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Preface

Professor Dmitry Anatol’evich Indeitsev is one of the leading Russian scientists in the
field of solid mechanics, who won recognition from the world scientific community.
A wide range of his scientific interests includes wave dynamics, dynamic problems of
coupled processes in continuum mechanics, wave and diffusion processes in multi-
component media, contact interaction of bodies with varying boundary. It should be
especially emphasized that Dmitry Indeitsev is one of the pioneers initiating inves-
tigation of the trapped mode phenomenon in solids. He found out a complete class of
mechanical models admitting closed form solutions. Study of this class allowed him
to formulate a number of fundamental results and identify the basic conditions for
existence of localized solutions. These results were later confirmed by a large number
of examples for more complex waveguide models of different physical nature (fluid–
structures interaction problems, film structures, meta-materials, etc.). His results
stimulated many scientists to carry out research in this particular field.

Another direction of research by Prof. Indeitsev is the development of new
approaches to description of dynamic processes in materials with a complex internal
structure on the basis of first principles of continuum mechanics. He developed a
mathematical model of influence of the dynamic stresses on the diffusion processes
in materials. The model is based upon the equations of a two-component medium
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and takes into account the internal interaction forces, as well as the effect of the
spherical part of stress tensor of the crystal lattice on the magnitude of these forces.
In recent years, Prof. Indeitsev was successfully engaged in the development of new
models of heat transfer in dielectrics and metals under laser excitation.

Dmitry Indeitsev was born on December 2, 1948, in Gorky, now Nizhny
Novgorod. In 1972, he graduated from the Leningrad Polytechnic Institute (now
Peter the Great St. Petersburg Polytechnic University), Faculty of Physics and
Mechanics with a degree in Dynamics and Strength of Machines. In 1972–1987, he
was a member of the research laboratory of Leningrad Higher Naval Engineering
School named after F. E. Dzerzhinsky.

An important stage of scientific and organizational activities of Prof. Indeitsev is
associated with work at the Institute for Problems in Mechanical Engineering of the
Russian Academy of Sciences (IPME RAS) which he joined in March 1987. First
he worked as a senior researcher, in February 1989 he was appointed the head of
laboratory “Hydroelasticity” and in 1993 the deputy director for scientific work. In
1994, he defended his dissertation for the degree of Doctor of Sciences in Physics
and Mathematics (habilitation) and in 1999 he was awarded the title of Professor in
“Mechanics of Solids”. In July 2002, he was appointed the Acting Director, in May
2004 Director of IPME RAS, since June 2015 he is the Scientific Head of
IPME RAS. In May 2006, he was elected a Corresponding Member of the Russian
Academy of Sciences in the field of solid mechanics.

Under his supervision, the Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences has passed a difficult period of formation and
grown into an authoritative research center in Russia and abroad; nowadays it keeps
leading positions in many scientific fields of engineering, mechanics, and automatic
control. Many members of the Institute have achieved significant success in
research and teaching due to the great support and invaluable help by Prof.
Indeitsev. The most important role in the development of the Institute, as well as all
the Russian science, is played by regular scientific events organized by IPME RAS.
Since 1994, Prof. Indeitsev is the main organizer and supervisor of the Annual
International Summer School for mechanical scientists “Analysis and Synthesis of
Nonlinear Oscillatory Mechanical Systems. Actual Problems of Mechanics”, which
developed into a celebrated Annual International Conference “Advanced Problems
in Mechanics”, where numerous famous scientists from different countries have
reported their results. Regular participation of this conference helped young
researchers, not only the Institute members, went from being Ph.D. students to
candidates and doctors of science.

Professor Indeitsev is the Head of Department “Mechanics and Control
Processes” of the Institute of Applied Mathematics and Mechanics at Peter the
Great St. Petersburg Polytechnic University, he is also Professor of the Department
“Theory of Elasticity” of the Faculty of Mathematics and Mechanics at the
St. Petersburg State University.
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He is a member of many scientific societies: Russian National Committee on
Theoretical and Applied Mechanics (RNCTAM), European Mechanics Society
(EUROMECH), Society of Applied Mathematics and Mechanics, Germany
(GAMM), etc.

Professor Indeitsev is a member of the editorial boards of eight scientific jour-
nals, among them “Physics and Mechanics of Materials”, “Acta Mechanica”,
“Advances in Mechanics”, “Reviews on Advanced Materials”.

Professor Indeitsev is author of more than 200 scientific papers. He is not only a
brilliant scientist and organizer, but also a splendid scientific adviser who is able to
create an atmosphere of scientific creativity by generating bright and productive
scientific ideas. He belongs to those people who are able to unite the team, support
and cultivate young talents. His enthusiasm, true passion, and uncompromising
attitude toward science are transferred to all who have the good fortune to com-
municate with him. We are amazed by his human and scientific generosity which he
shares his time, forces, and ideas with us.

This volume of the Advanced Structured Materials Series is dedicated to the
seventieth birthday of Prof. Dmitry Indeitsev and contains a selection of scientific
papers prepared by his friends and colleagues from different countries. Some
of these works are devoted to research related to the scientific interest by Prof.
Indeitsev, while the others to some extent are inspired by fruitful scientific dis-
cussions with him. Finally, the collection presents works devoted to those modern
directions in mechanics that may become the subject of his scientific interest in the
future.

Magdeburg, Germany Holm Altenbach
St. Petersburg, Russia Alexander Belyaev
Gdańsk, Poland Victor A. Eremeyev
St. Petersburg, Russia Anton Krivtsov
St. Petersburg, Russia Alexey V. Porubov
December 2018
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New Nonlinear Model for Ice Induced
Vibrations

A. K. Abramian and S. A. Vakulenko

Abstract In this paper a new simple oscillator model is considered describing ice
induced vibrations of upstanding, water surrounded, and bottom-founded offshore
structures. Existing models are extended by taking into account deformations of an
ice floe, and a moving contact interaction between an ice rod, which is cut out from
the floe, and the oscillator which represents the offshore structure. Special attention is
paid to a type of ice-induced vibrations (IIV) of structures, known as frequency lock-
in, and characterized by having the dominant frequency of the ice forces near a natural
frequency of the structure. We propose a new asymptotical method that allows us to
exclude ice floe deformations and obtain a nonlinear equation for structure vibrations.
We investigate instability onset, and resonance effects for these vibrations.

1 Introduction

In this paper, we investigate ice induced vibrations (IIV) of structures such as off-
shore drilling platforms, lighthouses, and bridge pierces. This problem has important
applications for engineering inArctic region. In fact, as a result of an ice sheet impact,
such structures can exhibit large amplitude vibrations, which break their functioning
and even destroying them. The IIV are generated by a complicated process involving
ice failure, nonlinear dynamics of structures and an interaction between ice and struc-
tures. This problem was considered in many papers, and we, do not pretending on an
overview, concern here with some works, which were corner-stones for our model.
The first model of IIV was proposed in [1], where the ice failure was considered as
a sequence of discrete events. Actually, for small ice velocities interaction between
a structure and an ice sheet leads to a crack formation in the ice sheet. Then the ice
sheet crunches in the structure-ice contact area. This model was extended by Sodhi
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2 A. K. Abramian and S. A. Vakulenko

[2] and more recently [3], where randomness of the ice failure is taken into account.
Mathematically, these models describe oscillators under an external time depending
force, which simulates an action of the discrete events. These models exhibit a reso-
nance effect as a possible source of large IIV’s. Other IIV’smodels treat the ice failure
as a continuous process (see, for example, [4]) and can be applied for large ice veloc-
ities. In this case the crushing ice force has a relatively low magnitude and structure
oscillations have low magnitudes and high frequencies. As it was mentioned in [3]
these situations are less important for safety applications since dangerous vibrations
start with smaller velocities. In this paper, we propose a model extending the previ-
ous ones, in particular, suggested in [1–3]. Following [1–3] we consider structures
as oscillators, however, we suppose that these oscillators can involve a number of
interaction modes. A novelty with respect to previous investigations is that we study
the ice sheets and ice-structure interactions in more detail. We describe deforma-
tions of the ice sheets taking into account a contact between structures and ice. For
oscillator-ice interactions, we take into account extrusion effects. This consideration
leads to a difficult problem, which involves partial differential equations (PDE’s) for
the ice sheets and ordinary differential equations (ODE’s) for structures. The main
difficulty is that these PDE and ODE are coupled via boundary conditions for the
ice sheet deformations on a contact line between the ice sheet and the structure. This
contact line is unknown. Such contact problems are difficult, nonetheless, we are
capable to resolve our problem using a new asymptotic approach. This approach
exploits mechanical properties of the ice sheet model, namely, we assume that the
ice sheet internal friction is small whereas the sound velocity of the ice is large. This
asymptotic approach based on such assumptions allows us to find an ODE for the
structure, where ice deformations are excluded. This equation describes (for a single
mode approximation) a linear oscillators perturbed different nonlinear terms. These
terms admit transparent physical interpretations and describe the following effects:

i The effect of water mass extrusion under the ice sheet action that leads to a
friction, nonlinear effects and a time periodic forcing;
ii The effect of a contact interaction between ice-sheet and structure that leads to
nonlinearities, a oscillator frequency shift, an “added” mass and a friction, which
depend on ice velocity V ;

Note that in i and iiwe take into account randomness of the ice failure process. The
resulting equation for the IIV terms involvemany parameters, but a crucial parameter
is the ice velocity V . The dynamics of this oscillator model can be studied by well
known methods (for example, [5]). The following main results were obtained by this
asymptotic investigation and numerical simulations.

A resonance is possible for some V that can lead to large vibrations amplitude A.
We obtain a plot of V − A dependence, which, for some parameters choice, shows a
peak. This means that for small speeds V we have no amplitude increase, as well as
for large V . The height and width of the peak depend on the system parameters. The
randomness decreases the height and increases the width and a larger randomness
can produce many smaller peaks. Other parameters also affect the peak properties.
Note that simulations by Matlock and extended Matlock models [1, 3] show a few
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of peaks, and relatively small vibration amplitude increase (see Fig. 3 in [3]). Some
simulations by ourmodels show similar pictures, but under an appropriate parameters
choice our model exhibits an essentially larger amplitude growth and a single peak.
Effect ii essentially depends on the ice velocity V . For V this effect reinforces the
resonance. Moreover, we obtained that increase of V can decrease the friction, which
can become even negative, and it also decreases the effective structure mass (effect of
negative “added mass”). These results are consistent with experimental data [6]. The
numerical simulations show an exponentially growth of amplitude vibrations when
a negative friction contribution is large enough. We find thus the second mechanism
of structure destruction alternative to the resonance.

Formulti oscillatormodels peaks corresponding to the resonances becomes higher
and the peak width increases. Moreover, the peak form may be complicated as a
result of many resonances and a nonlinear interaction between modes. Note that the
vibrations for small V , resonance V and large V have quite different form. A Fourier
analysis of the structure response was made to understand oscillation form. For large
V the response is essentially more stochastic and noisy than for resonance and small
V .

2 Statement of the Problem

Our model is defined by a system of two equations. Following [1–3], we consider
the structure as a rigid body having a contact with the ice sheet. The first equation
describes a nonlinear oscillator and has the form

Mqtt + Gq + g(q, qt , t) = μ(t), (1)

where q = q(t) is a unknown function of time t , which defines the structure vibration
amplitude, M and G are positive coefficients describing the mass and the stiffness of
the structure. The term g(q, qt , t) defines nonlinear effects caused by the interaction
of the structure with the water, which can depend on t . We assume that

g(q, qt , t) = −a0
qt − st
q − s

, a0 > 0. (2)

The term μ defines an influence of the ice on the structure and has the form

μ(t) = ρ0c
2
0ux (x, t)|x=q(t), (3)

where u(x, t) is a displacement of the ice, ρ0 and c0 are positive parameters, where
ρ0 is the ice density and c0 stands for the ice sound velocity. The oscillator frequency
is defined by ω2 = G/M.

The second equation describes the displacement u(x, t) of the ice sheet, which
occupies the domain Iq = {x : q < x < L}. This equation is a PDE, which reads

uxx − c−2
0 utt − βut − k0u = −βst + k0s, (4)
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where u(x, t) is a unknown ice displacement, and β and k0 are positive parameters,
which determine the internal ice sheet friction and the ice sheet compression, respec-
tively. The function s(t) is a shift of the structure center and we suppose that s(t) is
defined by

s(t) = s0 − V t + ρ(t), V > 0, (5)

where

ρ(t) =
M(t)∑

k=1

dkH(t − tk). (6)

Here tk are time moments when the ice sheet breaks, dk are lengths of ice blocks
(tooths) that split off and H(z) stands for the Heaviside step function. The time
moments tk are defined by the condition

p(tk) = pc, (7)

whichmeans the pressure p attains a critical level pc. The pressure p can be computed
by the relation

p(t) = p0
v(t − tk)

s(t)
, (8)

where tk is the moment of the previous break. Therefore, the breaks are determined
by the relation

p(tk+1) = p0
v(tk+1 − tk)

s(tk+1)
= pc. (9)

Fig. 1 This plot shows a dependence s(t) on the time. Parameters are V = 2 and pc = 50, the
time step dt = 0.001. The quantities dk are random numbers distributed according to the normal
law N(d, σ ), where d = 1 and σ = 0.1
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Fig. 2 The pressure p for
V = 2 and pc = 50, the time
step dt = 0.001

The pressure and s(t) can be computed numerically and the corresponding plots are
represented by Figs. 1 and 2.

Note that for dk = const the pressure p(t) and the distance s(t) are periodic time
functions and the corresponding period T equals

T = pcd

V (p0 + pc)
. (10)

However, really the process of ice failure is random, thus, the intervals between
the breaks tk are random. We assume that the quantities dk are random numbers
distributed according to the normal law N(d, σ ) therefore the averaged period is d.
We set the following boundary conditions

u(q, t) = q(t), u(L , t) = 0 (11)

(the first one is a contact relation between the ice sheet and the structure) and the
initial conditions

u(x, 0) = 0, ut (x, 0) = 0. (12)

3 Simplified Nonlinear Equation for Structure Vibrations

3.1 Equation for q

The aim of this subsection is to express the displacement u(x, t) via q and obtain an
equation involving q only. We assume that parameters β and c−2

0 are small:

0 < β, c−2
0 � 1, (13)
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however, βst may be large. We suppose that the size L of the ice sheet is large:
L � 1. The following assumption is important: L−1/2 is much less than all the rest
small parameters, i.e., we suppose L−1/2 � β, c−2

0 . Note that the contact problems
are very complicated. Here, however, we can find an asymptotic solution. The main
mathematical idea of this asymptotic construction can be described as follows. First
we represent u(0) in the form

u(0) = q exp(−α(x − q)) + ũ(x, t),

where ũ is a new unknown function and L−1/2 � α � L−1. Then the ũ satisfies the
following equation:

ũxx − c−2
0 ũt t − βũt − k0ũ = h, (14)

where

h = −βst + k0s + (c−2
0 qtt + βqt + k0q + α2) exp(−α(x − q)), (15)

and the boundary conditions

ũ(q, t) = 0, ũ(L , t) = O(exp(−αL)). (16)

We see that the boundary condition at x = L is satisfied, up to exponentially small
terms.

Given a function h(x, t), under assumption (5) we can solve the initial boundary
value problem (22), (16) by iterations setting

u = ũ(0) + ũ(1) + · · ·

For the main term ũ(0) one obtains

ũ(0)
xx − k0ũ

(0) = h, (17)

and for = ũ(1)

ũ(1)
xx − k0ũ

(1) = c−2
0 ũ(0)

t t + βũ(0)
t = g. (18)

The boundary conditions take the form

u(i)(q, t) = 0, u(i)(L , t) = 0, i = 0, 1. (19)

Using assumptions (5) one obtains

ũ(0) ≈ −k−1
0 f (t)(1 − exp(−κ(x − q))) exp(−α(x − q)), (20)
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where κ2 = k0 and

f (t) = −βst − k0s + c−2
0 qtt + βqt + k0q. (21)

Substituting this result into Eq. (18) and taking into account assumptions (5) we have

ũ(1)
xx − k0ũ

(1) = γ, (22)

where
ũ0t = k−1

0 (− ft + exp(−κ(x − q))( ft + κ f qt )),

ũ0t t = k−1
0 (− ftt + exp(−κ(x − q))( ftt + 2κ ftqt + f κ2q2

t − κqtt f )).

Finally,
γ = k−1

0 (G0 + G1 exp(−κ(x − q))), (23)

where
G0(t) = −c−2

0 ftt − β ft , (24)

G1(t) = c−2
0 ( ftt + 2κ ftqt + f κ2q2

t − κω2q f ) + β( ft + κ f qt ). (25)

We solve Eq. (18) and obtain

ũ(1) ≈ U1 +U2, (26)

where
U1 = −k−2

0 G0(t)(1 − exp(−κ(x − q))) exp(−α(x − q)), (27)

U2 = −(2k0κ)−1G1(t)(x − q) exp(−κ(x − q)) exp(−α(x − q)). (28)

These relations give

ux (q) = −κ−3(κ2 f + G0 + G1/2). (29)

To simplify the expression for f, ft and ftt we take into account that for small μ
we can use the approximation qtt ≈ −ω2q. Then by (5) we obtain

f = βst + k0s + k0q + βqt + c−2
0 qtt , (30)

ft = βstt + k0st + (k0 − ω2c−2
0 )qt + βqtt , (31)

ftt = βsttt + k0stt − ω2βqt + (k0 − ω2c−2
0 )qtt , (32)
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Finally, using relations obtained above, one obtains an equation for q:

qtt + ω2q = ξ(q, qt ), (33)

where ξ is defined by
ξ = ξ0 − M−1g(q, qt ), (34)

and
ξ0 = ρ0c

2
0M

−1ux (q). (35)

In this equation the ice sheet deformation is excluded due to our asymptotic approach.
This main equation for structure vibrations describes a weakly perturbed linear oscil-
lator with the frequency ω2.

3.2 Simplification of Vibration Structure Equation

Before solving Eq. (33) we simplify the right hand side ξ of this equation and find a
physical meaning of different terms involving in ξ . To proceed we take into account
that β and c−2

0 are small parameters, and removing terms of the order O(β2) and
O(βc−2

0 ) in ξ , however, we conserve terms that involve β2V . Moreover, we assume
that the amplitude of oscillationsq is small, therefore,we also remove nonlinear terms
in ξ proportional toβ or c−2

0 . In the term gweconserve contributionsO(qt ) andO(q).
Moreover, we supposeρ0M−1c−2

0 = O(1) and conserve some terms proportionalβst
since they can be large at the break time moments tk .

After straight forward computations, we obtain the following relation:

ξ0 = h(t) + μ0q + μ1qt + μ2qtt + O(β2 + c−4
0 ), (36)

where

h(t) = −ρ0c
2
0M

−1κ−3(
1

2
k0βst + k20s + 1

2
βsttt ), (37)

μ0(t) = −ρ0c
2
0M

−1κ, (38)

μ1(t) = −ρ0c
2
0M

−1κ−3(
βk0
2

+ c−2
0 κk0st ), (39)

and

μ2(t) = −ρ0c
2
0M

−1κ−3(c−2
0 k0 + k0s

2
+ βst

2
). (40)

The termμ0q defines a perturbation of the oscillator vibration frequency, The term
μ1qt gives a contribution in the friction, and the termμ2qtt determines the effect of the
added mass. All these terms appear as a result of the ice sheet-structure interaction.
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Note that the friction perturbation−μ1qt involves two terms. The first term is positive
and it does not depend on V , the second one is negative and proportional to V
(when t �= tk , i.e., between breaks). The first term diminishes and the second one
increases the friction. The frequency shift does not depend on V and it is positive.
The dependence of the added mass term −μ2qtt on V is similar to the friction
perturbation: we have a positive contribution independent on V and a negative one,
which is proportional to V . Finally, our main equation for q takes the following form:

qtt + ω2q = R(q, qt ), (41)

where

R(q, qt ) = −g(q, qt , t) + h(t) + μ0(t)q + μ1(t)qt + μ2(t)qtt , (42)

Below we discuss two possible mechanisms of the structure instability.

4 A New Mechanism of Structure Instability

A mechanism of the structure instability may be connected with a dependence of
the friction on the speed V . We can therefore call this mechanism as “negative
friction” one. Let us linearize the Eq. (41) at q = 0 assuming that oscillations are
small before the bifurcation point. We consider the case when the friction is defined
by physically realistic term (2). Removing external load terms we obtain then the
following equations for free vibrations

(1 + M̃)qtt + (ω + ω̃)2q + θ(t)qt = 0, (43)

where M̃(t) and ω̃ are small perturbations of themass and the frequency, respectively.
These perturbations can be computed by relations of the previous section, but in this
section the main role plays the friction term defined by

θ(t) = a0/s(t) − μ1(t). (44)

Let us compute θ(t) between the two subsequent break moments tk and tk+1. We
obtain then by (39) that s(t) = dk − v(t − tk) and μ1(t) = −ρ0c20M

−1κ−3(
βk0
2 −

c−2
0 κk0V ). Therefore,

θ(t) = M−1a0(dk − v(t − tk))
−1 + ρ0c

2
0M

−1κ−3(
βk0
2

− c−2
0 κk0V ) t ∈ (tk, tk+1).

(45)
Assuming that θ(t) is small, we represent solutions of (43) as A(t) sin(ωt + φ(t)),
where d A/dt � 1. A computation shows that the amplitude A(t) increases between
the two break moments if
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θ̄ = (Δk)
−1

tk+Δk∫

tk

θ(s)ds > 0, (46)

where Δk = tk+1 − tk is the time interval between the breaks. We can find Δk by
condition (9) that gives

VΔk = pcd

p0 + pc
. (47)

Finally,

θ̄ (V ) = M−1(V (d−1(p0 + pc)p
−1
c log(1 + pc/p0) − ρ0κ

−1) + ρ0c
2
0κ

−1 β

2
). (48)

Let us make a simple assumption that all dk are equal, dk = d and d does not depend
on V . Then we observe a bifurcation point and instability at V = Vcrit such that

θ̄ (Vcrit ) = 0. (49)

Such bifurcation is possible if

(p0 + pc)p
−1
c log(1 + pc/p0) < dρ0κ

−1. (50)

Under this condition, the critical velocity is defined by

Vcrit = ρ0c20κ
−1β

2(ρ0κ−1 − d−1(p0 + pc)p
−1
c log(1 + pc/p0))

. (51)

In this case the instability exists for all V > Vcrit .
Interesting effect can appear if we suppose that the average d of dk over k depends

on V and that d(V ) → 0 as V → +∞. Then if for some V condition (49) holds, the
function θ̄ (V ) has two roots V = V1 and V = V2. The first root corresponds to the
instability onset, and the second one corresponds to the instability fall.

5 Asymptotic Analysis of Nonlinear Equation

Under some assumptions we can consider (33) as an equation that describes a weakly
nonlinear oscillator with a weak damping. By this equation, we can describe both
mechanisms of instability: resonance and friction ones and also obtain resonance
conditions. We introduce a formal small parameter ε assuming that R = O(ε). The
asymptotic approach to study such equations is well known, see [5]. Let τ = εt is a
slow time. We seek solutions in the form

q = A(τ ) sin(ωt + φ(τ)) + εq1(t, τ ) + · · · , (52)
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where A and φ are unknown slowly evolving in time the amplitude and the phase,
respectively. We have

qtt = −ω2q + 2εω(Aτ cos(ωt + φ(τ)) − Aφτ sin(ωt + φ(τ)) + O(ε2).

For any smooth function H(q, qt )

H(q, qt ) = H0 + O(ε), H0 = g(Aω cos(ωt + φ(τ)), A sin(ωt + φ(τ))).

Using these relations, for q1 one has

q1t t + ω2q1 = S(t, τ, ε), (53)

where

S(t, τ ) = 2ω(−Aτ cos(ωt + φ(τ)) + Aφτ sin(ωt + φ(τ)) + R0(A, φ), (54)

and
R0(A, φ, t) = R(A sin(ωt + φ(τ)), Aω cos(ωt + φ), t). (55)

For large times t = O(ε−1) Eq. (53) has a bounded solution if and only if

lim
T→+∞ T−1

T∫

0

S(t, τ ) cos(ωt + φ)dt = 0, (56)

and

lim
T→+∞ T−1

T∫

0

S(t, τ ) sin(ωt + φ)dt = 0. (57)

Finally, by (54) and (55) these relations lead to the following system of equations
for the amplitude A and the phase φ:

ωAτ = lim
T→+∞ T−1

T∫

0

R0(A, φ, t) cos(ωt + φ)dt, (58)

and

ωAφτ = − lim
T→+∞ T−1

T∫

0

R0(A, φ, t) sin(ωt + φ)dt = 0. (59)

We investigate this system in the next section.
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6 Amplitude Evolution, Instability and Resonances

Let us focus our attention on the equation for amplitude A. Assuming that A � 1,
and therefore |q| � 1, we can represent the term g from (2) by the Taylor series

− (qt − st )(q − s)−1 = st s
−1 + st s

−2q − s−1qt + st s
−3q2 − s−2qtq + O(|q3| + |qt |3).

(60)
We obtain then that (58) reduces to

ω
d A

dτ
= D0A − D1A

2 + ā, (61)

where D0, ā and D1 are coefficients depending on the system parameters. Equa-
tion (61) describes a simple dissipative system, where for ā = 0 we are dealing
with a transcritical bifurcation. If D0 < 0 and D1 > 0, we have the stable equilibria
Aeq = 0, which is a local attractor corresponding to small amplitude vibrations and
the saddle solution As = D0/D1. For D0 > 0 and D1 > 0, we observe an inverse
picture: dynamics defined by (61) has the local attractor Aeq = D0/D1 and the sad-
dle solution A = 0. Therefore, then the structure exhibits oscillations with relatively
larger amplitudes.The bifurcation point is defined by condition D0 = 0.

We compute the coefficients Di and ā using relations (38), (39), (40) and (60).
One has

D0 = d1 + d2, (62)

where

d1 =
2πω−1∫

0

(sin(ωt + φ) cos(ωt + φ)(−a0M
−1st s

−2 + μ0(t) − ω2μ2(t))dt,

and

d2 = ω

2πω−1∫

0

cos2(ωt + φ)(μ1(t) + a0M
−1s(t)−1)dt,

D1 = a0M
−1

2πω−1∫

0

(s(t)−2ω cos2(ωt + φ) sin(ωt + φ)

− st s(t)
−3 sin2(ωt + φ) cos(ωt + φ))dt.

(63)

and

ā = 2

2πω−1∫

0

h(t) cos(ωt + φ)dt. (64)



New Nonlinear Model for Ice Induced Vibrations 13

To calculate these coefficients, first let us consider the simplest case when the lengths
dk of the ice blocks equal a constant: dk = d̄. Then s(t) and μi are time periodic
functions, having a period T (V ) defined by (10). By relations (65), (63) and (62)
one can show that the resonances occur on the frequencies ω and 2ω (terms with the
frequency 3ω vanish that can be shown by an integration by parts).

As a result, we obtain the following resonance conditions:

2πω−1 = T (V ), πω−1 = T (V ), (65)

where T (V ) is defined by (10). Assume dk are randomnumbers distributed according
to the normal lawN(d̄, σ ). Clearly, for large σ these resonance effects vanish but for
small σ they are possible that is checked by numerical simulations.

7 Multioscillator Model

In the previous section we have shown that in the ice sheet-structure system res-
onances appear, which can lead to an oscillation amplitude growth. Consider the
averaged amplitude Aeq as a function of speed V . The resonance effect leads to a
narrow peak in the plot of Aeq(V ). Therefore, this resonance mechanism is not quite
consistent with experiments since experiments show existence of a sufficiently large
plato on the plot Aeq(V ), i.e., amplitudes A are sufficiently large for an interval of
values V .

In this section, to explain experimental data, we consider a multioscillator model.
The main idea of this model is simple. It is clear that real structures have a broad
spectrum of eigenfrequencies. Therefore, they can be represented as systems of
many connected oscillators with frequencies close toω1, . . . , ωn . Then the resonance
effect appears if ωice(v0) ≈ ω j for some j . If we assume that there is a set of close
frequencies, located in an interval, then the peak extends. A model for multimode
situation has the form

d2qi
dt2

+ ω2
i qi = Ri (q,

dq

dt
), (66)

where qi (t) is an amplitude of i-th oscillator, Ri are friction and nonlinearity terms
given by

Ri = M−1a0
p̄ − st
q̄ − s

+ h(t) + μ0(t)qi + μ1(t)
dqi
dt

+ μ2(t)
d2qi
dt2

, (67)

where q̄ = ∑
i ciqi , p̄ = ∑

i ci
dqi
dt , ci are some weights that determines relative con-

tributions of themodes,μ j are defined by (38), (39) and (40). The asymptotic analysis
of (66) follows Sect. 5 and it leads to a system of equations for slowly time evolving
amplitudes Ai (t). Note that although the terms Ri are small and thus the oscillator
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interaction is weak, nonetheless, the observed effects may be essential. The peak
corresponding to resonance extends and can take a more complicated form (Fig. 3).

8 Numerical Simulations

Numerical simulations confirm analytical results and ideas of the previous sections.
For models with a single oscillator (n = 1) we have that the resonances exist even for
random tooth lengths dk but the vibration magnitude fall as randomness increases;
there are possible two resonances or a single one depending on parameters that is
consistent with resonance conditions; and the effects connected with the added mass
and negative friction essentially affect resonances. For example, the negative friction
reinforce the resonances and if this term is large enough, we obtain a “blow up”,
an exponential growth of the vibration amplitudes. The case of n = 2 oscillators
is investigated numerically. We took the matrix G with entries G11 = 100,G12 =
G21 = 20,G22 = 100 and compare twomodels: one oscillatormodel forω = 10 and
two oscillator model. The results are represented by Fig. 4. For n = 1 we observe a
peak for a speed v0 ≈ vc. We have observed a resonance effect for two frequencies
that leads to the peak extension (Fig. 4), and a beginning of a plato formation for the
case of three oscillators (see Fig. 5).

Fig. 3 This plot shows a dependence of stationary averaged vibration amplitudes on V for the case
of a single oscillator n = 1
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Fig. 4 This plot shows a dependence of stationary averaged oscillation amplitudes on the speed V
for the case of two oscillator

Fig. 5 This plot shows a dependence of stationary averaged oscillation amplitudes on the speed V
for the case of three connected oscillators. We see that the peak extends and takes a complicated
form with comparison to a single mode case

9 Conclusion

A new model of IIV is presented. This model extends the previous ones (see [1,
3]) and allows to describe new effects in IIV. Mathematically the model leads to
a complicated system of PDE and ODE, nonetheless an asymptotic approach to
resolve this system is developed. The main new effect is that a ices-structure contact
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produces a negative contribution into the friction, which can reinforce resonance
an thus vibration amplitude, and destroy structure. Moreover, one can assume as a
hypothesis that there is possible a new mechanism of structure instability without
resonance effects and based on negative friction only.
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On the Deformation of a Hyperelastic
Tube Due to Steady Viscous Flow Within

Vishal Anand and Ivan C. Christov

Abstract In this chapter, we analyze the steady-state microscale fluid–structure
interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube.
Physiological flows, especially in hemodynamics, serve as primary examples of
such FSI phenomena. The small scale of the physical system renders the flow field,
under the power-law rheological model, amenable to a closed-form solution using
the lubrication approximation. On the other hand, negligible shear stresses on the
walls of a long vessel allow the structure to be treated as a pressure vessel. The con-
stitutive equation for the microtube is prescribed via the strain energy functional for
an incompressible, isotropic Mooney–Rivlin material. We employ both the thin- and
thick-walled formulations of the pressure vessel theory, and derive the static relation
between the pressure load and the deformation of the structure. We harness the lat-
ter to determine the flow rate–pressure drop relationship for non-Newtonian flow in
thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples,
we discuss how a hyperelastic tube supports the same pressure load as a linearly
elastic tube with smaller deformation, thus requiring a higher pressure drop across
itself to maintain a fixed flow rate.

1 Introduction

Traditionally, physiological flows in soft and deformable tubes form a large class
of literature on collapsible tubes [19, 20, 39]. These phenomena related to air flow
in the lungs or blood flow in large blood vessels (such as arteries) are inherently
a moderate-to-large-Reynolds number phenomenon. At the extreme of very large
Reynolds number (inviscid) flow lies hydroelasticity (to use the term of the group
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sian Academy of Sciences in St. Petersburg). Nowadays, there is a vast literature
on hydroelasticity, covering both stable and unstable internal and external flows
[18, 35] that are capable of supporting nonlinear wave phenomena [22], including
wave localization [1]. A common example of such high-Reynolds-number hydroe-
lastic interactions is aerodynamic flutter [7], which can lead to potentially disastrous
instabilities such as failure of airplane wings and suspension bridges. A variety of
nonlinear wave phenomena also arise when embedding a linearly elastic solid body
(e.g., a rod) into an ambient viscoelastic medium and studying the coupled structure–
structure interactions [37].More recently, however, there has been significant interest
in “viscous–elastic” fluid–structure interactions (FSIs) between internal fluid flows
at low Reynolds numbers and soft tubes and annuli [10, 14, 15], including the effect
of non-Newtonian rheology [3, 9, 38]. This renewed interest comes from the need
for understanding these systems in order to design microfluidic [38] and soft robotic
[14] devices. At these smaller scales (or, for such “creeping” viscous flows), fluid
inertia is negligible.

Here, we present a first foray into the mathematical analysis of low-Reynolds-
number FSI, at steady state, due to the flow of a non-Newtonian fluid in a microtube
composed of a hyperelastic material. Hyperelastic materials have the “advantage” of
being completely specified by a strain energy functional from which the constitutive
equation between stress and strain follows. The structural response of complex soft
solids, such as biological tissue and blood vessels, can be appropriately described
by a hyperelastic solid with a pseudo strain energy function (see, e.g., [17, Chaps. 8
and 9]). Similarly, due to its complex constituents, blood is a non-Newtonian fluid
and an appropriate rheological model (beyond the simple Newtonian viscous fluid)
should be used (see, e.g., [17, Chap. 3]).

This chapter is thus organized as follows: in Sect. 2,we address the fluidmechanics
problem, including the velocity profile of a generalized Newtonian (specifically,
power-law) fluid in a tube of slowly varying cross-section. In Sect. 3, we discuss
the deformation of the soft hyperelastic microtube due to uniform loading from
within. Then, in Sect. 4, we specifically choose the load to be the hydrodynamic
pressure and obtain the appropriate pressure–deformation relations describing such
fluid–structure interactions. In Sect. 5, the results are discussed and compared to
limiting cases, such as a linearly elastic microtube, in order to highlight the effects
of hyperelasticity. Conclusions and avenues for future work are stated in Sect. 6. An
appendix is included for completeness, in which the pressure–deformation and flow
rate–pressure drop relations for FSI in a thick-walled linearly elastic tube are also
derived.

2 Summary of the Fluid Mechanics Problem

Consider a fluid flow v = vr r̂ + vθ θ̂ + vz ẑ in cylindrical coordinates. A diagram
of the deformed microtube geometry is shown in Fig. 1, specifically the tube has
uniform thickness t , undeformed inner radius a, and length �. Now, following [3],
let us assume that
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Fig. 1 Schematic of the
microtube geometry,
including notation used
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1. The flow is steady: ∂
∂t ( · ) = 0.

2. The flow is axisymmetric: ∂
∂θ

( · ) = 0 and vθ = 0.
3. The geometry of the flow vessel is a slender tube: � � a ⇔ a/� = ε � 1.

Assumption 3 is key to themathematical analysis below. Specifically, this assumption
leads us to the appeal to the lubrication approximation of fluid mechanics (see, e.g.,
[27, 36]), which will allow us to solve for the flow profile analytically.

As shown with due diligence in our previous work [3], to the leading order in a/�,
the velocity field is unidirectional [27]: v̄ = v̄z̄ ẑ but weakly varying with the (long)
flow-wise direction i.e., v̄z̄ = v̄z̄(r̄ , z̄). Here, and henceforth, bars over quantities
denote dimensionless variables according to the following scheme:

r̄ = r/a, p̄ = p/Pc, z̄ = z/�, v̄z̄ = vz/Vz, v̄r̄ = vr/Vr , (1)

where the characteristic radial velocity scale is Vr ≡ εVz , the characteristic axial
velocity scale isVz , and Pc is the characteristic pressure scale. Upon specifying the
rheology of the fluid (see below), Pc and Vz will be related to each other.

Next, we specify the fluid’s rheological behavior. We are interested in biofluid
mechanics applications such as blood flow through a deformable artery or vein.
Blood is known to have a shear-dependent viscosity due to the fact that red blood
cells deform. Haemorheology is a complex topic [17, Chap. 3], nevertheless experi-
ments suggest [21] that blood flow can be accurately fit to a power-law fluid model
(a generalized Newtonian rheology often going by the name Ostwald–de Waele [6])
at steady state. Now, the dominant shear stress component is τr z ; likewise the corre-
sponding rate-of-strain tensor component is just γ̇r z = ∂vz/∂r to the leading order
in a/� (i.e., under the slenderness assumption). Thus the fluid’s rheological model
takes the “simple shear” form:

τr z = m

∣
∣
∣
∣

∂vz

∂r

∣
∣
∣
∣

n−1

︸ ︷︷ ︸

=η

∂vz

∂r
, (2)

where η is the apparent viscosity, m(>0) is the consistency factor, and n(>0) is the
power-law index. On making Eq. (2) dimensionless using the variables from Eq. (1),
we obtain the relationship between the axial velocityVz scale and the pressure scale
Pc: Vz = [

an+1Pc/(m�)
]1/n

.
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The power-law rheological model captures the flow behavior of fluids that are
shear thinning (η decreases with γ̇r z), such as blood [11, 21] as mentioned above,
for n < 1. It also captures the flow behavior of shear-thickening fluids (η increases
with γ̇r z) such as as woven Kevlar fabrics impregnated with a colloidal suspension
of silica particles [41] used for ballistic armors, for n > 1. The viscous Newtonian
fluid is obtained as the special case of n = 1 in Eq. (2). Our motivation is mainly
fluid mechanics of blood vessels, so our examples consider n < 1, but the theory
applies to both cases.

Finally, considering the dynamics of the flow under the constitutive relationship
in Eq. (2), we found that the dimensionless axial velocity profile is [3]:

v̄z̄ =
(

−1

2

d p̄

dz̄

)1/n
(

R̄1+1/n
i − r̄1+1/n

1 + 1/n

)

, (3)

where R̄i = Ri/a is the dimensionless inner radius of the deformedmicrotube.More
importantly, R̄i is not necessarily equal to unity because we allow the microtube to
deform due to FSI, as discussed in the next section. Likewise, the pressure gradient
d p̄/dz̄ is not constant but, rather, varies with z̄. As a result, while p̄ is at most a
function of z̄ (but not a linear function), v̄z̄ can depend upon both r̄ and z̄.

3 Structural Mechanics Problem: Solving for the
Deformation

In this section,we address the structuralmechanics aspect of the coupled FSI problem
posed above. To this end, we treat the structure as a pressure vessel, wherein the only
load acting on the structure is the hydrodynamic pressure from the fluid, and the
load due to viscous and shear stresses is neglected. This assumption stems from the
lubrication approximation for the fluid flow, wherein the viscous shear stress scale is
≈ ε times the hydrodynamic pressure scale [36, Chap. 22]. We begin our discussion
by first analyzing a thin-walled pressure vessel, then we move onto its thick-walled
counterpart.

3.1 Thin-Walled Cylinder

Let us consider the case of a thin-walled initially cylindricalmicrotubewith thickness
t � a. This assumption allows us to consider the cylinder in a state of plane stress and
plane strain, thus simplifying the analysis of the structural mechanics problem. As a
consequence, the walls of the cylinder act like a membrane, which does not sustain
any bending or twisting moments. There is no variation of stress and deformation
throughout the thickness of the cylinder.
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3.1.1 Deformation

In the undeformed material coordinate system, the coordinates of a material point
are given by r = a, θ ∈ [0, 2π ], and z ∈ [0, �]. Upon axisymmetric deformation, the
coordinates of the same material point become

R = R(r), Θ = θ, Z = αz. (4)

We further assume that the deformation is homogeneous along the axial direction,
thus α = L/�, with L being the deformed cylinder’s length and � being the unde-
formed cylinder’s length (as in Fig. 1). Now, since the cylinder is clamped at both its
ends, its length does not change and L = �. Hence, α = 1. The foregoing discussion
reduces the coordinates of the point in the spatial coordinate system to:

R = R(r), Θ = θ, Z = z. (5)

As the shell is considered (infinitesimally) thin in this theory, we denote the inner
radius Ri by R (in this section) without fear of confusion.

For the case of a deformation defined by Eq. (5), the deformation gradient tensor
F can be easily computed:

F =
⎛

⎝

∂ R/∂r 0 0
0 R/r 0
0 0 1

⎞

⎠ . (6)

Since F is a diagonal tensor, then its principal axes are just the r , θ , and z axes
of the cylindrical coordinate system. Indeed, we deduce from the deformation field
introduced in Eq. (5) that a line segment oriented along either the r , θ or z coordinate
directions will, at most, only stretch and cannot rotate.

Consequently, for this type of deformation, the rotation tensorR = I (the identity
tensor) and the stretch tensor is simply

U = F =
⎛

⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ . (7)

Here, λ1, λ2, λ3 are the principal stretches, which one can immediately write down
by comparison of Eqs. (6) and (7). Now, since the material is incompressible,
detF = λ1λ2λ3 = 1, we can determine λ1, and thus

λ1 = r/R, λ2 = R/r, λ3 = 1. (8)
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3.1.2 Constitutive Equation

We consider the material from which the cylindrical tube is composed to be an
isotropic, incompressible, hyperelastic material. For such a material, the constitutive
equation is specified through a strain energy functional W [5, 8], which depends upon
the principal stretches λi , i.e., W = W (λ1, λ2, λ3). Specifically, we assume that the
hyperelastic material is defined by the incompressible Mooney–Rivlin constitutive
equation [5, 8, 29] with strain energy given by

W = C1
(

λ2
1 + λ2

2 + λ2
3

) + C2
(

λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

)

(λ1λ2λ3 = 1). (9)

Here, C1 and C2 are two material constants characterizing the structural response of
the hyperelasic material; they are determined empirically by comparison to experi-
ments [34]. Equation (9) is traditionally invoked to describe the response of highly
elastic, i.e., “rubber-like,” materials under isothermal conditions [34]. In particular,
setting C2 = 0 reduces the Mooney–Rivlin model to the neo-Hookean solid. For
most “rubber-like” materials, C1 > 0 and C2 ≤ 0 [28, 31, 32]. For compatibility
with linear (i.e., small-strain) elasticity theory (see [5, Eq. (6.11.29)]), we must have

G = 2(C2 + C1) (10)

as the shear modulus of elasticity. We also recall that, for a linearly elastic material,

2G(1 + ν) = E, (11)

where ν is the Poisson ratio, and E is Young’s modulus.
Now, for isotropic materials, the principal Cauchy stresses are coaxial with the

principal stretches and are given by

σ1 − σ3 = λ1
∂W

∂λ1
− λ3

∂W

∂λ3
, (12a)

σ2 − σ3 = λ2
∂W

∂λ2
− λ3

∂W

∂λ3
. (12b)

Substituting Eq. (9) into Eq. (12), we obtain

σ1 − σ3 = 2C1
(

λ2
1 − λ2

3

) − 2C2
(

λ−2
1 − λ2

3

)

, (13a)

σ2 − σ3 = 2C1
(

λ2
2 − λ2

3

) − 2C2
(

λ−2
2 − λ2

3

)

. (13b)

3.1.3 Static Equilibrium

As mentioned above, our exemplar thin-walled cylinder acts as a pressure vessel,
i.e., a structure that sustains only stretching and tension but no bending or twisting.
For such a structure, the equations of static equilibrium take the form:
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σ1 = σrr = −p, (14a)

σ2 = σθθ = pR

t
, (14b)

σ3 = σzz = pR

2t
. (14c)

Since the tube is thin, i.e., t � a and R = O(a), then σ1 � σ2 ≈ σ3. Substituting
Eqs. (14) (stress balance) into Eqs. (13) (constitutive) and employing Eqs. (8) (defor-
mation), we obtain

− pR

2t
= 2C1

(
a2

R2
− 1

)

− 2C2

(
R2

a2
− 1

)

, (15a)

pR

2t
= 2C1

(
R2

a2
− 1

)

− 2C2

(
a2

R2
− 1

)

. (15b)

Combining the last two equations, we arrive at the pressure–radius relation

pa

2t (C1 + C2)
= R

a
− a3

R3
, (16)

where R = a + ur is the deformed tube radius, and ur is the radial deformation
(recall Fig. 1).

Notice that the cross-sectional area of the tube at some fixed axial location, z,
is A = π R2 [here, R = R(z) due to FSI]. Then, Eq. (16) can be rewritten as a
pressure–area relationship:

p( Ā) = 2(C1 + C2)
t̄√
Ā

(

Ā − 1

Ā

)

, (17)

where t̄ = t/a is the dimensionless (reduced) thickness of the tube, and Ā =
A/(πa2) is the dimensionless (reduced) area of the deformed tube under axisym-
metric conditions (initial circular cross-section remains circular under deformation).
Equation (17) represent a tube law [42] for microscale FSI in a hyperelastic pressure
vessel. This “law” is often used as a “constitutive” equation (closure) in unsteady
FSI problems in which the flow is cross-sectionally averaged [39]. Of interest is to
note that p( Ā) in Eq. (17) is nonlinear.

Finally, let us make Eq. (16) dimensionless using the following dimensionless
variables

ūr̄ = ur/a, p̄ = p/Pc, (18)

to yield

γ p̄ = (1 + ūr̄ ) − 1

(1 + ūr̄ )3
, γ := Pc

2(C1 + C2)t̄
, (19)
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where t̄ = t/a as above, and we have defined γ as a dimensionless parameter that
captures the “strength” of fluid–structure coupling, i.e., the so-called FSI param-
eter. In our previous work on linearly elastic incompressible microtubes [3], the
FSI parameter was defined as β = Pc/(Et̄). To connect the hyperelastic theory to
the linearly elastic theory, we can use Eqs. (10) and (11), taking ν = 1/2 for an
incompressible material, to find that

γ = β/3. (20)

A few remarks are in order. Equation (19) represents the final dimensionless form
of the pressure–deformation relation for a thin-walled incompressible hyperelas-
tic cylinder. Second, note that, being a quartic (polynomial) equation in (1 + ūr̄ ),
Eq. (19) can be solved explicitly for ūr̄ as a function of p̄ using, e.g.,Mathematica.
However, the resulting expression is too lengthy to be worth including here. Third,
observe that both p̄ and ūr̄ can (and do) depend on the dimensionless flow-wise coor-
dinate z̄, but z̄ does not feature explicitly in the pressure–deformation relationship in
Eq. (19).

3.2 Thick-Walled Cylinder

In this section, we account for the non-negligible thickness of a cylinder, i.e., the
case of thick-walled pressure vessel, also known as Lamé’s first problem (see, e.g.,
[33]).

Unlike the case of a thin-walled cylinder, the inner and outer radii of the thick-
walled cylinder differ. They are, thus, denoted by ri and ro before deformation, and
by Ri and Ro after deformation. Specifically,

ri = a, (21a)

ro = a + t, (21b)

Ri = a + ur , (21c)

where ur is the radial displacement of the inner surface of the cylinder. For the prob-
lem that we have posed, the displacement of the outer surface is of no consequence
to the flow within the cylinder, hence we do not discuss it; then, denoting the dis-
placement of the inner surface by ur is unambiguous. Since the cylinder’s wall is
assumed to be composed of an incompressible material (constant volume), and it is
clamped at both its ends (constant length), its cross sectional area remains constant.
Therefore,

R2
o − R2

i = r2o − r2i . (22)

The cylinder kinematics (Sect. 3.1.1) and the hyperelastic constitutive equations
(Sect. 3.1.2) developed for the thin-walled cylinder also apply to the thick-walled one.
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However, unlike the previously discussed case, the stress and deformation fields are
not constant for a thick-walled cylinder. Specifically, the stress and deformation vary
across the thickness of the cylinder. Consequently, the equations for static equilibrium
of a thick-walled tube are differential equations. Neglecting body forces (due to the
small scale of the posed FSI problem) and shear stresses, the equations for static
equilibrium [13, 16, 24, 29] are thus:

∂σrr

∂ R
+ 1

R
(σrr − σθθ ) = 0, (23a)

∂σzz

∂ Z
= 0. (23b)

The latter equations, when written in terms of material coordinates in association
with the deformation field described in Eq. (5), reduce to

∂(Rσrr )

∂r
+ r

R
σθθ = 0, (24a)

∂σzz

∂z
= 0. (24b)

Note that Eq. (24b) is satisfied identically.
As above, σrr (= σ1) and σθθ (= σ2) are also related by Eq. (13), i.e., the principal

stress relations for an isotropic, hyperelastic Mooney–Rivlin material. Thus, we can
eliminate σθθ from the constitutive Eq. (13) and the static equilibrium equations (24).
Then, employing the expressions for the principal stretches λ1 and λ2 from Eq. (8),
we obtain the following differential equation governing σrr :

∂(Rσrr )

∂r
+ r

R

{

σrr + 2(C1 + C2)

[(
R

r

)2

−
( r

R

)2
]}

= 0. (25)

We solve Eq. (25) for σrr subject to the loading boundary conditions

σrr |r=ro = 0, (26a)

σrr |r=ri = −p, (26b)

to obtain the pressure–radius relation

p =
[

f

(
r21
R2
1

)

− f

(
r2i
R2

i

)]

(C1 + C2), (27)

where, for convenience, the function f is defined (see also [29]) as

f (ξ) := ξ + ln ξ. (28)

Note that Eq. (27) is equivalent to Eq. (3.4.3) in [29, Chap. 9]. It is relevant to remind
the reader that p 
= p(r), so the integration of Eq. (25) is straightforward.
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Finally, substituting the geometric relationships from Eqs. (21) and (22) into
Eq. (27), we obtain

p

C1 + C2
=

[

f

(
(1 + t/a)2

(1 + t/a)2 − 1 + (1 + ur/a)2

)

− f

(
1

(1 + ur/a)2

)]

. (29)

The last equation can be re-written in dimensionless form using the variables from
Eq. (18) as

2t̄γ p̄ =
[

f

(
(1 + t̄)2

(1 + t̄)2 − 1 + (1 + ūr̄ )2

)

− f

(
1

(1 + ūr̄ )2

)]

, (30)

where γ is the FSI parameter as defined in Eq. (19) above. Equation (30) represents
the final dimensionless form of the pressure–deformation relation for a thick-walled
incompressible hyperelastic cylinder.

4 Coupling of the Fluid and Structural Mechanics
Problems

We now turn to the main task, which is coupling the flow and deformation. As shown
in our previous work [3], this task is accomplished by computing the flow rate q
explicitly using its definition for an axisymmetric cylindrical tube:

q =
∫ 2π

0

∫ Ri

0
vz r dr dθ = Vz2πa2

∫ R̄i

0
v̄z̄ r̄ dr̄ , (31)

where we have also introduced the dimensionless variables from Eq. (1). Now, sub-
stituting the expression for v̄z̄ from Eq. (3) into Eq. (31), we obtain the dimensionless
flow rate

q̄ ≡ q

Vzπa2
=

(

−1

2

d p̄

dz̄

)1/n R̄3+1/n
i

3 + 1/n
, (32)

where R̄i = 1 + ūr̄ is the dimensionless inner radius of the deformed tube.
Thus, since q̄ = const. by conservation of mass in a steady flow [36], Eq. (32)

becomes an ordinary differential equation (ODE) for p̄(z̄):

d p̄

dz̄
= −2[(3 + 1/n)q̄]n[1 + ūr̄ (z̄)]−(1+3n). (33)

Now, wemust specify the deformation profile ūr̄ to complete the calculation. Even in
the special case of aNewtonian fluid (n = 1), Eq. (33) represents a strongly nonlinear
pressure gradient–deformation coupling.
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4.1 Thin-Walled Cylinder

To finish the derivation of the coupled FSI theory for a thin-walled cylinder, we
differentiate the pressure–deformation relation from Eq. (19) with respect to z̄ to
obtain

γ
d p̄

dz̄
=

[

1 + 3

(1 + ūr̄ )4

]
dūr̄

dz̄
. (34)

Then, we eliminate d p̄/dz̄ between Eqs. (33) and (34) to obtain an ODE for ūr̄ :

−2γ [(3 + 1/n)q̄]n = [

(1 + ūr̄ )
3n+1 + (1 + ūr̄ )

3n−3
] dūr̄

dz̄
. (35)

Since conservationofmass dictates that q̄ = const., andγ andn are knownconstants,
the ODE (35) can be separated and directly integrated, subject to the boundary
condition (BC) ūr̄ (z̄ = 1) = 0,1 to yield:

2γ [(3 + 1/n)q̄]n(1 − z̄) = [1 + ūr̄ (z̄)]3n+2

(3n + 2)
+ [1 + ūr̄ (z̄)]3n−2

(3n − 2)
− 6n

(3n + 2)(3n − 2)
.

(36)

Equations (19) and (36) fully specify (albeit implicitly) the static response of
a thin hyperelastic cylinder due to internal flow of a generalized Newtonian fluid
within it. For example, the displacement at z̄ = 0 found from Eq. (36) can be used in
Eq. (19) to determine p̄(0) from which the full dimensionless pressure drop follows:
Δ p̄ := p̄(0) − p̄(1), where p̄(1) = 0 is our chosen pressure gauge for the pressure
at the outlet and also in the surrounding medium exterior to the cylinder. Thus, the
flow rate–pressure drop relationship (q̄ as a function of Δ p̄, or vice versa), i.e., a
generalizedHagen–Poiseuille law, in the presence of FSI can be obtained analytically.

4.2 Thick-Walled Cylinder

For a thick-walled cylinder, we differentiate Eq. (30) with respect to z̄ to obtain

γ
d p̄

dz̄
= −

{
2(1 + t̄)2(1 + ūr̄ )

[(1 + t̄)2 + (ūr̄ )2 + 2ūr̄ ]2 + 2(1 + ūr̄ )

(1 + t̄)2 + (ūr̄ )2 + 2ūr̄

− 2

(1 + ūr̄ )
− 2

(1 + ūr̄ )3

}
dūr̄

dz̄
. (37)

1Note, more importantly, that although in general we cannot expect to satisfy clamping BCs, i.e.,
ūr̄ = dūr̄ /dz̄ = 0 at z̄ = 0 and z̄ = 1 in this leading-order analysis of deformation, we must respect
the pressure outlet BC, i.e., p̄(z̄ = 1) = 0. From Eq. (19), it is then clear that the pressure BC
requires that ūr̄ (z̄ = 1) = 0 as assumed.
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Then, we eliminate d p̄/dz̄ between Eqs. (33) and (37) to obtain an ODE for the
dimensionless transverse deflection ūr̄ :

{
2(1 + t̄)2(1 + ūr̄ )

[(1 + t̄)2 + (ūr̄ )2 + 2ūr̄ ]2 + 2(1 + ūr̄ )

(1 + t̄)2 + (ūr̄ )2 + 2ūr̄
− 2

(1 + ūr̄ )

− 2

(1 + ūr̄ )3

}
dūr̄

dz̄
= t̄γ [(3 + 1/n)q̄]n(1 + ūr̄ )

−(1+3n), (38)

subject to the BC that ūr̄ (1) = 0, as before. Unlike, Eq. (35), Eq. (38) cannot be
integrated directly, thus it must be solved numerically. We employ the odeint
subroutine of the Python package SciPy [23], with default error tolerances, for this
integration.

Equations (30) and (38) fully specify the static FSI response of the thick-walled
hyperelastic cylinder due to the flow of the generalized Newtonian fluid within.
Together these two equations can be used to develop the flow rate–pressure relation-
ship for a thick-walled hyperelastic tube, however the calculation must be done via
numerical quadratures, unlike the case of the thin-walled cylinder (Sect. 4.1).

5 Results and Discussion

Let us now illustrate the deformation–pressure and flow rate–pressure drop relation-
ships predicted by our FSI theory for the interaction between the steady flow of a
power-law fluid within a soft hyperelastic cylindrical vessel containing it. Specifi-
cally, in this section,wewish to highlight the effect of hyperelasticity on the structural
response of the microtube.

In Fig. 2, we plot the dimensionless pressure dropΔ p̄ across a thin-walled micro-
tube as a function of the dimensionless inlet flow rate q̄ for different values of the
FSI parameter β(= 3γ ). The curves (solid) for the thin-walled hyperelastic tube
are obtained from the present theory, namely Eqs. (19) and (36), while the curves
(dashed) pertaining to the thin-walled linearly elastic tube are calculated based on
the results from our previous study [3], namely:

Δ p̄ = 1

(1 − ν/2)β

({

1 + 2(2 + 3n)(1 − ν/2)β[(3 + 1/n)q̄]n
}1/(2+3n) − 1

)

,

(39)
We note that, for both linearly elastic and hyperelastic tubes, the pressure drop
decreases with β(= 3γ ). This observation is attributed to the very definition of β

as the parameter symbolizing the strength of the FSI coupling. For large β values,
there is “stronger” FSI coupling than at small β values and, hence, there is larger
deformation of the tube. Consequently, the cross-sectional area increases, lowers the
resistance to the flow, and culminates in a smaller pressure drop for large β compared
to small β.
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(b)(a)

Fig. 2 The dimensionless (full) pressure drop across a thin-walled microtube as a function of
the dimensionless inlet flow rate q̄ for different values of FSI parameter β = 3γ . Hyperelastic
thin-walled tubes correspond to solid curves, while linearly elastic thin-walled tubes correspond to
dashed curves for a a Newtonian fluid with n = 1.0 (e.g., blood plasma), and b a shear-thinning
fluid with n = 0.7 (e.g., whole blood). For the hyperelastic tube, the corresponding theory has been
presented in Sect. 4.1, while for linearly elastic tubes the predicted pressure drop is given by Eq. (39)
derived in [3]

Perhaps more attuned to the thesis of this chapter is the difference in the response
of a hyperelastic and the theory of a linearly elastic tube for the same FSI coupling
strength. Thus, comparing the solid and dashed curves, respectively, in Fig. 2 at fixed
γ (i.e., same color), we observe that a hyperelastic tube supports a higher pressure
drop than a linearly elastic tube. We explain this trend by noting that a hyperelastic
tube, in general, is stiffer and has a higher tendency to preserve its original config-
uration compared to a linearly elastic tube. In other words, a hyperelastic material
requires higher pressure than a linearly elastic material to sustain the same deforma-
tions (see also [25, 26]).

Next, we move on to the case of thick-walled tubes and compare, in Fig. 3, the
flow rate–pressure drop relation in a thick-walled hyperelastic tube obtained from
the present theory, namely Eqs. (30) and (38), with the corresponding relationship
for a thick-walled linearly elastic tube calculated based on

Δ p̄ = 1

Kβ

({

1 + 2(2 + 3n)Kβ[(3 + 1/n)q̄]n
}1/(2+3n) − 1

)

, (40)

which was derived from Eq. (52) in the appendix; K = [(1 + t̄)2(1 + ν) + (1 −
2ν)]/(2 + t̄) and t̄ = t/a. For the same reason as above, an increase in β(= 3γ )

causes Δ p̄ to decrease.
Things become more interesting, however, when the curves corresponding to

same value of the FSI parameter β are compared (solid vs. dashed) in Fig. 3. For
small q̄ and small β, the linearly elastic tube deforms less and sustains a larger Δ p̄
compared to the hyperelastic one. However, this trend is reversed for large q̄ and large
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β, for which the hyperelastic tube sustains a higher Δ p̄ than the linearly elastic one.
This interesting observation can be explained by the very nature of hyperelasticity.
It is more difficult to deform a hyperelastic material as the deformation increases,
i.e., hyperelastic materials exhibit strain-stiffening [28, 31, 32]. Mathematically, this
resistance to deformation can be measured through the rate of change of the stress
with respect to the strain (or deformation). To this end, when we differentiate the
constitutive equation for a hyperelastic material, namely Eq. (13), with respect to
the principal deformation along the “1” direction, whilst keeping the deformations
in the other directions constant for simplicity, to obtain:

∂σ1

∂λ1
= 4C1λ1 + 4C2/λ

3
1. (41)

From the latter equation it follows that the resistance to deformation increases with
deformation (keeping in mind that C2 < 0). On the other hand, for a linearly elastic
material, the resistance to deformation is given by Young’s modulus E (at least for
a uniaxial load), which is a constant!

One could also interpret the much largerΔ p̄ in hyperelastic (over linearly elastic)
thin-wall cylinders in Fig. 2 as a consequence of strain-hardening. However, in that
case, due to significant resistance to deformation of the thin-walled hyperelastic
vessel (there is almost oneorder ofmagnitudedifference in the vertical scales between
Figs. 2 and 3), the interplay between q̄ and β values just described is not present.

Finally, we also note that an increase in the cylinder thickness will lead to a
corresponding decrease in the pressure drop, although this is not shown in Fig. 3,

(a) (b)

Fig. 3 The dimensionless (full) pressure drop across a thick-walled microtube as a function of the
dimensionless inlet flow rate q̄ for different values of FSI parameter β = 3γ and t̄ = t/a = 0.3.
Hyperelastic thick-walled tubes correspond to solid curves, while linearly elastic thick-walled tubes
correspond to dashed curves, for a a Newtonian fluid with n = 1.0 (e.g., blood plasma), and b a
shear-thinning fluid with n = 0.7 (e.g., whole blood). For a thick-walled hyperelastic tube, the
corresponding theory was presented in Sect. 4.2, while for thick-walled linearly elastic tubes the
predicted pressure drop is given by Eq. (40) derived from the appendix
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in which all the curves have been plotted for a constant ratio t̄ = t/a = 0.3. This
result is similar to the one for thick linearly elastic plates, which was discussed in
our previous work [4], and it can be attributed to an increase in the normal stress
throughout the structure’s thickness as t̄ increases.

6 Conclusion

In this chapter, we have solved the problem of steady-state low Reynolds number
fluid–structure interaction (FSI) between a generalized Newtonian fluid and a hyper-
elastic cylindrical tube. The hydrodynamic pressure, which is needed to maintain
a unidirectional flow in a deformed cylindrical pipe, was transferred as a load onto
the elastic structure, the mechanics of which were analyzed using the thin and thick
pressure vessels theories for isotropic, incompressibleMooney–Rivlinmaterials. The
fluid and solid mechanics were brought together to yield a coupled equation relating
the constant inlet flow rate q to the tube’s radial deformation ur (z). For a thin-walled
pressure vessel, the latter relation takes the implicit dimensional form

m[(3 + 1/n)q]n

(C1 + C2)t
(� − z) = [a + ur (z)](3n+2)

a2(3n + 2)
+a2[a + ur (z)](3n−2)

(3n − 2)

− 6na3n

(3n + 2)(3n − 2)
. (42)

As a special case, we have also found the flow rate–deformation relation for a New-
tonian fluid (n = 1, and m = μ is the shear viscosity):

4μq

(C1 + C2)t
(� − z) = [a + ur (z)]5

5a2
+ a2[a + ur (z)] − 6a3

5
, (43)

which is an implicit relation for ur (z) given q. Whence, the equation relating the
pressure p(z) at an axial location z with the deformation ur (z) is

p(z) = 2(C1 + C2)

(
t

a

){

[1 + ur (z)/a] − 1

[1 + ur (z)/a]3
}

. (44)

Consonantwith our previous FSI results [3, 4], the pressure–deformation relationship
is set by the structural mechanics alone, hence it does not explicitly depend upon the
fluid’s rheology.

Equations (42) [or (43)] and (44) fully specify the FSI problem for a thin-walled
hyperelastic cylinder. In deriving these equations, we arrived at the dimensionless
FSI parameter γ , which determines the “strength” of the coupling between flow and
deformation fields:

γ := Pc

2(C1 + C2)

(a

t

)

(45)
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for a hyperelastic cylinder with material constants C1 and C2. Here, the pressure
scale Pc depends on the nature of the physical scenario at hand. For a flow-rate-
controlled experiment and/or simulation, as considered in this chapter for example,
we set Pc = [q/(πa3)]nm�/a, as dictated by the fluid’s momentum balance. On the
other hand, for a pressure-drop-controlled experiment or simulation, we can directly
set Pc = Δp, which means the fluids velocity scale Vz discussed above becomes a
function of the dimensional pressure drop Δp.

We compared the predicted q − Δ p relation due to the hyperelastic FSI theory
developed in this chapter with the corresponding relation due to linearly elastic
FSI theory form previous work [3]. In particular, we concluded that a hyperelastic
microtube supports smaller deformations than a linearly elastic microtube for the
same hydrodynamic pressure, or conversely a hyperelastic microtube can sustain a
higher pressure drop than a linearly elastic one, for the same deformation. Finally,
our observation in Sect. 5 that the pressure drop across a soft microtube decreases
with the wall thickness is in agreement with the case of rectangular microchannels
with a plate for a top wall, which we considered in our previous work [4].

In future work, we will report benchmarks of this chapter’s purely theoretical
considerations against full-fledged three-dimensional FSI simulations and/or exper-
iments (as in [3, 4]). Future work could also include extending our approach to FSI
between internal viscous flows and composite structures governed by generalized
continua continua [2], such as Cosserat continua [30] or microstructured materials
[12].
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Appendix

In this appendix, we consider the flow rate–pressure drop relationship for steady
flow of a power-law fluid within a linearly elastic, thick-walled pressure vessel of
thickness t , and inner radius ri = a. The pressure vessel is subject only to an internal
distributed pressure load p, with zero external pressure. Then, the state of stress
evaluated at the inner radius (see [40]) is:

σθθ =
(

r2o + r2i
r2o − r2i

)

p, (46a)

σrr = −p, (46b)

σzz =
(

r2i
r2o − r2i

)

p. (46c)
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The hoop strain is given by the constitutive equations of linear elasticity as:

εθθ = ur

ri
= 1

E

[

σθθ − ν(σzz + σrr )
]

. (47)

Using Eqs. (46) and (47) yields

ur

ri
= 1

E

[(
r2o + r2i
r2o − r2i

)

p − ν

(
r2i

r2o − r2i
− 1

)

p

]

, (48)

which, upon using Eqs. (18) and (21), becomes

ur

ri
= t̄

[
(1 + t̄)2(1 + ν) + (1 − 2ν)

(1 + t̄)2 − 1

]

β p̄; β = Pc

E t̄
. (49)

After deformation, the inner radius is Ri = ri + ur (where, initially, ri = a). Thus,
the dimensionless inner radius is

R̄i = ri + ur

ri
= 1 + ur

ri
= 1 +

[
(1 + t̄)2(1 + ν) + (1 − 2ν)

2 + t̄

]

β p̄. (50)

Substituting the expression for R̄i from Eq. (50) into Eq. (33), we obtain an ODE for
the dimensionless pressure p̄:

d p̄

dz̄
= −2[(3 + 1/n)q̄]n (1 + Kβ p̄)−(1+3n) , (51)

where we have defined K := [(1 + t̄)2(1 + ν) + (1 − 2ν)]/(2 + t̄) for convenience.
As usual, the ODE (51) is separable and subject to a pressure outlet BC [i.e., p̄(1) =
0], thus we obtain:

p̄(z̄) = 1

Kβ

({

1 + 2(2 + 3n)Kβ[(3 + 1/n)q̄]n(1 − z̄)
}1/(2+3n) − 1

)

. (52)

Then, the full pressure drop is simplyΔ p̄ = p̄(z̄ = 0).Note thatK = (1 − ν/2) + O(t̄),
thus the expression forΔ p̄ based on Eq. (52) [i.e., Eq. (40) above] reduces to Eq. (39)
(based on [3]) identically for thin shells (t̄ � 1).
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Abstract The chapter is concerned with the model of multichannel diffusion of
hydrogen in a solid. The model is developed for analysis of diffusion of small, so-
called natural, hydrogen concentrations, describes experiments for the model ver-
ification, and presents data on the hydrogen binding energies in a solid obtained
by identifying the model parameters by means of the experimental data. A critical
analysis of some disadvantages of the widely known method of thermo-desorption
spectra is provided. The energy spectra of hydrogen obtained by the latter method
and the multichannel diffusion model are compared and discussed. 15 years ago we
first introduced Dmitry Indeitsev to the idea of applying the model of multichannel
diffusion to determine the hydrogen binding energy in a solid. He enthusiastically
supported our activity, both by discussing the results and participating in projects by
Russian Foundation for Basic Research. Our experimental results served as a basis
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1 Introduction

The study of hydrogen diffusion in solids has a great practical importance. Its ade-
quate description is necessary for prediction of theworking resource of constructions,
development of the storage systems and safe technologies aa well as for reliable mea-
surement of hydrogen concentration.

It was Gorsky [19, 20] who found out that, apart from temperature and concentra-
tion gradient, the mechanical stresses in crystal matrix affect the diffusion of atoms
in solids. This allows one to explain the mechanism of gradual evolution of hydrogen
embrittlement in metallic parts, elements and formation of cold cracks in welds. The
hydrogen diffusion plays an important role in the processes of corrosion, cracking
and brittle failure [12, 23, 27, 37, 44, 62]. The influence of hydrogen on electric
properties of semiconductors is also essential, see [39].

The systems for storage and transport of gas are designed to withstand high pres-
sure. Hydrogen diffuses into metal walls and other parts of these systems cf. [66].
The gradual accumulation of hydrogen in metal leads to the hydrogen embrittlement
and destruction.

There are some hydrogen storage systems inwhich the hydrogen is accumulated in
metals, composites and nanostructures. The hydrogen diffusion is the main working
process in charging and discharging, cf. [51].

In the thermonuclear reactors the diffusion of hydrogen and its isotopes leads to the
hydrogen saturation in the inner parts of reactor, cf. [2]. Increasing the temperature
of the inner walls leads to the hydrogen extraction from the walls to plasma, cf.
[10]. This process destroys the plasma’s stability during energy pumping. Hydrogen
accumulation results in cracking on the inner parts of reactor due to the hydrogen
embrittlement and temperature shocks. The tritium diffusion through the reactor
walls leads to reducing the level of radiation safety of the thermonuclear synthesis
technology.

In all these cases, the hydrogen concentrations are close to the upper limit for
structural materials.

However, hydrogen is always present in metals and semiconductors. For majority
of metals, the “natural” values of hydrogen concentration are in the range from
0.2 ppm (for aluminum alloys and high strength steels) up to 80 ppm (for titanium
alloys). Even the double excess of the “natural” hydrogen concentration leads to loss
of plasticity of structural materials, see [30, 32].

The hydrogen in solids was established to occupy several energy levels. It was
found that hydrogen with binding energy in the range of 0.2–0.4 eV considerably
influences on plasticity and strength of steels.

The method of thermo-desorption spectra (TDS) is usually utilised for deter-
mination of binding energy. This method is proposed in Ref. [28]. Extraction of
hydrogen from a sample is considered as a chemical reaction of the first order with
the activation energy equal to the binding energy. Thus the effect of the hydrogen
diffusion inside the studied sample is considered to be negligible. The TDS method
is widely used in material science. In practice, all studies of the effect of hydrogen
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on the structure and properties of metals and non-metals utilise this method, see e.g.
[11, 25, 34, 36, 38, 47, 57, 60]. An important feature of TDS is an independent
determination of the binding energy. Under identical conditions (size and shape of
the samples, the hydrogen charging conditions etc.) TDS method allows one to trace
the influence of sample structure and the concentration of individual alloy compo-
nents on the binding energy value, cf. [57]. However, significant differences appear
when we compare data from various researchers.

The influence of various factors on the result of research carried out by TDS
method is addressed in a number of papers. For instance, Ref. [26] reports the influ-
ence of the sample thickness and the holding time after hydrogen charging on the
shape and position of the TDS peak by means of the mathematical modeling. A
detailed description and benchmark of the hydrogen charging methods are provided
in [61]. The individual TDS peaks are shown to merge into one peak because of high
hydrogen concentrations under charging and it yields only an average value of the
energy of hydrogen bonds.

The use of additional assumptions allows one to interpret TDS even in the case
in which the test yields a single peak rather than several ones. A Finite-Element
Modeling of the hydrogen diffusion reported in [33] shows that a single peak of TDS
can be accurately and adequately approximated as the hydrogen desorption from
two energy levels by adjusting the prescribed diffusion constants and the binding
energy values. However, this approach deprives the main advantage of the TDS
methodwhich is the possibility of independent determinationof value of the hydrogen
binding energy from the test results.

The diffusion process is not taken into account in the TDS equations for binding
energies. Regretfully, this fact does not always take into consideration by researchers.
For example, Ref. [17] suggests the existence of several channels of hydrogen dif-
fusion in the martensitic steels. The authors of present paper have substantiated the
existence of such channels earlier in their paper [48, 49]. However, all measurements
in Ref. [17] were carried out by TDS method.

On the one hand, this contradicts to the experimental data since the account for
diffusion introduces essential corrections to the values of binding energy even for
relatively small sample sizes [42]. On the other hand, the experimental measurements
evidences for low accuracy of the TDS approach [56]. As a rule, the hydrogen’s
binding energies of about 0.2eV should yield notable hydrogen fluxes at normal
conditions which is not observed experimentally.

Regardless of the specific values of the hydrogen binding energy it is important to
know what happens to the hydrogen during annealing and how it changes the energy
spectrum since this change demonstrates the predominance of a particular structure
creating the hydrogen traps. This information allows one to simulate the behavior
of both materials and loaded structures [5, 7, 8] and predict the crack growth, cf.
[55, 65].

It is possible to estimate the binding energy using some other methods, e.g. the
spectral one [39]; however this method is adequate only for thin samples such as
films and membranes.
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Due to the strong influence of hydrogen with different binding energies on the
structure and strength ofmaterials it becomes necessary to develop approacheswhich
take to account the diffusion as a main process the hydrogen redistribution inside a
solid body.

2 Measurement of Hydrogen Concentration by Vacuum
Hot Extraction Method

The vacuum heating method is used both in experiments and in industrial control
of hydrogen concentration in a solid probe [1, 29, 39, 46, 52] (Hydrogen Analysis
by Vacuum Hot Extraction, VHE). In our experiments we used industrial hydrogen
analyzer AV-1 with mass-spectrometric registration of dependence of hydrogen flux
from the sample on time, in the process of the sample heating in vacuum. The
apparatus exterior is shown in Fig. 1.

A schematic drawing of the AV-1 is presented in Fig. 2.
The systemof probe preparation composed of the glass extractormade of the fused

silica (see Fig. 2) and the radiation furnace whose temperature maintained constant
during the analysis. The samples are placed in the cold appendix of extractor. In

Fig. 1 Hydrogen analyzer
AV-1

Fig. 2 Scheme of the
hydrogen measurement in
AV-1
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performing analysis, the sample is thrown off to the analytical appendix without
spoiling of vacuum. The analytical appendix is maintained at a constant temperature
of extraction, which is provided by the furnace put on the appendix.

For majority of alloys the extraction temperature is in the range 400–800 ◦C.
The extractor volume is pumped continuously with the analyzer pump down to the
working pressure of 100 µPa. The investigated sample is heated slowly up to the
extractor temperature. The hydrogen flux from the sample is measured by mass-
spectrometric analyzer preliminarily calibrated on the standard hydrogen containing
samples or on the gas calibration. As a result, dependence of hydrogen flux from
the extractor system on time (the extraction curve) is obtained. An integral of the
extraction curve over time is proportional to the amount of hydrogen extracted from
the sample. The shape of curve is typical for the aluminum, magnesium, titanium
alloys and the different marks of steels. In determining the diffusion parameters,
we compare the experimental extraction curve to the calculated one obtained by
mathematical modeling of the time dependent hydrogen diffusion in the sample
under consideration.

3 Modeling of Diffusion Process in Sample

For example, we consider the process of the sample heating in vacuum using the
titanium samples studied experimentally. The prismatic sample sizes are as follows:
a; l; b.

The extractor walls are made of fused silica. In the process of analysis, their
temperature is maintained at a constant value T0. The fused silica has practically
zeroth thermal conductivity, the area of the sample contact with the walls is small,
so the heat transfer occurs only due to radiation.

The fused silica does not transmit infrared radiation of the radiation furnace, that
is, the sample is heated due to the heat radiation of the extractor walls. The amount
of heat absorbed by the sample during the time interval dt is:

dQ = εn σ S(T 4
0 − T 4)dt, (1)

where σ = 5, 6687 · 10−8 W/m2K4 is the Stefan–Boltzmann constant, T is the sam-
ple temperature, T0 is the wall temperature of the analytical appendix of extractor
(see Fig. 1) and εn is the sample absorption coefficient.

εn = 1
1
εt

+ S
S2

(
1
ε2

− 1
) ,

where εt is the absorption coefficient of titanium, ε2 is the absorption coefficient of
fused silicawalls of analytical appendix of extractor (equal to 1 for infrared radiation),
S is the sample area, S2 is the area of wall of analytical appendix of extractor involved
in the heat transfer.
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If ε2 = 1 or ε2 >> εt then the approximate relation εn ≈ εt can be used. For
titanium in the temperature range 200–900 ◦C we have

εt = 0.2. (2)

In this condition, the heat capacity of titanium weakly depends on temperature
and equals c = 0.6 kJ/kg·K. The heat dQ (1) absorbed by the sample gives rise to
the increase in the temperature by dT :

dQ = cρVdT, (3)

where ρ is mass density and V is volume of the sample.
From Eqs. (1)–(3) one obtains the following equation for the sample heating:

dT

dt
= σ S

cρV
· 0.2 · (T 4

0 − T 4). (4)

Dependence of hydrogen concentration on coordinates and time is obtained from
solution of the time-dependent diffusion equation

�C = 1
D

∂C
∂t

C |S = 0
C |t=0 = C0

, (5)

where C is the hydrogen concentration, D = D0 · exp(− u
kT ) is the hydrogen diffu-

sion coefficient, u is the hydrogen activation energy, D0 is the diffusion constant and
k is the Boltzmann constant.

In the given boundary conditions, the first term of the Fourier expansion for the
hydrogen concentration C of the solution of Eq. (5) can be written as

C(x, y, z, t) = C0π
3

8
sin

πx

a
· sin πy

b
· sin π z

l
· f1(t, u, D0) (6)

where l, a, b are the height and transversal sizes of the sample, respectively. Function
f1(t, u, D0) is solution of the following equation

ḟ1 + D0 · exp(− u
kT )( π2

a2 + π2

b2 + π2

l2 ) f1 = 0,
f1(0, u, D0) = 1.

(7)

In tests, the apparatus registers the overall hydrogen flux q(t) thought the sample
surface as a time function. According to Fick’s law of diffusion we have:

q(t) = −
∫

S
D
dC

dn
dS, (8)

where S is the sample surface.
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Inserting Eq. (6) for the hydrogen concentration C in (8) and performing integra-
tion yields:

q(t) = π2C0abl ·
[
1

a2
+ 1

b2
+ 1

l2

]
· D0 · exp(− u

kT
) · f1(t, u, D0). (9)

When assuming that hydrogen in the sample is contained in the reversible traps
with different binding energies ui , the corresponding diffusion constants D0i and
initial hydrogen concentrations C0i we use the superposition principle because of
linearity of the diffusion equation (5).

The time dependence of the hydrogen flux q(t) from the sample is defined by the
following sum:

q(t) = π2abl ·
[
1

a2
+ 1

b2
+ 1

l2

]
·
∑
i

C0i · D0i · exp(− ui
kT

) · f1(t, ui , D0i ), (10)

where f1(t, ui , D0i ) is solution of Eq. (7) for the given values of constants ui , D0i ,
C0i and the sample dimensions (l, a, b).

Comparison of the experimental extraction curve and the calculated curve Eq.10
for initial concentrations C0i and diffusion constants ui and D0i yields the activation
energy and diffusion constants of hydrogen.

Figure3 shows the plots of extraction curves measured experimentally and
obtained by means of Eq. (10).

Therefore, the extraction curvemeasured by the hydrogen analyzerAV-1 bymeans
of the vacuum heating method allows one to determine fundamental parameters
characterizing the hydrogen state in the solid, namely (i) the energy levels of hydrogen
ui , (ii) the hydrogen concentration C0i in different energy states (populations of
energy levels), and (iii) the diffusion constant D0i for hydrogen with binding energy
ui .

Fig. 3 Experimental
(points) and calculated (solid
line) extraction curves with
three maxima for the
titanium alloy PT7M
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4 Verification of Main Approximations of Method
for Determination of Binding Energies

For experimental testing of reliability of the accepted assumption, the samples of
titanium alloy PT7M were prepared. which had shape of parallelepiped with the
sizes 2*2*2.5mm. The samples were parallelepipeds of dimension 2*2*2.5 mm and
were cut from a tube of outer diameter of 28mm.

