 78
Gray level cooccurence matrix features of three tumor substructures 180
Gray level run length matrix features of three tumor substructures 96
Neigbouring gray tone difference matrix features of three tumor
substructures

96

Gray level dependence matrix features of three tumor substructures 84
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3.3 Segmentation and Prediction Results on MICCAI BraTS 2018
Testing Set of 191 Subjects

The segmentation results on BraTS 2018 online testing set achieve average Dice scores
of 0.8761, 0.7953, 0.7364 for whole tumor, tumor core and enhancing tumor,
respectively. Compared with the Dice scores on MICCAI BraTS 2018 validation set,
the numbers are slightly dropped. The details are shown in Table 5. The prediction of
patient OS on BraTS 2018 testing set achieve accuracy of 0.519 and mean square error
(MSE) of 367239. The details are shown in Table 6. The BraTS 2018 ranking of all
participating teams in the testing data for both tasks has been summarized in [14],
where our team listed as “LADYHR” and ranked 18 out of 61 in the segmentation task
and 7 out of 26 in the prediction task.

Fig. 4. The comparison of segmentation results and ground truth on four representative cases
from local testing set. (a) The segmentation results of brain tumor. (b) The ground truth of the
brain tumor. (Color figure online)

Table 3. Dice, Sensitivity and Specificity measurements of the proposed method on local
testing set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8505 ± 0.0972 0.7842 ± 0.1919 0.7426 ± 0.2080
Sensitivity mean ± SD 0.9180 ± 0.1091 0.7596 ± 0.2199 0.7174 ± 0.2337
Specificity mean ± SD 0.9981 ± 0.0012 0.9996 ± 0.0008 0.9997 ± 0.0003
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4 Discussion

In this paper, we propose a cascaded V-Nets framework to segment brain tumor. The
V-Nets are trained only using provided data, data augmentation and a focal loss for-
mulation. We achieve state-of-the-art results on BraTS 2018 validation set. The
experimental results on BraTS 2018 online validation set achieve average Dice scores
of 0.9048, 0.8364, 0.7768 for whole tumor, tumor core and enhancing tumor respec-
tively. The corresponding values for BraTS 2018 online testing set are 0.8761, 0.7953
and 0.7364, respectively. Generally, all the three average Dice scores degenerate in
testing set compared with validation set. Three are two possible reasons: (1) the testing
set includes more cases than validation set, and (2) the thresholds in post-processing
maybe more suitable for validation set. Therefore, our future work is to make the
models to be more robust.

There are several benefits of using a cascaded framework. First, the cascaded
framework breaks down a difficult segmentation task into two easier subtasks.
Therefore, a simple network V-Net can have excellent performance. In fact, in our
experiment, V-Net does have better performance when segment the tumor substruc-
tures step by step than segment background and all the three tumor substructures

Table 4. Dice, Sensitivity, Specificity and Hausdorff95 measurements of the proposed method
on BraTS 2018 validation set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.9048 ± 0.0648 0.8364 ± 0.1609 0.7768 ± 0.2355
Sensitivity mean ± SD 0.9146 ± 0.0949 0.8453 ± 0.1781 0.8166 ± 0.2382
Specificity mean ± SD 0.9945 ± 0.0041 0.9971 ± 0.0041 0.9977 ± 0.0032
Hausdorff95 mean ± SD (mm) 5.1759 ± 7.3622 6.2780 ± 7.7681 3.5123 ± 4.5407

Table 5. Dice and Hausdorff95 measurements of the proposed method on BraTS 2018 testing
set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8761 ± 0.1247 0.7953 ± 0.2543 0.7364 ± 0.2592
Hausdorff95 mean ± SD (mm) 7.0514 ± 11.5935 6.7262 ± 11.8852 3.9217 ± 6.1934

Table 6. The prediction of patient OS on BraTS 2018 testing set.

Scores

Accuracy 0.519
Mean squared error (MSE) 367239.974
Median square error (Median SE) 38416
Standard deviation square error 945593.877
Spearman R 0.168
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together. Second, the segmentation results of V-Net 1 helps to reduce the receptive field
from whole brain to only whole tumor. Thus, some false positive results can be avoid.

In addition to cascaded framework, ensemble strategy contributes to the segmen-
tation performance. In our cascaded framework, V-Net 1 includes models 1–3 and V-
Net 2 includes models 4–5. Every model uses the same network structure V-Net.
However, the training data is preprocessed with different pipelines mentioned in part of
2.1. According to our experimental experience, the Dice scores will greatly decrease
due to the false positive results. While we did try several ways to change the pre-
processing procedures for the training data, or change the model used in the seg-
mentation task, the false positive results always appear. Interestingly, the false positive
results appear in different areas in terms of different models. Therefore, ensemble
strategy works by averaging probability maps obtained from different models.

Moreover, we find three interesting points in the experiment. Firstly, for multi-
modal MR images, the combination of data preprocessing procedures is important. In
other words, different MRI modalities should be preprocessed independently. For
example, in our first preprocessing pipeline, bias field correction only applied to T1 and
T1Gd images. The reason is that the histogram matching approach may remove the
high intensity information of tumor structure that has negative impact to the seg-
mentation task. Secondly, we use three kinds of preprocessing methods to process the
training and validation data, and compared their segmentation results. As a result, there
is almost no difference between preprocessing methods in the three average Dice scores
for whole tumor, tumor core and enhancing tumor, respectively. However, after the
ensemble of the multiple models, the three average Dice scores all rose at least 2%.
This suggests that data preprocessing methods is not the most important factor for the
segmentation performance, while different data preprocessing methods are comple-
mentary and their combination can boost segmentation performance. Thirdly, the post-
processing method is also important that it could affect the average Dices scores
largely. If the threshold is too big, some of small clusters will be discarded improperly.
If the threshold is too small, some false positive results will be retained. In order to
have a better performance, we test a range of thresholds and choose the most suitable
two thresholds as the upper and the lower bounds. For the components between upper
and lower bounds, their average segmentation probabilities are calculated as a second
criterion. Of course, these thresholds may not be suitable for all cases.

5 Conclusions

In conclusion, we propose a cascaded V-Nets framework to segment brain tumor into
three substructures of brain tumor and background. The experimental results on BraTS
2018 online validation set achieve average Dice scores of 0.9048, 0.8364, 0.7768 for
whole tumor, tumor core and enhancing tumor, respectively. The corresponding values
for BraTS 2018 online testing set are 0.8761, 0.7953 and 0.7364, respectively. The
state-of-the-art results demonstrate that V-Net is a promising network for 3D medical
imaging segmentation tasks, and the cascaded framework and ensemble strategy are
efficient for boosting the segmentation performance.

Multimodal Brain Tumor Segmentation Using Cascaded V-Nets 59



References

1. Mamelak, A.N., Jacoby, D.B.: Targeted delivery of antitumoral therapy to glioma and other
malignancies with synthetic chlorotoxin (TM-601). Expert Opin. Drug Deliv. 4, 175–186
(2007)

2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert
segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

3. Cui, S., Mao, L., Jiang, J., Liu, C., Xiong, S.: Automatic semantic segmentation of brain
gliomas from MRI images using a deep cascaded neural network. J. Healthc. Eng. 2018,
4940593 (2018)

4. Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.): BrainLes 2017. LNCS, vol.
10670. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9

5. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS).
IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

6. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert
segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)

7. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the
TCGA-GBM collection. The Cancer Imaging Archive (2017)

8. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the
TCGA-LGG collection. The Cancer Imaging Archive (2017)

9. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29,
1310–1320 (2010)

10. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for
volumetric medical image segmentation. In: Fourth International Conference on 3D Vision
(3DV), Stanford, CA, USA, pp. 565–571 (2016)

11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification. In: 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, pp, 1026–1034 (2015)

12. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In:
2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp, 2999–
3007 (2018)

13. Kingma, D., Ba, J.: Adam, a method for stochastic optimization. In: International
Conference on Learning Representations (ICLR), vol. 5 (2014)

14. Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor
Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS
Challenge. arXiv preprint arXiv:1811.02629 (2018)

60 R. Hua et al.

http://dx.doi.org/10.1007/978-3-319-75238-9
http://arxiv.org/abs/1811.02629


Automatic Brain Tumor Segmentation
Using Convolutional Neural Networks

with Test-Time Augmentation
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Abstract. Automatic brain tumor segmentation plays an important
role for diagnosis, surgical planning and treatment assessment of brain
tumors. Deep convolutional neural networks (CNNs) have been widely
used for this task. Due to the relatively small data set for training, data
augmentation at training time has been commonly used for better per-
formance of CNNs. Recent works also demonstrated the usefulness of
data augmentation at test time, in addition to training time, for achiev-
ing more robust predictions. We investigate how test-time augmentation
can improve CNNs’ performance for brain tumor segmentation. We used
different underpinning network structures and augmented the image by
3D rotation, flipping, scaling and adding random noise at both train-
ing and test time. Experiments with BraTS 2018 training and validation
set show that test-time augmentation can achieve higher segmentation
accuracy and obtain uncertainty estimation of the segmentation results.

Keywords: Brain tumor · Convolutional neural network ·
Segmentation · Data augmentation

1 Introduction

Gliomas are the most common primary brain tumors that start in the glial cells
of the brain in adults. They can be categorized according to their grade: Low-
Grade Gliomas (LGG) exhibit benign tendencies and portend a better prognosis
for the patient, while High-Grade Gliomas (HGG) are malignant and lead to
a worse prognosis [22]. Medical imaging of brain tumors plays an important
role for evaluating the progression of the disease before and after treatment.
Currently the most widely used imaging modality for brain tumors is Magnetic
Resonance Imaging (MRI) with different sequences, such as T1-weighted, con-
trast enhanced T1-weighted (T1ce), T2-weighted and Fluid Attenuation Inver-
sion Recovery (FLAIR) images. These sequences provide complementary infor-
mation for different subregions of brain tumors [24]. For example, the tumor
c© Springer Nature Switzerland AG 2019
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region and peritumoral edema can be highlighted in FLAIR and T2 images, and
the tumor core region without peritumoral edema is more visible in T1 and T1ce
images.

Automatic segmentation of brain tumors and substructures from medical
images has a potential for accurate and reproducible delineation of the tumors,
which can help more efficient and better diagnosis, surgical planning and treat-
ment assessment of brain tumors [5,24]. However, accurate automatic segmen-
tation of the brain tumors is a challenging task for several reasons. First, the
boundary between brain tumor and normal tissues is often ambiguous due to
the smooth intensity gradients, partial volume effects, and bias field artifacts.
Second, the brain tumors vary largely across patients in terms of size, shape,
and localization. This prohibits the use of strong priors on shape and localiza-
tion that are commonly used for robust segmentation of many other anatomical
structures, such as the heart [12] and the liver [30].

In recent years, deep Convolutional Neural Networks (CNNs) have achieved
the state-of-the-art performance for multi-modal brain tumor segmentation [16,
28]. As a type of machine learning approach, they require a set of annotated train-
ing images for learning. Compared with traditional machine learning approaches
they do not rely on hand-crafted features and can learn features automatically.
In [13], a CNN was proposed to exploit both local and global features for robust
brain tumor segmentation. It replaces the final fully connected layer used in tra-
ditional CNNs with a convolutional implementation that obtains 40 fold speed
up. This approach employs a two-phase training procedure and a cascade archi-
tecture to tackle difficulties related to the imbalance of tumor labels. Despite the
better performance than traditional methods, this approach works on individual
2D slices without considering 3D contextual information. DeepMedic [17] uses a
dual pathway 3D CNN with 11 layers to make use of multi-scale features for brain
tumor segmentation. For post-processing, it uses a 3D fully connected Condi-
tional Random Field (CRF) [20] that helps to remove false positives. DeepMedic
achieved better performance than using 2D CNNs. However, it works on local
image patches and therefore has a relatively low inference efficiency. In [28],
a triple cascaded framework was proposed for brain tumor segmentation. The
framework uses three networks to hierarchically segment whole tumor, tumor
core and enhancing tumor core sequentially. It uses a network structure with
anisotropic convolution to deal with 3D images, taking advantage of dilated con-
volution [31], residual connection [7] and multi-scale fusion [29]. It demonstrated
an advantageous trade-off between receptive field, model complexity and mem-
ory consumption. This method also fuses the output of CNNs in three orthogonal
views for more robust segmentation of brain tumors. In [16], an ensemble of mul-
tiple models and architectures including DeepMedic [17], 3D Fully Convolutional
Networks (FCN) [21] and U-Net [2,26] was used for robust brain tumor segmen-
tation. The ensemble method reduces the influence of the meta-parameters of
individual CNN models and the risk of overfitting the configuration to a specific
training dataset. However, it requires much more computational resources to
train and run a set of models.
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Training with a large dataset plays an important role for the good perfor-
mance of deep CNNs. For medical images, collecting a very large training set
is usually time-consuming and challenging. Therefore, many works have used
data augmentation to partially compensate this problem. Data augmentation
applies transformations to the samples in a training set to create new ones, so
that a relatively small training set can be enlarged to a larger one. Previous
works have used different types of transformations such as flipping, cropping,
rotation and scaling training images [2]. In [32], a simple and data-agnostic data
augmentation routine termed mixup was proposed for training neural networks.
Recently, several studies have empirically found that the performance of deep
learning-based image recognition methods can be improved by combining pre-
dictions of multiple transformed versions of a test image, such as in pulmonary
nodule detection [15] and skin lesion classification [23]. In [14], test images were
augmented by mirroring for brain tumor segmentation. In [27], a mathematical
formulation was proposed for test-time augmentation, where a distribution of the
prediction was estimated by Monte Carlo simulation with prior distributions of
parameters in an image acquisition model. That work also proposed a test-time
augmentation-based aleatoric uncertainty estimation method that can help to
reduce overconfident predictions. The framework in [27] has been validated with
binary segmentation tasks, while its application to multi-class segmentation has
yet to be demonstrated.

In this paper, we extend the work of [27,28], and apply test-time augmenta-
tion to automatic multi-class brain tumor segmentation. For a given input image,
instead of obtaining a single inference, we augment the input image with differ-
ent transformation parameters to obtain multiple predictions from the input,
with the same network and associated trained weights. The multiple predictions
help to obtain more robust inference of a given image. We explore the use of dif-
ferent CNNs as the underpinning network structures. Experiments with BraTS
2018 training and validation set showed that an improvement of segmentation
accuracy was achieved by test-time augmentation, and our method can provide
uncertainty estimation for the segmentation output.

2 Methods

2.1 Network Structures

We explore three network configurations as underpinning CNNs for the brain
tumor segmentation task: (1) 3D UNet [2], (2) the cascaded networks in [28]
where a WNet, TNet and ENet was used to segment whole tumor, tumor core
and enhancing tumor core respectively, and (3) adapting WNet [28] for one-pass
multi-class prediction without using cascaded prediction, which is referred to as
multi-class WNet.

The 3D U-Net has a downsampling and an upsampling path each with four
resolution steps. In the downsampling path, each layer has two 3 × 3 × 3 convo-
lutions each followed by a Rectified Linear Unit (ReLU) activation function, and
then a 2×2×2 max pooling layer was used for downsampling. In the upsampling
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path, each layer uses a deconvolution with kernel size 2 × 2 × 2, followed by two
3×3×3 convolutions with ReLU. The network has shortcut connections between
corresponding layers with the same resolution in the downsampling path and the
upsampling path. In the last layer, a 1 × 1 × 1 convolution is used to reduce the
number of output channels to the number of segmentation labels, i.e., 4 for the
brain tumor segmentation task in the BraTS challenge.

The WNet proposed in [28] is an anisotropic network that considers a trade-
off between receptive field, model complexity and memory consumption. It
employs dilated convolution [31], residual connection [7] and multi-scale predic-
tion [29] to improve segmentation performance. The network uses 20 intra-slice
convolution layers and four inter-slice convolution layers with two 2D down-
sampling layers. Since the anisotropic convolution has a small receptive field in
the through-plane direction, multi-view fusion was used to take advantage of
the 3D contextual information, where the network was applied in axial, sagittal
and coronal views respectively. For the multi-view fusion, the softmax outputs
in these three views were averaged. In [28], WNet is used to segment the whole
tumor. TNet for tumor core segmentation uses the same structure as WNet,
and ENet for enhancing core segmentation is a variant of WNet that uses only
one down-sampling layer. Compared with multi-label prediction, the cascaded
networks require longer time for training and testing. To improve the train-
ing efficiency, we compare the cascaded networks [28] with the use of multi-class
WNet, where a single WNet for multi-label prediction is employed without using
TNet and ENet. Therefore, for this variant we change the output channel number
from 2 to 4. Multi-view fusion is also used for this multi-class WNet.

2.2 Data Augmentation for Training and Testing

From the point view of image acquisition, an observed image is only one of
many possible observations of the underlying anatomy that can be observed with
different spatial transformations and noise. Direct inference with the observed
image may lead to a biased result affected by the specific transformation and
noise associated with that image. To obtain a more robust prediction, we consider
different transformations and noise during the test time. Let β and e represent
the parameters for spatial transformation and intensity noise respectively. We
assume that β is a combination of fl, r and s, where fl is a random variable for
flipping along each 3D axis, r is the rotation angle along each 3D axis, s is a
scaling factor. We consider these parameters following some prior distributions:
fl ∼ Bern(0.5), r ∼ U(0, 2π), s ∼ U(0.8, 1.2). For the intensity noise, we assume
e ∼ N(0, 0.05) according to the reduced standard deviation of a median-filtered
version of a normalized image [27].

For data augmentation, we randomly sample β and e from the above prior
distributions and use them to transform the image. We use the same distributions
of augmentation parameters at both training and test time for a given CNN. For
test-time augmentation, we obtain N samples from the distributions of β and e
by Monte Carlo simulation, and the resulting transformed version of the input
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was fed into the CNN. The N prediction results were combined to obtain the
final prediction based on majority voting.

2.3 Uncertainty Estimation

Both model-based (epistemic) uncertainty and image-based (aleatoric) uncer-
tainty have been investigated for deep CNNs in recent years [18]. The epistemic
uncertainty is often obtained by Bayesian approximation-based methods such
as test-time dropout [10]. In [27], test-time augmentation was used to estimate
the aleatoric uncertainty of segmentation results in a consistent mathematical
framework. In this paper, we use test-time augmentation to obtain segmentation
results as well as the associated aleatoric uncertainty according to [27].

The uncertainty estimation is obtained by measuring the diversity of the pre-
dictions for a given image. Both the variance and entropy of the distribution can
be used to estimate uncertainty. Since variance is not sufficiently representative
in the context of multi-modal distributions, we use entropy for the pixel-wise
uncertainty estimation desired for segmentation tasks. Let X denote the input
image and Y denote the output segmentation. We use Y i to denote the predicted
label for the i-th pixel. With the Monte Carlo simulation described in Sect. 2.2,
a set of values for Y i are obtained Yi = {yi

1, y
i
2, . . . , y

i
N}. The entropy of the

distribution of Y i is therefore approximated as:

H(Y i|X) ≈ −
M∑

m=1

p̂imln(p̂im) (1)

where p̂im is the frequency of the m-th unique value in Yi.

3 Experiments and Results

Data and Implementation Details. We used the BraTS 20181 [3–6,24]
dataset for experiments. The training set contains images from 285 patients,
including 210 cases of HGG and 75 cases of LGG. The BraTS 2018 validation
and testing set contain images from 66 and 191 patients with brain tumors of
unknown grade, respectively. Each patient was scanned with four sequences: T1,
T1ce, T2 and FLAIR. As a pre-processing performed by the organizers, all the
images were skull-striped and re-sampled to an isotropic 1 mm3 resolution, and
the four modalities of the same patient had been co-registered. The ground truth
were provided by the BraTS organizers. We uploaded the segmentation results
obtained by our method to the BraTS 2018 server, and the server provided quan-
titative evaluations including Dice score and Hausdorff distance compared with
the ground truth.

We implemented the 3D UNet [2], multi-class WNet and cascaded net-
works [28] in Tensorflow2 [1] using NiftyNet34 [11]. The Adaptive Moment
1 http://www.med.upenn.edu/sbia/brats2018.html.
2 https://www.tensorflow.org.
3 http://niftynet.io.
4 https://github.com/taigw/brats18.

http://www.med.upenn.edu/sbia/brats2018.html
https://www.tensorflow.org
http://niftynet.io
https://github.com/taigw/brats18
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FLAIR T1 T1ce T2

Mul -class WNet Mul -class WNet + TTA 3D UNet 3D Unet + TTA

Cascaded networks Cascaded networks + TTA

Fig. 1. An example of brain tumor segmentation results obtained by different networks
and test-time augmentation (TTA). The first row shows the four modalities of the same
patient. The second and third rows show segmentation results. Green: edema; Red:
non-enhancing tumor core; Yellow: enhancing tumor core. (Color figure online)

Estimation (Adam) [19] strategy was used for training, with initial learning rate
10−3, weight decay 10−7, and maximal iteration 20k. The training patch size
was 96 × 96 × 96 for 3D UNet and 96 × 96 × 19 for multi-class WNet. The batch
size was 2 and 4 for these two networks respectively. For the cascaded networks,
we followed the configurations in [28]. The training process was implemented on
an NVIDIA TITAN X GPU. As a pre-processing, each image was normalized by
the mean value and standard deviation. The Dice loss function [9,25] was used
for training.

At test time, the augmented prediction number was set to N = 20 for all the
network structures. The multi-class WNet and cascaded networks were trained
in axial, sagittal and coronal views respectively, and the predictions in these
three views were fused by averaging at test time.
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FLAIR T1 T1ce T2

Mul -class WNet Mul -class WNet + TTA 3D UNet 3D Unet + TTA

Cascaded networks Cascaded networks + TTA

Fig. 2. Another example of brain tumor segmentation results obtained by different
networks and test-time augmentation (TTA). The first row shows the four modalities
of the same patient. The second and third rows show segmentation results. Green:
edema; Red: non-enhancing tumor core; Yellow: enhancing tumor core. (Color figure
online)

Segmentation Results. Figure 1 shows an example from the BraTS 2018 val-
idation set. The first row shows the input images of four modalities: FLAIR, T1,
T1ce and T2. The second and third rows present the segmentation results of
3D UNet, multi-class WNet, cascaded networks and their corresponding results
with test-time augmentation. It can be observed that the initial output of the 3D
UNet seems to be noisy with some false positives of edema and non-enhancing
tumor core. After using test-time augmentation, the result becomes more spa-
tially consistent. The output of multi-class WNet also seems to be noisy for
the non-enhancing tumor core. A smoother segmentation is obtained by multi-
class WNet with test-time augmentation. For the cascaded networks, test-time
augmentation also leads to visually better results of the tumor core.

Figure 2 shows another example from the BraTS 2018 validation set. It can
be observed that the 3D UNet obtains a hole in the tumor core, which seems
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FLAIR T1 T1ce T2

Cascaded networks Cascaded networks + TTA Uncertainty

Fig. 3. An example of segmentation result and uncertainty estimation obtained by
cascaded networks [28] with test-time augmentation.

to be an under-segmentation. The hole is filled after using test-time augmen-
tation and the result looks more consistent with the input images. The initial
prediction by multi-class WNet seems to have an over segmentation of the non-
enhancing tumor core. After using test-time augmentation, the over-segmented
regions become smaller, leading to higher accuracy. Test-time augmentation also
helps to improve the result of cascaded networks. Figure 3 shows a case from the
BraTS 2018 testing set, where test-time augmentation obtains a better spatial
consistency for the tumor core. In addition, it leads to an uncertainty estimation
of the segmentation output. It can be observed that most uncertain results focus
on the border of the tumor and some potentially mis-segmented regions.

A quantitative evaluation of our different methods on the BraTS 2018 val-
idation set is shown in Table 1. The initial output of 3D UNet achieved Dice
scores of 73.44%, 86.38% and 76.58% for enhancing tumor core, whole tumor
and tumor core respectively. 3D UNet with test-time augmentation achieved
a better performance than the baseline of 3D UNet, leading to Dice scores of
75.43%, 87.31% and 78.32% respectively. For the initial output of multi-class
WNet, the Dice score was 75.70%, 88.98% and 72.53% for these three structures
respectively. After using test-time augmentation, an improvement was achieved,
and the Dice score was 77.70%, 89.56% and 73.04% for these three structures
respectively. For the cascaded networks, test-time augmentation leads to higher
accuracy for the enhancing tumor core and tumor core. Table 2 presents the
performance of our cascaded networks with test-time augmentation on BraTS
2018 testing set. The average Dice scores for enhancing tumor core, whole tumor
and tumor core are 74.66%, 87.78% and 79.64%, respectively. The corresponding
values of Hausdorff distance are 4.16 mm, 5.97 mm and 6.71 mm, respectively.
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Table 1. Mean values of Dice and Hausdorff measurements of different methods on
BraTS 2018 validation set. ET, WT, TC denote enhancing tumor core, whole tumor
and tumor core, respectively. TTA: test-time augmentation.

Dice (%) Hausdorff (mm)

ET WT TC ET WT TC

3D UNet 73.44 86.38 76.58 9.37 12.00 10.37

3D UNet + TTA 75.43 87.31 78.32 4.53 5.90 8.03

Multi-class WNet 75.70 88.98 72.53 4.24 4.99 12.13

Multi-class WNet + TTA 77.07 89.56 73.04 4.44 4.92 11.13

Cascaded networks 79.19 90.31 85.40 3.34 5.38 6.61

Cascaded networks + TTA 79.72 90.21 85.83 3.13 6.18 6.37

Table 2. Dice and Hausdorff measurements of our cascaded networks with test-time
augmentation on BraTS 2018 testing set. ET, WT, TC denote enhancing tumor core,
whole tumor and tumor core, respectively.

Dice (%) Hausdorff (mm)

ET WT TC ET WT TC

Mean 74.66 87.78 79.64 4.16 5.97 6.71

Standard deviation 25.85 11.92 24.97 7.07 8.56 10.27

Median 83.38 91.33 89.68 2.00 3.32 3.16

25 Quantile 72.87 86.69 78.24 1.41 2.24 2.00

75 Quantile 88.64 94.09 93.58 3.00 5.48 6.40

4 Discussion and Conclusion

For test-time augmentation, we only used flipping, rotation and scaling for spa-
tial transformations. It is also possible to employ more complex transformations
such as elastic deformations used in [2]. However, such deformations take longer
time for testing and have a lower efficiency. The results show that test-time aug-
mentation leads to an improvement of segmentation accuracy for different CNNs
including 3D UNet [2], multi-class WNet and cascaded networks [28]. Test-time
augmentation can be applied to other CNN models as well. The uncertainty
estimation obtained by our method can be used for downstream analysis such
as uncertainty-aware volume measurement [8] and guiding user interactions [29].
It would be of interest to assess the impact of test-time augmentation on CNNs
trained with state-of-the-art policies such as in [14]. By using test-time aug-
mentation, we investigated the test image-based (aleatoic) uncertainty for brain
tumor segmentation. It is of interest to investigate how ensemble of CNNs [16]
can produce epistemic uncertainty for this task. For a comprehensive study of
uncertainty, it is promising to combine ensemble of models or test-time dropout
with test-time augmentation. This will be left for future work.
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In conclusion, we explored the effect of test-time augmentation on CNN-
based brain tumor segmentation. We used 3D U-Net, 2.5D multi-class WNet
and cascaded networks as the underpinning network structures. For training and
testing, we augmented the image by 3D rotation, flipping, scaling and adding
random noise. Experiments with BraTS 2018 training and validation set show
that test-time augmentation helps to improve the brain tumor segmentation
accuracy for different CNN structures and obtain uncertainty estimation of the
segmentation results.
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Abstract. Several deep learning architectures are combined for brain
tumor segmentation. All the architectures are inspired on recent 2D mod-
els where 2D convolution have been replaced by 3D convolutions. The
key differences between the architectures are the size of the receptive
field and the number of feature maps on the final layers. The obtained
results are comparable to the top methods of previous Brats Challenges
when median is use to average the results. Further investigation is still
needed to analyze the outlier patients.

Keywords: Brain segmentation · Brats · 3D inception · 3D VGG ·
3D densely connected · 3D Xception

1 Introduction

Brain tumor segmentation is an important problem which has received a con-
siderable attention by the research community and particularly since the advent
of deep learning.

Glial cells are the cause of gliomas that are the most common brain tumors.
Gliomas are usually classified into low-grade gliomas (LGG) and high grade
gliomas (HGG) which are malignant and more aggressive.

Brain tumors are usually imaged using several Magnetic Resonance
(MR) sequences, such as T1-weighted, contrast enhanced T1-weighted (T1c),
T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) images. From
a pure pattern recognition point of view, these modalities provide complimen-
tary information and can be used as different feature input maps. In other words,
image modalities play a role similar to color planes of RGB natural images.

The Multimodal Brain Tumor Segmentation Challenge 2018 provided a set
of MR sequences for training and evaluation of brain tumor segmentation algo-
rithms. Ground truth for all the scans have been manually provided by expert
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board-certified neuroradiologists, so that every voxel is categorized into these
classes [11]:

– Label 0: background.
– Label 1: necrotic and non-enhancing tumor.
– Label 2: edema.
– Label 4: enhancing tumor.

We did not pay much attention on the medical details of this problem. Our
main contribution was to extend some of the recent approaches used for 2D
image classification: VGG, inception, Xception, densely connected models to be
used with 3D data in a real segmentation problem.

2 Methods

Our approach uses an ensemble of deep neural networks with different architec-
tures. The idea is that the ensemble provides a more robust solution with less
variance compared to individual methods. Also, some architectures may compen-
sate for other architectures weaknesses and thus improve the global performance.
The idea of using an ensemble with multiple architectures was also used by the
winning method of the last Brats competition [9].

This section describes the different architectures used in our approach. All
the architectures have in common that every voxel is independently labeled using
a deep neural network architecture. We are aware that better results could had
been obtanied if some post processing that considered the spatial constraints
had been used, similar to the CRF proposed in [10].

The key differences between the architectures are the number of parameters,
the number of feature planes and the size of the receptive field associated to each
voxel. These hyper-parameters were chosen as a trade-off usually limited by the
memory of the GPU. More specifically, we mixed four different architectures in
our final ensemble: VGG-Like, inception-2, inception-3 and densely connected.
These models are described in detail in the following subsections.

2.1 VGG-like Model

This model is inspired on the well known VGG model proposed by [12]. The
differences between our approach and the original VGG are:

– 2-D convolutions are replaced by 3-D convolutions.
– Maxpool layers are not used.
– The network is replicated in a convolutional way so that every pixel is labeled

independently.

Table 1 describes in detail the layers used in this model. Note that all con-
volutional layers are preceded by batch normalization and followed by a ReLU
activation function, except the last layer which is followed by a softmax activa-
tion function.
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Table 1. Description of our VGG-like architecture.

Layer name Kernel size Num filters

conv 1 1 3 × 3 × 3 30

conv 1 2 3 × 3 × 3 30

conv 2 1 3 × 3 × 3 60

conv 2 2 3 × 3 × 3 60

conv 3 1 3 × 3 × 3 120

conv 3 2 3 × 3 × 3 120

conv 4 1 3 × 3 × 3 240

conv 4 2 3 × 3 × 3 240

fc 1 1 × 1 × 1 400

fc 2 1 × 1 × 1 200

logits 1 × 1 × 1 4

2.2 Dense-Like Model

This architecture is inspired by the recent work [8]. The key difference between
the original method and the one used in this paper, is that 2D convolutions
are replaced by 3D convolutions. The advantage of densely connected networks
(compared to VGG like models) is that features are reused on subsequent layers
and each layer adds a few new features only. This allows to increase the number
of layers and therefore the size of the receptive field associated to each voxel.
This architecture also allows to combine features with relatively small receptive
fields (first layers) with features with large receptive fields (last layers). This is
particularly useful in segmentation problems, where large receptive fields provide
context information and small receptive fields provide fine-grained information
that helps to increase the precision of the segmentation.

Table 2 summarizes the architecture of our densely connected network. Note
that each layer concatenates all the output features from the previous layers, for
this reason the number of input feature grows steadily until layer conv 20. Then
two fully connected layers similar to the VGG architecture are used.

2.3 Inception-Like Model

This architecture is inspired by some of the ideas proposed in [14] and [13]. The
key idea proposed by the inception model is to replace convolutional layers by
several parallel structures with different kernel shapes. This reduces the number
of parameters (regularization) and forces diversity on the output features of each
layer.

We took these ideas and adapted them to the problem of brain segmentation.
The main limitation of inception layers is that they require much GPU memory
because each layer is composed of several simpler sub-layers, for instance some
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Table 2. Description of our Dense-like architecture.

Layer name Kernel size Num inputs Num output filters

conv 1 3 × 3 × 3 4 8

conv 2 3 × 3 × 3 12 8

conv 3 3 × 3 × 3 20 8

conv 4 3 × 3 × 3 28 8

conv 5 3 × 3 × 3 36 8

conv 6 3 × 3 × 3 44 8

conv 7 3 × 3 × 3 52 8

conv 8 3 × 3 × 3 60 8

conv 9 3 × 3 × 3 68 8

conv 10 3 × 3 × 3 76 8

conv 11 3 × 3 × 3 84 8

conv 12 3 × 3 × 3 92 8

conv 13 3 × 3 × 3 100 8

conv 14 3 × 3 × 3 108 8

conv 15 3 × 3 × 3 106 8

conv 16 3 × 3 × 3 114 8

conv 17 3 × 3 × 3 122 8

conv 18 3 × 3 × 3 130 8

conv 19 3 × 3 × 3 138 8

conv 20 3 × 3 × 3 146 8

fc 1 1 × 1 × 1 154 400

fc 2 1 × 1 × 1 400 200

logits 1 × 1 × 1 200 4

inception layers use 1-D convolutions along each spatial dimension. In the case
of 2D convolutions, this option doubles the number of layers and the required
memory used to store intermediate results and gradients. In the case of 3D
segmentation, this problem is even worse because the use of 1-D convolutions
implies to use three times more memory.

For this reason, we created two simplified GoogLenet-like models with a few
inception layers before the fully connected layers as detailed in Table 3.

Figure 1 shows the internal structure of the inception layers. As it can be seen,
four different branches are used. The first layer extracts new features and reduces
the dimensionality. The second and third branches introduce spatial convolution;
the fourth brach is an average layer without pooling. This structure is similar to
the structure of Fig. 5 in [13].
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Table 3. Description of the inception architectures used in the final ensemble.

Layer name kernel size num filters
conv 1 1 3× 3× 3 30
conv 1 2 3× 3× 3 30
conv 2 1 3× 3× 3 60
conv 2 2 3× 3× 3 60
conv 3 1 3× 3× 3 120
conv 3 2 3× 3× 3 120
inception see. Fig. 1 240
inception see. Fig. 1 240

fc 1 1× 1× 1 400
fc 2 1× 1× 1 200
logits 1× 1× 1 4

Layer name kernel size num filters
conv 1 1 3× 3× 3 30
conv 1 2 3× 3× 3 30
conv 2 1 3× 3× 3 60
conv 2 2 3× 3× 3 60
conv 3 1 3× 3× 3 120
conv 3 2 3× 3× 3 120
inception see. Fig. 1 240
inception see. Fig. 1 240
inception see. Fig. 1 240

fc 1 1× 1× 1 400
fc 2 1× 1× 1 200
logits 1× 1× 1 4

3noitpecnI2noitpecnI

2.4 Other Architectures Not in the Final Ensemble

We also made experiments with other architectures not included in the final
ensemble for their lower performance on our training data using cross-validation.

The most innovative structure in this group was based in the Xception archi-
tecture presented in [6]. This architecture assumes that correlation in feature
planes can be decoupled from spatial correlation, and therefore separability is
applied. We implemented this separable 3D spatial filters from scratch in Ten-
sorflow (the library only provides this feature for 2D images).

We also made experiments with other inception architectures similar to those
presented in Figs. 6 and 7 of [13]. However, the results on our cross-validated
training set were not good enough.

The main limitation of these other inception architectures and also the Xcep-
tion layers is that they require more GPU memory compared to the simpler VGG
architecture, for this reason total number of layers needs to be reduced so that
the model fits into memory. The main advantage of these architectures in 2D
images is that they require a smaller number of parameters which help to reg-
ularize the model. However, we found that overfitting was not the problem for
any of our models (the training cost and training error was not negligible), and
therefore models with many parameters (as the VGG) could be trained without
overfitting.

Finally, we also made experiments with field bias correction of the input
data [15]. In these experiments, we corrected the bias of the T1 and T1ce input
modalities and compared the performance without the field bias correction and
the same neural network architecture. The results with the bias correction were
always worse compared to using the original raw data with the same model
architecture, and for this reason we omitted field bias correction.
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base

Filter concat

1x1x1 -> 30

1x1x1 -> 30

3x3x3 -> 60

1x1x1 -> 40

3x3x3 -> 60

3x3x3 -> 120

Avg 3x3x3

Fig. 1. Structure of the inception layers used in the models of Table 3. Each box shows
the kernel size and the number of output features.

2.5 Number of Parameters and Receptive Field Size

Table 4 shows the number of parameters and receptive field size for the models
included in our final ensemble. The model that requires more parameters is the
VGG-like. This constraint limits the number of layers of the VGG model to
avoid GPU memory problems. This is the reason why the VGG-like model has
the smallest receptive field size.

The inception models halve the number of parameters (the latter layers are
the ones with more parameters) and have a larger receptive field.

Finally, the densely connected model is the model with less parameters and
largest receptive field.

The idea of our ensemble is to be able to combine models with large recep-
tive field (more context), as the densely connected model, with very expressive
models, i.e. models with many deep features (VGG-like) so that each model
compensate for the weaknesses of the others.

Table 4. Number of parameters and receptive field size for the models used in our
ensemble

Model #parameters Receptive field size

VGG-like 3270252 17 × 17 × 17

Inception2 1375872 21 × 21 × 21

Inception3 1611882 25 × 25 × 25

Densely connected 494220 41 × 41 × 41
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3 Experiments and Results

3.1 Data

Our system was evaluated on the data from the Brain Tumor Segmentation
Challenge 2018 (BRATS) [2–4,11]. As in previous editions, the training set con-
sists of 210 cases with high grade glioma (HGG) and 75 cases with low grade
glioma (LGG), for which manual segmentations are provided. The segmentations
include the following tumor tissue labels: (1) necrotic core and non enhancing
tumor, (2) edema, (4) enhancing core. Label 3 is not used. The validation set
consists of 66 cases, both HGG and LGG but the grade is not revealed. For each
subject, four MRI sequences are available, FLAIR, T1, T1 contrast enhanced
(T1ce) and T2. The datasets are pre-processed by the organisers and provided
as skull-stripped, registered to a common space and resampled to isotropic 1mm3
resolution. Dimensions of each volume are 240 × 240 × 155.

3.2 Implementation Detais

We implemented everything in python. Input/output data for MRI scans was
handled with the nibabel library [7] and neural networks were implemented using
tensorflow [1]. The code used in this work has been dockerized and released to
the challenge organizers so it will be available to the community.

We did not try any bias field correction of the input scans. The only intensity
normalization that we used was z-score normalization of the input scans using
the mean and standard deviation of the brain volume only (so the mean and std
deviation are not dependent of the brain size).

Models were trained using crops of the original MRI scans. As in [10], the
size of each crop was larger than the size of the receptive field. More specifically,
the size of the crop is set (9 + rf ) × (9 + rf ) × (9 + rf ), where rf is the size
of the receptive field. Thus, each crop contributes to the cost function with
9 × 9 × 9 voxels. This approach increases the computational efficiency (reuses
many computations) and we think that it also acts as a regularizer, forces the
model to be smooth during labeling. For each mini batch, we increased the
number of crops to fill the GPU memory (12Gb in our machine). These crops
were randomly sampled using a uniform distribution among the four classes:
healthy, oedema, core and enhancing core. During evaluation the size of the crops
were increased and consecutive crops had some overlap to handle the reduced
size of the network output (we used convolutions with only valid support).

Training was done using gradient descent with the Adam optimizer using
a constant learning rate of 0.0001 for about 40k steps. We did not observed
any overfitting during training, and for this reason we did not investigate into
adding any L2, L1 regularization, learning rate decay.... Perhaps one of the reason
why we did not observed overfitting is because we implemented a strong data
augmentation that generated affine 3D transformations of the MRI scans on
the fly.
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3.3 Training Results

We split the training data in two random sets, so that one of the sets that
contained 20% of the patients was used to evaluate the training progress. For
each model architecture we generated two different training partitions using
different random seeds, so that all training data was used by the models in the
ensemble.

We ranked the model architectures using the Dice scores on our validation
subset. Table 5 shows the Dice scores for our best models on our validation split.
As it can be seen the differences among models are very small, however since
the receptive field size and number of parameters is very different we think that
the models might have captured complimentary information.

The last row in Table 6 shows the results on the Brats test set that we
obtained on the challenge. The results on this set are clearly worse than those
obtained for the validation set, this fact could be a clear symptom of some
overfitting on the training and validation sets. However, we suspect that there
could be also some differences due to other factors, such as different acquisition
conditions because we did not made any model selection on the validation set
and in that case we did not observed any difference with the results on our cross
validation partition.

Table 5. Results of the selected model architectures on our validation split

Model name Dice WT Dice TC Dice ET

VGG-like 0.880 0.771 0.689

Inception2 0.882 0.792 0.685

Inception3 0.880 0.789 0.695

Densely connected 0.883 0.787 0.683

3.4 Results on the Validation and Test Sets

We submitted the predicted labels for each of the described models and also for
the ensemble model for the validation set. There ensemble model averages the
probabilities of 8 trained models (one for each architecture, and two random
partitions of the training set).

Table 6 shows the results provided by the Brats evaluation platform on the
blind validation dataset. The results are quite consistent with the results shown
on Table 5, and hence we can conclude that we did not overfit the training dataset
and the models generalize quite well on new data. However, the evaluation on the
Brats platform shows an interesting point, median values of the Dice scores are
much larger than the mean values. This confirms the existence of image outliers.
The last row in Table 6 shows the results on the contest test set, the results for
all other contest participants can be found in [5].
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Table 6. Results of the selected model architectures on the validation set

Model
name

Set Mean
Dice WT

Mean
Dice TC

Mean
Dice ET

Median
Dice WT

Median
Dice TC

Median
Dice ET

VGG-like Validation 0.872 0.760 0.751 0.900 0.837 0.844

Inception2 Validation 0.877 0.773 0.7533 0.909 0.866 0.858

Inception3 Validation 0.873 0.776 0.781 0.907 0.852 0.858

Densely
connected

Validation 0.874 0.755 0.729 0.903 0.837 0.846

Ensemble Validation 0.881 0.777 0.773 0.912 0.873 0.860

Ensemble Test 0.850 0.740 0.723 0.894 0.856 0.828

4 Discussion and Conclusion

In this paper, we have extended some well known architectures for 2D image
classification to the problem of 3D image segmentation. This can be easily done
by replacing 2D convolutions by their 3D counterparts and adjusting the number
of layers and number of feature maps to more appropriate ranges so that models
can be fitted in memory.

We selected four model architectures so that we had models with large/small
receptive fields, many/less parameters. The idea is that different configurations
can capture complimentary information and an ensemble model can outperform
each separate model.

The results on the validation set, show that there no exist many perfor-
mance differences between the different model architectures, however the ensem-
ble model outperforms each model. These results confirms our hypothesis and
are also consistent with the results that we had previously obtained on the train-
ing data. The results on the Brats test set are clearly worse, we think that the
cause of this behaviour is that there are some differences in the image acquisition
and our method is not robust enough to deal with these variations.

We also tried other models, not included in the final ensemble, such as the
3D Xception that assumes independence between spatial and feature dimensions.
We also tried to use bias field correction however our results showed that this
was not useful for our models.

Finally, it is worth to highlight that the obtained results shows the existence
of image outliers that are not well segmented. This issue severely drops our
global performance as shown by the huge difference of using the mean or median
metrics. We need to make further research on the causes of these outliers.
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Abstract. Every year, about 238,000 patients are diagnosed with brain
tumor in the world. Accurate and robust tumor segmentation and pre-
diction of patients’ overall survival are important for diagnosis, treat-
ment planning and risk factor characterization. Here we present a deep
learning-based framework for brain tumor segmentation and survival pre-
diction in glioma using multimodal MRI scans. For tumor segmentation,
we use ensembles of three different 3D CNN architectures for robust per-
formance through majority rule. This approach can effectively reduce
model bias and boost performance. For survival prediction, we extract
4524 radiomic features from segmented tumor region. Then decision tree
and cross validation are used to select potent features. Finally, a random
forest model is trained to predict the overall survival of patients. On 2018
MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS),
our method ranks at second place and 5th place out of 60+ participat-
ing teams on survival prediction task and segmentation task respectively,
achieving a promising 61.0% accuracy on classification of long-survivors,
mid-survivors and short-survivors.

Keywords: Survival prediction · Brain tumor segmentation ·
3D CNN · Multimodal MRI

1 Introduction

Brain tumor is cancerous or noncancerous mass or growth of abnormal cells in
the brain, malignant brain tumor is one of the most aggressive and fatal tumors.
Originated in the glial cells, gliomas are the most common brain tumor. [6]
Depending on the pathologic evaluation of the tumor, gliomas can be catego-
rized into glioblastoma (GBM/HGG) and lower grade glioma (LGG). Gliomas
contain various heterogeneous histological sub-regions, including peritumoral
edema, necrotic core, enhancing and non-enhancing tumor core. Magnetic reso-
nance imaging (MRI) is commonly used in radiology to portray the phenotype
and intrinsic heterogeneity of gliomas, since multimodal MRI scans, such as T1-
weighted, contrast enhanced T1-weighted (T1c), T2-weighted and Fluid Atten-
uation Inversion Recovery (FLAIR) images, provide complementary profiles for
c© Springer Nature Switzerland AG 2019
A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 83–93, 2019.
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different sub-regions of gliomas. For example, the enhancing tumor sub-region is
described by areas that show hyper-intensity in T1Gd scan when compared to
T1 scan.

Accurate and robust prediction of overall survival through automated algo-
rithms for patients diagnosed with gliomas can provide valuable guidance for
diagnosis, treatment planning and outcome prediction. However, the selection of
reliable and potent prognostic is difficult. Medical imaging (e.g. MRI, CT) can
provide radiographic phenotype of tumor, and it has been exploited increasingly
to extract and analyze quantitative imaging features. [7] Clinical data, includ-
ing patient age, resection status and others, also provide important information
about patients’ outcome.

Segmentation of gliomas in pre-operative MRI scans, conventionally done by
expert board-certified neuroradiologists, can provide quantitative morphological
characterization and measurement of gliomas sub-regions. It is also pre-requisite
for survival prediction since most potent features are derived from the tumor
region. This quantitative analysis has great potential for diagnosis and research,
as it can be used for grade assessment of gliomas and planning of treatment
strategies. But this task is challenging due to the high variance in appearance
and shape, ambiguous boundaries and imaging artifacts. Until now, automatic
segmentation of brain tumors in multimodal MRI scans is still one of the most
difficult tasks in medical image analysis. In recent years, deep convolutional
neural networks (CNNs) have achieved great success in the field of computer
vision. Inspired by the biological structure of visual cortex, CNNs are artificial
neural networks with multiple hidden convolutional layers between the input and
output layers. They have non-linear property and are capable of extracting higher
level representative features. CNNs have been applied into a wide range of fields
and achieved state-of-the-art performance on tasks such as image recognition,
instance detection, and semantic segmentation.

In this paper, we present a novel deep learning based framework to segment
brain tumor and its subregion from MRI scans, then perform survival prediction
based on radiomic features extracted from segmented tumor sub-regions as well
as clinical feature. Our automatic framework for brain tumor segmentation and
survival prediction ranks at second place and 5th place out of 60+ participating
teams on survival prediction task and segmentation task on 2018 MICCAI BraTS
Challenge respectively, achieving a promising 61.0% accuracy on classification
of long-survivors, mid-survivors and short-survivors.

2 Methodology

2.1 Overview

Our proposed framework for survival prediction using MRI scans consists of the
following steps, as illustrated in the figure below. First, tumor subregions are
segmented using an ensemble model comprising of three different convolutional
neural network architectures for robust performance through voting/majority
rule. Then radiomics features are extracted from tumor sub-regions and total
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tumor volume. Next, decision tree regressor with gradient boosting is used to
fit the training data and rank the importance of each feature based on variance
reduction, and cross validation is used to choose the optimal number of top-
ranking features to use. Finally, a random forest model is used to fit the training
data and predict the overall survival of patient (Fig. 1).

Fig. 1. Framework overview

2.2 Data Preprocessing

Since the intensity value of MRI is dependent on the imaging protocol and scan-
ner used, we applied intensity normalization to reduce the bias in imaging. More
specifically, the intensity value of each MRI is subtracted the mean and divided
by the standard deviation of the brain region. In order to reduce overfitting, we
applied random flipping and random gaussian noise to augment the training set.

2.3 Network Architecture

In order to perform accurate and robust brain tumor segmentation, we use
an ensemble model comprising of three different convolutional neural network
architectures. A variety of models have been proposed for tumor segmentation.
Generally, they differ in model depth, filter number, connection way and others.
Different model architectures can lead to different model performance and behav-
ior. By training different kinds of model separately and merge the result, the
model variance can be decreased and the overall performance can be improved.
[11] We use three different CNN models and fuse the result by voting/majority
rule. The detailed description of each model will be discussed as follows.
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CA-CNN. The first network we employ is Cascaded Anisotropic Convolutional
Neural Network (CA-CNN) proposed by Wang et al. [17]. The cascade is used to
convert multi-class segmentation problem into a sequence of three hierarchical
binary segmentation problems. The network is illustrated as follows (Fig. 2):

Fig. 2. Cascaded framework and architecture of CA-CNN

This architecture also employs anisotropic and dilated convolution filters,
which are combined with multi-view fusion to reduce false positives. It also
employs residual connections [8], batch normalization [9] and multi-scale predic-
tion to boost the performance of segmentation. For implementation, we train the
CA-CNN model using Adam optimizer, and set Dice coefficient as loss function.
We set initial learning rate to 1× 10−3, weight decay 1× 10−7, batch size 5, and
maximal iteration 30k.

DFKZ Net. The second network we employ is DFKZ Net, which was proposed
by Isensee et al. [10] from German Cancer Research Center (DFKZ). This net-
work is inspired by U-Net. It employs a context encoding pathway that extracts
increasingly abstract representations of the input, and a decoding pathway used
to recombine these representations with shallower features to precisely segment
the structure of interest. The context encoding pathway consists of three con-
tent modules, each has two 3 × 3 × 3 convolutional layers and a dropout layer
with residual connection. The decoding pathway consists of three localization
modules, each contains a 3 × 3 × 3 convolutional layer followed by a 1 × 1 × 1
convolutional layer. For the decoding pathway, the output of layers of differ-
ent depth is integrated by elementwise summation, thus the supervision can be
injected deep in the network (Fig. 3).

For implementation, we train the network using Adam optimizer. To address
the problem of class imbalance, we utilize the multi-class Dice loss function [10]:

L = − 2
|K|

∑

k∈K

∑
i ui(k)vi(k)∑

i ui(k) +
∑

i vi(k)
(1)

where u denotes output possibility, v denotes one-hot encoding of ground truth,
k denotes the class, K denotes the total number of classes and i(k) denotes the
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Fig. 3. Architecture of DFKZ Net

number of voxels for class k in patch. We set initial learning rate 5 × 10−4 and
use instance normalization. We train the model for 90 epochs.

3D U-Net. U-Net [5,14] is a classical network for biomedical image segmen-
tation. It consists of a contracting path to capture context and a symmetric
expanding path that enables precise localization with extension. Each pathway
has three convolutional layers with dropout and pooling. And the contracting
pathway and expanding pathway are linked by skip-connections. Each layer con-
tains 3× 3× 3 convolutional kernels. The first convolutional layer has 32 filters,
while deeper layers contains twice filters than previous shallower layer.

For implementation, we use Adam optimizer [12], and we use instance nor-
malization [15]. In addition, we utilize cross entropy as loss function. The initial
learning rate is 0.001, the model is trained for 4 epochs.

Ensemble of Models. In order to enhance segmentation performance and
reduce model variance. We use voting/majority rule to build an ensemble model.
During training process, different models are trained separately. In the testing
stage, each model independently predicts the class for each voxel, the final class
is determined by majority rule.

2.4 Feature Extraction

Quantitative phenotypic features from MRI scans can reveal the characteristics
of brain tumors. Based on the segmentation result, we extract radiomics features
from edema, non-enhancing solid core and necrotic/cystic core and the whole
tumor region respectively using Pyradiomics toolbox [16] (Fig. 4).

The modality used for feature extraction is depended on the intrinsic prop-
erty of tumor subregion. For example, edema features are extracted from FLAIR
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Fig. 4. Illustration of feature extraction

modality, since it is typically depicted by hyper-intense signal in FLAIR. Non-
enhancing solid core features are extracted from T1c modality, since the appear-
ance of the necrotic (NCR) and the non-enhancing (NET) tumor core is typically
hypo-intense in T1-Gd when compared to T1. Necrotic/cystic core tumor fea-
tures are extracted from T1c modality, since it is described by areas that show
hyper-intensity in T1Gd when compared to T1.

The features we extracted can be grouped into three categories. The first
category is first order statistics, which includes maximum intensity, minimum
intensity, mean, median, 10th percentile, 90th percentile, standard deviation,
variance of intensity value, energy, entropy and others. These features charac-
terize the grey level intensity of tumor region.

The second category is shape features, which include volume, surface area,
surface area to volume ratio, maximum 3D diameter, maximum 2D diameter
for axial, coronal and sagittal plane respectively, major axis length, minor axis
length and least axis length, sphericity, elongation and other features. These
features characterize the shape of tumor region.

The third category is texture features, which include 22 grey level co-
occurrence matrix (GLCM) features, 16 gray level run length matrix (GLRLM)
features, 16 Grey level size zone matrix (GLSZM) features, five neighboring gray
tone difference matrix (NGTDM) features and 14 gray level dependence matrix
(GLDM) Features. These features characterize the texture of tumor region.

Not only do we extract features from original images, but we also extract
features from Laplacian of Gaussian (LoG) filtered images and images gener-
ated by wavelet decomposition. Because LoG filtering can enhance the edge of
images, possibly enhance the boundary of tumor, and wavelet decomposition can
separate images into multiple levels of detail components (finer or coarser). More
specifically, from each region, 1131 features are extracted, including 99 features
extracted from the original image, and 344 features extracted from Laplacian
of Gaussian filtered images, since we use 4 filters with sigma value 2.0, 3.0, 4.0,
5.0 respectively, and 688 features extracted from 8 wavelet decomposed images
(all possible combinations of applying either a High or a Low pass filter in each
of the three dimensions). In total, for each patient, we extract 1131 × 4 = 4524
radiomic features, these features are combined with clinical data (age and resec-
tion state) for survival prediction. The values of these features are normalized
by subtracting the mean and scaling to unit variance.
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2.5 Feature Selection

A portion of features we extracted are redundant or irrelevant to survival pre-
diction. In order to enhance performance and reduce overfitting, we applied
feature selection to select a subset of features that have the most predictive
power. Feature selection is divided into two steps: importance ranking and cross
validation. We rank the importance of features by fitting a decision tree regres-
sor with gradient boosting using training data, then the importance of features
can be determined by how effectively the feature can reduce intra-node stan-
dard deviation in leaf nodes. The second step is to select the optimal number
of best features for prediction by cross validation. In the end, we select 14 fea-
tures and their importance are listed as follows: (Abbreviations: wt = edema,
tc = tumor core, et = enhancing tumor, full = whole tumor; The detailed fea-
ture definition can be found at https://pyradiomics.readthedocs.io/en/latest/
features.html, last accessed on 30 June 2018) (Table 1).

Not surprisingly, age has the most predictive power among all features. The
rest of features selected come from both original images and derived images.
And we found that most features selected are come from images generated by
wavelet decomposition.

2.6 Survival Prediction

Based on the 14 features selected, we trained a random forest regressor for final
survival prediction. We set the number of base regressor as 100, and bootstrap
samples when building trees.

Table 1. Selected most predicative features

Extracted from Name Subregion Score

clinical age NA 0.037375134

wavelet-LHL glcm ClusterShade wt 0.036912293

log-sigma-4.0mm-3D glcm Correlation tc 0.035558309

log-sigma-2.0mm-3D gldm LargeDependenceHighGrayLevelEmphasis tc 0.026591038

wavelet-LHL glcm Informational Measure of Correlation et 0.022911978

wavelet-HLL firstorder Maximum et 0.020121927

wavelet-LHL firstorder Skewness et 0.019402119

original image glcm Autocorrelation et 0.014204463

wavelet-HHH gldm LargeDependenceLowGrayLevelEmphasis full 0.014085406

log-sigma-4.0mm-3D firstorder Mwtian wt 0.013031814

wavelet-HLH glcm JointEntropy wt 0.013023534

wavelet-LHH glcm ClusterShade tc 0.012335471

wavelet-HLL glszm LargeAreaHighGrayLevelEmphasis full 0.011980896

original image firstorder 10Percentile wt 0.011803132

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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3 Experiments

3.1 Dataset

We utilize the BraTS 2018 dataset [1–4,13] to evaluate the performance of our
methods. The training set contains images from 285 patients, including 210 HGG
and 75 LGG. The validation set contains MRI scans from 66 patients with brain
tumors of unknown grade. The test set contains images from 191 patients with
brain tumor, in which 77 patients have resection state of Gross Total Resection
(GTR) and are evaluated for survival prediction. Each patient was scanned with
four sequences: T1, T1c, T2 and FLAIR. All the images were skull-striped and
re-sampled to an isotropic 1mm3 resolution, and the four sequences of the same
patient had been co-registered. The ground truth was obtained by manual seg-
mentation results given by experts. Segmentation annotations comprise of the
following tumor subtypes: Necrotic/non-enhancing tumor (NCR), peritumoral
edema (ED), and Gd-enhancing tumor (ET). Resection status and patient age
are also provided. The overall survival (OS) data, defined in days is also included
in training set (Fig. 5).

3.2 Segmentation Result

We train the model using the 2018 MICCAI BraTS training set with methods
described above. Then we applied the trained model for prediction on validation
set and test set. We compared the segmentation result of ensemble model with
individual model on validation set, the result demonstrates that the ensemble
model performs better than individual models on enhancing tumor and whole
tumor, while CA-CNN performs marginally better on tumor core (Table 2).

Table 2. Evaluation result of ensemble model and individual model

Model Enhancing tumor Whole tumor Tumor core

CA-CNN 0.77682 0.90282 0.85392

DFKZ Net 0.76759 0.89306 0.82459

3D U-Net 0.78088 0.88762 0.82567

Ensemble model 0.80522 0.90944 0.84943

The predicted segmentation labels are uploaded to the CBICA’s Image Pro-
cessing Portal (IPP) for evaluation. BraTS Challenge uses two schemes for eval-
uation: Dice score and the Hausdorff distance (95%). In test phase, we rank at
5th place out of 60+ teams. The evaluation result of segmentation on validation
set and test set are listed as follows (Table 3).
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Table 3. Evaluation result of ensemble model for segmentation

Stage Metric Enhancing tumor Whole tumor Tumor core

Validation Mean Dice 0.80522 0.90444 0.84943

Mean Hausdorff95 (mm) 2.77719 6.32753 6.37318

Test Mean Dice 0.71712 0.87615 0.79773

Mean Hausdorff95 (mm) 4.97823 7.20086 6.47348

Fig. 5. Examples of segmentation result compared with ground truth Green:
edema, Yellow: non-enhancing solid core, Red: enhancing core (Color figure online)

3.3 Survival Prediction Result

Based on the segmentation result of brain tumor subregions, we extract features
from brain tumor sub-regions segmented from MRI scans and trained the sur-
vival prediction model as described above. Then we use the model to predict
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patient’s overall survival on validation set and test set. The predicted overall
survival is uploaded to the IPP for evaluation. We use two schemes for evalu-
ation: classification of subjects as long-survivors (>15 months), short-survivors
(<10 months), and mid-survivors (between 10 and 15 months) and median error
(in days). In test phase, we rank at second place out of 60+ teams. The evalua-
tion result is listed as follows (Table 4).

Table 4. Evaluation result of survival prediction

Stage Classification accuracy Median error

Validation 46.4% 217.92

Test 61.0% 181.37

4 Conclusion

In this paper, we present an automatic framework for prediction of survival in
glioma using multimodal MRI scans and clinical features. Firstly deep convolu-
tional neural network (CNN) is used to segment tumor region from MRI scans,
then radiomics features are extracted and combined with clinical features to
predict overall survival. For tumor segmentation, we use ensembles of three dif-
ferent 3D CNN architectures for robust performance through voting/majority
rule. This approach can effectively reduce model bias and boost performance.
For survival prediction, we extract shape features, first order statistics and tex-
ture features from segmented tumor sub-region, then use decision tree and cross
validation to select features. Finally, a random forest model is trained to predict
the overall survival of patients. On 2018 MICCAI BraTS Challenge, our method
ranks at second place and 5th place out of 60+ participating teams on survival
prediction task and segmentation task respectively, achieving a promising 61.0%
accuracy on classification of long-survivors, mid-survivors and short-survivors.
In the future, we will explore different network architectures and training strate-
gies to further improve our result. We will also design new features and optimize
our feature selection methods for survival prediction.
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Abstract. A new deep learning method is introduced for the auto-
matic delineation/segmentation of brain tumors from multi-sequence MR
images. A Radiomic model for predicting the Overall Survival (OS) is
designed, based on the features extracted from the segmented Volume
of Interest (VOI). An encoder-decoder type ConvNet model is designed
for pixel-wise segmentation of the tumor along three anatomical planes
(axial, sagittal and coronal) at the slice level. These are then combined,
using a consensus fusion strategy, to produce the final volumetric segmen-
tation of the tumor and its sub-regions. Novel concepts such as spatial-
pooling and unpooling are introduced to preserve the spatial locations
of the edge pixels for reducing segmentation error around the bound-
aries. We also incorporate shortcut connections to copy and concatenate
the receptive fields from the encoder to the decoder part, for helping
the decoder network localize and recover the object details more effec-
tively. These connections allow the network to simultaneously incorpo-
rate high-level features along with pixel-level details. A new aggregated
loss function helps in effectively handling data imbalance. The integrated
segmentation and OS prediction system is trained and validated on the
BraTS 2018 dataset.

Keywords: Deep learning · Convolutional neural network ·
Spatial-pooling · Brain tumor segmentation · Survival prediction ·
Radiomics · Class imbalance handling

1 Introduction

Gliomas are the most common and aggressive malignant brain tumors originat-
ing in the glial cells of the central nervous system. Based on their aggressiveness
in infiltration, they are broadly classified into two categories, viz. High-Grade
Glioma or GlioBlastoma Multiforme (HGG/GBM) and Low-Grade Glioma
(LGG). Magnetic Resonance Imaging (MRI) has been extensively employed over
the last few decades, in diagnosing brain and nervous system abnormalities;
mainly due to its improved soft tissue contrast. Typically the MR sequences
c© Springer Nature Switzerland AG 2019
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include T1-weighted, T2-weighted, T1-weighted Contrast enhanced (T1C), and
T2-weighed with FLuid-Attenuated Inversion Recovery (FLAIR). The rationale
behind using all four sequences lies in the fact that different tumor regions
become more visible in different sequences; thereby enabling more accurate
demarcation of the tumor [5,6].

Accurate delineation of tumor regions in MRI sequences is of great impor-
tance since it allows: (i) volumetric measurement of the tumor, (ii) monitoring
of tumor growth in patients between multiple MRI scans, over treatment span
and (iii) treatment planning with follow-up evaluation, including the predic-
tion of overall survival (OS). Manual segmentation of tumors from MRI is a
highly tedious, time-consuming and error-prone task, mainly due to factors such
as human fatigue, overabundance of MRI slices per patient, and an increasing
number of patients. Such manual operations often lead to inaccurate delineation.
The need for an automated or semi-automated Computer Aided Diagnosis thus
becomes apparent [7,8,15]. The large spatial and structural variability among
brain tumors makes automatic segmentation a challenging problem. The distinc-
tive segmentation of both HGG and LGG by the same model is also a difficult
proposition.

Inspired by the success of Convolutional Neural Networks (ConvNets) [9,12],
we develop a novel ConvNet model with spatial-pooling called Spatial-ConvNet.
This can preserve the edge information during automated segmentation of
gliomas from multi-sequence MRI data. The segmented Volume of Interest (VOI)
or tumor is used to extract two categories of Radiomic features [10,11,18], viz.
“semantic” and“agnostic”, for predicting the OS of patients. A new loss function
helps in class imbalance handling.

The rest of the paper is organized as follows. Section 2 provides details about
the data, preparation of patch database for the ConvNet training, the proposed
multi-planar ConvNet model with spatial-pooling layer, the aggregated loss func-
tion for imbalanced segmentation, and radiomic analysis of the segmented VOI
for OS prediction. Section 3 describes the experimental results of the segmenta-
tion and OS prediction, demonstrating their effectiveness both qualitatively and
quantitatively. Finally, conclusions are provided in Sect. 4.

2 Materials and Methods

In this section we discuss the BRATS 2018 data, and the steps of tumor seg-
mentation and survival rate prediction. The proposed segmentation method com-
prises of extraction of patches, training and testing of the segmentation model,
post-processing, radiomic feature extraction for overall survival prediction,
followed by training and testing of the classifier for OS prediction.

2.1 Dataset

Brain tumor MRI scan datasets and patient Overall Survival (OS) data, used
in this research, were provided by BraTS 18 Challenge [1–4,13]. It consists of
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210 HGG/GBM and 75 LGG glioma cases as training dataset and 66 combined
cases of HGG/GBM and LGG as validation dataset. The OS data was included
with correspondences to the pseudo-identifiers of the GBM/HGG imaging data
having 163 and 53 validation data points respectively. Each patient MRI scan
set consist of four MRI sequences or channels, encompassing native (T1) and
post-contrast enhanced T1-weighted (T1C), T2-weighted (T2), and T2 FLuid-
Attenuated Inversion Recovery (FLAIR) volumes, having 155 slices of 240×240
resolution images. The data is already aligned to the same anatomical tem-
plate, skull-stripped, and interpolated to 1 mm3 voxel resolution. The manual
segmentation of volume structures have been performed by experts following
the same annotation protocol, and their annotations revised and approved by
board-certified neuro-radiologists. Annotation labels included are the gadolin-
ium enhancing tumor (ET), the peritumoral edema (ED), and the necrotic and
non-enhancing tumor (NCR/NET). The predicted labels are evaluated by merg-
ing three regions, viz. whole tumor (WT: all the three labels), tumor core (TC:
ET and NCR/NET) and enhancing tumor (ET).

The OS data is defined in terms of days, and also includes the age of patients
along with their resection status. Only these subjects with resection status GTR
(Gross Total Resection) are considered for evaluating OS prediction. Based on
the number of survival days, the subjects are grouped into three classes viz.
long-survivors (>15 months), short-survivors (<10 months), and mid-survivors
(between 10 to 15 months).

2.2 Multi-planar ConvNet with Spatial-Pooling for Segmentation

MRI scans are volumetric and can be represented in three-dimensions using
multi-planar representation along axial (X-Z axes), coronal (Y -X axes), and
sagittal (Y -Z axes) planes. Taking advantage of this multi-view property, we
propose a deep learning based segmentation model that uses three separate Con-
vNets for segmenting the tumor along the three individual planes at slice level.
These are then combined using a consensus fusion strategy to produce the final
volumetric segmentation of the tumor and its sub regions. It is observed that
the integrated prediction from multiple planes is superior, in terms of accuracy
and robustness of decision, with respect to the estimation based on any single
plane. This is perhaps because of utilizing more information, while minimizing
the loss.

The ConvNet architecture, used for slice wise segmentation along each plane,
is an encoder-decoder type of network. The encoder or the contracting path
uses pooling layers to down sample an image into a set of high-level features,
followed by a decoder or an expanding part which uses the feature information
to construct a pixel-wise segmentation mask. The main problem with this type
of networks is that, during the down sampling or the pooling operation the
network loses spatial information. Up sampling in the decoder network then
tries to approximate this through interpolation. This produces segmentation
error around the boundary of the region-of-interest (ROI) or volume-of-interest
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(VOI). It is a major drawback in medical image segmentation, where accurate
delineation is of utmost importance.

In order to circumvent this problem we introduce an elitist spatial-max-
pooling layer, which can retain the maximum locations to be subsequently used
during unpooling through the spatial-max-unpooling layer. The procedure is
illustrated in Fig. 1. We also incorporate shortcut connections to copy and con-
catenate the receptive fields (after convolution block) from the encoder to the
decoder part, in order to help the decoder network localize and recover the object
details more effictively. These connections allow the network to simultaneously
incorporate high-level features with the pixel-level details. The entire segmenta-
tion model architecture is depicted in Fig. 2.
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Fig. 1. Spatial-pooling and unpooling operations.

Tumors are typically heterogeneous, depending on cancer subtypes, and con-
tain a mixture of structural and patch-level variability. Applying a ConvNet
directly to the entire slice has its inherent drawbacks. Since the size of each slice
is 240×240, therefore if we train the ConvNet on the whole image/slice then the
number of parameters to train will be huge. Moreover, very little difference is
observeable in adjacent MRI slices at the global level; whereas patches generated
from the same slice often exhibit significant dissimilarity. Besides, the segmen-
tation classes are highly imbalanced. Approximately 98% of the voxels belong
to either the healthy tissue or to the black surrounding area. The NCR/NET
volumes are of the lowest size amongst all the three classes, as depicted in Fig. 3.
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Fig. 2. Multi-planar ConvNet architecture for segmentation.

Fig. 3. Tumor sub-class distribution for a sample MRI slice.

Each ConvNet is trained on patches of size 128× 128× 4, extracted from all
four MRI sequences corresponding to a particular plane. A randomized patch
extraction algorithm, developed by us, is employed. The patch selection is done
using an entropy based criterion. The three ConvNets (along the three planes)
are trained end-to-end/pixel-to-pixel, based on the patches extracted from the
corresponding ground truth images. During testing the stack of slices are fed
to the model, to produce pixel-wise segmentation of the tumor along the three
planes. The training performance is evaluated using Dice overlap score [14], for
the three segmented sub-regions WT, ET and TC. Since the dataset is highly
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imbalanced therefore standard loss functions used in literature are not suitable
for training and optimizing the ConvNet. This is because most classifiers focus
on learning the larger classes, thereby resulting in poor classification accuracy
for the smaller classes. Hence we propose a new loss function, which is an aggre-
gation of two loss components; viz. – Generalized Dice loss [17] and Weighted
Cross-entropy [16].

2.3 Overall Survival Prediction Based on Radiomic Features

For the OS prediction task we extract two types of Radiomic features, viz.
“semantic” and “agnostic” [5]. The former includes attributes like size, shape,
location, vascularity, spiculation, necrosis; and the latter attempts to capture
lesion heterogeneity through quantitative descriptors like histogram, texture,
etc. We extracted 33 semantic and 50 agnostic features from each segmented
VOI. These are provided as input to a Multilayer Perceptron (MLP), having
two hidden layers, to predict the number of survival days; which is further used
to determine the survival class (short, mid or long).

3 Preliminary Experimental Results

The ConvNet models were developed using TensorFlow, with Keras in Python.
The experiments were performed on the Intel AI DevCloud platform having
cluster of Intel Xeon Scalable processors. Codes developed for our experiments
will soon be made available. The proposed segmentation model is trained and
validated on the corresponding training and validation datasets provided by the
BraTS 2018 [1–3] organizers.

The preliminary quantitative evaluation results obtained by our segmenta-
tion model on the BraTS 2018 training and validation datasets are displayed
in Table 1. The box-and-whisker plots in Fig. 4 reports the detailed quantitative
segmentation results generated on 66 patients from the BraTS 2018 validation
dataset. Quantitative metrics used for evaluating the segmentation results w.r.t.
the gold standard (in case of training) and through the Leaderboard/blind test-
ing (in case of validation) are (i) Dice score, (ii) sensitivity, (ii) specificity and
(iii) Hausdorff distance computed for WT, TC and ET. The box-and-whisker
plots report the minimum, lower quartile, median upper quartile and maximum.
Points which fall outside 1.5 times the interquartile range are considered as
outliers. It is evident from the box-and-whisker plots, that in most cases our
algorithm produces significantly good segmentation accuracy w.r.t the manual
segmentation by the radiologists for most of the cases. Qualitative segmentation
results, obtained by our method for sample HGG and LGG patients from the
BraTS 2018 training dataset and for a sample patient from the BraTS 2018
validation dataset, are shown in Figs. 5 and 6.
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Table 1. Performance evaluation of proposed method on the BraTS 2018 training and
validation datasets.

Evaluation metrics Dice Sensitivity Specificity Hausdorff95

Training ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.83 0.91 0.89 0.86 0.89 0.92 1.00 1.0 1.00 3.14 4.24 5.84

StdDev 0.16 0.08 0.10 0.17 0.11 0.09 0.00 0.00 0.00 5.00 7.94 12.31

Median 0.87 0.92 0.92 0.91 0.92 0.95 1.00 1.00 1.00 1.41 3 3

25quantile 0.80 0.90 0.86 0.84 0.87 0.92 1.00 1.00 1.00 1.41 2 2

75quantile 0.91 0.95 0.94 0.96 0.96 0.97 1.00 1.00 1.00 2.24 4.24 4.47

Validation Mean 0.77 0.88 0.80 0.84 0.86 0.79 1.00 1.00 1.00 4.29 4.90 6.59

StdDev 0.24 0.13 0.24 0.25 0.17 0.26 0.00 0.00 0.00 3.90 4.71 6.10

Median 0.86 0.91 0.90 0.90 0.91 0.91 1.00 1.00 1.00 2.00 3.16 4.12

25quantile 0.80 0.88 0.78 0.80 0.86 0.72 1.00 1.00 1.00 1.41 2.24 2.00

75quantile 0.90 0.93 0.94 0.97 0.95 0.96 1.00 1.00 1.00 2.87 5.10 9.11
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Fig. 4. Box-and-whisker plot of segmentation accuracy of the three sub-regions ET,
WT and TC observed with Dice score, Sensitivity, Specificity and Hausdorff95.

Preliminary results of the proposed OS prediction method is reported in
Table 2. We used 80% of the training data (130 patients) for training, and the
remaining 20% (33 patients) for validation. The model was finally tested on
28 patients, having resection status GTR from the validation set, through the
Leaderboard blind testing.
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Table 2. OS prediction result on the BraTS 2018 validation dataset.

Accuracy MSE medianSE stdSE SpearmanR

0.54 180959.429 44665.0 340939.903 0.273

Fig. 5. Example segmentation result for five patients from the BraTS 2018 training
dataset. The green label is edema, the red label is nonenhancing or necrotic tumor
core, and the yellow label is enhancing tumor core. (Color figure online)
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Fig. 6. Segmentation result for a sample patient (ID: BraTS18 CBICA AAM 1) from
BraTS 2018 validation data. The green label is edema, the red label is nonenhancing or
necrotic tumor core, and the yellow label is enhancing tumor core. The Dice coefficients
for the ET, WT and TC segmentation for this patient are 0.92, 0.90, 0.93 respectively
(Color figure online)

4 Conclusion

We have designed a new deep learning based method for the automatic delin-
eation/segmentation of brain tumors from multi-sequence MR images. The
encoder-decoder type ConvNet model for pixel-wise segmentation performed
better than other patch-based models. Integrated prediction from multiple
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anatomical planes (axial, sagittal and coronal) was superior, in terms of accu-
racy and robustness of decision, with respect to the estimation based on any
single plane. Novel concepts such as spatial-pooling and unpooling reduced seg-
mentation error around the boundary of the VOI. We also incorporated shortcut
connections to copy and concatenate the receptive fields, from the encoder to
the decoder parts, to help the decoder network localize and recover the object
details more effectively. Very good validation accuracy was obtained for the seg-
mentation task. We are currently exploring some other new features and feature
selection methods, in order to improve the accuracy of predicting OS.
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Abstract. This article presents a convolutional neural network for the
automatic segmentation of brain tumors in multimodal 3D MR images
based on a U-net architecture. We evaluate the use of a densely connected
convolutional network encoder (DenseNet) which was pretrained on the
ImageNet data set. We detail two network architectures that can take
into account multiple 3D images as inputs. This work aims to identify
if a generic pretrained network can be used for very specific medical
applications where the target data differ both in the number of spatial
dimensions as well as in the number of inputs channels. Moreover in order
to regularize this transfer learning task we only train the decoder part
of the U-net architecture. We evaluate the effectiveness of the proposed
approach on the BRATS 2018 segmentation challenge [1–5] where we
obtained dice scores of 0.79, 0.90, 0.85 and 95% Hausdorff distance of
2.9 mm, 3.95 mm, and 6.48 mm for enhanced tumor core, whole tumor
and tumor core respectively on the validation set. This scores degrades
to 0.77, 0.88, 0.78 and 95% Hausdorff distance of 3.6 mm, 5.72 mm, and
5.83 mm on the testing set [1].

Keywords: Brain tumor · Convolutional neural network ·
Densely connected network · Image segmentation

1 Introduction

Automatic segmentation of brain tumor structures has a great potential for
surgical planning and intraoperative surgical resection guidance. Automatic seg-
mentation still poses many challenges because of the variability of appearances
and sizes of the tumors. Moreover the differences in the image acquisition pro-
tocols, the inhomogeneity of the magnetic field and partial volume effects have
also a great impact on the image quality obtained from routinely acquired 3D
MR images. However brain gliomas can be well detected using modern magnetic
resonance imaging. The whole tumor is particularly visible in T2-FLAIR, the
tumor core is visible in T2 and the enhancing tumor structures as well as the
necrotic parts can be visualized using contrast enhanced T1 scans. An example
is illustrated in Fig. 1.

In the recent years, deep neural networks have shown to provide state-of-the-
art performance for various challenging image segmentation and classification
c© Springer Nature Switzerland AG 2019
A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 105–115, 2019.
https://doi.org/10.1007/978-3-030-11726-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11726-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-11726-9_10
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Fig. 1. Example of images from the BRATS 2018 dataset. From left to right: T1 image,
T2 image: the whole tumor and its core are visible, T2 FLAIR image: discarding the
cerebrospinal fluid signal from the T2 image highlights the tumor region only, T1ce:
contrast injection permits to visualize the enhancing part of the tumor as well as the
necrotic part. Finally the expected segmentation result is overlaid on the T1ce image.
The edema is shown in red, the enhancing part in white and the necrotic part of the
tumor is shown in blue. (Color figure online)

problems [6–10]. Medical image segmentation problems have also been success-
fully tackled by such approaches [11,12,14,15,19]. However training deep neural
networks can still be challenging in the case of a limited number of training
data. In such situations it is often necessary to limit the complexity and the
expressivity of the network. It has been observed that initializing weights of a
convolutional network that has been pretrained on a large data set improves its
accuracy on specific tasks where a limited number of training data is available
[16]. We evaluate in this work the accuracy of a U-net architecture [11,12] where
the encoder is a densely connected convolutional network [17] which has been
pretrained on the ImageNet data set [18]. We study an extreme case of transfer
learning where we fix the weights of the pretrained DenseNet encoder. Moreover
we consider a segmentation problem where the input data dimensionality does
not match the native input dimensions of the pretrained network. We will thus
make use of a fixed pretrained network trained on 2D color images in order to
segment 3D multimodal medical images. We will see that fixing the weights of
the encoder is a simple but effective way to regularize the segmentation results.

2 Method

This section details the proposed network architectures, the loss function used
to train the network as well as the training data preparation.

2.1 Convolutional Neural Network Architectures

The network processes 2D images of size (224, 224) pixels containing three chan-
nels. An input image is composed of three successive slices of the input volume
along one of the three anatomical orientations: either along the coronal, the
sagittal or the transverse plane. We use a pretrained network that has been
designed to take a single 2D color image as input. In order to be able to process
multi modal inputs, we have designed two distinct architectures:
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– the first solution (M1) consists in removing the stem of the original DenseNet
and only make use of the following convolutional layers which input is a tensor
of size (64, 112, 112). This architecture is illustrated in Fig. 2. The proposed
network is composed of a “precoder” which produces an adequate high dimen-
sional input tensor for the pretrained network. This architecture is illustrated
in Fig. 3. It processes independently each input images and concatenates the
resulting tensors. This approach is very flexible and could take as input an
image of any dimensions.

Fig. 2. Network architecture (M1). The network is composed of a “precoder” produc-
ing a high order tensor which is fed to a pretrained densely connected convolutional
network. Several intermediate layers are then used to reconstruct a high resolution
segmentation map.

Fig. 3. Precoder architecture (M1). The precoder architecture process independently
the input images by a sequence of multiple residual blocks (R1, R2) and concatenates
the resulting output tensors. A residual block (R) is also illustrated. All convolution
operations are computed with (3 × 3) kernels.

– the second solution (M2) consists in evaluating the different input modality
separately through the original DenseNet encoder. Each input image modality
is processed with the same encoder which shares its weights across the differ-
ent modalities. Outputs at different scales are then concatenated and fed to
the decoder. This architecture is illustrated in Figs. 4 and 6. This architecture
does not permit to vary the number of input slices but has the advantage to
fully leverage the original DenseNet weights.
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For both architectures, the decoder consists in upsampling a low resolution
layer, concatenate it with a higher resolution layer before applying a sequence
of convolution operations. The first convolutional layer reduces the number of
input channels by applying a (1× 1) convolution. Following layers are composed
of spatial (3 × 3) convolutions with residual connections.

Fig. 4. Encoder architecture (M2). The network processes the different input image
modality with the same encoder, a DenseNet composed of 121 layers. Intermediate
layers of the encoder are used to feed the decoder network.

We give here additional details about the network architectures:

– each sample 3D image y is normalised so that voxels values falls in the interval
[0, 1].

– batch normalisation is performed after each convolutional layer using a run-
ning mean and standard deviation computed on 5000 samples:

– each layer is composed of residual connections as illustrated in Fig. 6,
– the activation function used in the network is a rectified linear unit,
– convolutions are computed using reflective border padding,
– upsampling is performed by nearest neighbor interpolation (Fig. 5).

2.2 Training

We used the BRATS 2018 training and validation sets for our experiments [2–5].
The training set contains 285 patients (210 high grade gliomas and 75 low grade
gliomas). The BRATS 2018 validation set contains 66 patients with brain tumors
of unknown grade with unknown ground truth segmentations. Each patient con-
tains four modalities: T1, T1 with contrast enhancement, T2 and T2 FLAIR. The
aim of this experiment is to segment automatically the whole tumor, the tumor
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Fig. 5. Decoder architecture of the first model (M1). The decoder consists in a sequence
of upsampling and residual convolution operations in order to produce a high resolution
segmentation map.

core and the tumor enhancing parts. Note that the outputs of our neural network
corresponds directly to the probability that a pixel belongs to a tumor, the core
of a tumor and the enhancing part of the tumor. The last layer of the proposed
architecture is thus composed of three independent (1 × 1) convolutional layers
because we directly model the problem as a multi-label segmentation problem
where a pixel can be assigned to multiple classes. Note that only weights of
the “precoder” and the decoder are learned. Original weights of the pretrained
DenseNet-121 stay fixed during the training procedure.

The network produces a segmentation maps by minimizing a loss function
defined as the combination of the mean cross entropy (mce) and the mean Dice
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coefficients (dce) between the ground truth class probabilities and the network
estimates:

ce =
∑
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∑
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yk
i log(pki )

)
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Fig. 6. Decoder architecture of the second model (M2). The decoder concatenates the
encoding layers of each modalities. The segmentation is produced with a sequence of
upsampling and convolution operations.
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Note that we exclude the background class for the computation of the dice
coefficient. The network is implemented using Microsoft CNTK1. We use stochas-
tic gradient descent with momentum to train the network and L2 weights reg-
ularization. We use a cyclic learning rate where the learning rate varies from
0.0002 to 0.00005. An example of the evolution of the accuracy and the learning
rate is illustrated in Fig. 7. We train the network for 160 epochs on a Nvidia
GeForce GTX 1080 GPU. A full epoch consists in analyzing all images of the
BRATS training data set and extracting 20 2D random samples from the 3D
MR volumes.

Fig. 7. Network training. Illustration of the cyclic learning rate schedule (top). Evo-
lution of the sum of the dice coefficients of the three classes during training (bottom).

2.3 Testing

Segmentation results are obtained by evaluating the network along slices
extracted from the three anatomical orientations and averaging the results. A
segmentation map is then obtained by assigning to each voxel the label having
the maximum probability among the three classes: tumor, tumor core or enhanc-
ing tumor. Finally connected components composed of less than 100 voxels are
removed. We are not making use of test time image augmentation or ensembling
methods.

1 https://www.microsoft.com/en-us/cognitive-toolkit/.

https://www.microsoft.com/en-us/cognitive-toolkit/
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3 Results

We uploaded our segmentation results to the BRATS 2018 server2 which evalu-
ates the segmentation and provides quantitative measurements in terms of Dice
scores, sensitivity, specificity and Hausdorff distances of enhanced tumor core,
whole tumor, and tumor core. Results of the BRATS 2018 validation phase
are presented in Table 1. The validation phase is composed of 66 datasets with
unknown ground truth segmentations.

Table 1. BRATS 2018 Validation scores, dice coefficients and the 95% Hausdorff dis-
tances in mm. Our results corresponds to the team name “Stryker”. (M1) results
corresponds to the precoder approach, (M2) corresponds to the direct use of a fixed
pretrained DenseNet-121.

Dice ET Dice WT Dice TC Dist. ET Dist. WT Dist. TC

Mean M1 0.768 0.892 0.815 3.85 4.85 7.56

Mean M2 0.792 0.899 0.847 2.90 3.95 6.48

StdDev M1 0.241 0.065 0.187 5.43 4.28 12.56

StdDev M2 0.223 0.074 0.130 3.59 3.38 12.06

Median M1 0.849 0.905 0.889 2.23 3.67 3.74

Median M2 0.864 0.919 0.891 1.73 3.08 3.30

25% quantile M1 0.792 0.881 0.758 1.68 2.23 2

25% quantile M2 0.789 0.890 0.796 1.41 2.23 2

75% quantile M1 0.888 0.933 0.930 3.16 5.65 8.71

75% quantile M2 0.906 0.939 0.932 2.82 4.41 6.65

Results of the BRATS 2018 testing phase are presented in Table 2. The testing
phase is composed of 191 datasets with unknown ground truth segmentations.

Table 2. BRATS 2018 Testing scores, dice coefficients and the 95% Hausdorff distances
in mm.

Dice ET Dice WT Dice TC Dist. ET Dist. WT Dist. TC

Mean M2 0.776 0.878 0.786 3.63 5.72 5.83

StdDev M2 0.223 0.104 0.257 5.29 7.31 7.93

Median M2 0.828 0.908 0.891 2.23 3.60 3.46

25% quantile M2 0.749 0.857 0.796 1.41 2.23 2.1

75% quantile M2 0.895 0.935 0.924 3.0 6.08 6.13

2 https://www.cbica.upenn.edu/BraTS18/lboardValidation.html.

https://www.cbica.upenn.edu/BraTS18/lboardValidation.html
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Fig. 8. Segmentation result obtained on a image of the testing data.

4 Discussion

The validation and testing results obtained on the BRATS segmentation chal-
lenge show that the proposed approaches are indeed efficient. Despite the fact
that the used encoder has been trained on natural color images, it turns out that
the learned features can be leveraged for a large class of applications including
segmentation of medical images. Using a fixed encoder is thus an effective way to
regularize the neural network. Note that we did not make use of advanced image
augmentations or ensembling methods. The two approaches produce comparable
results and have both advantages and drawbacks. The model (M1) is more versa-
tile since it can use any number of input modalities (channels) and any number
of spatial dimensions. However current experiments shows that the model (M2),
despite its simplicity, produces slightly better results. A major limitation of the
proposed approach is the lack of 3D spatial consistency (Fig. 8).
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5 Conclusion

We have studied an extreme version of transfer learning by using a fixed pre-
trained network trained on 2D color images for segmenting 3D multi modal med-
ical images. We have presented two simple approaches for leveraging pretrained
networks in order to perform automatic brain tumor segmentation. We obtained
competitive scores on the BRATS 2018 segmentation challenge3. Future work
will concentrate on several possible improvements by additionally fine tuning
the pretrained encoder. A fixed large expressive 2D neural network is thus an
interesting alternative to a relative small task specific 3D neural networks.
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Abstract. For many segmentation tasks, especially for the biomedical
image, the topological prior is vital information which is useful to exploit.
The containment/nesting is a typical inter-class geometric relationship.
In the MICCAI Brain tumor segmentation challenge, with its three hier-
archically nested classes ‘whole tumor’, ‘tumor core’, ‘active tumor’, the
nested classes relationship is introduced into the 3D-residual-Unet archi-
tecture. The network comprises a context aggregation pathway and a
localization pathway, which encodes increasingly abstract representation
of the input as going deeper into the network, and then recombines these
representations with shallower features to precisely localize the interest
domain via a localization path. The nested-class-prior is combined by
proposing the multi-class activation function and its corresponding loss
function. The model is trained on the training dataset of Brats2018,
and 20% of the dataset is regarded as the validation dataset to deter-
mine parameters. When the parameters are fixed, we retrain the model
on the whole training dataset. The performance achieved on the valida-
tion leaderboard is 86%, 77% and 72% Dice scores for the whole tumor,
enhancing tumor and tumor core classes without relying on ensembles
or complicated post-processing steps. Based on the same start-of-the-art
network architecture, the accuracy of nested-class (enhancing tumor) is
reasonably improved from 69% to 72% compared with the traditional
Softmax-based method which blind to topological prior.

