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Abstract Wave propagation in a poroelastic layer located on a poroelastic half-
space is studied. A fully saturated poroelastic medium is described using Biot’s
mathematical model with four base functions—pore pressure and skeleton displace-
ments. Viscoelastic behavior of porous medium due to viscoelastic properties of the
skeleton is considered. The standard viscoelastic solid model is used. The boundary-
value problem of the three-dimensional dynamic poroelasticity is written in terms of
Laplace transforms. Direct approach of the boundary integral equation (BIE) method
is employed. The boundary-element approach is based on the mixed boundary-
element discretization of surface with generalized quadrangular elements. Time-step
scheme for numerical inversion of the Laplace transforms is used obtain the solu-
tion of boundary value problem. To verify the boundary-element model, poroelastic
solutions are compared with elastic ones.

Keywords Boundary element method · Biot’s model · Poroviscoelasticity · Half
space

1 Introduction

Currently, mathematical modeling is one of the main tools to analyze and optimize
oil and gas fields development, to solve the problems of seismic construction and
bioengineering [1–7]. The model of poroelastic medium, allowing to describe fluid
filtration in pores in together with a full-scale mechanical model of the stress-strain
state of medium is usually used to describe the “solid”–”fluid” system.

Modern forms of thesemodels were introduced byBiot [8]. Biot’smodel correctly
describes processes of elastic porous medium deformation and fluid flow in that
medium. It is assumed that the space containing poroelastic medium is filled with a
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two-phasematerial, and one phase corresponds to the elastic skeleton, and the another
one to the fluid in pores. Both phases are present at each point of the physical space,
and the phase distribution in space is described by macroscopic quantities such as
porosity.

Biot’s model allows us to solve a number of particular problems, amongwhich the
problems of wave propagation in homogeneous and layered poroelastic half-spaces
are of particular interest [9–17]. However, the increasing complexity of computa-
tional schemes for boundary value problems requires the involvement of advanced
methods such as boundary elements method (BEM). Possessing high accuracy and
rigor of the approach, BEM is the most suitable method for considering nonstation-
ary processes in semi-infinite bodies, since it ensures automatic fulfillment of the
conditions for solution behavior at infinity. Despite the noted advantages of BEM,
the possibility of modeling the poroelastic dynamics is mainly determined by the
presence of the corresponding boundary integral equations (BIE) and fundamental
solutions. Fundamental solutions and BIE of the dynamic theory of poroelasticity
were obtained in [18–21]; in [22–25] different variants of boundary element schemes
for the solution of problems in porodynamics are presented and results of numerical
experiments are provided. Results of boundary element modeling of dynamics of
poroelastic halfspaces are presented in [26–30].

The principal difference of poroelastic formulation from elastic and viscoelastic
is that it allows to take into account the influence exerted by the fluid moving in
pores on the behavior of the medium as a whole. Historically, on the basis of Biot’s
theory, the existence of two longitudinal waves—fast and slow in porous medium
was predicted. The slow longitudinal wave is caused by the movement of fluid par-
ticles of the pores relative to the porous skeleton and is peculiar only to porous
media. In addition, the frictional interaction of viscous fluid and a skeleton leads to
a significant dissipation of energy in the medium, which demonstrates viscoelastic
behavior [31, 32]. The viscoelastic behavior of poroelastic medium can also be due
to the viscoelastic properties of the skeleton [33–35]. Some results of simulation of
wave processes in poroelastic solids with the use of BIE, BEM and various models
of viscoelastic behavior of the skeleton are presented in [36–38].

The paper presents the modeling of wave propagation in homogeneous and inho-
mogeneous poroviscoelastic in semi-infinite bodies using time-step BEM scheme. A
poroviscoelastic layer on a semi-elastic halfspace is considered as an implementation
of the inhomogeneity model.

2 Problem Formulation

Basic poroelastic material is a two-phase material consisting of an elastic skeleton
and compressible fluid or gas filler. Porous material of a volumeV can be constructed
as follows:
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V � V f + V s (1)

where V is the total volume, V f is the summary pore volume and V s is the volume
of the skeleton. It is assumed that filler can openly seep through the pores and all
closed pores are assumed as a part of the skeleton. Then a correspondence principle is
applied to the skeleton, so we extend poroelastic formulation to poroviscoelasticity.

