
Nonlinear Modulation of Surface SH
Waves in a Double Layered Elastic Half
Space
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Abstract The nonlinear shear horizontal (SH) surface waves in an elastic half space
coated with two different layers of uniform thickness are examined. The half space
and both layers are assumed to be homogeneous, isotropic, incompressible, elastic
and having different mechanical properties. In the analysis it is assumed that linear
shear velocity of the top layer is slower than velocities of the internal layer and the
half space. By employing the method of multiple scales, it is shown that nonlin-
ear modulation of SH waves is governed asymptotically by a nonlinear Schrödinger
(NLS) equation. The coefficients of this equation depend on, in a complicatedway, on
linear and nonlinear material parameters of the layered half space, the thicknesses of
the layers and also the wave number of the waves. The effect of the existence of a sec-
ond layer on the existence of solitary waves has been investigated numerically. Also
a comparison between the coefficients of the NLS equation for the double layered
half space and that of a single layered half space has been made. It is remarked that
the existence of the envelope and dark solitons is affected strongly by the nonlinear
material parameter of the top layer.
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Nonlinear Schrödinger equation

1 Introduction

Linear elastic waves in wave guides made by homogeneous isotropic linear elastic
materials are dispersive due to the repeated reflection processes which occur at the
boundaries between different media. Dispersive elastic waves have been extensively
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studied because of their important applications in geophysics, nondestructive testing
of materials, electronic signal processing devices, etc. (see, e.g. [2, 6, 7] and refer-
ences there in). In recent years, connected with these applications, the effect of the
constitutional nonlinearities on the propagation characteristics of dispersive elastic
waves is investigated by employing the asymptotic perturbation methods previously
used in the fields of fluidmechanics, lattice dynamics, plasma physics etc., examining
the propagation of weakly nonlinear waves (see, e.g. [1, 4, 10, 28]). In these investi-
gations, as a result of balance between nonlinearity and dispersion several different
types of nonlinear evolution equations such as Korteweg–de Vries (K–dV), modified
K–dV, NLS and Boussinesq (BE), etc. have been derived to describe the propaga-
tion of nonlinear elastic waves in media having boundaries causing dispersion such
as rods, plates, layered half spaces, etc., asymptotically. Then several aspects of
problems, such as nonlinear stability of modulated waves, steady state solutions, the
existence of various types of solitary waves, etc. were discussed on the basis of these
equations. (see e.g. [3, 8, 13, 14, 20, 21, 23, 25–27]). For an extensive review of
most of these works we refer [15–19, 22].

In the present work, the propagation of nonlinear shear horizontal (SH) waves in a
half space covered by two homogenous isotropic incompressible elastic layers having
different mechanical properties is considered. The corresponding linear problem
has been firstly examined by Stoneley and Tillotson [24] since it is a theoretical
basis of a method which is developed in order to calculate the thickness of the
subcontinental layer. Firstly, [9] calculated the thickness of the subcontinental layer
of granite overlying a half space of rock. Stoneley and Tillotson [24] claimed that
Jeffrey’s study was inadequate, since the existence of a basalt layer under the granite
was not regarded, hence they have constituted a two layered half space model on
the assumption that the half space, the internal layer and the top layer consist of
rock, basalt and granite, respectively. In this analysis it was assumed that between
the linear shear velocities of the top layer c1, the internal layer, c2, and the half space,
c3, the inequality c1 < c2 < c3 is valid. If the phase velocity c of the wave satisfies
either the condition c1 < c2 < c < c3 or the one c1 < c < c2 < c3, it is shown that a
surface wave propagates. Under these two conditions, the present work extends this
study to the nonlinear propagation of the surface SHwaves. The constituent materials
are assumed to be generalized neo-Hookean materials having different mechanical
properties. In the linear limit, the problem reduces to the problem investigated by
Stoneley and Tillotson [24]. Then the propagation of small but finite amplitudewaves
is considered. By employing a multiple scale perturbation method (see, e.g. [10]), an
NLS equation is obtained for the nonlinear modulation of the waves. The coefficients
of this equation depend on linear and nonlinear material parameters of the layered
half space, the thickness ratio of the layers and also the wave number of the waves. It
is also observed that when the thickness of the top layer goes to zero, the coefficients
of the NLS equation approach to those of the NLS equation for a single layered half
space. Then, since the properties of solutions of the NLS equation strongly depend
on the sign of the product of its coefficients, the variation of this product with the
wave number is evaluated numerically by giving appropriate values to the material
constants and to the thickness ratio of the layers. To observe the effect of nonlinearity
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on the coefficients, consequently on the solutions of the NLS equation, the linear
material constants are held fixed while the nonlinear ones are being changed. From
the comparison of the coefficients of the NLS equations for a double layered half
space and a single layered half space, it is observed that the propagation is affected
considerably by the existence of a second layer. Moreover, for relatively long waves
the nonlinear properties of the half space dominate the modulation of the waves.

