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Abstract. Imaging biomarkers in neuro-oncology are used for diagnosis,
prognosis and treatment response monitoring. Magnetic resonance imaging is
typically used throughout the patient pathway because routine structural imag-
ing provides detailed anatomical and pathological information and advanced
techniques provide additional physiological detail.
Following image feature extraction, machine learning allows accurate clas-

sification in a variety of scenarios. Machine learning also enables image feature
extraction de novo although the low prevalence of brain tumours makes such
approaches challenging.
Much research is applied to determining molecular profiles, histological

tumour grade and prognosis at the time that patients first present with a brain
tumour. Following treatment, differentiating a treatment response from a post-
treatment related effect is clinically important and also an area of study. Most of
the evidence is low level having been obtained retrospectively and in single
centres.
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1 Introduction

1.1 Imaging Biomarkers

A biomarker can be defined as a characteristic that is measured as an indicator of
normal biological processes, pathogenic processes, or responses to an exposure or
intervention, including therapeutic interventions [1]. Molecular, histologic, imaging, or
physiologic characteristics are types of biomarkers. In neuro-oncology, imaging
biomarkers are used for diagnosis, prognosis and treatment response monitoring.

Magnetic resonance imaging is typically used throughout the patient pathway
because routine structural imaging provides detailed anatomical and pathological
information and advanced techniques provide additional physiological detail. Quali-
tative analysis of a new intracranial mass aides diagnosis and in routine clinical practice
can determine whether or not to proceed to confirmatory biopsy or resection. For
example, with some basic demographic information such as the age of the patient and
with some basic clinical information, such as knowledge that the mass was found
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incidentally whilst imaging for an unrelated condition, the qualitative routine structural
imaging features of a grade 1 meningioma allow diagnosis with a high positive pre-
dictive value without the need for confirmatory biopsy. Advanced techniques allow
quantitative analysis of masses which can also change management. For example,
cerebral blood volume values obtained using dynamic susceptibility-weighted imaging
within an area of tumour contrast enhancement, or 1H-magetic resonance spectroscopic
ratios acquired from a tumour, may help determine whether a mass is of high histo-
logical grade (grade III or IV) in certain scenarios.

Some image analysis recommendations, which determine treatment response of
high histological grade gliomas, have become common in the research setting and rely
on simple linear metrics of simple image features, namely the product of the maximal
perpendicular cross-sectional dimensions of contrast enhancing tumour [2, 3].

Unlike the above biomarkers where simple imaging features are apparent to the
reporting clinician, much image analysis research aims to extract underlying infor-
mation from the imaging dataset to develop biomarkers that may not be readily visible.
Machine learning can be applied to different phases of image analysis research which
sequentially consists of pre-processing images, feature estimation (quantifying or
characterizing the image), feature selection (remove noise and random error in the
underlying data), classification (decision or discriminant analysis) and evaluation [4].

1.2 Clinical Validity

Evaluation in image analysis research initially consists of analytical validation, where
accuracy and reliability of the biomarker are assessed [5]. Accuracy determines how
often a test is correct in a given population (the number of true positives and true
negatives divided by the number of overall tests). Clinical validation is the testing of
biomarker performance in a clinical trial. Biomarkers in neuro-oncology may not be
rigorously proven to be analytically or clinically valid [5]. Validation instead may
attempt to use a common biomarker thereby reducing the clinical validity. For example,
an attempt to validate a new imaging biomarker for treatment response monitoring may
involve comparing it to a common biomarker for treatment response, such as the
product of the maximal perpendicular cross-sectional dimensions of contrast enhancing
tumour. However, the common biomarker itself may not be rigorously proven to be
clinically valid.

This update describes several illustrative research studies with a variety of designs
aimed at developing imaging biomarkers for diagnosis, prognosis and treatment
response monitoring using machine learning. Different machine learning strategies
used in classification in particular, as well as feature estimation and selection, are
demonstrated. The extent of analytical and clinical validation is highlighted. As with
the illustrative studies described here, most research studies pertaining to machine
learning and neuro-oncology are pioneering but the level of evidence is low [6].
Afterall, most studies are retrospective and performed in single centres.
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2 Diagnostic Biomarkers

2.1 Pre-diagnostic Biomarkers

Pre-diagnostic or risk or susceptibility biomarkers are typically clinical or molecular
and occur in the absence of overt neuro-oncological disease. An example could be the
discovery of a patient with Li-Fraumeni syndrome. This is a hereditary cancer syn-
drome due to mutations in the tumour suppressor gene p53 where patients have a
susceptibility for the development of glioma. Other examples include DNA repair gene
polymorphisms, single-nucleotide polymorphisms and a history of ionizing radiation
[5]. Imaging has had a negligible contribution to neuro-oncological pre-diagnosis.

