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Abstract This chapter discusses contemporary quantum chemical methods and
provides general insights into modern electronic structure theory with a focus on
heavy-element-containing compounds. We first give a short overview of relativistic
Hamiltonians that are frequently applied to account for relativistic effects. Then,
we scrutinize various quantum chemistry methods that approximate the N -electron
wave function. In this respect, we will review the most popular single- and multi-
reference approaches that have been developed to model the multi-reference nature
of heavy element compounds and their ground- and excited-state electronic struc-
tures. Specifically, we introduce various flavors of post-Hartree–Fock methods and
optimization schemes like the complete active space self-consistent field method,
the configuration interaction approach, the Fock-space coupled cluster model, the
pair-coupled cluster doubles ansatz, also known as the antisymmetric product of 1
reference orbital geminal, and the density matrix renormalization group algorithm.
Furthermore, we will illustrate how concepts of quantum information theory pro-
vide us with a qualitative understanding of complex electronic structures using the
picture of interacting orbitals. While modern quantum chemistry facilitates a quan-
titative description of atoms and molecules as well as their properties, concepts of
quantum information theory offer new strategies for a qualitative interpretation that
can shed new light onto the chemistry of complex molecular compounds.
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1 Introduction

One of the main goals of quantum chemistry is to understand the physicochemical
properties of atoms, molecules, and materials using the first principles. This knowl-
edge can be further used to interpret and explain existing experimental data or to
design new compounds with much sought-after properties. However, the molecules
under investigation usually contain numerous interacting electrons, which leads to
a complex computational problem with a large number of degrees of freedom. The
interplay between relativistic effects, the correlatedmotion of electrons, and the basis
set quality is the main difficulty that limits the possibility to express the electronic
wave function in exact form. Various quantum chemical methods have been success-
fully applied to molecular systems where these effects play a minor role. However,
molecules containing heavy elements like actinides or other d- and f-block elements
still pose a challenge to quantum chemistry as both correlation and relativistic effects
have a dominant contribution to their electronic structure.

In this chapter, we review conventional and unconventional quantum chemical
theories that are applicable to heavy-element chemistry like actinide-containing com-
pounds. Our discussion starts with presenting the properties of actinides as an exam-
ple of complex many-electron systems. Then, we briefly summarize some popular
approaches that account for relativistic effects, followed by electronic structuremeth-
ods that optimize (approximate) electronic wave functions for ground and excited
states. Furthermore, we outline how information from the electronic wave function
can be extracted to obtain a qualitative interpretation of electronic structures. Specifi-
cally, our analysis covers concepts of quantum information theory. Finally,wepresent
some challenging examples of computational actinide chemistry that highlight the
difficulty in describing the electronic structure of actinide-containing compounds.

2 A Brief Overview of Actinides and Their Complex
Electronic Structure

Heavy elements with atomic numbers ranging from 89 to 103 form a distinct group
in the periodic table known as actinides. This series includes actinium, the early
actinides (thorium, protactinium, uranium, and neptunium), the middle actinides
(plutonium, americium, curium, berkelium, and californium), and the late actinides
(einsteinium, fermium, mendelevium, nobelium, and lawrencium). All elements are
radioactive metals and almost all of them are characterized by short lifetimes. Only
some isotopes of thorium and uranium elements have long lifetimes and thus can be
found in nature. Thorium, uranium, neptunium, plutonium, americium, and curium
have important applications in the nuclear industry, whereas thorium and uranium
are also exploited in catalysis.
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In actinide elements, the 5f electrons strongly interact with the remaining valence
electrons as well as with each other. This interaction implicates an electronic struc-
ture composed of many quasi-degenerate electronic configurations. Examples are
the 5f n7s2 or 5f n−16d7s2 series of electronic configurations, where n represents
the number of electrons in the 5f shell and is defined as Z − 88, with Z being the
atomic number. These numerous energetically close-lying electronic configurations
are, however, of different character across the actinide series, which causes irregu-
larities in the electronic ground and excited state energies of actinide elements.

Similar to transition metals, the highest (formal) oxidation state of the early
actinides equals the total number of electrons that can be removed from the valence
shell, that is, from the 6d and 5f atomic orbitals. Furthermore, the early actinides
resemble transition metals also in terms of orbitals and valence properties. The
main reason for the close resemblance of actinides and transition metals is that
the actinide 6d orbitals do participate in chemical bonding with other elements [102,
137]. Recently, Wilson et al. [164] observed the energetic crossing of the 5f and
6d atomic states for protactinium, making the protactinium atom a potential cross-
ing point of valence properties that are characteristic for either transition metals or
actinides. Using quantum chemistry methods, the authors provided numerical evi-
dence that both the 5f and 6d orbitals participate in the chemistry of Pa and that the
participation of the 5f orbitals increases for the middle actinides.

Unfortunately, experimental manipulations with actinide species are very limited,
primarily becausemost actinide atoms are unstable, feature a large number of various
oxidation states, or are radiotoxic. Despite these technical difficulties, experimental
actinide chemistry remains an active field of research that mainly focuses onmolecu-
lar synthesis of compounds containing thorium and uranium as well as spectroscopic
studies of such compounds [5, 34, 42, 52, 53]. Due to these difficulties, theoretical
modeling of actinide-containing compounds can complement experimental studies
and provide the much sought-after insights into the physico-chemical properties of
actinide complexes and clusters, their reaction mechanisms, and thermochemistry.
However, theoretical modeling of actinide chemistry is challenging for present-day
quantum chemistry as our theoretical model has to account for (i) relativistic effects
and (ii) the correlated motion of electrons.

Due to the large atomic number present in actinide atoms, relativistic effects con-
siderably affect the electronic structure of actinide-containing compounds and may
change the character of the principle configuration compared to calculations where
relativistic effects are ignored. For instance, the relativistic mass correction to the
core electrons causes the contraction of their corresponding orbital radii, while the
valence orbitals are expanded leading to elongated chemical bonds [6]. Furthermore,
spin-orbit interactions, which are comparable in magnitude to the electron-electron
repulsion energy, reduce the degeneracies of states with non-zero angular momen-
tum [86]. To appropriatelymodel the correlatedmotionof the electrons, our electronic
structure method has to include all degenerate or quasi-degenerate, low-lying elec-
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tronic configurations resulting from the energetic proximity of the actinide valence
5f, 6d, and 7s orbitals. Such calculations are usually rather expensive. Hence, var-
ious approximations have been introduced in quantum chemistry that allow us to
efficiently treat (quasi-)degeneracies.

3 Electronic Structure Methods in Quantum Chemistry

In the standard formulation of quantum chemistry, the quantum state of atoms
and molecules consisting of N electrons and M nuclei is described by the total
wave function Ψ (x, R), which depends on the spatial and spin coordinates x ≡
{x1, x2, ..., xN} of all electrons as well as on the spatial coordinates of all nuclei
R ≡ {R1, R2, ..., RM}. In quantum chemistry, we are usually interested in the elec-
tronic part of the wave function at a given molecular geometry, for instance the
equilibrium structure. Within the so-called Born-Oppenheimer approximation, the
total wave function is then written as a product of a nuclear part and an electronic
part. In particular, the electronic part of the total wave functionΨel(x; R) depends on
all electronic coordinates, while the positions of the nuclei remain fixed and enter the
wave function as parameters. In non-relativistic quantum chemistry, the electronic
wave function is obtained by solving the time-independent, electronic Schrödinger
equation

HelΨel(x; R) = EelΨel(x; R), (1)

where Hel denotes the Hamiltonian of the system, whose eigenvalues Eel are the
electronic energies. Typically, the non-relativistic electronic Hamiltonian Hel of a
molecular system containing N electrons and M nuclei is given in Hartree atomic
units (� = me = 4πε0 = 1) and reads

Hel = −
N∑

i=1

1

2
∇2
i −

N∑

i=1

M∑

J=1

ZJ

ri J
+

N∑

i=1

N∑

j>i

1

ri j
, (2)

with ri j = |r i − r j | being the distance between any two particles (electrons or nuclei)
and ZJ indicating the charge of nuclei J . In the above equation, the first term is
the kinetic energy of the electrons, the second term describes the electron–nucleus
attraction (also referred to as the external potential), while the last term corresponds
to the potential energy of the repulsion between electrons. Usually, the nucleus–
nucleus repulsion term

∑M
I<J

Z I Z J
RI J

is included in the electronic Hamiltonian and
manifests itself as a constant shift in the electronic energy.

When the speed of the electrons becomes comparable to the speed of light, rela-
tivistic effects have to be included into the equation, which has to be invariant under
Lorentz transformation. In the framework of relativistic quantum chemistry, any free
particle with spin of 1/2 is described by the time-independent Dirac equation [35]
(again in atomic units)
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Hfpψ(x) =
(
c

3∑

n=1

αn pn + βc2
)
ψ(x) = Eψ(x), (3)

where αn and β are Dirac matrices, c is the speed of light, and the wave function
ψ(x) is a four-component (spinor) vector. Specifically, αn are written in terms of the
Pauli matrices σ n and β contains the 2 × 2 identity matrix,

αααn =
(
0 σσσ n

σσσ n 0

)
, βββ =

(
III 2 0
0 −III 2

)
. (4)

For atoms andmolecules, the relativistic Hamiltonian can be written as a sum of one-
and two-electron operators, similar to non-relativistic theory. The one-electron part
is the sum of the one-electron Dirac Hamiltonian HD for all electrons in the quantum
system. Specifically for the hydrogen atom (as for all one-electron systems) the Dirac
Hamiltonian HD can be written in closed form and reads

HD = βββc2 + cααα · ppp + V, (5)

where V is the Coulomb potential (electron-nuclear interaction). Although the Dirac
equation is rigorous only for one-electron systems, it provides a starting point for
further routines to introduce relativistic effects for molecular systems.

3.1 Introducing Relativistic Effects

In actinide chemistry, the most important relativistic effects include the so-called
scalar relativistic effects and spin-orbit coupling. Specifically, scalar relativistic
effects are responsible for the contraction of s and p orbitals and the expansion
of d and f orbitals compared with the non-relativistic Schrödinger equation. Spin-
orbit coupling originates from interactions between the magnetic field produced by
the orbital motion of a charged particle and its spin. Both scalar relativistic and spin-
orbit effects are important in actinide compounds, while other higher-order effects
are typically neglected [151].