2 Formulation of the Problem

Let (x1, x2, x3) and (X1, X2, X3) be, respectively, the spatial andmaterial coordinates
of a point referred to the same rectangular Cartesian system of axes. Consider an
elastic half space covered by two different elastic layers each of uniform thickness.
In the reference frame (X1, X2, X3), the top layer (R1), the intermediate layer (R2)

and the half space (R3) occupy the regions, respectively

R1 = {(X1, X2, X3) | 0 < X2 < h1 − ∞ < X1 < ∞, −∞ < X3 < ∞} (1)
R2 = {(X1, X2, X3) | −h2 < X2 < 0 − ∞ < X1 < ∞, −∞ < X3 < ∞} (2)
R3 = {(X1, X2, X3) | −∞ < X2 < −h2 − ∞ < X1 < ∞, −∞ < X3 < ∞} (3)

where h1 and h2 are positive constants. It is assumed that the free boundary X2 = h1
is free of traction, the stresses and displacements are continuous at the interfaces
X2 = 0 and X2 = −h2; moreover the displacement in the half space goes to zero as
X2 → −∞.

Now, we consider a shear horizontal (SH) wave propagating along the X1-axis in
this layered half space described by the equations

x1 = X1, x2 = X2, x3 = X3 + u(r)(X1, X2, t) r = 1, 2, 3 (4)

where t is the time, the superscript r refers to the region Rr , u(r) is the displacement
of a particle in the X3 direction in the region Rr . Since detxk,K = 1, the deformation
field (4) is isochoric and the density ρ(r) in motion remains constant. Then in the
absence of body forces, the equations of motion in the reference state are written as

T (r)
Kβ,K = 0, β = 1, 2; T (r)

K3,K = ρ(r)ü(r), r = 1, 2, 3 (5)

where T (r)
Kl is the first Piola-Kirchoff stress tensor, Latin and Greek indices take the

respective ranges (1, 2, 3) and (1, 2), subscripts preceded by a comma indicate partial
differentiation with respect to the material coordinates and an over dot represents the
partial differentiation with respect to t .

The assumption of vanishing tractions on the free surface X2 = h1 imposes the
boundary condition

T (1)
2k = 0, on X2 = h1, (6)
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while continuity of stresses and displacements at the interfaces X2 = 0 and X2 =
−h2 is satisfied if

T (1)
2k = T (2)

2k , and u(1) = u(2) on X2 = 0, (7)

and
T (2)
2k = T (3)

2k , and u(2) = u(3) on X2 = −h2, k = 1, 2, 3. (8)

In this work, it is assumed that the constituent materials are homogenous, nonlin-
ear, isotropic, incompressible elastic and their strain energy functions are only the
functions of the first invariant of Finger deformation tensor c−1 = [xk,K xl,K ], i.e.
�(r) = �(r)(I (r)) where I (r) = trc−1, r = 1, 2, 3. Namely, the double layered half
space is made of generalized neo-Hooken materials (see, e.g. [11]). For the antiplane
motion (4), the first invariants I (r) are found to be

I (r) = 3 + K(r) K(r) =
(

∂u(r)

∂X1

)2

+
(

∂u(r)

∂X2

)2

r = 1, 2, 3 (9)

Stress constitutive equations for a generalizedneo-Hookeanmediumcanbe expressed
as (see, e.g. [5])

tkl = −pδkl + �c−1
kl with � = 2

∂�

∂ I
(10)

where tkl is the components ofCauchy stress tensor and p(XK , t) is a hydrostatic pres-
sure function. Then, by using the relation TKl = j XK ,k tkl , where j = det (xk,K ) = 1,
the components of the Piola-Kirchoff stress tensor are written as (see [26] for details)

T (r)
αβ = T (r)

33 = 0 , T (r)
α3 = T (r)

3α = �(r)u(r)
,α (11)

Hence the first two equations in (5) are satisfied identically and therefore the anti-
planemotion (4) can exist in the double layered elastic half spacemade of generalized
neo-Hooken materials without body forces. Let X = X1, Y = X2, Z = X3, then the
third equation in (5) and the boundary conditions of the problem can be written as

∂

∂X

(
�(r) ∂u

(r)

∂X

)
+ ∂

∂Y

(
�(r) ∂u

(r)

∂Y

)
= ρ(r) ∂

2u(r)

∂t2
r = 1, 2, 3 (12)

∂u(1)

∂Y
= 0 on the free boundary Y = h1 (13)

u(1) = u(2) and �(1) ∂u
(1)

∂Y
= �(2) ∂u

(2)

∂Y
on Y = 0 (the interface between R1 and R2)

(14)
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u(2) = u(3) and �(2) ∂u(2)

∂Y
= �(3) ∂u(3)

∂Y
on Y = −h2 (the interface between R2 and R3)

(15)

u(3) → 0 as Y → −∞ (the radiation condition) (16)

3 Small but Finite Amplitude Waves

We now examine the propagation of small but finite amplitude surface SH waves. To
do this we will employ the method of multiple scales by introducing the following
new independent variables

xi = εi X, ti = εi t, y = Y, i = 0, 1, 2 (17)

in which ε > 0 is a small parameter whichmeasures the weakness of the nonlinearity
and (x1, x2, t1, t2) are the slow variables describing the slow variations in the problem
whereas (x0, t0, y) are fast variables describing the fast variations. Then u(r), r =
1, 2, 3, are taken to be functions of these new independent variables and they are
expanded in the following asymptotic series in ε:

u(r) =
∞∑
n=1

εnu(r)
n (x0, x1, x2, y, t0, t1, t2) (18)