2.2 Diagnostic Biomarkers

Diagnostic biomarkers are used to detect or confirm the presence of a disease or a
subtype of the disease [1]. Both histology and molecular features are now frequently
combined and 1p/19q chromosome arm co-deletion status and isocitrate dehydrogenase
(IDH) mutation status are routinely acquired after biopsy in accordance with the 2016
World Health Organization Classification of Tumors of the Central Nervous System
[7]. There has been much research using machine learning to extract molecular
information from imaging, known as radiomics. The results have been promising but
prospective clinical validation is required [5].

Example 1. The aim of this retrospective study was to use a machine-learning algo-
rithm to generate a model predictive of IDH mutant status in high-grade gliomas based
on clinical variables and multimodal features extracted from pre-operative routine MRI
[8]. True IDH mutant status was determined following biopsy using a combination of
immunohistochemistry, spectrometry and sequencing. The authors suggest that
knowing the pre-operative IDH mutant status might counter the limited sensitivity of
immunohistochemistry and might influence the extent of tumour resection, although
there is limited evidence for these assertions. Pre- and post-contrast T1-weighted, T2-
weighted, and apparent diffusion coefficient map images were obtained. Whole tumour,
enhancing and non-enhancing tumour volumes as well as a tumour border region were
segmented. Subregions delimited by apparent diffusion coefficient thresholds within the
three volumes were also segmented. Imaging descriptors including location, first and
second order (textural) statistics gave 2970 extracted features. Feature selection was
performed using area under the receiving-operator characteristic curve (AUC) threshold
and correlation. The remaining 386 features were used to build a model predictive of
IDH mutant status by applying random forest to a 90 patient training dataset. The tree
depth was set to 64 with a 4096 tree upper bound limit and bootstrapping applied. Ten-
fold cross validation was used. This gave 86% accuracy with an AUC of 0.88. The
model was tested on a 30 patient in test dataset giving 89% accuracy and 0.92 AUC.

Heterogeneity metrics associated with ADC-delineated segmentation were the
imaging features that contributed most in predicting IDH mutant status. Despite the
multiple complex imaging features such as these, patient age gave the highest pre-
dictive value of IDH mutant status demonstrating the importance of including simple,
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accessible information as features in radiomic analyses. Unfortunately, other simple
data such as Karnofsky Performance Status, which is known to be an important co-
variate in multivariate analyses of glioma survival, was not included. Nonetheless, the
overall approach shows that machine learning allows combinations of features to be
combined to give higher accuracy than single features alone including age.

A strength of the study is that routine imaging alone was used which makes
translation to the clinic more feasible than if advanced imaging algorithms were also
included. This is due to a frequent lack of standardization in many advanced imaging
algorithms.

Common to most studies of diagnostic biomarkers, a limitation is that the findings
relate to a single institution therefore the findings cannot be generalized elsewhere.
Secondary high grade glioma were excluded, which presumably relates to exclusion of
low grade gliomas that were followed up and then transformed. It is also noted that
only enhancing tumours were included. Within the institution, the model can only be
used within these constraints.

Example 2. In a similar retrospective study, a machine-learning algorithm was also
applied to multimodal features extracted from pre-operative routine MRI to generate a
model predictive of IDH mutant status (84 patients) [9]. In this example, grade II and
III gliomas were studied and 1p/19q chromosome arm co-deletion status (67 patients)
was also predicted as was grade (84 patients). Pre- and post-contrast T1-weighted, T2-
weighted/FLAIR images were obtained from The Cancer Genome Atlas (TCGA)/The
Cancer Imaging Archive (TCIA) dataset. Imaging descriptors with similarities to the
previous study such as location, derived from Visually Accessible Rembrandt Images
(VASARI), as well as second order statistics were determined.