Six samples were loaded in the extraction system of the hydrogen analyzer AV-1.
Testing of each sample was performed at the fixed extraction temperature, beginning
with 550 ◦C and ending by 800 ◦C. The analytical appendix of extraction system was
heated up to the extraction temperature without sample, then the sample was placed
into the heated analytical appendix, and the extraction curve was recorded. Each
sample was tested only once, i.e. only a part of hydrogen was extracted from the
sample at low temperature. The test results are shown in Fig. 4.

Analysis of the extraction curves shows that the hydrogen diffusion from titanium
alloy has an activation character. The hydrogen with higher binding energy remains
in the sample when the extraction temperatures is under 700 ◦C.

Provided that the assumption about existence of states with different binding
energies ui and corresponding diffusion constants D0i is valid then the measured
extraction curves for other temperatures can be properly described.

Modelingof the process of high-temperature vacuumextractionwas performed six
times at different extraction temperatures with calculation of the extracted hydrogen
flux by means of (10).

The modeling result is shown in Fig. 5. All the calculated extraction curves,
obtained at the analysis temperatures of 530 ◦C, 600 ◦C, 700 ◦C, 750 ◦C, 775 ◦C,
800 ◦C, are given in one plot by analogy with the experimental curves presented in
Fig. 4.

The obtained modeling results show good agreement with experiment. The
modeling assumed diffusion parameters determined by analysis of the experimental

Fig. 4 Experimental
extraction curves for samples
of the titanium alloy PT7M
obtained at different
extraction temperatures
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Fig. 5 Results of modeling
of extraction curves for the
titanium sample PT7M at
different extraction
temperatures

extraction curve obtained at the temperature of 800 ◦C. It enables us to make extrap-
olation to lower temperatures without using adjustable parameters and obtain result
coinciding with the corresponding experiment.

Thus the proposed model is adequate to the real physical process occurring in
realization of the method of high-temperature vacuum extraction of hydrogen from
analyzed sample of solid probe.

In the model describing the process of sample heating, only transfer of heat due
to radiation was taken into account. Possible sources of uncertainly in determination
of activation energy of diffusion are as follows:

(i) non-zeroth thermal conductivity of fused silica,
(ii) uncertainty in used value of the absorption coefficient of heat radiation.

The following experiment was performed to test the proposedmodel of the sample
heating.

Two identical samples of diameter 2a = 8mm and length l = 15mm were
machined from the same rod of the aluminum alloy AMg6. Before loading in the
extractor the first sample was covered by soot obtained in incomplete combustion of
acetylene.

The sample heating was minimal due to small time of contact between the sample
and the flame of burner containing soot.

The working temperature of the extraction system was 530 ◦C. The blackened
sample was placed in the analytical appendix by a magnetic pusher without spoiling
vacuum.

The extractor wall temperature was maintained equal to the working temperature.
The cold sample (at room temperature) was heated up to the extraction temperature
and then heated at this temperature up to the end of analysis.

A standard sample had small absorption ability which was typical for the alu-
minum alloy whereas the sample covered by soot had the absorption ability that was
practically equal to 1.
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Fig. 6 Initial part of the
extraction curve obtained for
the sample of aluminum
alloy AMg6 covered with
soot (curve 1) and initial part
of the extraction curve
obtained for the sample of
aluminum alloy AMg6
(curve 2). The same peaks
are connected by straight
lines

Fig. 7 Dependence of
temperature of analyzed
sample on time. Modeling is
performed at different values
of absorption coefficient:
curve 1 corresponds to the
sample is covered with soot
εt = 1; curve 2 corresponds
to the sample is prepared
according to [1]
εt = 2 · 10−4 · (T + 64, 3);
curve 3 is obtained for pure
polished aluminum
εt = 7 · 10−5 · (T + 64, 3)

The extraction curves for blackened and standard samples were measured. They
are shown in Fig. 6. It is established that the sample covered by soot was heated about
20 times faster. If one suppose that the hydrogen diffusion has activating character
then the extractor curve can provide information on the rate of sample heating.

The first peak on the extraction curve is associated with absorption of the
“surface” hydrogen from the sample. The maximum position corresponds to the
sample temperature 100–150 ◦C.

Equation (4) was used for modeling dynamics of sample heating. The absorption
coefficient was taken to be 1 for the sample covered by soot. Figure7 shows results
of modeling dependence of the sample temperature on time.

Curve 1 corresponds to the sample covered by soot. Curve 3 is obtained for
pure polished aluminum, and curve 2 corresponds to the sample of aluminum alloy
AMg6 prepared according to the requirements of [1]. The absorption coefficient of
the sample corresponds to the experimental curve presented in Fig. 6.

Analysis of the presented results of modeling dynamics of the sample heating
allows us to make conclusion that the real absorption coefficient for aluminum alloys
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is higher than that for pure polished aluminum presented in literature. Probably this
is caused by existence of alloying and quality of treatment of the sample surface. The
performed experiments show that the real absorption coefficient can be determined
for each alloy.

The above technology of comparative analysis of the hydrogen amount in the
samples with regulated absorption coefficient allows more precise determination of
temporal dependence of the sample temperature during the process of analysis.

Other methods for determination of sample temperature in vacuum either distort
considerably results of the analysis or have low accuracy.

Fastening of a thermocouple on the sample in vacuum makes experiment and
extraction system very cumbersome. At T = 500–600 ◦C it is necessary to isolate
the thermocouple conductors by specialmaterials: the insulators themselves and ther-
mocouple materials can contain hydrogen, that will give rise to essential distortion
of the analysis result of, especially in determination of small hydrogen concentra-
tions. Fastening the thermocouple is possible only by its pressing in a cavity or in
the sample orifice, that results in considerable plastic deformation of material, even
at the sample masses of about 2–5g.

Mounting of the thermocouple on a special pedestal or melting pot leads to the
fact that material of the pedestal itself or melting pot can distort considerably the
analysis results. The use of pyrometers for determination of the sample temperature
does not provide the necessary accuracy in conditions of large hitch created by heat
radiation of the furnace. Moreover, at T < 500 ◦C the pyrometry has uncertainty
higher than ±50 ◦C.

Therefore the proposed experimental procedure for determining time dependence
of the sample temperature in realization of the method of high temperature vacuum-
extraction of hydrogen allows one to obtain reliable data on the value of absorption
ability of the sample surface and to get adequate results in approximation of the
extraction curves for determination of binding energies ui and the diffusion constants
D0i for hydrogen in various materials.

5 Multichannel Diffusion Versus TDS Model

The study of the binding energy of hydrogen carried out by TDS method in Ref. [31]
has a significant drawback. The hydrogen activation energy is changed twofold when
the tempering temperature changes in 100 ◦C only. It is difficult to assume that the
physical nature of dislocations or the lattice structure is changing so drastically that
the binding energy changes twofold. In addition to this, only one peak is observed
in TDS, cf. [31]. Hence, the structure of the material changes completely, so that
there no longer exist the old type traps for hydrogen in the metal tempered at higher
temperatures. Similar discrepancies are observed in other publications where the
studywas carried out by using the TDSmethod. For example, in Ref. [50] the binding
energy of hydrogen dislocations was specified as 24.1–29.9kJ/mol and the binding
energy of the grain boundaries was shown to lie in the range from 26kJ/mol to
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Fig. 8 Extraction curves for
samples M400 and M520 at
the extraction temperature of
900 ◦C

Fig. 9 Extraction curves for
samples M400 and M520 at
the extraction temperature of
400 ◦C

53.1–58.9kJ/mol. The ranges of the binding energy of hydrogen traps of different
nature are overlapping and it greatly reduces the practical value of the TDS method.

We took the samples M400 (tempered at 400 ◦C) studied in [31] as well as M520
(tempered at 520 ◦C) and applied different types of hydrogen analysis in order to
critically discuss and develop the results of Ref. [31].

The samples M400 and M520 were tested at extraction temperatures of 400–
900 ◦Cwith steps of 100 ◦C and cooled after complete degassing at each temperature
step. A set of extraction curves at different extraction temperatures was obtained and
shown in Figs. 8 and 9 for 900 and 400 ◦C.

These extraction curves demonstrate the same energy spectrumof boundhydrogen
in samples M400 and M520. This fact has a physical reason. At temperature 400 ◦C
the main peak of extraction curve is well approximated by the multichannel diffusion
model.
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Fig. 10 Extraction curves
for sample M520 for the
extraction temperature
900 ◦C. solid line -
multichannel model, points -
experiment

Fig. 11 Extraction curves
for sample M520 for the
extraction temperature
400 ◦C. solid line -
multichannel model, points -
experiment

The results of this approximation are shown in Fig. 10 for the extraction temper-
ature 900 ◦C and in Fig. 11 for the extraction temperature 400 ◦C.

The presence of small pulses indicates the great influence of the surface hydrogen
which is associated with microdefects on the sample surface after lathe treatment
(it will be discussed in what follows). The difference in extraction curves in Fig. 11
is most likely due to the different properties of the sample surface and presents a
shortcoming of the method. At low temperatures of about 400 ◦C the effect of surface
processes can be considerable for the hydrogen extraction. These processes are not
described by the diffusion mechanism. It should be mentioned that TDS method is
principally not appropriate for correct interpretation of the surface processes since it
aggregates them with the processes of internal desorption and hydrogen diffusion.

The total hydrogen content in sample M400 is 0.22 ppm and in sample M520 is
0.27 ppm. The overall spectra of the hydrogen binding energy are given in Table1.
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Table 1 Values of the
hydrogen binding energy in
34CrNiMo6

# Hydrogen binding energy

kJ/mol

1 14.5

2 27.3

3 77.6

4 102

Practically the entire difference in the initial concentration corresponds to the
hydrogen binding energy with the levels lower than 80kJ/mol.

The binding energies with level 14.5kJ/mol and 27.3kJ/mol agree very well with
the known data on the binding energies of hydrogen in steels [3, 63].

The initial hydrogen concentrations in both samples is small, however it was
determined experimentally that the higher level of initial concentration leads to lower
susceptibility to hydrogen embrittlement [31]. This fact is very well known and is
related to irreversible trapswith activation energies higher than 60kJ/mol [41], which
make the difference between the initial hydrogen concentrations in the samplesM400
andM520. The initial volume of the irreversible traps inM520 is higher than inM400
and these traps lead to a greater resistance to hydrogen embrittlement.

Thus, it appears that the smaller initial volume of the traps with a binding energy
of about 80kJ/mol leads to greater sensitivity of mechanical properties of steels to
hydrogen. It should be noted that this result is difficult to obtain when the samples
are saturated by hydrogen because it occurs at the expense of other types of traps;
in this case we would obtain the opposite effect, namely the more hydrogen with
low binding energy (10–40kJ/mol) the higher degradation of mechanical properties.
Thus, the proposed approach allows us to obtain unique information about the initial
state of the material and predict its interaction with hydrogen at saturation.

The role of hydrogen embrittlement is correlated with the high-energy traps. The
energy range of 100kJ/mol is too high to see a significant change in the state of these
traps in a short time. Therefore, the outside saturation of the samples which is carried
out at TDS measurements is not appropriate for filling these traps uniformly. This
level of binding energy of hydrogen was not found out during the investigation by
TDS [31]. This is explained by the fact that hydrogen absorption for 30min is not
sufficient to saturate this type of traps and the natural concentrations turn out to be
too low (0.04 ppm). As a result, hydrogen saturation results in non-uniform volume
distribution of the hydrogen, namely the low energy hydrogen is distributed more
uniformly (at high concentrations) in the sample whereas the hydrogen with high
binding energy saturates only a thin surface layer.

In the classical TDS analysis the hydrogen diffusion and the volume distribution
of hydrogen are not considered at all. Therefore, the traps with high binding energy
which are close to the sample surface do not exhibit any separate peak however these
traps significantly displace the hydrogen peaks with low binding energy towards
those with higher energies.
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These traps may have a strong covalent bond to hydrogen atoms which could be
addressed to sulfur and its compounds [18, 24]. Such covalent bonds accompanied
by complex chemical compounds of sulfur and hydrogen have minor influence on
the mechanical properties of the metal, however the chemical resistance to corrosion
is reduced due to the presence of sulfur.

The difference between the TDS and VHE methods is primarily concerned with
the hydrogen saturation which is necessary for TDS. This saturation does not allow
detecting traps with a small capacity limit which can play a role in other types of
exposure. The application of VHE however allows gaining additional information
about the hydrogen trapping.

It is justified in Refs. [21, 23] for iron that it is dislocations which are the main
traps with low energy in the annealed state. However, as pointed out in [21] this is
true for iron with a purity higher than 99.99%.

This issue requires further study for several reasons:

1. The model of hydrogen extraction from samples under the TDS process was first
reported in [28] however the diffusion of hydrogen in samples was ignored there.
Adequate results can only be obtained for thin films. In all other cases a slow
heating is used to reduce the influence of the hydrogen diffusion. The increase
in the temperature rate causes increasing error. To determine the binding energy
it is necessary to use at least three rates of warm-up. The diffusion shifts the
spectrum peaks toward greater binding energy under a faster heating.

2. Account for diffusion for TDS method carried out in [42, 43] did not allow one
to avoid saturation of samples with hydrogen. This account was performed for
only one type of steel and cannot be considered as a well established approach.

3. Slow heating at TDS can take dozens of hours, and one must have measured
the hydrogen flux from the sample during this time interval. As a result, the
TDS method does not work without special hydrogen saturation. In fact, one
measures the distribution of hydrogen traps that can be filled relatively quickly
when exposed to the electrolyte or gaseous hydrogen rather than the hydrogen
distribution over the binding energies in the sample. Saturation of hydrogen leads
not only to a structural change in the spectra of natural hydrogen but also to a
substantial change in the mechanical properties of metal itself. Reference [54]
reports the cases of twinning and hence the increase in the traps’ volume at
hydrogen saturation. Saturating carbon steels with external hydrogen leads to
appearance of methane which not only causes the formation of microvoids and
cracking (changes in the steel structure) but also absorbs the dissolved hydrogen
and changes its energy spectrum, cf. [53].

4. Physical methods of investigation of dislocations and other mechanical imper-
fections of the crystal structure does not always give a clear quantitative result.
For example, Ref. [59] reports that the dislocation density of the specimens was
measured byX-ray diffractometry after tensile testing in a hydrogen atmosphere.
It was found that all the hydrogen absorbed by high-strength low-alloy steel sam-
ples is accumulated in dislocations. This conclusion is based on the method of
Ref. [64] which measures the amount of dislocations. However, X-ray diffrac-
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tometry is known to measure the strains. Reference [64] suggests a formula for
determining the dislocation density according to X-ray diffractometry on the
basis of unsubstantiated assumption that the overall deformation of the sample
is caused by dislocations only.

5. All these factors lead to the fact that the levels of binding energies of hydrogen
traps of the same nature deviate considerably. E.g., for steels the binding energy
of hydrogen dislocations lies in the range of 26–35kJ/mol [45], 20–30kJ/mol
[13], 20–60kJ/mol [22].

Thus, applying the technique of [48] and VHE on the same samples, we were
able to determine more energy levels for bound hydrogen than by using TDS [31].
We estimated filling of each energy level or each type of traps by natural hydrogen
which was inside the metal when it was processed. The absence of procedure of
the hydrogen charging allowed us to keep the original natural structure of samples.
The results show that change in the trap volume with binding energy 77.6kJ/mol
occurs at different annealing temperatures. The physical nature of these traps requires
additional investigation, however we can use the mechanical models [6, 9, 58] for
predicting material properties.

6 Discussion of Results

No assumption about parameters of sampleswasmadewhile determining the binding
energy by the method of thermo-desorption spectra. The algorithm for determining
the binding energies seems independent and objective. Such independence is not
always confirmed by experiments. In Ref. [42] the shape and sizes of samples were
taken into account and it changed essentially the data on binding energies. Study
[3] of a special sort of steels showed large spread of values of diffusion parameters.
Additionally the values of activation energy ui and diffusion constant D0i were
strongly dependent of the sample sizes (also observed in Ref. [42]).

The TDS method is based on the hypothesis which states that there exists only
one channel for hydrogen diffusion in a solid and traps are uniformly distributed
in the sample. Hydrogen is accumulated in these traps. Physical considerations that
diffusion is only model for the process of statistically equilibrium variation of states
of atoms and molecules are not taken into account. The equations for hydrogen
diffusion and amount of hydrogen in traps are different. Let us study contradictions
of the approach on example of a thin sample.

Let us consider the case in which the hydrogen is contained in traps of several
types (with different binding energies or activation energies). After escaping from
the traps hydrogen passes to the diffusion-mobile state with binding energy u0. In
this state the hydrogen diffusion is possible in a thin layer of thickness l in direction
of Ox axis.

The equation for deallocation of hydrogen from traps with binding energy ui has
the standard form:
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dwi
dt = −Diwi

wi (0) = wi0
(11)

where wi (t) is the hydrogen concentration in the trap, Di = D0i e
− ui

kT (t) is the rate
of trap deallocation, D0i is the trap deallocation constant analogous to the diffusion
constant, k is Boltzmann’s constant, T (t) is the layer’s temperature which is time
dependent. Let us assume that the distribution of traps over the layer’s volume is not
uniform, that is, wi (t, x) = wi (t) sin( πx

l ).
The solution of Eq. (11):

wi (t) = wi0 exp(−
∫ t

0
Di (θ) dθ).

The diffusion equation is written as

∂w
∂t = D d2w

dx2 − ∑
i
dwi
dt ,

w(t, 0) = w(t, l) = 0
w(0, x) = w0 sin( πx

l )

(12)

Here D = D0e
− u0

kT (t) is the diffusion coefficient,w is themass concentration of hydro-
gen in the layer, the source terms describing the flux of hydrogen from traps inside
the layer. Using (11) we can rewrite the diffusion equation in the form:

∂w

∂t
= D

d2w

dx2
+

∑
i

Diwi , (13)

The substitution τ = ∫
D(t)dt yields

∂w
∂τ

= d2w
dx2 + ∑

i
Di
D wi ,

w(τ, 0) = w(τ, l) = 0
w(0, x) = w0 sin( πx

l )

(14)

General solution of the homogeneous differential equation is written as

w(τ, x) = w0 sin(
πx

l
) exp(−π2

l2
τ), (15)

Solution to the homogeneous differential equation is given by

w(t, x) = w0 exp

(
−π2

l2
τ(t)

)
· sin(πx

l
) +

+
∫ τ(t)

0
exp

(
−π2(τ (t) − θ)

l2

) ∑
j

D j (θ)

D(θ)
wj (θ)dθ · sin(πx

l
) (16)
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The first important conclusion is that the ratios Dj (θ)

D(θ)
= D0 j

D0
exp

(
− u j−u0

kT (θ)

)
are

involved in the convolution integral in (16). It is possible to consider hydrogen tending
to diffusion of molecules located in a trap with binding energy u0, and liberation of
hydrogen from traps as a transition from the energy level u j to the energy level u0
accompanied by the energy loss (u j − u0).

Let us now rewrite the time-dependent factor in (16) after inserting the solution
for mass concentrations wj :

wt (t) = w0 exp

(
−π2

l2

∫ t

0
D(θ)dθ

)
+

+
∫ ∫ t

0 D(θ)dθ

0
exp

(
−π2(

∫ t
0 D(θ)dθ − θ)

l2

)
×

×
∑
j

[
Dj (θ)

D(θ)
wj0 exp

(
−

∫ θ

0
Di (σ ) dσ

)]
dθ (17)

and consider the case of very thin layer. Then Eq. (11) can be written as:

wt (t) ≈ w0 exp

(
−π2

l2

∫ t

0
D(θ)dθ

)
+

+ l2

π2

∑
j

[
Dj (

∫ t
0 D(θ)dθ)

D(
∫ t
0 D(θ)dθ)

wj0 exp

(
−

∫ ∫ t
0 D(θ)dθ

0
Di (σ ) dσ)

)]
(18)

There is a principal difference between exponents of the first and second com-
ponents of the sum (18). In the first term, the exponent is multiplied by the scaling
factor π2

l2 , and this is not the case in the second term. Consequently, the diffusion
from traps practically does not depend on the layer thickness which contradicts the
experimental data.

In experiments with films of 7–10 µm thick, the duration of hydrogen peaks on
the extraction curve is 7–10 min.

Attempts for modeling fluxes of “natural” hydrogen from samples with thickness
of 10µmusing themodel of “one-channel” diffusion lead to the fact that the activation
energy of the diffusion channel itself has reasonable values, 0.2–0.4 eV, and binding
energies in traps yield additional several hundredths eV. Thus the thermal motion
energy at room temperature is sufficient for effective emptying of traps.

On the contrary, the multichannel model yields the difference between activation
energies of different channels in the range 0.4–1.0eV.

Therefore the experimental data, physical arguments and relevant mathematical
modeling show that the multichannel model of hydrogen diffusion gives more accu-
rate description of experimental results.

There is an additional source of errors of the TDS method. It consists in existence
of background fluxes of hydrogen from the extraction system, which depends on the
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Table 2 The activation energies of the hydrogen determined for titanium alloys using different
models: a multi-channel diffusion (PT7M alloy) and the classical method TDS [28]

# PT7M
(α+β alloy)

Ti–6Al–4V
(α+β alloy) [14]

β -21S
(β alloy) [15]

β -21S
(β alloy) [16]

Ti–6.8Mo–4.5Fe–1.5Al
(β alloy) [4]

eV eV eV eV eV

1 0.4 (1.04 − 1.29)a,b 0.12 1.15a,c (0.49 − 0.66)a,d

2 0.8 0.280

3 1.4 1.06
aonly one peak TDS was observed
bdepends on the method of the hydrogen introducing into the alloy
cafter hydrogen introduced by GTAW welding in a mixed Ar + 5% H2 shield
ddepends on the hydrogen saturation time

sample’s temperature. The temperature of surrounding parts of the extraction system
increases with the sample heating. In some cases the background flux of hydrogen
increases by several hundred times in the course of TDS measurement, Ref. [39].

Table2 shows the comparison the activation energies for the different channels of
hydrogen diffusion in the titanium alloy PT7M and the hydrogen desorption activa-
tion energies obtained by the TDS.

Preliminary saturation of samples with hydrogen widely used in the TDS method
allows one to reduce the influence of background fluxes. To estimate their influence
in measuring natural concentrations of hydrogen, an experiment was performed on
stepwise changing temperature of the extraction system of hydrogen analyzer AV-1.
Figure12 shows the extraction curve for the aluminum alloy sample with mass of
2g and hydrogen concentration of 0.2 ppm arising in the stepwise heating of the

Fig. 12 The extraction
curve for the background
fluxes arising in the stepwise
heating of the extraction
system with the aluminum
alloy sample with mass of 2g
and hydrogen concentration
of 0.2 ppm up to 700 ◦C
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Fig. 13 The extraction
curve for the background
fluxes arising in the stepwise
heating of the void extraction
system up to 700 ◦C

extraction system up to 700 ◦C. Figure13 shows background fluxes arising in the
stepwise heating of the void extraction system up to 700 ◦C.

The hydrogen flux from the wall of extraction system coincides with the flux from
sample, as seen fromFigs. 12 and13.Thus, the heatingof the extraction systemduring
TDS can cause error in determining the hydrogen binding energy.

Prehydrogenated samples are typically applied for TDS method. During prelim-
inary saturation, we obtain a new hydrogen-material system whose properties can
differ from those of the originalmaterial (seeTables1, 2). Increasing of hydrogen con-
centration is known to lead to changing the material properties. For example, casting
of aluminum alloys is cracked in the process of crystallization for double hydrogen
concentration compared with the natural one. As shown in Ref. [40] for steels, the
saturation of material with hydrogen gives rise to decreasing tensile strength up to
3–5 times. The strong side of our approach is the possibility of measuring the hydro-
gen binding energy without special hydrogenation of samples.

The mass-spectrometric hydrogen analyzer AV-1 measures the instantaneous
hydrogen flux from the sample. As shown in Fig. 9, the extraction curves exhibit a
plurality of small peaks which are not observed under the higher temperature extrac-
tion, Fig. 8. The volume of molecular hydrogen that corresponds to these peaks is
approximately 10−8–10−9 mm3. The average grain size in the samples is 50 µm.
Thus, each small peak can correspond to a single microcrack or dislocation at the
sample surface.According to [35] the grain size affects the hydrogen content. Assum-
ing that the surface dislocations and micro-cracks are of the order of grain size, the
volume of small hydrogen peaks corresponds to the volume of single dislocation.

This hypothesis has beenverified. Experiments on the distribution of hydrogendif-
fusion over some specially created lattice defects in silicon monocrystal were carried
out by authors of the present paper. The idea was to create some monocrystal inter-
nal defects of the size of about 30 µm and compare the results of high-temperature
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vacuum extraction of hydrogen of the original monocrystal and the monocrystal with
the artificially produced defects. An infrared pulse laser with a wavelength of 1024
nanometers was used for creating defects. The duration of the laser pulse was 12
nanoseconds and the energy of one pulse was 2 mJ. Such a laser is usually used for
creating chips in optical glass. The coherent infrared radiation of a pulse is focused
on a certain point in the glass. The size of focused spot is about 30µm. The energy
density in the focus is ca. 2 · 1015 W/m2. Such energy density can heat up the sub-
stance to ca. 1500 ◦K depending on the coefficient of radiation absorption. In the
heat affected zone one can observe a visible chip. The monocrystal silicon plates
of the thickness of 0.3mm were tested. The plates were placed in a parallelepiped
made of optical glass. Some other plates (not radiated by the laser) and the plate
with the chips on the surface were cut in prismatic samples of the size 8mm ×
15mm × 0.3mm. They were placed in vacuum for carrying out experiments on the
hydrogen diffusion. After extraction of the hydrogen with lower binding energy the
gas accumulated in the surface defects starts moving and this effect is recorded as
a noise which in turn results in the noise in the form of a number of small peaks.
These peaks are due to the emission of hydrogen from silicon. For the regular holes
these peaks become regularised and increase their sizes, that is, the volume of the
extracted hydrogen increases as well. The observed effect can be interpreted as a
regularisation of the diffusion caused by a uniform grid of chips on the surface of
the sample. So the hypothesis verification gives us an opportunity to determine the
approximate number of surface microdefects and their average size with the help of
the hydrogen analyzer.

Summarizing, the extraction curve shows a lot of noise during constant hydrogen
charging and discharging of surface dislocations andmicro-cracks. Thismay indicate
that in the investigated steel the main traps are released at a temperature of 400 ◦C.

7 Conclusions

This study shows that by using the experimental technique of high temperature vac-
uum extraction the model of multichannel diffusion gives a more precise description
of the real hydrogen diffusion in solids than other approaches.

Application of the method of high temperature vacuum extraction with mass-
spectrometric measuring of instant values of the hydrogen flux allows recording
small natural hydrogen concentrations and the concentration distribution over the
activation energy.

There is no need of preliminary saturation of samples by hydrogen in tests. High
sensitivity of analysis usingAV-1makes it possible to trace evolutionof natural hydro-
gen in samples under different thermo-mechanical and physical-chemical effects.

Application of the vacuum hot extraction analysis enbles detecting new energy
levels, namely at 77.6kJ/mol and 102kJ/mol, related to strong covalent bonds.

The increased hydrogen embrittlement resistance at 520 ◦C tempering condition
can be explained by its higher capacity of irreversible hydrogen.
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In contrast to TDS our study does not require pre-saturation of samples by hydro-
gen. This does keep the original structure of samples and ensures that all types of
traps are present in both M400 and M520 samples. Their binding energy does not
change, however the total amount of traps depends on the annealing temperature. It
was not possible to draw this obvious conclusion from TDS data since TDS provides
the researcher with a single binding energy.

The proposed method based on Vacuum Hot Extraction allows one to obtain ade-
quate data on the binding energies and hydrogen concentration. Additional research
is required to determine the nature of these traps.
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Abstract A general approach to modeling the effect of hydrogen on stress-strain
diagram of materials is addressed. A bicontinua model is constructed which allows
one to describe the kinetics of hydrogen in metals. The suggested rheological model
is appropriate for estimation of the hydrogen transition frommobile to bounded state
depending on the stress-state relation and description of localization of the bonded
hydrogen that results in the material fracture. A novel approach to modeling the
solids with account for the influence of hydrogen on properties of free surface on
monocrystals at various scales is suggested. The idea of representing two continua as
a single solid and describing the hydrogen effect on thematerial properties belongs to
D. A. Indeitsev. It was first consistently presented in his work Indeitsev and Semenov
(Acta Mechanica, 195:295–304, 2008, [32]). We see our task in generalization and
application of his idea to specific problems and classes of problems in solid mechan-
ics. We generalized the bicontinua model by Indeitsev to the multidimensional case.
For the first time, we considered the dissolved hydrogen as the second medium and
performed its simulation as an ideal gas. This made it possible to account for the
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1 Introduction

One of the most challenging problems of the material science is the influence of
hydrogen on the mechanical properties of materials. This influence itself is a good
example of crucial importance of small parameter in mechanics since the mean mass
concentration of 0.4–0.8 ppm causes hydrogen embrittlement in aluminum alloys.

The hydrogen embrittlement is a source of many technical catastrophes and for
this reason its nature is carefully investigated, cf. [15, 16, 29, 53]. Nowadays the
structural design is not possible without precise strength computation. However the
hydrogen considerably affects the strength of metals, that is why modeling of the
hydrogen influence is a subject of many papers.

It is worth mentioning several approaches which are: (i) account of the influence
of hydrogen on origination andmotion of dislocations, (ii) account of the influence of
hydrogen on the crack development, (iii) account of the internal pressure of hydrogen
in metals and (iv) some physical approaches.

Origination andmotion of dislocations aswell as the hydrogen-enhanced localized
plasticity (HELP) in the vicinity of the crack tips leads to the local plasticity because
of the high concentration of dislocations. The very concept HELPwas first developed
in [14]. Later, based upon the physical reasoning about the potential of interaction
of hydrogen with dislocations the constitutive laws modeling the local rheological
changes in the crack mouth were suggested in [19, 20, 66]. However the calculations
in [66] demonstrated that some considerable changes in the strain-stress diagram
take place only under the concentration about 9000 ppm which is extremely high
concentration for the majority of metals. The above constitutive law contains an
implicit dependence on the local hydrogen concentration which cannot be exactly
measured. In other words, the parameters of the law (the exponent included) can
be estimated only indirectly and this can lead to considerable errors. E.g. in [68]
a calculation of the local plasticity for a crack with special tip was carried out for
verification of the model. The local hydrogen concentrations reached at the modeling
are approximately 100 times higher than the initial mean values however the latter
are about 1 ppm, i.e. the increase even by the factor of 100 does not result in the
concentration of the order of 9000 ppm (for steels). A second source of possible errors
is the modified law by Fikh [41] which contains a temperature dependence of the
influence coefficients of the stress fields however it does not contain the exponential
dependence of the diffusion coefficient on temperature. The authors of the above
model discussed a plenty of uncertainties. In particular, they mentioned a nonlinear
dependence of the internal potential on the stresses and hydrogen concentration.
Since one deals with extremely high local concentrations these uncertain nonlinear
functional dependences will play more and more important part.

Another model which is analogous to the HELP is the De-cohesion model (hydro-
gen enhanceddecohesionmodel, orHEDEfor short), cf. [71]. Thedifference between
them is that the HEDE model takes into account that the energy of appearance of the
free surfaces of fracture reduces with increase of the local hydrogen concentration.
As mentioned in [30] the HELP approach requires a great computational costs for
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solving any practical problems. For this reason the only solution is utilizing a contin-
ual model of dislocation growth however this substitution turns out to be not adequate
and the authors suggest to make use of the criterion of growth of submicrocrack, i.e.
they reduce all the hydrogen problems to the modeling of the crack developing and
reduction of the crack resistance.

It should be noted that the HELP and HEDEmodels have become universally rec-
ognized in modern material science. Some inconsistencies, among them contradition
to the above experimental data, are ignored, and the latest scientific discussions are
reduced to applying these models to describe the same material. This is very dif-
ficult to manage due to large computational complexity; therefore, only quasistatic
problems of uniaxial stretching of cylindrical specimens are solved and analysed.

The development of the cracks induced by hydrogen is modeled in [69]. It is
assumed ab initio that a crack has already been formed along the tube wall and due
to the diffusion into the crack the hydrogen takes the form of molecular gaseous
state and causes excessive pressure which leads to the crack growth. The gradient of
the chemical potential is stress-dependent and is considered as a main cause of the
hydrogen diffusion. In addition to this, reduction of the crack resistance is taken into
account by changing parameters in the failure criterion for determining the conditions
of the crack growth. As a result, one succeeds only in estimation of the rate of the
crack growth which is compared with the test results, see [17]. However in this case
even the character of the crack model appears to be of crucial importance. The dif-
ference between two-dimensional and three-dimensional model of developing of the
hydrogen crack is discussed in [2]. There established some essential differences in the
following parameters: higher cohesive strength and threshold stress intensity which
should be prescribed for approximation the same test results in two-dimensional and
three-dimensional statements of the problem. These parameters are selected only
from three-dimensional model in [3]. Paper [57] reported results of calculation of
changing in the shear modulus and parameters of the crystal lattice of the alloy
platinum-zirconium carried out by means of plane-wave pseudopotential applied for
the relationship: one hydrogen atom versus 3–4 atoms of the matrix (4000 ppm)
which is absolutely not feasible to achieve in the conventional structural materials.

Some materials have a leading mechanism of destruction based on the formation
and development of micro voids and nano voids cf. [22, 23, 27, 45, 48, 65, 72,
75]. The formation and propagation of voids is associated with the accumulation and
redistribution of internal hydrogen in the material [8, 13, 37, 38, 62, 63, 74].

Modeling the development of voids is done by homogenization. Only there are
parameters involved in the homogenization of the representative volume [76]. This
reduces the possibility of strongly uneven concentrations of hydrogen in the presence
of voids.

Summarising, we can state that for adequate modeling the behaviour of structures
containing hydrogen one needs a special approach which is capable for account for
influence of small concentration of hydrogen on the mechanical characteristics of
materials.
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2 Bicomponent Continuum for Modelling the Hydrogen
Effects

An important role is played by the binding energy of hydrogen inmaterial. It is known
that, inside the materials, hydrogen is found in traps with different binding energies.
In steels the total hydrogen content is 0.1–6 (n.sm3/100 g) (eq. 0.1–0.55 ppm), while
it is only hydrogen with a low binding energy that affects the strength, i.e. diffusively
mobile hydrogen. In aluminum alloys the entire hydrogen diluted in the metal has a
low binding energy—about 0.2–0.8 eV. The concentrations that are critical for the
mechanical strength of weakly bound hydrogen in steels and aluminum alloys are
similar—they are decimal ppm fractions. In aluminium alloys it includes the entire
diluted hydrogen, while in steels it amounts to 5–10% of the total amount of diluted
hydrogen.

Quite the contrary, the hydrogen with low binding energy tends to zones of ten-
sile stresses (Gorsky’s effect [24, 25]). Accumulation of hydrogen in the destruction
zone occurs both by the input from outside and by redistribution of natural hydro-
gen inside the material. The hydrogen with low binding energy is diffuse however
its interaction with material is very weak. The hydrogen with high binding energy
interacts with material very intensively resulting in degradation of the mechanical
material properties because of this interaction.

The mass equation for diffuse hydrogen inside volume V is given by

m−
H =

∫

V

ρ−
HdV

Here m−
H and ρ−

H are the mass and volume density of the diffuse hydrogen respec-
tively. The differential form of the equation of mass balance is as follows

∂ρ−
H

∂t
+ ∇ · (v−

Hρ−
H ) = j−H

where j−H denotes the mobile hydrogen source and v−
H is the velocity of hydrogen

particles. In terms of the concentration N−
H = ρ−

H/mH this mass balance equation
takes the form

∂N−
H

∂t
+ ∇ · (v−

H N
−
H ) = j−H

mH

The bound hydrogen obeys the similar equation of the mass balance:

∂N+
H

∂t
+ ∇ · (v+

H N
+
H ) = j+H

mH

Here N+
H and v+

H are the concentration and the particle velocity for bound hydro-
gen (and material particles bounded with them) and − j−H = j+H = j denotes the
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redistribution hydrogen source inside the material. Since the concentrations are low
we can assume a linear dependence for this source on the concentrations

j = α(ε, T )N−
H − β(ε, T )N+

H (1)

This equation describes the hydrogen redistribution over the different binding energy
levels. Here α(ε, T ) and β(ε, T ) are positive factors describing the sorption and
desorption of mobile hydrogen into the lattice from the diffusion channels.

In contrast to the classical approach to derivation of the hydrogen diffusion equa-
tions byOriani [56],weuse the denotation j only for a part of the distributed hydrogen
flux in thematerial volume. This flux is associatedwith changes in the binding energy
of hydrogen. The diffusion flux associated with the hydrogen concentration gradient
is described by the mass balance equation.

This approach does not contradict the model by Oriani [56].
First, Oriani discusses the equilibrium concentrations of hydrogen in various types

of traps, which are related by chemical equilibrium constant. The excessive hydro-
gen that does not fit in the traps should be distributed due to diffusion, therefore,
the variations of hydrogen concentrations in different types of traps do not result in
vanishing overall value. The above relations are valid for the instantaneous concen-
tration values, whereas their variations are related by the mass balance and yields
the zero mean value.

Secondly, we consider the hydrogen concentrations to be very small quantities.
Modern high-strength materials are very sensitive to hydrogen, and this effect was
not observed 40years ago. The overall hydrogen concentration in steels, as Oriani
reported, is about 15 ppm, while the concentration of diffuse mobile phase is about
14.6 ppm. Modern high-strength steels begin to “feel” hydrogen at concentrations of
diffuse mobile hydrogen of about 0.1 ppm [54], which is a hundred times less than
the above value. Under these conditions, the possibility of overflowing traps can be
neglected and dependence j (N−

H , N+
H ) can be considered in the linear approximation.

Ifwe considered the interaction of external gaseous hydrogenwith a solid, it would
be necessary to take into account the capacity of traps and their activity associated
with the Sieverts law [36]. Then the dependence of j on concentrations (1) would
be non-linear, however we consider the dissolved hydrogen with different binding
energies, therefore, there is no dissociation of molecules obeying Sieverts’s law.

The adequacy of our model will be discussed in what follows. The coefficients
α(ε, T ) and β(ε, T ) expose exponential dependence on temperature. The effect of
strains is determined by increasing the volume of traps due to development of micro-
cracks and formation of a large number of dislocations. These processes proceed
intensively at the upper boundary in the region of elastic deformations and plastic
flow in most metals. However the dependence is weak under small and moderate
elastic deformation.

Similar results are given by models describing accumulation of hydrogen damage
and destruction as a second-order phase structural transition, see [31].
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Now we proceed to the equation of dynamics. The rheological model of material
containing hydrogen assume bi-continuum. The first continuum is a solid and plays
a part of a carrying structure. The dynamic equation for the first continuum is

∇ · τ = (ρ0 + ρ+
H )v̇+

H + j v̇+
H + R

Here τ is the stress tensor and R is the force of interaction between the continua.
The second continuum models the behavior of hydrogen which behaves as a

gas. The gas is characterized by pressure p which is assumed to be positive for
compression. Hence we can put the dynamic equation in the form

−∇ p = ρ−
H v̇

−
H − jv−

H − R

The velocity v−
H of hydrogen particles is very low because is describes the hydrogen

diffusion in materials.
The strain energy of elastic solids is known to have two parts, namely the dilatation

energy and shear energy. So we introduce the spherical part and deviator of the stress
tensor by the equation

τ = σ I + s

where σ denotes the mean stress, s stands for the deviator and I is the unit tensor. The
Gorsky effect means that the dilatation energy determines the hydrogen diffusion and
its interaction with material. For this reason only spherical part of the stress tensor
is considered in what follows. The dynamic equations take now the form

∇σ = (ρ0 + ρ+
H )

∂v+
H

∂t
+ jv+

H + R − ∇ · s ,

−∇ p = ρ−
H

∂v−
H

∂t
− jv−

H − R .

For the sake of simplicity the further analysis is limited to the one-dimensional case
since it allows the reader to catch the main idea of construction of the rheological
model for material with low hydrogen concentration.

Let us consider a virgin lattice. In one-dimensional case it can be schematically
depicted as a 1D spring. The weakening of the internuclear bonds caused by “land-
ing” of the hydrogen particles can produce the chain formations of new internu-
clear bonds, see Fig. 1, as the serial connections of elastic bonds of the basic lattice
and the introduced elastic bonds of new elements which are the hydrogen particles.

Fig. 1 One-dimensional model of the lattice with “landed” hydrogen particles
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Obviously, such chain is possible under the assumption that the mass of particles of
a mobile structure is small, i.e. m0 � mH .

The overall rigidity of the spring of with N0 volumetric concentration of particles
is obtained from the equation

N0

C�

= N0 − N+
H

C0
+ N+

H

CH

The constitutive equation for the equivalent 1D solid is obtained by analogy with the
above equation

σ = E�ε, E� = E0EH N0

N0EH + N+
H (E0 − EH )

Here N0 denotes the total volumetric concentration of the lattice particles in the ele-
mentary volume, N+

H is the volumetric concentration of lattice particles that attached
to the hydrogenwith the bonds of rigidityCH . On the other hand N

+
H is the volumetric

concentration of the bound hydrogen particles.
The overall elastic modulus E� of the lattice with hydrogen can be much lower

than the elastic modulus of the virgin material since EH � E0

E� = EH
E0N0

N0EH + N+
H E0

≈ EH
1

(N+
H/N0)

� E0 (2)

A strong influence of the concentration of the attached particles N+
H on the overall

elastic property is also seen from the above equation, namely, the higher fraction N+
H

of the attached hydrogen, the lower the elastic modulus of the material.
The number of the lattice settled by the hydrogen particles depends on the stress

state of the lattice at every point and, in general, on time. The unknown functional
dependence of E� on N+

H (ε, x, t) should be determined with the help of the model
of bi-component continuum.

Taking into account Eq. (2) the state equation σ = σ(ε, N+
H (ε, x, t)) can be pre-

sented in the standard form of 1D elastic solid

σ = E�ε = E0ε

[
1 − N+

H

N+
H + N0EH/(E0 − EH )

]
≈ E0ε

[
1 − N+

H

N+
H + N0EH/E0

]
,

confirming an essential dependence of the stress on concentration of the bounded
hydrogen.

By analogy with ideal gas occupying the clear space (voids) in porous medium
the state equation describing the relation between pressure p and density ρ−

H is given
by

p = 3

2
N−

HkT
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Here N−
H is the volumetric concentration of particles of mobile hydrogen, k is Boltz-

mann’s constant, T is the absolute temperature of the moving medium.
We suggest that the flux of the non-attached hydrogen particles through the lattice

of the carrying structure can be described within the approach used for the flow of
ideal gas. This us equivalent the following representation for R

R = F(ε)ρ−
H [v−

H − v+
H ] (3)

The interaction force can be taken as a linear function of the difference in the contin-
uum particles velocities. Parameter F(ε) (dependent on strain ε) is proportional to
the passage cross-sectional area and is determined in terms of the material properties
such as crystal grain surface area, crystal grain volume etc.

The source term J is taken in the form of [32], i.e. in the form (1).
Let us prove the adequacy of dynamic mechanism of hydrogen trapping by means

of bi-continuum model are relation (1).
Assume a uniform volume distribution of the concentration of bound and mobile

hydrogen and constant temperature and equal strain in the whole solid, then we
can fix the factors of sorption and desorption α = α(ε0, T0) and β = β(ε0, T0). The
gradients vanish, i.e. the mass balance equation yields

dN+
H

dt = αN−
H − βN+

H

dN−
H

dt = −αN−
H + βN+

H

(4)

Assuming the following initial conditions

N+
H (0) = 0, N−

H (0) = Ψ −,

we obtain the solution of system (4)

N+
H = α

α + β
Ψ −(1 − e−(α+β)t ) ,

N−
H = Ψ −[1 − α

α + β
(1 − e−(α+β)t )] .

This time-dependences are shown in Fig. 2. They demonstrate the process of hydro-
gen saturation in the carrying medium and decrease of the mobile hydrogen. Param-
eters α and β should be determined experimentally because they describe the rate of
the above processes.

The relation between these coefficients determines the filling level of different
traps resulting in dynamic equilibrium while the overall value determines the rate of
hydrogen redistribution between levels with different binding energies.

It should be noted that Eq. (4) describes the interchange of hydrogen particles
(bounded and mobile) under the condition that the mobile hydrogen particles have
zero velocity. As follows from Eq. (3), this is realized under the condition F(ε) = 0,
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Fig. 2 The diffuse and bound hydrogen concentrations versus time

i.e. easy access of free hydrogen particles is excluded. Obviously, in this case the
whole free hydrogen satisfies this condition; hence α � β.

After apparent replacement ρ+
H = mH N

+
H , ρ−

H = mH N
−
H and n+ = N+

H
N0

we can
now write down the complete system of equations in one-dimensional case

∂σ
∂x = (ρ0 + ρ+

H )
∂v+

H
∂t + Jv+

H + R,

− ∂p
∂x = ρ−

H
∂v−

H
∂t + Jv−

H − R,

∂ρ0

∂t + ∂(ρ0v
+
H )

∂x = 0
∂N+

H
∂t + ∂(N+

H v
+
H )

∂x = J/mH

∂N−
H

∂t + ∂(N−
H v

−
H )

∂x = −J/mH

(5)

where

σ = E0EH

EH + n+(E0 − EH )
ε,

R = F(ε)ρ−
H [v+

H − v−
H ],

j = α(ε, T )N−
H − β(ε, T )N+

H .

The derived system of Eq. (5) is complete however it is strongly nonlinear, for this
reason we limit our consideration by the simple static case of the uniaxial tension-
compression.

It is necessary to note here that the concept of a static stress state is rather con-
ditional since it is necessary to attribute the carrying component of medium with
regard for Eq. (5) stating that movement of the second component is determined
pure kinematically. In other words, the reorganization of the material structure with
time is a sort of dynamics. Therefore, it is natural to search for the solution of the
problem in the following form
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ε = εst + ε̃(x, t), v+
H = 0 + ṽ+

H , v−
H = 0 + ṽ−

H

Here εst is a homogeneous static strain field. It is obvious that N+
H = N+

H (x, ε, t) can
be submitted as

N+
H (x, εst + ε̃, t) = N+

H (x, εst , t) + ∂N+
H

∂ε

∣∣∣∣
ε=εst

ε̃(x, t)

It is naturally to present stresses σ as

σ = σst + σ̃ = E0

[
1 − n+

EH/E0 + n+

]
εst + E0

[
1 − n+

EH/E0 + n+

]
ε̃ + O(ε̃)

Note that σ here is related to ε̃, emphasizing that there is an induced strains due
to reorganization of internal structure and this strain generates stress σ̃ . A complex
dependenceσ = σ(ε, N+

H (ε, x, t)) = σ(ε, N0 · n+(ε, x, t))ondeformation converts
the first equation of system (5) into:

∂σ

∂ε

∂ε

∂x
+ ∂σ

∂n+

[
∂n+

∂ε

∂ε

∂x
+ ∂n+

∂x

]
= (ρ0 + ρ+

H )
∂v+

H

∂t
+ Jv+

H + R.

Staying in the framework of the first approach, one can write down Eq. (5) in the
following form

∂σst

∂ε

∂εst

∂x
= 0 (6)

∂σ̃

∂x
= (ρ0 + ρ+

H )
∂ ṽ+

H

∂t
+ J |ε=εst

ṽ+
H + R|ε=εst

− ∂σ

∂n+

∣∣∣∣
ε=εst

∂n+

∂x

∣∣∣∣
ε=εst

Here

σ = E0εst

{
1 −

[
n+

n++EH /E0

]∣∣∣
ε=εst

}
,

σ̃ = E0ε̃

{
1 −

[
n+

n++EH /E0

]∣∣∣
ε=εst

}
,

R|ε=εst
= −F (εst ) ρ−

Hv
−
H

(7)

The second equation in (6) serves for definition of the induced field of strain ε̃ when

the main term ∂σ
∂n+ · ∂n+

∂x

∣∣∣
ε=εst

is known.

For the second component we can state that

−∂p

∂x
= F(εst )mH N

−
Hv

−
H , p = 3

2
N−

HkT . (8)

Here ρ−
H = mH · N−

H is the mobile hydrogen density.
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Equation (8) can be transformed into:

3

2
kT

∂N−
H

∂x
= −F(εst )mH N

−
Hv

−
H

The latter equation is similar to the Darcy formula but it has the generalized factor
of diffusion dependent on the strain field εst .

Thus, we have

v−
H = − 3kT

2F(εst )mH

1

N−
H

∂N−
H

∂x
. (9)

As mentioned above, the dependence α(ε, T ) and β(ε, T ) on strain is weak in
elastic regions, that is, it can be neglected. Let us introduce the denotation α(T ) =
α(ε, T ) and β(T ) = β(ε, T ). The above equations should be added by the balance
equation for the number of bounded and free hydrogen particles:

N0
∂n+
∂t = α(T )N−

H − β(T )N0n+
∂N−

H
∂t + ∂N−

H v
−
H

∂x = −(α(T )N−
H − β(T )N0n+)

Inserting Eq. (9) we obtain

∂2n+

∂t2
+ (α(T ) + β(T ))

∂n+

∂t
− 3kT

2mH F (εst )

[
β(T )

∂2n+

∂x2
+ ∂3n+

∂t∂x2

]
= 0 (10)

Equation (10) is the equation of mixed type since it contains terms inherent in
the hyperbolic equation, i.e. ∂2n+/∂t2, ∂2n+/∂x2, and also terms typical for the
parabolic equations ∂n+/∂t , ∂3n+/∂t∂x2. This means that the detailed analysis of
a non-stationary problem subjected to a finite initial perturbation should demon-
strate a characteristic moving front of increasing (or decreasing) bounded hydrogen
concentration, i.e. an exposed strong dispersion.

In order to carry out analysis of this equation let us apply the Fourier method of
separation of variables. To this end we assume

n+(t, x) = T+(t) · X+(x).

Then
T̈+(t) + (α(T ) + β(T ))Ṫ+(t)

3kT
2mH F(εst )

(β(T )T+(t) + Ṫ+(t))
= X ′′+(x)

X+(x)
= −γ 2

x .

This yields the ordinary differential equation for X+(x):

X ′′
+(x) + γ 2

x X+(x) = 0.

and the ordinary differential equation for T+(t):
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T̈+(t) + (α(T ) + β(T ) + γ 2
x

3kT

2mH F(εst )
)Ṫ+(t) + γ 2

x

3kT

2mH F(εst )
β(T )T+(t) = 0.

Let us solve the problem under the following initial condition

n+(0, x) = 0,
N−

H (0, x) = Ψ − (
1 + cos 2πx

λ

)
,

ṅ+(0, x) = αΨ −
N0

(
1 + cos 2πx

λ

) (11)

where parameter λ is determined by parameters of the particular microstructure of
the material under consideration.

To begin with, we obtain the solution for the constant term in Eq. (11). In this
case γ 2

x = 0 and the equation for the time-dependent function T+(t) takes the form

T̈+(t) + (α(T ) + β(T ))Ṫ+(t) = 0.

The solution is as follows

T+(t) = T0 + T1e
−(α(T )+β(T ))t ,

where the integration constants T0 and T1 are determined by the initial conditions.
For the second term in Eq. (11) γ 2

x = 4π2

λ2 and the equation for T+(t) is given by

T̈+(t) +
(

α(T ) + β(T ) + 4π2

λ2

3kT

2mH F(εst )

)
Ṫ+(t) + 4π2

λ2

3kT

2mH F(εst )
βT+(t) = 0.

(12)
Introducing

G(εst ) = 3kT

2mH F(εst )

(
2π

λ

)2

, α = α(T ), β = β(T ),

We can rewrite Eq. (12) in the form

T̈+(t) + (α + β + G(εst ))Ṫ+(t) + G(εst )βT+(t) = 0. (13)

The solution is
T+(t) = T3e

−ξ1t + T4e
−ξ2t ,

where

ξ1 = 1

2

[
α + β + G(εst ) −

√
(α + β + G(εst ))

2 − 4βG(εst )

]

ξ2 = 1

2

[
α + β + G(εst ) +

√
(α + β + G(εst ))

2 − 4βG(εst )

]
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Satisfying the above initial condition yields

T0 = −T1 = αΨ −
N0(α+β)

T3 = −T4 = αΨ −

N0

√
(α+β−G(εst ))

2+4βG(εst )

.

It allows one to write down the final expression for the concentration of the mobile
hydrogen

n+(t, x) = αΨ −

N0

(
(1 − e−(α+β)t )

α + β
+ (e−ξ1t − e−ξ2t ) cos 2πx

λ√
(α + β + G(εst ))

2 − 4βG(εst )

)
. (14)

As might be expected, the uniformly distributed mobile hydrogen increases the bind-
ing energy regardless of the diffusion whereas the rate of diffusion of the non-
uniformly distributed hydrogen is determined by F(εst ) that characterizes the “flow
cross section” of the diffusion channel and depends on strain εst .

Decrease in F(εst ) leads increase inG(εst ). If F(εst ) → 0 ξ1 tends to zero and the
factor (e−ξ1t − e−ξ2t ) in formula (14) tends to e−βt . This factor determines the nonuni-
formity of the concentration of hydrogen along 1D solid. Therefore, the alignment
of the hydrogen concentration due to diffusion is slowed down to the pure desorption
process. In limiting case we obtain

n+(t, x) = αΨ −

N0

(
1

α + β
+ e−βt

G(εst )
cos

2πx

λ

)
.

Equation (7) is used for modelling the hydrogen influence on σ(ε). It is necessary
to mention that the effects related to the temperature change as well as the nonlinear
effects caused by the change in the content of bound hydrogen due to the material
deformation can be described in terms of dependences of α, β on temperature and
strain. The experimental data [43] data indicate that the yield strength is particularly
strongly dependent upon the hydrogen concentration.

It is logically substantiated that for the elastic material the area of free surfaces
is proportional to the strain itself under small deformation. Therefore, the factors of
sorption α and desorption β of hydrogen are a linear function of strain. It allows one
to assume a linear relationship between these factors

β(ε, T )

α(ε, T )
= k0(T ) + k1(T )ε (15)

The latter dependence describes the material properties modification during the
hydrogen redistribution within the material. The simple dependence (15) allows us
to make a good approximation of the experimental data. Figure3 demonstrates the
dependence of the maximal tensile stress on the initial concentration of the diffuse
mobile hydrogen calculated by formulae (15) for steels. This experimental data [54]
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Fig. 3 Variations in notch
AISI 4135 steel samples as a
function of diffuse hydrogen
content: the present approach
(solid line) and test values
[54]

of the maximal tensile stress versus the concentration of the diffuse mobile hydrogen
in AISI 4135 steel are also displayed in the figure beneath.

The suggested approach is equally applicable for studyingof the effect of hydrogen
on fatigue and destruction, cf. Refs. [6, 12].

3 Bicomponent Model of Fatigue

Fatigue of metals is a subject of great practical importance because most of the
material failures in engineering components and structures are fatigue failures cf.
[21]. The most striking characteristic of fatigue failures is the lack of deformation in
the region of the fractures, even in materials like mild steel, which are quite ductile
when broken by a static load. This is one of the dangers of fatigue, for there is
generally no prior indication of impending failure.

Among all the factors influencing fatigue, the hydrogen is the most dangerous and
unpredictable, cf. [52]. Numerous experimental studies have shown that the presence
of hydrogen in metal or environment accelerate the process of fatigue failure by tens
or even hundreds of times, cf. [35, 46, 50, 51, 55, 67, 70]. An important feature of
the hydrogen effect on fatigue is the dependence of failure acceleration on frequency
of external fatigue loading [46, 52, 73].

Modeling of the hydrogen effect on fatigue is usually attributed to consideration
of a single fatigue crack. As mentioned in [52], most research on hydrogen embrittle-
ment over the past 40years have only examined the influence of hydrogen on tensile
properties. To calculate the growth rate, the models of static stretching are used as.
As a rule, the HEDE model and its various modifications are applied, cf. [2, 49].

As noted above, this approach is limited by the need to know the parameters of
crack initiation. Use of the bi-component model enables analysis of the destruction
causes without these additional assumptions.

Consider the one-dimensional case of periodic uniaxial fatigue loading of the rod.
We assume that the frequency of loading is low, relative to rate of the other processes.
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Thiswill allowus to ignore the solid dynamics. In this case Eq.10 describes the bound
hydrogen concentration. After the standard procedure of separation of variables, we
obtain Eq.13 for the time concentration factor similar to the quasistatic version.

We consider a cyclic loading with small strain amplitude of frequency ω, i.e.
ε = ε1 · cos (ωt) , 0 < ε1 � 1. It allows us to linearise the dependence G (ε), to
have G (ε) = G0 + G1 · ε. Substituting the latter into the second equation in Eq.13
enables us to put it in the form of the generalized Mathieu equation

T̈ + 2Γ (1 + γ + 2μ cosωt)Ṫ + Ω2(1 + 2μ cosωt)T = 0 (16)

where the new parameters are Ω = √
G0β, μ = G1/2G0, Γ = G0/2, γ = (α +

β)/G0,Ω having the dimension of frequency. The dimensionless parameterμ can be
understood as the intensity of the external mechanical loading expressed in terms of
the hydrogen concentration. The first approximation of the boundary of the principal
region of instability of this equations allows one to obtain the functional dependence
μ = μ (ω). According [?], the boundaries of the principle instability region of Eq.16
are given by

μ2 =
[
Ω2 − (

ω
2

)2]2 + [
Γ ω (1 + γ )

]2
Ω4 + Γ 2ω2

(17)

are shown in Fig. 4. From this figure one can conclude that the boundary of the
instability region in the plane of parameters (μ, ξ)with the frequency ratio ξ = ω/Ω

has a minimum which can be understood as a safe level of load under which the
fatigue fracture does not occur at all. The exact expression for the boundary of the

Fig. 4 Stability chart of the
system under consideration
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instability region at the “resonance frequency” is rather cumbersome however it can
be approximated by

μ2 =
(

Ω2

β2
+ α + β

β

) (
Ω2

β2
+ 1

)−1

(18)

4 Wave Approach for Modelling of Destruction

Themajority of structural metals suffer from plastic deformation prior to failure. The
plastic deformations are observed even in the case of multicyclic fatigue. Therefore,
the process of plastic flow is critical for the strength of materials and the stability of
structures made of these materials.

The Portevin-Le Chatelier effect and the associated mechanism of formation of
plastic deformation localization bands (the Lüders bands) are important aspects of
plastic deformation. Different explanations of mechanisms of such localization are
proposed in the literature.

The main part of the authors are of the opinion that this phenomenon is due to the
non-monotonic dependence of stress on strain, cf. [40, 60].

The actual instability of the deformation process is also described by introducing
either nonlinearities [33, 47] or random variables [42] into the continuous medium
equations. The source of nonlinear dependences is the diffusion of vacancies and
associated dislocations, as well as the non-linear constitutive equations for the mate-
rial under consideration. The source of randomness is the process of dislocations
appearance.

In fact, themain feature of these approaches is that the one-dimensional approaches
are utilised. All equations are written down either for a homogeneous material, or for
composites consisting of inclusions of one material in the matrix of other material.
Meanwhile, it has been established that surface tension or surface forces of crystal-
lites play an important role in the plastic deformation of polycrystalline materials,
cf. [39]. Thus, it is necessary to take into account the presence of a surface layer with
special properties.

We conducted a study of samples with large plastic deformations and samples
after failure, see [5, 7, 9–11, 26, 63] for detail. Preloading of samples was carried
out in tensile machines as well as by various processing (pin-machining, thermo-
mechanical loads, grinding, etc.). The process of plastic deformation is accompanied
by a sharp change in acoustoelasticity of the sample material, cf. [9, 28, 34, 58, 59].
It is generally accepted that this is a consequence of turns of the metal grains and
residual stresses, see [58, 59]. Our study of samples after standard HIC test steels
allowed us to establish that this effect could be associated with microcracking [1].
Consequently, the surface microcracking can be one of the leading mechanisms for
the structure modification under plastic deformation.
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Fig. 5 Samples for
mechanical test. The dashed
line shows the scheme of
cutting samples for
measuring the hydrogen
distribution

Fig. 6 Hydrogen
concentration versus
distance from the central part
of the initial donor specimen.
Solid line stands for samples
with a surface layer while the
dashed line marks the
hydrogen concentration with
removed 500 µm layer from
surface of the original
sample

In order to prove this effect we measured the spatial distribution of hydrogen in
samples of the aluminum alloys obtained after cyclic and static loading in a tensile
machine. Samples were cut from plates of 16 to 20mm thick. They had a standard
dumbbell shape and their sketch is depicted in Fig. 5. The dashed line shows the
pattern of cutting samples formeasuring the hydrogen distribution. The characteristic
size of the samples was 6mm.

Cutting samples for measuring the hydrogen distribution was done bymanual saw
to prevent their heating and the associated redistribution of hydrogen. A layer with a
thickness of about 500 µm was removed from surface of some samples of the large
donor specimen. The results of measurement are shown in Fig. 6 as function of the
distance (in centimeters) from the central part of the initial donor specimen.

The measurement techniques are described in Refs. [4, 61]. The aluminum alloys
are actually a saturated solution of hydrogen. A significant increase in the initial
hydrogen concentration is possible only in the case of appearance of the additional
pores and microcracks [4].

Our experimental studies of a large number of samples have shown that all these
pores and microcracks are concentrated in a thin surface layer of the metal. The new
regularity that we established allows us to model the material as a three-dimensional
medium containing a thin surface layer with some special properties.

We found out that the surface layer contains significant amounts of hydrogen and
this fact allows us to model it as a solid that consists of bicontinuous media.
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An important role is played by the binding energy of hydrogen in material. It is
known that, inside the materials, hydrogen is found in traps with different binding
energies. In steels the total hydrogen content is 0.1–6 ppm, while it is only hydrogen
with a lowbinding energy that affects the strength, i.e. diffusivelymobile hydrogen. In
aluminum alloys the entire hydrogen diluted in the metal has a low binding energy—
about 0.2–0.8 eV. The concentrations that are critical for the mechanical strength of
weakly bound hydrogen in steels and aluminum alloys are similar—they are decimal
ppm fractions. In aluminium alloys it includes the entire diluted hydrogen, while in
steels it amounts to 5–10% of the total amount of diluted hydrogen.

Accumulation of hydrogen in the destruction zone occurs both by the input from
outside and by redistribution of natural hydrogen inside the material. The hydro-
gen with low binding energy is diffuse however its interaction with material is very
weak. The hydrogen with high binding energy interacts with material very inten-
sively resulting in degradation of the mechanical material properties because of this
interaction.

We assume that the thin surface layer is attached to the base material which is
slowly stretched by law εst = εst (t). The strains are assumed to be small and

F (εst ) = F0 − k0ε
2
st

is a decreasing function of strain value. From Eq.10 we can put approximately

∂2n+

∂t2
+ (α + β)

∂n+

∂t
− 3kT

2mH F0
(1 + k0

F0
ε2st )

[
β

∂2n+

∂x2
+ ∂3n+

∂t∂x2

]
= 0 (19)

In this equation, we can single out a small parameter that allows us to apply the
method of successive approximations. The generating solution is obtained from the
equation

∂2n+

∂t2
+ (α + β)

∂n+

∂t
− 3kT

2mH F0

[
β

∂2n+

∂x2
+ ∂3n+

∂t∂x2

]
= 0

Then subtracting the generating solution from Eq.19 we can obtain the following
approximation which has the order of O(ε2st ). The generating solution can be consid-
ered as a wave solution. This is facilitated by the oscillatory nature of the distribution
of hydrogen concentrations observed experimentally, see Fig. 6.

We seek solutions in the following form

n+ = n+(θ), θ = κx − λt + ϕ,

where κ , λ are the wave numbers and ϕ denotes the phase, then

λ2 d
2n+

dθ2
− (α + β)λ

dn+

dθ
− 3kT

2mH F0

[
βκ2 d

2n+

dθ2
− κ2λ

d3n+

dθ3

]
= 0



An Approach to Modeling Structural Materials … 81

Denoting γ = 3kT
2mH F0

we obtain

γ κ2λ
d3n+

dθ3
+ (λ2 − γ κ2β)

d2n+

dθ2
− (α + β)λ

dn+

dθ
= 0

This equation has constant coefficients and the eigenvalues are determined by the
equation

γ κ2λp3 + (λ2 − γ κ2β)p2 − (α + β)λp = 0

p1 = 0, p2,3 = −(λ2 − γ κ2β) ± √
D

2γ κ2λ
,

D = λ4 + γ 2κ4β2 + 2λ2γ κ2β + 4λ2γ κ2α

The dispersion relationship is given by

−iγ k2ω − ω2 + γ k2β − i(α + β)ω = 0,

therefore

k2 = ω2 + i(α + β)ω

γβ − iγω
= 1

γ

−αω2 + i((α + β)ωβ + ω3)

β2 + ω2

Thus, the time-decay is combined with the positive real-valued part of the expo-
nential with respect to the coordinate and vice versa.

On the other hand, in the case κ = ik, λ = iω we obtain one zero and two purely
imaginary roots of different signs

p2,3 = (ω2 − γ k2β) ± √
D

2γ k2ω
i

D = ω4 + γ 2k4β2 + 2ω2γ k2β + 4ω2γ k2α

It enables putting the solution in the following form

n+ = n+(θ) = A1 + A2 exp(p2θ) + A3 exp(p3θ),

Here the second term describes a wave that attenuates in space but increases
exponentially to infinity. On the contrary the third term describes a solitary wave
decaying in time with an increase in amplitude over space.

In order to satisfy arbitrary boundary conditions one needs all three functions,
so in a linear formulation one cannot avoid the amplitude growth to infinity. On the
other hand, there is a stable solution

n+ = n+(θ) = A1 .
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If the concentration is uniform, then this uniformconcentration can remain forever.
Once distortions in the boundary conditions and/or any inhomogeneities occured,
all three solutions appear and the concentration magnitude increases exponentially.
This explains the critical effect of small inhomogeneities (hydrogen traps) and non-
uniform boundary conditions on stability of the entire system.

5 Discussion

The discrepancy between the theoretical and experimental data in Fig. 3 observed
for small initial diffuse hydrogen content can be explained by the nonhydrogen
effect. The remaining points demonstrate a good coincidence which can be viewed
as confirmation that the present model is adequate.

This model describes the material fracture without any preliminary assumptions
about existence of microcracks or a certain concentration of dislocation and their
orientation [14]. This approach is also differs from the way ofmodeling the hydrogen
embrittlement by introducing the parameter of crack resistance [69].

According to a large array of experimental studies thatwere carried out for decades
[44, 64] the extraordinary strong influence of hydrogen can be explained only by
the micro-localization of its accumulation in traps like cracks and dislocations. The
attempts to describe the mechanism by means of HELP or HEDE models lead to
a need to describe the processes at different scales simultaneously and even under
the condition that the process at the micro level is localized in the material and
unstable it time. As a result, one needs to prescribe some averaged characteristics
(i.e. smearing of singularities) which is actually deprives these models the initial
physical transparency.

To justify the constitutive law HELP model [66] has to use the models of the
hydrogen influence, which give a visible effect in terms of changes in the local
characteristics of the metal only at the local hydrogen concentrations of the order
of 1:1 with the atoms of metal. It is difficult to imagine from a physical perspective
since the lattice of the solid hydrogen has the constant which is one and half times
larger than the constant of the most metals.

The main advantage of the constitutive law and equations of the bi-component
model is that they are applicable at the macro-level. Micro-mechanisms of the influ-
ence of hydrogen have been included in the rheological model. Parameters α, β,
EH , k0 and k1 should be determined in terms of the macro-quantities such as the
experimental strain—stress diagrams.

Despite the seeming simplicity of this approach and the large number of published
data, not all of them can be used for the approximation. Almost all experimental data
were obtained as a result of the saturation of specimens either in the electrolyte
solution or in gaseous hydrogen.

In spite of the established conception of the rapid redistribution of hydrogen inside
the metal under the concentration gradient, a simple calculation shows that such a
redistribution can last from tens of hours to several years depending upon the binding
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energy of the traps with hydrogen from the surface layer of the environment. Our
own experiments show that in the case of hydrogenation with the electroplating of
zinc the hydrogen concentrations are not aligned within one year of exposure of the
specimens at the room temperature.

Thus, when determining the characteristics of rheological model one should per-
form a correct determination of the hydrogen concentration and its volume distri-
bution. This presents problems and the most researchers determine this parameter
indirectly in terms of the cathode current and charging time. As a result, the data
obtained are not suitable for approximation since the hydrogen is localized on the
surface. For example, there exists no dependence of tensile strength on the hydrogen
charging time, cf. [18].

Thepresence of the descendingpart onσ(ε)diagramof thematerialwith hydrogen
implies instability of the material under load. Under real loading the failure will take
place when the maximum point of the curve σ(ε) is achieved and this fact can be
interpreted as the tensile strength due to the hydrogen saturation.

The governing equation for 1-D diffusion is shown to be reduced to a generalized
Mathieu equation. A closed form expression for the principle instability regions is
obtained and a safe level of harmonic load is determined under which the fatigue
fracture does not occur. Using the bicontinual model, we were able to describe the
experimentally observed “resonant effect” which is observed experimentally [46,
52, 73]. This effect is described without additional assumptions about presence and
parameters of the fatigue crack.

The generating solution of the equations for concentration of the bound hydrogen
in a thin surface layer is of the wave nature for any non-uniform distribution of
hydrogen concentration over the surface.

This solution always has a complex frequency of oscillations which describes the
magnitude of the concentration wave that exponentially increases in time. Due to the
equations of bicontinua solid it leads to degradation of the mechanical characteristics
of the material in regions of maximum hydrogen concentration. Such non-uniform
characteristics can easily explain the occurrence of bands of localization of plastic
deformation especially since often they have a characteristic wavelength. In other
words, they are spaced approximately at the same distance from each other on the
sample surface.

This novel approach is of great practical importance since it makes it possible
to relate the hydrogen concentration to the plastic deformation of material. Thus
measurements of the concentration of dissolved hydrogen can be used to estimate
the residual life of materials and structures.

6 Conclusions

A model is constructed which allows one to describe the kinetics of hydrogen in
metals, and in particular to estimate the hydrogen transition frommobile into bounded
state depending on the stress-state relation and to describe the localization of the
connected hydrogen resulting in the material fracture.
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We suggest a novel approach to modeling the solids with account for the influence
of hydrogen on the properties of free surface on monocrystals at various scales.

Application of the bi-component model to describing the multiscale materials
allows obtaining the adequate results which describe the hydrogen influence on
properties of these structures.
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Modeling of Elastic-Plastic Deformation
Based on Updated Initial Configuration
of Solid Body

Nikolay M. Bessonov

Abstract In this paper we discuss some modifications of the classical two-step
algorithm (elastic-predictor, inelastic-corrector) usually called the radial return-map
method. The neo-Hooke rheological model is employed in the analysis of elastic
behavior instead of the Hooke model. The von Mises yield criterion −J2(S) ≤ σ 2

s /3
is used in the equivalent form −J2(BD) ≤ σ 2

s /(3μ2). The main difference of the
proposed algorithm in comparison with the traditional one is that in the simulations
of plastic deformations we switch the emphasis from corrections of the stress tensor
to irreversible corrections of the initial configuration of the solid body. The stress
tensor is automatically corrected by this procedure. The implicit integration method
is suggested for the correction of the initial configuration in the case of plastic flows.
While changing the initial configuration, we automatically get plastic (irreversible)
deformation at any time step. This algorithm allows us to calculate residual stresses
in the elastic-plastic solid after removing the external load as a result of unloading
after non-uniform plastic deformation. It is also used for an accurate simulation of
deformations of both perfectly plastic and elastic-plastic solids with workhardening
including the Bauschinger effect. Numerical examples show some advantages of the
algorithm developed in this work for a springback problem.

Keywords Clastic-plastic flow · Computational plasticity ·
Return-map algorithm · Updated initial configuration · Bauschinger effect
AMS subject classification: 74C15 · 74M15 · 65M06

1 Introduction

A radial return-map two-step algorithm (elastic-predictor, plastic-corrector) was
developed in order to correct the stress tensor components. It is widely used for
time-discrete elastic-plastic models. At the first step, a purely elastic trial state is
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computed. If the constitutive model it violated, an inelastic correction is computed
at the second step using the trial state as an initial condition.

Wilkins [33, 34] was among the first who tried this algorithm, splitting the total
deformation between the elastic and plastic components. This approach is still being
used with few modifications ([1–4, 7–12, 17, 19, 20, 22, 23, 25, 26, 28–32, 35–37]
and more).

In the literature cited above, the return-map algorithm is used both directly and
with some additional development. In this paper we will discuss some possible mod-
ifications of the Wilkins (or classical) method whose efficacy we have verified in
practice. We use a more general formulation of the problem for simulation of the
elastic part of the deformation, neo-Hooke’s law instead of Hooke’s law. Moreover,
this formulation also allows us to avoid unnecessary differentiation with respect to
time and to avoid corrections of the stress rotation (Eqs. 6 and 7). Thus, we consider
a more general formulation of the problem and simplify its practical realization. Let
us emphasize that the introduction of neo-Hooke’s law in the algorithm changes our
point of view on the plastic part of the deformation and brings us to the idea to
describe it as a process of continuous modification of the initial configuration of the
solid.

2 Short Description of the Classical Time-Stepping
Return-Map Algorithm

Let us analyze schematically the classical time-stepping return-map algorithm with
the minimum level of detail needed for the explanation of our modifications (see [33,
34] for further details).

Initially, the Lagrangian mesh is introduced; a fragment of the 2D mesh is shown
in Fig. 1a. The computational domain is divided into cells. Each cell consists of two
triangles in the 2D case (or six tetrahedra in the 3D case) called elements as illustrated
in Fig. 1b and 1c, respectively. A control volume V with mass M (gray in Fig. 1a)
corresponds to every node of the mesh.

For calculation of the new values of the velocity at each node, the explicit approx-
imation is used. The conservation of momentum law may be represented by the
equality:

M
�vn+1 − �vn

�t
=

∮

S

σ · d�s (1)

where �vn+1 and �vn are velocities at the “new” and “old” time steps, respectively, �t
is the time step, σ is the stress tensor, S is the surface of V , d�s = �ndS, and �n is
an outward normal vector to S. In the explicit algorithm, all quantities included in
the right-hand sides of the equations (in particular, in Eq. (1)) are taken from the old
time step unless they are already calculated at the new time step. In order to simplify
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Fig. 1 a Fragment of 2D Lagrangian mesh (• are nodes); b 2D element; c 3D element

the notation, we omit the superscript showing the number of the time step in the
right-hand sides of the equations.

For every node of the mesh we have

�xn+1 − �xn
�t

= �v, (2)

where �x is the radius-vector of the node. The stress tensor σ is defined at the elements
of the mesh and decomposed as the sum of spherical and deviatoric parts:

σ = Ip + S, (3)

where I is the unit tensor. A perfectly elastic material is characterized by a linear
relationship between the stress and the strain in the form of the Hooke model:

p = K∇�x · �u, (4)

S = μ

(
∇�x�u + �u∇�x − I

2

3
∇�x · �u

)
, (5)

where K and μ are the bulk and the shear elastic modulus, respectively, �u is the
displacement of the node, ∇�x�u = ∂uk/∂xm�em�ek , �u∇�x = ∂uk/∂xm�ek�em , �ek are base
unit vectors of a fixed rectangular cartesian coordinate system (k = 1, 2, 3). The
summation convention over the repeated indices is assumed.
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Equations (4) and (5) are differentiated by time and are written, respectively, as

pn+1 − pn

�t
= K∇�x · �v, (6)

S′ − Sn

�t
= μ

(
∇�x�v + �v∇�x − I

2

3
∇�x · �v

)
+ γ, (7)

where γ = S · � − � · S corresponds to the correction resulting from the rigid body
rotation, � is the spin tensor. More detailed explanation why in left hand side of
Eq. (7) S′ is used instead of Sn+1 will be provided below.

According to the theory of plastic flows, all possible stress states corresponding
to the plastic yield constitute a closed hyper-surface in the stress space [21, 24]. The
yield function can be written in the general form as

F(S) ≤ K , (8)

where K is the material constant. Condition (8) determines the restrictions on the
stress field. The von Mises yield criterion is a particular case of condition (8) and is
conventionally used to describe the elastic limit:

− J2(S) ≤ σ 2
s

3
, (9)

where σs is the limit of elastic stress. When the new values of the deviatoric part of
the stress tensor S′ are found from Eq. (7), condition (9) is verified (predictor step).
If (9) is satisfied, then Sn+1 = S′; otherwise, the values of the deviatoric stress tensor
are corrected according to the formula (corrector step)

Sn+1 = mS′, (10)

where
m = σs√−3J2(S′)

. (11)

This approach allows the correction of the deviatoric stress tensor, so that the
following equation is valid:

− J2(Sn+1) = σ 2
s

3
. (12)

Finally, we find the new value of the stress tensor:

σ n+1 = Ipn+1 + Sn+1 , (13)

and we can proceed to the next time step.
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3 Formulation of a New Time-Stepping Return-Map
Algorithm

3.1 1D Example

We start with a simple example. Let us consider an elastic-plastic spring with the
initial length X (at t = 0) and the actual length x (at time t). We can represent the
spring as a single 1D elastic-plastic element of the mesh. Assume that the stress σ

depends on x :

σ = E
( x

X
− 1

)
(14)

and the plasticity condition is
σ 2 ≤ σ 2

s , (15)

where σs is the limit of elastic stress and E is the material coefficient. Using Eqs. (14)
and (15), we obtain an equivalent expression for the plasticity condition:

( x

X
− 1

)2 ≤ σ 2
s

E2
= ε2s , (16)

where εs is the limit of elastic strain.
Let us solve the problem “numerically”, step by step in time. Suppose that the

length x changes at each time step and that we calculate the new value of the actual
length xn+1 instead the old one xn (predictor step).After thatwemust check condition
(16). If this condition holds true, then the deformation remains elastic. This means
that once the force is removed, the spring returns to its initial length, i.e. x → X .

Suppose that at some time step, condition (16) is no longer satisfied. Therefore,
plastic deformation begins, and the change of the material is irreversible, i.e., it will
not return to the initial length X when we remove the external force. From this
analysis we can naturally conclude that if condition (16) is not satisfied, then we
must change the initial configuration X , which should also depend on n. We denote
it by Xn . In particular, if condition (16) remains true, then Xn+1 = Xn .

Thus, if we calculate the value J2 = − (
xn+1/Xn − 1

)2
and find that −J2 > k2,

then we make a corrector step and define the new, updated value of the initial con-
figuration Xn+1 which satisfies the following equation:

(
xn+1

Xn+1
− 1

)2

= ε2s . (17)

All information about the initial configuration is contained in the multiplier 1/X in
condition (16). In order to have the presentation similar to the 3D case, which will
be considered below, we define here the initial configuration as 1/X , and not as X .
This modification is not essential for what follows.
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If 1/X = 1/Xn , then condition (16) is violated while for 1/X = 1/xn+1 it is
satisfied and the left-hand side of (16) becomes equal to zero. For this reason, we
choose 1/Xn+1 in the interval between 1/Xn and 1/xn+1, i.e.,

1

Xn+1
= a

1

Xn
+ (1 − a)

1

xn+1
, (18)

where a is a parameter, 0 < a < 1. Let us substitute (18) into Eq. (17) and choose a
such that the following equality is satisfied:

[
xn+1

(
a

1

Xn
+ (1 − a)

1

xn+1

)
− 1

]2

= ε2s (19)

As a result we obtain
a = ± εs√−J2

(20)

and keep only the positive solution.We calculate the new initial configuration 1/Xn+1

substituting the value of a in (18). Note that in this example we can find 1/Xn+1

from Eq. (17) in a single step. We do it by intermediate of Eqs. (18)–(20) in order to
show how it will work in the 3D case.

The new value of the initial configuration satisfies the plastic yield condition
exactly, so that we can move to the next time step.

Obviously, if we remove the external force at this time step, then the spring returns
back to the last updated value of the initial length, i.e., x → Xn+1.After the correction
of the initial configuration, the value of σ n+1 calculated from Eq. (14) satisfies the
equality in condition (15).

Let us summarize the above discussion. At each time step, if condition (16) is not
satisfied, then we adjust the initial configuration and calculate the new one. The old
one is “forgotten” by the material. If at this moment of time we remove the external
force, then the spring returns to its new initial length Xn+1.

At the elastic stage the initial length does not change, Xn+1 = Xn . At each time
step, the difference Xn+1 − Xn is equal to the plastic (irreversible) deformation.