Writing the governing equations and boundary conditions in terms of the new inde-
pendent variables (17) and then employing the expansions (18) in the resulting expres-
sions and collecting the terms of like powers in ε yield a hierarchy of problems
from which it is possible to determine u(r)

n , successively. Up to third order in ε these
are given as below:
O(ε):

L(u(r)
1 ) = ∂2u(r)

1

∂t20
− c2r

(
∂2u(r)

1

∂x20
+ ∂2u(r)

1

∂y2

)
= 0 r = 1, 2, 3 (19)

∂u(1)
1

∂y
= 0 at y = h1 (20)

u(1)
1 = u(2)

1 and
∂u(1)

1

∂y
− γ1

∂u(2)
1

∂y
= 0 at y = 0 (21)

u(2)
1 = u(3)

1 and
∂u(2)

1

∂y
− γ2

∂u(3)
1

∂y
= 0 at y = −h2 (22)

u(3)
1 → 0 as y → −∞ (23)
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O(ε2):

L(u(r)
2 ) = 2

(
c2r

∂2u(r)
1

∂x0∂x1
− ∂2u(r)

1

∂t0∂t1

)
r = 1, 2, 3 (24)

∂u(1)
2

∂y
= 0 at y = h1 (25)

u(1)
2 = u(2)

2 and
∂u(1)

2

∂y
− γ1

∂u(2)
2

∂y
= 0 at y = 0 (26)

u(2)
2 = u(3)

2 and
∂u(2)

2

∂y
− γ2

∂u(3)
2

∂y
= 0 at y = −h2 (27)

u(3)
2 → 0 as y → −∞ (28)

O(ε3):

L(u(r)
3 ) = 2

(
c2r

∂2u(r)
2

∂x0∂x1
− ∂2u(r)

2
∂t0∂t1

)
+ c2r

(
∂2u(r)

1

∂x21
+ 2

∂2u(r)
1

∂x0x2

)
− ∂2u(r)

1

∂t21
− 2

∂2u(r)
1

∂t0t2

+ nr

(
∂

∂x0

(
∂u(r)

1
∂x0

K0(u
(r)
1 )

)
+ ∂

∂Y

(
∂u(r)

1
∂Y

K0(u
(r)
1 )

))
r = 1, 2, 3 (29)

∂u(1)
3

∂y
= 0 at y = h1 (30)

u(1)
3 = u(2)

3 and

∂u(1)
3

∂y
− γ1

∂u(2)
3

∂y
= γ1β2

∂u(2)
1

∂y
K0(u

(2)
1 ) − β1

∂u(1)
1

∂y
K0(u

(1)
1 ) at y = 0 (31)

u(2)
3 = u(3)

3 and

∂u(2)
3

∂y
− γ2

∂u(3)
3

∂y
= γ2β3

∂u(3)
1

∂y
K0(u

(3)
1 ) − β2

∂u(2)
1

∂y
K0(u

(2)
1 ) at y = −h2 (32)

u(3)
3 → 0 as y → −∞ (33)

where

K0(ψ) =
(

∂ψ

∂x0

)2

+
(

∂ψ

∂y

)2

. (34)

In the above equations the constants cr , r = 1, 2, 3 are the linear shear velocities in
the top layer, intermediate layer and half space, respectively, and they are defined as
c2r = μ(r)/ρ(r) whereμ(r) are linear shearmodulus given asμ(r) = 2d�(r)(3)/d I . nr
defined as nr = (2/ρ(r))d2�(r)(3)/d I 2 are nonlinear material constants. If nr > 0,
the relevant medium is hardening in shear, else it is softening. The constants γr
and βr are defined as γr = μ(r+1)/μ(r), βr = nr/c2r . Note that, these perturbation
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problems, at each step, are linear and first order problem is simply the classic linear
wave problem which was first investigated by Stoneley and Tillotson [24]. They
showed that between the linear shear velocities of the layers and the half space if
the inequalities c1 < c2 < c3 hold then when the phase velocity c of the SH wave
satisfies the either inequality

c1 < c2 < c < c3 or c1 < c < c2 < c3 (35)

then SH waves are dispersive. We proceed first by assuming that the first inequality
is satisfied by the phase velocity c of the surface SH wave.We also assume that
the nonexistence of the long waves in the initial disturbances. Hence by using the
separation of variables method and also by employing the radiation conditions (23),
the solutions of the Eqs. (19) are found to be

u(1)
1 =

∞∑
l=1

{
A(l)
1 (x1, x2, t1, t2)e

ilkp1 y + B(l)
1 (x1, x2, t1, t2)e

−ilkp1 y
}
eilθ + c.c (36)

u(2)
1 =

∞∑
l=1

{
C (l)
1 (x1, x2, t1, t2)e

ilkp2 y + D(l)
1 (x1, x2, t1, t2)e

−ilkp2 y
}
eilθ + c.c (37)

u(3)
1 =

∞∑
l=1

E (l)
1 (x1, x2, t1, t2)e

lkv3 yeilθ + c.c (38)

where

θ = kx0 − ωt0 , p1 = (c2/c21 − 1)1/2 , p2 = (c2/c22 − 1)1/2 , v3 = (1 − c2/c23)
1/2