Considering a boundary-value problem for Biot’s model of fully saturated poroe-
lastic continuum in Laplace domain in terms of four unknowns (displacements ūi
and pore pressure p̄) the set of differential equations take the following form [30]:

Gūi, j j +

(
K +

G

3

)
ū j,i j − (ψ − β) p̄,i − s2(ρ − βρ f )ūi � −F̄i ,

β

sρ f
p̄,i i − φ2s

R
p̄ − (ψ − β)sūi,i � −ā, x ∈ �, (2)

Boundary conditions:

ū(x, s) � f (x, s), x ∈ �u, ū � (ū1, ū2, ū3, p̄),

t̄(x, s) � g(x, s), x ∈ �σ , t̄ � (
t̄1, t̄2, t̄3, q̄

)
,

where �u and �σ denotes boundaries for boundary conditions of 1st and 2nd kind
respectively, G, K are elastic moduli, φ � V f /V is porosity, F̄i , ā are bulk body
forces.

β � κρ f φ
2s

φ2 + sκ(ρa + φρ f )
, ψ � 1 − K

Ks
and R � φ2K f K 2

s

K f (Ks − K ) + φKs(Ks − K f )

are constants reflecting interaction between skeleton and filler, κ is permeability.
Further, ρ � ρs(1− φ) + φρ f is a bulk density, ρs, ρa, ρ f are solid, apparent mass
density and filler density respectively, Ks, K f are elastic bulk moduli of the skeleton
and filler respectively. Apparent mass density ρa � Cφρ f was introduced by Biot
to describe dynamic interaction between fluid and skeleton. C is a factor depending
on the pores geometry and excitation frequency.

The governing equation system (2) in matrix form can be written as follows:

Bū � F, ūT � (ūi , p), i � 1, 3

B �
[
G∇2 +

(
K + 1

3G
)
∂i∂ j − s2(ρ − βρ f ) −(ψ − β)∂i

−s(ψ − β)∂ j
β

sρ f
∇2 − φ2s

R

]
.

Boundary conditions are:

u(x, s) � f (x, s) on�u, tn(x, s) � g(x, s) on�σ .
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In present paper we consider piecewise homogeneous solid � in Euclidian space
R3 with coordinate system Ox1x2x3. Solid � is enclosed with boundary denotes as
�, boundaries of �k (k � 1, . . . , K ) are denoted as �k . Each part �k is assumed to
be isotropic. Material parameters of each �k are denotes by upper index « k » So,
governing equations for each part �k in matrix form take a following form:

Bkūk � 0, ūk � (ūki , pk), i � 1, 3

[
Gk∇2 +

(
Kk + 1

3G
k
)
∂i∂ j − s2(ρk − βkρk

f ) −(ψk − βk)∂i
−s(ψk − βk)∂ j

βk

sρk
f
∇2 − φk2s

R2

]

where ūk(x, s)—generalized displacements vector at point x � (x1, x2, x3).
Assumed that uk(x, t) fulfill zero initial condition:

uk(x, 0) � uk(x, 0) � 0

Following boundary conditions are employed for each �k :

ukl (x, t) � f kl (x, t), x ∈ �u ∩ �k, l � 1, 3;
t kl (x, t) � gkl (x, t), x ∈ �σ ∩ �k ;

ukl (x, t) � uml (x, t), t
k
l (x, t) � −tml (x, t), x ∈ Γ ′

km .

Here, �u and �σ are parts of boundary � of body �, along which displacements
and surface tractions, respectively, are assigned; Γ ′

ks is the contact boundary of parts
�k and �s . Functions f kl (x, t) and g

k
l (x, t) are assigned functions of the coordinates

and time.
Poroviscoelastic solution is obtained from poroelastic solution by means of the

elastic-viscoelastic correspondence principle, applied to skeleton’s moduli K and G
in Laplace domain. Forms of functions K̄ (s) and Ḡ(s) depend on chosen viscoelastic
model.

In present paper, standard linear solid model is employed:

K̄ (s) � K∞ ·
[
(χ − 1)

s

s + η
+ 1

]
,

Ḡ(s) � G∞ ·
[
(χ − 1)

s

s + η
+ 1

]

The equilibrium and instantaneous values of the relaxation function associated
with material modules are connected as follows:

χ � K 0/K∞ � G0/G∞

Equilibrium and instantaneous values are denoted by «∞» and «0» respectively.
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3 Boundary-Element Approach

Boundary-value problem can be reduced to the BIE system as follows [26–30]:

1 − α�

2
υi (x, s) +

∫
�

(
Ti j (x, y, s)υi (y, s) − T 0

ik (x, y, s)υi (x, s) −Ui j (x, y, s)ti (y, s)
)
d� � 0,

where x, y ∈ � Ui j , Ti j are fundamental and singular solutions, T 0
i j contains the

isolated singularities, x ∈ � is an arbitrary point. Coefficient α� equals to 1 in case
of finite domain and −1 in case of infinite domain.