Second order (textural) statistics and VASARI features were independently applied
to raw images that had undergone a variety of manipulations such as down-sampling or
grey-scale thresholding, using different sequences to give 3360 extracted features.
Feature selection was performed using logistic regression and bootstrapping was per-
formed to maximize the area under the receiving-operator characteristic curve giving
models with <10 features. Using this methodology alone, second order statistic models
performed better than VASARI models predicting IDH1 mutation status, 1p/19q co-
deletion status and histological grade with AUCs of 0.86, 0.96, and 0.86, respec-
tively. Random forest using 500 trees was then applied to combinations of clinical
features and the two models of selected imaging features. IDH mutation status, 1p/19q
co-deletion and histological grade were predicted with AUCs of 0.86, 0.89 and 0.78.
Overall, texture played a dominant role in prediction. It is noteworthy that prediction of
1p/19q co-deletion status and grade was more accurate with logistic regression and
bootstrapping methodology alone than when used as an input for random forest.

Analytical validation with a separate test dataset is required to improve analytical
validity and make the findings more meaningful. However, even with further analytical
validation the findings are unlikely to be translatable to the clinic as the fundamental
constraint for clinical validation is that there was a priori knowledge that there were no
grade IV gliomas in the dataset.

Example 3. In this small retrospective study a voxel-based unsupervised clustering
method used a batch-learning self-organizing map (SOM) followed by k-means to
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determine regional histological grade from pre-operative routine MRI [10]. SOM is a
neural network which can simplify features and remove outliers. k-means can identify
features with similar patterns. Pre- and post-contrast T1-weighted and T2-
weighted/FLAIR images from 36 patients with grade II-IV gliomas were processed
and 161,157 extracted features underwent this two-level clustering to give clustered
image maps. Segmented clustered image map regions corresponding to enhancing
tumour tissue, non-enhancing tumour tissue, and oedematous tissue were described as
class ratios which were used as inputs for supervised analysis. Classification was by a
linear kernel support vector machine (SVM) using leave-one-out cross validation to
distinguish low and high grade gliomas. The clustered image map with the optimal
number of cluster classes gave an accuracy of 0.86 with 0.93 AUC. It was noted that a
phenotype for high grade gliomas included high intensity of post-contrast T1-weighted
and FLAIR images in contrast enhancing regions whereas a low grade phenotype
showed high intensity of T2 images in these regions. Information from contrast
enhancing regions alone made a large contribution to grade prediction with an accuracy
of 0.82.

The method was applied prospectively to 4 patients with analysis of targeted biopsy
tissue from representative classes which gave some limited evidence that the clusters
gave meaningful information. It is noteworthy that no clinical parameters were used.
Although this is a single centre study with a small number of patients, and without
robust clinical validation, the approach to diagnostic biomarker development is an
exemplar for how to minimise a priori knowledge.

3 Monitoring Biomarkers

Monitoring biomarkers are measured serially and may detect change in extent of
disease, provide evidence of treatment exposure or assess safety [1]. There is an
overlap with safety biomarkers which specifically determine any treatment toxicity.
Monitoring blood or cerebral spinal fluid for circulating tumor cells, exosomes, and
microRNAs shows promise [5]. However, imaging is particularly useful as it is non-
invasive and captures the entire tumour volume and adjacent tissues and has led to
recommendations to determine treatment response in trials [2, 3]. Clinical validation is
typically not proven. Common biomarkers are frequently used in an attempt to indi-
rectly validate the monitoring biomarker under development.

Example 1. The aim of this small glioblastoma study was to use a machine-learning
algorithm to differentiate progression from pseudoprogression, at the earliest time
point when an enlarging MRI-enhancing lesion is seen, using T2-weighted images
alone [11]. Unsupervised feature estimation was performed using principal component
analysis to investigate topological descriptors of image heterogeneity called Minkowski
functionals. After confounders were identified (MRI field strength) and sensitivity to
field strength demonstrated, a supervised analysis was performed. Feature selection
reduced Minkowski functional, first order statistical and clinical features from 32 to 7.
A radial basis function kernel support vector machine gave an accuracy of 0.88 in a
retrospective training dataset of 17 patients and 0.86 in a prospective test dataset of 7
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patients. Although not apparent to the reporting radiologist, the T2-weighted hyper-
intensity phenotype of those patients with progression was heterogeneous, large and
frond-like when compared to those with pseudoprogression. The pseudoprogression
phenotype on T2-weighted images was shown to be a distinct entity and different from
vasogenic oedema and radiation necrosis.

Additional analytical validation was performed firstly in the form of reliability
testing which showed that a different operator performing segmentation achieved 100%
classification concordance. Secondly, the same results using a different software
package and a different operator were also obtained. Thirdly, a different feature
selection method (random forest) and classifier (lasso) were used and also gave the
same accuracy with 6 similar selected features.

A strength of the study is that T2-weighted images alone were used increasing the
chance of translation. However, the study was performed in a single centre and, as the
authors point out, the biomarker requires clinical validation in a larger multicentre test
dataset.

