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Abstract. Traumatic brain injury (TBI) arises from disruptions in the
structural connectivity of brain, which further manifests itself as alter-
ations in the functional connectivity, eventually leading to cognitive and
behavioral deficits. Although patient-specific measures quantifying the
severity of disease is crucial due to the heterogeneous character of the
disease, neuroimaging based measures that can assess the level of injury
in TBI using structural and functional connectivity is very scarce. Taking
a graph theoretical approach, we propose a measure to quantify how dis-
similar a TBI patient is relative to healthy subjects using their structural
and functional connectomes. Over a TBI dataset with 39 moderate-to-
severe TBI patients that are examined 3, 6, and 12 months post injury,
and 35 healthy controls, we demonstrate that the dissimilarity scores
obtained by the proposed measure distinguish patients from controls
using both modalities. We also show that the dissimilarity scores sig-
nificantly correlate with post-traumatic amnesia, processing speed, and
executive function among TBI patients. Our results indicate the appli-
cability of the proposed measure in quantitatively assessing the extent
of injury. The measure is applicable to structural and functional connec-
tivity, paving the way for a joint analysis in the future.
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1 Introduction

Traumatic brain injury (TBI) is mainly considered as a white matter disorder
arising from axonal injuries, which can result from causes such as fall or traffic
accidents. Injury of axons cause disruptions in neural communication, eventu-
ally leading to psychological, cognitive, and emotional disturbances, making it a
significant public health burden [1]. Although the relationship between trauma
induced white matter injury and the neuropsychological outcomes in TBI has
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been established for over two decades [2], neuroimaging measures that effectively
quantify the injury burden based on connectivity disruptions started emerging
recently and are still limited [3,4]. Heterogeneous character of TBI necessitates
subject-specific investigations for providing patient-specific diagnostics and prog-
nostics, which further highlights the need for imaging based measures.

Several studies in the literature have investigated the relationship between
brain structure and behavioral outcomes in TBI on the basis of diffusion char-
acteristics such as FA and MD [5]. Another major direction of research in eluci-
dating this relationship has focused on changes in the topology of the structural
brain network [6]. Recently, a summary measure of diffuse connectivity alter-
ations to quantify overall injury burden was proposed in [4] which demonstrated
high correlations with cognitive deficits. However, measures to quantify struc-
tural and functional disruptions in TBI together and investigating its relation-
ship with cognitive outcomes of the disease has been sparsely studied.

Connectomes can naturally be represented as graphs, making a wide array of
graph theoretical tools available for connectomic analysis. This, in turn, makes
it possible to investigate structural and functional characteristics of the brain
while preserving its organizational features [7]. Although fundamental graph
theory measures such as centrality and small worldness are widely applied to
connectomic analysis [8], application of advanced graph theory tools to brain
data is still in its early stages. Graph similarity measures are prime examples of
such tools that found very limited applications in brain analysis to date despite
their great potentials.

Since the brain is commonly represented as connectomes, which are weighted
graphs in essence, finding similarities between them can be considered as a graph
matching problem. The main idea in here is to find a mapping between nodes
and edges of two graphs while minimizing an overall similarity score. Although
widely applied in pattern recognition and computer vision over several decades
[9,10], use of graph matching as a similarity measure in neuroscience very scarce
[11]. One of the early uses of graph similarity measures in connectomics is the
application of graph edit distance in network classification of the epileptic brain
[12]. Graph embedding [13] and graph kernels [14] are utilized in decoding of
brain states in fMRI, which in turn is used for performing classification. Further
utilization of graph similarity measures for quantifying neurological diseases and
disorders is still a fertile area of investigation.

In this preliminary study, we explore graph similarity measures as a quantifier
of injury on TBI using structural and functional connectomes, and investigate
its relationship with emerging cognitive deficits. Specifically, over a longitudinal
TBI dataset of 39 patients and 35 controls, we consider connectomes as weighted
graphs and define dissimilarity between patients and controls by taking a graph
matching approach to calculate similarity between two subjects. We demon-
strate that there is significant group difference between patients and controls
in both structural and functional connectomes, when graph based dissimilarity
of subjects is used as the metric of injury. We further show that the proposed
dissimilarity score also correlates well with the cognitive scores of the patients.
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2 Materials and Methods

2.1 Dataset

We use a traumatic brain injury dataset consisting of 35 controls and 39 TBI
patients [4]. For each subject, DTI and rs-fMRI data was acquired, once for
healthy controls and three times for patients with TBI at approximately 3, 6, and
12 months post-injury, respectively. In addition to neuroimaging, TBI patients
were also subjected to behavioral assessment at these time points.