We emphasize that the meaning of the expression “initial configuration” is
changed here. It is no longer the length at the initial moment of time but the length
to which the spring returns when we remove the external force. Hence, the initial
length defined in this way depends on time.

3.2 Return-Map Algorithm for 3D Case

Wecan now try to generalize the approach discussed above to the 3Dunsteady elastic-
plastic problem. Let us critically review the basic system of equations employed in
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Wilkins’ method (Eqs. 1–5) in order to define the components responsible for the
initial configuration of the solid.

Equation (1) represents conservation of momentum expressed in the general inte-
gral form; Eq. (2) represents velocity as derivative of the displacement; Eq. (3) repre-
sents the stress tensor consisting of spherical and deviatoric parts. Equations (1)–(3)
are expressed in appropriate general form. More attention should be paid to Eqs. (4)
and (5) where Eqs. (6) and (7) follow from. The classical return map algorithm does
not include any evidence of the initial configuration of the solid. In order to bring it
back into the rheological model, we will use the neo-Hooke model with constitutive
equation for the Cauchy stress tensor [1, 27] instead of Eqs. (4) and (5):

p = K

(
V

V0
− 1

)
, (21)

S = μ

[
B − 1

3
IJ1(B)

]
= μBD, (22)

where
B = F · FT (23)

is the left Cauchy-Green deformation tensor,

F = d�x
d �X = �x∇�X = ∂xi

∂Xm
�ei�em =

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

∣∣∣∣∣∣∣∣∣∣∣
(24)

is the deformation gradient, �x is the actual position vector, �X is the initial position
vector, V is the actual volume, and V0 is the initial volume.

Let us analyze how Eqs. (4) and (5) are obtained from Eqs. (21) and (22). Let
�x = �X + �u. Then

B = �x∇�X · ∇�X�x = (�u∇�X + I
) · (∇�X�u + I

)

Next ∇�X ≈ ∇�x is assumed. At this point all the information about the initial config-
uration is lost. Further,

≈ (�u∇�x + I) · (∇�x�u + I) = I + �u∇�x + ∇�x�u + �u∇�x · ∇�x�u

Assuming that �u is small and the second order terms can be neglected, then

≈ I + �u∇�x + ∇�x�u (25)
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Using the same assumptions, it is possible to obtain

J1(B) ≈ 2∇�x · �u + 3 and p ≈ K∇�x · �u (26)

Thus, relations (4) and (5) provide an approximation of relations (21) and (22).
In order to retain the information about the initial configuration in the rheological
model of the solid, we will use the neo-Hooke model (Eqs. 21 and 22) instead of the
Hooke model Eqs. (4) and (5).

Taking into account Eq. (22), we can write condition (8) in the alternative form

f (BD) ≤ k, (27)

where k is a material constant. Condition (27) will determine the restrictions on the
deformation field. For simplicity, we will limit our analysis to the von Mises yield
criterion (9). We can rewrite (9) in the following form:

− J2(BD) ≤ 4ε2s (1 + ν)2

3
≡ k2, (28)

where εs = σs/E is the limit of elastic strain, ν is Poisson’s ratio, and E = 2μ(1 + ν)

is Young’s modulus.
Wewill illustrate the specific features of the new return-map algorithmconsidering

only one tetrahedral element of the mesh abcd, (Fig. 1c). We denote the initial
position of the tetrahedron vertices at the initial time by position-vectors �Xa , �Xb,�Xc and �Xd . Due to deformation, the vertices move from their initial positions. We
denote the actual position of the vertices at time t by �xa , �xb, �xc and �xd . Let �xi and �Xi

(i = 1, 2, 3) be the right-hand set of vectors directed along any three different ribs
of the tetrahedron:

�x1 = �xb − �xa, �x2 = �xc − �xa, �x3 = �xd − �xa (29)

and
�X1 = �Xb − �Xa, �X2 = �Xc − �Xa, �X3 = �Xd − �Xa (30)

We will use the following quantities:

V = 1

6
�x1 · (�x2 × �x1) (31)

is the actual volume of the tetrahedral element,

�x1 = �x2 × �x3
6V

, �x2 = �x3 × �x1
6V

, �x3 = �x1 × �x2
6V

(32)

is a set of vectors reciprocal with �xi , with the properties
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�xk · �xm = δkm, �xi �xi = �xi �xi = I (33)

and the second-order tensors:

R�x = �ei �xi , R�x = �ei �xi , (R�x)T = �xi�ei , RT
�x = �xi�ei , (34)

G�x = R�x · (R�x)T , G�x = R�x · RT
�x (35)

with the properties which follow from Eq. (33):

R�x · (R�x)T = R�x · RT
�x = RT

�x · R�x = (R�x)T · R�x = I, (36)

G�x = GT
�x , G�x = (G�x)T , G�x · G�x = G�x · G�x = I, G�x · ·G�x = 3 (37)

(see also Appendix A). Similar to formulas (31)–(37), we introduce V0, �Xi , R �X, R �X,
G �X, and G �X based on the set of vectors �Xi .

Having defined these values, we can return to the tetrahedral element under con-
sideration. Substituting V and V0 into Eq. (21), we can find the pressure p in the
element. The next step is to define the approximation of the tensor B given by (23).
Let us introduce the linear transformation of the element from its initial to its actual
position [6]:

�x = A · �X + �b, (38)

where A, and �b are parameters of the transformation. Substituting (38) into (24), we
can find the tensor F in the element:

F = ∂(Aik Xk + bi )

∂Xm
�ei�em = Aikδkm�ei�em = A. (39)

Using Eq. (38), we can write for vertices of the element as

⎧⎪⎪⎨
⎪⎪⎩

�xa = A · �Xa + �b
�xb = A · �Xb + �b
�xc = A · �Xc + �b
�xd = A · �Xd + �b

(40)

In order to determine F (and then B) in the element, we should find the value of
A from system (40). Let us rewrite (40) in the following form:

⎧⎨
⎩

�x1 = A · �X1

�x2 = A · �X2

�x3 = A · �X3

(41)
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Each equation of system (41) is multiplied from the right by a corresponding vector
�ei . Taking their sum, we obtain

�xi�ei = A · �Xm�em . (42)

Using Eqs. (34) and (36), we find the tensor A

A = �xi�ei · ( �Xm�em)−1 = RT
�x · R �X. (43)

Finally, combining Eqs. (23), (35), (39), and (43), we obtain the finite difference
approximation of B for the element:

B = RT
�x · G �X · R�x. (44)

The tensor G �X can be expressed as

G �X = R �X · (R �X)T = �ek �Xk · �Xm�em =
∣∣∣∣∣∣
�X1 · �X1 �X1 · �X2 �X1 · �X3

�X2 · �X1 �X2 · �X2 �X2 · �X3

�X3 · �X1 �X3 · �X2 �X3 · �X3

∣∣∣∣∣∣ (45)

As follows from Eq. (45), the components of the tensor G �X are scalar products
between the vectors �X1, �X2, and �X3, which determine the initial element. Obviously,
the translation and rotation of the initial element as a rigid body does not affect the
value of the tensor G �X and of the tensor B. Specifically, if the initial and actual
configurations of an element coincide up to translation and rotation, then B ≡ I.

It is important to stress that all information about the initial configuration of the
element contains in the tensorG �X and in the initial volume V0. If the external force is
removed, thenG�x → G �X and V → V0. We can assert thatG �X and V0 play the role of
the memory of the element and keep the information about its initial configuration.
We recall that neither G �X nor V0 depend on translations and rotations.

By virtue of equality (44), among two values G �X and V0, the condition (27)
contains onlyG �X.More general plasticity conditions including bothG �X andV0 can be
also analyzed. The tensorG �X will play a crucial role in the subsequent considerations.
We call it the tensor of initial configuration. (In Sect. 3.1, the value 1/X served as
an analogue of G �X for 1D problem.)

Here for simplicity we consider only the von Mises criterion in the form (28). In
the elastic regime, condition (28) holds and G �X does not change. If the deformation
of the element exceeds the critical value, then condition (28) is not satisfied anymore,
and the internal structure of the solid body is irreversibly changed. In other words,
the initial configuration of the element, and, consequently, the tensor G �X should be
changed in such a way that the equation
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− J2(BD) = k2 (46)

is satisfied.
We proceed step by step in time. At the initial time step, in addition to all other

values, we have to calculate the values of G �X and V0 for every element of the mesh.
Assume that we have already found the new positions of the element vertices from
Eqs. (1) and (2). After that we calculate the set of vectors �xn+1

s from Eq. (29). We
carry out the predictor step and put

B′ = RT
�xn+1 · G �Xn · R�xn+1 , (47)

where R�xn+1 = �ek�xn+1
k , and G �Xn

is known from the previous time increment. If the
condition

− J2(B′
D) ≤ k2 (48)

is satisfied, then the tensor G �Xn
does not change, that is G �Xn+1 = G �Xn

.
Suppose that condition (48) does not hold. Then we should find the new tensor

G �Xn+1
for the element, such that Bn+1 = RT

�xn+1 · G �Xn+1 · R�xn+1 satisfies the following
equation:

− J2(Bn+1
D ) = k2. (49)

The value ofG �Xn+1
satisfying this condition should be in the range betweenG �Xn

and
G�xn+1

. Similar to the example above (see Eq.18) we introduce the parameter a and
put

G �Xn+1 = aG �Xn + (1 − a)G�xn+1
. (50)

Using Eq. (50) we can write

Bn+1 = RT
�xn+1 ·

[
aG �Xn + (1 − a)G�xn+1

]
· R�xn+1 = aB′ + (1 − a)I (51)

and therefore

Bn+1
D = aB′ + (1 − a)I − 1

3

[
aJ1(B′) + 3(1 − a)

]
I = aB′

D. (52)

Then from Eq. (52)
J2(Bn+1

D ) = a2 J2(B′
D). (53)

We would like to satisfy Eq. (49). Substituting Eq. (53) into Eq. (49), we obtain the
equality

a = ± k√−J2(B′
D)

. (54)
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We will keep here only the positive solution.
Note that the value of a in (54) coincides exactly, up to notation, with m from

(11). This is related to the fact that Sn+1, given by (10), can be written in the form
Sn+1 = mS′ + (1 − m)0, where 0 < m < 1.

Substitution of a from (54) into (50) gives the new value of the tensor G �Xn+1
,

which satisfies (49). Obviously, condition (9) is also satisfied. We can now proceed
to the next time step.

Note that it is assumed in the theory of plastic flows that the plastic strain is
proportional to the stress deviator S at any time. From (52) and (22) we get the
following relation:

dBn+1
p = Bn+1

D − B′
D = (a − 1)B′

D = a − 1

a
Bn+1

D = a − 1

μa
Sn+1 (55)

Let us make some preliminary conclusions. According to the discussion above,
at each time step we deal with three configurations of the element (Fig. 2): the
configuration, which is based on the set of vectors �xn+1

s , and related to the tensor

G�xn+1
(Fig. 2c); old initial configuration determined by the tensorG �Xn

(Fig. 2a); new
initial configuration determined by the tensor G �Xn+1

(Fig. 2b).
Note that using the tensors G �Xn

and G �Xn+1
we can reconstruct the shapes of both

old and new initial tetrahedron elements up to translation and rotation. However, this
is not required.

The tensors G�xn+1
and G �Xn+1

determine the critical elastic deformation of the
element allowed by condition (49), while the tensors G �Xn+1

and G �Xn
determine the

plastic (irreversible) deformation.
Having introduced the new independent value G �X into the algorithm, we obtain

the following system of equations:

Fig. 2 Diagram of elastic-predictor/plastic-corrector. The old (a) and new (b) initial configurations
coincide up to translation and rotation. New actual configuration (c) is completely defined
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�vn+1 = �vn + �t

M

∫
S
σ n · d�s

�xn+1 = �xn + �t�vn+1

pn+1 = K

(
V n+1

V0
− 1

)

G �Xn+1 =
{
G �Xn

, at − J2(B′
D) ≤ k2

aG �Xn + (1 − a)G�xn+1
, at − J2(B′

D) > k2

Bn+1 = RT
�xn+1 · G �Xn+1 · R�xn+1

Sn+1 = μBn+1
D

σ n+1 = Ipn+1 + Sn+1

(56)

It is written for the simplest explicit integration scheme. It is possible to developmore
accurate explicit and implicit schemes but this is beyond the scope of this paper.

4 Simulations

In this section we will illustrate the discussion above with some examples.

4.1 A Perfectly Elastic-Plastic Model

Let us consider a cylinder with typical material properties of ρ = 3000, kg/m3,
ν = 0.45 and E = 100,GPa subjected to an uniaxial cyclic loading. We assume that
sliding is possible at the edges of the cylinder. Even though this problem is assumed
to be 1D, we will use a 3D code for the analysis.

The classical explicit numerical scheme by [33, 34] is employed. For the new
algorithm, a similar explicit procedure (with the exception of some minor changes
of low importance) was used during the code development.

Elements of the 3D mesh (top-right corner of Fig. 3) have tensile strain in lon-
gitudinal direction and compression strain—in transverse direction. One cycle for
the perfectly elastic-plastic model with no hardening of the material was simulated.
The limit of elastic strain was set to be εs = 0.01 (which corresponds to σs = 1,GPa
(28)).

The results of the modelling based upon classical and new algorithms with the
same time integration step dt are shown in Fig. 3. The curves obtained with two
different methods coincide rather accurately. Some high frequency vibrations taking
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Fig. 3 One cycle of calculations using perfectly elastic-plastic model for εs = 0.01

place during the slow quasi stationary process of deformation are related to the fact
that we use full dynamic formulation with rather small time integration step.

Some aspects of validation of the explicit integration procedure for a given quasi
stationary problem are not included in this paper. Employment of the same explicit
integration procedure for both methods is convenient for the comparison of the
results. The amplitude and the frequency of vibrations in both methods are iden-
tical (top-left corner of Fig. 3).

We can see from Fig. 3 that ab is the elastic part of the curve. When the elastic
strain ε is greater than εs , plastic flow occurs along bc, where σ = σs . The unloading
cd and loading e f parts are the same. This corresponds to the physics of the process.

The CPU time of both simulations was approximately the same with some minor
advantage of the new algorithm. Most probably, it is related to a more detailed
development of the code for the new algorithm.

4.2 A Model with Hardening

Let us consider a similar problem as in Sect. 4.1 taking into account workhardening
of the material. In this case εs depends on plastic strain εp.

As it was described in Sect. 3.2, at each time step, we calculate two tensors G �Xn

and G �Xn+1
corresponding to the old and new initial configurations of the element.

The deformation of the initial configuration corresponds to the plastic strain of the
element. We can define the effective plastic strain rate at any time step dεn+1

p . Let us
introduce a deformation tensor for the new initial configuration relative to the old one:
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Bp = RT
�Xn+1 · G �Xn · R �Xn+1 (57)

and define dεn+1
p like

dεn+1
p = 1√

3

√
−J2

(
BpD

) = 1√
18

√
3J1

(
B2

p

) − J 2
1

(
Bp

)
(58)

Using Eqs. (34)–(37), we can transform Eq. (58) to the following form:

dεn+1
p = 1√

18

√
3
(
G �Xn+1 · G �Xn

)
· ·

(
G �Xn+1 · G �Xn

)
−

(
G �Xn+1 · ·G �Xn

)2
(59)

Then total plastic strain accumulated in the element can be expressed as

εn+1
p =

i=n∑
i=1

dεi+1
p (60)

Let us assume for simplicity, that εs depends linearly on εp, i.e.,

εn+1
s = ε′

s + ε′′
s ε

n+1
p (61)

Results of simulation for the elastic-plastic material with hardening Eq. (61) for
ε′
s = 0.01 and ε′′

s = 0.1 are shown in Fig. 4. The stress-strain function is piece-wise
linear. The part of the curve between b and c corresponds to the plastic deformation
with hardening, which is more representative for the behavior of a real material than
the perfectly elastic-plastic model. As in the previous example in Sect. 4.1, Fig. 4
shows almost exact correspondence of the curves obtained with both methods.

4.3 Springback Problem

The problem of springback of parts stamped from sheet metal is a very well known
practical problem: as a result of an external load, a solid (sheet metal blank) is
undergoing plastic deformation, then the load is removed, and the deformed solid
unloads and takes a new shape (because of the elastic recovery of the material) which
needs to be defined.

In order to compare the results of modelling obtained with both methods, let us
consider the following simple problem.We take a 2DCartesianmesh, which consists
of a single square cell with surface S0 and which includes four triangular elements
(Fig. 5a).

The material properties in this example are the same as in the previous example
in Sect. 4.2.
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Fig. 4 One cycle of calculations using elastic-plastic model with a simple model with hardening

Fig. 5 Shape of the solid versus time under tension parallel to the x axis

The stretching load is applied to the solid in the horizontal direction and then
removed at the time moment of 0.01 s (Fig. 5b).

Obviously, the solid body starts free vibrations, and the actual area of the solid S
will periodically change around its initial value S0. A rapid change of compression
and tension will take place correspondingly, and at the moment when S becomes
equal to S0, the value of p should be equal to zero. The shear stresses should be
equal to zero at any time. The shape of the solid should stay rectangular. This is the
expectation of how the solid body should behave in this example.

Now, let us review the results of the simulation. As it was expected, the calculated
values of the pressure in the solid, after the load was removed, changed periodically
around zero with the same amplitude: the values of pressure p obtained by two
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Fig. 6 Simple tension. Variation of a pressure p and b S/S0

different methods are practically identical (Fig. 6a). The value of σxy was equal to
zero, as it was expected.

We now compare the ability of the two methods to predict the evolution of the
shape of the solid during a substantial period of time. After relieving the external
load, the solid took the shape of a rectangle slightly elongated in the horizontal
direction. Then the shape stayed rectangular, and the solid rapidly vibrated around
some average position.

During relatively short period of time after the load removal, the condition S = S0
is satisfied for both methods (Fig. 5). However, for a longer period of time, the
difference between the two methods becomes more and more visible. In the case
of the new method, the value of S/S0 oscillates around 1, while in case of the
classical method, S/S0 oscillates with the same amplitude but around the growing
value (Fig. 6b). The shapes of the solid obtained with both methods at the moments
of 15 and 30s are shown in Fig. 5d, e.

The results obtained with the classical method show that the average area of the
solid is growing with a constant velocity, and the effect of “swelling” of the mesh
was observed. This effect can be suppressed by reducing the time integration step
but can not be eliminated completely. The process of relaxation of the solid after the
external load is removed can be sufficiently long. Therefore, the decrease of the time
step is strongly undesirable. The new method is stable with respect to the “swelling”
of the mesh.

This effect is determined by the fundamental difference between the classical and
the new methods: the calculation of the pressure at the new time step pn+1 in the
classical method is conducted according to formula (6), while in the new method
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Fig. 7 Shape of the solid versus time with simple shear

according to formula (21) where the initial volume V0 of the cell (or the initial area S0
in the 2D example) is included. As a result, according to formula (21), if the equation
V = V0 (or S = S0) is violated, the counter pressure is generated. It tends to change
the shape of the solid in such a way that the equation V = V0 (or S = S0) is restored.

When we calculate the pressure with the classical method according to formula
(6), pn+1 is found as a result of adding the pressure increment�t K∇�x · �v to its value
from the previous integration step pn . Therefore, after a large number of integration
steps, due to the accumulation of integration error, the information about the initial
volume (area) of the cell is gradually “forgotten” and, as a result, the observed non-
physical and unlimited “swelling” of the mesh takes place.

Let us carry out a similar comparison for the same mesh and for the same prop-
erties and configuration in the case of a simple shear. The initial shape and loading
conditions are shown in Fig. 7a, where α is the angle of the side deviation from the
y axis.

We can expect that when the load is removed, the angle α will gradually decrease,
and its valuewill oscillate around some fixed average valueα0. The pressure p should
remain zero, and the stress tensor componentσxy should vary around its average value
equal to zero. The shape of the solid should be a parallelogram.

The results of the calculations of the value σxy , obtained with the help of both
methods, are practically identical. The value ofσxy varies periodicallywith consistent
amplitude (Fig. 8a). The value of pressure at any moment of time is equal to zero.

As in the previous example, let us follow the evolution of the shape of the solid after
a substantial interval of time.Thevalue of the angle of inclination of the parallelogram
α, obtained with the new method varies around its steady average value α0 ≈ 270.

The value of α0, obtained with the help of the classic method is gradually increas-
ing, as shown in Fig. 8b. Additional calculations show that the growth of α0 in the
classical method can be decreased by decreasing the time step.

The difference between the twomethods is related to the fact that the calculation of
the components of the tensor S according to the newmethod employs Eq. (22), which
take into account the tensor of the initial configurationG �X. In this example, the area
S of the solid is constant according to the formulation of the problem, and behavior
of the solid is determined by the shear strains. In this case, any deviation of the actual
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Fig. 8 Simple shear. a Variation of σxy and b angle of inclination α

configuration of the cell from its initial configuration immediately generates opposite
stresses which tend to return the actual shape of the cell to its original shape. The
information about the initial configuration is kept in the tensor G �X.

In the case of the classicalmethod, calculation of the tensorS at the new time step is
conducted according to formula (7) which does not include directly the information
about the initial and actual configurations, unlike the new method. This leads to
gradual error accumulation for large number of integration steps. In this example, it
results in a non-physical unbounded growth of the angle α0 after removing the load.

Introduction of the artificial viscosity can suppress the high frequency oscillations
in both methods but the problem of slow drift of S0 or α0 when using the classical
method can still appear.

Stability of the new method with respect to “swelling” of the mesh is a useful
property. This method was used to solve a number of practical problems in [5, 15,
16]. In particular, we have simulated a multi-steps flanging process based on the idea
of redistributing plastic strains around a larger area at each step, delivering additional
metal into the bending zone and creating an additional axial compression.

The results of numerical simulations of a three-step flanging process is shown in
Fig. 9. More details are given in the works cited above. Let us emphasize that we
need to model here not only the stages a → b, c → d and e → f but also the stages
b → c and d → e when the load is removed and the deformed solid takes a new
shape (Fig. 9).
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Fig. 9 Distribution of plastic strains in a three-step flanging process

Fig. 10 Schematic representation of the multi-yield surfaces model

4.4 A Multi-yield Surfaces Model

The multi-yield surfaces generalization of the model (8) can be presented in the
following form

Fi (S − αi ) ≤ Ki , i = 1, . . . , I, (62)

where αi are the back stress tensors [21, 24]. A multi-yield surface model is used in
particular for simulation of cyclic plasticity. Many aspects of cyclic plasticity can be
obtained using the evolutive Masing model [13].

In our case, we have to deal with a variable initial configuration. We can assume
that the real structure of the solid body is not uniform. For example, we can consider
a polycrystal structure with different sizes and properties of individual crystals. Sup-
pose that each component behaves according to the perfectly elastic-plastic model,
however, plastic (irreversible) deformation of different components of the structure
can start at different levels of the strain εsi .

Let us first discuss the following generalization of themodel example described in
a Sect. 3.1. The structure consists of I perfectly elastic-plastic sub-springs (Fig. 10b)
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loaded in parallel (Fig. 10a) and having individual values of εsi . This is so called
Masing model [13]. Assume that εs1 < εs2 < · · · < εs I .

Let us apply an external tensile load to this structure. If the total deformation of the
system ε is less than εs1, then it behaves as a single spring. The sub-springs are loaded
in parallel. If we remove the external load, the system will return back to its initial
configuration. If ε exceeded εs1, then the first sub-spring turns to the plastic flow,
while the others are still in the elastic stage. The stress-strain dependence becomes
different. After that the next sub-spring turns to the plastic flow, and so on until all
the sub-springs will switch to the plastic regime and the external load will become
constant.

As a result, we obtain the stress-strain curve schematically presented in Fig. 10c.
At this stage, if we relieve the external load, the system will not return to the initial
length of any sub-spring Xi , butwill stay somewhere in between.The residual stresses
will stay inside the sub-springs with no external load applied. These residual stresses
can be defined as a superposition of those for the sub-springs. Such process can
be simulated in the framework of the described model using specifically the initial
configuration of the solid body.

Thus, we can replace (14) by the following relation:

σ =
I∑

i=1

γiσi = E
I∑

i=1

γi

(
x

Xi
− 1

)
. (63)

Here the total stress σ is the sum of the stresses σi of i sub-springs, γi is the input
of the given sub-spring,

∑I
i=1 γi = 1. We assume, for simplicity, that all sub-springs

have the same elastic modulus E .
We note that all Xi are the same at t = 0. Gradually they become different from

each other when they are involved in plastic flow. Instead of the single condition
(16), we have the system of conditions:

(
x

Xi
− 1

)2

≤ ε2si , i = 1, 2, . . . , I. (64)

The algorithm in this case is a direct generalization of the algorithm described above.
At each time step we use Eqs. (18)–(20) for all the sub-springs.

Let us use a similar approach for a continuousmodel.We can now rewrite Eqs. (56)
for the one-yield surface case as
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�vn+1 = �vn + �t

M

∫
S
σ n · d�s

�xn+1 = �xn + �t�vn+1

pn+1 = K

(
V n+1

V0
− 1

)

G �Xn+1

i =
{
G �Xn

i , at − J2(B′
i D) ≤ k2i

aG �Xn

i + (1 − a)G�xn+1
, at − J2(B′

i D) > k2i

Bn+1
i = RT

�xn+1 · G �Xn+1

i · R�xn+1

Sn+1 = μ

I∑
i=1

γiBn+1
i D

σ n+1 = Ipn+1 + Sn+1

(65)

where Bi = RT
�x · G �X

i · R�x. At the initial moment of time, we have to calculate the

set of tensors G �X
i (i = 1, . . . , I ) for each mesh element. Then at any time step, we

have to check the i-th yield condition and, if necessary, to correct the corresponding
tensor G �X

i .
A test simulation for the same cylinder under the axial load for the 2-yield surfaces

model is shown in Fig. 11. Here εs1 = 0.01, εs2 = 0.02, and γ1 = γ2 = 1/2. The ab

Fig. 11 One cycle for 2-yield surfaces model
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Fig. 12 2-yield surfaces model with various parameters: 1—εs1 = 0.015, εs2 = 0.02, γ1 = γ2 =
1/2; 2—εs1 = 0.01, εs2 = 0.02, γ1 = E/3, γ2 = 2/3; 3—εs1 = 0.01, εs2 = 0.02, γ1 = γ2 = 1/2;
4—εs1 = 0.01, εs2 = 0.02, γ1 = 1/3, γ2 = 2/3; 5—εs1 = 0.005, εs2 = 0.02, γ1 = γ2 = 1/2

part of the curve corresponds to the elastic region, where both components are elastic.
For this region εb = εs1. In the interval bc the first component is in the plastic regime,
the second one is in elastic regime and we obtain the hardening of the material. For
this range εc = εs2. In cd, both components are involved in the plastic flow. In de,
both components are elastic and unloading of the material takes place. As follows
from the Fig. 11, |σd | > |σe|, and εd − εe = 2εb which represents the Bauschinger
effect.

We vary the parameters for the 2-yield surfaces model (Fig. 12). The curve 3 here
corresponds to the same parameters as in Fig. 11. All the other curves are obtained
for different values of the parameters. The general trend of these curves is the same
as in Fig. 11. We can see that it is possible to change the curves in a wide range
varying the parameters of the model.

It is clear that the 2-yield surfaces model is rather rough and it does not give
a smooth stress-strain graph. For practical cases, the simulation can be performed
using a larger number of layers.

The results of the simulations for a 5-yield surface model with εs1 = 0.01, εs2 =
0.02, εs3 = 0.03, εs4 = 0.04, εs5 = 0.05, and γ1 = · · · = γ5 = 1/5 are shown in
Fig. 13. The segment ab is an elastic part for all the components. The segments
bc, cd, de, e f , f g correspond to the case where the components reach their critical
conditions one after another and enter the regime of plastic flow. The hardening part
of the curve bcde f is more smooth than the same one in Fig. 11.



112 N. M. Bessonov

Fig. 13 One cycle for 5-yield surfaces model

4.5 Calculation of Residual Stresses

During the stamping operations of metal parts, non-uniform distributions of stresses
and strains take place. As a result, the residual stresses are generated after the removal
of external loads and relaxation of residual vibrations. The calculation of residual
stresses and of final position of the solid body has very important practical applica-
tions, in particular, for prediction and correction of springback of sheet metal parts
after stamping operations.

In order to solve this problem, it is necessary to simulate the whole process of
deformation, the unloading process with decreasing residual vibrations. Residual
stresses and the final positions of the nodes of the mesh will represent the solution
of this important problem.

In general, both Wilkins method and the new algorithm described above allow us
to determine the residual stresses. However, there is an important point of difference.
We recall that while using the Wilkins method we calculate the increments of p and
S from Eqs. (6) and (7) at every integration step. Then we calculate the new values
of pn+1 and Sn+1 as a sum of old values pn and Sn and their increments.

The accuracy of calculation of increments of p and S is of the order 0(�t). This
means that the final error of calculations of σ accumulated in the elements of the
mesh to the moment when the elastic vibrations and residual stresses relax depends
both on �t and on the number of iterations.

In the new algorithm, the calculation of the stress tensor at any element of the
mesh depends on the difference between the actual and the initial configurations.
This is an essential difference of the suggested algorithm and the Wilkins method.
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Let us consider the following example. We simulate the final stage of relaxation
of elastic vibrations. The initial configuration of each element does not change any
more. Each element taken independently would converge to it. However, taken all
together they cannot do it because of the mutual interaction. Due to the fact that
the initial configuration of every element is stabilized, the final error of calculations
does not depend neither on �t nor on the number of iterations, no matter how large
this number can be. On the contrary, in the Wilkins method we are accumulating the
increments of the stress tensor and there is no “starting point”. Hence the error grows
even during elastic vibrations together with the number of integrations steps.

Earlier we discussed the calculation of residual stresses at different points of a
solid subjected to non-uniform plastic deformation. Applying the new algorithm and
using its multi-yield surface version, we can calculate the stresses in each structural
component separately. They can differ from each other even if the body is deformed
uniformly.

As was discussed in Sect. 4.2, total stress tensor consist of its components

σ =
I∑

i=1

γiσ i , (66)

where
σ i = Ipi + Si . (67)

Let us return back to the simulation of the loading of the cylinder using a
multi-yield surfaces model. During its cyclic loading (Fig. 13), the total stress σxx

equals to zero at points a and p. However, its components σxxi are not equal to
zero there because different components of the material experience different irre-
versible deformations and will have different initial configurations G �X

i . We recall
that γ1 = · · · = γ5 = 1/5 here.

Figure 14 shows the part of the curve from Fig. 13 until the point where the total
stress σxx is equal to zero. This simulation is carried out assuming that all pi in
Eq. (67) are equal to the total pressure p (model 1). Because of this, the value of σxx1

continues to grow to a certain extent after the beginning of plastic flow in the 1st
component. On the contrary, the values of σxx5 are less than in the case where the
material 5 deforms independently.

In Fig. 15 similar results are shown for the case

pi = K
J1(Bi ) − 3

2
(68)

(model 2). It can be obtained from (4) and (26) under a certain approximation. The
components σxxi correspond better here to the ideal elastic-plastic model than in
Fig. 14 since the interconnection through pi is weaker than in model 1.

The results of calculations of σxxi for both models are shown in the table below,
where the stresses are given at the intersections of the cyclic curve with the axis ε.
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Model 1 Model 2 Model 1 Model 2
ε 0.0267 0.0272 −0.0292 −0.028
1
5σxx1 −0.0997 −0.17 0.096 0.233
1
5σxx2 −0.127 −0.216 0.127 0.289
1
5σxx3 −0.0264 −0.0456 0.0261 0.0715
1
5σxx4 0.0749 0.13 −0.0756 −0.152
1
5σxx5 0.176 0.301 −0.178 −0.447

Fig. 14 The values of the total stress σxx and of its components σxxi (model 1)

Fig. 15 The values of the total stress σxx and of its components σxxi (model 2)
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Fig. 16 Variation of plastic deformations for selected components of ε

We can see for example from the first column that the components of the stress
are different from zero while the total stress σxx equals zero. While the first three
components of the tensor pull the material in one direction, the the last two pull it in
the other direction. This cannot be distinguished at the level of the whole structure.
Even though the local values of the components of the stress tensor vary from one
model to another, the total stress σxx remains practically the same.

Figure 16 shows a plastic deformation of the same cylinder in the case of 5
level model. The components εpi are computed by Eqs. (59) and (60). Obviously,
the first component accumulates the largest value of plastic deformation while the
last component accumulates the smallest value. Precise calculation of εpi for each
component can help to predict the fracture of the material in some manufacturing
processes such as stamping.

5 Conclusions

In conclusion we can say that the difference of the approach developed in this work
in comparison with the classic approach is that instead of changing the stress tensor
we change the tensor G �X in the mesh elements. It corresponds to the change of the
internal structure of the solid. The corresponding algorithm is illustrated for the von
Mises yield criterion.

This algorithm allows us to adopt an alternative point of view on plastic flow
simulations.We switch the emphasis from correction of the stress tensor to correction
of the initial configuration of the solid body. In this case, the stress tensor is corrected
automatically.
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As far as it concerns the elastic part of deformation, we do not need to carry out
the correction related to the stress rotation (see (7)).

The difference in the physical interpretation between the approach developed in
this work and the classical algorithm is that the latter does not allow the stress tensor
to exceed the yield condition. In the method introduced here, we irreversibly change
the initial configuration of the solid body. As a result, the stress tensor is reduced
to the required limit. Thus, we deal with the reason of plasticity and not with its
consequences.

While changing the initial configuration, we can automatically get the plastic
(irreversible) deformation at any time step.

A multi-yield surfaces model is developed as a natural generalization of the
algorithm. It allows the simulation of multi-cycle loading with hardening and with
Bauschinger effect.

The new algorithm allows us to calculate residual stresses in elastic-plastic solids
after removing the external load as a result of unloading after a non-uniform plastic
deformation.

Note that at the global level all steps are essentially elastic, since the preliminary
predictor step adjusts the initial condition, and records the plastic strain, such that
the current step ends on the yield surface. Due to this modification, the stiffness
matrix does not need to be updated. Also, there is no need to calculate algorithmic
or consistent tangent stiffness matrices. This is a one of computational benefit of this
algorithm which allows the reduction of computational efforts.

As it is shown above, the “initial configuration” is always known as a byproduct of
the algorithm so that the configuration after the removal of stamping loads is always
available.

Introduction of the “initial configuration” in the algorithm reduces accumulation
of error during stress integration in comparison with the classical Wilkins method.
The results obtainedwith the classicalmethod show the effect of unlimited “swelling”
of the mesh. This effect can be suppressed by reducing the time integration step but
can not be eliminated completely. The process of relaxation of the solid after the
external load is removed can be sufficiently long. Therefore, the decrease of the time
step is strongly undesirable. The new method is stable with respect to the “swelling”
of the mesh, which is essential from the point of view of the CPU time.
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A Notation

An orthogonal basis for the 3D vector space is a set of orthogonal unit vectors �ei
(i = 1, 2, 3). We use here only fixed rectangular Cartesian coordinate system. The
scalar product of any two of these vectors is
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�ek · �es = δks =
{
1, if k = s,
0, if k 
= s,

where δks is the Kronecker delta symbol. A vector (first-order tensor) �a can be
decomposed in the introduced basis as

�a = ak�ek .

The usual summation convention is assumed over the repeated indices.
The dyadic product of the base vectors is the tensor �ek�es . This tensor serves as

a base tensor for the representation of a second-order tensor A = Aks�ek�es . In par-
ticular,A · B = Ai j�ei�e j · Bks�ek�es = Ai j Bks�eiδ jk�es = Aik Bks�ei�es is the second-order
tensor, AB = Ai j Bks�ei�e j�ek�es is the fourth-order tensor, �a · A = ai�ei · Aks�ek�es =
ai Aksδik�es = ak Aks�es is the vector, A · ·B = Ai j�ei�e j · ·Bks�ek�es = Ai j Bksδ jkδis =
Ask Bks is the scalar.
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Modulation Instability of Flexural Waves
in Cylindrical Shells: Modified Criterion

Andrey V. Bochkarev, Vladimir I. Erofeev and Alexander I. Zemlyanukhin

Abstract On the basis of asymptotic analysis of the Kirchhoff-Love cylindrical
shell’s element motion equations in displacements a nonintegrable fourth-order
quasi-hyperbolic equation with cubic nonlinearity is derived. For the analysis of
axisymmetric propagation of small-amplitude flexural-longitudinal waves along the
shell, this equation is reduced to the generalized nonlinear Schrödinger equation. A
criterion for the modulation instability of the waves is obtained, which clarifies the
known Lighthill criterion.

1 Introduction

Nonlinear wave dynamics of thin-walled deformable systems is one of the rapidly
developing areas of mechanics. The corresponding mathematical models are often
based on the theory of thin shells [1, 2]. The greatest practical interest is the study of
the process of development of modulation instability of propagating wave packets.
The consequence of such instability is the possibility of formation and long-term
propagation of stable stationary pulses in the form of envelope solitons, the param-
eters of which are used in the problems of acoustic diagnostics and non-destructive
testing of materials.

The aim of this work is to study theoretically the possibility of the development of
modulation instability of axisymmetric flexural waves propagating along the cylin-
drical shell.

The achievement of this goal is provided by the solution of the problem of mod-
eling the propagation process of axisymmetric flexural waves packages along the
cylindrical shell, the derivation and qualitative analysis of the nonintegrated quasi-
hyperbolic equation.
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In the first section, on the basis of asymptotic analysis of the Kirchhoff—Love
shell’s element motion equations, the nonlinear quasi-hyperbolic equation is derived.
In the second section, this equation, using the correct asymptotic procedure, is trans-
formed into a generalized nonlinear Schrödinger equation (GNLSE) and the mod-
ulation instability of its solutions is analyzed. In the third section the results are
discussed.

2 Asymptotic Analysis of the Shell’s Element Motion
Equations

Consider the thin-walled circular infinite cylindrical shell of the Kirchhoff-Love
model, directing the x-axis along its centerline, the y-axis in the circumferential
direction, and the z-axis in the radial direction from the center. The longitudinal,
circumferential and radial displacement of the element of the shell’s middle surface
are designated as u, v and w, respectively.

The motion equations of the shell interacting with an external nonlinear elas-
tic medium in the axisymmetric case (under the condition that the circumferential
displacement v, the derivatives with respect to circumferential coordinate y and the
parameter kx of the curvature in the longitudinal direction are equal to zero) have the
form [1]:

uxx − μ kywx + h2

12kywxx + wxwxx − γ

g
1−μ2

E utt � 0,

h2

12

(
wxxxx − 3

2 (w
2
xwxx )xx

)
− μ kyux + h2

12kyuxxx + k2yw − 1
2μ kyw2

x−

−
(
wx

(
ux − μ kyw + 1

2w
2
x

))
x

+ γ

g
1−μ2

E wtt +
k1
R2w − k2

h2R2w3 � 0,

(1)

where E is the Young’s modulus, μ is the Poisson ratio, ky � 1/R is the curvature
parameter in the circumferential direction, R is the radius of curvature, γ is the unit
weight of shell material, g is the acceleration of gravity, h is the shell thickness, the
subscripts t and x represent the partial derivatives with respect to the corresponding
variables, k1 i k2 are the parameters of the nonlinear elastic medium surrounding the
shell (Fig. 1). Note that we consider the case of “soft” nonlinearity of the environment
(the last two terms of the second equation of the system (1) have opposite signs).

The Eqs. (1) contain several additional terms. The terms underlined by a single
line arise when taking into account the variation of geometrical parameters on the
thickness of the shell, [3], as well as in structurally inhomogeneous shells [4].

The twice-underlined summand appears due to the use of a refined expression for
the curvature K , which holds the first two terms of the expansion in a series by wx :

K � wxx

(1 + w2
x )

3/2
≈ wxx

(
1 − 3

2
w2
x

)
.
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Fig. 1 Geometry of the shell middle surface

x

elastic medium

h

R

Z

For geometrically nonlinear flexible shells, the squares of rotation angles asso-
ciated with the shell’s deflection have the same order as the linear deformations in
the material array [5], so that the second equation of the system (1) holds the triple
underlined summand which is usually discarded.

After transition to dimensionless variables U, W , X, T :

u � h2

l
U, w � hW, x � l X, t � l2

h

√
γ

g

1 − μ2

E
T (2)

and introduction of dimensionless small parameter ε and scaling factor q � O(1):

ε � h

R
, qε � h2

l2
, (3)

Equation (1) will take the form

UXX − q εUTT − μ

q WX + ε
12WXXX +WXWXX � 0,

q
12WXXXX + k1+1

q W + qWTT − μUX + q ε

12UXXX + μ

2W
2
X + μWWXX − q(UXWX )X−

− k2
q W

3 − 3q
2 W

2
XWXX − q2ε

8 (W 2
XWXX )XX � 0.

(4)

For further asymptotic simplification of the system (4) we will use the approach
proposed in [6, 7]. Using the fact that the linear part of the system (4) has solutions
in the form of plane harmonic waves
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U � U0 exp[i(�T − kX )] +U0 exp[−i(�T − kX )],

W � W0 exp[i(�T − kX )] +W0 exp[−i(�T − kX )], (5)

where the upper dash denotes complex conjugation, to determine the amplitudesU0,
W0 we have a homogeneous system of equations

12q(qε�2 − k2)U0 + ik(k2qε + 12μ)W0 � 0,

ikq(k2qε + 12μ)U0 + [k4q2 − 12q2�2 + 12(k1 + 1)]W0 � 0,

a non-trivial solution of which

U0 � i
k4q2 − 12q2�2 + 12(k1 + 1)

kq(k2qε + 12μ)
W0, (6)

exists if the dispersion relation is satisfied:

144q3ε�4 − 12q[k4q2ε + 12k2q + 12ε(k1 + 1)]�2 +

+ k6q2(12 − ε2) + 144k2(k1 + 1 − μ2) − 24k4qμε � 0. (7)

The solution of Eq. (7) with respect to �2 has two branches, high-frequency and
low-frequency ones. In this paper we will consider the low-frequency branch.

Asymptotic simplification of the function �2(k) and expression (6) at k � O(1),
carried out under the assumption

1

5
< μ <

1

3
,

1

500
< ε <

1

100
(8)

leads to approximate equations:

�2 ≈ k1 + 1 − μ2

q2
+

1

12
k4, U0 ≈ i

μ

kq
W0. (9)

The revealed relationship between the amplitudes of longitudinal and transverse
displacements (9) allows us to record the relationship between the displacements
themselves in the form

W ≈ q

μ
UX . (10)

Under the condition kq > μ we have |U0| < |W0|, that corresponds to predom-
inantly transverse (flexural-longitudinal) wave. Excluding with (10) the derivatives
of the function U included in Eq. (4) for the transverse displacement W , we obtain

1

12
WXXXX + c1W +WTT − c2W

2
X − 3

2
W 2

XWXX + c3WXX − c4(W
2
XWXX )XX − c5W

3 � 0,

(11)
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where T and X are dimensionless time and axial coordinates and coefficients

c1 � k1 + 1 − μ2

q2
, c2 � μ

2q
, c3 � εμ

12q
, c4 � qε

8
, c5 � k2

q2
, (12)

contain the physical and geometrical parameters of the shell, as well as the small
parameter ε � h/R, the ratio of the shell thickness to its radius.

3 Modulational Instability of Axisymmetric Flexural Waves

The construction of exact solutions for Eq. (11) is difficult, so we carry out its further
asymptotic simplification. It is known from the analysis of problems of nonlinear
acoustics that in media with cubic nonlinearity the effect of self-action of a wave
prevails over the effect of generation of higher harmonics. In this case, the solution
is found in the form of a traveling modulated wave with a slowly varying small
amplitude, resulting in the nonlinear Schrödinger equation (NLSE).

In the article [8] the Eq. (11) was transformed to the NLSE

i Aτ + ρ Aζζ + λ|A|2A � 0, (13)

in which the complex amplitude A is a function of slow time τ � α T and slow
coordinate ζ � α(X − νgT ); α is the small parameter, νg is the group velocity. It is
shown [8], that when the approximate inequality

k2 >
1

2
k4q2 (14)

is fulfilled, the transverse axisymmetric wave is subject to modulation instability:
small harmonic perturbations of its amplitude grow indefinitely over time [9].

The inequality (14) is obtained using the well-known Lighthill criterion, which
for NLSE in the form (13) has the form

ρλ > 0. (15)

The analysis shows [8], that the inequality ρ > 0 is satisfied for any k, while the
nonlinear term coefficientλ is positive for small k and negative for large k. Therefore,
the upper limit kmax of the modulation instability zone is in the region of λ-values
closing to zero. In this area, the correct description of the propagation of weakly
modulated nonlinear waves requires the retention of higher order nonlinear terms,
that is, requires the transition from NLSE to generalized NLSE (GNLSE).

We will use the method of many scales to derive the GNLSE [10]. Suppose that
the functionW depends on three variables: fast phase θ � kX−ω T , slow coordinate
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ξ � α X and slow time τ � α T , α << 1, so that the Eq. (11) is transformed by
substitutions of derivatives of the form

WTT → α2Wττ − 2αωWθτ + ω2Wθθ,

WX → kWθ + αWξ,

WXX → α2Wξξ + 2kαWθξ + k2Wθθ, (16)

and so on. Taking into account that the transformed Eq. (11) contains both quadratic
and cubic nonlinearity, we will look for its solution in the form

W � α[A(ξ, τ)eiθ + Ā(ξ, τ)e−iθ] + α2[B(ξ, τ)e2iθ + B̄(ξ, τ)e−2iθ + C(ξ, τ)] + O(α3),
(17)

including the first and second harmonics, as well as the average displacement
described by the summand C(ξ, τ).

We call the equation obtained from (11) after substitutions (16) and (17) as the
equation for the amplitudes. In this equation, we collect the terms proportional to eiθ

and equating the multiplier at α1 to zero, obtain the dispersion relation

ω � ±
√

1

12
k4 − c3k2 + c1. (18)

Limiting further to positive values of ω and k, for phase velocity v f and group
velocity vg we have

v f � ω

k
, vg � ∂ω

∂k
� (k2 − 6c3)k

6ω
. (19)

In the following orders of α we obtain

α2[i(Aτ + vg Aξ)]

+ α3
[

1

2ω

((
k2

2
− c3

)
Aξξ − Aττ +

(
c4k

6 − 3

2
k4 + 3c5

)
A2 Ā + 4c2k

2 ĀB

)]
+

+ α4
[
ik

ω

(
−1

6
Aξξξ − c4k

4A
(
4 ĀAξ + AĀξ

)
+ 3k2AĀAξ + c2(2B Āξ − ĀBξ + ACξ)

)]
+

+ O(α5) � 0. (20)

Expressing the second-order derivative with respect to time Aττ � v2
g Aξξ + O(α)

from the α2−order of (20), substitute it in α3−order. Then we express from the
α3−order the value of

E ≡ ( ĀB)ξ � − 1

4c2k2

[
ωωkk Aξξξ +

(
c4k

6 − 3

2
k4 + 3c5

)
(A2 Ā)ξ

]
+ O(α), (21)

and find the parameter γ in the identity
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ĀBξ ≡ γ E + (1 − γ)( ĀB)ξ − B Āξ + O(α), (22)

in such a way that after substitution (22) in α4—order of the Eq. (20) the coefficient
at Aξξξ would be equal to−(1/6)iωkkk . Turning to superslow time τ1 and the running
variable ζ :

τ1 � ατ, ζ � ξ − vgτ, (23)

for the Eq. (20) we have

α3

[(
i Aτ1 +

ωkk

2
Aζζ +

1

2ω

(
c4k

6 − 3

2
k4 + 3c5

)
A2 Ā +

2

ω
c2k

2 ĀB

)]
+

+ α4

[
i

(
−ωkkk

6
Aζζζ + d1AĀAζ + d2A

2 Āζ + d3B Āζ + d4 ĀBζ +
kc2
ω

ACζ

)]
+

+ O(α5) � 0. (24)

In the Eq. (24), we introduced short notations for derivatives ωkk �
∂2ω/∂k2,ωkkk ≡ ∂3ω/∂k3; the coefficients d1, . . . , d4 depend on the wave num-
ber k and the coefficients c1, . . . , c5 are not given here because of the bulkiness.

To express in A(ξ, τ) the function B(ξ, τ), which is included in the α4—order
of (24), we collect all the summands proportional to e2iθ in the equation for the
amplitudes. After switching to the variables (23), taking into account the equalities
(18) and (19), we have

α2
[
c2k

2A2 + (k4 − 3c1)B
]
+ α3

[−2i(c2k AAζ + k3Bζ)
]
+ O(α4) � 0. (25)

Higher orders in (25) are not needed because in (17) the function A is multiplied
by α, while the functions B i C are multiplied by α2.

We will look for a solution of (25) in the form

B � B0(ζ, τ1) + i α B1(ζ, τ1) + O(α2). (26)

Substituting (26) in (25), neglecting the termswith the order aboveα3 and equating
the real part to zero, we find

B0 � − c2k2

k4 − 3c1
A2. (27)

Substituting (27) in the equation for the imaginary part, we have

B1 � −2kc2(k4 + 3c1)

(k4 − 3c1)2
AAζ. (28)
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To express in A(ξ, τ) the function C(ξ, τ), which is included in the v α4- order of
(24), let us collect in the equation for the amplitudes all the terms that do not contain
an exponential factor:

α2[−2c2k
2AĀ + c1C] + α3[2ic2k( ĀAζ + AĀζ)] + O(α4) � 0, (29)

from where we obtain

C � 2c2k

c1
[k AĀ − α i( ĀAζ − AĀζ)] + O(α2). (30)

Substituting (27) and (28) in (26), and then substituting (26) and (30) in (24), we
obtain the GNLSE for the amplitude A(ξ, τ) of the first harmonic (17):

i Aτ1 + ρ Aζζ + λ A2 Ā + iρ1Aζζζ + i λ1A(AĀ)ζ + i λ2AĀAζ � 0, (31)

where

ρ � ωkk

2
, λ � 1

2ω

(
c4k

6 − 3

2
k4 + 3c5 − 4k4c22

k4 − 3c1

)
, ρ1 � −αωkkk

6
,

λ1 � 12α
[
−c1c4k

17 +
(
18c1c3c4 + c22

)
k15 −

(
18c21c4 + 12c22c3 + 9c1c3

)
k13−

− c1
(
(108c3c4 − 18)c1 − c22 − 3c5

)
k11 − 9c1

(
15c21c4 + 6c1c3 + 2c3(6c

2
2 − c5)

)
k9−

− c21

(
(108 − 162c3c4)c1 + 72c22 + 18c5

)
k7 − 9c21

(
24c21c4 + 9c1c3 + 4c3(2c

2
2 − 3c5)

)
k5+

+ 27c31(6c
2
1 + c5)k

3 − 162c31c3c5k
]
/Q,

λ2 � −α kc1[12c4k
16 − 9(1 + 20c3c4)k

14 + 18(9c3 + 8c1c4)k
12+

+ 6
(
4c22 − 27c1 − 3c5 + 180c1c3c4

)
k10 − 3

(
4c1(99c1c4 + 81c3) + 12c3(4c

2
2 − 3c5)

)
k8+

+ 9c1
(
45c1(3 − 4c3c4) + 8c22 + 12c5

)
k6 + 162c1

(
12c21c4 + 9c1c3 − 4c3(2c

2
2 + c5)

)
k4−

− 54c21
(
−32c22 + 36c1 + 3c5

)
k2 + 81c21c2c5]/Q,

Q � √
3(k4 − 12c3k

2 + 12c1)
3/ 2c1(k

4 − 3c1)
2. (32)

The Eq. (31) has various classes of exact solutions, in particular, a plane wave

A � A0e
i(K ζ−� τ1) (33)

with complex amplitude A0 and frequency � that satisfies the nonlinear dispersion
relation

� � (ρ − ρ1K )K 2 − (λ − λ2K )AĀ. (34)
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Let’s investigate the stability of the solution (33) to small periodic perturbations.
To do this, following [11], we will look for a solution to GNLSE (31) in the form

A � (1 + δ · E)A0e
i(K ζ−� τ1), (35)

where δ is the small real parameter and E � E(ζ, τ1) is the complex amplitude of
the perturbation. Substituting (35) in (31) and linearizing with respect to E, we have

i Eτ1 + (ρ − 3ρ1K ) + Eζζ + iρ1Eζζζ + (λ − λ2K )A0A0(E + Ē)+

+ iλ1A0A0(E + Ē)ζ + i(λ2A0A0 − 2 ρ K + 3ρ1K
2)Eζ � 0. (36)

We will look for a solution to the Eq. (36) in the form

E � E1e
i(κζ−wτ1) + E2e

−i(κζ−w̄τ1), (37)

where E1, E2 are complex constants, κ is the real wave number, w is the frequency
of perturbation, which can be complex. The substitution (37) in (36) leads us to the
system of homogeneous equations for E1, E2:

(a − b − c) E1 + (d − c) E2 � 0,

(d + c) E1 + (a + b + c) E2 � 0, (38)

where

a � κ3ρ1 + κ
[
3ρ1K

2 − 2 ρ K − (λ1 + λ2)A0A0
]
+ w,

b � κ2(ρ − 3ρ1K ), c � (λ2K − λ)A0A0, d � −κλ1A0A0. (39)

Taking into account that A0A0 � |A0|2, all values contained in the right parts
of (39) are real, with the exception, maybe, of frequency w. If the right part of the
compatibility condition

a2 � b2 + 2bc + d2 (40)

of the system (38) is negative, then the frequency w must be complex and the initial
perturbations can grow with time. The condition for the right part of (40) to be
negative after the substitution (39) takes the

2(ρ − 3ρ1K )(λ − λ2K ) >
κ2

|A0|2
(ρ − 3ρ1K )2 + |A0|2λ2

1. (41)

When the inequality (41) is satisfied,GNLSE solution (33) ismodulation unstable.
In addition to the coefficients of the Eq. (31), this inequality contains the amplitude
A0 and the wave number K of the equality (33) together with the wave number κ of
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modulation perturbation (37). If we put ρ1 � λ1 � λ2 � 0, then the GNLSE (31) is
reduced to NLSE (13) and the inequality (41) under the additional condition κ � 0
turns into the Lighthill criterion (15).

4 Discussion of the Results

Let’s take the following values of constant parameters as basic ones: α � 1/10,
k1 � k2 � 1,μ � 1/4, q � 1, ε � 1/100. Figure 2 for the case A0 � 1, κ � 0 shows
the dependence of the difference between the left and right sides of the inequality
(41) i (15) on the wave number k. Areas of positive ordinate values correspond to the
modulation instability of the solution. Neglecting the narrow resonance region of the
first and second harmonics of the solution (17) in the neighborhood krez ≈ 1.55, it
can be argued that the upper limit kmax of the instability zone depends significantly
on K : for positive K the zone is narrowed, for negative K it is expanded.

Fig. 2 Differences between
left and right sides of
inequalities (41) (solid line)
and (15) (dashed line) at
a K � 1 and b K � −1
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Fig. 3 Instability zone in the coordinates (k, K )

On the contour plot (Fig. 3) of the instability zone in the coordinates (k, K ) it can
be seen that at negative K the lower limit kmin also shifts and in general with an
increase in |K | the width of the zone decreases.

The size of the instability zone is very sensitive to the value of the parameter k2 of
the elastic medium surrounding the shell. In Fig. 4, you can see that with increasing
in k2 the upper boundary of zone kmax tends to krez ; with reduction in k2 the zone is
narrowed and when you reach k2 � 0 the zone disappears. Thus, for a linear elastic
medium (k2 � 0) and for a nonlinear elastic one with a nonlinearity of the “rigid”
type (k2 < 0) modulation instability is not observed.

Figure 5 shows the dependence of the upper boundary kmax of the instability zone
on the amplitude A0 of the first harmonic: the zone narrows with A0 decreasing.

5 Conclusions

The system of element motion equations of the Kirchhoff–Love cylindrical shell
interacting with a nonlinear elastic medium is reduced to single 4th-order nonlin-
ear quasi-hyperbolic equation. For the slowly varying amplitude of small flexural-
longitudinal axisymmetric waves, a generalized nonlinear Schrödinger equation is
obtained. The modified criterion of the modulation instability of such waves allowed
us to significantly clarify the size of the instability zone for different combinations
of the shell’s geometric and physical parameters. It is shown that the modulation
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Fig. 4 Difference between left and right sides of inequality (41) at k2 � 2 (solid line), k2 � 0
(dashed line) and k2 � −1 (dotted line) when a K � 1 and b K � −1

instability is absent both in the case of linear and in the case of a rigid nonlinear
elastic law of deformation of the medium surrounding the shell.
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Fig. 5 Dependence of kmax
on A0 at K � 1, κ � 1 (solid
line) and at K � 1, κ � 0.1
(dashed line)
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Dynamic Research of Shape Memory
Alloys

A. M. Bragov, L. A. Igumnov, A. Yu. Konstantinov, A. K. Lomunov
and A. I. Razov

The results of dynamic tests of the TiNi and CuAlNi shape memory alloys are given.
Compressive and tensile tests of the TiNi alloy were carried out in the temperature
range of 20–300 °C. A significant change was revealed in the elastic modulus before
the dislocation plastic flow and the dislocation yield stress with a change in the test
temperature in the range of the reverse martensitic transformation.

For the CuAlNi alloy, the effect of the strain rate on the phase yield stress and
on the phase and dislocation moduli of elasticity was insignificant. In this case the
value of the dislocation yield stress increases markedly with increase in the strain
rate. Using the CuAlNi alloy as an example, the method for determining the duration
of the reverse martensitic transformation was implemented and the shape recovery
diagram during this transformation was constructed.

1 Introduction

Thanks to unique properties of shape memory alloys (SMA), namely high corrosion
resistance and strength, good strain recovery parameters, high recovery stresses,
excellent biocompatibility, high damping ability, they are successfully used in many
areas of engineering [1, 2], medicine [3–5], space technology [2, 6, 7]. Nonlinear
elastic properties of these alloys are used to create energy-absorbing devices for
seismic protection of buildings and structures [8–11] as well as for various drives
and converters [12, 13].
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Shape memory alloys belong to a group of materials that, due to phase trans-
formations, can recover their original shape when heated. Examples of such alloys
are Ag-Cd, Au–Cd, Cu–Al–Ni, Cu–Sn, Cu–Zn–(X), In-Ti, Ni–Al, Ni–Ti, Fe–Pt,
Mn–Cu, Fe–Mn–Si and others. The shape memory effect is due to their temperature-
dependent crystal structure. When the SMA is below phase transition temperatures it
has a crystallographywith low yield stress. In this state thematerial may be deformed
into other shapes by relatively small force. A new form is maintained, provided that
the material remains below the temperature of reverse transformation. When heated
above this temperature, the material returns to its parent structure and recovers its
original shape.

Thus, in the typical operating temperature range SMAs have two phases with the
different crystal structure each, and therefore have different properties. One of them is
the high-temperature phase called austenite (A), and the other is the low-temperature
phase called martensite (M). Austenite (usually cubic) has a crystal structure differ-
ent from martensite (tetragonal, rhombic or monoclinic). Transformation from one
structure to another is not a diffusion of atoms, but a distortion of the crystal lattice.
Such a transformation is known as martensitic transformation. To initiate such trans-
formations in the material either the mechanical stress or the temperature change can
be used.

A set ofmartensitic variants can exist in two forms. The first is the twinnedmarten-
site (Mt) which is formed by a combination of “self-sufficient” martensitic variants.
The second is the deterministic or reoriented martensite, in which the characteristic
variant (Md) prevails. The reversible phase transformation from austenite (parent
phase) to martensite and vice versa is the basis of the unique behavior of SMA. This
behavior is found at the temperature range of Mf –Af which are the temperatures of
the ends of the direct and reverse martensitic transformations respectively.

The transformation temperatures increase with increasing of the load magnitude,
regardless of loading type (tension or compression). When an uniaxial tensile load
is applied with the corresponding stress σ, the new transformation temperatures are
represented as Mσf , Mσs, Aσs and Aσf for the martensitic finish, martensitic start,
austenitic start and austenitic finish temperatures, respectively.

If the material temperature is slightly higher than Af then, after loading the mate-
rial, accompanied by direct martensitic transformation, the complete recovery of the
shape occurs due to reverse martensitic transformation during unloading. This mate-
rial behavior is called the superelastic effect. The associated change in macroscopic
shape due to the applied load is reflected in the resulting stress-strain curve as shown
schematically in Fig. 1. The stresses, at which the initiation and the completion of the
direct martensitic transformation during loading occur, are marked as σMs and σMf

respectively. Similarly, when the SMA is unloading, the stresses at which the reverse
transformation into austenite is initiated and completed are marked, respectively, as
σAs and σAf . If the material in the austenitic phase is tested above theMs temperature
but below the Af temperature, only a partial recovery of the shape is observed.

Now there are the papers on study of structural features, martensitic transfor-
mations [14–16], mechanical properties [17–22] and behavior modeling of SMA
[23–25]. However, as noted in [20], the description of the mechanical behavior of
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Fig. 1 Schematic superelastic σ–ε diagram

SMA in awide range of strain rates requires the knowledge of empirical dependencies
of the deformation characteristics on loading parameters.

One of the most common alloys with shape memory is titanium nickelide (TiNi)
which has wide application in various fields from medicine to space technology.
However many applications require the characteristics titanium nickelide does not
hase. For example, the narrow hysteresis which allows deformation under almost
constant stress, or a perfect shape memory at high temperatures are required. In this
regard, it is of interest to consider copper-based alloys which both have the above
functional properties and also are less expensive.

An important feature of SMA is the possibility to generate the recovery stresses
(the ability to develop stresses under constrained strain conditions, due to the shape
memory effect during heating of predeformed specimens). This process is widely
used in variousmechanical couplings and control devices, so the study of its response
time to high-strain-rate loading is very important.

In this paper the results of our study on the behavior of TiNi alloy during high-
strain-rate deformation in the temperature range of the reversible martensitic trans-
formation and the deformation diagrams of CuAlNi alloy at the strain rates of 2000
and 6000 s−1 are represented. In addition, for the CuAlNi alloy the time of the
reverse martensitic transformation is estimated and the shape recovery diagram is
constructed.
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2 Specimens for Testing

For compression tests of the TiNi alloy the specimens in the form of short cylinders
with 8 mm in diameter and 4 mm in height were used. For high-strain-rate tension
the cylindrical specimens were used with threaded heads with the diameter and the
length of theworking part of 5mmand 10mm respectively. All specimensweremade
of hot-rolled TiNi-alloy bars. To reduce residual stresses and create an equilibrium
structure the specimens were annealed at 500 °C for 1 h and then cooled in a furnace.

The temperatures of the direct and reverse martensitic transformations of the
alloy were determined in the Mettler Toledo 822e differential scanning calorimeter
(DSC). The rate of cooling and heating of the samples in the calorimeterwas 10 °/min.
The results of determining the temperatures of martensitic transformations by the
DSC method are presented in Fig. 2. As can be seen, after aging at 500 °C for 1 h
and subsequent cooling in the furnace the alloy had the following temperatures of
reversible martensitic transformation Ms � 74 °C, Mf � 32 °C, As � 74 °C, Af �
98 °C.

These features of the structural-phase state of the alloy after aging should have
affected its mechanical behavior under quasistatic and high-strain-rate tension. To
separate the contributions of the structure and high strain rate into mechanical behav-
ior of the alloy we conducted quasistatic tension of the specimens at the strain rate of
10−3 s−1, which was most often used to study the mechanical behavior of quenched
single-phase TiNi alloys under quasistatic tension.

Figure 3a shows the typical diagrams of quasistatic tension of the TiNi alloy
specimens at the temperatures of 20 and 130 °C. The choice of these diagrams

Fig. 2 Temperature dependence of heat release and heat absorption of TiNi alloy after aging at
500 °C for 1 h and cooling in a furnace
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Fig. 3 Typical diagrams of quasistatic a and dynamic b TiNi alloy loading in martensitic (at 20 °C)
and in austenitic (at 130 °C) states

is due to the fact that, according to the characteristic temperatures of martensitic
transformations, the specimens at these test temperatures were in the martensitic
and austenitic states, respectively. A distinctive feature of these diagrams from the
well-known TiNi binary alloys diagrams is the absence of the stress peak usually
observed at the beginning of the second stage of quasistatic tension and associated
with the formation, growth and fusion of localized deformation zones. If we turn to
the deformation diagrams under high-strain-rate loading at the same temperatures,
which are shown in Fig. 3b, in this case the stress peak is clearly visible. The diagrams
highlight three stages of deformation (I, II, and III), the choice of which is also based
on the different nature of the stress change.

In addition, the specimens of the CuAlNi alloy in the martensitic state (ρ �
7.2 g/cm3, E � 65 GPa, σt � 50 MPa, Tpr � 1500 °C) in the form of tablets with
6 mm in diameter and 3 mm in height were made to study them under compression.

3 Methods of Testing

The dynamic tests of TiNi and CuAlNi alloys at the strain rate of (1–6) × 103 s−1

were carried out on the installations that implement the split Hopkinson pressure
bar method [26] with measuring bars of 10 mm in diameter (compression) and
20 mm (compression and tension). The tensile tests were carried out according to
the Nicholas scheme [27, 28].

Toprovide the required test temperature, the coaxial electric heaterwas usedwhich
was placed at the ends of the measuring bars and the specimen between them. The
specimen temperature was measured by a miniature thermocouple. When testing the
TiNi alloy, the test temperatures near the temperatures of martensitic transformations
were achieved by two ways. In the first, the specimens were heated to the selected
temperature from room temperature. In the second, the specimens were preheated
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Fig. 4 The schemeof the experiment to determine the time of the reversemartensitic transformation
(a) and pulses recorded in the measuring bars (b)

to 180 °C to convert them into the austenitic state, and then they were cooled to the
required test temperature. This made it possible to change the phase composition at
the same temperaturewithin the interval of reversiblemartensitic transformations and
to compare the mechanical response of the alloy to high-strain-rate and quasistatic
tension, depending on its phase state.

The quasistatic tension of TiNi specimens at the strain rate of 10−3 s−1 under
the same temperatures was carried out in the Lloyd 30 K Plus universal mechanical
testing machine equipped with a heat chamber. The residual strain was 12–25%.

To determine the time of duration of the reverse martensitic transformation and
to plot the σ-ε curve in the process of shape superelastic recovering, a preformed
specimen of CuAlNi alloy was placed between the measuring bars and heated in the
temperature range of the reversemartensitic transformation. During the heat-induced
transformation, the specimen recovered its shape rapidly. This process was accompa-
nied by pulsed loading of the measuring bars ends in contact with the specimen. As a
result, the elastic deformation waves in the bars were recorded by strain gauges. The
scheme of the specimen layout as well as pulses registration are shown in Fig. 4a.
Figure 4b shows the recorded strain pulses in the measuring bars.

The proposed method allowed us to estimate the duration of the process of recov-
ering the original (parent) shape during heating.

4 Results of TiNi Alloy Testing

Before testing the alloy was in the martensitic state.
Tests at elevated temperatures were carried out as follows. The specimen was

placed between the end faces of measuring bars, then heated to a temperature of
+180 °C and then cooled to the required test temperatures (+137, +117, +87 °C).
After that the specimen was subjected to high-strain-rate deformation. In addition,
the tests were performed when the specimen was heated to +300 °C. The selected
test temperatures correspond to the dilatogram points of this alloy (Fig. 5).
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Fig. 5 TiNi alloy dilatogram

Fig. 6 Dynamic deformation diagrams of TiNi alloy under compression

Figure 6 shows the deformation curves of the TiNi alloy under compression at
a strain rate of 2000 s−1, obtained under various temperature conditions. The effect
of the test temperature and of the way of the test temperature achievement on the
phase yield stress, phase modulus and phase hardening modulus is insignificant. An
increase in the test temperature leads to significant decreases in the dislocation yield
stress and in dislocation modulus of elasticity. At the temperature of +300 °C there
is no phase transition.

Figure 7 shows the deformation curves of TiNi alloy under compression and
tension at the strain rates of 2500 and 1000 s−1 respectively.
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Fig. 7 TiNi alloy deformation diagrams under compression and tension

To analyze the effect of the phase composition on themechanical behavior of TiNi
quasistatic and high-strain-rate tension of the alloy were carried out at the tempera-
tures of 60, 77, 87 and 100 °C. To reach these test temperature two ways were used.
In one case the specimens were heated from the room temperature (martensitic state)
to the temperature at which the test deformation was performed. In the other case the
material was heated to 180 °C to transform it completely into the austenitic state, and
then the specimen was cooled to the specified temperatures at which the deformation
was performed. This approach is due to the fact that at the same temperature the alloy
could be in the martensitic, austenitic or in the mixed state with a different content
of the martensitic and austenitic phases depending on how the test temperature was
reached. The phase composition of the alloy at these temperatures can be estimated
as follows. At 60 °C in the first case (when the specimen was heated from room
temperature) the alloy was in a stable martensitic state, in the second case (preheat-
ing to 180 °C and then cooling) the alloy contained the austenitic and martensitic
phases in approximately equal proportions. At 77 °C in the first case the alloy was in
martensitic state with small amount of austenite, while in the second case it was in
austenitic premartensitic state probably with small amount of martensite. At 87 °C in
the first case the alloy contained martensitic and austenitic phases in approximately
equal proportions, while in the second case it was in the austenitic premartensitic
state. At 100 °C in the first case the alloy was in austenitic state with small proportion
of martensite, while in the second case it was in austenitic premartensitic state.

Figure 8 shows the quasistatic and dynamic stress-strain diagrams of the alloy
with different ways to achieve the temperature at which the loading was performed,
namely the heating from the room temperature to the test temperature or the cooling
from 180 °C to the test temperature. These diagrams show that the lengths of first
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Fig. 8 Quasistatic (a) and dynamic (b) deformation diagrams of the TiNi alloy under tension when
two modes to achieve the required temperature were used

stages on the curves of quasi-static tension of martensite were determined by the
transformations that took place under stress.

It is revealed that the phase and dislocation yield stresses behave differently when
the test temperature increases, but they have approximately the same values at the
room temperature. The phase yield stress continuously increases in the dynamic
case, and in the quasi-static case it firstly decreases to a certain minimum and only
then begins to increase. This means that the processes of twinning, detwinning and
reorientation of the martensitic phase are very sensitive to the loading rate. And the
value of the phase yield stress at high-strain-rate loading is always higher than that
at quasistatic loading.

The high tensile rate has influence on the dependence of the phase yield stress
on the test temperature, both for martensite and for austenite, and specifies at what
temperature the dislocation mechanism of deformation begins to act.

5 Results of CuAlNi Alloy Testing

The tests of the CuAlNi alloy in the martensitic state under compression at room
temperature were carried out using an installation with measuring bars of 10 mm in
diameter. Because the phase transformation temperatures for this alloy were about
+150 °C, the specimens during loading received the residual strain of 8%(at strain rate
of 5× 103 s−1) to 10% (at strain rate of 9× 103 s−1). The phase transformation in this
case occurred under the applied stress. The above-mentioned increased residual strain
was associated with plastic deformation of the material after phase transformation.
Repeated loading of such specimen did not reveal a noticeable residual strain after
loading. Annealing at a temperature of +170 °C caused complete recovering of
the original specimen shape. Double reloading of the annealed specimen showed a
similar character of deformation. Figure 9 shows typical σ-ε curves (solid lines) and
the corresponding dependences of the change in strain rate (dashed lines in the lower
part of the figure), where 1 is the 1st cycle, initial state of the specimen; 2 is the 2nd
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Fig. 9 Dynamic diagrams of CuAlNi alloy before and after annealing at a strain rate of ~6000 s−1

Table 1 Mechanical characteristics of the CuAlNi alloy

No Striker
velocity,
m/s

Residual
strain, %

Load
branch
module,
MPa

Module
of
hardening
site, MPa

Unloading
branch
module,
MPa

Conventional yield
stress, MPa

1 24.6 8.4 5123 404 48,545 124.8

2 25.0 0.4 28,468 4842 55,221 1012.4

3 25.8 8.4 4436 311 49,225 122.6

4 25.8 0.4 29144 3497 43,560 1041.0

cycle, initial state; 3 is the 1st cycle, the specimen after annealing; 4 is the 2nd cycle,
after annealing.

The residual strain of the specimens after testing was 8.4% for the specimens in
the initial state and after annealing, as well as 0.4% for the specimens after their
preliminary elastoplastic deformation in the initial state and after annealing.

On the basis of the obtained stress-strain curves the elastic moduli in the parts of
active loading and unloading and the hardening modulus, as well as the conventional
yield stress were determined (see Table 1).

Because there is practically no a section of ideal yield of 8–9% on the repeated
loading diagrams (curves 2 and 4), unlike the first cycles (curves 1 and 3), the
maximum achieved stress in the specimen is accepted as the conventional yield
stress for curves 2 and 4.

Under other loading modes (according to the strain rate) the similar results were
obtained. The obtained σ-ε curves and corresponding dependences of the change in
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Fig. 10 Mechanical behavior of CuAlNi alloy during compression in the initial state (a) and after
annealing (b)

the strain rate of CuAlNi alloy in the initial (martensitic) state and after annealing of
deformed specimens are shown in Fig. 10.

To determine the duration of the reverse martensitic transformation and to plot
the diagram σ–ε in the process of unloading and shape recovering, a predeformed
specimen of the CuAlNi alloy was placed between the measuring bars and then
heated in the temperature range of reversemartensitic transformation (Fig. 4a).When
constructing the recovery diagram (the lower curve in Fig. 11), displacements and
forces on the two ends of the specimen were determined on the basis of the strain
pulses εi(t) (i � 1, 2) in the measuring bars (Fig. 4b).

ui (t) � c

t∫

0

εi dt,

Pi (t) � E A εi (t),

where c,E andA are the sound speed, themodulus of elasticity and the cross-sectional
area of the measuring bars, respectively. Then, using the Kolsky formulas [27], the
engineering stress and strain of the specimen were calculated as shown below

σn(t) � P

A0
S

� P1 + P2
2A0

S

εn(t) � u2(t) − u1(t)

L0
,

where A0
S and L0 are the initial area and the length of the specimen, respectively.

Figure 11 shows the change in stress and in strain of the specimen in time
(Fig. 11a), and the diagram of the shape recovery when the specimen was heated
(lower curve) after active loading (upper curve) (Fig. 11b). It is clearly seen that
the deformation in martensitic state under applied dynamic stress takes about 20 μs



144 A. M. Bragov et al.

Fig. 11 Parameters of the deformation and shape recovery

in a time, whereas the reverse martensitic transformation (martensite → austenite)
(recovery of the shape) with slow heating of the specimen occurs quickly taking
about 220 μs.

6 Conclusion

Using the Kolsky technique, we obtained the diagrams of deformation of TiNi alloys
with the shape memory effect in the temperature range of the reverse martensitic
transformation, as well as that of CuAlNi alloy at room temperature. Using the
CuAlNi alloy as an example, we developed a method for determining the duration of
the reverse martensitic transformation and constructed a diagram of the alloy shape
recovery.
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Methods of Finding of Exact Analytical
Solutions of Nonautonomous Nonlinear
Klein-Fock-Gordon Equation

A. N. Bulygin and Yu. V. Pavlov

Abstract Methods of finding of exact analytical solutions of nonautonomous non-
linear Klein-Fock-Gordon (NKFG) equation are presented. They are based on the
principles of construction of functionally invariant solutions of the wave equation.
Solutions are sought as a composite function. The argument of the composite func-
tion (ansatz) is solution of the special equation. The choice of ansatz defines a type
of the solution. Examples of exact analytical solutions of NKFG equation are given.

1 Introduction

The NKFG equation

Uxx +Uyy +Uzz − Utt

v2
= F(U ) (1)

plays a fundamental role in the theoretical and applied physics, mechanics and biol-
ogy. Here the lower index designates a partial derivative in respect to the corre-
sponding variable, and F(U ) is an arbitrary function. The most extensively studied
are cases with F(U ) = exp±U, sinU, sinhU [1, 2]. These equations are used in
the field theory and they are modeling various physical phenomena. However, usu-
ally it is supposed that media and external influences are uniform. More adequately
physical processes are described by the nonautonomous NKFG equation

Uxx +Uyy +Uzz − Utt

v2
= p(x, y, z, t) F(U ). (2)

Here p(x, y, z, t) is some function characterizing properties of the medium or the
external influences. Practically analyticalmethods of solution of theEq. (2) are absent
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in the literature. The qualitative analysis of solutions of the Eq. (2) is made and its
numerical solutions are provided [3–5]. In the theory of linear waves the function
p(x, y, z, t) can describe concentrated or distributed inhomogeneities of the contin-
uous medium which cause localization of elastic waves [6–8]. Below are presented
proposed methods of finding of nonautonomous NKFG equation exact analytical
solutions based on the ideas and methods of finding of functionally invariant solu-
tions of the wave equation.

The idea of the existence of functionally invariant solutions was suggested by
Jacobi [9]. Forsyth [10] found functionally invariant solutions of the Laplace equa-
tion, wave equation, and of the Helmholtz equation. In studying of electromagnetic
waves, Bateman [11] fundamentally and consistently developed the Jacobi idea as
applied to the wave equation. Sobolev and Smirnov [12–15] successfully used the
method to construct functionally invariant solutions to solve problems of diffraction
and sound wave propagation in uniform and layered solid media. Erugin [16] made
a significant contribution to developing the theory of this method. Functionally-
invariant solutions of both autonomous and nonautonomous NKFG equation partic-
ularly sine-Gordon equation were obtained by authors in [17–21].

2 Methods of Obtaining of Analytical Solutions of
Nonautonomous Klein-Fock-Gordon Equation

We will seek solutions of nonautonomous NKFG Eq. (2) in the form of composite
function U = f (W ). Then Eq. (2) is as follows

f ′′
[
W 2

x + W 2
y + W 2

z − W 2
t

v2

]
+ f ′

[
Wxx + Wyy + Wzz − Wtt

v2

]
= p F[ f (W )].

(3)
Here and elsewhere prime denotes ordinary derivative with respect to the argument.
Three obvious propositions could be made on the basis of (3).

Proposition 1 If function W satisfies to equations

W 2
x + W 2

y + W 2
z − W 2

t

v2
= 0, Wxx + Wyy + Wzz − Wtt

v2
= p(x, y, z, t), (4)

then solution of Eq. (2) is given by inversion of the integral

∫
d f

F( f )
= W (x, y, z, t). (5)

Proposition 2 If function W satisfies to equations

W 2
x + W 2

y + W 2
z − W 2

t

v2
= p(x, y, z, t), Wxx + Wyy + Wzz − Wtt

v2
= 0, (6)
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then solution of Eq. (2) is given by inversion of the integral

∫
d f√
E + V

= ±√
2W (x, y, z, t). (7)

Here F(U ) = V ′(U ) and E is constant of integration.

Proposition 3 If function W satisfies to equations

W 2
x + W 2

y + W 2
z − W 2

t

v2
= p(x, y, z, t)P(W ),

Wxx + Wyy + Wzz − Wtt

v2
= p(x, y, z, t)Q(W ),

(8)

then f (W ) will be the solution of the second order ordinary nonlinear differential
equation

P(W ) f ′′ + Q(W ) f ′ = F( f ). (9)

Here P(W ) and Q(W ) are arbitrary functions.

In general case, i.e. for arbitrary functions P(W ), Q(W ) and F( f ), solutions of
the Eq. (9) are not obtained. Its exact analytical solution can be found if functions of
P(W ) and Q(W ) are connected by a condition

P ′(W ) = 2Q(W ). (10)

Taking into account (10) the Eq. (9) takes the form

d

dW

[
P(W )( f ′)2 − 2V ( f )

] = 0,
dV

d f
= F( f ). (11)

Its solution is sought in quadratures

∫
d f√

V ( f ) + E
= ±√

2
∫

dW√
P(W )

. (12)

Here E is an integration constant. The solution can be found by the inversion of the
first integral.

3 Exact Analytical Solutions of NKFG Equation

Suppose that anzatz

W = x L(α) + y M(α) + z N (α) − tv2D(α) + G(α). (13)
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Here L(α), M(α), N (α), D(α), G(α) are arbitrary functions of α, and value α is
a function of coordinates and time, which is implicitly set by the linear algebraic
equation

x l(α) + y m(α) + z n(α) − tv2d(α) + g(α) = 0. (14)

Suppose that

l(α) = Lα, m(α) = Mα, n(α) = Nα, d(α) = Dα, g(α) = Gα. (15)

Here the lower index designates a derivative with respect to an argument. The con-
dition (15) allows in a simple form to write down partial derivatives of ansatz W of
the first and second order

Wx = L , Wy = M, Wz = N , Wt = −v2D,

Wxx = − L2
α

β
, Wyy = −M2

α

β
, Wzz = −N 2

α

β
, Wtt = −v4 D

2
α

β
, (16)

β = x Lαα + y Mαα + z Nαα − tv2Dαα + Gαα.