(39)

and k is the wave number, ω is the angular frequency, c = ω/k is the phase
velocity, the symbol ′′c.c.′′ denotes the complex conjugate of the preceding terms,
A(l)
1 , B(l)

1 , C (l)
1 , D(l)

1 and E (l)
1 are the first order slowly varying amplitude functions

of the waves to be determined by using the boundary conditions of the first order
perturbation problem.Hence the substitution of first order solutions into the boundary
conditions of the first order perturbation problem yields

Wl U(l)
1 = 0, l = 1, 2, . . . , (40)

where Wl is the dispersion matrix defined as

Wl =

⎛
⎜⎜⎜⎜⎝

iklp1eil P1 −iklp1e−il P1 0 0 0
iklp1 −iklp1 −iγ1klp2 iγ1klp2 0
1 1 −1 −1 0
0 0 iklp2e−il P2 −iklp2eil P2 −γ2klv3e−lV3

0 0 e−il P2 eil P2 −e−lV3

⎞
⎟⎟⎟⎟⎠ (41)
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and the vectors U(l)
n , n = 1, 2, . . . , are defined as

U(l)
n = (A(l)

n , B(l)
n ,C (l)

n , D(l)
n , E (l)

n )T . (42)

det W1 = 0 gives the dispersion relation of the linear waves

p1 p2 tan P1 + γ2 p1v3 tan P1 tan P2 − γ1γ2 p2v3 + γ1 p
2
2 tan P2 = 0 (43)

where P1 = kp1h1, P2 = kp2h2, which is first derived by [24]. Note that, when the
thickness of the top layer goes to zero, h1 = 0, this dispersion relation reduces to

− γ2 p2v3 + p22 tan P2 = 0 (44)

which is the dispersion relation obtained for the propagation of Love waves in a half
space covered by a single layer [12]. In this work, nonlinear self modulation of a
group of surface SH-waves centered around a wave number k and corresponding
frequency ω is investigated. Thus the harmonic-resonance phenomena is excluded
in the analysis. Then for l ≥ 2

det Wl �= 0 . (45)

Hence, considering (45) the solutions of the homogeneous algebraic systems are
found to be

U(1)
1 = A1(x1, x2, t1, t2)R (46)

U(l)
1 ≡ 0 for l ≥ 2 (47)

where A1 is a complex function, representing thefirst order slowlyvarying amplitude
of the self modulation and R is a column vector satisfying

W1R = 0. (48)

By using (46) and (47) the first order solutions are written explicitly as

u(1)
1 = A1(R1e

ikp1 y + R2e
−ikp1 y)eiθ + c.c (49)

u(2)
1 = A1(R3e

ikp2 y + R4e
−ikp2 y)eiθ + c.c (50)

u(3)
1 = A1R5e

kv3 yeiθ + c.c (51)

where Rm , m = 1, . . . , 5 are the components of R, their explicit forms are given
in the Appendix A.

To complete the first order solutionsA1 has to be determined. This has been done
by examining the higher order perturbation problems. Using the first order solutions
in the differential equations of the second order perturbation problem yields
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L(u(1)
2 ) = 2iM (1)

11 (R1e
ikp1 y + R2e

−ikp1 y)eiθ + c.c (52)

L(u(2)
2 ) = 2iM (2)

11 (R3e
ikp2 y + R4e

−ikp2 y)eiθ + c.c (53)

L(u(3)
2 ) = 2iM (3)

11 R5e
kv3 yeiθ + c.c (54)

where

M (α)
11 = ω

∂A1

∂t1
+ kc2α

∂A1

∂x1
, α = 1, 2, 3 (55)

The solutions u(r)
2 , r = 1, 2, 3, of this problem are decomposed as

u(r)
2 = ū(r)

2 + ũ(r)
2 (56)

where u(r)
2 , r = 1, 2, 3, are the particular solutions of the nonhomogeneous dif-

ferential equations while ũ(r)
2 are the solutions of the corresponding homogeneous

equations satisfying the nonhomogeneous boundary conditions derived from the
boundary conditions of the second order perturbation problem by considering the
decompositions (56). The solutions u(r)

2 are found by the method of undetermined
coefficients. For ũ(r)

2 the solutions satisfying the radiation condition are written as
in the first order problem

ũ(1)
2 =

∞∑
l=1

{
A(l)
2 (x1, x2, t1, t2)e

ilkp1 y + B(l)
2 (x1, x2, t1, t2)e

−ilkp1 y
}
eilθ + c.c. (57)

ũ(2)
2 =

∞∑
l=1

{
C (l)
2 (x1, x2, t1, t2)e

ilkp2 y + D(l)
2 (x1, x2, t1, t2)e

−ilkp2 y
}
eilθ + c.c. (58)

ũ(3)
2 =

∞∑
l=1

E (l)
2 (x1, x2, t1, t2)e

lkv3 yeilθ + c.c. (59)

The second order slowly varying amplitudes U(l)
2 = (A(l)

2 , B(l)
2 ,C (l)