Keywords: Topological prior · Nested classes · 3D-residual-Unet ·
Multi-class activation function

1 Introduction

Glioma are the most common family of brain tumors, and forms some of highest-
mortality and economically costly diseases of brain cancer [1–3]. The diagnosed
method is highly relayed on manual segmentation and analysis of multi-modal
MRI scans by bio-medical experts. Nevertheless, this diagnosed way is severely
c© Springer Nature Switzerland AG 2019
A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 116–127, 2019.
https://doi.org/10.1007/978-3-030-11726-9_11
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limited by the labor-intensive character of the manual segmentation process and
disagreement or mistakes between manual segmentation. Consequently, there
exists a great need for a fast and robust automated segmentation algorithm.
Convolutional neural networks (CNNs) have been verified to be extremely effec-
tive for a variety of semantic segmentation tasks [4].

While CNN segmentation algorithms are abundant in biomedical imaging,
only very few make use of nested-topological prior information. Among the few
that do [5–11], we find three different approaches. First, the use of cascaded
algorithms where the network consists of successive segmentation networks. Sec-
ond, the information on the nested-classes is incorporated into the loss function,
imposing penalties on solutions that do not respect the nested geometry rela-
tions. Third, Markov random fields are used to formalizing class relationship in
the post-processing of the network output. Here, we make use of a new activation
function [12] that is directly implementing class hierarchy in the network training
and generalize it to 3 nested classes. For the glioma labels we assume that active
tumor regions are always contained in the tumor core which is surrounded by
the tumor edema, resulting in a hierarchical three-class model. In sharp contrast
with nested-class method, the softmax-based method of multi-class ignores the
geometric prior between different classes, and assumes the classes are mutually-
exclusive, meaning one pixel cannot belong to different classes at the same
time, which absolutely discards the topological information and sometimes leads
the unreasonable segmentation results. The comparison of Dice score criteria
between two different methods is implemented and it obviously indicates the
nested-class method achieves higher accuracy than the softmax-based method,
especially for the internal-classes.

In the following, we introduce a brief overview of start-of-the-art 3D-residual
U-net architecture and multi-class-nested activation and loss function. We then
propose and evaluate our model architectures for Brats tumor segmentation.
Finally, we implement the comparison between two main avenues and illustrate
the multi-level activation performs better especially in the inter-class.

2 Methodology

2.1 Network Architecture

The nested-classes relationship between different labels are shown in Fig. 2. The
general network structure shown in Fig. 1 is stemming from the previously used
glioma segmentation network by Isensee [13] to process large 3D input blocks of
144 × 144 × 144 voxels. The original network is inspired by the U-net [14] which
allows the network to intrinsically recombine different scales throughout the
entire network. This vertical depth is set as 5, which balances between the spatial
resolution and feature representations. The context module is a pre-activation
residual block, and is connected by 3×3×3 convolutions with input stride 2. The
purpose of the localization pathway is to extract features from the lower levels of
the network and transform them to a high spatial resolution by means of a simple
upscale technology. The upsampled features and its corresponding level of the
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context aggregation feature are recombined via concatenation. Furthermore, the
localization module, consisting of a 3 × 3 × 3 convolution followed by a 1 × 1 × 1
convolution, is designed to gather these features.

144x144x144
Input 
image 

32 32

64 64

1616

128 128
C

C

C

C

3x3x3convolution

Context module

3x3x3stride 2 convolution

Upsampling module

Localization module

Segmentation layer

Multi-level Sigmold

Element-wise sum

C concatenation

upscale

256 256

128

128
64

64

32

32

16

32

Fig. 1. Network architecture from [13]: Context pathway (left) aggregates high level
information; Localization pathway (right) localizes precisely

The deep supervision is introduced in the localization pathway by integrating
segmentation layers at different levels of the network and combining them via
elementwise summation to form the final network output. The output activa-
tion layer is multi-level Sigmoid layer instead of softmax layer in the Isensee’s
network which converting the multi-class problem to binary ones. Intrinsically,
the multi-level activation is the assemble of multi-sigmoid function and then
straightforwardly maps to multi-class segmentation incorporating the topologi-
cal prior. Consequently, it overcomes the softmax-based method’s shortcoming
which is blind to the geometric prior.

2.2 Crop Preprocessing

For 3D network architecture, the larger patch size of training dataset contains
more continuous context knowledge and localization information which are ben-
eficial to improve the segmentation accuracy. In order to acquire to the larger
cube size patch of 3D image, the valuable knowledge in the MRI is extracted as
much as possible while the meaningless information is cropped. Then the crop
processing is implemented, and the maximum size of cube patch is selected as
[144, 144, 144].

The crop preprocessing equation is defined as:

array = [amin − (bsize − a)/2 : amin + (bsize + a)/2]
a = amax − amin

(1)
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Tumor

Tumor core

ET

Fig. 2. Schematic description of the nesting of classes in the BRATS challenge, which
respects the following hierarchy: Enhancing Tumor (ET) ∈ Tumor core ∈ Tumor

where amin and amax are the min and max non-zero information index of MRI
image, and a represents the length of non-zero information. bsize is the cube
patch size and selected as 144.

The index is recorded and used in the image post-processing stage to recov-
ery back to the original shape [155, 240, 240]. However, a little of meaningful
information which exceeds the cube patch size 144 is unavoidably ignored and
have little effect on the segmentation result. In order to equally compare the
softmax-based with the multi-level method, no data augmentation operation is
used in the stage of image pre-processing.

Threshold1

Threshold2

Threshold3

Fig. 3. Multi-class activation function, Eq. (1) with m + 1 = 4, h= 0.8 and k = 10
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2.3 Multi-level Method

Here, we use one output channel and a multi-class-nested activation function, as
first proposed in [12]. The multi-level method is inspired by continuous regres-
sion, and thereby generalizing logistic regression to hierarchically-nested classes.
It is shown in Fig. 3 and defined as

a(x) =
m∑

n=1

σ(k[x + h(n − m + 1
2

)]) (2)

Where σ is the sigmoid function, k is the steepness and h is the spacing
between consecutive Sigmoids. For Brain tumor segmentation challenge 4-classes
nested label case, we have m + 1 = 4, and we take h = 0.5 and steepness = 10.
The corresponding loss function, called Modified Cross-Entropy (MCE) in [12],
is defined as

LMCE = − 1
Ntot

∑

pixel i

∑

classes c

yc
i w

clog(P c[a(xi)]) (3)

where wc is the weight of corresponding label, which we take as wcα(wcα =
(Ntot

Nc
)α), where Ntot is the sum number of pixels, Nc the number of pixels in

each class, and where yc = 1 for the ground-truth label c of pixel i and yc = 0
otherwise. Furthermore, the mapping function P c is defined as

P c=0(a) = 1 − a/3

P c=1(a) = aΘ(1 − a) + (3 − a)/2Θ(a − 1)

P c=2(a) = a/2Θ(2 − a) + (3 − a)Θ(a − 2)

P c=3(a) = a/3.

(4)

Where Θ(x) is the Heaviside function. The other one loss function, called
Normalized Cross-Entropy (NCE) in [12], is defined as

LNCE = − 1
Ntot

∑

pixel

∑

i classes

yc
i w

clog(Θc[a(xi)]) (5)

Furthermore, the mapping function Qc is defined as

Qc=0(a) = s(1 − a)

Qc=1(a) = aΘ(1 − a) + s(2 − a)Θ(a − 2)

P c=2(a) = s(a − 1)Θ(2 − a) + (3 − a)Θ(a − 2)

P c=3(a) = s(a − 2).

(6)

where s is the softplus function, and Θ(x) is the Heaviside function.
Weighted modified and Normalized cross-entropy losses are naturally com-

bined with standard cross-entropy loss and mitigate the class unbalance problem.
They also have the ability to encode of any hierarchical and mutually-exclusive
topological relationship of classes in a network architecture.
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2.4 Evaluation Metrics

In the task for BRATS, the number of positives and negatives are highly unbal-
anced. Consequently, four typical different metrics are used by the organizers to
evaluate the performance of the algorithm and then rank the different teams.

Give a ground-truth segmentation map G and a segmentation map corre-
sponding one class generated by the algorithm. The four evaluation criteria are
defined as following.

Dice similarity coefficient (DSG):

DSC =
2(G ∩ P )
|G| + |P | (7)

The Dice similarity coefficient measures the overlap in percentage between
G and P.

Hausdorff distance (95th percentile) is defined as:

H(G,P ) = max(supinfx∈G,y∈P d(x, y), supinfy∈P,x∈Gd(x, y)) (8)

where d(x, y) denotes the distance of x and y, sup denotes the supremum and
inf for the infimum. This measures how far two subsets of a metric space are
from each other. As used in this challenge, it is modified to obtain a robustified
version by using the 95th percentile instead of the maximum (100 percentile)
distance.

Sensitivity (also called the true positive rate) measures the proportion of
actual positives that are correctly identified. Specificity (also called the true
negative rate) measures the proportion of actual negatives that are correctly
identified. Assume P is the number of real positive prediction pixel of lesion and
N is the number of real negative prediction pixel of lesion. Condition positive
P consists with true positive TP and false negative FN . Besides, the condition
negative N is also divided into TN true negative and FP false positive.

Then, the metrics of Sensitivity and Specificity are illustrated as:

Sensitivity =
TR

P
=

TP

TP + FN
(9)

Specificity =
TN

N
=

TN

TN + FP
(10)

Then the values of those four metrics were computed by the organizers inde-
pendently and made available in the validation leaderboard.

3 Experiment Results

In BRATS 2018 dataset [15–19], there are four types, Necrotic core, Edema,
Non-enhancing core and Enhancing core that form the three tumor classes
in Fig. 2. The dataset contains 4 different modalities for MRI, native (T1),
post-contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid Attenuated
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(b) Flair image (c) Prediction (d) Ground-truth(a) T1image

Fig. 4. Segmentation results, for five different validation cases. The tumor class is
depicted in red, tumor core in green and enhancing tumor in blue. (Color figure online)

Inversion Recovery (FLAIR) which are all used as different input channels. We
train the networks using ADAM optimizer with an initial learning rate of 0.0005,
and to regularize the network, we use early stopping when the precision on the
20% of the training dataset reserved for validation is no longer improved, and
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dropout (with rate 0.3) in all residual block before the multi-class sigmoid func-
tion. Some slices of segmentation results containing the tumor, tumor core and
enhancing core are shown in Fig. 4. We observe that the topology geometry
between different labels is constrained to the nested-classes relationship, conse-
quently avoiding errors stemming from the lack of topological prior.

Table 1. Validation results presented on the leaderboard

Dice score

Enhancing
core

Whole
tumor

Tumor
core

Weight
scheme

Multi-level (MCE) 0.719 0.857 0.769 0.4

Multi-level (NCE) 0.676 0.857 0.755 0.4

Multi-level (NCE) 0.633 0.837 0.736 0.5

Multi-level (NCE) 0.655 0.856 0.758 0.3

Softmax-based method 0.691 0.861 0.763 -

Table 2. Quantitative evaluation of Dice score

Dice score Enhancing core Whole tumor Tumor core

Mean 0.71965 0.85685 0.76906

StdDev 0.28526 0.09802 0.21962

Median 0.84268 0.87823 0.84325

25quantile 0.6889 0.83379 0.70743

75quantile 0.8876 0.90895 0.91292

The segmentation result is severely affected by highly unbalanced problems
existing in the Brats dataset. As class imbalance in a data set increases, the
performance of a neural net trained on that data has been shown to decrease
dramatically [20]. In order to mitigate this issue, many methods [21–23] were pro-
posed to modify the loss function to alleviate this problems. Here, the weighted
cross entropy incorporating the nested-class information is proposed and inves-
tigated. We experimented with different weighting schemes (α = 1, 0.5, 0.4, 0.3)
and with the different losses (MCE and NCE) proposed in [12]. The best per-
forming combination turned out to be α = 0.4 and MCE loss function. The seg-
mentation thresholds to determine the boundaries between classes, were set to
[0.95, 1.65, 2.2] on the validation process. For this final configuration, we reached
Dice scores of 86% for the complete tumor, 77% for the tumor core and 72% for
the enhancing core as presented in Table 1. The weighted-modified-cross-entropy
performs much better than the result achieved by normalized cross-entropy, and
weight scheme affects the segmentation result severely since the extraordinary
unbalance problem. The different weight schemes [0.5, 0.4, 0.3] are compared and



124 X. Hu et al.

the optimal weight scheme is taken as 0.4. In comparison with the softmax-based
method based on the same network architecture proposed by Isensee without
ensembles operation, any complicated image pre-processing and post-processing
steps and extra training dataset, it indicates that the Dice score of nested-class
(enhancing core) drastically improved from 0.691 to 0.719 while the Dice core of
whole tumor and tumor core almost remains at same extent. The quantitative
evaluation (Mean, std, Median, 25%, 75% quantile) of Dice score of enhancing
core and whole tumor and tumor core are showed in Table 2. And other evalua-
tion metrics (the proportion of actual positives correctly identified—Sensitivity,
the proportion of actual negatives correctly identified—Specificity and Haus-
dorff95) are listed in Table 3.

Table 3. Sensitivity, Specificity and Hausdorff95 results presented on the leaderboard

Mean Enhancing core Whole tumor Tumor core

Sensitivity 0.74119 0.93916 0.78743

Specificity 0.9974 0.98715 0.99591

Hausdorff95 5.50007 10.84397 9.98557

3.1 Threshold Scheme Definition and Analysis

Setting the optimal threshold is an important component of the multi-class
segmentation task, and it is straightforwardly linked to segmentation bound-
ary. From the activation function (4 nested-class sigmoid function) Fig. 3, the 4
classes segmentation problem is corresponding with the threshold scheme with
3 parameters [Threshold-1, Threshold-2, Threshold-3]. The threshold scheme is
optimally chosen during the validation procedure, and then fixed and applied
into test dataset.

In order to analyze how the threshold affects the segmentation accuracy,
the relationship between boundary threshold and Dice score is illustrated in
Fig. 5. The target threshold is changed to the value taken from a specific inter-
val which is considered to be possible to achieve optimal segmentation result
when other thresholds are fixed at the optimal value. The criteria Dice score of
three classes is very sensitive to the threshold-3 value compared with other two
threshold indexes, that it may drop into Dice score valley within interval [2.2,
2.4]. The threshold-2 index has little impact on the Dice score of whole classes
except for threshold greater than 1.8. Consequently, it is easier to make an opti-
mal threshold scheme after determining indexes of threshold-3 and threshold-2.
After experiment and optimization, the suitable threshold scheme in the Brats
challenge is selected as [0.95, 1.65, 2.2].
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Fig. 5. Boundary division of threshold scheme

4 Conclusions

In this paper we applied the technique of multi-level activation to the nested
classes segmentation of glioma. The results of our experiments indicate that the
multi-level activation function and its corresponding loss function are efficient
compared to Softmax output layer based on the same network framework. Using
the MCE loss function and a reweighting scheme with power-law = 0.4, we obtain
Dice scores 86% for complete tumor, 77% for tumor core and 72% for enhancing
core on the validation leaderboard of the 2018 BRATS challenge, proving the
applicability of the multi-level activation scheme. Finally, this activation could
be combined with other network architectures. Using it with the best performing
architecture of the BRATS challenge could even lead to further improved results.
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Abstract. This paper introduces a novel methodology to integrate
human brain connectomics and parcellation for brain tumor segmen-
tation and survival prediction. For segmentation, we utilize an existing
brain parcellation atlas in the MNI152 1mm space and map this parcella-
tion to each individual subject data. We use deep neural network archi-
tectures together with hard negative mining to achieve the final voxel
level classification. For survival prediction, we present a new method for
combining features from connectomics data, brain parcellation informa-
tion, and the brain tumor mask. We leverage the average connectome
information from the Human Connectome Project and map each subject
brain volume onto this common connectome space. From this, we com-
pute tractographic features that describe potential neural disruptions
due to the brain tumor. These features are then used to predict the over-
all survival of the subjects. The main novelty in the proposed methods
is the use of normalized brain parcellation data and tractography data
from the human connectome project for analyzing MR images for seg-
mentation and survival prediction. Experimental results are reported on
the BraTS2018 dataset.

Keywords: Brain tumor segmentation · Brain parcellation ·
Group normalization · Hard negative mining · Ensemble modeling ·
Overall survival prediction · Tractographic feature

1 Introduction

Glioblastomas, or Gliomas, are one of the most common types of brain tumor.
They have a highly heterogeneous appearance and shape and may happen at
any location in the brain. High-grade glioma (HGG) is one of the most aggres-
sive types of brain tumor with median survival of 15 months [17]. There is a
significant amount of recent work on brain tumor segmentation and survival
prediction. Kamnitsas et al. [11] integrate seven different 3D neural network
c© Springer Nature Switzerland AG 2019
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models with different parameters and average the output probability maps from
each model to obtain the final brain tumor mask. Wang et al. [20] design a hier-
archical pipeline to segment the different types of tumor compartments using
anisotropic convolutional neural networks. The network architecture of Isensee
et al. [8] is derived from a 3D U-Net with additional residual connections on con-
text pathway and additional multi-scale aggregation on localization pathways,
using the Dice loss in the training phase to circumvent class imbalance. For the
brain tumor segmentation task, we propose a methodology to integrate multiple
DeepMedics [12] and patch-based 3D U-Nets adjusted from [5] with different
parameters and different training strategies in order to get a robust brain tumor
segmentation from multi-modal structural MR images. We also utilize the exist-
ing brain parcellation to bring location information to the patch-based neural
networks. In order to increase the diversity of our ensemble, 3D U-Nets with
dice loss and cross-entropy loss are included. The final segmentation mask of the
brain tumor is calculated by taking the average of the output probability maps
from each model in our ensemble.

For the overall survival (OS) prediction task, Shboul et al. [16] extract 40
features from the predicted brain tumor mask and use a random forest regression
to predict the glioma patient’s OS. Jungo et al. [10] extract four features from
each subject and use a support vector machine (SVM) with radial basis function
(RBF) kernel to classify glioma patients into three different OS groups. In this
paper, we propose a novel method to extract the tractographic features from
the lesion regions on structural MR images via an average diffusion MR image
which is from a total of 1021 HCP subjects [19] (Q1-Q4, 2017). We then use
these tractographic features to predict the patient’s OS with a SVM classifier
with linear kernel.

2 Glioma Segmentation

2.1 Materials

The Brain Tumor Segmentation (BraTS) 2018 dataset [1–3,14] provides 285
training subjects with four different types of MR images (MR-T1, MR-T1ce,
MR-T2 and MR-FLAIR) and expert-labeled ground-truth of lesions, including
necrosis & non-enhancing tumor, edema, and enhancing tumor. The dataset
consists of 66 validation subjects and 191 test subjects with four different types of
MR images. These MR images are co-registered to the same anatomical template,
interpolated to the same resolution (1 mm3) and skull-stripped. For each subject,
a standard z-score normalization is applied within the brain region as our pre-
processing step for brain tumor segmentaion.

2.2 Brain Parcellation Atlas as a Prior for Tumor Segmentation

Current state-of-the-art deep network architectures [8,11,20] for brain tumor
segmentation do not consider location information. However, from Fig. 1, it is
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clear that the lesions are not uniformly distributed in different brain regions. This
distribution is computed by dividing the total volume of the lesions by the total
volume of the corresponding brain parcellation region. Our proposed method
(Fig. 2) explicitly includes the location information as input into a patch-based
neural network. First, we register the brain parcellation atlas to the subject space
using FLIRT [9] from FSL. This registration enables associating each subject
voxel with a structure label indicating the voxel location normalized across all
subjects. Thus, the input to the neural network will include both the image data
and the corresponding parcellation labels.

Fig. 1. The percent of brain lesion types observed in different parcellation regions of
the Harvard-Oxford subcortical atlas [6]. The x-axis indicates the parcellation label.
Regions not covered by the Harvard-Oxford subcortical atlas are in label 0.

2.3 Network Architecture and Training

We integrate multiple state-of-the-art neural networks in our ensemble1 for
robustness. Our ensemble combines 26 neural networks adapted from [5,12]. The
detailed network architecture and training method for each model is shown in
Table 1. Each 3D U-Net uses group normalization [21] and each DeepMedic uses
batch normalization in our ensemble. We utilize a hard negative mining strategy
to solve the class imbalance problem while we train a 3D U-Net with cross-
entropy loss. Finally, we take the average of the output probability maps from
each neural network and get the final brain tumor segmentation. The average
training time for each DeepMedic is approximately 3 h and for each 3D U-Net
is approximately 12 h, and the average testing time for a subject is approxi-
mately 20 min on a NVIDIA GTX Titan X and a Intel Xeon CPU E5-2696 v4
@ 2.20 GHz.
1 The ensemble is publicly available at https://hub.docker.com/r/pykao/brats2018/.

https://hub.docker.com/r/pykao/brats2018/
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Fig. 2. Incorporating brain parcellation atlas into a patch-based neural network. First,
Harvard-Oxford subcortical atlas is registered to the subject space, and the parcellation
label is binarized into a 21-dimension vector. This vector is concatenated with the
original MR images as input to a patch-based neural network.

Group Normalization. The deep network architectures used for segmenta-
tion are computationally demanding. For the 3D U-Nets, our GPU resources
enable us to use only 2 samples (of dimensions 128 × 128 × 128 voxels) per iter-
ation. With this small batch size of 2 samples, batch statistics collected during
conventional batch normalization method [7] are unstable and thus not suitable
for training. In batch normalization, statistics are computed for each feature
dimension. Recently Wu et al. [21] propose to group several feature dimensions
together while computing batch statistics. This so-called group normalization
helps to stabilize the computed statistics. In our implementation, the number of
groups is set to 4.

Hard Negative Mining. We train a 3D U-Net with 128×128×128 patches ran-
domly cropped from the original data. With such large dimensions, the majority
of voxels are not classified as lesion and the standard cross-entropy loss would
encourage the model to favor the background class. To cope with this problem,
we only select negative voxels with the largest losses (hard negative) to back-
propagate the gradients. In our implementation, the number of selected negative
voxels is at most three times the number of positive voxels. Hard negative mining
not only improves the tumor segmentation performance of our model but also
decreases its false positive rate.

2.4 Experimental Results

We first examine the brain tumor segmentation performance using MR images
and the Harvard-Oxford subcortical brain parcellation masks as input to
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Table 1. The network architecture of 26 models in our ensemble. Models #1 to #6,
#18 and # 19 have the same architecture but different initializations, and models #21
to #26 have the same architecture but different initializations. DeepMedic uses batch
normalization and 3D U-Net uses group normalization. DeepMedic and models #23
to #26 are trained with the cross-entropy loss. The batch size for #3 to #19 is 50
and for 3D U-Net is 2. The input patch size for model #1 to #17 is 25 × 25 × 25
and for 3D U-Net is 128 × 128 × 128. 3D U-Nets and DeepMedics without additional
brain parcellation channels are trained with 300 epochs, DeepMedic with additional
brain parcellation channels are trained with 500 epochs, and models #18 and #19 are
trained with 600 epochs. Adam [13] is used with 0.001 learning rate in the optimization
step for all models. (# : model number, BP: input Harvard-Oxford subcortical atlas
with MR images to the model, Aug.: data augmentations including random flipping in
x-, y- and z-dimension.)

# BP Aug. Note

DeepMedic 1 Batch size: 36

2
√

3

4
√

5
√

6
√ √

7
√

1.5 times 3D convolutional kernels

8
√ √

9 Double 3D convolutional kernels

10
√

11
√ √

12 2.5 times 3D convolutional kernels

13
√

14
√ √

15 Triple 3D convolutional kernels

16
√

17
√ √

18
√

Input patch size: 22 × 22 × 22

19
√

Input patch size: 28 × 28 × 28

3D U-Net 20 From [8] with Dice loss

21 Dice loss

22
√

23 Hard negative mining within one batch

24
√

25 Hard negative mining within one image

26
√
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DeepMedic and 3D U-Net. The quantitative results are shown in Table 2. This
table demonstrates that adding brain parcellation masks as additional inputs to
a patch-based neural network improves its performance. For segmentation of the
enhancing tumor, whole tumor and tumor core, the average Hausdorff 95 scores
for DeepMedic-based models improve from 5.205 to 3.922, from 11.536 to 8.507
and from 11.215 to 8.957, respectively. The average Dice scores for models based
on 3D U-Net also improve from 0.753 to 0.764, from 0.889 to 0.894 and from
0.766 to 0.775, respectively, for each of the three tumor compartments.

Table 2. Quantitative results of the performance of adding additional brain parcella-
tion masks with MR images to DeepMedic and 3D U-Net on the BraTS2018 validation
dataset. Bold numbers highlight the improved results with additional brain parcella-
tion masks. Models with BP use binary brain parcellation masks and MR images as
input, while models without BP use only MR images as input. For comparison, each
model without brain parcellation (BP) is paired with the same model using BP, the pair
having the same parameters and weights initially. The scores for DeepMedic without
BP is the average scores from model #3, #5, #7, #10, #13 and #16, and the scores
for DeepMedic with BP is the average scores from model #4, #6, #8, #11, #14 and
#17. The scores for 3D U-Net without BP is the average scores from model #21, #23
and #25, and the scores for 3D U-Net with BP is the average scores from model #22,
#24 and #26. Tumor core (TC) is the union of necrosis & non-enhancing tumor and
enhancing tumor (ET). Whole tumor (WT) is the union of necrosis & non-enhancing
tumor, edema and enhancing tumor. Results are reported as mean.

Description ET WT TC

Dice DeepMedic without BP 0.758 0.892 0.804

DeepMedic with BP 0.766 0.894 0.804

3D U-Net without BP 0.753 0.889 0.766

3D U-Net with BP 0.764 0.894 0.775

Hausdorff 95 (in mm) DeepMedic without BP 5.205 11.536 11.215

DeepMedic with BP 3.992 8.507 8.957

3D U-Net without BP 4.851 5.337 10.550

3D U-Net with BP 5.216 5.544 10.442

We then evaluate the brain tumor segmentation performance of our pro-
posed ensemble on the BraTS2018 training, validation and test datasets. The
quantitative results are shown in Table 3. This table shows the robustness of our
ensemble on the brain tumor segmentation task. Our ensemble has consistent
brain tumor segmentation performance on the BraTS2018 training, validation
and test datasets.
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Table 3. Quantitative results of the tumor segmentation performance of our ensemble
on BraTS2018 training dataset with 5-fold cross-validation, validation dataset and
test dataset. Tumor core (TC) is the union of necrosis & non-enhancing tumor and
enhancing tumor (ET). Whole tumor (WT) is the union of necrosis & non-enhancing
tumor, edema and enhancing tumor. Results are reported as mean.

Dataset ET WT TC

Dice BraTS2018 training 0.735 0.902 0.813

BraTS2018 validation 0.788 0.905 0.813

BraTS2018 test 0.749 0.875 0.793

Hausdorff 95 (in mm) BraTS2018 training 5.433 5.398 6.932

BraTS2018 validation 3.812 4.323 7.555

BraTS2018 test 4.219 6.479 6.522

3 Overall Survival Prediction for Brain Tumor Patients

3.1 Material

The BraTS2018 dataset also includes the age (in years), survival (in days) and
resection status for each of 163 subjects in the training dataset, and 59 of them
have the resection status of Gross Total Resection (GTR). The validation dataset
has 53 subjects with the age (in years) and resection status, and 28 of them have
the resection status of GTR. The test dataset has 131 subjects with the age (in
years) and resection status, and 77 of them have the resection status of GTR.
For this task, we only predict the overall survival (OS) for glioma patients with
resection status of GTR.

3.2 Methodology

Our proposed training pipeline, shown in Fig. 3, includes three stages: In the first
stage, we use the proposed ensemble from the Sect. 2 to obtain the predicted
tumor mask for each subject. In the second stage, We extract the tractographic
features explained in section below from each subject. We then perform feature
normalization and selection. In the final stage, we train a SVM classifier with lin-
ear kernel using the tractographic features extracted from the training subjects.
We evaluate the overall survival classification performance of tractographic fea-
tures on the BraTS2018 training dataset with the 1000-time repeated stratified
5-fold cross-validation, valdiation datset and test dataset.

Glioma Segmentation: To segment the glioma, we use the proposed ensemble
in the previous section to obtain the prediction of three different types of tissue
including necrosis & non-enhancing tumor, edema, and enhancing tumor.
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Fig. 3. Training pipeline for overall survival prediction.

Tractographic Feature Extraction from the Glioma Segmentation:
After we obtain the predicted lesion mask, we extract the tractographic fea-
tures from the whole tumor region which is the union of all different lesions for
each subject.

Fig. 4. Workflow for building a connectivity matrix for each subject. The fiber tracts
are created by DSI Studio (http://dsi-studio.labsolver.org/), and ITK-SNAP [24] is
used for visualizing the 3D MR images and 3D labels.

Tractographic Features: Tractographic features describe the potentially damaged
parcellation regions impacted by the brain tumor through fiber tracking. Figure 4
shows the workflow for building a connectivity matrix for each subject. First, the
predicted whole tumor mask and the average diffusion orientation distribution
function from HCP-1021, created by QSDR [22], are obtained for each subject.
FLIRT is used to map the whole tumor mask from subject space to MNI152
1 mm space. Second, we use a deterministic diffusion fiber tracking method [23]
to create approximately 1,000,000 tracts from the whole tumor region. Finally,

http://dsi-studio.labsolver.org/
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a structural brain atlas is used to create a connectivity matrix �Wori for each
subject. This matrix contains information about whether a fiber connecting one
region to another passed through or ended at those regions, as shown:

�Wori is a N × N matrix, and N is the number of parcellation in a structural
brain atlas.

�Wori =

⎡
⎢⎢⎢⎣

wori,11 wori,12 . . . wori,1N

wori,21 wori,22 . . . wori,2N

...
...

. . .
...

wori,N1 wori,N2 . . . wori,NN

⎤
⎥⎥⎥⎦ (1)

If wij is pass-type, it shows the number of tracts passing through region j and
region i. if wij is end-type, it shows the number of tracts starting from a region i

and ending in a region j. From the original connectivity matrix �Wori, we create
a normalized version �Wnrm and a binarized version �Wbin.

�Wnrm = �Wori/max( �Wori) (2)

/ is the element-wise division operator, and max( �Wori) is the maximum value
of the original connectivity matrix �Wori.

�Wbin =

⎡
⎢⎢⎢⎣

wbin,11 wbin,12 . . . wbin,1N

wbin,21 wbin,22 . . . wbin,2N

...
...

. . .
...

wbin,N1 wbin,N2 . . . wbin,NN

⎤
⎥⎥⎥⎦ (3)

wbin,ij = 0 if wori,ij = 0, and wbin,ij = 1 if wori,ij > 0. Then, we sum up each
column in a connectivity matrix to form a unweighted tractographic feature
vector.

�V =
N∑
i=1

wij =
[
v1, v2, . . . , vN

]
(4)

Furthermore, we weight every element in the unweighted tractographic feature
vector with respect to the ratio of the lesion in a brain parcellation region to the
volume of this brain parcellation region.

�Vwei = �α � �V , �α =
[
t1/b1, t2/b2, . . . , tN/bN

]
(5)

� is the element-wise multiplication operator, ti is the volume of the whole
brain tumor in the i-th brain parcellation, and bi is the volume of the i-th brain
parcellation. This vector �Vwei is the tractographic feature extracted from brain
tumor.

In this paper, automated anatomical labeling (AAL) [18] is used for building
the connectivity matrix. AAL has 116 brain parcellation regions, so the dimen-
sion of the connectivity matrix �W is 116×116 and the dimension of each tracto-
graphic feature �Vwei is 1 × 116. In the end, we extract six types of tractographic
features for each subject. Six types of tractographic features are computed from:
(1) the pass-type of the original connectivity matrix, (2) the pass-type of the
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normalized connectivity matrix, (3) the pass-type of the binarized connectivity
matrix, (4) the end-type of the original connectivity matrix, (5) the end-type
of the normalized connectivity matrix and (6) the end-type of the binarized
connectivity matrix.

Feature Normalization and Selection: First, we remove features with low
variance between subjects, and then apply a standard z-score normalization on
the remaining features. In the feature selection step, we combine recursive feature
elimination with the 1000-time repeated stratified 5-fold cross-validation and a
SVM classifier with linear kernel. These feature processing steps are implemented
by using scikit-learn [15].

Overall Survival Prediction: We first divide all 59 training subjects into three
groups: long-survivors (e.g.,>15 months), short-survivors (e.g.,<10 months),
and mid-survivors (e.g., between 10 and 15 months). Then, we train a SVM clas-
sifier with linear kernel on all training subjects with 1000-time repeated strati-
fied 5-fold cross-validation in order to evaluate the performance of the proposed
tractographic feature on overall survival prediction for brain tumor patients. We
also evaluate the OS prediction performance of tractographic features on the
BraTS2018 validation and test dataset.

3.3 Experimental Results

In this task, we first examine the overall survival classification performance of
our proposed tractographic feature compared to other types of features includ-
ing age, volumetric features, spatial features, volumetric spatial features and
morphological features.

Volumetric Features: The volumetric features include the volume and the ratio
of brain to the different types of lesions, as well as the tumor compartments. 19
volumetric features are extracted from each subject.

Spatial Features: The spatial features describe the location of the tumor in the
brain. The lesions are first registered to the MNI152 1 mm space by using FLIRT,
and then the centroids of whole tumor, tumor core and enhancing tumor are
extracted as our spatial features. For each subject, we extract 9 spatial features.

Volumetric Spatial Features: The volumetric spatial features describe the volume
of different tumor lesions in different brain regions. First, the Harvard-Oxford
subcortical structural atlas brain parcellation regions are registered to the sub-
ject space by using FLIRT. The volumes of different types of tumor lesions in
each of parcellation regions, left brain region, middle brain region, right brain
region and other brain region are extracted as volumetric spatial features. For
each subject, we extract 78 volumetric spatial features.
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Morphological Features: The morphological features include the length of the
major axis of the lesion, the length of the minor axis of the lesion and the
surface irregularity of the lesions. We extract 19 morphological features from
each subject.

In the first experiment, the ground-truth lesion is used to extract different
types of features, and the pass-type of the binarized connectivity matrix is built
to compute the tractographic feature. Recursive feature elimination with cross-
validation (RFECV) is used in the feature selection step to shrink the feature.
A SVM classifier with linear kernel is trained with each feature type, and strati-
fied 5-fold cross-validation is conducted 1000 times in order to achieve a reliable
metric. The average and standard deviation of overall survival classification accu-
racy for different types of features on the BraTS2018 training dataset is shown
in Fig. 5. This figure demonstrates that the proposed tractographic features have
the best overall survival classification performance compared to age, volumetric
features, spatial features, volumetric spatial features and morphological features.
Initial analysis based on feature selection indicate that 12 out of 116 AAL regions
are more influential in affecting overall survival of the brain tumor patient.

Fig. 5. Overall survival classification accuracy between different types of features on
BraTS2018 training dataset. 1000-time repeated stratified 5-fold cross-validation is
used to obtain the average classification accuracy.

Next, the pass-type of the binarized connectivity matrix is built from the
predicted lesion and the tractographic feature is computed from this connectiv-
ity matrix. The overall survival classification performance of this tractographic
feature is compared with the tractographic feature from our first experiment.
In this experiment, we follow the same feature selection method and training
strategy, using the same SVM classifier with linear kernel. The average and
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standard deviation of overall survival classification accuracy on the BraTS2018
training dataset is reported in Table 4. From this table, the average classification
accuracy drops to 63% when we use predicted lesions instead of ground-truth
lesions to generate the tractographic features. This drop is likely caused by the
imperfection of our tumor segmentation tool.

Table 4. The overall survival classification performance of the proposed tractographic
features from the ground-truth lesions and from the predicted lesions on the BraTS2018
training dataset with 1000-time repeated stratified 5-fold cross-validation.

The source of tractographic features Classification accuracy (mean±std)

Ground-truth lesions 0.70 ± 0.12

Predicted lesions 0.63 ± 0.13

For the training data, the tractographic features are computed using the
ground-truth whole tumor, and a linear SVM classifier trained on these fea-
tures. We used stratified 5-fold cross validation on the training dataset, aver-
aged over 1000 independent trials. The average OS classification accuracy using
the tractographic features was 0.892 on the training set and 0.697 on the cross-
validation set. However, when applied to the BraTS2018 validation and test
datasets, the accuracy dropped to 0.357 and 0.416, respectively [4]. Note that
for the validation and test data, there is no ground-truth segmentation available.
So we first predicted the whole tumor and then the tractography features are
extracted from these predicted tumors, followed by the OS classification using
the previously trained linear SVM. We speculate that the automated segmenta-
tion to predict the whole tumor is one possible reason for the significant variation
in performance between the training and validation/test data, in addition any
data specific variations.

4 Discussion

For brain tumor segmentation, our proposed method, which combines the lesion
occurrence probabilities in structural regions with MR images as inputs to a
patch-based neural network, improves the patch-based neural network’s perfor-
mance. The proposed ensemble results in a more robust tumor segmentation. For
overall survival prediction, the novel use of tractographic features appears to be
promising for aiding brain tumor patients. To the best of our knowledge, this
is the first paper to integrate brain parcellation and human brain connectomics
for brain tumor segmentation and overall survival prediction.
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Abstract. Segmentation of brain tumor from magnetic resonance imag-
ing (MRI) is a vital process to improve diagnosis, treatment planning and
to study the difference between subjects with tumor and healthy sub-
jects. In this paper, we exploit a convolutional neural network (CNN)
with hypercolumn technique to segment tumor from healthy brain tis-
sue. Hypercolumn is the concatenation of a set of vectors which form by
extracting convolutional features from multiple layers. Proposed model
integrates batch normalization (BN) approach with hypercolumn. BN
layers help to alleviate the internal covariate shift during stochastic gra-
dient descent (SGD) training by zero-mean and unit variance of each
mini-batch. Survival Prediction is done by first extracting features (Geo-
metric, Fractal, and Histogram) from the segmented brain tumor data.
Then, the number of days of overall survival is predicted by implement-
ing regression on the extracted features using an artificial neural network
(ANN). Our model achieves a mean dice score of 89.78%, 82.53% and
76.54% for the whole tumor, tumor core and enhancing tumor respec-
tively in segmentation task and 67.9% in overall survival prediction task
with the validation set of BraTS 2018 challenge. It obtains a mean dice
accuracy of 87.315%, 77.04% and 70.22% for the whole tumor, tumor
core and enhancing tumor respectively in the segmentation task and a
46.8% in overall survival prediction task in the BraTS 2018 test data set.

Keywords: Brain tumor segmentation · Glioma ·
Convolutional neural network · Hypercolumn · PixelNet ·
Magnetic resonance imaging · Survival prediction
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1 Introduction

Gliomas are the most frequent brain tumor with the highest mortality rate which
develops from glial cell [7]. Early detection, accurate segmentation and estima-
tion of the relative volume are very crucial for overall survival (OS) prediction,
treatment and surgical planning. In addition, manual segmentation of tumor
tissue is tedious, time consuming and requires strong supervision by a human
expert. It is also prone to inter and intra-rater variability. So it is highly nec-
essary to develop an automatic segmentation system to diagnose and estimate
the volume, size, shape and location of the tumor. Overall survival prediction
along with automatic segmentation would be a very useful tool that would help
in better clinical diagnosis.

In recent years, the success of deep learning in this field is huge as it
shows state of art performance in the applications of segmentation, classifica-
tion, regression and detection. Iftekharuddin et al. [9] exploits convolutional neu-
ral network (CNN) for glioma segmentation and extracts handcrafted features
like histogram, co-occurrence matrix, neighbourhood gray tone difference, run
length, volume and areas to predict OS using random forest regression model.
Jungo et al. [15] uses the residual convolutional neural network with Bayesian
dropout to segment tumor and calculates the geometric features (e.g. volume,
heterogeneity, rim width, surface irregularity etc.) from the segmented tumor.
Later, a simple artificial neural network (ANN) is utilized to predict the exact
days of OS. 3D U-net and linear regression approaches are also exploited to
segment and predict OS [1].

In this paper, we propose a batch normalized CNN architecture with hyper-
column features inspired by multi-modal PixelNet [6,11,12] where a modest
number of features are extracted from multiple convolution layers and trained
with a multi-layer perceptron (MLP) to predict segmentation classes. We discuss
about the various features (Geometric, Fractal, Image and Clinical) extracted
from the segmentation output. We propose a new method of overall survival pre-
diction by combining all the meaningful features that contribute to the number
of days of survival left for the patient. Details about how the features are selected
and various experiments that are run for finding the best regression technique
has been discussed. The problems of generalizing a network over its performance
on a validation data set is also discussed.

2 Methods

In this section, we discuss about the dataset provided, the model and method-
ologies to process data for segmentation and about the extraction of features,
feature selection and regression techniques that were exploited for overall sur-
vival prediction.

2.1 Dataset

BraTS 2018 (Brain Tumor Image Segmentation Benchmark) training database
[2–4,19] consists in total 285 cases of patients out of which the overall
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survival prediction data was provided for 163 cases. BraTS 2018 Validation
dataset [2–4,19] consists of 53 cases. All the data are a multi-modal MRI scan
of 210 high-grade glioma (HGG) and 75 low-grade glioma (LGG) and 4 different
modalities including T1 (spin-lattice relaxation), T1c (T1-contrasted), T2 (spin-
spin relaxation) and FLAIR (fluid attenuation inversion recovery). Each scan is
a continuous 3D volume of 155 2D slices of size 240 × 240. The volume of the
various modalities is already skull-stripped, aligned with T1c and interpolated
to 1 mm voxel resolution.

The provided ground truth with manual segmentation includes three labels:
GD-enhancing tumor (ET—label 4), the peritumoral edema (ED—label 2), and
the necrotic and non-enhancing tumor (NCR/NET—label 1). The predicted
labels are evaluated by merging three regions: whole tumor (WT: all four labels),
tumor core (TC: 1, 2) and enhancing tumor (ET: 4). Figure 1 illustrates all
the four modalities for one of the samples of the training data set of BraTS
2018. Figure 2 illustrates the provided ground truth for the same sample. The
green label corresponds to GD-enhancing tumor, yellow label corresponds to
peritumoral edema and the red label corresponds to necrotic and non-enhancing
tumor. ITK-SNAP [24] is the tool that was used to visualize the data.

Fig. 1. Visualization of the different modalities in the BraTS 2018 Training data set.

Fig. 2. Ground Truth with different segmentation labels as given in BraTS 2018 Train-
ing data set. Red, Yellow and Green colors represent Necrotic, Enhancing and Edema
respectively. (Color figure online)
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Fig. 3. Batch Normalized PixelNet architecture.

2.2 Segmentation

Proposed Model. Our proposed model is inspired from PixelNet [6,11] where
we integrate additional 3 convolution layers and batch normalization after all
the convolution layers. The model consists of 18 pixel-block and a hypercolumn
layer followed by a multi-layer perceptron (MLP) of 3 fully connected layers as
in Fig. 3. A pixel-block contains convolution, batch normalization (BN) [10] and
ReLu layers sequentially. Hypercolumn layer extracts the features from multiple
convolution layers and concatenates them into a feature vector which propagates
to the MLP for pixel-wise classification.

2.3 Survival Prediction

Following the extraction of tumor from the MRI scans, the segmented tumor
along with certain other parameters are used for survival prediction. The fol-
lowing paragraphs elucidate the features those are extracted along with the
regression model that is built for predicting survival.

Feature Extraction. The tumor geometry and its location hold a very impor-
tant role in deciding the number of days of survival [21]. Figure 4 visually illus-
trates how the features such as location or centroid of tumor, size and shape
of tumor affect the overall survival of the patient. It is evident that more the
proximity of tumor to the centre of brain, the lower is the overall survival of
patient. Also, lesser the size or smaller the shape of tumor, higher is the over-
all survival of patient. So, we extract geometrical features which include First
axis coordinates, Second axis coordinates, Third axis coordinates, Eigen Values,
First axis length, Second axis length, Third axis Length, Centroid coordinates,
meridional eccentricity and equatorial eccentricity for individual tumor types as
well as whole tumor. Figure 5 illustrates the tumor extracted from the brain and
gives an intuition of how the geometric features like centroid, eccentricity and
axis lengths are calculated. Also, the volume of tumor and its ratio with respect
to the total volume was calculated. Features of the tumor image including mean,
variance, standard deviation, entropy, skewness [18], Kurtosis [18], entropy and
histogram feature intensities were extracted. Fractal dimension of the necrotic
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Short survivalMedium survivalLong survival

Fig. 4. Visualization of tumor with different survival rate.

Fig. 5. Visualization of the extracted tumor from brain.

tumor has been found to play a pivotal role in the survival prediction, according
to [22]. So, fractal dimension and fractal ratio were extracted for the necrotic
part of the segmented tumor core. In addition, the age of the subject provided
by the BraTS 2018 training data set was also included.

Feature Selection. Several experiments were conducted using different combi-
nations of extracted features. After analyzing the cross-validation errors of the
experiments, the most informative features are alone retained and others are
neglected. Features like eigen values, eccentricity, skewness, mean and variance
were not found to have an important role in survival prediction. Also, geometric
features of the GD-enhancing tumor (ET—label 4) was found to be only increas-
ing the cross-validation errors and hence was removed. So finally, a total of 50
features that were found to be the most informative are used in the regression
model. These features are First axis coordinates, Second axis coordinates, Third
axis coordinates, First axis length, Second axis length, Third axis Length, Cen-
troid coordinates for part wise non-enhancing tumor core (NCR/NET—label
1), peritumoral edema (ED—label 2) as well as for the whole tumor without
including GD-enhancing tumor (ET—label 4) in addition to Kurtosis, Entropy,
Histogramic intensity, Fractal dimension and age.
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Regression Model. With the selected features, we train a fully connected
artificial neural network (ANN) with one hidden layer [23] and ReLu activation
function. Figure 6 shows the ANN model that takes 50 features as input and
gives the number of days of survival as the output. We run an experiment to
find which configuration of the hidden layers gives the lowest mean squared
error (MSE). The best configuration was found to be 100 neurons in the hidden
layer. Then, we find the best epoch by finding the epoch for which the MSE
is minimum by using a cross-validation data set while training. However, after
analyzing many experiments, we find that when MSE is minimum, the accuracy
is low and vice-versa. So, we find an epoch where the accuracy and the MSE of
the model are balanced. Adam optimizer [16] with MSE loss function has been
used to conduct all experiments with ANN. We also tune the hyper parameters
like learning rate and batch size. The best result for BraTS 2018 Validation Data
was acquired for the 900th epoch with a batch size of 10.

Feature 1

Feature 2

Feature 3

Feature 4

Feature 50

Hidden LayerInput Output

Days of Survival

Fig. 6. Regression model using ANN.

3 Experiments and Results

3.1 Segmentation

We convert the 3D voxel of 240×240×155 into 2D slices of 240×240 by ignoring
blank slices of scan and ground-truth. We choose a sample of 2000 pixels per
image and batch size of 10 in training time. We normalize data to zero mean and
standard deviation and augment by flipping left-right. In testing phase, hyper-
column has been formed with all the pixels inside brain region and predict slice
by slice to form MRI. Finally, we adopt largest component analysis to remove
false positive as a post-processing technique. We utilize Caffe [13] framework
with a single Nvidia GPU 1080Ti GPU to perform all the experiments. Table 1
represents the Dice and Hausdorff performance of our model. It obtains dice
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accuracy of 89.78%, 82.53% and 76.54% of whole tumor (WT), tumor core (TC)
and enhance tumor (ET) respectively. Table 2 shows the performance metrics
that the segmentation method has achieved on the test data set. It obtains dice
accuracy of 87.315%, 77.04% and 70.22% of whole tumor (WT), tumor core (TC)
and enhance tumor (ET) respectively.

Table 1. Dice and Hausdorff for BraTS 2018 validation dataset

Dice Hausdorff

WT TC ET WT TC ET

Mean 89.78 82.53 76.54 5.09 7.11 3.60

StdDev 8.35 17.80 23.23 7.04 8.04 5.58

Median 90.51 86.87 83.15 3.08 4.53 2.23

Table 2. Dice and Hausdorff for BraTS 2018 Test dataset [5]

Dice Hausdorff

WT TC ET WT TC ET

Mean 87.315 77.044 70.22 7.15 8.0024 4.594

StdDev 11.33 26.082 27.96 13.08 11.937 8.802

Median 90.36 87.89 80.93 3.6 4.24 2.23

The following Fig. 7 shows the visualizations of output from the segmenta-
tion network along with the input for BraTS 2018 [5] Test data set. The different
modalities of the input namely- Flair, t1c and t2 are also illustrated. The pre-
diction shows the labelling of tumor done by the network. It consists of 3 labels,
green corresponds to GD-enhancing tumor, yellow corresponds to peritumoral
edema and red corresponds to necrotic and non-enhancing tumor core.

3.2 Survival Prediction

Evaluation of the survival prediction model is performed on BraTS 2018 survival
validation dataset (which is a subset (28 out of 53 subjects) of the segmentation
validation dataset) [2–4,19]. Quantitative details for the ANN that gave the
best accuracy of 67.9% has been listed in Table 3. This is the best accuracy that
was achieved in the Validation Leader board till the time this paper is written.
However, the same ANN was found to give relatively less accuracy for the test
data set. Table 4 shows the quantitative results for BraTS 2018 [5] Test data set.
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Flair t1c t2 Prediction

Fig. 7. Visualization of the predicted segmentation labels for BraTS 2018 Test data
set. (Color figure online)
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Table 3. Quantitative results of survival prediction on the BraTS 2018 validation data
set using ANN

Cases Accuracy MSE MedianSE stdSE SpearmanR

28 67.9% 96161.713 59473.481 117207.189 0.496

Table 4. Quantitative results of survival prediction on the BraTS 2018 Test data set
using ANN

Cases Accuracy MSE MedianSE stdSE SpearmanR

77 46.8% 341387.439 92892.2261 788491.731 0.148

4 Discussion

4.1 Experiments for Finding the Best Regression Technique

For finding out the best regression model and the meaningful features, several
experiments are conducted. Experiments with different combinations of available
features and regression models are conducted on the 33 subjects of BraTS17
validation dataset [2,3,19] to find the best possible combination of features and
regression model. The details of the experiments on the entire features and the
best 50 features are listed in Tables 4 and 5 respectively. When compared to
ANN, other regression models such as Support Vector Machine (SVM) with
Radial basis function (RBF) kernel [14], Random Forest [17], Linear Regression
[20], Logistic Regression [8] are investigated but resulted in inferior performance.
Also, using only the best 50 features showed improvement in accuracy and MSE
for every models.

4.2 Issues with Generalizing a Network on Validation Data Set

The quantitative results of survival prediction on the BraTS 2018 test data set
can be found in Table 4. When we use the same algorithm with the same 50
features that gave the best results in the validation data set for the test data
set of survival prediction task, we find that the accuracy of the network has
reduced drastically. Also, the mean squared error obtained increases. So, it is
evident that the network does not perform well with the test data set as good
it performs for the validation data set. The reason for this behaviour is that the
model is not generalized. It is over-fitted to the train data.

The same architecture, with the same number of neurons in the hidden layers,
with the same hyper parameters; trained for a certain number of epochs that
gave the best accuracy for validation data set was used for the test data set.
The number of epochs was fixed by experimenting which epoch gave the least
mean squared error for the validation data set. This is where the network was
over-fitted. Generalizing a network architecture and the number of epochs till
which it should be trained should not be done by comparing the results with a
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Table 5. Performance comparison with all the features in different machine learning
models for BraTS 2017 validation data set.

Models Accuracy MSE MedianSE stdSE SpearmanR

Linear Regression 50.5% 252353.061 95419.102 429879.191 0.263

SVM 33.3% 242147.277 62044.450 563941.194 0.142

Random Forest 42.4% 208660.63 33367.111 502312.762 0.213

Logistic Regression 39.4% 286470 40401 540201.363 0.479

ANN 54.5% 211967.681 53967.305 540221.112 0.206

Table 6. Performance comparison with the best 50 features in different machine learn-
ing models for BraTS 2017 validation data set.

Models Accuracy MSE MedianSE stdSE SpearmanR

Linear Regression 50.5% 237148.501 78915.034 362705.604 0.221

SVM 42.4% 233367.604 127524.752 374037.279 0.218

Random Forest 39.4% 262224.703 42507.088 506754.007 0.324

Logistic Regression 36.4% 181509.182 58564 249213.006 0.13

ANN 60.6% 214207.487 60832.523 354332.371 0.293

few data. The data with which a network is generalized can be of a very meagre
amount and might contain similar characteristics. So generalizing a network over
the validation data set here has caused the network to perform badly in a fresh
test data set.

Looking at Table 6, models like Logistic regression or Random Forest which
would not have over fitted the data could have been used. Thus, selection of
validation data is very crucial for any neural network as well as deep learning
model where the data set is really small.

5 Conclusion

Batch Normalized pixelnet is found to give quality segmentation results for the
BraTS 2018 Validation data set. The main advantage of the pixelnet is that
it has freedom of sampling pixel during training phase. The background of the
scan is removed during training and this helps the network to converge faster.
For the survival prediction task, a lot of features were studied and extracted.
The features that were found to increase the error in the regression problem
of survival prediction problem were removed. Various regression models were
experimented and ANN was found to give the best results for the BraTS 2018
Validation data set. However, due to overfitting the same network was not able
to give good results for the BraTS 2018 test data set.
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Abstract. Multi-modal MRI scans are commonly used to grade brain
tumors based on size and imaging appearance. As a result, imaging
plays an important role in the diagnosis and treatment administered to
patients. Deep learning based approaches in general, and convolutional
neural networks

(
CNNs

)
in particular, have been utilized to achieve supe-

rior performance in the fields of object detection and image segmenta-
tion. In this paper, we propose to utilize the DeepLabv3+ network for
the task of brain tumor segmentation. For this task, we build 18 dif-
ferent models using various combinations of the T1CE, FLAIR, T1 and
T2 images to identify the whole tumor, the tumor core and the enhanc-
ing core of the brain tumor for the testing and validation data sets. We
use the MICCAI BraTS training data, which consists of 285 cases, to
train our network. Our method involves the segmentation of individual
slices in three orientations using 18 different combinations of slices and
a majority voting-based combination of the results of some of the classi-
fiers that use the same combination of slices, but in different orientations.
Finally, for each of the three regions, we train a separate model, which
uses the results from the 18 classifiers as its inputs. The outputs of the
18 models are combined using bit packing to prepare the inputs to the
final classifiers for the three regions. We achieve mean Dice coefficients
of 0.7086, 0.7897 and 0.8755 for the enhancing tumor, the tumor core
and the whole tumor regions respectively.

Keywords: Image segmentation · Convolutional neural networks ·
DeepLab · MRI · Tumor · Enhancing tumor · Tumor core

1 Introduction

Gliomas are a type of tumor that start in glial cells and occur in the brain
and spinal cord. They are fatal and may be classified as either high or low grade
gliomas [19] based on their aggressiveness. While high grade gliomas (HGGs) are
malignant, grow rapidly and result in high mortality, low grade gliomas (LGGs)
c© Springer Nature Switzerland AG 2019
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develop more slowly, may be benign or malignant, but can develop into HGGs if
no treatment is provided to the patient [18]. Thus, it is essential that both HGGs
and LGGs should be treated sooner rather than later as the survival rate of the
patient depends on the characteristics of the tumor. Based on the characteristics
of the tumor, different methods of treatment, such as surgery, chemotherapy, or
radiation therapy [10], are used. In order to diagnose, treat and predict the
survival rate after surgery; various modes of MRI scans are used. The MRI
scans are usually segmented into tumor regions by experts. However, manual
delineation of the tumor is complex and time consuming due to the variation in
tumor structure. As a result, it is important to develop algorithms and methods
that can accurately perform automatic image segmentation in order to delineate
the different regions of a brain tumor. However, due to the heterogeneity in
the size, location, and shape of gliomas, developing algorithms for automatic
segmentation is challenging.

With the advent of deep learning, it has become possible to develop networks
that can achieve a moderate level of accuracy in tasks that involve automatic
image segmentation. Moreover, the introduction of convolutional neural network(
CNN

)
architectures [16] have further improved the performance and reduced

the complexity of performing image segmentation. This is because CNNs do not
require the use of hand-crafted features and involve the use of fewer number of
parameters than the number of parameters that are used by DNNs in order to
perform image segmentation. CNNs have been used for segmenting sections of
the brain [23] and for brain tumor segmentation [14,15,21] by several researchers.

To accomplish automatic segmentation, we propose to use the DeepLabv3+
framework [8], which has been shown to successfully identify objects in natural
images. DeepLabv3+ achieves a mIoU of 89.0% on the test data for the PASCAL
VOC 2012 challenge [11]. To do this, we utilize the pre-trained Xception network
of DeepLabv3+ and further train it on multimodal MRI scans, treating the
individual modes as image channels. DeepLabv3+ involves the use of atrous
parallel convolutions at different strides to capture information at different scales
and encoder-decoder pathways to achieve sharp delineation of object boundaries.

In this paper, we present our technique for performing brain tumor segmen-
tation in order to participate in the MICCAI BraTS 2018 challenge. The data
consists of MRI scans in four modes: FLAIR, T1CE, T1, and T2. The goal of
the segmentation challenge is to segment the brain scans and identify the whole
tumor, tumor core, and enhancing tumor regions. Our method involves the use
of 21 models, where 18 models are trained directly on the input MRI scans and
the other 3 models use the outputs from the first 18 models as their inputs. All
our models are trained and validated using slices of the brain images and we
considered the 3 possible orientations in each case. Thus, our initial 18 models
can be considered to be made up of 6 sets of 3 models each. We use different
combinations of inputs for each of the initial 18 models and then use bit packing
to combine these results and prepare the inputs for the final 3 models. Each of
the final 3 models, is used to segment one region of the tumor, and the results
are combined to get the final segmentation. During this final combination, we
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consider the fact that the tumor core is a sub-region of the whole tumor and the
enhancing tumor is a sub-region of the tumor core.

Our contributions are as follows:

1. Build a pipeline to perform brain tumor segmentation and identify the whole
tumor, tumor core and enhancing tumor regions.

2. Combine several DeepLabv3+ models to achieve higher accuracy than can be
achieved by using a single instance of DeepLabv3+.

3. Design and implement a bit packing-based algorithm to combine the results
of several models and prepare the inputs for the final 3 models in the pipeline.

4. On the BraTS 2018 testing data, we are able to achieve Dice coefficients of
0.7086, 0.7897 and 0.8755 for the enhancing tumor, tumor core and whole
tumor regions.

2 Background: DeepLabv3+ Architecture

Convolutional neural networks typically apply convolution with different strides
as well as pooling. These methods cause a reduction in the sizes of the feature

1x1 Conv

Upsample by 4

Segmentation

Ground truth

Upsample by 4

Image pooling

Atrous Conv

1x1
Conv

3x3 
rate 6

3x3 
rate 12

3x3 
rate 18

Concat

Fig. 1. DeepLabv3+ involves the use of atrous convolution at multiple scales in the
encoder network as well as a decoder network
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maps that are operated on by the succeeding layers, and as a result, the last fea-
ture map lacks comprehensive information associated with object boundaries. In
order to overcome this challenge, an encoder-decoder pathway is used in several
architectures [1,17,22]. While the U-Net [22] decoder concatenates the feature
maps at corresponding scales in the encoder and decoder pathways, SegNet [1]
saves and uses the max pooling indices from the encoder pathway. On the other
hand, DeepLab [6] and Deeplabv3 [7] use parallel atrous convolutions at differ-
ent rates in order to capture the information at different scales. Effectively, this
technique, called the Atrous Spatial Pyramid Pooling (ASPP) allows the encoder
network to use different fields of view. Figure 1 shows how DeepLabv3+ [8] com-
bines these two techniques and uses an encoder-decoder pathway as well as ASPP
in order to achieve precise delineation of object boundaries.

DeepLabv3+ utilizes ASPP, but, due to computation cost and complexity, it
is not possible to extract features that have a resolution greater than 1

8

th of the
input image. The last feature map generated by the encoder network, which has
256 channels, is used as the input to the decoder network. The decoder network
first uses bilinear upsampling, then a 1× 1 convolution is performed followed by
concatenation with the corresponding features from the encoder network, 3 × 3
convolutions and upsampling.

DeepLabv3+ modifies the Xception model [9] by making the network deeper,
using depth-wise separable atrous convolution instead of max pooling, and
introducing additional batch normalization and non-linear activation layers. At
present, the resulting architecture [12], which is implemented using Tensorflow,
leads the Pascal VOC leaderboard for image segmentation, and hence, we decided
to use this network in order to develop our automatic brain tumor segmentation
software.

3 Brain Tumor Segmentation Using 21 Models

3.1 Data

The training dataset for the MICCAI BraTS 2018 challenge consists of 285 sets
of NIfTI image files, with 210 sets of image files for HGG type of tumor and 75
sets for LGG. Each set of image files consists of MRI scans using four different
modes: T1, T2, T1CE and FLAIR. Also, the corresponding segmentation map
is provided for each of the 285 patients. The segmentation labels are assigned as
follows:

– Label 4 is assigned to the enhancing tumor region.
– The edema is denoted by label 2.
– The NCR+NET region is identified using label 1.

Our task is to identify the enhancing tumor, the tumor core, which consists of
the enhancing tumor and the NCR+NET regions, and the whole tumor, which
consists of the tumor core and the edema. Details about the BraTS challenge and
the annotated dataset are provided in [3,20]. The relevant data sources are [2,4].
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3.2 Data Preprocessing

In order to perform segmentation of the different regions of a brain tumor, we
slice the 3-D NIfTI brain images along 3 orientations: sagittal, coronal, and axial.
By doing so, we get 155 axial slices and 240 slices each in the sagittal and coronal
directions. In the original image, the intensity of each voxel is stored as a 16 bit
integer. In order to use DeepLabv3+ for segmenting the slices, we store each slice
as a separate .png file and the maximum possible intensity of a pixel in a .png
file is 255. Thus, we scale the intensities in the original NIfTI image to a value
between 0 and 255. Each NIfTI image file stores the intensities of 240×240×155
voxels. Thus, each axial slice consists of 240 × 240 pixels, while the coronal and
sagittal slices have 240 × 155 pixels each. We use zero padding to pad each of
the coronal and sagittal slices to increase their size to 240 × 240 pixels.

We use the following 6 combinations of images in the three separate ori-
entations to create the inputs to the initial 18 DeepLabv3+ models. Since
DeepLabv3+ uses only 3 channels, we use various combinations of image slices
in order to obtain RGB images that contain useful data.

1. To generate the inputs for the first set, called the RGB set, we combine the
T1CE, T2 and FLAIR images for the corresponding slices in our data and
create RGB images, where the FLAIR image occupies channel 1 (R), T1CE
occupies channel 2 (G) and T2 occupies channel 3 (B). The FLAIR images
contain information that helps to identify the whole tumor and the T2 and
T1CE images help to identify the tumor core and enhancing tumor sections
respectively.

2. For the second set, we use the FLAIR image as the first channel, the T2
image as the second channel and, for the third channel, we use slices created by
taking the pixel-wise differences of the corresponding T1CE and the T1 slices.
We use the pixel-wise difference of T1CE and T1 images because it contains
information that identifies the enhancing tumor and the NCR regions. We
refer to this as the T1CE-T1 set.

3. The third set of images, called FLAIRs3, consists of 3 FLAIR slices. Thus, to
segment slice n, we use slices n-1, n, n+1 as the 3 slices for the 3 channels.
This combination contains information from the two neighboring slices and
should increase the accuracy of the prediction.

4. The fourth set of images, called T1CEs3, consists of 3 consecutive T1CE
slices, prepared in the same way as the FLAIRs3 slices.

5. The fifth set of images, called T2s3, consists of 3 consecutive T2 slices.
6. The sixth set of images, called T1s3, consists of 3 consecutive T1 slices.

For the training data, we use the labels provided in the training data set, while
assigning label 3 to all pixels that are labeled with label 4. This is because,
DeepLabv3+ uses only consecutive labels and the label 3 is not used in the data
provided.
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Fig. 2. Brain Tumor Segmentation Architecture: There are 18 initial classifiers that
belong to 6 sets, each containing classifiers for slices in the sagittal (S), coronal (C)
and axial (A) directions. The results of these are packed to form packed inputs for final
three classifiers for the 3 different target classes.

3.3 Brain Tumor Segmentation Using DeepLabv3+

As shown in Fig. 2, we use 18 initial classifiers and use bit packing to pack the
pixel-wise predictions from these models. Then, we use these packed results as
the inputs to our final three models, one for each of the three target classes.
Finally, a combiner is used to combine the results of the three final models to
get the combined prediction.

Training and Prediction Using the Initial 18 Classifiers: We use 18 initial
models, which consist of 6 sets of 3 models each (one model for each of the three
orientations). The input data for each of these 18 models have been described
in Sect. 3.2.

During training, we only use the slices in our training set which actually have
tumors. On an average, in the training data provided, about 1.07% of the brain
is occupied by tumor in case of HGG and about 1.24% in case of LGG. As a
result, the portion of the brain that contains tumors is significantly smaller than
the healthy part. Thus, to minimize the class imbalance, we only use the slices
that have tumors during the training phase. However, the validation and testing
sets consist of all the slices in a specific direction (axial, sagittal or coronal).

We train our models using an existing DeepLabv3+ pre-trained model.
Specifically, we use a checkpoint of the Xception model [13], which is pre-trained
on the augmented Pascal VOC dataset. We use a learning rate of 0.005, a batch
size of 8 (due to GPU memory constraints) and train for a total of 75000 steps.
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We use poly decay and a decay rate of 0.1 to decrease the learning rate after
30000 iterations.

Using the above method, we train our model separately on the 6 sets of input
slices in the axial, sagittal and coronal orientations. Thus, we get three separate
trained models for each set and use each model to predict the label of each voxel
in the corresponding validation slices. Since there are 6 sets, we get a total of
18 predictions for each voxel in the validation data after we train the initial 18
classifiers and use them to perform prediction on the validation data.

Fig. 3. A diagrammatic representation to show the exact bits occupied by the pre-
dictions from different initial classifiers indicating the channels occupied by sagittal
(S), coronal (C) and axial (A) predictions from the same set. The most significant bits
are the left most ones. For example, sagittal RGB predictions occupy the MSBs of
channel 1. FLAIRs3 m, T2s3 m and T1s3 m are generated after using our majority
voting-based combiner.

Bit Packing of the Results from the Initial 18 Classifiers to Prepare
the Inputs to the Final 3 Classifiers: Since the results of the initial 18
classifiers assign a label from 0 to 3 to each pixel, the number of bits required to
represent or store the labels is 2. However, DeepLabv3+ takes images that use
8 bits for each pixel as the input. So the value of each pixel can have a value
between 0 and 255. Thus, for each pixel, we can use bit packing to pack the
results of 4 initial classifiers to get the value for one channel of the input pixel to
the final classifiers. Also, since DeepLabv3+ uses 3 channels, the total number
of initial classifiers whose results we can directly pack to get a valid input slice
for the final classifiers is 12. In Fig. 3, for each pixel, each channel stores 8 bits,
which is depicted by dividing the 8 bits into 4 blocks which store 2 bits each.
The 2 bits in each block correspond to the 2 bit predictions from each of the 18
initial classifiers.

Preparation of Packed Input for the Final Classifiers to Segment the Tumor
Core and Whole Tumor: For the input to the final classifiers that detect the
whole tumor and the tumor core sections, we use the results from 9 of the initial
classifiers. The least significant two bits of the input to the final classifiers for
each channel are set to zero. For the whole tumor region, we rank the 6 sets of
initial classifiers in accordance with the accuracy achieved for the whole tumor
region, select the top three sets and use their results in order to prepare the
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packed input for the final classifier. Also, after packing, the bits occupied by
the results of a specific set depends on the rank of the set, such that, the results
from the set that gives most accurate results occupy the most significant bits. We
tried to do the same for the tumor core, but found that though the T1CE images
using 3 consecutive slices have better performance than 3 consecutive slices of
FLAIR images for the tumor core, the packed model that uses the results from
the FLAIR slices shows better performance. Thus, for the tumor core and whole
tumor classifiers, we use the following 3 sets in 3 different orientations:

– The RGB set, which consists of the FLAIR, T1CE and T2 slices and gives
most accurate results.

– The T1CE-T1 set, which consists of the FLAIR and T2 slices for two channels
and the difference of T1CE and T1 as the third channel, and achieves rank 2
based on the accuracy of the result.

– The FLAIRs3 set constructed using 3 consecutive FLAIR slices, which is
ranked third among the three selected sets.

The results for the slices belonging to the same set but in different orientations
occupy the same bits for all the three channels. Also, the predictions from the
classifiers that use the sagittal and coronal slices are recombined and then sliced
axially to create slices in the axial direction. This ensures that the predictions
from the three different orientations can be combined to form RGB images after
the packing is done.

Preparation of Packed Input for the Final Classifiers to Segment the Enhancing
Tumor: In case of the enhancing tumor region, we use the results from all of the
initial 18 classifiers for creating the packed input for the final classifier. For the
most significant 6 bits of each channel for the packed input, we use the results
from the RGB, T1CE-T1, and T1CEs3 classifiers. This decision is also made
based on the accuracy of the results of each of the 18 initial classifiers for the
enhancing tumor region. Based on the rank achieved by each set, the RGB set
achieves maximum accuracy and its results occupy the most significant 2 bits,
while the results of T1CEs3 have a rank of 3 among the 3 top-ranked classifier
sets, and thus occupy bit 5 and bit 6 of the packed input to the final classifier.
In all these cases the results obtained from the 3 different orientations in the
same classifier set are used to create the inputs for the 3 different channels.
Finally, we use majority voting in order to combine the results of each of the
9 remaining classifiers. We use intra-set majority voting to combine the results
from the 3 models (one each for the slices in each orientation) in a set and get a
single 2 bit result. Thus, we get 2 bits each after combining the results from the
3 orientations of T1s3, T2s3, and FLAIRs3. Then, we create the packed input
to the final classifier by using the results from FLAIRs3, T2s3, and T1s3 as the
least significant 2 bits of channel 1, 2, and 3 respectively.

Our simplistic majority voting scheme works by first recombining all the
predicted slices in the axial direction to get the 3-D brain segmentation. We also
perform the same operation along different axes to reconstruct the segmented
images using the sagittal and coronal slices. Here we refer to the prediction for
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voxel at position i, j, k considering the sagittal direction slices as psagittali,j,k , the
axial direction slices as paxiali,j,k and coronal direction slices as pcoronali,j,k . If, for any
voxel, any two of these predictions are the same, that is either psagittali,j,k = pcoronali,j,k

or psagittali,j,k = paxiali,j,k or paxiali,j,k = pcoronali,j,k , then we assign the label predicted by the
majority to that voxel. However, if all the three predictions differ, we give priority
to the prediction that uses the slices in the orientation that achieves the best
performance. From our experiments, we found that, other than the classifiers
that use T1CE-T1 slices, the highest average Dice coefficient is achieved by the
model that uses the cross-sectional slices.

Training and Generation of Final Prediction Using the 3 Final Clas-
sifiers: Using the above inputs, we trained DeepLabv3+ models for 150000
iterations and checked the performance on the validation set after every 5000
iterations. For the model that is trained for identifying the enhancing tumor
section, we get the best performance after training for 115000 iterations. While
the inputs for the models for the whole tumor and the tumor core were the same,
we achieve the best performance for the whole tumor section after training for
100000 iterations, and for the tumor core after training for 130000 iterations.
All the other training parameters are the same as the ones used for the ini-
tial 18 classifiers. For the testing phase, we save and use the best performing
checkpoints to perform our predictions.

Finally, we combine the outputs of the final 3 classifiers by using the fact
that the tumor core is a subset of the whole tumor and the enhancing tumor
is a subset of the tumor core. Thus, we combine the results and ensure that if
there are any pixels that are predicted as tumor core but lie outside the mask
for the whole tumor, then it is not considered to belong to tumor core. We use
a similar logic to allocate the labels for the enhancing tumor region.

Our code can be found at: https://ar16m@bitbucket.org/ar16m/brats.

4 Results

We evaluate the performance of our network by training the 18 initial classifiers
consisting of 6 sets of 3 classifiers each and then providing their performance on
the validation set, which consists of 66 cases. The models are used to perform
predictions on the validation slices of the corresponding orientations. We report
the Dice coefficient of each of the trained models by creating a separate table
for each of the 3 orientations. We also report the Dice coefficient for the results
of each set after using majority voting to combine the results obtained from the
3 orientations.

In Tables 1, 2, 3 and 4, we provide the mean Dice coefficient achieved for the
three classes: whole tumor, tumor core, and enhancing tumor.

https://ar16m@bitbucket.org/ar16m/brats


Segmentation of Brain Tumors Using DeepLabv3+ 163

Table 1. Dice coefficient achieved by the 6 models trained on the sagittal slices

Model Enhancing tumor Whole tumor Tumor core

RGB 0.68459 0.8939 0.80119

T1CE-T1 0.6562 0.8655 0.77151

FLAIRs3 0.33235 0.84988 0.64296

T1CEs3 0.65405 0.74965 0.74233

T1s3 0.2589 0.72237 0.57025

T2s3 0.39554 0.82681 0.65191

Table 2. Dice coefficient achieved by the 6 models trained on the coronal slices

Model Enhancing Tumor Whole Tumor Tumor Core

RGB 0.66206 0.87746 0.77098

T1CE-T1 0.61373 0.87475 0.74592

FLAIRs3 0.27256 0.87242 0.63564

T1CEs3 0.64578 0.75146 0.73137

T1s3 0.21524 0.7272 0.51093

T2s3 0.37821 0.83565 0.652361

Table 3. Dice coefficient achieved by the 6 models trained on the axial slices

Model Enhancing Tumor Whole Tumor Tumor Core

RGB 0.69409 0.88508 0.80733

T1CE-T1 0.63185 0.88176 0.77198

FLAIRs3 0.38685 0.87763 0.69402

T1CEs3 0.69508 0.75459 0.75409

T1s3 0.33677 0.74698 0.61879

T2s3 0.3873 0.82306 0.66986

Table 4. Dice coefficient achieved by the 6 majority-voted predictions (one correspond-
ing to each set)

Model Enhancing Tumor Whole Tumor Tumor Core

RGB 0.72705 0.89152 0.82154

T1CE-T1 0.68443 0.88669 0.79011

FLAIRs3 0.38325 0.88484 0.69455

T1CEs3 0.70896 0.77544 0.77949

T1s3 0.3184 0.75872 0.60877

T2s3 0.43856 0.84126 0.69651
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From the above results, we see that the use of the basic majority voting-
based combiner improves the Dice coefficient. Thus, in the packed input used by
the final classifier for the enhancing tumor region, we use the results obtained
after performing majority voting for the 3 lowest ranked models. In this way,
we reduce the number of bits occupied by the results from the classifiers that
perform poorly, ensure that we can pack the results of the 18 initial classifiers
into the 8 × 3 bits available for each pixel, and utilize more accurate results for
the final classifier inputs.

Finally, we provide some measures of the accuracy achieved by combining
the results from our final 3 classifiers. In Table 5, we first provide the mean
Dice coefficient achieved by the 3 final classifiers for the corresponding regions
and then we provide the Dice coefficient, sensitivity, specificity and Hausdroff
distance achieved by the combined prediction on the validation data as well as
the Dice coefficient and Hausdroff distance for testing data.

Table 5. Performance of our combined model using four common metrics.

Metric Enhancing tumor Whole tumor Tumor core

Individual final models

Dice coefficient 0.75055 0.896 0.82327

Final combined model

Dice coefficient 0.75158 0.896 0.82313

Sensitivity 0.79062 0.9013 0.81701

Specificity 0.99704 0.99389 0.99766

Hausdroff distance 3.87866 4.47801 6.24132

Test set results using final combined model

Dice coefficient 0.70859 0.87549 0.78969

Hausdroff distance 4.48324 6.45026 6.91055

We also provide here a sample image in order to visualize our image segmen-
tation results after combining the results from the three final models. Figure 4
depicts the T1, FLAIR, T1CE and T2 images as well as our predicted segmenta-
tion and the ground truth segmentation. The figure shows the level of accuracy
that we have achieved after combining the results from the three final models.
However, in some cases the uneven boundaries are not identified accurately.
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T1 Image Predicted Segmentation Ground Truth Segmentation

FLAIR Image T1CE Image T2 Image

Fig. 4. Visualization of segmentation: The figure depicts the T1, FLAIR, T1CE and
T2 images as well as the ground truth and predicted segmentations.

5 Conclusion and Future Work

We used the DeepLabv3+ deep learning framework to perform brain tumor seg-
mentation. We trained our network separately on the coronal, axial and sagit-
tal slices and developed a network consisting of 18 initial classifiers, which are
divided into 6 sets of 3 classifiers each (one for each orientation). Every set has
a different combination of input slices as the input, and the outputs of these
18 classifiers are combined using bit packing to prepare the inputs for the final
3 classifiers, one for each of the three target regions. The outputs of these 3
classifiers are combined to produce the final segmented brain images. On the
testing data, we achieve Dice coefficients of 0.7086, 0.7897 and 0.8755 for the
enhancing tumor, tumor core and whole tumor regions respectively. A summary
of the BraTS 2018 challenge can be found in [5].

In future, we intend to extend our model so that we can use patches of at
least 5 slices to perform the segmentation of the central slice. This neighborhood
information should enable our model to achieve higher accuracy because, in
general, if there is a tumor in the neighboring slices, the slice under consideration
has a higher probability of having a tumor. However, this information is not
considered in cases where the segmentation is done for individual slices or the
information may be insufficient in cases where we use only two neighboring slices.
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Abstract. Accurate brain tumor segmentation plays a pivotal role in clinical
practice and research settings. In this paper, we propose the multi-level up-
sampling network (MU-Net) to learn the image presentations of transverse,
sagittal and coronal view and fuse them to automatically segment brain tumors,
including necrosis, edema, non-enhancing, and enhancing tumor, in multimodal
magnetic resonance (MR) sequences. The MU-Net model has an encoder–de-
coder structure, in which low level feature maps obtained by the encoder and
high level feature maps obtained by the decoder are combined by using a newly
designed global attention (GA) module. The proposed model has been evaluated
on the BraTS 2018 Challenge validation dataset and achieved an average Dice
similarity coefficient of 0.88, 0.74, 0.69 and 0.85, 0.72, 0.66 for the whole
tumor, core tumor and enhancing tumor on the validation dataset and testing
dataset, respectively. Our results indicate that the proposed model has a
promising performance in automated brain tumor segmentation.

Keywords: Magnetic resonance imaging � Brain tumor segmentation �
Encoder–decoder � Multi-level upsampling � Global attention

1 Introduction

Glioma is a type of tumors that starts in the glial cells of the brain or the spin, comprising
about 30% of all brain tumors and central nervous system tumors, and 80% of all
malignant brain tumors [1]. Shape and localization of tumors are crucial for diagnosis,
treatment planning and follow-up observation in clinical, while the manual segmenta-
tion of brain tumor in magnetic resonance (MR) images requires a high degree of skills
and concentration, and is time-consuming, expensive and prone to operator bias. Thus, a
fully automated and reliable segmentation algorithm is of great significance. However,
despite considerable research efforts being devoted to this task [2], automated seg-
mentation of brain tumors remains a challenge, largely due to the variable shapes and
locations, diffusion and poor contrast of brain tissues in MR images.
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In recent years, deep learning techniques, especially deep convolutional neural
networks (DCNNs), have led to significant breakthroughs in computer vision, since
they provide an ‘end-to-end’ framework for simultaneous presentation learning and
image segmentation and thus free users from the troublesome extraction of handcrafted
features. Such breakthroughs have prompted many researchers to use DCNNs for brain
tumor segmentation. The solutions published in the literature can be roughly divided
into two groups. One group of solutions are based on the classification of image
patches. Pereira et al. [3] designed an 11-layer CNN and a 9-layer CNN to classify the
patches extracted from high grade gliomas (HGG) and low grade gliomas (LGG),
respectively. To simultaneously learn the presentation of both fine details and coarse
structures from input images, Zhao et al. [4] proposed a three-convolutional-pathway
network, in which the input patches for three pathways have a size of 48 � 48,
28 � 28 and 12 � 12, respectively, and concatenated these three outputs for classi-
fication. Kamnitsas et al. [5] adopted a 3D CNN architecture, i.e. DeepMedic, with
multiple input image resolutions, residual connections and fully connected conditional
random field. Castillo et al. [6] developed a neural network with four contracting
pathways and residual connections that receive patches centered on the same voxel, but
with different spatial resolutions. Lopez et al. [7] removed max pooling layers in dilated
residual network [8] to avoid loss of upsampling the prediction by interpolation, but at
the same time enlarge the receptive field through dilated convolutional operations.
McKinley et al. [9] also replaced max pooling layers by dilated convolutions without
influencing the receptive field of the classifier in Densenet. The other group of solutions
are based on fully convolutional networks (FCNs). Pereira et al. [3] employed two U-
Nets, one for the localization of tumors and the other for the segmentation of intra-
tumor structures. Li et al. [10] used three parallel end-to-end networks for three views
and generated the segmentation results using majority voting. Kamnitsas et al. [11]
trained seven end-to-end networks and used ensemble learning to produce robust
segmentation results. Wang et al. [12] proposed a cascade of fully convolutional neural
networks to decompose the multi-class segmentation problem into a sequence of three
binary segmentation problems according to the subregion hierarchy. In our previous
work [13], we used a cascaded U-Net model and a patch-wise CNN to detect and
segment brain tumors.

In this paper, we propose a FCN called the multi-level upsampling network (MU-
Net) to segment brain tumor structures, including necrosis, edema and enhancing tumor
from multimodality MR. Our main contributes are: (a) we designed a global attention
(GA) module to combine the low level feature from encoder and high level feature
from decoder; (b) we designed a multi-level decoding architecture. The proposed
algorithm has been evaluated on the BraTS 2018 Challenge validation dataset and
achieved a promising result.

2 Dataset

The proposed MU-Net model was evaluated on the Brain Tumor Segmentation 2018
(BraTS 2018) Challenge dataset [14–16]. There are 285 cases for training, including
210 HGG and 75 LGG cases. Each case has four multimodal MR scans, including the

Brain Tumor Segmentation on Multimodal MR Imaging 169



T1, T1c, T2, and FLAIR. All these scans were co-registered to the same anatomical
template, interpolated to the same dimension of 240 � 240 � 155 and the same voxel
size of 1.0 � 1.0 � 1.0 mm3 and skull-stripped. Each case has been segmented
manually, by up to four raters, following the same annotation protocol, and their
annotations were approved by experienced neuro-radiologists. Annotations of tumor
tissues comprise the enhancing tumor (ET-label 4), the peritumoral edema (ED-label
2), and the necrotic and non-enhancing tumor core (NCR/NET-label 1). The validation
and testing datasets consist of 66 and 191 cases, respectively, but their grade and
ground truth are unseen.

3 Methods

The 3D brain MR sequences are resliced from three views, transverse, sagittal and
coronal respectively. Three probability maps of these three views are learned by three
identical MU-Nets, respectively, and concatenated together as the input of a multi-view
fusion network. The pipeline of proposed algorithm is shown in Fig. 1.

3.1 MU-Net

The proposed MU-Net model adopts the encoder-decoder structure, consisting of five
convolutional blocks, a spatial pyramid pooling (SPP) module [17], five global
attention (GA) modules, and nine upsampling feature (UF) modules. The architecture
of this model is shown in Fig. 2.

The encoder branch is a variants of ResNet-101. The convolutional layer with 64
7 � 7 kernels and a stride of 2 in the root block (i.e. Block 1) is replaced with five
convolutional layers, each consisting 64 3 � 3 kernels. The stride of the third con-
volutional layer is 2, and the stride of other convolutional layers is 1. Other blocks in
this branch is the same as those in ResNet-101 [18].

Between the encoder and decoder, we add a SPP module, in which there are five
parallel operators, including three 3 � 3 dilated convolution with a dilation rate of 6,
12, and 18, respectively, a 1 � 1 convolution and a global pooling (see Fig. 3(a)). The
input of the SPP module is processed by these operators simultaneously, and the feature
maps generated by these operators are concatenated as the output of the SPP module.

Transverse

Sagital

Coronal

Multi-
view

 fusion
Segmentation

Fig. 1. Pipeline of proposed algorithm.
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The major part of the decoder branch contains five decode modules (i.e. UF 1 – UF 5),
which are designed to recover the size of feature maps. Usually, there are two 3 � 3
convolutions and a bilinear interpolation between them in each UF module (see Fig. 3
(c)). However, since there is no down-sampling operation in the encoder block 3–5, the
interpolation operation is omitted in UF 1, UF 2, and UF 5 modules such that the output
feature maps have the same size as the input of MU-Net. Meanwhile, to combine low-
level feature maps and high-level feature maps in the decoding process, we add five GA
modules to the MU-Net model. Each GA module takes two groups of inputs - low-level
feature maps from the corresponding encoder block and high-level feature maps from
the UF module at the previous level. Two 3 � 3 convolutions are applied to low-level
feature maps, respectively. High-level feature maps are also processed by two opera-
tions – one is the global average pooling followed by a 1 � 1 convolution as, and the
other is a 3 � 3 convolution. The processed high-level feature maps are then used as the
element-wise weighting mask of the processed low-level feature maps (see Fig. 3(b)).
In addition, the output of each of UF 2 – UF 5 are fed simultaneously to the UF module
(UF 6 – UF 9) at the next level. Eventually, the output of the UF 6 and the output of UF1
are concatenated and fed to a 3 � 3 convolution another UF module to produce the
segmentation results.

3.2 Multi-view Fusion

Three views are fused by a shallow encoder-decoder network. The encoder consists of
three convolutional layers with 64, 128 and 256 3 � 3 kernels, followed by three max
pooling layers respectively. The decoder comprises three deconvolutional layers with
256, 128 and 64 kernels of size 3 � 3. Then, we convolve the output of the decoder by
four 3 � 3 kernels and predict by max possibility.

Block 1

Block 2

Block 3

Block 4

Block 5

SPP

GA

GA

GA

GA

GA

UF 5

UF 4

UF 3

UF 2

UF 1

UF 9

UF 8

UF 7

UF 6

Fig. 2. Architecture of the proposed MU-Net model
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3.3 Implementation

With the proposed MU-Net model, brain tumor segmentation can be performed on a
slice-by-slice basis. The slices in each training dataset were cropped and padded to
224� 224, 224� 160, 224� 160 for transverse, sagittal, and coronal view, respec-
tively, and the voxel values of each modality were normalized by the min-max nor-
malization. The encoding branch was initialized by the pre-trained ResNet-101 [19].
The positive slices (with tumor) and negative slices (without tumor) were randomly
selected at a rate of 5:1. The cross entropy was used as the loss function, and the
adaptive moment estimator (Adam) with an exponentially descending learning rate of
0.001–0.00001 was adopted as the optimizer. It took about twenty hours to train each
MU-Net model with a batch size of 8 and epochs of 30 on two GPUs (NVIDIA 1080
Ti, 12 GB RAM) four hours to train the fusion network with a batch size of 16 and
epochs of 20.

4 Experiments and Results

Following the request of the challenge, four intra-tumor structures have been grouped
into three mutually inclusive tumor regions: (a) whole tumor (WT) that consists of all
tumor tissues, (b) tumor core (TC) that consists of the enhancing tumor and necrotic
and non-enhancing tumor core, and (c) enhancing tumor (ET). The performance of
segmenting each tumor region was quantitatively evaluated through an online system

Fig. 3. Architecture of modules used in segmentation model. (a) shows the SPP module;(b)
shows GA module; (c) shows the UF module.
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by using three metrics, including the average Dice similarity coefficient, sensitivity and
Hausdorff distance.

Preliminary results for the BraTS 2018 Training dataset have been obtained by
hold-out using 80% of the data (228 cases) for training and the remaining 20% for
validation (57 cases). Table 1 shows the quantitative evaluation and Fig. 4 presents
some examples of the predictions against the ground truth on predicted cases from
BraTS 2018 training data. It appears that this proposed model works well when the
edge is relatively smooth, as the first three examples shown in Fig. 4. However,
similarly to other semantic image segmentation task, our deep model works weakly on
pixels distributed near the edge as th last two examples shown in Fig. 4. Tables 2 and 3
give the quantitative evaluation of our algorithm on 66 validation and 191 testing
unseen subjects. We can observe that performance on training data, validation data and
testing data are consistent, which indicates that this model generalizes well to unseen
examples. Figure 5 shows the visualization of segmentation result from validation
dataset.