Taking into account (16) the Eq. (3) takes form

f ′′R − f ′ S
β

= pF( f ), (17)

R = L2 + M2 + N 2 − v2D2, S = L2
α + M2

α + N 2
α − v2D2

α. (18)

The arbitrary functions L , M , N , D,G can be chosen in such way that the conditions
formulated in Propositions 1–3, will be satisfied and then it is possible to find the
exact analytical solution of the NKFG equation on the basis of the corresponding
assumption. Not focusing on finding of a general form of functions L , M , N , D, G
we will give examples of exact analytical solutions of the NKFG equation which are
found on the basis of Proposition 1:

1. L = α, M = 1

α
, N = −√

2, vD = α + 1

α
, G = 0,

α2 = y − vt

x − vt
, W = 2

√
(x − vt)(y − vt) − √

2z, p = −1√
(x − vt)(y − vt)

,

(19)

2. L = 1

cosh α
, M = tanh α, N = 0, vD = 1, G = 0,

α = log
y + √

x2 + y2

x
, W =

√
x2 + y2 − vt, p = 1√

x2 + y2
,

(20)
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3. L =
√
2α

1 + α2
, M =

√
2α

1 + α2
, N = 1 − α2

1 + α2
, vD = 1, G = 0,

α2 = ρ − z

ρ + z
, ρ =

√
z2 + (x + y)2

2
, W = ρ − vt, p = 1

ρ
,

(21)

For the cases (19)–(21) the condition of applicability of the Proposition 1 is satisfied
(R = 0). Therefore, accepting that

p(x, y, z, t) = − S

β
, (22)

the solution of Eq. (2) can be found by inversion of the integral (5).
As an example we will consider a case

F( f ) = −b sinh 2 f, b > 0. (23)

Then

f = 1

2
log

cosh(bW )

sinh(bW )
. (24)

In the Fig. 1 and 2 graphs of the functions p(x, y, z) and U (x, y, z, t) = f (W ) are
given for the solutions (20), (21). For the case (20) functionW has the form of cylin-
drical perturbations, which diameter increases over time. For the case (21) function
W at t = 0 has form of a soliton which is divided into two soliton perturbation over
time, the last extend along XOY plane to the opposite sides.

We will give examples of exact analytical solutions which are constructed on the
basis of the Proposition 2 (S = 0):

4. L = sin α, M = − cosα, N = 1, vD = α, G = 0, p = 2 − α2,

tan α = yvt + x
√
x2 + y2 − v2t2

xvt − y
√
x2 + y2 − v2t2

, W =
√
x2 + y2 − v2t2 + z − vtα,

(25)
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Fig. 1 The function p (at the left) and the solution 2 (see Eq. (20)) with z = 0, t = 1 (at the centre)
and t = 3 (at the right)
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Fig. 2 The function p (at the left) and the solution 3 (see Eq. (21)) with z = 0, t = 2 (at the centre)
and t = 4 (at the right)

5. L = cosh α, M = α, N = 0, vD = sinh α, G = 0, p = 1 + α2,

tanh α = vt
√
x2 + y2 − v2t2 − xy

x
√
x2 + y2 − v2t2 − yvt

, W =
√
x2 + y2 − v2t2 + yα,

(26)

6. L = sin−1 tanh α, M = log cosh α, N = 0, vD = α, G = 0,

tanh α = vt
√
x2 + y2 − v2t2 − xy

y
√
x2 + y2 − v2t2 − xvt

, W = x sin−1 tanh α + y log cosh α − vtα,

p = [
sin−1 tanh α

]2 + log2 cosh α − α2. (27)

The function f can be found by the inversion of integral (7) for the solutions con-
structed on the basis of the Proposition 2. For the case (23) one has

f = sinh−1

[
k

k ′ cn

(√
2b

k ′ W, k

)]
, k =

√
E

E + b
, k ′ =

√
1 − k2. (28)

In Fig. 3 graphs of the functions p(x, y, z, t) andU (x, y, z, t) are given for the solu-
tion (25) with E = 1, v = 1, b = 0.1, z = 0. The solutions are real out of the domain
x2 + y2 < v2t2. For t = 0 the solutions have the form (top view) of concentric rings
which transform into spirals with growth t .

Further we consider the solution found on the basis of Proposition 3. The Eq. (17)
is reduced to the form

f ′′W + f ′

2
= F( f ), (29)

taking into account that

P = R

W
,

W

β
· S

R
= xL + yM + zN − v2t D + G

xLαα + yMαα + zNαα − v2t Dαα + Gαα

· S

R
= −1

2
. (30)

The second condition (30) will be satisfied if functions L , M , N , D, G satisfy to the
following equations
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Fig. 3 The function p (at the top) and the solution 4 (see Eq. (25)) (at the bottom) with z = 0,
t = 0 (at the left), t = 3 (at the centre), t = 6 (at the right)

Lαα = −2L
S

R
, Mαα = −2M

S

R
, Nαα = −2N

S

R
, Dαα = −2D

S

R
, Gαα = −2G

S

R
.

(31)
The system of Eq. (31) can be solved taking into account the following

LαLαα + MαMαα + NαNαα − v2DαDαα = Sα

2
, (32)

LLαα + MMαα + NNαα − v2DDαα = Rαα

2
− S. (33)

Taking into account (32) and (33) the system of Eq. (31) takes the form

Sα

2
= −S

Rα

R
,

Rαα

2
= −S. (34)

From the first equation (34) one obtains

SR2 = C. (35)

Here C is an integration constant. The function S can be expressed in terms of R
from second Eq. (34) with help of (35).

Rαα + 2C

R2
= 0. (36)
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The Eq. (36) has partial solution

R = (9C)1/3α2/3. (37)

We will use it for finding the functions L , M , N , D, G. With help (37) one finds

S = 1

3

(
C

3

)1/3 1

α4/3
,

S

R
= 1

9α2
, (38)

and system (31) takes the form

Lαα = − 2

9α2
L , Mαα = − 2

9α2
M, Nαα = − 2

9α2
N , Dαα = − 2

9α2
D. (39)

The system of Eq. (39) has the solution

L = a1α
1/3 − a2α

2/3, l = 1

3

(
a1α

−2/3 − 2a2α
−1/3

)
,

M = b1α
1/3 − b2α

2/3, m = 1

3

(
b1α

−2/3 − 2b2α
−1/3

)
,

N = c1α
1/3 − c2α

2/3, n = 1

3

(
c1α

−2/3 − 2c2α
−1/3

)
,

D = d1α
1/3 − d2α

2/3, d = 1

3

(
d1α

−2/3 − 2d2α
−1/3) ,

(40)

Here a1, a2, b1, b2, c1, c2, d1, d2 are arbitrary constants satisfying two equations

a22 + b22 + c22 − v2d2
2 = 0, a1a2 + b1b2 + c1c2 − v2d1d2 = 0. (41)

On the basis (40) from the Eq. (13) we calculate ansatz W , from the Eq. (14) we
calculate value α and from first Eq. (30) we calculate p

α =
(

X1

2X2

)3

, W = X3
1

4X2
, p = A

X2
. (42)

Here

X1 = xa1 + yb1 + zc1 − v2td1 + e1, X2 = xa2 + yb2 + zc2 − v2td2 + e2,
A = a21 + b21 + c21 − v2d2

1 ,

(43)
and also we assume that

g = 1

3

(
e1α

−2/3 − 2e2α
−1/3

)
. (44)
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The solution of the Eq. (2), i.e. the function f = f (W ) is given by the inversion of
first integral (12).

We will consider a special case. Let’s

F( f ) = b sinh 2 f, V = b sinh2 f, b = const > 0. (45)

Then we will receive after calculation of integral (12) and its inversion

f (w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
log

1 + sn (
√
E q, k)

1 − sn (
√
E q, k)

, k2 = 1 − b

E
, 0 <

b

E
< 1,

log
1 + cn (

√
b q, k)

sn (
√
b q, k)

, k2 = 1 − E

b
, 0 <

E

b
< 1,

1

2
log

1 + sin(
√
E q)

1 − sin(
√
E q)

, E = b.

(46)

Here q = 2
√
2W + C , C = const.

Here we will note for W (x, y, z, t) and of p(x, y, z, t) received on the basis of
Propositions 1–3 the solution of the Eq. (2) is found in quadratures for any functions
F(U ) for which integrals (5) and (7) exist. The exact form of the solutions are given
by its inversion.

Let ansatz W be the root of the equation

x l(W ) + y m(W ) + z n(W ) − tv2q(W ) + g(W ) = 0. (47)

Here l(W ), m(W ), n(W ), q(W ) and g(W ) are arbitrary functions. Equation (47)
implicitly defines dependency of ansatz W from coordinates x , y, z and time t .
Following the rules of differentiation of implicit function we obtain from the Eq. (47)

W 2
x + W 2

y + W 2
z − W 2

t

v2
= 1

ν2
P(W ), (48)

Wxx + Wyy + Wzz − Wtt

v2
= 1

ν2
Q(W ). (49)

Here
P(W ) = l2(W ) + m2(W ) + n2(W ) − v2q2(W ), (50)

Q(W ) = PW − P
ν1

ν
, (51)

ν = x lW + y mW + z nW − tv2qW + gW , (52)

ν1 = x lWW + y mWW + z nWW − tv2qWW + gWW . (53)
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Accepting that

p(x, y, z, t) = 1

ν2
, (54)

according to the Proposition 3 functions f (W ) shall be the solutions of the equation

fWW P(W ) + fW Q(W ) = F[ f [W )]. (55)

As mentioned earlier Eq. (55) can be simply integrated if

PW = 2Q(W ). (56)

It is seen from the relationship (51) that condition (56) will be satisfied if

ν1

ν
= PW

2P
. (57)

Therefore functions l(W ), m(W ), n(W ), q(W ) and g(W ) should be selected so that
condition (57) be fulfilled

x lWW + y mWW + z nWW − tv2qWW + gWW

x lW + y mW + z nW − tv2qW + gW
= l lW + m mW + n nW − v2qWq

l2 + m2 + n2 − v2q2
.

(58)
Observe that the right part of the Eq. (58) does not depend from coordinates and
time. Therefore functions l(W ), m(W ), n(W ) and q(W ) should be selected so that
left part of Eq. (58) also does not depend from coordinates and time. It should be
done accepting that

lWW = lW
PW
2P

= lW
l lW + m mW + n nW − v2qWq

l2 + m2 + n2 − v2q2
,

mWW = mW
PW
2P

, nWW = nW
PW
2P

, (59)

qWW = qW
PW
2P

, gWW = gW
gW
2P

.

System of Eq. (59) can be integrated taking into account the following relationships

lW lWW + mW mWW + nW nWW − v2qWqWW = 1

2
SW , (60)

l lWW + m mWW + n nWW − v2qqWW = PWW

2
− S, S = l2W + m2

W + n2W − v2q2W .

(61)
Multiplying first equation of the system (59) by lW , the second by mW and similarly
transforming others then taking into account (61) we obtain
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SW
2

= S
PW
2P

. (62)

Multiplying first equation of the system (59) by l, the second by m and similarly
transforming others then taking into account (61) we obtain

PWW

2
− S = P2

W

4P
. (63)

From (62) it follows that
S = P, (64)

and function P(W ) according to (63) shall satisfy the equation

PWW = 2P + P2
W

2P
. (65)

It can be integrated and finally we obtain

P(W ) = A2 cosh2(W + C). (66)

Here A and C are integration constants. Taking into account (66) we obtain from the
system of Eq. (59)

l = a1 + a2 sinh(W + C), m = b1 + b2 sinh(W + C),

n = c1 + c2 sinh(W + C), q = d1 + d2 sinh(W + C), (67)

g = e1 + e2 sinh(W + C).

Here a1, a2, b1, b2, c1, c2, d1, d2, e1, e2 are arbitrary constants. In order to satisfy
relationships (66) they shall satisfy the following conditions

a21 + b21 + c21 − v2d2
1 = A2, a22 + b22 + c22 − v2d2

2 = A2,

a1a2 + b1b2 + c1c2 − v2d1d2 = 0. (68)

We obtain from the system of algebraic Eq. (68)

(
a1
a2

)
= A√

2

[√
1 + σ 2 cosα cosβ ± cosα sin β

]
,

(
b1
b2

)
= A√

2

[√
1 + σ 2 sin α cosβ ± sin α sin β

]
, (69)

(
c1
c2

)
= A√

2

[√
1 + σ 2 sin β ∓ cosβ

]
.

Here α, β are arbitrary angles and
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σ = 2v2d2/A2, d1 = d2 = d. (70)

From the Eq. (1) taking into account (66) we obtain the ansatz W

sinh(W + C) = − X1

X2
, (71)

X1 = x a1 + y b1 + z c1 − tv2d1 + e1, X2 = x a2 + y b2 + z c2 − tv2d2 + e2.

From the Eq. (52) taking into account (67) we get

ν = X2 cosh(W + C) =
√
X2
1 + X2

2 . (72)

Because functions P(W ) and Q(W ) satisfy the conditions (56) f (W ) is found from
the equation

f ′′A2 cosh2(W + C) + f ′A2 cosh(W + C) sinh(W + C) = dV

dW
. (73)

Its solution is reduced the calculation and inversion of the integral

∫
d f√
E + V

=
√
2

A
tan−1

(
X1

X2

)
. (74)

Here E is the constant of integration.
Therefore if ansatzW is found then on the basis of the Proposition 3 it is possible

to find the solution of the Eq. (2) with any integrated function F(U ). Let us see the
examples of solutions for the following cases.

F(U ) = {
eU , e−U , sinhU, sinU

}
, (75)

V (U ) = {
E + eU , E − e−U , E + coshU, E − cosU

}
.

Omitting algebraic calculations we state the final results:

Uxx +Uyy +Uzz − Utt

v2
= F(U )

X2
1 + X2

2

,

1. F(U ) = eU , U = π + log
E

sinh2(q
√
E/2)

, (76)

2. F(U ) = e−U , U = log
cosh2(q

√
E/2)

E
, (77)
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3. F(U ) = sinhU, U =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

log

[
1 + sn

(√
E + 1 q/2, r

)
1 − sn

(√
E + 1 q/2, r

)
]

, E �= 1,

log

⎡
⎣1 + sin

(
q/

√
2
)

1 + sin
(
q/

√
2
)
⎤
⎦ , E = 1,

(78)

4. F(U ) = sinU, U =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 tan−1

[√
E − 1

E + 1

sn
(√

E + 1 q/2, k
)

cn
(√

E + 1 q/2, k
)
]

, E > 1,

2π − 4 tan−1

[
eq/

√
2
]

, E = 1,

2 tan−1

[
sn (q, 1/k)

cn (q, 1/k)

]
, o < E < 1.

(79)
Here sn (q, k) is the elliptic sine, cn (q, k) is the elliptic cosine,

q(x, y, z, t) =
√
2

A
tan−1

(
X1

X2

)
, r =

√
E − 1

E + 1
, k =

√
2

E + 1
. (80)

The solution (79) (E > 1) can be written in another analytical form namely

U = π − 2 am [K (k) − F (ψ, k), k] , ψ = am
[√

E + 1
q

2
, k

]
, (81)

where am [ψ, k] is Jacobi amplitude, K (k) is complete elliptic integral, F (ψ, k) is
incomplete elliptic integral. The first dependence (79) definesU as periodic function
and the second (81) continuesU out of the period 0 <

√
E + 1 q/2 < 2K (k) in the

form of a “ladder”. In the period value of U , calculated on (79) (E > 1) and (81)
coincide. On Fig. 4 graphs of the functions (79), (81) are represented with E = 1.2.

In the Fig. 5 graph of the solution (79) is given with E = 1, v = 1, e1 = 1, e2 = 0,
a1 = 0.38, a1 = 0.33, b1 = 0.66, b2 = 0.57, c1 = 0.66, c2 = 0.76, z = 0, t = 0 at
the left and t = 2 at the right. Solution has the form of soliton propagating in the
plane XOY .

Fig. 4 The solutions (79)
(blue line) and (81) (red line)
in the case E = 1.2

10 5 5 10
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Fig. 5 The solution (79) with E = 1, z = 0, t = 0 (at the left) and t = 2 (at the right)
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Fig. 6 The solution (79) with E = 0.2, z = 0, t = 0.4 (at the left) and t = 0.8 (at the right)

With the same parameters in the Fig. 6 graph of the solution (79) is given with
E = 0.2, t = 0.4 at the left and t = 0.8 at the right. Solution has a form of kink also
propagating in the plane XOY .

4 Conclusion

Methods of obtaining of exact analytical solutions of the nonautonomous NKFG
equation are proposed. The most important step in realization of the proposed meth-
ods is the calculation of ansatz. It could be obtained from the separate equations
which can be algebraic, partial differential equations or equations of mixed type. It
is obtained on the basis of the methods developed in the theory of construction of
functionally invariant solutions of the wave equation. The choice of ansatz defines
a type of the solution. Important feature of the offered methods is that ansatz deter-
mines also the function p(x, y, z, t) which characterizes nonautonomous NKFG
equation. It, undoubtedly, imposes restrictions for the Eq. (2) which can be solved
by the proposed methods. However, methods proposed for obtaining of ansatz give
the system of the equations which contains more arbitrary functions than number of
required. The choice of these functions allows to receive rather broad set of analytical
expressions for the function p(x, y, z, t).
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Dynamic Fracture Analysis of Sandwich
Composites with Face Sheet/Core
Debond by the Finite Element Method

Vyacheslav N. Burlayenko, Holm Altenbach and Tomasz Sadowski

Abstract Numerical simulations using the finite element analyses within the code
ABAQUS™ are used to study a dynamic fracture behaviour developing along the
face sheet/core interface in sandwich panels. First, a virtual fracture test—the dou-
ble cantilever sandwich beam subjected to uneven bending moments is simulated.
In such analyses, the dynamic energy release rates and near-tip displacement and
stress fields are extracted from finite element models developed within the two-
dimensional elastodynamic theory and cohesive elements. These parameters are a
basis for understanding the face sheet/core interface fracture in sandwich materials.
Important computed results are that the inertia effects change the behaviour of frac-
ture debonding parameters. Moreover, the analyses demonstrated the capability and
the reliability of the finite element modelling technique for solving dynamic fracture
mechanics problems. Also simulated and discussed is the dynamic interface crack
progression in the sandwich specimen. In the second part of the work, the compu-
tational models are modified for analysing dynamic fracture of sandwich panels.
For this, tree-dimensional models of sandwich plates with a penny-shaped debonded
zone have been elaborated. In all simulations, computations of dynamic interface
crack propagation are carried out in such a way when the crack history and inertial
effects on cracking are direct outcomes of the analysis.
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Keywords Sandwich panels · Face sheet/core debonding · Interface fracture ·
Finite element analysis

1 Introduction

The structural concept implying an assembly of two relatively stiff and strength
layers (face sheets or skins) separated by a lightweight material (core) has opened up
the possibility of creating constructions with new so-called sandwich materials. In
these materials the top and bottom face sheets carry the in-plane and bending loads
interacting through the core. In turn, the latter should be strong enough in order to keep
the desired distance between the face sheets and to prevent their sliding with respect
to each other [1]. As turned out, sandwich composites are competitive in comparison
to conventional metallic materials due to their inherent high-performance features
such as high specific stiffness and strength to weight ratios, acoustic and thermal
insulation, protection against impacts, corrosion and wear resistance, etc. [2]. Due
to these advantages, sandwich materials have found a wide engineering application,
e.g. in aerospace, automotive, civil, medical, sports and other modern industries, e.g.
[3–5].

The performance of such tri-material systems is highly dependent on the quality
of the interface between face sheets and a core. Meanwhile, the interface is influ-
enced by both initial bonding processes at a manufacturing stage (surface treatment,
roughness, rheology, chemicals) and in-service effects (loading, temperature, time,
moisture). Also, because of an inherent non-homogeneity of the sandwich struc-
ture, discontinuous stress fields exist at the material interface. All these factors make
premises for an inevitable susceptibility of sandwich materials to the interface dam-
age between the core and the face sheets called as debonding [6]. This damage
affects significantly the behaviour of sandwich materials due to violating the transfer
of mechanical responses between face sheets and a core. As a result, a substantial
reduction in the compressive and bending strength occurs. This leads to decreasing
overall load-carrying capability and increasing the risk of premature eventual failure
of sandwich structures [7]. The presence of debond also alters the linear vibration
characteristics of sandwich structures [8–10]. Moreover, it has also been shown that
essential non-linear dynamic effects arise due to pre-existing debond, which cause
quantitative and qualitative changes in the dynamics of sandwich structures in some
regimes [11–15]. On the other hand, the knowledge about the influence of debonding
on the dynamics is used as a means to identify and to quantify a dedonded site within
sandwich panes as demonstrated, e.g. in [16–20].

Since the debonding poses a threat to the structural integrity of a whole sand-
wich construction, sandwich composites should be validated in terms of damage
tolerance and possible failure [21]. In this respect, the engineering community has
given considerable attention to fracture mechanics methods for sandwich composites
subjected to static and dynamic loads. Herewith, the interface strength is quantified
using the concept of interface fracture toughness [22]. Fracture specimens are used to
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supply necessary information regarding the fracture resistance of the material [23].
The fracture parameters such as stress intensity factors or strain energy release rates
controlling the fracture process at the crack tip are inferred from the analysis of
the fracture specimens by experimental, analytical or numerical methods. However,
while testing methods for fracture research of composite laminates are at a high level
of maturity, e.g. [24–26], the development of standard fracture tests for sandwich
composites has not been completed yet [27]. This is related, from one hand, to the
complexity of testing and analysing test data due to the bi-material nature of the
face sheet/core interface and a non-symmetric geometry of sandwich specimens. On
the other hand, the experimental data reported in the literature highlight a signifi-
cant scatter in debonding toughness values for given sandwich systems because of
various methods used in testing. Finally, a large variety of geometrical and material
configurations of sandwich structures in service require an extensive campaign of
experimental studies. Nevertheless, some progress has been achieved in the evalua-
tion of interfacial fracture parameters under the assumption of static or quasi-static
conditions [28].

Besides quasi-static fracturemodels, generally accepted for studying amajority of
industrial applications of sandwichmaterials, there is a class of applications in which
dynamic effects play a basic role in understanding the debonding resistance. This
group includes the problems dealing with dynamic loading, in particular, impact-
induced processes or static loading with a fast propagating crack running at a finite
velocity. In these cases, to estimate accurately the face sheet/core interface strength,
techniques based on a dynamic fracture framework are required. It implies to take
into account inertia effects in the definition of the energy release rate and the crack
growth behaviour [29]. Experimental measurements of dynamic crack growth in
bi-material plate-like specimens [30, 31] revealed that cracks running along the
weak plane can propagate, relatively to external energy supplied to the specimen,
subsonically in predominantly Mode I or intersonically with the speed exceeding the
shear wave speed of the more compliant material in Mode II dominated conditions.
Discontinuous shock waves and a discernible contact zone were also observed for
intersonic cracks. The findings of authors in [32] showed that dynamic interface
cracks in laminated plates possess the similar features.

Despite these advances, dynamic face sheet/core interface fracture of sandwich
composites still remains incomplete. Experimental data are very limited because of
difficulties in obtaining accurate resultswhen tracking a fast crack tip spped and a lack
of reliable test configurations. Some existing dynamic testingmethods adopt systems
such as the split Hopkinson pressure bar, a one-point impact setup or the wedge
cleavage test method as reviewed in [33]. However, they are not commonly accepted
standards for dynamic fracture testing sandwich materials. Analytical solutions for
bi-material stationary or dynamically propagated interface cracks, to which the face
sheet/core debonding problem is attributed, exist mainly for infinite and semi-infinite
continua are based on simple beam models, e.g. in [34–39] among many others. An
attractive alternative is the use of numerical methods, amongwhich the finite element
method (FEM) is more popular because of its versatility and the existence of many
commercially available FEM codes. Fracture mechanics-based tools implemented
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into commercial finite element analysis codes, for instance, ABAQUS™, ANSYS®,
MSCMarc®, and others enable to make simulations of face sheet/core debonding in
an effective and efficient way. The accuracy, however, of such predictions depends
essentially on the reliability of both the fracture data such as fracture toughness and
fracture criteria, which are used as inputs, and model-dependent parameters such as
the stress intensity factors (SIFs) or the strain energy release rate (ERR), which are
calculated during the analysis.

Within the context of FEM methodologies used for simulating dynamic fracture,
the cohesive crack zone model has been widely applied to simulate crack initiation
and propagation along an arbitrary, solution-dependent path in both homogeneous
materials and composites, e.g. [40, 41] among the earliest works and [42–44] asmore
recent ones. In thismodelling technique, discontinuities are easily incorporated into a
finite element approximation through special either zero or finite thickness interface
(cohesive) finite elements. A traction-separation law is embedded in the cohesive
element (CE) to describe initiation and evolution of damage behaviour of the crack
surface. This constitutive relationship defined in terms of strength and deformation
of the interface is an additional material law relatively to other ones attributed to
materials surrounding the cohesive interface. Local nonlinear assumptions near crack
tip can be employed to simulate the crack initiation and propagation and can be used
in appropriate fracture criteria of the cohesive crack model as well [45]. Also, CEs
include a mixed-mode formulation that provides their generality for using in a broad
variety of analyses. Nevertheless, the application of cohesive damage modelling in
sandwich structures for the simulation of dynamic debonding failure is still limited,
e.g. [46–48].

In light of the limited body of knowledge about dynamic fracture of sandwich
materials, this work deals with modelling dynamic debonding to provide an insight
into features of interfacial cracking of sandwich composites. The nonlinear dynamic
fracture behaviour is modelled by means of ABAQUS package [49]. In simulations,
the computations of dynamic interface crack propagation are carried out in such a
way that the crack history and the influence of inertial effects on cracking are direct
outcomes of the analyses with CEs. The present work is divided into two parts. The
first one concerns the development of two-dimensional (2-D) FE models for detailed
simulations of debonding in a double cantilever sandwich beam fracture specimen
subjected to uneven bending moments (DCB-UBM). The results for quasi-static and
dynamic loading are used as a basis for understanding the dynamic effects on fracture
of sandwichmaterials. Fracture features observed in the analysed sandwich specimen
have been discussed in detail. In the second part of the work, the results for the 2-
D computational models are modified for analysing dynamic fracture of sandwich
panels based on tree-dimensional (3-D) models. A rectangular sandwich plate with
a penny-shaped debonded zone subjected to dynamic loading is considered.
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2 Finite Element Methodology

A dynamic framework of the finite element method with cohesive finite elements
is used in the present study. A brief review of the main steps of the finite element
method strategy and some specific notes concerning the cohesive element model,
time integration schemes applied to perform simulations and methods employed for
extracting the fracture parameters are presented below.

2.1 Equation of Virtual Work with Cohesive Elements

Westart from the principle of virtualwork as a basis of thefinite elementmethod in the
mechanics of solids. Let us consider a general case of a deformable body represented
by a domain V ⊂ R

dim for 1 ≤ dim ≤ 3 with a boundary ∂V ⊂ R
dim−1 oriented by

a unit normal n. Each a material point of the body is specified by x serving as a
particle label in Lagrangian description. The body undergoes a motion described
by a displacement field u: V × [0, T ] → R

dim at time t ∈ ×[0, T ] → R+ under
prescribed surface traction t̄ on the boundary ∂Vt and prescribed displacements ū on
the boundary ∂Vu . The boundaries comply with ∂Vt ∪ ∂Vu = ∂V and ∂Vt ∩ ∂Vu =
�. Assume that the body is under the assumption on infinitesimal deformations,
then, at an arbitrary time t , a strain can be measured by a tensor εεε: V → R

dim×dim

defined as εεε = 1
2

(∇u + (∇u)T
)
, while a stress state induced by the deformations is

defined by theCauchy stress tensorσσσ : V → R
dim×dim. In addition, let the continuum

contain a crack (or cracks), the locus of which is on an internal cohesive surface
∂Vc = ∂V+

c ∪ ∂V−
c . The cohesive surface formulation provides the incorporation of

the strong discontinuity in the displacement fields, caused by a localized fracture of
the material in the form of cracks, by the accommodation of displacement jumpsΔΔΔ

across the crack flanks on ∂V+
c and ∂V−

c and a cohesive driving traction T = σσσ · nc
along the cohesive surface ∂Vc with unit normal nc.

Under the conditions mentioned above, the weak form of the conservation of
linear momentum or the principal of virtual work without body forces is stated in
the form:

∫

V \∂Vc

(σσσ : ∇δu + ρü · δu) dV +
∫

∂Vc

T · δΔΔΔd A −
∫

∂Vt

t̄ · δud A = 0 (1)

for all virtual (kinematically admissible) displacement fields δu. Also, in (1) ρ is the
density of material, and the superscript dot means a time derivative, i.e. ü stands for
the acceleration filed.

Finally, to complete the formulation of the problem at hand, a set of constitutive
relations for the bulk material and the cohesive layer should be specified. The con-
stitutive relations between the cohesive traction and the displacement jump on ∂Vc

are independent on the material laws describing the bulk behaviour of the material
surrounding the crack.
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2.2 Constitutive Equations

As mentioned the continuum is featured by two sets of constitutive equations. The
first one defines the behaviour of a bulk material in V × [0, T ] and the second one
is a traction-separation law (TSL) given on ∂Vc × [0, T ].

2.2.1 Bulk Material Properties

Since an interfacial crack problem is considered, we assume that the crack modelled
by a cohesive layer divides the continuum in two parts, i.e. V = V#1 ∪ V#2, which, in
general, are different in geometrical configurations and material properties. Let the
materials of each part (k = #1, #2) be orthotropic linear elastic obeying the general
Hookes law in the form [50]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
2ε23
2ε13
2ε12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

S11 S12 S13
S12 S22 S23 0
S13 S23 S33

S44
0 S55

S66

⎤

⎥⎥⎥⎥⎥
⎥
⎦

·

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (2)

where S11 = 1
E1
, S22 = 1

E2
, S33 = 1

E3
, S12 = S21 = − ν12

E1
= − ν21

E2
, S13 = S31 = − ν13

E1

= − ν31
E3
, S23 = S32 = − ν23

E2
= − ν32

E3
, S44 = 1/G23, S55 = 1

G13
and S66 = 1

G12
. In plane

stress the compliancematrix reduces to a 3 × 3matrixwith components Si j for i, j =
1, 2, 6 and S16 = S26 = 0. In plane strain the coefficients of the reduced compliance
matrix should be replaced by S̃i j = Si j − Si3Sj3

S33
for i, j = 1, 2, 6.

2.2.2 Cohesive Elements and TSL

In the FEM context, the cohesive surface is represented by cohesive elements. The
main idea of the cohesive element is a representation of crack initiation that reflects
changes in the fracture process zone due to microscopic damage accumulation at the
crack tip and a subsequent crack growth that is a creation of new free surfaces in
the body. The element is idealized by a pair of separate top and bottom faces. In the
finite element mesh, the element nodes have the same coordinates, but different node
numbers as shown for 2-D and 3-D cohesive elements in Fig. 1a, b, respectively.

A TSL incorporating the ability of the cohesive element to simulate fracture is
usually formulated in such a way that the onset of the softening process at the crack
tip is a result of a strength-based analysis, whereas the crack propagation conditions
are realized by satisfying fracture mechanics criteria. There have been proposed a
number of TSLs in the literature. They can be subdivided into two groups: intrinsic
and extrinsic relatively handling an initial elastic rangewithin the cohesive element, in
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(a) (b)

Fig. 1 A sketch of cohesive elements after [49]: a 2-D line element; b 3-D surface element

(a)

(b)

(c)

Fig. 2 A cohesive bilinear TSL after [49] for: a normal mode; b shear mode; c mixed mode

turn, all they are distinguished from each other as potential-based and non-potential-
based models depending on assumptions adopted for the fracture energy potential
[51]. A typical bilinear cohesive law for single fracture modes is presented in Fig. 2a,
b. The law contains an initial linear region defined by a penalty stiffness k and the
softening part starting from the value Δ0, where the traction reaches a maximum
normal/shear cohesive value T 0 and, then, evolving linearly till Δ f , where complete
failure occurs. The irreversibility conditions are assumed to be realized by unloading
to the origin from the current state. The area under the lines being the work done per
unit area for complete fracture defines the strain energy release rate. Analytically,
for each fracture mode (i = I, I I, I I I ) the bilinear TSL can be presented as follows
[52]:

T =
⎧
⎨

⎩

kiΔi Δi ≤ Δ0
i

(1 − Di )kiΔi Δ0
i ≤ Δi ≤ Δ

f
i

0 Δi ≥ Δ
f
i

(3)
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Here, a damage variable D can be calculated as a function of current separation

between the cohesive element faces, i.e. Di = Δ
f
i (Δi−Δ0

i )

Δi

(
Δ

f
i −Δ0

i

) .

In the case of mixed modes, an effective displacement jump Δm =
√∑M

i=1 Δ2
i ,

where M = I, I I, I I I is the number of modes involved, is introduced and the dam-
age initiation and evolution criteria are to be formulated in terms of interaction
between the fracture parameters of each mode, Fig. 2c. In this regard, the equivalent
mixed mode separations at damage onset Δ0

m and failure Δ
f
m are to be defined. Fol-

lowing [52] the damage initiation based on the quadratic stress initiation criterion
takes the form:

Δ0
m = Δ0

IΔ
0
I I

√
1 + γ 2

(
γΔ0

I

)2 + (
Δ0

I I

)2 , (4)

where γ = ΔI I
ΔI

is a mixed mode ratio, whereas the damage propagation relying on
the Benzeggagh-Kenane (B-K) fracture toughness criterion reads:

Δ f
m = 1

Δ0
I

{
Δ0

IΔ
f
I +

(
Δ0

sΔ
f
s − Δ0

IΔ
f
I

) [
GI I + GI I I

GT

]η}
(5)

whereΔ=
s

√
Δ2

I I + Δ2
I I I ,GT is the total ERR and η is a parameter obtained by curve-

fitting the fracture toughness of mixed mode tests. Once mixed mode separations are
known the mixed mode damage parameter Dm can be calculated identical to the
expression for Di using Δm , Δ0

m and Δ
f
m instead the pure mode components there.

2.3 Contact and Friction Conditions

The crack flanks are assumed to be traction free. However, upon cracking the crack
faces may come into contact as well as dynamic loading may cause interactions
between them. Thus, contact and friction are to be determined as a part of the solution
at a certain load level and an instant of time. In doing so, the cohesive interface model
is included into the overall contact algorithm through nodal forces of the cohesive
elements which are related to the cohesive traction vector. Thus, during the finite
element analysis two possibilities for the calculation of nodal forces are handled.
The first is the case of separation considered already in Sect. 2.2, and the second
is the case of contact and friction, in which equivalent normal and tangential nodal
forces are computed using a certain contact algorithm and a friction law. A brief
description of the modelling of contact and friction constraints is given below.

From themodelling point of view, to impose contact and friction constraintswithin
contact surfaces, the contact traction tc acting between them is decomposed into
normal tN and tangential tT components. Each the traction component is associated
with an appropriate displacement jump. Using the master-slave contact definition,
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the displacement jumps can be expressed by the normal gN = (x− − x̄+) · n̄+
c and

tangential gT = gTα
ā+α

with gTα
= (x− − x̄+) · ā+

cα
gap functions. We denote that

x− is a point of the slave surface and x̄+ (
ξ̄ 1, ξ̄ 2

)
is its orthogonal projection on

the master surface parameterized by ξα , α = 1, 2; n̄+
c is the unit normal vector of

the master surface and ā+
cα
, α = 1, 2 are the tangent base vectors at the point x̄+

(see for more details in [53, 54] and the references there). The functions gN and
gT depend on a current displacement field induced by given loads at a time instant
t . Then, the impenetrability and friction constraints are stated in the form of the
Karush-Kuhn-Tucker conditions as follows:

tN ≤ 0, gN ≥ 0 and tN gN = 0 (6)

and
‖tT ‖ ≤ τcri t , ‖gT ‖ ≥ 0 and (‖tT ‖ − τcri t ) ‖gT ‖ = 0, (7)

respectively. Here, tN is the scalar quantity of the normal traction component, i.e.
tN = tNnc; τcri t is a threshold of tangential contact traction due to the tangential slip.
In the case of the Coulomb friction model, this value is expressed as τcri t = μtN ,
where μ is the coefficient of friction.

Accounting for contact and friction leads to appearance of an additional term
referred to as the work of contact forces in the variational equality (1). Therefore,
this expression takes a new form:

∫
V \∂Vc

(σσσ : ∇δu + ρü · δu) dV + ∫
∂Vc

T · δΔΔΔd A+∫
∂Vc

(tN δgN + tT · δgT ) d A − ∫
∂Vt

t̄·δud A = 0
(8)

In general, contact problems are inherently nonlinear since the contact region is
a priori unknown and nodal contact forces related to contact traction on this contact
zone are a part of the solution. Also, the contact and friction laws are expressed
by non-smooth multivalued force displacement relationships. In this respect, con-
tact algorithms within the FEM context are subdivided into two major steps: con-
tact detection and contact resolution [55]. The latter step depends also on a time-
integration scheme used in the finite element discretization, [53, 54].

2.4 Finite Element Discretization

Following the FEM framework, the actual continuousmodel is idealized as an assem-
blage of finite elements interconnected at nodal points. Consequently, (8) is trans-
formed to the discrete system of equations of motion with respect to nodal degrees
of freedom, e.g. displacements {U }, at time t as follows:

[M] ¨{U }t + {Rint }t + {Rcoh}t + {Rcont }t = {Rext }t (9)
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where {Rint }, {Rext }, {Rcoh} and {Rcont } are the vectors attributed to the nodal internal,
external, cohesive and contact forces, respectively, calculated using the correspond-
ing integrals in (8); [M] is the mass matrix associated with inertial properties; ¨{U }
are the nodal accelerations. It should be noted that in the system (9) damping is
not included and the nonlinearities other than contact and cracking with cohesive
elements are not taking into account. The calculations of nodal equivalent forces
require an approximation of the displacement field within the finite element in terms
of shape functions and a set of the nodal displacements [56].

Besides the discretization in space, the finite element equations (9) still need to
be discretized in time, i.e. [0, T ] = ⋃

n

[
tn, tn+1

]
. For this, either explicit or implicit

time-stepping strategies are used. Two numerical methods implemented in ABAQUS
[49] as main solution schemes are briefly presented below.

2.4.1 Explicit Integration Scheme

The explicit central difference time integrator is used in the dynamic explicit analysis.
Accelerations and velocities at a particular time point tn are assumed to be constant
during a time increment Δt = tn+1 − tn and are used to find a solution at the next
point in time tn+1. Then, the accelerations are computed at the start of the increment
by solving (9) as follows:

¨{U }t = [M̃]−1 ({Rext }t − {Rint }t − {Rcoh}t − {Rcont }t ) (10)

To find velocities and displacements, ABAQUS/Explicit utilizes a forward Euler
integration scheme, i.e. ˙{U }t+ 1

2 Δt = ˙{U }t− 1
2 Δt + Δt ¨{U }t and {U }t+Δt = {U }t +

Δt ˙{U }t+ 1
2 Δt , respectively. In (10) [M̃] is a lumped mass matrix obtained by the

transformation of the consistent mass matrix [M] for the purpose of efficiency. The
explicit scheme is stable if the time increment satisfies to the limit:Δt ≤ 2

ωmax
, where

ωmax is the highest natural frequency in the finite element mesh of the discretized
system [56].

2.4.2 Implicit Integration Scheme

The dynamic implicit analyses are carried out by using the implicit Hilber-Hughes-
Taylor (HHT) temporal integrator in ABAQUS/Standard. In accordance with the
HHT scheme, the equations of motion (9) at a particular time point tn+1 = t + Δt
can be rewritten in terms of displacements, velocities and accelerations at the point
tn = t as follows:

[M] ¨{U }t+�t + (1 + α̃)
({Rint }t+�t + {Rcoh}t+�t + {Rcont }t+�t

) =
{Rext }t+(1+α̃)�t + α̃ ({Rint }t + {Rcoh}t + {Rcont }t ) ,

(11)
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where displacements and velocities at the time point t + Δt are approximated
by the expressions: {U }t+Δt = {U }t + Δt ˙{U }t + Δt2

2

[(
1 − 2β̃

) {
Ü
}
t
+ 2β̃ ¨{U }t+Δt

]

and ˙{U }t+Δt = ˙{U }t + Δt
[
(1 − γ̃ ) ¨{U }t + γ̃ ¨{U }t+Δt

]
, correspondingly. The

scheme is second order accurate and unconditionally stable for − 1
3 ≤ α̃ ≤ 0, γ̃ =

1
2 (1 − 2α̃) and β̃ = 1

4 (1 − α̃)2, [56]. The solution of the implicit analysis from t to
t + Δt is updated incrementally within the well-known Newton-Raphson iterative
scheme for finding the roots of (11).

2.5 Near-Tip Fields at Bi-material Interface

The analysis of bi-material interface cracks is more complicated than for cracks in
homogeneous materials since bi-material cracks exhibit a coupling of tensile and
shear effects even in the cases of pure either opening or shearing loading. Also, the
oscillatory character of stress and displacement fields occurs. It leads to the variation
of mode-mixity ratio with distance from the crack tip. To characterise the singular
stress and displacement fields, a complex stress intensity factor (SIF), K together
with the oscillation index, ε relating to the elastic properties of the materials are used
[35, 36]. Following these authors the structure of the asymptotic near-tip fields for
either stationary or dynamically propagating interface crack results from the solution
of the eigenvalue problem induced by the traction free boundary conditions on the
crack flanks as

H̄w = e2πεHw, (12)

whereH is a 3 × 3 positive defined compliance-like Hermitian matrix involving the
bi-material elastic constants and H̄ is its complex conjugate matrix. Three eigenpairs
such as (ε,w), (−ε, w̄) and (0, w3), where w, w̄ and w3 are complex, complex
conjugate and real eigenvectors, respectively, are the solutions of (12). Then, the
stresses at the crack tip and the relative displacements at a distance r behind the
crack tip take the form [36, 57]:

(k)σmn (r, θ) = 1√
2πr

{
Re

[
Kr iε

]
(k)Σ

I
mn (θ, ε) +

Im
[
Kr iε

]
(k)Σ

I I
mn (θ, ε) + K3(k)Σ

I I I
mn (θ)

} (13)

and

ΔΔΔ(r, θ) = (
H + H̄

)
√

r

2π

{
Kr iεw

(1 + 2iε) cosh πε
+ K̄r−iεw̄

(1 − 2iε) cosh πε
+ K3w3

}

,

(14)
relatively, where m, n = 1, 2; k = #1, #2 denotes the materials of the interface,
K = K 1 + i K2 = |K| eiψ with K1 and K2 used instead of KI and KI I adopted
for homogeneous materials and K3 is the SIF associated with non-singular stress
field in mode I I I , (k)Σ

M
mn with M = I, I I, I I I are universal angular functions in

polar (r, θ) or Cartesian (x1, x2) coordinate systems centred at the crack tip. The
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oscillation index ε can be expressed in the form:

ε = 1

2π
ln

(
1 − β

1 + β

)
, (15)

where β is the second Dundurs parameter defined by

β = −
√√√√−1

2
tr

{(
Im[H]
Re[H]

)2
}

(16)

An alternative description of the near-tip stress field involves the energy release
rate (ERR), G together with the mode mixity parameter, ψ . To avoid oscillations
in the mode mixity parameter, a characteristic length scale, l̂ chosen in consistence
with discussions in [22, 57] is introduced. Then, the non-oscillatory phase angle ψ̂

is established as follows:

ψ̂ = tan−1

(
σ12

σ22

)∣∣∣∣
r=l̂

= tan−1 Im[Kl̂
iε]

Re[Kl̂
iε]

(17)

HereKl̂ iε = K̂ is a normalized complex SIF with ordinary units of the SIF in homo-
geneous materials. The amplitudes of K̂ and K are the same, but their phase angles
are different, i.e. ψ̂ = ψ + ε ln l̂. Following [36, 57] the expression of the ERR can
be written in the form:

G = w̄T
(
H + H̄

)
w

4 cosh2 πε
|K|2 + 1

8
wT

3

(
H + H̄

)
w3K

2
3 (18)

In the case of orthotropic materials surrounding the interface crack, the material
symmetry axes of which are aligned along the face sheet-to-core interface (Fig. 3b),
the matrix H takes the form [58]:

H11 = [
2nλ1/4

√
S11S22

]
#1 + [

2nλ1/4
√
S11S22

]
#2 ,

H22 = [
2nλ−1/4

√
S11S22

]
#1 + [

2nλ−1/4
√
S11S22

]
#2 ,

H12 = H̄21 = i
[√

S11S22 + S12
]
#1 − [√

S11S22 + S12
]
#2 ,

H33 = [√
S44S55

]
#1 + [√

S44S55
]
#2 , H13 = H31 = H23 = H32 = 0,

(19)

where λ = S11/S22 = E2/E1 and � = (2S12+S66)
2
√
S11S22

=
√
E1E2

2G12
− √

ν12ν21 are parame-

ters of anisotropy and n =
√

(1+�)

2 . Moreover, the eigenvectors take the form:

w =
{
− i

2 ,
1
2

√
H11
H22

, 0
}
and w3 = {0, 0, 1}.

The stresses σ22 and σ12 at a distance r in front of the crack tip at θ = 0 between
two orthotropic materials can be inferred from (13) as follows [36, 57]:
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√
H22

H11
σ22 + iσ12 = K√

2πr

(
r

l̂

)iε

(20)

and the associated relative crack surface displacements (jumps) Δ1 and Δ2 at a
distance r behind the crack tip at θ = ±π , can be derived from (14) in the form
[36, 57]: √

H11

H22
Δ2 + iΔ1 = 2H 11K√

2π(1 + 2iε) cosh πε

(
r

l̂

) 1
2 +iε

(21)

The relations (20) and (21) give a basis for numerical calculations of the interface
crack fracture parameters within the framework of the FEM.

2.6 Evaluation of Interface Dynamic Fracture Parameters

In LEFM the Rices J-integral is identical to the ERR. The generalization of this
fundamental concept on an elastic solid with a crack advancing straightway along
the x1-axis direction under dynamic conditions can be expressed as [59]:

G (t) = J ′ = lim
Γ →0

∫

Γ

[
(W + T ) n1 −

(
σσσ · ∂u

∂x1

)
· n

]
dΓ , (22)

where the path Γ is an arbitrary contour surrounding a crack tip; n is an outward unit
normal of Γ ; W is the strain energy density and T is the kinetic energy density at a
material point. Under a steady state crack growth condition, the dynamic integral (22)
is path independent and corresponds to the instantaneous energy release rate for any
crack configuration including the interface crack between two dissimilar orthotropic
materials [59].

The domain integral formulation,which invokes the divergence theorem to convert
a line integral to a domain one of the same filed, allows a simple FEM computation
of the dynamic J ′-integral (22). With using a weight function q1(x), the line integral
(22) is transformed to a domain integral, i.e. the dynamic ERR can be evaluated by
computing the expression [59]:

G (t) =
∫

A

[(
σσσ · ∂u

∂x1

)
∂q1
∂x

− (W + T )
∂q1
∂x1

+ ρ

(
∂2u
∂t2

∂u
∂x1

− ∂u
∂t

∂2u
∂x1∂t

)
q1

]
d A

(23)
where A is the domain enclosed between the contour Γ , an arbitrary contour C
with unit normal m, which embraces Γ and the surfaces of crack flanks, C+ and
C− between the two contours (Fig. 3a). The weighting parameter q1 is chosen as a
smooth function of x which takes the values from zero on the C -contour to unity
on Γ . A geometrical interpretation of q1(x) is a virtual displacement of the crack
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(a) (b)

Fig. 3 Sketches of: a a closed contour C + C+ + Γ + C− around the crack tip; b displacements
of crack flanks at bi-material crack bounded by orthotropic materials

tip region, Δl. In the FEM model, q1 is interpolated with the shape function of the
element, N j (ξξξ), i.e. q1 (x) = ∑

j N j (ξξξ)q̄ j
1 , where q̄

j
1 are nodal values.

If the crack faces are not traction free, for instance, due to forces arising in con-
tact, an additional term − ∫

C++C− tc · ∂u
∂x1

q1 dΓ should be added to (23). Finally,
the domain (2-D or 3-D) integral (23) is evaluated over a group of finite elements
forming a ring around the crack tip, which are enclosed into the domain A, Fig. 3a.
The numerical integration is achieved element by element with using the Gaussian
quadrature. Then, the total result is a summation over all elements belonging A.
A general form used for numerical computations of (23) can be presented by the
expression:

G̃ (t) =
El∑

n=1

⎛

⎝
G∑

p=1

[ f ](p) |j|(p) w̃p

⎞

⎠

n

/Δl, (24)

where n and p indicate that all the entities are associated with the n-th finite element
of the area A and are determined at the p-th Gauss integration point; [ f ] are the
integrands in (23), |j| is the determinant of Jacobian matrix and w̃ is the weight of
theGauss numerical quadrature. The domain integral is calculated by post-processing
of results of the finite element analysis. The details of computational implementation
of (24) in ABAQUS can be found in [49].

Although the J -integral approach allows calculating the dynamic ERR, the contri-
bution of a separate fracture mode in its value remains unknown. Other methods are
needed to evaluate the components of the mixed-mode ERR. Two of such methods
suitable for bi-material interface cracks are described below. The methods are stated
for a stationary crack, but they could be applied to a dynamically propagating crack
by post-processing the displacement and stress fields in the vicinity of a moving
crack tip at a certain instant of time.
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2.6.1 Interaction Integral Method

The interaction integral method is based on the idea of superposition of actual and
auxiliary fields (aux), where the latter are assumed to be known. An approximation is
to take as the auxiliary fields the asymptoticWilliams type solutions of corresponding
material system regardless of the actual problem. Following Shih and Asaro [60] the
interaction integral definition for a straight crack for any of fracture modes M =
I, I I, I I I can be presented as

J M
int = lim

Γ →0

∫

C +C++Γ +C−
m · QM · qdΓ , (25)

with the integrand QM given as

QM = σσσ : (εεε)Maux I − σσσ ·
(

∂u
∂x1

)M

aux

− (σσσ)Maux
∂u
∂x1

, (26)

On the other hand, the interaction integral can be expressed in terms of the stress
intensity factors of both the actual and auxiliary fields in the form:

Jint = 2
H

(
K1Kaux

1 + K2Kaux
2

)
, with H = 4 cosh2 πε

H11
(27)

Thereafter, making a judicious choice of the auxiliary stress intensity factors,
which are assumed to be known, and taking the appropriate auxiliary displacement
and stress fields from the known analytical solutions, e.g. [61], the separate stress
intensity factors can be evaluated as follows:

KM = H

2Kaux
M

J M
int (28)

In the FEM context, the interaction line integral (25) is computed similar to the
domain formulation of the integral (23). The interaction integral method for the cal-
culation of SIFs of a crack between two dissimilar isotropic materials is implemented
into the ABAQUS code [49].

2.6.2 Crack Flank Displacements (CFD) Method

The CFD method is based on the approach proposed by Smelser [62], where SIFs
have been determined from crack front displacements (Fig. 3b) by calculations of the
absolute value of complex SIF and its phase angle. The method has an advantage of
obtaining SIF components in terms FEM formulation since the displacement field is a
direct outcome of the finite element analysis. In this respect, using (21) in conjunction
with the expressions for the mode-mixity parameter (17) and the ERR (18) yields



178 V. N. Burlayenko et al.

the following formulae:

ψ̂ = tan−1

(√
H11

H22

Δ1

Δ2

)

−ε ln

(
r

l̂

)
+ tan−1 2ε (29)

and

G = H11 |K|2
4 cosh2 πε

= π(1 + 4ε2)

8H11

(
r/l̂

)
(
H11

H22
Δ2

2 + Δ2
1

)
, (30)

whereΔ j = u j (r, π) − u j (r,−π) represents the relative crack flank displacements
at distance r behind the crack tip, H11 and H22 are components of the matrix H in
(19). The nodal displacements are collected from opposing faces of the two crack
flank elements that are approximately at a chosen specific distance r = l̂

10 away from
the crack tip [63].

3 Numerical Examples

In this section, the results of numerical simulations are presented. The simulations
are carried out for both stationary interface crack problems and dynamic interface
crack propagation tasks in sandwich panels idealized by beams and plates. The 2-D
and 3-D models within the ABAQUS are developed for this purpose. Responses of
static and dynamic fracture parameters are shown.

3.1 DCB UBM Specimen

A sketch of the DCB UBM specimen of length L = 270 mm fixed at the ends of
length Ls = 27 mmwith a crack of length a = 90 mm, which consists of face sheets
of thicknesses of h1 = h2 = 2.4mm and a core of thickness of hc = 50mm is shown
in Fig. 4a. The specimen is subjected to uneven bending moments, M1 and M2 (both
being defined per unit specimen width, B) as illustrated in Fig. 4a. One of advantages
of this test method is that the specimen allows loading the crack tip by a variety of

(a) (b)

Fig. 4 DCB UBM specimen: a geometry and loading; b force and moment resultants
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mode mixities by changing the moment ratio MR = M1/M2 [64]. For this specimen,
the steady state ERR can be determined analytically from the specimen geometry,
elastic properties and applied external moments inducing a state of pure bending,
then, the J -integral calculated along the outer boundaries of the specimen (Fig. 4b)
leads to the expression [65]:

Gs = 1

2B

{
N 2

(E A)D
+ N 2

(E A)S
+ M2

(E I )D
+ M∗2

(E I )S

}

, (31)

where N = γ2M0,M = M1 − γ3M0 andM∗ = N
(
es + hc

2 + h1
2

) − M are the equiv-

alent axial load and bending moments, respectively, and γ2 = (E A)D
(E I )0

(
e0 + hc

2 + h1
2

)

and γ3 = (E I )D
(E I )0

; e0 and es are the locations of neutral axes of the whole specimen and
the substrate, Fig. 4b; (E A)i and (E I )i are generalized axial and flexural rigidities of
the debonded portion “D”, substrate “S” and whole specimen “0”, i.e. i = D, S, 0.

In the model, we assume that the principal axes of material orthotropy of both the
debonded face sheet and the core are aligned with the co-ordinate axes of the spec-
imen. The generalized Youngs moduli associated with the orthotropy directions of
each the material along the x-axis of the beam define the generalized stiffness values
mentioned in (31). The material properties of the sandwich specimen constituents
related to the coordinated system in Fig. 4 are summarized in Table 1.

A 2-D finite element model of the DCB-UBM specimen is developed using eight-
node reduced integration plane strain finite elements (CPE8R) available inABAQUS,

Table 1 Material properties of the DCB UBM sandwich specimen

Constituents Material constants

GFRP face sheet Ex = Ez = 16.5 GPa; Ey = 3.8 GPa; Gxy = Gxz = 1.3 GPa;
Gyz = 6.6 GPa; νxy = 0.05; νxz = νyz = 0.25; ρ = 1650 kgm−3

PVC H 100 foam core Ex = Ey = Ez = 105 MPa; Gxy = Gxz = Gyz = 78 MPa;
νxy = νxz = νyz = 0.325; ρ = 100 kgm−3

G-VE/H 100 interface kI = kI I = kI I I = 100 GPa; GIc = 400 Jm−2;
GI Ic = GI I I c = 500 Jm−2; TI = 10 MPa; TI I = TI I I = 20 MPa

(a) (b)

Fig. 5 Finite element models of the DCB UBM specimen: a 2-D model; b 3-D model



180 V. N. Burlayenko et al.

Fig. 5a. The mesh contains a refinement near the crack-tip region as shown in Fig. 5a.
A more complex 3-D finite element model of the specimen has also been elaborated.
A layer-wise shell-solid approach for 3-D modelling of sandwich panels [14] is
used. Eight-node reduced integration quadrilateral continuum shell elements (CS8R)
obeying the assumptions of the FSDT theory and eight-node hexahedral (brick)
elements (C3D8R) are utilized for the discretization of the face sheet and the core,
respectively, as shown in Fig. 5b. In the calculations, bending moments are applied
to the arms of DCB-UBM specimen at the points of the arms neutral axes, Fig. 5a.
Coupling kinematic constraints between the nodes of the arm edge and the points
of neutral axis are used to enforce equal rotation of the entire edge. The debonded
region of the specimen is modelled by a real gap of h1

100 along the damaged interface.
The contact and friction conditions similar to (6) and (7) are introduced between the
faces of finite elements along the pre-cracked interface. The contact behaviour under
the assumptions of small displacement kinematics was assumed to be governed by
the hard contact model with frictionless conditions [49]. In the case of the explicit
dynamic analysis (10) the contact constraints were resolved using the kinematic
predictor corrector method [49, 53], while the penalty contact algorithm was used
for tracking contact in the case of the implicit dynamic analysis (11) as described in
[49, 54].

3.1.1 A Stationary Crack Under Quasi-static Loading

To demonstrate the performance of the developed finite element models, steady
state ERRs, Gs for a variety of moment ratios are computed by using both the J -
integral option of ABAQUS [49] and the CFD method realized by post-processing
the finite element results with an add-on subroutine in Matlab� environment. In the
calculations, the bending moments were either rotated in opposite directions or co-
rotated, but in all the cases they induced nearly the same ERRs. The results computed
numerically were compared with those found using the analytical formula (31). A
good agreement between the both solutions has been achieved as seen in Table 2,
where, also, the phase angle ψ̂ computed within the framework of the CFD method
with the Matlab subroutine is presented.

Table 2 Calculations of the ERR and the phase angle with respect to the moment ratio MR

M1 (Nmm) 75.6 103.42 123.4 104.13 73.8

M2 (Nmm) −1512.2 −1034.2 −123.4 1041.3 1476

MR −0.05 −0.1 −1.0 0.1 0.05

ERR G FEM
s (N/mm) 0.399 0.399 0.403 0.399 0.377

G Anl
s (N/mm) 0.351 0.363 0.376 0.365 0.332

Phase angle ψ (◦) 30.26 11.31 −17.16 −51.87 −70.71
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(a) (b) (c) (d) (e)

Fig. 6 Contour plots of the stress components at the crack tip of the DCM-UBM specimen w.r.t.
the moment ratio MR of: a −0.05; b −0.1; c −1; d 0.1; and e 0.05

The contour plots of the stress tensor components associated with the moment
ratio MR listed in Table 2 are illustrated in Fig. 6, where the first row of the images
corresponds to σ11, the second and third ones show σ22, and σ12, respectively. A
complicated nature of the near-tip stress field is clearly observed there. One can see
that the shear stress exists in the vicinity of crack regardless of the loading case as seen
in the third row of Fig. 6. This is an apparent evidence of the mode mixity condition
being expected in sandwich type structures. The sign of the shear stress ahead crack
may be used to define a favourable direction of interface crack propagation of the
bi-material interface crack as mentioned in [27, 66]. The presence of the shear stress
in the near tip region explains the differences in computations of the ERRs between
the analytic formula and the FEMmodel. The former is not able to take into account
the shear effect.

The 3-D model was adopted to study a distribution of the fracture parameters
across the specimen width. For this purpose, a 3-D version of the J -integral available
in ABAQUS and the CFD method have been used. Herewith, to apply the CFD
method for the computations, the crack front of the specimen was cut in 12 sections
through the width, and the Griffith energy and the mode mixity have been calculated
in those locations using the formula (29) and (30). In Fig. 7 the width-wise variation
of both the ERR and the phase angle and, also, the comparisons between the 2-D and
3-D models are illustrated. A large deviation between the 2-D and 3-D predictions is
found for the phase angle values calculated in the middle part of the specimen width.

Also, the calculations showed that the displacement and stress fields computed
using the 2-D and 3-D models are nearly identical as seen in Fig. 8, i.e. it has
been proven that the 2-D model is valid for simulations of fracture. Thus, the 2-D
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(a) (b)

Fig. 7 The width-wise variation of the fracture parameters: a the ERR; b the phase angle

Fig. 8 The comparison between 2-D and 3-D models: a transverse displacements; b σ12 stresses

model is used in subsequent dynamic fracture analyses due to its substantially lower
computational cost in comparison with the 3-D model.

3.1.2 A Stationary Crack Under Dynamic Loading

In the dynamic fracture analyses, the influence of inertia on the fracture parameters
is considered as direct outcomes of the calculations. The dynamic ERR and dynamic
SIFs are computed in the sameway as for a static case, but dynamicmechanical fields
calculated at each time increment are used instead. For the sake of simplicity, the
materials of the sandwich specimen constitutive layers are reduced to linear isotropic,
defined by elastic constants in the direction of x-axis, that is, Ex and νxz characterize
their mechanical properties. Then, the dynamic SIF components are computed using
the interaction integral method implemented in ABAQUS.

First, the effects of impulse loading on the transient dynamic SIFs are examined.
The bending moments are applied to the sandwich specimen arms as two impulses.
Several types of the impulses of different forms such as a step function, a rectangular
pulse and a triangular pulse and durations related to the values of t0, which defines
either a timeof rising (a ramp time) of the step functionor a timeof the pulses duration,
have been used in the calculations. The dynamic SIF components normalized by the
corresponding static values of the SIFs versus time are presented in Fig. 9, where the
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Transient dynamic SIFs: a step loading with t0 = 1 ms; b step loading with t0 = 0.1 ms;
c rectangular pulse with t0 = 1 ms; d rectangular pulse with t0 = 0.1 ms; e triangular pulse with
t0 = 1 ms; f triangular pulse with t0 = 0.1 ms

plots in the columns are related to different t0 of 1 ms and 0.1 ms, respectively, and
those in the rows correspond to the different forms of the pulses. One can see that
the transient dynamic SIFs oscillate due to an evident effect of inertia. The latter is
so remarkable that the dynamic SIFs exceed their static counterparts for all cases of
impulse loading. Herewith, both the impulse duration and the impulse form strongly
affect the dynamic SIFs. Moreover, it is obviously from the predictions that dynamic
loading generates a significant mode II component, which is much larger than that
in the static case.

Next, it is assumed that the specimen is subjected to the bendingmoments varying
harmonically in time with driving frequencies, which could be either fraction or
multiplier, ξ = Ω/ω1 (1/2, 3/2, 3, 5) of the fundamental frequency of the same
intact sandwich beam. The frequency ω1 was computed as 130.42 Hz. A long-term
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(a) (b)

(c) (d)

Fig. 10 Long term dynamic SIFs: a ξ = 1
2 ; b ξ = 3

2 ; c ξ = 3; and d ξ = 5

behaviour of the dynamic complex SIF components is illustrated in Fig. 10, where the
unsteady oscillations are included as well. The numerical results reveal that the long-
term dynamic SIFs highly depends on the driving frequency value. The amplitude
of the dynamic SIFs tends to increase with increasing the driving frequency. Also,
the form of oscillations of the SIFs changes from a regular form at the low driving
frequency in Fig. 10a to irregular ones at the higher driving frequencies as shown
in Fig. 10b–d. Similar to the case of impulse loading, the intensity of shear stress
is substantial in the harmonically loaded specimen as well, but it depends on the
driving frequency.

3.1.3 Crack Propagation Analyses

In crack propagation analyses the cohesive elements, embodying the idea of the
cohesive zone, in conjunction with appropriate contact algorithms are used to sim-
ulate the debonding behaviour in the sandwich DCB-UBM specimen. Four-node
zero-thickness cohesive elements (COH2D4) available in ABAQUS for 2-D models
were inserted into the finite element mesh between the CPE8R solid elements rep-
resenting the face sheet and core of the specimen in Fig. 5a. The materials of the
basic elements were assumed to be orthotropic linear elastic with parameters defined
in Table 1. The CEs have been endowed with the properties of the face sheet/core
interface listed in Table 1. The bi-linear TSL introduced in Sect. 2.2.2 was used for
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(a) (b)

(c)

Fig. 11 Quasi-static debonding propagation: a force-displacement curve; b deformation state and
stress contour plots at the beginning of the debonding; and c deformation state and stress contour
plots at the end of the debonding

modelling the debonding process. Tied constraints were applied to link the cohesive
and solid elements together. In the case of contact, the hard contact model with no
friction was exploited. This contact model defining the initial pre-cracked interface
was then extended onto surfaces newly appeared along the interface due to cracking.
It also was assumed that a presumed crack path is confined only the face sheet/core
interface, i.e. no kinking is considered. The calculations have been performed under
displacement-controlled loading, i.e. the specimen armswere subjected to prescribed
rotations. Explicit time integration scheme with kinematic contact algorithm was
used for the simulations of impact loading, while implicit time-stepping algorithm
with penalty contact method was exploited for the simulations of quasi-static and
long-term dynamic responses.

First, the case of quasi-static pure bending induced by prescribed rotations is
simulated and force-displacement curve is extracted from the finite element solution
as shown in Fig. 11. From this plot, one can see that the interface crack propagates
between the face and the core in a stable manner as expected from this test method.
Also, it is worth to note that the near crack tip stress field during the debonding
growth involves both the normal and shear components as seen in Fig. 11c. This
stress state is qualitatively similar to that in the linear phase of deformation of the
specimen (Fig. 11b) except for a larger zone of negative shear stress beneath the
crack tip which increases with increasing the crack length.
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(a) (b)

(c) (d)

Fig. 12 Debonding propagation under the impulse loads: a debonding extension vs. time curve; b
deformation state for the case of t0 = 0.01 s at an instant of t = 3 ms; c deformation state for the
case of t0 = 0.01 s at an instant of t = 5 ms; and d deformation state for the case of t0 = 0.01 s at
an instant of t = 20 ms

Next, the impulsive rotations of different durations, t0, but the same step function
like forms are applied to the DCB-UBM specimen. For all cases of loading, the
same rotation magnitude is held. In Fig. 12a the simulations demonstrate that the
total debonding extension increases with decreasing the impulse duration and for the
shortest impulse load a complete disintegration of the specimen occurs. In the cases
of loading without final failure, the debonding extends with a relatively constant
speed after a short interval of fast growing. This time interval of fast crack speed
becomes shorterwith decreasing the pulse duration. The deformation and stress states
of the specimen at different instants of time for the loading pulse with t0 = 1 ms are
presented in Fig. 12b–d.

Finally, the sandwich specimen is subjected to harmonic rotations with a given
driving frequency accepted as high as 3/2 of ω1. The analysis was limited by 3000
increments and was lasting at least 100 increments after the steady state oscillation
regime had been achieved. The results of simulation of the debonding behaviour
under harmonic loading are shown in Fig. 13. It is seen that in this case the debonding
propagates in a stick-slip manner, i.e. by jumping from one debonded state to another
one. Moreover, the simulations revealed that the interface crack was intensively
growing when the detached vibrating face sheet had the form of a concave downward
curve, Fig. 13c. In doing so, the induced shear stress in the vicinity of the crack tip
took values of different signs through the interface, Fig. 13c. This is associated with
a mode II dominated regime. Unlike this situation, only small extensions of the
debonding were observed in a mode I dominated state, shown in Fig. 13b.
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(a) (b)

(c)

Fig. 13 Debonding propagation under the harmonic load: a debonding extension versus time curve;
b deformation state and stress contour plots at mode I dominated debonding; and c deformation
state and stress contour plots at the mode II dominated debonding

3.2 Rectangular Panel with a Circular Debonded Zone

To simulate debonding growth in a sandwich plate with a central penny-shaped
debonded zone, the 2-D finite element model elaborated earlier was extended to
a three-dimensional case. The finite element model of a tri-layer debonded plate
was developed in ABAQUS using the layer-wise shell-solid approach [8] with an
additional layer of eight-node 3-D cohesive elements (COH3D8) inserted into the
interface between the shell continuum elements SC8R representing the face sheet
and the solid continuum elements C3D8R discretizing the core. The TSL used in the
previous 2-D cohesive zone model was generalized for the 3-D cohesive elements
following the relations in Sect. 2.2.2. The surface-to-surface contact definition within
the small-sliding displacement kinematics was used to model the hard pressure pen-
etration law and the Coulomb friction law. The contact constraints were imposed on
both the surfaces of the initially debonded region and the surfaces underlaying the
cohesive elements along the face sheet/core interface.

One configuration of the sandwich plate is used throughout the current study. It is
a simply supported rectangular sandwich plate of 180 by 270 mm×mm consisting
of a 50 mm-thick WF51 foam core and of 2.4 mm-thick GFRP face sheets, which is
weakened by a penny-shaped debonded zone of a radius of 39.3 mm at a plate centre.
The constituent bulkmaterials of the plate are assumed to be orthotropic linear elastic
with the material constants listed in Table 3. The cohesive layer obeying the 3-D bi-
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(a) (b)

Fig. 14 Sketches of: a a half of the finite element model of sandwich plate; and b graphs of
prescribed displacements

linear constitutive law adopts the fracture parameters and the interfacial strength
values associated with the resin-reach interface as defined in Table 3.

3.2.1 Impulse Loading

The debonded sandwich plate is assumed to be loaded by a prescribed impulsive
displacement U at the centre of detached upper face sheet, Fig. 14a. The impulses
had the form of a step function with various durations of the ramp time t0 (a ramp
time) defining the loading rate, υi (i = 1, 2, 3) of the applied displacement (see
Fig. 14b), i.e. the shorter is the ramp time, the larger is the loading rate. The total
opening displacement is supposed to be the same for all cases of loading and when
this displacement is achieved, it is held constant during the analysis. Also, the loading
rates were estimated relatively to the Rayleigh wave speed of a more compliant foam
material, which was found as 107 mm/s. Although, the dynamic crack propagation
is analysed, static critical ERRs have been used in the fracture criteria defined for
the TSL of the cohesive elements due to deficiency of experimental data for this
problem.

Table 3 Material properties of the sandwich plate

Constituents Material constants

GFRP face sheet Ex = Ez = 19.3 GPa; Ey = 3.48 GPa; Gxy = Gxz = 1.65 GPa;
Gyz = 7.7 GPa; νxy = 0.05; νxz = νyz = 0.25; ρ = 1468 kgm−3

WF51 foam core Ex = Ey = Ez = 85 MPa; Gxy = Gxz = Gyz = 78 MPa;
νxy = νxz = νyz = 0.325; ρ = 52 kgm−3

Resin interface kI = kI I = kI I I = 100 GPa; GIc = 375 Jm−2;
GI Ic = GI I I c = 2125 Jm−2; TI = 3 MPa; TI I = TI I I = 17.2 MPa
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Fig. 15 Debonding propagation under impulse loading: a static case υ = 0; b υ1 = 103 mm/s;
c υ2 = 104 mm/s; d υ3 = 105 mm/s at t = 0.001 ms; f υ3 = 105 mm/s at t = 0.01 ms; g υ3 =
105 mm/s at t = 0.1 ms; and h υ3 = 105 mm/s at t = 1 ms

Figure 15 shows the debonding area being grown under the impulsive displace-
ments of the different rates. One can see that the debonded area increases with
increasing the loading rate. Moreover, it was found that the inertia effect is minor
for the first two rates of the loading, i.e. the quasi-static approach still remains valid
for them. However, when the rate of the applied impulsive displacement increases
to a value U3 comparable with the Rayleigh wave speed, oscillations produced by
incident and reflected stress waves become very strong inside the sandwich plate, i.e.
inertia contributesmuch into its dynamic behaviour. As a result of the inertia effect, at
the beginning of loading the debonding was postponed growing in comparison with
the two previous cases, but after few a while the induced dynamic stresses promoted
the debonding to advance up to the end of the analysis as shown in Fig. 15d–h.

Fig. 16 Debonding propagation under harmonic loading: a t = 0 ms; b t = 1 ms; c t = 3 ms; d
t = 5 ms; e t = 7 ms; and f t = 10 ms
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3.2.2 Harmonic Loading

Because a long-term cracking resistance is of concern rather than particular transient
events, the debonded sandwich plate is considered to be subjected to harmonic load-
ing. A concentrated force of the amplitude of 10 N oscillating with the frequency of
1000 Hz, which is less than the fundamental frequency of the same intact sandwich
plate (about 1300 Hz), was applied to the centre of the bottom face sheet perfectly
glued to the core. The results of the simulation of debonding growth are illustrated
in Fig. 16, where the form and size of the debonded area are shown at different
instants of time. As seen in the plots, the debonding grows with time. However,
unlike the impulse loading, where the debonded area was increasing continuously
with time and was spreading relatively uniformly in all directions, in this case the
debonding advances in a stick-slip manner. The debonding becomes spontaneously
growing and spreading in certain directions depending on the dynamic stress state at
a current instant of time. In turn, the stress field in the debonded sandwich plate is
very complicated because it combines incident and reflected stress waves which are
generated by both the external harmonic load and due to intermittent contact between
the detached face sheet and the core.

4 Conclusions

A finite element methodology to simulate the debonding of the face sheet from the
core in sandwich panels under dynamic loading is presented. Themain features of the
problem are highlighted. A finite element implementation of the cohesive zonemodel
accounting for contact and friction is used tomodel the dynamic fracture of sandwich
panels. The interaction integral and crack flank displacement methods exploited for
computing the fracture parameters of the face sheet/core interface crack such as
complex SIFs, energy release rate and phase angle are reported. The applicability
of the numerical schemes described in the present work is assessed by performing
2-D and 3-D finite element fracture analyses with ABAQUS for both the fracture
specimen DCB-UBM and the sandwich plate with a central penny-shaped debonded
zone.

A stationary debonding of a sandwich material consisting of orthotropic linear
elastic constitutive layers within the DCB-UBM test is firstly considered. A two-
dimensional finite element model has been used for predictions. The character of
the stress field in the vicinity of the interface crack tip and the value of extracted
fracture parameters have been examined over a wide range of bending moment
ratios applied to the specimen. As revealed the stress profile shows a strong coupling
between normal and shear stresses regardless the loading type, i.e. material-induced
mode mixity of a bi-material interface crack has clearly been demonstrated. The
dependence of ERRand phase angle on themixedmode conditions has been shown as
well.Moreover, the simulations with the 3-Dmodel illustrated awidth-wise variation
of the mentioned fracture parameters. Secondly, the DCB-UBM sandwich specimen
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with stationary debonding has been studied under dynamic impulsive and harmonic
loads. The 2-D dynamic virtual tests showed that significant mode II component is
generated during dynamic loading. In addition, it was found that the dynamic SIFs
are strongly dependent on both the form and duration of the impulses and the driving
frequency.

The predictions of debonding propagation in the DCB-UBM specimen proved a
stable character of the interface crack growth under quasi-static loading as expected
from the analytic considerations. In contrast to this, the simulations of the specimen
under dynamic loading have demonstrated an unstable debonding propagation, espe-
cially in the cases of the high rate impulse or harmonic loading at the high driving
frequency. In all those cases, it was clearly observed that the debonding growth is
associated with mode II dominated fracture.

The influence of dynamic loading on the debonding behaviour in sandwich plates
has been examined using 3-D finite element models. The essential role of the load-
ing rate on the debonding behaviour in the sandwich plate has been established by
comparing the responses of the plates subjected to step function-like impulses of
different intensities. The initial delay in the debonding growth and then its extensive
advance due to inertia effects have been found in the cases of high rate impulse
and harmonic load acting at high driving frequency. Also, a spontaneous debonding
growth (a stick-slip behaviour) in the sandwich plate under harmonic loading has
been observed. As found, this behaviour is governed by a complicated dynamic stress
field at a current time instant, where the stresses evolve with time as a combination
of incident and reflected stress waves generated by both the external harmonic load
and intermittent contact between the detached face sheet and the core.
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On Dynamic Boundary Conditions
Within the Linear Steigmann-Ogden
Model of Surface Elasticity and Strain
Gradient Elasticity

Victor A. Eremeyev

Abstract Within the strain gradient elasticity we discuss the dynamic boundary
conditions taking into account surface stresses described by the Steigmann–Ogden
model. The variational approach is applied with the use of the least action functional.
The functional is represented as a sum of surface and volume integrals. The surface
strain and kinetic energy densities are introduced. The Toupin–Mindlin formulation
of the strain gradient elasticity is considered. As a result, we derived the motion
equations and the natural boundary conditions which include inertia terms.

1 Introduction

Nowadays the interest to modelling of surface phenomena is growing with respect
to developments in manufacturing of micro- and nanostructured materials. Among
the surface-related phenomena approaches the models of surface elasticity by Gurtin
and Murdoch [18, 19] and by Steigmann and Ogden [34, 35] are often used for
modelling of micro- and nanostructured materials, see, e.g., [9, 13, 20–22, 37, 38]
and the reference therein. The presence of surface stresses changes essentially the
natural boundary conditions and the properties of solutions of the corresponding
boundary-value problems, see [3, 12, 24, 32].

Here we consider the dynamic boundary conditions which follow from the least
action principle as natural ones. We use here the linear Steigmann–Ogden model of
surface elasticity. The peculiarity of the model is the dependence of the surface strain
energy on second derivatives of displacements. So for consistency with the material
behaviour in the bulk we use the strain gradient elasticity introduced by Toupin [36]
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and Mindlin [28, 29], see also [30, 31] and more recent works by Eringen [16];
Aifantis [2]; Maugin [27]; Bertram [5]; Eremeyev et al. [14]. Let us also note that
the strain gradient elasticity is also used for modelling of the material behavior at the
nanoscale, see, e.g., [6, 23]. Unlike the classic linear elasticity the dynamic boundary
conditions here include not only spatial derivatives of displacements but also their
time derivatives. So inertia terms play a role also in boundary conditions.

2 Constitutive Relations

In what follows we consider the case of small deformations. As a result, the kine-
matics is described through the displacement vector

u = u(x, t),

which is a differentiable vector-function of the position vector x and time t .
For a hyperelastic solidwe introduce the surface andbulk strain energies as follows

U = U (εεε,κκκ), W = W (e,k), (1)

where the strain measures are given by

e = e(u) = 1
2 (∇u + ∇uT ), k = ∇∇u,

εεε = εεε(u) = 1
2 (∇su · A + A · ∇suT ),

κκκ = κκκ(u) = 1
2 (∇sϑϑϑ · A + A · ∇sϑϑϑ

T ), ϑϑϑ = ∇sw + B · u.

Here w = u · n, “·” denotes the scalar product, B = −∇sn is the tensor of curvature,
n is the unit outward normal to the body boundary ∂V , andwe introduce the spatial∇
and surface ∇s nabla-operators, ∇s = A · ∇, A = I − n ⊗ n, I is the 3D unit tensor.
Hereinafter we use the direct (coordinate-free) tensor calculus as in [14, 25, 26, 33].
Examples of U and W can be found in [5, 8, 12, 38]. A particular class of strain
gradient media are Korteweg fluids, see [4, 11]. Here we will not specify the form
of these functions.

We introduce the following stress measures

σσσ = ∂W

∂e
, τττ = ∂W

∂k
, T = ∂U

∂εεε
, M = ∂U

∂κκκ

.

Here σσσ , τττ , T and M are the stress, hyper-stress, surface stress and surface couple
stress tensors, respectively. Note that tensorsσσσ ,T andM are symmetric second-order
tensors, and T and M satisfy to relations

n · T = 0, n · M = 0.
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For dynamics we define the surface kinetic energy as a quadratic function of the
velocity v = u̇ and its surface gradient

Ks = 1
2mv · v + 1

2∇sv : J0 : ∇sv + ∇sv : J1 · v,

wherem is the surface mass density, the overdot stands for the derivative with respect
to t , J0 and J1 are forth- and third-order tensors of surface microinertia, respectively.
Here for arbitrary second-order tensors X and Y we introduce the scalar product
operation as follows

X : Y = tr (X · YT ).

Note that J0 and J0 have the following properties

n · J0 = 0, J0 : (n ⊗ a) = 0 ∀a, n · J1 = 0. (2)

The kinetic energy in the bulk takes the following form

K = 1
2ρv · v + 1

2∇v : K0 : ∇v + ∇v : K1 · v,

where ρ is the mass density,K0 andK1 are forth- and third-order tensors of microin-
ertia, respectively.

3 Hamilton’s Variational Principle

In order to obtain the natural boundary conditions we use the Hamilton variational
principle (the least action principle). For the least action principle in strain gradient
media we refer to [1, 4] and the reference therein. Here the functional is given by

H[u] =
t2∫

t1

(K − E) dt, (3)

where
K = KS + KB, E = B + S,

and

KS =
∫
A
Ks dS, KB =

∫
V
K dV

B =
∫
V
W (e(u),k(u)) dV, S =

∫
A
U (εεε(u),κκκ(u)) dS.
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Here A ⊂ ∂V is the part of the body surface where the surface stresses are defined,
t1 and t2 are two time instants. Functionals B and S are the energy and surface
energy functionals, respectively. For simplicity we omit here external loading. In
other words, we consider a free surface with surface stresses.

Using standard calculus of variations from

δH = 0

with constraints
δu

∣∣
t=t1

= 0, δu
∣∣
t=t2

= 0,

we intend to derive the natural boundary conditions at A and its contour ∂A. Here
δu is a vector of admissible virtual displacements.