The most rigorous procedure to include relativistic effects is to find the eigen-
functions and eigenvalues of the four-component Dirac equation in an all-electron
basis. This many-particle equation is built on a top of the Dirac equation for a single
fermion. Specifically, the many-electron relativistic Hamiltonian combines the one-
electron Dirac operators from (5), the electron–electron repulsion term as given in
(2), and the Breit operator [23],

gBreiti j = −cαααi · cααα j

2c2ri j
− (cαααiri j ) · (cααα jri j )

2c2r3i j
, (6)
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(or the simplified Gaunt operator gGaunti j = − cαααi ·cααα j

c2ri j
[48]) that mimics the retardation

of the potentials due to the finite speed of light. Although the corresponding equa-
tion is Lorentz-invariant only approximately, it describes relativistic effects most
accurately. The drawback of the so-called Dirac–Coulomb–Breit Hamiltonian is the
large computational cost, which makes this approach computationally infeasible
for molecules with a large number of electrons. In practical applications the four-
component Dirac–Coulomb Hamiltonian is used at the SCF level and the correlated
calculations are performed within the so-called “no-pair” approximation, where pro-
jection operators remove any Slater determinant containing negative-energy orbitals
from the Dirac–Coulomb Hamiltonian [129]. In this approach both one- and two-
electron contributions to spin–orbit coupling are accounted for. It is possible to further
reduce the computational cost and approximate the “full” spin–orbit operator using
either atomic or molecular mean field theories [133].

Computationally less expensive methods work within a two-component frame-
work, where the small component of the Dirac equation is eliminated. However, this
decoupling is not straightforward formany-electron systems and a number of routines
have been developed during the past decades to transform the four-component form
of the many-particle Dirac equation into an equation with at most two components
[9, 153]. One popular approach includes the so-called regular approximations. The
four-component state vector is divided into a large-component spinor ψ L(r) and a
small-component spinorψ S(r) [26, 156]. The atomic balance relation between these
two spinors,

ψ S(rrr) =
(
1 + E − V

2c2

)−1
σσσ · ppp
2c

ψ L(rrr), (7)

allows us to eliminate the small component from the Dirac equation and solve the
Dirac equation for the large component only, which represents a two-component
equation. The most simple flavour of the regular approximation is the zeroth order
regular approximation (ZORA), where the ZORA Hamiltonian for the large compo-
nent reads

HZORA = 1

2
(σσσ · ppp)

(
1 − V

2c2

)−1

(σσσ · ppp) + V . (8)

The above (truncated) Hamiltonian includes parts of the Darwin term and all spin-
orbit interactions arising from the nuclei. However, the ZORA Hamiltonian is not
gauge invariant. This deficiency can be fixed by appropriate scaling procedures or
inclusion of higher order approximations [9, 158].

A different family of approaches aims at decoupling the electronic and positronic
solutions of the Dirac Hamiltonian using a unitary transformation U , which makes
the Dirac Hamiltonian HD block-diagonal with respect to the large (h+) and small
component (h−),

H̄D = U †HDU =
(
h+ 0
0 h−

)
. (9)
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The resulting blocks in the transformed Hamiltonian H̄D are two-component Hamil-
tonians and act on electronic and positronic states only. The exact form of the unitary
transformation U is, however, only known for the free-particle Dirac equation and
is called the Foldy–Wouthuysen transformation [40]. An approximate decoupling
scheme for the many-electron Dirac equation in quantum chemistry was proposed
byHess. The so-calledDouglas–Kroll–Hess (DKH)method [38, 61, 123] is based on
the Foldy–Wouthuysen transformation [40] and represents an order-by-order expan-
sion (in the external potential V ), where the electronic and positronic components
of the Dirac equation are separated iteratively. The DKH transformed Hamiltonian
of (n + 1)-th order has the general form

Hn+1 = U †
nU

†
n−1 . . .U †

2U
†
1 H1U1U2 . . .Un−1Un, (10)

where H1 is the free-particle Foldy–Wouthuysen (fpFW) transformed Dirac Hamil-
tonian H1 = UfpFW

†HDUfpFW. Thus, different orders of approximations are obtained
by applying subsequent unitary transformations to the relativistic Dirac Hamil-
tonian [123, 124, 157, 165]. Specifically, the second-order Douglas–Kroll–Hess
(DKH2) Hamiltonian is most commonly used in quantum chemistry as it provides
satisfactory results for conventional chemical problems. In DKH2, only one unitary
transformation U1 has to be applied. We should note that the explicit form of the
unitary transformation U does not affect lower order DKH Hamiltonians and hence
the operators Ui can be represented in different ways, using, for instance, a power
series expansion of an (anti-Hermitian) operator.

The exact two-component (X2C) relativistic Hamiltonian is based on exact decou-
pling of the large and small components of the Dirac Hamiltonian in its matrix
representation. Specifically, the X2C method exploits the non-symmetric Algebraic
Riccati Equation (nARE) [75, 76], a quadratic matrix equation. The nARE approach
was used for the Dirac Hamiltonian for the first time by Ilias and Saue [65] and intro-
duced as theX2Cmethod.Most importantly, the eigenvalues of theX2CHamiltonian
are identical to the positive energy branch of the four-component Dirac Hamiltonian.

One should stress that in the majority of quantum chemical applications, these
two-componentHamiltonians account only for scalar relativistic effects and thus only
have a one-component form. Due to this one-component nature, such Hamiltonians
can be easily interfaced with standard quantum chemistry codes. Spin-orbit coupling
effects can be included a posteriori using the spin-orbit configuration-interaction
approach,where the relativisticHamiltonian is diagonalized in the spin-free basis [97,
154]. To further decrease the computational cost, the spin-orbit integrals are often
calculated within the atomic mean-field intergrals (AMFI) approach [62, 98, 130].

The computationally most efficient way of including relativistic effects in the
Schrödinger equation is to introduce scalar relativistic effects using relativistic
effective core potentials (RECP) [37]. Such a crude approximation is usually suffi-
ciently accurate for chemistry as the influence of the core electrons on the valence
shell (that is the shell containing electrons of relevance in chemical processes) is
rather indirect and can be accurately modelled using parametrized effective pseudo-
potentials in conjunction with scalar relativistic interactions [37]. Besides being
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computationally inexpensive and fast to compute, RECPs provide reliable results if
spin-orbit coupling is negligible. Spin–orbit corrections can be added a posteriori on
top of RECP [37, 168].

3.2 Solving the Electronic Problem

Since the Schrödinger or Dirac equation cannot be solved exactly for many-electron
systems, many approximate methods have been introduced to quantum chemistry
that aim at solving the electronic problem as accurately as possible. The simplest—
and probably the most important—model is the molecular orbital approximation,
where each electron occupies exactly one orbital. The total electronic wave function
is then constructed as an antisymmetric product of these spin orbitals χi (x j ) that
depend on the spatial coordinates r j and spin coordinate σ j of one electron. The
antisymmetric product of spin orbitals is called a Slater determinant (or electronic
configuration),

Ψel(x1, x2, . . . , xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χN (x1)
χ1(x2) χ2(x2) . . . χN (x2)

...
...

. . .
...

χ1(xN ) χ2(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣

, (11)

where χi (x j ) is the i th spin orbital populated by the j th electron and N is the total
number of electrons. In quantum chemistry, the Hartree–Fock method optimizes a
single Slater determinant and represents a common starting point for more elaborated
approaches. Using the notation of second quantization [60], a Slater determinant
can be written in a very compact form,

Ψel =
∏

i

a†i |〉, (12)

where a†i is the fermionic creation operator, which creates an electron in spin orbital
i , and |〉 is the vacuum state. For simplicity, we have dropped the dependence of Ψel

on the electronic coordinates. Note that a Slater determinant contains only occupied
orbitals. If the number of one-electron functions (that is, spin orbitals) is greater
than the total number of electrons in the system, it is possible to construct more than
one Slater determinant. If the electronic wave function is expanded as a sum of all
possible Slater determinants Φk that can be constructed by distributing N electrons
in K orbitals,

Ψ FCI
el =

∑

k

ckΦk =
∑

k

ck

⎛

⎝
∏

ik

a†ik |〉
⎞

⎠ , (13)
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we obtain the so-called Full Configuration Interaction expansion (for a given finite
basis with K orbitals), where ck are some expansion coefficients.

The energy difference between the FCI solution and the electronic energy corre-
sponding to a single Slater determinant (SD),

Ecorr
el = EFCI

el − ESD
el , (14)

is defined as the correlation energy and originates from the correlated motions of the
electrons that cannot be described within Hartree–Fock theory (except of exchange
correlation). Thus, in order to account for correlation effects, we have to include
more than one Slater determinant in the wave function expansion. Although FCI
allows us to solve the Schrödinger (or Dirac) equation exactly (within a given finite
orbital basis), it is computationally feasible only for the smallest systems, containing
up to, say, 20 electrons. Since actinide atoms and actinide-containing molecules
usually contain much more than 20 electrons, the FCI ansatz cannot be applied in
computational actinide chemistry. Furthermore, since electron correlation effects
are crucial for a reliable description of chemical properties and chemical reactions
involving actinide compounds, we have to find suitable wave function models that
allow us to approximate the FCI wave function as accurate as possible by reducing
the number of degrees of freedom in the optimization problem. This can be done by
either restricting the number of Slater determinants by truncating the FCI expansion
or by using more efficient parameterizations of the CI expansion coefficients ck (or
any combinations of those two strategies).

3.2.1 Accounting for Electron Correlation Effects in the Ground-State
Electronic Wave Function

In quantum chemistry, we usually distinguish between single- and multi-reference
approaches. The former employ some reference configurationΦ0 to construct a trun-
cated CI expansion. Multi-reference methods do not refer to a single Slater determi-
nant but employ a set of selected determinants that are chosen due to some criterion.
Both single- and multi-reference methods are commonly applied in computational
actinide chemistry to model ground- and excited-states properties. In the following,
we will briefly discuss some conventional and unconventional electronic structure
methods that have been used to study heavy-element-containing compounds.

3.2.2 Truncated Configuration Interaction

One single-reference approach, where the FCI wave function is systematically trun-
cated, represents truncated configuration interaction (CI). In truncated CI, only those
Slater determinants are included in the wave function expansion that differ by one,
two, three, etc. orbitals with respect to the reference determinant Φ0. The electronic
wave function is then a linear expansion containing the reference determinant and
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all singly, doubly, triply, etc. substituted configurations. Most commonly, the FCI
expansion is truncated to include only single and double excitations leading to the
CI Singles Doubles (CISD) wave function,

Ψ CISD
el = Φ0 +

occ∑

i

virt∑

a

cai a
†
aaiΦ0 +

occ∑

i< j

virt∑

a<b

cabi j a
†
aa

†
ba jaiΦ0. (15)

In the above equation, we have used the conventional notation of quantum chemistry,
where indices i, j, . . . indicate occupied (spin) orbitals, while a, b, . . . run over all
virtual (spin) orbitals of the reference determinantΦ0. ai is the fermionic annihilation
operator and depopulates the i-th orbital. One drawback of CISD (or any truncated
CI method) is its lack of size-extensivity and size-consistency. The size-consistency
error can be reduced using, for instance, the Davidson correction [87].

