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Abstract. In this paper, we propose an automated segmentation app-
roach based on a deep two-dimensional fully convolutional neural net-
work to segment brain multiple sclerosis lesions from multimodal mag-
netic resonance images. The proposed model is made as a combination
of two deep subnetworks. An encoding network extracts different feature
maps at various resolutions. A decoding part upconvolves the feature
maps combining them through shortcut connections during an upsam-
pling procedure. To the best of our knowledge, the proposed model is
the first slice-based fully convolutional neural network for the purpose
of multiple sclerosis lesion segmentation. We evaluated our network on a
freely available dataset from ISBI MS challenge with encouraging results
from a clinical perspective.
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1 Introduction

Multiple Sclerosis (MS) is one of the most common demyelination diseases having
direct effects on the central nervous system, especially on white matter (WM),
which can be visualized through magnetic resonance imaging (MRI) scans. The
detection of all MS lesions is an important task as it can help characteriz-
ing the progression of the disease and monitoring the efficacy of a candidate
treatment [14].

In literature, there are both manual and automatic methods for MS lesion
segmentation. Manual segmentation usually provides accurate results with the
drawbacks of being time-consuming, affected by expert skills and biased towards
a given expert. This highlights the importance of automatic segmentation
methods, which can be faster, not affected by the expertise variability and
unbiased [4].
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Methods of automated MS lesion segmentation can be arbitrarily classified
in two main types: empirical approaches typically based on a heuristic series of
image-processing operations, and machine learning approaches.

Image-processing based methods are faster but generally depend on the man-
ual set-up of specific parameters, for example, the choice of thresholds, as in He
et al. [7], where an adaptive procedure segments unhealthy regions with a multi-
step pipeline of morphological operations.

On the contrary, machine learning based approaches particularly supervised
methods can be slower but learn automatically from a training dataset previ-
ously labeled by an expert. For example, Jesson et al. [8] proposed a three-stage
pipeline to discriminate healthy tissues from lesions, where intensity distribu-
tions were used to train a random forest classifier.

Recently, deep learning methods, in particular, convolutional neural networks
(CNNs), have shown excellent performance with various applications [9]. One of
the most important advantages of these methods over other supervised algo-
rithms is that they can learn themselves how to design features directly from
data during the training procedure. It is important to mention that over the last
years, CNNs have also been used in biomedical image analysis with state-of-the-
art results in different problems [13].

Regarding the literature, there exist a few proposed methods based on CNNs
for segmenting MS lesions. In [1], a three-dimensional (3D) CNN is designed to
use shortcut connections between layers of the network, which allow concatenat-
ing the features from deep layers to shallow layers. Recently, Valverde et al. [15]
proposed a patch-based method relying on a cascade of two 3D CNNs. In this
approach, the extracted volumetric patches are used to train the first network.
Then, a second network is used to refine the training on samples misclassified
by the first network.

In this paper, we present a pipeline for automatic MS lesion segmentation
based on two-dimensional (2D) CNNs. In this work, we concentrated on whole-
brain segmentation in order to avoid some common problems like the neglect
of global information of patch-based approaches, and the overfitting of 3D seg-
mentation due to the small sample set issue. The CNN architecture used in
this approach is a modified version of Residual Network (ResNet) [6] which has
been proposed for image classification. To the best of our knowledge, this is the
first slice-based (whole-brain) fully convolutional end-to-end encoder-decoder
network proposed for MS lesion segmentation. The robustness of the method is
improved by exploiting the volumetric slicing in all three possible imaging planes
(axial, coronal and sagittal). Indeed, we used different imaging axes of each 3D
input MRI in an ensemble framework to exploit the contextual information in
all three anatomical planes. Moreover, this model can be used as a multi-modal
network to make use of all of the information available within each within each
MRI modality available, typically fluid-attenuated inversion-recovery (FLAIR),
T1-weighted (T1w), and T2-weighted (T2w).
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2 Method

2.1 Input Data Preparation

From each original volumetric MRI modality, axial, coronal and sagittal planes
are considered by extracting 2D slices along the x, y, z axes of the 3D image.
Since the size of the imaging planes differed according to the imaging axes, we
zero padded each slice (while centering the brain), so that to obtain the same
consistent size irrespective of the imaging plane. Further, the same consistent size
was applied across modalities. Then, slices belonging to each plane orientation
and each modality were stacked together to create a single multi-channel input
stack. Since three modalities were used in our experiments, the obtained multi-
channel slices included three channels which can be represented as RGB images.
Figure 1 illustrates the described procedure using three modalities, FLAIR, T1w,
and T2w.