Inwhat followswe are restricted ourselves by smooth enough surface and contour,
that is without edges and corner and end points.

3.1 First Variation of the Kinetic Energy Functional

Let us consider the calculations of the first variation of the kinetic energy. In order
to find

δ

t2∫

t1

KB dt

we successively consider all terms inK . First, we get

δ

t2∫

t1

∫
V

1
2ρv · v dV dt =

t2∫

t1

∫
V

ρv · δu̇ dV dt

= −
t2∫

t1

∫
V
(ρv)· · δu dV dt. (4)

For the second term inK we have

δ

t2∫

t1

∫
V

1
2∇v : K0 : ∇v dV dt =

t2∫

t1

∫
V

∇v : K0 : ∇δu̇ dV dt

= −
t2∫

t1

∫
V

(∇v : K0)
· : ∇δu dV dt
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=
t2∫

t1

∫
V

∇ · (∇v : K0)
· · δu dV dt −

t2∫

t1

∫
∂V

n · (∇v : K0)
· · δu dSdt. (5)

Note that in (5) we used twice the integration by parts. Finally, we get the first
variation of the third term

δ

t2∫

t1

∫
V

∇v : K1 · v dV dt =
t2∫

t1

∫
V
[∇v : K1 · δu̇ + ∇δu̇ : K1 · v] dV dt

= −
t2∫

t1

∫
V

[
(∇v : K1)

· · δu + ∇δu : (K1 · v)·] dV dt

=
t2∫

t1

∫
V

[∇ · (K1 · v)· − (∇v : K1)
·] · δu dV dt −

t2∫

t1

∫
∂V

n · (K1 · v)· · δu dSdt.

(6)

As a result, we obtain

δ

t2∫

t1

KB dt =
t2∫

t1

∫
V

[−(ρv)· + ∇ · (∇v : K0)
· + ∇ · (K1 · v)· − (∇v : K1)

·] · δu dV dt

−
t2∫

t1

∫
∂V

n · [
(∇v : K0)

· + (K1 · v)·] · δu dSdt. (7)

In a similar way we find the first variation of the surface kinetic energy

δ

t2∫

t1

KS dt =
t2∫

t1

∫
A

[−(mv)· + ∇s · (∇sv : J0)· + ∇s · (J1 · v)· − (∇sv : J1)·
] · δu dSdt

−
t2∫

t1

∫
∂A

ννν · [
(∇sv : J0)· + (J1 · v)·] · δu dsdt. (8)

Here ννν is the unit normal to ∂A such that ννν · n = 0. Note that here we used (2)
and formula (31) of the integration by parts.
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3.2 First Variation of the Surface Energy Functional

We have

δS[u] =
∫
A
δU (εεε(u),κκκ(u))dS =

∫
A

(
∂U

∂εεε
: δεεε + ∂U

∂κκκ

: δκκκ

)
dS

=
∫
A
(T : δεεε + M : δκκκ) dS. (9)

Here δεεε = εεε(δu) and δκκκ = κκκ(δu).
With identities

T : δεεε =T : (∇sδu · A) = tr [T · AT · (∇sδu)T ] = tr [T · (∇sδu)T ]
=T : (∇sδu)

and applying the surface divergence theorem (31) we integrate by part the first term
in the line integral in (9) as follows

∫
A
T : δεεε dS = −

∫
A
(∇s · T) · δu dS +

∫
∂A

ννν · T · δu ds. (10)

In a similar way we get

∫
A
M : δεεε dS =

∫
A
M : (∇sδϑϑϑ) dS

= −
∫
A
(∇s · M) · δϑϑϑ dS +

∫
∂A

ννν · M · δϑϑϑ ds. (11)

Substituting into (11)
δϑϑϑ = ∇sδw + B · δu (12)

we have
∫
A
M : δεεε dS = −

∫
A
(∇s · M) · B · δu dS −

∫
A
(∇s · M) · ∇sδw dS

+
∫

∂A
ννν · M · δϑϑϑ ds

= −
∫
A
(∇s · M) · B · δu dS

+
∫
A
[∇s · (∇s · M) + 2Hn · (∇s · M)] δw dS

−
∫

∂A
ννν · (∇s · M)δw ds
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+
∫

∂A

[
ννν · M · B · δu + ννν · M · ννν ∂δw

∂ν
− ∂

∂s
(ννν · M · τττ) δw

]
ds.

(13)

As n · (∇s · M) �= 0, for integration by parts we applied here Eq. (30). Here we also
use the representation of ∇s

∇s = ννν
∂

∂ν
+ τττ

∂

∂s
,

where τττ is the unit vector tangent to ∂A, and ∂
∂ν

and ∂
∂s denotes the normal and

tangent derivatives, respectively. Additionally, in (13) we performed the integration
by parts along ∂A to exclude ∂

∂s δw.
Finally, the first variation of S takes the form

δS =
∫
A
[−∇s · T − (∇s · M) · B + ∇s · (∇s · M)n + 2Hn · (∇s · M)n] · δu dS

+
∫

∂A

[
ννν · T + ννν · M · B − ννν · (∇s · M)n − ∂

∂s
(ννν · M · τττ) n

]
· δu ds

+
∫

∂A
ννν · M · ννν ∂δw

∂ν
ds. (14)

Using the identity
∇ · (a ⊗ b) = (∇ · a)b + a · ∇b

we prove that

∇s · (∇s · M)n =∇s · [(∇s · M)n] − (∇s · M) · ∇sn

=∇s · [(∇s · M)n] + (∇s · M) · B.

As a result, Eq. (14) transforms into a more compact form

δS =
∫
A
[−∇s · [T − (∇s · M)n] + 2Hn · (∇s · M)n] · δu dS

+
∫

∂A

[
ννν · T + ννν · M · B − ννν · (∇s · M)n − ∂

∂s
(ννν · M · τττ) n

]
· δu ds

+
∫

∂A
ννν · M · ννν ∂δw

∂ν
ds. (15)

Similar variational techniquewas used in the case of statics of simple elastic solids
within the Steigmann–Ogdenmodel in [38]. The static boundary conditions for strain
gradient fluids with surface stresses as in Gurtin–Murdoch approach were derived by
Eremeyev and Altenbach [11]; Eremeyev [10]. Let us also note that δS = 0 results
in static equations which are similar to ones used in the Kirchhoff–Love shell theory,
see Lebedev et al. [25].
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3.3 First Variation of the Strain Energy in the Bulk

In the bulk we have

δB[u] =
∫
V

δW (e(u),k(u)) dV =
∫
V

(
∂W

∂e
: δe + ∂W

∂k
∴ δk

)
dV

=
∫
V

(σσσ : δe + τττ ∴ δk) dV . (16)

Here δe = e(δu), δk = ∇∇(δu), and “∴” stands for the inner product in the space
of third-order tensors.

Using the identity σσσ : δe = σσσ : ∇δu and applying the divergence theorem we get

∫
V

σσσ : δe dV =
∫

∂V
n · σσσ · δu dS −

∫
V
(∇ · σσσ) · δu dV . (17)

In a similar way we have

∫
V

τττ ∴ δk dV =
∫

∂V
n · τττ : ∇δu dS −

∫
V
(∇ · τττ) : ∇δu dV

=
∫
V

∇ · (∇ · τττ) · δu dV −
∫

∂V
n · (∇ · τττ) · δu dS

+
∫

∂V
n · τττ : ∇δu dS. (18)

With the surface divergence theorem the last integral can be transformed as follows:

∫
∂V

n · τττ : ∇δu dS =
∫

∂V

[
n · τττ : ∇sδu + n · τττ :

(
n ⊗ ∂δu

∂n

)]
dS

=
∫

∂∂V
ννν · (n · τττ) · δu ds

−
∫

∂V
[∇s · (n · τττ) · δu + 2H(n ⊗ n) : τττ · δu] dS

+
∫

∂V
(n ⊗ n) : τττ · ∂δu

∂n
dS.

Here ∂
∂n denotes the normal derivative whereas ∂∂V means a contour which bounds

∂V if it exists or edges in the case of non-smooth surface. In what follows we assume
that ∂V = A and, therefore, ∂∂V = ∂A.
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As a result, Eq. (18) takes the following form

∫
V

τττ ∴ δk dV =
∫
V

∇ · (∇ · τττ) · δu dV

+
∫

∂∂V
ννν · (n · τττ) · δu ds

+
∫

∂V
(n ⊗ n) : τττ · ∂δu

∂n
dS

−
∫

∂V
n · (∇ · τττ) · δu dS

−
∫

∂V
[∇s · (n · τττ) · δu + 2H(n ⊗ n) : τττ · δu] dS.

Thus, summarizing we have

δB[u] = −
∫
V
[∇ · σσσ − ∇ · (∇ · τττ)] · δu dV

+
∫

∂∂V
ννν · (n · τττ) · δu ds

+
∫

∂V
(n ⊗ n) : τττ · ∂δu

∂n
dS

+
∫

∂V
{n · [σσσ − ∇ · τττ ] − ∇s · (n · τττ) − 2H(n ⊗ n) : τττ } · δu dS (19)

Let us note that the variational equation δB[u] = 0 results in the homogeneous equi-
librium equations and natural boundary conditions for linear strain gradient media,
see, e.g., [5, 14] for more details.

3.4 Motion Equations and Natural Boundary Conditions

Summarizing (7), (8), (15) and (19) we obtain the following rather awkward expres-
sion of the first variation δH:

δH =
t2∫

t1

∫
V

[−(ρv)· + ∇ · (∇v : K0)
· + ∇ · (K1 · v)· − (∇v : K1)

·

+∇ · σσσ − ∇ · (∇ · τττ)] · δu dV dt

+
t2∫

t1

∫
A

[−(mv)· + ∇s · (∇sv : J0)· + ∇s · (J1 · v)· − (∇sv : J1)·

− n · [
(∇v : K0)

· + (K1 · v)·]
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+ ∇s · [T − (∇s · M)n] − 2Hn · (∇s · M)n

−n · [σσσ − ∇ · τττ ] + ∇s · (n · τττ) + 2H(n ⊗ n) : τττ ] · δu dSdt

−
t2∫

t1

∫
A
(n ⊗ n) : τττ · ∂δu

∂n
dSdt

+
t2∫

t1

∫
∂A

{
−ννν · [

(∇sv : J0)· + (J1 · v)·] − ννν · (n · τττ)

−
[
ννν · T + ννν · M · B − ννν · (∇s · M)n − ∂

∂s
(ννν · M · τττ)n

]}
· δu dsdt

−
t2∫

t1

∫
∂A

ννν · M · ννν ∂δw

∂ν
dsdt. (20)

Following standard technique of the calculus of variations from δH = 0 we get
the motion equations in V

∇ · σσσ − ∇ · (∇ · τττ) = ρü − ∇ · (∇ü : K0) − ∇ · (K1 · ü) + ∇ü : K1. (21)

From δH = 0 we also get the homogeneous boundary conditions on A

mü − ∇s · (∇s ü : J0) − ∇s · (J1 · ü) + ∇s ü : J1 + n · [∇ü : K0 + K1 · ü]
= ∇s · [T − (∇s · M)n] − 2Hn · (∇s · M)n

− n · [σσσ − ∇ · τττ ] + ∇s · (n · τττ) + 2H(n ⊗ n) : τττ , (22)

(n ⊗ n) : τττ = 0. (23)

Neglecting the microinertia terms that is when

K0 = 0, K1 = 0, J0 = 0, J1 = 0,

Eqs. (21) and (22) take more simple form

∇ · σσσ − ∇ · (∇ · τττ) = ρü, (24)

mü = ∇s · [T − ∇s · M)n] − 2Hn · (∇s · M)n

− n · [σσσ − ∇ · τττ ] + ∇s · (n · τττ) + 2H(n ⊗ n) : τττ , (25)

In the case of statics and for simple materials that is if τττ = 0, Eq. (25) coincides
with the boundary conditions presented by Zemlyanova and Mogilevskaya [38]

∇s · [T − (∇s · M)n] − 2Hn · (∇s · M)n = n · σσσ . (26)
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For the Gurtin–Murdoch model and for simple materials that is if M = 0 and
τττ = 0, instead of (22) we have

∇s · T = n · σσσ + mü. (27)

As was shown by Eremeyev et al. [13] the presence in (27) the dynamic term mü
results in new type of surface waves, which do not exists in the standard elasticity.
These antiplane surface waves exist also within the Toupin–Mindlin strain gradient
elasticity, see [17] and the comparison of thesewaveswith ones inmediawith surface
stresses given by Eremeyev et al. [15].

The analysis of the natural boundary conditions along ∂A requires further assump-
tions on the kinematics at ∂A and behaviour of admissible variations. So wewill con-
sider this analysis as well as analysis of dynamic boundary conditions along edges
and at the corner point will be given in the forthcoming papers.

4 Conclusions

With the use of the least action principle we derived the motion equations and the
natural boundary conditions on a free surface with surface stresses and discussed
it along contours. Here we consider both strain gradient elasticity in the bulk and
the Steigmann-Ogden model of surface elasticity. The natural boundary conditions
include inertia terms which may change the wave propagation in such media. In
particular, these inertia terms are responsible for new type of surface anti-plane
waves, see [13, 15]. Here we have also the inertia terms in conditions along possible
edges. The further analysis of the dynamic conditions along edges can be provided
as was done by dell’Isola and Seppecher [7]; Eremeyev [10].

Acknowledgements Authors acknowledges financial support from the Russian Science Founda-
tion under the grant “Methods of microstructural nonlinear analysis, wave dynamics and mechanics
of composites for research and design of modern metamaterials and elements of structures made
on its base” (No 15-19-10008-P).

Appendix: Surface Divergence Theorems and Integration
by Parts

For integration by parts we used the surface divergence theorem. Here we recall
two statements, see, e.g., [14, 25] for details. Let X be a continuously differentiable
tensor-valued field given on a smooth surface A with the smooth contour ∂A. Then
the following statement is valid

∫
A
(∇s · X + 2Hn · X) dS =

∫
∂A

ννν · X ds, (28)
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where 2H = trB is the mean curvature, B = −∇sn, n is a unit normal to A, and ννν

is outward normal to ∂A such that ννν · n = 0.
If n · X = 0 or H = 0 then we get the following reduced form

∫
A
∇s · X dS =

∫
∂A

ννν · X ds. (29)

Using (28) we get the following formula of integration by parts

∫
A
X : ∇sy dS =

∫
∂A

ννν · X · y ds −
∫
A

[
(∇s · X) · y + 2Hn · X · y] dS (30)

for ant fields X and y. In particular, if n · X = 0 or H = 0 we have more simple
relation ∫

A
X : ∇sy dS =

∫
∂A

ννν · X · y ds −
∫
A
(∇s · X) · ydS. (31)
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Simple Energy Control
in Frenkel–Kontorova Model

Alexander L. Fradkov, Egor V. Usik and Boris Andrievsky

Abstract In the paper the energy control problems for Frenkel–Kontorova Model
are posed and their connection to the pendula chains control is discussed. Speed-
gradient based energy control algorithm is proposed and analyzed. Simulation results
illustrating the convergence of the proposed algorithm are presented.

1 Introduction

The celebrated Frenkel–Kontorova (FM) model since its first appearance in the paper
by Ya. I. Frenkel and T. A. Kontorova in 1938 is getting more and more popular as
a tool for description and analysis of nonlinear effects (solitons, kinks, breathers,
etc.) in complex physical systems [1]. It has a variety of applications to study of
dislocations in the crystalline structure of a solid body, study of friction mechanisms
at nanoscale, to study of biological chains e.g. DNA), etc. Inmany cases, the elements
of the FK model really correspond to real atoms, but they can also to simulate
whole groups of atoms, as in the case of DNA type molecular chains, they can
correspond magnetic circuit backs or even describe some complex objects such as
point Josephson contacts in some lattice.
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As a model of the motion of a dislocation in a crystal the FK model takes into
account two chains of atoms, which are an approximation of two layers of atoms,
with the bottom layer of atoms being replaced by a sequence of hills and hollows.
In the hollows there are balls connected by elastic springs. Thus, the interaction of
balls – “atoms” between themselves and with the bottom layer of “atoms” is taken
into account [1].

The ultimate case of dislocation is the “hole” in the crystalline lattice. Such a hole
can move through the crystal. To flip a nearby atom to an empty space, one needs to
“swing it” so that it can break away from the surrounding atoms. A defect in which
atoms around the “hole” are also shifted is easier to move.

One of the simplest macroscopicmodels describing the dynamics of the FKmodel
was first proposed by Alvin Scott [2, 3]. This is an experimental mechanical trans-
mission line, which is an effective pedagogical tool for observing kinks and study
their remarkable properties. Then he showed [2] that such the mechanical system
can be easily designed as a line of screws screwed into copper cylinders that are con-
nected by steel springs and kept in horizontal position by the piano string. Changing
the stiffness of the springs, one can get a chain, described either quasi-continual, or a
strictly discrete FK model. Useful portable version of this mechanical transmission
line can be constructed in a simpler way using rubber tape and dressmakers [4]. Thus,
the FK system can be interpreted by a chain of pendulums, in which each pendulum
is connected to its neighbors by elastic springs.

In the recent years the methods of cybernetics are penetrating a number of the
physics areas and the whole new area in physics named “Cybernetical Physics” is
getting more and more visible [5]. Since FK model has so many applications, it
becomes of interest to investigate its controlled version. The first results of such
kind related to control of friction were published both in physical journals [6] and
in control related journals [7, 8]. However the problem of energy control was not
addressed. The energy control problem for FK model was first posed in [5, 9] where
the control of energy algorithm was also proposed. However neither analytical nor
numerical study of energy control were performed previously up to the best authors’
knowledge, though the related problem for sine-Gordon equation was studied more
intensively [10–13].

Such an investigation is the mail aim of the present paper. In the next section the
energy control problem for sine-Gordon system is recalled and the simple energy
control problem for FK model is formulated. Then the control algorithm for FK
model is described and the achievement of the control goal is examined.

In Sec. 3 some general nonlinear control framework useful in control of physical
system is described. In Sec. 4 this framework will be applied to a more advanced
problem when an integrator appears in the control loop. Section4 is devoted to the
problemof energy control in cascadedFKmodel. The simulation results are presented
in Sec. 5. Concluding remarks in Sec. 6 finalize the paper.
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2 Simple Energy Control for Sine-Gordon and
Frenkel–Kontorova Models

Let us study possibilities of the speed-gradient method for control of energy in

sin-Gordon-like systems [5]. Using the following notations: xt = ∂x

∂t
, xtt = ∂2x

∂t2
,

xri = ∂x

∂ri
, xri t = ∂2x

∂ri∂t
xri ri = ∂2x

∂r2i
, consider the system, described by sin-Gordon

equation with dissipation

J xtt = k�x − E sin x − ρxt , (1)

where x = x(r, t) is the function of the system state; r ∈ X ⊂ R
n is the spatial

variable, taking values from a set X ; � is Laplace operator; �x =
n∑

i=1
xri ri ; J , k, ρ

are parameters of the system; E = E(t) is the external action (e.g. external force or
intensity of the external electrical field). Assume that E = E0 + u(t), where E0 is
the base level of the intensity of the force or field; u(t) is the controlling variable.
The system (1) can be considered as a model of diffusively coupled oscillators (e.g.
pendulums, magnetic domains liquid crystals), each being positioned in the spatial
point r . Then x(r, t) is the deflection angle of r th oscillator at time t . Such a system
belongs to a class of reaction-diffusion systems, but its study is of independent value.

Let us pose the problem of controlling the energy of the free system

H = 1

2

∫

X

(

J
(∂x

∂t

)2 + k
∣
∣∇r x

∣
∣2 + 2E0

(
1 − cos x

)
)

dr (2)

to the prespecified level H∗. It means that we introduce the control goal as follows:

lim
t→∞ H(t) = H∗. (3)

First let ρ = 0 and evaluate the rate of changing the energy along trajectories of
the system (1) assuming that the controlling variable is frozen, u(t) ≡ u:

d H

dt
=

∫

X

J xt · xtt − k�xxt + E0 sin x · xt dr =

=
∫

X

xt
( − E sin x + E0 sin x

)
dr = −u(t)

∫

X

xt sin x dr.
(4)

It is easy to see that the choice of the control in the form
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u(t) = −γ

∫

X

xt sin x dr, (5)

where γ > 0, guarantees that the energy H(t) will not decrease in time.

Introducing the goal function V (t) = 1

2

(
H(t) − H∗

)2
, and evaluating the time

derivative of V (t), we obtain

V̇ = dV

dt
= −u(t)

(
H(t) − H∗

)
∫

X

xt sin x dr, (6)

and V̇ ≤ 0 for

u(t) = γ
(
H(t) − H∗

)
∫

X

xt sin x dr. (7)

Thus, if the system is affected by the action (7) it will have a tendency to approach
the goal.

Consider in more detail the spatially one-dimensional, spatially discrete version
of the problem, described by equations

J ẍ j = k

h2

(
x j+1−2x j +x j−1

)−(
E0+u(t)

)
sin x j −ρ ẋ j , j =1, 2, . . . ,N . (8)

It corresponds to a continuous system

J xtt = kxrr − (
E0 + u(t)

)
sin x − ρxt (9)

defined in the set X = [a, b], if the correspondence is defined by the relations x j =
x(a + j (b − a)/(N + 1)), j =0, 2, . . . ,N + 1.

The system (8) is suggested to be a controlled version of the classical Frenkel–
Kontorova chain, proposed in 1939 and studied in numerous works, see, e.g. [14].

Before designing the control law, let us discuss the choice of boundary conditions.
Usually when studying an uncontrolled system (9) two types of boundary conditions
are used: either zero boundary conditions x(a, t) = x(b, t) = 0, corresponding in
the discrete system (8) to the relations

x0(t) ≡ xN+1(t) ≡ 0, (10)

or periodic (no flux across the boundary) conditions xr

∣
∣
r=a

= xr

∣
∣
r=b

= 0, corre-
sponding to the relations

x0 = x1, xN = xN+1. (11)

The speed-gradient energy control algorithm looks as follows:
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u(t) = γ
(
H(t) − H∗

) N∑

j=1

ẋ j sin x j , (12)

where γ > 0., H(t) is a discrete analogue of (2), see (26) It follows from [5, Theorem
3.1] that the control goal (3) in the system (8), (12) for � = 0 is achieved if the energy
layer in the system phase space between the energy levels H(0) and H∗ does not
contain equilibria satisfying conditions sin x j = 0, j = 1, . . . , N .

3 Nonlinear Control and Passivity

Consider the following non-affine time-invariant model of a nonlinear system:

ẋ = F(x, u), y = h(x) (13)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m denotes the control input, y(t) ∈ R
m

is the system output. System (13) behavior is considered on the temporary axis
[0,∞)with initial condition x(0) = x0. It is assumed that the set of admissible input
functions consists of all piecewise-continuous, locally bounded functions. u : R+ →
R

m , function F : Rn × R
m × R+ → R

n is locally Lipshitz on x , u, and besides
F(0, 0) = 0 and h(0) = 0.

Definition 1 System (13) is called passive [15] if there is a non-negative V : Rn →
R+ function, called the storage function, and all solutions satisfy the system integral
dissipation inequality: V (x(t)) − V (x(0)) ≤ ∫ t

0 y(τ )Tu(τ )dτ . If, moreover, the stor-
age function V (x) is differentiable, then the dissipation inequality can be rewritten
in differential form: V̇ ≤ yTu.

Passivity is closely related to stability: for u ≡ 0, a passive systemwith a positively
defined storage function is Lyapunov stable.

Definition 2 [15] System ẋ = f (x) + g(x)u, y = h(x) possesses the Yakubovich–
Kalman–Popov property (YKP-property) if there is a non-negative continuously dif-
ferentiable function V : R

n → R+, V (0) = 0 such that

(∇x V (x)
)T

f (x) � 0,
(∇V (x)

)T
g(x) = h(x)T.

Lemma 1 [15] System ẋ = f (x) + g(x)u, y = h(x) is passive with a continuously
differentiated storage function if and only if it possesses the property of YKP.

The backstepping method [15] is based on the following statement
Statement. If system ẋ = f (x, ξ), ξ̇ = u is defined in R

n and is locally asymp-
totically stabilized at the point x = x∗ using control ξ = Uξ (x), then the control
algorithm
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u = ∂Uξ

∂x
f (x, ξ) + k0(ξ − Uξ (x)),

where k0 < 0, ensures (local) asymptotical stability of the initial system in the point
(x, ξ) = (x∗, 0). �

Definition 3 The Poisson bracket of smooth functions f (q, p) and g(q, p) is
defined as

{ f, g} =
n∑

i=1

( ∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

)

Consider the mathematical model of the system in the Hamiltonian form as fol-
lows:

q̇ = ∇p H(q, p, u), (14)

ṗ = −∇q H(q, p, u), (15)

where q ∈ R
n , p∈ R

n are vectors of generalized coordinates and generalized
momenta; u(t)∈ R is the controlling input.

It is assumed that the Hamiltonian H(q, p, u) is a continuously differentiable
function on its arguments.

Consider the problem of approaching free (uncontrolled) system energy to a given
energy level H∗, i.e. pose the following control aim:

lim
t→∞ H0(q(t), p(t)) = H∗,

where H0(q, p) = H(q, p, 0) is theHamiltonian of a free system,which is described
by following equations:

q̇ = ∇p H0(q, p),

ṗ = −∇q H0(q, p).

Introduce the following goal function

Q(x) = 1

2
(H0(p, q) − H∗)2,

where x = col(q, p). Then the control aim can be written as

lim
t→∞ Q(x(t)) = 0. (16)

In what follows it is assumed that the Hamiltonian is linear in control:

H(q, p, u) = H0(q, p) + H1(q, p)Tu,
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where H0(q, p) denotes the free system Hamiltonian; H1(q, p) is the vector of the
so-called interaction Hamiltonians.

Based on the Speed-gradientmethod [5, 15], the following control law is obtained:

u = −γψ
(
(H0 − H∗){H0, H1}T

)
, γ > 0. (17)

The following Theorem is known.

Theorem 1 [15]. Let the first and second partial derivatives of functions H0, H1 on
the set 
0 = {x : Q(x) < Q0} are bounded for some Q0 > O, and function ψ(x) is
continuous and satisfies the following strict pseudo-gradient condition ψ(z)Tz > 0
as z ∈ R

n, z 
= O.
Then algorithm (17) in system (14) for initial condition x(0) ∈ 
0 ensures u(t) →

0 as t → ∞ and, besides, the following alternative is valid: on the trajectory x(t)
either the aim (16) is achieved, or convergence of {H0, H1}(x(t)) → 0 is ensured as
t → ∞.

Additionally, let the following conditions be fulfilled:

1. For any c 
= H∗ there exists ε > 0 such that any non-empty connected subset of
a set

Dε,c = {x : |{H0(x), H1(x)}| < ε, |H0(x) − c| < ε} ∩ 
0

is bounded.
2. The largest invariant set M ⊂ D0 of the free system (i.e., the set of whole tra-

jectories of system (14), contained in D0), where D0 = {
x : {H0(x), H1(x)} =

0
} ⋂


0 consists of no more than a countable number of isolated points without
finite condensation points.

then any solution to (14), (17) either ensures aim (16), or tends to some point in
D0, which is the free system equilibrium. In addition, the set of initial conditions,
for which the solution to system (14), (17) tends to an unstable equilibrium of a free
system, has a zero measure.

Consider a Hamiltonian system with an integrator:

q̇ = ∇p H(q, p, u), (18)

ṗ = −∇q H(q, p, u), (19)

u̇ = ω, (20)

where q ∈ R
n , p ∈ R

n are the vectors of generalized coordinates and generalized
momenta; u(t) ∈ R denotes the virtual control (an integrator); ω(t) ∈ R is a control-
ling input.

Moreover, function H(q, p, u) is an invariant for a free system
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q̇ = ∇p H(q, p, u),

ṗ = −∇q H(q, p, u),

u = const .

Consider the problem of approaching the system energy to a given level H∗. To
this end, let us introduce the objective function

Q(x) = 1

2
(H0(p, q) − H∗)2,

where x = col(q, p), H0(p, q) = H(p, q, 0). Then the control aim has a form:

lim
t→∞ Q(x(t)) = 0. (21)

The following Theorem is valid.

Theorem 2 Let H(x, u) = H0(x) + H1(x)u. Suppose that for system (18), (19) the
following conditions are fulfilled:

1. For any c 
= H∗, there exists ε > 0 such that any non-empty connected subset of
a set

Dε,c = {x : |{H0(x), H1(x)}| < ε, |H0(x) − c| < ε}
⋂


0

is bounded.
2. The largest invariant set M ⊂ D0 of the free system (i.e., the set of whole trajec-

tories of system (18), (19), contained in D0), where D0 = {
x : {H0(x), H1(x)} =

0
} ∩ 
0 consists of no more than a countable number of isolated points without

finite condensation points.
3. System (18), (19) is globally asymptotically stabilizable by means of feedback

α(p, q).

Then control

ω = −γB(u − α(p, q)) + ∇α(p, q)T
(

q̇
ṗ

)

+ w, (22)

where w is a new input of the system, passifies system (18)–(20) with a new output
y = 2γ −1

B

(
u − α(p, q)

)
.

In addition, for w = 0, control (22) ensures the control aim fulfillment for system
(18)–(20).

Proof of Theorem 2
Define the storage function as:

W (x, u) = Q(x) + γ −1
B ‖u − α(p, q)‖2, (23)

where x = col(q, p).
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By definition, a system is passive (see [15]) if the inequality

Ẇ (x, u) � yTw

is fulfilled. Let us prove this.

Ẇ (x, u) = Q̇(x) + 2γ −1
B |u − α(p, q)|

(
u̇ − ∇α(p, q)T

(
q̇
ṗ

) )
=

= Q̇(x) − 2|u − α(p, q)|2 + 2γ −1
B (u − α(p, q))w � yTw.

To prove the fulfillment of the control goal in a closed-loop system, let us consider
function (23) as a Lyapunov function.

Calculate the timederivative of (23) along the system trajectories, usingTheorem1
and control (22):

Ẇ (x, u) = Q̇(x) + 2γ −1
B |u − α(p, q)|

(
u̇ − ∇α(p, q)T

(
q̇
ṗ

) )
=

= Q̇(x) − 2|u − α(p, q)|2 < 0.

Applying the Barbalat lemma to the inequality obtained above, one obtains that
Q(x) → 0 as t → ∞, i.e. the control goal is achieved.

Thus, the theorem is proven.

4 Control of Energy in Cascaded FK Model

Consider the following FK-model with an integrator [16]:

ẍ j = k

h2
(x j+1 − 2x j + x j−1) − (

E0 + u(t)
)
sin(x j ) − ρ ẋ j , (24)

u̇ = ω, j = 1, 2, . . . , N , (25)

where k, ρ are the system parameters, ω(t) is the control action, E0 is the base field
level, x0(t) = x1(t), xN+1(t) = xN (t) (the so-called zero flux conditions).

The energy of (24) is determined by the equation:

H = 1

2

N∑

j=1

ẋ2
j + k

2

N∑

j=1

(x j+1 − x j )
2 + E0

(

N −
N∑

j=1

cos(x j )

)

. (26)
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Let us pose two following problems:

1. Passification of system (24), (25);
2. System (24), (25) synchronizationwith bringing the system energy to the specified

level H∗:
lim

t→∞ H(t) = H∗.

To solve the problem in question, let us formulate Theorem1 in a more general
form.

Let us represent the state vector of system (24) as follows:

z =

⎛

⎜
⎜
⎜
⎜
⎝

y1
x1
. . .

yN

xN

⎞

⎟
⎟
⎟
⎟
⎠

,

where yi = ẋi .
Then system (24), (25) can be represented as

ż =

⎛

⎜
⎜
⎜
⎜
⎝

k
h2 (x2 − 2x1 + x0) − (E0 + u(t)) sin(x1) − ρy1

y1
. . .

k
h2 (xN+1 − 2xN + xN−1) − (E0 + u(t)) sin(xN ) − ρyN

yN

⎞

⎟
⎟
⎟
⎟
⎠

, (27)

u̇ = ω. (28)

Let us introduce a new goal function:

Q(z) = Q1(z) + Q2(z) = α
1

2

N−1∑

i=1

(yi + yi+1)
2 + (1 − α)

1

2
(H − H∗)2, (29)

where α (0 � α � 1) is a weight coefficient.
The first term, Q1(z), corresponds to the requirement that the oscillations are in

antiphase. The second one, Q2(z), guarantees achievement of the required energy
level.

System (24), (25) Hamiltonian is determined by the equation

H = 1

2

N∑

j=1

ẋ2
j + k

2

N∑

j=1

(x j+1 − x j )
2 + (E0 + u)(N −

N∑

j=1

cos(x j )). (30)
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Let us show that for a free system

ẍ j = k

h2
(x j+1 − 2x j + x j−1) − (E0 + u(t)) sin(x j ) − ρ ẋ j ,

u = const, j = 1, 2, . . . , N ,

Hamiltonian (30) is an invariant.

Ḣ =
N∑

j=1

ẋ j ẍ j − k
N∑

j=1

(x j+1 − 2x j + x j−1)ẋ j + (u + E0)

N∑

j=1

sin(x j )ẋ j = 0

As follows from Theorem2, control goal (29) in system (24), (25) with ρ = 0 and
α = 0 is achieved if the energy layer between levels H(0) and H∗ does not contain
equilibria of the system, satisfying conditions sin(x j ) = 0, j = 1, . . . , N .

Theorem 3 Let the energy layer between the levels H (0) and H∗ does not contain
equilibria of the system, satisfying conditions sin(x j ) = 0, j = 1, . . . , N ; ρ = 0,
α = 0, then the control law

ω(t) = −γB(u − γD(H − H∗)
N∑

j=1

y j sin(x j ))+

γD(H −H∗)
N∑

j=1

(
sin(x j )

( k

h2 (x j+1−2x j +x j−1)−(E0+u(t)) sin(x j )
)
+y2j cos(x j )

)
+w,

obtained by applying the Speed-gradient method, and ż is defined by (27),
passifies system (24), (25) with respect to a new output ynew = u − γD(H − H∗)∑N

j=1 y j sin(x j ). The control goal is achieved when w = 0.

Remark 1 For α 
= 0, an expression for α(z) has the following form:

α(z) = γD(1 − α)(H − H∗)
N∑

j=1

y j sin(x j )+

α
( N−1∑

j=2

(y j−1+2y j +y j+1) sin(x j )+(y1+y2) sin(x1)+(yN−1+yN ) sin(xN )
)
.

5 Simulation Results

The simulations were done for the FK-chain (8) consisting of N = 20 elements
and the following dimensionless parameters: J = 1, k = 0.12, E0 = 1, h = 0.0476.
The dissipation parameter ρ was taken as ρ = 0 (non-dissipative case) and ρ =
0.25 (dissipative case) in different simulation runs. Desired energy level was set
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to H∗ = 50. Initial conditions were taken as x j = 1 − cos(2πr j ), where r j = jh,
j = 1, . . . , N ; initial values of ẋ j were set to zero. For simulations control algorithm
(7) with γ = 2 was used.

The simulation results are depicted in Figs. 1, 2 and 3. As is seen from the plots,
in the non-dissipative case the error in energy H(t) − H∗ may be neglected for

0 0.2 0.4 0.6 0.8 1t
0

10

20

30

40

50

60
H(t), H*

H*

2

1

Fig. 1 Energy H(t), reference value H∗ time histories. 1 – H(t) for non-dissipative case,
ρ = 0; 2 – H(t) for dissipative case, ρ = 0.25

0 0.2 0.4 0.6 0.8 1
t

-100

0

100

200

300

400
u(t)

1

2

Fig. 2 Control action u(t) time history. 1 – non-dissipative case, ρ = 0; 2 – dissipative case,
ρ = 0.25
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Fig. 3 x j (t) time histories. j = 1, . . . , 20, non-dissipative case, ρ = 0

sufficiently large t . In the presence of dissipation in the model, the visible control
error arise.

6 Conclusions

The paper is dedicated to study of the energy control problem for celebrated Frenkel–
Kontorova model describing numerous physical systems like dynamics of disloca-
tions in the crystalline structure of a solid body, friction mechanisms at nanoscale,
dynamics of biological chains e.g. DNA, etc. To this end modern nonlinear con-
trol methods like speed-gradient and passivity methods [5, 15] are employed. The
analytical conditions of the achievement of the prespecified energy level in the con-
trol system are proposed and illustrated by computer simulation. It is seen from the
simulation results that for sufficiently long chains the error in the limit energy is
rather small and may be neglected. The proposed methods are also applied to a more
advanced problem when an integrator appears in the control loop.
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On Kinetic Nature of Hysteresis
Phenomena in Stress-Induced Phase
Transformations

A. B. Freidin and Victor A. Eremeyev

Abstract A simplest model is developed which demonstrates that hysteresis phe-
nomena in stress-induced phase transformations may have a kinetic nature and fol-
low from the discrepancy between strain rate and characteristic rate of the new phase
growth.

1 Introduction

Stress-induced phase transformations in shape memory alloys lead to pseudoelastic-
ity with recovering relatively large strains (see, e.g., [1, 2]). Initially a material is in
a austenite phase. At some stress martensite phase nucleates and then increases its
volume fraction. Changing the geometry of a lattice, i.e. a transformation strain, pro-
duces a macroscopic deformation at practically constant stress, and a plateau appears
at the stress-strain diagram. Unloading leads to a reverse transformation that takes
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place at lower stress that corresponds to another plateau at the diagram. As a result a
flag-type stress-strain diagrams are formedwith upper boundary corresponding to the
direct transformation and lower boundary corresponding to the reverse transforma-
tion. The height and thickness of the flag depend on the temperature and loading rate.
Kinetics of stress-induced phase transformations was studied by many researchers
from various points of view, see, e.g., [3–5] and reference therein. In the present
paper, we relate such a flag-type behavior with the discrepancy between strain rate
and characteristic rate of the new phase growth with the kinetics considered within
the frames of mechanics of configurational forces. We also discuss barrier effects of
various nature. To demonstrate the role of various factors, for the simplicity sake,
we consider 1D-case.

2 Phase Equilibrium and Kinetics in 1D-Model

Consider a rod x ∈ [0, L] made of a material undergoing a phase transformation,
u(x) is the displacement of a material point x , ε = ∂u/∂x is the strain, u(0) = 0 and
u(L) = uL are the displacements prescribed at the ends of the rod.

Assume that the Helmholtz free energy per unit length of the rod is represented
as

f (ε) =

⎧
⎪⎪⎨

⎪⎪⎩

f−(ε) = f −
0 + 1

2
C−ε2, ε ≤ ε̃,

f+(ε) = f +
0 + 1

2
C+(ε − εtr )2, ε > ε̃,

(1)

where C± are Yong’s modules of the phases “±”, εtr is the transformation strain,
f ±
0 are the chemical energies of the phases (the temperature dependent Helmholtz

free energies in stress-free states). The strain ε̃ divides the domains of existence of
the phases “+” and “−” and can be found from the equality of the energies, i.e. is
defined by the equation

C−ε̃2 = C+(̃ε − εtr )2 + 2γ.

where γ = [[ f0]] is the energy parameter acting as a temperature in the model,
square brackets denote the jump of a value due to the phase transformation,
[[ · ]] = (·)+ − (·)−.

If uL increases then the part of the rod transforms into a new phase state. Let pL
(p ∈ [0, 1]) be the total length occupied by the phase “+”, ε+ and ε− be the strains
in the phases “+” and “−” correspondingly. Then the average strain and average
energy

ε̂ = (1 − p)ε− + p ε+, (2)

f̂ = (1 − p) f−(ε−) + p f+(ε+) (3)

The stress σ in the rod is continuous and can be calculated as
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σ = C−ε− = C+(ε+ − εtr ) (4)

Thermodynamic equilibrium corresponds to zero configurational force given by
the formula

χ = ∂ f̂

∂p
at ε̂ = const

Simple calculations give [6] (see also [7])

χ = [[ f ]] − σ [[ε]] (5)

After simple derivation the expression (5) takes the form analogous to the expression
for layered two-phasemicrostructure in the 3D-casewhere tensorial values have been
presented [7]:

χ = γ + 1

2
[[B]]−1(εtr )2 + 1

2
([[C]]−1 + B−)(Q−e)2 = 0, (6)

where
Q− = ([[C]]−1 + (1 − p)B−)−1, e = ε̂ − [[C]]−1C+εtr .

From the equation χ = 0 and relationships (2), (4) it follows that the dependence of
the equilibrium new phase fraction peq on average strain and stresess σ ∗

1,2 at which
the equilibrium is possible are given by formulas

peq = ε̂ − σ ∗/C−
2γ /σ ∗ − ε p

(7)

σ ∗
1,2 = − εtr

[[B]] ±
√
√
√
√ 1

[[B]]

(

2γ + (εtr )2

[[B]]

)

(8)

where B± = C−1± . The transformation takes place at strains ε̂ ∈ [εs, ε f ], where

εs = σ ∗

C−
(p = 0), ε f = 2γ

σ ∗ + σ ∗

C−
− εtr (p = 1) (9)

The dependence of the free energy and the stress-strain diagram for the case of
equilibrium two phase states are shown in Fig. 1. Note that there is no hysteresis in
this case.

If the thermodynamic equilibrium condition is not reached than χ �= 0 is a ther-
modynamic (configurational, driving) force. By linear thermodynamic approach, the
new phase fraction is changing according to the kinetic equation

ṗ = −Lχ(p, ε̂, γ ), p ∈ [0, 1], (10)
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Fig. 1 Average free energy
and stress-strain diagram for
equilibrium two phase states

where the dot denotes the derivative with respect to time t and L is a kinetic coeffi-
cient. The kinetic equation (10) is solved at initial conditions

t = t0, p = p0, ε̂ = ε̂0

and a given loading law ε̂ = ε̂(t) and/or temperature time dependence via γ = γ (t).
The choice of p0 and ε̂0 depends on the nucleation assumptions.

3 Results

The dependencies of stresses on strains at stretching with a constant rate at various
“temperatures” γ for the case C+ > C− are shown in Fig. 2. Horizontal dash lines
correspond to equilibrium transformation. Upper and lower plateaus correspond to
the direct and reverse transformations. The thickness of the flag decreases and the
equilibrium stress increases if γ increases.

The effect of strain rate is presented in Figs. 3, 4. If the loading rate decreases
then upper and lower plateaus converge to the equilibrium dash line, as it is to be.
The character of the influence of strain rate on stress-starin diagrams and the shape
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Fig. 2 Stress-strain diagrams at various energy parameters γ (various “temperatures”):
γ1 < γ2 < γ3, C+ < C−

Fig. 3 Stress-strain diagrams at various strain rates v, C+ < C−

Fig. 4 Stress-strain diagrams at various strain rates v, C+ > C−

of the diagram at higher rates depend on the relationship of Yong’s modules C+ and
C−.

Further modifications of the model can be considered in two directions: introduc-
ing a metastability barrier and a nucleation barrier. In the first case we assume that
the direct reaction goes if the thermodynamic force is not just negative but is less
than some negative number, and reverse transformation goes if the thermodynamic
force is not just positive but is bigger than some positive number. This may be related
with a hidden entropy production at the reaction front (as it was done recently for
a chemical reaction front [8]). Such an assumption leads to the hysteresis even in
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Fig. 5 Stress-strain diagrams with a metastability barrier at various strain rates, C+ < C−

Fig. 6 Stress-strain diagrams with a nucleation barrier at various strain rates, C+ < C−

quasi-equilibrium case and modifies the kinetic equation as follows:

ṗ =

⎧
⎪⎨

⎪⎩

0, |χ | < χ∗,
−k(χ + χ∗), χ < −χ∗ < 0

−k(χ − χ∗), χ > χ∗

(for simplicity sake we assume that the positive and negative barriers are of the same
absolute values). Stress strain diagrams are shown in Fig. 5 for various strain rates.
Dash lines correspond to equilibrium transformation without and with a barriers. The
effects of the nucleation barrier at various strain rates are shown in Fig. 6.

4 Conclusions

The presented simplest model allowed us to give a qualitative description of hys-
teresis phenomena accompanying stress-induced phase transformations including
systematic analysis of the kinetics itself as well as the role of various barriers. Fur-
ther progress may be expected on the way of taking into account accompanying
inelastic strains, microstresses and internal stresses produced by the transformation
in 3D-case.
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An Infinite-Length System Possessing
a Unique Trapped Mode Versus a Single
Degree of Freedom System:
A Comparative Study in the Case
of Time-Varying Parameters

S. N. Gavrilov, E. V. Shishkina and Yu. A. Mochalova

Abstract We compare large time behavior of an infinite system, with time-varying
parameters, possessing a unique trapped mode (characterized by frequencyΩ0(ετ )),
with the behavior of a single degree of freedom system ÿ + Ω2

0 (ετ )y = 0 (a linear
mass-spring oscillator with time-varying stiffness). The infinite length system is a
string, lying on the Winkler foundation, and equipped with a discrete linear mass-
spring oscillator of time-varying stiffness. We demonstrate that the classical formula
Y ∝ Ω

−1/2
0 that relates the amplitude Y (ετ ) and the frequency Ω0(ετ ) for the single

degree of freedom system is valid for amplitude of the localized string oscillation if
and only if the oscillator mass, attached to the string, is big enough.

1 Introduction

In this paper we consider a mechanical system with mixed spectrum of natural oscil-
lations. Namely, we deal with an infinite taut string, lying on the Winkler foun-
dation, and equipped with a discrete linear mass-spring oscillator of time-varying
stiffness (Fig. 1). In the case of a constant string tension the discrete part of the spec-
trum for such a system may contain unique (positive) eigenvalue, which is less than
the lowest frequency for the string on the uniform foundation. This special natural
frequency corresponds to a trapped mode of oscillation with eigenform localized
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T0
M0

T0

p0(t)

K0(t)

Fig. 1 The schematic of the system

near the spring. The phenomenon of trapped modes was discovered in the theory of
surfacewater waves [1]. The examples of variousmechanical systems, where trapped
modes can exist, can be found in studies [2–25].

It is known [5, 17, 22–27] that applying non-stationary external excitation to a
system possessing trapped modes leads to the emergence of undamped oscillations
localized near the inhomogeneity. If the system possesses a unique trappedmode and
such an excitation is applied only during a finite interval of time, then, after sometime
has passed, the system becomes to be similar, in some sense, to a single degree of
freedom system (with natural frequency equal to the trapped mode frequency). The
large time asymptotics for undamped oscillation can be found [5, 22, 23, 27] by
means of the method of stationary phase [28, 29].

Gavrilov in [5, 8] suggested an asymptotic procedure based on successive applica-
tion of two asymptotic methods, namely the method of stationary phase [28, 29] and
the method of multiple scales [29, 30] that allows us to investigate non-stationary
processes in perturbed systems, with slowly time-varying parameters, possessing
trapped modes. In studies [5, 8] the problem concerning non-uniform motion of a
point mass along a taut string on the Winkler foundation was considered and solved.
Note that later the same problem was reconsidered in paper [31] by Gao et al. in very
particular case of uniform motion at a given speed.

It is well known that for a single degree of freedom system with slowly time-
varying stiffness ÿ + Ω2

0 (ετ )y = 0, formulaY ∝ Ω
−1/2
0 relates the amplitudeY (ετ )

and the frequency Ω0(ετ ) of free oscillation (the Liouville—Green approximation
[30]).1 The aim of this paper is to compare the law describing the evolution of
the amplitude of undamped localized oscillation in the system possessing a unique
trappedmode with this classical result for the single degree of freedom system. To do
this in a correct way we need to consider (for first time in this context) a mechanical
system with inhomogeneity of more complex structure (a discrete oscillator possess-
ing both the inertia and the time-varying stiffness) than we considered in previous
papers [5, 8, 22–25] where the evolution of the amplitude of a trapped mode was
investigated in the cases of pure inertial [5, 8, 22] or pure elastic [23–25] inhomo-
geneity. We will demonstrate that for the system under consideration the classical
formula for a single degree of freedomwith time varying stiffness is valid if and only
if the oscillator mass, attached to the string, is big enough.

We dedicate this paper to Prof. D. A. Indeitsev who initiated and stimulated our
interest to linear wave localization. He is one of the pioneers in this field, who

1Here ε is a formal small parameter, τ is the dimensionless time.
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was the first suggested simple and physically clear models, which made possible
the analytical investigation of trapped modes in solids. His kind attitude and wise
advices are always very helpful to his colleagues in their work.

2 Mathematical Formulation

We consider transverse oscillation of an infinite taut string on the Winkler elastic
foundation. The string is equipped with a discrete mass-spring oscillator of time-
varying stiffness. The schematic of the system is shown in Fig. 1. Introduce the
following notation: u(x, t) is the displacement of a point of the string at the position
x and time t , T0 is the string tension, ρ is the mass of the string per unit length,
constant M0 ≥ 0 is the value of mass in the discrete oscillator, K0(t) is the spring
stiffness for the discrete oscillator (a given function of time), k0 is the stiffness for the
Winkler foundation, P0(t) is the unknown force on the string from the spring, p0(t) is
the given external force on the string. QuantitiesT0, k0, ρ are positive constants. We
do not assume that K0 > 0 (hence, the spring stiffness can be negative [15, 23–25]
or zero).2

The governing equations are

T0 uxx − ρutt − k0u = −P0(t) δ(x), (1)

P0(t) = −M0utt (0, t) − K0(t)u(0, t) + p(t). (2)

Here δ is the Dirac delta-function.
Now we introduce the dimensionless variables

τ = t
√
k0/ρ, ξ = x

√
k0/T0 (3)

and rewrite governing equations (1), (2) in the following form

u′′ − ü − u = −P(τ ) δ(ξ), (4)

P(τ ) = −Mü(0, τ ) − K (τ )u(0, τ ) + p(τ ), (5)

where

M = M0

ρ

√
k0
T0

, K = K0√
k0T0

, p = p0√
k0T0

. (6)

Here and in what follows, we denote by prime the derivative with respect to spatial
coordinate ξ and by overdot the derivative with respect to time τ .

2It may be noted that springs with negative stiffness may be used in applications related to con-
structing dynamic metamaterials [32–39].
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The initial conditions for Eq. (4) can be formulated in the following form, which
is conventional for distributions (or generalized functions) [40]:

u
∣∣
τ<0 ≡ 0. (7)

Note that according to Eqs. (4), (5), (7) we restrict ourselves to the important par-
ticular case of the general problem concerning non-stationary oscillation, where any
external excitation (and, in particular, non-zero initial conditions) is applied only to
the point of the string under the concentrated spring.

The problem under consideration (4), (5), (7) is symmetric with respect to ξ = 0.
Integrating (4) over ξ = 0 results in the following condition

[u′] = −P(τ ) = Mü(0, τ ) + Ku(0, τ ) − p(τ ). (8)

Here, and in what follows, [μ] ≡ μ(ξ + 0) − μ(ξ − 0) for any arbitrary quantity μ.
Due to symmetry one has [u′] = 2u′(ξ + 0). Thus, the problem for infinite string
can be equivalently reformulated as the problem for homogeneous equation

u′′ − ü − u = 0 (9)

for ξ > 0 with boundary condition at ξ = 0

u′(0, τ ) = Mü(0, τ ) + Ku(0, τ ) − p(τ )

2
. (10)

This equivalent formulation (9), (10), (7) is used for numerical calculations (Sect. 5).

3 The Mass-Spring Oscillator with a Constant Spring
Stiffness

In this section we assume that the stiffness of discrete mass-spring oscillator is a
constant: K = const.

3.1 Spectral Problem

Put p = 0 and consider the steady-state problem concerning the natural oscillations
of the system described by Eqs. (4), (5). Take

u = û(ξ) exp(−iΩτ). (11)

Let us show that such a system possesses a mixed spectrum of natural frequencies.
There exists a continuous spectrum of frequencies, which lies higher than the cut-off
(or boundary) frequency: |Ω| ≥ Ω∗ ≡ 1. The modes corresponding to the frequen-
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cies from the continuous spectrum are harmonic waves. Trapped modes correspond
to the frequencies from the discrete part of the spectrum, which lies lower than the
cut-off frequency:

0 < |Ω| < 1. (12)

Wewant to demonstrate that for the problemunder consideration the only one trapped
mode can exist. Trapped modes are modes with finite energy, therefore, we require

+∞∫

−∞
û2 dξ < ∞,

+∞∫

−∞
û′2 dξ < ∞. (13)

Now we substitute Eq. (11) into Eq. (4). This yields

û′′ − A2(Ω)û = (K − MΩ2)û(0) δ(ξ), (14)

where
A2(Ω) = 1 − Ω2. (15)

Here, by definition, we assume that

A(Ω) > 0 (16)

for 0 < Ω < 1. The dispersion relation for the operator in the left-hand side of (14)
is

ω2 + A2(Ω) = 0, (17)

therefore, the wavenumber ω can be expressed as follows:

ω = ±iA(Ω). (18)

The solution of Eq. (14), which satisfies (13), is

û = −(K − MΩ2)û(0)
exp

( − A(Ω)|ξ |)
2A(Ω)

. (19)

Calculating the left-hand side of (19) at ξ = 0 yields the frequency equation

2
√
1 − Ω2

0 = MΩ2
0 − K , (20)

where Ω0 is the trapped mode frequency.
Consider the case M > 0 (the corresponding analysis for the special case M = 0

can be found in [23]). It follows from (20) that
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K

M
<Ω2

0 < 1, K ≥ 0;
0 <Ω2

0 < 1, K < 0;
(21)

and
K < M. (22)

Provided that restrictions (21) and (22) are true, we can square both sides of Eq. (20).
This yields the biquadratic equation

M2Ω4
0 − 2(MK − 2)Ω2

0 + K 2 − 4 = 0 (23)

with its discriminant
D = 16(M2 − MK + 1). (24)

The right-hand side if (24) is positive if and only if K < M + 1/M , which is true,
according to (22). Thus,

Ω2
0 (±) = 2

M2

(
±

√
M2 − MK + 1 + MK

2
− 1

)
. (25)

Proposition 1 Provided that (22) is true, the rootΩ2
0 (−) does not satisfy restrictions

(21), whereas the root Ω2
0 (+) satisfy both restrictions simultaneously if and only if

K > −2. (26)

Proof At first, consider inequality Ω2
0 (±) < 1. It may be equivalently rewritten as

2

M2

(
±

√
M2 − MK + 1 + MK

2
− 1

)
< 1

⇐⇒ ±
√
M2 − MK + 1︸ ︷︷ ︸

Z

<
1

2
(M2 − MK + 1) + 1

2

⇐⇒ Z2 ∓ 2Z + 1 > 0 ⇐⇒ (Z ∓ 1)2 > 0,
(27)

which is true due to (22).
Consider inequality Ω2

0 > K/M in the case K ≥ 0. One has

2

M2

(
±

√
M2 − MK + 1 + MK

2
− 1

)
>

K

M
⇐⇒ ±

√
M2 − MK + 1 > 1,

(28)
which is true if and only if Ω2

0 (±) = Ω2
0 (+).
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Consider inequality Ω2
0 (−) > 0 an the case K < 0. One has

2

M2

(
−

√
M2 − MK + 1 + MK

2
− 1

)
> 0 ⇐⇒ −

√
M2 − MK + 1 > 1 − MK

2
,

(29)
which is false.

Finally, consider inequality Ω2
0 (+) > 0 an the case K < 0. One has

2

M2

(
+

√
M2 − MK + 1 + MK

2
− 1

)
> 0 ⇐⇒ +

√
M2 − MK + 1 > 1 − MK

2

M2 − MK + 1 > 1 − MK + M2K 2

4
⇐⇒ K 2 < 4. (30)

Thus, provided that restrictions (21) and

− 2 < K < M (31)

are true, there exists the unique trapped mode with frequency

Ω2
0 ≡ Ω2

0 (+). (32)

The critical value K = −2 (Ω0 = 0) corresponds to the possibility of localized buck-
ling of the string.

In the special case M = 0, one can obtain [23] formulas

− 2 < K < 0, (33)

Ω2
0 = 1 − K 2

4
, (34)

instead of formulas (31), (32), respectively.
Note that for the first time this spectral problem in the particular case of point

inertial inclusion (M > 0, K = 0) was investigated in paper [2].

3.2 Inhomogeneous Non-stationary Problem

Put now p �= 0. Applying to Eqs. (4) and (5) the Fourier transform in time τ results in

u′′
F − A2(Ω)uF = (

KuF (0,Ω) − MΩ2uF (0,Ω) − pF (Ω)
)
δ(ξ), (35)

where uF (0,Ω), pF (Ω) are the Fourier transforms of u(0, τ ) and p(τ ), respectively.
ResolvingEq. (35)with respect touF (0,Ω) and applying the inverse transformyields

u(0, τ ) = 1

2π

+∞∫

−∞

pFe−iΩτ dΩ

2
√
1 − Ω2 − (MΩ2 − K )

(36)
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Consider the case when p(τ ) is a vanishing as τ → ∞ function such that its
Fourier’s transform pF (Ω) does not have singular points on the real axis. Apply-
ing the residue theorem, Jordan’s lemma, and the method of stationary phase to
asymptotic evaluation of the integral in the right-hand side of (36) results in [28, 41]

u(0, τ ) = −i
∑

Ω̄=±Ω0−i0

p f (Ω̄)Res

(
1

2
√
1 − Ω2 − (MΩ2 − K )

, Ω̄

)
exp(−iΩ̄τ )

+ o(1), τ → ∞.

(37)

Here symbol Res
(
f (Ω), Ω̄

)
means the residue of function f (Ω) at a pole Ω =

Ω̄ . The terms −i0 in the expression for the poles

Ω̄ = ±Ω0 − i0 (38)

are taken in accordance with the principle of limit absorption. One has

Res

(
1

2
√
1 − Ω2 − (MΩ2 − K )

,±Ω0 − i0

)
= ∓

√
1 − Ω2

2Ω0
(
1 + M

√
1 − Ω2

) , (39)

thus

u(0, τ ) =
√
1 − Ω2

0

∣∣pF (Ω0)
∣∣

Ω0

(
1 + M

√
1 − Ω2

0

) sin
(
Ω0τ − arg pF (Ω0)

) + o(1), τ → ∞.

(40)
Hence, for the large times, the non-stationary response of the system under consid-
eration is undamped oscillations with the trapped mode frequency Ω0.3

4 The Mass-Spring Oscillator with Slowly Varying Spring
Stiffness

Assume that the stiffness of the discrete mass-spring oscillator is a slowly varying
piecewise monotone function of the dimensionless time τ : K = K (ετ ). Here ε is a
formal small parameter. We use an approach [5, 8, 22] based on the modification of
themethod ofmultiple scales (see [30], Sect. 7.1.6) for equations with slowly varying
coefficients. The corresponding rigorous proofs, which validate such asymptotic

3The asymptotic order of the reminder in formula (37) depends on the properties of pF . In a
common case when pF has no singular points on real axis, the main contribution is due to the
cut-off frequencyΩ∗ = 1 and has order O(τ−3/2) [26]. Therefore, in the case whenΩ0 approaches
Ω∗ = 1 asymptotical formula (40) needs to be refined (the case of merging singularities).
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approach in the case of a one degree of freedom system, can be found in [42]. We
look for the asymptotics for the solution under the following conditions:

• ε = o(1),
• τ = O(ε−1),

• K (ετ ) satisfies restriction (31) for all τ .

To construct the particular solution of (4) and (5), which describes the evolution
of the trapped mode of oscillation in the case of slowly varying K , we require that
in the perturbed system

• Frequency equation (20) for the trapped mode holds for all τ ;
• Dispersion relation (17) at ξ = ±0 holds for all τ .

Accordingly, we use the following ansatz (τ > 0, ξ ≶ 0):

u(ξ, τ ) = W (X, T ) expϕ(ξ, τ ), (41)

T = ετ, X = εξ, (42)

ϕ′ = iω(X, T ), ϕ̇ = −iΩ(X, T ), (43)

W (X, T ) =
∞∑

j=0

ε jW j (X, T ). (44)

Here the amplitudeW (X, T ), the wavenumberω(X, T ), and the frequencyΩ(X, T )

are the unknown functions to be defined in accordance with Eq. (4). The variables
X, T, ϕ are assumed to be independent. Accordingly, we use the following repre-
sentations for the differential operators:

˙(·) = −iΩ ∂ϕ + ε ∂T ,

¨(·) = −Ω2 ∂2
ϕϕ − 2εiΩ ∂2

ϕT − εiΩ ′
T ∂ϕ + O(ε2),

(·)′ = iω ∂ϕ + ε ∂X ,

(·)′′ = −ω2 ∂2
ϕϕ + 2εiω ∂2

ϕX + εiω′
X ∂ϕ + O(ε2).

(45)

We require that ω(X, T ) and Ω(X, T ) satisfy dispersion relation (17) and equation

Ω ′
X + ω′

T = 0 (46)

that follows from (43). Since in the case of a mass-spring oscillator with a constant
stiffness the undamped oscillation can be described by Eq. (40), we assume that

Ω(±0, T ) = Ω0(T ). (47)

Additionally, we require that

[W ] = 0, [ϕ] = 0. (48)
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In Eq. (47) the right-hand side is defined in accordance with the frequency equation
(20), wherein K = K (T ). The phase ϕ(ξ, τ ) should be defined by the formula

ϕ = i
∫

(ω dξ − Ω dτ). (49)

For large times, integrating formally Eq. (4) with respect to ξ over the infinitesi-
mal vicinity of ξ = 0 taking into account (5), one gets (8), wherein p = 0. Now we
substitute ansatz (41)–(44) and representations (45) into Eq. (8) and equate coeffi-
cients of like powers ε. Taking into account frequency equation (20), and Eq. (47),
one obtains that to the first approximation

M(2Ω0W0
′
T + Ω0

′
TW0) = i[W0

′
X ]. (50)

Note that in the special case M = 0 considered in [23], the corresponding equation
has the form of

[W0
′
X ] = 0, (51)

i.e. it can be obtained as limiting case of (50) as M → +0.
On the other hand, the quantity in the left-hand side of (50) can be defined by

consideration of Eq. (4) at ξ = ±0. To do this, we substitute ansatz (41)–(44) and
representations (45) into Eq. (4) and equate coefficients of like powers ε. Taking into
account dispersion relation (20) and Eq. (47), one obtains that to the first approxi-
mation

2ω W0
′
X + ω′

X W0 + 2Ω0 W0
′
T + Ω0

′
T W0 = 0 (52)

at ξ = ±0. Due to (46) one has

ω′
X = ω′

Ω Ω ′
X = −ω′

Ω ω′
T , (53)

where the right-hand side should be calculated in accordance with Eq. (18). Thus,
Eqs. (52) and (53) result in

W0
′
X = −2Ω0 W0

′
T + (−ω′

Ωω′
T + Ω0

′
T )W0

2iγ A(Ω0)
, (54)

where γ = sign ξ . Accordingly,

[W0
′
X ] = −Λ2W0 + Λ1W0

′
T

iA(Ω0)
, (55)

Λ1 ≡ 2Ω0, (56)

Λ2 ≡ A′
Ω(Ω0)A

′
T (Ω0) + Ω0

′
T , (57)
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where the right-hand side of Eq. (55) is taken at ξ = 0. Using (15), one gets

A′
Ω = − Ω0√

1 − Ω2
0

, (58)

A′
T = − Ω0Ω0

′
T√

1 − Ω2
0

. (59)

Substituting these expressions into (57) yields

Λ2 = Ω2
0Ω0

′
T

1 − Ω2
0

+ Ω0
′
T . (60)

Now, equating the right-hand sides of Eqs. (50) and (55) results in the first approx-
imation equation for W̄0(T ) ≡ W0(0, T ):

M
(
2Ω0W̄0

′
T + Ω0

′
T W̄0

) = −Λ2W̄0 + Λ1W̄0
′
T

A(Ω0)
, (61)

or, equivalently,

W̄0
′
T +

⎛

⎜
⎝

Ω0
′
T

2Ω0
+ Ω0Ω0

′
T

2(1 − Ω2
0 )

(
1 + M

√
1 − Ω2

0

)

⎞

⎟
⎠ W̄0 = 0. (62)

The general solution of the last equation is

W̄0 = C0

2
exp

⎛

⎜
⎝−

∫
dΩ0

2Ω0
−

∫
Ω0 dΩ0

2(1 − Ω2
0 )

(
1 + M

√
1 − Ω2

0

)

⎞

⎟
⎠ , (63)

where C0 is an arbitrary constant. Calculating the integrals yields the final result:

W̄0 = C0

2
A (Ω0, M), (64)

A (Ω0, M) =
(
1 − Ω2

0

)1/4

Ω
1/2
0

(
1 + M

√
1 − Ω2

0

)1/2 . (65)

The plots of A (Ω0, M) against Ω0 for different values of M are given in Fig. 2.
Combining the solution in the form of Eqs. (41)–(44) with its complex conjugate,

we get the non-stationary solution as the following ansatz:
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Fig. 2 Plots of function
A (Ω0, M) defined by
Eq. (65) against Ω0 for
different values of M

u(0, τ ) ∼ C0A
(
Ω0(T ), M

)
sin

(∫ τ

0
Ω0(T ) dT − D0

)
, (66)

where A is defined by (65). The unknown constants C0 and D0 should be defined
by equating the right-hand sides of (40) and (66) taken at τ = 0. This yields

C0 =
(
1 − Ω2

0 (0)
)1/4 ∣∣pF

(
Ω0(0)

∣∣

Ω
1/2
0 (0)

(
1 + M

√
1 − Ω2

0 (0)
)1/2 , (67)

D0 = arg pF
(
Ω0(0)

)
. (68)

In what follows, we restrict ourselves to the particular case p(τ ) = δ(τ ).4 Thus,

C0 =
(
1 − Ω2

0 (0)
)1/4

Ω
1/2
0 (0)

(
1 + M

√
1 − Ω2

0 (0)
)1/2 , (69)

D0 = 0. (70)

4Some examples of more complicated p are considered in studies [8, 24, 25] for different, but
similar problems.
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5 Numerics

In previous studies [5, 8, 22–24] we dealt with several problems for linear PDE with
constant coefficients.Numerical solutionswere obtained bymeans of the reduction of
the corresponding problem to an integral Volterra equation of the second kind with
its kernel expressed in terms of the fundamental solution of corresponding PDE.
This cannot be done for the problem under consideration in this paper, since for
M > 0 we can obtain only integro-differential equation in such a way. Now we use
alternative approach [25] based on finite difference schemes. The applicability of the
approach was validated in the case M = 0 by comparison with the results obtained
by numerical solution of the Volterra integral equation. To perform the numerical
calculations we use SciPy software. To discretize PDE (9) we use the following
implicit difference scheme:

uij+1 − 2uij + uij−1

(Δξ)2
− ui+1

j − 2uij + ui−1
j

(Δτ)2
− ui+1

j + ui−1
j

2
= 0, (71)

where integers i, j (0 ≤ j ≤ N , −1 ≤ i) are such that

uij = u( jΔξ, iΔτ). (72)

This scheme conserves [43, 44] the discrete energy for a nonlinear Klein-Gordon
equation with constant coefficients. Numeric boundary conditions that correspond
to (10) are taken in the form [45]

−3ui+1
0 + 4ui+1

1 − ui+1
2

2Δξ
+ −3ui−1

0 + 4ui−1
1 − ui−1

2

2Δξ

− K i+1ui+1
0 + K i−1ui−1

0

2
− M

ui+1
0 − 2ui0 + ui−1

0

(Δτ)2
+ pi+1 + pi−1

2
= 0.

(73)

where
K i = K (iΔτ). (74)

At the right end we use the non-reflecting boundary condition [46]

uiN = uiN−1 (75)

that corresponds to the physical boundary condition u′ = 0. Actually, the specific
form of this boundary condition is not very important in our calculations, since we
consider the discrete model of the string with big enough length such that the wave
reflections at the right end do not occur.
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Numerical initial conditions are

u0j = u−1
j = 0. (76)

All numerical results below are obtained for the case

Δξ = 0.008, Δτ = 0.002. (77)

When considering p(τ ) = δ(τ ) and calculating the corresponding numerical solu-
tions, we approximate the Dirac delta-function as follows:

p = τ−1
0 (H(τ ) − H(τ − τ0)). (78)

Now we want to compare the analytical and numerical solutions and demonstrate
the difference in the behavior of the system under consideration and a single degree
of freedom system with time-varying stiffness.

6 Comparison with a Single Degree of Freedom System

The result in the form of formulas (64), (65) is rather similar to the classical result
for a single degree of freedom system with time-varying stiffness

ÿ + Ω2
0 (T )y = 0, (79)

where the following formula

Y ∝ 1

Ω
1/2
0

(80)

for the amplitude of free oscillations Y is valid (the Liouville—Green approximation
[30]). If Ω0 → +0 (or, equivalently, K → −2 + 0), then Eqs. (64), (65) result in

W̄0 = C̄0

2Ω1/2
0

+ o(1), (81)

where C̄0 = C0/
√
1 + M is a constant. Hence, localized low-frequency oscillations

with increasing amplitude precede the localized string buckling. On the other hand,
unlike single degree of freedom system (79), for the system under consideration,
formula (81) is valid only in the limiting caseΩ0 → +0. For finiteΩ0 the dependence
(65) is more complicated. Formulas (64), (65), coincide with formula (80) inside the
whole interval 0 < Ω0 < 1 of the admissible values for the trapped mode frequency
Ω0(T ) only in the limiting case, where



An Infinite-Length System Possessing a Unique Trapped … 245

M � 1, (82)

and K (T ) is an uniformly bounded function: for all T there exists a positive δ0 such
that

−2 < K (T ) < M − δ0. (83)

Indeed, provided that conditions (82), (83) are true, using Eqs. (64), (65) and
Eqs. (25), (32), respectively, one gets

Ω2
0 = 2

M2

(√
M2 − MK + 1 + MK

2
− 1

)
∼ K

M
, (84)

C0A (Ω0) = C0

M1/2

(
1 − Ω2

0

)1/4

Ω
1/2
0

(
M−1 +

√
1 − Ω2

0

)1/2 ∼ Ĉ0

Ω
1/2
0

, (85)

where Ĉ0 = C0/
√
M is a constant. In terms of the original problem (1), (2) conditions

(82), (83) are equivalent to the set of the following restrictions:

M0 � ρ

√
T0

k0
, −2

√
k0T0 < K0(T ) <

(
M0

ρ

√
k0
T0

− δ0

)
√
k0T0. (86)

To compare the behavior of the system under consideration for various values of
M with the behavior of a single degree of freedom system it is very useful to consider
the normalized amplitude function

¯A (Ω0, Ω̄0, M) = A (Ω0, M)

A
(
Ω̄0, M

) . (87)

Analogously, introduce the normalized amplitude function for a single degree of
freedom system with time-varying stiffness

B̄(Ω0, Ω̄0) = Ω̄
1/2
0

Ω
1/2
0

. (88)

These curves describe the evolution of the normalized amplitude of the localized
oscillations (with respect to initial value of the amplitude) for the corresponding
systems wherein Ω0(0) = Ω̄0. The plots of ¯A (Ω0, Ω̄0, M) and B̄(Ω0, Ω̄0) against
Ω0 for different values of M are given in Fig. 3, (a) Ω̄0 = 0.1, (b) Ω̄0 = 0.9718. One
can see that in both cases the cyan lines corresponding to ¯A at M = 100 almost
coincide (excepting a narrow left vicinity of the cut-off frequency Ω∗ = 1) with the
black dotted lines corresponding to B̄. This large enough value of M corresponds
to the limiting case (82). Decreasing of M changes the behavior of the system under
consideration to be farther from a single degree of freedom systemwith time-varying
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Fig. 3 Plots of functions
¯A (Ω0, Ω̄0, M) (the color

solid lines) and B̄(Ω0, Ω̄0)

(the black dotted line),
defined by Eqs. (87) and
(88), respectively, against
Ω0. (a) Ω̄0 = 0.1, (b)
Ω̄0 = 0.9718

(a)

(b)

parameters. The special case M = 0 is the farthest one from a single degree of
freedom system.

Todemonstrate that numerics confirms our findingswe takeM = 0.5 and compare
the analytical and numerical results obtained for the case of p = δ(τ ) and mono-
tonically varying K (ετ ) (Figs. 4, 5).5 Figure4 corresponds to the case of increasing

5The case of oscillating properties is considered in [25] for a different, but similar problem.
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Fig. 4 Comparing the analytical solution in the form of Eqs. (64), (65), (66), (69), (70) obtained for
p = δ(τ ) (the red dashed line) and the numerical solution obtained for p(τ ) = τ−1

0 (H(τ ) − H(τ −
τ0)) (the blue solid line) in the case K (ετ ) = −1.9 + ετ . Here M = 0.5, ε = 0.01, τ0 = 0.2. At
τ = 240 the trapped mode frequency Ω0(ετ ) approaches the cut-off frequency Ω∗ = 1. The black
dotted line corresponds to the evolution of the amplitude (80) in a single degree of freedom system
with time-varying stiffness

Fig. 5 Comparing the analytical solution in the form of Eqs. (64), (65), (66), (69), (70) obtained for
p = δ(τ ) (the red dashed line) and the numerical solution obtained for p(τ ) = τ−1

0 (H(τ ) − H(τ −
τ0)) (the blue solid line) in the case K (ετ ) = 0.15 − ετ . Here M = 0.5, ε = 0.01, τ0 = 0.2. The
localized buckling occurs at τ = 215. The black dotted line corresponds to the evolution of the
amplitude (80) in a single degree of freedom system with time-varying stiffness
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K (ετ ) and Ω0(ετ ), whereas Fig. 5 corresponds to the case of decreasing K (ετ )

and Ω0(ετ ). One can observe that the asymptotic solution (the red dashed line)
approaches the numeric one (the blue solid line) very quickly (although the method
of stationary phase yields reasonable results only after some time has passed). The
black dotted line corresponds to the evolution of the amplitude (80) for a single
degree of freedom system with time-varying stiffness.

In Fig. 4 one can observe that the asymptotic solution and the numerical one
slightly diverge, when the trapped mode frequency Ω0 approaches the cut-off fre-
quency Ω∗ = 1 (that corresponds to K = 0.5, τ = 240). This is expectable, since
the trapped mode exists only for Ω0 < 1. Moreover, for Ω0 → 1 − 0 the finiteness
of the string, assumed in the framework of numerics, becomes to be a very important
factor. Thus, in our opinion, in the left vicinity of Ω0 = 1, where the asymptotic and
numeric solutions diverge, we cannot trust in either of the solutions.

To consider the case of decreasing K (ετ ) and Ω0(ετ ) (Fig. 5) we take K (0) =
0.15 that corresponds to Ω0(0) = 0.9718 (this value is used in Fig. 3 (b)). One can
observe that the asymptotic solution approaches the numeric one very quickly. The
localized buckling occurs at τ = 215 that corresponds to the critical value K = −2.

Finally, let us return to the beginning of Sect. 4 and formally

• put
W = W (T ), Wj = Wj (T ) (89)

in Eqs. (41), (44);
• do not require that dispersion relation (17) at ξ = ±0 holds for all τ .

Provided that M > 0, this simplified (and asymptotically inconsistent) procedure
leads to the first approximation equation

2Ω0W̄0
′
T + Ω0

′
T W̄0 = 0 (90)

(instead of (61)) and formula (80) (instead of Eqs. (64), (65)) for a single degree of
freedom system. In the special caseM = 0 considered in [23], the first approximation
equation has the form of Eq. (51) and cannot be obtained in such a way.

7 Conclusion

In the paper we have considered a localized oscillation of a string, lying on the
Winkler foundation, and equipped with a discrete linear mass-spring oscillator of
time-varying stiffness. The most important result is analytical formulas (64), (65),
which allowus to describe the large time evolution of the amplitude of this oscillation.
The obtained analytical results were verified by independent numerical calculations
based on the finite difference method. The analysis shows us that the system under
consideration behaves like a single degree of freedom system (79) with time-varying
stiffness if and only if the oscillator mass is big enough (to be more precise, if and
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only if conditions (82), (83) are true). We also have demonstrated that simplified
approach (see Eq. (89)) is asymptotically inconsistent and leads to formula (80) for
a single degree of freedom system in all cases excepting the special case M = 0,
wherein this approach becomes to be inapplicable.
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Reduced Enhanced Elastic Continua
as Acoustic Metamaterials

Elena F. Grekova

Abstract We consider a linear complex elastic material whose body point motion is
described by two vectorial generalised co-ordinates of any dimension. We suppose
that the medium obeys Lagrange equations. Elastic energy depends on both of these
vectorial generalised co-ordinates but does not depend on the gradient of one of them
(“special” co-ordinate). Such a complex medium can be interpreted as a “bearing
continuum” (corresponding to the non-special co-ordinate), whose body points are
enhanced by body points of “continuum of dynamic absorbers” (corresponding to
the special co-ordinate), the latter not connected directly between them. We obtain
that under some restrictions for the strain energy bulk plane harmonic waves in this
infinite medium have a band gap (or band gaps), the medium being thus a single
negative acoustic metamaterial, and for some cases decreasing part(s) of dispersion
curve, thus being a double negative acoustic metamaterial in this zone. We consider
some examples of such continua with rotational degrees of freedom.

1 Introduction

Acoustic metamaterials are a popular direction of research nowadays [3–6, 16]. The
medium is a single negative acoustic metamaterial in a certain frequency domain
if harmonic waves with these frequencies do not propagate, and it is a double neg-
ative acoustic metamaterial if its dispersion curves have a decreasing part, i.e. if
the frequency of harmonic wave decreases as the wave number increases. Acoustic
metamaterials are a mechanical analogue of electromagnetic metamaterials, media
with negative effective magnetic (electric) permettivity, whose existence was pre-
dicted by Veselago [21]. Acoustic metamaterials can be used, for instance, for noise
reduction or for the control of wave beams, which can be important in applications.
There are acoustic metamaterials of various kinds, among them those with rotational
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degrees of freedom. Elastic and viscoelastic reduced Cosserat media, elastic reduced
gyrocontinua, aswell as other elastic reduced continua, whose strain energydepends
on a certain generalised co-ordinate, but does not depend on its gradient, appear to be
acoustic metamaterials, whose parameters in some cases can be controlled by means
of external loading.

Among works on acoustic metamaterials one can mention [1, 2, 18]. Vasiliev
and co-authors [20] have considered wave filters present in 2D Cosserat lattices. In
work [15] it is shown that there exist a class of complex elastic media with band gaps,
where these media act as single negative acoustic metamaterials. In this chapter we
find another class of complex elasticmediawhich appear to be acousticmetamaterials
(single negative or double negative in different domains of frequencies). A body point
of such a material may have many degrees of freedom.

In this chapter we generalise for n dimensions work [9] for anisotropic contin-
uum consisting of 3D “bearing” continuum enhanced by 3D “dynamic absorber”
continuum, which appears to be an acoustic metamaterial. We also consider some
examples of these media with rotational degrees of freedom.

The author is delighted to devote this work to Prof. Dmitri A. Indeitsev on the
occasion of his 70th anniversary expressing her very best and warmest wishes. She
is deeply grateful to Prof. Indeitsev for the fruitful discussions, for his interest to
her work, for his scientific open-minded enthusiasm and care about his colleagues,
which created and keeps the true scientific ambience in the IPME RAS.

2 Lagrange Equation for a Linear Reduced Elastic
Continuum

Consider a linear continuum, whose body point’s kinematics is described by scalar
generalised co-ordinatesqi , i = 0, n. Thebodypointmaycontain elements of various
nature with elastic or rigid bonds: point masses, infinitesimal rigid bodies etc. All
constraints are supposed to be holonomic and ideal. We suppose that this medium
exists, i.e. the principle of material objectivity [17] is satisfied. We have to check it
when we set a particular strain energy depending on certain generalised co-ordinates.
The modified Lagrange equations of such a medium [14] can be written as follows

d

dt

∂L

∂q̇i
− ∂L

∂qi
+ ∇ · ∂L

∂∇qi
= 0 (1)

Here L = K −U , K is the mass density of the kinetic energy,U is the mass density
of the strain energy. In terms of vectorial generalised co-ordinates (of any dimension)
we can write down the same equation as follows

d

dt

∂L

∂q̇
− ∂L

∂q
+ ∇ · ∂L

∂∇q
= 0 (2)
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Here we have introduced a vector of generalised co-ordinates q = qs is , where is

is an orthonormal basis in the space of generalised co-ordinates, s = 1, . . . , n. Let
there exist a vectorial generalised co-ordinate q0 = q0

s i
s , s = 1, . . . , n0, such thatU

depends on it but does not depend on ∇q0. Let us call such a generalised co-ordinate
“special”. For this generalised co-ordinate the last term in the left part of Eq. (2) is
zero, and the form of Lagrange equations is the same as for the discrete system:

d

dt

∂L

∂q̇0
− ∂L

∂q0
= 0, (3)

where for the rest of generalised co-ordinates (“bearing” vectorial co-ordinate q1) it
has its general form

d

dt

∂L

∂q̇1
− ∂L

∂q1
+ ∇ · ∂L

∂∇q1
= 0. (4)

Near its partial frequency the dynamics of the generalised co-ordinate q0 may
start to prevail in the system. We can call this phenomenon “effect of the distributed
dynamic absorber”. Indeed, the medium can be considered now as the “bearing con-
tinuum”, described by a generalised vectorial co-ordinate q1 = q1

s i
s , s = 1, . . . , n1,

on whose gradient U depends, each body point of which is enhanced with another
body point—complex dynamic absorber, whose kinematics is described by q0, but
the dynamic absorbers are not connected between them (see Fig. 1). In this figure we
show a simple example of the body point, but it may be very complex and have many
degrees of freedom of different nature, depending on the concrete medium. Con-
tinuum, in which we have the special vectorial generalised co-ordinate—“dynamic
absorber”, we call the reduced continuum.