2 , D(l)
2 , E (l)

2 )T of
the waves are determined by employing the nonhomogeneous boundary conditions.
Then the use of ũ(r)

2 together with the solutions u(r)
2 , r = 1, 2, 3, in the boundary

conditions of the second order problem yields the following systems of algebraic
equations

Wl U(l)
2 = b(l)

2 (60)

where

b(1)
2 = −i

(
∂A1

∂t1

∂W1

∂ω
− ∂A1

∂x1

∂W1

∂k

)
R and b(l)

2 ≡ 0 for all l �= 1 (61)

Since it is assumed that det Wl �= 0 for l ≥ 2, for these cases the solutions of (60)
are

U(l)
2 ≡ 0, l ≥ 2 (62)
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Since det W1 = 0 and b(1)
2 �= 0, in order that the Eq. (60) to have a solution for

U(1)
2 the compatibility condition

L.b(1)
2 = 0 (63)

must be satisfied, where L is a left vector defined by LW1 = 0. Then the compati-
bility condition (63) leads to the result

∂A1

∂t1
+ Vg

∂A1

∂x1
= 0 (64)

where Vg = dω
dk = − (

L ∂W1
∂k R

)
/
(
L ∂W1

∂ω
R

)
is the group velocity of the waves. The

Eq. (64) implies that the amplitude A1 remains constant in a frame of reference
moving with the group velocity Vg . That is,A1 = A1(x1 − Vgt1, x2, t2). Then U(1)

2
is found to be

U(1)
2 = A2R − i

∂A1

∂x1

(
∂R
∂k

+ Vg
∂R
∂ω

)
(65)

where A2 = A2(x1, x2, t1, t2) is a complex function representing the second order
slowly varying amplitude of the wave modulation, and it can be determined from
higher-order perturbation problems. But, since this work is centered around the small
but finite amplitudewaves, the aim is here to obtain just the uniformly valid first-order
solution. Note that, we assume thatA2 depends on x1 and t1 through the combination
x1 − Vgt1 as A1, so it is not necessary to evaluate A2, it is sufficient to determinate
A1 only to obtain the first order solution, and this will be done at the third order
perturbation problem. The substitution of the first and second order solutions into
the third order equations (29) gives

L(u(1)
3 ) = (D1e

ikp1 y + D2ye
ikp1 y + D3e

−ikp1 y + D4ye
−ikp1 y

+D5e
3ikp1 y + D6e

−3ikp1 y)eiθ + c.c. + terms in (e±3iθ ), (66)

L(u(2)
3 ) = (D7e

ikp2 y + D8ye
ikp2 y + D9e

−ikp2 y + D10ye
−ikp2 y

+D11e
3ikp2 y + D12e

−3ikp2 y)eiθ + c.c. + terms in (e±3iθ ) (67)

L(u(3)
3 ) = (D13e

kv3 y + D14ye
kv3 y + D15e

3kv3 y)eiθ + c.c. + terms in (e±3iθ ) (68)

The explicit forms of the coefficientsDi , i = 1, . . . , 15will be given in the Appendix
B. The solutions of the third order problem can be sought as in the second order
problem. That is we decompose the solutions as

u(r)
3 = ū(r)

3 + ũ(r)
3 , r = 1, 2, 3 (69)
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where u(r)
3 , r = 1, 2, 3, are the particular solutions found by using the method

of undetermined coefficients. ũ(r)
3 , r = 1, 2, 3, the solutions of the corresponding

homogenous equations satisfying the nonhomogeneous boundary conditions (30)–
(33) are written as in the second order problem replacing U(l)

2 by U(l)
3 respectively in

(57)–(59). U(l)
3 = (A(l)

3 , B(l)
3 ,C (l)

3 , D(l)
3 , E (l)

3 )T are third order amplitude functions
depending on the slow variables x1, x2, t1, t2.

The particular solutions ū(r)
3 , r = 1, 2, 3, can be expressed as a sum of linearly

independent terms of the forms

ū(r)
3 = f (1)

r (x1, x2, t1, t2)e
iθ + f (3)

r (x1, x2, t1, t2)e
3iθ + c.c. r = 1, 2, 3 (70)

where the terms f (1)
r , r = 1, 2, 3, are related with the self-interaction of the waves

while the terms f (3)
r , r = 1, 2, 3, are representing the third harmonic interaction

effects. Since, we are only interested in the self interaction, the explicit form of term
f (3)
r , r = 1, 2, 3, will not be required. Therefore, we only calculate f (1)

r , r = 1, 2, 3.
Hence, these solutions are obtained by the method of undetermined coefficients as

f (1)
1 = (ε1 + ε2y)ye

ikp1 y + (ε3 + ε4y)ye
−ikp1 y + ε5e

3ikp1 y + ε6e
−3ikp1 y + c.c (71)

f (1)
2 = (ε7 + ε8y)ye

ikp2 y + (ε9 + ε10y)ye
−ikp2 y + ε11e

3ikp2 y + ε12e
−3ikp2 y + c.c (72)

f (1)
3 = (ε13 + ε14y)ye

kv3 y + ε15e
3kv3 y + c.c (73)