3.2.3 Single-Reference Coupled Cluster Theory

A different single-reference method that is frequently applied in actinide chemistry
is coupled cluster (CC) theory. In the CC method, the electronic wave function is
written using an exponential ansatz,

Ψ CC
el = eTΦ0, (16)

where T is the so-called cluster operator and can be expressed as a sum of excitation
operators T = T1 + T2 + T3 + · · · . As in truncatedCI, the excitation operators excite
one, two, three, etc. electrons from occupied orbitals to virtual orbitals,

T1 =
∑

i

∑

a

tai a
†
aai , T2 = 1

(2!)2
∑

i j

∑

ab

tabi j a
†
aa

†
ba jai ,

T3 = 1

(3!)2
∑

i jk

∑

abc

tabci jk a
†
aa

†
ba

†
c aka jai , (17)

and so on, where tai , tabi j , . . . are the CC singles, doubles, etc. amplitudes. In conven-
tional electronic structure calculations, the full cluster operator is approximated and
restricted to include only some lower-order excitation operators. Specifically, in the
CC Singles and Doubles (CCSD) approach, we have T = T1 + T2. In truncated CC
methods, the wave function expansion still contains all Slater determinants of the
FCI expansion, yet the expansion coefficients ck are approximated by only a subset
of cluster amplitudes. These conventional single-reference methods typically break
down when orbitals become (quasi-)degenerate and hence cannot be unambiguously
separated into an occupied and virtual space. In such strongly-correlated cases, we
can switch to a multi-reference description of electronic structures. There exist,
however, extensions (or simplifications) of conventional single-reference methods
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that allow us to model strongly-correlated quantum states within a single-reference
framework. Examples are spin-flip CC [80] and pair-CCD [136].

3.2.4 Multi-reference Complete Active Space Self-consistent Field
Theory

The complete active space self-consistent field (CASSCF) method is a variant of the
multi-configurational SCF (MCSCF) approach. The model wave function,

Ψ CASSCF
el = e−κ

∑

i

ciΦi , (18)

has a similar form as the FCI wave function being a linear expansion in terms of
Slater determinants (or configuration state functions) Φi with expansion coefficients
ci . The operator e−κ performs unitary transformation of the spin orbitals, where κ is
the generator of orbital rotations,

κ =
∑

p>q

κpq(a
†
paq − a†qap). (19)

Thus, in contrast to FCI, the orbital basis is optimized self-consistently within
CASSCF. The ground-state wave function is obtained by minimizing the electronic
energy with respect to all variational parameters,

ECASSCF
el = min

κ,c

〈
Ψ CASSCF
el (κ, c)

∣∣ H
∣∣Ψ CASSCF

el (κ, c)
〉

〈
Ψ CASSCF
el (κ, c)

∣∣ ∣∣Ψ CASSCF
el (κ, c)

〉 , (20)

So far, we have made no assumptions about the configurational space of CASSCF
and the above equations are valid for any MCSCF wave function. Since we have to
optimize both the expansion coefficients ci and the spin orbitals, MCSCF-type meth-
ods are computationally expensive. To reduce the computational cost, the configu-
rational space is heavily truncated. Specifically in CASSCF, the molecular orbitals
are divided into three subsets: (1) doubly-occupied inactive (frozen, core) orbitals,
(2) active orbitals, and (3) unoccupied external (virtual) orbitals. In each electronic
configuration (Slater determinant), the inactive orbitals are always doubly occupied,
while the external orbitals remain unoccupied. Only the orbital occupations of the
active orbitals are allowed to differ in each Slater determinant. Furthermore, all possi-
ble ways of distributing the active electrons in the active space orbitals are permitted
in the CASSCF wave function, which makes the active space complete in terms of
the CI expansion. Thus, CASSCF represents a FCI expansion in the active space
orbitals.

In general, the active space should compromise all chemically important orbitals
for a given molecular system. For small molecules, an energetic criterion can be
used to select the active space orbitals. In actinide chemistry, conventional selection
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proceduresmight be ineffective as actinide complexes featuremany quasi-degenerate
orbitals and it remains ambiguouswhichmetal and ligand orbitals have to be included
in the active space. Novel approaches based on quantum information theory allow
us to identify the chemically most important orbitals and can be applied to develop
a black-box like selection procedure of active spaces for MCSCF-type calculations.
Such an approach will be discussed in Sect. 3.2.11. The CASSCF method removes
the problem of (quasi-)degeneracies and allows us to model static correlation effects.
However, it does not account for dynamical correlation effects attributed to electron
excitations beyond the active space orbitals. CASSCF, thus, provides a spin-adapted
zero-order wave function, where dynamical and core-valence electron correlation
can be added using various a posteriori corrections such as complete-active-space
second-order perturbation theory (CASPT2) [3, 4] or multi-reference configuration-
interaction (MRCI) [115].

3.2.5 The Density Matrix Renormalization Group

The density matrix renormalization group (DMRG) [25, 77, 90, 91, 99, 131, 142,
166, 170] algorithm represents a computationally efficient variant of MCSCF theory
where the evaluation of the electronic energy scales only polynomially with system
size. Due to its low computational scaling, the DMRGprotocol allows us to approach
the FCI limit of an N -particle Hilbert space constructed from L orbitals for large
molecules, where FCI calculations are computationally unfeasible. In contrast to
conventional ab initio methods, DMRG optimizes a special type of quantum states,
so-called matrix product states (MPS), that allow us to efficiently reparameterize the
electronic wave function using a significantly smaller number of variational param-
eters. In the MPS representation, the CI wave function expansion (13) is rewritten in
terms of a product of matrices that replaces the CI expansion coefficients,

Ψ DMRG
el =

∑

k1,k2,...,kL

Ak1
1 Ak2

2 . . . AkL
L |k1, k2, . . . , kL〉, (21)

where L is the number of spatial orbitals in some active space, {Ak1
1 , Ak2

2 , . . . , AkL
L }

is a set of matrices that are optimized by the algorithm, and {k1, k2, . . . , kL} are the
occupations of the orbitals (either unoccupied, singly occupied, or doubly occupied)
written in terms of the occupation number representation, where each occupation
number vector

∣∣k1, k2, . . . , kL
〉
represents a Slater determinant.

The DMRGwave function and its many-particle basis is optimized in a sweeping
procedure. One sweep contains (L − q − 2) microiterations, where q is the number
of exactly-represented orbitals (either 1 or 2). To perform the sweeping algorithm, the
orbitals have to be aligned on a one-dimensional lattice. Thus, theDMRGalgorithm is
best suited to describe one-dimensional problems. There exist different approaches to
order the orbitals along a one-dimensional lattice. Specifically, concepts of quantum
information theory allow us to select an optimal orbital ordering in a black-box-like
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fashion [90]. One microiteration includes three distinct steps: (1) blocking, (2) diag-
onalization, and (3) decimation. First, the L-orbital space is partitioned into three
subspaces: a system block, an environment block, and q exactly represented orbitals
in between represented by 4 basis functions in the case of spatial orbitals. In the
blocking step, the system and, if q = 2, the environment are enlarged by one of
the exactly represented orbitals. The many-particle basis states are defined as a ten-
sor product of basis states of the subsystem block and the neighbouring exactly-
represented orbital. In the second step, the Hamiltonian of the superblock (enlarged
system+enlarged environment block) is constructed and diagonalized. Usually, we
are only interested in the ground-state wave function and hence only one root of
the superblock Hamiltonian needs to be computed. In the third and last step, the
dimensionality of the enlarged system and enlarged environment blocks is reduced
to prevent the many-particle basis from growing exponentially (due to the blocking
step). The number of basis functions is reduced to a limit indicated by a parameterm.
In DMRG, this so-called renormalization step is performed in a specific way. From
the superblock wave function Ψ SB, we calculate the many-particle reduced density
matrix of the enlarged active system block ρs = Trme

∣∣Ψ SB
〉 〈

Ψ SB
∣∣, where me indi-

cate states defined on the (enlarged) environment block. This reduced density matrix
ρs is then diagonalized and the eigenvectors corresponding to the m largest eigen-
values form the new many-particle basis of the enlarged system block. In the final
renormalization step, all matrix representations of operators are transformed into this
new basis. Specifically, the computed transformation matrices correspond to the A
matrices of the MPS ansatz. Thus, each microiteration step optimizes exactly one
MPS matrix A and we have to sweep through the lattice to obtain an (approximate)
full representation of the MPS. After the decimation step, the algorithm starts again
with the blocking procedure, where the new system block is enlarged by one orbital,
while the new environment is reduced by one orbital. We should note that the choice
of m is crucial to find a balance between accuracy and computational cost. There is,
however, no straightforward formula that indicates the best value of m and several
calculations with different values of m are required to converge the wave function
with satisfactory accuracy.

Typically, an MPS is represented in its canonical form containing so-called left-
and right-normalized matrices. The DMRG algorithm optimizes a mixed-canonical
MPS that is composed of both left- and right-normalized matrices,

ΨMPS
el =

∑

k1,k2,...,kL

Ak1
1 Ak2

2 . . . Akl−1
l−1Ψ

kl kl+1 Akl+2
l+2 . . .A

kL
L |k1, k2, . . . , kL〉. (22)

In the above equation, the left-normalized matrices are defined for orbitals k1, . . . ,
kl−1, while the right-normalized matrices are obtained for orbitals kl+2, . . . , kL . The
matrix Ψ kl kl+1 is obtained during the diagonalization step of the superblock Hamilto-
nian. Since one matrix of the MPS representation contains at most m2 elements, the
total number of variational parameters is at most 4Lm2 if we work in a spatial orbital
basis with 4 possible occupations. Thus, the high-dimensional CI coefficient tensor,
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which scales binomially with system size, has been replaced by a product of lower-
dimensional tensors.

The DMRG algorithm is a powerful tool to approximate FCI wave functions
in a given active space that are computationally not accessible for conventional
quantum mechanical methods like CASSCF. Most importantly, it is suitable for
strongly-correlated systems and hence allows us to accurately model heavy-element
compounds, like transition metal- or actinide-containing molecules. Although origi-
nally formulated to tackle one-dimensional problems, DMRG has been successfully
applied to describe strong correlation in general 3-dimensional systems. The missing
dynamical correlation effects can be added a posteriori using the same corrections
as developed for traditional MCSCF methods. Examples are second order com-
plete active space perturbation theory (DMRG-CASPT2), [82] the multi-reference
configuration interaction approach with internal contraction of DMRG (DMRG-
icMRCI), [128] canonical transformation theory (CT), [106] or perturbation theory
formulated in terms of matrix product states [132].