We will consider the linear case, i.e. we suppose q0,q1 and all their derivatives in
space and time to be infinitesimal. Supposing this, we exclude from the consideration
gyrocontinua [12], where the velocity of proper rotation is large, which results in the
finite dynamic spin. We consider a particular case, when the mass densities of the
elastic and kinetic energy of the linear reduced elastic material have the form

Fig. 1 Reduced continuum. Continuum of mass centres of the spherical particles is the bearing
continuum, rotations and translations of ellipsoidal particles form the special vectorial generalised
co-ordinate—distributed dynamic absorber
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U = ∇q�
1 · · 4K · · ∇q1/2 + C11q1 · q1/2 + q0 · C00 · q0/2+

+ ∇q�
1 · · 3N10 · q0 + q1 · C10 · q0,

K = q̇0 · A00 · q̇0/2 + A11q̇1 · q̇1/2. (5)

Here 4K,C11,C00,N10,C10 are elastic tensorial/scalar characteristics of themedium,
A00, A11 and A10 are inertial ones. We will require C00 = ω0

2A00, i.e. the existence
of the unique partial frequency ω0 of the special co-ordinate. Denote the partial
frequency of the bearing co-ordinate ω1 = √

C11/A11.
Dynamic equations (3), (4) for these densities of kinetic and strain energy K ,U

look as follows:

A00 · (q̈0 + ω0
2q0) + ∇q�

1 · · 3N10 + q1 · C10 = 0, (6)

A11(q̈1 + ω2
1q1) + C10 · q0 − ∇ · (4K · · ∇q1 + 3N10 · q0) = 0. (7)

We consider two cases:

(1) 3N10 �= 0,C10 = 0;
(2) 3N10 = 0,C10 �= 0.

The frequency ω0 is a characteristic frequency for the system in both these cases.

3 Motion at ω = ω0. Regime of Independent Oscillators

(1) 3N10 �= 0,C10 = 0. This case corresponds to the coupling in the elastic energy
between two subcontinua which only couples the gradient of the bearing co-
ordinate with the special (dynamic absorber) co-ordinate. Then at ω = ω0 there
exist a “regime of independent oscillators” q1 ≡ 0,q0 = Q0eiωt , if ∇ · (3N10 ·
Q0) = 0 (for instance, if Q0 does not depend on the point in space).

(2) 3N10 = 0,C10 �= 0. In this case for non-degenerateC10 at ω = ω0 there exist no
k, even a complex one: equations of motion (6) and (7) give a trivial solution.

4 Dispersive Relations. Anisotropic Case

Let us look for the solutionof (6), (7) in the formq0 = Q0ei(k·r+ωt),q1 = Q1ei(k·r+ωt).
Here vectors Q0,Q1 have dimensions n0, n1, respectively. Then we have

(−ω2 + ω0
2)A00 · Q0 + Q1 · (ik · 3N10 + C10) = 0, (8)

(k · 4K · k + (−ω2 + ω2
1)A11E) · Q1 + (C10 − ik · 3N10) · Q0 = 0. (9)
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Here E is the identity tensor. If ω �= ω0, and A00 is non-degenerate (i.e. all the
generalised co-ordinates have inertia), we can express Q0 via Q1 from Eq. (8) and
substitute this expression into (9):

Q0 = (ω2 − ω0
2)−1A−1

00 · (C10 + ik · 3N10)
� · Q1, (10)

(k · 4K · k + (−ω2 + ω2
1)A11E+

+ (ω2 − ω0
2)−1(C10 − ik · 3N10) · A−1

00 · (C10 + ik · 3N10)
�) · Q1 = 0.

(11)

Equation (11) is a reduced spectral problem for the “bearing” generalised co-
ordinate q1.

4.1 Coupling Between the Gradient of the Bearing
Co-ordinate and Special (Dynamic Absorber)
Co-ordinate (C10 = 0). Band Gaps and Decreasing Parts
of Dispersion Curves for the Plane Waves

If C10 = 0 and ω �= ω0, we can write the reduced spectral problem (7) as follows

(A11(ω
2
1 − ω2)E + k2(κκκ + (ω2 − ω2

0)
−1ννν)) · Q1 = 0, (12)

where
κκκ = k̂ · K · k̂, ννν = k̂ · N10 · A−1

00 · (k̂ · N10)
� def= νiei ei , (13)

ei being an orthonormal basis, formed by eigen vectorsννν, νi � 0, i = 1, . . . , n1 being
the eigen values of the tensor ννν, depending on the elastic and inertial characteristics
and the direction of wave propagation.

Let us consider approximations for the dispersional relation near ω0 and near ω1.
In the vicinity of ω0 at ω0 �= ω1, νi > 0, the dispersional curves look as

k2i ≈ (ω − ω0)2A11ω0(ω
2
0 − ω2

1)/νi . (14)

Indeed, at ω → ω0 the eigen values of κκκ are much less than νi/(ω
2 − ω0

2), and the
spectral problem (12) can be written as

(A11(ω
2
1 − ω2)E + k2((ω2 − ω2

0)
−1ννν)) · Q1 = 0, (15)

which results in (14). If the direction of wave propagation is not a special direction
for inertial and elastic tensors, i.e. if νi > 0, then all the n1 dispersion curves have
a band gap, limited by ω0 (below ω0 if ω0 > ω1, and above it if ω0 < ω1). Tensor
ννν will be non-degenerate if the elastic tensor N10 participating in the coupling will
have a sufficiently low group of symmetry. (For the case ω0 = ω1 we obtain k2i ≈
A11(ω

2 − ω2
0)2/νi in the vicinity of this frequency, i.e. there is no band gap.)
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In the vicinity ofω1, on the contrary, A11(ω
2
1 − ω2) is much less then eigen values

of the tensor κκκ + (ω2
1 − ω0

2)−1ννν, if only the parameters are not chosen in such a way
that this tensor is degenerate. For this reason in the vicinity of ω1 we have k ≈ 0,
more exactly,

ω − ω1 ≈ k2
ξi

2ω1
, (16)

where ξi , i = 1, . . . , n1 are eigen vectors of the tensor κκκ + ννν/(ω2
1 − ω0

2). Thus the
sign of k2 also changes when ω passes through ω1. Depending on the sign of ξi the
band gap is situated just below or just above ω1.

Performing a detailed asympthotical analysis, we obtain that at ω0 < ω1 band
gaps (or band gap) are situated below ω1 and above ω0, where the medium is a single
negative acoustic metamaterial, and that there is a decreasing part of the dispersion
curve just below ω0, where the medium is a double negative acoustic metamaterial.

In the case ω0 > ω1, if both characteristic frequencies are sufficiently close to
each other, or if the coupling between the bearing generalised co-ordinate and the
dynamic absorber (special generalised co-ordinate) is strong enough, band gap(s) is
(are) situated between these ω1 and ω0, and there is a decreasing part of dispersion
curve just below ω1.

If partial frequencies are equal to each other (ω0 = ω1), then the band gap near
ω0 is absent, but we have a decreasing part of dispersion curve just below ω0: the
medium is a double negative metamaterial in this zone. In the opposite case there are
two band gaps, just below of each of partial frequencies ω0, ω1.

4.2 Coupling Between Bearing Generalised Co-ordinate and
Special (Dynamic Absorber) Generalised Co-ordinates
(N10 = 0). Band Gaps and Decreasing Parts
of Dispersion Curves for the Plane Waves

The spectral problem (10), (11) in this case looks as follows:

(A11(ω
2
1 − ω2)E − (ω2 − ω2

0)
−1C10 · A−1

00 · C�
10 + k2κκκ) · Q1 = 0, (17)

Q0 = −A−1
00 · C�

10 · Q0/(ω
2 − ω2

0). (18)

Near ω0 we have n1 dispersion curves with the band gap just above ω0:

k2 = − χi

ω2 − ω0
2
. (19)

Here χi , i = 1, . . . , n1 are the eigenvalues of tensor κκκ−1/2 · C10 · A00 · C�
10 · κκκ−1/2,

they are non-negative if the strain energy is non-negatively defined. We consider the
case when they are not zero. An isotropic material with 3D bearing and 3D special
generalised co-ordinates has two band gaps [8].
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5 Dispersional Relations for an Isotropic Material with 3D
Vectorial Bearing and Special (Dynamic Absorber)
Isotropic Generalised Co-ordinates

Several results of this section (concerning shear waves) can be found in [8], but we
repeat them shortly here for the sake of completeness. For an isotropic material,
whose body point is characterised by 3D vectorial special and bearing generalised
co-ordinates, we have

A00 = A00E, C10 = C10E, N = NE × E, (20)

K = λEE + 2μ(im in)S(im in)S + 2α(im in)A(im in)A, (21)

where im is an orthonormal basis. The equations of motion for this medium are

A00(q̈0 + ω2
0q0) − N∇ × q1 + C10q1 = 0, (22)

A11q̈1 + C11q1 + C10q0 − (λ + 2μ)∇∇ · q1 + (μ + α)∇ × (∇ × q1)

−N∇ × q0 = 0.
(23)

As in the general (anisotropic) case, discussed in the previous section, at C10 = 0,
N �= 0 there exists a regime q1 ≡ 0, q0 = Q0eiω0t , if ∇ × Q0 = 0. If N = 0, C10 �=
0, on the contrary, for ω = ω0 there exists only a trivial solution.

The spectral problem (10), (11) can be written as follows:

Q0 = −i Nk × Q1 + C10Q1

A00(ω2 − ω0
2)

, (24)

(A11(ω
2
1 − ω2) + C2

10

A00

1

ω2 − ω0
2
)Q1 + (λ + 2μ)kk · Q1+

− (μ + α + N 2

A00

1

ω2 − ω0
2
)k × (k × Q1) − i

NC10

A00

1

ω2 − ω0
2
k × Q1 = 0.

(25)

5.1 Longitudinal Wave

Note that the reduced spectral problem (25) allows us to obtain the dispersion relation
for the longitudinal wave:

c2pk
2 = ω2 − ω2

1 − ω̂4

ω2 − ω0
2

= (ω2 − ω2+)(ω2 − ω2−)

ω2 − ω0
2

. (26)
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Here

c2p = λ + 2μ

A11
, ω̂4 = C2

10

A00A11
, (27)

expressions for ω+, ω− are given by formulae (28), (29), and ω− < ω0 < ω+. In the
case when all the inertial and elastic characteristics participating in this equation are
not equal to zero, we have a band gap with the lower boundary ω0. The dispersion
curve approaches from below the asymptoteω = ω0. If the strain energy is positively
defined with respect to q0,q1, we have C2

10 < C11C00, and we obtain then ω0
2ω2

1 >

ω̂4. It means that k2 < 0 at ω = 0, thus there exist a cut-off frequency, and the plane
wave has two band gaps, where themedium is a single negative acousticmetamaterial
with respect to the longitudinal waves.

After calculations we obtain: k2 � 0 either if

ω � ω+ =
(ω2

0 + ω2
1

2
+ √

D
)1/2

, or if (28)

ω− =
(ω2

0 + ω2
1

2
− √

D
)1/2

� ω < ω0, where (29)

D =
(ω2

0 − ω2
1

2

)2 + ω̂4, (30)

ω0 < ω+, 0 < ω−. (31)

The graph of dispersion relation is shown in Fig. 2. It looks in this way ifC10 �= 0.
Otherwise ω̂ = 0, ω− = ω0, ω+ = ω1, and we have only one branch with the cut-off
frequency ω0. Note that this relation does not depend on modulus N responsible for
the coupling between ∇q1 and q0.

Fig. 2 Dispersion relation for the longitudinal wave in the isotropic material with 3D bearing and
3D dynamic absorber generalised co-ordinates (with both coupling terms)



Reduced Enhanced Elastic Continua as Acoustic Metamaterials 261

There exist two band gaps: [0;ω−) and [ω0;ω+). We have k → +∞ at ω →
ω0 − 0, and ω → cpk at k → ∞. We will discuss here shear waves in two particular
cases.

5.2 Shear Plane Waves at C10 = 0

As it is easy to see from Eq. (26), the dispersion curve for the longitudinal wave
in the isotropic material at C10 = 0,C11 �= 0 is a parabola ω2 = c2pk

2 + ω2
1. If we

have C11 = 0, then the longitudinal wave is non-dispersive. The reduced spectral
problem (25) for shear waves at C10 = 0 takes form

[A11(ω
2
1 − ω2) + k2(μ + α + N 2

A00

1

ω2 − ω0
2
)](E − k̂k̂) · Q1 = 0. (32)

Thus the dispersional relation for the shear wave is

k2 = A11

μ + α

(ω2 − ω2
1)(ω

2 − ω0
2)

ω2 − ω2∗
, (33)

where ω2∗ = ω0
2 − N 2/((μ + α)A00). Graphs for shear dispersion relations are

shown in Fig. 3. There are two band gaps, where the continuum is a single neg-
ative acoustic metamaterial with respect to the shear waves. It holds ω∗ < ω0. For
sufficiently large value of N , responsible for the coupling of the bearing and spe-
cial (dynamic absorber) generalised co-ordinates, when ω∗ < ω1, there appears a

ω0

*ω
*ωω1

ω1 ω0

ω1 ω0

sα
dω
d k c

sα
dω
d k c

,

,

max

min

ω ω

kk

(        )

(        )

Fig. 3 Dispersion curves for the shear wave in the isotropic material, C10 = 0. Frequency ω∗ <

ω0 decreases when the coupling between bearing and dynamic absorber generalised co-ordinates
increases. c2sα = (μ + α)/A11. Numerical example for csα = 1, ω0 = 1, left: ω1 = 0.5, ω∗ = 0.7,
right: ω1 = 2, ω∗ = 0.5
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decreasing part of dispersion curve, where the continuum is a double negative acous-
tic metamaterial for shear waves (right part of the figure).

5.3 Shear Plane Waves at N = 0

Note that the longitudinal wave in the isotropic material does not depend on the
elastic modulus N , determining the coupling term of the special (dynamic absorber)
co-ordinate and the gradient of the bearing co-ordinate. The dispersion relation in
this case coincides with the expression (26).

The reduced spectral problem for shear waves can be obtained from (25):

(ω2
1 − ω2 + ω̂4

ω2 − ω0
2
)(E − k̂k̂) · Q1 − c2sαk × (k × Q1) = 0. (34)

Thus we obtain the dispersion relation

c2sαk
2 = ω2 − ω2

1 + ω̂4

ω2 − ω0
2

= (ω2 − ω2+)(ω2 − ω2−)

ω2 − ω0
2

. (35)

It coincides with the dispersion relation for the longitudinal wave (26) with the
only difference: characteristic speed cp (the velocity of the longitudinal wave at high
frequencies) has to be changed for the velocity csα (the speed of the shear wave

Fig. 4 Dispersion curves for an isotropic material, N10 = 0. Cut-off frequencies ω− and ω+ are
determined by medium parameters, ω− − ω+ increases as the coupling increases. Solid line corre-
sponds to the longitudinal plane wave, dashed line to the transversal one (if cp > csα)
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at high frequencies). Band gaps for both waves are the same. In these domains of
frequencies the medium is a single negative acoustic metamaterial with respect to all
waves. Their dispersion curves are shown in Fig. 4.

6 Reduced Continua with Rotational Degrees of Freedom

6.1 Linear Reduced Cosserat Medium as an Example
of a Single Negative Acoustic Metamaterial with C10 = 0

Reduced linear elastic isotropic Cosserat medium is an example of a reduced contin-
uum considered in previous sections. Its equations were suggested for the first time
in [19]. Waves in this medium were investigated, in particular, in [13]. In this section
we give only the results to illustrate the idea of the reduced continua as acoustic
metamaterials.

Reduced Cosserat medium can serve as a model for soils and granular media
in elastic domain. Each body point of this medium is an infinitesimal rigid body
performing translational and rotational motions. Turns and translations are indepen-
dent, however, this medium does not react to the gradient of turn. Let u, θθθ be vectors
of infinitesimal translations and turns, respectively. In the elastic isotropic reduced
linear Cosserat medium with spherical density of the inertia tensor IE

K = 1

2
(ρu̇2 + I θ̇θθ

2
), (36)

U = 1

2
(∇u)S · · (λEE + 2μ(im in)S(im in)S) · · (∇u)S + 1

2
α(θθθ − ∇×u/2)2. (37)

This medium is an example of the material considered in Sect. 5.2. In this medium
ω1 = 0, so the first cut-off frequency is absent, and in this particular case the group
velocity atω = ω1 = 0 is different from zero, contrary to themediawith non-zeroω1.
The longitudinal wave is the same as in the classical medium (again contrary to other
media of this type with ω1 �= 0), and the wave of shear–rotation obeys the dispersion
relation

k2 = ω2

c2S

(1 − ω2/ω2
0)

(1 − ω2/ω2∗)
, (38)

whose graph is presented in Fig. 5. Here c2s = μ/ρ, c2sα = (μ + α)/ρ, ω2
0 = 4α/I ,

ω2∗ = ω2
0/(1 + α/μ).

The regime of “independent oscillators” exists at ω = ω0, ∇ × Θ0 = 0.
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Fig. 5 Dispersion curves of the elastic linear isotropic reducedCosseratmedium(ω1 = 0,C10 = 0).
A numerical example for ω∗ = 0.5ω0, cp = 2, csα = 1. Shear wave: solid line, pressure wave:
dashed line. The group velocity at ω = 0 is not zero, contrary to the case ω1 �= 0

6.2 Birotational Material with an Anisotropic Coupling
Between the Special Co-ordinate and the Gradient
of the Bearing Co-ordinate

Consider the medium whose body point contains two infinitesimal rigid bodies (two
subparticles) with spherical tensors of inertia I0E, I1E, connected by elastic spiral
springs with the rigid continuum of mass centres. Denote infinitesimal vectors of
turn of subparticles θθθ0, θθθ1.

Let the densitites of the kinetic and elastic energy of the material be

K = 1

2
(I0θ̇θθ0

2 + I1θ̇θθ1
2
), (39)

U = κ

2
(∇ · θθθ1)

2 + 1

2
(c0θθθ

2
0 + c1θθθ

2
1) + N∇ · θθθ1n · θθθ0. (40)

Here K = κEE,N = NEn. Condition U � 0 is fulfilled if κc0 � N 2.
Dynamic equations of such a material look as follows:

I0θ̈θθ0 + c0θθθ0 + N∇ · θθθ1n = 0, (41)

I1θ̈θθ1 + c1θθθ1 − κ∇∇ · θθθ1 − N∇θθθ0 · n = 0. (42)

Looking for their solution in the form θθθ1,2 = Θ1,2ei(ωt+k·r), we obtain the spectral
problem:
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((ω2 − ω2
0)(ω

2 − ω2
1)(E − k̂k̂)

+ ((ω2 − ω2
0)(ω

2 − ω2
1) − k2κ(ω2 − ω2

∗)/I1)k̂k̂) · Θ1 = 0.

I0(ω
2
0 − ω2)Θ0 = −in k · Θ1N

Here ω2
0 > ω2∗

def= ω2
0 − N 2/(κ I0) � 0 since U � 0.

There exist two regimes of “independent oscillators”:

(1) ω = ω0, θθθ1 = 0, θθθ0 = Θ0eiω0t , where ∇Θ0 · n = 0, and
(2) ω = ω1, θθθ0 = 0, θθθ1 = Θ1eiω1t , where ∇ · Θ1 = 0. Shear waves in such a mate-

rial do not propagate, the last regimes corresponds to the degenerate transverse
wave.

For the longitudinal wave Θ1 = Θ1k̂, Θ0 = −i NkΘ1n, c2p = κ/I1, and the
dispersion relation is

(cpk)
2 = (ω2 − ω2

0)(ω
2 − ω2

1)

ω2 − ω2∗
. (43)

The graph of the dispersion relation is presented in Fig. 3, since it is the same as for
the transverse wave in the isotropic case.

The same dispersion relation is true for the isotropic nonlinear elastic Cosserat
reduced medium in the vicinity of the nonlinear isotropic prestressed state [7]. Effec-
tive elastic constants depend on the first and second derivatives of the nonlinear strain
energy with respect to the nonlinear strain tensors in the prestressed state. Changing
the pressure or tension in such a material, we may partially control the band gap.

Linear elastic reduced Cosserat continuum with axisymmetric coupling between
volumetric and vortex deformations is also a single negative acousticmetamaterial (in
corresponding domains of frequencies) with respect to all the waves, with exception
of waves propagating orthogonal to the axis of symmetry, for certain domain of
parameters [10]. The medium with isotropic elastic tensors and anisotropic tensor of
inertia has more band gaps [11].

6.3 Birotational Isotropic Material as an Example of the
Single Negative Acoustic Metamaterial with N10 = 0

Consider the medium whose body point contains two infinitesimal rigid bodies (two
subparticles)with spherical inertia tensors, and their centres ofmass are fixed.Denote
the densities of tensors of inertia I0E, I1E. Subparticles are attached by elastic spi-
ral springs to the continuum of centres of mass of body points. Denote vectors of
infinitesimal turn of subparticles θθθ0, θθθ1. Elastic interaction between subparticles is
determined by the elastic constant C10.

Let the densities of kinetic (K ) and elastic (U ) energies equal
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K = 1

2
(I0θ̇θθ

2
0 + I1θ̇θθ

2
1), (44)

U = 1

2
∇θθθ1 · · (λEE + 2μ(im in)S(im in)S + 2α(im in)A(inim)A) · · ∇θθθ�

1

+1

2
c1θθθ

2
1 + 1

2
c0θθθ

2
0 + c10θθθ1 · θθθ0, (45)

U � 0 at c0 c1 > c210. Dynamic Eq. (23) look as follows:

I0θ̈θθ0 + c0θθθ0 + c10θθθ1 = 0, (46)

I1θ̈θθ1 + c1θθθ1 + c10θθθ0 = ∇ · (λE∇ · θθθ1 + 2μ∇θθθ S
1 + 2α∇θθθ A

1 ). (47)

We look for the plane wave solution θθθ0 = Q0ei(ωt+k·r), θθθ1 = Q1ei(ωt+k·r). After stan-
dard calculations we obtain that the spectral problem looks as

Q0 = C00Q1/(A00(ω
2
0 − ω2)), (48)

(A11(ω
2
1 − ω2)− c210

A00(ω
2
0 − ω2)

)E

+ k2((λ + 2μ)k̂k̂ + (μ + α)(E − k̂k̂)) · Q1 = 0. (49)

The dispersion relations both for longitudinal and transversal wave have the form

c2k2 = ω2 − ω2
1 + c210

A00A11(ω
2
0 − ω2)

, (50)

For the longitudinal wave Q1 = Q1k̂, c2 = (λ + 2μ)/A11, and for the transversal
wave Q1 · k̂ = 0, c2 = (μ + α)/A11.

7 Conclusion

We have shown that if a linear elastic continuum with holonomic ideal constraints is
a reduced medium, i.e. its elastic energy does not depend on the gradient of certain
generalised co-ordinates, under certain conditions for the elastic and inertial con-
stants this continuum will have (a) band gap(s), where it is a single negative acoustic
metamaterial, and in some cases the continuum has a decreasing part of dispersion
curve, where it is a double negative acoustic metamaterial. The special vectorial
generalised co-ordinate, whose gradient does not influence the strain energy, corre-
sponds to the “distributed dynamic absorber”, attached to the “bearing continuum”



Reduced Enhanced Elastic Continua as Acoustic Metamaterials 267

described by another vectorial generalised co-ordinate. At the frequencies close to
the partial frequency of the generalised co-ordinate it changes essentially the dynam-
ics of the system. The band gap (or band gaps) exist in all non-degenerate cases. It
is shown that if there is a strong coupling between the special co-ordinate and the
gradient of the bearing co-ordinate, as well as in the case when the partial frequency
of the special co-ordinate (“dynamic absorber” ω0) is less than the partial frequency
of the bearing co-ordinateω1, the transversal wave has a decreasing part of dispersion
curve. For the isotropic material with ω0 > ω1 this interval increases as the elastic
modulus responsible for the coupling, increases. This work does not consider the
case when we have finite velocities, for example, as it is in reduced gyrocontinua.
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Stability Theory of Solitary Loops
Propagating Along Euler’s Elastica

Andrej Il’ichev

Abstract The problem of dynamic stability of twist free solitary wave solutions of
the equations describing oscillations of an inextensible elastic rod (Euler’s elastica)
is treated. The governing equations describe sufficiently large displacements, though
we are restricted to small strains.We show that under the condition of well-posedness
of the initial value problem (in some specific sense) the family of solitary wave
solutions is nonlinearly stable for two-dimensional perturbations not coming out
from the plane of principal bending. The framework of the analysis is largely based
on the spectral properties of the “linearized Hamiltonian” H . We show that for
planar perturbations H is positively semidefinite subject to a certain constraint,
which implies the orbital stability.We consider also the case of perturbing the solitary
wave by three-dimensional spatial perturbations. As a result of linearization about the
solitary wave solution, we obtain an inhomogeneous scalar equation. This equation
leads to a generalized eigenvalue problem. To establish the instability, wemust verify
the existence of an unstable eigenvalue (an eigenvalue with a positive real part). The
corresponding proof of the instability is done using a local construction of the Evans
function depending only on the spectral parameter. This function is analytic in the
right half of the complex plane and has at least one zero on the positive real axis
coinciding with an unstable eigenvalue of the generalized spectral problem.

1 Introduction

The dynamical equations of the theory of elastic rods were formulated in the works
[1, 2] (see, also [3]). The forms of bending waves in inextensible thin rods were for
the first time, apparently, described by Euler (see [4]). The dynamics of the flexure
of a flat rod was discussed in [5], where the traveling waves were classified and it
was also noted that the system of dynamical equations can be reduced to a single
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partial differential equation and an algebraic equation representing the inextensibility
condition. This observation raised the supposition that the system of equations
describing the dynamics of a flat inextensible rod is completely integrable. But the
numerical results obtained in [6] suggest that the system is nonintegrable because the
solitary waves of a flat inextensible rod interact inelastically, i.e., are not solitons in
the strict sense. Solutions of the type of traveling waves in a linearly extensible and
unshearable (thin) flat rod were obtained in a closed form in [7]. In [8], the authors
described inextensible rods with torsion and obtained expressions for spatial (three-
dimensional) travelingwaves in the presence of a torsional moment. The dynamics of
the flexure of a flat inextensible rod was discussed in [9] with neglect of the rotational
part of the kinetic energy, which is small compared with the total energy of the rod.
The orbital stability of the solitary wave solutions in the form of a loop under planar
perturbations was proved. In [10], the stability analysis was generalized to the case
without such a neglect. Methods used for the proof of such a stability can be found in
[11] (see also references therein). In the case of deviations of the rod from the prin-
cipal plane of flexure, the instability of solitary waves under spacial perturbations
(departures from the principal plane of flexure) was established in [12, 13], (see,
also [14]). In [15], the authors considered the question of the existence of solitary
waves in a general model taking the effects of shear and contraction/extension into
account.

Here we treat both the cases of planar as well as three dimensional perturba-
tions. For planar perturbations we investigate nonlinear (Lyapunov stability). This
investigation is based on the Hamiltonian formulation of the system of equations in
question. We prove the orbital Lyapunov stability in this case. We use the smallness
of the rotational part of the kinetic energy compared with the total energy of the rod.
We therefore consider the terms corresponding to the rotational kinetic energy in
the linearized equation to have the second order of smallness, and we consequently
neglect them. The stability is due to the fact that we are able construct the Lyapunov
function (functional) in this case. The Hessian H has empty negative spectrum,
only one null eigenfunction (due to the translational invariance) and positive spec-
trum bounded away from zero. The stability occurs due to the fact that the Lyapunov
functional has its local minimum on some linear space. The dynamics of the spa-
cial (not planar) rod is described by taking the torsion into account. In this case we
obtain the instability results using the properties of the Evans function. Equation
for the unstable eigenfunction has the same form as the corresponding equation in
[16], but the potential p0 in this equation differs from the potential in [16], which
leads to a nontrivial analysis and a difference between the Evans functions in the
two cases (see [12]). The authors of [16] generalized the results in [17] to the case
of Boussinesq-type equations where two modes decaying at infinity are present in
the solutions of the corresponding generalized spectral problem. The ideas of Evans
[18] in parabolic problems were developed in [19–21].

The present paper organized as follows. In Sect. 2 we treat the stability of the soli-
tary loop under the planar perturbations. Section 3 is devoted to the proof of spectral
(linear) instability of the loop under three dimensional perturbations coming out of
the plane of principal bending. In Sect. 4 we give our conclusions and discussion.
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2 Nonlinear Stability of the Loop About Plane
Perturbations

2.1 General Translationally Invariant Hamiltonian Systems:
Stability of Solitary Waves

2.1.1 Translationally Invariant Hamiltonian Systems

Let X be a functional space of an infinite dimensional hamiltonian system

du
dt

= J
δE

δu

(
u(t)

)
, u ∈ M , (1)

where E is a functional (“energy”), J is a skew-symmetric operator:

〈Ju, v〉 = −〈u, Jv〉, u, v ∈ D(J ),

〈·, ·〉 the scalar product in L2(R) × L2(R) × · · · × L2(R), which is the product of
spaces of square integrable functions on the real axis R,M is some closed submani-
fold in X , δ/δu denotes the conditional variational derivative with respect to u ∈ X ,
u = u(t, x), x ∈ R under the condition u ∈ M .

Let E : X → R be the C2 functional, which is defined on the whole space X , and
let T (ω) : X → X be the one parametric group of translations

T (ω)w(·, x) = w(·, x + ω) = exp
(
ω ∂x

)
w(·, x).

Assume, that E is invariant under the action of T , i. e.

E
(
T (ω)u

) = E(u). (2)

Differentiating (2) with respect to ω and putting ω to zero we get

〈E′(u),
d

dω
T (0)u)〉 = 0,

d

dω
T (0) = ∂x,

where prime denotes the variational derivative.
Assume further, that there exists the bounded operator B : X → X ∗ (∗ denotes

the conjugation), such that JB = dT (0)/dω. Define the functional Q : X → R by
the equality

Q(u) = 1

2
〈Bu, u〉.

It is easily seen, that Q(u) is also invariant under the action of the grout T :
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Q
(
T (ω)u

) = Q(u), ω ∈ R, u ∈ X .

Indeed

d

dω
Q

(
T (ω)u

) = 〈
Q′(T (ω)u

)
,
d

dω
T (0)T (ω)u

〉 = 〈
BT (ω)u, JBT (ω)u

〉 = 0.

Note, that the functionals E and Q are formally conserved under the flow of (1).
Indeed

dE

dt
=

〈
E′(u),

du
dt

〉
= 〈E′(u), JE′(u)〉 = 0,

and it follows that

dQ

dt
=

〈
Q′(u),

du
dt

〉
= 〈Bu, JE′(u)〉 =

= −〈JBu,E′(u)〉 = −
〈
d

dω
T (0)u,E′(u)

〉
= 0.

2.1.2 Basic Assumptions

Let us denote by φc = φc(x − ct), where c is a constant wave velocity, a solution of
Eq. (1) of solitary wave type.

Definition 1 Wecall theCauchy problem for Eq. (1)well posed, if for arbitraryw0 ∈
X near φc in X , ||w0 − φc|| < γ , there exist T = T (γ ) > 0 and the vector function
w(t) ∈ C([0,T ),X ) (continuous in t with values in X , || · || denotes the norm in X ),
w(0) = w0 such that for all t, 0 ≤ t ≤ T , and E(w) = E(w0), Q(w) = Q(w0).

Further we consider that the following assumptions are valid.

Assumption 1 The solution of the Cauchy problem exists in the above sense.

Assumption 2 There exist c1 < c2 and a smooth mapping c → φc of the interval
(c1, c2) in X , such that for all c ∈ (c1, c2)

(a) R(φc) = E′(φc) + c Q′(φc) = 0;
(b) dT (0)/dω · φc 	= 0.

Next define the operator from X to X ∗:

H = E′′(φc) + c Q′′(φc).

It is proved in [11] thatH : X → X ∗ is self-adjoint and also that the translational
invariance in x implies the existence of the zero eigenvalue of this operator with the
associated eigenvector

d

dω
T (0)φc = ∂xφc.
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Assumption 3 There is no negative spectrum of H , its kernel is spanned on
d
dω

T (0)φc and the positive spectrum ofH is bounded away from zero.

2.1.3 Stability of Solitary Waves

Solitary wave which is close to a given solitary wave has, nevertheless, slightly dif-
ferent velocity, and, hence, the distance between the both solitary waves will increase
with time. Therefore, under dynamic stability of a solitary wave we understand the
orbital stability or the stability in form.

Definition 2 The orbit {T (−ct)φc, t ∈ R} is stable, if for ε > 0 there exists δ > 0,
such that if ||u0 − φc|| < δ and u(t) on some semi-interval [ 0, t0) with u(0) = u0,
then u(t) can be continued to the solution on 0 ≤ t < ∞ and

sup
0≤t<∞

inf
ω∈R

||u(t) − T (ω)φc|| < ε.

Otherwise, the orbit is called unstable.

The neighborhood Uε of the solitary wave orbit is defined by the following way:

Uε = {w ∈ X , inf
ω∈R

||w(·, t) − T (ω)φc|| < ε}.

There exist ε > 0 and the smooth mapping such that ω : Uε → R such that for all
w ∈ Uε

〈T (
ω(w)

)
w, ∂ζ φc〉 = 0, ζ = x − ct. (3)

This fact for general case of translationally invariant hamiltonian systems was
proved in [11] by the use of the implicit function theorem. It means that for w ∈ Uε

there exists the optimal shift, which gives the minimum to the distance between the
solitary wave and w.

Let L be the linear space tangent toM in φc for c ∈ (c1, c2). Then, the following
Theorem follows from the Assumption 3 [11].

Theorem 1

〈H y, y〉 ≥ c0〈y, y〉, y ∈ L1, L1 = L ∩ 〈y, ∂ζ φc〉 = 0. (4)

In the case to be considered here the inequality (4) can imply the inequality

〈H y, y〉 ≥ c ||y||2, y ∈ L1.

We assume further, that there exists one more continuous in X conserving func-
tional under the flow (1) denoted by N . Let R(u) = E(u) + cQ(u)) − N (u). Then
the following theorem is valid [9].



274 A. Il’ichev

Theorem 2 The solitary wave φc is stable if
(i) Assumptions 1, 2 is valid;
(ii) R(w) − R(φc)) ≥ c ||T (

ω(w)
)
w − φc||2withω(w) from (3) andw ∈ Uε ∩ M.

2.2 Formulation, Solitary Waves, Symmetries and Stability

Consider nonlinear planar bending oscillation of a thin inextensible shear-free elastic
rod (Euler’s elastica) of infinite length under the action of the tension force and in the
undisturbed state coinciding with the x1-axis of the Cartesian coordinate system. The
total energy of the rod consists of kinetic and bending energies (the torsion energy is
absent because only plane motions are considered in the principal plane od bending
x1x2). Corresponding linear densities kinetic K and potential W energies are given
by expressions

K = 1

2
ρSxitxit, W = 1

2
IE0x

i
ξξxiξξ ,

where xi, i = 1, 2 are the coordinates of points of the neutral curve of the rod (elas-
tica), ρ is the density, S is the area of the cross section of the rod, ρI is the moment
of inertia of the cross section about a line orthogonal to the principal plane of bend-
ing x1x2, E0 is the Young module, and ξ denotes the arc-length of the elastica. The
summation is assumed under the repeating indices. The form of the elastica are given
by the equation xi = xi(t, ξ). For thin rods, the rotational part of the kinetic energy
Kr = 1

2ρIx
i
tξxitξ is small compared to the kinetic energy K and bending energy W

and is of order S/R2, whereR is the curvature radius of the elastica [9] and we neglect
it here.

The equations of motion can be obtained by taking the variational derivative of
the lagrangian Λ,

Λ = 1

2

t∫

t0

∞∫

−∞
(ρSxitxit − IExiξξxiξξ ) dξ dt

under the condition of the inextensibility : xiξxiξ = 1. These equations are given by

ρSxitt = (Pxiξ )ξ − IExiξξξξ , xiξx
i
ξ = 1, (5)

where P(t, ξ) = p(t, ξ) + p∞ is the Lagrange multiplier, corresponding to physi-
cal value of the extension force, p → 0 for ξ → ±∞. Making in (5) the scaling
transformations

p → p∞ p, ξ → √
IE/p∞ ξ, t →

√
ρSIE/p2∞ t
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and preserving the former notations, we get

τ i
tt = (pτ i)ξξ + τ i

ξξ − τ i
ξξξξ ,

τ iτi = 1,

τ1 → 1, τ2,3 → 0, ξ → ±∞. (6)

where τi = xiξ .
System of Eq. (6) is written in Hamiltonian form

τ i
t = ∂

∂ξ

δE

δvi
, vit = ∂

∂ξ

δE

δτi
, τ iτi = 1, (7)

where

E =
∞∫

−∞

[
(viv

i + τiξ τ
i
ξ + ρ(τ iτi − 1)

]
dξ.

Along with Hamiltonian E the following two formally conserved quantities take
place:

Q =
∞∫

−∞
(τ i − τ i

∞)vi dξ, N =
∞∫

−∞
(τ 1 − 1) dξ, τ 1

∞ = 1, τ 2,3
∞ = 0.

Denote further φc = {τ 0
1 − 1, τ 0

2 , v01, v
0
2}T (v01 = −c(τ 0

1 − 1), v02 = −cτ 0
2 ), and

w(t) = {τ1 − 1, τ2, v1, v2} for vector functions, and also X = H 1(R) × H 1(R) ×
L2(R) × L2(R) for the Hilbert space with the norm || · ||.

Hence, Eq. (6) has the Hamiltonian form (7),

M = {τ1 − 1, τ2 : τiτ
i = 1.}

The functionals E, Q, and also N are continuous as the functionals from the Hilbert
space X to R (the last one as a consequence of the fact that τ1−1 ∈ L1(R), which
follows from the inextensibility condition in (6)).

In this section we present the proof of the following

Theorem 3 Let τ3 ≡ 0 and for allw0 ∈ X near φc in X , ||w0 − φc|| < γ , there exist
T = T (γ ) > 0 and vector-function w(t) ∈ C([0,T ),X ) (continuous with
values in X ), w(·, 0) = w0 = {τ l

0, 0, v
l
0, 0}, l = 1, 2, such, that for all t, 0 ≤ t ≤ T ,

τ i
0τ0i = τ iτi = 1 and H (w) = H (w0), Q(w) = Q(w0), N (w) = N (w0). Then for
arbitrary ε > 0 there exists δ > 0 such, that if ||w0 − φc|| < δ, then

sup
t>0

inf
ω∈R

||w(t, ·) − φc(· + ω)|| < ε.
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The proof of this Theorem is based on the fact, that a family of translations of the
solitary wave (orbit) gives the local minimum to the conserved quantity R(w) on the
closed submanifold M ∈ X . This, in its turn, follows that “linearized Hamiltonian”
H (φc) = δ2 R(φc)/δ

2w has exactly one zero eigenvalue and its positive spectrum
is bounded away from zero.

2.2.1 Solitary Wave Solutions

Solitary wave solutions of (6) are the solutions of traveling wave type tending to
zero at infinity. Traveling waves depend on the self-similar combination ζ = ξ − ct
and the equations describing them can be obtained by the integration of (6). These
equations have the form

−c(τ i − τ i
∞) = vi,

−cvi = pτ i − τ i
∞ − τ i

ζ ζ , τ iτi = 1. (8)

Multiplying the second equation in (8) by τi and summing by index i, we get

p = c2 + (1 − c2)τ i
∞τi − τ i

ζ τiζ .

Further, multiply the same equation by τ i
ζ and sum. In the result we get

−1

2
τ i
ζ τiζ − s2τ i

∞τiζ = 0, s =
√
1 − c2,

and after one time integration

− 1

2
τ i
ζ τiζ − s2τ i

∞τi = Π. (9)

Put further Π = −s2. Define the new angle variable θ as τ1 = cos θ , τ2 = sin θ .
In new variables (9) takes the form

θ2
ζ = 4s2 sin2 θ/2,

which can be easily integrated. Finally, we have

p = −p0 = −6(1 − c2) sech2
√
1 − c2ζ, τ3 = 0,

τ1 = τ 0
1 = 1 − 2 sech2

√
1 − c2ζ,

τ2 = τ 0
2 = −2 sech2

√
1 − c2ζ sinh

√
1 − c2ζ, ζ = ξ − ct, 0 ≤ c < 1. (10)

Classification of various forms of elastic lines was first given Euler, who derived
the ordinary differential equation, describing the shape of thin non-tensile rods under
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Fig. 1 Form of solitary
wave on the elastica and a
tangent vector {τ 01 , τ 02 , 0}

by the action of tension force (see, for example, [4]). Elastic curve of the rod of infinite
length can have a loop shape, which is the running solitary wave, given by (10) (see
Fig. 1).

We note, that system (8) for solitary wave solutions may be also written in the
form

R′(φc) = {E(φc) + cQ(φc) − N (φc)}′ = 0. (11)

2.2.2 Well-Posedness of the Cauchy Problem

We call the Cauchy problem for (6) well posed if Assumption 1 in slightly modified
form is valid, namely the Cauchy problem for Eq. (6) is well posed if for arbitrary
w0 ∈ X near φc in X , ||w0 − φc|| < γ , there exist T = T (γ ) > 0 and a vector func-
tion w(t, ·) ∈ C([0,T ),X ) (continuous with values in X ), w(·, 0) = w0 = {τ i

0, v
i
0},

i = 1, 2, 3, such, that for all t, 0 ≤ t ≤ T , τ i
0τ0i = τ iτi = 1 and E(w) = E(w0),

Q(w) = Q(w0), N (w) = N (w0).

2.2.3 Symmetry

The functionals E, Q and N are invariant under the action of the Lie group of trans-
lations
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• T : X → X :

T (ω)w(·, ξ) = w(·, ξ + ω) exp
(
ω∂ξ

)
w(·, ξ), ω ∈ R.

The vector k = ∂ζφc is the unique null eigenvector of the operatorH . Moreover,
for the case in question (3) has the place.

2.2.4 Spectral Properties of the Operator H

Let us introduce the following notations: u = {u1, u2, u3, u4, } is the unknown vec-
tor function, L = {u ∈ X , τ 0

1 u1 + τ 0
2 u2 = 0} is linear closed subspace of X , tangent

to the submanifold M̂ = {u ∈ X , τiτ
i = 1} at a point u = φc (see Sect. 2.1.3).

The following inequality takes place 〈H u, u〉 ≥ 0 u ∈ L. Indeed, resolving the
equality τ 0

i δτ i = 0, we get

δτ1 = τ 0
2 , δϑ, δτ2 = −τ 0

1 δϑ.

The bilinear form 〈H δw, δw〉 in L is given by

〈H δw, δw〉 =
∞∫

−∞

[
δτ i

(
− d2

dξ 2
+ 1 − p0

)
δτi + δviδvi + 2cδviδτi

]
dξ =

=
∞∫

−∞

[
δϑ

(
− d2

dξ 2
+ c2 + s2 − 2s2ch−2sξ

)
δϑ + 2cτ 0

2 δϑ δv1

−2cτ 0
1 δϑ δv2 + δviδvi

]
dξ.

The eigenvalue problem for the operator H is formulated as follows

R2χ = νχ, (12)

where

R2 =
⎛

⎝
H1+c2 cτ 0

2 −cτ 0
1

cτ 0
2 1 0

−cτ 0
1 0 1

⎞

⎠ , χ = {χ1, χ2, χ3},

H1 = − d2

dζ 2
+ s2−2 sech2s ζ.

The eigenvalue problem (12) can be rewritten in components:
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χ2 = cτ 0
2

ν − 1
χ1, χ3 = − cτ 0

1

ν − 1
, H1χ1 =

(
ν − c2ν

ν − 1

)
χ1,

and, consequently, it is reduced to the Sturm-Liouville eigenvalue problem for the
component χ1. From Sturm-Liouville theory it is known, that the operatorH1 has the
unique null eigenvalue (with the associated eigenfunction ∂ξ τ

0
1 /τ 0

2 , corresponding
to ∂ξφc), and the other spectrum is positive and is bounded away from zero.

From the expression for the zero eigenvalue

ν − c2ν

ν − 1
= 0,

one has ν0 = 0, ν+ = 1 + c2 > 0. Essential spectrum H satisfies the condition

ν − c2ν

ν − 1
> s2,

from which it follows that

ν > 1 − c

and, consequently the spectrum is bounded away from zero for the fixed velocity
c ∈ [ 0, 1).

It follows then (see Theorem 1 in Sect. 2.1.3), that if u ∈ L and 〈u, ∂ζ φc〉 = 0,
then

〈H u, u〉 ≥ α0〈u, u〉. (13)

Besides, if u ∈ L̂ and 〈u, ∂ζ φc〉 = 0, then

〈H u, u〉 ≥ α1||u||2. (14)

in fact, multiplying both sides of inequality (13) on 1 − ε, where ε is a sufficiently
small constant, we get

〈H u, u〉 ≥ ε

∞∫

−∞

[
(∂ξu1)

2 + (∂ξu2)
2 + P0(u21 + u22) + u24 + u25+

+ 2c (u1u4 + u2u5)
]
dξ + (1 − ε)α0〈u, u〉 ≥

≥
∞∫

−∞

[
β1(u

2
1 + u22) + β2(u

2
4 + u25) + ε(∂ξu

2
1 + ∂ξu

2
2)

]
dξ, P0 = −p0 + 1,

where β1 = (1 − ε)α0 + ε(1 − 6s2 − c) and β2 = (1 − ε)α0 − εc. In order to get
the estimate (14), choose α1 = min(β1, β2, ε).
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2.2.5 Stability

Letw(t, ·) be the solution of Cauchy problem (6) on some semi-interval [ 0,T ). Then
the orbit is considered to be stable according Definition 2 of Sect. 2.1.3.

According Theorem 2 the orbit of the solitary wave in question is stable if

the Cauchy problem for (6) is well posed (in the sense of Definition 1);
R(w) − R(φc) ≥ α||T (

ω(w)
)
w − φc||2 for w ∈ Uε ∩ M , (α is some positive con-

stant, ω(w) is from (3)).

So, it remains to prove that for w ∈ Uε ∩ M the equality is valid

R(w) − R(φc) ≥ α||T (
ω(w)

)
w − φc||2.

Let w ∈ Uε ∩ M . Make the decomposition

ρ = T
(
ω(w)

)
w − φc = u0 + u,

where ρ = {ρ1, ρ2, , ρ3, ρ4, }, u0 = {u01, u02, 0}T u ∈ L. Next, note that

2(τ 0
1 ρ1 + τ 0

2 ρ2) = −a, (15)

where a = ρ2
1 + ρ2

2 . Equality (15) follows from the inclusion T
(
ω(w)

)
w ∈ M . From

(15) it follows that τ 0
1 u

0
1 + τ 0

2 u
0
2 = −a/2. Resolving the last equality with respect to

u01 and u02 we get

u01 = −a

2
τ 0
1 , u02 = −a

2
τ 0
2 . (16)

For w ∈ Uε ∩ M according to (11) one has

R(w) − R(φc) = 1

2
〈H ρ, ρ〉 + o(||ρ||2).

Next, we note that

〈u, ∂ζ φc〉 = 〈T (
ω(w)

) − φc − u0, ∂ζ φc〉 = 0

as the consequence of the equalities 〈φc, ∂ζ φc〉 = 0, 〈u0, ∂ζ φc〉 = 0. The last equality
follows from (16). Consequently, u belongs to the positive subspaceH 〈H u, u〉 ≥
α1||u||2. Finally,

||u|| = ||ρ − u0|| ≥ ||ρ|| − ||u0|| = ||ρ|| − O(||ρ||2),

and for small enough ρ
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R(w) − R(φc) ≥ α1

2
||ρ||2 = α||ρ||2.

3 Spectral Instability of the Loop About Three
Dimensional Perturbations

3.1 Formulation, Basic Equations

3.1.1 Basic Equations

In this section we choose the Cartesian coordinate system x=(x, y, z). As before,
we consider a spatial curve G (t) (elastica), which is the centerline of a prismatic,
dynamically symmetric, inextensible rod. We assume that this curve initially coin-
cides with the z-axis. The position of the curve can vary with time, i.e., x = x(ξ, t).
At each point of the curve, we define a director basis (d1, d2, d3), where d3 = ∂x/∂ξ

and d1, d2 are unit vectors in the plane normal to d3. The triple (d1, d2, d3) forms a
right-hand orthonormal basis at each point of G (t). The Euler angles θ , ψ and φ in
the rod motion depend on ξ and t; θ is the angle between the z-axis and the tangent
vector d3, ψ measures the deviation of G (t) from the principal bending plane (x, z),
and φ is the angle of torsion (see Fig. 1 in [8]). The tangent vector d3(s, t) has the
components τ1, τ2, and τ3:

τ1 = cos θ, τ2 = cosψ sin θ, τ3 = sinψ sin θ.

The expressions for d1 and d2 in terms of the angles θ , ψ and φ are given in [8].
Together with the trapped basis {di}, i = 1, 2, 3, we introduce the orthonormal basis
{d̃i}, which is obtained by a clockwise rotation of the pair (d1, d2) about d3 through
the torsion angle φ, i. e.,

d̃1 = (cosφ) d1 − (sin φ) d2,

d̃2 = (sin φ) d1 + (cosφ) d2,

d̃3 = d3.

In the Kirchhoff rod dynamics model, the total force F = F(ξ, t) and the total
moment M = M(ξ, t) can be expressed in terms of the director basis di: F =∑3

i=1 fidi, M = ∑3
i=1 Midi. The constitutive relation of linear elasticity theory up to

terms of the order O(S/R2) ( recall that S is the square of the rod cross section and
R is the radius of curvature of G (t)) is [3, 8]

M = E0Iκ1d1 + EIκ2d2 + μJκ3d3, (17)
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where μ is the shear modulus, and I is the moment of inertia of the cross section as
before. The elastic parameter J is given by formula (2.24) in [8], and is equal to 2I
for rods with a circular cross section. The values κi, i = 1, 2, 3, are the components
of the curvature vector

κ = κ1d1 + κ2d2 + κ3d3.

The conservation of linear and angular momentum together with constitutive
relation (17) lead to the force and moment equations [3, 8]

F′ = ρSẍ,

M′ + x′ × F = ρI
(
d1 × d̈1 + d2 × d̈2

)
, (18)

where the prime denotes differentiation with respect to the arc-length ξ , the dot
denotes differentiation with respect to t, and ρ is the rod mass density.

We next apply the scaling transformations

s → νs, x → νx, t → βt, F → ν2

β2
F,

where ν is the characteristic wave length and β = ν2√ρS/EI . This scaling implies
the replacements di → di, κ → κ/ν,M → EIν−1M . In the new dimensionless vari-
ables, Eqs. (17) and (18) become

F′′ = d̈3,

M′ + d3 × F = ε
(
d1 × d̈1 + d2 × d̈2

)
,

M1 = κ1; M2 = κ2, M3 = Ωκ3, (19)

where Ω = μJ/EI , ε = I/(ν2S) ∼ S/R2 is a small quantity (as before). In the basis
{di}, i = 1, 2, 3, κi are given by [8]:

κ1 = ∂ξ θ sin φ − ∂ξψ sin θ cosφ,

κ2 = ∂ξ θ cosφ − ∂ξψ sin θ sin φ,

κ3 = ∂ξψ cos θ + ∂ξφ.

Projecting the first equation in (19) on the fixed Cartesian basis and the second
equation on the vector basis d̃i, i = 1, 2, 3, we obtain six equations for θ , ψ , φ, Fx,
Fy, and Fz:

∂2
ξξF

x = ∂2
tt(cosψ cos θ),

∂2
ξξF

y = ∂2
tt(sinψ sin θ),

∂2
ξξF

z = ∂2
tt(cos θ),

∂2
ξξψ sin θ+2∂ξψ∂ξ θ cos θ−Ω(∂ξψ cos θ + ∂ξφ)∂ξ θ−Fx sinψ+Fy cosψ =
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= ε
(
∂2
ttψ sin θ − 2∂tθ∂tφ

)
,

∂2
ξξ θ − (∂ξψ)2 sin θ cos θ+Ω(∂ξψ cos θ + ∂ξφ)∂ξψ sin θ+(Fx cosψ+
+ Fy sinψ) cos θ − Fz sin θ = ε

(
∂2
ttθ + (∂tψ)2 sin θ cos θ + 2∂tψ∂tφ sin θ

)
,

Ω∂ξ (∂ξψ cos θ + ∂ξφ) = 2ε∂t(∂tψ cos θ + ∂tφ). (20)

3.1.2 Solitary Wave Solutions

The planar dynamics (pure flexure) of the rod is described by the system of equations
that follow from (20) by setting ψ = φ = 0:

∂2
tt

(
cos θ

) = ∂2
ξξ (T cos θ − G sin θ),

∂2
tt

(
sin θ

) = ∂2
ξξ (T sin θ + G cos θ),

ε∂2
ttθ − ∂2

ξξ θ = G, (21)

where T is the tension, G is the shear force,

F = Fxi + Fzk = Td3 + Gn,

d3 and n(=d1) are the respective tangent and normal vectors,

d3 = i cos θ + k sin θ, n = −i sin θ + k cos θ.

We assume that T (ξ = ∞, t) = T∞ = p∞ = const.
System (21) describes the planar dynamics of a torsion-free rod. It has a solitary

wave solution [9, 10], which is a traveling wave with the constant speed c

τ s
1 = τ 0

1 + O(ε), τ s
2 = τ 0

2 + O(ε), Ts = T 0 + O(ε), T 0 = (T∞ − c2)τ 0
1 − c2,

where

τ 0
1 = 1 − 2 sech2

√
T∞ − c2ζ,

τ 0
2 = ∓2 sech2

√
T∞ − c2ζ sinh

√
T∞ − c2ζ, ζ = ξ − ct, 0 ≤ c < T∞. (22)

Expressions (22) are in full correspondence with (10).
We note that the tension at infinity T∞ can be set equal to unity by the transfor-

mations t → t/T∞, s → s/
√
T∞. We introduce the new coordinates (x1, x2) and the

curve K such that along K (see Sect. 2.2),

dx1
dζ

= τ 0
1 ,

dx2
dζ

= τ 0
2 .
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The form ofK (the form of the soliton of elevation to the lowest order in ε) is shown
in Fig. 1.

3.2 Linearization and Stability Analysis

3.2.1 Linearization

We consider Euler angles of the forms

θ = θ s, ψ = ψ s + δψ, φ = φs + δφ,

where (θ s, ψ s, φs) are the Euler angles corresponding to the solitary wave solution
and (δψ, δφ) are infinitesimal perturbations. The perturbation of the third component
of the tangent vector then becomes

δτ3 = δψ sin θ s. (23)

We assume that

{εδψ, εδφ} ∼ {(δψ)2, (δφ)2} (24)

because ε is considered to be small.
We linearize Eq. (20) about the solitary wave solution (taking (24) in account)

and assume that the twisting moment M3 in the perturbed state is absent (no-twist
perturbations):

∂2
ssδF

y = ∂2
tt(δψ sin θ s),

∂2
ssδψ sin θ s+2∂sδψ∂sθ

s cos θ s−Fxsδψ+δFy = 0,

Ω∂s(∂sδψ cos θ s + ∂sδφ) = 0. (25)

From (25), using (23) we obtain

∂ttδτ3 = −∂ss(p
0δτ3) + ∂ssδτ3 − ∂4

s δτ3, (26)

where (see (10)).

−p0 = T 0 − (∂ζ τ
0
1 )2 − (∂ζ τ

0
2 )2 − 1 = −6(1 − c2) sech2

√
1 − c2ζ.

3.2.2 Instability of the Solitary Wave

We seek the growing solution of Eq. (26) in the form
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δτ3 = eλtw(λ, ζ ), ζ = ξ − ct, 0 ≤ c < 1,

wherew decays exponentially as ζ → ±∞ andRe λ > 0. It is easy to understand that
the function w(λ, ζ ) must satisfy an ordinary differential equation with coefficients
depending on c and λ

(
λ − c

d

dζ

)2

w = d2

dζ 2
w − d4

dζ 4
w − d2

dζ 2

(
p0w

)
. (27)

Equation (27) can be written in the matrix form

y′ = M (λ, ζ )y, (28)

y = {y1, y2, y3, y4}T , y1 = w, y2 = w′, y3 = w′′, y4 = w′′′,

where the prime denotes now differentiation with respect ζ and

M (λ, ζ ) =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1

−λ2+p0
′′

2λc+2p0
′

1−c2+p0 0

⎞

⎟⎟
⎠ .

The equation conjugate to (27) is written as

(
λ + c

d

dζ

)2

w∗ = d2

dζ 2
w∗ − d4

dζ 4
w∗ − p0

d2

dζ 2
w∗ (29)

or

z′ = −zM (λ, ζ ), (30)

z = {z1, z2, z3, z4}, z4 = w∗, z3 = −w∗′
, z2 = w∗′′ − (1 − c2 + p0)w∗,

z1 = −w∗′′′ + (1 − c2 + p0)w∗′ − (2λc + p0
′
)w∗.

Because y(λ, ζ ) and z(λ, ζ ) respectively satisfy (28) and (30),

∂ζ

(
z(λ, ζ ) · y(λ, ζ )

) = 0,

where the dot denotes the scalar product of two vectors.
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3.2.3 Local Analysis

WesetM∞(λ) = lim
ζ→±∞M (λ, ζ ) and letμα(λ) (α = 1, 2, 3, 4) be the eigenvalues of

the matrixM∞(λ), and rα(λ) ans lα(λ) be the right and left eigenvectors ofM∞(λ).
The matrix M∞(λ) has the same form as the corresponding matrix in [16]:

M∞(λ) =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1

−λ2 2λc 1−c2 0

⎞

⎟⎟
⎠ .

The characteristic equation det [M∞(λ) − μE ] = 0, where E is the unit matrix,
has the form

μ4 − (1 − c2)μ2 − 2μcλ + λ2 = 0. (31)

The asymptotic behavior of solutions of (26) is obviously determined by these eigen-
values.

The following was shown in [16]

• If |c| < 1 and λ is not on the imaginary axis, then (31) has two roots in the right
complex half-plane and two in the left complex half-plane. For λ in the right
half-plane, we let μ1 and μ3 denote the two roots in the left half-plane.

• The functions μ1(λ) and μ3(λ) ave branch points for λ in the right half-plane, and
they are analytic in a neighborhood of the origin:

μ1(λ) = −
√
1 − c2 + cλ

1 − c2
+ 1 + 2c2

2(1 − c2)5/2
λ2 + O(λ3),

μ3(λ) = − λ

1 − c
+ O(λ3); (32)

• The solutions yk and zk , k = 1, 3, of (28) and (30) satisfying

lim
ζ→∞ e−μk (λ)3yk(λ, ζ ) = rk(λ),

lim
ζ→−∞ eμk (λ)3zk(λ, ζ ) = lk(λ), k = 1, 3, (33)

at infinity are analytic in λ in a neighborhood of the origin.

Let Yk be the first component and Zk be the last component of the vectors yk and
zk , k = 1, 3, respectively satisfying (28) and (30). From (32) and (33), we have

Y1 = e−√
1−c2ζ

(
1+ cζ

1−c2
λ+

[
c2ζ 2

2(1−c2)2
+ 1+2c2

2(1−c2)5/2
ζ

]
λ2

)
+O(λ3),
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Y3 = 1 − ζ

1 − c
λ + 1

2

ζ 2

(1 − c)2
λ2 + O(λ3) (34)

as ζ → ∞ and

Z1 = e
√
1−c2ζ

(
1 − cζ

1 − c2
λ +

[
c2ζ 2

2(1 − c2)2
− 1 + 2c2

2(1 − c2)5/2
ζ

]
λ2

)
+O(λ3),

Z3 = 1 + ζ

1 − c
λ + 1

2

ζ 2

(1 − c)2
λ2+O(λ3) (35)

as ζ → −∞.
We seek solutions of (27) and (29) for λ in a neighborhood of the origin in the

form of the expansions

Yk(λ) = Yk0 + λYk1 + 1

2
λ2Yk2 + O(λ3),

Zk(λ) = Zk0 + λZk1 + 1

2
λ2Zk2 + O(λ3), k = 1, 3,

The coefficients of these equations satisfy certain equations [16] that can be solved
analytically.

3.2.4 External Systems

We consider the vectors y∧(λ, ζ ) and z∧(λ, ζ ) with the components

y∧
α∧β = y1αy3β − y1βy3α,

z∧
α∧β = z1αz3β − z1βz3α, α < β, α, β = 1, 2, 3, 4,

where ykα , and zkα are the components of the respective vectors yk and zk . We set a
correspondence between α ∧ β and the numbers as follows: 1 ∧ 2 → 1, 1 ∧ 3 → 2,
1 ∧ 4 → 3, 2 ∧ 3 → 4, 2 ∧ 4 → 5, and 3 ∧ 4 → 6. The vectors y∧(λ, ζ ), z∧(λ, ζ )

satisfy the linear systems

y∧′ = M ∧(λ, ζ )y∧, z∧′ = −z∧M ∧(λ, ζ ), (36)

where

M ∧(λ, ζ ) =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 1 1 0 0

2λc + 2p0
′

1 − c2 + p0 0 0 1 0
0 0 0 0 1 0

λ2 − p0
′′

0 0 1 − c2 + p0 0 1
0 λ2 − p0

′′
0 −2λc − 2p0

′
0 0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,
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with the asymptotic matrixIt is easy to verify that the matrix

M ∧
∞(λ) = M ∧(λ,±∞) =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 1 0 0 0 0
0 0 1 1 0 0

2λc 1 − c2 0 0 1 0
0 0 0 0 1 0
λ2 0 0 1 − c2 0 1
0 λ2 0 −2λc 0 0

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

It is easy to verify that the matrixM ∧∞(λ) has the eigenvalues

μα(λ) + μβ(λ), 1 ≤ α, β ≤ 4, α < β.

3.2.5 Evans Function

For λ in the right complex half-plane, the matrixM∞(λ) has two eigenvalues in the
left half-plane. The matrix M ∧∞(λ) therefore has a simple (hence analytic) leftmost
eigenvalue with the least real part μ∧(λ) = μ3(λ) + μ1(λ) for λ in the right half-
plane. By an exact direct analogy with (33), there are solutions of (36) such that

lim
ζ→∞ e−μ∧(λ)3y∧(λ, ζ ) = r∧(λ),

lim
ζ→−∞ eμ∧(λ)3z∧(λ, ζ ) = l∧(λ),

where r∧(λ) and l∧(λ) are the eigenvectors associated with μ∧(λ). It can be shown
that y∧(λ, ζ ) z∧(λ, ζ ) are analytic functions of λ for λ in the right half of the complex
plane [16].

We define the nonnormalized Evans function by

D̂(λ) = z∧ · y∧ = det

(
z1(λ, ζ ) · y1(λ, ζ ), z1(λ, ζ ) · y3(λ, ζ )

z3(λ, ζ ) · y1(λ, ζ ), z3(λ, ζ ) · y3(λ, ζ )

)
. (37)

The last equality in (37) holds in the neighborhood Uλ(0) of the origin where the
functions yk(λ, ζ ) and zk(λ, ζ ), k = 1, 3 are analytic.

For Re λ > 0 the function D̂(λ) is zero if and only if there is a solution of (27)
decaying exponentially as ζ → ±∞ [16, 20].

The normalized Evans function D(λ) has the form

D(λ) = D̂(λ)

l∧(λ) · r∧(λ)
.

For λ ∈ Uλ(0), we have
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l∧ · r∧ = det

(
l1(λ) · r1(λ) l1(λ) · r3(λ)

l3(λ) · r1(λ) l3(λ) · r3(λ)

)
= −4(1 − c2)3/2λ + O(λ2).

It was proved in [16] (also see [17]) that D(λ) → 1 as |λ| → ∞.
The following theorem can be proved using the expressions for the coefficients

Yk0, Yk1, Yk2, Zk0, Zk1 and Zk2 and conditions (34) and (35) [12].

Theorem 4 The Evans function D(λ), constructed for the function w(λ, ζ ) in (27),
is analytic in a neighborhood of the origin and is expanded there in a convergent
Taylor series of the form

D(λ) = 1 − 2c2

4(1 − c2)3
λ2 +

∞∑

n=3

en(c)λ
n. (38)

For c2 < 1/2 the first coefficient in expansion (38) is negative. It hence follows
that in a sufficiently small neighborhood of the origin, the Evans function D(λ) is
negative on the real axis (because D(λ) is real for real λ). Comparing the behavior
of the analytic Evans function in the vicinity of the origin and at infinity indicates
that this function must vanish in a finite domain on the real axis. This zero coincides
with the unstable eigenvalue of generalized spectral problem (27).

4 Conclusion and Discussion

We have discussed questions of the dynamical stability of the Kirchhoff-Clebsch
theory of elastic rods. We treat the rod as thin and inextensible. At each instant
t, the arc-length ξ of the centerline curve G (t) (elastica) is regarded as a spatial
coordinate. We consider both stability to planar perturbations (lying in the plane of
principal bending) as well as to perturbations coming out of the plane of principal
bending.

The rod dynamics is fully determined by the evolution of the three Euler angles
θ , ψ , and φ. The rod is considered dynamically symmetric. The rod motion is planar
if ψ = φ = 0 and G (t) is in the plane curve belonging to the pane containing the
principal axis of inertia of the cross section (principal plane of bending)). If ψ 	= 0,
then the curve G (t) cannot be embedded in a single plane, and the motion of the rod
is three-dimensional. We note that in the general case, a nonzero ψ implies torsion
in the rod, i.e., φ 	= 0, and a three-dimensional rod motion occurs in the presence
of nonzero torsion. The energy of torsion can be neglected only in the case of small
twist-free deviations (M3 = 0) from the principal plane of flexure (cf., e.g., [12]).
The equations giving the rod dynamics in the general case have forms (17) and (18).

For the planar perturbations we investigate nonlinear (Lyapunov stability). This
investigation is based on theHamiltonian formulation (1) of the system of equation in
question. This is due to the fact that the planemotion is twist free and the torsion for it
equals to zero.Weprove the orbital Lyapunov stability (seeDefinition2). The stability
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is due to the fact that we are able construct the Lyapunov function (functional) in this
case. The HessianH has empty negative spectrum, only one null eigenfunction (due
to the translational invariance) and positive spectrum bounded away from zero. The
stability occurs due to the fact that the Lyapunov functional has its local minimum
on the linear space L tangent to the closed submanifold M where solutions of the
basic equations (6) live intersected with the kernel of H .

Unlike the case of plane perturbations the elastica is unstable about three dimen-
sional perturbations.As it is pointed above the torsion in this case can not be neglected
and we need to treat the full system (19). Equations (19) describe the balance of the
bending energy, the energy of torsion, the kinetic energy of a point of the elastica, and
the kinetic energy of the rotation of the rod cross section. The terms corresponding
to the rotational energy of the cross section are collected in the right-hand side of the
second equation in (19). Using a natural scaling transformation, we showed that the
contribution of the rotational kinetic energy to the total energy is much less than the
contribution of the kinetic energy of a point of the elastica (as in the two dimensional
case). Therefore, in linearized equations (25), we can neglect the perturbations of
the corresponding terms, assuming that they are of the second order of smallness.
We considered a particular form of perturbations for which a torsional moment is
absent. Linearized equations (25) turned out to be equivalent to the single Eq. (26).

Instability results for (26) were previously obtained in [12] using the properties
of the Evans function for the solitary wave solution, solutions of basic equations (6)(
or (21)

)
of the type of a planar solitary wave in a loop form. Equation (26) (and

spectral problem (27) as a consequence) appear as a result of linearizingmuch simpler
equations for the rod dynamics [12]. These results were schematically reproduced
here in Sect. 3.2.2.

The Evans function D(λ) was constructed as an analytic function in the right
half of the complex plane of the spectral parameter, where it vanishes at points of
the discrete spectrum of generalized spectral problem (27). The Evans function is
real on the real axis and tends to unity as |λ| → ∞. Our instability results followed
from comparing the behavior of the Evans function in the neighborhood of the origin
(where the function is analytic) with its asymptotic behavior at infinity. Direct calcu-
lations using the Matematica package allowed obtaining an analytic expression for
the first coefficient of the Taylor expansion of the Evans function around the origin in
the complex λ-plane [12], which is negative for speeds c2 < 1/2. Consequently, for
small positive values of λ, the function D(λ) < 0. It hence follows immediately that
the Evans function vanishes on the positive half-axis, i.e., there exists at least one
unstable eigenvalue. This in turn means that solitary waves moving not very rapidly
in an inextensible rod are unstable under spatial (non-planar) perturbations of the
wave form.

The question about stability of the loop solitary wave for c ∈ [1/√2, 1) remains
open, but there is no doubt that the momentum of the traveling solitary wave for
the indicated range of speeds stabilizes it. The analogy with another problem serves
as the justification for this assertion. Linearized equation (26) turns out to be abso-
lutely identical to the corresponding linear equation in the problemposed in [22] (also
see [14]). That problem relates to wave propagation in one composite-material model
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representing the idealized case of an elastic matrix with elastic rods with a significant
flexural rigidity continuously distributed in it. In such a composite, there exist two
families of solitary waves. Written for convenience in dimensionless variables, one
family is orbitally (nonlinearly) stable for c2 > 1/2. In these variables, the equa-
tions linearized about the solitary wave of this family reduce to a single equation
having exactly the same form as (26) with p0 given by formulas (10) and (27). This
result, as already mentioned, most likely means that linearized problem (26) with p0
determined by (27) does not have unstable eigenvalues for c2 > 1/2.

We performed an experiment with a long fishing line. We took a sufficiently thick
line (although its thickness was small compared with the curvature radius of the
evolving elastica) tomodel an elastic rodwith a large value of Young’smodule. Static
(c = 0) solitary wave (10) or (27) could be easily produced. It was clearly unstable
under spatial perturbations. The experiment showed that the unstable solitary wave
under the influence of a twist-free perturbation evolved into a three-dimensional
structure with localized torsion (φ rapidly decaying at infinity).

One of the basic questions in the theory of the stability of flows and states is the
form of a stable secondary structure forming from an unstable state. The complete
class of solitarywave solutions was obtained in [8]. Among them, solutions are found
with a nonzero constant twist moment M3. They correspond to helical structures
with φ → ∞ as ξ → ±∞. We note that helical structures are near the threshold
of instability of a twisted straight rod and their stability was investigated in several
papers; see, e.g., [23–25]. Solitary wave (10) of pure flexure is the only twist-free
solitary wave solution.
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Numerical Modelling of Two-Phase
Piezocomposites with Interface
Mechanical Anisotropic Effects

G. Iovane and A. V. Nasedkin

Abstract The present paper considers the homogenization problems for two-phase
piezocomposite materials with random inclusions and with taking into account the
mechanical imperfect interface boundaries. The accepted constitutive equations on
the interface correspond to the Gurtin–Murdoch model for surface stresses and give
a significant effect only for nanosized inclusions. To find the effective material prop-
erties, an integrated approach was used, based on the effective moduli method, on the
modelling of representative volume element and on the finite element method. A set
of boundary value problems was presented, which allow one to determine a complete
collection of effective stiffness moduli, piezomoduli, and dielectric permittivities for
a piezocomposite of arbitrary anisotropy class. The numerical realization was carried
out in the ANSYS finite element package, which was used for representative vol-
ume modelling and for computation of the effective properties for piezocomposite
material. The representative volume consisted of a regular mesh of cubic piezo-
electric finite elements with the material properties of two phases. The interphase
boundaries were covered with anisotropic elastic membrane elements that simulated
surface stresses. As an example, the homogenization problem for one ceramomatrix
piezocomposite with nanosized inclusions was solved numerically. It was noted that
the interface stresses can essentially increase the effective stiffness moduli. However,
the mechanical interface had a small influence on the effective piezomoduli and on
the dielectric permittivities.
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1 Introduction

Piezocomposite materials and, in particular, two-phase piezoceramic materials with
nanosized pores or inclusions are being actively developed in the recent years [27–
29]. New nanostructured piezoelectric composite materials have a range of important
advantages, such as the possibilities of controllable variation of the functional char-
acteristics within a wide range, the ultra-low mechanical quality factor, etc. Further-
more, the modelling of composite micro- and nanomaterials has the specific features
[5, 7, 15, 30, 31]. It is known that some nanomaterials have unconventional phys-
ical properties that considerably differ from the characteristics of usual macrosized
bodies. Thus, the experimental fact is the increasing of the stiffness with reducing
the sizes of nanoobjects. One of the factors that are responsible for this behavior
can be surface or interface effects. As research of the recent years shows, for the
bodies of submicro- and nanosizes the surface stresses are important and influence
the deformation of the bodies. In connection to this, the actual problem can be an
extension of this approach to the nanostructured piezoelectric composite materials.
Theoretical and numerical investigations of piezoelectric nanosized materials with
surface effects and imperfect interface models were also presented in [4, 9, 11–13,
20, 21, 26], etc. Homogenization problems for nanoisized piezoelectric composites
were considered in [3, 10, 32–34], etc.

In present investigation themodels of two-phase piezoelectric compositematerials
developed in the framework of classic continuum approaches of solid mechanics
and methods of composite mechanics. These models were used to construct more
complicated models of the nanosized piezocomposites that were take into account
the surface or interphase mechanical boundary conditions with anisotropic surface
properties.

We use an integrated approach to the determination of the effective moduli of
nanostructured piezoelecrtric composites with stochastically distributed nanosized
inclusions. In order to take into account nanoscale level at the borders between
two material phases, the Gurtin–Murdoch model of surface stresses are used [5, 7,
14, 15, 30]. ANSYS finite element package was used to simulate representative
volumes and to calculate the effective moduli. This approach is based on the theory
of effective moduli of composite mechanics, modelling of representative volumes
and the finite element method [24, 25]. Here, the contact boundaries between two
material phases were covered by the surface membrane elements in order to take the
surface stresses into account. The next step consisted in solving the static problems
for representative volume with the boundary conditions which were conventional
for effective moduli method. Further, the averaged stresses and electric fluxes were
calculated, both on the volume finite elements and on the surface finite elements
for mechanical stresses. Finally, the effective moduli were calculated by using the
estimated average characteristics.
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2 Homogenization Problem by Effective Moduli Method

Let Ω = Ω(1) ∪ Ω(2) be a representative volume occupied by a two-phase medium,
composed of piezoelectric matrix (phase 1) and nanosized piezoelectric or elastic
inclusions (phase 2);Ω( j) is the volumeor the set of volumes occupied by thematerial
of the phase with number j ; Γ = ∂Ω is the external boundary of representative
volume Ω; Γ s = ∂Ω(1) ∩ ∂Ω(2) is the aggregate of interface surfaces of materials
with different phases; n is the vector of external unit normal to Γ or to the boundary,
outward with respect to the volume Ω(1); x = {x1, x2, x3} is the vector of the special
coordinates; u = u(x) is the vector-function of mechanical displacements; ϕ = ϕ(x)
is the function of electric potential.

Then, for finding the effective moduli of such composite we can solve in Ω

the static piezoelectric homogenization problems, presented here in a nonstandard
vector-matrix form convenient for applying the finite element method

L∗(∇) · T = 0, ∇ · D = 0 , (1)

T = c · S − e∗ · E, D = e · S + κ · E , (2)

S = L(∇) · u, E = −∇ϕ , (3)

L∗(∇) =
⎡
⎣

∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

⎤
⎦ , ∇ =

⎧⎨
⎩

∂1
∂2
∂3

⎫⎬
⎭ , (4)

L∗(n) · [T] = L∗(∇s) · Ts, n · [D] = 0, [u] = 0, [ϕ] = 0, x ∈ Γ s , (5)

Ts = cs · Ss, Ss = L(∇s) · us, us = A · u, A = I − nn∗ , (6)

u = L∗(x) · S0, x ∈ Γ , (7)

where L∗(a) is the matrix operator dependent on the components of the vector a;
T = {σ11, σ22, σ33, σ23, σ13, σ12} is the array of the stresses σi j ; S = {ε11, ε22, ε33,
2ε23, 2ε13, 2ε12} is the array of the strains εi j ; D and E are the electric flux den-
sity vector called also the electric displacement vector and the electric field vector,
correspondingly; cαβ = cEαβ is the 6 × 6 matrix of elastic stiffness moduli cαβ ; e is
the 3 × 6 matrix of piezoelectric moduli ciβ ; κ = κ S = εS is the 3 × 3 matrix of
dielectric permittivity moduli κi j ; S0 is the six-dimensional array of the constant
components S0β ; E0 is the constant vector; superscript “*” denotes the transposition
operation, and (. . .) · (. . .) is the scalar product operation. Here, α, β = 1, . . . , 6;
i, j = 1, 2, 3; T = T( j), c = c( j), etc. for x ∈ Ω( j).

In Eqs. (5), (6) in accordance with the Gurtin–Murdoch model we assume that
on nanosized interphase boundaries Γ s only the surface mechanical stresses σ s

i j

are exist. Here, [T] = T(1) − T(2) is the jump stresses on the interphase boundary;
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equality n · [D] = 0 means the continuity of the value Dn on the transition across
the interface, etc.; ∇s = ∇ − n(∂/∂r) is the surface gradient operator, where r is
the coordinate, measured by the normal to Γ s ; Ts = {σ s

11, σ
s
22, σ

s
33, σ

s
23, σ

s
13, σ

s
12} is

the array of surface stresses σ s
i j ; S

s = {εs11, εs22, εs33, 2εs23, 2εs13, 2εs12} is the array of
surface strains εsi j ; c

s is the matrix of surface elastic moduli 6 × 6; I is the 3 × 3
identity matrix.

By using (7), we can select such boundary conditions that enable us to obtain
obvious expressions for the effective moduli c eff

αβ , e
eff
iβ , κ eff

i j . Thus, under the assump-
tion of the general form anisotropy for piezoelectric composite, the effective material
moduli can be determined, if we solve nine static piezoelectric boundary problems
(1)–(7) with various values of S0 andE0, having set in (7) only one of the components
S0ζ or E0k (ζ = 1, . . . , 6; k = 1, 2, 3) not equal to zero.