Boundary surface of our homogeneous solid is discretized by quadrangular and
triangular elements and triangular elements are assumed as singular quadrangular
elements. TheCartesian coordinates of an arbitrary point of the element are expressed
through the coordinates of the nodal points of this element, using shape functions of
the local coordinates. Shape functions are quadratic polynomials of interpolation.We
use reference elements: square ξ � (ξ1, ξ2) ∈ [−1, 1]2 and triangle 0 ≤ ξ1 + ξ2 ≤ 1,
ξ1 ≥ 0, ξ2 ≥ 0, and each boundary element is mapped to a reference one by the
following formula:

yi (ξ ) �
8∑

l�1

Nl(ξ )yβ(k,l)
i , i � 1, 2, 3,

where l is local node number in element k, β(k, l) is global node number, Nl(ξ )
are shape functions. Goldshteyn’s displacement-stress mixed model is performed.
To discretize the boundary surface eight-node biquadratic quadrilateral elements
are used, generalized displacements and tractions are approximated by linear and
constant shape functions, respectively.

Subsequent application of collocation method leads to the system of linear equa-
tions. As with the collocation nodes we take the approximation nodes of boundary
functions. Gaussian quadrature are used to calculate integrals on regular elements.
However, if an element contains a singularity, algorithm of singularity avoiding or
order reducing is applied. When singularity is excluded we use an adaptive integra-
tion algorithm.An appropriate order of Gaussian quadrature is chosen from primarily
known necessary precision, if it is impossible, the element is subdivided to smaller
elements recursively.

Solving the system of linear equations leads to the solution of the initial boundary-
value problem in Laplace domain.
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4 Laplace Transform Inversion

Consider a method based on the theorem of the integration of the original—the
stepped method of numerical inversion of Laplace transform. Consider the following
integral:

y(t) �
t∫

0

f (τ )dτ . (3)

Integral (3) gives rise to Cauchy problem for an ordinary differential equation:

d

dt
x(t) � sx(t) + C, x(0) � 0.

Integral (3) is substituted for by a quadrature sum, weighting factors of which are
determined using Laplace representation f and the linear multi-step method [39].
Further derivation is based on the results of those works. The traditional stepped
method of integrating the original consists in that integral (3) is calculated using the
following relation:

y(0) � 0, y(n�t) �
n∑

k�1
ωk(�t), n � 1, . . . N ,

ωn(�t) � R−n

2π

2π∫
0

f̄
(

γ (Rei ϕ)
�t

)
e−in ϕdϕ

where �t is time step; γ (z) � 3
/
2 − 2z + z2

/
2.; p is number of a time step,

n � 0, N ; R is parameter of the method.
The traditional method uses a constant-step trapezoid method for integrating.

Consider the following formula of constructing ωn based on a variable step:

ωn(�t) � R−n

2π

L−1∑
k�0

[
f̄

(
γ (Reinϕk )

�t

)
e−inϕk + f̄

(
γ (Reinϕk+1 )

�t

)
e−inϕk+1

]
(ϕk+1 − ϕk)

2
.

5 Numerical Example

The problem of the Heaviside-type load H(t) acting on the surface of a poroelastic
layer located on a poroelastic halfspace is considered (Fig. 1). Two variants of geom-
etry problem are considered—with a layer thickness of 5 and 10 m. A vertical load
t3 � −1000 N/m2 · H(t) is specified on a surface area of 1 m2, the rest of the surface
is traction-free and permeable. At the boundary between the layer and halfspace,
the flow, the force, displacements and pore pressure are assumed to be unknown
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Fig. 1 Layered half space
under vertical load

h

P

1x
2x

3x

2
3 1000N /t m

functions. The parameters of the poroelastic soil and the rock are given in Table 1.
Moduli characterizing the elastic behavior of the porous material in accordance with
the drained and undrained models are also given in Table 1. Dynamic responses of
vertical displacements u3 at the point P, located at a distance of 10 m from the area
of load application are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10.

Table 1 Poroelastic constants for various materials

Parameter Poroelastic Elastic drained Elastic undrained

Rock Soil Rock Soil Rock Soil

Bulk modulus
K [N/m2]

8 · 109 2.1 · 108 8 · 109 2.1 · 108 1.57 · 1010 4.83 · 109

Shear
modulus
G [N/m2]

6 · 109 9.8 · 109 6 · 109 9.8 · 109 6 · 109 9.8 · 109

Density
ρ [kg/m3]

2458 1884 2458 1884 2458 1884

Solid bulk
modulus
Ks [N/m2]

3.6 · 1010 1.1 · 1010 – –

Fluid bulk
modulus
K f [N/m2]

3.3 · 109 3.3 · 109 – –

Fluid density
ρ f [kg/m3]