Example 2. The aim of this small high grade glioma study was to use a machine-
learning algorithm to differentiate progression from pseudoprogression at the earliest
time point when an enlarging MRI-enhancing lesion is seen, using [18F]-fluoroethyl-L-
tyrosine positron emission tomography. First and second order statistics were obtained
from the images of 14 patients and underwent unsupervised consensus clustering. The
cumulative distribution function then determined the optimal class size. Feature
selection by predictive analysis of microarrays methodology using 10-fold cross val-
idation reduced the features from 19 to 10. One of the 3 class PET-based clusters could
differentiate progression and pseudoprogression, however the results were similar to
the standard analysis method using maximal tracer uptake in the tumor divided by that
in normally appearing brain tissue. The small, single centre study will require more
analytical and clinical validation as the authors acknowledge.

4 Prognostic Biomarkers

Prognostic biomarkers identify the likelihood of a clinical event, recurrence, or pro-
gression based on the natural history of the disease [1]. They are generally associated
with specific outcome such as overall survival or progression-free survival. Some
molecular markers are prognostic biomarkers therefore there is some overlap with
diagnostic biomarkers used to predict molecular markers (including IDH mutation
status and 1p/19q co-deletion status).

Example 1. The aim of this retrospective study was to use a machine-learning algo-
rithm to determine overall survival using imaging features from pre-operative routine
MRI in patients with glioblastoma [13]. Pre- and post-contrast T1-weighted, FLAIR,
DSC and diffusion tensor imaging (DTI) images were obtained from a retrospective
training dataset of 105 patients. Enhancing tumour tissue, non-enhancing tumour tis-
sue, and oedematous tissue regions were segmented with the glioma image segmen-
tation and registration (GLISTR) segmentation algorithm which produced imaging
descriptors including location and first order statistics and limited demographic
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information. From >150 features, 60 features with the best survival prediction fol-
lowing 10-fold cross validation were feature selected. Two linear kernel SVMs were
used to classify patients as survivors or not at 6 and 18 months respectively and a
combined prediction index calculated. Tenfold cross validation was used to determine
the generalization accuracy of the predictive models to give an accuracy of 77% for the
prediction of short/medium/long survivors. A prospective test dataset of 29 patients
gave an accuracy of 79%.

Simple data such as Karnofsky Performance Status, which is known to be an
important co-variate in multivariate analyses of glioma survival, were not included. An
insightful aspect of this study is that histograms were produced in order to understand
the predictive features: greater age, large tumour size, increased tumour diffusivity,
larger regions of T2 hypointensity and highest perfusion peak heights, were all pre-
dictive of short survival. Although the findings have a plausible biological basis,
translation is limited as this was performed in a single centre.

Example 2. The aim of this retrospective study was to use a machine-learning algo-
rithm to determine overall survival of patients with high grade glioma using brain
tumor segmentation (BRaTS) data [14]. Pre- and post-contrast T1-weighted, T2-
weighted and FLAIR images were obtained from a retrospective training dataset of 163
patients. Segmented regions including enhancing tumour tissue, non-enhancing tumour
tissue, and oedematous tissue regions were manually segmented. Features were
selected by simple features such as location; discrete wavelet transform first and second
order statistics; histograms alone; and a convolutional neural network (CNN) which
gave over 4000 deep features. The CNN, AlexNet, used in transfer learning context
consisted of five convolutional layers followed by three fully connected layers, with
maximum pooling layers used in between the convolution and fully connected layers.

Patients were then classified as survivors or not at 10 and 15 months respectively.
SVM, k-nearest neighbors (KNN), linear discriminant, tree, ensemble, and logistic
regression were all independently applied to each set of features. A combination of
CNN deep features and a linear discriminant classifier with 5-fold cross validation gave
the best predictive result with a train dataset of 91% accuracy and a test dataset of 55%
accuracy. Although interesting approaches to developing a prognostic biomarker were
employed including using a CNN to generate features, the low test accuracy is sug-
gestive of overfitting.

5 Conclusion

Machine learning and neuro-oncology are at an early stage of development and are not
ready to be incorporated into the clinic as the level of evidence is low. Integration of
data in addition to imaging, including demographic, clinical and molecular markers,
may lead to increasingly accurate biomarkers. Development and validation of machine
learning models applied to neuro-oncology require large, well-annotated datasets, and
therefore multidisciplinary and multicentre collaborations are necessary.
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