In particular, if in (7) we accept (problems I–VI, β = 1, . . . , 6)

S0ζ = S0δβζ , E0 = 0 , (8)

then from the solution (1)–(7), (8) we find

ceffαβ = 〈Tα〉ΩΓ /S0, eeffiβ = 〈Di 〉Ω/S0 . (9)

Similarly, if in (7) we assume (problems VII–IX, j = 1, 2, 3)

S0 = 0, E0k = E0δ jk , (10)

then from (1)–(7), (8) we obtain

eeffjα = −〈Tα〉ΩΓ /E0, κeff
i j = 〈Di 〉Ω/E0 . (11)

Here, in (9), (11)α = 1, . . . , 6; i = 1, 2, 3; the angle brackets 〈(...)〉ΩΓ denote the
averaged by the volume Ω bulk and interface integral values, and the angle brackets
〈(...)〉Ω denote the averaged only by the volume bulk integral values

〈(...)〉ΩΓ = 1

|Ω|
( ∫

Ω

(...) dΩ +
∫

Γ s

(...)s dΓ
)
, 〈(...)〉Ω = 1

|Ω|
( ∫

Ω

(...) dΩ
)

. (12)

Note that the boundary value problems (1)–(7) with (8) or (10) differ from the
usual piezoelectric problems by the presence of the interface boundary conditions
(5), (6) for nanosized structures which are typical for the Gurtin–Murdoch model of
surface stresses [2, 16]. In addition, as we can see from (9), (11), (12), to determine
the effectivemoduli from the solution of the homogenization problems, it is necessary
to use not only the volume integrals, but also the interface surface integrals.
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3 Finite Element Modelling in ANSYS Package. Case
of Ceramomatrix Composite

For solving the piezoelectric problem (1)–(7) with (8) or (10) we can pass to their
weak statement, use the finite element approximation, and in the result we get the
finite element system

Kuu · U + Kuϕ · Φ = Fu , (13)

−K∗
uϕ · U + Kϕϕ · Φ = Fϕ , (14)

whereU is the vector of nodal displacement,Φ is the vector of nodal electric potential,
the vectors Fu , Fϕ are obtained from the boundary conditions (7), and the finite
element matrices are given by the formulas

Kuu = KΩuu + KΓ uu , (15)

KΩuu =
∫

Ωh

B∗
u · c · Bu dΩ, KΓ uu =

∫

Γ s
h

Bs∗
u · cs · Bs

u d Γ , (16)

Kuϕ =
∫

Ωh

B∗
u · e∗ · Bϕ dΩ, Kϕϕ =

∫

Ωh

B∗
ϕ · κ · Bϕ d Ω , (17)

Bu = L∗(∇) · N∗
u, Bs

u = L∗(∇s) · A · N∗
u, Bϕ = ∇N∗

ϕ . (18)

Here, Ωh is the volume of finite element mesh; Γ s
h is the finite element approxi-

mation of the interface boundary Γh ; N∗
u , N

∗
ϕ are the matrix and the row vectors of

approximating finite element basis functions (u ≈ uh = N∗
u · U; ϕ ≈ ϕh = N∗

ϕ · Φ).
In (16)–(18) thematricesKΩuu ,Kuϕ andKϕϕ are the standard finite elementmatri-

ces of piezoelectric analysis for solid bodies. The matrixKΩuu defines by the surface
stresses. Thismatrix is analogous to the stiffnessmatrix for surface or interphase elas-
tic membranes. Hence, for realization the finite element piezoelectric analysis for the
bodies with mechanical surface or interphase effects it is necessary to have surface
or interphase structural membrane elements along with ordinary solid piezoelectric
finite elements.

The system (13), (14) with (15)–(18) was formed and solved in the finite element
package ANSYS. The representative volume element (RVE) Ω was chosen in the
shape of a cube with the side L , which was evenly divided into smaller geometrically
identical cubes.These cubeswere eight nodehexahedral finite elements SOLID5with
capability of piezoelectric analysis. As a result, the volumeΩ was included nΩ = n3

brick finite elements, where n is the number of elements along one of the axis. For
the simulation of a two-phase composite, the finite elements were endowed with
material properties of one of the phases. Initially, all elements had the properties of
the first phase. Farther, based on the required input percentage of the material of the
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second phase pa , for the randomly selected np = NINT(nΩ pa/100) finite elements,
their material properties were modified to the properties of the second phase. Here,
NINT is the function to nearest integer in ANSYS APDL programming language.
The resulting percentage of inclusions p = 100np/nΩ can negligible small differ
from the input value pa .

Next, the interphase boundaries of the elements with different material properties
were automatically covered by four-node shell elements SHELL181 with the option
of membrane stresses, which simulated the interface stresses (5), (6) on the bound-
aries Γ s . A detailed description of this algorithm was given in [22]. Farther, it was
necessary to provide an anisotropy type for the shell elements SHELL181 which
would be conformable with the hexagonal anisotropy of the brick finite elements
SOLID5. For a hexagonal system of anisotropy on the interface, supplementary pro-
cedure was implemented for the shell elements SHELL181, located perpendicular
to the isotropy plane 0x1x2, by permutation of the stiffness moduli in rows and in
columns corresponding to the axes x2 and x3. As a result, all interface boundaries
became coated by the membrane finite elements which simulated the interface effect
of surface stresses.

Figure 1 shows an examples of the representative volumes generated by the simple
random algorithm for n = 20 with p = 10%, p = 50% and p = 90%.

Figure 2 illustrates the surface interface elements for different inner structures,
corresponding to RVE shown in Fig. 1. The shell elements located perpendicular to
the plane 0x1x2 are shown in crimson color, and the shell elements located parallel
to the plane 0x1x2 are shown in blue. The varicolored shell elements were endowed
here with different anisotropic material properties, conformable to the structures of
the surface stiffness moduli cs from (5).

At the next stage, for the generated representative volume element, we solve
static problems (1)–(7) with (8) or (10), and after that in ANSYS postprocessor
we calculate the averaged stresses and electric fluxes by both volume and surface
elements. Lastly, using formulae (8), (10) and the obtained averaged stresses and
electric fluxes, we determine the effective moduli of the piezocomposite, taking into
account the interface stresses.

Fig. 1 Examples of RVE with different percents of inclusions: a 10%, b 50%, c 90%
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Fig. 2 Examples of a interface boundaries for RVE with different percents of inclusions: a 10%,
b 50%, c 90%

4 Numerical Examples

As an example, in this section we consider PZT-4/Al2O3 piezoceramic/monocrystal
composite material. We determine the effective moduli of polycrystalline piezoce-
ramic in two stages. At the first stage, we calculate the effectivemoduli formaterial of
inclusions. At the second stage, we consider a piezocomposite with isotropic inclu-
sions as a two-phase composite. Here we use the models of representative volume
elements with random distributed inclusions, described in the previous sections.

In accordance with [1], after the first stage we obtain the averaged moduli of
α-corundum as an isotropic elastic material: E (2) = 40.26 · 1010 (N/m2); ν(2) =
0.23; c(2)

11 = 46.88 · 1010 (N/m2); c(2)
12 = 14.22 · 1010 (N/m2); κ(2) = 10ε0; ε0 =

8.85 · 10−12 (F/m). In the calculations, we will consider this material as a piezo-
electric material with negligible piezomoduli. For dense piezoceramic PZT-4 we
assume the following material constants: c(1)

11 = 13.9 · 1010 (N/m2); c(1)
12 = 7.78 ·

1010 (N/m2); c(1)
13 = 7.43 · 1010 (N/m2); c(1)

33 = 11.5 · 1010 (N/m2); c(1)
44 = 2.56 · 1010

(N/m2); e(1)
31 = −5.2 (C/m2); e(1)

33 = 15.1 (C/m2); e(1)
15 = 12.7 (C/m2); κ(1)

11 = 730ε0;
κ

(1)
33 = 635ε0.
Note that in order to determine in ANSYS a shell element with membrane option,

it is necessary to define the elastic stiffness moduli cmαβ and the thickness hm . As it
was indicated in [22], we can use the membrane element ANSYS as the interface
element, simulated the surface conditions (5), (6), if we pose csαβ = hmcmαβ .

Consequently, here the products of the stiffness moduli cmαβ of the membrane ele-
ment by its thickness hm are the important values, but not the values of the stiffnesses
cmαβ and of the thickness hm separately. In continuation of the approaches described
in [22], in this investigation we define the representative volume in dimensionless
way where the finite element side was equal to one. Therefore, the space dimension-
ing parameter was equal to the minimal size of the inclusion element a. As there
is not enough reliable data on the values of the surface stiffness moduli for inter-
face between different elastic piezoelectric materials, then in accordance with the
data for another materials, we assume that in the case of nanostructured ceramo-
matrix piezocomposite the surface stiffness moduli were connected to the volume
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moduli of piezoceramics and of inclusions by the formula csαβ = ld |c(1)
αβ − c(2)

αβ |, where
ld = 10−10 (m). Let us also accept that hm = a, cmαβ = ks |c(1)

αβ − c(2)
αβ |, where ks is

the dimensionless factor. Then, csαβ = hmcmαβ = ksa|c(1)
αβ − c(2)

αβ | = (ksa/ ld)csαβ , i.e.
a = ld/ks , and thus the coefficient ks is inversely proportional to the minimal size of
the inclusions a. Further in computational experiments with constant surface mod-
uli csαβ the coefficient ks and the inclusion percentage p were varied. As it can be
seen, the growth of factor ks corresponds to the decrease of the minimal inclusion
size a, and for ks > 1 the value a becomes smaller as compared with parameter
ld = 10−10(m).

For the analysis of the influence of the inclusion percentage and surface stress on
the effective moduli, we have carried out the computer calculations of the effective
moduli for a fixed number of the elements n = 20 along the axes of RVE, but for var-
ious percentage of inclusions p and various but not very large values of the factor ks .
The numerical results are presented in Figs. 3, 4 and 5. Here and after r(. . .) denotes
the relative values of the effective modulus, with respect to the corresponding values
of the modulus for zero percentage of inclusions. For example, r(c33) = ceff33 /c33,
where ceff33 is the effective stiffness modulus for the nanostructured ceramomatrix
piezocomposite, which takes the surface stress into account, c33 is the corresponding

Fig. 3 Dependencies of the relative effectivemoduli ceff33 (a) and ceff44 (b) versus inclusion percentage

Fig. 4 Dependencies of the relative effective modulus ceff13 (a) and area of interface Ap (b) versus
inclusion percentage
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Fig. 5 Dependencies of the relative effective piezomodulus eeff31 (a) and dielectric permittivity κeff
33

(b) versus inclusion percentage

value of the stiffness modulus for an ordinary dense material of piezoceramic and so
on. The curves 1 correspond to the case ks = 0, when there are no surface effects,
the curves 2 correspond to the case ks = 0.1, the curves 3 correspond to the case
ks = 0.5, and the curves 4 correspond to the case ks = 1.

As Figs. 3 and 4 demonstrate, for relatively small values of the factor ks (curves 1
and 2) the interface effects do not affect the material moduli. However, for any per-
centage of inclusions the interface stresses are larger than the effective stiffnesses of
the composite material. Moreover, there are cases when the composite material with
interfaces can have greater stiffness than the more rigid material in the composite.
This situation takes place when ks = 1 for the stiffness modulus ceff33 if p > 45%,
for the stiffness modulus ceff44 if p > 66%, and for the modulus ceff13 if p > 75%, (see
curves 4 which are located higher that the dashed lines in the Figs. 3 and 4a).

Note that the percentage of tougher inclusions and the interface stresses have
the same influence on the effective stiffness: a simple increase of the percentage of
tougher inclusions leads to a increase in the stiffness moduli, as well as the interface
stresses increase the stiffness. Therefore, these two effects lead to an increase in the
total stiffness of the piezocomposite. But with very small andwith very large percent-
ages of inclusions, the integral area of the interphase is small (Fig. 4b), and therefore
the effective stiffness moduli of the composite become close to the corresponding
stiffness moduli of the main material or inclusions.

Meanwhile, the uncoupled surface stresses have much less effect on the effective
piezomoduli eeffiβ and almost do not influence on the dielectric permittivities κeff

i i .
Thus. Figure 5 illustrates the dependencies of the most different relative effective
transverse piezomodulus eeff31 (Fig. 5a) and dielectric permittivity κeff

33 (Fig. 5b) versus
percentage of inclusions p.

Note that the influence of the surfaces stresses is significant mostly for the relative
values of the transverse piezomodulus r(eeff31 ), and the curves for other piezomoduli
and dielectric permittivities for different factors ks (0 ≤ ks ≤ 1) almost coincide and
look like one curve (see, for example, Fig. 5b).

It is obvious that the effective value of piezomoduli and dielectric permittivi-
ties should change more appreciably, if instead of uncoupled mechanical interface



302 G. Iovane and A. V. Nasedkin

stresses we take into account fully or partially coupled interface electromechanical
effects using the models [9, 21].

5 Conclusion

In the paper, the homogenization model was described for a two-phase ceramomatrix
piezocomposite with uncoupled surface stresses at the interphase boundaries, which
reflected the nanoscale effects for nanostructured composites. Thismodelwas applied
for the determination of the effectivemoduli of a piezoceramic–corundum composite
with mechanical interphase boundary conditions. The solutions of the homogeniza-
tion problems were obtained by using the finite element method in ANSYS package
for a regular cubic representative volume element with hexahedral finite elements
and stochastic distribution of inclusions. In order to take into account the interface
effects, shell finite elements with membrane option were added to the finite model on
the interphase boundaries. For the considered composite with softer skeleton matrix
and stiffer inclusions, it was noted that the effective moduli were dependent on the
percentage of inclusions and their sizes. These dependencies are similar to the known
dependencies for nanoporous elastic composites [5–8, 17, 22].

Further investigations can be connected with the analysis of the influence of the
connectivity and inner structure of the representative volume element on the effective
moduli of piezocomposite materials with nanosized inclusions. Such analysis can be
realized similarly to the one presented in [18, 19, 23–25] for the two-phase com-
posites without interface effects. Other actual problem consists in the design of shell
electromechanical coupled finite elements, which can be used to take into account
the surface interface effects in more details for the homogenization of nanostructured
piezocomposites.

Acknowledgements This work for second author was supported by the Russian Science Founda-
tion (grant number 15-19-10008-P).

References

1. Bobrov, S.V., Nasedkin, A.V., Rybjanets, A.N.: Finite element modeling of effective moduli of
porous and polycrystalline composite piezoceramics. In: Topping, B.H.V., Montero, G., Mon-
tenegro, R. (eds.) Proceedings of VIII International Conference on Computational Structures
Technology, Civil-Comp Press, Stirlingshire, UK, Paper 107 (2006)

2. Chatzigeorgiou, G., Javili, A., Steinmann, P.: Multiscale modelling for composites with ener-
getic interfaces at the micro-or nanoscale. Math. Mech. Solids 20, 1130–1145 (2015)

3. Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric
nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

4. Dai, S., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostruc-
tures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110,
104305-1–104305-7 (2011)



Numerical Modelling of Two-Phase Piezocomposites with Interface Mechanical … 303

5. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in
Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)

6. Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer
than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)

7. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering
surface effects. Acta Mech. 227, 29–42 (2016)

8. Eremeyev, V., Morozov, N.: The effective stiffness of a nanoporous rod. Dokl. Phys. 55(6),
279–282 (2010)

9. Eremeyev, V.A., Nasedkin, A.V.:Mathematical models and finite element approaches for nano-
sized piezoelectric bodies with uncoulped and coupled surface effects. In: Sumbatyan, M.A.
(ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metama-
terials. Advanced Structured Materials, vol. 59, pp. 1–18. Springer, Singapore (2017)

10. Gu, S.-T., He, Q.C., Pensée, V.: Homogenization of fibrous piezoelectric composites with gen-
eral imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mech.
Mater. 88, 12–29 (2015)

11. Gu, S.-T., Liu, J.-T., He, Q.-C.: Piezoelectric composites: imperfect interface models, weak
formulations and benchmark problems. Comp. Mater. Sci. 94, 182–190 (2014)

12. Gu, S.-T., Liu, J.-T., He, Q.-C.: The strong and weak forms of a general imperfect interface
model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014)

13. Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomo-
geneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102
(2014)

14. Gurtin,M.E.,Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat.Mech.
Anal. 57(4), 291–323 (1975)

15. Hamilton, J.C., Wolfer, W.G.: Theories of surface elasticity for nanoscale objects. Surf. Sci.
603, 1284–1291 (2009)

16. Javili, A., McBride, A., Mergheima, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions
for continua with surface structure at themicroscale. Int. J. Solids Struct. 50, 2561–2572 (2013)

17. Jeong, J., Cho, M., Choi, J.: Effective mechanical properties of micro/nano-scale porous mate-
rials considering surface effects. Interact. Multiscale Mech. 4(2), 107–122 (2011)

18. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev,
A.N.:Models of porous piezocompositeswith 3–3 connectivity type inACELANfinite element
package. Mater. Phys. Mech. 37(1), 16–24 (2018)

19. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite ele-
ment homogenization models of bulk mixed piezocomposites with granular elastic inclusions
in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018)

20. Nanthakumar, S.S., Lahmer, T., Zhuang, X., Park, H.S.: Topology optimization of piezoelectric
nanostructures. J. Mech. Phys. Solids 94, 316–335 (2016)

21. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with
surface effects. ZAMM 94(10), 878–892 (2014)

22. Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling and computer design of anisotropic
elastic porous composites with surface stresses. In: Sumbatyan,M.A. (ed.)WaveDynamics and
Composite Mechanics for Microstructured Materials and Metamaterials. Advanced Structured
Materials, vol. 59, pp. 107–122. Springer, Singapore (2017)

23. Nasedkin, A.V., Nasedkina, A.A., Remizov, V.V.: Finite element modeling of porous thermoe-
lastic composites with account for their microstructure. Vycisl. meh. splos. sred—Comput.
Contin. Mech. 7(1), 100–109 (2014)

24. Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous
piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and
Superconductors: Properties and Applications, pp. 231–254. Nova Science Publishers, NY
(2011)

25. Nasedkin, A.V., Shevtsova, M.S.: Multiscale computer simulation of piezoelectric devices
with elements from porous piezoceramics In: Parinov, I.A., Chang, S.-H. (eds.) Physics and
Mechanics of New Materials and Their Applications, pp. 185–202. Nova Science Publishers,
NY (2013)



304 G. Iovane and A. V. Nasedkin

26. Park, H.S., Devel, M., Wang, Z.: A new multiscale formulation for the electromechanical
behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200, 2447–2457 (2011)

27. Ringgaard, E., Lautzenhiser, F., Bierregaard, L.M., Zawada, T., Molz, E.: Development of
porous piezoceramics for medical and sensor applications. Materials 8(12), 8877–8889 (2015)

28. Rybyanets, A.N., Rybyanets, A.A.: Ceramic piezocomposites: modeling, technology, and char-
acterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1757–1773 (2011)

29. Topolov, V.Y., Bowen, C.R.: Electromechanical Properties in Composites Based on Ferro-
electrics. Springer, London (2009)

30. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress
effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)

31. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum
models in modeling and simulation of nanostructures. Acta Mech. Sin. 32(1), 83–100 (2016)

32. Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, Ch.: Effective moduli of ellipsoidal particle
reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids 65, 138–
156 (2014)

33. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelec-
tric nanocomposites with interface effect. Acta Mech. 222(1–2), 59–67 (2011)

34. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Evaluation of effective electroelastic properties of piezoelec-
tric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng.
Sci. 69, 61–68 (2013)



Surface Waves in Dissipative
Poroviscoelastic Layered Half Space:
Boundary Element Analyses

F. Dell’Isola, L. A. Igumnov, S. Yu. Litvinchuk, A. A. Ipatov, A. N. Petrov
and I. A. Modin

Abstract Wave propagation in a poroelastic layer located on a poroelastic half-
space is studied. A fully saturated poroelastic medium is described using Biot’s
mathematical model with four base functions—pore pressure and skeleton displace-
ments. Viscoelastic behavior of porous medium due to viscoelastic properties of the
skeleton is considered. The standard viscoelastic solid model is used. The boundary-
value problem of the three-dimensional dynamic poroelasticity is written in terms of
Laplace transforms. Direct approach of the boundary integral equation (BIE) method
is employed. The boundary-element approach is based on the mixed boundary-
element discretization of surface with generalized quadrangular elements. Time-step
scheme for numerical inversion of the Laplace transforms is used obtain the solu-
tion of boundary value problem. To verify the boundary-element model, poroelastic
solutions are compared with elastic ones.

Keywords Boundary element method · Biot’s model · Poroviscoelasticity · Half
space

1 Introduction

Currently, mathematical modeling is one of the main tools to analyze and optimize
oil and gas fields development, to solve the problems of seismic construction and
bioengineering [1–7]. The model of poroelastic medium, allowing to describe fluid
filtration in pores in together with a full-scale mechanical model of the stress-strain
state of medium is usually used to describe the “solid”–”fluid” system.

Modern forms of thesemodels were introduced byBiot [8]. Biot’smodel correctly
describes processes of elastic porous medium deformation and fluid flow in that
medium. It is assumed that the space containing poroelastic medium is filled with a
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two-phasematerial, and one phase corresponds to the elastic skeleton, and the another
one to the fluid in pores. Both phases are present at each point of the physical space,
and the phase distribution in space is described by macroscopic quantities such as
porosity.

Biot’s model allows us to solve a number of particular problems, amongwhich the
problems of wave propagation in homogeneous and layered poroelastic half-spaces
are of particular interest [9–17]. However, the increasing complexity of computa-
tional schemes for boundary value problems requires the involvement of advanced
methods such as boundary elements method (BEM). Possessing high accuracy and
rigor of the approach, BEM is the most suitable method for considering nonstation-
ary processes in semi-infinite bodies, since it ensures automatic fulfillment of the
conditions for solution behavior at infinity. Despite the noted advantages of BEM,
the possibility of modeling the poroelastic dynamics is mainly determined by the
presence of the corresponding boundary integral equations (BIE) and fundamental
solutions. Fundamental solutions and BIE of the dynamic theory of poroelasticity
were obtained in [18–21]; in [22–25] different variants of boundary element schemes
for the solution of problems in porodynamics are presented and results of numerical
experiments are provided. Results of boundary element modeling of dynamics of
poroelastic halfspaces are presented in [26–30].

The principal difference of poroelastic formulation from elastic and viscoelastic
is that it allows to take into account the influence exerted by the fluid moving in
pores on the behavior of the medium as a whole. Historically, on the basis of Biot’s
theory, the existence of two longitudinal waves—fast and slow in porous medium
was predicted. The slow longitudinal wave is caused by the movement of fluid par-
ticles of the pores relative to the porous skeleton and is peculiar only to porous
media. In addition, the frictional interaction of viscous fluid and a skeleton leads to
a significant dissipation of energy in the medium, which demonstrates viscoelastic
behavior [31, 32]. The viscoelastic behavior of poroelastic medium can also be due
to the viscoelastic properties of the skeleton [33–35]. Some results of simulation of
wave processes in poroelastic solids with the use of BIE, BEM and various models
of viscoelastic behavior of the skeleton are presented in [36–38].

The paper presents the modeling of wave propagation in homogeneous and inho-
mogeneous poroviscoelastic in semi-infinite bodies using time-step BEM scheme. A
poroviscoelastic layer on a semi-elastic halfspace is considered as an implementation
of the inhomogeneity model.

2 Problem Formulation

Basic poroelastic material is a two-phase material consisting of an elastic skeleton
and compressible fluid or gas filler. Porous material of a volumeV can be constructed
as follows:



Surface Waves in Dissipative Poroviscoelastic Layered … 307

V � V f + V s (1)

where V is the total volume, V f is the summary pore volume and V s is the volume
of the skeleton. It is assumed that filler can openly seep through the pores and all
closed pores are assumed as a part of the skeleton. Then a correspondence principle is
applied to the skeleton, so we extend poroelastic formulation to poroviscoelasticity.

Considering a boundary-value problem for Biot’s model of fully saturated poroe-
lastic continuum in Laplace domain in terms of four unknowns (displacements ūi
and pore pressure p̄) the set of differential equations take the following form [30]:

Gūi, j j +

(
K +

G

3

)
ū j,i j − (ψ − β) p̄,i − s2(ρ − βρ f )ūi � −F̄i ,

β

sρ f
p̄,i i − φ2s

R
p̄ − (ψ − β)sūi,i � −ā, x ∈ �, (2)

Boundary conditions:

ū(x, s) � f (x, s), x ∈ �u, ū � (ū1, ū2, ū3, p̄),

t̄(x, s) � g(x, s), x ∈ �σ , t̄ � (
t̄1, t̄2, t̄3, q̄

)
,

where �u and �σ denotes boundaries for boundary conditions of 1st and 2nd kind
respectively, G, K are elastic moduli, φ � V f /V is porosity, F̄i , ā are bulk body
forces.

β � κρ f φ
2s

φ2 + sκ(ρa + φρ f )
, ψ � 1 − K

Ks
and R � φ2K f K 2

s

K f (Ks − K ) + φKs(Ks − K f )

are constants reflecting interaction between skeleton and filler, κ is permeability.
Further, ρ � ρs(1− φ) + φρ f is a bulk density, ρs, ρa, ρ f are solid, apparent mass
density and filler density respectively, Ks, K f are elastic bulk moduli of the skeleton
and filler respectively. Apparent mass density ρa � Cφρ f was introduced by Biot
to describe dynamic interaction between fluid and skeleton. C is a factor depending
on the pores geometry and excitation frequency.

The governing equation system (2) in matrix form can be written as follows:

Bū � F, ūT � (ūi , p), i � 1, 3

B �
[
G∇2 +

(
K + 1

3G
)
∂i∂ j − s2(ρ − βρ f ) −(ψ − β)∂i

−s(ψ − β)∂ j
β

sρ f
∇2 − φ2s

R

]
.

Boundary conditions are:

u(x, s) � f (x, s) on�u, tn(x, s) � g(x, s) on�σ .
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In present paper we consider piecewise homogeneous solid � in Euclidian space
R3 with coordinate system Ox1x2x3. Solid � is enclosed with boundary denotes as
�, boundaries of �k (k � 1, . . . , K ) are denoted as �k . Each part �k is assumed to
be isotropic. Material parameters of each �k are denotes by upper index « k » So,
governing equations for each part �k in matrix form take a following form:

Bkūk � 0, ūk � (ūki , pk), i � 1, 3

[
Gk∇2 +

(
Kk + 1

3G
k
)
∂i∂ j − s2(ρk − βkρk

f ) −(ψk − βk)∂i
−s(ψk − βk)∂ j

βk

sρk
f
∇2 − φk2s

R2

]

where ūk(x, s)—generalized displacements vector at point x � (x1, x2, x3).
Assumed that uk(x, t) fulfill zero initial condition:

uk(x, 0) � uk(x, 0) � 0

Following boundary conditions are employed for each �k :

ukl (x, t) � f kl (x, t), x ∈ �u ∩ �k, l � 1, 3;
t kl (x, t) � gkl (x, t), x ∈ �σ ∩ �k ;

ukl (x, t) � uml (x, t), t
k
l (x, t) � −tml (x, t), x ∈ Γ ′

km .

Here, �u and �σ are parts of boundary � of body �, along which displacements
and surface tractions, respectively, are assigned; Γ ′

ks is the contact boundary of parts
�k and �s . Functions f kl (x, t) and g

k
l (x, t) are assigned functions of the coordinates

and time.
Poroviscoelastic solution is obtained from poroelastic solution by means of the

elastic-viscoelastic correspondence principle, applied to skeleton’s moduli K and G
in Laplace domain. Forms of functions K̄ (s) and Ḡ(s) depend on chosen viscoelastic
model.

In present paper, standard linear solid model is employed:

K̄ (s) � K∞ ·
[
(χ − 1)

s

s + η
+ 1

]
,

Ḡ(s) � G∞ ·
[
(χ − 1)

s

s + η
+ 1

]

The equilibrium and instantaneous values of the relaxation function associated
with material modules are connected as follows:

χ � K 0/K∞ � G0/G∞

Equilibrium and instantaneous values are denoted by «∞» and «0» respectively.
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3 Boundary-Element Approach

Boundary-value problem can be reduced to the BIE system as follows [26–30]:

1 − α�

2
υi (x, s) +

∫
�

(
Ti j (x, y, s)υi (y, s) − T 0

ik (x, y, s)υi (x, s) −Ui j (x, y, s)ti (y, s)
)
d� � 0,

where x, y ∈ � Ui j , Ti j are fundamental and singular solutions, T 0
i j contains the

isolated singularities, x ∈ � is an arbitrary point. Coefficient α� equals to 1 in case
of finite domain and −1 in case of infinite domain.

Boundary surface of our homogeneous solid is discretized by quadrangular and
triangular elements and triangular elements are assumed as singular quadrangular
elements. TheCartesian coordinates of an arbitrary point of the element are expressed
through the coordinates of the nodal points of this element, using shape functions of
the local coordinates. Shape functions are quadratic polynomials of interpolation.We
use reference elements: square ξ � (ξ1, ξ2) ∈ [−1, 1]2 and triangle 0 ≤ ξ1 + ξ2 ≤ 1,
ξ1 ≥ 0, ξ2 ≥ 0, and each boundary element is mapped to a reference one by the
following formula:

yi (ξ ) �
8∑

l�1

Nl(ξ )yβ(k,l)
i , i � 1, 2, 3,

where l is local node number in element k, β(k, l) is global node number, Nl(ξ )
are shape functions. Goldshteyn’s displacement-stress mixed model is performed.
To discretize the boundary surface eight-node biquadratic quadrilateral elements
are used, generalized displacements and tractions are approximated by linear and
constant shape functions, respectively.

Subsequent application of collocation method leads to the system of linear equa-
tions. As with the collocation nodes we take the approximation nodes of boundary
functions. Gaussian quadrature are used to calculate integrals on regular elements.
However, if an element contains a singularity, algorithm of singularity avoiding or
order reducing is applied. When singularity is excluded we use an adaptive integra-
tion algorithm.An appropriate order of Gaussian quadrature is chosen from primarily
known necessary precision, if it is impossible, the element is subdivided to smaller
elements recursively.

Solving the system of linear equations leads to the solution of the initial boundary-
value problem in Laplace domain.
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4 Laplace Transform Inversion

Consider a method based on the theorem of the integration of the original—the
stepped method of numerical inversion of Laplace transform. Consider the following
integral:

y(t) �
t∫

0

f (τ )dτ . (3)

Integral (3) gives rise to Cauchy problem for an ordinary differential equation:

d

dt
x(t) � sx(t) + C, x(0) � 0.

Integral (3) is substituted for by a quadrature sum, weighting factors of which are
determined using Laplace representation f and the linear multi-step method [39].
Further derivation is based on the results of those works. The traditional stepped
method of integrating the original consists in that integral (3) is calculated using the
following relation:

y(0) � 0, y(n�t) �
n∑

k�1
ωk(�t), n � 1, . . . N ,

ωn(�t) � R−n

2π

2π∫
0

f̄
(

γ (Rei ϕ)
�t

)
e−in ϕdϕ

where �t is time step; γ (z) � 3
/
2 − 2z + z2

/
2.; p is number of a time step,

n � 0, N ; R is parameter of the method.
The traditional method uses a constant-step trapezoid method for integrating.

Consider the following formula of constructing ωn based on a variable step:

ωn(�t) � R−n

2π

L−1∑
k�0

[
f̄

(
γ (Reinϕk )

�t

)
e−inϕk + f̄

(
γ (Reinϕk+1 )

�t

)
e−inϕk+1

]
(ϕk+1 − ϕk)

2
.

5 Numerical Example

The problem of the Heaviside-type load H(t) acting on the surface of a poroelastic
layer located on a poroelastic halfspace is considered (Fig. 1). Two variants of geom-
etry problem are considered—with a layer thickness of 5 and 10 m. A vertical load
t3 � −1000 N/m2 · H(t) is specified on a surface area of 1 m2, the rest of the surface
is traction-free and permeable. At the boundary between the layer and halfspace,
the flow, the force, displacements and pore pressure are assumed to be unknown
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Fig. 1 Layered half space
under vertical load

h

P

1x
2x

3x

2
3 1000N /t m

functions. The parameters of the poroelastic soil and the rock are given in Table 1.
Moduli characterizing the elastic behavior of the porous material in accordance with
the drained and undrained models are also given in Table 1. Dynamic responses of
vertical displacements u3 at the point P, located at a distance of 10 m from the area
of load application are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10.

Table 1 Poroelastic constants for various materials

Parameter Poroelastic Elastic drained Elastic undrained

Rock Soil Rock Soil Rock Soil

Bulk modulus
K [N/m2]

8 · 109 2.1 · 108 8 · 109 2.1 · 108 1.57 · 1010 4.83 · 109

Shear
modulus
G [N/m2]

6 · 109 9.8 · 109 6 · 109 9.8 · 109 6 · 109 9.8 · 109

Density
ρ [kg/m3]

2458 1884 2458 1884 2458 1884

Solid bulk
modulus
Ks [N/m2]

3.6 · 1010 1.1 · 1010 – –

Fluid bulk
modulus
K f [N/m2]

3.3 · 109 3.3 · 109 – –

Fluid density
ρ f [kg/m3]

1000 1000 – –

Porosity ϕ[−] 0.19 0.48 – –

Permeability
κ [m4/(N · s)] 1.9 ·10−10 3.55 · 10−9 – –
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Fig. 2 Displacement at point P versus time: different depth of the layer

Fig. 3 Vertical displacement at pointP versus time. Comparison of poroelastic and elastic solutions
of the soil and rock for layer of 5 m depth

Figure 2 presents the comparison of vertical displacements, calculated for the layer
with thicknesses of 5 m i 10 m and labeled u5 m

3 and u10m3 , respectively. Figure 2 also
represents solutions for displacements

(
uhs3

)
, calculated for the same values of the

halfspace material parameters, which describe layer material. It can be seen that until
the appearance of the fast longitudinal wave (t ≈ 0.01 s) all three curves are almost
graphically indistinguishable, however, quantitative differences are observed further.
In the moment of Rayleigh wave (t ≈ 0.047 s) appearance and up to the moment t ≈
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Fig. 4 Vertical displacement at point P versus time. Comparison poroelastic and elastic solutions
of the soil and rock for layer of 10 m depth

Fig. 5 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
and rock for layer of 10 m depth
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Fig. 6 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
and rock for layer of 5 m depth

Fig. 7 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the rock
for layer of 10 m depth
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Fig. 8 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the rock
for layer of 5 m depth

Fig. 9 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
for layer of 10 m depth
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Fig. 10 Vertical displacement at point P versus time. Poroviscoelastic dynamic analysis of the soil
for layer of 5 m depth

0.057 s the displacement behavior is described by the relation u5 m
3 ≤ uhs3 ≤ u10 m

3 .
The time moment t ≈ 0.057 s is marked by an increase in displacements u5 m

3 and
u10 m
3 , and the displacements u5 m

3 increase much more rapidly and exceed u10 m
3 and

uhs3 by amplitude. The observed effect is explained by the influence of longitudinal
waves reflected from the halfspace and is less noticeable in the case of a larger layer
thickness due to the considerable wave dispersion in porous medium.

Figures 3 and 4 show the comparison of displacements u5 m
3 and u10 m

3 ith the dis-
placements calculated using elastic models, respectively. In both cases, the solution
obtained from the undrained material model is the best approximation to the poroe-
lastic solution, but the differences are also observed here due to the influence of the
waves reflected from the halfspace. Figure 4 shows that the amplitude of the Rayleigh
wave of the poroelastic solution is smaller than the corresponding amplitudes of the
elastic solutions.

In order to obtain poroviscoelastic solutions standard linear solid model is
employed. Parameter η characterize viscosity, and parameter χ � K 0/K∞ �
G0/G∞ characterize dependence between equilibrium and instantaneous values of
material modules. In further computations parameter χ � 4.

Figures 5, 6, 7, 8, 9 and 10 demonstrate the influence of viscoelastic properties
of the skeleton on the dynamic response of vertical displacements. Figures 5 and 6
represent the vertical displacements on the surface of a viscoelastic layer located on
a poroelastic halfspace. With increase of the parameter η, it is seen that viscoelas-
tic solution approaches poroelastic solution, but decrease of η leads to reduce of
displacement amplitude. The influence of dissipative effects on the surface displace-
ments of the five-meter layer is especially noticeably at η � 103 when the amplitude
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of the Rayleigh wave displacement does not exceed the amplitude of the longitudinal
wave displacements (Fig. 6).

Figures 7 and 8 represent vertical displacements on the surface of poroelastic layer
located on a porous viscoelastic halfspace. It can be observed that the dissipative
effects associated with viscoelastic behavior of the halfspace have minor effect on
the dynamic responses of displacements on the surface of both the 5 and 10 m layers.

Figures 9 and 10 show vertical displacements on the surface of a viscoelastic
layer located on the poroelastic halfspace. In this case, the displacement curves
almost coincide with the displacement curves presented in Figs. 5 and 6, and the
corresponding comments can be repeated. Taking into account the comments made
regarding the results in Figs. 7 and 8, we can say that the dynamic responses of the
surface displacements of the layer are mainly affected by the viscoelastic properties
of the layer.

6 Conclusion

The Biot’s mathematical model of poroelastic material is given in the present paper.
The systems of equations of the theory of dynamic poroelasticity and the formulation
of boundary value problems in Laplace transforms are formulated. The technique
of numerical inversion of the Laplace transform based on step method is presented.
The boundary-element solutions for a problem involving a vertical load acting on
the surface of a poroelastic layer located on a poroelastic halfspace are presented.
The effect of the viscoelastic properties of the skeleton of porous material on vertical
displacements on the surface layer is studied. It is noted, that the formofwave patterns
is mainly influenced by dissipative effects caused by the viscoelastic behavior of the
layer.
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Weakly-Nonlinear Solution of Coupled
Boussinesq Equations and Radiating
Solitary Waves

K. R. Khusnutdinova and M. R. Tranter

Abstract Weakly-nonlinear waves in a layered waveguide with an imperfect inter-
face (soft bonding between the layers) can be modelled using coupled Boussinesq
equations. We assume that the materials of the layers have close mechanical prop-
erties, in which case the system can support radiating solitary waves. We construct
a weakly-nonlinear d’Alembert-type solution of this system, considering the prob-
lem in the class of periodic functions on an interval of finite length. The solution
is constructed using a novel multiple-scales procedure involving fast characteristic
variables and two slow time variables. Asymptotic validity of the solution is carefully
examined numerically. We also discuss the limiting case of an infinite interval for
localised initial conditions. The solution is applied to study interactions of radiating
solitary waves.

Keywords Coupled Boussinesq equations · Coupled Ostrovsky equations ·
Multiple-scales expansions · Averaging · Radiating solitary waves

1 Introduction

Low-frequency wave propagation in solids is relevant to a large number of modern
applications (see, for example, [1–7] and references therein). Long longitudinal bulk
strain solitary waves in elastic waveguides can be modelled using Boussinesq-type
equations [1, 2, 8] (see also [5, 9–12]). The stability of bulk strain solitons makes
them an attractive candidate for the introscopy of layered structures, in particular
delamination, in addition to the existing methods [13–17].

The dynamical behaviour of layered structures depends both on the properties of
the bulk material in the layers, and on the type of the bonding between the layers. If
the materials of the layers have similar properties and the bonding between the layers
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is sufficiently soft (“imperfect interface”), then the bulk strain soliton is replacedwith
a radiating solitary wave, a solitary wave with a co-propagating oscillatory tail [14,
18, 19].

Long nonlinear longitudinal bulk strain waves in a bi-layer with a sufficiently soft
bonding can be modelled with a system of coupled regularised Boussinesq (cRB)
equations [18] (given below in non-dimensional and scaled form):

utt − uxx = ε

[
1

2

(
u2

)
xx + uttxx − δ (u − w)

]
, (1)

wt t − c2wxx = ε
[α

2

(
w2

)
xx + βwt t xx + γ (u − w)

]
, (2)

where α, β, δ, γ are coefficients depending on the mechanical and geometrical
properties of a waveguide, ε is a small amplitude parameter, and c is the ratio of the
characteristic linear wave speeds in the layers. We assume that the materials of the
layers have close mechanical properties, and therefore c2 − 1 = O(ε).

We consider the initial-value (Cauchy) problem, and the initial conditions are
written as

u(x, 0) = F1(x), ut (x, 0) = V1(x), (3)

w(x, 0) = F2(x), wt (x, 0) = V2(x). (4)

The dispersion relation is given by the bi-quadratic equation [18]:

ω4
(
1 + εβk2

) (
1 + εk2

)

− ω2
[(

1 + εβk2
) (

εδ + k2
)

+
(
1 + εk2

) (
γε + c2k2

)]
+ ε

(
γ + δc2

)
k2 + c2k4 = 0,

(5)

where k is the wave number, and ω is the wave frequency. The two roots of this
equation give two modes: acoustic and optical. The acoustic mode has the dispersion
relation ω = ωa(k) satisfying the two asymptotic approximations

ω2
a(k) = γ + δc2

γ + δ
k2 + O(k4) as k → 0 and ω2

a(k) = c2

εβ
+ O(k−2) as k → ∞.

(6)

The opticalmode has the dispersion relationω = ωo(k) satisfying the two asymptotic
approximations

ω2
o(k) = ε(δ + γ) + O(k2) as k → 0 and ω2

o(k) = 1

ε
+ O(k−2) as k → ∞. (7)

Pure propagating solitary waves are not supported by the coupled system and are
replaced with long-living radiating solitary waves [18, 19].
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In this paper we revisit the weakly-nonlinear solution of the Cauchy problem for
the coupledBoussinesq-type equations constructed in [20]with the viewof extending
the applicability of the solution to initial conditions with non-zero mass. We use the
novel multiple-scales procedure recently developed in [21].

The paper is organised as follows. In Sect. 2 we construct a weakly-nonlinear
solution of the problem using asymptotic multiple-scales expansions for the devi-
ations from the oscillating mean values (similarly to [21, 22]), using fast charac-
teristic variables and two slow time variables [21]. The validity of the constructed
solution is examined in Sect. 3, where we compare it with direct numerical simula-
tions of the Cauchy problem.We use both the constructed weakly-nonlinear solution
and direct numerical simulations to study the interaction of two radiating solitary
waves in Sect. 4 and conclude in Sect. 5. Numerical methods used in these studies
are described in Appendix A.

2 Weakly Nonlinear D’Alembert-Type Solution

Following our earlier work [21, 22], we consider the equation system (1)–(2) on the
periodic domain x ∈ [−L , L] and adjust the asymptotic expansions to the coupled
systemofBoussinesq-type equations. Firstly,we integrate (1)–(2) in x over the period
2L to obtain an evolution equation of the form

d2

dt2

∫ L

−L
u(x, t) dx + εδ

∫ L

−L
(u(x, t) − w(x, t)) dx = 0, (8)

d2

dt2

∫ L

−L
w(x, t) dx − εγ

∫ L

−L
(u(x, t) − w(x, t)) dx = 0. (9)

Denoting the mean value of u and w as

u(t) := 1

2L

∫ L

−L
u(x, t) dx, w(t) := 1

2L

∫ L

−L
w(x, t) dx, (10)

we solve this system to describe the evolution of the mean values:

u = d1 + δd2 cosωt + d3t + δd4 sinωt, (11)

w = d1 − γd2 cosωt + d3t − γd4 sinωt . (12)

Taking the mean value of the initial conditions (3), (4) we obtain

d1 = γ F̄1 + δ F̄2

δ + γ
, d2 = F̄1 − F̄2

δ + γ
, d3 = γV̄1 + δV̄2

ω (δ + γ)
, d4 = V̄1 − V̄2

ω (δ + γ)
, (13)

where we used the notation ω = √
ε (δ + γ) (not to be confused with the wave

frequency, which is not used any more) and
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F̄i = 1

2L

∫ L

−L
Fi (x) dx, V̄i = 1

2L

∫ L

−L
Vi (x) dx, i = 1, 2. (14)

To avoid linear growth in the mean value we require that d3 = 0, corresponding to

γV̄1 = −δV̄2. (15)

In the following we consider initial conditions that satisfy the stricter condition
d3 = d4 = 0, that is

1

2L

∫ L

−L
Vi dx = 0, i = 1, 2. (16)

The latter condition appears naturally in many physical applications, and we impose
it here in order to simplify our derivations.

The calculated mean values are subtracted from u and w to obtain an equation
with zero mean value. We take ũ = u − u and w̃ = w − w to obtain the modified
evolution problem for the deviations from the mean values:

ũt t − ũxx = ε

[
1

2

(
ũ2

)
xx + (d1 + δd2 cosωt) ũxx + ũt t xx − δ (ũ − w̃)

]
, (17)

w̃t t − c2w̃xx = ε
[α

2

(
w̃2

)
xx + α (d1 − γd2 cosωt) w̃xx + βw̃t t xx + γ (ũ − w̃)

]
.

(18)

The initial conditions take the form

ũ(x, 0) = F̃1(x) = F1(x) − F̄1, ũt (x, 0) = Ṽ1(x) = V1(x), (19)

w̃(x, 0) = F̃2(x) = F2(x) − F̄2, w̃t (x, 0) = Ṽ2(x) = V2(x), (20)

and, by construction, have zero mean value.
In this paper we will consider the case when the phase speeds are close, charac-

terised by c2 − 1 = O (ε). In this case the waves are resonant and an initial solitary
wave solution in both layers will evolve into a radiating solitary wave, that is a
solitary wave with a co-propagating one-sided oscillatory tail [18]. Therefore we
rearrange (18) so that the same characteristic variable can be used in both equations,
obtaining

ũt t − ũxx = ε

[
1

2

(
ũ2

)
xx + (d1 + δd2 cosωt) ũxx + βũt t xx − δ (ũ − w̃)

]
, (21)

w̃t t − w̃xx = ε

[
α

2

(
w̃2)

xx + α

(
d1 − γd2 cosωt + c2 − 1

ε

)
w̃xx + βw̃t t xx + γ (ũ − w̃)

]
,

(22)

where we note that (c2 − 1)/ε = O (1). We look for a weakly-nonlinear solution of
the form
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ũ(x, t) = f −
1 (ξ−, τ , T ) + f +

1 (ξ+, τ , T ) + √
εP1 (ξ−, ξ+, τ , T ) + εQ1 (ξ−, ξ+, τ , T )

+ ε
3
2 R1 (ξ−, ξ+, τ , T ) + ε2S1 (ξ−, ξ+, τ , T ) + O

(
ε
5
2

)
, (23)

w̃(x, t) = f −
2 (ξ−, τ , T ) + f +

2 (ξ+, τ , T ) + √
εP2 (ξ−, ξ+, τ , T ) + εQ2 (ξ−, ξ+, τ , T )

+ ε
3
2 R2 (ξ−, ξ+, τ , T ) + ε2S2 (ξ−, ξ+, τ , T ) + O

(
ε
5
2

)
, (24)

where we introduce fast characteristic variables and two slow time variables [21]

ξ± = x ± t, τ = √
εt, T = εt.

We aim to construct the d’Alembert-type solution on the periodic domain, similarly
to [21]. Therefore we substitute (23) and (24) into (21) and (22) then collect terms
at powers of

√
ε to determine expressions for all functions in the expansion.

Here, u and w are 2L-periodic functions in x , therefore we require that f −
1,2 and

f +
1,2 are periodic in ξ− and ξ+ respectively, and that all terms in the asymptotic

expansions are products of the functions f ±
1,2 and their derivatives. Therefore all

functions are periodic in ξ−, ξ+ at fixed ξ+, ξ−. Also, as the functions f ±
1,2 have zero

mean i.e.
1

2L

∫ L

−L
f ±
1,2 dξ± = 0, (25)

then all functions in the expansion have zero mean.
We now collect terms at increasing powers of

√
ε. The equation is satisfied at

leading order so we move on to O
(√

ε
)
. For the equation in u we have

−4P1ξ−ξ+ − 2 f −
1ξ−τ + 2 f +

1ξ+τ = 0. (26)

To obtain equations for f ±
1 we average (26) with respect to the fast spatial variable

x at constant ξ− and ξ+ (see [20, 21]). Let us first consider the averaging of P1. At
constant ξ− we have

1

2L

∫ L

−L
P1ξ−ξ+ dx = 1

4L

∫ 2L−ξ−

−2L−ξ−
P1ξ−ξ+ dξ+ = 1

4L

[
P1ξ−

]2L−ξ−
−2L−ξ−

= 0, (27)

and similarly for averaging at constant ξ+. Therefore under the averaging we have
P1ξ−ξ+ = 0. Applying the averaging to (26) we have two equations:

f −
1ξ−τ = 0 and f +

1ξ+τ = 0, (28)

which implies that

f −
1 = f̃ −

1 (ξ−, T ) + B− (τ , T ) and f +
1 = f̃ +

1 (ξ+, T ) + B+ (τ , T ) . (29)
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As we have zero mean of all functions in the expansion, we have B± = 0. Similarly
for the equation in w,

−4P2ξ−ξ+ − 2 f −
2ξ−τ + 2 f +

2ξ+τ = 0, (30)

which after averaging at constant ξ− or ξ+ and applying the same reasoning as for
f ±
1 , we obtain

f −
2 = f̃ −

2 (ξ−, T ) and f +
2 = f̃ +

2 (ξ+, T ) . (31)

Substituting (29) into (26) gives

P1ξ−ξ+ = 0 ⇒ P1 = g−
1 (ξ−, τ , T ) + g+

1 (ξ+, τ , T ) . (32)

Similarly substituting (31) into (30) gives

P2ξ−ξ+ = 0 ⇒ P2 = g−
2 (ξ−, τ , T ) + g+

2 (ξ+, τ , T ) . (33)

We omit the tildes on f ±
1,2 in subsequent steps. The initial condition for f ±

1,2 is found
by substituting (23) into (19) and (24) into (20) and comparing terms at O (1) to
obtain d’Alembert-type formulae for f ±

1,2 of the form⎧⎪⎨
⎪⎩

f −
1 + f +

1

∣∣∣
T=0

= F̃1(x),

− f −
1ξ− + f +

1ξ+

∣∣∣
T=0

= Ṽ1(x),
⇒ f ±

1 |T=0 = 1

2

(
F̃1 (x ± t) ±

∫ x±t

−L
Ṽ1 (σ) dσ

)
,

(34)

and
⎧⎪⎨
⎪⎩

f −
2 + f +

2

∣∣∣
T=0

= F̃2(x),

− f −
2ξ− + f +

2ξ+

∣∣∣
T=0

= Ṽ2(x),
⇒ f ±

2 |T=0 = 1

2

(
F̃2 (x ± t) ±

∫ x±t

−L
Ṽ2 (σ) dσ

)
.

(35)

We now move on to the terms at O (ε), using the results from the previous order. For
the equation governing u we obtain

−4Q1ξ−ξ+ = 2g−
1ξ−τ +

(
2 f −

1T + f −
1 f −

1ξ− + d1 f
−
1ξ− + f −

1ξ−ξ−ξ−

)
ξ−

− δ
(
f −
1 − f −

2

)

− 2g+
1ξ+τ +

(
−2 f +

1T + f +
1 f +

1ξ+ + d1 f
+
1ξ+ + f +

1ξ+ξ+ξ+

)
ξ+

− δ
(
f +
1 − f +

2

)

+ d2δ cos (ω̃t)
(
f −
1ξ−ξ− + f +

1ξ+ξ+

)
+ f −

1ξ−ξ− f +
1 + 2 f −

1ξ− f +
1ξ+ + f −

1 f +
1ξ+ξ+ ,

(36)

where we have introduced the notation ω̃ = √
δ + γ. Similarly for the equation gov-

erning w,
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−4Q2ξ−ξ+ = 2g−
2ξ−τ +

(
2 f −

2T + α f −
2 f −

2ξ− + αd1 f
−
2ξ− + β f −

2ξ−ξ−ξ−

)
ξ−

+ γ
(
f −
1 − f −

2

)

− 2g+
2ξ+τ +

(
−2 f +

2T + α f +
2 f +

2ξ+ + αd1 f
+
2ξ+ + β f +

2ξ+ξ+ξ+

)
ξ+

+ γ
(
f +
1 − f +

2

)

+
(
c2 − 1

ε
− αd2γ cos (ω̃t)

) (
f −
2ξ−ξ− + f +

2ξ+ξ+

)

+ α
(
f −
2ξ−ξ− f +

2 + 2 f −
2ξ− f +

2ξ+ + f −
2 f +

2ξ+ξ+

)
. (37)

Averaging (36) and (37) at constant ξ− or constant ξ+ gives the system of equations

±2g±
1ξ±τ = d2δ cos (ω̃t) f ±

1ξ±ξ± + A±
1 (ξ±, T ) , (38)

±2g±
2ξ±τ = −αd2γ cos (ω̃t) f ±

2ξ±ξ± + A±
2 (ξ±, T ) , (39)

where

A±
1 =

(
∓2 f ±

1T + f ±
1 f ±

1ξ± + d1 f
±
1ξ± + f ±

1ξ±ξ±ξ±

)
ξ±

− δ
(
f ±
1 − f ±

2

)
, (40)

and

A±
2 =

(
∓2 f ±

2T + α f ±
2 f ±

2ξ± +
(

αd1 + c2 − 1

ε

)
f ±
2ξ± + β f ±

2ξ±ξ±ξ±

)
ξ±

+ γ
(
f ±
1 − f ±

2

)
.

(41)
To avoid secular termswe require that A1 = 0 and A2 = 0. Thereforewe get a system
of coupled Ostrovsky equations for f ±

1,2, of the form

(
∓2 f ±

1T + f ±
1 f ±

1ξ± + d1 f
±
1ξ± + f ±

1ξ±ξ±ξ±

)
ξ±

= δ
(
f ±
1 − f ±

2

)
,

(
∓2 f ±

2T + α f ±
2 f ±

2ξ± +
(

αd1 + c2 − 1

ε

)
f ±
2ξ± + β f ±

2ξ±ξ±ξ±

)
ξ±

= γ
(
f ±
2 − f ±

1

)
.

(42)

Integrating (38) and (39) with these conditions applied we can find an equation for
g±
1,2 of the form

g±
1 = ±d2δ

2ω̃
sin (ω̃τ ) f ±

1ξ± + G±
1 (ξ±, T ) = ±θ1 f

±
1ξ± + G±

1 (ξ±, T ) , (43)

and

g±
2 = ∓αd2γ

2ω̃
sin (ω̃τ ) f ±

2ξ± + G±
2 (ξ±, T ) = ∓θ2 f

±
2ξ± + G±

2 (ξ±, T ) , (44)

where G±
1 and G±

2 are functions to be found and we introduce
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θ1 = d2δ

2ω̃
sin (ω̃τ ), θ2 = αd2γ

2ω̃
sin (ω̃τ ), (45)

for convenience. Substituting (42) and (43) into (36) and integrating gives

Q1 = h−
1 (ξ−, τ , T ) + h+

1 (ξ+, τ , T ) + h1c (ξ−, ξ+, T ) , (46)

where

h1c = −1

4

(
f1ξ−

∫ ξ+

−L
f +
1 (s) ds + 2 f −

1 f +
1 + f +

1ξ+

∫ ξ−

−L
f −
1 (s) ds

)
. (47)

Similarly substituting (42) and (44) into (37) and integrating gives

Q2 = h−
2 (ξ−, τ , T ) + h+

2 (ξ+, τ , T ) + h2c (ξ−, ξ+, T ) , (48)

where

h2c = −α

4

(
f2ξ−

∫ ξ+

−L
f +
2 (s) ds + 2 f −

2 f +
2 + f +

2ξ+

∫ ξ−

−L
f −
2 (s) ds

)
. (49)

The initial condition forG±
1,2 is found by substituting (23) and (24) into (19) and (20)

respectively, and comparing terms at O
(√

ε
)
, taking account of the results found in

(43) and (44). Therefore we obtain

⎧⎪⎨
⎪⎩

θ1 f
−
1ξ− + θ1 f

+
1ξ+ + G−

1 + G+
1

∣∣∣
T=0

= 0,

−θ1 f
−
1ξ−ξ− + θ1 f

+
1ξ+ξ+ − G−

1ξ− + G+
1ξ+

∣∣∣
T=0

= 0,
⇒ G±

1 = 0, (50)

as we see from (45) that θ1|T=0 = 0. Similarly we have

⎧⎪⎨
⎪⎩

θ2 f
−
2ξ− + θ2 f

+
2ξ+ + G−

2 + G+
2

∣∣∣
T=0

= 0,

−θ2 f
−
2ξ−ξ− + θ2 f

+
2ξ+ξ+ − G−

2ξ− + G+
2ξ+

∣∣∣
T=0

= 0,
⇒ G±

2 = 0. (51)

We now consider terms at O
(
ε3/2

)
. Substituting the results obtained at previous

orders of ε into the weakly-nonlinear expansion (23) and (24), then substituting this
into (21) and (22) and gathering terms at O

(
ε3/2

)
gives

−4R1ξ−ξ+ = 2h−
1ξ−τ − 2h1ξ+τ +

(
2g−

1T + (
f −
1 g−

1

)
ξ− + d1g

−
1ξ− + g−

1ξ−ξ−ξ−

)
ξ−

− δ
(
g−
1 − g−

2

)

− g−
1ττ − g+

1ττ +
(
−2g+

1T + (
f +
1 g+

1

)
ξ+ + d1g

+
1ξ+ + g+

1ξ+ξ+ξ+

)
ξ+

− δ
(
g+
1 − g+

2

)

+ d2δ cos (ω̃τ )
(
g−
1ξ−ξ− + g+

1ξ+ξ+

)
+ g−

1ξ−ξ− f +
1 + 2g−

1ξ− f +
1ξ+ + g−

1 f +
1ξ+ξ+

+ g+
1ξ+ξ+ f −

1 + 2g+
1ξ+ f −

1ξ− + g+
1 f −

1ξ−ξ− , (52)
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and

−4R2ξ−ξ+ = 2h−
2ξ−τ +

(
2g−

2T + α
(
f −
2 g−

2

)
ξ− + αd1g

−
2ξ− + βg−

2ξ−ξ−ξ−

)
ξ−

+ γ
(
g−
1 − g−

2

)

− 2h+
2ξ+τ +

(
−2g+

2T + α
(
f +
2 g+

2

)
ξ+ + αd1g

+
2ξ+ + βg+

2ξ+ξ+ξ+

)
ξ+

+ γ
(
g+
1 − g+

2

)

+
(
c2 − 1

ε
− αd2γ cos (ω̃τ )

) (
g−
2ξ−ξ− + g+

2ξ+ξ+

)
− g−

2ττ − g+
2ττ

+ α
[
g−
2ξ−ξ− f +

2 + 2g−
2ξ− f +

2ξ+ + g−
2 f +

2ξ+ξ+ + g+
2ξ+ξ+ f −

2 + 2g+
2ξ+ f −

2ξ− + g+
2 f −

2ξ−ξ−

]
.

(53)

Substituting (43) into (52) and averaging at constant ξ− or constant ξ+ gives

±2h±
1ξ±τ = ±θ1

(
∓2 f ±

1T + f ±
1 f ±

1ξ± + d1 f
±
1ξ± + f1ξ±ξ±ξ±

)
ξ±ξ±

∓ δ
(
θ1 f

±
1 + θ2 f

±
2

)
ξ±

+
(
∓2G±

1T + (
f ±
1 G±

1

)
ξ±

+ d1G
±
1ξ± + G1ξ±ξ±ξ±

)
ξ±

− δ
(
G±

1 − G±
2

)
± θ1ω̃

2 f ±
1ξ± ± d2δ cos (ω̃τ )θ1 f

±
1ξ±ξ±ξ± . (54)

If we differentiate the equation for f1 in (42) with respect to the appropriate char-
acteristic variable, we can eliminate some terms in the first line in (54) to obtain an
expression for h±

1ξ±τ of the form

2h±
1ξ±τ = θ1ω̃

2 f ±
1ξ± − δ (θ1 + θ2) f ±

2ξ± + θ1d2δ cos (ω̃τ ) f ±
1ξ±ξ±ξ± + G̃±

1 (ξ±, T ) ,

(55)
where

G̃±
1 (ξ±, T ) =

(
∓2G±

1T + (
f ±
1 G±

1

)
ξ±

+ d1G
±
1ξ± + G±

1ξ±ξ±ξ±

)
ξ±

− δ
(
G±

1 − G±
2

)
.

(56)

To avoid secular terms again we require that G̃±
1 = 0 and therefore we have an

equation for G±
1 of the form

(
∓2G±

1T + (
f ±
1 G±

1

)
ξ±

+ d1G
±
1ξ± + G±

1ξ±ξ±ξ±

)
ξ±

= δ
(
G±

1 − G±
2

)
. (57)

Integrating (55) we obtain

h±
1 = − δd2

4
cos (ωt) f ±

1 + δd2 (δ + αγ)

4ω̃2 cos (ωt) f ±
2 − δ2d22

8ω̃2 cos2 (ωt) f ±
1ξ±ξ± + φ±

1 (ξ±, T ) ,

(58)

where the function φ±
1 is to be found. Averaging (53) at constant ξ− or ξ+, and using

(44) and (42) as was done above, we get an expression for h2 of the form
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2h±
2ξ±τ = −θ2ω̃

2 f ±
2ξ± + γ (θ1 + θ2) f ±

1ξ± + θ2d2γ cos (ω̃τ ) f ±
2ξ±ξ±ξ± + G̃±

2 (ξ±, T ) ,

(59)
where

G̃±
2 (ξ±, T ) =

(
∓2G±

2T + α
(
f ±
2 G±

2

)
ξ±

+ αd1G
±
2ξ± + c2 − 1

ε
G±

2ξ± + βG±
2ξ±ξ±ξ±

)
ξ±

+ γ
(
G±

1 − G±
2

)
. (60)

As before we require that G̃±
2 = 0 and therefore we have an equation for G±

2 of the
form

(
∓2G±

2T + α
(
f ±
2 G±

2

)
ξ± +

(
αd1 + c2 − 1

ε

)
G±

2ξ± + βG±
2ξ±ξ±ξ±

)
ξ±

= γ
(
G±

2 − G±
1

)
.

(61)

Taking into account the initial condition in (50), (51), and the form of (57) and (61)
we see that G±

1,2 ≡ 0. Integrating (59) gives

h±
2 = αγd2

4
cos (ωt) f ±

2 − γd2 (δ + αγ)

4ω̃2 cos (ωt) f ±
1 − α2γ2d22

8ω̃2 cos2 (ωt) f ±
2ξ±ξ± + φ±

2 (ξ±, T ) ,

(62)

where again we need to find the function φ±
2 . Substituting (58) into (52) and inte-

grating with respect to the appropriate characteristic variables gives

R1 = ψ−
1 (ξ−, τ , T ) + ψ+

1 (ξ+, τ , T ) + ψ1c (ξ−, ξ+, T ) , (63)

where

ψ1c = −θ1
4

[
− f −

1ξ−ξ−

∫ ξ+

−L
f +
1 (s) ds − f −

1ξ− f +
1 + f −

1 f +
1ξ+ + f +

1ξ+ξ+

∫ ξ−

−L
f −
1 (s) ds

]
.

(64)

In a similar way we find an expression for R2 by substituting (62) into (53) and
integrating with respect to the appropriate characteristic variables to obtain

R2 = ψ−
2 (ξ−, τ , T ) + ψ+

2 (ξ+, τ , T ) + ψ2c (ξ−, ξ+, T ) , (65)

where

ψ2c = −αθ2
4

[
f −
2ξ−ξ−

∫ ξ+

−L
f +
2 (s) ds + f −

2ξ− f +
2 − f −

2 f +
2ξ+ − f +

2ξ+ξ+

∫ ξ−

−L
f −
2 (s) ds

]
.

(66)

The initial condition for the function φ±
1 is found by again substituting (23) into (19)

and comparing terms at O (ε), taking account of (58). Therefore we obtain for φ±
1



Weakly-Nonlinear Solution of Coupled Boussinesq Equations … 331

⎧⎨
⎩

h−
1 + h+

1 + h1c
∣∣
T=0 = 0,

f −
1T + f +

1T + g−
1τ + g+

1τ − h−
1ξ− + h+

1ξ+ − h1cξ− + h1cξ+

∣∣∣
T=0

= 0,

⇒ φ±
1 = 1

2

(
J1 ∓

∫ ξ±

−L
K1 (s) ds

)
, (67)

where

J1 = δd2
4

(
f −
1 + f +

1

)
− δd2 (δ + αγ)

4ω̃2

(
f −
2 + f +

2

)
+ δ2d22

8ω̃2

(
f −
1ξ−ξ− + f +

1ξ+ξ+

)
− 2h1c,

K1 = f −
1T + f +

1T + g−
1τ + g+

1τ . (68)

Similarly for φ±
2 we find the initial condition by substituting (24) into (20) and

comparing terms at O (ε), using (62). This gives

⎧⎨
⎩

h−
2 + h+

2 + h2c
∣∣
T=0 = 0,

f −
2T + f +

2T + g−
2τ + g+

2τ − h−
2ξ− + h+

2ξ+ − h2cξ− + h2cξ+

∣∣∣
T=0

= 0,

⇒ φ±
2 = 1

2

(
J2 ∓

∫ ξ±

−L
K2 (s) ds

)
, (69)

where

J2 = −αγd2
4

(
f −
2 + f +

2

) + γd2 (δ + αγ)

4ω̃2

(
f −
1 + f +

1

) + α2γ2d22
8ω̃2

(
f −
2ξ−ξ− + f +

2ξ+ξ+

)
− 2h2c,

K2 = f −
2T + f +

2T + g−
2τ + g+

2τ . (70)

To find an equation governing φ±
1,2 we need to retain terms at O

(
ε2

)
in the original

expansion. All coupling terms in the expansion are gathered in one function for
convenience as we do not require them to determine φ±

1,2. Gathering terms at O
(
ε2

)
we have

−4S1ξ−ξ+ = − f −
1T T − f +

1T T − 2g−
1τT − 2g+

1τT − h−
1ττ − h+

1ττ + 2h−
1ξ−T − 2h+

1ξ+T

+ 2ψ−
1ξ−τ − 2ψ+

1ξ+τ + (
f −
1 h−

1

)
ξ−ξ− + (

f +
1 h+

1

)
ξ+ξ+ + 1

2

(
g−2

1

)
ξ−ξ−

+ 1

2

(
g+2

1

)
ξ+ξ+

+ d1h
−
1ξ−ξ− + d1h

+
1ξ+ξ+ + d2δ cos (ω̃τ )

(
h−
1ξ−ξ− + h+

1ξ+ξ+

)
+ h−

1ξ−ξ−ξ−ξ−

+ h+
1ξ+ξ+ξ+ξ+ − 2g−

1ξ−ξ−ξ−τ + 2g+
1ξ+ξ+ξ+τ − 2 f −

1ξ−ξ−ξ−T + 2 f +
1ξ+ξ+ξ+T

− δ
(
h−
1 − h−

2 + h+
1 − h+

2

) − 4μ1c, (71)

where μ1c is the coupling terms at this order, and
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−4S2ξ−ξ+ = − f −
2T T − f +

2T T − 2g−
2τT − 2g+

2τT − h−
2ττ − h+

2ττ + 2h−
2ξ−T − 2h+

2ξ+T + 2ψ−
2ξ−τ

− 2ψ+
2ξ+τ + α

(
f −
2 h−

2

)
ξ−ξ− + α

(
f +
2 h+

2

)
ξ+ξ+ + α

2

(
g−2

2

)
ξ−ξ−

+ α

2

(
g+2

2

)
ξ+ξ+

+ αd1h
−
2ξ−ξ− + αd1h

+
2ξ+ξ+ − αd2γ cos (ω̃τ )

(
h−
2ξ−ξ− + h+

2ξ+ξ+

)
+ βh−

2ξ−ξ−ξ−ξ−

+ βh+
2ξ+ξ+ξ+ξ+ − 2βg−

2ξ−ξ−ξ−τ + 2βg+
2ξ+ξ+ξ+τ − 2β f −

2ξ−ξ−ξ−T + 2β f +
2ξ+ξ+ξ+T

+ γ
(
h−
1 − h−

2 + h+
1 − h+

2

) − 4μ2c, (72)

where again μ2c is the coupling terms at this order of the expansion. Following the
steps from previous orders, we average (71) and (72) at constant ξ− or constant ξ+
and rearrange to obtain

± 2ψ1ξ±τ = H±
1 (ξ±, τ , T ) + Ĥ±

1 (ξ±, T ) , (73)

and
± 2ψ2ξ±τ = H±

2 (ξ±, τ , T ) + Ĥ±
2 (ξ±, T ) , (74)

where the functions H±
1,2, Ĥ

±
1,2 can be found from (71) and (72). The equation for

φ±
1,2 is captured by the function Ĥ±

1,2 and this must be zero to avoid secular terms in
the same way as at previous orders. Therefore we look for terms in (71), (72), that
depend only on ξ± and T . Following this approach we obtain the equations

(
∓2φ±

1T + (
f ±
1 φ±

1

)
ξ±

+ d1φ
±
1ξ± + φ±

1ξ±ξ±ξ±

)
ξ±

= δ
(
φ±
1 − φ±

2

) + f ±
1T T ∓ 2 f ±

1ξ±ξ±ξ±T

+ ω̃2θ̃21
2

f ±
1ξ±ξ± − θ̃21

2
(δ + αγ) f ±

2ξ±ξ± − θ̃21
2

(
f ±2

1ξ±

)
ξ±ξ±

, (75)

and

(
∓2φ±

2T + α
(
f ±
2 φ±

2

)
ξ±

+ αd1φ
±
2ξ± + c2 − 1

ε
φ±
2ξ± + βφ±

2ξ±ξ±ξ±

)
ξ±

= γ
(
φ±
2 − φ±

1

)

+ f ±
2T T ∓ 2β f ±

2ξ±ξ±ξ±T + ω̃2θ̃22
2

f ±
2ξ±ξ± + θ̃22

2α
(δ + αγ) f ±

1ξ±ξ± − αθ̃22
2

(
f ±2

2ξ±

)
ξ±ξ±

,

(76)

where we have the modified coefficient

θ̃1 = θ1

sin (ω̃τ )
= d2δ

2ω̃
, θ̃2 = θ2

sin (ω̃τ )
= αd2γ

2ω̃
. (77)

We have now defined all functions up to and including O (ε) and so stop our deriva-
tion, however the procedure could be continued to any order.
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3 Validity of the Weakly-Nonlinear Solution

In this sectionwe perform a careful error analysis to test the validity of the constructed
solution by numerically solving the equation system (1)–(2) and comparing to the
constructed solution (23) and (24) with an increasing number of terms included.
To obtain this constructed solution we also need to numerically solve (29), (31)
for the leading order solution and (75), (76) for the solution with terms up to and
including O (ε). Therefore, we use two types of numerical methods: one for the
coupled Boussinesq equations and another for the coupled Ostrovsky equations (see
Appendix A).

We compare the solution of the coupled Boussinesq equations (1)–(2) (which we
shall refer to as the “exact solution”) to the constructed weakly-nonlinear solution
for u andw based on (23) and (24) with an increasing number of terms included. The
parameters used for the calculations in this section are α = β = c = 1 + ε/2 and
δ = γ = 1. We calculate the solution in the domain x ∈ [−40, 40] and for t ∈ [0, T ]
where T = 1/ε. The initial conditions are taken to be

F1(x) = A1sech
2

(
x

�1

)
+ d, F2(x) = A2sech

2

(
x

�2

)
,

V1(x) = 2
A1

�1
sech2

(
x

�1

)
, V2(x) = 2c

A2

�2
sech2

(
x

�2

)
, (78)

where d is a constant and we have A1 = 6k21 , �1 = √
2/k1, k1 = 1/

√
6, A2 =

6ck22/α, �2 = √
2cβ/k2, k2 = √

α/6c. Here we have only added a pedestal to the
initial condition for u in the view of the translation symmetry of the system. In all
cases considered here we have α = c and therefore k1 = k2 = k = 1/

√
6.

The comparison between the exact and weakly-nonlinear solutions at various
orders of ε is shown in Figs. 1 and 2. We can see from the enhanced image that the
leading order solution (red, dashed line) is improved with the addition of the O

(√
ε
)

terms (black, dash-dotted line), correcting for a phase shift. The inclusion of O (ε)
(green, dotted line) terms adjusts the amplitude and we can see that this lies directly
on top of the exact solution (blue, solid line). This is consistent for both values of
γ and δ, and for both equations. We note that the larger value of γ and δ can show
a slightly increased error, however this is not as clear as the previous case for the
Boussinesq-Klein-Gordon equation in [21].

To understand the behaviour of the errors we denote the direct numerical solution
to the system (1)–(2) as unum, the weakly-nonlinear solution (23), (24), with only
the leading order terms included as u1, with terms up to and including O

(√
ε
)
terms

as u2 and with terms up to and including O (ε) as u3. We consider the maximum
absolute error over x , defined as

ei = max−L≤x≤L
|unum (x, t) − ui (x, t)|, i = 1, 2, 3. (79)
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This error is calculated at every time step and, to smooth the oscillations in the errors
we average the ei values in the final third of the calculation, denoting this value as
êi . We then use a least-squares power fit to determine how the maximum absolute
error varies with the small parameter ε. Therefore we write the errors in the form

exp
[
êi

] = Ciε
αi , (80)

and take the logarithm of both sides to form the error plot (the exponential factor
is included so that we have êi as the plotting variable). The values of Ci and αi are
found using the MATLAB function polyfit.

The corresponding errors for the cases considered in Figs. 1 and 2 are plotted
in Figs. 3 and 4, that is for γ = 0.1, γ = 0.5 and d = 7. We can see that there is
an excellent correlation for each of the curves and that the errors improve with

(a) γ = 0.1, d = 7 for u. (b) γ = 0.1, d = 7 for w.

Fig. 1 A comparison of the direct numerical simulation (solid, blue) and the weakly-nonlinear
solution including leading order (dashed, red), O

(√
ε
)
(dash-dot, black) and O (ε) (dotted, green)

corrections, at t = 1/ε, for (a) u and (b)w. Parameters are L = 40, N = 800, k = 1/
√
6, α = β =

c = 1 + ε/2, γ = 0.1, ε = 0.0025, �t = 0.01 and �T = ε�t . The solution agrees well to leading
order, and this agreement is improved with the addition of higher-order corrections

(a) γ = 0.5, d = 7 for u. (b) γ = 0.5, d = 7 for w.

Fig. 2 A comparison of the direct numerical simulation (solid, blue) and the weakly-nonlinear
solution including leading order (dashed, red), O

(√
ε
)
(dash-dot, black) and O (ε) (dotted, green)

corrections, at t = 1/ε, for (a) u and (b)w. Parameters are L = 40, N = 800, k = 1/
√
6, α = β =

c = 1 + ε/2, γ = 0.5, ε = 0.0025, �t = 0.01 and �T = ε�t . The solution agrees well to leading
order and this agreement is improved with the addition of higher-order corrections
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(a) γ = 0.1, d = 7 for u. (b) γ = 0.1, d = 7 for w.

Fig. 3 A comparison of error curves for varying values of ε, at t = 1/ε, for the weakly-nonlinear
solution including leading order (upper, blue), O

(√
ε
)
(middle, red) and O (ε) (lower, black) cor-

rections, for (a) u and (b) w. Parameters are L = 40, N = 800, k = 1/
√
6, α = β = c = 1 + ε/2,

γ = 0.1, �t = 0.01 and �T = ε�t . The inclusion of more terms in the expansion increases the
accuracy

(a) γ = 0.5, d = 7 for u. (b) γ = 0.5, d = 7 for w.

Fig. 4 A comparison of error curves for varying values of ε, at t = 1/ε, for the weakly-nonlinear
solution including leading order (upper, blue), O

(√
ε
)
(middle, red) and O (ε) (lower, black) cor-

rections, for (a) u and (b) w. Parameters are L = 40, N = 800, k = 1/
√
6, α = β = c = 1 + ε/2,

γ = 0.5, �t = 0.01 and �T = ε�t . The inclusion of more terms in the expansion increases the
accuracy

the addition of more terms in the expansion. In the case of γ = 0.1 the slope of
the error curves is 0.52, 1.00, 1.52 for u and 0.50, 1.00 and 1.50 for w, for the
inclusion of leading order, O

(√
ε
)
and O (ε) terms in the expansion respectively, in

close agreement with the theoretical values. When γ = 0.5 the slope of the curves
is approximately 0.50, 1.00 and 1.63 for u and 0.53, 1.00 and 1.68 for w, showing
that as γ increases the slope of the error curve for the approximation including O (ε)
terms increases.
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4 Radiating Solitary Waves

In this section we study the interaction of two radiating solitary waves, using both the
direct numerical simulations and the weakly-nonlinear solution. Firstly we consider
the case of a single radiating solitary wave and show that we have a good agreement
between the direct numerical simulation and the weakly-nonlinear solution, then we
use both methods to reliably study the complicated case of two interacting radiating
solitary waves.

In order to better resolve the tail of a radiating solitarywave, we scale the variables
as u = 12ũ, w = 12w̃, so that we obtain (omitting tildes)

utt − uxx = ε
[
6
(
u2

)
xx + uttxx − δ (u − w)

]
, (81)

wt t − c2wxx = ε
[
6α

(
w2)

xx + βwt t xx + γ (u − w)
]
. (82)

The weakly-nonlinear solution can be easily scaled as well so we obtain, for f ±
1,2,

(
∓2 f ±

1T + 12 f ±
1 f ±

1ξ± + d1 f
±
1ξ± + f ±

1ξ±ξ±ξ±

)
ξ±

= δ
(
f ±
1 − f ±

2

)
,

(
∓2 f ±

2T + 12α f ±
2 f ±

2ξ± +
(

αd1 + c2 − 1

ε

)
f ±
2ξ± + β f ±

2ξ±ξ±ξ±

)
ξ±

= γ
(
f ±
2 − f ±

1

)
.

(83)

Similarly for the function g±
1,2 we have

g±
1 = ±6d2δ

ω̃
sin (ω̃τ ) f ±

1ξ± , (84)

and

g±
2 = ∓6αd2γ

ω̃
sin (ω̃τ ) f ±

2ξ± . (85)

In this section we only use the weakly-nonlinear solution up to and including O
(√

ε
)

terms so we do not consider the effect of the scaling on the higher-order terms. We
will show that even this approximation produces good qualitative and reasonable
quantitative results, even in very long runs.

To show the agreement between the direct numerical simulations and the weakly-
nonlinear solution for a radiating solitary wave, we take the initial condition to be
the solitary wave solution of the uncoupled Boussinesq equation for u and w, as
presented in (78). Therefore we have f +

1,2 = 0. The parameters in the equation are
α = β = c = 1 + ε/2, γ = 1 and ε = 0.01. The domain size is taken to be L = 1000
and therefore we have N = 20000, and the time step is�t = 0.01 as before. We take
thephase shift in the initial conditions to be x0 = 800 and the result of the computation
at t = 1400 is presented in Fig. 5.We can see that the radiating solitarywave is formed
in both equations and that the agreement between the direct numerical simulations



Weakly-Nonlinear Solution of Coupled Boussinesq Equations … 337

(a) Solution for u. (b) Solution for w.

Fig. 5 A comparison of the numerical solution (solid, blue) at t = 1400 and the weakly-nonlinear
solution including O

(√
ε
)
terms (dash-dot, red), for (a) u and (b) w. Parameters are L = 1000,

N = 20000, k = 1/
√
6, α = β = c = 1 + ε/2, γ = 1, ε = 0.01, �t = 0.01 and �T = ε�t

(blue, solid line) and weakly-nonlinear solution (red, dashed line) is good, with a
small phase shift between the two solutions and a small discrepancy in the amplitude.

We now consider the case when two radiating solitary waves interact. To obtain
an appropriate initial condition we use the two-soliton solution for the KdV equation
as the initial condition for the coupled Boussinesq equations and choose the second
initial condition in the appropriate form so that there is no left-propagating wave, as
was done in [23]. Explicitly we take

u(x, 0) = (k1 − k2)2 + √
C

(
k21 cosh (k2x + x1) + k22 cosh (k1x + x0)

)
2

[
cosh ((k1x − k2x + x0 − x1) /2) + √

C cosh ((k1x + k2x + x0 + x1) /2)
]2 ,

ut (x, 0) = − d

dx
u(x, 0), (86)

where C = [(k1 − k2) / (k1 + k2)]
2 and we take the same initial condition for w. In

what follows, to ensure the radiating solitary waves have enough time to interact,
we use a large domain and a long time for the calculation. Therefore we take L =
5000 and N = 100000 for the calculation, and the parameters are α = β = c = 1 +
ε/2, γ = 1, ε = 0.01. To ensure that the initial solitons are well separated and have
sufficiently different amplitudes, we take k1 = 1, k2 = 2, x0 = −50 and x1 = 50.
The results of the calculation at various times are presented in Fig. 6.

We can see that the weakly-nonlinear solution (red, dashed line) agrees very well
with the results of direct numerical simulations (blue, solid line), even in such a
complicated interaction problem, and the two approaches verify each other. There
is only a small phase shift, which becomes more noticeable at larger times. At t =
800 the larger soliton has begun to travel through the tail of the smaller soliton
and the amplitude has begun to reduce as it travels through the tail. At t = 5800,
the two solitons now lie on top of each other (in direct numerical simulations; the
weakly-nonlinear solution has a small phase shift). We can see that the amplitude is
reduced in contrast to the initial condition, and the tail now shows the presence of two
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(a) Solution for u at t = 800. (b) Solution for w at t = 800.

(c) Solution for u at t = 5800. (d) Solution for w at t = 5800.

(e) Solution for u at t = 9500. (f) Solution for w at t = 9500.