Explicit forms of the εi , i = 1, 2, . . . , 15 are given in theAppendixB.Then, the use of
these solutions together with u(r)

1 , and ũ(r)
1 , r = 1, 2, 3, in the boundary conditions

of the third-order problem yields the following systems of algebraic equations to
determine U(l)

3 ’s;
Wl U(l)

3 = b(l)
3 . (74)

where b(1)
3 �= 0, b(3)

3 �= 0 and b(l)
3 ≡ 0 for all l �= 1, 3, and b(1)

3 can be written as in
the form

b(1)
3 =

[
−i

(
∂W1

∂ω

∂A1

∂t2
− ∂W1

∂k

∂A1

∂x2

)
+ 1

2

(
∂2W1

∂ω2

∂2A1

∂t21
− 2

∂2W1

∂k∂ω

∂2A1

∂x1∂t1
+ ∂2W1

∂k2
∂2A1

∂x21

)]
R

+
(

∂W1

∂k

∂2A1

∂x21
− ∂W1

∂ω

∂2A1

∂x1∂t1

) (
∂R
∂k

+ Vg
∂R
∂ω

)
+ F | A1|2A1 . (75)

where F is a constant vector depending onmaterial parameters and the wave number
k, their components are given in Appendix B. The explicit form of the vector b(3)

3
is not given, since it is not required for self modulation solution. Since we have
assumed that det Wl �= 0 for l �= 1 the solutions of (74) are found to be

U(3)
3 = W−1b(3)

3 and U(l)
3 ≡ 0 for l �= 1, 3

Since det W1 = 0, in order that (74) has a solution for U(1)
3 the compatibility

condition
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L.b(1)
3 = 0 (76)

must be satisfied. This compatibility condition yields the following nonlinear
Schrödinger (NLS) equation

i
∂A
∂τ

+ �
∂2A
∂ξ 2

+ � | A |2 A = 0.

with the following definitions

τ = ωt2 , ξ = kε−1(x2 − Vgt2) = k(x1 − Vgt1) , A = kA1,

� = k2

2ω

d2ω

dk2
, � = 1

ωk2

[
−(L.F)

/
[L(∂W1/∂ω)R]

]
.

Thus the task is completed, since a solution for A is derived from NLS equation
for a given initial value of the form A(ξ, 0) = A0(ξ) then the first-order solutions
u(r)
1 can be obtained from (49)–(51).
This analysis is also carried out for the case in which c1 < c < c2 < c3 and we

obtain dispersion relation as

p1v2 tan P1 + γ2 p1v3 tan P1 tanh V2 − γ1γ2v2v3 − γ1v
2
2 tanh V2 = 0 (77)

where V2 = kv2h1. For the nonlinear wave modulation of the waves again an NLS
equation is obtained whose coefficients � and � can be obtained by substituting
p2 = iv2 in previous ones.

4 Conclusions

It is known that the sign of the product �� is important in determining how a given
initial data will evolve for long times for the asymptotic wave field governed by
the NLS equation. An initial disturbance vanishing as | ξ |→ ∞ tends to become
a series of envelope solitary waves if �� > 0, while it evolves into the decaying
oscillations if �� < 0. (see, e.g. [1, 4]). The traveling wave solutions of the NLS
equation of the form

A(ξ, τ ) = φ(η)ei(Kξ−�τ), η = ξ − V0τ, V0 : constant (78)

also depend on sign of ��. For �� > 0, if φ → 0 and dφ/dη → 0 as |η| → ∞,
the envelope or bright soliton φ can be obtained as

φ = φ0sech
[
(�/2�)1/2 φ0η

]
, (79)
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where V0 = 2K�, � = �K 2 − �φ2
0/2. For �� < 0 and (�K 2 − �)/�φ2

0 = 1, if
φ → φ0 as η → −∞, the solution for φ which represents the propagation of a phase
jump can be expressed as

φ = φ0 tanh
[
(−�/2�)1/2 φ0η

]
, V0 = 2K�. (80)

Also for �� < 0 dark soliton solutions exist [29]. By taking into account the above
review about the effect of the sign of �� on the properties of the solutions of an
NLS equation, the behaviour of the solutions for SH waves propagating in a double
layered nonlinear half space is now examined. As the properties of solutions of the
NLS equation strongly depend on the sign of the product ��, the variation of it
with respect to the nondimensional wave number K = k(h1 + h2) has to be found
out. In this paper, the evaluation of these coefficients is carried out numerically
for the lowest branch of the dispersion relation giving appropriate values to the
materials constants. Similar calculations may be performed for any other branch of
the dispersion relations.