Fig. 1. Feature extraction pipeline. From each original 3D MRI image, axial, coronal
and sagittal planes were extracted for each modality. Last column: in our specific
application which 3 modalities were used (FLAIR, T1w, T2w), multi-channel slices
(represented here as RGB images) were created by grouping together the corresponding
slices of each modality.

2.2 Network Architecture

Recently very deep CNNs showed outstanding performance in computer vision
problems. In particular, ResNet [6] based on residual connections, gave signifi-
cant improvement in image recognition tasks. Deep networks are hard to train
because of the vanishing gradient problem during the back-propagation proce-
dure. Therefore, when the network goes deeper, its performance gets saturated.



Deep 2D Encoder-Decoder CNN for Multiple Sclerosis Lesion Segmentation 135

The authors in [6] addressed the mentioned problem by proposing the network
called ResNet. The main idea of the ResNet is to use identity shortcut connec-
tion between layers of the network which have some benefits like preventing of
vanishing gradient and also not adding computational complexity to the net-
work. In this work, we modified ResNet50 (version with 50 layers) for a pixel-
wise segmentation task inspired by the idea of Fully Convolutional Networks
(FCNs) [10]. The easiest way to convert a ResNet to a segmentation network is
to replace the last prediction layer with a dense pixel-wise prediction layer as
described in FCNs. Since the output of the last convolutional layer of ResNet
is very coarse compared with the input image resolution (32 times smaller than
the original image) upsampling such high level feature maps with a simple oper-
ation like bilinear interpolation as described in FCNs is not an effective solution.
Therefore, in order to address this problem, we propose a multi-pass upsampling
network using the advantages of multi-level feature maps with skip connections.

In deep networks, features from deep layers include high-level semantic infor-
mation. On the contrary, features from early layers contain low-level spatial
information. It was shown that features from middle layers also provide infor-
mation which can be effective to increase the performance of the segmentation
[13]. Therefore, combining multi-level features from different stages of the net-
work makes the feature map richer than just using single scale feature maps. The
intuition behind this work is to use these multi-level feature maps by adding mul-
tiple upsampling network with skip connections [13] to the ResNet output of all
intermediate layers. The diagram of the proposed network for segmentation can
be seen in Fig. 2.

We divided the ResNet50 into 5 blocks in the downsampling part according
to the resolution of feature maps. In the upsampling subnetwork, the encoded
features from different scales are decoded step by step using upsampling fused
features (UFF) blocks. Each UFF block includes one upconvolutional layer with
kernel size 2 × 2 and stride 2, one concatenation or fusion layer and two convo-
lution layers with kernel sizes 3× 3. After each layer, a rectifier linear activation
function (ReLU) is applied [12]. The upconvolutional layer is used to transform
low-resolution feature maps into the higher resolution maps. Then a simple con-
catenation layer is used for combining the two sets of input feature maps. Two
convolution layers are further used for adaptation as described in [13], and the
output goes to the next block. The number of feature maps after each UFF
block is halved. At the end of the network, a soft-max layer of size 2 is used to
get output probability maps, identifying pixel-wise positive (lesion) or negative
(non-lesion) classes.

3 Experiments

3.1 Data

To evaluate the proposed model, we used the dataset from ISBI 2015 Longitudi-
nal MS Lesion Segmentation Challenge; which includes 19 subjects divided into
two sets, 5 subjects for training and 14 subjects for testing. All training and
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Fig. 2. (a) General framework of the proposed network for MS segmentation. The
first sub-network (ResNet50) encodes the input 2D slices into different resolutions.
This sub-network was divided into 5 blocks with respect to the resolution of the rep-
resentations during the encoding. The second sub-network (Upsampling) decodes the
representations provided by the encoder network. This sub-network gradually converts
low-resolution representations back to the original resolution of the input image using
UFF blocks. (b) Details of the proposed UFF block. Each UFF block has two set of
input representations with different resolutions. This block is responsible to upsampling
the low-resolution representations and combines them with high-resolution representa-
tions.

testing data have the same 1 mm-isotropic resolution. Each subject has MRI
data with a different number of time-points, normally ranging between 4 to
6. Moreover, for each time-point, T1w, T2w, proton density-weighted (PDw),
and FLAIR image modalities were provided. All training images have been seg-
mented manually by two different raters and the segmented images are publicly
available. For the test set, there is no public available ground truth. In order
to evaluate the performance of the proposed method over the test dataset, the
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associated lesion binary mask must be submitted to the challenge website for
evaluation [2].