5 Discussion

5.1 Multi-level Upsampling

To demonstrate the performance improvement resulted from using the GA module, we
trained a similar network but without using multi-level upsampling on the BraTS 2018
training dataset and tested it on the validation dataset. Table 4 gives the performance of
both models measured by the average Dice similarity coefficient, sensitivity, specificity
and Hausdorf-95. It reveals that multi-level upsampling connection is able to improve
the performance.

Table 1. Quantitative result of validation on BraTS 2018 training set.

Dice Sensitivity Hausdorf-95
ET WT TC ET WT TC ET WT TC

Mean 0.61 0.83 0.73 0.83 0.89 0.75 41.48 47.23 41.14
StdDev 0.27 0.11 0.17 0.17 0.09 0.21 37.49 23.49 28.90
Median 0.72 0.86 0.77 0.88 0.91 0.82 41.69 46.70 44.77
25quantile 0.50 0.78 0.64 0.80 0.85 0.62 5.12 30.36 12.37
75quantile 0.80 0.90 0.86 0.95 0.96 0.93 61.25 59.84 59.67
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Flair                                 T1c                                Segmentation                Ground truth

Fig. 4. Segmentation examples from the validation set. From top to bottom: the 55th, 57th, slices
from the subject Brats18_TCIA01_147_1 and the 55th, 57th slices from the subject
Brats18_TCIA10_629_1. Red - NCR&NET, Blue - ET, Green – ED. (Color figure online)

Table 2. Quantitative result on BraTS 2018 validation set.

Dice Sensitivity Hausdorf-95
ET WT TC ET WT TC ET WT TC

Mean 0.69 0.88 0.74 0.71 0.87 0.77 6.69 4.76 10.67
StdDev 0.27 0.10 0.24 0.28 0.15 0.25 12.43 4.04 9.87
Median 0.80 0.91 0.84 0.82 0.93 0.88 2.83 3.00 6.78
25quantile 0.66 0.88 0.69 0.63 0.84 0.68 1.73 2.24 4.36
75quantile 0.86 0.94 0.90 0.90 0.95 0.93 5.39 5.74 14.73
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Table 3. Quantitative result on BraTS 2018 testing set.

Dice Hausdorf-95
ET WT TC ET WT TC

Mean 0.66 0.85 0.72 5.94 6.29 9.04
StdDev 0.29 0.15 0.27 9.04 9.25 11.47
Median 0.77 0.90 0.82 2.83 4.00 5.39
25quantile 0.60 0.84 0.65 2.00 2.34 3.16
75quantile 0.85 0.93 0.90 5.15 6.28 11.32

Flair                                   T1c                           Segmentation

Fig. 5. Segmentation examples from the validation set. From top to bottom: the 54th and 57th

slices from the subject Brats18_CBICA_ANK_1 and 87th and 91th, slices from the subject
Brats18_CBICA_ANK_1. Red - NCR&NET, Blue - ET, Green – ED (Color figure online)
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6 Conclusion

In this paper, we proposed a novel end-to-end segmentation model called MU-Net to
segment brain tumors and their intra structures from multimodal MR scans, which
learns the presentation of MR scans in transverse, sagittal and coronal views and fused
them through a convolutional neural network for image segmentation. This model has
been evaluated on the BraTS 2018 Challenge online system and achieved an average
Dice similarity coefficient of 0.88, 0.74, 0.69 and 0.85, 0.72, 0.66 for whole tumor,
core tumor, and enhancing tumor on the validation dataset and testing dataset,
respectively.
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Abstract. Image analysis of brain tumors is one of key elements for clinical
decision, while manual segmentation is time consuming and known to be
subjective to clinicians or radiologists. In this paper, we examined the neuro-
morphic convolutional neural network on this task of multimodal images, using
a down-up resizing network structure. The controlled rectifier neuron function
was incorporated in neuromorphic neural network, for introducing the efficiency
of segmentation and saliency map generation used in noisy image processing of
X-ray CT data and dark road video data. The neuromorphic neural network is
proposed to the brain imaging analytic, based on the visual cortex-inspired deep
neural network developed for 3 dimensional tooth segmentation and robust
visual object detection. Experiment results illustrated the effectiveness and
feasibility of our proposed method with flexible requirements of clinical diag-
nostic decision data, from segmentation to overall survival analysis. The sur-
vival prediction was 71% accuracy for the data with true result and 50.6%
accuracy of predicting survival days for the individual challenge data without
any clinical diagnostic data.

Keywords: Convolutional neural network � Neuromorphic processing �
Brain tumor � Image segmentation � Survival analysis � Visual cortex

1 Introduction

The assessment of brain tumors delivers valuable information and becomes one of key
elements of clinical diagnosis. Therefore, the automatic brain image segmentation
emerges as a critical technology, as there are advantages of faster, more objective and
potentially desirable accuracy. Due to the irregular nature of tumors as well as noisy 3D
MRI images, the development of practical solution is still challenging throughout the
BRATS Challenge [1–5]. Particularly, the accuracy of categorical estimates ranged
from 23% up to 78% for the survival prediction among the expert clinicians [6].

Overall survival (OS) analysis of patients has been also the subject of interests,
which is evaluated from the baseline to the time of last available follow-up. There
observed a great variability in survival prediction, and even experienced physicians are
relatively poor at predicting the individual’s survival period [7–9]. A time threshold of
18 months can be defined to differentiate the patients into 2 groups, those with short- or
long-term survival [9]. In this paper, the segmentation algorithm is proposed and
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applied to evaluate OC based on BRAT 2018 high grade glioblastomas (HGG) data set
and the survival data.

Since the convolutional network like U-net have been widely in use [10, 11], the
convolutional neural network (CNN) and its derivatives have attracted more attentions
on segmentation tasks. Recently, the neuromorphic neural network introduced its
feasibility of segmentation of 3D CT images, by the successful 3D dental tooth seg-
mentation including roots in the gum [12].

In this paper, we will give an experimental study of the effectiveness of neuro-
morphic neural network on multimodal brain tumor segmentation. This paper is
intended for Tumor Segmentation Challenge 2018 [1–5]. Since the available dataset is
limited in size, we utilized the convolutional filters developed for other applications of
segmenting objects in medical images and other noisy images. Experiment results
using multimodal brain MRI images show the bio-inspired convolutional filters and
controlled linear rectifier neurons can boost the performance of the segmentation tasks.

2 Methods

The neuromorphic convolutional neural network in Fig. 1 is inspired by a neuromor-
phic neuron of simple cell neuron in visual cortex experimentation by Hubel and
Wiesel, with the various orientation selective features. The system has the process of
orientation feature extraction using neuromorphic processing mimicking the simple cell
neuron, based on the convolution with filter banks. The introduction of down-up
resizing in Fig. 1 enables the abstract feature extraction, with robust saliency map
generation combined with the controlled rectifier neuron.

The neuromorphic convolutional recurrent neural network in Fig. 1 demonstrated
the feasibility of segmenting object in unclear images. In principle, the front-end
convolutional neural network acts as the feature extractor for the first round of RoI
(Region of Interest) processing, where RoI represents the segmented area of teeth.
Extracted features of orientation components improve the RoI processing substantially
by removing the noisy image components of scattered non-tooth bone objects or tissues

Fig. 1. (a) The earlier neuromorphic convolutional recurrent neural networks of object
segmentation, inspired by the robust visual processing of visual cortex, (b) 3D tooth
segmentation of dental X-ray CBCT images [12].
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in the gum. The neuromorphic neural network in Fig. 1(a) demonstrated the successful
tooth segmentation of dental X-ray Cone Beam CT images, as shown in Fig. 1(b) [12].
In this paper, the concept of neuromorphic convolution neural network and resizing in
Fig. 1(a) is adopted for processing the saliency map of brain tumors, for the tumor
segmentation and overall survival diagnosis.

The architecture of neuromorphic neural network in Fig. 2 is designed for brain
imaging analytic, where the neuromorphic convolutional neural network is based on
the pre-trained filters for 3D tooth segmentation of X-ray CT [12]. The differential
processing module is introduced to evaluate the multimodal images of four different
modes. The differential processing is based on image data manipulation, which is
unsigned 8-bit operation The recurrent structure of Fig. 1 is skipped for the effective
configuration of differential processing stage, considering the brain matter of less solid
object than tooth. Down-Up resizing neural networks provide the function saliency
map generation, which is applied to the controlled rectifier neuron for brain tumor
segmentation. (0.05–20) was determined for Down-Up resizing for the neuromorphic
neural network for brain imaging analytic. The tumor segmentation in Fig. 2 is based
on two hypotheses, when one is the transfer learning of trained neural network for deep
learning and the other is the alternate brain-mimicking model to the inaccurate clinical
diagnosis reference data of 23%–78%. The fully connected neural network with two
segmentation data is used for predicting the overall survival (OS), utilizing the patients’
record for training the network.

The fully connected neural network in Fig. 3 is the feedforward neural network
with two inputs and three hidden layers, which is 2(inputs) � 20 � 20 � 5 � 1
(output). Two input variables are total pixel numbers of each segmented images. The
output represents the OS prediction of the shorter survival period (‘0’: less than 18
months) or the longer survival period (‘1’: more than 18 months). The input data of
segmentation 1 and segmentation 2 are normalized for training.

Fig. 2. The neuromorphic neural network architecture, inspired by the earlier neuromorphic
neural network of 3D dental tooth segmentation [12] in Fig. 1.
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The training process of neural network in Fig. 3 was based on ‘MICCAI_BraTS
_2018_Data_Training’, where 80% of data was used for training, 5% for test, and 15%
for validation.

The fully connected neural network in Fig. 4 was designed for evaluating days of
overall survival period, as required by individually allocated dataset of BraTS 2018.
The patients’ statistics were assumed to be similar to those found in
‘MICCAI_BraTS_2018_Data_Training’. The 8-bit resolution was aimed with the
multiplying scale of 50. The feedforward network in Fig. 4 has 4 hidden layers and 8
output neurons, which is 2(inputs) � 50 � 50 � 30 � 30 � 8(output). The output
represents the OS prediction in days after multiplying with the designated scale. The
survival period for training was encoded to 8-bit after divided by 50. The input data of
segmentation 1 and segmentation 2 are normalized for training, with the tuned
threshold of controlled rectifier neuron. The rationale of tuning the threshold is based
on the assumed consistency in patient statistics, regarding the severity of tumor.

Fig. 3. The fully connected neural network for the diagnosis of overall survival – short term
(less than 18 months) and long term (over 18 months).

Fig. 4. The fully connected neural network for the diagnosis of overall survival period in days.
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The training process of neural network in Fig. 4 was based on ‘MICCAI_BraTS_
2018_Data_Training’, where 75% of data was used for training, 15% for test, and 10%
for validation. The accuracy of trained network in Fig. 4 is evaluated as 71.9% based
on the target-output confusion matrix.

3 Results

The preliminary results are illustrated in Figs. 5, 6 and 7. The neuromorphic orientation
enhanced features are observed at the outputs of 1st stage neuromorphic convolutional
neural network, which can reduce the illumination change of individual image. The
abstraction features enable the possible effectiveness in pattern recognition or clus-
tering, which is advantageous for the limited size of training data.

The segmentation procedure utilizes the averaging and threshold process during
Down-Up resizing neural network operation. The bottom left object illustrates the
segmentation 1 in Fig. 5, which is some way close to the enhancing tumor in the
provided ground truth. The similar functions were observed in dental tooth

Fig. 5. Example outcomes of proposed neuromorphic neural network using BRATS 2018
training data set, (HGG, CBIA_AAB_1 A, layer no = 35). Top: multimodal brain MRI images,
middle: intermediate outputs of 1st stage CNN, bottom: segmentation results (left end) and
intermediate results.
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segmentation [12], which illustrated the automatic segmentation function by neuro-
morphic convolution filters and Down-Up resizing neural network. The tumor saliency
maps of segmentation are automatically produced and examples are shown as ‘NM seg
Detected RoI’ and ‘NM seg Detected RoI 2’ in Figs. 6 and 7.

The controlled linear rectifier neurons are employed to produce the data for OS
prediction, with both the tuned threshold value and the fixed threshold value. The
converted saliency maps are illustrated in the bottom images in Fig. 7.

The fully connected network of Fig. 3 was trained by the limited number of 161
data sets, and the result of Table 1 is summarized. Since there is a substantial difference
among human experts of tumor segmentation, it would be challenging to implement the

Fig. 6. Outcomes of proposed neuromorphic neural network using BRATS 2018 training data
set, (HGG, CBIA_AAB_1 A, layer no = 59). Top: Multimodal brain MRI images, middle:
segmentation results of BRATS dataset, bottom: two parallel outcomes of image segmentation
intermediate results.
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Fig. 7. Outcomes of proposed neuromorphic neural network using BRATS 2018 training data
set, (HGG, CBIA_AAB_1 A, layer no = 62). Top: multimodal brain MRI images, upper middle:
segmentation results of BRATS dataset, lower middle: two parallel outcomes of image
segmentation intermediate results, bottom: segmented images converted by controlled rectifier
neurons.

Table 1. OS of BRATS 2018 HGG dataset by neuromorphic neural network

Accuracy and sensitivity Cases

Correct prediction 71% (115 cases among 161 cases)
Positive failure (mistaken as the long
OS period: more than 18 months)

11%

Negative failure (fail to predict the short
OS period: less than 18 months)

18%
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system with the accurate result much better than the human expert with 23%–78% [6].
The estimated performance is around 71% of accuracy. The hypothesis other than the
saliency map is kept minimum for evaluating the OS, as there exists the large variance
among clinical experts.

The contents of Table 2 illustrate the OS prediction of validation data released for
BRATS 2018, without the ground truth of tumor segmentation. Images of Fig. 8
represent the result using validation dataset.

The contents of Table 3 illustrate the OS prediction of allocated test data provided
for BRATS 2018. Images of Fig. 9 represent the outcome examples using allocated
dataset, where survival days were evaluated. The 50.6% accuracy of OS diagnosis was
reported for patients’ survival days prediction, according to the result from BRATS
2018 committee.

Fig. 8. Outcomes of proposed neuromorphic neural network using BRATS 2018 validation data
set, Top: multimodal brain MRI images. Middle: intermediate outputs of 1st stage CNN, bottom:
intermediate results and segmentation result (right end: segmentation 1 of Fig. 2)
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Table 2. OS (Overall Survival) prediction: BRATS 2018 validation dataset (‘1’ for longer
period over 18 months, ‘0’ for shorter period under 18 months

OS OS

Brats18_MDA_1012_1 0 Brats18_TCIA13_646_1 0
Brats18_MDA_1015_1 0 Brats18_TCIA13_636_1 0
Brats18_MDA_1081_1 0 Brats18_TCIA09_248_1 1
Brats18_MDA_907_1 1 Brats18_TCIA02_230_1 1
Brats18_MDA_922_1 1 Brats18_TCIA02_400_1 1
Brats18_CBICA_BHN_1 0 Brats18_TCIA03_216_1 1
Brats18_CBICA_BLK_1 0 Brats18_TCIA03_288_1 1
Brats18_CBICA_AAM_1 1 Brats18_TCIA03_604_1 1
Brats18_CBICA_ABT_1 1 Brats18_TCIA03_313_1 1
Brats18_CBICA_ALA_1 0 Brats18_TCIA04_212_1 0
Brats18_CBICA_ALT_1 1 Brats18_TCIA04_253_1 0
Brats18_CBICA_ALV_1 1 Brats18_TCIA07_602_1 0
Brats18_CBICA_ALZ_1 1 Brats18_TCIA07_601_1 0
Brats18_CBICA_AMF_1 0 Brats18_TCIA07_600_1 0
Brats18_CBICA_AMU_1 0 Brats18_UAB_3446_1 1
Brats18_CBICA_ANK_1 1 Brats18_UAB_3448_1 1
Brats18_CBICA_APM_1 1 Brats18_UAB_3449_1 1
Brats18_CBICA_AQE_1 1 Brats18_UAB_3454_1 1
Brats18_CBICA_ARR_1 0 Brats18_UAB_3455_1 1
Brats18_CBICA_ATW_1 0 Brats18_UAB_3456_1 1
Brats18_CBICA_AUC_1 1 Brats18_UAB_3490_1 1
Brats18_CBICA_AUE_1 0 Brats18_UAB_3498_1 1
Brats18_CBICA_AZA_1 1 Brats18_UAB_3499_1 1
Brats18_TCIA13_652_1 0 Brats18_WashU_S037_1 0
Brats18_TCIA13_638_1 0 Brats18_WashU_W033_1 1
Brats18_TCIA13_617_1 0 Brats18_WashU_W038_1 1

Brats18_WashU_W047_1 1

Fig. 9. Outcome examples of proposed neuromorphic neural network using allocated test data
set of BRATS 2018 Challenge, left to right: brain MRI image, neuromorphic processing before
down-up resizing neural network, segmentation 1, segmentation 2.
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4 Discussion

Our proposed algorithm has the feature of mimicking human visual recognition pro-
cess, where the neuromorphic convolutional neural network unlikely incurs the heavy
computing resources for learning. The decent size of neural network is more favorable
to the fast or real-time operation for enhanced medical imaging analytics. The algo-
rithm can be implemented by integer based computing, where early demonstrators were
implemented for the real-time applications using a mobile GPU. The accuracy of
overall survival (OS) prediction was evaluated as 50%–70%, by neuromorphic saliency
processing of neural network.

The major finding is that the pre-trained neuromorphic neural network can diag-
nosis the OS without the ground truth data of tumor segmentation, which should be
provided by the clinicians or radiologists. The proposed neuromorphic neural network
only requires the medical care records of patients’ survival days and MRI images, with

Table 3. OS (Overall Survival) days prediction examples: BRATS 2018 allocated test dataset

ID Survival days ID Survival days

Brats18_CBICA_AAA_1 571 Brats18_CBICA_ANJ_1 381
Brats18_CBICA_AAC_1 566 Brats18_CBICA_ANR_1 397
Brats18_CBICA_AAE_1 568 Brats18_CBICA_ANW_1 471
Brats18_CBICA_AAF_1 568 Brats18_CBICA_AOB_1 339
Brats18_CBICA_AAK_1 568 Brats18_CBICA_AOG_1 386
Brats18_CBICA_AAN_1 573 Brats18_CBICA_AOQ_1 429
Brats18_CBICA_ABH_1 572 Brats18_CBICA_APS_1 457
Brats18_CBICA_ABP_1 565 Brats18_CBICA_AQB_1 311
Brats18_CBICA_AKQ_1 571 Brats18_CBICA_AQC_1 325
Brats18_CBICA_AKY_1 327 Brats18_CBICA_AQK_1 375
Brats18_CBICA_ALP_1 460 Brats18_CBICA_ATH_1 574
Brats18_CBICA_ALW_1 468 Brats18_CBICA_AUD_1 464
Brats18_CBICA_AMA_1 459 Brats18_CBICA_AUF_1 338
Brats18_CBICA_AMB_1 457 Brats18_CBICA_AUK_1 461
Brats18_CBICA_AMD_1 392 Brats18_CBICA_AVC_1 437
Brats18_CBICA_AMG_1 425 Brats18_CBICA_AVS_1 339
Brats18_CBICA_AMI_1 462 Brats18_CBICA_AVZ_1 461
Brats18_CBICA_AMK_1 458 Brats18_CBICA_AWA_1 405
Brats18_CBICA_AMN_1 456 Brats18_CBICA_AWB_1 330
Brats18_CBICA_AMO_1 574 Brats18_CBICA_AWK_1 339
Brats18_CBICA_AMP_1 482 Brats18_CBICA_AWP_1 572
Brats18_CBICA_AMQ_1 456 Brats18_CBICA_BGF_1 433
Brats18_CBICA_AMS_1 460 Brats18_CBICA_BHI_1 462
Brats18_CBICA_AMY_1 451 Brats18_CBICA_BKX_1 423
Brats18_CBICA_ANB_1 338 Brats18_CBICA_BLE_1 348
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the reasonable accuracy of OS diagnosis. It demonstrated the feasibility of saving the
clinicians’ or radiologists’ time and resource for the medical care of patients.

We expect to develop the neuromorphic neural network system of improved
accuracy via further training and optimization of overall network in addition to the
current trained fully connected network and the pre-trained convolutional filters,
delivering further features of the patient-specific and progressive response to treatment
providing a longer survival.

Acknowledgement. Authors appreciate the comments of reviewers for their advice and con-
structive feedback to our article for the improvement.
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Abstract. MRI analysis takes central position in brain tumor diagnosis
and treatment, thus its precise evaluation is crucially important. How-
ever, its 3D nature imposes several challenges, so the analysis is often
performed on 2D projections that reduces the complexity, but increases
bias. On the other hand, time consuming 3D evaluation, like segmenta-
tion, is able to provide precise estimation of a number of valuable spatial
characteristics, giving us understanding about the course of the disease.

Recent studies focusing on the segmentation task, report superior per-
formance of Deep Learning methods compared to classical computer
vision algorithms. But still, it remains a challenging problem. In this
paper we present deep cascaded approach for automatic brain tumor
segmentation. Similar to recent methods for object detection, our imple-
mentation is based on neural networks; we propose modifications to the
3D UNet architecture and augmentation strategy to efficiently handle
multimodal MRI input, besides this we introduce approach to enhance
segmentation quality with context obtained from models of the same
topology operating on downscaled data. We evaluate presented approach
on BraTS 2018 dataset and achieve promising results on test dataset with
14th place and Dice score of 0.720/0.878/0.785 for enhancing tumor,
whole tumor and tumor core segmentation respectively.

Keywords: Segmentation · BraTS · UNet · Cascaded UNet ·
Multiple encoders

1 Introduction

Multimodal magnetic resonance imaging (MRI) is a powerful tool for studying
human brain. Among it’s different applications, it is mainly used for disease
diagnosis and treatment planning. Accurate assessment of MRI results is critical
throughout all these steps. Since MRI scans are the set of multiple three dimen-
sional arrays, it’s manual analysis and evaluation is a non-trivial procedure and
requires time, attention and expertise. Lack of these resources can lead to unsat-
isfying results. Typically, these scans are analyzed by clinical experts using two
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dimensional cut and projection planes. It limits the amount of data taken into
account for decision making, thus it adds bias to the resulting evaluation. On
the other hand, accurate segmentation and 3D reconstruction is able to provide
more insights on disease progression and help a therapist to plan the treatment
better. However these methods are not widely used due to unreasonable amount
of time needed for manual labeling.

Denoting the problem of automatic glioma segmentation Brain Tumor Seg-
mentation (BraTS) challenge [1,11] was created and became an annual compe-
tition allowing participants to evaluate and compare their state of the art meth-
ods using unified framework. Participants are called to develop their algorithms
and produce segmentation labels of the different glioma sub-regions: “enhanc-
ing tumor” (ET), “tumor core” (TC) and “whole tumor” (WT). The training
data [2,3] consists of 210 high grade and 75 low grade glioma MRIs manually
labeled by experts in the field. Testing data is split into two parts: validation
set that can be used for evaluation throughout the challenge and test set for
final evaluation. Performance of the methods is measured using Dice coefficient,
Sensitivity, Specificity and Hausdorff distance.

Above-named challenge made a significant impact on the evolution of com-
putational approaches for tumor segmentation. In the last few years, a variety of
algorithms were proposed to solve this problem. Compared with other methods,
convolutional neural networks have been showing the best state of the art perfor-
mance for computer vision tasks in general and for biomedical image processing
tasks in particular.

In this paper we present cascaded variant of the popular UNet network [6,12]
that iteratively refines segmentation results of it’s previous stages. We employ
this approach for brain tumor segmentation task in the scope of BRATS 2018
challenge and evaluate it’s performance. We also compare regular 3D UNet [6]
with it’s cascaded counterpart.

2 Method

In this study we propose neural networks based approach for brain tumor seg-
mentation. Our method can be represented as a chain of multiple classifiers Ci of
the same topology F refining segmentation output of previous iterations. Every
classifier Ci shares the same topology but has it’s own set of parameters Wi that
is subject to optimization during training. Yi - the result of the i-th step can be
represented as Yi = F (Xi, Yi−1, Yi−2,Wi), where Xi is the i-th input.

Described approach is illustrated in Fig. 1. Each of the basic blocks Ci is a
UNet network modified with respect to the task of glioma segmentation. Com-
pared to the original UNet architecture described in [12] and extended for 3D
case in [6], we employ multiple encoders separately handling input modalities
and introduce the way to merge their output. In this paper we describe UNet
modification with multiple encoders first. Then we propose ensembling strategy
to efficiently merge segmentation results obtained on different scales.
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Fig. 1. Schematic representation of approach employed in this paper. T1, T2, T1ce,
FLAIR stands for input MRI modalities. x4, x2 indicate downsampling factor for the
network input. Dotted arrows indicate connections between networks Ci that are illus-
trated as basic blocks.

2.1 Multiple Encoders UNet

Traditional UNet architecture [12] extended for handling volumetric input [6]
has two stages: encoder part where network learns feature representations on
different scales and aggregates contextual information, and decoder part where
network extracts information from observed context and previously learned fea-
tures. Skip connections employed between corresponding encoder and decoder
layers enable efficient training of the deep parts of the network and comparison
of identically scaled features with different receptive fields.

This method allows to handle multimodal MRI input, however, it mixes and
processes signals of different types identically. In contrast, we propose approach
that learns feature representations for every modality separately and combines
them at later stages. This is achieved by employing grouped convolutions in the
encoder path with number of groups equals to the number of input modalities.
Resulting features are calculated as a maximum of the feature maps produced
by encoders. In order to preserve feature maps’ sizes we employ point-wise con-
volution right after max operation. Similar to the original UNet, the number of
filters is doubled with every downsampling operation and reduced by half with
every upsampling operation, ReLU is used as activation function after every
convolution layer. Described architecture is illustrated in Fig. 2.

The network is built of basic pre-activation residual blocks [7] that consist of
two instance normalization layers, two relu activation layers and two convolutions
with kernel size 3. This basic building block is illustrated in Fig. 3.

The motivation behind this architecture is to encourage model to extract
features separately for every modality. In combination with feature maps merging
strategy and channel-out augmentation it allows to build more robust model that
can process data with one or more corrupted modalities (Fig. 4).
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Fig. 2. Architecture of multiple encoders UNet. T1, T2, T1CE, FLAIR stand for input
modalities. N is a base number of filters, K is a number of filters in context feature
map obtained from lower scale models.

Fig. 3. Design of the residual block

Cascaded UNet. Proposed network is illustrated in Fig. 1 and consists of three
basic blocks. Each block by itself is a modified UNet network with it’s own loss
function at the end. Every next block takes downsampled volume as an input
and produces segmentation of the corresponding size. Similar to DeepMedic
[10], this architecture simultaneously processes the input image at multiple
scales and extracts scale-specific features. The feature map before the last
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convolutional layer in every block is concatenated to the corresponding feature
map of higher-scale block. It enables the context information flow between net-
works with different scales.

In UNet architecture decoder output at each scale i depends on encoder out-
put at the same scale (skip connections) and decoder output of the previous
scale: dti = f(eti, d

t
i−1), where dti is decoder output, and eti is encoder output at

scale i, and t is the index of the network. Expanding the first convolution of
f we get dti = g(W t

i,ee
t
i + W t

i,dd
t
i−1), where W are trainable parameters. Here

we propose to incorporate context of the lower scale networks by concatenating
corresponding network output yt (see Fig. 2, illustrated as dotted arrows) so dti
becomes dti = g(W t

i,ee
t
i +W t

i,dd
t
i−1+W t

i,yy
t−i). This approach fuses multiple net-

works operating at different scales together and encourages model to iteratevily
refine results of previous iterations.

The connections between networks are illustrated as dotted arrows in Fig. 1.
Each basic UNet network produces two outputs: feature map (dotted arrows) and
softmax operation over this feature map (straight arrows). The resulting proba-
bility tensor can be further used for ensembling, yet, we are interested in a final
feature map. Since it has the most meaningful information about segmentation
on the given scale, we want to propagate this feature map to higher resolution
networks. To achieve the flow of the context between classifiers of different scale
we propose to concatenate their output feature map to corresponding feature
map of the higher scale network (see Fig. 2, illustrated as dotted arrows).

By employing following ensembling strategy we are building quite deep convo-
lutional neural network. Compared to standard approach of doubling the number
of feature channels after each pooling operator, out method takes less parameters
and introduces bottlenecks between networks. Having same number of parame-
ters, presented approach performs better than models with the same depth or
the same number of parameters.

2.2 Data

In this paper we are focusing at brain tumor segmentation with deep neural net-
works. For training and evaluation purposes we are using BraTS 2018 [1–3,11]
dataset. It contains clinically acquired preoperative multimodal MRI scans of
glioblastoma and lower grade glioma obtained in different institutions with dif-
ferent protocols. These multimodal scans contain native T1, post-contrast T1-
weighted, T2-weighted, and T2 Fluid Attenuated Inversion Recovery (FLAIR)
volumes, and co-registered to the same anatomical template, interpolated to the
same resolution (1mm3) and skull-stripped. These MRI scans were manually
annotated by one to four raters, and approved by experienced radiologist. Seg-
mentation labels describe different glioma sub-regions: “enhancing tumor” (ET),
“tumor core” (TC) and “whole tumor” (WT). In total, dataset has 285 MRIs
for training (210 high grade and 75 low grade glioma images), 67 validation and
192 testing MRIs.
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2.3 Preprocessing and Data Augmentation

We have found data preprocessing employed in [8] to be especially effective. Like
in [8], we perform z-score normalization on non-zero (brain) voxels. After that
we are eliminating outliers and noise by clamping all values to the range from –5
to 5. At the final step we shift brain voxels to the range [0;10] and assign zeros
to background.

For offline data augmentation we artificially increase number of samples by
employing b-spline transformation to the original data. It has been done with
ITK implementation [9].

During training we randomly flip input image along sagittal plane and “mute”
input modalities with predefined probability. Without this augmentation the net-
work was only considering one of the input modalities while making a prediction
and not taking others into account. To deal with this issue we are randomly
filling input channels with Gaussian noise. We introduce probability to apply
this augmentation for every channel and set it to 0.1, so there is 34% chance
to mute at least one out of four modalities. This also helps to aggregate infor-
mation allover input data and to deal with noisy or corrupted input images like
illustrated in the Fig. 4.

Fig. 4. Example of the registration artifacts found in the training dataset. This series
contain one corrupted modality (shown) and three correct ones. Overlapping structures
of the brain are marked with red circles. Visualization is done with ITK-SNAP [13].
(Color figure online)
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2.4 Training

The training procedure is conducted on brain regions resampled to
128× 128× 128 voxels. We are operating with downsampled data to preserve
the context since we believe it plays important role for robust segmentation of
multimodal MRI scans obtained from different institutions and scanners. We
use Mean Dice loss Lmean dice(g, p) where g is a ground truth, p is a model’s
prediction. We trained our network with stochastic gradient descent with initial
learning rate of 0.1, exponential learning rate decay with rate 0.99 for every
epoch, weight decay of 0.9 and minibatch size equal to 4 samples.

Lmean dice(g, p) = 1 − 1
|C|

∑

c∈C

∑
ic
picg

i
c∑

ic
pic + gic

,

where C is a set of different classes.
This CNN was implemented in MXNet framework [5] and trained using four

GTX 1080TI with batch size 4 to enable data parallelism. Training was per-
formed for 500 epoches.

3 Results

In this section we report evaluation results obtained with online validation sys-
tem provided by organizers. With intention to penalize model for relying on
the one single modality we apply channel-out augmentation to the input data
by randomly filling input modalities with Gaussian noise in addition to stan-
dard augmentations like mirroring and elastic transformations. Then we com-
pare results obtained with this augmentation disabled (Table 1) and enabled
(Table 2). The challenge validation data [2,3] contains 66 MRI scans obtained
with different scanners and from different institutions. Results of evaluation on
validation dataset are reported in Table 3; and on test dataset in Table 4.

Table 1. Evaluation of glioma segmentation without channel-out augmentation; Dice
index is reported, WT stands for whole tumor, ET stands for enhancing tumor, TC
stands for tumor core, ME UNet stands for Multiple Encoders UNet and C ME UNet
stands for Cascaded Multiple Encoders UNet. Tested networks has the same number
of parameters.

Method WT ET TC

UNet 0.901 0.767 0.797

ME UNet 0.904 0.763 0.823

C ME UNet 0.906 0.772 0.836
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Table 2. Evaluation of glioma segmentation with channel-out augmentation; Dice
index is reported, WT stands for whole tumor, ET stands for enhancing tumor, TC
stands for tumor core, ME UNet stands for Multiple Encoders UNet and C ME UNet
stands for Cascaded Multiple Encoders UNet. Tested networks has the same number
of parameters.

Method WT ET TC

UNet 0.901 0.779 0.837

ME UNet 0.907 0.784 0.827

C ME UNet 0.908 0.784 0.844

Table 3. Performance of proposed method on BraTS 2018 validation data, Dice index
is reported.

WT ET TC

Mean 0.908 0.784 0.844

StdDev 0.065 0.237 0.161

Median 0.926 0.858 0.906

25quantile 0.900 0.805 0.791

75quantile 0.943 0.897 0.947

Table 4. Performance of proposed method on BraTS 2018 test data, Dice index is
reported.

WT ET TC

Mean 0.878 0.720 0.795

StdDev 0.119 0.278 0.251

Median 0.913 0.818 0.901

25quantile 0.870 0.711 0.804

75quantile 0.940 0.877 0.936

Fig. 5. Example of segmentation labels produces by proposed method in comparison
with ground truth annotation.
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4 Discussion and Conclusion

Analyzing the segmentation results provided by out model (Fig. 5) we noticed
that it produces more smooth results compared to ground truth. According to
BraTS 2018 challenge summarizing manuscript [4], out method took 14th place
in final ranking. Analyzing the results we found out model to produce high
number of inaccurate enhancing tumor segmentation labels (24th rank by DICE
ET). This issue could be potentially overcame with learning ET, TC, WT labels
instead of labels provided by annotation. However our model showed relatively
high score for segmentation of Tumor Core (11th place by DICE TC) and Whole
Tumor (10th place by DICE WT). Furthermore, it achieved ranks as high as 9th,
5th, 12th for segmentation of ET, TC, WT w.r.t. Hausdorff distance.

To sum it up, in this paper we presented automatic segmentation algorithm
solving two main problem arising during brain tumor segmentation with multi-
modal scans: complex input consisting of multiple modalities and overconfidence
of the classifier. Solving the problem of heterogeneous input we proposed to use
multiple encoders, so that every individual input modality produces correspond-
ing feature maps independently from others; and we introduced the way to merge
encoded feature maps. Also we explored influence of channel-out augmentation
on model’s output quality and we showed that proposed architecture benefits
from this aggressive augmentation. It encourages model to take into account
whole input by implicitly penalizing classifiers that rely only on one single modal-
ity. As a result model becomes robust to the presence of noise and corrupted data
that could be encountered in the training and validation datasets. Moreover we
introduced the way to efficiently fuse multiple models operating on the different
resolution that forms a cascade of classifiers. Every next classifiers takes results
of previous ones and refines the segmentation for it’s specific scale. It enables
iterative result refinement with less parameters than in corresponding deep mod-
els. As a part of BraTS 2018 challenge [1,11] we implemented and evaluated our
approach with online validation tools. As a result we achieved high mean score
and notably high median score. The mean Dice score of 0.878/0.72/0.795 was
reported on testing dataset for the Whole tumor, Enhancing tumor and Tumor
core correspondingly
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Abstract. This paper proposes, in the context of brain tumor study, a
fast automatic method that segments tumors and predicts patient overall
survival. The segmentation stage is implemented using a fully convolu-
tional network based on VGG-16, pre-trained on ImageNet for natu-
ral image classification, and fine tuned with the training dataset of the
MICCAI 2018 BraTS Challenge. It relies on the “pseudo-3D” method
published at ICIP 2017, which allows for segmenting objects from 2D
color-like images which contain 3D information of MRI volumes. With
such a technique, the segmentation of a 3D volume takes only a few
seconds. The prediction stage is implemented using Random Forests. It
only requires a predicted segmentation of the tumor and a homemade
atlas. Its simplicity allows to train it with very few examples and it can
be used after any segmentation process. The presented method won the
second place of the MICCAI 2018 BraTS Challenge for the overall sur-
vival prediction task. A Docker image is publicly available on https://
www.lrde.epita.fr/wiki/NeoBrainSeg.

Keywords: Glioma · Tumor segmentation · Survival prediction ·
Fully convolutional network · Random forest

1 Introduction

Gliomas are the most common brain tumors in adults, growing from glial cells
and invading the surrounding tissues [9]. Two classes of tumors are observed.
The patients with the more aggressive ones, classified as high-grade gliomas
(HGG), have a median overall survival of two years or less and imply immedi-
ate treatment [13,16]. The less aggressive ones, the low-grade gliomas (LGG),
allow an overall survival of several years, with no need of immediate treatment.
Multimodal magnetic resonance imaging (MRI) helps practitioners to evaluate
the degree of the disease, its evolution and the response to treatment. Images
are analyzed based on qualitative or quantitative measures of the lesion [8,21].
Developing automated brain tumor segmentation techniques that are able to
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analyze these tumors is challenging, because of the highly heterogeneous appear-
ance and shapes of these lesions. Manual segmentations by experts can also be
a challenging task, as they show significant variations in some cases. During
the past 20 years, different algorithms for segmentation of tumor structures has
been developed and reviewed [1,6,7]. A fair comparison of those implies a bench-
mark based on the same dataset, and MICCAI BraTS Challenges [15] serve this
purpose.

The work we present here has been done in the context of the MICCAI 2018
Multimodal Brain Tumor Segmentation Challenge (BraTS)1. The goal of the
challenge was to provide a fully automated pipeline for the segmentation of the
glioma from multi modal MRI scans without any manual assistance and to pre-
dict the patient overall survival. Despite the relevance of glioma segmentation,
this task is challenging due to the high heterogeneity of tumors. The develop-
ment of an algorithm that can perform fully automatic glioma segmentation and
overall prediction of survival would be an important improvement for patients
and practitioners. A review and results of the 2018 Challenge can be found in [5].

During the challenge, multiple datasets were provided with different volumes
(T1, T1ce, T2 and FLAIR):

– a training dataset of 285 patients preprocessed and with ground truth anno-
tated [2–4],

– a dataset without public ground truth but with the possibility to evaluate
online our method and obtain preliminary results,

– a final dataset without ground truth, used to rank the participants.

Our contribution is composed of two independent modules: one for tumor seg-
mentation and one for survival time prediction. The tumor segmentation module
(Sect. 2.1) blends ideas from two previous publications. It first builds on a work
published in the IEEE Intl. Conf. on Image Processing (ICIP) in 2017 [22], which
proposed to segment 3D brain MR volumes using fully convolutional network
(FCN). It leveraged transfer learning thanks to a VGG network [18] pre-trained
on the ImageNet dataset and later fine-tuned on the training set of the chal-
lenge. Its input were 2D color-like images composed of 3 consecutive slices of the
3D volume (see Fig. 1). This method used only one modality, and reached good
results for brain segmentation with a decent speed. Based on this architecture,
we incorporated the ideas of [24] which reused this architecture to take slices
from several modalities as input. Our final segmentation solution provides spe-
cially designed pre- and post-processing dedicated to the challenge and makes
use of both local 3D and multi-modal information. The survival prediction mod-
ule (Sect. 2.2) we introduce here is based on Random Forests and relies on a
very light training to cope with the limited amount of examples available in the
challenge. Despite its apparent simplicity, it provides a reasonable survival time
estimate as reported in the results (Sect. 3).

1 https://www.med.upenn.edu/sbia/brats2018.html.

https://www.med.upenn.edu/sbia/brats2018.html
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Fig. 1. Illustration of 3D-like color image and associated segmentation used in [22].
(Color figure online)

2 Method

This section describes the method we submitted to the MICCAI 2018 Mul-
timodal Brain Tumor Segmentation Challenge (BraTS). As it was previously
mentioned, it is composed of a tumor segmentation module and a survival pre-
diction module, mapping the two tasks of the challenge.

2.1 Tumor Segmentation

An overview of the proposed segmentation method is given in Fig. 2. The method
is fully automatic, and takes pseudo-3D images as input. It is really fast as about
10 s are needed to process a complete volume with a GPU-equipped machine.
It consists in three sub-stages: a data pre-processing, a deep network inference,
and a segmentation post-processing.

Pre-processing. We first normalize the input data to fit in the range imposed
by the original network (before fine tuning). Let n,m be respectively the mini-
mum non-null and maximum gray-level value of the histogram. We requantize all
voxel values using a linear function so that the gray-level range [n,m] is mapped
to [−127, 127].

Then, as our inference network processes 2D color-like images (3 channels
of 2D slices), the question amounts to how to prepare appropriate inputs given
that a brain MR image is a 3D volume. Our second step is therefore to stack
successive 2D slices: for each nth slice of the volume to segment, we consider
three images corresponding to the (n − 1)th, nth, and (n + 1)th slices of the
original volume. These three gray-level 2D images are assembled to form a 2D
color-like image (one image per channel). Each 2D color-like image thus forms a
representation of a part (a small volume) of the MR volume. This image is the
input of the FCN to obtain a 2D segmentation of the nth slice. This process is
depicted in Fig. 2 (left).

To combine information from different modalities, we complete this process.
The nth slice is taken from one modality and its (n − 1)th and (n + 1)th from
another one. This combination brings not only 3D information but also multi-
modality information. Figure 3 illustrates this variant.
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Fig. 2. Architecture of the proposed network. We fine tune it and combine linearly
fine to coarse feature maps of the pre-trained VGG network [18]. Note that each input
color image is built from the slice n and its neighboring slices n− 1 and n + 1. (Color
figure online)

Deep FCN for Tumor Segmentation. Fully convolutional network (FCN)
and transfer learning has proved their efficiency for natural image segmenta-
tion [12]. In a previous work, Xu et al. [22] proposed to rely on a FCN and
transfer learning to segment 3D brain MR images, although those images are
very different from natural images. As it was a success, we adapted it to glioma
segmentation. We rely on the 16-layer VGG network [18], which was pre-trained
on millions of natural images from ImageNet for image classification [11]. For
our application, we keep only the 4 stages of convolutional parts called “base
network”, and we discard the fully connected layers at the end of VGG network.
This base network is mainly composed of convolutional layers, Rectified Linear
Unit (ReLU) layers for non-linear activation function, and max-pooling layers
between two successive stages. The three max-pooling layers divide the base
network into four stages of fine to coarse feature maps. Inspired by the works
in [12,14], we add specialized convolutional layers (with a 3×3 kernel size) with
K (e.g. K = 16) feature maps after the convolutional layers at the end of each
stage. All the specialized layers are then rescaled to the original image size, and
concatenated together. We add a last convolutional layer with kernel size 1 × 1
at the end. This last layer combine linearly the fine to coarse feature maps in
the concatenated specialized layers, and provide the final segmentation result.
The proposed network architecture is illustrated in Fig. 2. This architecture is
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(a) Slice n − 1 of
T1CE → red

(b) Slice n of T2 →
green

(c) Slice n + 1 of
T1CE → blue

(d) 2D color-like
image for the nth

slice

Fig. 3. Three successive slices (a–c) are used to build a 2D color-like image (d) from
for example T1CE and T2 images. (Color figure online)

also very similar with the one used in [14] for retinal image analysis, where the
retinal images are already 2D color-like images. Using such a 2D representation
avoids the expensive computational and memory requirements of fully 3D FCN.

For the training phase, we use the multinomial logistic loss function for a one-
of-many classification task, passing real-valued predictions through a softmax to
get a probability distribution over classes. During training, we use the classical
data augmentation strategy by scaling and rotating. We rely on the ADAM
optimization procedure [10] (AMSGrad variant [17]) to minimize the loss of the
network. The relevant parameters of the methods are the following: the learning
rate is set to 0.002 (we did not use learning rate decay), the beta 1 and beta 2
are respectively set to 0.9 and 0.999, and we use a fuzz factor (epsilon) of 0.001.

At test time, after having pre-processed the 3D volume, we prepare the set
of 2D color-like images and pass every image through the network. We run the
train and test phase on an NVIDIA GPU. The testing one lasts less than 10 s
for a complete volume.

Post-processing. The output of the network for one slice during the inference
phase is a 2D segmented slice. After treating all the slices of the volume, all the
segmented slices are stacked to recover a 3D volume with the same shape as the
initial volume, and containing only the segmented lesions.

This segmentation procedure is repeated three times as we slice the initial
volume three times (along the three axis). We get three different segmentations
and we merge them to get the final segmentation by a majority voting procedure.

Then, as a final step, we regularize the segmented volumes using a morpho-
logical closing to fill small holes lying within tumor regions.

2.2 Patient Survival Prediction

The second task of the MICCAI 2018 BraTS challenge is concerned with the
prediction of patient overall survival from pre-operative scans (only for subjects
with gross total resection (GTR) status). Note that, to comply with the evalu-
ation framework, the classification procedure is conducted by labeling subjects
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(a)

/ left/right frontal lobe
/ left/rightpartietal lobe
/ left/right temporal lobe
/ left/right occipital lobe
/ left/right cerebellum

(b) (c)

Fig. 4. (a) Sagittal and (c) axial slices from the T2 modality of a brain and (b) corre-
sponding rescaled brain atlas.

necrosis

edema

active tumor

Fig. 5. T2 slice (left) and corresponding atlas slice (right) with segmented tumor
overlaid. (Color figure online)

into three classes: short-survivors (less than 10 months), mid-survivors (between
10 and 15 months) and long-survivors (greater than 15 months).

Definition and Extraction of Relevant Features. The first step of the
prediction task is the definition and extraction of relevant features impacting the
survival of patients. Beside the patient age, we decided to focus on the tumor
size and its localization within the brain. More specifically, we denote by Si

the segmented volume predicted by our Deep FCN architecture, as described in
Sect. 2.1 for the ith patient. Voxels in Si are labeled by 1, 2 and 4 (corresponding
to , and in Fig. 5, respectively), depending whether they were classified
as necrosis, edema or active tumor, respectively.

Thus, we define the relative size of each class in Si with respect to the total
brain size (the number of non-zero voxels in the patient T2 modality) as the
features related to the tumor size.

In order to describe the tumor position, we created a crude brain atlas divided
in 10 regions accounting for the frontal, parietal, temporal and occipital lobes
and the cerebellum for each hemisphere, as displayed by Fig. 4(b). The 3D atlas
was first shaped to the average bounding box dimensions of all patients with
GTR status, i.e. 170 × 140 × 140 pixels. It is then adjusted to each patient
bounding box dimensions by nearest-neighbors interpolation, and finally masked
by all non-zero voxels in the patient T2 modality. Finally, we retrieve the centroid
coordinates of the region within the atlas that is affected the most by the necrosis
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Fig. 6. (a) Training and (b) test procedures. The stored information after the training
phase is encircled in dashed red in the training workflow (a). (Color figure online)

(i.e., the region that has the most voxels labeled as necrosis in Si with respect to
its own size) relatively to the brain bounding box as well as the relative centroid
coordinates of the necrosis + active tumor and defined those as the relevant
features accounting for the tumor position.

In summary, each patient is defined by the following 6 criteria:

1. the patient age.
2. the relative size of necrosis with respect to brain size.
3. the relative size of edema with respect to brain size.
4. the relative size of active tumor with respect to brain size.
5. the relative centroid coordinates of the region in the atlas that is the most

affected by necrosis with respect to the brain bounding box.
6. the relative centroid coordinates of the binarized tumor (only considering

necrosis and active tumor) with respect to the brain bounding box.

This leads to a total of 10 features per patient (since both centroids coordi-
nates are 3-dimensional).

Training Phase. For the training phase, we first extract the feature vector
xi ∈ R

10 of each of the N patients in the training set (with N = 59), as described
in Sect. 2.2 above. All those feature vectors are stacked in a N × 10 feature
matrix Xtrain on which a principal component analysis (PCA) is performed.
The feature-wise mean mPCA and standard deviation σPCA vectors computed
during the scaling phase of the PCA, as well as the projection matrix VPCA are
stored for further use. Finally, the PCA output is normalized again, yielding the
N × 10 matrix Ytrain. Finally, we train NRF random forest (RF) classifiers [20]
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on all rows of Ytrain, using the true label vector ylabel as target values, and store
those RFs. The whole training phase is depicted by the workflow in Fig. 6(a).
Each RF is composed of 10 decision trees, for which splits are performed using
3 features randomly selected among the 10 available, and based on the Gini
impurity criterion [19]. Here, we arbitrary fixed NRF = 50 in order to account
for the stochastic behavior of RF classifiers.

Test Phase. The test phase is summarized by the workflow in Fig. 6(b). Fea-
tures are computed in a similar manner for a patient belonging to the test data
set as they are for the training set. The feature vector xtest is then normal-
ized using mPCA and σPCA and further projected in the PC space with VPCA,
learned during the PCA step of the training stage. The resulting vector ytest

is then fed to the NRF RF classifiers, leading to NRF independent class label
predictions. The final label prediction ypred (1, 2 and 3 for short-, mid- and
long-survivors, respectively) is eventually obtained by majority voting.

3 Setup and Results

This section presents the setup of the experiments and results obtained during
the development of our method (using the training dataset), and the final ranking
during the challenge.

3.1 Setup and Experiments for Tumor Segmentation

In this part, we used only the training scans provided during the challenge.

Modalities. Instead of using only one modality to form the pseudo-3D color
images (the input of the network), we formed multi-modality pseudo-3D images
using T1ce and T2 modalities: for each slice n, we combined the slice n of T2
with the slices n − 1 and n + 1 from T1ce.

Axis and Combination. Our method deals with 2D color-like images that are
pseudo-3D. To take advantage of the entire volume, we associated three networks,
each network being trained on a particular axis (axial, sagittal and coronal), and
combined their results to obtain the final segmentation. We trained 3 networks,
one for each axis. The inference was done according to the axis, so for one volume
we obtained 3 segmentation. These segmentations are then combined: for each
voxel, the final segmentation is the result of the majority voting procedure.

Training and Testing. To train our model we select randomly 90% of scans
from Brats challenge training dataset. The model was trained using the param-
eters described in the Sect. 2.1. We tested on the 10% remaining scans.
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3.2 Results

Tumor Segmentation. The results on the training dataset evaluate to a dice
of 0.82 for the whole tumor segmentation (evaluation on 10% of the training set).
More precisely, we obtained for the 3 classes: 0.6 for the GD-enhancing tumor,
0.63 for the peritumoral edema, and 0.56 for the necrotic and non-enhancing
tumor core. We did not achieved a good ranking during the challenge for this
task. Precise results can be found in [5].

Survival Time Prediction. For the survival prediction task we obtained an
accuracy of 0.54 on the training dataset. During the challenge, we obtained an
accuracy of 0.61. This allowed us to reach the 2nd place of the challenge for
the survival prediction task.

3.3 Discussion

The prediction task is the final aim of the entire pipeline. The segmentation task
is a basis for the prediction task but is not a finality. We developed the prediction
procedure using the ground truth segmentations, so that our prediction method
is independent from our segmentation method. We can notice that the prediction
procedure can deal with precise segmentations (i.e. ground truth segmentations)
and coarser ones (such as our segmentation results).

This is the main advantage of our prediction method as it does not require a
lot of data: it relies on a coarse segmentation and a brain atlas. Simple descriptors
are extracted to perform the prediction. A strong point which differentiates our
method from others is that our method does not rely on a specific modality to
work: the method relies on a segmentation result, regardless of how it has been
obtained, and not directly on a modality. It can be used without the constraints
of working on one modality or an other. Furthermore the segmentation does not
need to be precise to permits the prediction as illustrated by our results during
the challenge.

4 Conclusion

We proposed in this article a method to first segment glioma in few seconds based
on transfer learning from VGG-16, a pre-trained network used to classify natural
images, and then to predict the survival time of the patients. This segmentation
method takes the advantage of keeping 3D information of the MRI volume and
the speed of processing only 2D images, thanks to the pseudo-3D concept while
the prediction method uses only a segmentation result and a homemade brain
atlas.

This method can also deal with multi-modality, and can be applied to other
segmentation problems, such as in [24], where a similar method is proposed to
segment white matter hyperintensities, but pseudo-3D has been replaced by an
association of multimodality and mathematical morphology pre-processing to
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improve the detection of small lesions. Hence, we might also try to modify our
inputs thanks to some highly non-linear filtering to help the network segment
tumors, precisely some mathematical morphology operators [23].

The strength of this method is its modularity and its simplicity. It is easy to
implement, fast, and does not need a huge amount of annotated data for training
(in the work on brain segmentation [22], there is only 2 images for training for
some cases).

From a segmentation result, we introduced a simple and efficient method
to predict the patient overall survival, based on Random Forests. This method
only needs as input a segmentation, a brain atlas and a brain volume for atlas
registration. This method is not only fast; it is also easy to train with few samples
and can be used after any tumor segmentation module.

Finally, we made a Docker image of the overall method publicly available at
https://www.lrde.epita.fr/wiki/NeoBrainSeg.
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24. Xu, Y., Géraud, T., Puybareau, É., Bloch, I., Chazalon, J.: White matter hyper-
intensities segmentation in a few seconds using fully convolutional network and
transfer learning. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.)
BrainLes 2017. LNCS, vol. 10670, pp. 501–514. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75238-9 42

https://doi.org/10.1007/978-3-319-46723-8_17
https://doi.org/10.1007/978-3-319-75238-9_42
https://doi.org/10.1007/978-3-319-75238-9_42


Brain Tumour Segmentation Method
Based on Supervoxels and Sparse

Dictionaries

J. P. Serrano-Rubio1(B) and Richard Everson2

1 Information Technologies Laboratory, Technological Institute of Irapuato, Irapuato,
Guanajuato, Mexico

juserrano@itesi.edu.mx
2 College of Engineering, Mathematics and Physical Sciences, University of Exeter,

Exeter, UK
R.M.Everson@exeter.ac.uk

Abstract. This paper presents an automatic method for brain tumour
segmentation from magnetic resonance images. The method uses the
feature vectors obtained by an efficient feature encoding approach which
combines the advantages of the supervoxels and sparse coding techniques.
Extremely Randomized Trees (ERT) algorithm is trained using these fea-
ture vectors to detect the whole tumour and for multi-label classification
of abnormal tissues. A Conditional Random Field (CRF) algorithm is
implemented to delimit the region where the brain tumour is located.
The obtained predictions of the ERT are used to estimate probability
maps. The probability maps of the images and the Euclidean distance
between the feature vectors of neighbour supervoxels define the con-
ditional random field energy function. The minimization of the energy
function is performed via graph cuts. The proposed methods are evalu-
ated on real patient data obtained from BraTS 2018 challenge. Results
demonstrate that proposed method achieves a competitive performance
on the validation dataset using Dice score is: 0.5719, 0.7992 and 0.6285
for enhancing tumuor, whole tumour and tumour core respectively. The
achieved performance of this method on testing set using Dice score
is: 0.5081, 0.7278 and 0.5778 for enhancing tumuor, whole tumour and
tumour core respectively.

Keywords: Brain tumour segmentation · Sparse coding techniques ·
Supervoxels

1 Introduction

Gliomas are a type of brain tumours with the highest mortality rate in adults.
The gliomas are classified according to their histopathological appearances into
Low Grade Gliomas (LGG) and High Grade Gliomas (HGG) for determining
the best treatment for the patient [1]. Furthermore, the treatment of gliomas
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depend on its size and location within the brain, since the tumours can grow and
infiltrate over the surrounding normal brain tissue what sometimes it complicates
its surgical removal.

One of the most important and critical procedures for the diagnosis of brain
tumours is the brain segmentation. Brain segmentation has been useful for the
analysis and visualization of brain structures [2,3] with the purpose of monitor-
ing, guidance and surgery planning [4]. The goal of the brain tumour segmen-
tation is to delineate the pathological regions such as the peritumoral edema,
non-enhancing tumour and enhancing tumour. Nowadays, brain tumour seg-
mentation methods are divided into two categories: (a) semi-automatic and (b)
automatic methods. Semi-automatic methods are extremely costly due to they
require an expert to detect the tumour. Automatic methods automatically detect
and segment the brain tumours by using machine learning algorithms which can
assign each tissue to its respectively class. Brain tumour segmentation becomes
a challenging task for segmentation automatic methods, because the tumours
can appear anywhere in the brain and they can present a wide number of shapes
and sizes.

In this paper we propose a fully automatic method for segmentation of brain
tumours. This method incorporates an efficient feature encoding approach which
is based on three algorithms: (1) sparse coding technique, (2) a Gaussian pyra-
mid and (3) supervoxels. 3D image patches of images are projected into sparse
dictionary spaces in order to obtain feature vectors which compose the pattern
vectors of each supervoxel. An Extremely Randomly Trees (ERT) algorithm is
trained using the feature vectors to detect the whole tumour and for multi-label
classification of abnormal tissues. The tumour segmentation method is performed
in two phases:

– The whole tumour is detected by identifying the region where the tumour is
located. A Conditional Random Field (CRF) is implemented to complement
the segmentation task. The obtained predictions of ERT are used to estimate
probability maps for each MRI. The energy function of the CRF is defined by
the probability maps and the euclidean distance between the sparse feature
vectors of neighbour supervoxels. The minimization of the energy function is
performed via graph cuts.

– A multi-label classification is performed on the delimited region where the
tumour is located in order to recognize the enhancing tumour, peritumoral
edema and enhancing tumour.

The method described in this paper has been adapted from an automatic
method for segmentation of vertebrae using magnetic resonance images which
has been proposed in [5]. The rest of the paper is organized as follows: Sect. 2
presents the details of the Magnetic Resonance Image (MRI) database which
is employed to evaluated the proposal method and Sect. 3 presents the feature
learning approach to obtain the sparse feature vectors for normal and abnor-
mal tissue and the brain tumour segmentation model. Section 4 presents the
experimental details and results. Finally, Sect. 5 presents the conclusions.
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2 BraTS 2018 Database

The database of magnetic resonance images is adopted from BraTS 2018 chal-
lenge as part of the International Conference on Medical Image Computing and
Computer-Assisted Interventions (MICCAI) conference [2,6–8]. The magnetic
resonance images are 3D volumes whose dimension is 240 × 240 × 155. The train-
ing data set is composed by volumes of 285 subjects. Each subject has four
modalities of MRI volumes (Flair, T1, T1 contrast enhanced (T1C) and T2).
The training data set is divided into 210 cases of High Grade Glioma (HGG)
and 75 cases with Low-Grade Glioma (LGG). In addition, each subject presents
a ground truth labels which has been manually revised by expert board-certified
neurologists. The labels include the following tissue labels: for normal tissue
and background regions (label 0), non-enhancing tumour (label 1), peritumoral
edema (label 2) and enhancing tumour (label 4). Figure 1 presents one frame for
all employed MRI modalities and its ground truth.

The validation data set and testing set consist of 66 and 191 subjects respec-
tively. Both data sets contain HGG and LGG gliomas but the grade is not
revealed.

label 0

label 1label 2

label 4

T2T1CT1Flair

Peritumoral edema

Normal tissue

Non-enhancing
tumour

Enhancing tumour

Fig. 1. Flair, T1, T1C and T2 MRI modalities and ground truth segmentation.

3 Method

Each MRI is normalized by setting the mean to 0 and standard deviation to
1 of the voxel intensities. Our automatic segmentation method is based on two
stages. The first stage consist of the recognition of the whole tumour with the
purpose of delimiting the region where the brain tumour is located. The second
stage uses the delimited region to perform the multi-label classification of brain
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tumour tissues. The automatic tumour segmentation method is based on five
algorithms:

1. Sparse Coding Technique [9],
2. Gaussian pyramid method [10],
3. An extension to supervoxels of the Superpixels Extracted via Energy-Driven

Sampling (SEEDS) [11],
4. Extremely Randomized Trees [1],
5. Conditional Random Fields [12].

3.1 Sparse Coding Technique

The brain tumour segmentation method incorporates a sparse coding technique
to capture structures and patterns of the magnetic resonance images as well for
defining an efficient representation of the input magnetic resonance images. We
call to this efficient representation as sparse dictionaries. Below is a description
of how is obtained a sparse dictionary.

Let I be a set of images. 3D image patches p1, p2, ..., pψ−1, pψ ∈ R
kxkxk are

randomly selected from I. All 3D image patches are reshaped into the vector wi

∈ R
k3

. The sparse dictionary B ∈ R
k3×n is obtained by using the sparse coding

technique over n linear filters using Eq. 1.

minimize{B,ai}
ψ∑

i=1

|| wi − Bai ||22︸ ︷︷ ︸
residue function

+ β || ai ||1︸ ︷︷ ︸
sparsity function

(1)

subject to || B(:,j) ||2= 1 ∀j (2)

where ai is a coefficient vector, B(:,j) is the j-th column of the sparse dictionary
and β is the parameter which controls the sparsity of the solution [9]. Figure 2
illustrates the linear combination for representing the image patch pi and one
component of the sparse dictionary. In summary, the sparse coding technique
finds a set of basis vector (sparse dictionary) such that an input vector can be
represented as a linear combination of these basis vectors.

3.2 Gaussian Pyramid

A Gaussian pyramid is implemented as a structured data for multi-scale mag-
netic resonance image representation [10]. The Gaussian pyramid allows to gener-
ate a sequence of images over different scales for each magnetic resonance image.
Each scale is assigned as a level of the pyramid. For experimental purposes we use
three levels of the pyramid l = 0, 1, 2. Figure 3 presents and example of Gaussian
pyramid using only one frame of a magnetic resonance image. The scale factor
for reducing the image volume is 2l. Sparse dictionaries are calculated by using
the set of images which are obtained over the three levels of Gaussian pyramid.
Therefore, we obtained twelve sparse dictionaries that corresponds to each MRI
modality over the three levels of the Gaussian pyramid.
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One component of the sparse dictionary

wi ≈
B ∈ R

k3×n ai ∈ R
n

B(:,j) → R
k×k×k

coefficientssparse
dictionary

×

Reshape 3D patch:

→
pi

wi

Fig. 2. Linear combination for representing the image patch pi as a linear combination
of a basis vectors (sparse dictionary).

level l = 0 (Original Image)
Factor of scale 20

level l = 1
Factor of scale 21

level l = 2
Factor of scale 22

Fig. 3. Example of Gaussian Pyramid for only one MRI frame.

3.3 Supervoxels

The MRIs are partitioned into regions of perceptually similar voxels called super-
voxels (set of voxels delimited by a boundary region) [13]. The supervoxels are
calculated by decreasing the computational complexity of image volumes as well
as obtaining meaningful structures of brain regions. Supervoxels present an irreg-
ular shape which provides a better alignment with the tissue boundaries than
cubic image patches [14].

We use an extension of the Superpixels Extracted via Energy-Driven Sam-
pling (SEEDS) algorithm [15]. The four modalities of MRI volumes are incorpo-
rated to calculate the supervoxels. The set of supervoxels for only one volume
is denoted as S = {s1, s2, ..., sη−1, sη}. The label set c for each supervoxel is
assigned by majority vote.

Connected-Component Label algorithm is implemented to validate that all
supervoxels are spatially connected as an only set. Each supervoxel is considered
as an atomic unit for obtaining a feature vector for normal and abnormal brain
tissues classification. Figure 4 shows six supervoxels which partition the struc-
ture of one brain tumour. All modalities of MRI volumes are used to estimated
the supervoxels. Note that all supervoxels are estimated as volume of irregular
shapes, however for illustration purposes, Fig. 4 shows the supervoxels for only
one slide of the image volume.
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∪Flair ∪T1 T1C ∪ T2

MRI modalities are used jointly to obtain supervoxels

Partitions of tumour using 6 supervoxels

Voxels that do not belong
to the brain are assigned to

only one supervoxel

s1

s2

s3

s4

s5 s6

Fig. 4. Example of supervoxel segmentation by using MRI modalities (Flair, T1, T1C,
T2).

3.4 Sparse Feature Vectors

Figure 5 shows the method for obtaining the feature vector for supervoxel si.
The feature vector is denoted as vsi

. This feature vector is estimated using the
sparse dictionary that corresponds to a level of the Gaussian pyramid as well as
for a specific modality of MRI volume. In the following list the calculation of the
feature vector is enumerated:

1. Obtain a set of 3D image patches Q1,Q2, ..,Qκ−1,Qκ ∈ R
k×k×k located into

the boundary region delimited by the supervoxel.
2. 3D image patches are reshaped into vectors q1, q2, .., qκ, qκ−1 ∈ R

k3
and pro-

jected into the sparse dictionary space. The projected vectors are u1, u2, ..., uκ.
3. Feature vector vsi

can be obtained using a maxpoling technique which uses
the highest value of the positive and negative components of the projected
vectors as shown in Fig. 5.

A pattern vector Di is associated to each supervoxel i. The pattern vector
Di is formed by the concatenation of several features vectors as is shown in
Fig. 6. Vector {dsi

}l denotes the concatenation of features vectors for all MRI
modalities over the level l of the Gaussian pyramid for supervoxel si. Finally the
pattern vector for supervoxel si is formed by the concatenation of the vectors
{dsi

}l=0, {dsi
}l=1 and {dsi

}l=2.
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Fig. 5. Method for obtaining a feature vector for supervoxel si.

supervoxels

si

{dsi}l=0 {dsi}l=1 {dsi}l=2

Di: Pattern vector

vFlair
si vT1

si vT1C
si vT2

si

{dsi}l is composed by

Fig. 6. Composition of one pattern vector from supervoxel si
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3.5 Segmentation of Gliomas

Figure 7 shows the method to build the training set. For each subject in the train-
ing database, it is randomly selected a subset of 50 feature vectors of tumour
tissue and normal tissue. The training set is composed by the concatenation of
all subsets. An ERT classifier is trained to automatically assign each supervoxel
to its respectively class. ERT combines the predictions of several classifiers using
random splits to generate different trees and then calculate an output final clas-
sification [16]. Each tree learns a weak predictor for each pattern vector θ(Di).
Equation 3 presents the calculation of the final classification for the class c which
is given by the most frequent estimated class and where T is the number of trees.

c = mode[θ1(Di), θ2(Di), ..., θT (Di)] (3)

Equation 4 is used to calculated the probability map for the images of each
patient. The probability map assigns all supervoxels probability values of belong-
ing to each tissue class c.

P (c|θ(Di)) =
1
T

T∑

t=1

1A(θt(Di)), where: 1A(θt(Di)) =
{

1 , θt(Di) = c
0 , θt(Di) �= c

(4)

3.6 Recognition of the Whole Tumour

To complement the segmentation task for the first stage of the brain tumour
segmentation a Conditional Random Field (CRF) is implemented. The CRF
operates over the supervoxels of the volumes of images. The goal of the imple-
mentation of CRF is to delimit the region where the brain tumour is located.
The CRF’s aim is to obtain the labelling of the supervoxels such that minimize
the following equation:

E(X,D) =
∑

i∈S

fi(Xi|Di)

︸ ︷︷ ︸
Unary potential

+β
∑

i∈S

∑

j∈Ni

fi,j(Xi,Xj |Di,Dj)

︸ ︷︷ ︸
Pairwise potential

(5)

where S denotes the set of supervoxels, Ni is the set of neighbours of supervoxel
i, β controls the relative importance of the smoothing term. The energy func-
tion of the conditional random field defines a posterior probability distribution
P (X | D) given a set of class label X and a set of features for each supervoxel
D. The tumour segmentation problem is described as the partitioning of vertices
of a graph into disjoint subsets. Graph cuts algorithm is performed to partition
the graph and obtain the maximum a posteriori inference of the labels X [12].
Equation 6 presents the unary potential which is defined by the probability map
of the supervoxels. Equation 7 presents the pairwise potential which models the
relationship among neighbouring of supervoxels.

fi(Xi|Di) = −log(P (Xi|Di)) (6)

fi,j(Xi,Xj |Di,Dj) =
{

exp(− || Di − Dj ||) , if Xi �= Xj

0 , otherwise (7)
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necrotic and non-
enhancing tumour

peritumoral edema

enhancing tumour

normal brain tissue

Black area

subset - MRI 1

subset - MRI 2

subset - MRI 3

subset - MRI n

...
...
...

...

Training dataset

Fig. 7. Method for obtaining the training set.

4 Experiments and Results

We evaluate our method using real patient data obtained from BraTS 2018
challenge. The experiment details are explained as follows. The experimental
setup for gliomas segmentation is given as follows:

– Sparse dictionaries are estimated separately over 128 filters from 500000 ran-
domly sampled patches whose size is 3 × 3 × 3. Sparse dictionaries are calcu-
lated using the MRI volumes over three levels of a Gaussian pyramid.

– For each MRI volume, its supervoxels are calculated using different sizes of
supervoxels. For the first stage, the size of supervoxel is 4 × 4 × 4 voxels in
order to delimit the tumour region. For the second stage, the size of supervoxel
is 3 × 3 × 3 voxels in order to perform the multilabel classification of the
tumour tissues.

– For classification purposes, we use T = 100 trees to run the Extremely Ran-
dom Trees algorithm.

Tables 1 and 2 present the results of the training phase. Tables 3 and 4
presents the results of the validation phase. Tables 5 presents the results of the
testing phase. The Mean, StdDev, Median, 25q, and 50q indicate the mean,
median, standard deviation, 25th percentile and 75th percentile respectively, for
the evaluated metrics. The evaluated metrics are Dice, sensitivity, specificity and
95th percentile Hausdorff for enhancing tumour (ET), whole tumour (WT) and
tumour core (TC). In [17] presents the results of this method in the Multimodal
Brain Tumour Segmentation Challenge 2018. The method is referred as MexExe
Team.
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Table 1. Results using the training set for DICE and Sensitivity scores.

Training phase

Dice Sensitivity

ET WT TC ET WT TC

Mean 0.5948 0.8398 0.7333 0.7837 0.9185 0.8451

StdDev 0.2520 0.0953 0.1499 0.1673 0.0998 0.1671

Median 0.6751 0.8659 0.7730 0.8284 0.9473 0.9003

25q 0.5213 0.8112 0.6740 0.7309 0.8932 0.8057

50q 0.7665 0.898 0.8425 0.8897 0.9748 0.9613

Table 2. Results using the training set for Specificity and Hausdorff95 scores.

Training phase

Specificity Hausdorff95

ET WT TC ET WT TC

Mean 0.9946 0.9835 0.9916 11.69 8.9686 14.6677

StdDev 0.0044 0.0132 0.0067 12.7416 9.0691 11.7043

Median 0.9958 0.9866 0.9933 5.6568 5.3851 11.3578

25q 0.9925 0.9781 0.9893 3 3.3166 6.4031

50q 0.9981 0.9925 0.9963 16.9925 11.0453 20.0199

Table 3. Results using the validation dataset for DICE and Sensitivity scores.

Validation phase

Dice Sensitivity

ET WT TC ET WT TC

Mean 0.5719 0.7992 0.6285 0.6836 0.8714 0.7339

StdDev 0.2749 0.1557 0.2590 0.2782 0.1711 0.3083

Median 0.6910 0.8458 0.7103 0.7776 0.9412 0.8697

25q 0.4934 0.7862 0.5365 0.5661 0.8435 0.6204

50q 0.7669 0.8826 0.8196 0.8947 0.9695 0.9615
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Table 4. Results using the validation dataset for Specificity and Hausdorff95 scores.

Validation phase

Specificity Hausdorff95

ET WT TC ET WT TC

Mean 0.9955 0.9863 0.9919 12.9637 12.4414 17.7162

StdDev 0.0038 0.0094 0.0078 15.7325 19.2750 17.5612

Median 0.9960 0.9883 0.9936 6.5556 6.4031 15.106

25q 0.9942 0.9821 0.9903 3.2008 3.6395 9

50q 0.9980 0.9927 0.9963 17.9093 12.4078 20.7175

Table 5. Results using the testing dataset for Dice and Hausdorff95 scores.

Testing Phase

Dice Hausdorff95

ET WT TC ET WT TC

Mean 0.5081 0.7278 0.5778 17.7870 18.5813 22.129

StdDev 0.2864 0.2155 0.2774 22.3555 22.3832 21.4912

Median 0.6061 0.8187 0.6666 8.8011 9.4868 15.4836

25q 0.3424 0.6432 0.4243 3.6055 4.4721 9.4604

50q 0.7234 0.8724 0.7909 22.6933 21.038 26.4602

5 Conclusions

We present an approach for multimodal brain tumour segmentation using and
efficient feature encoding technique based on sparse dictionaries and supervoxels.
BraTS 2018 database is adopted to evaluated the performance of our method.
The method combines the advantages of the supervoxels and sparse coding tech-
niques to generate feature vectors which can be employed to assign each tissue
to its respectively class using Extremely Randomized Trees and Conditional
Random Field algorithms. According to the numerical results, the performance
of our approach can be compared to the performance of other state-of-the-art
algorithms which have been evaluated using the same dataset.
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Goehringer, D., Kitsos, P., et al. (eds.) System-Level Design Methodologies for
Telecommunication, pp. 159–173. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-00663-5 9

5. Hutt, H., Everson, R., Meakin, J.: 3D intervertebral disc segmentation from MRI
using supervoxel-based CRFs. In: Vrtovec, T., et al. (eds.) Computational Methods
and Clinical Applications for Spine Imaging, pp. 125–129. Springer International
Publishing, Cham (2016)

6. Bakas, S., et al.: Advancing the cancer genome atlas glioma mri collections with
expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)

7. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-GBM collection. Cancer Imaging Archive (2017)

8. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-LGG collection. Cancer Imaging Archive (2017)

9. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In:
Advances in Neural Information Processing Systems, pp. 801–808 (2007)

10. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid
methods in image processing. RCA Eng. 29(6), 33–41 (1984)

11. Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L.: SEEDS:
superpixels extracted via energy-driven sampling. In: Fitzgibbon, A., Lazebnik, S.,
Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 13–26.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4 2

12. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach.
Intell. 26(9), 1124–1137 (2004)

13. Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-
art. Comput. Vis. Image Underst. 166, 1–27 (2017)

14. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy
optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15555-0 16

15. Van den Bergh, M., Boix, X., Roig, G., Van Gool, L.: SEEDS: superpixels extracted
via energy-driven sampling. Int. J. Comput. Vis. 111(3), 298–314 (2015)

16. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63(1), 3–42 (2006)

17. Bakas, S., Reyes, M., et al.: Identifying the Best Machine Learning Algorithms for
Brain Tumor Segmentation, Progression Assessment, and Overall Survival Predic-
tion in the BRATS Challenge. arXiv preprint arXiv:1811.02629 (2018)

https://doi.org/10.1007/978-3-319-00663-5_9
https://doi.org/10.1007/978-3-642-33786-4_2
https://doi.org/10.1007/978-3-642-15555-0_16
https://doi.org/10.1007/978-3-642-15555-0_16
http://arxiv.org/abs/1811.02629


Multi-scale Masked 3-D U-Net for Brain
Tumor Segmentation

Yanwu Xu1, Mingming Gong1,3, Huan Fu2, Dacheng Tao2, Kun Zhang3,
and Kayhan Batmanghelich1(B)

1 Department of Biomedical Informatics,
University of Pittsburgh, Pittsburgh, USA

kayhan@pitt.edu
2 UBTECH Sydney AI Centre, SIT, FEIT,
The University of Sydney, Sydney, Australia

3 Philosophy Department, Carnegie Mellon University, Pittsburgh, USA

Abstract. The brain tumor segmentation task aims to classify sub-
regions into peritumoral edema, necrotic core, enhancing and non-
enhancing tumor core using multimodal MRI scans. This task is very
challenging due to its intrinsic high heterogeneity of appearance and
shape. Recently, with the development of deep models and computing
resources, deep convolutional neural networks have shown their effec-
tiveness on brain tumor segmentation from 3D MRI cans, obtaining the
top performance in the MICCAI BraTS challenge 2017. In this paper we
further boost the performance of brain tumor segmentation by proposing
a multi-scale masked 3D U-Net which captures multi-scale information
by stacking multi-scale images as inputs and incorporating a 3-D Atrous
Spatial Pyramid Pooling (ASPP) layer. To filter noisy results for tumor
core (TC) and enhancing tumor (ET), we train the TC and ET seg-
mentation networks from the bounding box for whole tumor (WT) and
TC, respectively. On the BraTS 2018 validation set, our method achieved
average Dice scores of 0.8094, 0.9034, 0.8319 for ET, WT and TC, respec-
tively. On the BraTS 2018 test set, our method achieved 0.7690, 0.8711,
and 0.7792 dice scores for ET, WT and TC, respectively. Especially, our
multi-scale masked 3D network achieved very promising results enhanc-
ing tumor (ET), which is hardest to segment due to small scales and
irregular shapes.

Keywords: Brain tumor segmentation · Multi-scale · ASPP · U-Net

1 Introduction

Multimodal Brain Tumor Segmentation Challenge (BraTS) [16] provides an
excellent platform to boom the development of methods for segmenting tumor
regions from 3D MRI scans as well as data [3,4]. As explained in [16], gliomas are
the most common primary brain malignancies, with different degrees of aggres-
siveness, variable prognosis and various heterogeneous histological sub-regions,
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-11726-9_20
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i.e. peritumoral edema, necrotic core, enhancing and non-enhancing tumor core.
In this challenge, our goal is to segment whole tumor (WT), tumor core (TC)
and enhancing tumor (ET) from the other patterns. The dataset provided by
[16] is composed of annotated low grade gliomas (LGG) and high grade glioblas-
tomas (HGG), where LGG tends to be benign tendencies, while HGG denote
the tumors which can grow rapidly and spread fast. For both LGG and HGG,
four modals of scanning images are given, including Fluid Attenuation Inversion
Recovery (FLAIR), T1-weighted (T1), contrast enhanced T1-weighted (T1ce)
and T2-weighted (T2) images. Each modality supplies complementary informa-
tion and they together provide more complete description of the tumor patterns.
For example, the contours of whole tumor detected in FLAIR and T2 are more
distinctive from the background than those in T1 and T1ce. Similarly, TC and
ET can be easily distinguished from background in T1 and T1ce, the bounding
information of which can be restricted by Flair and T2 by segmenting WT first.
For instance, as mentioned in [16,21], T2 and FLAIR highlight the tumor with
peritumoral edema, designated “whole tumor” as per [16]. T1 and T1ce highlight
the tumor without peritumoral edema, designated “tumor core” as per [16]. An
enhancing region of the tumor core with hyper-intensity can also be observed in
T1ce, designated as “enhancing tumor core” [16].

Nowadays, we have a considerable quantity of diagnostic cases using Mag-
netic Resonance (MR) images. Moreover, we have the capacity to train very
deep neural networks with the development of computing resources from these
MR images, which makes automated disease diagnosis possible [2,16]. Auto-
matic brain tumor segmentation can be much faster than manual segmentation;
however, due to the irregular characteristics of brain tumor, the possibly subtle
distinction between tumor and normal tissue, as well as a high variability in
shape, location, and extent across patients, the accuracy of the current brain
tumour segmentation algorithms needs further improvement so that they can be
deployed in real systems.

There have been many methods for segmenting brain tumor which is detailed
in [15]. Recently, the deep convolutional neural networks (CNNs) have shown
promising performance in medical image segmentation and other related tasks
[9–12,14,21]. DeepMedic [12] is one of the deep model-based method which com-
bines patches with multiple resolutions as inputs to capture fine details and
global information. They further introduced an enhancing structure which adds
residual connection from previous feature layers. The 3-D U-Net [18] uses a com-
pact encoder-decoder structure, which utilizes the features from several encoder
layers twice by concatenating them with the decoder layers. Isensee et al. apply
a U-Net based network to capture large scale information by large input patch
size [10]. Additional works focus on the modification on the choice of convo-
lutional kernal and loss function, such as the mixture of convolutional kernel
and downsampling strategy [8,12]. Coping with unbalanced data, specific loss
function [6,19] and sampling strategy [6] are introduced to train networks.

In this work, we focus on extracting multi-scale information from a sin-
gle patch input instead of using multi-resolution inputs. Our contributions are



224 Y. Xu et al.

input WT TC ET

Multiscale input
WT model

Background

Whole Tumor(WT)
TC model

Background

Tumor Core(TC)
ET model

Background

Models are trained with a cascaded way

Enhancing Tumor(TC)

Fig. 1. The diagram depicts the training strategy for three different tumor with a
cascaded masked way.

three fold. First, we extend 2D Atrous Spatial Pyramid Pooling (ASPP) [5] to
3D ASPP for extracting multi-scale information from feature maps of the neural
network. By making use of the ASPP layer, we are able to enlarge the recep-
tive field and thus capture larger scale information without introducing extra
parameters. Second, we adjust basic structure of U-Net for small tumor segmen-
tation by removing subsampling layers in specific layers of U-Net. This could
help detect small tumors which are usually ignored in the original U-Net due
to too many subsampling layers. Finally, we apply the cascaded masked strat-
egy [21] for tumor segmentation training. Specifically, we segment WT, TC, and
ET sequentially and use the bounding box from the former ones to restrict the
search space for the following ones. This strategy could help remove false positive
detections from the background regions. Our paper is collected in [1].

2 Methods

In this section, we will introduce the details of our method. First, we will describe
the data preprocessing and patch extraction methods. Second, we will present
the details of our network structure and training strategies.

2.1 Data Preprocess and Patch Extraction

We follow the standard procedure to preprocess the input images. To compensate
for the MR inhomogeneity, we apply the bias correction algorithm based on
N4ITK library [20] to the T1 and T1ce images. To reduce the effect of the
absolute pixel intensities to the model, an intensity normalization step is applied
to each volume of all subjects by subtracting the mean and dividing them by
the standard deviation so that each MR volume will have a zero mean and unit
variance. In practice, as the original uncropped volume is used but the brain only
takes the central region, the mean and standard deviation are estimated from
the brain area. Because of the GPU memory limitation and insufficient training
data, we extract 400 patches per patient with patch size 64 × 64 × 64 and take
these patches as network inputs.



Multi-scale Masked 3-D U-Net for Brain Tumor Segmentation 225

2-D of Atrous convolution to 3-D of Atrous convolution

rate = 1 rate = 3
rate = 5

Atrous Spatial Pyramid Pooling

Input Feature Map

Dilated Conv  
kernel: 7x7

rate = 7

Dilated Conv  
kernel: 11x11

Dilated Conv  
kernel: 15x15

illustration of atrous convolution in 1-D

2-D Atrous Spatial Pyramid Pooling (ASPP)

2-D extends to 3-D

Dilated Conv  
kernel: 3x3

Fig. 2. The proposed extending ASPP layer. By the order of top to bottom, the dilated
convolution, 2-D ASPP layer and the extending of 3-D ASPP layer from 2-D ASPP
layer are well depicted.

2.2 Cascaded Masked Strategy

To remove false positive detections from background, we apply the cascaded
masked strategy as [21]. The training strategy is shown in Fig. 1. By doing so,
we can reduce the multiclass segmentation problem as a binary segmentation
problem. Specifically, we train the WT network only with WT labeled data.
Then we keep the segmented WT tumor as a mask for TC training. Similarly, we
set segmented TC as the mask for ET training. Note that we use the groundtruth
masks in the training phase, but the predicted masks in the test phase.

2.3 Extended 3-D ASPP Layer

Atrous Spatial Pyramid Pooling (ASPP) is first introduced in [5] for semantic
segmentation in 2D natural scene images. ASPP layer consists of multiple scales
of Atrous layers, also called dilated convolution layers. Figure 2 shows a one-
dimensional Atrous convolutional operation. With the annotation for the output
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y[i] with respect to the 1-D input signal x[i] and convolutional kernel w[k], the
formula is formed as follows:

y[i] =
K∑

k=1

x[i + r · k]w[k] (1)

Rate r denotes the dilated rate and dilated rate r = 1 is the normal convolu-
tion. Then the 2-D ASPP is displayed in Fig. 2, we feed feature maps into several
Atrous layer with different rates and then combine these feature maps in channel
dimension. Finally, we obey the same strategy and extend the 2-D ASPP layer
to 3-D ASPP layer which is then applied on U-Net. We propose to apply ASPP
layer here for capturing multi-scale objects and context employing multiple 3-D
atrous convolutional layers with different sampling rates, and this is implemented
with a parallel way. The advantage is that we can capture multi-scale information
without introducing additional parameters and thus avoid overfitting.

2.4 Multi-scale Input

Additional, we try to include as much information as possible in the input. We
rescale the images by multiple scales and then feed multi-resolution patches as
input. Thus we apply a multi-scale input patches rather than only the patches
of original size. In this work, the scales chosen are ×0.5, ×1 (original size) and
×2, and these patches are concatenated in channel dimension. By doing so, we
can extract global and local information even when the patch size is small.

2.5 Network Structure

Now we can stack the building blocks together to form the final network struc-
ture. Our network is based on U-net with 3-D ASPP layer for trade-off between
scale information and receptive field as well as memory usage. The designation
of network structure is shown in Fig. 3. Compared to the original U-Net, we
remove the third downsampling and upsampling layers for WT network and TC
network, furthermore, we add the ASPP layer between the encoder and decoder
in U-Net. We observe that ET is small with respect to WT and TC and maybe
evanescent after downsampling of encoder, which is not able to be recovered
by upsampling of decoder. Thus, we only keep the second downsampling and
upsampling layers for the ET network.

As for training network, we apply ADAM optimizer [13] and set the param-
eters of ADAM as lr = 0.0002, β1 = 0.5 and β2 = 0.9999, which is the unified
setting. We apply Xavier initialization [7] to initialize the network parameters.

2.6 Loss Function

We adopt the cross entropy loss to train our networks. We classify each vox-
els to a binary label (1, 0: 1 means tumor and 0 means background), when
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Architecture of original U-net

Architecture of our network for Whole Tumor and Tumor Core

3x3x3convolution  
output channelCo

Batch  
Norm
.

ReLU
2D down-sampling2D up-samplingConcatenate ASPP

Architecture of our network for Enhancing Tumor

Fig. 3. Our modified U-Net based neural networks. We show the original U-Net on the
top and the networks for our contribution is below. The networks trained by whole
tumor and tumor core share the same network structure but do not share parameters.
As for network designed for enhancing tumor training, we only keep one downsampling
layer.

training network for WT, TC and ET separately. The cross entropy loss can be
written as

loss =
∑

(y′ log(y) + (1 − y′) log(1 − y)), (2)

where y′ represents ground truth label and y represents predicted label.

3 Experiments

Data. We got all our training data from BraTS web1 to evaluate our method.
The training data consist of 285 patients including segmented masks annotated
by human experts. These training data are separated into two categories includ-
ing HGG and LGG, containing 210 HGG and 75 LGG. There is an unbalance
between HGG and LGG, and the data distributions of HGG and LGG are also
different, especially for TC and ET. Each patient has four sequences, which are
FLAIR, T2, T1, and T1ce. We feed all of the sequences into our network by com-
bining them in channel dimension. Thus, our input data are 5-D, the dimension
of which are batch, sequences, width, length, and depth. Regarding the valida-
tion data and testing data, they are the same as given training data, however
the segmentation labels are not released. We finally receive validation data and
testing data which are composed of 66 patients and 191 patients, respectively.

We train our whole network using Pytorch [17], which is a new hybrid front-
end seamlessly transitions between eager mode and graph mode to provide both

1 https://www.med.upenn.edu/sbia/brats2018/data.html.

https://www.med.upenn.edu/sbia/brats2018/data.html
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flexibility and speed. We set our training batch size as 24 and training image
size as 64 × 64 × 64. We extract 400 patches for each patient, each patch consists
of all of the FLAIR, T2, T1, and T1ce sequences as well as multiscale stacked
patches. We choose NVIDIA TITAN XP GPU for training our network and it
costs about 11 gigabytes GPU RAM. The whole training process is finished with
2 days with 10 epochs, and each epoch will traverse the whole training dataset.

3.1 Evaluation Metrics

Dice Coefficient. The Dice-Coefficient (Eq. 3) is calculated as performance
metric. This measure states the similarity between clinical Ground Truth anno-
tations and the output segmentation of the model. Afterwards, we calculate the
average of those results to obtain the overall dice coefficient of the models.

D =
2|A⋂

B|
|A| + |B| (3)

Hausdorff Distance. The Hausdorff Distance (Eq. 4) is mathematically
defined as the maximum distance of a set to the nearest point in the other
set [15], in other words how close are the segmentation and the expected output.

H(A,B) = max(min(d(A,B))) (4)

Table 1. Mean values of Dice and Hausdorff measurements of the proposed method on
BraTS 2018 validation set. ET, WT, TC denote enhancing tumor core, whole tumor
and tumor core, respectively.