3.2.6 Geminal-Based Approaches

All electronic structuremethods discussed aboveuseone-electron functions (orbitals)
to construct the Slater determinants that span the N -particle Hilbert space. A con-
ceptually different approach to account for electron correlation effects is to use two-
electron functions as fundamental building blocks of the electronicwave function [21,
73, 96]. In second quantization, a (singlet) two-electron operatorψ†

i , also called gem-
inal, can be written as a linear combinations of electron-pair creators,

ψ
†
i =

M∑

q=1

Ci
qa

†
qa

†
q̄ , (23)

where a†q (a†q̄ ) are the fermionic creation operators for α (β) electrons and M is the
number of one-electron functions used to construct geminal i . In the above equation,
Ci
q are the geminal coefficients that link the geminal creation operator with the

underlying one-particle basis (represented by a†p). Thus, geminals are quasi-particles
and the corresponding geminal creation operators are electron pair creators. The
geminal-based electronicwave function is a product of the geminal creation operators
acting on the vacuum state,

Ψel =
P∏

i

ψ
†
i

∣∣〉 , (24)

with P = N/2 being the number of electron pairs. If the geminal creation operators
have the general form of (23), we obtain the antisymmetric product of interacting
geminals (APIG) wave function [96]. Although APIG includes correlations between
orbital pairs, it is computationally intractable for larger systems. Substituting (23) in
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the electronic wave function (24), we can rewrite the APIG wave function using a
linear expansion of Slater determinants,

Ψ APIG
el =

∑

{mi=0,1|P}
|C(m)|+(a†1a

†
1̄
)m1(a†2a

†
2̄
)m2 . . . (a†Ka

†
K̄
)mM

∣∣〉 , (25)

whereC(m) is the geminal coefficientmatrix, |A|+ indicates the permanent ofmatrix
A, and

P =
M∑

k=1

mk with P < M. (26)

Specifically, C(m) is a P × P matrix and contains only those columns for which
mk = 1. In order to evaluate the coefficients in front of the wave function expansion
of (25), we have to evaluate the permanent of C(m) (similar to the determinant with
all − signs replaced by + signs). Since the evaluation of the permanent of a matrix
is #P-hard and the Slater determinant expansion of (25) includes a factorial number
of determinants, the APIG model is computationally expensive. To make geminal-
based models applicable to larger systems, we have to introduce constraints that
allow us to evaluate the permanent efficiently. One simplified geminal-based wave
function is the antisymmetric product of strongly orthogonal geminals (APSG) [84,
85, 107, 108, 119], where the geminal creation operators create two-electron states
that are orthogonal to each other. Specifically, the sum of (23) is restricted to run
over mutually exclusive subspaces Mi of orbitals,

ψ
†
i =

Mi∑

q=1

Ci
qa

†i
q a

†i
q̄ with

∑

q

Ci
qC

k
q = δik .

The partitioning of M into disjoint subspaces Mi is equivalent to associating subsets
of orbitals to specific geminals, that is, each orbital may belong to only one geminal.
Although the strong orthogonality constraint allows us to efficiently optimize the
wave function using the variational principle, we miss electron correlation effects
between the orbital subsets (as they are disjoint).

A promising geminal-based model that has been successfully applied to actinide
chemistry is the antisymmetric product of 1-reference orbital geminal (AP1roG) [19–
21, 46, 149]. In AP1roG, the strong orthogonality constraint is relaxed and inter-
geminal correlations are introduced in the geminal ansatz,

ψ
†
i = a†i a

†
ī

+
virt∑

a

cai a
†
aa

†
ā, (27)

where the sum runs over all virtual orbitalswith respect to some reference determinant
(like the HF determinant). The second term of the above equations assigns (virtual)
orbitals to all geminals and accounts for inter-geminal correlations. The main feature
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of the AP1roG wave function is that the first term of (27) selects some reference
determinant, that is, one specific orbital is occupied by an α and β electron in one
specific geminal. The corresponding geminal coefficient matrix has a special form,

CAP1roG =

⎛

⎜⎜⎜⎝

1 · · · 0 0 c1;P+1 c1;P+2 · · · c1;K
0 1 · · · 0 c2;P+1 c2;P+2 · · · c2;K
...

...
. . .

...
...

...
. . .

...

0 · · · 0 1 cP;P+1 cP;P+2 · · · cP;K

⎞

⎟⎟⎟⎠ , (28)

where each row is one geminal and the left block contains the P × P identity matrix
due to the first term in (27).

In addition to the abovementioned geminal models, different geminal-basedwave
functions have been introduced in quantum chemistry, like generalized-valence-bond
perfect-pairing (GVB-PP) [49, 57, 64] and the particle-number projected Hartree–
Fock–Bogoliubov model [30]. However, none of these geminal-based models have
been applied to actinide chemistry and hence will not be discussed in this chapter.
In the following, we will have a closer look at the AP1roG method, its optimization
schemes, and possible extensions, as it has been proven to properly describe the
static correlation in certain (heavy-element containing) molecules such as UO2+

2 and
ThO2 [152].

Although the structure of the AP1roG coefficient matrix allows us to efficiently
evaluate the permanent |C|+, we still have to deal with a factorial number of Slater
determinants when optimizing the electronic wave function. To obtain a computa-
tionally efficient optimization method, we can rewrite the AP1roG wave function
using an exponential ansatz,

Ψ AP1roG
el =

∏

i

ψ
†
i

∣∣〉

=
∏

i

(
a†i a

†
ī

+
virt∑

a

cai a
†
aa

†
ā

)
∣∣〉

=
∏

i

(
1 +

virt∑

a

cai a
†
aa

†
āaī ai

)
a†i a

†
ī

∣∣〉

= e
∑occ

i

∑virt
a cai a

†
aa

†
ā aī ai Φ0, (29)

where Φ0 = ∏
i a

†
i a

†
ī

∣∣〉. Thus, the AP1roG method optimizes a coupled cluster-type
wave function where the cluster operator T is restricted to electron pair excitations
Tp [136],

Tp =
occ∑

i

virt∑

a

cai a
†
aa

†
āaī ai . (30)
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Since Tp excites an electron pair, it can be considered as a simplified T2 operator and
hence AP1roG is a simplified version of the CCD method. Due to its exponential
ansatz, the AP1roG wave function is also known as the pair coupled cluster doubles
(pCCD) wave function,

Ψ AP1roG
el = Ψ

pCCD
el = eTpΦ0. (31)

Furthermore, the geminal coefficients {cai } of AP1roG are equivalent to the pCCD
amplitudes and we can use the optimization techniques of single-reference coupled
cluster theory to solve for {cai }. Specifically, the electron-pair amplitudes are opti-
mized using the projected Schrödinger equation, where the projection manifold is
restricted to electron-pair excited determinants Φaā

i ī
= a†aa

†
āaī aiΦ0, [73]

〈
Φaā

i ī

∣∣ H
∣∣Ψ AP1roG

el

〉 = E
〈
Φaā

i ī

∣∣ ∣∣Ψ AP1roG
el

〉 = Ecai , (32)

or using the similarity transformed Hamiltonian of coupled cluster theory, [136]

〈
Φaā

i ī

∣∣ e−TpHeTp
∣∣Φ0

〉 = 0. (33)

Both optimization procedures are equivalent and (32) and (33) yield similar working
equations.

Although the AP1roGwave function does not contain determinants with unpaired
electrons or so-called “broken” electron pairs, reducing the CCD model to electron-
pair terms not only decreases the computational cost, but also provides a better
description of strongly-correlated systems. The AP1roG method is thus suitable for
systemswith quasi-degenerate electronic states, transition-state structures, and bond-
breaking processes. The composition of the ansatz has been validated by Bytautas
et al. [24, 73], who have shown that the correct description of strong correlation
effects depends mainly on determinants with a small number of unpaired electrons.

In contrast to CCD, the AP1roG method is sensitive to rotations among the occu-
pied orbitals and among the virtual orbitals as the pairing schemes are not equivalent.
Thus, electronic energies and properties depend on the choice of themolecular orbital
basis and two different molecular orbital sets can yield different results even though
the reference determinant remains unaffected (note that the HF determinant is invari-
ant under rotations of the occupied or virtual orbital space, respectively). In order to
resolve the problemof non-size-consistency, themolecular orbital basis and hence the
pairing scheme need to be optimized. The optimization of the orbital-pairing scheme
allows us to obtain accurate results that almost reproduce doubly-occupied self con-
sistent field (DOSCF) results [96]. Computational studies suggest that a variational
orbital optimization protocol provides the most robust and reliable orbital optimiza-
tion procedure in comparison to other investigated non-variational methods [20, 21].
The optimal set of orbitals is obtained by minimizing the AP1roG energy functional
subject to the constraint that the AP1roG coefficient equations (32) are satisfied. The
energy Lagrangian, thus, reads



138 A. Łachmańska et al.

L = 〈
Φ0

∣∣ eκHe−κ
∣∣Ψ AP1roG

el

〉 +
∑

i,a

λa
i

( 〈
Φaā

i ī

∣∣ eκHe−κ
∣∣Ψ AP1roG

el

〉 − Ecai
)
, (34)

where κ is again the generator of orbital rotations as defined in (36) and {λa
i } are the

Lagrange multipliers. The Lagrange multipliers are obtained from equations that are
analogous to the Λ-equations of coupled cluster theory, where we require the partial
derivative of the Lagrangian with respect to the geminal coefficients {cai } to equal
zero, ∂L

∂cai
|κ=0 = 0. The geminal coefficients are obtained by making L stationary

with respect to the Lagrange multipliers {λa
i },

∂L
∂λa

i
|κ=0 = 0 [20]. The orbital gradient

is the partial derivative of L with respect to the orbital rotation coefficients {κpq}
evaluated for the current set of orbitals (κ = 0),

∂L

∂κpq

∣∣∣
κ=0

= gpq |κ=0 = 〈
Φ0 +

∑

i,a

λa
i Φ

aā
i ī

∣∣ [(a†paq − a†qap), H ] ∣∣Ψ AP1roG
el

〉

−
∑

i,a

〈
Φ0

∣∣ [(a†paq − a†qap), H ] ∣∣Ψ AP1roG
el

〉∑

i,a

λa
i c

a
i . (35)

After the orbital gradient and (approximate) orbital Hessian A are evaluated, the
matrix representation of κ can be determined from

κ = −Ag (36)

and the orbital basis can be transformed using the unitary transformation matrix e−κ .
For reasons of computational efficiency, the orbital Hessian is typically approximated
by its diagonal, Apq,pq = ∂ g pq

∂κpq

∣∣
κ=0.