1000 1000 – –

Porosity ϕ[−] 0.19 0.48 – –

Permeability
κ [m4/(N · s)] 1.9 ·10−10 3.55 · 10−9 – –
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Fig. 2 Displacement at point P versus time: different depth of the layer

Fig. 3 Vertical displacement at pointP versus time. Comparison of poroelastic and elastic solutions
of the soil and rock for layer of 5 m depth

Figure 2 presents the comparison of vertical displacements, calculated for the layer
with thicknesses of 5 m i 10 m and labeled u5 m

3 and u10m3 , respectively. Figure 2 also
represents solutions for displacements

(
uhs3

)
, calculated for the same values of the

halfspace material parameters, which describe layer material. It can be seen that until
the appearance of the fast longitudinal wave (t ≈ 0.01 s) all three curves are almost
graphically indistinguishable, however, quantitative differences are observed further.
In the moment of Rayleigh wave (t ≈ 0.047 s) appearance and up to the moment t ≈



Surface Waves in Dissipative Poroviscoelastic Layered … 313

Fig. 4 Vertical displacement at point P versus time. Comparison poroelastic and elastic solutions
of the soil and rock for layer of 10 m depth

Fig. 5 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
and rock for layer of 10 m depth
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Fig. 6 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
and rock for layer of 5 m depth

Fig. 7 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the rock
for layer of 10 m depth
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Fig. 8 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the rock
for layer of 5 m depth

Fig. 9 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
for layer of 10 m depth
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Fig. 10 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
for layer of 5 m depth

0.057 s the displacement behavior is described by the relation u5 m
3 ≤ uhs3 ≤ u10 m

3 .
The time moment t ≈ 0.057 s is marked by an increase in displacements u5 m

3 and
u10 m
3 , and the displacements u5 m

3 increase much more rapidly and exceed u10 m
3 and

uhs3 by amplitude. The observed effect is explained by the influence of longitudinal
waves reflected from the halfspace and is less noticeable in the case of a larger layer
thickness due to the considerable wave dispersion in porous medium.

Figures 3 and 4 show the comparison of displacements u5 m
3 and u10 m

3 ith the dis-
placements calculated using elastic models, respectively. In both cases, the solution
obtained from the undrained material model is the best approximation to the poroe-
lastic solution, but the differences are also observed here due to the influence of the
waves reflected from the halfspace. Figure 4 shows that the amplitude of the Rayleigh
wave of the poroelastic solution is smaller than the corresponding amplitudes of the
elastic solutions.

In order to obtain poroviscoelastic solutions standard linear solid model is
employed. Parameter η characterize viscosity, and parameter χ � K 0/K∞ �
G0/G∞ characterize dependence between equilibrium and instantaneous values of
material modules. In further computations parameter χ � 4.

Figures 5, 6, 7, 8, 9 and 10 demonstrate the influence of viscoelastic properties
of the skeleton on the dynamic response of vertical displacements. Figures 5 and 6
represent the vertical displacements on the surface of a viscoelastic layer located on
a poroelastic halfspace. With increase of the parameter η, it is seen that viscoelas-
tic solution approaches poroelastic solution, but decrease of η leads to reduce of
displacement amplitude. The influence of dissipative effects on the surface displace-
ments of the five-meter layer is especially noticeably at η � 103 when the amplitude
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of the Rayleigh wave displacement does not exceed the amplitude of the longitudinal
wave displacements (Fig. 6).

Figures 7 and 8 represent vertical displacements on the surface of poroelastic layer
located on a porous viscoelastic halfspace. It can be observed that the dissipative
effects associated with viscoelastic behavior of the halfspace have minor effect on
the dynamic responses of displacements on the surface of both the 5 and 10 m layers.

Figures 9 and 10 show vertical displacements on the surface of a viscoelastic
layer located on the poroelastic halfspace. In this case, the displacement curves
almost coincide with the displacement curves presented in Figs. 5 and 6, and the
corresponding comments can be repeated. Taking into account the comments made
regarding the results in Figs. 7 and 8, we can say that the dynamic responses of the
surface displacements of the layer are mainly affected by the viscoelastic properties
of the layer.

6 Conclusion

The Biot’s mathematical model of poroelastic material is given in the present paper.
The systems of equations of the theory of dynamic poroelasticity and the formulation
of boundary value problems in Laplace transforms are formulated. The technique
of numerical inversion of the Laplace transform based on step method is presented.
The boundary-element solutions for a problem involving a vertical load acting on
the surface of a poroelastic layer located on a poroelastic halfspace are presented.
The effect of the viscoelastic properties of the skeleton of porous material on vertical
displacements on the surface layer is studied. It is noted, that the formofwave patterns
is mainly influenced by dissipative effects caused by the viscoelastic behavior of the
layer.
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