Dice Hausdorff (mm)

ET WT TC ET WT TC

Original U-Net 0.739 0.882 0.788 5.329 7.356 10.243

Our network without ASSP layer 0.773 0.899 0.820 4.259 6.374 6.404

Our network with ASSP layer 0.809 0.903 0.832 3.780 6.022 7.091

Segmentation Results. To provide qualitative results of our method, we ran-
dom choose two segmented images from validation data which are shown in
Figs. 4 and 5 as well as in Appendix I. Figure 4 is suspected as one of the HGG
data and Fig. 5 is suspected as one of the LGG data. Because the border for
Fig. 4 is clear and the red non-enhancing tumor is inside the yellow enhanc-
ing tumor core. Furthermore, in Fig. 5, the border for tumor is quite blurred
and there is almost no yellow enhancing tumor and it is in accordance with
the feature of LGG data from training dataset. As we can observe from Fig. 4,
the network with ASPP layer performs better than network without ASPP
layer in that network with ASPP layer segments more local information that
corresponds to the details shown in original sequences. As shown in Fig. 5, there
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FLAIR T2

T1 T1ce

no ASPP layer

with ASPP layer

Fig. 4. Segmentation result of the brain tumor (suspected HGG) from a validation
image. Green: edema; Red: non-enhancing tumor core; Yellow: enhancing tumor core.
On the left, the original images are shown, and on the right, we show the segmented
result of network without ASPP layer and network with ASPP layer. (Color figure
online)

is a suspected wrong segmented area for red non-enhancing tumor, but the orig-
inal sequences are blurred as well. In comparison, our network with ASPP layer
can perform better on more local details and decrease the wrong classification
for each voxel.

We show our quantitative results in Table 1. For comparison with existing
methods, we list the result of the original U-Net, our modified U-Net without
ASPP layer and our modified U-Net with ASPP layer. As can be seen from
Table 1, our baseline of modified U-Net perform much better than the original
U-Net in terms of all of the evaluation metrics. If just comparing the effect of
ASPP layer, we find that assembling with ASPP layer can help improve TC and
ET, especially improving ET by a large margin. However, they almost achieve
the same performance on WT. We can also find that our method concentrate
on detecting with multi-scale information that can help improve the ability for
detecting small tumor area such as ET and TC. In this way, we achieve dice
score above 0.8 for ET on testing data (Table 2).

As for testing data, we list the details of the result of mean value, standard
deviation, median, 25% ranking and 75% ranking of Dice score and Hausdorff
distance. Due to possible overfit on the validation data, we achieve a relatively
lower performance on testing data; however our method still obtains rank 9th

out of all the submitted methods on testing data.
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FLAIR T2

T1 T1ce

no ASPP layer

with ASPP layer

Fig. 5. Segmentation result of the brain tumor (suspected LGG) from a validation
image. Green: edema; Red: non-enhancing tumor core; Yellow: enhancing tumor core.
On the left, the original images are shown, and on the right, we show the segmented
result of network without ASPP layer and network with ASPP layer. (Color figure
online)

Table 2. Dice and Hausdorff measurements of the proposed method on BraTS 2017
testing set. EN, WT, TC denote enhancing tumor core, whole tumor and tumor core,
respectively.

Dice Hausdorff (mm)

ET WT TC ET WT TC

Mean 0.769 0.871 0.779 4.799 9.523 7.186

Standard deviation 0.240 0.129 0.274 9.293 16.822 10.900

Median 0.842 0.915 0.900 2.000 3.464 3.162

25 quantile 0.747 0.860 0.758 1.414 2.236 2.0000

75 quantile 0.892 0.939 0.936 3.000 6.364 7.280

4 Conclusions

We proposed a multi-scale neural network with a cascaded masked train-
ing structure for segmenting glioma subregions from multi-modal brain MR
images. Our method receives as input multi-scale 3D patches extracted from the
dataset volumes and we train three networks separately based on our cascaded
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mask strategy. To further incorporate multi-scale information, we also incorpo-
rate the 3D ASPP layer which contains filter with various receptive field size
without introducing many additional parameters. Our method achieves good
results in the BraTS challenge. Future work would be incorporating attention in
the network to aggregate multi-scale information.

A More Example

no ASPP layer with ASPP layer no ASPP layer with ASPP layer

no ASPP layer with ASPP layer no ASPP layer with ASPP layer

no ASPP layer with ASPP layer no ASPP layer with ASPP layer

no ASPP layer with ASPP layer no ASPP layer with ASPP layer

no ASPP layer with ASPP layer
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Abstract. In this paper we demonstrate the effectiveness of a well
trained U-Net in the context of the BraTS 2018 challenge. This endeav-
our is particularly interesting given that researchers are currently besting
each other with architectural modifications that are intended to improve
the segmentation performance. We instead focus on the training process
arguing that a well trained U-Net is hard to beat. Our baseline U-Net,
which has only minor modifications and is trained with a large patch
size and a Dice loss function indeed achieved competitive Dice scores
on the BraTS2018 validation data. By incorporating additional mea-
sures such as region based training, additional training data, a simple
postprocessing technique and a combination of loss functions, we obtain
Dice scores of 77.88, 87.81 and 80.62, and Hausdorff Distances (95th per-
centile) of 2.90, 6.03 and 5.08 for the enhancing tumor, whole tumor and
tumor core, respectively on the test data. This setup achieved rank two
in BraTS2018, with more than 60 teams participating in the challenge.

Keywords: CNN · Brain tumor · Glioblastoma · U-Net · Dice loss

1 Introduction

Quantitative assessment of brain tumors provides valuable information and
therefore constitutes an essential part of diagnostic procedures. Automatic seg-
mentation is attractive in this context, as it allows for faster, more objective
and potentially more accurate description of relevant tumor parameters, such
as the volume of its subregions. Due to the irregular nature of tumors, how-
ever, the development of algorithms capable of automatic segmentation remains
challenging.

The brain tumor segmentation challenge (BraTS) [1] aims at encouraging
the development of state of the art methods for tumor segmentation by pro-
viding a large dataset of annotated low grade gliomas (LGG) and high grade
glioblastomas (HGG). The BraTS 2018 training dataset, which consists of 210
HGG and 75 LGG cases, was annotated manually by one to four raters and
c© Springer Nature Switzerland AG 2019
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all segmentations were approved by expert raters [2–4]. For each patient a T1
weighted, a post-contrast T1-weighted, a T2-weighted and a Fluid-Attenuated
Inversion Recovery (FLAIR) MRI was provided. The MRI originate from 19
institutions and were acquired with different protocols, magnetic field strengths
and MRI scanners. Each tumor was segmented into edema, necrosis and non-
enhancing tumor and active/enhancing tumor. The segmentation performance of
participating algorithms is measured based on the DICE coefficient, sensitivity,
specificity and 95th percentile of Hausdorff distance.

It is unchallenged by now that convolutional neural networks (CNNs) dic-
tate the state of the art in biomedical image segmentation [5–10]. As a conse-
quence, all winning contributions to recent BraTS challenges were exclusively
build around CNNs. One of the first notably successful neural network for brain
tumor segmentation was DeepMedic, a 3D CNN introduced by Kamnitsas et
al. [5]. It comprises a low and a high resolution pathway that capture semantic
information at different scales and recombines them to predict a segmentation
based on precise local as well as global image information. Kamnitsas et al. later
enhanced their architectures with residual connections for BraTS 2016 [11]. With
the success of encoder-decoder architectures for semantic segmentation, such as
FCN [12,13] and most notably the U-Net [14], it is unsurprising that these archi-
tectures are used in the context of brain tumor segmentation as well. In BraTS
2017, all winning contributions were at least partially based on encoder-decoder
networks. Kamnitsas et al. [9], who were the clear winner of the challenge, cre-
ated an ensemble by combining three different network architectures, namely 3D
FCN [12], 3D U-Net [14,15] and DeepMedic [5], trained with different loss func-
tions (Dice loss [16,17] and crossentropy) and different normalization schemes.
Wang et al. [10] used a FCN inspired architecture, enhanced with dilated convo-
lutions [13] and residual connections [18]. Instead of directly learning to predict
the regions of interest, they trained a cascade of networks that would first seg-
ment the whole tumor, then given the whole tumor the tumor core and finally
given the tumor core the enhancing tumor. Isensee et al. [6] employed a U-Net
inspired architecture that was trained on large input patches to allow the net-
work to capture as much contextual information as possible. This architecture
made use of residual connections [18] in the encoder only, while keeping the
decoder part of the network as simple as possible. The network was trained with
a multiclass Dice loss and deep supervision to improve the gradient flow.

Recently, a growing number of architectural modifications to encoder-decoder
networks have been proposed that are designed to improve the performance of
the networks for their specific tasks [6,7,10,17,19–22]. Due to the sheer number
of such variants, it becomes increasingly difficult for researchers to keep track of
which modifications extend their usefulness over the few datasets they are typ-
ically demonstrated on. We have implemented a number of these variants and
found that they provide no additional benefit if integrated into a well trained
U-Net. In this context, our contribution to the BraTS 2018 challenge is intended
to demonstrate that such a U-Net, without using significant architectural alter-
ations, is capable of generating competitive state of the art segmentations.
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2 Methods

In the following we present the network architecture and training schemes used
for our submission. As hinted in the previous paragraph, we will use a 3D U-Net
architecture that is very close to its original publication [15] and optimize the
training procedure to maximize its performance on the BraTS 2018 training and
validation data.

2.1 Preprocessing

With MRI intensity values being non standardized, normalization is critical to
allow for data from different institutes, scanners and acquired with varying pro-
tocols to be processed by one single algorithm. This is particularly true for neural
networks where imaging modalities are typically treated as color channels. Here
we need to ensure that the value ranges match not only between patients but
between the modalities as well in order to avoid initial biases of the network.
We found the following workflow to work well. We normalize each modality of
each patient independently by subtracting the mean and dividing by the stan-
dard deviation of the brain region. The region outside the brain is set to 0. As
opposed to normalizing the entire image including the background, this strategy
will yield comparative intensity values within the brain region irrespective of the
size of the background region around it.

2.2 Network Architecture

U-Net [14] is a successful encoder-decoder network that has received a lot of
attention in the recent years. Its encoder part works similarly to a traditional
classification CNN in that it successively aggregates semantic information at the
expense of reduced spatial information. Since in segmentation, both semantic as
well as spatial information are crucial for the success of a network, the missing
spatial information must somehow be recovered. U-Net does this through the
decoder, which receives semantic information from the bottom of the ‘U’ (see
Fig. 1) and recombines it with higher resolution feature maps obtained directly
from the encoder through skip connections. Unlike other segmentation networks,
such as FCN [12] and previous iterations of DeepLab [13] this allows U-Net to
segment fine structures particularly well.

Our network architecture is an instantiation of the 3D U-Net [15] with minor
modifications. Following our successful participation in 2017 [6], we stick with
our design choice to process patches of size 128 × 128× 128 with a batch size of
two. Due to the high memory consumption of 3D convolutions with large patch
sizes, we implemented our network carefully to still allow for an adequate number
of feature maps. By reducing the number of filters right before upsampling and
by using inplace operations whenever possible, this results in a network with 30
feature channels at the highest resolution, which is nearly double the number we
could train with in our previous model (using the same 12 GB NVIDIA Titan X
GPU). Due to our choice of loss function, traditional ReLU activation functions
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Fig. 1. We use a 3D U-Net architecture with minor modifications. It uses instance
normalization [23] and leaky ReLU nonlinearities and reduces the number of feature
maps before upsampling. Feature map dimensionality is noted next to the convolutional
blocks, with the first number being the number of feature channels.

did not reliably produce the desired results, which is why we replaced them with
leaky ReLUs (leakiness 10−2) throughout the entire network. With a small batch
size of 2, the exponential moving averages of mean and variance within a batch
learned by batch normalization [24] are unstable and do not reflect the feature
map activations at test time very well. We found instance normalization [23]
to provide more consistent results and therefore used it to normalize all feature
map activations (between convolution and nonlinearity). For an overview over
our segmentation architecture, please refer to Fig. 1.

2.3 Training Procedure

Our network architecture is trained with randomly sampled patches of size
128× 128× 128 voxels and batch size 2. We refer to an epoch as an iteration
over 250 batches and train for a maximum of 500 epochs. The training is termi-
nated early if the exponential moving average of the validation loss (α = 0.95)
has not improved within the last 60 epochs. Training is done using the ADAM
optimizer with an initial learning rate lrinit = 1 ·10−4, which is reduced by factor
5 whenever the above mentioned moving average of the validation loss has not
improved in the last 30 epochs. We regularize with a l2 weight decay of 10−5.

One of the main challenges with brain tumor segmentation is the class imbal-
ance in the dataset. While networks will train with crossentropy loss function,
the resulting segmentations may not be ideal in the sense of the Dice score they
obtain. Since the Dice scores is one of the most important metrics based upon
which contributions are ranked, it is imperative to optimize this metric. We
achieve that by using a soft Dice loss for the training of our network. While
several formulations of the Dice loss exist in the literature [16,17,25], we pre-
fer to use a multi-class adaptation of [16] which has given us good results in
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segmentation challenges in the past [6,8]. This multiclass Dice loss function is
differentiable and can be easily integrated into deep learning frameworks:
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where u is the softmax output of the network and v is a one hot encoding of the
ground truth segmentation map. Both u and v have shape i by c with i being
the number of pixels in the training patch and k ∈ K being the classes.

When training large neural networks from limited training data, special care
has to be taken to prevent overfitting. We address this problem by utilizing
a large variety of data augmentation techniques. The following augmentation
techniques were applied on the fly during training: random rotations, random
scaling, random elastic deformations, gamma correction augmentation and mir-
roring. Data augmentation was done with our own in-house framework which is
publically available at https://github.com/MIC-DKFZ/batchgenerators.

The fully convolutional nature of our network allows to process arbitrarily
sized inputs. At test time we therefore segment an entire patient at once, alle-
viating problems that may arise when computing the segmentation in tiles with
a network that has padded convolutions. We furthermore use test time data
augmentation by mirroring the images and averaging the softmax outputs.

2.4 Region Based Prediction

Wang et al. [10] use a cascade of CNNs to segment first the whole tumor, then
the tumor core and finally the enhancing tumor. We believe the cascade and
their rather complicated network architecture to be of lesser importance, but the
fact that they did not learn the labels (enhancing tumor, edema, necrosis) but
instead optimized the regions that are finally evaluated in the challenge directly
to be key to their good performance in last years challenge. For this reason we
will also train a version of our model where we replace the final softmax with a
sigmoid and optimize the three (overlapping) regions (whole tumor, tumor core
and enhancong tumor) directly with the Dice loss.

2.5 Cotraining

285 training cases is a lot for medical image segmentation, but may still not
be enough to prevent overfitting entirely. We therefore also experiment with
cotraining on additional public and institutional data. For public data, we chose
to use the BraTS data made available in the context of the Medical Segmenta-
tion Decathlon (http://medicaldecathlon.com). This dataset comprises 484 cases
with ground truth segmentations collected from older BraTS challenges.

Cotraining is done for only two datasets at a time. Given that the label def-
initions between BraTS 2018 and the other datasets may differ, we use separate
segmentation layers (1× 1× 1 convolution) at the end, which act as a supervised
version of m heads [26]. During training, each segmentation layer only receives

https://github.com/MIC-DKFZ/batchgenerators
http://medicaldecathlon.com
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gradients from examples of its corresponding dataset. The losses of both layers
are averaged to obtain the total loss of a minibatch. The rest of the network
weights are shared.

2.6 Postprocessing

One of the most challenging parts in the BraTS challenge data is distinguishing
small blood vessels in the tumor core region (that must be labeled either as
edema of as necrosis) from enhancing tumor. This is particularly detrimental for
LGG patients that may have no enhancing tumor at all. The BraTS challenge
awards a Dice score of 1 if a label is absent in both the ground truth and
the prediction. Conversely, only a single false positive voxel in a patient where
no enhancing tumor is present in the ground truth will result in a Dice score
of 0. Therefore we replace all enhancing tumor voxels with necrosis if the total
number of predicted enhancing tumor is less than some threshold. This threshold
is chosen for each experiment independently by optimizing the mean Dice (using
the above mentioned convention) on the BraTS 2018 training cases.

2.7 Dice and Cross-entropy

While being widely popular and providing state of the art results on many med-
ical segmentation challenges, the Dice loss has some downsides, such as badly
calibrated softmax probabilities (basically binary 0-1 predictions) and occasional
convergence issues (if the true positive term is too small for rare classes) com-
pared to the negative log-likelihood loss (also referred to as cross-entroy loss
function). We therefore also experiment with using these losses in conjunction
by using both a Dice as well as a negative log-likelihood term and simply adding
them together to form the total loss (unweighted sum).

3 Experiments and Results

We designed our training scheme by running a five fold cross-validation on the
285 training cases of BraTS 2018. If additional data is used, the additional
training cases are split into five folds as well and used for co-training. Training set
results are summarized in Table 3, validation set results can be found in Table 2.
Unless noted otherwise, validation set results were obtained by using the five
networks from the training cross-validation as an ensemble. For consistency with
other publications, all reported values were computed by the online evaluation
platform (https://ipp.cbica.upenn.edu/).

Due to the relatively small size of the validation set (66 cases vs 285 training
cases) we base our main analysis on the cross-validation results. We are confident
that conclusions drawn from the training set are more robust and will generalize
well to the test set.

Results on the BraTS2018 training data are summarized in Table 3. We
refer to our basic U-Net that was trained on BraTS2018 training data with

https://ipp.cbica.upenn.edu/
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Table 1. Results on BraTS 2018 training data (285 cases). All results were obtained
by running a five fold cross-validation. Metrics were computed by the online evaluation
platform.

Dice HD95

enh. whole core enh. whole core

Isensee et al. (2017) [6] 70.69 89.51 82.76 6.24 6.04 6.95

baseline 73.43 89.76 82.17 4.88 5.86 7.11

baseline + reg 73.81 90.02 82.87 5.01 6.26 6.48

baseline + reg + cotr (dec) 75.94 91.33 85.28 4.29 4.82 5.05

baseline + reg + cotr (dec) + post 78.68 91.33 85.28 3.49 4.82 5.05

baseline + reg + cotr (dec) + post + DC&CE 78.62 91.75 85.69 2.84 4.88 5.11

baseline + reg + cotr (inst) + post + DC&CE 76.32 90.35 84.36 3.74 5.64 5.98

baseline + reg + post + DC&CE 76.78 90.30 83.55 3.66 5.36 6.03

Table 2. Results on BraTS2018 validation data (66 cases). Results were obtained by
using the five models from the training set cross-validation as an ensemble. Metrics
were computed by the online evaluation platform.

Dice HD95

enh. whole core enh. whole core

baseline 79.59 90.80 84.32 3.12 4.79 8.16

baseline + reg + cotr (dec) + post + DC&CE (*) 80.46 91.21 85.77 2.52 4.38 6.73

baseline + reg + cotr (inst) + post + DC&CE (**) 80.95 91.15 86.6 2.44 5.02 6.73

baseline + reg + post + DC&CE 80.66 90.92 85.22 2.74 5.83 7.20

ensemble of (*) and (**) 80.87 91.26 86.34 2.41 4.27 6.52

large input patches and a Dice loss function as baseline. With Dice scores of
73.43/89.76/82.17 (enh/whole/core) on the training set this baseline model is
by itself already very strong, especially when compared to the model of Isensee
et al. [6] that achieved the third place in BraTS2017 (the training data for both
challenges is identical, allowing a direct comparison of the models). Adding
region based training (reg) improved the Dice scores of both the enhancing
tumor as well as the tumor core. When training with decathlon data (cotr
(dec)), we gain two Dice points in enhancing tumor and minor improvements
for the tumor core. Our postprocessing, which is targeted at correcting false
positive enhancing tumor predictions in LGG patients has a substantial impact
on enhancing tumor Dice. On the training set it increases the mean enhancing
tumor Dice by almost three points. Using the sum Dice and cross-entropy as
a loss function yields yet another small improvement. Interestingly, using our
institutional data for cotraining yields much worse results on the training set.
In order to isolate the impact of additional training data we added the model
baseline + reg + post + DC&CE to the table.
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While the model that uses institutional data performed worse on the training
set, it was slightly better on the validation set (see Table 2). We explain this dis-
crepancy by the possibility that the Dice and Hausdorff distance scores obtained
from the training set cross-validation may be overestimated when cotraining with
decathlon data. Since any potential case correspondences between decathlon data
and BraTS2018 is unknown due to the naming scheme of the decathlon cases, we
cannot exclude the possibility that cases that are currently in the validation split
for BraTS 2018 appear in the training split of the decathlon data (albeit with
different ground truth segmentations). This uncertainty, along with the strong
performance of the model cotrained with institutional data on the validation set
led us to the decision to submit an ensemble of these two models. The ensemble
achieves Dice scores of 80.87/91.26/86.34 (enh/whole/core) and Hausdorff dis-
tances of 2.41/4.27/6.52 on the validation set. For comparison, we also included
the validation set result achieved with no additional training data.

Figure 2 shows a qualitative example segmentation. The patient shown is
taken from the validation set (CBICA AZA 1). As can be seen in the middle
(t1ce), there are several blood vessels close to the enhancing tumor. Segmentation
CNNs typically struggle to correctly differentiate between such vessels and actual
enhancing tumor. This is most likely due to a) a difficulty in detecting tube-like
structures b) few training cases where these vessels are an issue c) the use of Dice
loss functions that does not sufficiently penalize false segmentations of vessels
due to their relatively small size. In the case shown here, our model correctly
segmented the vessels as background.

Test set results (as communicated by the organizers of the challenge) are
presented in Table 3. We used an ensemble of the two models that were trained
with institutional and decathlon data for our final submission. Each of these
models is in turn an ensemble of five models resulting from the corresponding
cross-validation, resulting in a total of 10 predictions for each test case. Our
algorithm achieved the second place out of 64 participating teams. We compare

Fig. 2. Qualitative results. The case shown here is patient CBICA AZA 1 from the
validation set. Left: flair, middle: t1ce, right: our segmentation. Enhancing tumor is
shown in yellow, necrosis in turquoise and edema in violet. (Color figure online)
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Table 3. Test set results of NVDLMED, the winner of BraTS2018, and our method,
which achieved the second place.

Dice Hausd. dist.

enh. whole core enh. whole core

NVDLMED Mean 76.64 88.39 81.54 3.77 5.90 4.81

StdDev 25.57 11.83 24.99 8.61 10.01 7.52

Median 84.41 92.06 91.67 1.73 3.16 2.45

MIC-DKFZ Mean 77.88 87.81 80.62 2.90 6.03 5.08

StdDev 23.93 12.89 25.02 3.85 9.98 8.09

Median 84.94 91.79 90.72 1.73 3.16 2.83

our results to the winning contribution by Myronenko et al. (team NVDLMED).
While our model had strong results for enhancing tumor, NVDLMED outper-
formed our approach in both tumor core and whole tumor. Please refer to [27]
for a detailed summary of the challenge results.

4 Discussion

In this paper we demonstrated that a generic U-Net architecture that has only
minor modifications can obtain very competitive segmentation, if trained cor-
rectly. While our base model is already quite strong, enhancing its training pro-
cedure by using region-based training, cotraining with additional training data,
postprocessing to target false positive enhancing tumor detection as well as a
combination of Dice and cross-entropy loss, increases its performance substan-
tially. For our final submission we used an ensemble of a model cotrained with
public and another cotrained with institutional data. Despite using only a generic
U-Net architecture, our approach achieved the second place in the BraTS2018
challenge, underligning the impact a well designed framework can have on model
training.
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Abstract. Automatic quantitative analysis of structural magnetic res-
onance (MR) images of brain tumors is critical to the clinical care of
glioma patients, and for the future of advanced MR imaging research. In
particular, automatic brain tumor segmentation can provide volumes of
interest (VOIs) to scale the analysis of advanced MR imaging modali-
ties such as perfusion-weighted imaging (PWI), diffusion-weighted imag-
ing (DTI), and MR spectroscopy (MRS), which is currently hindered
by the prohibitive cost and time of manual segmentations. However,
automatic brain tumor segmentation is complicated by the high het-
erogeneity and dimensionality of MR data, and the relatively small size
of available datasets. This paper extends ESPNet, a fast and efficient
network designed for vanilla 2D semantic segmentation, to challenging
3D data in the medical imaging domain [11]. Even without substantive
pre- and post-processing, our model achieves respectable brain tumor
segmentation results, while learning only 3.8 million parameters. 3D-
ESPNet achieves dice scores of 0.850, 0.665, and 0.782 on whole tumor,
enhancing tumor, and tumor core classes on the test set of the 2018
BraTS challenge [1–4,12]. Our source code is open-source and available
at https://github.com/sacmehta/3D-ESPNet.

Keywords: Glimoa · BraTS · ESPNet · CNN ·
Semantic segmentation

1 Introduction

Glioma is the most common primary brain tumor. Due to glioma’s highly het-
erogeneous appearance, extent, and shape, segmentation of brain tumors in MR
volumes is one of the most challenging tasks in neuroradiology [7]. This is com-
pounded by the sparsity of data and the heterogeneity incurred by differing
scanner models and manufacturers, imaging sites, variation in clinical standards
and protocols, and the noise introduced by the movement of patients’ heads
during scans. At every clinical visit, glioma patients generally receive standard
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of care FLAIR, post-contrast T1-weighted (T1ce), T2, and T1 MR sequences,
each of which is described by a distinct volume. These sequences give distinct
and complementary information about the tumor extent and composition.

Automated brain tumor segmentation also ranks among the most difficult
problems in medical image analysis. The notion that massive amounts of data
are required to train deep networks is widely held. Not only are MR scans scarce,
they are high dimensional (e.g. 240 × 240 × 155 × 4) and contain high class
imbalances (e.g. ≥95% background class). Thus, naive models are predisposed
to exhibit extreme background bias.

In similar biomedical domains, patchwise approaches have helped address
problems of data shortages and dimensionality. Ciresan et al. proposed a sliding-
window method to segment electron microscopic images of the brain, which both
localized the problem and exaggerated the dataset [6,14]. Ronneberger et al.’s
2D encoder-decoder network, U-Net, outperformed Ciresan’s method [14]. U-Net
is a fully convolutional network (FCN) where the traditional pooling operations
in the contracting (encoding) path are mirrored by upsampling operations in
the symmetric expanding (decoding) path. Skip connections are passed from
encoding blocks on the contracting path to same-level decoding blocks in the
expanding path.

While some success has been reached using 2D FCNs, like U-Net, these mod-
els ignore crucial 3D spatial context, which is undesirable given that most clinical
imaging data are volumetric. However, even among 3D FCNs such as DeepMedic,
a previous winner of the BraTS competition, fine spatial information is discarded
in pooling [9]. This motivates our interest in U-Net’s skip connections and, in par-
ticular, the architecture of Milletari et al.’s 3D extension of U-Net, V-Net. V-Net
benchmarked well on the “PROMISE2012” challenge, where it gave impressive
segmentations of MR prostate scans after training on only 50 examples [13].

ESPNet is a faster, more efficient take on U-Net’s encoder-decoder architec-
ture [11]. In this paper, we seek to extend and benchmark ESPNet on 3D medical
imaging data.

We outline our paper as follows. Section 2 describes our network architecture.
We report our methods in Sect. 3. Experimental results are given in Sect. 4.
Finally, we close with a discussion of limitations and future directions for our
work in Sect. 5.

2 Network Architecture

Our network is an end-to-end system consisting of 3D-ESPNet followed by pyra-
midal refinement, as shown in Fig. 1. We describe the main building block of our
architecture, the ESP module, and, later, 3D-ESPNet’s segmentation architec-
ture and pyramidal refinement.

2.1 ESP Module

The Efficient Spatial Pyramid (ESP) module, shown in Fig. 2, is an efficient
convolutional module proposed in [11]. The module is based on the RSTM
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Fig. 1. 3D-ESPNet with pyramidal refinement. 3D-ESPNet’s encoder is shown on the
left; the decoder is shown on the right with pyramidal refinement. Parentheses give the
channel dimensions of incoming and outgoing feature maps. The CBR block consists
of a convolutional block followed by batch normalization and ReLU. Light-blue feature
maps in the decoder indicate concatenation by long-range, skip connections. Light-blue
feature maps in the encoder indicate strided ESP models for downsampling. Arrows
are defined in the legend. (Color figure online)

M, 1 × 1 × 1, dReduce

ESPStrategy

Split

Transform

Merge
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Fig. 2. The Efficient Spatial Pyramid (ESP) module. The blocks in blue represent 3D
convolutional layers and are denoted as (# input channels, effective receptive field, #
output channels). The ESP module takes an input feature map with M channels and
produces an output feature map with N channels, where d = N

K
and K represents the

number of parallel branches. (Color figure online)

(Reduce-Split-Transform-Merge) strategy and allows the aggregation of the
information from a large effective receptive field while learning fewer param-
eters. We extend the ESP block by replacing its spatial 2D convolutions with
volumetric 3D convolutions.

2.2 3D-ESPNet Structure

3D-ESPNet is an encoder-decoder network that extends U-Net [14]. The primary
distinction between 3D-ESPNet and U-Net is that 3D-ESPNet employs efficient
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convolutional blocks for aggregating features instead of stacking convolution lay-
ers (with or without residual connections) after the first layer.

In the encoder stage, the network learns feature representations by perform-
ing convolutional and downsampling operations. The encoder downsamples once
with a strided convolutional layer and three subsequent times with strided ESP
modules. In downsampling ESP modules, we use convolutions with ni × ni × ni

sized kernels and stride of two, for i ∈ {1, . . . ,K}, as shown in Fig. 2. The
combination of varying receptive fields allows 3D-ESPNet to learn feature rep-
resentations at multiple scales.

In the decoder stage, we share the feature maps in the encoder with same-level
feature maps in the decoder via skip-connection concatenation. Skip-connections
allow fine details lost in downsampling in the encoder to be recovered in the
decoder, which gives the segmentation maps a granularity simple interpolation
cannot achieve. The decoder uses 3 × 3 × 3 deconvolution kernels to upsample
the encoder output once, followed by trilinear upsampling layer to return to
the resolution at the networks second level. The feature maps of the final ESP
module in the decoder are passed into the pyramidal refinement module. The
block diagram of 3D-ESPNet is shown in Fig. 1.

Pyramidal Refinement: Pyramid-based approaches sub-sample either the feature
maps or the convolutional kernel to learn global contextual information. Inspired
by the success of such approaches for segmenting complex 2D scenes, we extend
these modules for volumetric data. We call this module pyramidal refinement.
Our module combines both feature map-based and convolutional kernel-based
pooling methods in a novel fashion.

Pyramidal refinement, shown in Fig. 4, consists of three layers:

– Projection Layer: This is a standard 3 × 3 × 3 convolutional layer followed
by batch normalization and ReLU that projects the feature maps from the
previous ESP block to C-dimensional space, where C is the number of classes.

– Spatial Pyramid Pooling (SPP) Block : The input feature maps to this block
are low dimensional (C = 4). We sub-sample them using convolutional kernels
of different sizes and merge their output using sum operations. This is similar
to the ASPP block except that we do not use dilated convolutions [5].

– PSP Block: A PSP block, sketched in Fig. 3b, is based on the principle of
split-pool-transform-upsample [15]. Split: A PSP block distributes the input
feature maps across four parallel branches. Pool: Each branch downsamples
the feature maps using a different pooling rate. Transform: The downsam-
pled feature maps are transformed using point-wise convolutions. Upsam-
ple: The transformed feature maps are upsampled to the same resolution as
the input feature maps using bilinear interpolation. Merge: The upsampled
feature maps are concatenated with the input feature maps to produce the
output feature maps.
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Pyramidal refinement is followed by a classification layer. This final layer
pools the feature maps using another SPP block and then upsamples by a factor
of two using trilinear interpolation. Two convolutional layers are stacked on top
of the upsampled feature maps before a softmax.

7× 7× 7, 15× 5× 5, 13× 3× 3, 1 9× 9× 9, 1

Sum

SPP block.

Avg. Pool,
scale=0.6

Avg. Pool,
scale=0.4

Avg. Pool,
scale=0.2

Avg. Pool, scale=0.8

3 × 3 × 3, 13 × 3 × 3, 13 × 3 × 3, 1 3 × 3 × 3, 1

Up-sample,
scale= 1

0.6

Up-sample,
scale= 1

0.4

Up-sample,
scale= 1

0.2

Up-sample,
scale= 1

0.8

Concat

PSP block.

Fig. 3. Pooling modules used in a pyramidal refinement block. Here, a convolutional
layer is represented as (kernel size, dilation rate).

Fig. 4. Pyramidal-refinement. After the second upsampling operation in the 3D-
ESPNet decoder, the feature maps are passed through a CBR block, a spatial pyramid
pooling block (SPP), and a pyramid pooling module (PSP) at 1/4 resolution. We then
upsample to input resolution using trilinear interpolation and compress and pass the
feature maps through a softmax to obtain a prediction.

3 Methods

3.1 Data

We train on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018
training set, which provides 285 multi-institutional pre-operative multimodal
MR tumor scans, each consisting of T1, post-contrast T1-weighted (T1ce), T2,
and FLAIR volumes [1–4,12]. Each case is annotated with the following voxel
labels: enhancing tumor, peritumoral edema, background, and necrotic core and
non-enhancing tumor. Necrotic core and non-enhancing tumor share a single
label. These data are co-registered to the standard MNI anatomical template,
interpolated to the same resolution, and skull-stripped. Ground-truth segmen-
tations are manually drawn and approved by neuroradiologists.
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3.2 Preprocessing

We used minimal preprocessing. We performed min-max normalization. We also
cropped each volume to remove any padding around the brain common in every
modality; this allowed us to double our batch size to four, which stabilized
training.

3.3 Training

To tune our model’s hyperparameters, we randomly partitioned our dataset into
a training set and a validation set using an 80:20 split (228:57). We selected the
hyperparameters that maximized the mean intersection over union (mIOU) on
the 57 withheld volumes in the validation set. We used mean intersection over
union (mIOU) for our loss function instead of cross entropy for empirical reasons
as we and others have observed [8]. We weight our mIOU loss to address the
severe class imbalance. We used data augmentation heavily including scaling and
random flips.

We implemented our model in PyTorch. We trained at full resolution on all
modalities on an NVIDIA Titan X using a batch size of four. We trained for
300 epochs. Training took less than five hours; test time evaluation takes less
than twenty seconds. We found that the optimizer Adam outperformed SGD
with momentum [10]. We experimented with learning rate decay and settled on
a learning rate of 10e−4, which we decreased to 10e−5 after 200 epochs. Code
for this adaptation of ESPNet is available at https://github.com/sacmehta/3D-
ESPNet.

4 Results

Results on the BraTS 2018 online test and validation sets are shown in Table 1.
Visual inspection reveals out model’s flexible performance on difficult cases such
as gliomas that cross the corpus callosum–so-called butterfly gliomas–shown in
Figs. 5 and 6. However, our method lacks some of the granularity present in

Fig. 5. A butterfly high-grade glioma. (a) FLAIR sequence; (b) T1ce sequence; (c)
network prediction; (d) ground truth segmentation.

https://github.com/sacmehta/3D-ESPNet
https://github.com/sacmehta/3D-ESPNet


3D-ESPNet for Segmenting 3D Images 251

Fig. 6. A second butterfly high-grade glioma. (a) FLAIR sequence; (b) T1ce sequence;
(c) network prediction; (d) ground truth segmentation.

the ground truth segmentation. It is clear in the examples provided that our
network’s predictions are too smooth, especially in Fig. 5, where the predicted
non-enhancing and necrotic class is the correct size and in the correct position,
but the segmentation does not follow the sharp contours of the gyri outlined
in the ground truth. In Fig. 6, we notice that our network tends not to predict
necrotic or non-enhancing tumor outside of the tumor-enhancing ring. However,
our model is able to handle gaping holes inside tumors filled with cerebrospinal
fluid (CSF) just as a resection cavity would appear. This is shown in Fig. 8.
These cavities differ from a typical necrotic core on the T2 sequences of a tumor
as CSF shows extreme hyperintensity. This robustness is crucial for segmenting
post-operative scans which can contain large resection cavities (Figs. 7 and 9).

Table 1. Results obtained on BraTS 2018 online test set are shown in bold. Results
obtained on BraTS 2018 online validation set are shown in parenthesis. Sensitivity and
specificity results were not given for the online test set.

3D-ESPNet Dice Score Sensitivity Specificity Hausdorff95

Whole tumor 0.850 (0.883) - (0.934) - (0.990) 9.598 (5.461)

Enhancing tumor 0.665 (0.737) - (0.831) - (0.997) 5.497 (5.295)

Tumor core 0.782 (0.814) - (0.821) - (0.997) 8.668 (7.850)

Fig. 7. A sagittal view of a high-grade glioma. (a) FLAIR sequence; (b) T1ce sequence;
(c) network prediction; (d) ground truth segmentation.
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Fig. 8. Low-grade glioma showing bright CSF fluid in ventricles and tumor cavity on
the T2 sequence. (a) FLAIR sequences; (b) T2 sequence; (c) network prediction; (d)
ground truth segmentation.

Fig. 9. Low-grade glioma. (a) FLAIR sequence; (b) T1 sequence; (c) network predic-
tion; (d) ground truth segmentation.

5 Discussion

We propose a fast and efficient network for semantic brain tumor segmentation.
3D-ESPNet with pyramidal refinement achieves a respectable 0.850 dice score for
whole tumor segmentation on the 2018 BraTS online test set without substantial
pre- or post-processing, while learning only 3.8 million parameters.

Brain tumor segmentation has its place in clinic, though neuroradiologist and
neuro-oncologists usually limit its use to quantifying volumetric changes in tis-
sue types (edema, enhancing tissue, non-enhancing or necrotic tissue) between
patient visits for evaluating tumor progression [7]. However, tumor segmenta-
tion is essential to the analysis of advanced MR imaging (DWI, DTI, MRSI).
Because such segmentation is usually done manually, segmentation time and
cost prevent advanced MR imaging studies from being done at scale. Automatic
brain tumor segmentation will allow such advanced imaging studies to be done
on massive datasets and, therefore, avail themselves of strong ML analysis and
more definitive conclusions.

We plan to add pre- and post-processing techniques to our model. Histogram
equalization and N4BiasFieldCorrection might better prepare the training data,
and adding a conditional random field after the classifier may help eliminate
spurious tumor predictions. We achieved a dice score of 0.850 on the whole
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tumor class, but work remains to be done on the individual classes. Better
hyperparameter tuning and non-linear data augmentation may also improve our
performance.
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Abstract. In this work, we present a 3D Convolutional Neural Network
(CNN) for brain tumour segmentation from Multimodal brain MR vol-
umes. The network is a modified version of the popular 3D U-net [13]
architecture, which takes as input multi-modal brain MR volumes, pro-
cesses them at multiple scales, and generates a full resolution multi-class
tumour segmentation as output. The network is modified such that there
is a better gradient flow in the network, which in turn should allow the
network to learn better segmentation. The network is trained end-to-end
on BraTS [1–5] 2018 Training dataset using a weighted Categorical Cross
Entropy (CCE) loss function. A curriculum on class weights is employed
to address the class imbalance issue. We achieve competitive segmen-
tation results on BraTS [1–5] 2018 Testing dataset with Dice scores of
0.706, 0.871, and 0.771 for enhancing tumour, whole tumour, and tumour
core, respectively (Docker container of the proposed method is available
here: https://hub.docker.com/r/pvgcim/pvg-brats-2018/).

Keywords: Tumour segmentation · Deep learning · Brain MRI

1 Introduction

Automatic quantitative analysis of brain tumours assists in better and faster
diagnosis procedure and surgical planning. Development of accurate and reliable
tumour segmentation from multi-modal MRI remains a challenging task due to
many sources of variability, including: tumour types, shapes and sizes, intensity
and contrast difference in MR images, etc. Classical approaches include Multi
Atlas segmentation, probabilistic graphical models like Markov Random Field
(MRF) [6] and Conditional Random Field (CRF), Random Forest (RF) [7].
These have been successfully used for the task of tumour segmentation. Methods
based on generative models have also been explored [8] for tumour segmentation.

Inspired by the success of deep learning in many tasks related to natural
images like semantic segmentation [10], object detection [11], and classification
[12], many deep learning based approaches have been proposed for various tasks
in medical images like segmentation [13], synthesis [14], and classification [15].
Various CNN architectures have been explored for brain tumour segmentation
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which either explicitly [9,16] or implicitly [17,18] model global and local image
context. These architectures either take MR images at multiple resolutions as
input [9,16] or process single resolution MR images at multiple scales [17,18].
One of the advantages of deep learning based approaches over classical segmen-
tation methods like MRF, RF etc. is that they don’t require any hand-crafted
features because the networks are trained in end-to-end manner with appropriate
loss functions. In recent BraTS challenges [1], deep learning based approaches
have outperformed classical methods.

In this work, we develop a modified version of the popular 3D U-net [13]
architecture for brain tumour segmentation task on BraTS 2018 datasets. The
U-net architecture has been successfully applied to many medical imaging seg-
mentation tasks, such as liver and lesion segmentation [19], retinal layer segmen-
tation [20], organ segmentation [21] etc. In this paper, the 3D U-net is trained
using Categorical Cross Entropy (CCE) loss function on BraTS 2018 training
dataset and a curriculum on class weights is employed to address class imbalance
[26]. We achieved competitive results on BraTS 2018 [5] validation and testing
datasets with Dice scores of 0.788, 0.909, and 0.825 on validation dataset, and
0.706, 0.871, and 0.771 on testing dataset for enhancing tumour, whole tumour,
and tumour core, respectively.

2 Method

A flowchart of the 3D U-net architecture can be seen in Fig. 1. The network takes
as input full 3D volumes of all available sequences of a patient and generates
multi-class segmentation of tumours into sub-types, at the same resolution. The
3D U-net is similar to the one proposed in [13], with some modifications. The
U-net consists of 4 resolution steps for both encoder and decoder paths. At the
start, we use 2 consecutive 3D convolutions of size 3× 3× 3 with k filters, where
k denotes the user-defined initial number of convolution filters (10). Each step in

Fig. 1. 3D U-net CNN architecture takes as input four full 3D MR image sequences,
and generates the multi-class segmentation of the tumour into sub-types.
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the encoder path consists of 2 3D convolutions of size 3×3×3 with k ∗2n filters,
where n denotes the U-net resolution step. This is followed by average pooling
of size 2 × 2 × 2. We chose average pooling instead of max pooling as it allows
better gradient flow between consecutive layers. At the end of each encoder step,
instance normalization [22] is applied, followed by dropout [23] with 0.05 prob-
ability. Instance normalization was preferred over batch normalization due to
memory constraints, as we were able to fit only one volume at a time in the
available GPU memory. In the decoder path at each step, 3D transposed convo-
lution of size 3 × 3 × 3 is applied, with 2 × 2 × 2 stride and k ∗ 2n filters for the
upsampling task. The output of the transposed convolution is concatenated with
the corresponding output of the encoder path. We chose transposed convolution
as it allows the network to learn an optimal interpolation function instead of a
pre-defined interpolation function in the case of standard upsampling. This is,
once again, followed by instance normalization and Dropout with 0.05 proba-
bility. Finally, 2 3D convolution of size 3 × 3 × 3 with k ∗ 2n filters are applied.
Rectified linear unit is chosen as a non-linearity function for every convolution
layer. The last layer has C filters, where C denotes the total number of classes.
This is followed by SoftMax non-linearity.

2.1 Loss Function

We optimize weighted Categorical Cross Entropy (CCE) loss function during
training. The equation for the same is given below.

CCEi = −
∑

n

wi
n

∑

l

tin,l log pin,l (1)

wi
n = wl ∗ yin where, wl = (

∑k=C
k=0 mk

ml
) ∗ rep + 1, (2)

where, wi
n and wl denote the weight for voxel n of volume i and the weight of

class l. ml is total number of voxels of lth class in the training dataset and C
denotes the total number of classes. wl are decayed over each epoch ep with a
rate of r ∈ [0, 1]. It should be noted that wl converges to 1 as ep becomes large
ensuring that all sample receive an equal weight at the later training stages. This
method of weighting classes is known as curriculum class weighting [26].

3 Experiments and Results

3.1 Data

BraTS 2018 Training Set: The BraTS 2018 training dataset is comprised
of 210 high-grade and 75 low-grade glioma patient MRIs. For each patient T1,
T1 post contrast (T1c), T2, and Fluid Attenuated Inverse Recovery (FLAIR)
MR volumes, along with expert tumour segmentation are provided. Each brain



U-Net for Tumour Segmentation 257

tumour is manually delineated into 3 classes: edema, necrotic/non-enhancing
core, and enhancing tumour core [1–5].

BraTS 2018 Validation Set: The BraTS 2018 validation dataset is comprised
of 66 patient MRIs. For each patient T1, T1c, T2, and FLAIR MR volumes are
provided. No expert tumour segmentation masks are provided and the grade of
each glioma is not specified [1–5].

BraTS 2018 Testing Set: The BraTS 2018 testing dataset is comprised of 191
patient MRIs. Similar to validation dataset, here for each patient T1, T1c, T2,
and FLAIR MR volumes are provided but expert tumour segmentation masks
are not provided. The grade of each glioma is also not specified [1–5].

3.2 Pre-processing

The BraTS challenge provides isotropic, skull-stripped, and co-registered MR
volumes. We follow this up with a few pre-processing steps. The intensity of vol-
umes were re-scaled using mean subtraction, divided by the standard deviation,
and re-scaled from 0 to 1 and were cropped to 184 × 200 × 152.

3.3 5-Fold Cross Validation

We performed 5-fold cross validation on the training dataset. The BraTS 2018
training dataset is randomly split into five folds with 57 patient dataset each
such that each fold contains 42 high-grade patients and 15 low-grade patients.
We train our network 5 times such that 4 folds are used to train the network
and the remaining fold is used to validate the network.

Please note that we use total five networks, obtained by the corresponding
cross-validation, as an ensemble to predict segmentation for BraTS 2018 vali-
dation and testing datasets. We view this ensemble as bagging [25], which has
been shown to improve performance over a single model.

Parameters. In our network, we used initial number of filters k = 20 and num-
ber of filters in the last layer C = 4. We optimize the loss function in Eq. (1)
using Adam [24] with a learning rate of 0.001 and batch size of 1. The network is
trained for total 240 epochs. Learning rate is decayed by the factor of 0.75 after
every 50 epochs. The decay rate r in Eq. (2) is set to 0.95. We regularize the
model using data augmentation, where at each training iteration a random affine
transformation is applied to the MR volumes and the corresponding segmenta-
tion mask. Random translation, rotation, scaling and shear transformations are
applied, where the range of transformations is sampled from a uniform distri-
bution of [−5, 5], [−3◦, 3◦], [−0.1, 0.1], and [−0.1, 0.1], respectively. Volumes are
also randomly flipped left to right.
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Fig. 2. Training (Left) and Validation (Right) Dice Scores as a function of number of
epochs for one of the five cross-validation folds.

Learning Curves. Figure 2 shows an example of evolution of various Dice
scores (Tumour, Enhance, Core, and Average) as a function of number of epochs
for one of the 5 cross-validation fold.

4 Discussion

4.1 Quantitative Results

Our method performed well, resulting in Dice scores of 0.788, 0.909, and 0.825
(BraTS 2018 validation dataset), and 0.706, 0.871, and 0.771 (BraTS 2018 testing
dataset) for the enhancing tumours, whole tumours, and tumour cores, respec-
tively. Tables 1, 2, and 3 show the results of our method based on different eval-
uation metric statistics, provided by the challenge organizers. The results are
based on a number of experiments on the following BraTS 2018 datasets: 5-fold
cross validation on the training dataset, and tests on the validation dataset and
the testing dataset. The results indicate that the proposed method performs very
well on the whole tumours and tumour cores, with relatively lower performance
for enhancing tumours. This was expected as enhancing tumours rely heavily on
the T1c images, and present similarly to other enhancements on those images.
For other tumour sub-types, other modalities assist in the segmentation.

Table 1. Evaluation metric statistics for 5-fold cross validation on BraTS 2018 training
dataset for enhancing tumour (ET), whole tumour (WT), and tumour core (TC).

Dice Sensitivity Specificity Hausdorff-95

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.690 0.888 0.793 0.774 0.880 0.802 0.998 0.995 0.996 7.251 6.600 7.941

StdDev 0.294 0.094 0.206 0.245 0.118 0.210 0.004 0.006 0.007 13.318 11.215 11.805

Median 0.817 0.918 0.876 0.861 0.913 0.879 0.999 0.996 0.999 2.237 3.606 4.062

25quantile 0.641 0.878 0.748 0.709 0.850 0.723 0.997 0.994 0.996 1.414 2.236 2.236

75quantile 0.878 0.941 0.926 0.935 0.958 0.942 0.999 0.998 0.999 5.385 6.557 9.327
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Table 2. Evaluation metric statistics for BraTS 2018 validation dataset for enhancing
tumour (ET), whole tumour (WT), and tumour core (TC).

Dice Sensitivity Specificity Hausdorff-95

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.788 0.909 0.825 0.824 0.911 0.811 0.998 0.995 0.998 3.520 4.923 8.316

StdDev 0.233 0.059 0.179 0.222 0.082 0.212 0.004 0.004 0.002 4.992 8.154 13.521

Median 0.869 0.921 0.902 0.893 0.933 0.901 0.999 0.996 0.999 1.732 2.914 3.240

25quantile 0.809 0.894 0.773 0.824 0.880 0.711 0.998 0.994 0.998 1.414 2.000 2.000

75quantile 0.911 0.951 0.945 0.942 0.964 0.958 0.999 0.998 0.999 3.000 4.970 8.658

Table 3. Evaluation metric statistics for BraTS 2018 testing dataset for enhancing
tumour (ET), whole tumour (WT), and tumour core (TC).

Dice Hausdorff-95

ET WT TC ET WT TC

Mean 0.706 0.871 0.771 4.145 6.547 8.316

StdDev 0.286 0.139 0.269 5.321 11.806 8.119

Median 0.820 0.914 0.894 2.236 3.162 3.081

25quantile 0.683 0.868 0.750 1.414 2.236 2.059

75quantile 0.878 0.943 0.931 3.162 5.385 7.106

4.2 Qualitative Results

Figures 3 and 4 show examples of slices with the resulting segmentation labels
for high-grade and low-grade glioma patients from one fold of the experiments
on the BraTS 2018 training dataset. We can observe that the network performs
much better on high-grade glioma cases. This can be attributed to the fact
that we have more training examples of high-grade glioma cases as compared to
low-grade glioma cases. Example slices with the predicted segmentation labels
on the BraTS 2018 validation and testing datasets can be seen in Figs. 5, 6,
and 7.
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Fig. 3. Examples of high-grade glioma segmentation results for BraTS 2018 training
dataset. On T1c MR volume (Column 1), Expert Segmentation (Column 2) and Pre-
dicted Segmentation (Column 3) are overlaid. The green label is edema, the red label
is non-enhancing or necrotic tumour code, and the yellow label is enhancing tumour
core. (Color figure online)
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Fig. 4. Examples of low-grade glioma segmentation results for BraTS 2018 training
dataset. On T1c MR volume (Column 1), Expert Segmentation (Column 2) and Pre-
dicted Segmentation (Column 3) are overlaid. The green label is edema, the red label
is non-enhancing or necrotic tumour code, and the yellow label is enhancing tumour
core. (Color figure online)
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Fig. 5. Examples of segmentation results for BraTS 2018 validation dataset. On T1c
MR volume (Column 1) predicted segmentation (Column 2) is overlaid. The green label
is edema, the red label is non-enhancing or necrotic tumour code, and the yellow label
is enhancing tumour core. (Color figure online)
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Fig. 6. Examples of segmentation results for BraTS 2018 validation dataset. On T1c
MR volume (Column 1) predicted segmentation (Column 2) is overlaid. The green label
is edema, the red label is non-enhancing or necrotic tumour code, and the yellow label
is enhancing tumour core. (Color figure online)
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Fig. 7. Examples of segmentation results for BraTS 2018 testing dataset. On T1c MR
volume (Column 1) predicted segmentation (Column 2) is overlaid. The green label is
edema, the red label is non-enhancing or necrotic tumour code, and the yellow label is
enhancing tumour core. (Color figure online)

5 Conclusion

In this work, we demonstrated how a simple CNN network like 3D U-net [13]
can be successfully applied for the task of tumour segmentation. U-net process
the input multi-modal MR images at multiple scales, which allows it to learn
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local and global context necessary for tumour segmentation. The network was
trained using a curriculum on class weights to address class imbalance, show-
ing competitive results for brain tumour segmentation on BraTS 2018 [5] testing
dataset. Our method performed well and we got following Dice scores for enhanc-
ing tumour, whole tumour, and tumour core on BraTS 2018 [5] validation and
testing datasets: 0.788, 0.909, and 0.825 (validation dataset), and 0.706, 0.871,
and 0.771 (testing dataset). But our method showed degradation in performance
on the testing dataset in the categories of Enhancing Tumours (ET) and Tumour
Core (TC).
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Abstract. Localizing brain tumor and identifying different subtypes of
tissues play a crucial role in treatment assessment and management of
gliomas. In this paper, we present a contour-aware 3D convolution neu-
ral network (CNN) with adversarial training for segmenting gliomas and
an ensemble of models for overall survival prediction. For the segmen-
tation task, contour loss and adversarial loss are added as an auxiliary
information in addition to the pixel-wise classification loss to ensure the
segmentation results mimic the contours of the ground truth annota-
tion. We employed both random-forest-based and neural-network-based
regression scores for predicting overall survival time. Hand-crafted imag-
ing feature incorporated with the non-imaging feature is employed. The
proposed method was evaluated on the BraTS 2018 dataset and achieved
competitive results for both segmentation and survival prediction tasks.
We demonstrate that raw segmentation results can be improved by incor-
porating extra constraints in contours and adversarial training.

Keywords: Neural networks · Adversarial training · Contour aware

1 Introduction

Gliomas are one of the most common types of brain tumors. The segmentation
of gliomas and intra-tumor substructures are essential to progression monitor
and treatment assessment of the disease. [16] It also serves as an essential step
for radiomics applications such as survival prediction.

High-Grade Gliomas (HGG) is an aggressive tumor subtype of glial cells.
Patients with HGG exhibit highly differing prognosis. Life expectancy after
initial diagnosis is immensely important to patients and their caregivers [6].
The accuracy of OS prediction is highly dependent on the gilomas segmentation
results.

Previous studies have found successes in automated brain tumor segmen-
tation. Among existing methods, Convolution Neural Networks (CNN) based
methods have achieved state-of-the-art performance, especially with U-Net type
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architecture [10]. The rise of residual CNNs [8] made the training of neural net-
works with extremely deep architectures possible, which in turns led to higher
segmentation accuracy. Combination of these methods granted neural networks
more representational power to capture the variations in complex data [14]. The
results of the segmentation can then be utilized in overall survival (OS) pre-
diction. OS prediction in previous works involved the combination of radiomic
features and machine learning models.

There are several difficulties that lay in these tasks. First, the gilomas vary
significantly in shape, size, and location. Second, the normal brain anatomy
structure varies from patients to patients as well, making anomaly detection
more difficult. Furthermore, the proportion of brain tumors to normal brain
tissue is quite low, resulting in extreme class imbalance for tumor segmentation.
To address these challenges, we propose a contour-aware neural network with
adversarial training.

Active contour is a well-established theoretical approach for robust image
segmentation [17]. Incorporating contour information in deep neural networks
demonstrated the model capability for segmentation can be improved [5]. Gen-
erative adversarial network (GAN) [7] were originally introduced as a generative
model that is capable of generating new samples from intractable data distribu-
tion such as images. Recent researches [11] demonstrated the potential of using
adversarial networks on image segmentation task.

In this work, we’ve tackled two tasks in 2018 Multimodal Brain Tumor Seg-
mentation Challenge (BraTS). For the tumor segmentation task, we employed
an end-to-end trainable adversarial network that consists of a segmentor and a
discriminator. Our segmentor is a 3D Residual U-Net designed to be contour-
aware by adding contour constraint in the training procedure. A discrimina-
tor network is trained alongside the segmentation network to provide auxiliary
supervision. By incorporating a discriminator network that attempts to distin-
guish true annotations from predicted segmentation, it enforces CNNs to learn
long range spatial label contiguity. The classification loss from the discrimina-
tion network provides gradients for the generating realistic segmentation results.
We achieved an average dice score of 0.79 across three subtypes of gliomas. For
survival prediction task, we proposed an ensemble of models including convolu-
tional neural network and random forest. Hand-crafted radiomics features and
non-imaging clinical features are both incorporated in the random forest model.
The details of our methods and results evaluated on the BraTS 2018 datasets
are introduced in the following sections.

2 Method

2.1 Data

The proposed model is trained and evaluated on the 2018 BraTS challenge
dataset [1–4,12] dataset. The training set contained a total of 285 cases.
Each case includes 4 MRI modalities: T1-weighted (T1), T1-weighted with
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gadolinium-enhancing contrast (T1ce), T2-weighted (T2) and Fluid Attenua-
tion Inversion Recovery(FLAIR). Example of the training data can be found in
Fig. 1. Among the 285 cases, 210 cases are listed as High-Grade Gliomas(HGG)
and 75 cases Low-Grade Gliomas (LGG).

(a) FLAIR (b) 3-D annotation

(c) FLAIR (d) 3-D annotation

Fig. 1. Example of training data and manual annotation of the 2018 BraTS challenge

2.2 Gliomas Segmentation

For the Gliomas segmentation task, participants are asked to design an auto-
matic system that produces pixel-wise labels for different sub-regions of brain
lesion. Pixel-wise annotation labels that include Gd-enhancing tumor (ET), per-
itumoral edema(ED) and necrotic/non-enhancing tumor(NCR/NET) were pro-
vided alongside the image data. Figure 1 shows an example MRI from BraTS
2018 dataset with tumor sub-regions labeled in different colors. The segmenta-
tion results are evaluated by several matrices including Dice score, Hausdorff
distance, sensitivity and specificity of the respective tumor tissue.

2.3 Preprocess

Appropriate image preprocessing is essential for the following computing. The
official dataset provided by the organizers have been skull-striped and co-
registered. Bias correction in [15] is performed on raw data before segmentation.
Intensity normalization is also applied for better performance. More details on
preprocessing can be found in [13].
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Due to the 3D and multi-modality nature of MRI and memory limitations of
the current GPU, it is unfeasible to directly feed entire volumes to the proposed
network. During the training phase, a single volume is broken down to smaller
patches using a moving window. We set the stride size of the sliding window
at 24. The resulting patches have equal dimensions in 96 by 96 by 96 voxels. A
single modality image with the dimension of 155 by 240 by 240 will generate a
total of 72 3-D patches.

3D Residual Unet. The backbone of the segmentation network is a 3D U-net.
The U-net consisted of both down sampling and up sampling pathways. The
downsampling pathway is made up of multiple residual blocks. Each residual
block contained three 3×3×3 convolution layer, batch normalization, activation
function using Rectified Linear Unit (ReLU), and identity residual connection.
The overall architecture of the segmentation network can be found in Fig. 2.

(a) Schematic of the segmentation network. Each circle rep-
resents a different set of operations.

(b) Residual block

Fig. 2. Architecture of the 3-D residual U-net

Contour Aware. In order to obtain a robust segmentation that captures the
highly varying multi-class tumor contours, we added an auxiliary constraining
factor derived from the ground truth segmentation. During training, the model
derives an elastic snake (also known as active contour) [9] for each ground truth
mask (Fig. 3).
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Fig. 3. Overview of the training pipeline for the segmentation task

The total energy of the deformable spine can be written as:

Esnake =
∫ 1

0

Esnake(v(s))ds

=
∫ 1

0

(Einternal(v(s)) + Eimage(v(s)) + Econtour(v(s))ds

(1)

where the set of n points vi denotes the snake itself. The total energy of the
snake is a combination of internal elastic energy and the inherent energy of the
image.

In traditional computer vision framework, boundary finding tasks involving
active contours usually have objectives that minimize the total energy of the
snake. Segmentation masks can be directly obtained by using the snake alone.
However, these methods need higher-level supervision for the actual contours.
In our case, the snake acts as an supervision and not the main segmentation
method. Therefore the target of the snake is the ground truth label and the
neural-network predictions. In other words, active contour was performed on
the segmentation results and not the image of interest. We used the Hausdorff
distance between ground truth contours and prediction contours as a measure of
dissimilarity. The objective is to force the neural network to generate predictions
that have similar contours to human annotated images. The Hausdorff distance
is then added as a loss term to the final objective function.

Adversarial Training. The adversarial training pipeline includes two sepa-
rate neural networks: the aforementioned residual U-net and an auxiliary dis-
criminator network. In each iteration, the segmentation network will generate a
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proposed segmentation. In order to capture the true distribution of the ground
truth segmentation. The objective of the discriminator network is to distinguish
between generated masks and ground truth masks and provide gradients for the
segmentation network The discriminator is a shallow network containing 3 3D
convolution blocks, each followed by a max-pooling layer.

The original Generative Adversarial Network [7] plays an minimax game with
the following objective function:

min
Seg

max
D

Ey∼p(y) [log D(y)] + Ex∼p(x)[log(1 − D(Seg(x))] (2)

Where x denotes the input patches and y denotes the segmentation masks. In
our case, the generator is actually the segmentation network that produces syn-
thetic samples. At each adversarial training iteration, the segmentation network
is back-propagated twice: once from the segmentation loss from that includes
the contour constraint and the second time for the discriminator loss.

To summarize, the final loss function for the segmentation pipeline can be
written as:

L = λa · Ladver + λc · Lcontour + λD · LDice (3)

where Ladver is the adversarial loss, Lcontour is the Hausdorff distance and LDice

is the negative dice score. λ are the weighting coefficient for each loss. The weight-
ing coefficients were initialized at 1 for all terms. Online normalization was per-
formed at each iteration. Online normalization takes the standard deviation of
each individual loss term up to the current iteration and the weighting coeffi-
cients were adjusted accordingly. This ensures that the same magnitude of across
three loss terms and that the model doesn’t skew towards any particular loss.

2.4 Overall Survival Prediction

The second part of the BraTS challenge concerned the prediction of OS of
HGG patients using pre-operative scans. For this task, we proposed an ensemble
of models including Convolution Network-based regression network and hand-
crafted-feature-based random forest model. The overall pipeline of the model
can be found in Fig. 6. During the validation and test phase, we assign different
weight to combine the above models according to training loss to get the final
prediction.

Regression Network. The segmentation results are essential for predicting
survival time as it contains extracted information about the tumor tissue. We’ve
designed the regression network to take the four modalities MRI volumes and
the tumor segmentation prediction from the first task as input. The regression
network contained 5 residual blocks similar to ones in the segmentation network.
The last layer of the regression network, however, contained a single node with
no activation function. This allowed the network to directly output the survival
days (Fig. 4).
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(a) Ground truth label (b) Ground truth contour

(c) Predicted label (d) Prediction contour

Fig. 4. Visualized comparison of ground truth contours and prediction contours

Random Forest. Random Forest is a powerful model that can be used for
both classification and regression. Here, we utilized hand-crafted image features
extracted from the tumor segmentation mask, including the relative size and
number of different subtype tumors as inputs for the random forest model. All
image-derived features are calculated in 2D and scaled before being fed to the
model. The age of the patients is also incorporated as a non-imaging feature.
We set the number of estimators in the random forest as 300 (Fig. 5).

Ensemble. The variability of a single model can be quite high. In order to
reduce the prediction variance, we ensemble results from regression network and
random forests at inference phase. The final prediction is the mean survival time
of both models.
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(a) Input patch (b) Ground truth (c) Model prediction

(d) Input patch (e) Ground truth (f) Model prediction

Fig. 5. Visualization of patch-based segmentation results

2.5 Implementation Details

All proposed models were established in python using Pytorch 0.4 deep learning
framework. The experiments with GPU training was done on NVIDIA Tesla
V100. Different learning rates were set for the segmentation model and the dis-
criminator network to avoid diminished gradients caused by discriminator net-
work over-powering its counterpart in early epochs. At the beginning of training,
the learning rate of 0.001 was assigned to the segmentation network and 0.0005
for the discriminator network. Learning rate decay will be activated if there were
no improvements in 10 consecutive epochs. A single decay will reduce the learn-
ing rate to 0.8 of the previous iteration. The batch size was set at 8 patches per
batch. Learning rate of 0.0001 was set for the survival regression model. The
designated number of epochs for both models were 500. Training will be termi-
nated early if there have been no improvements for 30 consecutive epochs. The
training for the segmentation pipeline including both the segmentation network
and the discriminator network took roughly 36 hours on 2 Tesla V100. As for
the survival prediction, 6 hours were needed to train both the regression network
and random forest.
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Fig. 6. Schematic overview of the OS prediction task

3 Results

We have trained and evaluated both the segmentation and survival prediction
model on the BraTS 2018 dataset. The following Table 1 show the results of the
training, validation and test dataset according to the BraTS 2018 on-line eval-
uation system. We also discuss the effects of the employing adversarial training
in this section.

Table 1. Hand-crafted imaging features for random forest model

No. Hand-Crafted Feature

1 sum of ET area
2 sum of ED area
3 sum of NCR area
4 sum of all lesion area
5 Patient Age

No. Hand-Crafted Feature

6 mean intensity of ET
7 mean intensity of ED
8 mean intensity of NCR
9 eccentricity of ET
10 eccentricity of ED

No. Hand-Crafted Feature

11 eccentricity of NCR
12 lesion normal ratio
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3.1 Segmentation Task

3D Contour-aware adversarial segmentation CNN was trained on BraTS 2018
training dataset with 285 cases. Validation and test dataset contained 66 and 191
cases. Several metrics including dice score, Hausdorff distance, sensitivity, and
specificity were employed to evaluate the performance of the participating models
in the challenge. Dice is a statistic commonly used for comparing the similarity
of two samples. When used in a segmentation task, dice score can effectively
determine potential over- or under-segmentation’s of the tumor sub-regions. To
understand the effects of adversarial training, we’ve compared training results
for models with and without adversarial training. Figure 7 demonstrates the
qualitative effects of adversarial training. We can see an increase of dice score,
sensitivity and specificity across all sub-regions in Table 2. Both the validation
and test predictions are generated with adversarial models (Tables 3 and 4).

(a) Ground truth (b) Without adversarial (c) With adversarial

(d) Ground truth (e) Without adversarial (f) With adversarial

Fig. 7. Qualitative comparison of adversarial training

Table 2. Effects of adversarial training on the training dataset

DICE Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Without
adversarial

0.812 0.910 0.877 0.845 0.961 0.898 0.996 0.994 0.997 3.239 4.718 6.022

With
adversarial

0.835 0.941 0.914 0.886 0.871 0.956 0.997 0.994 0.999 3.117 4.276 5.810
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Table 3. Segmentation task evaluation on the BraTS 2018 validation dataset

DICE Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

0.792 0.903 0.854 0.816 0.930 0.853 0.998 0.993 0.998 3.367 5.460 6.588

Table 4. Segmentation task evaluation on the BraTS 2018 test dataset

DICE Hausdorff95

ET WT TC ET WT TC

Mean 0.722 0.869 0.789 5.202 8.051 7.474

StdDev 0.273 0.127 0.24981 9.666 13.920 11.990

Median 0.823 0.909 0.89392 2.236 3.605 3.316

25 quantile 0.704 0.861 0.782 1.414 2.236 2.000

75 quantile 0.880 0.937 0.933 3.316 5.873 7.035

3.2 Survival Prediction Task

The dataset for the survival prediction task is a subset of the segmentation
dataset. The survival dataset consisted of 163 and 53 for training and validation
respectively. The number of cases expected on the online evaluation for training,
validation, and test was 59, 28 and 77 cases.

The results for overall survival prediction are evaluated in two different eval-
uation schemes, classification, and regression. For classification, each patient is
classified as one of the three survival based groups including long, short and
middle and accuracy is used to evaluate the predictions. For regression princi-
ples, the Mean Square Error (MSE) is computed for each patient. Table 5 shows
the results evaluated by the above two principles on training, validation and test
dataset.

Table 5. Survival prediction results on the BraTS training, validation and test set

Accuracy MSE medianSE stdSE SpearmanR

Training 0.475 44724.102 12996 79142.403 0.666

Validation 0.261 155914.087 43681 275558.255 −0.382

Test 0.195 329619.775 57973.203 863455.278 −0.015

4 Conclusion

In this paper, we’ve proposed a novel method for accurate pixel-wise classi-
fication and survival prediction. For the segmentation task, we’ve developed
an adversarial and contour-aware training paradigm for 3D Residual U-Net.
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We show that by introducing extra constraints via contours and adversarial
training to the model, the neural network was able to produce predictions that
highly resembles the ground truth and fine-tune predictions according to sub-
tle inconsistencies. For Survival prediction, we proposed an ensemble of models
including direct regression using a neural network and hand-crafted features-
based random forest model to predict survival days.
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Abstract. Accurate segmentation of different sub-regions of gliomas including
peritumoral edema, necrotic core, enhancing and non-enhancing tumor core from
multimodal MRI scans has important clinical relevance in diagnosis, prognosis
and treatment of brain tumors. However, due to the highly heterogeneous
appearance and shape, segmentation of the sub-regions is very challenging.
Recent development using deep learning models has proved its effectiveness in
the past several brain segmentation challenges as well as other semantic and
medical image segmentation problems. Most models in brain tumor segmenta-
tion use a 2D/3D patch to predict the class label for the center voxel and variant
patch sizes and scales are used to improve the model performance. However, it
has low computation efficiency and also has limited receptive field. U-Net is a
widely used network structure for end-to-end segmentation and can be used on
the entire image or extracted patches to provide classification labels over the
entire input voxels so that it is more efficient and expect to yield better perfor-
mance with larger input size. Furthermore, instead of picking the best network
structure, an ensemble of multiple models, trained on different dataset or different
hyper-parameters, can generally improve the segmentation performance. In this
study we propose to use an ensemble of 3D U-Nets with different hyper-
parameters for brain tumor segmentation. Preliminary results showed effective-
ness of this model. In addition, we developed a linear model for survival pre-
diction using extracted imaging and non-imaging features, which, despite the
simplicity, can effectively reduce overfitting and regression errors.

Keywords: Brain tumor segmentation � Ensemble � 3D U-Net �
Deep learning � Survival prediction � Linear regression

1 Introduction

Gliomas are the most common primary brain malignancies, with different degrees of
aggressiveness, variable prognosis and various heterogeneous histological sub-regions,
i.e. peritumoral edema, necrotic core, enhancing and non-enhancing tumor core. This
intrinsic heterogeneity of gliomas is also portrayed in their radiographic phenotypes, as
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their sub-regions are depicted by different intensity profiles disseminated across mul-
timodal MRI (mMRI) scans, reflecting differences in tumor biology. Quantitative
analysis of imaging features such as volumetric measures after manual/semi-automatic
segmentation of the tumor region has shown advantages in image-based tumor phe-
notyping over traditionally used clinical measures such as largest anterior-posterior,
transverse, and inferior-superior tumor dimensions on a subjectively-chosen slice [1, 2].
Such phenotyping may enable assessment of reflected biological processes and assist in
surgical and treatment planning. To compare and evaluate different automatic seg-
mentation algorithms, the Multimodal Brain Tumor Segmentation Challenge (BraTS)
2018 was organized using multi-institutional pre-operative MRI scans for the seg-
mentation of intrinsically heterogeneous brain tumor sub-regions [3, 4]. More specifi-
cally, the dataset used in this challenge includes multiple-institutional clinically-
acquired pre-operative multimodal MRI scans of glioblastoma (GBM/HGG) and low-
grade glioma (LGG) containing (a) native (T1) and (b) post-contrast T1-weighted
(T1Gd), (c) T2-weighted (T2), and (d) Fluid Attenuated Inversion Recovery (FLAIR)
volumes [5, 6]. 285 training volumes with annotated GD-enhancing tumor, peritumoral
edema and necrotic and non-enhancing tumor. Furthermore, to pinpoint the clinical
relevance of this segmentation task, BraTS’18 also included the task to predict patient
overall survival from images together with the patient age and resection status. To tackle
these two tasks, this study is performed with two goals: (1) provide pixel-by-pixel label
maps for the three sub-regions and background; (2) estimate the survival days.

Convolutional neural network (CNN) based models have proven their effectiveness
and superiority over traditional medical image segmentation algorithms and are quickly
becoming the mainstream in BraTS challenges. Due to the highly heterogeneous
appearance and shape of brain tumors, small patches are usually extracted to predict the
class for the center voxel. To improve model performance, multi-scale patches with
different receptive field sizes are often used in the model [7]. In contrast, U-Net is a
widely used convolutional network structure that consists of a contracting path to
capture context and a symmetric expanding path that enables precise localization with
3D extension [8, 9]. It can be used on the entire image or extracted patches to provide
class labels for all input voxels when padding is used. Furthermore, instead of picking
the best network structure, an ensemble of multiple models, trained on different dataset
or different hyper-parameters, can generally improve the segmentation performance
over a single model due to the averaging effect. In this study we propose to use an
ensemble of 3D U-Nets with different hyper-parameters trained on non-uniformly
extracted patches for brain tumor segmentation. During testing, a sliding window
approach is used to predict class labels with adjustable overlap to improve accuracy.
With the segmentation labels, we will develop a linear model for survival prediction
using extracted imaging features and additional non-imaging features since the linear
models can effectively reduce overfitting and thus regression errors.
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2 Methods

For the brain tumor segmentation task, the steps in our proposed method include pre-
processing of the images, patch extraction, training multiple models using a generic 3D
U-Net structure with different hyper-parameters, deployment of each model for full
volume prediction and final ensemble modeling. For the survival task, the steps include
feature extraction, model fitting, and deployment. Details are described as follows.

2.1 Image Pre-processing

To compensate for the MR inhomogeneity, the bias correction algorithm based on
N4ITK was applied to the T1, T1Gd images, T2 and flair images [10]. A smooth
inhomogeneity field due to variations in coil sensitivity was estimated and compensated
from the images. A non-local means denoising method was then used to reduce noise
after bias correction [11]. The implementations on ITK [12] were used with a Python
wrapper from Nipype [13]. Python-based parallel execution with multiple threads was
used to accelerate the two steps. The processed images were stored for future usage.
Figure 1 shows the original T1 image (left), image with only bias correction (center)
and image with bias correction and denoising (right). The signal-to-noise ratio
(SNR) of the image is increased with the denoising method, which could potentially
help improving the segmentation accuracy and robustness against noise.

As MR images do not have standard pixel intensity values, to reduce the effects
from different contrasts and different subjects, each 3D image was normalized to 0 to 1
separately by subtracting the min values and divided by the pixel intensity range. After
normalization, for each subject, images of all contrast were fused to form the last
dimension so that the whole input image size becomes 155 � 240 � 240 � 4.

2.2 Non-uniform Patch Extraction

For simplicity, we will use foreground to denote all tumor pixels and background to
denote the rest. There are several challenges in directly using the whole images as the
input to a 3D U-Net: (1) the memory of a moderate GPU is often 12 Gb so that in order

Fig. 1. Original T1 image (left), image with only bias correction (center) and image with bias
correction and denoising (right). The right image has improved SNR.
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to fit the model into the GPU, the network needs to greatly reduce the number of
features and/or the layers, which often leads to a significant drop in performance as the
expressiveness of the network is much reduced; (2) the training time will be greatly
prolonged since more voxels contribute to calculation of the gradients at each step and
the number of steps cannot be proportionally reduced during optimization; (3) as the
background voxels dominate the whole image, the class imbalance will cause the
model to focus on background if trained with uniform loss, or prone to false positives if
trained with weighted loss that favors the foreground voxels. Therefore, to more
effectively utilize the training data, smaller patches were extracted from each subject.
As the foreground labels contain much more variability and are the main targets to
segment, more patches from the foreground voxels should be extracted.

In implementation, during each epoch, a random patch was extracted from each
subject using non-uniform probabilities. The valid patch centers were first calculated by
removing edges to make sure each extracted patch was completely within the whole
image. The probability of each valid patch center pi;j;k was calculated using the fol-
lowing equation:

pi;j;k ¼ si;j;kP
i;j;k si;j;k

ð1Þ

in which si;j;k ¼ 1 for all voxels with maximal intensity lower than the 1st percentile,
si;j;k ¼ 6 for all foreground voxels and si;j;k ¼ 3 for the rest. The patch center was then
randomly selected based on the calculated probability and the corresponding patch was
extracted. Since normal brain images are symmetric along the left-right direction, a
random flip along this direction was made after patch extraction. No other augmen-
tation was applied.

Before training, the per-input-channel mean and standard deviation of extracted
patches were calculated by running the extraction process 400 times, with each time
using a randomly selected training subject. The extracted patches were then subtracted
with the mean and divided by the standard deviation along each input channel.

2.3 Network Structure and Training

A 3D U-Net based network was used as the general structure, as shown in Fig. 2. Zero
padding was used to make sure the spatial dimension of the output is the same with the
input. For each encoding block, a VGG like network with two consecutive 3D con-
volutional layers with kernel size 3 followed by the activation function and batch norm
layers were used. The parametric rectilinear function (PReLU), given as:

f xð Þ ¼ max 0; xð Þ � amax 0;�xð Þ ð1Þ

was used with trainable parameter a as the activation function. The number of features
was doubled while the spatial dimension was halved with every encoding block, as in
conventional U-Net structure. To improve the expressiveness of the network, a large
number of features were used in the first encoding block. Dropout with ratio 0.5 was
added after the last encoding block. Symmetric decoding blocks were used with
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skip-connections from corresponding encoding blocks. Features were concatenated to
the de-convolution outputs. The extracted segmentation map of the input patch was
expanded to the multi-class the ground truth labels (3 foreground classes and the
background). Weighted/non-weighted cross entropy was used as the loss function.

The number of encoding/decoding blocks, the weights in the loss function and the
patch size were chosen as the tunable hyper-parameters when constructing multiple
models. Due to memory limitations, for a larger patch size, the number of features
needs to be reduced. In current implementation, due to constraint in computational
resources, six models were trained, with detailed parameters shown in Table 1. N de-
notes the input size, M denotes the number of encoding/decoding blocks and f denotes
the input features at the first layer. For weighted loss, 1.0 was used for background and
2.0 was used for each class of foreground voxels.

Training was performed on a Nvidia Titan Xp GPU with 12 Gb memory.
640 epochs were used. As mentioned earlier, during each epoch, only one patch was
extracted every subject. Subject orders were randomly permuted every epoch.

Fig. 2. 3D U-Net structure with 3 encoding and 3 decoding blocks.

Table 1. Detailed parameters for all 6 3D U-Net models.

Model # M N f Loss type

1 3 64 96 Uniform
2 3 64 96 Weighted
3 4 64 96 Uniform
4 4 96 96 Weighted
5 3 80 64 Uniform
6 3 80 64 Weighted
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The Tensorflow framework was used with Adam optimizer. Batch size was set to 1
during training. During testing, as a smaller batch size was very sensitive to the running
statistics, all batch norm layers did not use the running statistics but the statistics of the
batch itself. This is usually called a layer normalization as it normalizes each feature
map with its own mean and standard deviation. A learning rate of 0.0005 was used
without further adjustments during training. The total training time was about 60 h.

2.4 Volume Prediction Using Each Model

Due to the fact that the entire image cannot fit into the memory during deployment, a
sliding window approach needs to be used to get the output for each subject. However,
as significant padding was made to generate the output label map at the same size as the
input, boundary voxels of a patch were expected to yield unstable predictions when
sliding the window across the whole image without overlaps. To alleviate this problem,
a stride size at a fraction of the window size was used and the output probability was
averaged. In implementation, the deployment window size was chosen to be the same
as the training window size, and the stride was chosen as ½ of the window size. For
each window, the original image and left-right flipped image were both predicted, and
the average probability after flipping back the output of the flipped input was used as
the output. Therefore, each voxel, except for a few on the edge, will be predicted 16
times when sliding across all directions. Although smaller stride sizes can be used to
further improve the accuracy with more averages, the deployment time will be
increased 8 times for every ½ reduction of the window size and thus will quickly
become unmanageable. Using the parameters as mentioned on the same GPU, it took
about 1 min to generate the output for the entire volume per subject. Instead of per-
forming a thresholding on the probability output to get the final labels, the direct
probability output was saved for each model to the disk.

2.5 Ensemble Modeling

The ensemble modeling process was rather straightforward. The probability output of
all classes from each model was read from the disk and the final probability was
calculated via simple averaging. The class with the highest probability was selected as
the final segmentation label of each voxel.

2.6 Survival Prediction

To predict the post-surgery survival time measured in days, extracted images features
and non-image features were used to construct a linear regression model. 6 image
features were calculated from the ground truth label maps during training and the
predicted label maps during validation. For each foreground class, the volume (V) by
summing up the voxels and the surface area (S) by summing up the magnitude of the
gradients along three directions were obtained, as described in the following equations
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VROI ¼
X

i;j;k
si;j;k ð2Þ

SROI ¼
X

i;j;k
si;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@s
@i
Þ2 þð@s

@j
Þ2 þð@s

@k
Þ2

s
ð3Þ

in which ROI denotes a specific foreground class and si;j;k ¼ 1 for voxels that are
classified to belong to this ROI and si;j;k ¼ 0 otherwise.

Age and resection status were used as non-imaging clinical features. As there were
two classes of resection status and many missing values of this status, a two-
dimensional feature vector was used to represent the status, given as GTR: (1, 0), STR:
(0, 1) and NA: (0, 0). A linear regression model after normalizing the input features to
zero mean and unit standard deviation was fit with the training data. As the input
feature size is 9, the risk for overfitting is greatly reduced.

3 Results

3.1 Brain Tumor Segmentation

All 285 training subjects were used in the training process. 66 subjects were provided
as validation. The dice indexes, sensitivities and specificities, 95 Hausdorff distances of
the enhanced tumor (ET), whole tumor (WT) and tumor core (TC) were automatically
calculated after submitting to the CBICA’s Image Processing Portal. With multiple
submissions, we were able to compare the performances of each individual model and
the final ensemble.

Table 2 shows the mean dice scores and 95 Hausdorff distances of ET, WT and TC
for the 6 individual models and the ensemble of them. Sensitivity and specificity are
highly correlated with the dice indexes so that they are not included. The best per-
formance of each evaluation metric is highlighted. All 3D U-Net models perform
similar but the ensemble of them has the overall best performances as compared with
each individual model. It is also noticed that weighted cross-entropy loss has high
sensitivity but lower specificity compared with the uniform counterpart, which is likely
due to the fact that by assigning more weights to the foreground, the network tends to
be more aggressive in assigning foreground labels.

Table 2. Performances of each individual model and the ensemble

Model # Dice_ET Dice_WT Dice_TC Dist_ET Dist_WT Dist_TC

1 0.7688 0.9015 0.8237 4.1270 4.5437 5.5226
2 0.7677 0.9066 0.8248 4.2218 6.4637 8.8593
3 0.7695 0.9040 0.8306 7.1372 8.9214 11.4460
4 0.7707 0.8990 0.8104 3.1454 6.0081 6.9814
5 0.7863 0.9078 0.8217 4.1894 4.5704 6.2030
6 0.7616 0.8917 0.8149 4.2222 4.1053 6.9598
Ensemble 0.7917 0.9094 0.8362 4.0186 3.8009 5.6451
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3.2 Survival Prediction

All 163 training subjects with survival data were used in the training process. The
training coefficient of determination was 0.259. 28 cases were evaluated after sub-
mitting to the CBICA’s Image Processing Portal. The accuracy was 0.321, MSE was
99115.86, median SE was 77757.86, std SE was 104291.596 and Spearman Coefficient
was 0.264. The performance on the validation dataset is not as accurate as other top
teams in this task, however, our method won the 1st place in the testing dataset, which
is likely due to significant overfitting of other teams in validation. The final result is
encouraging and shows that a linear model is robust against overfitting.

4 Discussion and Conclusions

In this paper we developed a brain tumor segmentation method using an ensemble of
3D U-Nets. Bias correction and denoising were used as pre-processing. 6 networks
were trained with different number of encoding/decoding blocks, input patch sizes and
different weights for loss. The preliminary results showed an improvement with
ensemble modeling. For survival prediction, we used a simple linear regression by
combining radiomics features from images such as volumes and surface areas of each
sub-region and non-imaging clinical features.

For segmentation, it is noted that the median metrics are significantly higher than
the mean metrics. For example, the median dice indexes were 0.867, 0.923 and 0.904
for ET, WT and TC in the final ensembled model. It makes sense in that the theoretical
maximum dice index is 1 and minimum dice index is 0. However, we noted that in
several cases, the dice indexes are as low as 0 for ET and TC and 0.6 for WT. It is
mostly due to the low sensitivity meaning that the model is not able to recognize the
corresponding tumor regions. The possible reason for these failed regions is that their
characteristics deviate a lot from the training dataset. This is also encouraging in that
for majority of the cases, the segmentation quality is very high.

In the 3D U-Net model, we found that the batch norm layer was helpful in
improving the model stability and performance. However, different with the canonical
application of the batch norm layer, in which the batch statistics is used in training and
the global statistics is used in deployment, it performed much better with batch
statistics in deployment than global statistics. Since the batch size is 1, a per-channel
normalization is actually performed by subtracting its own mean. One possible
explanation could be that by doing such normalization, the model focuses on the
differences of neighboring pixels in one channel and ignores the absolute values, which
may help the segmentation process. However, further investigation is needed to figure
out the exact reason.

Compared with the patch-based model that only predicts the center pixel, when
predicting the segmentation label maps for the full patch, different pixels are very likely
to have different effective receptive field sizes due to the zero padding in the edge. We
argue that a pixel should still be able to be predicted even based on partial receptive field,
which, for the very edge pixel, corresponds to only half of the maximal receptive field.
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Furthermore, the significant overlap in the sliding windows during deployment can
improve the accuracy with more averages.

In the current implementation, 6 networks were trained due to limitations in
computation time. It is expected with more networks, the results can be further
improved, although the marginal improvement is expected to decrease.

For the survival prediction task, since it is very likely to overfit with such a small
dataset and we argue that as many other features may play more important roles in
overall survival such as histological and genetic features but unfortunately, they are not
available in this challenge, a linear regression model was the safest option to minimize
the test errors, although at the cost of its expressiveness. Further exploration of those
additional features through clinical collaboration is expected to improve the accuracy of
survival prediction.

In conclusion, we developed an ensemble of 3D U-Nets for brain tumor segmen-
tation. The network hyper-parameters are varied to obtain multiple trained models.
A linear regression model was also developed for the survival prediction task. Our
survival prediction model won the 1st place in the final stage of the competition. The
code is available at https://github.com/xf4j/brats18. The paper that summarizes the
challenge is available at [14].
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Abstract. We propose a segmentation framework that uses deep neural
networks and introduce two innovations. First, we describe a biophysics-
based domain adaptation method. Second, we propose an automatic
method to segment white matter, gray matter, glial matter and cere-
brospinal fluid, in addition to tumorous tissue. Regarding our first inno-
vation, we use a domain adaptation framework that combines a novel
multispecies biophysical tumor growth model with a generative adver-
sarial model to create realistic looking synthetic multimodal MR images
with known segmentation. These images are used for the purpose of
training time data augmentation. Regarding our second innovation, we
propose an automatic approach to enrich available segmentation data
by computing the segmentation for healthy tissues. This segmentation,
which is done using diffeomorphic image registration between the BraTS
training data and a set of pre-labeled atlases, provides more information
for training and reduces the class imbalance problem. Our overall app-
roach is not specific to any particular neural network and can be used
in conjunction with existing solutions. We demonstrate the performance
improvement using a 2D U-Net for the BraTS’18 segmentation chal-
lenge. Our biophysics based domain adaptation achieves better results,
as compared to the existing state-of-the-art GAN model used to create
synthetic data for training.

Keywords: Segmentation · Neural network · Machine learning ·
Glioblastoma multiforme · Tumor growth models · Image registration

1 Introduction

Automatic segmentation methods have the potential to provide accurate and
reproducible labels leading to improved tumor prognosis and treatment planning,
especially for cases where access to expert radiologists is limited.
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In the BraTS competition [4], we seek to segment multimodal MR images
of glioma patients. Common brain MRI modalities include post-Gadolinium T1
(used to enhance contrast and visualization of the blood-brain barrier), T2 and
FLAIR (to highlight different tissue fluid intensities), and T1. We use the data
for these four modalities to generate the segmentations using a methodology
that we outline below.

In most image classification tasks deep neural networks (DNNs) have been a
very powerful technique that tends to outperform other approaches and BraTS
is no different. From past BraTS competitions two main DNN architectures have
emerged: DeepMedic [15] and U-Net [20]. How can we further improve this app-
roach? Most research efforts have been on further improving these architectures,
as well as coupling them with post-processing and ensembling techniques. In our
work here, we propose a framework to work around the relatively small training
datasets used in the BraTS competition. Indeed, in comparison to other popular
classification challenges like ImageNet [5] (which consists of one million images
for training), the BraTS training set contains only 285 instances (multimodal
3D MR images), a number that is several orders of magnitude smaller than the
typical number of instances required for DNNs to work well. These observations
have motivated this work, whose contributions we summarize below.