Preprocessing of DTI Data: For each subject, DTI data was acquired on
a Siemens 3T TrioTim scanner with a 8 channel head coil (single shot spin
echo sequence, TR/TE = 6500/84 ms, b = 1000 s/mm2, 30 gradient directions).
86 region of interests from the Desikan atlas [15] were extracted to represent
the nodes of the structural network. A mask was defined using voxels with an
FA of at least 0.1 for each subject. Deterministic tractography was performed
to generate and select 1 million streamlines, seeded randomly within the mask.
Angle curvature threshold of 60◦, and a min and max length threshold of 5 mm
and 400 mm were applied, resulting in an 86 × 86 adjacency matrix of weighted
connectivity values, where each element represents the number of streamlines
between regions.

Preprocessing of rs-fMRI Data: For each subject, resting state fMRI
data was acquired on a Siemens 3T TrioTim scanner with a 8-channel head
coil (single-shot, multi-slice, gradient-echo (GE) echoplanar (EPI) sequence,
TR/TE = 3000/3 ms, interleaved acquisition, 3 mm isotropic voxel dimensions).
The resting state fMRI data were pre-processed using preprocessing pipeline
in [16]. The first 6 volumes of the BOLD 4-D time series data were discarded
to allow signal stabilization. All functional time series were slice-time corrected,
motion corrected to the median image using a rigid registration, and co-registered
with the anatomical MPRAGE image. The DVARS method [17] was used to esti-
mate the degree of image intensity change across volumes attributed to motion
where volumes with excessive motion were flagged and not used for further anal-
ysis. Confound regression was performed to regress out the average BOLD signal
from non-gray matter tissue compartments. Pairwise correlations were calculated
across 86 nodes of the Desikan atlas [15] using Pearson’s correlation, and finally
an 86×86 resting state functional connectivity matrix was built for each subject.

Cognitive Measures: In our analysis, we included four clinical measures for
assessing outcomes of injury that are widely used in TBI research: first three
measures are used for quantifying cognitive function, and the fourth is used for
measuring injury severity.

(i) Processing speed (PS): We used the Processing Speed Index from the
Wechsler Adult Intelligence Scale-IV [18] to determine the speed of mental
processing.
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(ii) Executive function (EF): Following five tests were used to measure dif-
ferent aspects of executive function: Controlled Oral Word Association Test
[19], Trail Making Test-Part B [20], Color-Word Interference Test, and Dig-
its Backward and Letter-Number Sequencing subtests from the Wechsler
Memory Scale IV [21]. In order to reduce type I error and increase signal-
to-noise ratio, we constructed a composite score by identifying the rank of a
participant on each individual measure, and then averaging the ranks across
five measures.

(iii) Verbal learning (VL): The Rey Auditory-Verbal Learning Test [22] was
used to evaluate verbal learning.

(iv) Duration of post-traumatic amnesia (PTA): PTA is a behavioral
index of the severity of the neurological injury, which is calculated as the
number of days between the TBI and the time within 72 h that the partic-
ipant was fully oriented.

2.2 Graph Matching as a Similarity Measure

Having obtained structural and functional connectomes of patients and con-
trols, our goal is to investigate connectivity based (dis)similarities across the
two groups. Since graph theory provides a rich repertoire of tools that can be
utilized to characterize the properties of brain networks and solve various net-
work related problems [23], we considered connectomes as graphs. A graph is
an ordered pair G = (V,E) consisting of a set of nodes V , and a set of edges
E ⊂ V × V that define a relation between node pairs. Connectomes can be
effectively represented with weighted graphs where nodes correspond to brain
regions and the weighted edges correspond to connectivity between brain regions
with edge weights quantifying the strength of pairwise connectivity. Since the
structural connectomes that we obtained from tractography and functional con-
nectomes that we obtained via Pearson’s correlation are symmetrical matrices
indicating the nondirectional nature of relation between regions, we represented
the connectomes with undirected weighted graphs.

