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Abstract. Nuclei segmentation plays an import role in histopathology images
analysis. Deep learning approaches have shown its strength for histopathology
images processing in various studies. In this paper, we proposed a novel deep
learning framework for automatic nuclei segmentation. The framework adopts
the Mask R-CNN as backbone and employs structure-preserving color nor-
malization (SPCN) and watershed for pre- and post-processing. The proposed
framework achieved a Dice score of 90.46% on the validation set, which
demonstrates its competing segmentation performance.
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1 Introduction

Nuclei morphology plays an import role in identifying aberrant phenotypes, which
needs to detect and segment all the nuclear in hematoxylin and eosin (H&E) stained
histology images. The features and distribution of nucleus can provide direct and
reliable information for the diagnosis of cancer. The main challenges of nuclei seg-
mentation are: (i) wide variation of cell appearance, such as color, shape, and texture;
(i) weak/missing cell boundaries; (iii) crowding and overlapping cells. With the
development of deep learning technique, it is worthwhile to design and implement
more accurate and efficient algorithms for nuclei segmentation. In [1], Bengtsson et al.
proposed a seeded watershed transform to incorporate intensity, gradient, connectivity,
and shape information for nucleus segmentation. Classical techniques are most pro-
cedural and require a large number of free parameters, Ronneberger et al. pretented the
U-net, a novel FCN based network architecture, for biomedical image segmentation [2]
and won the Grand Challenge for Computer-Automated Detection of Caries in
Bitewing Radiography at ISBI 2015. In [3], Cui et al. designed a deep learning
algorithm for one-step contour aware nuclei segmentation. They introduced a nucleus-
boundary model to predict nuclei and boundaries simultaneously. Khoshdeli et al. [4]
integrated boundary- and region-based information to distinguish touching or over-
lapping nuclei. They labeled foreground (nuclei), background and boundary pixels, to
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train region- and boundary-based models, respectively. Then they trained another
convolutional neural network to fuse the information from the two models to get the
final result.

In this work, we propose a deep learning based framework for nuclei segmentation
of Glioma whole slide tissue images. The main contributions of this work are listed in
the following:

(1) We adopt structure-pre-serving color normalization (SPCN) [5] for sparse stain
separation and color normalization, which can significantly boost the performance
of deep learning framwork.

(2) We develop an effective framework based on Mask R-CNN to address the
problem of overlapping nuclus segmentating, which achieves competitive results
on MICCAI 2018 competition: Segmentation of Nuclei in Images.

2 Method

2.1 Dataset

The Digital Pathology dataset in [6] is adopted in this study. The dataset contains 15
pieces of about 668 x 583 annotated H&E stain images extracted from a set of
Glioblastoma and Lower Grade Glioma whole slide tissue images. We separate the
dataset to training and validation sets according to the ratio of 80:20. As the dataset is
too small to train a deep learning network directly, two extra datasets, i.e. MICCAI
2017 segmentation challenge (MSC) [7] and 2018 Data Science Bowl (DSB) [8], are
used for data augmentation. The MSC dataset includes 32 annotated H&E stain images
from four categories, i.e. hnsc, lung, lgg and gbm. Each category has 8 images.
The DSB dataset contains 664 fluorescent stain and H&E stain images. To alleviate
color variation, we remove the fluorescent stain images in DSB dataset, which results in
a dataset with 108 images.

2.2 Pre-processing

To overcome the color variation, structure-pre-serving color normalization (SPCN) [5]
is adopted in our framework. For a source image S and a target image T, their color
appearances and stain density maps is first estimated by factorizing V; into W H,, and
V, into W,H, using sparse non-negative matrix factorization. Then, combined with
color appearance of the target W, a scaled version of the density map of source Hy is
calculated to generate the normalized source image, which can be described as follows:

norm ( : Hv(jv:) . .
Hs (]7:):I{RM7(]~,:)HZRM(I’:)7J:1""7’-'

where V, W, H repensent the observation matrix, stain color appearance matrix and
stain density map matrix of source image s, respectively. H* = RM(H;) € R™!,i =
(s,7) and RM(+) compute robust pseudo maximum of each row vector at 99%.
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In our experiment, we noticed that the E stain image contains tissue information,
while the cell nucleus information is mainly contained in the H stain images. Therefore,
we use the H stain images for network training. Some separated H&E stain images are
presented in Fig. 1.
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Fig. 1. Some examples of sparse stain separation for histological images. The first column is the
original histological images, the second and third column are the E stain, H stain generated by
SNMF, respectively. The last column is the H stain image after color normalization.

2.3 The Proposed Segmentation Framework

The flowchat of our segmentation framework is shown in Fig. 2. The Mask R-CNN [9]
is employed as the backbone of our model. First, SPCN [5] is adopted to process
original images. Each nuclei is separated from ground truth for Rol extraction. We slide
a 512 x 512 window to crop patches from the whole slices and train the Mask R-CNN.
We employ resnet101 as the feature extraction network. The watershed algorithm is
employed as the post-processing to separate the joint cells. ImageNet [10] and COCO
[11] datasets are adopted for network pre-training.