Although AP1roG captures a significant amount of the strong electron correlation
energy and represents a very promising referencewave function in actinide chemistry,
it misses a large fraction of the dynamic (weak) correlation energy. Dynamic electron
correlation effects on top of the geminal wave function can be included in the wave
function ansatz a posteriori using, for instance, perturbation theory [70, 95, 120, 127,
141], extended random phase approximation [27, 47, 109, 114], density functional
theory (DFT) [44, 45, 47], and coupled cluster theory [136] or its linearized version
[13, 47, 88]. Numerical studies indicate that the perturbation theory corrections
with an AP1roG reference function do not provide reliable electronic structures and
properties for actinide-containing compounds. To reliably model actinide chemistry,
we can use various coupled cluster corrections on top of the AP1roG wave function.

One possible way to extend AP1roG is to apply an AP1roG-tailored CC formal-
ism. In AP1roG-tailored CC theory, the electron-pair amplitudes of the CC singles,
doubles, triples, etc. equations are substituted by the AP1roG geminal coefficients
and not optimized, that is kept frozen, during the optimization procedure. Note that
the tailoredCCamplitude equations are similar to the conventionalCCworking equa-
tions, except that some selected amplitudes (the tailored amplitudes) are not varied.
Thus, a tailored CC calculation represents only a minor modification in any CC code.
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In the case of AP1roG-tailored CC, the corresponding CC corrections are referred
to as frozen-pair (fp) CCD, fpCCSD, fpCCSDT, etc. In the fpCCD and fpCCSD
methods, the single and non-pair double amplitudes can provide a balanced descrip-
tion of electron correlation effects when both CCD and CCSD fail in describing
strongly-correlated systems.

A different CC corrections on top of AP1roG employs a linearized coupled cluster
(LCC) ansatz and represents a simplification of any frozen-pair CC approach. In the
LCC correction, we approximate the exponential coupled cluster ansatz with an
AP1roG reference as

Ψ AP1roG−LCC
el = eTΨ AP1roG

el (37)

≈ (1 + T )Ψ AP1roG
el , (38)

where T is a general cluster operator. TheSchrödinger equation for thiswave function
ansatz reads

H
∣∣Ψ AP1roG−LCC

el

〉 = E
∣∣Ψ AP1roG−LCC

el

〉

e−T HeT
∣∣Ψ AP1roG

el

〉 = E
∣∣Ψ AP1roG

el

〉
, (39)

where we have used (37) and multiplied from the left by e−T . In the LCC correction,
the left-hand-side of (39) is approximated to contain only linear terms in the Baker–
Campbell–Hausdorff expansion,

(H + [H, T ]) ∣∣Ψ AP1roG
el

〉 = E
∣∣Ψ AP1roG

el

〉
. (40)

If we now substitute the exponential form of the AP1roG wave function (31) in
the above equation, we can bring the AP1roG-LCC Schrödinger equation into the
familiar form

(H + [H, T ] + [[H, T ], Tp])
∣∣Φ0

〉 = E
∣∣Φ0

〉
(41)

of single-reference CC theory. Furthermore, in AP1roG-LCC, the cluster operator is
restricted to contain electron excitations (singles, broken-pair doubles, etc.) beyond
electron-pair excitations. For instance, in the case of double excitations, we must
have T = T2 − Tp, which results in the AP1roG-LCCD method. Note that (41) is
the Schrödinger equation for the non-pair amplitudes as the electron-pair ampli-
tudes have been already optimized within AP1roG. Although being simplifications
of conventional CC methods, the linearized and frozen-pair CC corrections feature
a similar computational scaling as their single-reference counter parts.

3.2.7 Kohn-Sham Density Functional Theory

Density functional theory (DFT) is the most popular electronic structure method due
to its rather low computational cost and conceptual simplicity. In DFT, the molecular
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system and its properties are determined by its electron density ρ(r) instead of the
electronic wave function. Specifically, Hohenberg and Kohn [63] proved that the
non-degenerate ground-state wave function is uniquely determined by the electron
density that corresponds to some external potential vext(r).

The most common implementation of this method is within the Kohn-Sham for-
malism (KS) [78]. Specifically, in KS-DFT, an artificial reference system of non-
interacting electrons is introduced that yields exactly the same electron density as
the fully interacting system. Furthermore, the electronic energy is a functional of the
density and is decomposed into different contributions,

E[ρ] = Ts[ρ] + Vext[ρ] + J [ρ] + Exc[ρ], (42)

where Ts[ρ] is the kinetic energy of the non-interacting system, Vext[ρ] is the poten-
tial energy due to some external potential, J [ρ] is the classical Coulomb interaction,
and Exc[ρ] is the so-called exchange–correlation functional and accounts for all
non-classical contributions to the electron–electron interaction as well as a correc-
tion term for the kinetic energy that corresponds to the difference in kinetic energy of
the fully-interacting and non-interacting system. However, the exact form of Exc[ρ]
in (42) is unknown and approximations thereof have to be used. Due to their approxi-
mate nature, some density functional approximations (DFA) are appropriate for only
certain types of molecules or particular properties [29, 31, 81, 145]. One major
drawback of DFAs is the so-called self-interaction error attributed to the interac-
tions between an electron and its own electric field [111]. This error is an artifact of
the approximate nature of the DFT exchange–correlation functional. Paradoxically,
the self-interaction error may be partly balanced by other deficiencies in the energy
functional yielding electronic energies and molecular properties that agree well with
experimental results due to cancellation of errors.

In KS-DFT, we have to solve a set of one-particle equations (the KS equations),

(
− 1

2
∇2 + v(ri )

)
χi (ri ) = εiχi (ri ), (43)

which optimize the KS orbitals χi (ri ). In the above equation, v(ri ) is an effective
potential and determined as the variation of the energy functional E[ρ] with respect
to the electron density. After the KS equations are solved, the electron density can
be expressed in terms of the optimized KS orbitals,

ρ(r) =
N∑

i

|χi (r)|2. (44)

Due to its low computational cost, KS-DFT has been extensively used in actinide
chemistry, including its time dependent extensions (TD-DFT) to model electroni-
cally excited states [55, 67, 68, 83, 145, 167]. Specifically, molecular structures
can be accurately calculated using generalized gradient approximation (GGA) func-
tionals, such as BP86, [10, 110] while electronic energies (thermochemistry) and
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excitation energies are best determined using so-called hybrid exchange–correlation
functionals, like PBE0 [1, 112, 113], B3LYP [10, 89], or CAM-B3LYP [169] that
provide good agreement with experimental data or high-level wave-function-based
methods [51, 79, 117, 146, 160].

3.2.8 Targeting Excited States with Wave-Function-Based Approaches

Since electronic spectra are used to identify the oxidation states and ligand effects
in actinide species, reliable theoretical predictions of excitation energies of actinide
compounds are highly important. In CI-type methods, such as MCSCF or DMRG,
the electronic excitation energies are usually obtained by calculating higher roots
of the eigenvalue problem. However, in order to compute excited states in coupled
cluster theory, we have to define a new ansatz. The most popular approaches applied
to actinides are the equation-of-motion (EOM) and linear response (LR) coupled
cluster formulations [11, 12, 122, 148]. In this chapter, we will focus on a different
approach that allows us to include strong correlation effects in excited states: the
Fock-space coupled cluster (FSCC) approach.

3.2.9 Strongly-Correlated Excited States with Fock-Space Coupled
Cluster Theory

The FSCC method belongs to the group of state-universal multi-reference coupled
cluster theories and operates in the Fock space. The key idea behind the FSCC
approach is to find an effective Hamiltonian in a low-dimensional model P space,
with eigenvalues that reliably approximate the desired eigenvalues of the real (phys-
ical) Hamiltonian. In the FSCC method, the P space (also called the model space)
contains all active valence orbitals directly involved in the electronic excitations,
while the Q space (also called auxiliary or complementary space) includes all remain-
ing orbitals. Thus, only a few eigenvalues out of the whole spectrum are calculated,
reducing the expensive step of diagonalizing the Hamiltonianmatrix. In many practi-
cal applications, however, the P and Q spaces are not well separated from each other,
which might result in intruder state problems. They usually manifest as convergence
difficulties for large P spaces, which are particularly desired for modeling electronic
structure of actinides. Such divergencies might occur for a specific molecule, a given
molecular geometry, or basis set. To remedy this problem, the intermediate Hamil-
tonian (IH) formulation of the FSCC method has been introduced, which imposes
a buffer space between the desired and undesired states. Thus, the P space is fur-
ther divided into a main Pm space and an intermediate Pi space. The intermediate
space serves as a buffer between the Pm and Q spaces, for which various numerical
procedures have been developed [101].

A characteristic feature of the FSCC approach is the partitioning into sectors (k,
l) depending on the number of electrons removed from or attached to the reference
state. Within the hole-particle formalism, the cluster operator Tn is expressed as
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Tn = T (0,0)
n + T (0,1)

n + T (1,0)
n + T (1,1)

n + · · · + T (k,l)
n , (45)

where the T (0,0)
n represents the ground state (zero holes and zero particles). In the

above equation, T (0,1)
n corresponds to the system with one additional electron (zero

holes and one particle), T (1,0)
n reduces the number of electrons by one (one hole

and zero particles), and T (1,1)
n is a single excitation (one hole and one particle). The

Hamiltonian is decomposed in the same way as the cluster operator Tn yielding
electronic energies for the individual sectors, e.g., the ground-state energy for sector
(0, 0), electron affinities for sector (0, 1), ionization potentials for sector (1, 0), and
excitation energies for sector (1, 1). Electronic spectra can also be obtained as a
double electron attachment, that is, from sector (0, 2) of the Fock space [105, 144,
147]. Higher order sectors have also been explored, but they are not commonly
used. FSCC calculations require a reference determinant that dominates in the wave
function expansion. Non-degenerate closed-shell states or high-spin open-shell states
are usually the right choice for the reference determinant.

The advantage of the FSCCmethod is the size-extensiveness of ground-state ener-
gies and size-intensivity of excitation energies. Themethod allowsus to obtain several
electronic excited states of molecules with a common Fermi vacuum in a single run.
Finally, the FSCCapproach includes correlation effects of core and valence electrons,
while its relativistic version is appropriate for actinide-containingmolecules [66, 122,
144, 145, 151].