Once connectomes are represented as graphs, an efficient way of calculating
(dis)similarity across subjects is through graph matching [9], where the goal is
to find a mapping between the nodes of two graphs along with an overall score
quantifying their similarity. In this study, we formulated the graph matching as
an instance of the linear assignment problem [24]. Specifically, given two graphs
P = (VP , EP) and Q = (VQ, EQ), the aim is to find the optimal one-to-one
mapping f : VP → VQ between their nodes while minimizing the following
objective function:

∑

p∈VP

c(p, f(p)) (1)

where c(·, ·) is a cost function determining the cost of assigning each node in
P to a corresponding node in Q. In order to define assignment cost between
nodes of graphs, we annotated each node with an 86-dimensional feature vector
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which represented their connectivity with the rest of the nodes in the graph.
We then considered Euclidean distance between feature vectors of nodes as the
cost function. We used the Hungarian algorithm [25] for solving the matching
problem, obtaining the optimal one-to-one mapping f between the nodes of the
two graphs.

Solution to the graph matching can provide two similarity measures. First
one is a summary measure obtained by summing the assignment costs of nodes
in (1) based on the calculated mapping f . Hence, matching connectomes of
a healthy control and a severe TBI patient, one would expect to get a high
dissimilarity score. The second measure, denoted matching accuracy, leverages
apriori knowledge of true matching between nodes by quantifying the similarity
as the ratio of nodes that matched to its counterpart in the other graph over
total number of nodes. Contrary to the previous measure, one would expect to
get a lower score for comparing a healthy control with a severe TBI patient. In
this study, we investigated the first similarity measure and left the analysis with
the second measure to an extensive future study.

2.3 Experimental Setup

In our analysis, we considered the dissimilarity of individual subjects relative to
the control population as a measure of TBI severity. For each patient at all three
time points, we calculated its dissimilarity with each healthy control subject
using graph matching. We then considered the average of these distances as the
dissimilarity of the patient with respect to healthy control population. In order
to analyze the distribution of dissimilarities across subject groups, we similarly
calculated the average dissimilarity of each healthy subject with respect to the
rest of the healthy control population. We finally calculated the z-score of each of
the dissimilarity scores with respect to the healthy control population to obtain
a standardized dissimilarity measure. In our analysis, we used weighted graph
representation of structural and functional connectomes of subjects separately
for calculating dissimilarities. While investigating dissimilarity using functional
data, we separately evaluated the complete functional connectome having both
positive and negative correlations, and two additional connectomes that consist
of only positive and only negative functional edges.

3 Results and Discussion

Here, we demonstrate the efficacy of the proposed connectomic dissimilarity
measure over the TBI dataset in distinguishing subject groups and its correlation
with cognitive scores of individual subjects.

3.1 Structural Connectivity

Boxplot of average structural dissimilarities of subjects with respect to the
healthy control population is shown in Fig. 1. We observe that patient groups
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Fig. 1. Z-score of graph dissimilarity of subjects in each group (healthy and patients in
3 time points) with respect to the healthy controls, where the distance is measured over
the structural connectome of subjects. Red lines indicate means of distributions. Group
differences are significant between patients at all time points and controls. (Color figure
online)

Table 1. Correlation between the graph dissimilarity over structural connectomes and
cognitive measures for participants with TBI. p-values are shown in parenthesis and
are corrected for multiple comparison using false discovery rate (FDR).

3 Months 6 Months 12 Months

Processing speed −0.39(0.027) −0.59(0.003) −0.49(0.020)

Executive function −0.17(0.298) −0.48(0.013) −0.75(0.000)

Verbal learning −0.28(0.116) −0.40(0.026) −0.40(0.055)

PTA 0.41(0.027) 0.44(0.017) 0.56(0.008)

at 3, 6, and 12 months have higher dissimilarity scores relative to healthy con-
trols, demonstrating significant group differences with effect sizes of 0.91, 0.68,
and 0.88, respectively (Student’s t-test, p < 0.01, effect size calculated using
Cohen’s d). Distribution of dissimilarities span a larger interval for the patient
groups than controls, which can be attributed to heterogeneity of the TBI. We
observe a decline in dissimilarity at 6 months which later on increases at 12
months, where the group difference between the 3–6 months and 6–12 months
are significant with effect sizes 0.95 and 0.72, respectively (p < 0.01). It is also
interesting to note that the longitudinal trajectory of processing speed follows
that of dissimilarity scores. This pattern resembles the curvilinear recovery tra-
jectory of the PS reported in [26] over the same data set. Overall, these results
indicate that the dissimilarity captured by graph matching between the graph
representation of structural connectomes distinguishes TBI patients from con-
trols, as well as patient groups at different time points from each other.