Related work: Recently, deep learning approaches using convolutional neural
networks (CNNs) have demonstrated excellent performance in semantic segmen-
tation tasks in medical imaging. Seminal works for segmentation stem from fully-
convolutional networks (FCNs) [14]. U-Net [20] is another popular architecture
for medical segmentation, which merges feature maps from the contracting path
of an FCN to its expanding path to preserve local contextual information. Multi-
scale information is often incorporated by using parallel convolutional pathways
of various resolutions [12] or by using dilated convolutions and cascading network
architectures [23]. Post-processing and ensemble methods are also usually used
after training with these models. The most commonly used post processing step
is Conditional Random Fields (CRF) [12], which has been found to significantly
reduce false positives and sharpen the segmentation. Ensembling is also very
important to reduce overfitting with deep neural networks. The winning algo-
rithm of the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS)
challenge in 2017 was based on Ensembles of Multiple Models and Architectures
(EMMA) [11], which bagged a heterogeneous collection of networks (including
DeepMedic (winner of ISLES 2015 [15]), U-Nets and FCNs) to build a robust
and generic segmentation model.

There are established techniques to address training with small datasets, such
as regularization, or ensembling, which was the approach taken by the winning
team of BraTS’17. However, in this paper we propose an orthogonal method to
address this problem.
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Fig. 1. Domain adaptation results: (a) represents a synthetic FLAIR brain image, (b)
represents the domain adapted synthetic FLAIR image, (c) represents the real BraTS
FLAIR image. As we can see from the intensity distributions, the values in the adapted
images are qualitatively closer to the real images.

Contributions: Our main contributions are as follows:

1. Data augmentation: We propose a biophysics-based domain adaptation
strategy to add synthetic tumor-bearing MR images to the training exam-
ples. There have been many notable works to simulate tumor growth (see [6–
8,10,13,19]). We use an in-house PDE based multispecies tumor growth
model [22] to simulate synthetic tumors. Since simulated data does not con-
tain the correct intensity distribution of a real MR image, we train an auxil-
iary neural network to transform the simulated images to match real MRIs.
This network gets a multimodal input and transforms this data to match
the distribution of BraTS images by imposing certain cycle consistency con-
straints. As we will show, this is a very promising approach.

2. Extended segmentation: We extend the segmentation to the healthy
parenchyma. This is done in two steps. First, we segment the training dataset
using an atlas-based ensemble registration (using an in-house diffeomorphic
registration code). Second, we train our DNN network to segment both tumor
and healthy tissue (Four classes: cerebrospinal fluid, gray and white matter,
glial matter). Our approach adds important information about healthy tissue
delineation, which is actually used by radiologists. It also reduces the inherent
class imbalance problem.

Our data augmentation strategy is different from the recent work of [21],
which uses GANs to automatically generate data. To the best of our knowledge,
our work here is the first to use a biophysics-based domain adaptation frame-
work for automatic data generation, and our approach achieves five percentage
points higher dice score as compared to [21], even though we use a 2D neural
network architecture (which has a sub-optimal performance as compared to the
3D network used in [21]).

Limitations: Currently, our framework only supports 2D domain transforma-
tions. Hence, we are limited to transforming 3D brains slice-by-slice and using
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only 2D neural network architectures. This is sub-optimal as 3D CNNs can
demonstrably utilize volumetric medical imaging data more efficiently, leading
to better and more robust performance (see [9,11,12]). Hence, extending our
framework to 3D is the focus of our future work and can potentially lead to
greater improvements in performance.

The outline of the paper is as follows. In Sect. 2, we discuss the methodology
for domain adaptation (Sect. 2.1), and the whole brain segmentation (Sect. 2.2).
In Sect. 2.2 we present preliminary results for the BraTS’18 challenge [1–3,15].
Our method achieves a Dice score of [79.15, 90.81, 81.91] for enhancing tumor,
whole tumor and tumor core, respectively for the BraTS’18 validation dataset.

2 Methods

2.1 Domain Adaptation

As mentioned above, one of the main challenges in medical imaging is the scarcity
of training data. To address this issue, we use a novel domain adaptation strat-
egy and generate synthetic tumor-bearing MR images to enrich the training
dataset. This is performed by first solving an in-house PDE based multispecies
tumor model using an atlas brain [22]. This model captures the time evolution
of enhancing and necrotic tumor concentrations along with tumor-induced brain
edema. The governing equations for the model are reaction-diffusion-advection
equations for the tumor species along with a diffusion equation for oxygen and
other nutrients. We couple this model with linear elasticity equations with vari-
able elasticity material properties to simulate the deformation of surrounding
brain tissue due to tumor growth, also known as “mass effect”. However, this
data cannot be used directly due to the difference in intensity distributions
between a BraTS MRI scan and a synthetic MRI scan. Directly using synthetic
data during the training process will adversely guide the neural network to learn
features which do not exist in a real MR image, resulting in poor performance.

To address this issue, we use CycleGAN [24] to perform domain adaptation
from the generated synthetic data to the real BraTS images. This is done by
learning a mapping G : X → Y such that the distribution of images from G(X)
is indistinguishable from the distribution Y using an adversarial loss. Here, X
is the simulated tumor data, and Y is the corresponding data which matches
the BraTS distribution. Because this mapping is highly under-constrained, it is
coupled with an inverse mapping F : Y → X and a cycle consistency loss is
introduced to enforce F (G(X)) ≈ X (and vice versa).

For training the domain adaptation network, we first computationally simu-
late synthetic tumors in a healthy brain atlas, located approximately at the whole
tumor center taken from each BraTS image. Hence, every synthetic tumorous
brain is paired with the corresponding data from a real BraTS image. Then, we
perform a pre-processing step to transform our synthetic results to intensities.
We produce a segmentation map for every tissue (healthy and tumorous) class
and sample intensities for each class from a real MRI scan. We assign these sam-
pled intensities to every voxel in our synthetic segmentation map to finally obtain
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Fig. 2. (Top row): The original T1ce image for Brats18 TCIA02 135 1 training data is
shown for different views (axial, coronal and sagittal). (Bottom row): The corresponding
extended segmentation for healthy cells computed by solving a 3D registration problem
with a segmented atlas. We overlay the BraTS tumor segmentation with the registered
segmentation to get the final results.

our synthetic MRI scans. Then, we train with these pre-processed synthetic MRI
scans and their corresponding BraTS images. Samples of our adaptation results
are shown Fig. 1, which demonstrate an almost indistinguishable adaptation of
the simulated data with the real images.

2.2 Whole Brain Segmentation with Healthy Tissues

An orthogonal approach that we propose for data augmentation, is an extended
segmentation BraTS training data. That is, we segment the healthy parenchyma
into gray/white matter, cerebrospinal fluid, and glial cells. The delineation of
these healthy tissues contain important information which is actually used by
radiologists. For example, the delineation of the tissues could be compressed
due to tumor growth in the confined space of the brain. Providing this informa-
tion to the classifier can help in better segmenting tumorous regions. However,
such data is not readily available in the BraTS training dataset, since labelling
the tumorous regions itself is laborious, let alone annotating full healthy tis-
sues which is orders of magnitude more time consuming. We propose a novel
automated approach to compute this information through image registration.
In our method, we only need one (or preferably a few) fully segmented brains.
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Then given an input 3D brain, we perform the following automatic steps to
obtain the extended segmentation:

1. Affine registration of each atlas image to the brats image.
2. Diffeomorphic registration of each atlas image to the BraTS image: This step

aims to find a deformation map that would “translate” a healthy atlas to
match the structure of a given BraTS training example. We compute this
deformation by solving a PDE-constrained optimization problem. We refer to
[16–18] for details on solving this optimization problem.

3. Majority voting to fuse labels of all deformed atlases to get the final healthy
tissue segmentation: The votes are weighted with the quality of diffeomorphic
registration measured by the L2 norm of the residual between each deformed
atlas and brats image. This ensures the highest weight for the deformed atlas
closest to the BraTS image.

We show an exemplary segmentation for an MRI scan from the BraTS train-
ing data in Fig. 2.

3 Setup

Here, we describe our setup and then report our segmentation results in the
subsequent section on BraTS’18 dataset.

Fig. 3. (Top row): The original T1ce validation MR-image for Brats18 CBICA ABT 1
data is shown for different views (axial, coronal and sagittal). (Bottom row): The
corresponding segmentation result for healthy cells computed by the neural network.
(Color figure online)
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Baseline Network for Healthy and Tumor Segmentation. We first obtain
the healthy tissue segmentation for all the BraTS training data using the image
registration method (with 22 healthy atlases) discussed above, and use the fine
grained data to train a neural network. Given that our current domain adap-
tation framework only supports 2D transformations, we follow a two stage seg-
mentation routine by first localizing the tumor location(s), and then creating 2D
slices/crops around the tumor and passing it to a 2D U-Net1. We use fixed sizes
for our crops (specifically 48×48, 96×96 and 144×144). This is to ensure no loss
of information due to strided operations when we go deeper in the neural net-
work. We train our network using a five-fold validation split of the training data
with ADAM optimizer and ensemble the splits to obtain the baseline results. We
show the healthy segmentation for a validation MRI scan in Fig. 3.

Data Augmentation Through Domain Adaptation. To augment our data
with domain adaptation results, we simulate a synthetic tumor in our atlas
corresponding to the whole tumor center of mass of every BraTS training image.
We transfer the synthetic brain to the BraTS domain for every axial slice. Hence,
our augmented dataset consists of approximately twice the amount of training
brains.

Our final neural network is a 2D multi-view U-Net (with the tumor localiza-
tion strategy described above) with data augmentation using domain adapta-
tion. We train three U-Nets corresponding to the axial, sagittal or coronal view
of the MRI scan and ensemble them (similar to the multi-view fusion method
outlined in [23]). This is done in order to avoid noisy segmentations and reduce
the class imbalance inherent in the BraTS dataset. As before, we train five-fold
cross-validation splits and ensemble them to avoid overfitting to the training
data.

Table 1. We report the BraTS’18 results for our method for both the baseline model
and the final 2D network. Our final submission to the validation portal is highlighted.
The last row shows the dice scores for BRaTS’18 testing dataset. Even though we use
a sub-optimal 2D network, but we can still achieve significant improvement with the
proposed framework.

Dice Score
EN WT TC

Baseline (Validation) 73.86 89.49 79.94
Proposed (Validation) 79.15 90.81 81.91

Proposed (Testing) 70.96 87.11 76.87

1 For the localization task, we use a simple 3D U-Net [9], with ten layers and multiclass
dice loss.
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4 Results

We trained the framework using the BraTS’18 data. The fine-grained segmenta-
tion result from the first stage 3D U-Net is shown in Fig. 3. As one can see, this
involves both the tumor segmentation, shown in red/yellow/green, as well as

Fig. 4. Box plot for the final model’s dice score on the BraTS’18 validation data is
shown. This model achieves a mean dice score of (79.15, 90.81, 81.91) percent for (WT,
TC, EN), respectively.

Fig. 5. (Top row): The original T1ce validation MR-image for Brats18 CBICA AAM 1
data is shown for different views (axial, coronal and sagittal). (Bottom row): The
corresponding tumor segmentation result from the final 2D network.
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healthy structure of the brain shown in purple/cyan/gray/dark blue. This data
is used for localizing the tumor boundaries. We then use this data and create
multi-view slices around the tumor bearing region. Then, this data is passed
through the second stage 2D U-Net which was trained along with the domain
adaptation data, and fused together to obtain the final segmentation as shown
in Fig. 5.

We show quantitative values for the Dice score in Table 1, with the cor-
responding box plots shown in Fig. 4. The baseline network has a dice score
of [73.86, 89.49, 79.94] for Enhancing Tumor (ET), Whole Tumor (WT), and
Tumor Core (TC). Using our proposed data augmentation framework leads to a
dice score of [79.15, 90.81, 81.91]. These could be further improved by using a 3D
network instead of a 2D one, by developing a 3D domain adaptation framework.

5 Conclusion

We presented a new framework for biophysics-based medical image segmenta-
tion. Our contributions include an automatic healthy tissue segmentation of the
BraTS dataset, and a novel Generative Adversarial Network to enrich the train-
ing dataset using a model to generate synthetic phenomenological structures
of a glioma. We demonstrated that our approach yields promising results on
the BraTS’18 validation dataset. Our framework is not specific to a particular
model, and could be used with other proposed neural networks for the BraTS
challenge. Extending our domain adaptation framework to 3D can potentially
lead to better performance and is the focus of our future work.
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Abstract. In this work we propose a novel deep learning based pipeline
for the task of brain tumor segmentation. Our pipeline consists of three
primary components: (i) a preprocessing stage that exploits histogram
standardization to mitigate inaccuracies in measured brain modalities,
(ii) a first prediction stage that uses the V-Net deep learning architec-
ture to output dense, per voxel class probabilities, and (iii) a prediction
refinement stage that uses a Conditional Random Field (CRF) with a
bilateral filtering objective for better context awareness. Additionally,
we compare the V-Net architecture with a custom 3D Residual Net-
work architecture, trained on a multi-view strategy, and our ablation
experiments indicate that V-Net outperforms the 3D ResNet-18 with all
bells and whistles, while fully connected CRFs as post processing, boost
the performance of both networks. We report competitive results on the
BraTS 2018 validation and test set.

Keywords: Brain tumor segmentation ·
3-D fully convolutional CNNs · Fully-connected CRFs

1 Introduction

Cancer is currently the second leading cause of death worldwide with overall
14.1 million new cases and 8.2 million deaths in 2012 [12]. Brain tumors, with
gliomas being one of the most frequent malignant types, are among the most
aggressive and dangerous types of cancer [5]. According to recent classifications
malignant gliomas are classified into four WHO grades. From these low grade
gliomas (LGG), including grade I and II are considered as relatively slow-glowing
while high grade gliomas (HGG), including grade III and grade IV glioblastoma
are more aggressive with the average survival time of approximately 1 year for
patients with glioblastoma (GBM) [13,21]. Besides being very aggressive, gliomas
are very costly to treat, so accurately diagnosing of them at early stages is very
important.
c© Springer Nature Switzerland AG 2019
A. Crimi et al. (Eds.): BrainLes 2018, LNCS 11384, pp. 299–310, 2019.
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Multimodality magnetic resonance imaging (MRI) is the primary method of
screening and diagnosis for gliomas. However, due to inconsistency and diver-
sity of MRI acquisition parameters and sequences, there are large differences
in appearance, shape and intensity ranges, adding variability to the one that
gliomas can have between different patients. Currently, tumor regions are seg-
mented manually by radiologists, but this process is very time consuming while
the inter-observer agreement between them is considerably low. In order to
address all these challenges, the multimodal brain tumor segmentation challenge
(BraTS) [1–3,22] is organized annually, in order to highlight efficient approaches
and the way forward for the accurate segmentation of brain tumors.

Currently, the emergence of deep learning as disruptive innovation method
in the field of computer vision has impacted significantly the medical imag-
ing community, with numerous architectures being proposed addressing task-
specific problems. Fully Convolutional Networks (FCN) [20] and their extension
to 3D [14,23] are among the most commonly used architectures, boosting con-
siderably the accuracies of the semantic segmentation. Inspired by these recent
advances of deep learning, in this paper we exploit 3D CNNs coupled with fully-
connected Conditional Random Fields for segmentation of brain tumor. More
specifically, we compare two popular network architectures: V-Net [23] and 3D
Residual-Nets [16] (ResNet), trained using a multi-view strategy, and provide
preliminary results which indicate that V-Net architecture is better suited for
dense-per-voxel brain tumor segmentation.

In the next sections, we discuss our contributions in detail, and we report
our performance on the Training, Validation and Test Dataset of BraTS 2018.

2 Context-Aware 3D Networks

In this section, we give an overview of the different methods and strategies
(Figs. 1 and 2) we follow and we discuss in detail the different components of
our pipeline.

2.1 Preprocessing Using Histogram Standardization

MRI is the most popular medical imaging tool to capture the images of the
brain and other internal organs. It is preferred due to its non-invasive nature
and its ability to capture diverse types of tissues and physiological processes.
It measures the response of body tissues to high-frequency radio waves when
placed in a strong magnetic field, to produce images of the internal organs. MRI
scans typically suffer with a bias due to artefacts produced by inhomogeneity in
the magnetic field or small movements made by the patient during acquisition.
Since MRI intensities are expressed in arbitrary units and may vary across acqui-
sitions, this bias can adversely impact segmentation algorithms. State-of-the-art
approaches typically employ bias correction strategies to pre-process the data
corresponding to different modalities in order to mitigate this bias.
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After careful comparison of existing bias-correction literature, we decide to
use the recently proposed histogram standardizing approach [24] for bias cor-
rection. The authors in [24] propose a two phase algorithm that exploits the
statistics of the different modalities in a dataset to transform the dataset in a
manner where similar intensities correspond to similarity in the tissue semantics.
We pre-process all our data in this work using this strategy.
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Fig. 1. A schematic overview of our approach. We first perform bias correction in
the input brain volume using histogram standardization. A V-Net architecture is then
trained on these data to deliver first phase of segmentation prediction. Further, we
use a bilateral filtering performing fully-connected CRF to post-process our network
predictions.

2.2 V-Net for 3D Semantic Segmentation

The first prediction stage in this work uses the V-Net architecture introduced by
Milletari et al. in [23]. The V-Net architecture is a 3D fully convolutional neural
network which can be trained end-to-end to deliver dense, per voxel class prob-
abilities. The V-Net architecture has been exploited in literature for a variety
of 3D segmentation tasks. Further, we use the generalized dice overlap loss as
presented in [28] to optimise V-Net, which is a surrogate for the Dice coefficient
used for evaluation. Using this loss function for training alleviates the need to
compensate for the imbalance between the number of training samples for the
different classes. We encourage the readers to refer to the original paper [23] for
details on the network architecture.

2.3 Custom 3D ResNets for Semantic Segmentation

In this section, we discuss the 3D ResNets, as an alternative to the V-Net archi-
tecture described above. Residual networks were introduced by He et al. in [16].
ResNets ease the training of networks by adding ‘residual’ connections to the
network architecture. These residual connections induce a short-cut connection
of identity mapping without adding any extra parameters or computational com-
plexity, thereby recasting the original mapping F (x) as F (x) = F ′(x) + x. We
encourage the readers to refer to the original paper [16] for details.

ResNets are the building blocks of the majority of approaches on a variety of
computer vision image segmentation benchmarks [11,14,31,32], and thus were
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Fig. 2. Overview of our pipeline with 3D ResNets. Our network consists of three parallel
ResNet-18 branches, each computing mid-level features on one of the axial, sagittal
and coronal views of the input. These mid-level features are fused by transposing to
a common view and concatenation. Linear classifiers on top are trained to produce
probabilities for each of whole tumor, tumor core and enhancing tumor categories.
Further, we use a bilateral filtering performing fully-connected CRF to post-process
our network predictions.

a natural starting point in this work. However, the vanilla ResNets lack certain
desirable characteristics which make their application to the task of brain tumor
segmentation challenging. For the BraTS 2018 benchmark, we addressed these
challenges by extending the 3D ResNet architecture from [14]. We briefly discuss
these challenges one by one and describe our strategies to overcome them.

Network Stride. Approaches to semantic segmentation use ‘fully-convolutional
networks’ (FCNs) [19,20] which are networks composed entirely of stacks of
convolution operations, thereby producing per-patch outputs which spatially
correspond to patches in the input image. A major challenge that presents itself
in the use of FCNs is the network stride, also referred to as the downsampling
factor. The output activations delivered by FCNs are smaller in spatial size than
the input image due to the repeated max-pooling and convolutional strides.
Thus, obtaining a labeling that is the same size as the input image requires
upsampling of the output scores via interpolation, resulting in quantization and
approximation errors and over-smooth predictions which do not capture the finer
details in the input.

The downsampling factor of ResNets, like other popular network architec-
tures such as [18,27] is 32. This means that each output unit corresponds to a
32 × 32 patch in the input image. For the BraTS 2018 data where the size of
the input volume is 240 × 240 × 155, the vanilla ResNet delivers outputs of the
size 8 × 8 × 5. A popular approach to reduce the downsampling factor is using
a deconvolution filter which is a backwards convolution operation to upsample
the output, as proposed by Long and Shelhamer in [20]. However, this results
in an increased number of parameters, which will lead to overfitting for smaller
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datasets like the BraTS 2018 dataset where obtaining pixel-accurate ground
truth is tedious.

In this work, we use atrous convolutions proposed by Chen et al. [7]. The
atrous algorithm introduces holes in the convolution kernel, thereby allowing us
to reduce the loss in spatial resolution without any increase in the number of
parameters. Authors in [30] use the same operation, rebranding it as ‘dilated
convolutions’. With a strategic use of atrous convolutions, we reduce the down-
sampling factor of ResNets to 4. This amounts to an output of size 60 × 60 × 39
for the BraTS 2018 data.

Context Awareness. Standard deep networks do not have a built-in capacity
to estimate the scale of the input [8]. This limitation becomes especially crip-
pling for brain tumor segmentation where the scales of the whole tumor, tumor
core and enhancing tumor categories depend on a variety of factors, therefore
estimating the correct scale of tumors is a challenging task. Approaches typically
address this shortcoming by feeding the input to the network at different scales
and averaging the network responses across scales [8,9]. A number of recent
methods have proposed using feature pyramids [7,10,32] which instead capture
features at multiple scales. The feature pyramids are finally fused into a single
feature map via element-wise maximization, averaging or concatenation. In this
work, we use the atrous spatial pyramid pooling (ASPP) approach proposed in
[10]. ASPP uses a stack of convolutional filters with increasing degrees of dila-
tion, thereby simulating filtering at multiple sampling rates and receptive fields.
This captures visual context at multiple scales and leads to performance boosts
for a variety of segmentation benchmarks [7]. The features at different scales
are fused via averaging. This strategy enhances the context-awareness of the
network.

Richness of Features (Network Depth) vs Training/Inference Speed.
Deeper networks typically learn richer, more meaningful features as indicated
by performance boosts over shallower networks [15,16]. However, an increase
in depth also increases training/inference time because the network represents
a sequential directed acyclic graph and prior activations need to be computed
before subsequent ones.

3D FCNs are much slower than their 2D counterparts. Unlike 2D convolutions
which have benefitted from both software and hardware level optimizations, 3D
convolutions still involve slow computations as the research into their optimiza-
tion is in its infancy. To allow fast experimentation and validation, the network
architecture design needs careful consideration.

The authors in [31] demonstrate that decreasing the depth and increasing
the width of ResNets leads to both better accuracy and reduced training/testing
time. Inspired by them, rather than using very deep ResNets, we use the small-
est residual network ResNet-18 in our experiments. To increase the width of the
network, we use a multi-view fusion architecture where our network has three
branches, each computing features on one of axial, sagittal and coronal views.
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The features from the three views are transposed to a common view and con-
catenated, and linear classifiers for the three categories whole tumor, tumor core
and enhancing tumor are trained on the fused features. This increases the speed
at which the network operates as the activations of the three branches of the
network can be computed in parallel. Here, we want to emphasize that each of
these three branches is using the 3D input, in contrast to the 2.5D methods
[26]. Further our preliminary experiments indicate that this multi-view fusion
leads to better performance on a validation set, compared to deeper variants:
ResNet-34 and ResNet-50. Our approach is described in Fig. 2.

2.4 Fully-Connected Conditional Random Fields

Fully convolutional deep networks such as V-Net and ResNets that produce
per-voxel predictions consist of several downsampling phases followed by several
upsampling phases. These phases involve quantization and approximations due
to which these pipelines typically produce oversmooth predictions which do not
capture the finer details in the input data. To address this limitation, we follow up
the first pass of prediction using the network with a post-processing refinement
pass. The refinement of the network prediction is done using a fully-connected
Conditional Random Field (CRF). The fully-connected CRF performs bilateral
filtering to refine the predictions made by our network, and uses the objective
function proposed in [17]. Precisely, the CRF expresses the energy of a fully-
connected CRF model as the sum of unary and pairwise potentials given by

EI(l) =
∑

i

ψu(li) +
∑

i

∑

j<i

ψp(li, lj), (1)

where

ψp(li, lj) =

μ(li, lj)
K∑

m=1

w1
m exp(−|si − sj |2

2θ2
α

− |pi − pj |2
2θ2

β︸ ︷︷ ︸
appearance

) + w2
m exp(−|si − sj |2

2θ2
γ︸ ︷︷ ︸

smoothness

). (2)

Here l = {li} denotes the labels for all the pixels indexed by i coming from a
set of candidate labels li ∈ {1, 2, . . . , L}. ψu denotes the image dependent unary
potentials, and the image dependent pairwise potentials ψp(li, lj) are expressed
by the product of a label compatibility function μ and a weighted sum over
Gaussian kernels. The pixel intensities are expressed using the 4 modalities in
the input data pi = (flair, t1, t2, t1ce) and spatial positions are simply the coordi-
nates in 3D space si = (x, y, z). These are used together to define the appearance
kernel, and the spatial positions alone are used to define the smoothness ker-
nel. The appearance kernel tries to assign the same class labels to nearby pixels
with similar intensity, and the hyperparameters θα and θβ control the degrees
of nearness and similarity. The smoothness kernel aims to remove small isolated
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regions. The model parameters (θα, θβ , θγ , w1
m, w2

m) are set by doing parameter
sweeps using a validation set.

Having discussed our method in detail, we now delve into the experimental
details and results in the next section.

3 Experiments and Results

3.1 Training Protocol

As described in Sect. 2, we use histogram standardization [24] for data pre-
processing.

V-Net. We train the V-Net from scratch on randomly cropped 3D patches, as
presented in Fig. 1, of size 128 × 128 × 128 voxels. We do not employ any other
form of data augmentation. Our network takes as input all 4 input modalities
(flair, t1, t2, t1ce) and is trained using the generalized Dice loss [28] to output
class probabilities for the 3 classes in the dataset alongside 2 additional classes
(void and background/healthy tissue). We use the standard stochastic gradient
descent algorithm for training, with a weight-decay of 1 × e−5 and momentum
of 0.9. We use a polynomially decaying learning rate policy, with a starting
learning-rate of 1 × e−4 and we train for 10K iterations. Our implementation
uses the pytorch [25] library.

ResNet-18. As described in Sect. 2 and in Fig. 2, the three branches of our 3D
ResNet-18 are initialized from the 3D ResNet-18 network from [14] which was
trained for action recognition in videos. We augment the first convolutional layer
(conv1) of the network from [14] with an additional input channel since we have
4 modalities (flair, t1, t2, t1ce), as opposed to 3 channels in natural images (r, g,
b). We train our networks with randomly sampled input patches of size 97×97×
97, and our network outputs predictions of size 25 × 25 × 25. The input brain
volume is preprosessed by subtracting the per-image mean for each modality
independently. We use the weighted Softmax Cross-Entropy loss to train our
network for three classes: whole tumor, tumor core, and enhancing tumor. The
weights for these three classes are 5,10,10 respectively. We use random flipping
across the axial axis, and random scaling of the input between scales 0.25−2.5 for
data augmentation. We use the standard stochastic gradient descent algorithm
for training, with a weight-decay of 1 × e−5 and momentum of 0.9. We use
a polynomially decaying learning rate policy, with a starting learning-rate of
1 × e−4 and we train for 100K iterations. Our implementation is based on the
Caffe2 library.

Fully Connected CRF. Our CRF parameters (Sect. 2.4) are estimated using
the validation set of 85 patients. We use these probabilities as unary terms along
hand-crafted pairwise terms (Sect. 2.4) for the CRF post-processing.
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3.2 Testing Protocol

For results on the training set, we use a random train-test split of 200 − 85
patients respectively. For results on the validation and test sets, we use all the
285 training patients to train, and evaluate on the 66 validation, and 191 test
patients.

V-Net. Our testing is done in a sliding window fashion on 3D patches of size
128 × 128 × 128 voxels and predictions of ovelapping voxels are obtained via
averaging.

Table 1. Results on BraTS 2018 Validation dataset.

Method Dice Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

ResNet 0.740 0.868 0.801 0.771 0.811 0.769 0.991 0.992 0.997 5.312 4.971 9.891

ResNet+CRF 0.741 0.872 0.799 0.795 0.829 0.789 0.997 0.994 0.997 5.575 5.038 9.588

V-Net 0.766 0.896 0.810 0.821 0.909 0.815 0.992 0.989 0.952 7.211 6.541 7.821

V-Net+CRF 0.767 0.901 0.813 0.839 0.916 0.819 0.998 0.994 0.997 7.569 6.68 7.630

Table 2. Results on BraTS 2018 Test dataset.

Label Dice Hausdorff95

ET WT TC ET WT TC

Mean 0.61824 0.82991 0.73334 24.93432 20.45375 26.48868

StdDev 0.3083 0.16348 0.27445 33.86977 26.42336 31.0645

Median 0.75368 0.88719 0.85481 4.12311 6.16441 8.66025

25 quantile 0.48567 0.82071 0.65831 2.20361 3.60555 3.0

75 quantile 0.84363 0.92246 0.91996 49.78338 28.60328 47.69619

Fig. 3. Example segmentations on the Brats 2018 Validation set delivered by our app-
roach for four patients. Green: edema, Red: non-enhancing tumor core; Yellow: enhanc-
ing tumor core. (Color figure online)
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ResNet-18. Our testing is done in a sliding window fashion on 3D patches of
size 97 × 97 × 97 voxels and predictions of ovelapping voxels are obtained via
averaging. We use multi-scale testing alongside flipping along the axial plane
and average the probabilities delivered by the network.

Fig. 4. Example of segmentations corresponding to four different patients, superim-
posed on Flair and T2 modalities on the Brats 2018 Test set delivered by our approach.
Green: edema, Red: non-enhancing tumor core; Yellow: enhancing tumor core. (Color
figure online)
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3.3 Results

Our results on the BraTS 2018 Validation and Test datasets are tabulated in
Tables 1 and 2 respectively. On the Validation set, we compare the two network
architectures we considered, ResNet-18 and V-Net, with and without using CRF
post-processing. Our best results on the validation set are achieved when we
use V-Net followed by CRF post-processing. For this reason our final submis-
sion Table 2 for the test dataset of BraTS 2018 have been performed using the
V-Net architecture. These results were generated by the evaluation server on the
official BraTS 2018 website and have been also summarized in [4]. Qualitative
results are shown in Figs. 3 and 4.

4 Conclusions and Future Work

In this work, we have described a novel deep-learning architecture for automatic
brain tumor segmentation. More specifically, our pipeline uses histogram stan-
dardization for input bias correction and uses the V-Net architecture for the
first phase of segmentation prediction. We also describe a fully-connected CRF
to refine the network outputs in a post-processing step, while we also investigate
the use of the multiview approach to fuse 3D features. Our approach delivers
competitive results on the BraTS 2018 dataset. In the future, we would like to
incorporate spatial pyramids for richer feature representation, and adapt tech-
niques that perform data augmentation in a natural way as presented in [29].
Finally, we will try to investigate techniques that integrate CRFs into the net-
work training [6].
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Abstract. Automated segmentation of brain tumors from 3D magnetic
resonance images (MRIs) is necessary for the diagnosis, monitoring, and
treatment planning of the disease. Manual delineation practices require
anatomical knowledge, are expensive, time consuming and can be inaccu-
rate due to human error. Here, we describe a semantic segmentation net-
work for tumor subregion segmentation from 3D MRIs based on encoder-
decoder architecture. Due to a limited training dataset size, a variational
auto-encoder branch is added to reconstruct the input image itself in
order to regularize the shared decoder and impose additional constraints
on its layers. The current approach won 1st place in the BraTS 2018
challenge.

1 Introduction

Brain tumors are categorized into primary and secondary tumor types. Pri-
mary brain tumors originate from brain cells, whereas secondary tumors metas-
tasize into the brain from other organs. The most common type of primary
brain tumors are gliomas, which arise from brain glial cells. Gliomas can be
of low-grade (LGG) and high-grade (HGG) subtypes. High grade gliomas are
an aggressive type of malignant brain tumor that grow rapidly, usually require
surgery and radiotherapy and have poor survival prognosis. Magnetic Resonance
Imaging (MRI) is a key diagnostic tool for brain tumor analysis, monitoring
and surgery planning. Usually, several complimentary 3D MRI modalities are
acquired - such as T1, T1 with contrast agent (T1c), T2 and Fluid Attenuation
Inversion Recover (FLAIR) - to emphasize different tissue properties and areas
of tumor spread. For example the contrast agent, usually gadolinium, emphasizes
hyperactive tumor subregions in T1c MRI modality.

Automated segmentation of 3D brain tumors can save physicians time and
provide an accurate reproducible solution for further tumor analysis and mon-
itoring. Recently, deep learning based segmentation techniques surpassed tra-
ditional computer vision methods for dense semantic segmentation. Convolu-
tional neural networks (CNN) are able to learn from examples and demonstrate
state-of-the-art segmentation accuracy both in 2D natural images [6] and in 3D
medical image modalities [19].

Multimodal Brain Tumor Segmentation Challenge (BraTS) aims to evalu-
ate state-of-the-art methods for the segmentation of brain tumors by providing
c© Springer Nature Switzerland AG 2019
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a 3D MRI dataset with ground truth tumor segmentation labels annotated by
physicians [2–5,18]. This year, BraTS 2018 training dataset included 285 cases
(210 HGG and 75 LGG), each with four 3D MRI modalities (T1, T1c, T2 and
FLAIR) rigidly aligned, resampled to 1 × 1 × 1 mm isotropic resolution and
skull-stripped. The input image size is 240 × 240 × 155. The data were col-
lected from 19 institutions, using various MRI scanners. Annotations include 3
tumor subregions: the enhancing tumor, the peritumoral edema, and the necrotic
and non-enhancing tumor core. The annotations were combined into 3 nested
subregions: whole tumor (WT), tumor core (TC) and enhancing tumor (ET),
as shown in Fig. 2. Two additional datasets without the ground truth labels
were provided for validation and testing. These datasets required participants
to upload the segmentation masks to the organizers’ server for evaluations. The
validation dataset (66 cases) allowed multiple submissions and was designed for
intermediate evaluations. The testing dataset (191 cases) allowed only a single
submission, and was used to calculate the final challenge ranking.

In this work, we describe our semantic segmentation approach for volumetric
3D brain tumor segmentation from multimodal 3D MRIs, which won the BraTS
2018 challenge. We follow the encoder-decoder structure of CNN, with asym-
metrically large encoder to extract deep image features, and the decoder part
reconstructs dense segmentation masks. We also add the variational autoencoder
(VAE) branch to the network to reconstruct the input images jointly with seg-
mentation in order to regularize the shared encoder. At inference time, only the
main segmentation encode-decoder part is used.

2 Related Work

Last year, BraTS 2017, top performing submissions included Kamnitsas
et al. [13] who proposed to ensemble several models for robust segmentation
(EMMA), and Wang et al. [21] who proposed to segment tumor subregions in
cascade using anisotropic convolutions. EMMA takes advantage of an ensemble
of several independently trained architectures. In particular, EMMA combined
DeepMedic [14], FCN [16] and U-net [20] models and ensembled their segmen-
tation predictions. During training they used a batch size of 8, and a crop of
64 × 64 × 64 3D patch. EMMA’s ensemble of different models demonstrated
a good generalization performance winning the BraTS 2017 challenge. Wang
et al. [21] second place paper took a different approach, by training 3 networks
for each tumor subregion in cascade, with each subsequent network taking the
output of the previous network (cropped) as its input. Each network was simi-
lar in structure and consists of a large encoder part (with dilated convolutions)
and a basic decoder. They also decompose the 3 × 3 × 3 convolution kernel into
intra-slice (3 × 3 × 1) and inter-slice (1 × 1 × 3) kernel to save on both the GPU
memory and the computational time.

This year, BraTS 2018 top performing submission (in addition to the current
work) included Isensee et al. [12] in the 2nd place, McKinly et al. [17] and Zhou
et al. [23], who shared the 3rd place. Isensee et al. [12] demonstrated that a
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generic U-net architecture with a few minor modifications is enough to achieve
competitive performance. The authors used a batch size of 2 and a crop size
of 128 × 128 × 128. Furthermore, the authors used an additional training data
from their own institution (which yielded some improvements for the enhancing
tumor dice).

McKinly et al. [17] proposed a segmentation CNN in which a DenseNet [11]
structure with dilated convolutions was embedded in U-net-like network. The
authors also introduce a new loss function, a generalization of binary cross-
entropy, to account for label uncertainty. Finally, Zhou et al. [23] proposed to
use an ensemble of different networks: taking into account multi-scale context
information, segmenting 3 tumor subregions in cascade with a shared backbone
weights and adding an attention block.

Compared to the related works, we use the largest crop size of 160×192×128
but compromise the batch size to be 1 to be able to fit network into the GPU
memory limits. We also output all 3 nested tumor subregions directly after the
sigmoid (instead of using several networks or the softmax over the number of
classes). Finally, we add an additional branch to regularize the shared encoder,
used only during training. We did not use any additional training data and used
only the provided training set.

Fig. 1. Schematic visualization of the network architecture. Input is a four channel
3D MRI crop, followed by initial 3 × 3 × 3 3D convolution with 32 filters. Each green
block is a ResNet-like block with the GroupNorm normalization. The output of the
segmentation decoder has three channels (with the same spatial size as the input)
followed by a sigmoid for segmentation maps of the three tumor subregions (WT, TC,
ET). The VAE branch reconstructs the input image into itself, and is used only during
training to regularize the shared encoder. (Color figure online)
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3 Methods

Our segmentation approach follows encoder-decoder based CNN architecture
with an asymmetrically larger encoder to extract image features and a smaller
decoder to reconstruct the segmentation mask [6,7,9,19,20]. We add an addi-
tional branch to the encoder endpoint to reconstruct the original image, sim-
ilar to auto-encoder architecture. The motivation for using the auto-encoder
branch is to add additional guidance and regularization to the encoder part,
since the training dataset size is limited. We follow the variational auto-encoder
(VAE) approach to better cluster/group the features of the encoder endpoint.
We describe the building parts of our networks in the next subsections (see also
Fig. 1).

3.1 Encoder Part

The encoder part uses ResNet [10] blocks, where each block consists of two
convolutions with normalization and ReLU, followed by additive identity skip
connection. For normalization, we use Group Normalization (GN) [22], which
shows better than BatchNorm performance when batch size is small (bath size
of 1 in our case). We follow a common CNN approach to progressively downsize
image dimensions by 2 and simultaneously increase feature size by 2. For down-
sizing we use strided convolutions. All convolutions are 3 × 3 × 3 with initial
number of filters equal to 32. The encoder endpoint has size 256 × 20 × 24 × 16,
and is 8 times spatially smaller than the input image. We decided against further
downsizing to preserve more spatial content.

3.2 Decoder Part

The decoder structure is similar to the encoder one, but with a single block per
each spatial level. Each decoder level begins with upsizing: reducing the number
of features by a factor of 2 (using 1 × 1 × 1 convolutions) and doubling the
spatial dimension (using 3D bilinear upsampling), followed by an addition of
encoder output of the equivalent spatial level. The end of the decoder has the
same spatial size as the original image, and the number of features equal to the
initial input feature size, followed by 1 × 1 × 1 convolution into 3 channels and
a sigmoid function.

3.3 VAE Part

Starting from the encoder endpoint output, we first reduce the input to a low
dimensional space of 256 (128 to represent mean, and 128 to represent std).
Then, a sample is drawn from the Gaussian distribution with the given mean
and std, and reconstructed into the input image dimensions following the same
architecture as the decoder, except we don’t use the inter-level skip connections
from the encoder here. The VAE part structure is shown in Table 1.
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Table 1. VAE decoder branch structure, where GN stands for group normalization
(with group size of 8), Conv - 3 × 3 × 3 convolution, Conv1 - 1 × 1 × 1 convolution,
AddId - addition of identity/skip connection, UpLinear - 3D linear spatial upsampling,
Dense - fully connected layer

Name Ops Repeat Output size

VD GN, ReLU, Conv (16) stride 2, Dense (256) 1 256 × 1

VDraw Sample ∼ N (μ(128), σ2(128)) 1 128 × 1

VU Dense, ReLU, Conv1, UpLinear 1 256 × 20 × 24 × 16

VUp2 Conv1, UpLinear 1 128 × 40 × 48 × 32

VBlock2 GN, ReLU, Conv, GN, ReLU, Conv, AddId 1 128 × 40 × 48 × 32

VUp1 Conv1, UpLinear 1 64 × 80 × 96 × 64

VBlock1 GN, ReLU, Conv, GN, ReLU, Conv, AddId 1 64 × 80 × 96 × 64

VUp0 Conv1, UpLinear 1 32 × 160 × 192 × 128

VBlock0 GN, ReLU, Conv, GN, ReLU, Conv, AddId 1 32 × 160 × 192 × 128

Vend Conv1 1 4 × 160 × 192 × 128

3.4 Loss

Our loss function consists of 3 terms:

L = Ldice + 0.1 ∗ LL2 + 0.1 ∗ LKL (1)

Ldice is a soft dice loss [19] applied to the decoder output ppred to match the
segmentation mask ptrue:

Ldice =
2 ∗ ∑

ptrue ∗ ppred∑
p2true +

∑
p2pred + ε

(2)

where summation is voxel-wise, and ε is a small constant to avoid zero division.
Since the output of the segmentation decoder has 3 channels (predictions for
each tumor subregion), we simply add the three dice loss functions together.

LL2 is an L2 loss on the VAE branch output Ipred to match the input image
Iinput:

LL2 = ||Iinput − Ipred||22 (3)

LKL is standard VAE penalty term [8,15], a KL divergence between the
estimated normal distribution N (μ, σ2) and a prior distribution N (0, 1), which
has a closed form representation:

LKL =
1
N

∑
μ2 + σ2 − log σ2 − 1 (4)

where N is total number of image voxels. We empirically found a hyper-parameter
weight of 0.1 to provide a good balance between dice and VAE loss terms in Eq. 1.
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3.5 Optimization

We use Adam optimizer with initial learning rate of α0 = 1e−4 and progressively
decrease it according to:

α = α0 ∗
(

1 − e

Ne

)0.9

(5)

where e is an epoch counter, and Ne is a total number of epochs (300 in our
case). We use batch size of 1, and draw input images in random order (ensuring
that each training image is drawn once per epoch).

3.6 Regularization

We use L2 norm regularization on the convolutional kernel parameters with a
weight of 1e − 5. We also use the spatial dropout with a rate of 0.2 after the
initial encoder convolution. We have experimented with other placements of the
dropout (including placing dropout layer after each convolution), but did not
find any additional accuracy improvements.

3.7 Data Preprocessing and Augmentation

We normalize all input images to have zero mean and unit std (based on non-
zero voxels only). We apply a random (per channel) intensity shift (−0.1..0.1 of
image std) and scale (0.9..1.1) on input image channels. We also apply a random
axis mirror flip (for all 3 axes) with a probability 0.5.

4 Results

We implemented our network in Tensorflow [1] and trained it on NVIDIA Tesla
V100 32 GB GPU using BraTS 2018 training dataset (285 cases) without any
additional in-house data. During training we used a random crop of size 160 ×
192× 128, which ensures that most image content remains within the crop area.
We concatenated 4 available 3D MRI modalities into the 4 channel image as
an input. The output of the network is 3 nested tumor subregions (after the
sigmoid).

We report the results of our approach on BraTS 2018 validation (66 cases)
and the testing sets (191 cases). These datasets were provided with unknown
glioma grade and unknown segmentation. We uploaded our segmentation results
to the BraTS 2018 server for evaluation of per class dice, sensitivity, specificity
and Hausdorff distances.

Aside from evaluating a single model, we also applied test time augmentation
(TTA) by mirror flipping the input 3D image axes, and averaged the output of
the resulting 8 flipped segmentation probability maps. Finally, we ensembled a
set of 10 models (trained from scratch) to further improve the performance.
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Fig. 2. A typical segmentation example with true and predicted labels overlaid over
T1c MRI axial, sagittal and coronal slices. The whole tumor (WT) class includes all
visible labels (a union of green, yellow and red labels), the tumor core (TC) class is a
union of red and yellow, and the enhancing tumor core (ET) class is shown in yellow (a
hyperactive tumor part). The predicted segmentation results match the ground truth
well. (Color figure online)

Table 2 shows the results of our model on the BraTS 2018 validation dataset.
At the time of initial short paper submission (Jul 13, 2018), our dice accuracy
performance was second best (team name NVDLMED1) for all of the 3 segmenta-
tion labels (ET, WT, TC). The TTA only marginally improved the performance,
but the ensemble of 10 models resulted in 1% improvement, which is consistent
with the literature results of using ensembles.

For the testing dataset, only a single submission was allowed. Our results are
shown in Table 3, which won the 1st place at BraTS 2018 challenge.

Table 2. BraTS 2018 validation dataset results. Mean Dice and Hausdorff measure-
ments of the proposed segmentation method. EN - enhancing tumor core, WT - whole
tumor, TC - tumor core.

Validation dataset Dice Hausdorff (mm)

ET WT TC ET WT TC

Single model 0.8145 0.9042 0.8596 3.8048 4.4834 8.2777

Single model + TTA 0.8173 0.9068 0.8602 3.8241 4.4117 6.8413

Ensemble of 10 models 0.8233 0.9100 0.8668 3.9257 4.5160 6.8545

1 https://www.cbica.upenn.edu/BraTS18/lboardValidation.html.

https://www.cbica.upenn.edu/BraTS18/lboardValidation.html
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Table 3. BraTS 2018 testing dataset results. Mean Dice and Hausdorff measurements
of the proposed segmentation method. EN - enhancing tumor core, WT - whole tumor,
TC - tumor core.

Testing dataset Dice Hausdorff (mm)

ET WT TC ET WT TC

Ensemble of 10 models 0.7664 0.8839 0.8154 3.7731 5.9044 4.8091

Time-wise, each training epoch (285 cases) on a single GPU (NVIDIA Tesla
V100 32 GB) takes 9 min. Training the model for 300 epochs takes 2 days. We’ve
also trained the model on NVIDIA DGX-1 server (that includes 8 V100 GPUs
interconnected with NVLink); this allowed to train the model in 6 h (7.8x speed
up). The inference time is 0.4 s for a single model on a single V100 GPU.

5 Discussion and Conclusion

In this work, we described a semantic segmentation network for brain tumor
segmentation from multimodal 3D MRIs, which won the BraTS 2018 challenge.
While experimenting with network architectures, we have tried several alterna-
tive approaches. For instance, we have tried a larger batch size of 8 to be able to
use BatchNorm (and take advantage of batch statistics), however due to the GPU
memory limits this modification required to use a smaller image crop size, and
resulted in worse performance. We have also experimented with more sophis-
ticated data augmentation techniques, including random histogram matching,
affine image transforms, and random image filtering, which did not demonstrate
any additional improvements. We have tried several data post-processing tech-
niques to fine tune the segmentation predictions with CRF [14], but did not find
it beneficial (it helped for some images, but made some other image segmenta-
tion results worse). Increasing the network depth further did not improve the
performance, but increasing the network width (the number of features/filters)
consistently improved the results. Using the NVIDIA Volta V100 32 GB GPU
we were able to double the number of features compared to V100 16 GB version.
Finally, the additional VAE branch helped to regularize the shared encoder (in
presence of limited data), which not only improved the performance, but helped
to consistently achieve good training accuracy for any random initialization. Our
BraTS 2018 testing dataset results are 0.7664, 0.8839 and 0.8154 average dice
for enhanced tumor core, whole tumor and tumor core, respectively.
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Abstract. We propose a new adversarial network, named voxel-GAN,
to mitigate imbalanced data problem in brain tumor semantic segmen-
tation where the majority of voxels belong to a healthy region and few
belong to tumor or non-health region. We introduce a 3D conditional
generative adversarial network (cGAN) comprises two components: a seg-
mentor and a discriminator. The segmentor is trained on 3D brain MR
or CT images to learn the segmentation label’s in voxel-level, while the
discriminator is trained to distinguish a segmentor output, coming from
the ground truth or generated artificially. The segmentor and discrimina-
tor networks simultaneously train with new weighted adversarial loss to
mitigate imbalanced training data issue. We show evidence that the pro-
posed framework is applicable to different types of brain images of varied
sizes. In our experiments on BraTS-2018 and ISLES-2018 benchmarks,
we find improved results, demonstrating the efficacy of our approach.

Keywords: 3D generative adversarial network ·
Learning imbalanced data

1 Introduction

Brain imaging studies using magnetic resonance imaging (MRI) or computed
tomography (CT) provides an important information for disease diagnosis and
treatment planning [6]. One of the major challenges in brain tumor segmentation
is unbalanced training data which the majority of the voxel healthy and only
fewer voxels are non-healthy or a tumor. A model learned from class imbalanced
training data is biased towards the majority class. The predicted results of such
networks have low sensitivity, showing the ability of not correctly predicting
non-healthy classes. In medical applications, the cost of misclassification of the
minority class could be more than the cost of misclassification of the majority
class. For example, the risk of not detecting tumor could be much higher than
referring to a healthy subject to doctors.

The problem of class imbalanced has been recently addressed in diseases clas-
sification, tumor recognition, and tumor segmentation. Two types of approaches
proposed in the literature: data-level and algorithm-level approaches.
c© Springer Nature Switzerland AG 2019
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At data-level, the objective is to balance the class distribution through re-
sampling the data space [21], by including SMOTE (Synthetic Minority Over-
sampling Technique) of the positive class [10] or by under-sampling of the nega-
tive class [19]. However, these approaches often lead to remove some important
samples or add redundant samples to the training set.

Algorithm-level based solutions address class imbalanced problem by modify-
ing the learning algorithm to alleviate the bias towards majority class. Examples
are cascade training [8,33,36], training with cost-sensitive function [40], such as
Dice coefficient loss [12,35,38], and asymmetric similarity loss [16] that modify-
ing the training data distribution with regards to the misclassification cost.

Here, we study the advantage of mixing adversarial loss with weighted cat-
egorical cross-entropy and weighted �1 losses in order to mitigate the nega-
tive impact of the class imbalanced. Moreover, we train voxel-GAN simulta-
neously with semantic segmentation masks and inverse class frequency segmen-
tation masks, named complementary segmentation labels. Assume, Y is true
segmentation label annotated by expert and Ȳ is complementary label where
the P (Ȳ = i | Y = j), i �= j ∈ {0, 1, ..., c − 1}, and c is a number of semantic
segmentation class labels. The complementary label Ȳ is a reverse label for the
background labels. Then, our network train with both true segmentation mask
Y and complementary segmentation mask Ȳ at the same time.

Automating brain tumor segmentation is challenging task due to the high
diversity in the appearance of tissues among different patients, and in many
cases, the similarity between healthy and non-healthy tissues. Numerous auto-
matic approaches have been developed to speed up medical image segmenta-
tion [6,25]. We can roughly divide the current automated algorithms into two
categories: those based on generative models and those based on discriminative
models.

Generative probabilistic approaches build the model based on prior domain
knowledge about the appearance and spatial distribution of the different tissue
types. Traditionally, generative probabilistic models have been popular where
simple conditionally independent Gaussian models [13] or Bayesian learning [32]
are used for tissue appearance. On the contrary, discriminative probabilistic
models, directly learn the relationship between the local features of images
and segmentation labels without any domain knowledge. Traditional discrim-
inative approaches such as SVMs [2,9], random forests [23], and guided random
walks [11] have been used in medical image segmentation. Deep neural net-
works (DNNs) are one of the most popular discriminative approaches, where
the machine learns the hierarchical representation of features without any hand-
crafted features [22]. In the field of medical image segmentation, Ronneberger
et al. [37] presented a fully convolutional neural network, named UNet, for seg-
menting neuronal structures in electron microscopic stacks.

Recently, GANs [15] have gained a lot of momentum in the research frater-
nities. Mirza et al. [26] extended the GANs framework to the conditional setting
by making both the generator and the discriminator network class conditional.
Conditional GANs have the advantage of being able to provide better represen-
tations for multi-modal data generation since there is a control on the modes
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of the data being generated. This makes cGANs suitable for image semantic
segmentation task, where we condition on an observed image and generate a
corresponding output image.

Unlike previous works on cGANs [18,27,34,36,41], we investigate the 3D MR
or CT images into 3D semantic segmentation. Summarizing, the main contribu-
tions of this paper are:

– We introduce voxel-GAN, a new adversarial framework that improves seman-
tic segmentation accuracy.

– Our proposed method mitigates imbalanced training data with biased com-
plementary labels in task of semantic segmentation.

– We study the effect of different losses and architectural choices that improve
semantic segmentation.

The rest of the paper is organized as follows: in the next section, we explain
our proposed method for learning brain tumor segmentation, while the detailed
experimental results are presented in Sect. 3. We conclude the paper and give an
outlook on future research in Sect. 4.

2 voxel-GAN

In a conventional generative adversarial network, generative model G tries to
learn a mapping from random noise vector z to output image y; G : z → y. Mean-
while, a discriminative model D estimates the probability of a sample coming
from the training data xreal rather than the generator xfake. The GAN objective
function is a two-player mini-max game like Eq. (1).

m
G

inm
D

ax V (D,G) = Ey[logD(y)]+

Ez[log(1 − D(G(z)))]
(1)

Similar conditional GAN [26]; in our proposed voxel-GAN, segmentor net-
work takes 3D multimodal MR or CT images x and Gaussian vector z, and
outputs a 3D semantic segmentation; The discriminator takes the segmentor
output S(x, z) and the ground truth annotated by an expert yseg and outputs a
confidence value D(x) of whether a 3D object input x is real or synthetic. The
training procedure is similar to two-player mini-max game as shown in Eq. (2).

Ladv ← m
S

inm
D

ax V (D,S) = Ex,yseg
[logD(x, yseg)]+

Ex,z[log(1 − D(x, S(x, z)))]
(2)

In this work, similar to the work of Isola et al. [18], we used Gaussian noise z
in the generator alongside the input data x. As discussed by Isola et al. [18], in
training procedure of conditional generative model from conditional distribution
P (y|x), that would be better to model produces more than one sample y, from
each input x. When the generator G, takes plus input image x, random vector z,
then G(x, z) can generate as many different values for each x as there are values
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of z. Specially for medical image segmentation, the diversity of image acquisition
methods (e.g., MRI, fMRI, CT, ultrasound), regarding their settings (e.g., echo
time, repetition time), geometry (2D vs. 3D), and differences in hardware (e.g.,
field strength, gradient performance) can result in variations in the appearance
of body organs and tumour shapes [17], thus learning random vector z with
input image x makes network robust against noise and act better in the output
samples. This has been confirmed by our experimental results using datasets
having a large range of variation.

To mitigate the problem of unbalanced training samples, the segmentor loss
is weighted same as Eq. (3) to reduce effect of class voxel frequencies for the
whole training dataset.

wi =

{
avg{fi}{0 < i < c}/fmax, if i is max frequency
1, otherwise

(3)

LL1(S) = Ex,z ‖ yseg − S((x ∗ w), z) ‖ (4)

The segmentor loss Eq. (4) is mixed with �1 term to minimize the absolute
difference between the predicted value and the existing largest value. Previous
studies [36,41] on cGANs have shown the success of mixing the cGANs objective
with �1 distance. Hence, the �1 objective function takes into account CNNs
feature differences between the predicted segmentation and the ground truth
segmentation and resulting in fewer noises and smoother boundaries.

The final objective function for semantic segmentation of brain tumors Lseg

calculated by adversarial loss and additional segmentor �1 loss as follows:

Lseg(D,S) = Ladv(D,S) + LL1(S) (5)

2.1 Segmentor Network

As shown in Fig. 1, the segmentor architecture is two, 3D fully convolutional
encoder-decoder network that predicts a label for each voxel. The first encoder
takes 64 × 64 × 64 of multi-modal MRI or CT images at same time as different
channel input. Last decoder outputs 3D images with size 64×64×64. Similar to
UNet [37], we added the skip connections between each layer i and layer n − i,
where n is the total number of layers in each encoder and decoder part. Each
skip connection simply concatenates all channels at layer i with those at layer
n − i. Moreover, we concatenate the bottleneck features and last convolutional
decoder to capture better feature representation.

2.2 Discriminator Network

As depicted in Fig. 1, the discriminator is 3D fully convolutional encoder network
which classifies whether a predicted voxel label belongs to right class. Similar
to the pix-to-pix [18], we use path-GAN as discriminator with setting of voxel
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Fig. 1. The architecture of the proposed voxel-GAN consists of a segmentor network
S and a discriminative network D. S takes 3D multi modal images as a condition
and generates the 3D semantic segmentation as outputs, D determines whether those
outputs are real or fake. We use two modified 3D UNet architecture as a segmentor
network in order to capture local and global features extracted in bottleneck and last
convolutional decoder. Here, D is 3D fully convolutional encoder.

to voxel analysis. More specifically, the discriminator is trained to minimize the
average negative cross-entropy between predicted and the true labels.

Then, the segmentor and the discriminator networks are trained through back
propagation corresponding to a two-player mini-max game. We use categorical
cross entropy [29] as an adversarial loss. As mentioned before, we weighted loss
to only attenuate healthy voxel impact in training and testing time.

3 Experiments

We validated the performance of our voxel-GAN on two recent medical imag-
ing challenges: real patient data obtained from the MICCAI 2018, MRI brain
tumor segmentation (BraTS) [3–5,25] and CT brain lesion segmentation chal-
lenge (ISLES-2018) [20,24].

3.1 Datasets and Pre-processing

The first experiment is carried out on real patient data obtained from BraTS2018
challenge [3–5,25]. The BraTS2018 released data in three subsets train, valida-
tion, and test comprising 289, 68, and 191 MR images respectively in four mul-
tisite modalities of T1, T2, T1ce, and Flair which the annotated file provided
only for the training set. The challenge is semantic segmentation of complex and
heterogeneously located of tumor(s) on highly imbalanced data. Pre-processing
is an important step to bring all subjects in similar distributions, we applied
z-score normalization on four modalities with computing the mean and stdev of
the brain intensities. We also applied bias field correction introduced by Nyúl
et al. [30]. Figure 2 shows an 2D slice of prepocessed images (our network takes
3D images).
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Fig. 2. The brain MR image, from Brats 2018 after pre-processing. We extracted com-
plementary mask from inverse of ground truth file annotated by medical expert, pre-
sented in the first column. Other binary masks extracted from ground truth file in
columns 2–4 respectively are whole tumor, enhanced tumor, and core of tumor which
they are used by the discriminator. The 5–8 columns are a slice of example 3D input
of the segmentor.

In second experiment, We applied the ISLES2018 benchmark which contains
94 computer tomography (CT) and MRI training data in six modalities of CT,
4DPWI, CBF, CBV, MTT, Tmax, and annotated ground truth file. The exam-
ined patients were suffering from different brain cancers. The challenging part is
binary segmentation of unbalance labels. Here, pre-processing is carried out in
a slice-wise fashion. We applied Hounsfield unit (HU) values, which were win-
dowed in the range of [30, 100] to get soft tissues and contrast. Furthermore, we
applied histogram equalization to increase the contrast for better differentiation
of abnormal lesion tissue.

To prevent over fitting, we added data augmentation to each datasets such as
randomly cropped, re-sizing, scaling, rotation between −10 and 10 degree, and
Gaussian noise applied on training and testing time for both datasets.

3.2 Implementation

Configuration: Our proposed method is implemented based on a Keras
library [7] with back-end Tensorflow [1] supporting 3D convolutional network
and is publicly available1. All training and experiments were conducted on a
workstation equipped with a multiple GPUs. The learning rate was initially set
to 0.0001. The Adadelta optimizer is used in both the segmentor and the dis-
criminator that continues learning even when many updates have been done.
The model is trained for up to 200 epochs on each dataset separately. We used
Adadelta as an optimizer for cGAN network.

1 https://github.com/HPI-DeepLearning/VoxelGAN.

https://github.com/HPI-DeepLearning/VoxelGAN
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Fig. 3. The number of pixels for each tumor classes represents how imbalanced is
training data in detail of two subsets: high and low grade glioma brain tumor on
BraTS2018.

Network Architecture: In this work, a segmentor network is a modified UNet
architecture that we designed two UNet architecture with sharing circumvent
bottlenecks and last fully convolutional layer in decoder part. The UNet archi-
tecture allows low-level features to shortcut across the network. Motivated by
previous studies on interpreting encoder-decoder networks [31], that show the
bottleneck features carried local features and fully convolutional up-sampling
encoder represented global features, we concatenate circumvent bottlenecks and
last fully convolutional layer to capture more important features.

Our discriminator is fully convolutional Markovian PatchGAN classifier [18]
which only penalizes structure at the scale of image patches. Unlike, the Path-
GAN discriminator introduced by Isola et al. [18] which classified each N N patch
for real or fake, we have achieved better results for task of semantic segmentation
in voxel level 1 × 1 × d we consider N = 1 and different d = 64, 32, 16, and 8.
We used categorical cross entropy [29] as an adversarial loss with combination
of �1 loss in generator network.

Regarding the highly imbalance datasets as shown in Fig. 3, minority voxels
with lesion label are not trained as well as majority voxels with non-lesion label.
Therefore, we weighted only non-lesion classes to be in same average of lesion or
tumor(s) classes. Tables 1 and 2 describe our achieved results with and without
weighting loss on BraTS2018.



328 M. Rezaei et al.

3.3 Evaluation

We followed the evaluation criteria introduced by the BraTS2, the ISLES3 chal-
lenge organizers.

The segmentation of the brain tumor or lesion from medical images is highly
interesting in surgical planning and treatment monitoring. As mentioned by
Menze et al. [25], the goal of segmentation is to delineate different tumor struc-
tures such as active tumor core, enhanced tumor, and whole tumor regions.

Figure 4 shows good trade-off between Dice and Sensitivities in training and
validation time which it shows success for tackling of unbalancing data.

From Table 1, the proposed voxel-GAN achieved better results in terms of
Dice compared to 2D-cGAN. One likely explanation is that the voxel-GAN archi-
tecture is trained on 3D convolutional features and the segmentor loss is weighted
for imbalanced data.

Table 1. Comparison results of our achieved accuracy for semantic segmentation by
voxel-GAN (trained model with weighted loss and complementary labels) with related
work and top ranked team, in terms of Dice, sensitivity, specificity, and Hausdorff
distance on five fold cross validation after 80 epochs while the reported results in
second and third rows are after 200 epochs. WT, ET, and CT are abbreviation of
whole tumor, enhanced tumor, and core of tumor regions respectively.

Dice Hdff Sen Spec

Methods WT ET CT WT ET CT WT ET CT WT ET CT

Voxel-GAN 0.84 0.63 0.79 6.41 7.1 10.38 0.86 0.74 0.78 0.99 0.99 0.99

cGAN [34] 0.81 0.61 0.64 7.30 9.22 12.04 0.75 0.61 0.55 0.99 0.99 0.99

Cycle-GAN [14] 0.90 0.78 0.81 2.50 4.5 5.4 0.89 0.89 0.81 0.99 0.99 0.99

Ensemble of 10
3D-Models [28]

0.91 0.82 0.86 3.9 4.5 6.8 - - - - - -

3D UNet + TTA [39] 0.87 0.75 0.78 4.5 5.9 8.0 - - - - - -

Unlike previous works [14,28,39], we start training from scratch and even
after 200 epochs our results are not as good as top ranked team. From Table 1,
two top ranked team used ensemble of pre-trained models. Ensemble networks
provides good solution for imbalanced data by modifying the training data dis-
tribution with regards to the different misclassification costs. In future we will
focus on training voxel-GAN with one segmentor from scratch and many differ-
ent pre-trained discriminators.

2 http://www.med.upenn.edu/sbia/brats2018/evaluation.html.
3 https://www.smir.ch/ISLES/Start2018.

http://www.med.upenn.edu/sbia/brats2018/evaluation.html
https://www.smir.ch/ISLES/Start2018
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Fig. 4. The achieved accuracy obtained by voxel-GAN in terms of Dice and sensitivity
at training and validation time on BraTS-2018.
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Table 2. The achieved accuracy for semantic segmentation by 3D-GAN in terms of
Dice and Hausdorff distance after 80 epochs. Here, the model trained based on 3D
UNet as segmentor and 3D fully convolution as discriminator. The WT, ET, and TC
are abbreviation of whole tumor, enhanced tumor, and the tumorous core respectively.

Label Dice-ET Dice-WT Dice-TC Hausdorff95-ET Hausdorff95-WT Hausdorff95-TC

Mean 0.438 0.633 0.481 54.2 12.9 33.70

StdDev 0.27 0.25 0.27 116.71 14.9 78.4

Median 0.48 0.73 0.57 8.76 8.0 11.70

25quantile 0.19 0.49 0.27 4.41 5.56 7.9

75quantile 0.65 0.82 0.70 20.82 14.08 19.1

Fig. 5. Visual results from our model on axial views of Brats18-2013-37-1, Brats18-
CBICA-AAC-1, and Brats18-CBICA-AAK-1 from the test set overlaid T1C modality.
The green color codes the whole tumour (WT) region, while blue and yellow represent
the enhanced tumour (ET) and the tumorous core (TC) respectively. (Color figure
online)

Table 3. The achieved accuracy for semantic segmentation on ISLES dataset by voxel-
GAN in terms of Dice, Hausdorff distance, Precision, and Recall on five fold cross
validation after 200 epochs.

Dice Hausdorff Precision Recall

voxel-GAN 0.83 9.3 0.81 0.78
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4 Conclusion

In this paper, we presented a new 3D conditional generative adversarial architec-
ture, named voxel-GAN, that mitigates the issue of unbalanced data for the brain
lesion or tumor segmentation. To this end, we proposed a segmentor network and
a discriminator network where the first segments the voxel label, and the later
classifies whether the segmented output is real or fake. Moreover, we analyzed an
effects of different losses and architectural choices that help to improve semantic
segmentation results. We validated our framework on CT ISLES2018 and MRI
BraTS-2018 images for lesion and tumor semantic segmentation. In the future,
we plan to investigate ensemble network based on voxel-GAN but with many
pre-trained discriminator networks for semantic segmentation task.
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Abstract. Brain tumor segmentation is a difficult task due to the
strongly varying intensity and shape of gliomas. In this paper we pro-
pose a multi-stage discriminative framework for brain tumor segmen-
tation based on BraTS 2018 dataset. The framework presented in this
paper is a more complex segmentation system than our previous work
presented at BraTS 2016. Here we propose a multi-stage discriminative
segmentation model, where every stage is a binary classifier based on the
random forest algorithm. Our multi-stage system attempts to follow the
layered structure of tumor tissues provided in the annotation protocol.
In each segmentation stage we dealt with four major difficulties: feature
selection, determination of training database used, optimization of classi-
fier performances and image post-processing. The framework was tested
on the evaluation images from BraTS 2018. One of the most impor-
tant results is the determination of the tumor ROI with a sensitivity of
approximately 0.99 in stage I by considering only 16% of the brain in
the subsequent stages. Based on the segmentation obtained we solved
the survival prediction task using a random forest regressor. The results
obtained are comparable to the best ones presented in previous BraTS
Challenges.

Keywords: Multi-stage classifier · Random forest · Feature selection ·
Variable importance · MRI brain tumor segmentation

1 Introduction

Image processing is a powerful tool for computer-aided diagnosis especially in the
medical field. The most important advantage of medical imaging is the fact that
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examination performed non-intrusively. MR imaging and diagnosis is increas-
ingly being used for medical investigation. This article is restricted to MRI brain
imaging and provides a framework for the automated brain tumor segmenta-
tion method proposed, delimiting different types of tumors in multi-modal MRI
images. Automatic systems based on machine learning overcomes the laborious,
lengthy work of segmentation done manually by experts. It is replicable and
much faster than the segmentation performed by experts, which might be fairly
different. The most important advantage of such a system is that it can lend
assistance in determining the correct diagnosis, surgery or treatment plan and
monitor the evolution of the disease. A comprehensive study of all the partici-
pating methods at BraTS 2018 Challenges is described in paper [6].

The framework presented in this paper is an extended segmentation system of
greater complexity based on our model presented at MICCAI-BraTS 2016 [15].
This model was built on a feature extraction algorithm [14] and single-staged
random forest (RF) [11] classifiers with optimized parameters. The random forest
approach was used in few systems presented at BraTS 2017 [10,17–19]. The
segmentation results obtained showed that the tumor region is well detected,
but the contours of the whole tumor and the interior tumor tissues are not
well delimited. The source of the aforementioned errors could be the choice
of training samples used, the unbalanced database provided, and its enormous
size. These three factors cannot be counteracted by a single-stage RF classifier.
Another deficiency in our previous model is that it considered almost any spatial
relationship between the tumor tissues, according to the annotation protocol
described in [12,16].

In the current work we propose a multi-stage classifier based on the ran-
dom forest algorithm. In our current experiments we attempt to circumvent the
deficiencies of our old framework and improve the segmentation results.

The proposed framework is built around the model given in Fig. 1. The stage
I classifier detects the tumorous zone from the entire 3D MRI image. This phase
is tuned to have extremely good sensitivity. It considers the tumor zone to be
the goal of detection, and therefore this is the positive segmentation zone. Thus,
it is able to delimit the image ROI containing the tumor with a sensitivity of
approximately 0.99, which is only around 16% of the entire brain. This means
that our ROI considered in the subsequent stages is a highly reduced region.
In stage II we developed a classifier that is able to separate the images in the
two types given, i.e., LGG and HGG. Consequently, at this point our method
is split into two structurally similar branches, because the classifiers are trained
differently only on LGG or HGG images. In stage III the WT (whole tumor)
classifier delimits the whole tumor from healthy brain tissue. In stage IV the
role of the classifier is the determination of the ET (enhancing tumor) region.
In the case of HGG, this region is a considerable part of the tumor and includes
necrotic tissue regions too. The necrotic tissue inside ET is labelled with the
same class number as the non-enhancing tumor. These two tissue types had
different annotations at BraTS 2016. In the case of LGG, the segmentation of
ET is more difficult because of its small size, and it can also be confused with
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Fig. 1. Discriminative model proposed for segmentation (Each stage-classifier is binary
as described in Subsect. 2.1.)

other tissues such as vessels. Stage V tries to delimit the edema from the non-
enhancing tumor. Because of the similar visual aspects of the two tissues, this
segmentation step is error-sensitive.

The use of binary classifiers for all these classification decisions follows from
the annotation protocol. It states that “the various tissue elements (edema, non-
enhancing, enhancing, necrosis) usually follow an outside-inside sequence there-
fore one should start from the outside and delineate regions within the previous
layer. Due to this «Mozart kugel » appearance it is enough to always delimitate
what is outside and internal border should not be delimitated [12]”.

The rest of the paper is organized as follows: in Sect. 2 the proposed cas-
caded binary classification model is described, followed by Sect. 3 presenting the
validation and test results both for the segmentation and survival tasks. Finally,
conclusions are drawn and discussion and further improvements are proposed.
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2 Method

2.1 Segmentation

The delimitation of the brain tumor from the healthy tissues can be achieved by
a voxel-wise segmentation. To solve this task we propose a multi-stage discrim-
inative model based mainly on the random forest algorithm and its facilities.
Voxel-wise segmentation starts with the construction of the feature database
obtained from the annotated image database. The feature database generation
process is identical both for the segmentation (classification) and the training
phases, as well. It consists of the following steps: preprocessing, local feature
definition and extraction (Figs. 1 and 2).

Fig. 2. Discriminative model proposed for training each stage

The database used in our segmentation made up of was the training and
validation databases created for the BraTS 2018 Challenge [4]. The training set
consists of 75 low-grade and 210 high-grade MRI brain images. The image data
consists of 4 modalities T1, T1c, T2 and FLAIR, acquired from 19 different
MRI scanners using different protocols [4,7]. All the images had been segmented
manually by several experts, and the average annotation is in fact the ground
truth given in the database. The modalities are co-registered, interpolated to the
same resolution and skull-striped. The annotated regions [8,9] are labeled in 4
different classes: 0 for background and healthy tissue, 1 for NCR/NET (necrotic
and/or non-enhancing tumor), label 2 for ED (the edema) and label 4 for ET
(the enhancing tumor).

During preprocessing we handled three important artifacts: inhomogene-
ity correction, noise filtering and intensity standardization. For inhomogene-
ity reduction in MR images, we applied the N4 filter implemented in the ITK
package [1]. The anisotropic filtering from the same package was used for noise
reduction. Intensity normalization was done by histogram linear transformation
in such a way that the first and third quartiles had predefined values.
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In voxel-wise segmentation it is necessary to define a set of intensity- and
local neighboring features. The following features were extracted: first order
operators (mean, standard deviation, max, min, median, Sobel, gradient); higher
order operators (laplacian, difference of gaussian, entropy, curvatures, kurtosis,
skewness); texture features (Gabor filter); spatial context features (symmetry,
projection, neighborhoods), – the same as in our previous work.

The segmentation workflow given in Fig. 1 requires nine binary classifiers.
Each classifier is trained and evaluated on its own feature database during its
training process (Fig. 2). The global training consists of five training stages and
each stage is composed of the following four steps:

1. feature selection based on variable importance [13] provided by the random
forest;

2. incremental training of the RF stage-classifier;
3. optimization of the classification performance according to the task of the

given tumor tissue segmentation;
4. image post-processing, with the role of reducing false detections and imple-

menting the layered structure of tumor tissues.

The first step (1), feature selection based on the variable importance provided
by the RF algorithm, and the third step (3), the performance optimization of the
random forest classifier, were presented in our previous articles [14,15]. These
approaches were used to create our one-stage segmentation system presented at
the previous BraTS Challenge in 2016 [15]. In our current work we use these
algorithms in each of the five stages.

In the first step we defined 960 different features for each voxel. The RF clas-
sification algorithm is not able to deal with all the input image voxels and all
960 features previously defined, due to hardware and software limits. Therefore,
this large amount of data was handled by taking advantage of the random forest
variable importance evaluation. Our idea was to implement an iterative feature
selection algorithm presented in [14]. The main idea of the algorithm is to eval-
uate the variable importance several times on a randomly chosen part of the
feature database (Fig. 3). If the OOB error of the forest ensemble was below a
certain threshold then the variable importance was taken into consideration and
cumulated. Averaging the variable importances in the iterations the algorithm
was able to eliminate the most unimportant 20–40% of variables in each run.

Fig. 3. Feature selection algorithm
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In random forest approaches the training set is usually created out of the
existing annotated images by random subsampling. In the case of BraTS 2018
the annotated image set contains 285 MR images and each image is made up
of about 1,500,000 voxels, which means about 450 million samples. This huge
database is, in addition, extremely unbalanced. In consequence we must obtain
a well-defined database for training our random forest classifier. The solution to
this is the incremental learning procedure that consists of enlarging the current
training set by incrementally adding incorrectly classified random subsamples. In
the second step (2), this incremental learning is repeated several times until the
classification performances are adequate or the upper limit of hardware and/or
software is reached. The flowchart of the incremental learning is given in Fig. 4.

Fig. 4. Incremental learning

The classifier performance optimization (step 3) is in strong correlation with
the segmentation task. This assumes the correct choice of training parameters.
The random forest classification performance can be tuned via three important
parameters: mtires– the number of randomly chosen features used as a splitting
criterion in each node of the trees; the ntrees– the number of trees in the forest;
nnodes– the maximum number of nodes in each tree. These parameters determine
the size of the random forest ensemble. the segmentation performances, training
time and system complexity, as well. In our experiments [15] these durations can
be drastically reduced without any loss in segmentation accuracy.

The last step (4), after the training of each stage-classifier (Fig. 2), is an
image post-processing step to do with the segmentation goal of the current stage.
Here we managed to incorporate some knowledge about the tumor, such as the
number of distinct tumors in a brain, one tumor is a connected zone within the
healthy brain tissue, the tumor core is inside the edema, the enhancing tumor is
a connected zone inside the whole tumor, etc. By applying this post-processing
step we succeeded to eliminate the most of the false detections and improve the
quality of segmentation.
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2.2 Survival Prediction

Survival prediction has a considerable role, especially from a medical perspective,
as well as that of the life expectancy of the patient. It helps in monitoring the
effects of the medication and treatment applied. This prediction has to be cor-
related with the disease state and physical well-being of the patient. In this task
the only information available were the MRI scans and the age of a small number
of patients (59). In the case of this reduced dataset, prediction becomes difficult
and leads to a high margin of error. In our survival prediction approach, we eval-
uated first-order statistics of feature values used in the segmentation phase. The
mean and standard deviation of features were computed in the three segmented
regions: edema, enhancing tumor and non-enhancing tumor. In order to include
the size of each region, the statistical values were weighted by the number of
voxels detected over the size of the brain in voxels. During the segmentation
task, we determined a total of 120 local features with high importance values.
Hence, the means and standard deviations of these 120 features are computed
for the 3 tumoral regions, giving a total of 720 features. In our survival predic-
tion method, we trained a random forest regressor with these features, limited
the number of trees to 300 and considered the mean squared error as a split
criterion. In order to reduce the effect of overfitting, the number of leaves on
each tree was also maximized to 128.

3 Results

3.1 Segmentation

The proposed discriminative model is quite laborious and the proposed classifiers
have to be tuned separately (Fig. 1). For training we used well-chosen samples,
provided by incremental learning, from the entire BraTS 2018 training dataset.
In training, beginning with Stage II, we created different classifiers for HGG
and LGG as explained above. The results obtained were evaluated on both sets,
namely, the complete training and validation sets, and on the test set within the
challenge.

The stage I classifier determines the ROI (region of interest) that contains the
tumor region with a high probability. This binary classifier was trained on the
whole brain in order to delimit the healthy region from the tumoral region. In this
step we used an incrementally trained classifier and applied a post-processing
step consisting of a region dilation of 3 voxels. In addition, the two most impor-
tant connected zones were taken into consideration. The results of the last three
incremental steps are given in Table 1 and the improvement brought by the post-
processing in Table 2. In this way the ROI obtained is about twice as large as the
whole tumor, but the sensitivity reached on the complete training set is 0.989.
The correct determination of this ROI has a crucial role in the subsequent stages.
Table 1 and Fig. 5a show the average of the sensitivity after the binary segmenta-
tion and post-processing in stage I. The ROI obtained reduces the image region
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Fig. 5. Stage I segmentation

Table 1. Incremental training of Stage I segmentation

Stage I Training Test

Sens. PPV ROI% Sens. PPV ROI%

Step 01 0.9959 0.5184 0.1143 0.9319 0.508 0.1257

Step 02 0.9971 0.4526 0.1301 0.9712 0.444 0.1523

Step 03 0.9984 0.4299 0.1615 0.9898 0.4257 0.1642

and, implicitly, the feature database, by about 8 times (Fig. 5b). This allows us
to create a more precise classifier in the next stages.

In stage II the images are classified into two types with regard to segmen-
tation. In the HGG images, the enhancing tumor is a considerable part of the
whole tumor and may include some necrotic tissue. In LGG images, the greater
part of the tumor consists of edema and non-enhancing tumor. By applying this
kind of LGG-HGG separation, we could reduce the effects of unbalanced data
(especially the ET in LGG). The image classes obtained correspond in a pro-
portion of more than 95% to the medical LGG-HGG classification given for the
training set. The subsequent stages (III, IV and V) are trained differently for
LGG and HGG images.

The stage III classifier is applied only on the ROI. Its segmentation task
is to delimit the remainder of healthy tissue from the WT. In this stage the
segmentation with post-processing creates two disjunct regions, considering the
tumor zone a connected region inside the healthy tissue. The Dice scores obtained
for the whole tumor (WT) are 0.911 on the training and 0.885 on the validation
sets (Table 3).

The stage IV classifier is applied only inside the WT region, and its task is
to delimit the enhancing tumor. In the case of HGG images, the ET forms a
significant connected region including some necrotic tissue. In the case of LGG
images, the region is only a small piece in the WT and may easily be confused
with vessels. If the segmentation obtains an ET region of less than 100 voxels,
it will be neglected and considered to be a vessel. If the ET is near vessels, false
detections are often obtained.



342 S. Lefkovits et al.

Fig. 6. Segmentation example (Rows represent the 4 MRI modalities and the segmen-
tation obtained. Column 1 is the annotated contour of edema; column 2 is the segmen-
tation result of it. Column 3 is the annotation contour of the ET⊃NECR; column 4 is
the segmentation results of it.)
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Table 2. Post-processing: Improvements in sensitivity

Sensitivity PPV ROI% Dice

Classif. 0.963 0.581 0.112 0.707

Step 03 0.990 0.426 0.164 0.574

Table 3. Segmentation results of Stage IV & V on the validation database

Label Dice Hausdorff95

ET WT TC ET WT TC

Training Mean 0.880 0.913 0.911 3.433 4.721 5.434

HGG StdDev 0.067 0.064 0.061 6.973 7.580 7.244

Training Mean 0.808 0.916 0.908 3.057 2.725 2.907

LGG StdDev 0.320 0.045 0.120 5.974 2.050 3.399

Validation Mean 0.801 0.883 0.786 5.811 7.410 11.511

HGG StdDev 0.161 0.082 0.180 9.418 12.644 14.141

Validation Mean 0.489 0.891 0.415 10.265 4.741 15.858

LGG StdDev 0.420 0.081 0.285 8.864 2.951 9.875

Final Mean 0.730 0.885 0.702 6.349 6.803 12.499

Validation StdDev 0.275 0.081 0.259 9.392 11.230 13.349

Final Mean 0.684 0.830 0.657 6.186 9.180 11.649

Test StdDev 0.302 0.193 0.308 9.394 13.062 12.670

The stage V classifier has the most difficult task working on the WT, exclud-
ing the ET obtained in stage IV. It has to delimit the edema from the non-
enhancing tumor tissues. In the case of HGG images, this stage contains another
classifier that finds the necrotic tissues inside the ET. The results obtained on the
training validation and test images are given in Table 3. A visual segmentation
sample is depicted in Fig. 6.

3.2 Survival Prediction

The results obtained in survival prediction are in strong correlation with the seg-
mentation performances. Concerning the MSE parameter (Mean Squared Error),
meaning the squared difference in number of days, we managed to take the first
place on the validation database, as shown on the leaderboard [5] and in Table 4.
The individual results of the test have no basis for comparison to the other teams
owing to the lack of their results. The comparative study will be published by
the organizers of BraTS 2018 [6].
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Table 4. Survival prediction of the validation database

Team Cases Eval. Acc. MSE median SE std SE Spearman R

lefko 28 0.429 76081.29 24352 111586.8 0.342

Ranking 13 1 4 2 5

4 Conclusion and Discussion

In this paper we developed a five-stage discriminative model for brain tumor
segmentation based on multi-modal MRI data. Our five-stage model implements
the layered tissue structure by adequate training of binary classifiers and image
post-processing in each segmentation stage. In each stage we attempted to solve
the four important issues concerning discriminative models. Our results show
that binary classifiers are very efficient for the layered segmentation task. One of
the most important results is the determination of a ROI that has to enclose the
whole tumor with a very high probability. In stage I, the sensitivity attained is
0.989, with a PPV of 0.426. This step reduces the size of the feature database by
about 8 times and provides a reliable ROI for the next segmentation stages. Fur-
thermore, the LGG-HGG separation increased the Dice score by 2%. The WT
segmentation reached a Dice score of about 0.885 both on the training and vali-
dation sets [5]. This result is comparable to the most well-performing methods.
In the test set, the reported Dice decreased by 5%, to 0.83. Analysing the test set,
we came to the conclusion that the test set contained many HGG images with
different visual aspects compared to the training or validation images. The finals
results of the survival task in correlation with segmentation performances will be
published soon by the BraTS organizers. In our opinion, the MSE score is much
more relevant than the accuracy that considers three disjunct time periods as
a crisp set (less than 10 months, between 10–15 months, more than 15 months).
The system developed is a complex implementation using a large variety of soft-
ware packages and modules such as ITK in C++ [1], Java, ImageJ and Fiji with
Trainable Weka Segmentation [2], the random forest package from R [3], Matlab
for performance evaluation and image conversion. Our system is quite complex
and still we are working on its dockerized version.
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Abstract. Nowadays, there are various kinds of methods in medical
image segmentation tasks, in which Cascaded FCN is an effective one.
The idea of this method is to convert multiple classification tasks into
a sequence of two categorization tasks, according to a series of sub-
hierarchy regions of multi-modal Magnetic Resonance Images. We pro-
pose a model based on this idea, by combining the mainstream deep
learning models for two dimensional images and modifying the 2D model
to adapt to 3D medical image data set. Our model uses the Inception
model, 3D Squeeze and Excitation structures, and dilated convolution
filters, which are well known in 2D image segmentation tasks. When seg-
menting the whole tumor, we set the bounding box of the result, which
is used to segment tumor core, and the bounding box of tumor core seg-
mentation result will be used to segment enhancing tumor. We not only
use the final output of the model, but also combine the results of inter-
mediate output. In MICCAI BraTs 2018 gliomas segmentation task, we
achieve a competitive performance without data augmentation.

Keywords: 3D-SE-Inception-ResNet · Cascaded FCN · Anisotropic ·
Medical image segmentation

1 Introduction

Image segmentation has always been a challenging task in the field of com-
puter vision. Especially in medical image field, multi-modal Magnetic Resonance
Images can be used to segment human body pathological tissue. Many medical
committees such as MICCAI, have always been focusing on the evaluation of
state-of-the-art methods for the segmentation of brain tumors in multi-modal
Magnetic Resonance Imaging (MRI) scans. In 2D image processing fields, many
effective models were proposed. AlexNet, presented by Krizhevsky et al. [12],
won the image classification task of ImageNet 2012. Since then the method of
deep learning has aroused researchers’ attention. Later, Deep learning models
have been kept explosive growth. VGGNet [17], used a series of small convolu-
tion filters to substitute for large convolution filters. GoogleNet [19] proposed
c© Springer Nature Switzerland AG 2019
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a multi scale concept, by using different size filters to extract information, and
its improved version Inception [18], creatively used 1 ∗ 1 convolution filters to
reduce the number of model parameters, while ensuring the model depth without
increasing the parameters of the model. Squeeze and Excitation Networks [11], a
kind of attention mechanism, introduced the attention mechanism into the spa-
tial dimension, further improving the performance of the model. However, using
multi-modal Magnetic Resonance Images to segment human tissue has been very
challenging. Because medical image data is more complex than ordinary image
data, both plane information and spatial information should be considered. So
some researchers try to solve the problem of medical image segmentation by
using deep learning method. In the first attemp, the modified variants of 2D
CNN was adopted, by using aggregated adjacent slices [6] or orthogonal planes
[15,16], but this method did not take into account space information, it couldn’t
segment object accurately. Recently, a variety of 3D models had been developed
to segment objects from volumetric data and gained competitive performance.
For examples, 3D U-Net [8] allows end-to-end training and testing for volu-
metric image segmentation. VoxResNet [5], a deep voxelwise residual network,
improves the volumetric segmentation performance by seamlessly integrating the
low-level image appearance features, implicit shape information and high-level
context together.

The contribution of this paper are four-fold. First, we combine the main-
stream segmentation models of 2D CNNs [13] and modified Inception structure
to deal with 3D images. In the process of designing the model, we also consider
the computation performance, and design two kinds of Inception layer, which
are named as Lower Inception and Higher Inception. Second, we apply the 3D
Squeeze and Excitation structure to our model. Third, we use multi-scale filters
to downsample the 3D feature maps, the loss of valid information can be better
reduced when resizing the 3D feature maps. Fourth, our model uses the resid-
ual connection to make sure the information can be transferred better and the
training process of the model can be accelerated.

2 Methods

2.1 Cascaded Framework

The cascaded framework [7,22] is designed to simplify segmentation problems.
We use triple cascaded networks to segment substructures of brain tumor, each
network can be seen as a binary segmentation network. While the first network
segments the whole tumor task according to the MRI, a bounding box of the
whole tumor is obtained. The region of the input images is cropped based on the
bounding box, and the cropped result is used as the input of the second network
to segment tumor core. After segmenting tumor core, another smaller bounding
box is obtained. The image region is resized according to the smaller bounding
box of the tumor core. Then the resized image region is used as the input of the
third network to segment the enhancing tumor core. During the training phase,
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the bounding boxes are decided by the ground truth. In the testing stage, the
bounding boxes are generated based on the segmentation results.

2.2 Neural Networks Architecture

The overall architecture of the model we proposed is shown in Fig. 1. It includes
inception layers, SE structures, reduction layers and residual connection. High-
Level Inception uses dilated convolution. The model contains a great deal of 2D
image mainstream model structures. Considering the huge advantages of their
own structures in 2D images, modifying them to adapt the 3D medical image
data can have better effects.

Low-Level Inception. The Low-level Inception structure is shown in Fig. 2.
We use 1 ∗ 3 ∗ 3, 1 ∗ 5 ∗ 5 and 1 ∗ 7 ∗ 7 convolution filters to better capture the
information of feature maps early in the networks. Why do we design model like
this? There are several model design principles [20]. The first principle is to avoid
representational bottlenecks, especially early in the network. Any feed-forward
networks can be seen as an acyclic graph from input to output. Once the model is
defined, the flow direction of information will be decided. When the information
passes the model, information is fading. We use the multi large receptive fields
early in the network to avoid bottlenecks with extreme compression. In AlexNet
[12], Krizhevsky et al. used the 11 ∗ 11 receptive fields. However, large convolu-
tion filters have a serious shortcoming, i.e., large convolution filters have a huge
number of training parameters. The parameters of 7 ∗ 7 receptive fields are 5
times as much as those of 3 ∗ 3 receptive fields. But large receptive fields can
better capture the space information. We should consider the trade-off between
computation performance and model complexity, so we apply the large convolu-
tion filters only to the first four layers. We use different multi-scale size filters to
better capture the space information, while avoiding representation bottleneck.