3.2.10 Embedding Wave Function Theory in Density Functional
Theory

Reliable modeling of electronic spectra of actinide species with wave function-based
methods is rather expensive and therefore usually limited to small model compounds.
One way to overcome this problem is to combine wave function theory (WFT) with
density functional theory within the so-called WFT-in-DFT approach. Within the
WFT-in-DFT framework, the whole quantum system is partitioned into a system
part and into an environment part. The system is represented by the WFT-based
method, while the environment is modeled by the (usually less accurate, but signif-
icantly less expensive) DFT approach. The combination of these two methods will
allow us to reliably account for static and dynamic electron correlation effects in large
molecular systems, yet including environmental effects at the DFT level. Particularly
for actinides, the embedding approach allows us to account for the chemical envi-
ronment, such as ligand and crystal effects, in a cost effective way [50, 51, 147]. In
the simplest WFT-in-DFT embedding scheme, the DFT embedding is accounted for
as a static external potential and the orthogonality between the system and environ-
ment is neglected. Such an embedding potential includes the electrostatic potentials
of the nuclei and the electron density of the environment, as well as contributions
originating from the non-additive part of the exchange–correlation energy and from
the non-additive part of the kinetic energy,



New Strategies in Modeling Electronic Structures and Properties … 143

vemb[ρWFT, ρDFT] = vnucDFT(r)

+
∫

dr′ ρDFT(r′)
|r − r′| + δEnadd

xc [ρWFT, ρDFT]
δρWFT

+ δT nadd
s [ρWFT, ρDFT]

δρWFT
. (46)

This one-body term is then coupled with a given WFT model [59]. Such a WFT-in-
DFT model can also be used to calculate excitation energies. However, the corre-
sponding excitation spectra should be treated with care as excited states in the system
might require coupling to the environment.

3.2.11 Interpretation of Electronic Wave Functions

Within molecular orbital theory, the electronic wave function is constructed from
one-electron functions. This formalism provides a convenient description of molec-
ular systems, where the electrons occupy specific orbitals and hence are localized
in certain spatial regions of molecules. The contribution of individual orbitals to
electronic structures and properties can be assessed using, for instance, concepts of
quantum information theory (QIT) [7, 8, 14, 15, 17, 92, 125]. Specifically, QIT
provides us with tools that allow us to interpret electronic wave function using the
popular picture of interacting orbitals.

If a (pure) quantum state whose wave function is given by (13) cannot be written
as product of states of its components (here, orbitals), Ψel �= ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψN ,
we say that the quantum state is entangled. Thus, a single determinant wave function
does not and cannot describe an entangled state. To simplify our discussion, we
will focus on a bipartite system AB, that is, a quantum state that is composed of
two parts. Note, however, that our analysis can be extended to quantum states that
are composed of more than two subsystems A, B,C, . . . . For a bipartite system
AB, the wave function Ψ AB

el of an entangled quantum state can only be written as a
series of tensor products of basis states defined on the individual subsystems,Ψ AB

el =∑
pq cpqΨ

A
el,p ⊗ Ψ B

el,q . Furthermore, while the quantum state of the composite system
is well-defined, the states of its components cannot be determined unambiguously,
that is, the subsystems A and B are correlated and cannot be treated independently.
Quantum entanglement is an important feature in correlated systems such as actinide
complexes and provides new perspectives on traditional quantum-chemical tools to
interpret electronic structures.

A quantitative measure of the entanglement between any two subsystems is
described by the von Neumann entropy and reads

SA|B = −Tr(ρA ln ρA), (47)

where ρA is the reduced density matrix (RDM) for subsystem A given by
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ρA = TrB
∣∣Ψ AB

〉 〈
Ψ AB

∣∣ (48)

for any pure state. Thus, ρA is obtained by tracing out all degrees of freedom from
subsystem B and vice versa. Since the von Neumann entropy corresponds to the
Shannon entropy in information theory, it quantifies how much information about
subsystem A is encoded in subsystem B and vice versa. The entanglement entropy
(47) is determined by the eigenvalue spectrum of the RDMs.

In this chapter, we aim at quantifying the interactions between orbitals. Thus,
our subsystems should be composed of the molecular orbitals that are used to con-
struct the Slater determinants in our wave function expansion. For that purpose, let
us rewrite the FCI wave function (13) in occupation number form (dropping the
superscript)

Ψel =
∑

k1,k2,...,kL

ck1,k2,...,kL
∣∣k1, k2, . . . , kL

〉
, (49)

where ck1,k2,...,kL are the expansion coefficients for each determinant
∣∣k1, k2, . . . , kL

〉

and the sum runs over all occupation number vectors in the corresponding Hilbert
space. Furthermore, we will consider only two different partitionings of our orbital
space: (1) one subsystemcontains exactly one orbital,while the other subsystem (here
called environment) contains the remaining L − 1 orbitals and (2) one subsystem
contains exactly two orbitals, while the environment is constructed from the other
L − 2 orbitals. More general partitioning schemes have been investigated in the
literature [143], however, focusing on one- and two-orbital entanglement measures
will be sufficient to provide first insights into electronic structures of molecular
systems. For the first case, we explicitlywrite thewave function of (49) in its bipartite
form

Ψ
i,e
el =

∑

k1,k2,...,kL

c̃k1,k2,...,kL
∣∣ki

〉 ⊗ ∣∣e
〉
, (50)

where
∣∣e

〉 = ∣∣k1, k2, . . . , ki−1, ki+1, . . . , kL
〉
is a many-electron state vector contain-

ing environment orbitals and c̃k1,k2,...,kL are the expansion coefficients that may differ
from ck1,k2,...,kL by a phase factor. This N -electron state vector is then used to construct
the reduced density matrix for orbital i , the so-called one-orbital RDM, according
to (48) with elements

ρi,i ′ =
∑

e

〈
e
∣∣ 〈ki

∣∣ ∣∣Ψ i,e
el

〉 〈
Ψ

i,e
el

∣∣ ∣∣ki ′
〉 ∣∣e

〉
, (51)

where we sum over all many-electron states composed of the environment orbitals.
The index i denotes all possible spin-occupations of a spatial orbital i and includes
empty orbital (−), doubly occupied orbitals (↑↓), orbitals with spin-up electron (↑)
and orbitals with spin-down electron (↓). Thus, the one-orbital RDM is a 4×4matrix
and is used to calculate the entanglement entropy of a single orbital, the so-called
single-orbital entropy, given by
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si = −
4∑

α=1

ωα,i lnωα,i , (52)

where ωα,i are the eigenvalues of the i th orbital RDM and the sum runs over all
four possible occupations of a spatial orbitals. The single-orbital entropy reaches a
maximum value of ln(4).

The entanglement entropy between an orbital pair i j and the remaining orbitals
is obtained in a similar way. For our second case, the environment states are defined
as

∣∣e
〉 = ∣∣k1, k2, . . . , ki−1, ki+1, . . . , k j−1, k j+1, . . . , kL

〉
, while the quantum state for

this orbital partitioning reads

Ψ
i, j,e
el =

∑

k1,k2,...,kL

c̃k1,k2,...,kL
∣∣ki , k j

〉 ⊗ ∣∣e
〉
. (53)

The matrix elements of the two-orbital RDM are determined in a similar way and
have the elements

ρ(i, j),(i ′, j ′) =
∑

e

〈
e
∣∣ 〈ki , k j

∣∣ ∣∣Ψ i, j,e
el

〉 〈
Ψ

i, j,e
el

∣∣ ∣∣ki ′, k j ′
〉 ∣∣e

〉
. (54)

The indices i and j encode all possible occupations of orbitals i and j in the two-
orbital Fock space that is spanned by 16 states (for spatial orbitals): (− −), (↑ −),
(↓ −), (− ↑), . . . , (↑↓↑↓). Thus, the two-orbital RDM can be expressed as a 16×16
matrix and determines the two-orbital entropy si, j [18]. Specifically, the two-orbital
entropyquantifies the entanglement between the environment orbitals and a particular
orbital pair i j and is given by

si, j = −
16∑

α=1

ωα,i, j lnωα,i, j (55)

where ωα,i, j are the eigenvalues of the two-orbital RDM. Given the one- and two-
orbital RDMs, we can calculate the so-calledmutual information between any orbital
pair i j ,

Ii | j = si + s j − si, j . (56)

Most importantly, the mutual information is a measure of correlation and describes
both classical and quantum correlations. Ii | j takes values in the range of [0, ln 16],
where 0 is obtained for uncorrelated wave functions such as a single Slater (or the
HF) determinant. We should note that evaluating the one- and two-orbital RDMs
using the general (51) and (54) might be cumbersome due to the phase factors that
have to be accounted for in (50) and (53). For practical calculations, the one- and two-
orbital RDMs can be expressed in terms of conventional N -particle reduced density
matrices [15, 16]. Specifically, ρi,i ′ requires only the 1- and 2-particle RDMs, while
ρ(i, j),(i ′, j ′) requires in addition some elements of the 3- and 4-particle RDMs. In
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Table 1 Different types of
electron correlation effects
and the corresponding values
of the single-orbital entropy
and the orbital-pair mutual
information [15, 16]

Type of correlation si Ii | j
Nondynamic >0.5 ≈10−1

Static 0.1 − 0.5 ≈10−2

Dynamic <0.1 ≈10−3

Weak (dispersion, etc.) ≈0 ≤10−4

conventional electronic structure methods, the N -particle RDMs are either already
available or can be easily determined. Thus, the evaluation of the single- and two-
orbital entropy as well as the mutual information does not pose a computational
difficulty.

The single-orbital entropy and orbital-pair mutual information are particularly
useful to classify electron correlation effects into different contributions. Large val-
ues of the entropic measures appear in molecules where strong (static and nondy-
namic) correlation effects dominate. Dynamic (weak) correlation is characterized by
smaller values for both si and Ii | j , while the single-orbital entropy is close to zero for
dispersion interactions. As there is no unique definition of the different contributions
to electron correlation effects, a distinction between them is rather arbitrary. Bogus-
lawski et al. [15, 16] proposed to dissect electron correlation effects according to the
values of the single-orbital entropy and the orbital-pair mutual information which
are given in Table1.

si and Ii | j can provide many additional insights in electronic structure theory cal-
culations. Examples are elucidating chemical bonding, [18, 103] monitoring bond-
formation processes, [39], identifying transition states, [104] and defining stable
active orbital spaces in MCSCF-type calculations [15, 16, 22, 74]. The last point
may be particularly important in actinide chemistry as the number of chemically
relevant orbitals is difficult to predict a priori. A particularly straightforward selec-
tion protocol to define stable and reliable active spaces in correlation calculations
was proposed recently [15–17] and applied to plutonium [22] and neptunium [86]
compounds that have not been investigated using MCSCF-type approaches on a
routine basis. Similar approaches have been proposed for transition metals [135].
The proposed selection procedure exploits the orbital-pair mutual information as
sole selection criterion. Since the orbital-pair mutual information measures orbital-
pair correlations, the corresponding active orbital spaces should provide a balance
description of electron correlation effects even for unknown compounds. The proto-
col to obtain correlation-based active spaces includes the following steps:

1. Perform a large active space calculation with a quantum chemical method of your
choice, like the DMRG algorithm, and determine the orbital-pair correlations.
Note that the wave function for this large active space calculations does not have
to be fully converged. For instance, inDMRGcalculations, already 4–6 sweeps are
sufficient to calculate the orbital-pair mutual information with sufficient accuracy

2. Choose a cutoff threshold for the orbital-pair mutual information, for instance
Ii | j > 10−2. Such a threshold allows us to describe static/nondynamic electron
correlation
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3. Select those orbitals where Ii | j is above the threshold
4. Optimize the wave function for this correlation-based active space
5. Determine the corresponding orbital-pair mutual information
6. Compare the values of Ii | j to those of the reference calculation in step 1. If the

small active space calculation can accurately reproduce the orbital-pair correlation
profile, the small active space can be considered as one optimal choice, otherwise
the acceptance threshold for Ii | j has to be further reduced (for instance, to 10−3)
and steps 3–5 have to be repeated until convergence.