The coefficient� depends only on the linearmaterial constants and the ratioh2/h1,
whereas � also depends on nonlinear material properties. Therefore to observe the
variation in the �� with nonlinearity, in the numerical evaluations of ��, the linear
material constants are fixed to be ρ(1) = ρ(2) = ρ(3) = 1, μ1 = 1, μ2 = 4, μ3 = 9
while the nonlinear ones β1 = n1/c21, β2 = n2/c22 and β3 = n3/c23 are being changed.
In Fig. 1 the variation of � with respect to K for the first branch of the dispersion
relations (43) and (77) is plotted forh2/h1 = 1 and also forh1 = 0 for a single layered
half space. Note that for h2/h1 = 1, � is zero approximately at K ≈ 2.18 where
the related group velocity curve has a minimum. As mentioned before, if βr > 0
the relevant medium exhibits hardening characteristic, while if βr < 0 softening
characteristic. First we consider the variation of��with respect to K for a hardening
internal layer and a hardening half space with the nonlinear parameters β2 = β3 = 2

Fig. 1 � versus K for
h1/h2 = 1 and h1 = 0
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Fig. 2 �� versus K for
fixed β3 = 2.0, β2 = 2.0
(hardening half space
covered by hardening
internal layer) and for
β1 = −1,−2 (softening top
layers), β1 = 1, 2 (hardening
top layers). The curve for
β3 = 2.0, β2 = 2.0 and
h1 = 0 represents the ��

versus K curve for a single
layered half space

in Fig. 2. To observe the effect of the nonlinearity of the top layer on��;β2 andβ3 are
fixed and the variation of �� with K is computed for β1 = −1, β1 = −2 (softening
nonlinear layers) and for β1 = 1, β1 = 2 (hardening nonlinear layers). When β1 = 1
and β1 = 2 (i.e. a hardening half space covered by two hardening top layers), � < 0
for all K > 0, therefore the sign of �� will be positive when K < 2.18 since � < 0
then envelope solitary wave solution given by (79) will exist but ��will be negative
for K > 2.18 as it is seen in Fig. 2, then only the dark solitons exist for this case.When
β1 = −1 and β1 = −2 (i.e. a hardening half space covered by softening top layer
and hardening internal layers) � < 0 initially and its sign changes with the variation
in the nonlinear material parameter of top layer. In Fig. 2 the second zero of each ��

curve is the zero of � curve and the first one is the zero of � curve. Since the linear
material constants and the ratio h2/h1 are fixed for all nonlinear models, the second
zeros are the same for all �� curves, the other zeros are changing depending on the
nonlinear material parameter of the top layer. For softening half space covered by
softening internal layer and different top layer models, variations of ��with respect
to K are given in Fig. 3. It is seen that the curves having same absolute βr , r = 1, 2, 3
values are symmetric with respect to K axis. Therefore the behavior of the solutions
of the NLS equation is reversed. In Figs. 2 and 3 the variations of �� with K for a
single layered half space (for h1 = 0) are also depicted. From these figures, it can be
seen that the wave propagation is affected considerably by the existence of a second
(top) layer. As a result of the numerical evaluation of �� for fixed linear material
properties, it is observed that the existence of the envelope solitary waves are affected
strongly the nonlinear material parameter of top layer.
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Fig. 3 �� versus K for
fixed β3 = −2.0, β2 = −2.0
(softening half space covered
by softening internal layer)
and for β1 = −1,−2
(softening top layers),
β1 = 1, 2 (hardening top
layers). The curve for
β3 = −2.0, β2 = −2.0 and
h1 = 0 represents the ��

versus K curve for a single
layered half space

5 Appendix A

R1 = 1

2 cos P1
e−(i P1+V3)

(
cos P2 + v3γ2 sin P2

p2

)
, R2 = R1 (81)

R3 = 1

2
ei P2−V 3

(
1 − i

v3γ2
p2

)
, R4 = R3, R5 = 1 (82)

6 Appendix B

D1 = 2�1
∂

∂x1
M(1)

11 + R1N (1) + 2i R1M(1)
12 − P−

1 + 2i R1M(1)
21

D2 = −i
2R1

p1kc21

(
ω

∂

∂t1
+ kc21

∂

∂x1

)
M(1)

11

D3 = 2�2
∂

∂x1
M(1)

11 + R2N (1) + 2i R2M(1)
12 − P+

1 + 2i R2M(1)
21

D4 = 2i R2

p1kc21

(
ω

∂

∂t1
+ kc21

∂

∂x1

)
M(1)

11

D5 = Q−
1
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D6 = Q+
1

D7 = 2�3
∂

∂x1
M(2)

11 + R3N (2) + 2i R3M(2)
12 − P−

2 + 2i R3M(2)
21

D8 = − 2i R3

p2kc22

(
ω

∂

∂t1
+ kc22

∂

∂x1

)
M(2)

11

D9 = 2�4
∂

∂x1
M(2)

11 + R4N (2) + 2i R4M(2)
12 − P+

2 + 2i R4M(2)
21

D10 = 2i R4

p2kc22

(
ω

∂

∂t1
+ kc22

∂

∂x1

)
M(2)

11

D11 = Q−
2

D12 = Q+
2

D14 = 2R5

v3kc23

(
ω

∂

∂t1
+ kc23

∂

∂x1

)
M(3)

11

D15 = n3k
4(−3 + 2v23 + 9v43)R

3
5 |A1|2A1 (83)

and

M(α)
βγ = ω

∂Aβ

∂tγ
+ kc2α

∂Aβ

∂xγ

N (α) = c2α
∂2A1

∂x21
− ∂2A1

∂t21

�α =
(

∂Rα

∂k
+ vg

∂Rα

∂ω

)