3D Squeeze and Excitation Structure. Squeeze and Excitation structure
was proposed by Hu et al. [11] in 2017, they used the SENet to get a top per-
formance in the ImageNet 2017. The innovation of this model is to explicitly
model the interdependence between feature channels. Specifically, it is impor-
tant to acquire each characteristic channel automatically through the way of
learning, improve the useful features and restrain the small features of the cur-
rent task in accordance with its importance. Based on this idea, we redefine the
squeeze and excitation operation in our model. For any given transformation
Ftr : X → U,X ∈ R

D′×W ′×H′
, U ∈ R

D′×W ′×H′
. We take Ftr as a standard 3D

convolution operator. V = [V1, V2, ..., VC ] denotes the learned set of filter kernels,
where VC refers to the parameters of the c-th filter. We denote U = [u1, u2, ..., uc]
as the output of Ftr, where

uc = vc ∗ X =
C′∑

s=1

vs
c ∗ xs (1)
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Fig. 1. The architecture of the model we proposed.
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Fig. 2. The architecture of Low-Level Inception

Here ∗ denotes convolution operation, vc = [v1
c , v

2
c , ...v

c′
c ] and X = [x1, x2, ...xc′

],
vs
c is a 3D spatial kernel, and represents a single channel of vc, which acts on the

corresponding channel of X.

3D Squeeze: We perform feature compression along the space dimension, turn-
ing each of the three dimensional characteristic channels into a real number.
This real number has a global receptive field to some extent, and the output
dimension matches the number of input characteristic channels. It represents
the global distribution of responses on characteristic channels. Moreover, the
whole receptive field can be obtained near the input layer.

zc = Fsq(uc) =
1

D × W × H

D∑

i=1

W∑

j=1

H∑

k=1

uc(i, j, k) (2)

Here, a statistic z ∈ R
c is generated by shrinking U through spatial dimensions

D × W × H, zc denotes the c-th element of z.

3D Excitation: Excitation operation is a mechanism similar to recurrent neural
network’s middle gate. Parameters are used to generate weights for each charac-
teristic channel, the parameters are learned to explicitly model the correlation
between feature channels. Then, we use the sigmoid activation as a simple gating
mechanism:

s = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)) (3)

where δ refers to the ReLu function [13], W1 ∈ R
C
r ×C and W2 ∈ R

C× C
r . After

ReLu function, we add two fully-connected layers to limit model complexity. r
denotes the reduction ration.

Output: The final output is a reweight operation. It’s obtained by rescaling the
transformation output U with the activations:

x̃c = Fscale(uc, sc) = sc · uc (4)
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where X̃ = [x̃1, x̃2, ..., x̃c], and Fscale(uc, sc) refers to channel-wise multiplication
between the feature map uc ∈ R

D×W×H and the scalar sc. 3D SE structure is a
kind of attention mechanism that can pay attention to 3D channels relationship.
c denotes the channels, r denotes ration (In our model, the ration r = 4, 8 and
16, we tested the model separately). The SE structure is shown in Fig. 3.

Fig. 3. The architecture of 3D squeeze and excitation

Reduction Structure. Reduction structure is used for reduction feature maps.
As mentioned before, using multi-scale can capture more spatial information.
Different variants of this blocks (with various number of filters) can be set by
users, here we set the number of m, n, o, k and I as 8. As shown in Fig. 4,
reduction structure can use multi-scale convolution to capture the information
from input feature maps. m, n, o, k and i can be set arbitrarily. We consider
the simplified model, so set all the variables to the same number 8 and use
1∗1∗1 convolution. In the design principles we mentioned earlier [20], the second
principle is intent to let the spatial aggregation be done over lower dimensional
embeddings without affecting representational power. Considering that these
signals are easy to be compressed, dimensionality reduction will speed up the
learning process. We redesign the reduction structure according to this idea.

High-Level Inception. The High-level Inception structure is shown in Fig. 5.
The third principle is to factorize a large convolution kernel into smaller ones.
Convolutions with large filters have a huge computation complexity. For example,
in the case of the same number of convolution kernel, 1 ∗ 5 ∗ 5 convolution is
25/9 = 2.78 times more computationally complex than that of 1 ∗ 3 ∗ 3. But
simply reducing the size of the convolution core will cause information loss.
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Fig. 4. The architecture of reduction module

However 1 ∗ 5 ∗ 5 convolution can be replaced by multi-layer small convolution
networks. Look at the 1 ∗ 5 ∗ 5 network as full convolution, each output is a
convolution kernel slipping on the input, it can be replaced by two 1 ∗ 3 ∗ 3
convolutional layer. The convolution of High-Level Inception uses the dilated
convolution kernels. The dilated convolution uses small filters but has a larger
receptive fields, without increasing the parameters. We set the dilation rate 1,
2, 3 and 3, 2, 1 corresponding to each High-Level Inception layers in order. The
High-Level Inception architecture we designed can be seen in Fig. 5.

Fig. 5. The architecture of High-Level Inception
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Residual Connection. ResNet was put forward in 2015 by He et al. [10], it won
the first place in the classification competition of ImageNet. With the increasing
of network depth, the problem of the disappearance of the gradient is becoming
more and more obvious. The training of the network has become quite difficult.
The basic idea of ResNet is to introduce “shortcut connection” that can skip
one or more layers. ResBlock can be defined as:

y = F (x,wi) + x (5)

Here x and y are the input and output vectors of the layers considered. The func-
tion F (x,wi) represents the residual mapping to be learned. If the dimensions
of x and F don’t equal, we can perform a linear projection Ws by the shortcut
connections to match the dimensions:

y = F (x,wi) + Wsx (6)

Ws is used only when matching dimensions.

Prediction and Fusion. In the prediction phase, we not only use the final
result but also use the intermediate output results, and concatenate them as the
final prediction result. In the training phase, each neural network is trained in
axial, sagittal and coronal views. During the test phase, predictions are fused
to get the final segmentation. We average the softmax outputs in these cascade
networks. Fusion structure is a simple 3 ∗ 1 ∗ 1 convolution, as one can see the
green block in the Fig. 1. The overall model decomposes 3 ∗ 3 ∗ 3 convolution
kernels to 1 ∗ 3 ∗ 3 convolution and 3 ∗ 1 ∗ 1 convolution, 1 ∗ 3 ∗ 3 convolutions
are used to extract the datasets features and 3 ∗ 1 ∗ 1 convolutions are used to
fusion the datasets spatial features.

3 Experiments and Results

Brain tumor segmentation is a challenging task, which has attracted a lot of
attentions in the past few years. We use the BRATS 2018 dataset [1,2], which
is composed of multiple segmentation subproblems. The whole tumor region is
identified in a set of multi-modal images, tumor core areas and active tumor
regions [4,14].

Medical Image Data. Brats 2018 dataset contains real volumes of 210 high-
grade and 75 low-grade glioma subjects. For each patient, T1Gd, T1, T2, FLAIR
and Ground Truth MR volumes are available. These 285 subjects are used in
training set, and there are 66 other subjects as the validation dataset. Con-
sidering the unbalance distribution of the training data, we expand the LGG
dataset 3 times based on the original one, during the training data loading pro-
cess, each LGG dataset copies and reloads 3 times. When training the network,
we randomly choose 5 subjects as the input. All of these volume average size is
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155 ∗ 240 ∗ 240, we resize the volume and extract the voxel of specified shape in
the middle volume as the final training input. The biggest black box outside rep-
resents the source MRI data set, and the middle gray bounding box represents
the valid volumes (include human brain tissue), red point is the core of the tar-
get size train patch. In the valid volumes bounding box, dotted line box random
crops with the center of the red point, it’s used to train our neural networks, we
train three cascaded anisotropic networks, use the different patch size to train
the different network. We extract the (26, 120, 120) patch size for training the
whole tumor segmentation network, (26, 72, 72) patch size for training the tumor
core segmentation network and (26, 48, 48) patch size for training the enhancing
tumor segmentation network. The details are shown in Fig. 6.

Fig. 6. Data preprocessing details sketch map (Color figure online)

Training Details. Our network is implemented in Tensorflow and NiftyNet,
no external data was used during the training. We use Adam optimizer to train,
and use PReLu [9] as the activation, set the batch-size = 5, weight decay =
10−7, learning rate = 10−3, max-iteration = 20k. We train on the GTX 1080Ti
GPU. For the data pre-processing, the images are normalized by the mean and
standard deviation. And we use the Dice coefficient as the model loss function.

Segmemtaion Results. In order to test the influence of parameter r on the
model, we perform three groups of experiments. However, the experiments show
that too large or too small parameter r can not get the best result, a moderate
parameter r can achieve a better result. More details are shown in Tables 1, 2
and 3. The result of Table 2 is the best among all of them. From the perspective
of SE structure, parameter r relates to the number of the first fully connected
layer (fc = c/r × 1 × 1 × 1), when we give the parameter r a small number,
the number of the first FC layer will be quite large, it will increase computation
complexity, makes the model hard to train, as shown in Table 1. But if we set
the parameter a large number, the number of the first FC layer will be small,
it will make the model difficult to learn the channel characteristics better, as
can be seen in Table 3. At present, there is no authoritative idea on how to set
the parameter r. You can only adjust the parameter r according to the result
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of experiments. It is regrettable that we failed to submit our best results before
the deadline. Table 4 shows the our official scores computed by the organizer of
the challenge. Besides, we also test our model on the Brats 2015 dataset with
good results. The detail results of our model are shown as Table 5.

Table 1. Table shows the result of our model predict (ration = 4).

Data Set Dice Sensitivity Specificity Hausdorff95

WT TC ET WT TC ET WT TC ET WT TC ET

Training 0.729 0.885 0.834 0.805 0.924 0.879 0.998 0.992 0.996 5.657 16.999 7.082

Validation 0.784 0.878 0.807 0.814 0.935 0.844 0.998 0.991 0.997 4.380 19.034 9.408

Table 2. Table shows the result of our model predict (ration = 8).

Data Set Dice Sensitivity Specificity Hausdorff95

WT TC ET WT TC ET WT TC ET WT TC ET

Training 0.773 0.910 0.872 0.832 0.929 0.886 0.998 0.994 0.997 3.738 6.938 4.644

Validation 0.798 0.901 0.813 0.818 0.933 0.831 0.998 0.993 0.997 4.158 6.371 8.840

Table 3. Table shows the result of our model predict (ration = 16).

Data Set Dice Sensitivity Specificity Hausdorff95

WT TC ET WT TC ET WT TC ET WT TC ET

Training 0.768 0.910 0.868 0.822 0.918 0.879 0.998 0.994 0.997 3.974 6.878 4.841

Validation 0.796 0.903 0.818 0.810 0.928 0.820 0.998 0.993 0.998 3.971 6.255 8.371

Table 4. Performance of proposed method on Test Dataset (model ration = 4).

Label Dice-ET Dice-WT Dice-TC Hausdorff95-ET Hausdorff95-WT Hausdorff95-TC

Mean 0.724 0.864 0.772 5.353 9.131 8.115

StdDev 0.277 0.138 0.263 10.431 14.717 12.041

Median 0.828 0.909 0.889 2.236 3.317 3.742

25quantile 0.710 0.857 0.727 1.414 2.236 2

75quantile 0.879 0.938 0.928 3.317 6.164 8.108

Table 5. Brats 2015 test set results: we rank 8th on the Brats 2015 leaderboard.

Data Set Dice Positive Sensitivity Rank

WT TC ET WT TC ET WT TC ET WT TC ET

Test 0.86 0.73 0.63 0.85 0.82 0.61 0.89 0.71 0.70 14.25 15.25 32.50
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4 Conclusion

The results of all participants can be seen in [3], compared with other partici-
pants, our results can achieve more competitive performance than many of them.
As is shown above, setting the model parameter r = 8 can achieve better results
than others. We don’t perform enough parameter adjustment experiments and
don’t use other optimization algorithms. When processing data, we only use sin-
gle volume size. In the future, we plan to integrate convolution CRFs [21] and
self-attention of 2D image segmentation into our model.
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Abstract. Brain tumor is one of the leading causes of cancer death. Accurate
segmentation and quantitative analysis of brain tumor are critical for diagnosis
and treatment planning. Since manual segmentation is time-consuming, tedious
and error-prone, a fully automatic method for brain tumor segmentation is
needed. Recently, state-of-the-art approaches for brain tumor segmentation are
built on fully convolutional neural networks (FCNs) using either 2D or 3D
convolutions. However, 2D convolutions cannot make full use of the spatial
information of volumetric medical image data, while 3D convolutions suffer
from high expensive computational cost and memory demand. To address these
problems, we propose a novel Separable 3D U-Net architecture using separable
3D convolutions. Preliminary results on BraTS 2018 validation set show that
our proposed method achieved a mean enhancing tumor, whole tumor, and
tumor core Dice scores of 0.74932, 0.89353 and 0.83093 respectively. Finally,
during the testing stage we achieved competitive results with Dice scores of
0.68946, 0.83893, and 0.78347 for enhancing tumor, whole tumor, and tumor
core, respectively.

Keywords: Separable � Segmentation � BraTS �
Convolutional neural networks

1 Introduction

Image segmentation, especially semantic segmentation, is a fundamental and classic
problem in computer vision. It refers to partitioning an image into several disjoint
semantically meaningful parts and classifying each part into a pre-determined class. In
the application of brain tumor segmentation, the task includes the division of several
sub-regions, such as GD-enhancing tumor, peritumoral edema, and the necrotic and
non-enhancing tumor core [1]. Accurate segmentation and quantitative analysis of
brain tumor are critical for diagnosis and treatment planning. Generally, manual seg-
mentation of brain tumor is known to be time-consuming, tedious and error-prone.
Therefore, there is a strong need for a fully automatic method for brain tumor seg-
mentation. However, brain tumor segmentation is a challenging task because MR
images are typically acquired using various protocols and magnet strengths, which
results in the non-standard range of MR images. In addition, brain tumors can appear
anywhere in the brain, and their shape and size vary greatly. Furthermore, the intensity
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profiles of tumor regions are largely overlapped with healthy parts. Due to the chal-
lenge of brain tumor segmentation and the broad medical prospect, many researchers
have proposed various methods to solve the problem of brain tumor segmentation.

Brain tumor segmentation methods can be divided into different categories
according to different principles [2]. Broadly, these methods can be divided into two
major categories: generative methods and discriminative methods. Generative methods
typically rely on the prior information about the appearance of both healthy tissues and
tumors. The proposed models often regard the task of segmentation as a problem of a
posteriori distribution estimation. On the contrary, discriminative methods use very
little prior information and typically rely on a large number of low-level image features
to learn the distribution from the annotated training images.

More recently, due to the success of convolutional neural networks (CNNs), great
progress has been made in the field of computer vision. At the same time, many deep
learning based brain tumor segmentation methods have been proposed and achieved
great success. Havaei et al. [3] proposed a two-pathway architecture with a local
pathway and a global pathway, which can simultaneously exploit both local features
and more global contextual features. Kamnitsas et al. [4] proposed an efficient fully
connected multi-scale CNN architecture named deepmedic that uses 3D convolution
kernels and reassembles a high resolution and a low resolution pathway to obtain the
segmentation results. Furthermore, they used a 3D fully connected conditional random
field to effectively remove false positives. Isensee et al. [5] proposed 3D U-Net, which
carefully modified the popular U-Net architecture and used a dice loss function to cope
with class imbalance. They achieved competitive results on the BraTS 2017 testing
data. Kamnitsas et al. [6] introduced EMMA, an ensemble of multiple models and
architectures including deepmedic, FCNs and U-Net. Due to the heterogeneous col-
lection of networks, the model is insensitive to independent failures of each component
and has good generalization performance. They won first place in the final testing stage
of the BraTS 2017 challenge among more than 50 teams.

Although so many achievements have been made, the progress of medical image
analysis is slower than that of static images, and a key reason is the 3D properties of
medical images. This problem also occurs in the tasks of video understanding. To solve
this problem, Xie et al. [7] proposed S3D model by replacing 3D convolutions with
spatiotemporal-separable 3D convolutions. This model significantly improved on the
previous state-of-the-art 3D CNN model in terms of efficiency.

Inspired by S3D architecture for video classification and the state-of-the-art U-Net
architecture for medical image segmentation, we propose a novel framework named
S3D-UNet for brain tumor segmentation. To make full use of 3D volumes, we design a
new separable 3D convolution by dividing each 3D convolution into three branches in
a parallel fashion, each with a different orthogonal view, namely axial, sagittal and
coronal. We also propose a separable 3D block that takes advantage of the state-of-the-
art residual inception architecture. During the testing stage we achieved competitive
results with Dice scores of 0.68946, 0.83893, and 0.78347 for enhancing tumor, whole
tumor, and tumor core, respectively [8].
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2 Methods

2.1 Dataset

The brain tumor MRI dataset used in this study are provided by BraTS’2018 Challenge
[1, 9–11]. The training dataset includes multimodal brain MRI scans of 285 subjects, of
which 210 are GBM/HGG and 75 are LGG. Each subject contains four scans: native
T1-weighted (T1), post-contrast T1-weighted (T1c), T2-weighted (T2), and T2 Fluid
Attenuated Inversion Recovery (FLAIR). All the subjects in the training dataset are
provided with ground truth labels, which are segmented manually by one to four raters.
Annotations consist of the GD-enhancing tumor (ET - label 4), the peritumoral edema
(ED - label 2), and the necrotic and non-enhancing tumor core (NCR/NET - label 1).
The validation and testing datasets include multimodal brain MRI scans of 66 subjects
and 191 subjects which are similar to the training dataset but have no expert seg-
mentation annotations and the grading information.

2.2 Data Pre-processing

To remove the bias field caused by the inhomogeneity of the magnetic field and the
small motions during scanning, the N4ITK bias correction algorithm [12] is first
applied to the T1, T1c and T2 scans. The multimodal scans in BraTS 2018 were
acquired with different clinical protocols and various scanners from multiple institu-
tions [1], resulting in non-standardized intensity distribution. Therefore, normalization
is a necessary stage of processing multi-mode scanning by a single algorithm. We use
the histogram matching algorithm [13] to transform each scan to a specified histogram
to ensure that all the scans have a similar intensity distribution. We also resize the
original image of 240� 240� 155 voxels to 128� 128� 128 voxels by removing as
many zero background as possible. This processing not only can effectively improve
the calculation efficiency, but also retain the original image information as much as
possible. In the end, we normalize the data to have a zero mean and unit variance.

2.3 Network Architecture

S-3D Convolution Block. Traditional 2D CNNs for computer vision mainly involve
spatial convolutions. However, for video applications such as human action, both
spatial and temporal information need to be modeled jointly. By using 3D convolution
in the convolutional layers of CNNs, discriminative features along both the spatial and
the temporal dimensions can be captured. 3D CNNs have been widely used for human
action recognition in videos. However, the training of 3D CNN requires expensive
computational cost and memory demand, which hinders the construction of a very deep
3D CNN. To mitigate this problem, Xie et al. [7] proposed S3D model by replacing 3D
convolutions with spatiotemporal-separable 3D convolutions. Each 3D convolution can
be replaced by two consecutive convolutional layers: one 2D convolution to learn
spatial features and one 1D convolution to learn temporal features, as shown in Fig. 1
(a). By using separable temporal convolution, they build a new block using inception
architecture called “temporal inception block”, as shown in Fig. 1(b).
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Unlike video data, volumetric medical data have three orthogonal views, namely
axial, sagittal and coronal, and each view has important anatomical features. To
implement the separable 3D convolution directly, we need to specify which view as the
temporal direction. Wang et al. [14] propose a cascaded anisotropic convolutional
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Fig. 1. (a) An illustration of separable 3D convolution. A 3D convolution can be replaced by
two consecutive convolutional layers. (b) Temporal separable inception block.
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Fig. 2. (a) We divide a 3D convolution into three branches in a parallel fashion. (b) Our
proposed S3D block, which takes advantage of the residual inception architecture.
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neural network consisting of multiple layers of anisotropic convolution filters, which
are then combined with multi-view fusion to reduce false positives. Each view of this
architecture is similar to a separable 3D convolution, and the multi-view fusion can be
view as an ensemble of networks in three orthogonal views that utilize 3D contextual
information for higher accuracy. They train a neural network for each view, it is not
end-to-end and requires longer time for training and testing. To fully utilize 3D con-
textual information and reduce computational complexity, we divide a 3D convolution
into three branches in a parallel fashion, each with a different orthogonal view, as
shown in Fig. 2(a). Furthermore, we propose a separable 3D block that takes advantage
of the residual inception architecture, as shown in Fig. 2(b).

S3D U-Net Architecture. Our framework is based on the U-Net structure proposed by
Ronneberger et al. [15] which consists of a contracting path to analyze the whole image
and a symmetric expanding path to recovery the original resolution, as shown in Fig. 3.
The U-Net structure has been widely used in the field of medical image segmentation
and has achieved competitive performance. Several studies [5, 16] have demonstrated
that a 3D version of U-Net using 3D volumes as input can produce better results than
an entirely 2D architecture.

Just like the U-Net and its extensions, our network has an autoencoder-like
architecture with a contracting path and an expanding path, as shown in Fig. 3. The
contracting path encodes the increasingly abstract representation of the input, and the
expanding path restores the original resolution. Similar to [5], we refer to the depth of
the network as level. Higher levels have lower spatial resolution but higher dimensional
feature representations and vice versa.

S3D block without 
residual connection

16×1283 16×1283

S3D block

32×643 32×643

64×32364×323

128×163 128×163

256×83 256×83

128×163 128×163
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32×643 32×643

16×1283 3 ×1283

256×83

1×1×1 convolution

Transition down

Transition up

Fig. 3. Schematic representation of our proposed network.
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The input to the contracting path is a 128� 128� 128 voxel block with 4 chan-
nels. The contracting path has 5 levels. Except for the first level, each level consists of
two S3D blocks. It is worth noting that each convolution in S3D block is followed by
instance normalization [17] and LeakyReLU. Different levels are connected by tran-
sition down block to reduce the resolution of the feature maps and double the number
of feature channels. Transition down module consists of a 3� 3� 3 convolution with
stride 2 followed by instance normalization and LeakyReLU. After the contracting
path, the size of the feature maps is decreased to 8� 8� 8.

In order to recover the input resolution at expanding path, we first adopt a transition
up module to upsample the previous feature maps and halve the number of feature
channels. Transition up module consists of a transposed 3� 3� 3 convolution with
stride 2 followed by instance normalization and LeakyReLU. Then the feature maps
from contracting path are concatenated with feature maps from expanding path via long
skip connections. At each level of expanding path, we use a 1� 1� 1 convolution
with stride 1 to halve the number of feature channels, followed by two S3D blocks that
are the same as in the contracting path. The final segmentation is done by a 1� 1� 1
convolutional layer followed by a softmax operation among the objective classes.

2.4 Loss Function

The performance of neural network depends not only on the choice of network
structure but also on the choice of the loss function [18]. Especially for severe class
imbalance, the choice of loss functions becomes more important. Due to the physio-
logical characteristics of brain tumors, the segmentation task has an inherent class
imbalance problem. Table 1 illustrates the distribution of the classes in the training data
of BraTS 2018. Background (label 0) is overwhelmingly dominant. According to [5],
we apply a multiclass Dice loss function to approach this issue. Let R be the one hot
coding ground truth segmentation with voxel values rkn, where k 2 K being the class at
voxel n 2 N. Let P be the output the network with voxel values pkn, where k 2 K being
the class at voxel n 2 N. The multiclass Dice loss function can be expressed as

DL ¼ 1� 2
K

X

k2K

P
n p

k
nr

k
nP

n p
k
n þ

P
n r

k
n

ð1Þ

2.5 Evaluation Metrics

Multiple criteria are computed as performance metrics to quantify the segmentation
result. Dice coefficient (Eq. 2) is the most frequently used metric for evaluating medical
image segmentation. P1 is the area that is predicted to be tumor and T1 is true tumor

Table 1. The distribution of the classes in the training data of BraTS 2018.

Background NCR/NET ED ET

Percentage 98.88 0.28 0.64 0.20
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area. It measures the overlap between the segmentations and ground truth with a value
between 0 and 1. The higher the Dice score, the better the segmentation performance.

DiceðP; TÞ ¼ P1 ^ T1j j
P1j j þ T1j jð Þ=2 ð2Þ

Sensitivity and specificity are also commonly used statistical measures. The sen-
sitivity (Eq. 3), also called true positive rate, defined as the proportion of positives that
are correctly predicted. It measures the portion of tumor regions in the ground truth that
are also predicted as tumor regions by the segmentation method. The specificity
(Eq. 4), also called true negative rate, defined as the proportion of negatives that are
correctly predicted. It measures the portion of normal tissue regions T0ð Þ in the ground
truth that are also predicted as normal tissue regions P0ð Þ by the segmentation method.

Sens(P; TÞ¼ P1 ^ T1j j
T1j j ð3Þ

Spec(P; TÞ¼ P0 ^ T0j j
T0j j ð4Þ

The Hausdorff Distance (Eq. 5) is used to evaluates the distance between the
segmentation boundary and the ground truth boundary. Mathematically, it is defined as
the maximum distance of all points p on the surface @P1 of a given volume P1 to the
nearest points t on the surface @T1 of the other given volume T1.

HausðP; TÞ ¼ maxf sup
p2@P1

inf
t2@T1

dðp; tÞ; sup
t2@T1

inf
p2@P1

dðt; pÞg ð5Þ

3 Experiments and Results

The network is trained on a GeForce GTX 1080Ti GPU with a batch size of 1 using
PyTorch toolbox. Adam [19] is used as the optimizer with an initial learning rate 0.001
and a l2 weight decay of 1e−8. We evaluate all the cases for training data and vali-
dation data using online CBICA portal for BraTS 2018 challenge. The sub-regions
considered for evaluation are “enhancing tumor” (ET), “tumor core” (TC), and “whole
tumor” (WT).

Table 2 presents the quantitative evaluations with the BraTS 2018 training set via
five cross-validation. It shows that the proposed method achieves average Dice scores
of 0.73953, 0.88809 and 0.84419 for enhancing tumor, whole tumor and tumor core,
respectively. A 3D U-Net without the proposed S3D block is also trained, and the
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quantitative evaluations with the BraTS 2018 training set are shown in Table 3. It can
be seen that the Dice score of enhancing tumor has been significantly improved using
S3D block. The corresponding values for BraTS 2018 validation set are 0.74932,
0.89353 and 0.83093, respectively, as shown in Table 4. Examples of the segmenta-
tions obtained from the training set using our method are shown in Fig. 4.

Table 5 shows the challenge testing set results. Our proposed method achieves
average Dice scores of 0.68946, 0.83893 and 0.78347 for enhancing tumor, whole
tumor and tumor core, respectively. Compared with the performance of the training and

Fig. 4. Examples of segmentation from the of BraTS 2018 training data. red: NCR/NET, green:
ED, blue: ET. (the first two rows) Satisfying segmentation. (the last two rows) Unsatisfactory
segmentation. In the future, we will adopt some post-processing methods to improve the
segmentation performance. (Color figure online)
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validation sets, the scores are significantly reduced. However, the high median values
show that the testing set may contains some difficult cases, resulting in the lower
average scores.

Table 5. Dice and Hausdorff95 for BRATS 2018 testing set. ET: enhancing tumor, WT: whole
tumor, TC: tumor core.

Dice Hausdorff95
ET WT TC ET WT TC

Mean 0.68946 0.83893 0.78347 4.51842 9.20202 7.71181
StdDev 0.27809 0.17584 0.2549 8.04775 16.55337 15.64779
Median 0.78848 0.89967 0.89183 2.23607 3.60555 3
25quantile 0.68368 0.83469 0.75508 1.41421 2.23607 2
75quantile 0.84938 0.93011 0.92732 3.31662 6.89116 6.7082

Table 2. The evaluation scores for BraTS 2018 training set. ET: enhancing tumor, WT: whole
tumor, TC: tumor core.

ET WT TC

Dice 0.73953 0.88809 0.84419
Hausdorff95 4.63102 5.88769 5.66071
Sensitivity 0.78628 0.88069 0.83281
Specificity 0.99791 0.99481 0.9972

Table 3. The evaluation scores for BraTS 2018 training set using a 3D U-Net without the
proposed S3D block. ET: enhancing tumor, WT: whole tumor, TC: tumor core.

ET WT TC

Dice 0.68428 0.89912 0.86772
Hausdorff95 5.32635 5.55958 5.10478
Sensitivity 0.81677 0.88683 0.85932
Specificity 0.99692 0.99528 0.99744

Table 4. The evaluation scores for BraTS 2018 validation set. ET: enhancing tumor, WT: whole
tumor, TC: tumor core.

ET WT TC

Dice 0.74932 0.89353 0.83093
Hausdorff95 4.43214 4.71646 7.74775
Sensitivity 0.78492 0.92903 0.81606
Specificity 0.99761 0.99274 0.99814
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4 Discussion and Conclusion

We propose a S3D-UNet architecture for automatic brain tumor segmentation. In order
to make full use of 3D volume information while reducing the amount of calculation,
we adopt separable 3D convolutions. For the characteristics of the isotropic resolution
of brain tumor MR images, we design a new separable 3D convolution architecture by
dividing each 3D convolution into three branches in a parallel fashion, each with a
different orthogonal view, namely axial, sagittal and coronal. We also propose a sep-
arable 3D block that takes advantage of the state-of-the-art residual inception archi-
tecture. Finally, based on separable 3D convolutions, we propose the S3D-UNet
architecture using the prevalent U-Net structure.

This network has been evaluated on the BraTS 2018 Challenge testing dataset and
achieved an average Dice scores of 0. 68946, 0. 83893 and 0. 78347 for the seg-
mentation of enhancing tumor, whole tumor and tumor core, respectively. Compared
with the performance of the training and validation sets, the scores of testing set are
lower. This may be due to the difficult cases in testing set because the median values
are high. In the future, we will work to enhance the robustness of the network.

For volumetric medical image segmentation, 3D contextual information is an
important factor to obtain high-performance results. The straightforward way to capture
such 3D context is to use 3D convolutions. However, the use of a large number of 3D
convolutions will significantly increase the number of parameters, thus complicating
the training process. In the video understanding tasks, the separable 3D convolutions
with higher computational efficiency have been adopted. In this paper, we demonstrate
that the U-Net with separable 3D convolutions can achieve promising results in the
field of medical image segmentation.

In the future work, we will continue to improve the structure of the network and use
some post-processing methods such as fully connected conditional random field to
further improve the segmentation performance.
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Abstract. Automated segmentation of brain tumors in multi-channel Magnetic
Resonance Image (MRI) is a challenging task. Heterogeneous appearance of
brain tumors in MRI poses critical challenges in diagnosis, prognosis and sur-
vival prediction. In this paper, we present a novel approach for glioma tumor
segmentation and survival prediction with Deep Learning Radiomics Algorithm
for Gliomas (DRAG) Model using 3D patch based U-Net model in Brain Tumor
Segmentation (BraTS) challenge 2018. Radiomics feature extraction and clas-
sification was done on segmented tumor for overall survival (OS) prediction
task. Preliminary results of DRAG model on BraTS 2018 validation dataset
demonstrated that the proposed method achieved a good performance with Dice
scores as 0.88, 0.83 and 0.75 for whole tumor, tumor core and enhancing tumor,
respectively. For survival prediction, 57.1% accuracy was achieved on the
validation dataset. The proposed DRAG model was one of the top performing
models and accomplished third place for OS prediction task in BraTS 2018
challenge.

Keywords: Brain Tumor Segmentation � Gliomas �
Convolutional Neural Networks � Radiomics � MRI � Radiogenomics �
Survival prediction

1 Introduction

Glioma is the most frequent primary brain tumor. It originates from glial cells and can
be classified in High Grade and Low Grade depending upon the aggressiveness.
Gliomas may have different degrees of aggressiveness, variable prognosis and several
heterogeneous histological sub-regions. These are described by varying intensity
profiles across different Magnetic Resonance Imaging (MRI) modalities, which reflect
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diverse tumor biological properties [9]. De-spite of recent advances in automated
algorithms for brain tumor segmentation in multimodal MRI scans, the problem is still
a challenging task in medical imaging analysis [6, 7, 12].

Prior to BRATS challenge, researchers tested their proposed algorithms on local
datasets and there was no gold standard available for fair evaluation of methods
globally. BraTS challenge provided global platform for researchers to evaluate their
proposed algorithms on publically available dataset with leaderboard. This year BraTS
challenge was divided in two parts 1. Segmentation of brain tumor with intra-tumor
parts 2. Prediction of overall survival of the patients in number of days based on
imaging features.

Many computational methods based on texture analysis, probabilistic models,
active contours, random forests are proposed for tumor segmentation over decades
[10]. Several advances were made in active contours where either an initial seed point
was mentioned which would grow till the boundaries of the tumor or a bounding box
was drawn across the abnormal region which would further confine to tumor bound-
aries. Figure 1 shows FLAIR, T1, T1ce, and T2 images with intra-tumor parts- Green
for Edema, Blue for Enhancing tumor and Red for Tumor Core. Researchers had
proposed methods based on Non-Negative Matrix Factorization where a data matrix
was generated from MR data which acted as a feature representation. This data matrix
was further clustered with Fuzzy C-means clustering algorithm for brain tumor seg-
mentation [14].

Fig. 1. MRI modalities with intra-tumor parts. Edema in yellow, enhancing tumor in blue and
necrotic tumor is shown in red color (Color figure online)
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Deep Learning algorithms have been outperforming over all other the state of the
art methods for segmentation, classification and detection applications. Researchers
have proposed application specific models for which Convolutional Neural Networks
(CNN) is the basic building block of the architecture. The advantage of CNN is that it is
computationally cheaper compared to Fully Convolutional Networks (FCN). The
implementation of CNN is successful because of the advancement in the computational
power of the machines. This enables to de-sign neural network models with deep
architecture to extract features in an image. Researchers had proposed several pixel
classification based approaches for segmentation task where a window was considered
around a pixel and the class of the window was the class of center pixel. U-Net based
models have outperformed over traditional machine learning methods in bio-medical
image segmentation [11]. Recently, there has been an increase in popularity of 3D
CNNs which are effective in segmentation task at the expense of additional compu-
tational complexity compared to other state of the art algorithms [5].

2 Method

We developed patch based 3D U-Net model for tumor segmentation and evaluated
efficiency of radiomic features for OS prediction named as ‘Deep Learning Radiomics
Algorithm for Gliomas (DRAG) Model’. There was high class imbalance between
tumor pixel and rest of the normal brain pixels in the BraTS datasets. This led to biased
training of the model as the loss function was affected by normal brain pixels as
compared to the tumor pixels. The problem became more challenging during intra-
tumor segmentation. To overcome this issue, we adopted a patch-based training
approach. Fixed sized 3D patches were extracted from the BraTS dataset which were
used for training the network. Details of our approach are given in the section below.

2.1 Dataset

This proposed method was trained and validated on BraTS 2018 training dataset and
validation dataset [1–3]. The training dataset included 210 High Grade Glioma
(HGG) cases and 75 cases with Low Grade Glioma (LGG) while validation set con-
sisted of 66 cases. For each case, there were four MRI sequences viz. the T1-weighted
(T1), T1 with gadolinium enhancing contrast (T1ce), T2-weighted (T2) and FLAIR.
All cases had been segmented manually, by four raters and marked annotations were
approved by experienced neuro-radiologists into intra-tumor parts like tumor core,
enhancing tumor and edema. The MRI data was collected from various institutions and
acquired with different protocols, magnetic field strengths and MRI scanners. Fur-
thermore, to pinpoint the clinical relevance of this segmentation task, BraTS 2018 also
focused on the prediction of patient overall survival via analysis of radiomic features.
For this purpose, the survival data (in days) of 163 cases was provided in training set
and 54 cases in validation set. Reference segmentation and OS for validation set was
hidden and evaluation was carried out via online evaluation portal.
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2.2 Pre-processing

The MRI data in BraTS challenge dataset was already pre-processed which included
skull stripping and the data was co-register and re-sampled to 1 mm � 1 mm � 1 mm
resolution. The dimensions of each volume were 240 � 240 � 155. The intensity in-
homogeneity was addressed with N4ITK tool [13]. All four MRI channel data was
normalized to zero mean and unit variance.

2.3 Patch Extraction and Training

The proposed model is modified version of 3D U-Net with 3 down-sampling and 3 up-
sampling branches with two back to back convolution layers with kernel size 3. 3D
voxels with size 64 � 64 � 64 were extracted randomly from the training data and
given as an input to the first layer of the model. Four patches extracted from FLAIR,
T1, T2, T1c were concatenated together to form 64 � 64 � 64 � 4 and fed for
training to the input layer along with corresponding Ground Truth. Patch extraction
was challenging because of the high class imbalance between tumor area and normal
brain tissues. During patch extraction, care was taken to include significant tumor area
to avoid bias to background and non-tumor pixels. This was done for all the four
modalities and ground truth as well. Each layer was followed by ReLU activation and
Batch Normalization. No data augmentation was performed during the training of
model.

At output 4 probability maps were generated for Necrosis, Edema, Enhancing
Tumor and Background (including non-tumor brain pixels). The label was assigned to
the map with highest probability amongst all. It was observed that there were some
False Positives present in the segmentation output.

3D Connected Component Analysis was done to identify all the segmented com-
ponents pre-sent in the segmented volume. Threshold value in terms of number of
pixels was identified and insignificant small components which false positives were
assigned to background label. This reduced false positives significantly. Similarly, to
reduce over-segmentation in certain cases a binary brain mask was generated from
brain volume and logical AND operation was performed on segmentation output. This
improved the accuracy of the segmentation significantly.

2.4 Radiomic Feature Extraction and Training

After segmentation of intra-tumor parts, the next task in BraTS 2018 was to predict the
over-all survival of the patients in number of days. For this task, organizers had
provided only age details and OS in days which made the task challenging. From the
last few years, researchers are working actively on Radiomic Feature extraction for
tumor analysis and survival prediction task [4]. In our approach, we computed
Radiomic features on FLAIR and T1c volume with different combination of intra-
tumor parts as (Figs. 1 and 2):

• Edema, Enhancing tumor and tumor core i.e. Whole tumor (WT)
• Tumor Core and Enhancing tumor (TC+ET)
• Enhancing tumor (ET)
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We computed first order statistics, shape features, Gray Level Co-occurrence
Matrix and Gray Level Run Length Matrix features. We computed 468 features for
edema, tumor core and enhancing tumor. These features were used to train the
regression model for survival prediction task. We started with 679 variables [678
radiomic variables (113 from each of the different tumor parts for both FLAIR and T1c
images) and Age]. The radiomic variables with near perfect correlation (Spearman’s
correlation coefficient 0.95 or higher, p 0.05 or lower) with each other were excluded
with only one of the variables in each set being retained (N = 117). Age and all
radiomics variables with no significant autocorrelations (N = 117) were assessed for
relationship with survival.

Multi-Layer perceptron was used to train the neural network. Variables which had a
statistically significant correlation (N = 56, including age) with survival were included
for training the neural network. Results were replicated by setting a random seed. To
assess the efficacy of the neural network and to correct over training, if any, we divided
the BraTS 2018 training dataset (N = 163) into Training (51.5%), Validation (14.7%)
and Testing (33.7%) subsets, randomly using Bernoulli variates. The neural network
had two hidden layers with the number of units per layer set to auto, sigmoid activation
functions for both the hidden as well as output layers. The variables were re-scaled

Fig. 2. Sample segmentation results. Each row represents one case. Columns from left to right:
FLAIR, T1, T2, T1c, GT and Output. Segmentation labels: Yellow for edema, Blue for
enhancing tumor and Red for tumor core. (Color figure online)
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using adjusted normalization with a correction of 0.2. The neural network was designed
to predict survival in days as well as two broad categories viz. survival <300 days and
survival >=300 days. All statistical procedures for survival prediction were performed
using SPSS for Windows v24 on a standard computer running Windows 10.

3 Result and Discussion

The performance of the proposed method was evaluated on BraTS 2018 training data
with 285 cases and validated on 66 cases for segmentation. The validation leader-board
gave interesting information about the performance of the different teams’ algorithms.
Average performance of proposed method on training data and validation data is given
in Tables 1 and 2 respectively in terms of Dice Similarity Index and Sensitivity. The
model was trained for 50 epochs and needed 48 h for training on NVIDIA P100 GPU
with 128 GB system RAM. The framework was developed in Tensorflow [8].

Overall, our approach reached a superior result in the whole tumor segmentation
task with an average dice coefficient of 93% over training dataset and 87% over
validation dataset. Sample segmentation results for intra-tumor parts are given in Fig. 2
The performance of the proposed approach is given in Table 3 in terms of Dice
Coefficient and Hausdorff95 distance.

Table 1. Performance of proposed method on BraTS 2018 training dataset for segmentation.

Evaluation metrics Dice Sensitivity
ET WT TC ET WT TC

Mean 0.8002 0.9324 0.9197 0.8951 0.9508 0.9359
Std. Dev. 0.2746 0.1056 0.1327 0.1397 0.0859 0.1005
Median 0.9062 0.9613 0.9564 0.9313 0.9645 0.9529
25 quantile 0.8421 0.9405 0.9303 0.8901 0.9451 0.9328
75 quantile 0.9422 0.9728 0.9687 0.9622 0.9777 0.9697

Table 2. Performance of proposed method on BraTS 2018 validation dataset for segmentation.

Evaluation metrics Dice Sensitivity
ET WT TC ET WT TC

Mean 0.7480 0.8780 0.8266 0.8266 0.9058 0.8186
Std. Dev. 0.2659 0.1345 0.1828 0.2306 0.1413 0.2136
Median 0.8527 0.9179 0.8985 0.9035 0.9436 0.9167
25 quantile 0.7325 0.8665 0.7771 0.8238 0.8953 0.7637
75 quantile 0.8853 0.9419 0.9444 0.9514 0.9720 0.9571
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For the prediction of survival categories, the neural network demonstrated an
accuracy of 70.2% in the training subset and 62.5% and 63.6% in the validation and
testing subsets, respectively. The accuracy was 69.5% for the entire training dataset.
The Area Under Curve (AUC) was 0.799 (Figs. 3 and 4). For prediction of survival in
days, the proposed model performed better for values in the middle, with lower per-
formance for the values at both extremes. The relative error was 0.842 for the training
subset, 0.774 for the validation subset and 0.910 for the testing dataset.

The performance of proposed OS prediction approach is given in Table 5 for 77
cases. The proposed approach stood third for overall Survival Prediction Task in BraTS
2018 Challenge (Table 4).

Table 3. Performance of proposed method on BraTS 2018 test dataset for segmentation.

Evaluation metrics Dice Hausdorff95
ET WT TC ET WT TC

Mean 0.6677 0.8474 0.7687 9.0554 17.2184 14.5728
Std. Dev. 0.3120 0.1699 0.2786 19.8975 28.9190 26.1504
Median 0.8013 0.9049 0.8946 2.2360 3.4641 3.3166
25 quantile 0.6556 0.8336 0.7519 1.4142 2.2360 2.0000
75 quantile 0.8656 0.9404 0.9328 3.6055 9.4604 8.4844

Fig. 3. ROC curve depicting the accuracy of the model for categorizing into <300 and >=300
days survival.
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Individual variable importance analysis revealed that the Age is one of the most
significant variables in this neural network. The other variables are shown in Table 6.

Fig. 4. Residual to predicted scatter plot showing the good fit of the model for survival values in
the middle between 200–350 days.

Table 5. Performance for OS prediction on test dataset.

Cases Accuracy MSE Median SE Std. Deviation Spearman R

77 0.558 338219.366 38408.16 939986.796 0.222

Table 4. Performance of Multi-layer perceptron for OS prediction on validation dataset.

Method Accuracy MSE Median SE Std. Deviation Spearman R

MLP 0.571 59550213.1 113611.616 128250465.8 0.427

Table 6. Importance of the independent variable in descending order (F = FLAIR)

Variable name Channel Region Importance Normalized importance (%)

Age – – 0.07 100.0
Entropy F TC+ET 0.049 70.3
Variance F TC+ET 0.04 57.4
Enhance count F TC+ET 0.038 54.4
Core count T1ce WT 0.034 49.10
Cluster shade T1ce TC+ET 0.031 44.7
Edema count F TC+ET 0.03 42.8

(continued)
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Table 6. (continued)

Variable name Channel Region Importance Normalized importance (%)

Dissimilarity T1ce TC+ET 0.029 42.3
Difference in entropy F ET 0.029 41.2
Variance T1ce TC+ET 0.027 39.0
Maximum probability T1ce ET 0.026 36.9
Sum of variance T1ce ET 0.025 36.3
Homogeneity T1ce TC+ET 0.024 34.7
Minimum T1ce WT 0.023 32.4
Correlation T1ce TC+ET 0.022 31.0
Inverse difference T1ce TC+ET 0.021 30.0
Contrast F TC+ET 0.021 29.9
Cluster shade T1ce ET 0.019 26.7
Correlation T1ce TC+ET 0.016 23.0
Variance T1ce ET 0.015 21.5
Maximum probability F ET 0.013 19.0
Cluster prominence T1ce ET 0.013 18.5
Dissimilarity F ET 0.013 18.5
Auto-correlation T1ce TC+ET 0.013 18.4
Inverse difference T1ce ET 0.013 18.4
Sum of squares variance T1ce ET 0.012 17.3
Difference in entropy F TC+ET 0.012 17.0
Average F TC+ET 0.012 16.6
Maximum probability T1ce TC+ET 0.011 15.4
Homogeneity F TC+ET 0.01 14.7
Difference in entropy T1ce TC+ET 0.009 13.1
Mean F TC+ET 0.009 12.4
Cluster prominence T1ce TC+ET 0.007 10.3
Sum average T1ce TC+ET 0.007 10.0
Inverse difference F TC+ET 0.006 9.2
Minimum F WT 0.005 7.8
Contrast T1ce TC+ET 0.005 6.7
Sum of intensities F ET 0.004 6.3
Contrast F ET 0.003 4.4
Homogeneity F ET 0.002 2.4
Contrast T1ce ET 0.001 1.9
Dissimilarity T1ce ET 0.001 1.7
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4 Conclusion

In this study, we proposed a Deep Learning Radiomics Algorithm for Gliomas
(DRAG) Model based on 3D U-Net network for brain tumor segmentation. 3D patches
were extracted from multi-channel MRI data to train the proposed model. Radiomic
features were extracted from FLAIR and T1ce channels for OS prediction task. MLP is
trained with these radiomic features to predict the OS in days. The proposed approach
achieved third place for OS prediction task in BraTS 2018 challenge [15].

The difference between mean and median in Table 2 indicates that for some cases,
our pro-posed approach achieved poor accuracy, which is very close to zero and more
analysis is required on this. Prediction of survival without more clinical data and
treatment information is challenging and the same is reflected through accuracy of the
participants in the leader-board. As the number of cases for OS prediction are less there
is a need to develop an efficient feature selection algorithm which will select potential
features for accurate OS prediction. Our future goal is to design radiomic features
extraction pipeline with deep neural networks.
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Abstract. Deep convolution neural networks, in particular, the
encoder-decoder networks, have been extensively used in image segmen-
tation. We develop a deep learning approach for tumor segmentation by
combining a modified U-Net and its domain-adapted version (DAU-Net).
We divide training samples into two domains according to preliminary
segmentation results, and then equip the modified U-Net with domain
adaptation structure to obtain a domain invariant feature representation.
Our proposed segmentation approach is applied to the BraTS 2018 chal-
lenge for brain tumor segmentation, and achieves the mean dice score of
0.91044, 0.85057 and 0.80536 for whole tumor, tumor core and enhancing
tumor, respectively, on the challenge’s validation data set.

Keywords: Confusion loss · Domain adaptation ·
Encoder-decoder network · Brain tumor · Segmentation

1 Introduction

Image segmentation plays an important role in the accurate diagnosis and effi-
cient treatment of brain tumors. However, segmenting brain tumors, such as
glioblastomas and gliomas, is difficult, because of poor tissue contrast, irregu-
lar shapes and various appearing locations. Moreover, manual segmentation can
be very time-consuming and may have large intra/inter-expert variability. This
creates a great need to develop reliable automatic approaches for brain tumor
segmentation.

The Brain Tumor Segmentation (BraTS) challenge [2–4,14] is an event to
evaluate state-of-the-art methods in automating tumor segmentation on a large
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data set of annotated, high-grade glioblastomas and lower grade gliomas. To fos-
ter accurate segmentation, the BraTS 2018 challenge provides multimodal MRI
scans of each patient, including native T1-weighted, post-contrast T1-weighted,
T2-weighted, and T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes.

Modern deep convolutional networks have exhibited exceptional competitive-
ness in image segmentation, becoming industrial benchmarks [10,11,13,17]. One
widely-used is the encoder-decoder networks with U-shaped architectures, such
as SegNet [1], U-Net [7] and DeconvNet [15]. These networks are composed of a
convolutional encoder to extract salient features, and a deconvolutional decoder
to recover image details. Such architecture has advantages, including flexible
input image sizes, consideration of spatial information, and an end-to-end pre-
diction, leading to lower computational cost and higher representation power.

Despite the excellent performance in the 2017 challenge, the state-of-the-art
encoder-decoder network of [10] in our model exploration still loses significant
segmentation accuracy for part of the BraTS 2018 training set. This is probably
because the network primarily captures the key features of well-segmented sam-
ples, but misses those of the others. From the transfer learning perspective, as in
[19], if treating the well-segmented samples as samples in the “source” domain
and the poor-segmented samples in the“target” domain, then the network fails to
learn a domain invariant feature representation. This can hence be viewed as the
so-called domain adaptation problem, which aims to match the marginal feature
distributions of source and target. Inspired by the domain adaptation technique
of [19], we add a domain classifier to the modified U-net of [10], together with
a confusion loss to learn a domain invariant feature representation for the brain
tumor segmentation task. Our proposed network with domain adaptation signifi-
cantly enhances the segmentation accuracy on the validation set, with mean Dice
scores 0.91044, 0.85057 and 0.80536 for whole tumor, tumor core and enhancing
tumor, respectively. The scores on the final test set are 0.871, 0.788 and 0.738,
respectively, where detailed comparison with all the other participants in this
challenge can be found in [5].

2 Data Description

The BraTS 2018 challenge data are collected from three different resources that
are denoted as “2013”,“CBICA”, and “TCIA”, respectively. The training data
set includes 20 high-grade glioma subjects (HGGs) from the group 2013, 88
HGGs from CBIC, and 102 HGGs from TCIA, and also includes 10 from 2013
and 65 from TCIA subjects with low-grade gliomas (LGG) that are less aggres-
sive and infiltrative. Each subject has four modalities of MRI scans, including
native T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2 FLAIR volumes. All MRI images are registered to a common template
with the volume size of 240× 240× 155 voxels resampled to 1 mm isotropic res-
olution. The tumor regions are annotated into three classes: the GD-enhancing
tumor (ET, labeled 4), the peritumoral edema (ED, labeled 2), and the necrotic
and non-enhancing tumor (NCR/NET, labeled 1).
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A validation data set of 66 subjects is also provided for each participating team,
but with no HGG/LGG status or tumor labels. The final evaluation of the segmen-
tation approach is conducted on an independent test data set of 191 subjects.

3 Segmentation

In this section, we introduce the details of our framework for brain tumor seg-
mentation. Our model is an ensemble of two base models: a modified U-Net
and a U-Net with domain adaptation (DAU-Net). In either model, modalities
are treated as channels. Domain adaptation is applied to regulate the feature
representation learning process so that the extracted features are more invari-
ant to differences between domains. We also discuss our data preprocessing and
post-processing procedures that smooth and optimize the segmentation results.
Figure 1 contains the workflow illustration.

Fig. 1. Segmentation pipeline

3.1 Data Preprocessing

The main purpose of data preprocessing is to bring data to a similar distribu-
tion to avoid any initial bias, which is important for data-driven approaches.
The provided data has already been skull stripped, co-registered, and resized to
uniform resolution. On top of that, we remove the top and bottom 1 percentile of
intensity in the brain areas for each image, and normalized the brain intensities
by subtracting the mean and dividing the standard deviation. The preprocess-
ing is conducted on brain regions only and independently across modalities and
individuals.

3.2 Modified U-Net

Model Description. Our modified U-Net is inspired by [10]. In our model, each
level of the encoding pathway consists of a residual block with the same structure.
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The first convolution layer of each residual block halves the spatial dimension
with a stride of 2 (except for the first residual block), and increases the number of
channels to 8×2n, with n being the level counting from 1. As a result, the stack
of 5 residual blocks progressively reduces the spatial dimension of the input ten-
sor by a factor of 16 and learns increasingly abstract feature representations. To
increase the prediction resolution, the decoding pathway progressively doubles
the spatial dimension on each level by an upsampling layer of scale 2, and even-
tually recovers the spatial dimension of input data. The feature maps generated
by the first four residual blocks are concatenated to decoding pathway of the
same level to encourage the gradient flow. We apply group normalization [21] to
all normalization layers, because it is more stable given a small batch and yields
a better result compared to instance normalization [20]. The group number is 16
for level 1 and 32 for the remaining levels. Moreover, we adopt the idea of deep
supervision [12], where output maps of different levels are combined sequentially
through element-wise addition to constitute the network’s final prediction via
the softmax function. We integrate the multiclass dice loss function into our
framework, since it can effectively mitigate the problem of class imbalance:

Ldice = − 2
|K|
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where K is the set of prediction classes, u is the probability maps output by the
backbone structure, v is the one-hot encoding of the ground truth, and i is the
voxel index.

3.3 DAU-Net

Model Description The backbone structure is the same as the model in Subsec-
tion 3.2, except all normalization layers are instance normalization [20], because
we observe more boost by domain adaptation with the presence of instance
normalization. The domain classifier is appended to the end of the encoding
pathway, where the feature representation is the most complex. A 1× 1× 1 con-
volution layer is first applied to significantly reduce the number of channels from
256 to 32, followed by alternating three fully-connected layers of lengths 256, 32,
and 1, and two leaky ReLU rectifiers.

Domain Division. We perform two sets of five-fold cross-validation on training
data with the backbone structure only. One set follows the data preprocessing
procedure described in Subsect. 3.1, while the other set has an additional N4 bias
correction processed by ANTs [18]. We compare the differences of Dice coefficient
between the segmented tumors of the two sets. Although N4 bias correction has
a minimal effect on most samples, it does yield significantly different results for
some cases. We pick 75 subjects with the most variations and classified them to
a different domain from the rest. The full list of those 75 subjects can be found
in the Table 3. Based on the two domains of subjects, the network is shown in
Fig. 2.
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Training Procedure. The backbone structure and the domain classifier are
trained alternatively. In the 2n-th epoch, the objective function adds an addi-
tional confusion loss onto the dice loss function Ldice, which is the cross entropy
between the predicted domain label and a uniform distribution:

L2n = − 2
|K|

∑

k∈K

∑
i u

k
i v

k
i∑
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k
i +

∑
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i

− λ
∑

d

1
|D| log qd,

where D is the set of domain categories, and qd is the estimated probability
for the d-th domain from the domain classifier. qd is modeled by a softmax
function of the classifier activations qd = softmax(θT1 f(θ2)), where θ1 includes
activation parameters in the fully connected layer and θ2 includes representation
parameters in the modified U-net (Fig. 2). In this step, θ1 is kept unchanged
and parameter of the backbone structure θ2 is updated. The hyperparameter λ
controls the degree of the domain confusion relative to the backbone structure.

In the (2n + 1)-th epoch, θ2 is frozen so that only θ1 is updated. The
domain classifier aims to discriminate samples according to the feature repre-
sentation output by the encoding pathway. The cross-entropy loss is computed
with domain labels as follows:

L2n+1 = −
∑

d

I[yD = d] log qd.

In summary, the two steps update different parts of parameters. By training
the model iteratively, both the backbone structure and the domain classifier are
optimized. The best domain classifier learned by minimizing L2n+1 is expected
to still perform poorly on the final domain prediction, due to the confusion loss
in L2n. With such a domain classifier, the encoding pathway has incentives to
capture the domain-invariant features. This helps to improve the generalizability
of the model, since differences in MRI data representation are usually significant.
The training was carried out on 4 NVIDIA Titan Xp GPU cards for about 2 days.

3.4 Experiment Configuration

The input tensors of size 128× 128× 128 are randomly sampled from brain areas
and augmented by random flipping and transpose during each epoch. The train-
ing is implemented by PyTorch using the Adam optimizer with the learning rate
initially set to be 8× v10−4 and exponentially decaying at a rate of 0.98 every
epoch for the modified U-Net, and every two epochs for the DAU-Net. All net-
works are trained for about 600 epochs, and the ones with the lowest Dice loss
of whole tumor are selected as candidates for ensemble.

At the test time, the domain classifier is dropped. The whole brain regions
whose dimensions are padded to the nearest multiple of 16 are served as inputs
to the modified U-Net, and the returned segmentation maps are subsequently
padded with zeros to reach the original dimension.
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3.5 Model Ensemble and XGBoost

XGBoost [6], short for extreme gradient boosting, is an implementation of
gradient-boosted decision trees designed for speed and performance. The term
gradient boosting was proposed by Friedman [8]. It is a tree-based machine
learning algorithm that usually dominates structured or tabular datasets on
classification and regression predictive modeling problems, and boosting is an
ensemble technique where new models are added to correct the errors made by
existing models.

We aim to ensemble multiple models trained from deep learning for brain
tumor segmentation using XGBoost. Most of the previous literature focused on
majority voting and averaging; [9] compared the three ensembling approaches
including majority voting, averaging and expectation-maximization; [22] demon-
strated that the XGBoost approach can outperform the majority voting label
fusion. We here train different models, which differ in preprocessing meth-
ods (with or without bias correction), different patch sizes, different splits of
training dataset into training and validation parts, and different normalization
(instance/group) of the network (modified U-net with group normalization and
the DAU-net with instance normalization). We choose the 9 models with top
Dice coefficients on the validation set; for each subject in the training dataset,
we make predictions using the 9 models; next we calculate the set S of voxels
where there exists disagreement for the 9 models; then, for each tumor class
and each subject, we randomly choose 1000 voxels without replacement from
the set S, and we use the predicted probability of each model for the four tumor
classes at each voxel as covariates to predict the true label using XGBoost; to
determine the hyperparameters, we split the training dataset into five parts and
used a 5-fold cross-validation to optimize the maximal depth, minimum child
weight, penalization parameters and learning rate, etc., to minimize the softmax
loss function.

3.6 Post-processing

We employ the following post-processing techniques [22] to fill in the holes and
delete the small, isolated clusters:

1. Segment the tumor mask into all connected components/clusters. Voxels in
clusters whose volume is less than 0.2 times the largest connected cluster
volume will be reclassified as non-tumor.

2. Segment the enhancing core mask into all connected components/clusters.
Voxels in clusters whose volume is less than 0.01 times the largest connected
cluster volume will be reclassified as the necrosis.

3. Fill in the holes within the tumor mask and assign voxels within the holes to
necrosis area.

We find that the performance can be improved by applying post-processing on
the existing results.
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3.7 Survival Prediction

Based on the previous segmentation results, we crop out the tumor core region
and extract various radiomic features to predict the survival time for the three
modalities Flair, T1 post-contrast, and T2. For each modality, features include:
10 intensity statistics features (such as maximum, minimum, median, and quan-
tiles, skewness, kurtosis, and entropy), 51 shape features (24 Zernike moment
based shape descriptors, 21 Hu Moment based shape descriptors, and 6 statis-
tics of local binary patterns), 112 texture features (13 gray-level co-occurrence
matrix features, 27 threshold adjacency statistics, and 72 wavelet transform fea-
tures). We also add the ratio of all tumor class volumes to the whole brain
volume as additional features. Similar features are used in [22].

We use XGBoost to predict survival time based on the above radiomic fea-
tures, together with age. The difference between the prediction here and that
in Subsect. 3.5 is the dimension adopted in the survival prediction task is much
higher, which will bring about overfitting and high computational complexity.
We use a 5-fold cross-validation to select important features and optimize the
maximal depth, minimum child weight, penalization parameters and learning
rate, and other tuning parameters.

4 Results

4.1 Selection of λ

To investigate the optimum value of λ introduced in L2n, we conduct multiple
trials with λ as the only varying parameter (Fig. 3). Within a certain range of
λ, there is a clear enhancement of the average dice coefficient for whole tumor
and tumor core, whose optimum values are achieved at λ = 0.1 and λ = 0.075,
respectively. Passing over the optimum point, we can see a clear decline in the
average dice coefficient for both. The average dice coefficient of enhancing tumor

Fig. 3. Dice coefficients with varying λ.
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Table 1. Segmentation results on validation data

Method Dice ET Dice WT Dice TC

Phase1 0.75245 0.89571 0.81561

Phase2 Model a 0.75983 0.90397 0.82489

Phase2 Model b 0.76091 0.90616 0.83622

Phase2 Model c 0.74669 0.90349 0.8278

Phase2 Model d 0.74187 0.90435 0.83211

Phase2 Model e 0.75779 0.90733 0.83824

Phase2 Model f 0.76091 0.90420 0.83713

Phase2 Model g 0.76814 0.90574 0.84704

Phase2 Model h 0.75440 0.90594 0.83826

Phase2 Model i 0.78582 0.90491 0.83689

XGBoost+Postprocessing 0.80536 0.91044 0.85057

fluctuates with λ, but its highest peak is at λ = 0.1, which is very close to the
optimal λ’s of whole tumor and tumor core. We hence choose λ = 0.1 for our
proposed network. Detailed segmentation results for the validation set, with
and without domain adaptation, are shown in Table 1, Phase 1 and Phase 2a,
respectively.

4.2 Results of Mean Dice Score and Survival Prediction

The prediction results of the validation set after XGBoost and postprocessing are
the best, as shown in the final row (i.e., XGBoost+Postprocessing of Table 1).
According to the Wilcoxon signed-rank test, its Dice scores are significantly

Fig. 4. Ensemble of models. Examples are from the patient “Brats18 CBICA ALV 1”.
The numbers above each sub-figure are the dice coefficients of whole tumor for that
patient.
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larger than those in phases 1 (in the 1st row), whose p-values are less than
0.048, 4 × 10−5, and 3 × 10−4, for ET, WT and TC, respectively. We use an
example from the validation dataset to illustrate the improvement of ensemble
in Fig. 4. The prediction results of the patients’ survival time for the validation
set are shown in Table 2.

Table 2. The prediction result on validation data

Accuracy MSE MedianSE stdSE SpearmanR

0.5 99409.107 33754.5 210658.725 0.332

5 Conclusion

We presented our contribution to the BraTS 2018 challenge in this paper. We
developed a deep learning approach for the tumor segmentation by combining
a modified U-Net and the DAU-Net. Both models were trained with extensive
data augmentation. We applied the XGBoost procedure to ensemble our image
segmentation predictions. The ensemble of the 9 top-performing models out-
performed each individual model on validation data. Due to time constraints,
we did not explore the effect of domain adaptation on feature learning, which
can explain the improvement on performance. How domain adaptation regulates
feature learning will be a promising research topic that sheds lights on a better
design of data augmentation as well as a preprocessing pipeline. Moreover, we
tried a few ways of defining domains, including dividing the data by gliomas’
grades and data source, but have not yet developed a common standard for auto-
matic domain split with good interpretability. Keeping in mind that it is hard
to train an effective domain classifier by dividing a small dataset into groups, we
also expect the model to have a better result with the introduction of external
data. In this case, the data naturally come from different domains. Besides, we
tried different hyperparameters in our postprocessing to make improvement of
Dice performance on validation dataset, which may cause overfitting.

For survival prediction, we extracted radiomic features based on the seg-
mentation results, but did not include deep-learning features together, due to
time constraints. Neural networks for predictions can usually outperform the
traditional prediction methods [16], which is worth further exploration.
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Appendix

Table 3. Selected 75 cases to be another domain

Name Type Name Type

1 Brats18 2013 11 1 HGG 46 Brats18 2013 0 1 LGG

2 Brats18 2013 19 1 HGG 47 Brats18 2013 15 1 LGG

3 Brats18 2013 22 1 HGG 48 Brats18 2013 16 1 LGG

4 Brats18 2013 25 1 HGG 49 Brats18 2013 1 1 LGG

5 Brats18 2013 4 1 HGG 50 Brats18 2013 9 1 LGG

6 Brats18 CBICA ABB 1 HGG 51 Brats18 TCIA09 141 1 LGG

7 Brats18 CBICA ABO 1 HGG 52 Brats18 TCIA09 177 1 LGG

8 Brats18 CBICA ANG 1 HGG 53 Brats18 TCIA09 255 1 LGG

9 Brats18 CBICA ANP 1 HGG 54 Brats18 TCIA09 402 1 LGG

10 Brats18 CBICA AOD 1 HGG 55 Brats18 TCIA09 462 1 LGG

11 Brats18 CBICA AOH 1 HGG 56 Brats18 TCIA09 493 1 LGG

12 Brats18 CBICA AOZ 1 HGG 57 Brats18 TCIA09 620 1 LGG

13 Brats18 CBICA AQA 1 HGG 58 Brats18 TCIA10 130 1 LGG

14 Brats18 CBICA AQQ 1 HGG 59 Brats18 TCIA10 261 1 LGG

15 Brats18 CBICA AQR 1 HGG 60 Brats18 TCIA10 266 1 LGG

16 Brats18 CBICA AQU 1 HGG 61 Brats18 TCIA10 276 1 LGG

17 Brats18 CBICA ARW 1 HGG 62 Brats18 TCIA10 282 1 LGG

18 Brats18 CBICA ARZ 1 HGG 63 Brats18 TCIA10 413 1 LGG

19 Brats18 CBICA ASE 1 HGG 64 Brats18 TCIA10 420 1 LGG

20 Brats18 CBICA ASH 1 HGG 65 Brats18 TCIA10 442 1 LGG

21 Brats18 CBICA ATF 1 HGG 66 Brats18 TCIA10 490 1 LGG

22 Brats18 CBICA AUQ 1 HGG 67 Brats18 TCIA10 628 1 LGG

23 Brats18 CBICA AWI 1 HGG 68 Brats18 TCIA10 629 1 LGG

24 Brats18 CBICA AXN 1 HGG 69 Brats18 TCIA10 637 1 LGG

25 Brats18 CBICA AXQ 1 HGG 70 Brats18 TCIA10 644 1 LGG

26 Brats18 CBICA AYI 1 HGG 71 Brats18 TCIA13 618 1 LGG

27 Brats18 CBICA BFP 1 HGG 72 Brats18 TCIA13 621 1 LGG

28 Brats18 CBICA BHB 1 HGG 73 Brats18 TCIA13 633 1 LGG

29 Brats18 CBICA BHK 1 HGG 74 Brats18 TCIA13 645 1 LGG

30 Brats18 TCIA01 180 1 HGG 75 Brats18 TCIA13 650 1 LGG

31 Brats18 TCIA01 190 1 HGG

32 Brats18 TCIA01 411 1 HGG

33 Brats18 TCIA01 425 1 HGG

34 Brats18 TCIA02 168 1 HGG

35 Brats18 TCIA02 226 1 HGG

36 Brats18 TCIA03 257 1 HGG

37 Brats18 TCIA04 328 1 HGG

38 Brats18 TCIA04 343 1 HGG

39 Brats18 TCIA04 437 1 HGG

40 Brats18 TCIA05 277 1 HGG

41 Brats18 TCIA06 165 1 HGG

42 Brats18 TCIA06 211 1 HGG

43 Brats18 TCIA06 409 1 HGG

44 Brats18 TCIA08 278 1 HGG

45 Brats18 TCIA08 406 1 HGG
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7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8 49

8. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 1189–1232 (2001)

9. Huo, J., Okada, K., Pope, W., Brown, M.: Sampling-based ensemble segmenta-
tion against inter-operator variability. In: Medical Imaging 2011: Computer-Aided
Diagnosis, vol. 7963, p. 796315. International Society for Optics and Photonics
(2011)

10. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain
tumor segmentation and radiomics survival prediction: contribution to the BRATS
2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.)
BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75238-9 25

11. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust
brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes,
M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75238-9 38

12. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical
imaging data. arXiv preprint arXiv:1701.03056 (2017)

13. Li, T., Fan, Z., Ziliang, Z., Hai, S., Hongtu, Z.: A label-fusion-aided convolutional
neural network for isointense infant brain tissue segmentation. In: 2018 IEEE 15th
International Symposium on Biomedical Imaging, pp. 692–695 (2018)

14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(brats). IEEE Trans. Med. Imaging 34(10), 1993 (2015)

15. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1520–1528 (2015)

16. Notley, S., Magdon-Ismail, M.: Examining the use of neural networks for feature
extraction: A comparative analysis using deep learning, support vector machines,
and k-nearest neighbor classifiers. arXiv preprint arXiv:1805.02294 (2018)

http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1811.02629
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_38
http://arxiv.org/abs/1701.03056
http://arxiv.org/abs/1805.02294


392 L. Dai et al.

17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

18. Tustison, N.J., et al.: Large-scale evaluation of ants and freesurfer cortical thickness
measurements. Neuroimage 99, 166–179 (2014)

19. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
domains and tasks. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 4068–4076 (2015)

20. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance Normalization: The Missing
Ingredient for Fast Stylization. arXiv.org, November 2017

21. Wu, Y., He, K.: Group Normalization. arXiv.org, June 2018
22. Zhou, F., Li, T., Li, H., Zhu, H.: TPCNN: two-phase patch-based convolutional

neural network for automatic brain tumor segmentation and survival prediction.
In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017.
LNCS, vol. 10670, pp. 274–286. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-75238-9 24

https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/org
http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-319-75238-9_24
https://doi.org/10.1007/978-3-319-75238-9_24


Global Planar Convolutions for Improved
Context Aggregation in Brain Tumor

Segmentation

Santi Puch1(B), Irina Sánchez1, Aura Hernández2,
Gemma Piella3, and Vesna Prc̆kovska1

1 QMENTA, Boston, MA, USA
{santi,irina,vesna}@qmenta.com

2 Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, Spain
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Abstract. In this work, we introduce the Global Planar Convolution
module as a building-block for fully-convolutional networks that aggre-
gates global information and, therefore, enhances the context perception
capabilities of segmentation networks in the context of brain tumor seg-
mentation. We implement two baseline architectures (3D UNet and a
residual version of 3D UNet, ResUNet) and present a novel architecture
based on these two architectures, ContextNet, that includes the proposed
Global Planar Convolution module. We show that the addition of such
module eliminates the need of building networks with several represen-
tation levels, which tend to be over-parametrized and to showcase slow
rates of convergence. Furthermore, we provide a visual demonstration of
the behavior of GPC modules via visualization of intermediate represen-
tations. We finally participate in the 2018 edition of the BraTS challenge
with our best performing models, that are based on ContextNet, and
report the evaluation scores on the validation and the test sets of the
challenge.

Keywords: Brain tumors · 3D fully-convolutional CNN ·
Magnetic resonance imaging · Global planar convolution

1 Introduction

It is estimated that, as of today, 700.000 people in the United States are living
with a primary brain tumor, from which 80% are benign and 20% are malig-
nant tumors [14]. Of all malignant brain tumors, 81% are gliomas, which are
tumors that originate in glial cells [15]. Glioblastomas are the most common
type of glioma, representing 45% of all gliomas; they are one of the most aggres-
sive types of brain tumors, having an estimated 5-year relative survival rate
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of approximately 5%, which means that only 5% of people diagnosed with a
glioblastoma will still be alive 5 years after being diagnosed [15].

It is clear that such dismal prognosis requires proper treatment planning
and follow-up, which can be greatly improved if proper in-vivo, non-invasive
delineation and identification of glioma structures is in place. However, this
poses a significant burden on the radiologist: multiple imaging modalities have
to be assessed in parallel, as each highlights different regions of the tumor, and
the process of delineation in a 3D acquisition is tedious and prone to errors. As
a consequence, inter-observer variability has been reported to be a major—if not
the largest—factor of inaccuracy in radiation therapy, constituting the weakest
link in the radiotherapy chain that goes from diagnosis and consultation, going
through 3D imaging and target volume delineation, to treatment delivery [19].

Therefore, automating the delineation and identification process on MR
images would accelerate treatment planning and improve treatment follow-up.
However, the problem of tumor segmentation poses several challenges, such as
blurry or smoothed boundaries, variability of shape, location and extension or
heterogeneity of appearance of brain tumors on MR images.

The research community has concentrated efforts in order to address the
brain tumor segmentation task, and to this end initiatives like the Brain Tumor
Segmentation (BraTS) challenge [12] have made the problem accessible to a
larger audience. As a result, a large variety of computational methods have
been proposed to automate the delineation of brain tumors. These methods
can be broadly categorized in two groups: generative models, which rely on
prior knowledge about tissue appearance and distribution; and discriminative
models, which directly learn the relationship between the image features and the
segmentation labels. Deep Learning approaches, especially Convolutional Neural
Networks (CNNs), cover a large portion of the recently proposed discriminative
methods. The majority of these works have based their methods in well-known
semantic segmentation networks, either using a 2D variant on one or more planes
of the brain, or implementing a 3D architecture that takes spatial information
in all directions into account. In all these works, several training strategies are
leveraged, such as dense training with patches combined with patch sampling
schemes, and a distinction between local, refined features and global, coarse
features is accomplished via multiresolution approaches or skip connections.

In this work, we introduce the Global Planar Convolution (GPC) module,
a fully-convolutional module that enhances the context perception capabilities
of segmentation networks in the context of brain tumor segmentation. We first
explore different 3D fully-convolutional architectures for brain tumor segmenta-
tion, starting with a 3D variation of UNet [17]. We then introduce a variation of
such network that incorporates residual elements from [7], that we call ResUNet.
We finally refine this architecture by adding GPC modules; we refer to this net-
work as ContextNet. We train these architectures on the 2018 BraTS Challenge
dataset, that consists of 210 High Grade Glioma (HGG) cases and 75 Low Grade
Glioma (LGG) cases with four MR image modalities and manual annotations
of the distinct intra-tumoral structures of interest [1–3,12]. We compare the
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behavior of the three proposed networks when trained with all the image modal-
ities and when trained only with a subset of them. Then, we show that the
addition of Global Planar Convolution modules eliminates the need of building
networks with several representation levels (i.e. the set of operations executed
at the same spatial resolution level), which are prone to over-parametrization
and slow convergence rates. We include a visually guided interpretation of the
behavior of GPC modules via visualization of intermediate representations of
the network. We finally report the performance of our best performing model—
based on ContextNet—and a model ensemble on the BraTS validation set. This
last model ensemble is submitted to participate in the 2018 edition of the BraTS
challenge.

2 Methods

2.1 Data

The data used in this project originates in the 2018 version of the yearly Mul-
timodal Brain Tumor Segmentation Challenge dataset. This dataset consists of
285 multi-institutional clinically-acquired pre-operative scans. Each multimodal
scan is formed by T1, T1-Gd, T2 and T2-FLAIR volumes acquired with var-
ious scanners from 19 institutions. All the scans have been segmented manu-
ally by one to four raters, and approved by experienced neuroradiologists. The
ground-truth labels comprise the enhancing tumor, the peritumoral edema and
the necrotic and non-enhancing tumor when present. Each multi-modal scan in
the BraTS challenge dataset is co-registered to the same anatomical template,
skull-stripped and resampled to 1 mm3 isotropic resolution. Therefore, no further
preprocessing is needed.

2.2 CNN Architectures

All the Convolutional Architectures implemented and trained are 3D and fully-
convolutional by design, meaning that they can be trained using 3D patches of
data, and then they can be used for inference on whole brain volumes.

UNet. This reference architecture proposed initially in [17] is based on [11],
with a similar contracting path, but in order to improve the localization capa-
bilities of the network a supplementary expanding path is introduced, in which
high-resolution features from the contracting path are combined with upsam-
pled feature maps. This architecture is extended to 3D by replacing all the
convolutions, transposed convolutions and max pooling operations by their 3D
alternatives, similarly to [5].

In our experiments we use Rectified Linear Unit (ReLU) as activation func-
tion and Batch Normalization [8] after convolutions and before activations.
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ResUNet. The work of [7] introduced the concept of deep residual learning:
instead of stacking a series of layers and letting them learn the desired under-
lying mapping, these layers can be set to explicitly fit a residual mapping. This
residual learning framework not only improved the performance on the image
classification task by a wide margin, but also alleviated the degradation problem
found when an excessive amount of layers was used.

The motivation of introducing residual layers originates from the fact that
the contracting path has a twofold purpose: on one hand it learns increasingly
abstract features that encode contextual information necessary to decide what,
and on the other hand it connects feature maps from lower-level representa-
tions with the expanding path to decide where. Residual elements allow for an
increased number of layers, which has been shown empirically to increase the
representational power of the network [7,18], thus helping with the first task
(identification). They also facilitate learning of identity mappings, which enables
the possibility of passing low-level representations throughout the network, thus
easing the second task (delineation).

The architecture of ResUNet is essentially an extension of UNet with resid-
ual elements. The convolutional layers in UNet are replaced by residual layers;
concretely, 2 residual layers are used at each resolution level.

Again, as in UNet, we use Rectified Linear Unit (ReLU) as activation function
and Batch Normalization after convolutions and before activations.

ContextNet. ContextNet is a novel architecture introduced in this work that
aims to enhance the context-awareness capabilities of 3D imaging segmentation
architectures. It is build upon the aforementioned ResUNet architecture and
includes the proposed Global Planar Convolution modules, inspired by [16]. An
overview of the architecture is shown in Fig. 1.

The localization aspect of semantic segmentation networks is addressed by
skip-connections and residual elements, as these components let low level rep-
resentations pass through the network and inform the latest layers about fine-
grained spatial details. However, the classification aspect of semantic segmenta-
tion networks, that deals with proper identification of the delineated structures,
is hindered by the fact that these networks are focused on proper boundary align-
ment. State-of-the-art classification architectures rely on layers that are globally
connected, which in the most extreme case (all the nodes are connected with
each other) corresponds to a fully-connected layer. It is clear that such type of
operation is not feasible in a fully-convolutional architecture, however we can
approximate global connectivity by increasing kernel size in convolutions: in the
limit, the kernel is as big as the input feature map, which can be interpreted
again as a fully-connected layer. The problem with increasing the kernel size is
the computational and memory requirements associated with it, and it is not
feasible in the case of 3D CNNs with current accelerated computing hardware.

However, global connectivity can be approximated by constraining the kernel
parameters’ subspace. Specifically, we can constrain the convolutional kernels
to have one dimension less than they would normally have, which in practice
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is implemented by having kernels with size 1 in one of the dimensions. This
reduction of parameters in one of the three dimensions allows the growth of
kernel sizes in the other dimensions, thus providing improved global connectivity.

On the basis of this reasoning, we introduce in this work a new module named
Global Planar Convolution, abbreviated GPC. A GPC convolves planar filters
(i.e. filters in which one of the three dimensions has size 1) in each of the three
orthogonal directions, and then combines the resulting planar feature maps via
summation. We introduce these modules in between skip-connections, similarly
to bottleneck modules in [7]. We further improve the localization capabilities by
including an extra residual layer after each GPC module, however these residual
layers do not include an activation in the end. The resulting feature maps from
each of this altered skip-connections are then summed with the feature maps
outputted by the upsampling layers in the expanding path, and the summed
feature maps are then passed through an Exponential Linear Unit (ELU) [6]. In
our experiments we set the filter size of GPC modules to 15.

2.3 Experimental Design

Local Dataset Split. In order to evaluate the segmentation performance of
the proposed architectures, the dataset is split into train and validation sets.
We use a split ratio of 70%–30% for training and validation, respectively. This
results in 199 subjects for training and 86 subjects for evaluation on the tumor
segmentation task. As we do not perform any hyper-parameter search procedure,
we use the validation set to evaluate if the model is behaving and converging as
expected during training, as well as to compare the performance among different
models. Thus, we eliminate the need of an additional test set.

CNN Training Details. We use categorical cross-entropy as the loss function
to be minimized during training. The complete loss function includes L1 and
L2 penalization of the weights (for regularization purposes), with penalization
ratios of 1E-6 and 1E-4, respectively.

All the models are trained using the ADAM optimizer [10]. The initial learn-
ing is set to 1E-3 in all experiments, and a learning rate decay policy is integrated
in order to stabilize training as the training procedure progressed. Concretely,
we use an exponential decay of the learning rate every 1000 training steps with
a decay rate of 0.9. The number of training steps is set to 35000. The train-
ing procedure alternates 1000 training steps with 1 complete evaluation of the
model. Batch size is set to 6, which maximizes the memory consumption in the
most memory demanding architectures.

During training, the data ingestion pipeline is configured to extract patches
of size 80×80×80 with 50% probability of being centered on a background voxel
and 50% on a tumor voxel (50% background, 20% edema, 15% enhancing tumor
and 15% necrosis and non-enhancing tumor). Whole brain volumes are used
during evaluation in order to provide a realistic value of performance in a real-
world scenario. The CNNs are trained on two different hardware configurations,
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depending on the availability of computing resources: (1) AWS p2.xlarge instance
with a single NVIDIA K80 with 12 GiB of GPU memory; (2) on-premises server
with two NVIDIA GeFore GTX 1080 Ti with 11GiB of GPU memory.

Restriction of Availability of Input Modalities. We perform data ablation
experiments by restricting the available input modalities at training time, but
always maintaining the minimum required modalities to properly identify all
structures, namely T1-Gd and FLAIR. The motivation for such experiments is
twofold. First, we want to assess the relative contribution of each modality to
the overall segmentation, and inspect if some modalities are redundant or indeed
provide useful information. Second, it is convenient and even necessary to have
models that can work with a restricted number of modalities (as in some clinical
cases not all MR sequences are included in the protocol) even if such models with
restricted input information do not perform as well as models trained without
data restrictions.

Restriction of Number of Representation Levels. We hypothesize that
the inclusion of GPC modules enables the network to perceive greater context
without the need of having several representation levels. By representation levels
we mean the set of operations and feature maps that operate at the same spatial
resolution. In order to validate this hypothesis, we train two variations of the
ContextNet architecture with as little as 2 or 3 representation levels. The first
model, with just 2 representation levels, has 32 and 64 kernels at each convo-
lutional layer before the GPC modules, while the GPC modules still have 15
kernels with the same kernel size as in Sect. 2.2. The second model has 3 repre-
sentation levels with 16, 32 and 64 kernels at each convolutional layer before the
GPC modules, maintaining again the same number of kernels and kernel sizes
at the GPC modules and subsequent layers.

Visualization of GPC Feature Maps. We extract intermediate represen-
tations from the residual layers around the GPC modules and from the GPC
modules themselves on all the representation-level variations of ContextNet. The
intent of such experiment is to provide insight about the behavior of the GPC
modules, and to link such behavior to the performance of these models, despite
being aware of the limitations of this method for network interpretability.

2.4 Evaluation

The primary evaluation score for the segmentation task is the Sørensen-Dice
coefficient, usually abbreviated as DICE. In this context, the DICE coefficient
compares the similarity between the set of true examples and the set of positive
examples:

DICE =
2TP

2TP + FP + FN
(1)
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The Hausdorff distance is used to evaluate the distance between segmentation
boundaries. Results are reported using the 95% quantile of the maximal surface
distance between the ground truth P1 and the predicted segmentation T1 [13]:

Haus(P, T ) = max( sup
p∈∂P1

inf
t∈∂T1

d(p, t), sup
t∈∂T1

inf
p∈∂P1

d(t, p)) (2)

The targets of these evaluation scores are the following tumoral structures:

– Whole Tumor: comprises all tumoral structures, i.e. edema, enhancing
tumor, non-enhancing tumor and necrosis.

– Enhancing Tumor: comprises only the enhancing tumor class.
– Tumor Core: encompasses the enhancing tumor, necrosis and non-enhancing

tumor, thus excluding edema.

3 Results

Table 1 shows the DICE coefficients on the local validation set for all target struc-
tures of all baseline architectures, trained with different data configurations. The
best model for whole tumor segmentation is ContextNet trained with all modal-
ities (0.897 DICE score), while the best model for enhancing tumor and tumor
core segmentation is ResUNet trained only with T1-Gd, FLAIR and T1, achiev-
ing 0.752 and 0.799 DICE scores, respectively. It is particularly remarkable that
excluding the T2 from training enables the ResUNet model to better segment
the tumor core structures; such behavior can be explained if we consider that
the network is encouraged to focus more on structures more noticeable on T1-
related modalities (enhancing tumor and tumor core) thanks to the exclusion of
redundant information about edema provided by the T2 image (which is clearly
visible in FLAIR images).

Table 1. DICE coefficients (avg ± std) of baseline architectures trained with different
data configurations. Scores are computed on the local validation set.

Enhancing tumor Whole tumor Tumor core

UNet - all modalities 0.698 ± 0.229 0.847 ± 0.095 0.694 ± 0.235

ResUNet - all modalities 0.739 ± 0.207 0.892 ± 0.064 0.785 ± 0.200

ResUNet - T1-Gd, FLAIR, T1 0.752 ± 0.193 0.882 ± 0.080 0.799 ± 0.171

ResUNet - T1-Gd, FLAIR 0.723 ± 0.218 0.884 ± 0.070 0.790 ± 0.184

ContextNet - all 0.752 ± 0.207 0.897 ± 0.059 0.797 ± 0.195

ContextNet - T1-Gd, FLAIR, T1 0.743 ± 0.216 0.881 ± 0.071 0.770 ± 0.211

ContextNet - T1-Gd, FLAIR 0.734 ± 0.231 0.878 ± 0.080 0.770 ± 0.216

We show in Table 2 a comparison of the performance (according to the DICE
score) of the different representation level variations of ContextNet, as detailed
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in Sect. 2.3. We include the scores of ResUNet trained with all modalities, as
it is the most valid non-GPC model to be used for comparison. Both Con-
textNet models with reduced number of representation levels match or even
surpass the performance of the ResUNet model at whole tumor and enhancing
tumor segmentation. We hypothesize that GPC modules enable the aggregation
of contextual information without the need of obtaining a deep representation
via several pooling operations, which permits the proper segmentation of large
structures such as the whole tumor. At the same time, by reducing the number of
coarse features associated with increased representation levels the network can
focus on fine details, such as the enhancing tumor. Furthermore, a reduction of
representation levels entails a reduction of the number of trainable parameters,
as can be seen in Table 2. The downside is that the depth of the network is
severely reduced, and much more complex structures such as the necrotic and
non-enhancing tissue are harder to segment for such networks.

Table 2. DICE coefficients (avg ± std) of baseline ResUNet and variations of Con-
textNet with different number of representation levels. All MRI modalities are used to
train these networks. Scores are computed on the local validation set.

Enhancing tumor Whole tumor Tumor core # parameters

ResUNet 0.739 ± 0.207 0.892 ± 0.064 0.785 ± 0.200 2M

ContextNet 0.752 ± 0.207 0.897 ± 0.059 0.797 ± 0.195 1.7M

ContextNet - 3 RL 0.746 ± 0.217 0.894 ± 0.062 0.763 ± 0.225 1.6M

ContextNet - 2 RL 0.751 ± 0.208 0.892 ± 0.064 0.750 ± 0.229 1.3M

Figure 2 depicts the feature maps extracted from the residual layers and
GPC modules on the ContextNet models with reduced representation levels, as
explained in Sect. 2.3. We show only the first 4 feature maps with the highest
mean absolute value at each representation level and stage, and we organize the
information in a grid in which each row corresponds to a representation level and
each column corresponds to a module type in the network (pre-GPC residual
layer, GPC, and post-GPC residual layer).

Overall it is clear that the deeper the representation level, the coarser the
features the network is able to extract. It can also be seen that, as we move from
the pre-GPC residual layer to the GPC module and then the post-GPC residual
layer, the features that the network extracts are increasingly abstract, even at
the first representation levels. For instance, on the first level of both models
the pre-GPC residual layer is enhancing fine-details of the images, such as the
enhancing tumor ring; then the GPC module aggregates contextual information
and captures global features such as the healthy part of the brain (the activation
around whole tumor region is close to 0); finally the post-GPC residual layer
combines the global features extracted by the GPC modules and refines their
boundaries.

Predictions obtained from ResUNet, ContextNet constrained to three rep-
resentation levels and full ContextNet are shown in Fig. 3. On one hand, the
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Fig. 2. Feature map visualization for GPC module interpretability. Top figure shows
the activations of the ContextNet variant with 3 representation levels, while the bottom
figure shows the activations of the ContextNet variant with 2 representation levels.
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Fig. 3. From top to bottom, left to right: FLAIR and T1-Gd MR modalities, ground-
truth labels and segmentations produced by ResUNet, ContextNet trained with 3 rep-
resentation levels and ContextNet with all (4) representation levels of 2 subjects from
the local validation split of the BraTS 2018 dataset.