Although, such correlation-based active orbital spaces represent a step towards true
black-boxMCSCF-type calculations, the selection criteria might have to be extended
so that they allow us to consider all orbitals important for bond-breaking processes
at all points of the dissociation pathway as the magnitude of orbital-pair correlations
might change along the reaction coordinate. However, technical limitations, like
stability of active space calculations, cannot be excluded andwill restrict all automatic
active space selection protocols.

4 Challenging Examples in Computational Actinide
Chemistry

In the following, we briefly review some challenging case studies where computa-
tional chemistry allowed us to explain some peculiar or unexpected properties of
actinide-containing compounds.

4.1 Symmetric Dissociation of UO2+
2

The uranyl cation is a small building block of plenty uranium-containing com-
pounds [34, 51, 58]. This molecule is characterized by a linear geometry and a
singlet ground-state electronic structure. The energetically close lying 5f, 6d, and 7s
orbitals are crucial to describe the strongly-correlated valence electrons. In addition,
the uranium 6p orbitals are “pushed from below” by oxygen 2p electrons and thus
complicate the electronic structure as 6p orbitals are easily polarizable and mix with
5f orbitals [32, 33, 69, 100, 116, 117, 121, 122, 151, 152]. While the bonding
mechanism in UO2+

2 is well described by single-reference CC theory for molecular
structures close to the equilibrium, conventional quantum chemistry methods, like
CCD, CCSD, CCSD(T), and DFT, usually fail for elongated U–O bonds. Further-
more, the CASSCF method does not allow us to define stable and consistent active
spaces along thewhole dissociation pathway. Specifically forUO2+

2 , aminimal active
space (CAS(12,12)SCF) around the equilibrium should contain all σ -, σ ∗-, π -, and
π∗-orbitals as shown in Fig. 1a. For stretched U–O bonds, however, the φu and δu
orbitals become partially occupied and should be included in the active space (see
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Fig. 1 Valence molecular orbitals and dissociation curves for the symmetric stretching of UO2+
2 .

Subfigure (b) has been reproduced from [152] with permission from the PCCP Owner Societies

Fig. 1). Since these orbitals are unoccupied around the equilibrium, they cannot be
included in the active space due to convergence difficulties in CASSCF calculations.
Thus, CASSCF either predicts the wrong dissociation limit (minimal active space)
or does not provide a smooth potential energy surface (CAS(12,16)SCF). Includ-
ing φu and δu orbitals into the active space results in a qualitative change in the
shape of the PES featuring a shoulder around 2 Å. In contrast to CASSCF calcu-
lations, AP1roG allows us to include all orbitals in the active space and provides a
smooth dissociation curve. In addition, the corresponding potential energy surface
features a similar shoulder as predicted by CAS(12,16)SCF. Thus, AP1roG can cap-
ture (static/nondynamic) electron correlation effects along the dissociation pathway
without imposing active spaces.

4.2 Excitations of NUN

The NUN complex is the isoelectronic analogue of UO2+
2 and has been formed in

noble gas matrices and as a free molecule [163]. This compound is particularly inter-
esting because of its possible applications in the nuclear industry. In its equilibrium
geometry, the ground-state of NUN is closed-shell, similar to the isoelectronic UO2+

2 .
The U–N triple bonds (1.73–1.76 Å) are slightly longer than the U–O distance in
UO2+

2 (1.70–1.72 Å). In the spin-free formalism, the ground-state wave function
is dominated by a single determinant (with a weight of about 0.9 for the princi-
pal determinant) with small contributions from doubly excited determinants. The
energies of the upper bonding molecular orbitals are distributed equidistantly [163].
Furthermore, the δ and φ virtual orbitals are equally important for excited states
as they lie close in energy [145]. The spin–orbit electronic spectrum of NUN using
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Table 2 15 lowest-lying IH-FSCCSD vertical excitation energies of the NUN molecule (rU−N =
1.739 Å). Excitation energies are given in eV [151]

Ω Character (from DC) DC DC(G) X2C/AMF X2C/MMF X2C(G)/MMF

2g 52% σ1/2uφ5/2u + 26%

π1/2uφ5/2u

0.956 0.923 0.936 0.957 0.927

3g 50% σ1/2uφ5/2u + 24%

π1/2uφ5/2u

1.103 1.068 1.083 1.103 1.072

1g 45% σ1/2uδ3/2u + 20%

π1/2uδ3/2u

1.134 1.094 1.106 1.134 1.098

2g 30% σ1/2uδ3/2u + 15%

π1/2uδ3/2u

1.398 1.355 1.374 1.398 1.358

4g 49% σ1/2uφ7/2u + 23%

π1/2uφ7/2u + 16% σ1/2uφ′
7/2u

1.699 1.645 1.680 1.698 1.646

3g 43% σ1/2uδ5/2u + 20%

π1/2uδ5/2u

1.757 1.704 1.739 1.757 1.705

3g 38% σ1/2uφ7/2u + 22%

π1/2uφ7/2u

2.076 2.028 2.059 2.076 2.029

2g 33% σ1/2uδ5/2u + 17%

π1/2uδ5/2u

2.519 2.476 2.502 2.519 2.478

1u 40% σ1/2uδ3/2g + 24%

π1/2uδ3/2g

2.669 2.696 2.680 2.669 2.696

0+
u 41% σ1/2uσ1/2g + 30%

π1/2uσ1/2g

2.709 2.757 2.740 2.709 2.755

1u 41% π3/2uσ ′
1/2g + 29%

π ′
3/2uσ ′′

1/2g

2.711 2.759 2.743 2.711 2.757

1g 80% π3/2uφ5/2u 2.711 2.675 2.690 2.711 2.679

2u 34% σ1/2uδ3/2g + 24%

π1/2uδ3/2g

2.749 2.767 2.758 2.749 2.768

4g 84% π3/2uφ5/2u 2.844 2.808 2.823 2.844 2.811

2u 73% σ1/2gφ5/2u 2.895 2.857 2.875 2.895 2.860

different relativistic Hamiltonians is presented in Table 2 [151]. DC denotes the stan-
dard Dirac–Coulomb Hamiltonian, DC(G) is the DC Hamiltonian augmented with
the Gaunt operator at the SCF level, X2C/AMF and MMF correspond to the X2C
Hamiltonian with the atomic and molecular mean field approximations to spin–orbit
coupling, andX2C(G) is again theX2CHamiltonian augmentedwith theGaunt oper-
ator at the SCF level. Based on the data presented in Table 2, we can conclude that
NUN possesses significant multi-reference character and a rather complex electronic
spectrum [151]. Furthermore, including the Gaunt operator in the Hamiltonian has
only negligible effect on the electronic spectra of NUN, while the X2C Hamiltonian
represents a computationally cheaper alternative to the full DC Hamiltonian. Specif-
ically, the spin–orbit electronic spectrum calculated within X2C/MMF is almost
identical to the DC spectrum.
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4.3 CUO Diluted in Noble Gas Matrices

As noble gases are known to be inert, they constitute an ideal environment to inves-
tigate properties of single molecules. Diluted in a noble gas matrix, the studied
substance should not interact with the environment and thus its electronic struc-
ture should remain unaffected. A peculiar observation has been made for the CUO
molecule and was reported by Andrews et al. [93, 94, 171]. Experiments revealed a
blue shift in the asymmetric U–O and U–C vibrational spectra when the composition
of the noble gas matrix—a mixture of neon and argon—was changed. To explain the
observed shifts, experimentalist anticipated that the noble gas environment may not
be inert and may interact with the CUO unit differently depending on its composition
[93, 94].

To understand the specific interaction between CUO and noble gas matrices, var-
ious quantum chemistry methods have been applied both to the bare CUO unit and
to small model systems including noble gas atoms. A new perspective has been
provided by ab initio calculations using scalar-relativistic high-level wave-function
based methods with spin-orbit corrections added a posteriori [150]. A computational
study covering spin-orbit (SO)-CASSCF and SO-DMRG calculations indicate that
the interaction of CUO with Ne atoms does not change the order of states and the
ground state remains a 1Σ+ state (Fig. 2). However, the energy gap between the
two lowest-lying states becomes negligible in CUOAr4 and the molecule requires a
multi-reference treatment. Reference [150] was the first work dissecting electron
correlation effects using quantum information theory measures in CUONe4 and
CUOAr4 molecules. The interactions between CUO and Ar valence electrons has
been confirmed supporting experimental and theoretical anticipations. Furthermore,
numerical results suggest that a (thermal) spin crossover may occur.

Fig. 2 Spin state energy splittings of CUO diluted in different noble gas matrices. All calculations
have been performed using the spin-free (SF) DKH Hamiltonian of 10th order, while a spin-orbit
(SO) correction was added a posteriori. 3Φ(v): vertically excited 3Φ state. 3Φ(a): adiabatically
excited 3Φ state. Reproduced from [150] with permission from the PCCP Owner Societies
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4.4 Cation–cation Attraction in [NpO2]
2+
2

The attractive interaction between two cations is a characteristic feature of heavy-
element-containing molecules and has been observed for the first time in uranyl
perchlorate solution and aqueous chlorate media [138–140]. This so-called cation–
cation interactions (CCI) are exploited in the synthesis of new crystalline struc-
tures [2, 5, 36, 41, 71, 72, 134, 159, 161, 162]. Most importantly, CCIs pose a
technical difficulty when reprocessing spent nuclear fuel.