3.2 Training and Testing

To train the proposed CNN, firstly, a training dataset was created using the
pipeline mentioned in the previous section. In order to remove uninformative
samples from the whole training set, a subset was determined by selecting
only slices with at least one lesion pixel. This meant that 2D slices without
lesions were omitted from the training set. In order to optimize network weights
and early stopping criteria, we split the training dataset into different training
and validation sets depending on the experiments as described in the following
section. According to the network initialization, in the first subnetwork, the pre-
trained ResNet50 on ImageNet was used and the weights from the second sub-
network (Upsampling) were randomly initialized. Adaptive learning rate method
(ADADELTA) [16] was used to tune the learning rate and a binary cross-entropy
was used as loss function. The maximum number of training epochs was fixed
to 500, and the best model was selected according to the validation set.

We evaluated then the proposed network with unseen test data with respect
to the corresponding experiments. For each subject, we first extracted all the
slices from the test set, following the approach described in the previous section.
Feeding each 2D slice to the network, we got as output the associated 2D binary
lesion classification map. Since the original data was duplicated three times in
the input, once for each slice orientation (coronal, axial, sagittal), concatenating
the binary lesion maps belonging to the same orientation resulted in three 3D
lesion classification maps. These three lesion maps were combined via majority
voting (the most frequent lesion classification was selected).

We implemented our proposed model in Keras [3] using a Nvidia GTX Titan
X GPU.

3.3 Data Augmentation

As suggested in [5], simple off-line data augmentation was applied to the train-
ing dataset in order to increase training samples. Increasing training samples has
been shown to increase the performance of the network. Therefore, we increased
the number of the samples by a factor of 5 simply by either rotating each
extracted slice by 4 possible angles (5◦, 10◦, −5◦, −10◦) and flipping (right
to left) of the images with their original rotation (no combination of flipping
and rotation were included in the data augmentation procedure).

3.4 Evaluation

For evaluation purposes, two different experiments were implemented according
to the availability of ground truth. In the first experiment, we ignored the official
ISBI test set so that to only consider data with the available ground truth. In
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Fig. 3. An example of our network results in the axial, coronal and sagittal planes.
First column: original FLAIR modality from different views, second column: ground
truth related to the rater 1, third column: ground truth related to the rater 2, last
column: segmentation output from the proposed method.

order to get a fair result, we did a leave-one-out cross-validation training (at
subject level: 3 subjects for training, 1 subject for validation and 1 subject for
testing). In this experiment, Dice Similarity Coefficient (DSC), Lesion-wise True
Positive Rate (LTPR), and Lesion-wise False Positive Rate (LFPR) measures
were used for evaluation.

The DSC is computed as;

DSC = (2 × TP )/(FN + FP + 2 × TP ) (1)

Where TP , FN and FP indicate the true positive, false negative and false
positive voxels respectively. LTPR denotes the number of lesions in the reference
segmentation that overlap with a lesion in the output segmentation, divided
by the number of lesions in the reference segmentation (lesion recall). LFPR
denotes the number of lesions in the output segmentation that do not overlap
with a lesion in the reference segmentation, over the total number of lesions in
the produced segmentation (lesion precision).

For the second experiment, the official ISBI test set was used as our test
set so the ground truth was not available. We trained the network using leave-
one-out cross-validation over all 5 subjects in the training set (4 subjects for
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training and 1 subject for validation). We evaluated the ensemble of 5 trained
models on the test set and then for a final prediction, we did majority voting
over all classifiers. The 3D output binary lesion maps were submitted to the
website of ISBI for evaluation purposes. In this experiment, a score is measured
online (using the challenge website) according to the results on that test set. As
described in [2], the mentioned score is a weighted average of different metrics
including DSC, LTPR, LFPR, positive prediction value (PPV ) and absolute
volume difference (AVD). PPV is the ratio between the number of true positive
voxels and the total number of positive voxels. AVD is the absolute difference
of volumes divided by the true volumes.