ContextNet variant with three representation levels is shown to perform simi-
larly to other networks on the first subject. On the other hand, it can be noticed
that the depth reduction in this ContextNet variant affects the segmentation
of the necrotic tissue on the second subject, in which both the full ContextNet
and ResUnet are able to produce a more refined representation than the limited
representation-level ContextNet.

Finally we evaluate the best performing ContextNet and ResUNet models
and an ensemble of these two models on the BraTS 2018 validation data. As
discussed in [9], model ensembling yields more robust segmentation maps by
reducing the influence of the hyper-parameters and configurations of individual
models. Specifically, we compute the average confidence score per class for each
voxel across the models in the ensemble, and we obtain the final segmentation
by assigning to each voxel the class with the highest average confidence score.
As a consequence of model ensembling, we observe improved DICE scores and
Hausdorff 95% quantile distances in practically all structures (shown in Table 3).
Therefore, we submit this model ensemble to the BraTS 2018 challenge [4] and
we report the resulting scores on the test set in Table 4.

Table 3. Evaluation scores (avg ± std) obtained on the BraTS 2018 validation set.
The evaluated models are ContextNet trained on all MR image modalities, ResUNet
trained on T1-Gd, T1 and FLAIR, and an ensemble of both models.

Dice Hausdorff 95

ET WT TC ET WT TC

ResUNet 0.729 ± 0.279 0.882 ± 0.071 0.741 ± 0.256 5.578 ± 11.249 9.896 ± 16.803 9.532 ± 12.407

ContextNet 0.735 ± 0.281 0.883 ± 0.112 0.753 ± 0.269 7.004 ± 13.944 7.594 ± 12.453 9.505 ± 11.557

Ensemble 0.758 ± 0.264 0.895 ± 0.07 0.774 ± 0.253 4.502 ± 8.227 10.656 ± 19.286 7.103 ± 7.084
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Table 4. Evaluation scores (avg ± std) of the submitted segmentation model on the
BraTS 2018 test set.

Dice Hausdorff 95

ET WT TC ET WT TC

Ensemble 0.694 ± 0.289 0.856 ± 0.147 0.754 ± 0.283 6.872 ± 13.21 9.676 ± 15.947 8.123 ± 12.713

4 Conclusion

In this work, we present several 3D fully-convolutional CNNs to address the
task of automatic tumor segmentation from magnetic resonance images, with
the objective of accelerating and improving radiotherapy planning and monitor-
ing of patients with gliomas of varied grades. We start with a baseline architec-
ture (UNet) and gradually improve its performance by adding residual elements
(ResUNet) and enlarging the receptive field of its components via GPC modules
(ContextNet).

We further investigate the behavior of the GPC modules by training networks
with a limited number of representation levels and visualizing their intermediate
representations, and show that equivalent performance can be achieved using
GPC modules even when the number of representation levels (and consequently
the depth and number of trainable parameters) of the network is considerably
reduced.

Future work includes improving the performance of individual models by
means of hyper-parameter optimization, uncertainty estimation via Monte-Carlo
Dropout or related techniques, in-depth investigation of intermediate represen-
tations and use of other deep learning interpretability methods to better under-
stand the behavior of the proposed GPC modules.
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Abstract. Purpose: This study was designed to evaluate the ability of a U-net
neural net-work to properly identify three regions of a brain tumor and an ELM
for the prediction of patient overall survival after gross tumor resection using
preoperative MR images.
Methods: 210 GBM patients were used for training, while 66 LGG and GBM

patients were used for validation. Multiple preprocessing steps were performed
on each patient’s data before loading them into the model. The segmentation
model consists of three different U-nets, one for each region of interest. These
created segmentations were then analyzed by use of common quantitative
metrics with respect to physician created contours. Regarding the patient overall
survival prediction, 59 high grade glioma patients with gross total resection
(GTR) were provided for training. 28 patients with GTR were used to validate
the algorithm.
Results: The average [s.d] DSC for the whole tumor, enhanced tumor, and

tumor core contours were 0.882 [0.080], 0.712 [0.294], and 0.769 [0.263],
respectively. The average [s.d.] Hausdorff distance were 7.09 [11.57], 4.46
[8.32], and 9.57 [14.08], respectively. The average [s.d.] sensitivity for the
whole tumor, enhanced tumor, and tumor core contours were 0.887 [0.126],
0.770 [0.245], and 0.750 [0.293], respectively. The average [s.d.] specificity was
0. 993 [0.005], 0.998 [0.003], 0.998 [0.002], respectively. The predictive power
of patient overall survival is 0.607 using an extreme learning machine algorithm.
Conclusion: The U-Net model was very effective in determining accurate

location of the whole tumor and segmenting the whole tumor, enhancing tumor
and tumor core. The most predictive features of patient overall survival are both
age and location of the tumor when all 163 validation cases were utilized.
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1 Introduction

Clinical care for patients with brain tumors such as glioblastoma (GBM) is ripe for
advancement through the use of deep neural networks (DNNs) that augment imaging
analysis and real-world clinical utility through automated segmentation and
progression-free and overall survival prediction. GBM is the most common primary
malignant brain tumor designated as a World Health Organization grade IV tumor with
a median overall survival of less than two years with best available treatments [1]. The
one- and three-year survival rates are 39.7% and 10.1%, respectively. An estimated
25,000 adults in the US are projected to be diagnosed with a primary malignant brain
tumor in 2018 and the majority of those diagnosed with a GBM will not survive
through 2020 [2]. Over 90% of GBMs develop in elderly patients without evidence of
low grade precursor lesions (primary GBM). Other patients that harbor lower grade
gliomas such as astrocytomas, oligodendrogliomas, and their anaplastic variants, will
face disease recurrence despite treatment, often with malignant transformation and
behavior that can manifest as GBM in astrocytic tumors (secondary GBM) [3]. In
addition to aggressive intrinsic biology, primary brain tumors often result in profound
functional deficits for patients due to neuroanatomic disruption that has implications for
both quality of life and survival. Patients with GBM and other incurable brain tumors
represent a group of patients with an unmet need that may benefit from refined
prognostic tools and disease sub-classifications that ultimately result in more precise
therapeutic interventions. The use of predictive analytics prior to surgical intervention
for patients harboring malignant gliomas such as GBM presents such an opportunity.

Patients harboring malignant gliomas are monitored for disease progression with
magnetic resonance imaging (MRI) studies of the brain. Initial symptoms of neurologic
compromise are often investigated with a CT scan followed by an MRI. This process
may include multiple MRI studies prior to surgery and ultimate tissue diagnosis which
are used for complex intraoperative neuro-navigation and presurgical functional neu-
roanatomic investigation. Conventional MR imaging techniques contribute morpho-
logical information of the scanned area and they can generate images influenced by
different types of tissue parameters including T1-weighted images (T1WI), T2-
weighted images (T2WI) and fluid attenuation inversion recovery (FLAIR). The
multimodal MRI sequences allows for complementary images to come together to
describe the underlying heterogeneous anatomic and pathologic processes, including
necrosis, enhancing and non-ET core and peritumoral edema. Diffusion and perfusion
weighted images can be used to assess pathophysiological processes noninvasively.
Radiomic features extracted from these MRI images that fuel precision medicine and
contribute to multi-parametric knowledge networks such as those anchored in the
genomic and molecular underpinnings of disease are refining our understanding of
health and disease resulting to a seismic shift in healthcare delivery [4].

We participated in the 2018 International MICCAI BraTS challenge to segment
heterogeneously-enhancing tumors, necrotic lesions and surrounding edema in pre-
operative MRI scans; and to predict overall survival from these scans. [12] It is
imperative that neuroanatomic data is accurately reported to aid in therapeutic inter-
ventions such as surgical navigation. This process may be enhanced through DNNs
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linked to patient outcome that aid clinicians in therapeutic decision making. Over the
last few years, DNNs have shown potential to aid physicians in tumor delineation and
outcome prediction. The aim of this study was to employ a DNN to use automated
image segmentation coupled with real world physician and scientific knowledge to
predict survival outcomes in patients anticipated to undergo gross total resection
(GTR) of a GBM.

2 Methods

2.1 Patient Population

All data was provided by the BraTS multimodal Brain Tumor Segmentation Challenge
2018. A total of 210 GBM patients were used during training, while 66 patients
presenting with GBM and LGG were used for validation. Four conventional MRI
sequences were provided for each patient case consisting of: T1WI, Gadolinium
enhanced (T1CE), T2WI, and FLAIR. The MRI images were generated at 19 insti-
tutions utilizing multiple device manufacturers and clinical protocols to ensure variety
of data. One to four raters, following the same annotation protocol, segmented
enhancing tumor, peritumoral edema, and necrosis (non-enhancing tumor core) on each
MRI sequence for every patient [5–8]. The annotations were approved by expert neuro-
radiologists.

2.2 Image Preprocessing

All MRI modalities (T1, T2, FLAIR) were rigidly registered with the T1CE and
resampled to a spatial resolution of 1 � 1 � 1 mm3. In addition to the registration and
resampling, skull stripping and normalization were performed. Sixty-four slices image
patches covering the enhanced tumor and edema were extracted from original 3D
volumes (240 � 240 � 155) for each patient in order to speed up
training/validation/testing and eliminate non-enhancing tumors and regions without
surrounding edema. To create an image size conducive to the 2 � 2 max-pooling
utilized by the U-net, zero margins were added to pad each 2D image to have image
sizes of 256 � 256. Considering the brain exhibits marked symmetry across the
sagittal plane, each slice was flipped left/right to decrease the dependence on location
and increase the variability of the available dataset using data augmentation. In the
validation phase, all 155 slices of each 3D volume went through the pipeline for
segmentation.

2.3 Neural Network Architecture

Three U-nets were used in the study. One U-net was trained for each of the segmented
areas in the MRI images: whole tumor (WT), enhancing tumor (ET), and tumor core
(TC). Four scaling layers were used following Pelt et al.’s [9] study as the accuracy was
improved by using a U-net with 3 or 4 scaling layers. The number of features doubled
for each consecutive convolutional layer and halved for each consecutive up-sampling
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layer as suggested by Ronneberger et al. [10]. The merged layer was comprised of
features from the up-sampling layers and the convolutional layers. The convolutional
layers utilized batch normalization, which was placed right after every merged layer, as
well as two more convolutional layers at the end of the model. [11] Soft Dice was
utilized as the loss function and is explained by formula 1 with constant value chose to
avoid division-by-zero singularities (Fig. 1).

Dice Loss ¼ 2 � ytrue;ypred
� �þ c

ytrue;ytrue
� �þ ypred;ypred

� �þ c
; ð1Þ

ytrue ¼ Clinical Contour; ypred ¼ Model Contour c ¼ 0:01 threshold ¼ 0:5

All four modalities were used for segmenting WT, TC, and ET. The U-net was run
three different times, each of which had one type of the reference contours as the input.
A corresponding mask was generated as the output for each input structure. In this way,
a WT model, an ET model, and a tumor center model were trained respectively. The
combination of these created masks during post-processing is crucial to the success of
the study. It was surmised that these masks should be combined in a way that best
mirrors the physicians contouring method, specifically for the enhancing tumor. This
required that the intensity difference between T1CE and T1WI was calculated on a
pixel level in each slice. The WT contour was generated by summing all three masks of
each model. The TC contour was created by the combining the masks of the ET and TC

Fig. 1. U-Net Model Architecture. (Blue: Res. 256 � 256, 64 Features; Red: Res 128 � 128,
128 Features; Orange: Res. 64 � 64, 256 Features; Yellow: Res 32 � 32, 512 Features) (Color
figure online)
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models. The ET contour was the direct output of the ET model. The best model for
each type of contour was chosen according to the validation loss within 100 epochs run
on GPU (Titan XP, nVidia, Santa Clara, CA).

2.4 Evaluation Matrices

The metrics used to evaluate the agreement between the created U-net model and the
given reference contours are the Dice similarity coefficient (DSC), Hausdorff distance
(HD), sensitivity, and specificity. [12] Sensitivity is also known as a true positive. It is
explained by Eq. 2. Specificity is also known as a true negative and explained by Eq. 3.

Sensitivity ¼ number of true positives
number of true positivesþ number of false negatives

ð2Þ

Specificity ¼ number of true negativess
number of true negativesþ number of false postivies

ð3Þ

The DSC is explained in Eq. 4 and gives statistic regarding general overlap:

DSC ¼ 2 � ytrue;ypred
� �

ytrue;ytrue
� �þ ypred;ypred

� � ; ð4Þ

ypred ¼ binary prediction; threshold ¼ 0:5

Hausdorff Distance gives statistics regarding the amount of gross error between the
created contour and reference contour. The Hausdorff distance is the maximum dis-
tance of a point in one contour to the nearest point of the other contour:

h A;Bð Þ ¼ maxa2A minb2B d a; bð Þf gf g ð5Þ

where a and b are points of sets A and B, respectively, and d(a, b) is Euclidean metric
between these points [13].

2.5 Overall Survival Prediction

One hundred sixty-three high grade glioma (HGG) patients, 59 out of whom underwent
GTR, were provided for training. Twenty-eight standalone HGG patients with GTR
were used to validate the algorithm. Given the scale of training data, we proposed to
represent patient condition with hand crafted features that utilized and integrated
information about pre-operative MRI images, tumor and its sub-region segmentation
masks, and patients’ age. Those features were then fed into a “shallow” regression
algorithm inspired by ELM [14].

ELM was proposed as a simplified substitute for back-propagation (BP) to train a
single hidden layer feedforward neural network. In contrast to other popular regression
algorithms, such as BP based neural network, support vector machine (SVM), solution
of ELM was analytically computed instead of iteratively tuned, which makes its
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implementation outstandingly efficient. Kernelized version of ELM was used in our

work for its stability. To be specific, an RBF kernel (K u; vð Þ ¼ exp �c u� vk k2
� �

with kernel parameter c to be tuned) was used to transform the data and then
parameters of the model were computed as solution to an optimization problem (Eq. 6)
that aims to minimize the training errors as well as the L-2 norm of the parameters to
prevent overfitting.

Minimize : LELM ¼ 1
2

bk k2 þC
1
2

XN

i¼1
�2i ð6Þ

Subject to : h xið Þb ¼ ti � �i; i ¼ 1; . . .;N;

where N is number of samples, b is the weight connecting hidden layer and output
layer to be analytically computed, h xið Þ is the hidden layer mapping of input xi, �i is the
error from predicted output h xið Þb and targeted output ti. Here kernel is defined as
multiplication of two mapping functions: K xi; xj

� � ¼ h xið Þ � h xj
� �

:

3 Results

3.1 The Validation of the Models

The model had different levels of success depending on the tumor area it was locating as
well as tumor grade. Results show that the WT was most successfully segmented,
specifically on GBM patients. This makes sense as GBM presents with increased tumor
size and higher contrast with surrounding tissues. In general, the U-net performed worst
when segmenting the ET in low grade gliomas. It is believed that the relatively diminutive
size of the ET created problems in segmentation. Table 1 summarizes the Dice similarity
coefficient, sensitivity, specificity and Hausdorff distances of the validation cases.

3.2 Overall Survival Prediction

The volume of theWT, TC, and enhanced tumorwas calculated from ground truthmasks.
In addition to these volumes, the center-point of 3-D WT was found. Because in current
stage segmentation of non-enhanced and enhanced TC isn’t desirably accurate, infor-
mation involving them was avoided in our work. Some experimental trials validated our
hypothesis by showing that adding such information only deteriorated the performance.

Table 1. The evaluation of the segmentation accuracy for 66 validation cases. WT had best
results for DSC and Sens. ET had best HD and TC had best Spec.

DSC Sensitivity Specificity HD (mm)

ET 0.71 ± 0.29 0.77 ± 0.25 0.998 ± 0.003 4.46 ± 8.32
WT 0.88 ± 0.08 0.89 ± 0.13 0.993 ± 0.005 7.09 ± 11.57
TC 0.77 ± 0.26 0.75 ± 0.29 0.998 ± 0.002 9.57 ± 14.08
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Finally, our feature variables include, age, volume ratio of WT and brain, and 3-D
coordinate of the center point of WT. Note that, among 163 HGG patients for training,
only 59 underwent GTR with 104 other patients’ resection status either partial or
unknown. Although resection status played an important role in patients’ outcome, we
performed the experiment with merely GTR cases and compared that with all training
data and found out that extra data can improve the performance to some extent
(Table 2).

4 Discussion

There have been significant research breakthroughs in deep machine learning in recent
years, which has the potential to transform healthcare. Perhaps no area of healthcare is
in greater need of rapid progress than malignant brain tumors which also harbor great
potential for advancement through computational science owing to the wealth of
available radiomics data provided by lifetime serial multimodality imaging and the
existing genomic compendium provided by the cancer genome atlas and other inves-
tigations. The architecture of deep neural networks offers a powerful framework for
multimodality image analysis and processing.

We have presented a deep U-net architecture to correctly detect and segment the
following areas of brain lesions: ET, TC, and WT. Study specific modifications were
employed in an attempt to delineate regions more accurately. The best and worst results
are explored in the discussion, as well as ideas for potential future work.

4.1 Modifications

One such improvement on the basic U-net is to change the ET, WT, and TC contour
definitions during post processing. Currently, the WT contour created by this model is
defined as the sum of three masks created by the three neural networks; the ET contour
created is the sum of the TC mask and the ET mask, and the TC contour is created by
the TC mask. In an effort to improve the results, the definition of each created contour
was modified. The purpose of this modification was to exclude any pixels in the
contour that was outside of that specific mask. For example, the WT contour was
originally created from the sum of the three masks (WT, ET, TC) if any of the other
masks were outside of the WT mask, that mask’s input in that area would be
disregarded.

In this U-net, the input of each model consisted of all four MRI modalities in
addition to just one contour, so that WT, ET, and TC each had their own specific U-net.

Table 2. Accuracy of overall survival prediction on standalone 28 validation patients. As shown
in this table, single variable alone has very limited predicting power. And the best result was
obtained when we used all 163 cases and considered both age and location of the tumor.

Accuracy Age Ratio of WT/Brain WT Loc. Age + WT/Brain Age + Loc. ALL

59 GTR 0.321 0.321 0.321 0.500 0.500 0.536
163 Case 0.321 0.25 0.393 0.571 0.607 0.357
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Further investigation is warranted to derive the optimal combination and weighting
factor of each sequence. For example, FLAIR is the best modality to segment non-ET
and edema, but FLAIR is a non-specific sequence and the data set did not provide
enough data for the model to benefit from the FLAIR sequences. Ideally, the weighted
values of each imaging sequence as determined by the context of the expected infor-
mation from that sequence (i.e. enhancement to define necrotic tumor margin, FLAIR
hyperintensity with T1 hypo-intensity represent non-ET) force the model to use the
proper MRI modality for finding each GBM structural deviation structure in the context
of the remaining MRI sequences and overlapping anatomy. This could potentially aid
the model to overcome a smaller training dataset.

4.2 Encouraging Results

Both patients in Fig. 2 presented with GBM which is easily differentiated into WT, ET,
and TC segmented areas. These patients benefitted from proper contrast agent uptake
during the T1CEMRI. This level of success was achieved because the tumor was farther
away from the midline of the brain which decreased the structural similarity, high
contrast with surrounding healthy tissue, and similarity to many of the training images.

4.3 Poor Results

The patient in Fig. 3 had ET, WT, and TC DSC values of 0, 0.884, 0.001, respectively.
This patient presents with a large T2 lesion and limited enhancement (represents
necrotic core) or absence of a cystic interior which does not indicate GBM. The poor
results for this patient most likely came from the low ratio of ET and TC to WT as well
as some artifacts in the image series. Currently methods are being investigated to utilize
low grade gliomas during training to solve this issue

The patient in Fig. 4 had ET, WT, and TC DSC values of 0, 0.45863, and 0.45863,
respectively. Encouragingly, this was the only patient to present with a WT DSC value
less than 0.66. While (B) in Fig. 4 shows the left frontal lobe T2 hyperintensity shows
agreement with physician review of segmentation, the image segmentation on the

(A)                          (B)  (C) (D)

Fig. 2. Example of two good results from the validation set. (Green = WT, Blue = TC,
Red = ET) B, D are shown to show correct identification of lesion. (FLAIR) (Color figure online)
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image “A” shows segmented tumor mask in the right superior-posterior frontal lobe
raised concern with physician review. This case is interesting as the tumor shown in
slice “A” maintains structural integrity as it is not filling. Naturally the U-net looks at
structural integrity when defining a region, and this region was mislabeled as healthy
since the gyri are still intact. Any clinician can identify this mislabeled region as tumor
due to the pixel values. Future work will investigate placing priority of pixel values
over structural similarities.

In an attempt to fix this patient’s problem, normalizing the pixel values per slice
versus volumetric normalization was also investigated. It was found that volumetric
normalization increases the DSC by about 0.8% while also increasing specificity.
However, sensitivity increases when slice normalization is employed. Figure 5 “A &
B” shows a specific case where volumetric normalization missed the target although the
size of the false positive is also significantly smaller. It is also worth noting that when
volumetric normalization was used performance decreased as it did not segment any
part of the tumor in the slice discussed earlier as shown in Fig. 5 “C & D”.

(A)                             (B)

Fig. 3. Example patient presenting with poor results from the validation set. The contour is the
blue outline for ease of viewing true tumor location. A show image slices with poor results, while
B show image slices with encouraging results.

(A)                     (B)

Fig. 4. Example patient presenting with poor results from the validation set. The contour is the
blue outline for ease of viewing true tumor location. “A” shows an image slice with poor results,
while “B” shows image slice with encouraging results.
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4.4 Segmentation Study Comparison

It is important to compare these results with other methods, specifically the methods
that also employed the U-net architecture. This architecture was created in 2015 by
researchers at the University of Freiburg, Germany. Several competitors in BraTS have
attempted to improve the basic architecture by making modifications. Comparison of
our results from our modified U-net to some of the more successful papers in the BraTS
preceding conference papers from 2017 and 2018 is necessary to discuss our contri-
bution to this field. These results are compared in Table 3.

Varghese et al. utilized a fully connected 2D U-net. This decreased computational
time compared to patch-based techniques as it employs a single forward pass to classify
pixels slice by slice. Z-score normalization was done for preprocessing. [15] Utilizing a
3D U-net allows for there to be features utilized along the z axis; however, it increases
computational time. Amorim et al. studied the effects of utilizing 3D with 64 � 64 � 64
patches. Similarities to our study’s method is that one U-net was trained for each mask.
Pre-processing included histogram equalization for T1 and T2 images, while standard
scaling and normalization were performed on T1CE and FLAIR. [16] Beers et al. pro-
posed the idea of employing sequential 3DU-nets. The idea centered on fully utilizing the
GPU. This method was complex as the stacking of U-nets is complicated [17] Feng et al.
utilized a patch-wise three-dimensional U-net. Class labels were generated by a sliding

(A)  (B) (C) (D)

Fig. 5. Slice normalization(A, C) v Volumetric normalization (B, D)

Table 3. Preliminary DSC Results from Similar Studies in BraTS

Study ET WT TC

Our study 0.71 0.88 0.77
Varghese 0.69 0.83 0.69
Amorim 0.83 0.91 0.91
Beers 0.68 0.78 0.67
Feng 0.75 0.90 0.80
Rodriguez 0.47 0.82 0.57
Baid 0.75 0.88 0.83
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window approach. Pre-processing steps included normalization and patch
(64 � 64 � 64) extraction. This patch extraction differs from conventional methods as
there are many patches per image and each patch is input into the U-net. [18] Rodriquez
et al. applied two 3DU-nets in a unique method. The first U-net found theWT. The found
WT was then the input for the second U-net, which segmented the tumor into WT, ET,
and TC. respectively. [19] Baid et al. utilized a 3D U-net with 64 � 64 � 64 patches.
Preprocessing included normalization and N4ITK correction [20].

Although the results that our study achieved from utilizing three 2D U-nets with
described pre and post processing techniques are encouraging; it is important to identify
techniques that will be attempted. One factor to consider is the application of N4ITK
correction during pre-processing. Another possible change to make is to utilize a 3D U-
net. We preferred to utilize a 2D U-net instead of a 64 � 64 � 64 patch 3D U-net as the
3D U-net requires eithers down-sampling of the data and/or processing of the whole
volume at multiple locations. The former potentially loses spatial information while the
latter introduces complexity. The added complexity necessitates a theoretical compu-
tational time around 39 times longer than the 2D U-net as there is a need to process the
image at multiple locations to cover the 240 � 240 � 155 region with a 64 � 64 � 64
patch without overlap. There must be further study performed to compare our 2D U-net
with a 64 � 64 � 64 3D U-net with regards to finding specific training time differences,
complexity, and size of data. We argue that by using a 2D patch of 256 � 256 we can
quickly apply the segmentation slice by slice in a competitive manner.

4.5 Overall Survival Study Comparison

For years, leading consortiums in neuro-oncology and radiomics have attempted to
provide guidelines for multimodality imaging to achieve standardized interpretation
and data uniformity for clinical trials [21]. The use of DNNs to aid in the radiomic
analysis of malignant brain tumors harbors tremendous opportunity to improve care.
Radiomic tools that accurately predict patient survival or aid the clinical team in patient
care and disease stratification are of great value, especially when used with other
modalities that refine our understanding of the intrinsic biology of disease such as
malignant brain tumors. Furthermore, use of a predictive tool in the presurgical navi-
gation of brain tumor care has the potential to optimize resources, initiate precision
medicine claims, and provide a framework for clinical evidence generation using real
time data, which some argue is the near future of technology-enhanced healthcare
delivery. In this study, we investigated the prediction power of overall survival using a
DNN. However, the accuracy was very low due to the limited patient size and MR
image sequences. Our study showed improved results using only a handful features
such as age, ratio of WT to the brain and tumor location. We reviewed the results from
other groups and noticed the similar findings.

Varghese et al. used features such as: age of patient, ratio of number of voxels of
edema to number of voxels of lesion, ration of number of voxels of necrosis to number
of voxels of lesion, and etc. These features were used as input to support vector machine
utilizing a linear kernel. Preliminary reported accuracy is 60%. [15] It is very similar to
our method, except that we avoided using segmentation of necrosis and enhanced TC
due to its inaccuracy. We also added extra information about tumor location, which was
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shown to be important. Amorim et al. used a total of 120 features found from mor-
phological and statistical features of the tumor regions and a XGBboost classifier.
Preliminary reported accuracy is 48%. [16] Feng et al. used a linear regression model
with features such as sum of the voxels, surface area, age, and resection status. Pre-
liminary reported accuracy is 32%. [18] Baid et al. found 468 features for edema, TC,
and ET by use of first order statistics, shape features, gray level co-occurrence matrix,
and gray level run length matrix. This study achieved higher accuracy with multilayer
perceptron than random forest. Preliminary reported accuracy is 57% [20].

Patients are evaluated with serial MRIs throughout their disease course often at
short intervals of 2–3 months for the first several years. These MRI studies utilize a
compendium of sequences described above in a multiparametric format to provide
qualitative and quantitative information about the tumor and resultant neuroanatomic
disruptions. The changes of radiomics features extracted from these serial MRIs may
have better predictive power. Our next step is to increase the patient sample size with
longitudinal MR scans and investigate the predictive power using delta radiomics.

5 Conclusion

U-net, a deep neural network, was used to automatically segment the brain into WT,
TC, and ET. The difference one will expect to see when using volumetric versus slice
normalization during pre-processing was investigated and discussed. These created
segmentations were then analyzed by use of quantitative metrics (DSC, HD, sensitivity,
and specificity) with respect to physician created contours. The results of these statistics
were encouraging, especially for finding the WT. It also shows that if a 2D U-net can
be competitive with many 3D U-nets if one implements a methodology during post-
processing that mirrors the method that physicians utilize. Future study is still needed
to investigate the impact of different scanners, protocols, sequences, and dataset vol-
umes on the performance of segmentation. The opportunity to impact clinical care
through refined radiomic tools such as this described application of a deep neural
network for overall patient survival prediction after gross tumor resection is of par-
ticular interest in the management of GBM and other brain tumors which rely heavily
on medical imaging.
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CCE from the American Cancer Society.
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Abstract. The segmentation of a brain tumour in an MRI scan is a challenging
task, in this paper we present our results for this problem via the BraTS 2018
challenge, consisting of 210 high grade glioma (HGG) and 75 low grade glioma
(LGG) volumes for training. We train and evaluate a convolutional neural
network (CNN) encoder-decoder network based on a singular hourglass struc-
ture. The hourglass network is able to classify the whole tumour (WT),
enhancing (ET) tumour and core tumour (TC) in one pass. We apply a small
amount of preprocessing to the data before feeding it to the network but no post
processing. We apply our method to two different unseen sets of volumes
containing 66 and 191 volumes. We achieve an overall Dice coefficient of 92%
on the training set. On the first unseen set our network achieves Dice coefficients
of 0.66, 0.82 and 0.72 for ET, WT and TC. On the second unseen set our
network achieves Dice coefficients of 0.62, 0.79 and 0.65 on ET, WT and TC.

Keywords: Convolutional neural network � Deep learning � Hourglass �
Glioma

1 Introduction

Identifying regions of the brain which are tumourous is a task often carried out by
medical professionals. Manually classifying segments of the tumour is a subset of a
group of problems commonly referred to as semantic segmentation. Semantic seg-
mentation is the task of assigning a class to each pixel within an image, modern
automated solutions to this problem often use convolutional neural networks (CNN).
The introduction of fully convolutional networks (FCN) [1] established a convolutional
neural network architecture that is widely used for the task of semantic segmentation.
Architectures such as U-NET [2] achieved success in biomedical imaging by adopting
a similar architecture.

We propose the use of an adapted hourglass [3] network to solve the problem of
tumour segmentation. The hourglass network improves on U-NET by using bottleneck
blocks and adding convolutions to the skip connections. Training a CNN for this
problem is a natural choice as they have demonstrated state-of-the-art performance on
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semantic segmentation problems such as the widely used Pascal VOC2012 [9] and
cityscapes [10] datasets.

2 Methods

2.1 Data

The dataset of BraTS 2018 [4–8] provides defined training and validation sets. The
training set is composed of 210 MRI scans of high grade gliomas (HGG) and 75 MRI
scans of low grade gliomas (LGG). Whilst the validation set is a group of 66 mixed
HGG and LGG tumours. The MRIs are volumes in the format given by Eq. (1), in that
format they have the dimensions 240 � 240 � 155. Each volume has four corre-
sponding modalities FLAIR T1, T2 and T1CE.

X � Y � Z ð1Þ

Where x is the delineation between dimensions and X, Y and Z are the dimensions
on a 3D coordinate system.

2.2 PreProcessing

A high variance in intensity in both validation and training set was observed this lead
us normalise the training set to be centred around zero with a standard deviation of one.
By normalizing the data, we found that the required training time was reduced and the
accuracy of the network was increased. The formula for normalization is given in
Eq. (2). Each modality was normalized separately due to the variance in intensity
profile between modalities.

Z ¼ x� l
r

ð2Þ

Where x is the current intensity, l is the mean of the modality and r is the standard
deviation of the modality.

2.3 Hourglass Architecture

Our approach is to handle 2D slices of each volume separately, a 2D semantic seg-
mentation problem. We performed additional experimentation using a volumetric
encoder-decoder but found that the benefit of an end-to-end volumetric approach was
outweighed by the significant necessary drop in features at each layer due to memory
restrictions.

We design our network using an encoder-decoder structure, adapted from an
hourglass network, popularized in the domain of human-pose estimation [3] The
structure of the hourglass is similar to other encoder-decoder networks, but contains a
denser use of residual blocks throughout.
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The encoder starts with an input of 4 channels and contains 7 residual bottleneck
blocks [14], after each a max-pooling layer performs spatial downsampling. A further
three residual blocks at the lowest spatial resolution derive higher-level features before
a series of bilinear upsampling operations return the network to the original spatial
resolution. As in the encoder, all upsampling operations of the decoder are interleaved
with residual blocks. Skip layers are added between each matching resolution of the
encoder and decoder, with each containing an additional residual block to learn an
appropriate mapping.

The first residual block has 64 filters, the filter amount doubles after each pooling
operation up to a maximum of 512 filters in a convolution.

In order to improve the network’s results for the final test set we made architectural
changes to improve accuracy whilst keeping memory consumption to a minimum. We
found that the choice of upsampling layer (e.g. bilinear, max-unpooling [11]) made
little difference to the performance of the network. Unlike the original work [3] we
chose not to stack hourglass networks sequentially and perform intermediate super-
vision, we found this too had a negligible effect on performance. The number of
spatial-downsampling layers, 7 in total, were originally chosen based on the input
resolution. However, through experimentation we found that using 5 downsampling
layers was optimal and save memory. Only one residual block is used at each depth
because adding two at all depths immediately doubles memory consumption which
surpasses current memory constraints. We also found that replacing elementwise
summation with concatenation followed by a 1 � 1 convolution improved results
noticeably. Despite the additional memory consumption of the concatenation and
convolutional layer, the increase in performance boost makes the change worthwhile.

2.4 Training

The training was split into two phases pre and post true validation set release. In the
first phase the dataset was split into a test set, validation set and training set where each
set was 10%, 10% and 80% of the original training set respectively. The data provided
is treated as though it is the entire dataset so that our training can be validated and
tested in preparation for the true validation set. This allows the network to avoid
overfitting and approximate the results expected on the release of the second dataset.
Later the network is retrained using a 10% test set and 90% training set split in order to
obtain test results on the original data whilst maximizing the training set size. The
network is trained for the same number of epochs for all training. The second phase is
conducted post true validation set release. In this phase the BraTS dataset is split into
10% validation and 90% training.

The network is trained using an identical training scheme for both the natural and
augmented dataset.

The hourglass network implemented in this paper only uses spatial convolutions, to
accommodate this we convert MR volumes into a set of 155 images of spatial reso-
lution 2402. To do this we separate the volume along the depth dimension. For con-
venience we pad the images to the new resolution 2562, this allows us to perform
pooling operations where the output resolution of a feature map is always 2x. In turn
this allows us to perform concatenations or elementwise summations in the decoder
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network without a resolution difference between two feature maps. The 285 volumes
therefore become a dataset of 44175 images. All four modalities are used for training
and are given to the network as 4 input channels of a single image.

The hourglass network was chosen because it has been successful in other tasks
such as human pose estimation [3] and allows the stacking of the network. Stacking the
network multiple times sequentially can give performance boosts as shown before [3].
Spatial convolutions were chosen instead of volumetric convolutions because they
consume much less memory, volumetric convolutions would exceed available memory
if a stacked network was used. In addition, volumetric convolutions are so memory
intensive that they do not allow a network to be trained on the entire MR volume at the
same time as having a rich set of filters in a deep network. An alternative to this
volumetric network is a volumetric network with a subset of a volume included E.g.
A 32 � 32 � 32 chunk. However, the problems remain largely unsolved, the per-
formance boost given by depth context is potentially outweighed by the larger number
of filters available in a spatial network. This multitude of reasons led to the choice of a
spatial network which would be deeper and wider than the equivalent volumetric
network given the same memory constraints.

The hourglass is trained on a NVIDIA TITAN X GPU using a cross entropy loss
function with a learning rate of 10−5 which is decreased by a factor of 10 every 30
epochs. A batch size of 8 is used and the network is trained for a total of 50 epochs
therefore the learning rate is only adapted once. The adaptive gradient descent algo-
rithm, RMSProp is used to train the network faster than the typical stochastic gradient
descent.

2.5 Data Augmentation

Two methods of data augmentation are used in this paper vertical flipping and random
intensity variation. Vertical flipping is used because it matches the natural symmetrical
shape of the brain.

Random intensity variation is used because the intensity between MRI scans varies
significantly. This is shown by the fact that the standard deviation of the FLAIR
modality in the dataset is greater than the mean by almost a factor of 10. E.g. The
standard deviation and mean for the FLAIR modality are 529.2 and 61.8 respectively.
The T1, T1CE and T2 modalities have similar standard deviations. Intensity variation is
performed on the normalised dataset by first rescaling the standard deviation of the
dataset and then shifting the mean. This allows the dataset to include image intensities
which are not present in the original dataset but could appear on an MRI volume. The
range for randomly changing the standard deviation is between zero and two. The mean
is shifted between values of 0.4 and –0.4. Values above a standard deviation of two
were experimented with but lead to a significant decrease in accuracy. Shifting the
mean by over 0.5 and under –0.5 were trialed but also caused an accuracy decrease.
The network is trained with and without data augmentation to experimentally ascertain
whether augmentation gives any performance increase when using this network on the
dataset.
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3 Results and Discussion

The results are split into three sections, the results on the training data set, the results on
the later released validation set and the results on the final test set. Results are shown
for networks trained on the standard data and on augmented data in the validation set.

3.1 Training Dataset

We trained the network on 90% of the data leaving 10% for testing purposes. The
network achieved a Dice coefficient of 92% with an IOU of 86%. We find that IOU
approximates the network’s worst performance on the test set in contrast to Dice which
gives an approximate representation of the average case.

3.2 Validation Dataset

The results presented in this section are those achieved when segmenting the validation
set using the network trained in Sect. 3.1. Table 1 shows the results of the segmen-
tation without augmentation and Table 2 shows the results with flipping and intensity
variation. The metrics provided in both tables are the standard metrics output by the
BraTS automatic online evaluation server. Some metrics have been omitted to save
space, only the most important evaluation metrics have been included.

After comparing the metrics between a dataset with augmentation and one without
we find that in this challenge augmentation appears to give a small increase in accuracy
for Dice coefficient and improves the Hausdorff accuracies significantly. It is likely the

Table 1. The results of the hourglass network segmenting the unseen validation set without
augmentation in the training data.

Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausedorff TC

Mean 0.59 0.82 0.64 18.12 94.28 130.70
Std 0.28 0.12 0.24 26.62 50.15 42.40
Median 0.71 0.86 0.71 5.732 97.13 132.59
25 quantile 0.48 0.78 0.51 3.162 52.72 103.36
75 quantile 0.80 0.90 0.83 20.03 135.81 163.39

Table 2. The results of the hourglass network segmenting unseen validation set where the
network has been trained with augmented data

Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausedorff TC

Mean 0.56 0.82 0.61 14.29 13.57 17.95
Std 0.29 0.13 0.22 23.26 15.32 18.14
Median 0.67 0.87 0.67 5.92 6.59 11.18
25 quantile 0.40 0.78 0.50 2.83 4.18 8.30
75 quantile 0.80 0.90 0.79 12.56 14.97 18.79
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case that the frequency at which the network misclassifies pixels remains similar but
the network’s ability to localize the pixels is increased.

Overall the network segments the whole tumour more accurately than it does the
core tumour or enhancing tumour, from the results in previous challenges this result is
expected. Naturally the enhancing and core tumour are much more difficult to segment
due to the similarity between all classes.

Tables 1 and 2 both show a large disparity between the median and mean accuracy
especially with results for the enhancing tumour where the difference is around 10%.
The difference is caused by the difficulty of detecting the enhancing tumour and core
tumour in some volumes. In most volumes the Dice coefficients are well above the
mean however some outliers achieve a score of 0 therefore reducing the mean sig-
nificantly. When removing these cases the mean Dice coefficient increases by 4%
showing that the disparity can be explained by a few very difficult volumes. Some
examples of the metrics achieved on these volumes are shown in Table 3.

3.3 Test Dataset

Before the release of the final evaluation dataset we train our network using 95% of the
training data. The remaining 5% of the training data is used for on the fly validation of
the network to monitor training and prevent overfitting. The network architecture has
been adapted to improve the results on the validation set, these architectural changes
are discussed in Sect. 2.3. We present the new validation set results along with the test
set results. Section 3.2 showed that the network has an increase in Hausdorff95
accuracy when data augmentation was used. The network used for the results in this
section was trained using data augmentation.

Table 3. Segmentation results for very difficult volumes using a network trained with
augmented data

Dice
ET

Dice
WT

Dice
TC

Hausdorff
ET

Hausdorff
WT

Hausedorff
TC

TCIA09_248_1 0 0.79 0.63 0 14.18 10.82
TCIA10_195_1 0 0.80 0.63 0 15.23 25.98
TCIA11_612_1 0 0.74 0.60 0 52.78 48.52
TCIA12_613_1 0 0.69 0.26 0 49.97 9.00
TCIA13_646_1 0 0.90 0.40 0 35.83 6.48

Table 4. The results of the hourglass network segmenting unseen the validation set

Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausdorff TC

Mean 0.66 0.82 0.72 15.94 26.41 18.87
Std 0.27 0.10 0.23 25.56 23.61 20.56
Median 0.79 0.84 0.80 4.69 17.32 12.47
25 quantile 0.56 0.78 0.62 2.45 7.19 6.61
75 quantile 0.84 0.89 0.89 17.60 38.13 19.60
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Table 4 shows the results of the hourglass network on the validation set. The dice
scores for the validation set increase by 10% for both ET and TC whilst remaining
approximately the same for the whole tumour segmentation. Conversely the Hausdorff
scores increase (where a higher score is a decrease in performance) by 1, 13 and 2 for
ET, WT and TC respectively. The increase in dice score indicates that the total number
of pixels that are being classified correctly has increased but the decrease in Hausdorff
score shows that the largest error in the shape of the classified pixels is much higher.
The qualitative analysis presented in Sect. 3.4 shows that this may be because mis-
classification of background pixels far away from the site of the tumour.

The median Hausdorff distance and dice score are significantly better than the mean
indicating that the mean results are being distorted by a small subset of difficult to
segment brain tumour volumes. This is discussed in Sect. 3.2. The std of both metrics
is also very high showing that the networks performance varies largely between
volumes.

The network shows a significant improvement in the most problematic volumes
highlighted in Table 3. Table 6 shows the modified network’s performance on the
selected examples. The average Hausdorff distance for the selected examples indicates
an overall performance decrease however performance on individual volumes varies
significantly when dice scores are compared. The network architecture was modified in
order to increase performance on the enhanced tumour, Table 6 shows that on 3 out of
5 selected cases there is an increase of between 4.6% and 38% for the enhancing
tumour dice score. The variability in dice score amongst the other two metrics indicates
that the training scheme has altered the networks ability to classify the tumour in these
volumes.

Table 5. The results of the hourglass network segmenting unseen test set

Label Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausdorff TC

Mean 0.62 0.79 0.65 47.48 13.54 31.58
Std 0.32 0.25 0.34 113.76 23.51 83.24
Median 0.77 0.88 0.82 3.00 5.00 6.40
25 quantile 0.47 0.80 0.48 1.73 3.00 3.32
75 quantile 0.85 0.92 0.90 9.84 9.72 14.80

Table 6. The modified network’s segmentation results on a subset of problematic volumes

Dice
ET

Dice
WT

Dice
TC

Hausdorff
ET

Hausdorff
WT

Hausedorff
TC

TCIA09_248_1 0.00 0.80 0.48 0.00 61.26 12.41
TCIA10_195_1 0.00 0.86 0.71 0.00 22.67 30.23
TCIA11_612_1 0.38 0.63 0.40 98.47 59.87 98.25
TCIA12_613_1 0.06 0.94 0.94 58.26 4.12 2.83
TCIA13_646_1 0.05 0.70 0.61 111.19 87.68 15.13
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The test set results show a decrease in performance on both dice score and haus-
dorff distance when compared to validation set results. The median scores for both
metrics are noticeably better. This indicates that the validation set contains easier to
segment volumes but the ratio between difficult and easy volumes is higher. The test set
appears to have much more difficult volumes, this is corroborated by the very high
standard deviation values. The results suggest that the percentage of easily segmented
volumes in the test set is higher than the validation set.

Despite the differences between the network’s performance on the validation and
test sets both Tables 4 and 5 indicate the same overall strengths and weaknesses of the
network as well as the difficulties within the dataset.

3.4 Qualitative Analysis

In this section we present singular slices taken from the network output. The output has
4 classes which are represented by 4 different colours in the segmentation map. Black,
yellow, blue and red represent background, whole tumour, core tumour and enhancing
tumour.

The network makes many mistakes when segmenting unseen volumes, most often
these errors are misclassifying healthy brain tissues as tumourous. Often the mistakes
are of a small area which does not affect the dice score significantly but has a noticeable
impact on the hausdorff distance. These errors are important and can be improved upon
however for brevity this section will focus on the largest errors associated with the
problematic volumes highlighted in Sect. 3.3. Figure 1 shows large errors in classifi-
cation. The largest errors the network makes occur when the input image has large
errors of darkness within the tumour caused by necrosis or an irregular tumour shape. It
is unclear why this occurs but could be because the training set contains mostly tumour
which have small amounts of necrosis which are masses enveloped by the whole
tumour. Therefore when given to the network it is unable to deal with the variance.

Fig. 1. Left, a FLAIR volume slice containing both brain and tumour tissues. Right, a slice from
the network output showing erroneous segmentation results. Two similar looking dark regions on
the left side of tumour have been classified different despite having largely the same appearance.
These are the most error prone areas for the network.
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4 Conclusion

We propose a solution which achieves a 92% Dice coefficient on the training set and
0.66, 0.82 and 0.72 on the validation set. On the test set the network achieves 0.62,0.79
and 0.65 Dice scores. Although the network underperforms on Dice score it can
achieve a competitive Hausdorff distance.

Much of the network’s underperformance is related to outliers in the set which
could be mitigated in future with better preprocessing techniques. Future networks
should train more on these difficult volumes using wider public datasets or through
synthetic images generated by a CNN. Memory consumption is often a problem when
using CNNs, to combat this we plan to add residual blocks in depths which increase the
overall accuracy of the network the most. We also plan to add skip connections with an
inception block structure [12] as shown in [13] to increase accuracy further.

We show that 2D architectures can segment 3D volumes with success but require
fine tuning and a deeper architecture to achieve better results. An approach to bridge
the gap may between 2D and 3D may be required. 3D networks outperform 2D
networks when depth context is key, how much context is required in most tasks
remains unclear. In future works we plan to use a 2.5D approach where each slice has
an accompanying adjacent slice either side to provide some depth context.

References

1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmen-
tation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440 (2015)

2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015.
LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24574-4_28

3. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–
499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

4. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS).
IEEE Trans. Med. Imaging 34(10), 1993 (2015)

5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert
segmentation labels and radiomic features. Sci. data. 5(4), 170117 (2017)

6. Bakas, et al.: Segmentation labels and radiomic features for the pre-operative scans of the
TCGA-GBM collection. The Cancer Imaging Archive, p. 286 (2017)

7. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the
TCGA-LGG collection. The Cancer Imaging Archive, p. 286 (2017)

8. Bakas, S., Reyes, M., Menze, B.: Identifying the Best Machine Learning Algorithms for
Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the
BRATS Challenge. arXiv preprint arXiv:1811.02629 (2018)

9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual
object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

Deep Hourglass for Brain Tumor Segmentation 427

http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-46484-8_29
http://arxiv.org/abs/1811.02629


10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3213–3223 (2016)

11. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder
architecture for image segmentation. arXiv preprint arXiv:1511.00561, 2 November 2015

12. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

13. Bulat, A., Tzimiropoulos, G.: Binarized convolutional landmark localizers for human pose
estimation and face alignment with limited resources. In: The IEEE International Conference
on Computer Vision (ICCV), vol. 1, no. 2, p. 4, 1 October 2017

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

428 E. Benson et al.

http://arxiv.org/abs/1511.00561


Deep Learning Versus Classical
Regression for Brain Tumor Patient

Survival Prediction

Yannick Suter1(B), Alain Jungo1, Michael Rebsamen1, Urspeter Knecht1,
Evelyn Herrmann2, Roland Wiest3, and Mauricio Reyes1

1 Institute for Surgical Technology and Biomechanics,
University of Bern, Bern, Switzerland

yannick.suter@istb.unibe.ch
2 University Clinic for Radio-Oncology, Inselspital, Bern University Hospital,

University of Bern, Bern, Switzerland
3 Support Center for Advanced Neuroimaging,

University Institute of Diagnostic and Interventional Neuroradiology, Inselspital,
University of Bern, Bern, Switzerland

Abstract. Deep learning for regression tasks on medical imaging data
has shown promising results. However, compared to other approaches,
their power is strongly linked to the dataset size. In this study, we
evaluate 3D-convolutional neural networks (CNNs) and classical regres-
sion methods with hand-crafted features for survival time regression of
patients with high-grade brain tumors. The tested CNNs for regression
showed promising but unstable results. The best performing deep learn-
ing approach reached an accuracy of 51.5% on held-out samples of the
training set. All tested deep learning experiments were outperformed by
a Support Vector Classifier (SVC) using 30 radiomic features. The inves-
tigated features included intensity, shape, location and deep features.

The submitted method to the BraTS 2018 survival prediction chal-
lenge is an ensemble of SVCs, which reached a cross-validated accuracy
of 72.2% on the BraTS 2018 training set, 57.1% on the validation set,
and 42.9% on the testing set.

The results suggest that more training data is necessary for a sta-
ble performance of a CNN model for direct regression from magnetic
resonance images, and that non-imaging clinical patient information is
crucial along with imaging information.

Keywords: Brain tumor · Survival prediction · Regression ·
3D-Convolutional Neural Networks

1 Introduction

High-grade gliomas are the most frequent primary brain tumors in humans. Due
to their rapid growth and infiltrative nature, the prognosis for patients with
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gliomas ranking at grade III or IV on the Word Health Organization (WHO)
grading scheme [17] is poor, with a median survival time of only 14 months. Find-
ing biomarkers based on magnetic resonance (MR) imaging data could lead to
an improved disease progression monitoring and support clinicians in treatment
decision-making [10].

Predicting the survival time from pre-treatment MR data is inherently diffi-
cult, due to the high impact of the extent of resection (e.g., [18,23]) and response
of the patient to chemo- and radiation therapy. The progress in the fields of
automated brain tumor segmentation and radiomics have led to many different
approaches to predict the survival time of high-grade glioma patients. Further,
the introduction of the survival prediction task in the BraTS challenge 2017
[4,19] makes a direct performance comparison of methods possible. The current
state-of-the-art approaches can roughly be classified into

1. Classical radiomics: Extracting intensity features and/or shape properties
from segmentations and use regression techniques such as random forest
(RF) regression [6], logistic regression, or sparsity enforcing methods such
as LASSO [25].

2. Deep features: Neural networks are used to extract features, which are subse-
quently fed into a classical regression method such as logistic regression [7],
support vector regression (SVR), or support vector classification (SVC) [14].

3. A combination of classical radiomics and deep features (e.g., [15]).
4. Survival regression from MR data using deep convolutional neural networks

(CNNs) with or without additional non-imaging input (e.g., [16]).

Our experiments with 3D-CNNs for survival time regression confirmed obser-
vations made by other groups in last year’s competition (e.g., [16]), that these
models tend to converge and overfit extremely fast on the training set, but show
poor generalization when tested on the held-out samples. The top-ranked meth-
ods of last year’s competition were mainly based on RF. A reason for this may
be the relatively few samples to learn from. Classical regression techniques typ-
ically have fewer learnable parameters compared to a CNN and perform better
with sparse training data.

We present experiments ranging from simple linear models to end-to-end 3D-
CNNs and combinations of classical radiomics with deep learning to benchmark
new, more sophisticated approaches against established techniques. We believe
that a thorough comparison and discussion will provide a good baseline for future
investigations of survival prediction tasks.

2 Methods

2.1 Data

The provided BraTS 2018 training and validation datasets for the survival pre-
diction task consist of 163 and 53 subjects, respectively. The challenge ranking
is based on the performance on a test dataset with 77 subjects with gross total
resection (GTR).
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A subject contains imaging and clinical data. The imaging data includes
images from the four standard brain tumor MR sequences (T1-weighted
(T1), T1-weighted post-contrast (T1c), T2-weighted, and T2-weighted fluid-
attenuated inversion-recovery (FLAIR)). All images in the datasets are resam-
pled to isotropic voxel size (1× 1× 1 mm3), size-adapted to 240× 240× 155 mm3,
skull-stripped, and co-registered. The clinical data comprises the subject’s age
and resection status. The three possible resection statuses are: (a) gross total
resection (GTR), (b) subtotal resection (STR), and (c) not available (NA).

Segmentation: For our experiments, we rely on segmentations of the three
brain tumor sub-compartments (i.e., enhancing tumor, edema, and necrosis com-
bined with non-enhancing tumor). In the validation and testing dataset, the
segmentation is not provided due to the overlap with the data of the BraTS
2018 segmentation task. To obtain the required segmentations, we thus employ
the cascaded anisotropic CNN by Wang et al. [26]. Their method is publicly
available1 and contains pre-trained models on the BraTS 2017 training dataset,
which is identical to the BraTS 2018 [2,3,5] training dataset. This enables us to
compute the segmentations with the available models without retraining a new
segmentation network.

2.2 Deep Survival Prediction and Deep Features

Two different CNNs are built for the survival regression task (see Fig. 1). CNN1
consists of five blocks with an increasing number of filters, each block has two
convolutional layers and a max pooling operation. The last block is connected
to two subsequent fully connected layers. CNN2 consists of three convolutional
layers with decreasing kernel sizes with intermediary max-pooling, followed by
fully-connected layers connected to the single value regression target. To include
clinical information into the CNN2, the age and resection status were appended
to the first fully-connected layers of CNN2, which we refer to as CNN2+Age+RS.

Both CNN variants take the four MR sequences and additionally the corre-
sponding segmentation (see Sect. 2.1) as input, and output the predicted survival
in days. We observed no performance gain by the additional segmentation input
but it improved the training behavior of the network. Instead of regressing the
survival days, we also tested direct classification in long-, mid-, and short-term
survival, but without improvements.

We trained the CNNs with the Adam optimizer [13] and a learning rate of
10−5, and performed model selection based on Spearman’s rank coefficient on
a held-out set. Batch normalization and more dropout layers did not lead to
improvements, neither on the training behaviour nor the results.

Deep Feature Extraction: For the extraction of deep features, the size of
the two last fully connected layers are decreased to 100 and 20 elements. The
activations of these two layers serve as deep feature sets.
1 https://github.com/taigw/brats17.

https://github.com/taigw/brats17
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Fig. 1. Summary of the tested methods for GBM patient survival predictions. Left: The
architectures of our CNNs for direct survival regression. CNN2 was additionally used
to extract deep features from the fully connected layers. For direct regression, the two
last fully connected layers of CNN2 had 2048 and 384 elements. Right: Combination of
classical radiomics, shape, and atlas features. The top 30 features were used to predict
survival classes with a SVC.

2.3 Classical Survival Prediction

Feature Extraction: We extract an initial set of 1353 survival features from
the computed segmentation together with the four MR images (i.e., T1, T1c,
T2, and FLAIR).

Gray-Level and Basic Shape: 1128 intensity and 45 shape features are com-
puted with the open-source Python package pyradiomics2 version 2.2.0 [11]. It
includes shape, first-order, gray level co-occurrence matrix, gray level size zone
matrix, gray level run length matrix, neighbouring gray tone difference matrix,
and gray level dependence matrix features. Z-score normalization and a Lapla-
cian of Gaussian filter with σ = 1 is applied to the MR images before extraction.
A bin width of 25 is selected and the minimum mask size set to 8 voxels. The
features are calculated from all MR images and for all tumor sub-compartments
provided by the segmentation (i.e., enhancing tumor, edema, necrosis combined
with non-enhancing tumor).

Shape: 15 additional enhancing tumor shape features previously used as predic-
tors for survival [12,21] complement the basic shape features from pyradiomics.
These features are the rim width of the enhancing tumor, geometric heterogene-
ity, combinations of rim width quartiles and volume ratios of all combinations
of the three tumor compartments.

2 https://github.com/Radiomics/pyradiomics.

https://github.com/Radiomics/pyradiomics
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Atlas Location: Tumor location has previously been used for survival predic-
tion (e.g., [1]), therefore atlas location features are included. Affine registration is
used to align all subjects to FreeSurfer’s [8] fsaverage subject and its subcortical
segmentation (aseg) is used as the atlas. The volume fraction of each anatomical
region occupied by the contrast enhancing tumor is used as a feature, resulting
in 43 features in total.

Clinical Information: The two provided clinical features resection status and
age are further added to the feature set.

Feature Selection: Since the number of extracted features (n = 1353) is much
higher than the available samples (n = 163), a subset of features needs to be used.
Apart from being necessary for many machine learning methods, a reduction of
the feature space improves the interpretability of possible markers regarding
survival [20].

We analyzed the following feature selection techniques to find the most infor-
mative features: (a) step wise forward/backward selection with a linear model,
(b) univariate feature selection, and (c) model-based feature selection by the
learned feature weights or importances. We observed a rather low overlap among
the selected features by the different techniques, or even the parameterization
of the techniques. Consequently, we chose the feature subsets according to their
performance on the training dataset for different classical machine learning meth-
ods (e.g., linear regression, SVC, and RF). The best results were obtained by
the feature subset produced by the model-based feature selection from a sparse
SVC model, which consists of the features listed in Table 1.

Our model-based feature selection identified age by far as most important
feature. Additionally, a majority of the 30 selected features are intensity-based,
but the subset also contains shape and atlas features. We note that none of the
120 deep features was retained.

Feature-Based Models: Although the BraTS survival prediction task is set up
as a regression task, the final evaluation is performed on the classification accu-
racy of the three classes: short-term (less than 10 months), mid-term (between
ten and 15 months), and long-term survivors (longer than 15 months). As a con-
sequence, we include classification models in addition to the regression models in
our experiments. Since the prediction is required in days of survival, the output
of the classifiers needs to be transformed from a class (i.e., short-term, mid-term,
long-term) to a day scalar. We do this by replacing each class by its mean time
of survival (i.e. 147, 376, 626 days).

For our experiments, we consider the following feature-based regression and
classification models [9]:

– Linear and logistic regression
– RF regression and classification
– SVR and SVC
– SVC ensemble
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Table 1. Selected feature set with feature category (Cat.), tumor sub-compartment
(Comp.), and the MR image (Img.) in decreasing order of importance. ED: Edema, ET:
Enhancing tumor, NCR/NET: Necrosis and non-enhancing tumor. Feature importance
is decreasing from top to bottom.

Feature Cat. Comp. Img.

Age Clinical

Sphericity Shape ED

Optic chiasm Atlas

Small area low gray level emphasis Intensity ED T2

Correlation Intensity CE Flair

Cluster shade Intensity NCR/NET T1c

Small dependence high gray level emphasis Intensity CE T1c

Correlation Intensity NCR/NET T1

Maximum Intensity ED T1

Maximum Intensity ED T1c

Left amygdala Atlas

Information measure of correlation 1 Intensity NCR/NET T1

Large dependence low gray level emphasis Intensity NCR/NET T1c

Cluster shade Intensity ED T2

Inverse variance Intensity ED T1

Small dependence high gray level emphasis Intensity CE T2

Median Intensity CE T2

Busyness Intensity ED T1

Correlation Intensity NCR/NET T1c

Right-vessel Atlas

Large area low gray level emphasis Intensity ET Flair

Right caudate Atlas

Difference variance Intensity ED Flair

Right cerebellum cortex Atlas

Cluster prominence Intensity ED T2

Maximum 2D diameter slice Intensity ED

Inverse difference normalized Intensity CE Flair

Skewness Intensity ED Flair

Median Intensity ET T1

Right ventral diencephalon Atlas

We use 50 trees and an automatic tree depth for the RF models and linear
kernels for the support vector approaches, SVR, and SVC. To handle the multi-
class survival problem we employ the one-versus-rest binary approach for SVC
and logistic regression. The ensemble method consists of 100 SVC models that
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are separately built on random splits of 80% of the training data. The final class
prediction is performed by majority vote. We choose an ensemble to increase
robustness against outliers or unrepresentative subjects in the training set. All
classical feature-based models are implemented with scikit-learn3 version 0.19.1.

2.4 Evaluation

We evaluated the classical feature-based approaches by 50 repetitions of a strat-
ified five-fold cross-validation on the BraTS 2018 training dataset. These repe-
titions allowed us to examine the models’ robustness besides their average per-
formance. The CNN approaches were evaluated on a randomly defined held-out
split of the training set, consisting of 33 subjects. This held-out set was also
used to evaluate a subset of the feature-based methods in order to compare
classical approaches to the CNN approaches. Moreover, the classical and CNN
models were evaluated on the BraTS 2018 validation set. This dataset contains
53 subjects but only the 28 subjects with resection status GTR are evaluated.
Finally, we selected the best-performing model to predict survival on the BraTs
2018 challenge test dataset, which consists of 77 evaluated subjects with GTR
resection status (out of 130 subjects).

3 Results

In this section, we compare the performance of the CNN to the classical feature-
based machine learning models on the BraTS 2018 training and validation
datasets, and present the BraTS 2018 test set results. We introduced a refer-
ence baseline for the comparison of the different models. This baseline consists
of a logistic regression model solely trained on the age feature. This minimal
model provides us with a reference for the training and validation set.

Table 2 lists the results of the different models on the training dataset. To
ensure a valid comparison, the table is subdivided by the two evaluation types,
repeated cross-validation (CV) and hold-out (HO) (see Sect. 2.4). The results
from the CV analysis highlights that by far the best results are achieved by
the logistic regression, SVC, and ensemble SVC models, which performed very
similarly. Except for the RF model, the classification models clearly outper-
formed their regression counterparts. The results from the HO analysis (Table 2,
bottom) additionally reveals that well-performing classical methods (logistic
regression and SVC) outperform all three CNN approaches (CNN1, CNN2,
CNN2+Age+RS) by a large margin.

Table 3 presents the results obtained on the validation dataset. We can
observe similar patterns as for the training set results: the classification models
outperform the regression models with respect to the accuracy (except the RF),
the SVC models (i.e., SVC ensemble and SVC) achieve the best performances,

3 http://scikit-learn.org/stable/index.html.

http://scikit-learn.org/stable/index.html
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Table 2. Results achieved on the BraTS 2018 training dataset by 100 stratified five-fold
cross-validation (CV) runs (reported as mean ± standard deviation) and on one split
with 33 held-out (HO) samples. The baseline consists of a logistic regression model with
age as single feature. Best results per metric and evaluation type (Eval.) are presented
in bold. Acc.: Accuracy, MSE: Mean squared error, rS: Spearman’s rank coefficient,
RS: Resection status.

Eval. Method Acc. MSE/days2 rS

CV Baseline 0.489 ± 0.06 136323 ± 44378 0.300 ± 0.14

Linear regression 0.552 ± 0.08 260706 ± 647176 0.573 ± 0.12

SVR 0.554 ± 0.08 257542 ± 637062 0.574 ± 0.12

RF regression 0.444 ± 0.08 117320 ± 42503 0.332 ± 0.17

Logistic regression 0.721 ± 0.07 93158± 35665 0.617± 0.12

SVC 0.722± 0.07 93571 ± 35861 0.612 ± 0.12

RF 0.512 ± 0.07 136334 ± 47392 0.324 ± 0.15

SVC ensemble 0.720 ± 0.07 93485 ± 35652 0.617± 0.12

HO Logistic regression 0.697 30756 0.579

SVC 0.727 28226 0.616

CNN1 0.515 50598 0.298

CNN2 0.424 56496 0.235

CNN2+Age+RS 0.394 61798 −0.194

Table 3. Results achieved on the BraTS 2018 validation dataset (28 samples). The
baseline consists of a logistic regression model with age as single feature. Best results per
metric are presented in bold. Acc.: Accuracy, MSE: Mean squared error, rS: Spearman’s
rank coefficient, RS: Resection status.

Method Acc. MSE/days2 rS

Baseline 0.464 128841 0.288

Linear regression 0.464 89059 0.426

SVR 0.464 89035 0.426

RF regression 0.393 80980 0.342

Logistic regression 0.5 90791 0.393

RF 0.357 169782 -0.058

SVC 0.536 85471 0.501

SVC ensemble 0.571 79381 0.556

CNN1 0.370 172821 0.104

CNN2 0.394 157617 −0.112

CNN2+Age+RS 0.444 137912 −0.005
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and the CNNs remain behind the feature-based methods and the baseline. Addi-
tionally, we observe an overall decrease in performance compared to the training
set results.

The results of CNN1 on our validation split (accuracy of 0.515) could not
be replicated on the BraTS validation set, where it performed poorly with an
accuracy of 0.37. CNN2 showed worse results on our validation split than the
deeper CNN1, but performed better on the BraTS validation set.

Overall, the SVC ensemble performed best on the training and validation set
and we consequently selected it for the challenge, where our method achieved
an accuracy of 0.429, a mean squared error of 327725 days2 and a Spearman’s
rank coefficient of 0.172.

4 Discussion

In this section, we discuss the presented results and highlight findings from the
deep learning, and classical regression and classification experiments.

CNNs: The two CNNs overfit very fast on the training data, and showed highly
variable performance between epochs. Model selection during training was there-
fore challenging, since both the accuracy and Spearman’s rank coefficient were
very unstable.

We postulate that more data would be needed to fully benefit from direct
survival estimation with 3D-CNNs. When inspecting the filters of CNN1 and
CNN2, most of the learning took place at the fully connected layers and almost
none at the first convolutions layer. This effect and the fast overfitting of the CNN
models indicate the lack of samples and are reasons for the poor performance on
unseen data.

Classical Regression and Classification: Using classical regression tech-
niques with hand-crafted features has the advantage of better interpretability.
Models with fewer learnable parameters, such as the classical regression methods
we tested, typically achieve more robust results on unseen data when only few
training samples are available.

The atlas used for feature extraction most likely has too many regions for the
number of training samples. Small anatomical structures, such as the optic chi-
asm, may not be accurately identified by simple registration to an atlas. Figure 2
shows the distribution of the contrast enhancing tumor segmentation per sur-
vival class. The short survivors with large contrast enhancing tumor loads con-
tribute highly to the overall cumulative occurrence in the training data. The
class-wise occurrence maps suggest that more training samples are needed to
detect predictive location patterns (e.g. as reported in [22,24]). Additionally, a
coarser atlas subdivision driven by clinical knowledge is in order. In the light
of this caveat, the location features used here should be seen as approximate
localization information with limited clinical interpretability.
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Fig. 2. Cumulative occurrence of the contrast enhancing tumor. Columns, from left to
right: Overall across all three survival classes, short survivors (<10 months), medium
survivors (≥10 months and ≤15 months), and long survivors (>15 months). Rows:
Projection along axial, coronal and sagittal axes.

Performance on the Testing Data: The accuracy of 72.2% and 57.1% on
the training and validation set could not be maintained on the testing data. The
large performance drop might be caused by still too many features compared to
the training set size. Other possible reasons may include a lack of feature robust-
ness or different class distribution compared to the training data. Moreover, the
survival time distributions within classes do not drop at the class boundaries,
such that a small shift in the prediction can cause a large accuracy difference
because ending up in a different class.

In conclusion, classical machine learning techniques using hand-crafted fea-
tures still outperform deep learning approaches with the given data set size.
The robustness of features regarding image quality and across MR imaging cen-
ters needs close attention, to ensure that the performance can be maintained
on unseen data. We hypothesize that adding post-treatment imaging data and
more clinical information to the challenge dataset would boost the performance
of the survival regression.
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Abstract. A semi-automatic image segmentation method, called SAMBAS,
based on workflow familiar to clinical radiologists is described. The user ini-
tializes 3D segmentation by drawing a long axis on a multi-plane reformat
(MPR). As the user draws, a 2D segmentation updates in real-time for inter-
active feedback. When necessary, additional long axes, short axes, or other
editing operations may be drawn on one or more MPR planes. The method
learns probability distributions from the drawing to perform the MPR seg-
mentation, and in turn, it learns from the MPR segmentation to perform the 3D
segmentation. As a preliminary experiment, a batch simulation was performed
where long and short axes were automatically drawn on each of 285 multi-
spectral MR brain scans of glioma patients in the 2018 BraTS Challenge training
data. Average Dice coefficient for tumor core was 0.86, and the Hausdorff-95%
distance was 4.4 mm. As another experiment, a convolution neural network was
trained on the same data, and applied to the BraTS validation and test data. Its
outputs, computed offline, were integrated into the interactive method. Ten
volunteers used the interface on the BraTS validation and test data. On the 66
scans of the validation data, average Dice coefficient for core tumor improved
from 0.76 with deep learning alone, to 0.82 as an interactive system.

Keywords: Brain tumor � Image segmentation �
Semi-automatic � Machine learning

1 Introduction

Evidence from cancer researchers suggests that extraction of quantitative variables
from medical images can contribute more information for decision support in man-
agement of cancer patients. Specifically, quantitative metrics can improve both (1) di-
agnostic and prognostic accuracy; as well as (2) longitudinal monitoring of patient
response [1]. Criteria for monitoring radiographic brain tumor progression include the
Macdonald criteria [2], Response Evaluation Criteria in Solid Tumors (RECIST) [3, 4],
WHO criteria [5], and RANO criteria [6].

Currently, radiological studies are generally limited to detection and staging along
with qualitative descriptions. Quantitative descriptors are not yet in the standard of care
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primarily due to a lack of infrastructure and tools to derive, test, and deploy these
quantitative metrics at the point-of-care for all patients. Currently available tools to do
this are limited to research or clinical trials, and have not been widely deployed as they
lack the speed, precision and consistency required for wider clinical use [7]. The
amount of time required to delineate lesion boundaries correctly could be intrusive to
the radiologist’s workflow. Delineation can be performed by manually drawing the
tumor boundary on each image slice, by semi-automatically guiding an algorithm, or
by fully automated methods. In either the semi-automated or fully automated methods,
editing is necessary. Although manual delineation offers complete control to the user,
humans exhibit great variability and the process is very time-consuming. Even if an
automatic or semi-automatic method were to suffer a shortcoming in accuracy, as long
as there is consistency in defining the boundary, then the volume change or change in a
quantitative feature may be tracked more precisely.

For MR brain tumors, recent research with fully automated segmentation, espe-
cially based on deep neural networks, has been promising [8]. SAMBAS (Semi-
Automated Map-BAsed Segmentation) differs from CAD (Computer Aided Detection)
because it relies on a radiologist to make an indication. The motivation is adoption by
clinical radiologists who desire full-control over the segmentation, real-time feedback,
an algorithm that is ready to run immediately without the need to first be trained on a
large database from their site, and an algorithm whose rationale behind decisions is
explainable. We expect that real-time guidance of a semi-automated approach may
often have faster workflow than editing of a fully automated method.

The vital part of any measurement tool is an interface that is both familiar and
effortless. Drawing the longest axis across a lesion is a natural choice for initiating
contours because radiologists are already accustomed to drawing the long axis.
Oncologists participating in clinical trials follow published international criteria for
objectively gauging the extent and progression of disease. The Macdonald, RECIST,
and WHO criteria each incorporate long axis measurements. However, inherent chal-
lenges with axis-based criteria have been reported for aggressive brain tumors [9], thus
motivating the discovery of volumetric-based criteria with similar familiarity as axis-
based criteria.

Besides familiarity, there are several more goals of volumetric contouring. One goal
is to achieve inter-observer consistency, while also catering to individual preferences
for accuracy and style. Consistency results from initialization strategies that are
reproducible, such as generating 3D volumetric contours from a straight stroke rather
than free-form drawing. Tailoring to individual preferences is accomplished by editing
tools prepared for whenever the initial contours may be unsatisfactory. Another goal is
to provide a contingency plan in case the radiologist is both unsatisfied with the
contours, and unwilling to invest the requisite time to edit them. Radiologists should be
given the choice of confirming either the contours (thereby enabling volumetric
measures), or just the long axis, which has already been drawn, and is held in reserve as
an instant alternative. Yet another goal is automatic, large-scale, quantitative validation.
Given hundreds of datasets that have been manually contoured, batch processing can
be implemented by calculating the long axis from each expert’s contours, and
employing the long axis as the simulated user input. Yet another goal is to alleviate the
need to select tools from a confusing suite of options. Ideally, there is exactly one tool
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in a reading room, generally applicable to all organs, yet simultaneously specialized
with organ-specific features. The organ is automatically identified upon tool
initialization.

SAMBAS aims to satisfy all the aforementioned goals, namely familiarity, con-
sistency, individualism, contingency, automatic validation, and general applicability
yet specialization. While advancements in processing speed have propelled deep
learning (DL) in various fields, medical image analysis is missing the mass quantities of
new labeled data needed for training artificial intelligence networks [10]. The multi-
modal Brain Tumor Segmentation challenge (BraTS) represents a pioneering step in
this direction [11, 12]. One of the goals of the software was to generate such contours
on new scans, at the point of read, which in turn, can serve as the labeled image data for
DL in subsequent clinical application.

2 Methods

The proposed system consists of an interactive algorithm and two compute-intensive
components, which are whole-brain tissue segmentation and deep learning. Each has a
run-time of roughly one minute on a typical PC, so they are run offline prior to a user’s
interaction with the system. While the interactive algorithm is employed by a user to
segment only the core tumor, the offline components support partitioning of the tumor
into its constituent parts: edema, necrosis, and actively enhancing regions.

The integration of all elements into one system is presented first, followed by the
offline elements and the interactive algorithm, along with associated experiments.

2.1 System that Integrates Offline Components with User Interaction

Figure 1 presents a system flowchart. User interaction occurs in real-time because only
a portion of the image is being segmented since whole-brain analysis occurred earlier.

Fig. 1. Two components run offline prior to the user interacting with the system.
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As the user draws a long axis on an image, only the core tumor is segmented in 2D
with real-time feedback. Figure 2 displays a screenshot of the red 2D contour
responding interactively to the drawn blue axis. When the user clicks a button to indicate
all drawing is complete, then a 3D segmentation process runs for roughly 1–3 s, relying
on the output of deep learning and tissue segmentation to find the edema associated with
that particular core tumor. When a scan contains multiple distinct tumors, the user must
draw a separate long axis for each tumor.

As the user draws a long or short axis, whenever all endpoints of the axes are
proximal to the boundary of core tumor, as found by deep learning, then the seg-
mentation “snaps to” the output of deep learning. This process is depicted in Fig. 2.
The snapping is evident to the user because a snapped contour is drawn more coarsely
pixilated due to the fact that the interactive segmentation occurs on super-sampled
images, whereas deep learning occurred on original images. When snapping is unde-
sired, the user can simply hold down the CTRL key to disable it while drawing.

The 66 validation scans provided by the BraTS competition contained 89 tumors,
of which 35 were “snapped to”. Therefore, snapping played a role on 39% of tumors.

2.2 Whole-Brain Tissue Segmentation

The tissue segmentation classifies every brain voxel as belonging to one of several
tissue types, including cerebrospinal fluid (CSF), gray matter, white matter, vessels,
ventricles, and disease. Gray and white matter are found by performing Bayesian
classification of the T1-weighted, contrast-enhanced image using the Expectation

Fig. 2. These are three screenshots taken during a user’s real-time interaction while drawing the
long axis (blue). LEFT: The user has started drawing a long axis, but has only partially traversed
the tumor at the time of the screen capture. MIDDLE: The user has over-drawn the lesion to show
how the red contour always presents a reasonable result given strong image contrast in some
areas, and little to none in others. RIGHT: The user has placed both endpoints of the long axis on
the boundary of the output of deep learning. Consequently, the red contour “snaps to” deep
learning’s output contour even though the true longest axis in the plane was not indicated. (Color
figure online)
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Maximization (EM) algorithm [21]. One element
of Bayesian classification is the probability that a
voxel belongs to a certain tissue class prior to
observing its brightness. When this prior proba-
bility varies across the image, it is referred to as a
spatially-varying prior (SVP). The SVP is esti-
mated through affine registration of the SPM atlas,
as shown in Fig. 3.

Rules of logic are applied to the set of all four
MR spectra to derive the other tissues. For exam-
ple, enhancing tumor is described by areas that
show hyper-intensity under contrast-enhancement
when compared to the non-enhanced image, but
also when compared to healthy white matter.

The resultant tissue segmentation will be used
by the integrated system for anatomic context. For
example, it will know to exclude vessels and
ventricles from tumors.

2.3 Deep Learning Segmentation

Following the recent increasing successes of deep learning approaches in automated
organ and tumor segmentations [13–19], a convolution neural network (CNN) was
used. The CNN is based on the 3D U-Net architecture by Isensee et al. [15] (Fig. 4),
which had one of the top scores in the 2017 BraTS Challenge [20]. Briefly, the input

Fig. 3. The SPM atlas features an
average of 305 scans (upper right)
and probability maps for CSF (upper
right), white matter (lower left), and
gray matter (lower right).

Fig. 4. 3D U-Net architecture based on Isensee et al. [3].

Semi-automatic Brain Tumor Segmentation 445



image data is set to 128 � 128 � 128 voxels, constrained by the limited memory in
the GPU. Processing from left to right, the 3D image volume is sequentially reduced in
spatial resolution with multiple 3 � 3 � 3 convolution layers while increasing the
number of filters or feature maps as the levels move deeper. Once the lowest level is
reached, the extracted feature maps are then upsampled to sequentially restore the
spatial resolution at each level, concatenating with feature maps preserved during the
downsampling to help restore lost information. The Softmax function classifies the 3
tumor classes. Dropouts with probability 0.3 are included to minimize overfitting.

A set of MR training data consisting of brain scans of 210 subjects with high grade
glioma (HGG) and another 75 with low grade glioma (LGG) was provided by the
BraTS competition. Each subject has a T1 weighted, a post-contrast T1-weighted, a
T2-weighted, and a FLAIR MR image. In addition, a segmented tumor mask that
contains demarcations for whole tumor, core tumor and enhancing tumor, manually
demarcated by expert physicians, was also provided as the ground truth for evaluation.
The images were preprocessed prior to supervised training by cropping to remove the
extraneous background and preserve only the brain, resizing to 128 � 128 � 128, and
normalizing the MR intensities of each modality by subtracting the mean and dividing
by the standard deviation.

During the supervised training, the 285 subject data were randomly split into
training and validation dataset (80%–20%), each consisted of image volumes from the
four different modalities and segmented truths. The training dataset was fed into the 3D
U-Net model for optimization and the segmented truths were used for evaluations
during the backpropagation. The model was tested at each step with the validation
dataset, on which the model had not been trained. Table 1 lists the parameters used in
the training of the CNN model. Batch size of one was used, despite the lower per-
formance, in order to load the entire 285 subject image volumes into the limited
memory available in the GPU.

To further account for the class imbalance where there is much more background
pixel data than tumor, other than cropping, a multiclass Jaccard loss function was used
[14]. The four classes include 0 for background, 1 for tumor core, 2 for edema and 4 for
enhancing tumor.

Table 1. List of parameters used in training the CNN model.

Parameter Value

Optimizer Adam
Batch size 1
Initial learning rate 5 � 10−4

Number of epochs at which learning rate is reduced 10
Learning rate reduction factor 0.5
Number of epochs at which training stopped 50
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The loss function is expressed in Eq. 1, where u is the prediction of the CNN and v
is from the ground truth segmentation value, i is the pixel number, and k is each class in
all K ¼ 4 classes. The Jaccard coefficient is a measure of similarity between the seg-
mented prediction and truth image volumes, where higher value indicates greater
overlap. The multiclass version is the intersection over union of the two volumes
averaged over the four classes. A negative term was added to the loss function to ensure
the minimum loss function was optimized. CNN development used the open-source
machine learning library, TensorFlow, and neural networking API, Keras.

2.4 Interactive MPR Segmentation

The interactive algorithm is implemented as a probabilistic framework with efficient
user control. Like a digital simulation of a traditional light box on which radiologists
used to view film, the 3D volume is visualized by displaying 2D planes. A Multi-Plane
Reformat (MPR) refers to reformatting more than one plane, and we display a trio of
planes side-by-side, such that there are axial, coronal, and sagittal orientations.

The user initializes the segmentation process by drawing a long axis on one plane
of the MPR. As the user draws the long axis, a 2D segmentation updates in real-time
for interactive feedback. The feedback has proven to be very helpful for the user to
know precisely where to place the endpoint of the axis. Upon release of the mouse, 2D
segmentation occurs immediately on the other MPR planes.

When the 2D contour is unsatisfactory, an optional short axis may be drawn
perpendicular to the long axis. Other editing operations are available, such as a “ball
tool” for drawing with a digital brush. A correct 2D segmentation is important since
probability distributions are learned from the 2D segmentation to be employed in
segmenting the other MPR planes.

When the contours on other MPR planes are unsatisfactory, then the user can draw
there with the same editing tools, along with the option for drawing a long axis and
short axis. This is especially useful for lesions which are irregularly shaped or oriented
obliquely. Once satisfied, the user clicks a button to initiate 3D segmentation.

2.5 3D Segmentation

Multivariate Bayesian classification [21] labels image voxels as belonging to one of
two classes, Background or Foreground. Classification combines the likelihood of class
membership based on voxel brightness, with the probability of membership prior to
observing brightness. The likelihoods are conditional probability distributions that do
not vary across the image, while the prior probabilities are spatially varying, and a
function of distance from region boundaries.

The user directly drives the segmentation process by manipulating four types of
regions, where some regions govern the likelihoods, while some regions govern the
prior probabilities. Various regions are described in Table 2, and illustrated in Fig. 5.

Semi-automatic Brain Tumor Segmentation 447



The sizes and poses of regions are automatically derived from the long axis. While
the long axis describes lesion extent along one dimension, an initialization stage
estimates lesion extent along other dimensions by analyzing orthogonal scout planes
given statistical sampling along the long and short axes. Probability distributions are
modeled parametrically as Gaussian Mixture Models (GMM) [22] while placing the
Inclusion and Containment regions, and as non-parametric distributions thereafter.

Background regions are automatically placed by searching the vicinity outside the
Containment region, and within the body outline, while maximizing the Mahalanobis
distance [21] from the Inclusion region. Once Background and Inclusion regions are
initialized, the voxels within are used to perform Parzen windowing [21] to estimate the
likelihoods for Bayesian classification.

Noise and artifacts in CT vary by dose and choice of reconstruction type and
kernel, and in MR by field strength, RF coil configuration, and protocol parameters, so
Bayesian classification is augmented with a Markov Random Field [23] with 3 itera-
tions of mean-field approximation.

Table 2. Regions which drive probabilities.

Region Color in
Fig. 1

Description

Inclusion Green All voxels within belong to the Foreground class, and
statistically sample it

Containment Yellow All voxels outside belong to the Background class
Background Blue &

pink
Statistically typify Background class

Avoidance Not shown Spatially prohibit Foreground without affecting statistics

Fig. 5. Some regions are initially configured as ellipsoids, and then become warped. The image
shown is a CT since the interactive algorithm was designed to be general purpose.
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Fig. 6. Axial, coronal, and sagittal planes of MPR are shown from top to bottom. The blue
ellipse was fit to the yellow contour of ground-truth in order to generate the green long and short
axes. This process simulated a human user manually drawing on MPR. (Color figure online)
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The output is a 3D mesh fit to voxel classification by adapting vertices connected
by virtual springs to their neighbors to provide a regularizing force that smooths the
surface. The true long axis is measured, which may not lie in any orthogonal plane.

2.6 Experiment with Simulated Drawing of Long Axes

As a preliminary experiment, a batch simulation was performed where long and short
axes were automatically drawn on each of 285 multispectral MR brain scans of glioma
patients in the BraTS 2018 training data. To achieve this, the ground-truth was ana-
lyzed to find an appropriate slice on which to draw the long axis. Given the range of
slices that contained any ground-truth, the central third of this range was considered,
and from that subset, the slice with the largest area of ground-truth was chosen. An
automatic process then drew the long axis across the ground-truth on that slice.

In order to simulate the type of long axis that a human user might draw, the axis
position was favored to be more medial than the true longest axis. Therefore, on each
plane, an ellipse was fit by Principle Component Analysis (PCA) [21] to the seg-
mentation on that slice. The long axis with the same orientation as the major axis of the
ellipse was found. The short axis was then found as the longest axis perpendicular to
this, as shown in Fig. 6.

The center of the long axis was used for the center of the reformatted sagittal and
coronal planes to comprise a 3-plane MPR. Then long and short axes were drawn in
similar manner on all planes. The drawn axes precipitate MPR segmentation. Figure 7
shows a few examples.

3 Results

Multi-institutional, routine clinically-acquired pre-operative multispectral MR scans
were provided by the 2018 BraTS challenge [24–26]. The data had been preprocessed
to be co-registered to the same anatomical template, interpolated to the same resolution
(cubic mm), and skull-stripped.

Segmentation accuracy was computed by uploading labeled images to the CBICA
Image Processing Portal, which measured statistics for active (enhancing) tumor, whole
tumor, and tumor core. While the ground truth was available for the 285 training cases,
there were an additional 66 validation cases, and 191 test cases where ground truth was
unavailable to participants.

3.1 Experiment with Simulated Drawing of Long Axes

The T1-weighted post-contrast scan was combined with the T2-weighted scan to create
a dual-spectra image that was input to the interactive algorithm. Since long axes where
drawn on core tumor, this experiment segmented only that structure. Table 3 lists
results of the experiment described in Sect. 2.6.
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3.2 Experiment with Deep Learning Alone

All four MR modalities of the 66 validation cases were presented to the trained CNN
model, and Table 4 presents the results.

3.3 Experiment with User Interaction

Ten volunteers used the interface on the BraTS validation and test data. On the 66
scans of the validation data, average Dice coefficient on tumor core improved from 0.76
with deep learning alone, to 0.82 as an integrated, interactive system. The Hausdorff-
95% distance improved from 8.4 to 7.5 mm, as detailed in Table 5. Progress since the
challenge has improved scores further to 0.87 Dice and 4.9 mm, which is presently the
lowest Hausdorff distance on the BraTS leaderboard.

Fig. 7. MPR segmentation (red) depicted relative to ground-truth contours (yellow) and
long/short axes (green) on a reformatted sagittal slice. MPR segmentations (not final 3D) were
measured to have 0.90 average Dice, compared to ground-truth, for 855 planes of 285 cases.
(Color figure online)

Table 3. BraTS 2018 validation results with simulated user interaction (core tumor only).

Dice Sensitivity Hausdorff-95%

Mean 0.862 0.893 4.38
Std. Dev 0.060 0.081 3.18
Median 0.873 0.915 3.61

Table 4. BraTS 2018 validation results with no user interaction.

Dice Sensitivity Hausdorff-95%
Active Whole Core Active Whole Core Active Whole Core

Mean 0.696 0.878 0.763 0.823 0.893 0.883 6.92 10.1 8.35
Std. Dev 0.200 0.0378 0.256 0.134 0.102 0.127 11.0 16.7 11.5
Median 0.848 0.894 0.918 0.836 0.933 0.938 1.41 3.00 2.83
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On the 191 scans of the test data, the average Dice coefficient was 0.75 and median
0.86. Compared with the simulation experiment where mean and median were quite
similar, the disparity between mean and median here suggest that human volunteers
and ground-truth disagreed, curtailing certain scores. Table 6 presents the details.

The Hausdorff-95% distance was nearly a factor of two lower on the simulation
experiment, when compared with the other three experiments, which shows the value
of knowing precisely where to draw axes. An interesting observation is that the sen-
sitivity for core tumor was higher without user interaction. The median was even
slightly higher even though the mean was much lower. This suggests DL fared better
than humans on obvious tumors, but users provided essential aid when DL missed
badly.

4 Discussion

In comparison with other semi-automatic tools, products from Invivo [27] and Mirada
[28] feature initialization by a single click, whereas the additional information con-
tained in SAMBAS’ long axis bolsters reliability relative to a click. Perhaps the most
similar algorithm to SAMBAS is the GrowCut algorithm [29, 30] implemented in the
3D Slicer [31]. Both have general applicability, and a concept of Background and
Foreground regions. However, GrowCut is not initiated as quickly as a drag across the
long axis, and one study measured lung lesion contouring to require an average of
10 min [32], whereas a clinical goal is sub-minute. Perhaps the most similar initial-
ization method is [33] for the Random Walker algorithm [34], because a clicked point
or stroke commences 2D segmentation from which Background and Foreground seeds
are generated for 3D segmentation. However, the SAMBAS approach intentionally

Table 5. BraTS 2018 validation results with real user interaction.

Dice Sensitivity Hausdorff-95%
Active Whole Core Active Whole Core Active Whole Core

Mean 0.730 0.890 0.823 0.752 0.885 0.791 4.37 5.53 7.53
Std. Dev 0.264 0.057 0.173 0.244 0.0865 0.203 6.86 7.06 10.9
Median 0.828 0.904 0.885 0.807 0.904 0.870 2.50 3.87 3.74

Table 6. BraTS 2018 test results with real user interaction.

Dice Hausdorff-95%
Active Whole Core Active Whole Core

Mean 0.643 0.852 0.750 4.88 8.15 8.44
Std. Dev 0.300 0.135 0.267 5.77 12.9 12.7
Median 0.765 0.896 0.864 3.00 4.12 4.24
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seeks statistical separation rather than a simple circumscribed shape for Background.
GrowCut and the Random Walker both lack the two additional regions that SAMBAS
adds, Containment and Avoidance, which make editing expeditious. Furthermore,
SAMBAS differs by its Bayesian framework, which in conjunction with the added
regions, make it possible to seamlessly incorporate organ-specific processing, and to
employ DL-based CAD to derive additional SVP probability maps.