We further calculated the correlation between dissimilarity scores of the
patients with respect to healthy controls, and their cognitive scores, to investi-
gate whether the dissimilarity score captures cognitive changes in TBI (Table 1).
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We observe significant correlations between the dissimilarity scores of patients
and their cognitive scores and PTA duration. Specifically, a significant negative
correlation was observed for processing speed at all time points, with correlation
reaching its peak at 6 months. It is interesting to note the parallelism between the
strength of correlation peaking at 6 months and the processing speed recovering
at its highest level at 6 months post-injury. In addition, the negative correla-
tion of executive function is significant in 6 and 12 months with an increase
in the magnitude of correlation over time. We also observed verbal learning to
significantly correlate with dissimilarity at 6 months.

We observe significant negative correlations between PTA and the similarity
scores of patients at 3, 6, and 12 months, with a steady increase in the mag-
nitude of the correlation over time. Noting that PTA is a measure of trauma
severity which is calculated once for each patient based on the duration of post
traumatic amnesia, the increase in correlation over time can be attributed to the
structural connectomes at 12 months post-injury revealing the degree of injury
severity better due to progressed neurodegeneration. PTA duration is assumed
to reflect the overall amount of axonal injury, suggesting that graph matching
based dissimilarity score captures the injury level of the patients.

3.2 Functional Connectivity

Boxplots of average functional dissimilarities of subjects with respect to the
healthy control population is shown in Fig. 2. We evaluated the functional dis-
similarity of subjects using full functional connectome, and positive and nega-
tive functional connectomes separately. We observe significant group difference
between healthy controls and patients at three time points for full functional
connectome with effect sizes 0.99, 0.98, and 1.09 (p < 0.01, effect size calculated

Fig. 2. Z-score of graph dissimilarity of subjects in each group (healthy and patients
in 3 time points) with respect to the healthy controls. Distance is measured over (a)
full and (b) positive functional connectome of subjects. Red lines indicate means of
distributions. (Color figure online)
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using Cohen’s d), respectively (Fig. 2a). A similar pattern is observed in the pos-
itive functional connectome where the patients were significantly different than
controls at 3 and 12 months with effect sizes 0.51 and 0.65 (p < 0.05) (Fig. 2b).
We did not observe any significant group difference between the dissimilarity
scores of patients and controls over negative functional connectomes. We also
calculated the correlation between the dissimilarities using full, positive, and
negative functional connectomes and the cognitive scores, and did not observe
any significant correlation between them.

4 Conclusions and Future Work

In this paper, we presented a graph matching based approach for calculating
dissimilarity between TBI patients and controls in terms of structural and func-
tional connectomes, and demonstrated its utility over a longitudinal TBI dataset.
We showed that the proposed dissimilarity metric can distinguish patient groups
at three time points from healthy controls as well as differentiating patient groups
in different time points from each other using both modalities. We also demon-
strated that, the structural dissimilarity of patients correlates well with neu-
ropsychological scores and a clinical measure used to evaluate TBI severity.

We note that, application of the method we presented here can be considered
as a proof of concept for the use of graph matching in the calculation of dissim-
ilarities between connectomes to assess neuropathology and plasticity in TBI.
We will extend this study to develop a trauma specific dissimilarity measure by
focusing on subgraphs with edges that are significantly affected by the disease
across the population as suggested in [4].

As the trauma causes disconnections in the structural connectivity of the
brain, one might expect to observe larger differences across patients and controls
in the connectivity strength between indirectly connected regions. We will fur-
ther extend this study to investigate the dissimilarities across subject groups by
considering communication between regions over structural pathways by using
message passing schemes such as shortest path or communicability. Another
interesting question to be addressed is whether the brain changes its communica-
tion scheme post trauma, which requires an in depth structure-function coupling
analysis of the TBI patients.

In this study, we utilized the value of the objective function of graph matching
as a summary measure of dissimilarity between connectomes. Further similarity
measures, such as (mis)matching nodes, can be extracted as a by-product of
the same approach, which can help in detailed analysis of the dissimilarities at
multiple scales of network, which we will investigate in the extended version of
this study.
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