Another example for this peculiar interaction are neptunyls. Specifically, neptunyl
CCIs feature an end-on or side-on interaction producing the T-shaped or diamond-
shaped dimers. The CCIs structures are stable primarily because of the bonding
interaction between the oxygen and the neptunium atoms of two neighbouring com-
plexes, where the effective charge of the oxygen atoms is negative [155] in contrast to
the effective positive charge localised on the actinide atoms [28]. The stability ofCCIs
is strongly influenced by the Np–O bond distance, [54] which changes in different
environments [43, 56, 118, 126]. In order to describe the ground- and excited-state
properties of such CCIs, the theoretical model needs to account for environmental
effects originating from the solvent. Figure 3a shows two different explicit solvation
models for the T-shaped (i and ii) and diamond-shaped (iii and iv) clusters. Includ-
ing both explicit and implicit solvation models in quantum chemistry calculations
allows us to reproduce the experimentally measured Np–Np distance within (spin-
free) DFT calculations. However, in order to accurately model the ground state (and

Fig. 3 a Molecular geometries of neptunyl CCIs including explicit water molecules and b orbital-
pair correlations of the diamond-shaped (bottom) [NpO2]

2+
2 . The values of the single-orbital entropy

are coded by the size of the dots corresponding to each orbital. The strongest correlated orbitals
are connected by blue lines (Ii | j > 10−1), followed by orbital-pair correlations marked by red lines
(10−1 > Ii | j > 10−2)
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also excited state) electronic structure, we have to account for both relativistic and
correlation effects on an equal footing. This poses a particular challenge for con-
ventional electronic structure methods primarily because we have to deal with two
heavy-element centers.

The strong multi-reference nature of the neptunyl CCIs becomes evident when
we perform an orbital correlation analysis. The orbital-pair mutual information for
the ground-state of the diamond-shaped neptunyl CCI [NpO2]2+2 is shown in Fig. 3b.
The correlation between orbital pairs is indicated by lines, while its strength is color-
coded: strong correlations are shown in blue, medium-sized correlations in red, etc.
Specifically for the diamond-shaped [NpO2]2+2 , the σg- and σ ∗

g -type orbitals are as
important as δu- and φu-type orbitals. Note that π -type orbitals are only moderately
correlated with each other. The orbital-correlation analysis, thus, suggests that a
balanced active space for neptunyl-containing CCIs that allows us to describe both
nondynamic and static correlation (or moderately and strongly correlated orbitals)
should contain approximately 30 orbitals (δu-, φu-, bonding and antibonding combi-
nations of σg-, σu-, πu-, and πg-type orbitals of each monomer). However, such large
active spaces are difficult to handle with conventional multi-reference methods. In a
first approximation, we can consider active spaces where only the strongest orbital-
pair correlations are accounted for, while the remaining correlations are treated a
posteriori using, for instance, perturbation theory. Such a study has been presented
recently in [86] and highlights the interplay of relativistic and correlations effects in
neptunyl CCIs.

5 Summary

This chapter reviewed different quantum chemistry approaches applicable to actinide
chemistry. Actinide-containing compounds are particularly challenging as both rel-
ativistic effects and correlation effects have to be accounted for on an equal footing.
Specifically, we have focused on the most common relativistic Hamiltonians and
wave-function-based methods that allow us to reliably model actinide chemistry.
Particularly interesting are novel and unconventional methods, like the DMRG algo-
rithm or geminal-based approaches as they allow us to include a large number of
orbitals in active space calculations. This feature is desirable especially for multi-
centered actinide-containing compounds.

Our numerical examples show the strengths and pitfalls of present-day quan-
tum chemistry methods when the systems under study contain one or more heavy-
elements. While DFT can accurately provide molecular geometries, wave-function-
based methods have to be applied to describe electronic structures of ground- and
excited-states. Furthermore, conventional methods like CASSCF fail in describing
potential energy surfaces for stretched actinide–ligand bonds. Such calculations can
only be accomplished using modern and unconventional methods like DMRG or
AP1roG.
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111. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations
for many-electron systems. Phys Rev B 23:5048

112. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple.
Phys Rev Lett 77:3865–3868

113. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple.
Phys Rev Lett 78:1396

114. PernalK (2014) Intergeminal correction to the antisymmetrizedproduct of strongly orthogonal
geminals derived from the extended random phase approximation. J Chem Theory Comput
10:4332–4341

115. Peyerimhoff SD, Buenker RJ (1969) Study of the geometry and spectra of the allylic systems
by ab initio methods. J Chem Phys 51:2528–2537

116. Pierloot K, van Besien E (2005) Electronic spectrum of UO2+
2 and [UO2Cl4]2−. J Phys Chem

123:204309
117. Pierloot K, van Besien E, van Lenthe E, Baerends EJ (2007) Electronic structure and spectrum

of UO+2
2 2 and UO2Cl

2−
4 calculated with time-dependent density functional theory. J Chem

Phys 126:194311
118. Rao PRV, Gudi NM, Bagawde SV, Patil SK (1979) The complexing of neptunium(V) by some

inorganic ligands. J Inorg Nucl Chem 41:235–239
119. Rassolov VA (2002) A geminal model chemistry. J Chem Phys 117:5978–5987
120. Rassolov VA, Xu F, Garashchuk S (2004) Geminal model chemistry II. Perturbative correc-

tions. J Chem Phys 120:10385–10394
121. Réal F, Vallet V, Marian C, Wahlgren U (2007) On the bonding and the electric field gradient

of the uranyl ion. J Phys Chem 127:214302
122. Réal F, Gomes ASP, Visscher L, Vallet V, Eliav EJ (2009) Benchmarking electronic structure

calculations on the bare UO2+
2 ion: how different are single and multireference electron

correlation methods? J Phys Chem A 113:12504–12511
123. Reiher M (2006) Douglas-Kroll-Hess Theory: a relativistic electrons-only theory for chem-

istry. Theor Chem Acc 116:241–252
124. ReiherM (2012) Relativistic Douglas-Kroll-Hess theory.WIREs ComputMol Sci 2:139–149
125. Rissler J, Noack RM, White SR (2006) Measuring orbital interaction using quantum infor-

mation theory. Chem Phys 323:519–531
126. Roesch F, Dittrich S, Buklanov GV, Milanov M, Khalkin VA, Dreyer R (1990) Electromigra-

tion of carrier-free radionuclides. 12. Reactions of neptunium-239(V) with acetate and citrate
ligands in neutral solutions. Radiochim Acta 49:29–34

127. Rosta E, Surján PR (2002) Two-body zeroth order hamiltonians inmultireference perturbation
theory: the APSG reference state. J Chem Phys 116:878–889

128. SaitowM, Kurashige Y, Yanai T (2013) Multireference configuration intaraction theory using
cumulant reconstruction with internal contraction of density matrix renormalization group
wave function. J Chem Phys 139:044118

129. Saue T (2012) Relativistic hamiltonians for chemistry: a primer. Chem Phys Chem 3:3077–
3094

130. Schimmelpfennig B, Maron L, Wahlgren U, Teichteil C, Fagerli H, Gropen O (1998) On the
combination of ECP-based CI calculations with all-electron spin-orbit mean-field integrals.
Chem Phys Lett 286:267–271

131. Schollwöck U (2005) The density-matrix renormalization group. Rev Mod Phys 77:259–315
132. Sharma S, Chan G (2014) Communication: a flexible multi-reference perturbation theory by

minimizing the Hylleraas functional with matrix product states. J Chem Phys 141:111101
133. Sikkema J, Visscher L, Saue T, Ilias̆ M, (2009) The molecular mean-field approach for cor-

related relativistic calculations. J Chem Phys 131:124116
134. Skanthakumar S, Antonio MR, Soderholm L (2008) A comparison of neptunyl(V) and

neptunyl(VI) solution coordination: the stability of cation-cation interactions. Inorg Chem
47:4591–4595

135. Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory
Comput 12:1760–1771



New Strategies in Modeling Electronic Structures and Properties … 159

136. Stein T, Henderson TM, Scuseria GE (2014) Seniority-based coupled cluster theory. J Chem
Phys 140:214113

137. StrakaM, Hrobarik P, KauppM (2005) Understanding structure and bonding in early actinide
6d05f0 MXq

6 (M = Th-Np; X = H, F) complexes in comparison with their transition metal 5d0

analogues. J Am Chem Soc 127:2591–2599
138. Sullivan JC (1962) Complex-ion formation between cations. Spectra and identification of a

Np(V)-Cr(III) complex. J Am Chem Soc 84:4256–4259
139. Sullivan JC, Hindman JC, Zielen AJ (1960) Kinetics of the reduction of neptunium(VI) by

uranium(IV). J Am Chem Soc 82:5288–5292
140. Sullivan JC, Hindman JC, Zielen AJ (1961) Specific interaction between Np(V) and U(VI)

in aqueous perchloric acid media. J Am Chem Soc 83:3373–3378
141. SurjánPR, Jeszenszki P, SzabadosÁ (2015)Role of triplet states in geminal-basedperturbation

theory. Mol Phys 113:2960–2963
142. Szalay S, Pfeffer M, Murg V, Barcza G, Verstraete F, Schneider R, Legeza Ö (2015) Ten-

sor product methods and entanglement optimization for ab initio quantum chemistry. Int J
Quantum Chem 115:1342–1391

143. Szalay S, BarczaG, Szilvási T, Veis L, LegezaÖ (2017) The correlation theory of the chemical
bond. Sci Rep 7:2237

144. Tecmer P, González-Espinoza CE (2018) Electron correlation effects of the ThO and ThS
molecules in the spinor basis. A relativistic coupled cluster study of ground and excited states
properties. Phys Chem Chem Phys 20:23424–23432

145. Tecmer P, Gomes ASP, Ekström U, Visscher L (2011) Electronic spectroscopy of UO2+
2 ,

NUO+ and NUN: an evaluation of time-dependent density functional theory for actinides.
Phys Chem Chem Phys 13:6249–6259

146. Tecmer P, Bast R, Ruud K, Visscher L (2012a) Charge-transfer excitations in uranyl tetra-
chloride ([UO2Cl4]2−): How reliable are electronic spectra from relativistic time-dependent
density functional theory? J Phys Chem A 116:7397–7404

147. TecmerP, vanLingenH,GomesASP,VisscherL (2012b)The electronic spectrumofCUONg4
(Ng = Ne, Ar, Kr, Xe): new insights in the interaction of the CUO molecule with noble gas
matrices. J Chem Phys 137:084308

148. Tecmer P, Govind N, Kowalski K, de Jong WA, Visscher L (2013) Reliable modeling of the
electronic spectra of realistic uranium complexes. J Chem Phys 139:034301

149. Tecmer P, Boguslawski K, Johnson PA, Limacher PA, Chan M, Verstraelen T, Ayers PW
(2014a) Assessing the accuracy of new geminal-based approaches. J Phys ChemA 118:9058–
9068

150. Tecmer P, Boguslawski K, Legeza Örs, Reiher M (2014b) Unravelling the quantum-
entanglement effect of noble gas coordination on the spin ground state of CUO. Phys Chem
Chem Phys 16:719–727

151. Tecmer P, GomesASP, Knecht S, Visscher L (2014c) Communication: Relativistic fock-space
coupled cluster study of small building blocks of larger uranium complexes. J Chem Phys
141:041107

152. Tecmer P, Boguslawski K, Ayers PW (2015) Singlet ground state actinide chemistry with
geminals. Phys Chem Chem Phys 17:14427–14436
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