Quantitative results were promising, while leaving ample opportunity for
improvement. During the interactive experiment, the long axis was drawn manually by
human users, with the guidance of real-time MPR segmentation as constructive feed-
back. The advantage of feedback did not produce better quantitative scores than the
batch-generated long and short axes of the simulation experiment. The drop-off in
scores between the simulation experiment on training data, and the interactive exper-
iment on validation data, indicates the value of knowing where to draw.

The novel “snap to” feature introduced here may offer a solution to the problem of
false positives with CAD systems. Only those CAD findings which are drawn on by the
user will be output. The other CAD findings could be withheld from clinicians to avoid
biasing their judgment.

The interactive algorithm was developed to be general-purpose, and is well-suited
for CT lung and liver lesions. The MR-specific and brain-specific enhancements pre-
sented herein are a new addition, which is a work in progress, and we look forward to
upgrading the tissue segmentation and deep learning components to improve the
overall system. The fact that the integrated system outperformed deep learning alone on
the validation data bodes well for interfaces which unite neural networks with expert
users.
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Abstract. We introduce a new family of classifiers based on our pre-
vious DeepSCAN architecture, in which densely connected blocks of
dilated convolutions are embedded in a shallow U-net-style structure
of down/upsampling and skip connections. These networks are trained
using a newly designed loss function which models label noise and uncer-
tainty. We present results on the testing dataset of the Multimodal Brain
Tumor Segmentation Challenge 2018.

1 Introduction

We present a network architecture for semantic segmentation, heavily inspired
by the recent Densenet architecture for image classification [7], in which pooling
layers are replaced by heavy use of dilated convolutions [16]. Densenet employs
dense blocks, in which the output of each layer is concatenated with its input
before passing to the next layer. A typical Densenet architecture consists of a
number of dense blocks separated by transition layers: the transition layers con-
tain a pooling operation, which allows some degree of translation invariance and
downsamples the feature maps. A Densenet architecture adapted for semantic
segmentation was presented in [8], which adopted the now standard approach
of U-net [15]: a downsampling path, followed by an upsampling path, with skip
connections passing feature maps of the sample spatial dimension from the down-
sampling path to the upsampling path.

In a previous paper [12], we described an alternative architecture adapting
Densenet for semantic segmentation: in this architecture, which we called Deep-
SCAN, there are no transition layers and no pooling operations. Instead, dilated
convolutions are used to increase the receptive field of the classifier. The absence
of transition layers means that the whole network can be seen as a single dense
block, enabling gradients to pass easily to the deepest layers. While we believe
that this approach offers many advantages over U-net, by avoiding pooling and
upscaling, this comes at the price of very high memory consumption, since all
feature maps are present at the resolution of the final segmentation image. This
restricts the possible depth, batch size, and input patch size of the network.
c© Springer Nature Switzerland AG 2019
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In this paper we describe a family of CNN models for segmentation which
represent a continuum from our previously described DeepSCAN models to
U-net-like models, in which a pooling-free dense net is embedded inside a U-net
style network. This allows the dense part of the network to operate at a lower
resolution, improving memory efficiency while maintaining many good properties
of the original DeepSCAN architecture.

We describe the general architecture of the family of DeepSCAN models, plus
the particular features of the network as applied to brain tumor segmentation,
including pre-processing, data augmentation, and a new uncertainty-motivated
loss function. We report preliminary results on the validation portion of the
BRATS 2018 dataset.

2 The DeepSCAN Family of Models

We describe here the constituent parts of the DeepSCAN family of models.

2.1 Densely Connected Layers and Densenet

Densenet [7] is a recently introduced architecture for image classification. The
fundamental unit of a Densenet architecture is the densely connected block, or
dense block. Such a block consists of a number of consecutive dense units, as
pictured in Fig. 1. In such a unit, the output of each convolutional layer (where
a layer here means some combination of convolutional filters, non-linearities and
batch normalization) is concatenated to its input before passing to the next
layer. The goal behind Densenet is to build an architecture which supports the
training of very deep networks: the skip connections implicit in the concatenation
of filter maps between layers allows the flow of gradients directly to those layers,
providing an implicit deep supervision of those layers.

Fig. 1. A Dense unit, as used in the DeepSCAN architecture
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In the original Densenet architecture, which has state-of-the-art performance
on the CIFAR image recognition task, dense blocks are combined with transition
blocks: non-densely connected convolutional layers, followed by a maxpooling
layer. This helps to control parameter explosion (by limiting the size of the input
to each dense block), but also means that the deep supervision is not direct, at
the lowest layers of the network. This Dense-plus-transition architecture was also
adopted by Jegou et al. [8], whose Tiramisu network is a U-net-style variation
of the Densenet architecture designed for semantic segmentation.

In our previous paper [12], we dispensed with the transition layers: this
means, in effect that the whole network (except for the final one by one convolu-
tions) is a single dense block. This led to networks which were highly parameter
efficient, but which had a very large memory footprint. In the current paper we
hybridize this approach with the down/up-sampling approach of U-net [15].

Fig. 2. Two DeepSCAN architectures, as applied to brain tumor segmentation

2.2 Dilated Convolutions

Some kind of pooling is found in almost all CNNs for image classification. The
principal reason to use pooling is to efficiently increase the receptive field of the
network at deeper levels without exploding the parameter space, but another
common justification of pooling, and maxpooling in particular, is that it enables
some translation invariance. Translation invariance is of course undesirable in
semantic segmentation problems, where what is needed is instead translation
equivariance: a translated input corresponding to a translated output. To that
end, we use layers with dilated convolutions to aggregate features at multiple
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Fig. 3. Units of the DeepSCAN architecture: (a) 3D convolutional blocks, (b) Down-
sampling block, (c) Dense block, with dilation M, (d) upsampling block. Except in the
3D block, all convolutions are preceded by 2 by 2 reflection padding.

scales. Dilated convolutions, sometimes called atrous convolutions, can be best
visualized as convolutional layers “with holes”: a 3 by 3 convolutional layer with
dilation 2 is a 5 by 5 convolution, in which only the centre and corner values of the
filter are nonzero, as illustrated in Fig. 4. Dilated convolutions are a simple way
to increase the receptive field of a classifier without losing spatial information.

Fig. 4. Left, a 3 by 3 kernel. Right, a 3 by 3 kernel with dilation 2, visualized as a 5
by 5 kernel
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2.3 Label-Uncertainty Loss

We introduce a new loss function, which we call label-uncertainty loss, inspired
by the recent trend in networks able to quantify their own uncertainty. In brief,
for each voxel, and each segmentation sub-task (whole tumor, tumor core, and
enhancing tumor) the network outputs two probabilities: the probability p that
the label is positive, and the probability q that the label predicted does not
correspond to the label in the ground-truth annotation (i.e., the probability of
a ’label flip’). IF BCE stands for the standard binary cross-entropy loss, and x
is the target label, then the loss function we minimize is:

BCE(p, (1 − x) ∗ q + x ∗ (1 − q)) + BCE(q, z) (1)

where
z = (p > 0.5) ∗ (1 − x) + (p < 0.5) ∗ x (2)

If q is close to zero, and the label is correct, the first term is approximately
the ordinary BCE loss: if q is close to 0.5 (representing total uncertainty as to the
correct label) the first term tends to zero. This loss therefore attenuates loss in
areas of high uncertainty, in a similar fashion to the heteroscedastic loss of [10].
However, in [10] the uncertainty in the classification is modeled by assuming that
logits have a Gaussian distribution, and estimating the variance of that Gaussian:
this cannot be performed directly by gradient descent, instead requiring Monte
Carlo sampling of the Gaussian distribution to perturb the output of the network.
By contrast, label-uncertainty can be incorporated directly into the loss-function
of the network. In fact, the label-uncertainty q can also be viewed as a variance: if
we assume that the logit of p follows not a Gaussian but a logistic distribution (as
is the standard assumption in classical statistical learning) with mean logit(p),
then if the probability that a sample from that distribution is below zero is q,
the variance of the logistic distribution is abs(logit(p)/logit(q)).

Since the label-uncertainty loss incorporates the current prediction in evalu-
ating the probability of a label flip, it is important to apply the loss to a network
which has already been pre-trained with ordinary BCE loss: for each of our net-
works we trained to convergence with ordinary BCE loss (typically 10–20 epochs)
then switched to using label uncertainty loss. We observed more stability when
using both ordinary BCE and label uncertainty. Further, to counter the effects
of label imbalance, we adopt the technique of focal loss from [11]: therefore, the
final loss function used was

(1 − px)γ(BCE(p, x) + BCE(p, (1 − x) ∗ q + x ∗ (1 − q)) + BCE(q, z)) (3)

where px is p if x is 1 and (1-p) otherwise. For our experiments the value of
γ used was 2.

2.4 The DeepSCAN Architecture

The design principles of the DeepSCAN models are (i) non-isotropic input vol-
umes, with one dimension being rather small (in this case, 5 by 192 by 192)
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(ii) initial application of enough 3D convolutions to reduce the short dimen-
sion to length 1, and (iii) a subsequent hybrid of 2D U-net and 2D Densenet,
in which one or steps of convolution and maxpooling are followed by a num-
ber of densely connected blocks of dilated convolutions, with the dilation factor
increasing with increasing depth, and then finally U-net-style upsampling blocks
with skip connections from the previous downward path. The building blocks of
these networks are shown in Fig. 3, and two architectures built from these blocks
are shown in Fig. 2.

3 Initial Application to Brain Tumor Segmentation

Brain Tumor segmentation has become a benchmark problem in medical image
segmentation, due to the existence since 2012 of a long-running competition,
BRATS, together with a large curated dataset [1–3,13] of annotated images.
Both fully-automated and semi-automatic approaches to brain-tumor segmen-
tation are accepted to the challenge, with supervised learning approaches dom-
inating the fully-automated part of the challenge. A good survey of approaches
which dominated BRATS up to 2013 can be found here [5]. More recently, CNN-
based approaches have dominated the fully-automated approaches to the prob-
lem [6,9,14].

We trained two networks, as pictured in Fig. 2. The networks were built
using Pytorch, and trained using the Adam optimizer. Rather than using a
softmax layer to classify the three labels (edema, enhancing, other tumor) we
employ a multi-task approach to hierarchically segment the tumor into the three
overlapping targets: whole tumor, tumor core and enhancing: thus the output
of the network is three logits, one for each target. In addition, as per the label
uncertainty loss, for each target the network outputs one label-flip logit.

3.1 Data Preparation and Homogenization

The raw values of MRI sequences cannot be compared across scanners and
sequences, and therefore a homogenization is necessary across the training exam-
ples. In addition, learning in CNNs proceeds best when the inputs are standard-
ized (i.e. mean zero, and unit variance). To this end, the nonzero intensities
in the training, validation and testing sets were standardized, this being done
across individual volumes rather than across the training set. This achieves both
standardization and homogenization.

4 Cascaded Non-brain-tissue Removal

The BRATS dataset was assembled from a large number of data sources, and
does not comprise raw imaging data: the volumes are re-sampled to 1 mm isovox-
els, and in addition have been automatically skull-stripped. Unfortunately, the
results of this skull-stripping vary: see Fig. 5 for an example with large amounts of
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residual skull tissue. Other examples have remnants of the dura or optic nerves.
This remaining tissue can confound classification in two ways: it can be misiden-
tified by the classification algorithm (though this is increasingly less likely as
classifiers improve) and it can affect the distribution of the intensities in a vol-
ume, adversely impacting the global standardization of voxel values. To combat
this effect, we used a cascade of networks to first segment the parenchymia from
the poorly skull-stripped images, followed by a second network which identifies
the tumor compartments as above. The ground truth for the brain mask was
obtained by applying FSL-FAST to the T1 post Gadolinium imaging, as this
tended to have the best definition in all three planes. The brain tissue label was
assembled by taking the union of tumor, white matter and grey matter labels,
and then taking the largest connected component.

Fig. 5. A FLAIR image from the BRATS2018 testing dataset before (Left) and after
(Right) additional brain extraction by our method

This brain-mask tissue label was used during training to ensure the training
of networks robust to the presence or absence of non-brain tissue. In addition,
we added a brain-mask label to the existing labels in the ground-truth for train-
ing, so that during testing a brain-mask for additional skull-stripping could be
generated.

4.1 Data Augmentation

During training, we applied the following data augmentation: randomly flipping
along the midline, random rotations in a randomly chosen principal axis, and
random shifting and scaling of the standardised intensity values. In addition, the
classifier was randomly shown either the original images, or images masked with
the brain-mask generated as above.
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4.2 Training

The network segments the volume slice-by slice: the input data is five consecutive
slices from all four modalities, Ground truth for such a set of slices is the lesion
mask of the central slice. Input images were initially cropped to remove as much
empty space as possible. Batch size during training was 2. As a result, the input
tensor to the model has dimensions 2 * 4 * 5 * 192 * 192. Models were trained
using a cosine-annealing learning rate schedule, in which the learning rate was
varied between 1e−5 and 1e−9 during each epoch.

Fig. 6. Above: Whole tumor classified in the (sagittal, coronal, axial) plane. Below:
Label-flip probability of the (sagittal, coronal, axial) segmentations

Slices from all three directions (sagittal, axial, coronal) were fed to the classi-
fier for training. Examples of the different segmentations in those three directions
(just for the whole tumor label) can be seen in Fig. 6.

4.3 Application of the Classifier

The initial application of the classifier is as follows: the volume is classified in
the axial, sagittal and coronal planes separately, by both trained networks. This
yields six logit maps, and six label-flip logit maps, for each target label. The
logit maps were binarized with a threshold of 0 (corresponding to a standard
threshold of 0.5 on the sigmoid of the logit).
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Voxel-wise label confidence weights were then derived from the label-flip log-
its as the minimum of 0 and the negative of the label-flip logit, so that very
confident classifications (corresponding to very large negative label-flip logits)
contribute more than less-confident classifications. These weights were than used
to ensemble the binarized maps.

The brain-mask label from this ensembled classification was then used to
mask the input modalities, and the volume was again classified by both networks
in all three directions. This yielded another six logit maps (with corresponding
label-flip logit maps) for each tissue compartment. The final segmentations for
each compartment were produced by the same uncertainty weighted ensembling
as above, over all twelve label maps.

5 Results

Results of an ablation study are shown in Table 1, where we show results with
and without label-uncertainty-based ensembling and brain extraction. While no
single model showed dominance, the model with both novel features achieved
the best results in one of Dice or Hausdorff distance for all three compartments,
so was selected as the final model. Results on the BRATS 2018 testing data are
shown in Table 2: this method gained joint 3rd place in the challenge [4].

Table 1. Results on the BRATS 2018 validation set using the online validation tool.
Base denotes the ensemble of two DeepSCAN models over three directions, where
ensembling is achieved by averaging logits. “+ U” denotes using averaging over label
uncertainty instead of logits. “+ BE” denotes averaging over both original and brain-
extracted inputs.

Dice-ET Dice-WT Dice-TC HD95-ET HD95-WT HD95-TC

Base 0.795 0.901 0.854 3.61 4.26 5.37

Base + U 0.792 0.901 0.847 3.60 4.06 4.99

Base + BE 0.797 0.901 0.851 3.60 4.41 5.58

Base + U + BE 0.796 0.903 0.847 3.55 4.17 4.93

Table 2. Results of the ensemble with brain extraction and uncertainty-driven ensem-
bling on the BRATS 2018 testing set

Label Dice-ET Dice-WT Dice-TC HD95-ET HD95-WT HD95-TC

Mean 0.73189 0.88593 0.79926 3.48082 5.5185 5.5347

StdDev 0.27443 0.10182 0.26008 5.52176 9.34294 8.14881

Median 0.83199 0.91786 0.90847 1.73205 3.0 2.82843

25quantile 0.73922 0.87113 0.82327 1.41421 2.23607 1.73205

75quantile 0.88342 0.9396 0.93653 2.82843 5.09902 5.52101
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Abstract. The extraction of brain tumor tissues in 3D Brain Magnetic Reso-
nance Imaging plays an important role in diagnosis gliomas. In this paper, we
use clinical data to develop an approach to segment Enhancing Tumor, Tumor
Core, and Whole Tumor which are the sub-regions of glioma. Our proposed
method starts with Bit-plane to get the most significant and least significant bits
which can cluster and generate more images. Then U-Net, a popular CNN model
for object segmentation, is applied to segment all of the glioma regions. In the
process, U-Net is implemented by multiple kernels to acquire more accurate
results. We evaluated the proposed method with the database BRATS challenge
in 2018. On validation data, the method achieves a performance of 82%, 68%,
and 70% Dice scores and of 77%, 48%, and 51% on testing data for the Whole
Tumor, Enhancing Tumor, and Tumor Core respectively.

Keywords: 3D brain MRI � Brain tumor � Bit-plane �
2D U-Net � CNN � BRATS challenge in 2018

1 Introduction

Accurate extraction of brain tumor types plays an important role in diagnosis and
treatment planning. Neuro-imaging methods in Magnetic Resonance Imaging
(MRI) provide anatomical and pathophysiological information about brain tumors and
aid in diagnosis, treatment planning and follow-up of patients. Manual segmentation of
brain tumor tissue is a difficult and time-consuming job. Therefore, brain tumor seg-
mentation from 3D Brain MRI automatically can solve these problems. Among many
types of brain tumor, Gliomas are the most common primary brain malignancies, with
different degrees of aggressiveness, variable prognosis and various heterogeneous
histological sub-regions. In this paper, we focus on Enhancing Tumor, Tumor Core,
and Whole Tumor segmentation which are the sub-regions of gliomas segmentation.

Segmentation of brain tumors in multimodal MRI scans is one of the most chal-
lenging tasks in medical image analysis. Currently, there are many methods related to
brain tumor segmentation have been proposed [1, 2]. In this paper, we divide these
methods into two categories: mathematical methods and machine learning methods
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• In mathematical methods: the tumor can be segmented by using threshold, Edge-
Based Method [3], Atlas [4]. In Dubey et al. [5], rough set based fuzzy clustering is
proposed to segment the tumor.

• In machine learning methods: Traditionally, many features are extracted manually
from image and given to the classifier. However, in recent years, Convolution
Neural Networks (CNNs) which have been shown to excel learning a hierarchy
task-adapted complex feature are seen prominent success in image classification,
object detection and image semantic segmentation [6–8]. Many of the brain tumor
segmentation methods based on CNNs or combining CNNs with the traditional
method are also proposed [9–11].

In this study, we combine the Bit-plane method [12] and U-Net architecture [13] for
tumor segmentation. First, we use Bit-plane to divide images into many images by
determining significant bits. Second, the images with the significant bits can be used to
segment the object boundary. Finally, original images and images with least significant
bits can be used to determine tissues inside the boundary. Both stages used the U-Net
with multiple kernels to segment the tissues more accurately.

The rest of the paper is organized as follows: in the next Sect. 2, we present our
proposed method for brain tumor segmentation and the experimental results are shown
in Sect. 3. We give the conclusion and discussion in Sect. 4.

2 Our Method

The proposed method is illustrated in Fig. 1. There are three main stages: preprocess,
object boundary segmentation, and tissues segmentation. As shown in Fig. 1, after
converting to 2D images and grouping images, the first U-Net predicts object boundary
of the Whole Tumor and the other U-Net utilizes features to predicts the label of all
pixel inside the boundary.

Fig. 1. The overall of our proposed method for brain tumor segmentation
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2.1 Preprocessing

The preprocessing is the necessary stage before any tissue segmentation. We imple-
ment three main steps

• Normalization: each individual 3D image is scaled to the range [0–255].
• Brain Slice Category [14]: We group the slices which can contain the tumors

together to get the accuracy better. The implementation can be done automatically
by learning feature or set manually by omitting some first and end slices. Here, we
detect the tumor from slices 40–140.

• Object Region: each 2D image can be cropped to implement deep learning effec-
tively. Here, we cropped the image size from (256, 256) to (176, 176).

Majority of the volumes in the dataset were acquired along the axial plane and
hence had the highest resolution this plane. Therefore, all 3D brain MRI is transformed
to 2D brain slices on axial slice extracted from all four sequences. After the prepro-
cessing stage, all the 2D slices is from (155, 256, 256) to (100, 176, 176) with value
range (0–255).

2.2 Boundary for All Tumors

The bit plane method [12] is based on decomposing a multilevel image into a series of
binary images. The intensities of an image are based on the Eq. (1):

am�12m�1 þ am�22m�2 þ . . . þ a121 þ a020 ð1Þ

We realize that the final plane contains themost significant bit. In order to segment the
boundary of the object, we proposed using k significant bits to eliminate the noise which
can affect the image. Instead of using a single plane, we can combine multiple planes
together. We represented the slice by keeping from one-bit to eight-bit planes in Fig. 2.

Fig. 2. An example of most significant bits from Flair image. In the first row, from the left to the
right are images keeping one-bit to four-bit plane. In the second row, from the left to the right are
images keeping five-bit to eight-bit plane.

468 T. A. Tuan et al.



In this study, we eliminate the last 6 bits to remove the noise and only used the first 2
bits to keep the significant data to generate images for training to detect the object
boundary. After getting the images, U-Net is used to segment the background and the
Whole Tumor by using the 2D slices input and the imagewhich contains 2 significant bits.

2.3 Tissues Segmentation

After segmenting the tumor boundary, different types of tumors inside the boundary
can be segmented by using other U-Net. The input data is the data which is prepro-
cessed from the first stage. However, to get a better result, we suggest two contributions
to enhance the segmentation:

• Another training data are the images with noises which are generated from the least
significant bits. In this study, we implement the noise from three last bits of each
image. The example of the implementation is shown in Fig. 3 with the input from
Flair image.

• Implementing U-Net with multiple kernel size to get the better segmentation [15].
Let K ¼ fðK1; ða1; b1ÞÞ; . . . ; ðKn; ðan ; bnÞÞg is the set of n filters K with size (a,
b). The output of layer i is the merge of feature maps that the layer i generateSn

j¼1 Kj. In this study, the numbers within each Conv block comprises of 2 sets of
convolutions by 3 � 3 kernels and 2 sets of convolutions by 5 � 5 kernel as shown
in Fig. 3.

Fig. 3. Example using multiple kernels in each convolution for segmentation model

Brain Tumor Segmentation Using Bit-plane and UNET 469



3 Results

We use BraTS’2018 training data [16–19], consisting of 210 pre-operative MRI scans
of subjects with glioblastoma (HGG) and 75 scans of subjects with lower grade glioma
(LGG). These multimodal scans describe (a) native (T1) and (b) post-contrast T1-
weighted (T1Gd), (c) T2-weighted (T2), and (d) T2 Fluid Attenuated Inversion
Recovery (FLAIR) volumes and were acquired with different clinical protocols and
various scanners from multiple (n = 19) institutions. Ground truth annotations com-
prise the GD-Enhancing Tumor (ET—label 4), the peritumoral edema (ED—label 2),
and the necrotic and non-enhancing tumor core (NCR/NET—label 1)

Our proposed method is implemented based on a Keras library [20] with backend
Tensorflow [21]. ‘Adam’ optimizer [22] and ‘binary_crossentropy’ loss [23] are used in
UNET. We run the method with 50 epochs on Ge-force GTX980 graphics card. Fig-
ure 4 shows the result from an example of experiments in the samples of image scans
on the real data of the BraTS’18. The top row of Fig. 4 are the original images, from
the left to the right: FLAIR, T1, T1ce and T2. The second row contains images from
two most significant bits. The third row contains images with noise from three least
significant bits. The fourth and the last row is the result of segmentation for each stage.

Tables 1 and 2 show the average performance for each label and score for all the
validation patients and all the testing patients [24]. The BraTS’18 competition has four
metrics to assess the accuracy of segmentation results and to measure the similarity
between the segmentations A and B. For the segmentation task, and for consistency
with the configuration of the previous BraTS challenges, we will use the Dice score and
the Hausdorff distance. Expanding upon this evaluation scheme, BraTS’18 also use the
metrics of Sensitivity and Specificity, allowing to determine potential over- or under-
segmentations of the tumor sub-regions by participating methods. They are defined as
Eqs. (2), (3), (4) and (5)

Dice A;Bð Þ ¼ 2 A\Bj j
Aj j þ Bj j ð2Þ

Sensitivity ¼ number of true positives
number of true positives þ number of false negatives

ð3Þ

Specificity ¼ number of true negatives
number of true negativesþ number of false postives

ð4Þ

Hausdorff A;Bð Þ ¼ max h A;Bð Þ; h B;Að Þð Þ ð5Þ

The Dice metric is the similarity between two volumes A and B, corresponding to
the output segmentation of the model and clinical ground truth annotations, respec-
tively. Sensitivity and Specificity are statistical measures employed to evaluate the
behavior of the predictions and the proportions of True Positives, False Negatives,
False Positives, and True Negatives voxels. Hausdorff(A, B) is the Hausdorff distance
between the two surfaces of A and B where h A;Bð Þ ¼ maxa2Aminb2Bd a; bð Þ. Here,
d a; bð Þ is the Euclidean distance between a and b. This metric indicates the
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Original image
FLAIR T1     T1ce T2

Generating images from two most significant bits

Generating images with noise from three least significant bits

Tumor boundary

Result segmentation

Fig. 4. The results from an example of brain tumor segmentation on the real data of the
BraTS’18.
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segmentation quality at the border of the tumors by evaluating the greatest distance
between the two segmentation surfaces and is independent of the tumor size.

For our participation in BraTS’2018 competition, we used 100% of the training
dataset (285 subjects) for training purpose. Our model was trained to segment both
HGG and LGG volumes. The result of the proposed method for Enhancing Tumor
(ET), Whole Tumor (WT) and Tumor Core (TC) segmentation using the four previ-
ously defined metrics are given in Tables 1 and 2. Mean, standard deviation, median
are given for Dice and Sensitivity metrics in Table 1 and for Specificity and Hausdorff
distance in Table 2. Values presented in Table 1 show high performance on the Dice
metric for WT region, but lower performance for ET and TC regions because the noise
generating from the Bitplane method has a small difference and is not verified to make
it as a real image (Table 3).

Table 1. Dice score and Sensitivity for Enhancing Tumor (ET), Whole Tumor (WT) and Tumor
Core (TC) on validation data

Label Dice_ET Dice_WT Dice_TC Sensitivity ET Sensitivity WT Sensitivity TC

Mean 0.68252 0.81871 0.69986 0.70254 0.77338 0.64729
StdDev 0.28138 0.16968 0.2913 0.25413 0.20257 0.30542
Median 0.80902 0.88296 0.82567 0.7804 0.83364 0.75828

Table 2. Specificity, and Hausdorff distance for Enhancing Tumor (ET), Whole Tumor
(WT) and Tumor Core (TC) on validation data

Label Specificity
ET

Specificity
WT

Specificity
TC

Hausdorff95
ET

Hausdorff95
WT

Hausdorff95
TC

Specificity
ET

Mean 0.99783 0.99525 0.99862 7.01652 9.42113 12.46282 0.99783
StdDev 0.00403 0.00589 0.00197 9.53618 9.74773 14.68491 0.00403

Median 0.9989 0.9967 0.99905 2.82843 6.04138 6.16441 0.9989

Table 3. Dice score, and Hausdorff distance for Enhancing Tumor (ET), Whole Tumor
(WT) and Tumor Core (TC) on testing data

Label Dice_ET Dice_WT Dice_TC Hausdorff ET Hausdorff WT Hausdorff TC

Mean 0.47623 0.77338 0.51291 12.3933 14.19183 15.62507
StdDev 0.26239 0.15914 0.24294 12.33002 16.98779 14.32559
Median 0.55018 0.83227 0.56504 8.11168 8.06226 12.08305
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4 Conclusions and Discussion

Nowadays, generating data is a good approach for segmentation. In this paper, we
propose using Bit-plane to generate more image remaining significant features.
Besides, we also implement the U-Net with multiple kernels to get better performance.
The result is evaluated without additional data and is shown with a promising per-
formance. In the future, we can concentrate on two main aspects:

• Using type of image
As shown in Fig. 5, every type of image has specific characteristics. Therefore,
instead of using all 4 types of images as an input for all stages, we can use a suitable
type of image for each stage to get the better result.

• Using GAN
Generative Adversarial Networks (GAN) [25] is one of the most promising recent
developments in deep learning. GAN solve the problem of unsupervised learning by
training two deep networks, called Generator and Discriminator, that compete and
cooperate with each other. If we can combine GAN with Bitplane to generate more
real images, the result segmentation will be better.

Acknowledgement. We would like to thank Business Intelligence LAB at University of Eco-
nomics and Law for supporting us throughout this paper. The study was supported by Science
and Technology Incubator Youth Program, managed by the Center for Science and Technology
Development, Ho Chi Minh Communist Youth Union, 2018.

Fig. 5. Glioma sub-regions. Shown are image patches with the tumor sub-regions that are
annotated in the different modalities (top left) and the final labels for the whole dataset (right).
The image patches show from left to right: the Whole Tumor (yellow) visible in T2-FLAIR
(Fig. A), the Tumor Core (red) visible in T2 (Fig. B), the Enhancing Tumor structures (light blue)
visible in T1Gd, surrounding the cystic/necrotic components of the core (green) (Fig. C). The
segmentations are combined to generate the final labels of the tumor sub-regions (Fig. D): edema
(yellow), non-enhancing solid core (red), necrotic/cystic core (green), enhancing core (blue) [16–
19]. (Color figure online)
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Abstract. Brain tumor segmentation is a challenging task necessary for
quantitative tumor analysis and diagnosis. We apply a multi-scale con-
volutional neural network based on the DeepMedic to segment glioma
subvolumes provided in the 2018 MICCAI Brain Tumor Segmentation
Challenge. We go on to extract intensity and shape features from the
images and cross-validate machine learning models to predict overall
survival. Using only the mean FLAIR intensity, nonenhancing tumor
volume, and patient age we are able to predict patient overall survival
with reasonable accuracy.

Keywords: Glioblastoma · Segmentation · Neural network ·
Quantitative imaging

1 Introduction

Gliomas are highly malignant primary brain tumors that carry a dismal median
overall survival of 15 months for high grade tumors [1]. One characteristic that
contributes to this poor survival is the substantial heterogeneity. Spatial hetero-
geneity within a tumor implicitly increases the chances that a therapy resistant
tumor subpopulation exists and thus frequently indicates poor clinical progno-
sis [2]. Successful and automated detection of distinct subvolumes (enhancing,
nonenhancing, and necrotic regions, etc.) is a key step in quantitative analysis
towards patient risk stratification and computer aided diagnosis. In recent years,
convolutional neural networks (CNNs) are the undisputed champions of biomed-
ical segmentation tasks [3]. Quantitative measurements of these subvolumes are
likely to provide insight into patient’s prognosis.

In this work we use a multi-scale convolutional neural network to segment
glioma sub-volumes in multi-contrast MRI images. We go on to extract shape
and intensity features from the sub-volumes to predict patient overall survival.
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Results on the 2018 MICCAI Brain Tumor Segmentation (BraTS) Challenge
[4–7] are provided. Final challenge rankings relative to other contest entries are
available online [8].

2 Segmentation

2.1 Network Structure

Data Preprocessing. The BraTS 2018 Training set contains 285 multi-
contrast MRI (T1, T1ce, T2, FLAIR) scans of high and low-grade gliomas. 75
of the 285 patients are labeled low-grade (LGG) and the remaining are high-
grade (HGG). The imaging data is brain extracted, registered, and resampled to
1 mm isotropic voxel size. Each subject has a ground truth segmentation with
four labels, non-tumor (label 0), necrotic and nonenhancing tumor core (label
1), peritumoral edema (label 2), and Gadolinium-enhancing tumor (label 4).
The BraTS 2018 Validation set contains a mix of 66 HGG and LGG patients
equivalently pre-processed and does not have ground truth segmentations.

All MRI scans were normalized by subtracting the mean intensity and divid-
ing by the standard deviation. A binary brain mask for each patient was also
created using the T1 scan, and this mask is used by the CNN to focus sam-
pling on only the brain. The same preproccesing steps were also applied to the
validation data set before segmenting.

Convolutional Neural Network. We used a 3-dimensional CNN built using
the DeepMedic architecture created by Kamnitsas et al. [9]. DeepMedic has
consistently produced high performing image segmentations in previous BraTS
challenges. Sampling was used to produce image sub-volumes of size 373, and
an equal number of sub-volumes centered on the foreground and background
was taken to reduce class imbalance. Our CNN implementation contains three
pathways consisting of eleven convolutional layers each. The pathways include
one normal resolution and two downsampled where one was downsampled by a
factor of 33 and the other by 53. The first seven layers use a 33 kernel with 30 to
50 features per layer. After the first seven layers, the downsampled pathways are
upsampled to match the normal resolution pathway and all three pathways are
concatenated. The concatenated features are then fed into two fully connected
layers with 250 features and a kernel size of 33 and 13 respectively. The final layer
is a fully connected layer with kernel of size 13 and four features. Dropout rates
of 50% were used on the final two layers to prevent overfitting. The four features
in the last fully connected layer are the output of the network and represent
binary masks for each of the four segmentation labels.

Initially the CNN was trained on 80% of the BraTS 2018 Training Data and
the remaining 20% was reserved for model validation. We tuned the batch size,
learning rate, and optimizer until we found a set of parameters that gave the most
accurate validation results and efficient use of our hardware. The final network
was trained for 50 epochs with a batch size of 10, and the RMSprop optimizer
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was used with an initial learning rate of 0.001 and lowered throughout training.
Before performing inference on the validation set we retrained the network with
95% of the BraTS 2018 Training Data and 5% reserved for validation. This
training on a Nvidia Kepler Titan 6 GB took 96 h and, using the trained CNN,
we performed a full inference on the BraTS 2018 Validation Data to produce
binary mask for each of the four segmentation labels.

2.2 Training and Validation Set Results

The segmentation results from the full inference on the validation set were
uploaded to the BraTS Challenge portal where the Dice score, sensitivity, speci-
ficity, and Hausdorff distance were calculated. Results for the 66 patients in the
validation set are shown in Table 1. We also performed a full inference on the
5% of training set cases which were excluded from the model training process,
so that we can compare the performance of the model against the ground truth
segmentations. This comparison is shown in Table 2. From these samples, we
can see that the CNN classifies the overall tumor well but has greater difficulty
classifying regions with a dense mix of lower and higher grades.

Table 1. Mean values for metrics from segmentations on the training and validation
data sets.

Data set Label Dice Sensitivity Specificity Hausdorff

Training Enhancing tumor 0.7332 0.84265 0.99781 6.20545

Whole tumor 0.89633 0.88636 0.99531 5.14866

Tumor core 0.75292 0.73297 0.99833 8.47618

Validation Enhancing tumor 0.67831 0.72923 0.99611 14.52297

Whole tumor 0.80558 0.81374 0.98703 14.415

Tumor core 0.6852 0.68018 0.99619 20.01745

3 Survival Analysis

Of the 285 training cases, 163 cases had age (range 19–86 years) and overall sur-
vival data (range 5–1767 days) provided. We used this clinical data and features
extracted from segmentations to predict the overall survival in days.

After determining the best model, we applied it to the 28 challenge validation
set cases with patient age and gross total resection status.

The challenge assesses the predictions based on the accuracy: total number
of cases correctly assigned a survival <10 months, between 10 and 15 months,
and >15 months. The mean-square-error (MSE) is also used as a performance
metric.
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Table 2. Ground truth versus CNN segmentation samples from the validation data
excluded from training. Red is nonenhancing tumor and necrosis (tumor core), green
is edema, and yellow is enhancing tumor. The T1 weighted image for each patient is
shown for reference.

Patient ID
Brats18 CBICA

AQQ 1
Brats18 CBICA

AXL 1
Brats18 CBICA

AYA 1

Ground
Truth

CNN
Segmentation

T1 Image

3.1 Image Processing

The format of the provided imaging data is described in Sect. 2.1. For the survival
task, we further pre-processed the data by normalizing based on reference tissue
intensities. Creating a consistent intensity scale between patients allows images
features to discriminate short and long survival patients. Note, this is different
than the normalization used in the segmentation task where each image had
mean zero and standard deviation one. To apply this normalization, we placed
small regions of interest for each patient in the gray matter (GM) of the lentiform
nucleus, the cerebrospinal fluid (CSF) of the ventricles, and the normal appearing
white matter (WM). Using the mean intensity for a pair of reference tissues,
each voxel in the image was linearly scaled to map the mean intensities to 0
and 1 respectively. For example, in the FLAIR image each voxel value x was
transformed according to

yCSF/WM =
x− CSF

WM − CSF
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For the FLAIR image CSF and WM were chosen because they were the dark-
est and brightest reference tissues respectively. For sequences T1 and FLAIR we
normalized using the CSF/WM pair, for T2 we used the WM/CSF pair, and
for the T1 contrast enhanced image we used a CSF/GM pair. This procedure
is similar to other methods presented in the literature [10]. Although we per-
formed the normalization semi-automatically with manually placed ROIs, this
procedure can be performed fully automated using brain tissue segmentation
software applied to the non-tumor regions.

3.2 Image Features

To predict patient overall survival we calculated image features for each of the
available image sequences and segmentation labels from Sect. 2. We also com-
puted the union of the three regions (nonenhancing, enhancing, and edema)
to generate a whole-tumor ROI for each patient. For each region (enhancing,
nonenhancing, edema, and whole tumor) we computed the mean intensity of
that region for each image. (T1, T1 contrast enhances, T2, FLAIR) as well as
the volume using the Pyradiomics software package [11]. So, in total 20 features
(16 means and 4 volumes) were used for predicting overall survival.

We experimented with features quantifying higher order histogram statistics
(quantiles, skewness, etc) and complex shape descriptors (i.e. flatness). However,
we found these features did not improve the performance of predictive modeling
beyond using just mean values. Similarly, we quantified image texture using gray
level co-occurrence matrices and gray level run length matrices, and nearest gray
tone difference matrices [12] but again found that including these features did
not substantially increase model performance. Since these higher-order features
are less robust to variability in the underlying image data and segmentation, we
chose to consider only mean intensity and volume features in our final analysis.

3.3 Survival Task

An overview of our model development approach to predict survival is shown in
Fig. 1. A family of models was considered with distinct permutations of variable
selection methods and machine learning prediction algorithm. The best model
was used to make predictions on the provided validation data. Modeling for the
survival task was implemented in R version 3.4.0.

We partitioned the training data into 80% training and 20% testing data
with an approximately equal proportion of short, medium, and long survivors in
each set. Using the 80% partition, we performed variable selection and trained
several classes of predictive models including linear models, neural networks, and
random forests using leave-one-out cross validation. We selected the model with
the highest Pearson correlation (R2) between predicted and observed overall
survival within the cross validation and made predictions on the testing set to
see how well the model generalized.

For feature selection we consecutively applied univariate, multivariate, and
step-wise feature elimination. After each selection step the resulting variables
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Fig. 1. Flowchart depicting the modeling process and variable selection methods for
predicting overall survival. First the imaging data and computed segmentations (a) are
used to extract mean intensity features and volumes. Panel (b) shows a histogram of
the mean FLAIR intensity over the tumor core (TC) region. Several variable selection
methods based on the cox model are used to generate input sets for predictive models
(c). Features were first tested for significant association with overall survival using
univariate cox models and discarding non-significant features. The set of univariate
significant features was further reduced by constructing a multivariate cox model and
again eliminating redundant (non-significant features), followed by stepwise AIC. The
remaining image features and the patient’s age, an important clinical factor, were used
to predict overall survival (d). Before the variable selection 20% of the training data
was held out for as an independent testing and the remaining 80% is used to select the
best variable and model combination.

were stored as a possible set of inputs to predictive models. First, we used a
Cox model to individually determine which image features were significantly
associated with overall survival. Any feature with p > 0.05 for the Wald-test
was discarded. Next, the remaining features were fed into a multivariate Cox
model to reduce redundancy. Features with p < 0.05 in the multivariate Cox
model were retained. Lastly, we further reduced the set of inputs using step-wise
elimination based on Akaike Information Criteria (AIC) [13]. Starting with all
variables, the stepwise AIC algorithm eliminates or replaces variables one at a
time to maximize the AIC.

In addition, we applied the Boruta method [14] to select variables predictive
of overall survival. The Boruta method is based on variable importance from the
random forest algorithm, which has traditionally been a top performing machine
leaning model.

Each variable subset was used to train several candidate models for predicting
overall survival. We tested a linear model, random forest, and neural network
and assessed the average cross-validation accuracy of each. After selecting the
best model and variable combination, we trained a final model on all the training
data, made predictions on the challenge-provided validation set, and compared
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the performance to the leave-one-out cross validation. In particular, we checked
for substantially decreased performance on the test data that would indicate
model over-fitting.

3.4 Results

Landmark normalization was successfully applied to all patients. One case had
poor fluid suppression on the FLAIR image and could not be effectively normal-
ized. This case was excluded from the training.

Among the mean intensities for each image over each region, the region vol-
umes, and the patient age, we found five features were significantly associated
with overall survival in the cox model. They are: mean FLAIR intensity over the
nonenhancing and necrotic region, mean T1ce intensity over the whole tumor,
the volumes of the nonenhancing and enhancing regions, and age. With these
variables input into a multivariate Cox model only age, the FLAIR nonenhanc-
ing mean, and nonenhancing volume were independently significant. Applying
stepwise AIC did not change the variable selections any further.

Among the candidate models we tested (random forest, neural network, linear
model) the linear model performed best with R2 = 0.134 and mean-square-error
114994 using the three inputs selected by the multivariate cox model. With the
same model parameters fit to all 162 evaluable challenge cases the model to
predict overall survival is given by.

Survival = 926.8 − 10.5 · Age + 91.6 · FTCM − 55.1 · TCV

where Age is the patient’s age in years, FTCM is the “FLAIR Tumor Core
Mean” value on the landmark normalized scale, and TCV is the “Tumor Core
Volume” in units of mm3/10000 consisting of nonenhancing and necrotic areas.
This volume scaling makes the range of values comparable to the other fea-
tures. Surprisingly, this simple linear model performed substantially better on
the testing data and on the challenge validation dataset. This strongly suggests
the model is not over fitting the data. The metrics are provided in Table 3.

Table 3. Performance metrics for our linear model on the training data: (80% of 163
provided cases), testing data (20% of 163 provided cases), and validation data (26 cases
without known survival). The Pearson R2 for the validation data is not provided.

R2, predicted vs observed Accuracy MSE

Training data 0.134 44.5% 114994

Testing data 0.399 38.2% 55193

Validation data - 53.6% 87998
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4 Discussion

Brain tumor segmentation and prediction of overall survival are both challenging
tasks. Despite good results, our segmentation model did not perform as well as
the implementation of DeepMedic by Kamnitsas et al. that won the BraTS 2017
challenge [15]. Their model achieved better segmentation results by averaging
results across an ensemble of six different models. The single model we used is
not as robust as their ensemble method but provides satisfactory results without
the high computational cost.

In the task of predicting patients as short, medium, or long survivors we
achieved a validation accuracy of 54% with a MSE of 87998. In the training
data the most frequent class is short survivors at 65 of 163 (39.9%) which means
our models are performing better than chance. The root mean square error for
continuous prediction is on the order of 300 days, which is comparable to the
range seen among all patients. Overall survival is impacted by several factors,
including age, treatment, and performance status (not provided) and the accu-
racy and MSE reflects the complexity of this task even when some variables are
controlled for.

We were able to produce good results using two highly primitive image mea-
surements (mean intensity and volume) and a linear regression model. Although
vast numbers of higher-order texture features and nonlinear models are com-
monly employed to mine imaging data, we found they were not useful in pre-
dicting overall survival for this task. We suspect this is because these features are
more sensitive to tumor segmentation (and segmentation error) as well as other
variations in image quality and processing. Since predicting overall survival is
already a highly uncertain task, it is easy for models to over-fit the higher order
features. In other words, the simple and robust features more easy to generalize.

Our best performing model only included intensity information from one of
the four magnetic resonance sequences available (FLAIR) and only one of the
four segmentation labels used to extract features (enhancing tumor, tumor core
consisting of nonenhancing tumor and necrosis, edema, and whole tumor). This
may have happened for a few reasons: While the available image types (T1, T2,
etc) contain different kinds of information about the tumors, there was a lot of
variability between images of the same type from different patients. This intra-
sequence variability reduces the impedes the models ability to predict overall
survival based on the complementary nature of the different image contrasts.

5 Conclusion

We found we could segment glioma tumors with high accuracy using a multi-scale
convolutional neural net. Using these segmentations and simple image features
we were able to predict overall survival with reasonable accuracy.



484 E. Gates et al.

References

1. Stupp, R., et al.: The European organisation for research and treatment of cancer
brain tumor and radiotherapy groups, and “the national cancer institute of canada
clinical trials group”. radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005)

2. Shipitsin, M., et al.: Molecular definition of breast tumor heterogeneity. Cancer
cell 11(3), 259–273 (2007)

3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

4. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

6. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-GBM collection, The Cancer Imaging Archive (2017). https://
doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

7. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-LGG collection, The Cancer Imaging Archive (2017). https://
doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

8. Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for
brain tumor segmentation, progression assessment, and overall survival prediction
in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

9. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for
accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

10. Leung, K.K., et al.: Alzheimer’s disease neuroimaging initiative. robust atro-
phy rate measurement in alzheimer’s disease using multi-site serial MRI: tissue-
specific intensity normalization and parameter selection. NeuroImage 50(2), 516–
523 (2010)

11. van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the
radiographic phenotype. Cancer Res. 77(21), e104 LP–e107 (2017)

12. Haralick, R., Shanmugan, K., Dinstein, I.: Textural features for image classification
(1973)

13. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom.
Control 19(6), 716–723 (1974)

14. Kursa, M.B., Rudnicki, W.R., et al.: Feature selection with the Boruta package. J.
Stat. Softw. 36(11), 1–13 (2010)

15. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust
brain tumour segmentation. CoRR, abs/1711.01468 (2017)

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
http://arxiv.org/abs/1811.02629


Ensemble of Fully Convolutional Neural
Network for Brain Tumor Segmentation

from Magnetic Resonance Images

Avinash Kori , Mehul Soni , B. Pranjal , Mahendra Khened,
Varghese Alex , and Ganapathy Krishnamurthi(B)

Indian Institute of Technology Madras, Chennai 600036, India
gankrish@iitm.ac.in

Abstract. We utilize an ensemble of the fully convolutional neural net-
works (CNN) for segmentation of gliomas and its constituents from mul-
timodal Magnetic Resonance Images (MRI). The ensemble comprises of
3 networks, two 3-D and one 2-D network. Of the 3 networks, 2 of them
(one 2-D & one 3-D) utilize dense connectivity patterns while the other
3-D network makes use of the residual connection. Additionally, a 2-D
fully convolutional semantic segmentation network was trained to dis-
tinguish between air, brain, and lesion in the slice and thereby localize
the lesion the volume. Lesion localized by the above network was multi-
plied with the segmentation mask generated by the ensemble to reduce
false positives. On the BraTS validation data (n= 66), the scheme uti-
lized in this manuscript achieved a whole tumor, tumor core and active
tumor dice of 0.89 0.76, 0.76 respectively, while on the BraTS test data
(n = 191), our scheme achieved the whole tumor, tumor core and active
tumor dice of 0.83 0.72, 0.69 respectively.

Keywords: Brain tumor · MRI · CNN · 3-D · Ensemble

1 Introduction

Manual tracing, detection of organs and tumor structure from medical images
is considered as one of the preliminary step in diseases diagnosis and treatment
planning. In a clinical setup this time-consuming process is carried out by radi-
ologists, however, this approach becomes infeasible as the number of patients
increases. This necessitates the scope of research in automated segmentation
methods.

Diffused boundaries of the lesion and partial volume effects in the MR images
makes automated segmentation of gliomas from MR volumes a challenging task.
In the recent year’s convolutional neural networks (CNN) have produced state
of the art results for the task of segmentation of gliomas from MR images [6,9].
Typically, medical images are volumetric, organs being imaged are 3-D enti-
ties and henceforth we exploit the nature of 3-D CNN based architectures for
segmentation task.
c© Springer Nature Switzerland AG 2019
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The segmentation generated by a trained network has an associated bias and
variance. Ensembling the predictions generated by multiple models or networks
aids in the reduction of the variance in the generated segmentation. In this
manuscript, we make use of 3 networks (two 3-D networks and one 2-D network)
for the task of segmentation of gliomas from MR volumes. Additionally, a 2-D
fully semantic segmentation network was trained to delineate the air, brain, and
lesion in a slice of the brain. The aforementioned network was used to reduce the
false positive generated by the ensemble. The predictions were further processed
by conditional random fields (CRF) & 3-D connected components analysis.

2 Materials and Methods

An ensemble of fully convolutional neural network were utilized to segment
gliomas and its constituents from multi modal MR volume. The ensemble com-
prises of 3 networks (two 3-D networks and one 2-D network). Two networks
(a 3-D and a 2-D network) utilizes dense connectivity patterns while the other
3-D network comprises of residual connection. The networks with dense con-
nectivity pattern were semantic segmentation networks and predicts the class
associated with all pixels or voxels that form the input to the network. The
network with residual connectivity pattern was composed of inception modules
so as to learn multi-resolution features. This multi-resolution network unlike the
other networks in the ensemble classifies only a subset of voxels.

A 2-D fully convolutional semantic segmentation (Air-Brain-Lesion Network)
was trained to delineate air, brain and lesion from axial slice of the MR volumes
and thereby localize the lesion in the volume. The predictions generated by the
ensemble were smoothened by using Conditional random fields. The smoothened
prediction and the output generated by the Air-Brain-Lesion network were used
in tandem to reduce the false positives in the prediction. The false positives in
the predictions were further reduced by incorporating a class-wise 3-D connected
component analysis in the pipeline. The pipeline utilised for segmentation of
glioma is illustrated in Fig. 1.

Fig. 1. Proposed pipeline for segmentation of Brain tumor and its constituents from
Magnetic Resonance Images.
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2.1 Data

Brats 2018 challenge data was used to train the networks [1–4,8] was used in this
manuscript for segmentation task. The training dataset comprises 210 high-grade
glioma volumes and 75 low-grade gliomas along with expert annotated pixel
level ground truth segmentation mask. Each subject comprises 4 MR sequences,
namely FLAIR, T2, T1, T1 post contrast.

2.2 Data Pre-processing

As a part of pre-processing, the volumes were normalized to have zero mean and
unit standard deviation.

2.3 Segmentation Network

The 3-D networks used in ensemble accepts 3-D patches as input while the 2-D
network accepts an axial slice of the brain as the input. The architecture, training
and testing regime associated with each network in the ensemble is explained in
the following paragraphs.

3-D Densely Connected Semantic Segmentation Network

Architecture: The network is a fully convolutional semantic segmentation net-
work. The network accepts input cubes of size 643 and predicts the class asso-
ciated with all the voxels in the input cube fed to the network. The network is
composed of an encoding and decoding section. The encoding section is composed
of Dense blocks and Transition Down blocks. The Dense blocks are composed of
a series of convolutions followed by non-linearity (ReLU) & each convolutional
layer receives input from all the preceding convolutional layers in the block. This
connectivity pattern leads to the explosion of a number of feature maps with the
depth of the network which was circumvented by setting the number of output
feature maps per convolutional layer to a small value (k = 4). The Transition
down blocks are utilized in the network to reduce the spatial dimension of the
feature maps.

The decoding or the up-sampling pathway in the network comprises of the
Dense blocks and Transition Up blocks. The Transition Up blocks are composed
of transposed convolution layers to upsample feature maps. The features from
the encoding section of the network are concatenated with the up-sampled fea-
ture maps to form the input to the Dense block in the decoding section. The
architecture of the network is given in Fig. 2.

Patch Extraction: Patches of size 643 were extracted from the brain. The class
imbalance among the various classes in the data was addressed by extracting
relatively more number of patches from lesser frequent classes such as necrosis.
Figure 3 illustrates the number of patches extracted for each class.
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Fig. 2. Densely connected convolutional network used for segmentation task. TU: Tran-
sition Up block; TD: Transition Down block; C: Concatenation block

The 3-D dense fully connected network accepts an input of dimension 643

and predicts the class associated to all the voxels in the input. The network com-
prises 77 layers. The dense connection between the various convolutional layers
in the network aids in the effective reuse of the features in the network. The pres-
ence of dense connections between layers increases the number of computations.
This bottleneck was circumvented by keeping the number of convolutions to a
small number say 4. Figure 2 shows the network architecture used in semantic
segmentation task.

Training: Stratified sampling based on the grade of the gliomas was done to
split the dataset into training, validation, and testing in the ratio 70: 20: 10.
The network was trained and validated on 182 and 63 HGG & LGG volumes
respectively. To further address the issue of class imbalance in the network, the
parameters of the network were trained by minimizing weighted cross entropy.
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Fig. 3. Histogram of patches sampled surrounding certain class

The weight associated with each class was equivalent to the ratio of the median
of the class frequency to the frequency of the class of interest [5]. The number of
samples per batch was set at 4, while the learning rate was initialized to 0.0001
and decayed by a factor of 10% every-time the validation loss plateaued.

Testing: During inference, patches of the dimension of 643 were extracted from
the volume and fed to the network with the stride of 32. CNN’s being a deter-
ministic technique is bound to generate predict the presence of the lesion in
physiologically impossible place.

2-D Semantic Segmentation Network

Architecture: The architecture of this network is similar to that of the archi-
tecture of the 3-D network. The only difference between the networks is the
usage of 2-D convolutions rather than 3-D convolutions. The network comprises
77 layers. The network accepts inputs of dimension 240 × 240 and predicts the
class associated with all the pixels in the input.

Slice Extraction: In the given dataset, apart from the T1 post contrast, sequences
such as FLAIR, T2 & T1 were 2-D sequences. Majority of the 2-D sequences in
the given dataset were acquired axially and thus had good resolution along the
axial plane. The 2-D network was trained on the axial slices of brain. The class
imbalance in the dataset was addressed by extracting slices which comprise of
at least one pixel of the lesion in it.

Training: The parameters of the network were initialized using Xavier initializa-
tion and the parameters of the network were learned by reducing the hybrid loss
(cross entropy & dice loss). The imbalance among the various classes was fur-
ther reduced by using weighted cross entropy rather than vanilla cross entropy.
The weights assigned to each class were determined as explained earlier. Hyper-
parameters such as batch size, learning rate, and learning rate decay etc. were
similar to the ones used to train the 3-D network.
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Testing: During inference, axial slices from the 3-D volume were fed to the
trained network to generate the segmentation maps.

3-D Multi-resolution Segmentation Network

Architecture: The architecture comprises of the two pathways viz high-resolution
pathway and low resolution like [6]. 3-D patches of size 253 were input to the
high-resolution pathway while 513 resized to 193 were input to the low-resolution
path in the network. The network predicts the class of the center 93 voxels of the
input. The feature maps in the low resolution pathway were upsampled using
transposed convolutions, to match the dimension with the feature maps from
high-resolution path. This network, unlike the previously explained two other
networks, differs by:

1. Predicting the class associated to a subset of voxels in the input 3-D patch.
2. Making use of dual pathway to captures associated global and local features.
3. Making use of inception module [10] (3 × 3, 5 × 5 & 7 × 7) so as to learn

multi-resolution features.

The architecture of the network is given in Fig. 4(a) and the building block
of each unit in the network is illustrated in Fig. 4(b).

Patch Extraction: Patches of sizes 253 and 513 centered around voxels were
extracted to form the training data to the network. The degree of class imbalance
was reduced by extracting more patches from under-represented classes.

Training: Parameters in the network were initialized with Xavier initialization
technique. The network was trained using the similar hyper-parameters that were
used for the other two other networks proposed in the ensemble. The network
was trained for 50 epochs and model that yielded lowest validation error was
utilized for inference.

Testing: For testing, the stride was set to 93 and patches of 253 and 513 were
extracted from the MR volume and input to the trained network to produce the
segmentation mask.

2.4 Post-processing

Air-Brain-Lesion Network. The Air-Brain-Lesion (ABL Net) network was
2-D network densely connected the fully convolutional network. The network
was trained to delineate lesion, air and the brain in a volume. The prediction
made by this network was used to reduce the false positives generated by the
segmentation network.

Architecture: The architecture of the network is similar to the 2-D network
utilized in the segmentation ensemble model.
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(a)

(b)

Fig. 4. 3-D Multi-Resolution Network for segmentation of gliomas from MR volumes.
(a) The architecture of the network. The top portion of the network accepts high-
resolution patches (253) while the bottom pathway accepts low-resolution input (513

patches resized to 193) as input. Both the high and low-resolution pathway is composed
to inception modules so as learn multi-resolution features. TC in the network stands
for transposed convolution and is used to match the spatial dimension of the features
in low-resolution pathway with those learned in the high-resolution path. (b) The
building block of the network. In the block, the dimension of the feature map in an
inception module was maintained by setting the padding to 0, 1, 2 for 3× 3, 5× 5 &
7× 7 respectively.

Slice Extraction: The Network was trained using axial slices as they correspond
to the highest resolution. Various constituents of the lesion were clubbed to form
the lesion while air and brain class labels were determined using a threshold on
the volume Fig. 5 illustrates the slice of the brain with the aforementioned classes.

Training and Testing: The training & testing regime were similar to the ones
used for the 2-D Densely connected segmentation network.

CRF. To the smoothen the segmentation predicted by the models a fully con-
nected conditional random fields with Gaussian edge potentials as proposed by
Krähenbühl et al. [7] was utilized. The posterior probabilities generated by each
model in the ensemble were averaged to form the unary potentials for the CRF.
The CRF was implemented by using open source code from the pydenscrf1. The
1 pydensecrf: https://github.com/lucasb-eyer/pydensecrf.

https://github.com/lucasb-eyer/pydensecrf
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(a) (b) (c) (d) (e)

Fig. 5. Data for training the Air-Brain-Lesion network. (a) FLAIR, (b) T1, (c) T2, (d)
T1ce, (e) Modified Ground truth. In image (e), black, gray and white represent Air,
Brain and lesion respectively.

output obtained after smoothening using CRF and the output predicted from
air-brain-lesion model were multiplied to reduce false positives in the generated
segmentation mask.

Connected Components. False positives in the segmentation mask were fur-
ther reduced by performing class-wise 3-D connected component analysis. All
components within each class which composed more than 12,000 voxels were
retained while the rest were discarded.

3 Results

The performance of the network was tested on 3 different namely: held out test
data (n = 40), BraTS validation data (n = 66) & BraTS testing data (n = 191)
(Table 1).

3.1 Performance of the Segmentation Networks on the Held Out
Test Data

On the held out test data (n = 40), the performance of each of the network in the
segmentation ensemble is given in Table 2(a, b, c). Table 2(d) showcases the per-
formance on the held out test data post ensembling the networks. Comparing the
whole tumor, tumor core and active tumor core dice score it was observed that
ensembling of networks aided in reducing the variance and increasing the overall
performance of the network. Figure 6 illustrates the segmentation generated by
a trained network.

The post-processing which included CRFs & 3-D class-wise connected com-
ponents aid in reducing the false positives generated by the networks. Figure 7
illustrates the effect post-processing on segmentation. The contribution of the
various the components in the post processing pipeline (CRF, ABL Net, & Con-
nected Components) are illustrated in Table 2.
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Table 1. Performance of individual networks and ensemble on held out test data (n =
40). In the table WT, TC, AT stand for the whole tumor, tumor core & active tumor
respectively.

3-D Densely connected network
WT TC AT

Mean 0.88 0.78 0.72
Std 0.10 0.26 0.31

Median 0.92 0.92 0.86

2-D Densely connected network
WT TC AT

Mean 0.88 0.72 0.69
Std 0.11 0.30 0.28

Median 0.91 0.88 0.82

3-D Multi-Resolution network
WT TC AT

Mean 0.88 0.74 0.73
Std 0.21 0.26 0.32

Median 0.89 0.81 0.83

Ensemble of network
WT TC AT

Mean 0.89 0.78 0.78
Std 0.08 0.21 0.20

Median 0.92 0.89 0.86

Table 2. The contribution of all the components used in post processing pipeline. (CC:
3-D Connected Components)

No post-processing
WT TC AT

Mean 0.85 0.76 0.71
Std 0.10 0.18 0.29

Median 0.88 0.86 0.84

CRF post-processing
WT TC AT

Mean 0.86 0.77 0.73
Std 0.09 0.19 0.28

Median 0.89 0.85 0.84

CRF + ABL Network
WT TC AT

Mean 0.86 0.79 0.74
Std 0.12 0.19 0.28

Median 0.91 0.85 0.84

CRF + ABL + CC
WT TC AT

Mean 0.89 0.78 0.78
Std 0.08 0.19 0.28

Median 0.92 0.89 0.86

(a) (b) (c) (d) (e)

Fig. 6. (a) FLAIR, (b) T2, (c) T1c, (d) Prediction, (e) Segmentation. In images d and
e, Green, Yellow & Red represent Edema, Enhancing Tumor and Necrosis present in
the lesion. (Color figure online)
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(a) (b) (c) (d)

Fig. 7. (a) FLAIR, (b) Without Post-processing, (c) With Post-processing, (d) Ground
truth. In images b, c and d, Green, Yellow & Red represent Edema, Enhancing Tumor
and Necrosis present in the lesion. (Color figure online)

3.2 Performance on the BraTS Validation Data

On the BraTS validation data (n = 66), the performance of each of the networks
that form the ensemble is listed in Table 3 respectively. Similar to the observation
seen in the held out test data, it was observed that ensembling prediction from
multiple networks helped in achieving better segmentation results by lowering
variance in the predictions.

Table 3. Performance on validation data (n = 66)

3-D Densely connected network
WT TC AT

Mean 0.85 0.74 0.71
Std 0.11 0.22 0.28

Median 0.88 0.82 0.83

2-D Densely connected network
WT TC AT

Mean 0.87 0.73 0.71
Std 0.10 0.27 0.27

Median 0.90 0.86 0.82

3-D Multi-Resolution network
WT TC AT

Mean 0.85 0.73 0.71
Std 0.17 0.26 0.30

Median 0.90 0.83 0.85

Ensemble of network
WT TC AT

Mean 0.89 0.76 0.76
Std 0.07 0.23 0.25

Median 0.91 0.86 0.86

3.3 Performance on BraTS Test Data

The performance of the proposed scheme on the BraTS test data (n = 191) is
illustrated in Table 4. It was observed that the network achieved good segmen-
tation on unseen data.
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Table 4. Performance of the Ensemble of Segmentation on the test data (n = 191)

Whole tumor Tumor core Active tumor

Mean 0.83 0.72 0.69

Std 0.19 0.29 0.29

Median 0.90 0.87 0.80

4 Conclusion

We made use of an ensemble of convolutional neural networks for segmentation
of gliomas. From the experiments carried out it was observed that the ensem-
ble aids in reducing the variance associated in the prediction and also helped
in increasing quality of the segmentation generated. The false positives gener-
ated by the network were minimized by using multiplying the predictions with
network trained to delineate lesion from MR volumes. The segmentation was
further post-processed by utilizing CRF & 3-D connected component analysis.
On the BraTS 2018 validation data (n = 66), the network achieved a competi-
tive dice score of 0.89, 0.76 and 0.76 for the whole tumor, tumor core and active
tumor respectively. On the BraTS test data, the network used in the manuscript
achieved a mean whole tumor, tumor core and active tumor dice of 0.83, 0.72
and 0.69 respectively.
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Abstract. Thanks to the powerful representation learning ability, con-
volutional neural network has been an effective tool for the brain tumor
segmentation task. In this work, we design multiple deep architectures
of varied structures to learning contextual and attentive information,
then ensemble the predictions of these models to obtain more robust
segmentation results. In this way, the risk of overfitting in segmenta-
tion is reduced. Experimental results on validation dataset of BraTS
2018 challenge demonstrate that the proposed method can achieve good
performance with average Dice scores of 0.8136, 0.9095 and 0.8651 for
enhancing tumor, whole tumor and tumor core, respectively. The corre-
sponding scores for BraTS 2018 testing set are 0.7775, 0.8842 and 0.7960,
respectively, winning the third position in the BraTS 2018 competition
among 64 participating teams.

1 Introduction

Brain tumor is one of the most fatal cancers, which consists of uncontrolled,
unnatural growth and division of the cells in the brain tissue [1]. The most fre-
quent types of brain tumors in adults are gliomas that arise from glial cells and
infiltrating the surrounding tissues [2]. According to the malignant degree of
gliomas and their origin, these neoplasms can be categorized into Low Grade
Gliomas (LGG) and High Grade Gliomas (HGG) [2,3]. The former is slower-
growing and comes with a life expectancy of several years, while the latter is
more aggressive and infiltrative, having a shorter survival period and requiring
immediate treatment [2]. Therefore, segmenting brain tumor timely and auto-
matically would be of critical importance for assisting the doctors to improve
diagnosis, perform surgery and make treatment planning.

In recent years, convolutional neural networks (CNNs) have been widely
applied to automatic brain tumor segmentation tasks. Pereira et al. [15] and
Havaei et al. [13] respectively trained a CNN to predict the label of the central
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voxel only within a patch, which causes that they suffer from high computational
cost and time consumption during inference. To reduce the computational bur-
den, Kamnitsas et al. [5] propose an efficient model named DeepMedic that can
predict the labels of voxels within a patch simultaneously, in order to achieve
dense predictions. Recently, fully convolutional networks (FCNs) have achieved
promising results. Shen et al. [6] and Zhao et al. [11] allow end-to-end dense
training and testing for brain tumor segmentation at the slice level to improve
computational efficiency. With a large variety of CNN architectures proposed,
the performance of automatic brain tumor segmentation from Magnetic Reso-
nance Imaging (MRI) images has been improved greatly.

In this work, we construct multiple different CNN architectures and
approaches to ensemble their prediction results, in order to produce stable and
robust segmentation performance. We evaluate our approaches on the valida-
tion set of 2018 Brain Tumor Segmentation (BraTS) challenge, where we obtain
the good performance with average Dice scores of 0.8136, 0.9095 and 0.8651 for
enhancing tumor, whole tumor and tumor core, respectively. Correspondingly,
we achieve promising scores for BraTS 2018 testing set are 0.7775, 0.8842 and
0.7960, respectively.

2 Data

We use the dataset of 2018 Brain Tumor Segmentation challenge [2,4,7,8,21]
for experiments, which consists of the training set, validation set and testing
set. The training set contains 210 HGG and 75 LGG cases whose corresponding
manual segmentations are provided. As shown in Fig. 1, the provided manual
segmentations include four labels: 1 for necrotic (NCR) and the non-enhancing
(NET) tumor, 2 for edema (ED), 4 for enhancing tumor (ET), and 0 for every-
thing else, i.e. normal tissue and background (black padding). The validation set
and testing set contain 66 cases and 191 cases with unknow grade and hidden
segmentations, respectively. Each case has four MRI sequences that are named
T1, T1 contrast enhanced (T1ce), T2 and FLAIR, respectively. These datasets
are provided after their pre-processing, i.e. co-registered to the same anatom-
ical template, interpolated to the same resolution (1 mm3) and skull-stripped,
where dimensions of each MRI sequence are 240 × 240 × 155. Besides, the offi-
cial evaluation is calculated by merging the predicted labels into three regions:
whole tumor (1,2,4), tumor core (1,4) and enhancing tumor (4). The valuation
for validation set is conducted via an online system1.

3 Methods

3.1 Basic Networks

As is well known, brain tumor segmentation from MRI images is a very tough
and challenging task due to the severe class imbalance problem. Following [14],
1 https://ipp.cbica.upenn.edu/.

https://ipp.cbica.upenn.edu/
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Fig. 1. Example of images from the BRATS 2018 dataset. From left to right: Flair, T1,
T1ce, T2 and manual annotation overlaid on the Flair image: edema (green), necrosis
and non-enhancing (yellow), and enhancing (red). (Color figure online)

we decompose the multi-class brain tumor segmentation into three different but
related sub-tasks to deal with the class imbalance problem. (1) Coarse segmenta-
tion to detect whole tumor. In this sub-task, the region of whole tumor is located.
To reduce overfitting, we define the first task being the five-class segmentation
problem. (2) Refined segmentation for whole tumor and its intra-tumoral classes.
The above obtained coarse tumor mask is dilated by 5 voxels as the ROI for the
second task. In this sub-task, the precise classes for all voxels within the dilated
region are predicted. (3) Precise segmentation for enhancing tumor. We spe-
cially design the third sub-task to segment the enhancing tumor, due to its high
difficulty of segmentation.

Model Cascade. In view of the above three sub-tasks, it is probably easy to
train a CNN individually for each sub-task, which is the currently popular Model
Cascade (MC) strategy. We use a 3D variant of the FusionNet [10], as illustrated
in Fig. 2. The network architecture consists of an encoding path (upper half of
the network) to extract complex semantic features and a symmetric decoding
path (lower half of the network) to recover the same resolution as the input to
achieve voxel-to-voxel predictions. The network is constructed by four types of
basic building blocks, as shown in Fig. 2. In addition, the network has not only
the short shortcuts in residual blocks, but also three long skip connections to
merge the feature maps from the same level in the encoding path during decoding
by using a voxel-wise addition. We employ the identical network architecture for
each sub-task, except for the final convolutional classification layer. The number
of channels of last classification layer is equal to 5, 5 and 2 for the first, second
and third sub-tasks, respectively. Besides, size of input patches for the network
is 32 × 32 × 16 × 4, where the number 4 indicates the four MRI modalities.
During inference, we adopt overlap-tile strategy in [9]. Thus, we abandon the
prediction results of border region and only retain the predictions in the center
region (20 × 20 × 5). This trick is also used in the following models. Different
from [20] that is a typical example of model cascade strategy, we dilate the coarse
tumor mask to prevent tumor omitting in the second sub-task and adopt the
same 3D basic network architecture for each sub-task instead of sophisticated
operations that design different networks for different sub-tasks.
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Fig. 2. Network architecture used in each sub-task. The building blocks are represented
by colored cubes with numbers nearby being the number of feature maps. C equals to
5, 5, and 2 for the first, second, and third task, respectively. (Best viewed in color)
This figure is reproduced from [14].

One-Pass Multi-task Network. The above proposed model cascade approach
has obtained promising segmentation performance. To a certain extent, it allevi-
ates the problem of class imbalance. However, model cascade approach needs to
train a series of deep models individually for the three different sub-tasks, which
leads to large memory cost and system complexity during training and testing.
In addition, we have observed that the networks used for three sub-tasks are
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almost the same except for the training data and the classification layer. It is
obvious that the three sub-tasks are relative to each other.

Therefore, we employ the one-pass multi-task network (OM-Net) proposed in
[14], which is a multi-task learning framework that incorporates the three sub-
tasks into a end-to-end holistic network, to save a lot of parameters and exploit
the underlying relevance among the three sub-tasks. The OM-Net proposed in
[14] is described in Fig. 3, which is composed of the sharable parameters and task-
specific parameters. Specially, the shared backbone model refers to the network
layers outlined by the yellow dashed line in Fig. 2, while three respective branches
for different sub-tasks are designed after the shared parts.

Fig. 3. Architecture of OM-Net. Data-i, Feature-i, and Output-i denote training data,
feature, and classification layer for the i-th task, respectively. The shared backbone
model refers to the network layers outlined by the yellow dashed line in Fig. 2. This
figure is reproduced from [14].

In addition, inspired by the curriculum learning theory proposed by Bengio
et al. [12] that humans can learn a set of concepts much better when the concepts
to be learned are presented by gradually increasing the difficulty level, we adopt
the curriculum learning-based training strategy in [14] to train OM-Net more
effectively. The training strategy of our framework is to start training the network
on the first easiest sub-task, then gradually add the more difficult sub-tasks and
their corresponding training data to the model. This is a process from easy
to difficult, highly consistent with the thought of manual segmentation of the
tumor. Besides, the training data conforming to the sampling strategy of the
other sub-tasks can be transferred to achieve data sharing. Eventually, the OM-
Net is a single deep model to slove three sub-tasks simultaneously in one-pass.
It is also significantly smaller in the number of trainable parameters than model
cascade strategy and can be trained end-to-end using stochastic gradient descent
to achieve data sharing and parameters sharing in a holistic network.
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3.2 Extended Networks

In this section, we extend and improve the MC-baseline and OM-Net from four
aspects to further promote the performance. The four aspects are elaborated in
the following.

Deeper OM-Net. We deepen the OM-Net by appending a residual block (the
violet block in Fig. 2 right) after each existing residual block of OM-Net, which
is the easiest and most direct way to boost the performance.

Dense Connections. Inspired by [17], the basic 3D network of MC-baseline is
modified by adding a series of nested and dense skip connections to form a more
powerful architecture. The purpose of the re-designed skip connections is to reduce
the semantic gap between the feature maps of the encoder and decoder [17].

Attention Mechanisms. Attention mechanisms have been shown to improve
performance across a range of tasks, which is attributed to their ability to focus
on the more informative components and suppress less useful ones. Particularly,
“Squeeze-and-Excitation” (SE) block is proposed to adaptively perform channel-
wise feature recalibration by explicitly modelling interdependencies between
channels in [16], in order to boost the representational power of CNNs.

Fig. 4. The adopted “Squeeze-and-Excitation” (SE) block.

Inspired by it, we introduce SE blocks to OM-Net, in order to recalibrate the
feature maps and further improve the learning and representational properties
of OM-Net. The SE block is described in Fig. 4. Similar to [16], the SE block
focuses on channels to adaptively recalibrate channel-wise feature responses in
two steps, squeeze and excitation. It helps the network to increase the sensitivity
to informative features and suppress less useful ones.
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Multi-scale Contextual Information. To deal with the 3D medical scans,
we employ the above 3D CNNs that process small 3D patches. However, small
patches cause the network to lean the limited contextual information. It seems
necessary to introduce larger patches, in order to provide larger receptive fields
and more contextual information to the network. Therefore, inspried by [5],
we design a two parallel pathway architecture that processes two scale input
patches simultaneously. As shown in Fig. 5, we incorporate both local and larger
contextual information to the model, which not only extracts semantic features
at a higher resolution, but also considers larger contextual information from the
lower resolution level. It can provide rich information to discriminate voxels that
appear very similar when considering only local appearance, avoiding making
wrong predictions.

Fig. 5. The proposed network architecture to introduce multi-scale contextual infor-
mation.

Table 1. Mean values of Dice and Hausdorff95 measurements on BraTS 2018 validation
set (submission id DL-86-61).

Method Dice Hausdorff95

Enh. Whole Core Enh. Whole Core

MC-Net 0.7732 0.9006 0.8232 4.1647 4.4849 7.6216

OM-Net 0.7882 0.9034 0.8273 3.1003 6.5218 7.1974

MC-Net (Dense connections) 0.7768 0.9049 0.8358 3.3994 4.2390 6.8503

MC-Net (Multi-scale) 0.7751 0.9059 0.8181 2.8192 4.0085 6.3437

OM-Net (Attention) 0.7792 0.8986 0.8329 3.8949 6.1926 8.3459

Deeper OM-Net 0.7882 0.8991 0.8405 2.7649 8.0177 7.3671

Deeper OM-Net (Attention) 0.7925 0.8948 0.8333 2.8099 4.8093 6.7755

Ensembles 0.8137 0.9092 0.8530 2.7092 4.4519 7.1535

Ensembles + post-processing 0.8136 0.9095 0.8651 2.7162 4.1724 6.5445
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Table 2. Mean values of Sensitivity and Specificity measurements on BraTS 2018
validation set.

Method Sensitivity Specificity

Enh. Whole Core Enh. Whole Core

MC-Net 0.8082 0.9118 0.7971 0.9980 0.9943 0.9981

OM-Net 0.7953 0.9084 0.7883 0.9984 0.9948 0.9985

MC-Net (Dense connections) 0.8144 0.9127 0.8323 0.9979 0.9947 0.9973

MC-Net (Multi-scale) 0.8095 0.9065 0.7970 0.9980 0.9951 0.9981

OM-Net (Attention) 0.8245 0.9078 0.8103 0.9977 0.9943 0.9979

Deeper OM-Net 0.7962 0.9059 0.8176 0.9984 0.9945 0.9979

Deeper OM-Net (Attention) 0.7995 0.8972 0.8159 0.9983 0.9946 0.9975

Ensembles 0.8137 0.9148 0.8294 0.9983 0.9950 0.9981

Ensembles + post-processing 0.8135 0.9142 0.8683 0.9983 0.9951 0.9968

Table 3. The segmentation results of our proposed method on BraTS 2018 testing set.

Dice Hausdorff95

Enh. Whole Core Enh. Whole Core

Mean 0.7775 0.8842 0.7960 2.9366 5.4681 6.8773

StdDev 0.2533 0.1127 0.2593 4.6894 7.6479 10.1779

Median 0.8498 0.9183 0.9030 1.7321 3.1623 3.0000

25quantil 0.7596 0.8725 0.8062 1.4142 2.0000 1.7321

75quantil 0.8997 0.9437 0.9376 2.7337 5.3852 7.2798

3.3 Ensembles of the Above Multiple Models

Model ensembling is an effective method to improve performance, e.g. Kamnitsas
et al. [19] ensembled DeepMedic [5], 3D FCN [18], and 3D U-Net [9] into EMMA.
In this paper, we also adopt model ensembling to obtain more robust segmenta-
tion results. Above multiple models, including MC-Net, OM-Net and their vari-
ants are trained separately, and the predicted probabilities are averaged at testing
time. Additionally, a simple yet effective post-processing method [14] is adopted
to improve segmentation performance.

4 Experiments and Results

Pre-processing. We adopt the minimal pre-processing operation to the BraTS
2018 data. That is, each sequence is individually normalized by subtracting its
mean value and dividing by its standard deviation of the intensities within the
brain area in that sequence.
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Fig. 6. Example segmentation results on the validation set of BraTS 2018. From left
to right: Flair, T1ce, segmentation results using MC-Net only overlaid on Flair image,
and segmentation results using the proposed method overlaid on Flair image; edema
(green), necrosis and non-enhancing (blue), and enhancing (red). (Color figure online)

Segmentation Results. Table 1 presents the mean values of Dice and Haus-
dorff95 measurements of the different models on BraTS 2018 validation set,
meanwhile Table 2 presents the corresponding mean values of Sensitivity and
Specificity measurements. We can see that the OM-Net is superior to MC-Net,
despite the fewer training parameters of OM-Net. Besides, the extended networks
including MC-Net (Dense connections), MC-Net (Multi-scale), OM-Net (Atten-
tion), Deeper OM-Net and Deeper OM-Net (Attention) improve the segmenta-
tion performance to some extent. Finally, it shows that the proposed method
achieves promising performance with average Dice scores of 0.8136, 0.9095 and
0.8651 for enhancing tumor, whole tumor and tumor core, respectively. In addi-
tion, we also provide qualitative comparisons in Fig. 6. From Fig. 6, we can see
that model ensembling is much better and the effectiveness of the proposed
method is justified.

Table 3 presents the segmentation results of our proposed method on BraTS
2018 testing set. It shows that the proposed method yields excellent performance,
winning the third position in the BraTS 2018 competition.

5 Conclusion

In this work, we employ the OM-Net to obtain strong basic results, and then
extend and improve MC-baseline and OM-Net from multiple aspects to further
promote the performance. Eventually, the predictions of these models are ensem-
bled to produce robust performance for brain tumor segmentation. The proposed
method yields promising results, winning third place in the final testing stage of
the BraTS 2018 challenge.
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Abstract. Glioblastoma is a high-grade invasive astrocytoma tumor. The
highly invasive nature makes timely detection and characterization of the tumor
critical for the survivability prediction of patients. This work proposes MRI- and
clinical information-based automated pipeline that implements various state-of-
the-art image processing, machine learning, and deep learning techniques to
obtain robust tumor segmentation and patient survival estimation. We use 163
cases from the training dataset, and 28 cases from the validation dataset pro-
vided by the BraTS 2018 challenge for the evaluation of our model. We achieve
an accuracy of 0.679 using the validation dataset and that of 0.519 for the test
dataset.

1 Introduction

High-grade glioblastoma (HGG) or glioblastoma represents tumors arising from the
gluey or supportive tissue of the brain. HGG is considered the most aggressive type of
brain tumor. According to the American Brain Tumor Association (ABTA) [1] HGGs
represent 74.6% of all malignant tumors and 24.7% of all primary brain tumors. World
Health Organization (WHO) categorize HGGs as stage IV brain cancer [2]. Typically,
the survival duration of patients with HGG tumor is less than two years [3, 4].
Therefore, accurate and timely detection of HGG tumor is essential for devising an
appropriate treatment plan that may improve patient survival duration.

Recent works [5–10] have focused on developing automated survival prediction
techniques for patients with HGG tumor. Different studies analyze tumor heterogeneity
using different types of imaging [11] such as Magnetic Resonance Imaging (MRI) [12,
13]. This suggests MR as a potential non-invasive imaging biomarker for Glioblastoma
diagnostic, prognostic and survival prediction. Jain et al. [14] extract morphological
imaging features represented by Visually Accessible Rembrandt Images (VASRAI)
[15] from the non-enhancing region of GBM and then correlate these features to the
relative cerebral blood volume of a non-enhancing region and non-enhancing region
crossing the midline. Gutman et al. [16] utilize four VASARI imaging features that
describe the size of the contrast-enhanced, necrosis, non-enhance, edema, and the size
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of the whole tumor. Then these imaging features are associated with genetic mutation,
survival prediction and Verhaak subtypes [17]. Nicolasjilwan et al. [18] combine
clinical factors, VASARI imaging features, and genomics in a stepwise multivariate
Cox model to predict overall survival time. Prasanna et al. [19] extract radiomic texture
features that characterize three tumor regions; enhancing tumor, peritumoral brain
zone, and necrosis from MR images. These features are assessed to overall survival
prediction. Itakura et al. [20] utilize quantitative MRI features that describe tumor
histogram statistics, texture, edge sharpness, compactness, and roughness. The authors
cluster the features into three MRI phenotypic imaging subtypes; pre-multifocal,
spherical, and rim-enhancing tumor. The three distinct subtypes are then correlated
with overall survival and associated with molecular pathways.

Our proposed deep learning and machine learning based survival prediction tech-
nique have shown the best performance in the BraTS 2017 survival prediction chal-
lenge on the validation and test dataset, respectively [9]. This work proposes a
sophisticated computational modeling-based survival prediction method. Specifically,
we approach the survival prediction task as a two-step process, brain tumor segmen-
tation followed by survival prediction, considering the segmentation output as an input
to the second step. The brain tumor segmentation task is performed by utilizing two
state-of-the-art convolutional neural networks (CNN) models, U-Net and fully con-
volutional neural network (FCN). The outcome of these two models is fused together to
achieve the final segmentation output. This segmentation output along with the original
MRI volumes are considered as input to the survival prediction step. Several radiomics
features such as texture, topological, histogram etc. are extracted from the raw MRI
sequences and the segmented tumor volume. Furthermore, a state-of-the-art 3D CNN
architecture is utilized to extract additional features useful for the survival prediction
task. These features are then processed using a gradient boosting-based regression
technique known as extended gradient boosting (XGBoost) to obtain the survival
estimation of patients.

2 Dataset

In this study, we use MR images of 163 high-grade GBM patients from BtaTS18
training dataset [21–25]. The dataset provides the ground truth segmentation of tumor
tissues which comprises of enhancing tumor (ET), edema (ED), and the necrosis and
non-enhancing tumor (NCR/NET). The training dataset provides age and overall sur-
vival (in days) data. The available scans of the MRI are native (T1), post-contrast T1-
weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery
(FLAIR) volumes. The dataset is co-registered, re-sampled to 1 mm3 and skull-
stripped. In addition, for overall survival validation proposes we use the 28 cases of
BraTS18 validation dataset.
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3 Methodology

3.1 Brain Tumor Segmentation

This work utilizes two state-of-the-art CNN architectures, U-Net and fully convolu-
tional neural network (FCN) to perform the brain tumor segmentation task. The fol-
lowing two sub-sections provide a very brief outline of these two models.

Brain Tumor Segmentation Using Deep CNNs. This work utilizes a CNN based
U-Net model [26, 27] to perform the brain tumor segmentation task. Unlike patch
based CNN segmentation pipeline where the model only sees a localized region of the
brain, the U-Net based segmentation model captures the global information from a
different region of the brain tissues which is essential to achieve robust segmentation
performance. Moreover, U-Net based model allows achieving an end-to-end segmen-
tation framework rather than a pixel-wise classification technique. The U-Net archi-
tecture utilized in this work is implemented following [26]. Rather than using regular
cross-entropy based loss function, we utilize a soft dice similarity coefficient
(DSC) metric based loss function to train the U-Net model [28]. The U-Net model is
trained using mini-batch gradient descent (GD) technique which minimizes the soft
dice cost function. This work also uses a fully convolutional network (FCNs) [29, 30]
for tumor segmentation. We adapt VGG-11 [31] as a pre-trained model. The overall
FCN architecture contains an encode and a decode stage. The encoding stage contains
convolution and max-pooling steps whereas the decoding stage contains a deconvo-
lution step to obtain the same output size as the input. The final segmentation output is
achieved by fusing the outcomes obtained from the above mentioned CNN based tumor
segmentation pipelines as shown in Fig. 1.

Fig. 1. Brain tumor segmentation pipeline using U-Net and FCN
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3.2 Survival Prediction

The proposed survival prediction pipeline essentially involves three stages, (1) feature
extraction stage, (2) feature selection stage, and (3) feature classification/regression
stage.

Feature Extraction. Overall, approximately 31 thousand features representing tex-
ture, volume, area, and Euler characteristics are extracted from the tumor and the sub-
regions (edema, enhancing tumor, and tumor core). Each feature type is selected to
emphasize different characteristics of the tumor that may be relevant for survival
prediction. For instance, texture features define the heterogeneity of the different tumor
tissues, and Volumetric and Euler characteristic features define tumor shape.

We extract forty-one representative features [32] from three raw MRI sequences,
and from eight texture representations of the tumor volume that includes several Texton
filters [33], and fractal characterizations using algorithms such as PTPSA [34], mBm
[35], and Holder exponent [36]. The features obtained from these representations
include histograms, co-occurrence matrix, grey-tone difference matrix, and several
other statistical measures. Furthermore, histogram-based features are extracted from the
different modalities of different histogram graphs of the tumor tissue regions (edema,
enhancing tumor, and necrosis). We also extract many representative volumetric fea-
tures from the different tumor tissues with respect to the brain and whole tumor regions.
In addition, we compute the Euler characteristics of the whole tumor, edema,
enhancing and necrosis, for each slice as feature vectors. Euler characteristic [37]
identifies the shape of a tumor by computing tumor vertices, edges, and faces. Com-
bining feature vectors from all the above-mentioned methods constitute a total 31,000
feature points for the survival prediction task.

Feature Selection. We perform recursive feature selection on the Euler features alone,
another recursive feature selection on the other features (texture, volumetric, histogram-
graph based).

Feature Classification and Regression. Extreme Gradient Boosting (XGBoost) [38]
is a tree boosting supervised machine learning technique that is highly effective.
XGBoost is widely used in classification and regression tasks. In our study, XGBoost is

Fig. 2. Survival prediction pipeline
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utilized for classification and regression overall survival prediction on the selected
features. The trained models are tuned to their optimized hyper-parameters when a
tuned grid (search grid) is created by the different combination of the hyper-parameters.
The complete pipeline for classification and regression overall survival is illustrated in
Fig. 2.

4 Experimental Results

Following the proposed pipeline in Fig. 1, we first perform the FCN and U-Net fused
tumor segmentation task. Figure 3 shows an example from the BraTS 2018 training
dataset of the fused segmentation outcome of FCN and U-Net. We perform

(a) (b) 

(c) (d) 

(e) (f)

Fig. 3. Example input from training dataset and segmentation outcomes: (a) T1Gd sequence,
(b) FLAIR sequence, (c) the segmentation outcome of FCN, (d) the segmentation outcome of
U-Net, (e) ground truth (f) fused segmentation.
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leave-one-out cross-validation analysis on the BraTS 2018 training dataset using the
proposed survival prediction pipeline. We evaluate the performance of our proposed
method using the root mean square error (RMSE), and the classification accuracy for a
three-class setting defined as follows: (1) long – more than 15 months, (2) Medium –

between 10 to 15 months, (3) short – less than 10 months. The best model is picked
from the analysis of training data to be used to process the validation dataset of the
BraTS 2018 competition. The ground truth is considered for the segmented tumor in
the survival analysis of the training dataset, while the segmented tumor obtained in
stage one of the proposed pipeline is used as input in the evaluation of the validation
dataset. The leave-one-out cross-validation RMSE of the training dataset is 391.25, and
the three-class leave-one-out cross-validated survival classification accuracy is 0.73.
Table 1 shows the online evaluation results we achieve with the BraTS18 validation
dataset and the test dataset.

5 Conclusions

This work proposes a robust automated glioblastoma survival prediction using state-of-
the-art computational modeling techniques. The survival prediction task is performed
in two steps: tumor segmentation and survival prediction. A combination of hand-
crafted and learned features are used in a regression technique to obtain the final
survival prediction output. The performance of the proposed pipeline is evaluated using
BraTS 2018 challenge training and validation datasets. Our results show a leave-one-
out cross-validated classification accuracy of 0.679 for the validation dataset and that of
0.519 for the test dataset.
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