Output

Ground truth Rol extraction

Fig. 2. The framework of our segmentation model.
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Mask R-CNN. Figure 3 shows the Mask R-CNN [9] framework for nuclei segmen-
tation, which has multiple architectures, i.e. (i) the convolutional backbone architecture
for feature extraction, (ii) the network head for bounding-box recognition and mask
prediction. The RolAlign layer is developed to address misalignments between the Rol
and the extracted features caused by RoIPool [12], which is simple but useful to predict
pixel-level masks.

Fig. 3. The Mask R-CNN framework for nuclei segmentation.

2.4 Post-processing

Combining the information of detection, classification and bounding-box regression,
MaskR-CNN [9] can efficiently segment each nuclei in images. However, not all of the
overlapping nuclei are accurately separated. An example is shown in Fig. 4. Therefore,
to address the problem, the Marker-based watershed [13] is involved in our framework.

Given two nuclei S and G, their overlapping ratio P; :% and P, = (—G), where O

f}:J'! /ﬂv—w 4

Overlapping nuclei
Segmentation

Fig. 4. An example of overlapping nuclei segmentation.
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represents the overlapping area of S and G, are calculated to decide the overlapping
area of each nuclei. The watershed post-processing result is shown in Fig. 5 (Better
seen in color).
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(c)
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Fig. 5. Marker-based watershed post-processing. (a) is the original input mask; (b) is the marker
from the minima computed from the distance transform of the binarized mask; (c) is the marker
after binary_openning; (d) is the final output.

2.5 Implementation

The proposed framework is implemented using Keras toolbox, and trained with a mini-
batch size of 64 on four GPUs (GeForce GTX TITAN X, 12 GB RAM). The initial
learning rate is set to 0.0001. ‘Adam’ [14] is used to iteratively update neural network
weights based on training data.

3 Experimental Results

3.1 Evaluation Criterion

The Dice score, a measure for comparison of binary segmentations S and G, is
introduced to evaluate the performances on the validation set. It can be expressed in
terms of statistical measures as:

S NG| 20

D= =
|S|+‘G| 20Tp+9FP+9pN

where Orp is the number of true positives, Opp/0py are the numbers of false
positives/false negatives.
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3.2 Results

We first test the performance of our network trained using different training data. The
dice scores on validation set trained with different datasets are summarized in Table 1.
MSC and DSB represent the dataset from the MICCAI 2017 segmentation challenge
[7] and the 2018 Data Science Bowl [8], respectively. Fixed DSB is the refined data
after deleting fluorescent stain images from DSB. Compared with the network trained
using the original Digital Pathology dataset [6], the network trained with MSC
improves the dice score from 79.65% to 81.32%. While similar improvement was
achieved for fixed DSB, the DSB actually decrease the dice score, which proves the
necessarity to clean fluorescent stain images in DSB. Trained with the combination of
original dataset, MSC and fixed DSB, the Mask R-CNN achieves the highest dice
score, i.e. 85.01%.

Table 1. Dice score for different training data (%).

Training data Dice score
Digital Pathology 80.16
MSC 81.32
DSB 80.09
fixed DSB 82.15
Digital Pathology + MSC + fixed DSB | 85.01

Once the training dataset is fixed, we now test the performance of the Mask R-
CNN, pretrained with different dataset and the effect of preprocessing and postpro-
cessing. As listed in Table 2, the model pre-trained on COCO dataset performances
better than that pre-trained on ImageNet dataset, i.e. a 1.44% dice score improvement
was recorded. Furthermore, SPCN [5] and Watershed [13] improve the Dice score on
validation set by 1.04% and 0.62%, respectively. Combined with SPCN [5] and
Watershed [13], Mask R-CNN achieves the highest dice score with 90.46%.

Table 2. Dice score for different processing (%).

Model Pre-training on | Dice score (%)
Mask R-CNN ImageNet 86.99
Mask R-CNN COCO 88.43
Mask R-CNN + SPCN COCO 89.47
Mask R-CNN + Watershed COCO 89.05
Mask R-CNN + SPCN + Watershed | COCO 90.46
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Fig. 6. Qualitative segmentation result on the data set. (a) The original input image
(b) Visualizations of the ground truth (c) Visualizations of our model.

To visually assess our segmentation results, we overlapped the segmentation results
and ground truths back to original images, as shown in Fig. 6.

CPM Competition Result. We achieved a competitive dice score of 86.10% on the
MICCAI 2018 CPM competition testing set, while the highest score is 87.00%. Table 3
listed the Top-5 results on the leader-board.
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Table 3. Dice scores for Top 5 (%).

Model Dice score (%)
Top 1 87.00
Top 2 86.80
Top 3 86.20
Top 4 (ours) | 86.10
Top 5 84.80

4 Conclusions

Diversity of phenotypes and overlapping nuclei are the two intrinsic challenges for
nuclear segmentation in H&E stained images. In this paper, we proposed a Mask R-
CNN based deep learning framework for nuclei segmentation. The overall framework
consists of color normalization using SPCN [5], features extraction, and Watershed
[13] postprocessing. The experimental results show that SPCN [5] and Watershed [13]
can significantly improve segmentation performance, and our framework has strong
strength in nuclei segmentation.
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