3.5 Results

In the first experiment, as described previously, we evaluate the performance of
our network on the training set. Table 1 shows the performance of our method
in comparison with other previously proposed methods. As can be seen, our
method has the highest performance regarding LTPR metric while having a
high DSC which means that the proposed method can identify lesion areas with
higher precision than other methods while having a good overlap in terms of
lesion volume overall. Figure 3 shows an example of the output of our network
in comparison to the corresponding ground truth.

Table 1. Comparison of our method with the other state-of-the-art methods. GT1
and GT2 show that the corresponding model was trained using annotation provided
by rater 1 and rater 2 as the ground truth respectively.

Method Rater 1 Rater 2

DSC LTPR LFPR DSC LTPR LFPR

Rater 1 - - - 0.7320 0.6450 0.1740

Rater 2 0.7320 0.8260 0.3550 - - -

Jesson et al. [8] 0.7040 0.6111 0.1355 0.6810 0.5010 0.1270

Maier et al. [11] (GT1) 0.7000 0.5333 0.4888 0.6555 0.3777 0.4444

Maier et al. [11] (GT2) 0.7000 0.5555 0.4888 0.6555 0.3888 0.4333

Brosch et al. [1] (GT1) 0.6844 0.7455 0.5455 0.6444 0.6333 0.5288

Brosch et al. [1] (GT2) 0.6833 0.7833 0.6455 0.6588 0.6933 0.6199

Ours (GT1) 0.6980 0.7460 0.4820 0.6510 0.6410 0.4506

Ours (GT2) 0.6940 0.7840 0.4970 0.6640 0.6950 0.4420

In the second experiment, the performance of the proposed method was also
evaluated on the official ISBI test set using the challenge web service1. At the
time we submitted the results, we obtained a score of 89.85 which is comparable
1 http://iacl.ece.jhu.edu/index.php/MSChallenge.

http://iacl.ece.jhu.edu/index.php/MSChallenge
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to the ISBI inter-rater score scaled to 90. The detailed result for each subject is
available online on the ISBI MS lesion segmentation challenge website.

4 Discussion and Conclusion

We have proposed a supervised method for the brain MS lesion segmentation.
The presented approach is a deep end-to-end CNN including two pathways, a
contracting path which extracts multi-resolution representations by encoding the
input image and an expanding path which decodes the provided representations
gradually by upsampling and fusing them. Our CNN has been trained using
whole-brain slices as inputs to take advantage of the spacial information about
the location and shape of MS lesions. Moreover, it has been designed for multi-
modality (FLAIR, T1w, T2w) and multi-planes (axial, coronal and sagittal)
analysis of MRI images.

The proposed method has been evaluated using the publicly available
dataset (ISBI 2015 challenge). Comparing with other state-of-the-art meth-
ods, our experiments demonstrated that the proposed architecture performed
better which has high capability to effectively identify unhealthy regions
(LTPR = 0.7840) while having overall a good overlap with the ground truth in
terms of overall lesion volume (DSC = 0.6980). This can be particularly impor-
tant in clinical settings where detecting all potential lesions is prioritized over
discarding easily identifiable false negatives.

Unlike previously proposed 3D-based CNN approach by Brosch et al. [1]
which used a single short-cut connection between the deepest and the shal-
lowest layers, our proposed architecture includes multiple short-cut connections
between several layers of the network combining multi-level features from dif-
ferent stages of the network. In our opinion, the obtained results suggest that
the combination of multi-level features during the upsampling procedure helps
network to exploit more contextual information of the shape of the lesions.
This could explain why the segmentation performance of our proposed network
(DSC = 69.80) improved compared with the method proposed by Brosch et al.
[1] (DSC = 0.6844).

The proposed method also has some limitations. Our network cannot use
four-dimensional (4D) modalities such as functional MRI or diffusion MRI. More-
over, the maximum number of MRI modalities that can be used in our archi-
tecture is three. This results from the fact that we used pre-trained ResNet as
the encoder part in our network, which can only handle an input with three
channels. Therefore in the case of the more modalities available, one would be
restricted to choose three amongst all. Another limitation is that CNN based
approaches in MS segmentation highly depend on the training which is costly to
acquire due to the time consuming manual segmentation by experts it requires.
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