P−
1 = n1k

4
(
9p41 + 2p21 + 9

)
R1|R1|2|A1|2A1

P+
1 = n1k

4 (
9p41 + 2p21 + 9

)
R2|R2|2|A1|2A1

Q−
1 = n1k

4
(
9p41 − 2p21 − 3

)
R3
1 |A1|2A1

Q+
1 = n1k

4
(
9p41 − 2p21 − 3

)
R3
2 |A1|2A1

P−
2 = n2k

4
(
9p42 + 2p22 + 9

)
R2
3R4|A1|2A1

P+
2 = n2k

4
(
9p42 + 2p22 + 9

)
R2
4R3|A1|2A1

Q−
2 = n2k

4
(
9p42 − 2p22 − 3

)
R3
3 |A1|2A1

Q+
2 = n2k

4
(
9p42 − 2p22 − 3

)
R3
4 |A1|2A1 (84)

where |φ| denotes the modulus of φ.

ε1 = iD1

2kp1c21
− D2

4k2 p21c
2
1

, ε2 = iD2

4kp1c21
, ε3 = − iD3

2kp1c21
− D4

4k2 p21c
2
1

ε4 = −i
D4

4kp1c21
, ε5 = D5

8k2 p21c
2
1

, ε6 = D6

8k2 p21c
2
1

, ε7 = iD7

2kp2c22
− D8

4k2 p22c
2
2
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ε8 = iD8

4kp2c22
ε9 = − iD9

2kp2c22
− D10

4k2 p22c
2
2

, ε10 = − iD10

4kp2c22

ε11 = D11

8k2 p22c
2
2

, ε12 = D12

8k2 p22c
2
2

, ε13 = − D13

2kv3c23
+ D14

4k2v23c
2
3

ε14 = − D14

4kv3c23
, ε15 = − D15

8k2v23c
2
3

(85)

F1 = −β1h1
k4(9p41 + 2p21 + 9)

8 cos3 P1

(
γ2v3
p2

sin P2 + cos P2

)3

e−3V3 (86)

F2 = β1
k3(9p41 + 2p21 + 9)

8p1 cos3 P1

(
γ2v3
p2

sin P2 + cos P2

)3

sin P1e
−3V3

− 3

32
β1

k3(9p41 − 2p21 − 3)

p1 cos3 P1

(
γ2v3
p2

sin P2 + cos P2

)3

sin 3P1e
−3V3

+ γ1β2
k3(9p42 + 2p22 + 9)

8p2

(
1 + γ 2

2 v
2
3

p22

)(
sin P2 − γ2v3

p2
cos P2

)
e−3V3

− γ1β2
3k3(9p42 − 2p22 − 3)

32p2

(
1 − 3γ 2

2 v
2
3

p22

)
sin 3P2e

−3V3

+ γ1β2
3k3(9p42 − 2p22 − 3)

32p2

(
3 − γ 2

2 v
2
3

p22

)
γ2v3
p2

cos 3P2e
−3V3

− β1
k3 p1

cos3 P1

(
γ2v3
p2

sin P2 + cos P2

)3

(sin P1 cos
2 P1 + 3p21 sin

3 P1)e
−3V3

− γ1β2
k3 p2
4

{
(1 + 9p22)

(
1 + γ 2

2 v
2
3

p22

)(
sin P2 − γ2v3

p2
cos P2

)
+

(1 − 3p22)

[(
1 − 3γ 2

2 v
2
3

p22

)
sin 3P2 −

(
3 − γ 2

2 v
2
3

p22

)
γ2v3
p2

cos 3P2

]}
e−3V3 (87)

F3 = −β1

k2
(
9p41 − 2p21 − 3

) (
v3γ2
p2

sin P2 + cos P2
)3

32p21 cos
3 P1

cos 3P1e
−3V3

+β2
k2

(−3 − 2p22 + 9p42
)

32p22

(
1 − 3v23γ

2
2

p22

)
cos 3P2e

−3V3

+β2
k2

(
9p42 − 2p22 − 3

)
32p22

(
3 − v23γ

2
2

p22

)
v3γ2
p2

sin 3P2e
−3V3 (88)
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F4 = β2
k3

(
9 + 2p22 + 9p42

)
8p2

(
1 + v23γ

2
2

p22

)
v3γ2
p2

e−3V3

+β2
h2k4

(
9 + 2p22 + 9p42

)
8

(
1 + v23γ

2
2

p22

)
e−3V3

−β2
3k3

(−3 − 2p22 + 9p42
)

32p2

(
3 − v23γ

2
2

p22

)
v3γ2
p2

e−3V3

− γ2β3
3k3

(−3 + 2v23 + 9v43
)

8v3
e−3V3 + γ2β3k

3v3(1 + 3v23)e
−3V3

− γ2β2k
3v3(1 + 3γ 2

2 v
2
3)e

−3V3 (89)

F5 = −β2
h2k3

(
9 + 2p22 + 9p42

)
8p2

(
1 + v23γ

2
2

p22

)
v3γ2
p2

e−3V3

−β2
k2

(−3 − 2p22 + 9p42
)

32p22

(
1 − 3v23γ

2
2

p22

)
e−3V3

−β3
k2

(−3 + 2v23 + 9v43
)

8v23
e−3V3 . (90)
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