Fig. 6 Acomparison of the direct numerical solution (solid, blue) and theweakly-nonlinear solution
including O

(√
ε
)
terms (dashed, red) at various times for (a), (c), (e) u and (b), (d), (f)w. Parameters

are L = 5000, N = 100000, k1 = 1, k2 = 2, x0 = −50, x1 = 50, α = β = c = 1 + ε/2, γ = 1,
ε = 0.01, �t = 0.01 and �T = ε�t . The difference between the amplitudes of the non-stationary
solitons during and after the interaction is cased by a small phase shift between the exact and
weakly-nonlinear solutions

frequencies. At t = 9500, the larger radiating solitary wave has overtaken the smaller
wave, and we again have two distinct radiating solitary waves with tails, although
with a significantly reduced amplitude. Furthermore, we can see the formation of a
wave packet behind the smaller soliton which was generated by the interaction of
the solitons. The disagreement between the amplitudes of the smaller soliton after
the interaction is again a consequence of a small phase shift, since the amplitude of
the smaller soliton keeps oscillating between u and w as the wave tries to settle after
the interaction. This has been verified by comparing the maximum of the amplitude
of the smaller soliton in the two approaches in a small interval around the fixed
moment of time (over the period of oscillations). The difference is of order O (ε), in
agreement with the accuracy of the approximation used in this section.
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5 Conclusions

In this paper we generalised the results of our recent study [21], where we developed
a new asymptotic procedure for the construction of the d’Alembert-type solution of
the Cauchy problem for a Boussinesq-Klein-Gordon equation with the Ostrovsky
term. We have shown that the developed approach can be extended to construct a
similar solution for a systemof coupledBoussinesq equations (1), (2), describing long
longitudinal strain waves in a bi-layer with an imperfect interface [18]. We examined
the accuracy of the constructed solution numerically, and we used both the direct
numerical simulations for the coupled Boussinesq equations, and our constructed
semi-analytical solution in order to study the complicated process of the interaction
of two radiating solitary waves. The two approaches showed excellent agreement,
even in very long runs. The constructed solution can find useful applications in the
studies of the scattering of radiating solitary waves by delamination [16] and other
extended inhomogeneities.
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Appendix A: Numerical Methods

In the following methods we use the Discrete Fourier Transform (DFT) to calculate
the Fourier transform of numerical data (e.g., [24]). Let us consider a function u(x, t)
on a finite domain x ∈ [−L , L] and we discretise the domain into N equally spaced
points, so we have the spacing �x = 2L/N . In all calculations we scale the domain
from x ∈ [−L , L] to x̃ ∈ [0, 2π], which can be achieved by applying the trans-
form x̃ = sx + π, where s = π/L . Denoting x j = −L + j�x for j = 0, . . . , N ,
we define the DFT for the function u(x, t) as

û (k, t) = 1√
N

N∑
j=1

u
(
x j , t

)
e−ikx j , −N

2
≤ k ≤ N

2
− 1, (A.1)

and similarly the IDFT is defined as

u (x, t) = 1√
N

N/2−1∑
k=−N/2

û (k, t) eikx j , j = 1, 2, . . . , N , (A.2)

where the discretised and scaled wavenumber is now k ∈ Z. To perform these trans-
forms we implement the FFTW3 algorithm in C [25].
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For the coupled Boussinesq equations (1)–(2) we use a pseudospectral method
similar to the one presented in [26], where this method was used to solve a single reg-
ularised Boussinesq equation in the context of microstructured solids. We introduce
the change of variable

U = u − εuxx , W = w − εβwxx , (A.3)

so that we have

Utt = uxx + ε

[
1

2

(
u2

)
xx − δ (u − w)

]
,

Wtt = c2wxx + ε
[α

2

(
w2

)
xx + γ (u − w)

]
. (A.4)

Taking the Fourier transform of (A.3) we obtain

û = Û

1 + εk2
, ŵ = Ŵ

1 + εβk2
. (A.5)

We take the Fourier transform of (A.4) and substitute (A.5) into this expression to
obtain an ODE in û and ŵ, taking the form

Ûtt = − εδ + s2k2

1 + εs2k2
Û − εs2k2

2
F

⎧⎨
⎩F−1

[
Û

1 + εs2k2

]2
⎫⎬
⎭ + εδ

1 + εs2βk2
Ŵ 2 = Ŝ1

(
Û , Ŵ

)
,

Ŵtt = − εγ + c2s2k2

1 + εβs2k2
Ŵ − εαs2k2

2
F

⎧⎨
⎩F−1

[
Ŵ

1 + εβs2k2

]2
⎫⎬
⎭ + εδ

1 + εs2k2
Û2 = Ŝ2

(
Û , Ŵ

)
,

(A.6)

whereF denotes the Fourier transform. We solve this system of ODEs using a 4th-
order Runge-Kutta method for time stepping, such as the one used in [16]. Let us
rewrite the system as

Ût = Ĝ, Ŵt = Ĥ ,

Ĝt = Ŝ1
(
Û , Ŵ

)
, Ĥt = Ŝ2

(
Û , Ŵ

)
,

(A.7)

where we defined Ŝ1,2 as the right-hand side of (A.6). We discretise the time domain
and functions as t = tn , Û (k, tn) = Ûn , Ŵ (k, tn) = Ŵn , Ĝ(k, tn) = Ĝn , Ĥ(k, tn) =
Ĥn for n = 0, 1, 2, . . . , where tn = n�t , and k discretises the Fourier space. Taking
the Fourier transform of the initial conditions as defined in (3) and (4), and making
use of (A.5), we obtain initial conditions Û0, Ŵ0, and Ĝ0, Ĥ0 of the form

Û0 = (
1 + εs2k2

)
F {F1(x)} , Ŵ0 = (

1 + εβs2k2
)
F {F2(x)} ,

Ĝ0 = (
1 + εs2k2

)
F {V1(x)} , Ĥ0 = (

1 + εβs2k2
)
F {V2(x)} .

(A.8)
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Now we have initial conditions, we implement a 4th-order Runge-Kutta method,
taking the form

Ûn+1 = Ûn + 1
6 [k1 + 2k2 + 2k3 + k4] , Ĝn+1 = Ĝn + 1

6 [l1 + 2l2 + 2l3 + l4] ,

Ŵn+1 = Ŵn + 1
6 [m1 + 2m2 + 2m3 + m4] , Ĥn+1 = Ĥn + 1

6 [n1 + 2n2 + 2n3 + n4] ,

where

k1 = �t Ĝn, l1 = �t Ŝ1
(
Ûn, Ŵn

)
,

m1 = �t Ĥn, n1 = �t Ŝ2
(
Ûn, Ŵn

)
,

k2 = �t
(
Ĝn + l1

2

)
, l2 = �t Ŝ1

(
Ûn + k1

2 , Ŵn + m1
2

)
,

m2 = �t
(
Ĥn + n1

2

)
, n2 = �t Ŝ2

(
Ûn + k1

2 , Ŵn + m1
2

)
,

k3 = �t
(
Ĝn + l2

2

)
, l3 = �t Ŝ1

(
Ûn + k2

2 , Ŵn + m2
2

)
,

m3 = �t
(
Ĥn + n2

2

)
, n3 = �t Ŝ2

(
Ûn + k2

2 , Ŵn + m2
2

)
,

k4 = �t
(
Ĝn + l3

)
, l4 = �t Ŝ1

(
Ûn + k3, Ŵn + m3

)
,

m4 = �t
(
Ĥn + n3

)
, n4 = �t Ŝ2

(
Ûn + k3, Ŵn + m3

)
.

(A.9)

To obtain the solution in the real domain, we transform Û back to u, and similarly
Ŵ back to w, through relation (A.5). Explicitly we have

u(x, t) = F−1

{
Û

1 + εs2k2

}
, w(x, t) = F−1

{
Ŵ

1 + εs2βk2

}
. (A.10)

We now consider the solution to the coupled Ostrovsky equations. The method
is similar to that used in [27]. It is presented for the equations (75), (76), as this
method can be reduced to solve the system (29), (31). We present the equations for
the negative superscript i.e. for φ−

1 and φ−
2 . We omit the superscript in the subsequent

equations. Let us consider the system of coupled Ostrovsky equations defined as

(
φ1t + ω1φ1x + α1 ( f1φ1)x + β1φ1xxx

)
x

= δ (φ1 − φ2) + H1 ( f1(x), f2(x)) ,(
φ2t + ω2φ2x + α2 ( f2φ2)x + β2φ2xxx

)
x = γ (φ2 − φ1) + H2 ( f1(x), f2(x)) ,

(A.11)

whereα1,α2,β1,β2,ω1,ω2, δ and γ are constants, and the functions f1, f2 are known.
We consider the equation on domains t ∈ [0, T ] and x ∈ [−L , L]. We calculate the
nonlinear terms in the real domain and then transform them to the Fourier space.
The spatial domain is discretised by N equidistant points with spacing�x = 2π/N ,
and we have the DFT and IDFT as defined in (A.1) and (A.2) respectively, with an
appropriately similar transform for w. The discrete Fourier transform of equations
(A.11) with respect to x gives
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φ̂1t + (
iskω1 − is3k3β1

)
φ̂1 + iskα1F { f1φ1} = − iδ

sk

(
φ̂1 − φ̂2

)
− i

sk
Ĥ1,

φ̂2t + (
iskω2 − is3k3β2

)
φ̂2 + iskα2F { f2φ2} = − iγ

sk

(
φ̂2 − φ̂1

)
− i

sk
Ĥ2.

(A.12)

This system is solved numerically using a 4th-order Runge-Kutta method for time
stepping as for the coupled Boussinesq equations. Assume that the solution at t is
given by φ̂1, j = φ̂1(k, jκ) and φ̂2, j = φ̂2(k, jκ), where κ = �t . Then the solution
at t = ( j + 1)�t is given by

φ̂1,( j+1)κ = φ̂1, jκ + 1

6
(a1 + 2b1 + 2c1 + d1) ,

φ̂2,( j+1)κ = φ̂2, jκ + 1

6
(a2 + 2b2 + 2c2 + d2) , (A.13)

where ai , bi , ci , di are functions of k at a given moment in time, t , and are defined as

ai = κFi
(
φ̂1, j , φ̂2, j

)
, bi = κFi

(
φ̂1, j + a1

2 , φ̂2, j + a2
2

)
,

ci = κFi
(
φ̂1, j + b1

2 , φ̂2, j + b2
2

)
, di = κFi

(
φ̂1, j + c1, φ̂2, j + c2

)
,

for i = 1, 2. The functions Fi are found as a rearrangement of (A.12) to contain all
non-time derivatives. Explicitly we have

F1
(
φ̂1, j , φ̂2, j

)
= − iksα1F { f1φ1} + (

ik3s3β1 − iskω1
)
φ̂1, j − iδ

sk

(
φ̂1, j − φ̂2, j

)
− i

sk
Ĥ1, j ,

F2
(
φ̂1, j , φ̂2, j

)
= − iksα2 { f2φ2} + (

ik3s3β2 − iskω
)
φ̂2, j − iγ

sk

(
φ̂2, j − φ̂1, j

)
− i

sk
Ĥ2, j .

To obtain a solution at the next step, the functions ai , bi , ci , di , for i = 1, 2, must be
calculated in pairs, that is we calculate a1 followed by a2, then b1 followed by b2,
and so on.

References

1. Samsonov, A.M.: Strain Solitons in Solids andHow toConstruct Them. Chapman&Hall/CRC,
Boca Raton (2001)

2. Porubov, A.V.: Amplification of Nonlinear StrainWaves in Solids. World Scientific, Singapore
(2003)

3. Peake, N., Sorokin, S.V.: A nonlinear model of the dynamics of a large elastic plate with heavy
fluid loading. Proc. R. Soc. A 462, 2205–2224 (2006)

4. Indejtsev, D.A., Zhuchkova, M.G., Kouzov, D.P., Sorokin, S.V.: Low-frequency wave propa-
gation in an elastic plate floating on a two-layered fluid. Wave Motion 62, 98–113 (2016)

5. Peets, T., Tamm, K., Engelbrecht, J.: On the role of nonlinearities in the Boussinesq-type wave
equations. Wave Motion 71, 113–119 (2017)



Weakly-Nonlinear Solution of Coupled Boussinesq Equations … 343

6. Abiza, Z., Destrade, M., Ogden, R.W.: Large acoustoelastic effect. Wave Motion 49, 364–374
(2012)

7. Andrianov, I.V., Danishevsky, V.D., Kaplunov, J.D., Markert, B.: Wide frequency higher-order
dynamic model for transient waves in a lattice. In: Andrianov, I.V., et al. (ed.) Problems of
Nonlinear Mechanics and Physics of Materials. Springer (2019)

8. Ostrovsky, L.A., Sutin, A.M.: Nonlinear elastic waves in rods. PMM 41, 531–537 (1977)
9. Nariboli, G.A., Sedov, A.: Burgers-Korteweg de Vries equation for viscoelastic rods and plates.

J. Math. Anal. Appl. 32, 661–677 (1970)
10. Dai, H.-H., Fan, X.: Asymptotically approximate model equations for weakly nonlinear long

waves in compressible elastic rods and their comparisonswith other simplifiedmodel equations.
Math. Mech. Solids 9, 61–79 (2004)

11. Erofeev, V.I., Kazhaev, V.V., Semerikova, N.P.: Waves in Rods: Dispersion, Dissipation, Non-
linearity. Fizmatlit, Moscow (2002) (in Russian)

12. Garbuzov, F.E., Khusnutdinova, K.R., Semenova, I.V.: On Boussinesq-type models for long
longitudinal waves in elastic rods. arXiv:1810.07684v3 [nlin.PS], 22 Jan 2019 (submitted to
Wave Motion)

13. Khusnutdinova, K.R., Samsonov, A.M.: Fission of a longitudinal strain solitary wave in a
delaminated bar. Phys. Rev. E 77, 066603 (2008)

14. Dreiden, G.V., Khusnutdinova, K.R., Samsonov, A.M., Semenova, I.V.: Bulk strain solitary
waves in bonded layered polymeric bars with delamination. J. Appl. Phys. 112, 063516 (2012)

15. Khusnutdinova, K.R., Tranter, M.R.: Modelling of nonlinear wave scattering in a delaminated
elastic bar. Proc. R. Soc. A 471, 20150584 (2015)

16. Khusnutdinova, K.R., Tranter,M.R.: On radiating solitary waves in bi-layers with delamination
and coupled Ostrovsky equations. Chaos 27, 013112 (2017)

17. Belashov,A.V., Beltukov,Y.M., Semenova, I.V.: Pump-probe digital holography formonitoring
of long bulk nonlinear strain waves in solid waveguides. Proc. SPIE 10678, 1067810 (2018)

18. Khusnutdinova, K.R., Samsonov, A.M., Zakharov, A.S.: Nonlinear layered lattice model and
generalized solitary waves in imperfectly bonded structures. Phys. Rev. E 79, 056606 (2009)

19. Grimshaw, R.H.J., Khusnutdinova, K.R., Moore, K.R.: Radiating solitary waves in coupled
Boussinesq equations. IMA J. Appl. Math. 82, 802–820 (2017)

20. Khusnutdinova, K.R., Moore, K.R.: Initial-value problem for coupled Boussinesq equations
and a hierarchy of Ostrovsky equations. Wave Motion 48, 738–752 (2011)

21. Khusnutdinova, K.R., Tranter, M.R.: D’Alembert-type solution of the Cauchy problem for a
Boussinesq-Klein-Gordon equation. arXiv:1808.08150v2 [nlin.PS], 22 Jan 2019 (submitted to
Stud. Appl. Math.)

22. Khusnutdinova, K.R., Moore, K.R., Pelinovsky, D.E.: Validity of the weakly nonlinear solution
of the Cauchy problem for the Boussinesq-type equation. Stud. Appl. Math. 133, 52–83 (2014)

23. Khusnutdinova, K.R., Moore, K.R.: Weakly non-linear extension of d’Alembert’s formula.
IMA J. Appl. Math. 77, 361–381 (2012)

24. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)
25. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93, 216–231

(2005)
26. Engelbrecht, J., Salupere, A., Tamm, K.: Waves in microstructured solids and the Boussinesq

paradigm. Wave Motion 48, 717–726 (2011)
27. Alias, A., Grimshaw, R.H.J., Khusnutdinova, K.R.: On strongly interacting internal waves in

a rotating ocean and coupled Ostrovsky equations. Chaos 23, 023121 (2013)

http://arxiv.org/abs/1810.07684v3
http://arxiv.org/abs/1808.08150v2


The Ballistic Heat Equation
for a One-Dimensional Harmonic Crystal

Anton Krivtsov

Abstract The analytical model of unsteady ballistic heat transfer in a one-dimen-
sional harmonic crystal is analyzed. A nonlocal temperature is introduced as a gener-
alization of the kinetic temperature. A closed equation determining unsteady thermal
processes in terms of the nonlocal temperature is derived. For an instantaneous heat
perturbation a time-reversible equation for the kinetic temperature is derived and
solved. This equation can be referred as the ballistic heat conduction equation, it is
somewhat similar to the hyperbolic heat conduction equation, but it has important
differences. The resulting constitutive law for the heat flux in the considered system
is obtained. This law significantly differs from Fourier’s law and it predicts a finite
velocity of the heat front and independence of the heat flux on the crystal length. The
analytical results are confirmed by computer simulations. Further developments of
the presented approach are referred.

1 Introduction

An understanding of heat transfer at microlevel is essential to obtain link between
microscopic andmacroscopic description of solids [1–3]. As far asmacroscopic scale
level is concerned the Fourier law of heat conduction is widely and successfully used
to describe heat transfer processes. At microscopic level, however, analytical and
numerical investigations have shown substantial deviations from Fourier’s law [4–6].
These inadequacies can be on principle addressed by using special laws of particles
interactions [7–10] or complex enough structures [11, 12]. Recent experimental data
however showed that Fourier’s law is indeed violated in low-dimensional [13–15].
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The main reason is that at microlevel the ballistic heat transfer dominates, in contrast
to macrolevel, where the diffusive (Fourier) heat conduction prevails. This motivates
interest to the simplest lattice models, in particular harmonic one-dimensional crys-
tals (chains), where the anomalies connected with the ballistic heat transfer are most
prominent [1, 16, 17]. Problems of this kind previously have been mainly addressed
in the context of the steady-state heat conduction [4–6, 17, 18]. The present work
focuses on unsteady conduction regimes [12, 19–22].

Here we describe an approach that allows rigorous derivation of macroscopic
heat conduction equations and corresponding anomalous heat conduction law for
harmonic systems in a one-dimensional, non-quantum case. This approach for the
simplest one-dimensional crystal was first presented in [23], below we show these
results in more details. The obtained equations differ substantially from the earlier
suggested heat transfer equations [24, 25], however they are in excellent agreement
with molecular dynamics simulations and previous analytical estimations [20].

2 The System

We consider a one-dimensional crystal, described by the following equation of
motion:

üi = ω2
e (ui−1 − 2ui + ui+1) (1)

where ui is the displacement, i is the number of the particle, ωe
def= √

C/m is the
elementary frequency, m is the particle mass, C is the stiffness of the interparticle
bond, dot is the time derivative. The crystal is infinite: the index i is an arbitrary
integer. The initial conditions are

ui |t=0 = 0 , u̇i |t=0 = σ(x)ρi , (2)

where ρi are independent random values with zero expectation and unit variance;
σ 2(x) is variance of the initial velocities, which is a slowly varying function of the
spatial coordinate x = ia, where a is the lattice constant. These initial conditions
correspond to an instantaneous temperature perturbation, which can be induced in
crystals, for example, by an ultrashort laser pulse [26, 27]. The displacements as
functions of time ui = ui (t) can be found as a solution of the Cauchy problem
(1)–(2). These functions are random—they depend linearly on the integration con-
stants, which are linear functions of the random values ρi (2).
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3 Nonlocal Temperature

The first analytical solution of a steady heat conduction problem for a harmonic
chain was obtained in [18] using a covariance matrix for coordinates and momenta.
Then this approach was extended and applied to various harmonic systems [4, 11,
16, 17]. Study of the covariance matrix allowed obtaining analytical expressions
for steady [28] and unsteady [29, 30] temperature profiles. Here a somewhat sim-
ilar approach based on analysis of covariances for velocities [23, 31, 32] is used.
Following [33] the nonlocal temperature θi j is defined as

kBθi j
def= m〈u̇i u̇ j 〉, (3)

where kB is the Boltzmann constant, angle brackets stand for mathematical expecta-
tion, 〈u̇i u̇ j 〉 is the velocity covariance (note that 〈u̇i 〉 ≡ 〈u̇ j 〉 ≡ 0). Then differentia-
tion of (3) with the use of the dynamics equation (1) allows to obtain the following
closed differential-difference equation of the fourth order [31]

....
θ i j − 2(Li + L j )θ̈i j + (Li − L j )

2θi j = 0, (4)

whereLi is the linear difference operator:Li ui
def= ω2

e (ui−1 − 2ui + ui+1). Equation
(4) is an exact one, it describes processes of two types: fast transition to the local
equilibrium [32] and slow heat transfer process [23]. For continuum description of
the heat transfer the nonlocal temperature is redefined as

(−1)n θn(x)
def= θi j , n

def= j − i , x = i + j

2
a, (5)

where n is the covariance index, x is the macroscopic spatial coordinate. If n = 0
then i = j and quantity θn coincides with the kinetic temperature T :

kBθ0(x) = kBT (x) = m〈u̇2i 〉, (6)

where i = x/a. According to its definition, the nonlocal temperature reflects a non-
local nature of thermal processes in harmonic crystals and can be considered as a
generalization of the kinetic temperature.

To obtain the simplified equation for description of the heat transfer only, the
following two approximations are used.

1. Continualization. The nonlocal temperature θn(x) is a slowly varying function
of the spatial coordinate x (on the distances of order of the lattice constant a).
This allows replacing the finite differences by the spatial derivatives [34]. The
approximation is adequate for processes that are sufficiently smooth in space, e.g.
for spatial temperature profiles in a form of waves that are much longer then the
lattice constant a.
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2. Slow process approximation. This approximation allows to neglect the term
with the fourth time-derivative in Eq. (4) resulting in the second order differential
equation with respect to time. Alternatively the second order equation can be
obtained [23] using the virial approximation [2]: time or spatial derivatives of
mathematical expectations are small with respect to quantities that have non-
zero values in thermodynamic equilibrium. This approximation is adequate for
processes that are not too far from thermodynamic equilibrium. In particular, the
virial approximation allows to express covariances of the bond strains in terms
of the nonlocal temperature.

Then the following second order differential-difference equation can be obtained
from Eq. (4):

θ̈n + 1
4c

2(θn−1 − 2θn + θn+1)
′′ = 0, (7)

where c = ωea is the speed of sound. This is a closed equation describing unsteady
thermal processes in the crystal in terms of the nonlocal temperature. The processes
under consideration should be such that the nonlocal temperature is sufficiently
smooth in time and space. Apart from this limitation any unsteady thermal pro-
cesses in the considered system satisfy equation (7). This equation in its current form
appeared for the first time in [33], its derivation can be found in [23] (in different des-
ignations) or in [35] (formore complex problem).After solution (analytical or numer-
ical) of Eq. (7) the kinetic temperature can be obtained as T (t, x) = θn(t, x)|n=0.

The initial conditions for Eq. (7) corresponding to the original initial conditions (2)
are:

θn|t=0 = T0(x)δn , θ̇n|t=0 = 0, (8)

where T0(x) = 1
2kB

mσ 2(x) is the initial temperature distribution; δn = 1 for n = 0,
otherwise δn = 0. The initial conditions (8) are taken after a fast transition process,
which results, according to the virial theorem, in a double reduction of the initial
kinetic temperature [32]. Note that in contrast with the random initial value prob-
lem (1)–(2), the initial value problem (7)–(8) is expressed in terms of mathematical
expectations, and therefore it is a deterministic problem.

4 The Ballistic Heat Equation

Using an integral Fourier transform in the spatial coordinate x the problem (7)–(8)
can be solved analytically. For the Fourier image θ̂n(t, k) we obtain

¨̂
θn = 1

4c
2k2(θ̂n−1 − 2θ̂n + θ̂n+1),

θ̂n|t=0 = T̂0(k)δn ,
˙̂
θn|t=0 = 0,

(9)
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where k is the spatial frequency, T̂0(k) is the Fourier image of the initial temperature
distribution T0(x). Let us note the similarity between (1)–(2) and (9): initial value
problem (9) can be interpreted as a motion of a harmonic chain having an initial shift
of the central particle. This kind of problems can be effectively solved in terms of
Bessel functions. In particular, Bessel functions were successfully applied to solution
of shock-wave problems in harmonic chains [36, 37]. Similarly, the problem (9) has
an analytical solution θ̂n(t, k) = T̂0(k)J2n(ckt), where J2n are the Bessel functions
of the 1st kind [38]. From the practical point of view the most interesting case is
n = 0, which gives Fourier image T̂ (t, k) of the kinetic temperature distribution:

T̂ (t, k) = T̂0(k)J0(ckt). (10)

From (10) it follows that the image T̂ (t, k) satisfies the Bessel differential equation

¨̂T + 1

t
˙̂T = −c2k2T̂ . (11)

Fourier inversion of (11) gives a partial differential equation for the temperature field

T̈ + 1

t
Ṫ = c2T ′′, (12)

which can be referred as the ballistic heat equation. The corresponding initial con-
ditions follow from (8):

T |t=0 = T0(x) , Ṫ |t=0 = 0. (13)

The obtained equation (12) is a particular case of the Darboux differential equa-
tion [39]. For description of the heat transfer in the harmonic one-dimensional crystal
it was originally derived in [23]. Later it was proved that the same equation describes
the ballistic heat transfer if the crystal is supported by an elastic foundation [40].
The ballistic heat equation describes the evolution of the temperature field after an
instantaneous thermal perturbation happened at t = 0, that is why this equation can
be used only with initial conditions (13). The condition Ṫ |t=0 means absence of the
heat flux in the initial state. For more complex situation the general equation for
nonlocal temperatures (7) should be used.

Fourier inversion of the representation (10) gives an analytical solution of the
initial value problem (12)–(13):

T (t, x) = 1

π

1∫

−1

T0(x − cts)√
1 − s2

ds. (14)

Similar integral representation without obtaining equation (12) was derived in [41]
using heat energy density correlation functions. Substitution s = cosϕ gives an alter-
native integral form
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T (t, x) = 1

π

π∫

0

T0(x + ct cosϕ) dϕ. (15)

The physical meaning of this representation is that ct cosϕ is the group velocity of
Eq. (1),whereϕ is a half of thewavenumber.Representation (15) canbe interpreted as
superposition of the classical wave equation solutions for all wave numbers. Further
investigations have shown that the similar rule is fulfilled for much more general
harmonic systems [42, 43].

Thus, an evolution of the temperature field in a one-dimensional crystal after an
instantaneous thermal perturbation is described by partial differential equation (12)
with initial conditions (13) or by integral formulas (14)–(15). According to (14) the
thermal front propagates with the sound speed c (in contrast to the thermal conduc-
tivity based on Fourier’s law where an unphysical instantaneous signal propagation
is realized). The obtained wave behavior of the heat front is similar to predictions of
the wave theories of heat conduction [24, 25]. However, the obtained solution has
important differences, which will be shown in the text to follow.

5 Heat Flux

For the considered system the heat flux can be represented [5, 6, 44] as

q = 1
2C〈(ui − ui+1)(u̇i + u̇i+1)〉. (16)

The heat flux q satisfies the energy balance equation

ρkB Ṫ = −q ′, (17)

where ρ = 1/a is the density (number of particles per unit volume), kB Ṫ stands for
the heat energy for the considered system. Joint consideration of Eqs. (12) and (17)
gives the constitutive law for the heat flux

q̇ + 1

t
q = −kBc

2ρT ′, (18)

which replaces Fourier’s law in the considered system. Alternatively, the law (18)
can be derived directly, in the same way as the ballistic heat conduction Eq. (12) is
derived. Integral representations for the heat flux follows from (14) and (18):

q(t, x) = kBcρ

π

1∫

−1

T0(x − cts)√
1 − s2

sds. (19)
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The alternative representation corresponding to (15) is

q(t, x) = kBcρ

π

π∫

0

T0(x + ct cosϕ) cosϕ dϕ. (20)

6 Comparison of Different Equations Describing the Heat
Conduction

Let us consider three models of heat conduction: the classic heat equation based
on Fourier’s law of heat conduction; the hyperbolic heat equation (thermal wave
equation) based on the Maxwell-Cattaneo-Vernotte law [24, 25]; the obtained above
ballistic heat equation (12). Brief comparison of these models is given in Table 1.
The hyperbolic heat equation and Eq. (12) have similar form and somewhat similar
behavior (e.g. a finite velocity of the heat front propagation). However, there are
significant differences:

1. The main difference is that τ , a material constant, is replaced in (12) by the phys-
ical time t . Consequently, these equations are close for intermediate tomes t ≈ τ ,
however they are substantially different for small and large times. Moreover, for
t → 0, from the first glance, the ballistic equation (12) has singularity. However,
same as for the hyperbolic equation, the solution of this equation does not have
any time singularity, which can be easily seen from formula (15). For t → ∞ the
asymptotics of the hyperbolic and ballistic equations are different: exponential
and power decay respectively—see Table 1(b).

2. The ballistic heat equation, as opposite to the hyperbolic and Fourier equations,
is not time-invariant—it changes with substitution t by t + t0. This is because
it describes reaction of the system on the instantaneous thermal perturbation at

Table 1 (a) Heat transfer equation, (b) equation connecting heat flux and temperature, (c) decay
law for the sinusoidal heat perturbation. Notations: t is time (variable), τ is the relaxation time
(constant), β is the thermal diffusivity, κ is the thermal conductivity, c is the sound speed, ρ is
the density, kB is the Boltzmann constant, k is the spatial frequency. Approximation (c) for the
hyperbolic heat equation is obtained for c2 = β/τ and large k; approximation for J0 is valid for
relatively large t

Fourier heat equation Hyperbolic heat equation Ballistic heat equation

(a) Ṫ = βT ′′ T̈ + 1

τ
Ṫ = β

τ
T ′′ T̈ + 1

t
Ṫ = c2T ′′

(b) q = −κT ′ q̇ + 1

τ
q = −κ

τ
T ′ q̇ + 1

t
q = −kBc

2ρT ′

(c) e−βk2t ≈ e− t
2τ cos (kct) J0(kct) ≈ cos (kct− π

4 )√
π
2 kc t
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t = 0, the general situation is described by more general Eq. (7), which is time-
invariant.

3. The ballistic heat equation is time-reversible: it does not change with substitution
t by−t . Same fulfils for the original dynamical equation (1) and the general equa-
tion for nonlocal temperatures (7). On contrary, the Fourier and hyperbolic heat
equations are not time-reversible. The contradiction between time-reversibility
of the classical microscopic equations and irreversibility of the corresponding
macroscopic continuum equations is one of the opened questions of the modern
physics [2, 45]. The obtained reversible macroscopic equation of the ballistic
heat conduction may be a step towards solution of this problem. In particular, it
will be shown below that this equation describes irreversible processes, such as
decay of the sinusoidal heat perturbation—see Fig. 1. Thus reversible equations
can produce irreversible solutions, even in a finite domain.

7 Sinusoidal Temperature Perturbation

We consider now a sinusoidal temperature perturbation

T0(x) = A0 sin kx + B, (21)

where A0 and B are temperature constants, k = 2π/λ is the spatial frequency, λ is
the wavelength of the perturbation. These initial conditions provide simple and infor-
mative testing of thermal transfer in closed systems [12, 23, 46]. This is especially
important for the ballistic heat transfer analysis, because in this case any external
heat supply can substantially affect the thermal processes [47, 48]. Formulas (14)
and (19) give an exact analytical solution for the temperature and heat flux

T (t, x) = A0 J0(kct) sin kx + B,

q(t, x) = −kBcρA0 J1(kct) cos kx,
(22)

where J0 and J1 are the Bessel functions of the 1st kind. This solution was obtained
in [23]. Previously, without obtaining equation (12), an existence of a Bessel function
solution for the sinusoidal temperature distribution in the one-dimensional harmonic
crystal was mentioned in [20], and solution similar to (22) for the temperature field
was obtained in Master-degree thesis [49].

To justify the assumptions in derivation of the analytical solution we compare it
with results of molecular dynamics (MD) simulations. Equation (1) is solved by the
central differences method, the time step is 0.01τ0, where τ0 = 2π/ωe. The initial
conditions (21) are set by a random number generator, the wavelength λ is equal to
the length of the chain containing 104 particles. To provide correspondence with the
analytical approach used above, 104 realizations of such chain with an independent
random initiation are computed. To optimize the computations all chains are joined
at end-points to form a long chain (108 particles) with periodic boundary conditions.
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Fig. 1 Oscillational decay of the thermal perturbation amplitude for 1D harmonic crystal. Com-
parison of the analytical solution (22) with the MD modeling results (104 joined chains containing
104 particles each). Dashed lines show the envelope proportional to 1/

√
t and also an exponential

envelope inherent to the hyperbolic heat equation

The results of the computations are compared with analytical solution (22) in Fig. 1.
The horizontal axis in Fig. 1 represents the dimensionless time t/t0, where t0 = λ/c;
the vertical axis stands for the oscillation amplitude A(t), which is computed as the
first coefficient of a spatial Fourier expansion of the temperature field. According
to Fig. 1 there is an excellent agreement between the computational results and the
analytical curve.

Due to the Bessel function properties [38], the temperature and heat flux (22) have
an oscillational decay, where the oscillation amplitude is asymptotically proportional
to 1/

√
t . The same asymptotics has been obtained in [20] for one-dimensional har-

monic crystals. In Fig. 1 the envelope proportional to 1/
√
t is shown by the dashed

lines, perfectly bounding both analytical and computational graphs. The existing
theories of heat conduction [24, 25], such as Fourier’s, Maxwell-Cattaneo-Vernotte
(MCV), dual-phase-lag [50], and spacetime-elasticity [21] yield linear differential
equations with constant coefficients, and therefore all of them predict an exponen-
tial decay of the sinusoidal perturbation amplitude. In Table 1 a comparison of the
analytically obtained decay law for A(t)/A0 with the results based on some other
theories is demonstrated, an exponential envelope inherent to the thermalwavemodel
is also shown in Fig. 1. Thus, among the mentioned theories only the current one
gives an analytical solution, which agrees with the MD simulations and asymptotic
estimations of the oscillation decay for harmonic chains [20].
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8 Stepwise Temperature Perturbation

Let us consider nowa stepwise initial temperature distribution,modeling heat transfer
between a hot and a cold body:

x < 0 : T (x) = T2 , x > 0 : T (x) = T1, (23)

where T2 > T1. In this case the integral representations (14), (19) yield for |x | ≤ ct
an exact analytical solution

T (t, x) = T1 + ΔT
π

arccos x
ct ,

q(t, x) = kBcρΔT
π

√
1 − (

x
ct

)2
,

(24)

where ΔT = T2 − T1; for x > ct the original temperature distribution remains and
the heat flux is zero. According to (24) the heat front propagates with the sound speed
c and the heat flux through cross-section x = 0 is constant and equal to 1

π
kBcρΔT . In

contrast, use of Fourier’s law for the same problem gives the heat flux proportional to
t−1/2, which is infinite at t = 0 (an unphysical consequence of Fourier’s law). Thus
the heat flux 1

π
kBcρΔT is provided by the temperature difference that is realized

on the spatial interval x ∈ [−ct, ct] with increasing length of 2ct . Consequently,
the heat flux depends on the temperature difference rather than on the temperature
gradient. This is in qualitative agreement with the known phenomenon of thermal
superconductivity: the heat flux through a one-dimensional harmonic crystal placed
between two thermal reservoirs does not depend on the length of the crystal [6, 18].
The same value 1

π
kBcρΔT was obtained in [51] as a steady-state limit of the heat

flux for large t .
In Fig. 2 the analytical solution (24) is compared with computer simulations for

T2 = 2T1. The above described computation procedure is used. Figure 2 shows the
initial temperature distribution, the analytical solution, and the computation results
obtained at t = t0/8 using 106 and 108 particles (t0 = L/c, where L is the chain
length; only half of the chain is shown in the figure). Convergence to the analytical
solution with the increase of the system size is clearly seen.

Figure 3 shows a part of Fig. 2 corresponding to positive x . For symmetry reasons
this case can be interpreted as a problem of a half-space heating: the initial tempera-
ture for x > 0 is T1 and the boundary condition at x = 0 is T = (T2 + T1)/2 > T1.
The advantage of this formulation is that the constant boundary temperature is main-
tained without any thermostat. This is important since the heat transfer can sub-
stantially depend on the thermostat properties [47, 48]. Solutions of the considered
problem using four different continuum equations are compared in Fig. 3 with the
simulation results. Parameters are chosen in such a way that the total heat quantity
transferred through the cross-section x = 0 (area under each curve) is equal for all
models and the heat front (when it exists) propagates with the sound speed c. Accord-
ing to Fig. 3 the computation results almost coincide with the analytical solution of
Eq. (12) and significantly differ from the solutions based on the other theories of
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Fig. 2 Heat transfer between hot (left) and cold (right) areas of 1D harmonic crystal. The analytical
solution (24) is compared with the computer simulation (MD): 103 chains containing 103 particles
each (cross is an average over 10 particles); 104 chains containing 104 particles (circle is an average
over 100 particles)

Fig. 3 Heat propagation for different 1D models: a Fourier heat equation, b hyperbolic heat equa-
tion, cwave equation, d ballistic heat equation, e computer simulation for 1D harmonic crystal (104

chains containing 104 particles each)

thermal conduction. Indeed, the Fourier heat equation predicts no heat front, the
hyperbolic heat equation gives a stepwise front, while the real heat front is described
by a smooth curve having a vertical tangent at x = ct . Note that the hyperbolic heat
equation behaves as the wave equation at small times and as the Fourier heat equa-
tion at large times [52]. However, according to the analytical solution (24) and the
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presented computer simulations, the heat transfer in a one-dimensional harmonic
crystal is self-similar, i. e. T = T ( x

ct ), so it demonstrates same behavior for any
times.

9 Conclusions and Further Research

An approach for description of the ballistic heat transfer in one-dimensional har-
monic crystals is described. A notion of nonlocal temperature (a generalization of
the kinetic temperature for two separate particles) is used for obtaining a closed
system of equations for the thermal transfer description. For the case of an instanta-
neous heat perturbation this yields to a partial differential equation (12) for the kinetic
temperature, which can be referred to as the ballistic heat equation. The resulting
macroscopic constitutive law (18) (an alternative of Fourier’s law for the considered
system) predicts a finite velocity of the heat front and independence of the heat flux
on the crystal length. The analytical findings are in excellent agreement with the
molecular dynamics simulations and previous analytical estimations.

Further analysis of the ballistic heat equation (12) canbe found in [53].Application
of the presented approach formore complexone-dimensional systems is given in [40],
where a substrate potential is added, and in [35], where an external heat supply and
a viscous environment are considered. Extension of this approach to systems of
higher dimensions is presented in [42] for monoatomic and in [43] for polyatomic
lattices. The presented approach in frames of the general approach for transition
from discrete to continuum thermomechanics is outlined in [54]. The results of the
referred investigations are relevant to aspects of nanotechnology that involve heat
transfer processes in high purity nanostructures [13, 14, 55, 56].
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Abstract In general, the goal of most studies of contact problems of elasticity is
to determine the contact stress distributions such as pressure and frictional stress.
In many cases this information is sufficient to directly or indirectly evaluate the
situations with elevated failure risk. However, there are numerous distinct failure
processes which get originated below the contact surface. Among these processes
are coating delamination and subsurface originated pitting. To be able to consider
such processes one has to know the subsurface stressed state of a solid. Therefore,
the motivation of this study is to make a first step in addressing the subsurface stress
behavior for functionally graded elastic solids. In this work we consider the behavior
of the subsurface stresses in a coated elastic solid which is indented by an axially
symmetric punch. The contact is assumed to be frictionless. The goal of the paper
is to get detailed information on stress behavior at and near the coating/substrate
interface. Usually, this is the region where different failure processes get originated.
The expressions for subsurface stresses were derived in terms of certain integrals of
pressure. The latterwere determinedusing a semi-analytical and asymptoticmethods.
The distributions of subsurface stresses were determined numerically and analyzed
for various functional dependences of the coating and substrate elastic parameters as
well as other problem input parameters. Certain peculiar subsurface stress behavior
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1 Introduction

The detailed knowledge of the subsurface stress behavior is critical for understand-
ing fracture and fatigue material properties. The principal stresses and displacements
vary within a coating depending on whether the coating elastic parameters are con-
stant or vary with depth (functionally gradedmaterials). Depending on the functional
dependence of the Young’s modulus it is possible to reduce or increase the concentra-
tion of the principal stresses near the coating surface and the interface of the coating
and the substrate. Therefore, using the appropriate/optimal selection of elastic prop-
erties of the coating substrate it is possible to affect a contact tribological properties
and to increase its fatigue life without coating delamination.

Over the years, the behavior of the stresses for functionally graded (FG) elastic
coatings was studied in [1–15]. Giannakopoulos and Suresh [1, 2] considered inden-
tation of a FG elastic half-space which was assumed to have a fixed Poisson’s ratio
and whose Young’s modulus vary with depth according to power law or exponential
law. Guler and Erdogan [3, 4] considered contact problems for elastic half-planewith
FG coating with exponential variation of elastic properties. Problems were reduced
to the solution of singular integral equations which were solved numerically using
collocation technique. Wang, Ke, Liu and Zhang in [5, 6] applied the linear multi-
layered model to solve 2-D plane and axisymmetric contact problems for elastic
media with FG coating with arbitrary variation of elastic moduli in depth. They use
similar collocation technique to solve singular integral equations. This approach was
also used to solve contact problems in extended formulation involving friction [7, 8],
frictional heating [9, 10], piezoelectric effect [11, 12], etc. Results presented in the
current paper based on the asymptotically exact solutions of the dual integral equa-
tions of the indentation contact problem [16, 17]. The bilateral asymptotic method
[18] is used for that purpose.

Motivation of this research is also related to the study of heavily loaded elastohy-
drodynamically lubricated contacts made by the authors in previous papers [19–23].
It was shown that FG coatings may significantly alter lubrication film thickness,
contact pressure and friction stress distributions. In particular, it was shown that for
coatings softer than the substrate the lubrication film thickness and frictional force
is higher while for coatings harder than the substrate the lubrication film thickness
and frictional force is lower compared to the case of no coating. One of the ques-
tions left not addressed is how the elastic properties of coatings and substrates affect
subsurface stress distribution. This paper will provide some answer to this question.
To simplify the analysis only subsurface stresses for dry contacts will be consid-
ered. But it should be noted that the subsurface stresses for lubricated contacts are
generally close to the ones for dry contacts. The differences occurring near the inlet
and exit zones of heavily loaded lubricated contacts are insignificant for the general
understanding of the behavior of subsurface stresses.
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2 Axisymmetric Problem Formulation

Let us consider an indentation of a rigid spherical punchof radius R into a functionally
graded coating of an elastic half-space. The coordinate system (ρ, ϕ, z) is introduced
in such a way that the origin is located at the point of the initial contact of the punch
with the half-space while the z-axis is directed up through the spherical punch center.
The polar plane (ρ, ϕ) coincides with the plane z = 0. The punch is subjected to a
vertical force P along the z-axis through its center which causes the punch vertical
displacement δ0.

The shape of the spherical punch is approximated by an axisymmetric paraboloid.
The displacement of the punch is described by the relationship

w = −δ0 + ρ2

2R
, 0 ≤ ρ ≤ a. (1)

Let the functionally graded coating thickness be H and its elastic parameters
depend on the material depth z as follows

{E, ν} =
{ {E (c)(z), ν(c)(z)}, −H ≤ z ≤ 0;

{E (s), ν(s)} = const, −∞ < z < −H,
(2)

where E (c)(z) and ν(c)(z) are arbitrary continuously differentiable or piecewise con-
stant functions. Here and further index (c) corresponds to the parameters associated
with the coating while index (s) corresponds to the parameters associated with the
substrate. At the interface we have the following conditions of continuity:

{τρz, σz,w, u}∣∣z=−H−0 = {τρz, σz,w, u}∣∣z=−H+0 .

We will consider the half-space surface outside of the contact region free of stresses.
Also, we will assume that there is no friction between the punch and the half-space
surface. Then the boundary conditions have the form

z = 0 : τρz = 0, σz|ρ>a = 0. (3)

The solution of this problem is the normal stress σz at the half-space boundary
z = 0, i.e.

σz |z=0 = −p0(ρ), ρ ≤ a,

where p0(ρ) is the contact pressure while a is the contact radius.
The linear constitutive equations are:
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σρ = 2M(z)
∂u

∂ρ
+ Λ(z)θ, σφ = 2M(z)

u

ρ
+ Λ(z)θ,

σz = 2M(z)
∂w

∂z
+ Λ(z)θ, τρz = M(z)

(
∂u

∂z
+ ∂w

∂ρ

)
,

θ = ∂u

∂ρ
+ u

ρ
+ ∂w

∂z
.

(4)

where Λ = Eν
(1+ν)(1−2ν)

and M = E
2(1+ν)

are the Lamé elastic parameters.

3 Derivation of the Integral Equation

To reduce the formulated problem to an integral equation we will use the Hankel
transform

w(ρ, z) =
∫ ∞

0
W (γ, z)J0(γρ)γ dγ,

u(ρ, z) = −
∫ ∞

0
U (γ, z)J1(γρ)γ dγ,

p0(ρ) =
∫ ∞

0
P0(γ )J0(γρ)γ dγ.

(5)

Substituting Eq. 5 into Eq. 1 we obtain

∫ ∞

0
W (γ, 0)γ J0(γρ)dγ = −δ0 + ρ2/(2R), ρ ≤ a (6)

Let us introduce the following definitions

{
W ∗,U ∗} (γ, z) = − E ′(0)

2

{W,U } (γ, z)

P0(γ )
γ, (7)

where E ′(0) = E (c)(0)/[1 − ν(c)2(0)] is the effective elastic modulus of the coating
material at it upper surface. Taking into account Eq. 7, Eq. 6 can be rewritten in the
form ∫ ∞

0
W ∗(γ, 0)P0(γ )J0(γρ)dγ = E ′(0)

2

(
δ0 − ρ2

2R

)
, ρ ≤ a, (8)

which, in turn, by using the third relationship in Eq. 5 can be rewritten as follows

ρ2

2R
+ 2

E ′(0)

∫ a

0
k(ρ, ξ)p0(ξ)ξdξ = δ0, ρ ≤ a, (9)

where k(ρ, ξ) is the kernel of the integral equation determined by the formula
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k(ρ, ξ) =
∫ ∞

0
W ∗(γ, 0)J0(γρ)J0(γ ξ)dγ. (10)

In this case for the force P acting on the punch we have

P = 2π
∫ a

0
p0(ξ)ξdξ (11)

Let us introduce the following dimensionless parameters and variables associated
with the Hertzian contact of our rigid punch of radius R with an elastic half-space
made of the material with the effective elastic modulus E ′(0) of the coating surface
material. We have

{ρc, ξc, ac, λc} = 1

aHc
{ρ, ξ, a, H}, p0c = p0

pHc
, δc = δ0

δHc
, (12)

where

aHc =
[

3PR

4E ′(0)

]1/3

, pHc = 3P

2πa2Hc

, δHc = a2Hc

R
, (13)

are the radius,maximumHertzian pressure and punch displacement in such a contact.
Then Eqs. 9–11 will take the form

ρ2
c + 8

π

∫ ac

0
p0c(aHcξc)ξck(aHcρc, aHcξc)dξc = 2δc, ρc ≤ ac (14)

k(aHcρc, aHcξc) = aHc

∫ ∞

0
W ∗(γ, 0)J0(aHcγ ξc)J0(aHcγρc)dγ (15)

∫ ac

0
p0c(ρc)ρcdρc = 1

3
(16)

To determine the radius of the contact region it is necessary to use an additional
condition following from the continuity of the contact stress at the contact boundary

p0c(ac) = 0. (17)

4 Solution of the Integral Equation

To solve the formulated problem we will employ the bilateral asymptotic method
[18, 24]. Let us introduce the following definitions

L(γ ) = W ∗(γ /H, 0), P0c(γ ) =
∫ 1

0
p0c(acζ )J0(γ ζ )ζdζ (18)
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Function L(γ ) is determined numerically by solving the initial-value problem for
a system of ordinary differential equations with variable coefficients [17]. In case
of piecewise constant elastic parameters of the coating the calculation of function
L(γ ) is reduced to solution of a system of linear algebraic equations. Function L(γ )

possesses the following properties:

L(γ ) = β−1 + Bγ + O(γ 2), γ → 0; L(γ ) = 1 + Cγ −1 + O(γ −2), γ → ∞
(19)

where β = E ′(s)/E ′(0) and E ′(s) = E (s)/(1 − ν(s)2) is the effective elastic modulus
of the substrate.

Using definitions Eq. 18 integral equation Eq. 15 can be rewritten as an equivalent
dual integral equation

∫ ∞

0
P0c(γ )L

(
λcγ

ac

)
J0

(
ρcγ

ac

)
dγ = π

8ac

(
2δc − ρ2

c

)
, ρc ≤ ac,∫ ∞

0
P0c(γ )J0

(
ρcγ

ac

)
γ dγ = 0, ρc > ac,

(20)

To determine the bilateral asymptotically precise solution we will approximate
function L(γ ) by the following fraction of products of quadratic functions [18]

L(γ ) ≈ LN (γ ) =
N∏
i=1

(γ 2 + Ai
2)/(γ 2 + Bi

2), (21)

where N is a positive integer. The methodology of the calculation of the coefficients
Ai , Bi is described in [25]. It is worth mentioning that the approximation is con-
structed in such a way that L(0) = LN (0). The solution of Eq. 20 has been obtained
in [22] for the case of a contact of two elastic solids

P0c(γ ) = β

[(
δc

2ac
− ac

2
− λ2

c

ac
E0

)
sin γ

γ
− ac

γ cos γ − sin γ

γ 3
+

+
N∑
i=1

Ci
λcγ sin γ + ac Ai tanh(Aiλ

−1
c ac) cos γ

Ai
(
γ 2 + Ai

2λ−2
c a2c

)
]

, E0 =
N∑
i=1

(A−2
i − B−2

i ),

(22)

where constantsCi are determined from the solution of the following system of linear
algebraic equations

N∑
i=1

Ci

[
Bk + Ai tanh(Aiλ

−1
c ac)

Ai (Bk
2 − Ai

2)
− λc tanh(Aiλ

−1
c ac)

acBk Ai
2

]
=

= 1

Bkλc

[
ac
3

− 1

3βa2c
+ (Bkac + λc)λc

acB2
k

]

(23)
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By inverting function P0c(γ ) using the Hankel transform we obtain the contact pres-
sure

p0c(ρc) = β

[√
a2c − ρ2

c + δc − a2c − 2λ2
c E0

2
√
a2c − ρ2

c

+

+ ac

N∑
i=1

Ci

(
λc

Ai

√
a2c − ρ2

c

− Z

(
Aiac
λc

,
ρc

ac

))]

(24)

Z (A, ρ) = 1

cosh(A)

∫ 1

ρ

sinh(At)dt√
t2 − ρ2

(25)

To determine the displacement δc we substitute Eq. 24 for p0c(ρc) into Eq. 16 and
taking into account the substitution Eq. 18 we obtain

δc = a2c
3

+ 2λ2
c E0 + 2

3βac
− 2λ2

c

N∑
i=1

Ci

A2
i

tanh

(
Aiac
λc

)
. (26)

Equations 22–26 describe the solution of the problem with fixed contact boundary.
The contact pressure in this problem has a singularity at ρc = ac. Substituting Eq. 24
into Eq. 17 we obtain the equation which determines the radius a0c of the contact
region for the problem with a free boundary

a0c + 3λc

N∑
i=1

Ci

Ai

[
λc

Aia0c
tanh

(
Aia0c
λc

)
− 1

]
− 1

βa20c
= 0 (27)

Using Eqs. 27, 22–24 and 26 will take the form

P0c(γ ) = βa0c P
∗(γ ), P∗(γ ) = sin γ − γ cos γ

γ 3
+

+
N∑
i=1

Ci

(
tanh(Aiλ

−1
c a0c) cos γ − Aiλ

−1
c a0cγ −1 sin γ

γ 2 + Ai
2λ−2

c a20c

)
(28)

N∑
i=1

Ci

(
Bk tanh(Aiλ

−1
c a0c) + Ai

Bk
2 − Ai

2

)
= Bka0c + λc

a0c B2
k

, k = 1, 2, . . . , N . (29)

p0c(ρc) = β

[√
a20c − ρ2

c − a0c

N∑
i=1

Ci Z

(
Aia0c
λc

,
ρc

a0c

)]
(30)
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δc = a20c + 2λ2
c E0 − 2λca0c

N∑
i=1

Ci

Ai
(31)

The obtained formulas are asymptotically precise for λc → 0 and λc → ∞ [18].
For intermediate values of λc the precision of the obtained results obviously depends
on the precision of the approximation of function L(γ ) involved in the transform
of the kernel from Eq. 21. It is established in [25] that the errors of approxima-
tion in contact pressure p0c(ρc) and function L(γ ) are of the same order of mag-
nitude. In the numerical results presented in this paper the approximation error
Δ = sup

u≥0
|LN (u)/L(u) − 1| · 100% is below 0.2%. That allows to be confident in

high precision of the obtained approximate formulas for contact pressure p0c(ρc).

5 Stressed State of the Coated Half-Space

Using Eqs. 7, 12 and 18 we can rewrite Eq. 5 in the form

{u,w} (ρc, z) = 2pHcacaHc

E ′(0)

∫ ∞
0

{U∗, −W∗}
(

γ

acaHc
, z

)
P0c(γ ){J1, J0}

(
γρc

a0c

)
dγ

(32)
Let us introduce the following dimensionless variables

{σ c
ρ , σ c

z , σ
c
ϕ , τ c

ρz} = {σρ, σz, σϕ, τρz}
pHc

, {wc, uc} = {w, u}
δHc

, z0 = z

H
. (33)

The scaling introduced in Eqs. 12 and 33 is based on the properties of the coating.
However, for practical use it ismore convenient to use a scaling based on the substrate
material properties. It is easy to establish a connection between the same values but
scaled differently. Specifically, we have

{σ s
i , τ

s
ρz, p0s} = {σ c

i , τ c
ρz, p0c} β− 2

3 , {us,ws} = {uc,wc} β
2
3 ,

{as, a0s, λs, ρs} = {ac, a0c, λc, ρc}β 1
3

(34)

Using Eqs. 7, 12, 13, 18, 33 and 34 we can rewrite Eqs. 4 and 32 as follows:

us (ρs, z0) = 4βa20s
π

I1 (ρs, z0) , ws (ρs, z0) = −4βa20s
π

I3 (ρs, z0) , (35)

σ s
ρ = 2βa0s

(
(2M0s + Λ0s) I6 − 2a0sM0s

I1
ρs

− a0s
λs

Λ0s I4

)
,

τ s
ρz = 2βa0sM0s

(
a0s
λs

I2 + I5

)
,

(36)
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σ s
ϕ = 2βa0s

(
2a0sM0s

I1
ρs

+ Λ0s

(
I6 − a0s

λs
I4

))
,

σ s
z = 2βa0s

(
Λ0s I6 − (2M0s + Λ0s)

a0s
λs

I4

)
,

(37)

where

I1 (ρs, z0) =
∫ ∞

0
U0

(
γ λs

a0s
, z0

)
P∗(γ )J1

(
γρs

a0s

)
dγ,

I2 (ρs, z0) =
∫ ∞

0

∂U0

∂z0

(
γ λs

a0s
, z0

)
P∗(γ )J1

(
γρs

a0s

)
dγ,

I3 (ρs, z0) =
∫ ∞

0
W0

(
γ λs

a0s
, z0

)
P∗(γ )J0

(
γρs

a0s

)
dγ,

I4 (ρs, z0) =
∫ ∞

0

∂W0

∂z0

(
γ λs

a0s
, z0

)
P∗(γ )J0

(
γρs

a0s

)
dγ,

I5 (ρs, z0) =
∫ ∞

0
W0

(
γ λs

a0s
, z0

)
P∗(γ )J1

(
γρs

a0s

)
γ dγ,

I6 (ρs, z0) =
∫ ∞

0
U0

(
γ λs

a0s
, z0

)
P∗(γ )J0

(
γρs

a0s

)
γ dγ

(38)

and

{U0,W0}
(

γ λs

a0s
, z0

)
= {U ∗,W ∗}

(
γ λs

a0s H
, z0H

)
,

{M0s(z0),Λ0s(z0)} = {M(z0H),Λ(z0H)}
E ′(s)

(39)

FunctionsU0,W0 are the solution of the following initial-value problem for a system
of ordinary differential equations:

⎧⎪⎪⎨
⎪⎪⎩

γ (M0s + Λ0s)W ′
0 + γ M ′

0sW0 + M0sU ′′
0 + M ′

0sU
′
0 −

γ 2(2M0s + Λ0s)U0 = 0;
(2M0s + Λ0s)W ′′

0 + (2M ′
0s + Λ′

0s)W
′
0 − γ 2M0sW0 −

γ (M0s + Λ0s)U ′
0 − γΛ′

0sU0 = 0;
(40)

(
(2M0s + Λ0s)W

′
0 − γΛ0sU0

)
z0=−1+0 = (

(2M0s + Λ0s)W
′
0 − γΛ0sU0

)
z0=−1−0 ;(

M0s
(
U ′

0 + γW0
))∣∣

z0=−1+0 = (
M0s

(
U ′

0 + γW0
))∣∣

z0=−1−0 ;
U0 (γ, z0)|z0=−1+0 = U0 (γ, z0)|z0=−1−0 ;
W0 (γ, z0)|z0=−1+0 = W0 (γ, z0)|z0=−1−0 ;(
(2M0s + Λ0s)W

′
0 − γΛ0sU0

)
z0=0 = γβ−1/2;(

M0s
(
U ′

0 + γW0
))∣∣

z0=0 = 0
(41)

Problem defined by Eqs. 40 and 41 can be solved analytically only for specific cases
of variation of elastic properties, for instance, piecewise-homogeneous, exponential
or linear. In general, it is solved numerically.
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Table 1 Contact radius a0s
as a function of the coating
material Poisson’s ratio ν(c)

for “soft” and “hard” coatings

E (c)/E (s) = 0.01 E (c)/E (s) = 100

ν(c) 0.33 0.499 −0.4 0.33 0.499

a0s 1.96 1.33 2.02 0.73 0.71

6 Numerical Results and Discussion

In the data presented below three cases of “soft” and two cases of “hard” coatings
made of a homogeneous material (E (c)(z) = E (c) = const, ν(c)(z) = ν(c) = const)
are considered. For the cases of “soft” coatings we used the followingmaterial elastic
parameters E (c)/E (s) = 0.01 and the Poisson’s ratio ν(c) = 0.33, 0.499 and −0.4.
For the cases of “hard” coatings we used the following material elastic parame-
ters E (c)/E (s) = 100 and the Poisson’s ratio ν(c) = 0.33 and 0.499. In all cases the
Poisson’s ratio of the substrate material ν(s) = 0.33. The case of ν(c) = 0.499 corre-
sponds to practically incompressible coating material while the case of ν(c) = −0.4
represents an auxetic material. In practice the coatings are usually thin. Therefore,
we will consider the case of λs = 0.1. The values of the contact radius for these cases
are collected in Table 1.

Let us consider the behavior of the subsurface displacement fieldsw and u as well
as the principal stresses

σI,I I I = 1

2

[(
σρ + σz

) ± √
D

]
, σI I = σϕ, D = (

σρ − σz
)2 + 4τ 2

ρz (42)

and their principal planes orientations:

nI,I I I =
⎛
⎝ 2τρz√

2D ± 2(σρ − σz)
√
D

, 0,
σz − σρ + √

D√
2D ± 2(σρ − σz)

√
D

⎞
⎠ ,

nI I = (0,±1, 0).

(43)

Here a principal plane is a plane to which the corresponding principal stress is
perpendicular. Here and after upper index s will be omitted in us,ws, σ s

ρ , σ s
z , σ

s
ϕ, τ s

ρz .
The data confirms an obvious fact that in the cases of “hard” coatings the principal

stresses are higher than in the cases of “soft” coatings. In the cases considered below
the stresses for the cases of “hard” coatings are over 20 times greater than the same
stresses for the cases of “soft” coatings. Moreover, for all cases below the surface
the principal stress σI I I is compressive, i.e. σI I I < 0, while the principal stresses σI

and σI I change from compressive to tensile (i.e. they change their signs).
Let us consider in more detail some cases of “soft” coatings. From Fig.1b it

is interesting to notice that for the case of almost incompressible coating material
(ν(c) = 0.499) in the vicinity of the contact boundary the vertical displacement field
w is noticeably differently curved than for all other cases in which the behavior of
w is similar (see Fig. 1a–c). The maximum value of the vertical displacement is
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observed at the point ρs = 0 and z0 = 0. The vertical displacements for ν(c) = 0.33
and ν(c) = −0.4 look very similar. Their values in the coating are much higher than
in the substrate.

The structure of the radial displacement field u is more complex. These fields for
different “soft” coating material Poisson’s ratios are presented in Fig. 2. It is clear
that the displacement behavior is significantly controlled by the coating material
Poisson’s ratio. First, let us consider the behavior similarities for different Poisson’s
ratios. For all considered values of Poisson’s ratio the radial displacements change
their sign (see Fig. 2). Here and further the dashed curves indicate the positionswhere
the corresponding values are equal to zero. For all three cases of coatings these curves
have similar shapes. The level curves in the substrate for all these cases are also similar
and resemble inclined ellipses (see Fig. 2). Themaximum of the absolute value of the
radial displacement is reached at ρs ≈ a0s and 0 ≤ z0 ≤ 0.5 (see Fig. 2d–f). Now,
let us consider the differences in the displacement behavior. For “soft” coatings
with ν(c) = 0.33 and ν(c) = −0.4 near the coating surface the displacements are
mostly negative (i.e. directed towards the contact center) while sufficiently deep in
the substrate they are positive (see Fig. 2a, c, d, and f). The displacement behavior
for ν(c) = 0.499 is contrary to that (see Fig. 2b, e). In case of ν(c) = 0.33 near
the coating upper surface there exists a small region of positive displacements (see
Fig. 2d). In this case the maximum displacement value is reached at z0 ≈ 0.5 and
ρs ≈ a0s . This region encompasses the region with the lowest negative value of the
radial displacement (see Fig. 2a). For the case of ν(c) = −0.4 there is no region with
positive radial displacements near coating surface (see Fig. 2f). The level curves
of zero displacement are very similar for the cases of ν(c) = 0.33 and ν(c) = −0.4
(see Fig. 2d, f) and very different from the case of ν(c) = 0.499 (see Fig. 2e). For
ν(c) = 0.499 the absolute value of u is at least an order of magnitude higher than for
the other two cases of ν(c) = 0.33 and ν(c) = −0.4. Also, themagnitudes of the radial
and vertical displacements for ν(c) = 0.499 are similar. For ν(c) = 0.499 the value of
u is different from zero practically only in the coating right below the contact area.

Fig. 1 Subsurface field of the vertical displacement w for a “soft” coating with a ν(c) = 0.33, b
ν(c) = 0.499, c ν(c) = −0.4
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Fig. 2 Subsurface field of the radial displacement u for a “soft” coating with a, d ν(c) = 0.33, b,
e ν(c) = 0.499, c, f ν(c) = −0.4 in small-scale view (a, b, c) and large-scale view (d, e, f)

However, the most remarkable fact about the fields of u is that ∂u(ρs ,0)
∂ρs

experiences
a significant range of variations near the boundary of the contact while within the
contact it is small.

Let us consider the behavior of the principal stress fields. As it can be seen from
Fig. 3 there is a significant variation of the value of σI at the coating/substrate
interface. In all considered cases the values of σI are predominantly negative (i.e.
compressive). The maximal magnitudes of σI are reached below the contact center
in the substrate near the coating/substrate interface for ν(c) = 0.33 and ν(c) = −0.4
and in the coating for ν(c) = 0.499. The shape of the zero level curves is similar
in all three cases. However, for ν(c) = 0.33 and ν(c) = 0.499 the sign change in σI

occurs at a distance from the contact while for the case of ν(c) = −0.4 it occurs at the
coating/substrate interface. The fact that the interface may cause a significant stress
concentration potentially may cause delamination of the coating in a cyclic loading.
For the case of ν(c) = 0.499 the magnitude of σI is approximately 4 times higher
than for the cases of ν(c) = 0.33 and ν(c) = −0.4.

The subsurface fields of the principal stress σI I are represented in Fig. 4. Clearly,
in the vicinity of the interface, there is a concentration of tensile principal stress
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Fig. 3 Subsurface field of the principal stress σI for a “soft” coating with a ν(c) = 0.33, b ν(c) =
0.499, c ν(c) = −0.4

Fig. 4 Subsurface field of the principal stress σI I for a “soft” coating with a ν(c) = 0.33, b ν(c) =
0.499, c ν(c) = −0.4

σI I where it experiences a discontinuity. Moreover, for the cases of ν(c) = 0.33 and
ν(c) = −0.4 this stress concentration occurs in the substrate part of the material
adjacent to the interface while for ν(c) = 0.499 this stress concentration takes place
in the coating. In all cases most of the area of stress concentration is within the
contact region area. The σI I sign change occurs relatively deep at z0 ≤ −10. In
general, the level curves for all three cases are similar in shape. In the coating, for
the case of ν(c) = −0.4 the values of σI I are positive. Among the considered cases
the maximum compressive value of σI I occurs in the case of ν(c) = 0.499 while the
maximum tensile value of σI I occurs for the case of ν(c) = −0.4.

The fields of the principal stress σI I I are presented in Fig. 5. The maximum value
of σI I I is reached at ρs = 0 and z0 = 0. The value of σI I I decreases rapidly with
increase in ρs while it decreases slower with z0. In the case of ν(c) = 0.499 there is a
sharp change in the value of σI I I when z0 crosses the coating/substrate interface. For
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Fig. 5 Subsurface field of the principal stress σI I I for a “soft” coating with a ν(c) = 0.33, b
ν(c) = 0.499, c ν(c) = −0.4

Fig. 6 Direction of the principal stresses σI and σI I I for a “soft” coating with ν(c) = 0.33

almost incompressible coating material ν(c) = 0.499 the stress levels are 2–3 times
higher than for the cases of ν(c) = 0.33 and ν(c) = −0.4.

Figure 6 depicts the direction fields of the principal stresses σI and σI I I for the
case of ν(c) = 0.33. Below the contact center and near the coating surface away
from the contact the stress σI is directed practically horizontally. The direction of σI

changes as an observation point gets more and more distant from the contact center
and far enough from the contact center the stress σI is directed practically vertically
up. A sharp change of the stress direction is observed near the coating surface in the
vicinity of the contact boundary. In this region σI is directed practically vertically
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Fig. 7 Subsurface field of the vertical displacements w for a “hard” coating with a ν(c) = 0.33, b
ν(c) = 0.499

down. As the sign of the stress σI changes across the zero-level curve (see Fig. 3a)
its direction rapidly changes to the opposite one.

In the absence of the sign change the direction of the principal stress σI I I varies
continuously without any drastic changes. Near the contact center (i.e. at ρs ≈ 0
or z0 ≈ 0) the stress σI I I is directed vertically down. Sufficiently far away from
the contact center (i.e. for sufficiently large ρs and z0) the stress σI I I is directed
practically horizontally towards the contact center. Similar to the behavior of σI near
the coating surface and near the contact boundary the direction of the stress σI I I

rapidly changes from horizontal to vertical.
Now, let us consider the cases of “hard” coatings. For the cases of “hard” coat-

ings for ν(c) = 0.33 and ν(c) = 0.499 the structures and values of the fields for w,
u, σI , σI I , σI I I are very close to each other. The graphs of these fields are given in
Figs. 7, 8, 9 and 10, respectively. For the field of w (see Fig. 7) there is a relatively
small region (in diameter not greater than the diameter of the contact region) about
twenty coating thicknesses deep where most of the displacement takes place. The
radial displacement field u is very similar in structure to the one for the “soft” coating
with ν(c) = −0.4 (compare Fig. 8a, b with Fig. 2c). The highest values of the radial
displacement u are approximately twice higher than the highest values of the magni-
tude of the negative radial displacements. The magnitude of the radial displacements
u is more than an order of magnitude lower than the vertical displacements w.

In the cases of “hard” coatings the principal stresses σI , σI I , σI I I are concen-
trated practically only in the coating while in the substrate they are close to zero (see
Figs. 9 and 10). The principal stress σI has two regions with negative values. The
first is located below the contact up to the depth of z0 ≈ 0.6. The second region looks
like a rectangle with adjacent to it elliptical region cut by the coating/substrate inter-
face. The maximum magnitude of σI is reached in the coating below the contact and
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Fig. 8 Subsurface field of the radial displacements u for a “hard” coating with a ν(c) = 0.33, b
ν(c) = 0.499

Fig. 9 Subsurface fields of the principal stresses σI , σI I , σI I I for a “hard” coating with ν(c) =
0.33

close to the coating/substrate interface. There is also a region of the concentration of
positive values of the stress σI which is located near the coating surface not far from
the contact boundary.

The principal stress σI I is close to zero everywhere except for two distinct regions
located below the contact. The maximum positive value of the stress σI I is reached
at the coating/substrate interface while the maximal negative value of the stress σI I

is reached at the coating surface. The magnitudes of these values are comparable.
The stress σI I I is concentrated near the coating surface below the contact up to the
depth of z0 ≥ −0.5 and at some distance from the contact at the coating/substrate
interface. Outside of these regions the stress σI I I is practically equal to zero.
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(a) (b) (c)

Fig. 10 Subsurface fields of the principal stresses σI , σI I , σI I I for a “hard” coating with ν(c) =
0.499

Fig. 11 Comparison of the punch shape (red lines) with the near coating surface vertical displace-
ment w(ρs ,−0.01) for “hard” coatings with ν(c) = 0.33 (curve 1) and ν(c) = 0.499 (curve 2) and
“soft” coatings with ν(c) =0.33 (curve 4), ν(c) = 0.499 (curve 3), and ν(c) = −0.4 (curve 5)

For all principal stresses it is observed a rapid variation of values in the vicinity of
the coating/substrate interface. The latter can serve as a potential source of coating
delamination if the solid is involved in cycling loading.

Finally, to show the fact that the numerical solutions are obtained with high pre-
cision we present a comparison of the punch shape and the coating vertical dis-
placement w(ρs,−0.01) which is very close to its surface. Figure 11 shows that
the punch shape and the corresponding near coating surface vertical displacements
w(ρs,−0.01) are very close. That indirectly demonstrates high precision of the
obtained results. Also, for almost incompressible coating material near the con-
tact boundary there is observed a small bump which is not observed for any other
Poisson’s ratios.
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7 Conclusions

A semi-analytical solution of an axisymmetric dry contact problem for a parabolic
punch indented in a functionally graded material is obtained. The solution includes
formulas for contact pressure, contact radius, and subsurface stresses. The solution
is realized for the case of a coating and substrate made of different homogeneous
materials. The contact frictional stress is neglected. The main focus of the paper
is directed toward studying the behavior of the subsurface fields of normal and
radial material displacements and subsurface principal stresses. It was observed that
the solution is significantly affected by the coating relative “softness/hardness”, its
thickness, and coating material Poisson’s ratio. It is well-known that friction slightly
change the distribution of contact normal pressure on the surface. But in some cases
it can significantly change the subsurface stresses. The influence of friction on the
subsurface stresses and displacements can be studied using similar technique and
results obtained earlier for contact with presence of tangential stresses on the surface
[26].
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Mechanistic Model of Generalized
Non-antisymmetrical Electrodynamics

S. A. Lurie, P. A. Belov and Y. O. Solyaev

Abstract In this work, the methods of continuum mechanics are transferred to
the four-dimensional continuum, in which the normalized four-dimensional vector-
potential of the electromagnetic field is playing the role of 4D-displacement. Clas-
sical electrodynamics is presented as a theory of elasticity of 4D-medium with anti-
symmetric stress tensor, where Faraday equations are the equations of compatibility,
and Ampere equations are the equations of equilibrium. It is shown, that for the con-
sidered continuum, the tensor of the fourth rank modules in defining ratios formally
allows not only anti-symmetric structure. Uncertain symmetry of electromagnetic
“stresses” allows to build a version of the non-anti-symmetric electrodynamics and to
predict new effects of the interaction of electromagnetic field with spatially-isotropic
material: dynamic, thermal and striction.

Keywords 4D-continuum · Transverse isotropy · Electrodynamics ·
Non-classical effects · Thermo-electro-magneto-elasticity

1 Introduction

Significant attempts to introduce equations of electrodynamics as the equations of
some continuous medium were carried out repeatedly and, apparently, are related
back to Maxwell’s works [1–3]. The fundamental works [4–6] are devoted to the
development of continual theories of electrodynamics. A four-dimensional space-
time canonical formalism was introduced for modeling of the coupoled effects in
the deformation of media in [7–9]. In interesting work [10] it is proposed a variant
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of the four-dimensional isotropic theory of elasticity, in which the entropy density
can be treated as a component of the generalized strain tensor. However, the defining
relations of such a theory are not written down.

In [11–15], the methods of continuummechanics expanded to the space-time 4D-
continuum, were used for the construction of variation models, extended thermody-
namic for the reversible and non-reversible processes, in which the laws of Duhamel-
Neumann’s andMaxwell-Cattaneo (non-classical generalization of Fourier’s law for
heat flow) are direct consequences of the defining relations. In the article [16], the
mechanistic model of physical fields was built as a model of mechanics of 4D-
continuum with the fields of defects. It is shown, that the equations, obtained by the
variational method, describe the whole spectrum of physical interactions and include
a complete system of Maxwell’s equations of electrodynamics, Einstein’s equations
for the currents. In [16, 17], it was shown that to obtain consistent model of extended
thermodynamics it should be considered the 4D-continuum which is transversely-
isotropic with respect to the time coordinate, in which the tensor of interactions, in
contrast to the 3D-stresses of continuummechanics, can not be purely symmetric and
should contain anti-symmetric part. In [18, 19] it was further introduced “Landau”
dissipation, allowing to obtain a generalization of the law of Maxwell-Cattaneo and
to model (scale effects) wave properties in the process of heat conduction.

One of the problems in constructing of mechanistic models of electrodynamics
is the anti-symmetry of “power factors” in electrodynamics and, on the contrary, the
symmetry of stress tensor in classical continuummechanics. In [14], it is shown, that
the equations of electrodynamics are formally elasticity equations for the generalized
4D-continuum and therefore it is proved the consistency between generally accepted
model of classical electrodynamics and the model of mechanics of 4D-continuum
with non-symmetric (anti-symmetric) stress tensor. This allowed indirectly to prove
the existence of the theory of elasticity with non-symmetric stress tensor, its efficacy
in the description of physical processes.

In this article we showed that the electrodynamics model allows not only the
existence of anti-symmetric tensor of electromagnetic interactions (“stresses”), but
also the existence of symmetric component. In other words, we believe that in com-
mon case both the model of electrodynamics (the same as the model of continuum
mechanics) have symmetric components in tensors of interactions. This “unifica-
tion” of models allows one to build a consistent model for the connected dynamic
thermo-electro-magneto-elasticity for spatially-isotropic materials.

2 Mechanistic Model of Classical Electrodynamics

Weconstruct amodel of classical electrodynamics as an option of anti-symmetric the-
ory of elasticity of Minkowski medium and, thus, prove the possibility of Maxwell’s
idea about the possibility of a correct mechanistic interpretation of the equations of
electrodynamics. First let’s determine the 4D-vector of “displacements” through the
normalized vector-potential of the electromagnetic field:
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Ai � ai + icϕNi � Ri

ai � A jδ
∗
i j , ϕ � −i A j N j/c, ai Ni � 0 (1)

Here Ni is the ort of time, δi j is 4D-Kronecker tensor δi jδi j � 4, δ∗
i j � δi j −Ni N j

is 3D-Kronecker tensor δ∗
i jδ

∗
i j � 3, i � √−1 is imaginary unit.

Spatial components of the vector-potentialai have the dimension of length, and the
real, time componentϕ has the dimension of time. In accordancewith themechanistic
analogy, the magnetic potential ai is similar to the vector of spatial displacements
ri , and the electric potential ϕ is the similar to a local non-uniform time R [11–15].
The normalization coefficient in the definition of the coordinate x4 is selected equal
to the speed of light c. Continuing mechanistic analogy, we define an analogue of
pseudo-tensor of 4D-rotations in continuum mechanics, as follows:

(2)

Here is the Tullio Levi-Civita pseudo tensor
Certainly, we can rewrite Eq. (2) in the form:

∥
∥ωi j

∥
∥ �

∥
∥
∥
∥
∥
∥
∥
∥

0 −(A3,4 − A4,3)/2 (A2,4 − A4,2)/2 −(A2,3 − A3,2)/2
(A3,4 − A4,3)/2 0 −(A1,4 − A4,1)/2 (A1,3 − A3,1)/2

−(A2,4 − A4,2)/2 (A1,4 − A4,1)/2 0 −(A1,2 − A2,1)/2
(A2,3 − A3,2)/2 −(A1,3 − A3,1)/2 (A1,2 − A2,1)/2 0

∥
∥
∥
∥
∥
∥
∥
∥

and

ωi j Xi Y j � −(A3,4 − A4,3)/2, ωi j Xi Z j � (A2,4 − A4,2)/2, ωi j Xi N j � −(A2,3 − A3,2)/2

ωi j Yi Z j � −(A1,4 − A4,1)/2, ωi j Yi N j � (A1,3 − A3,1)/2

ωi j Zi N j � −(A1,2 − A2,1)/2

Thus, the components of tensor of rotations are recorded
through the components of the normalized vector-potential of the electromagnetic
field Ai in full compliance with the mechanical analogy. Let’s show that the pseudo-
tensor of rotations can be recorded via the vector of electric intensity and pseudo-
vector of magnetic induction. Indeed, the components of dimensionless vector the
electric intensity Ei and dimensionless pseudo-vector of magnetic induction Bi are
defined trough the real components of the vector-potential Ai in a conventional
manner:

(3)
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We can write Eq. (3) also in the form:

‖Ei‖ � i

∥
∥
∥
∥
∥
∥
∥
∥

(A1,4 − A4,1)/2
(A2,4 − A4,2)/2
(A3,4 − A4,3)/2

0

∥
∥
∥
∥
∥
∥
∥
∥

‖Bi‖ �

∥
∥
∥
∥
∥
∥
∥
∥

(A2,3 − A3,2)/2
(A3,1 − A1,3)/2
(A1,2 − A2,1)/2

0

∥
∥
∥
∥
∥
∥
∥
∥

It follows directly from (3) that the dimensionless vector of electric intensity Ei

and the dimensionless pseudo-vector of magnetic induction Bi are the components
of antisymmetric 4D-pseudo-tensor.

(4)

It is not difficult to verify this correspondence between relations (3) and (4) if
we use the following known equalities for the generalized Tullio Levi-Civita pseudo
tensor

Indeed, the operation of convolution of ωmn with gives:

Further, carrying out the convolution of ωmn with Nn we obtain:

Therefore, the antisymmetric 4D-pseudo-tensorωi j can be represented in amatrix
form
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∥
∥ωi j

∥
∥ �

∥
∥
∥
∥
∥
∥
∥
∥

0 −i E3 +i E2 −B1

i E3 0 −i E1 −B2

−i E2 i E1 0 −B3

B1 B2 B3 0

∥
∥
∥
∥
∥
∥
∥
∥

,

⎧

⎨

⎩

ωi j XiY j � −i E3

ωi j Xi Z j � i E2

ωi j Xi N j � −B1

⎧

⎪⎨

⎪⎩

ωi j Yi Z j � −i E1

ωi j Yi N j � −B2

⎧

⎪⎨

⎪⎩
ωi j Zi N j � −B3

We have the following lemmas.

Lemma 1 4D-vector of electric intensity Ei has only three spatial components, and
the time component is equal to zero.

Proof

(5)

Lemma 2 4D-pseudo-vector of magnetic induction Bi has only three spatial com-
ponents.

Proof

(6)

Consider mechanical analogue of compatibility equations:

(7)

Let’s write ωi j, j via the vector of electric intensity Ei and the dimensionless
pseudo-vector of magnetic induction Bi using the definition (2), expansion (4) and
Eqs. (5), (6):

Finally, we expand the vector ωi j, j � 0 on the direction of the time coordinate
and orthogonal hyperplane and rewrite Eq. (8) in the following form:

(8)
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As a result, we have proved that the equations of compatibility ωi j, j � 0
can be written in the form of classical three-dimensional equations of Faraday

and Gauss equation for the magnetic field Bi, jδ
∗
i j � 0

as a mechanical analogue of equations of compatibility. In what follows we will call
the equations of compatibility (7), (8) as 4D-Faraday equations.

Continuingmechanistic analogy, let’s define the stress tensor andwrite the general
defining equations (Hooke’s law) for formal stress tensor in electrodynamics (electric
induction-intensity of magnetic field) by analogy with continuum mechanics. Then
we will analyze the structure of the elastic moduli, decipher the entire range of
components of the “stress tensor” in the electromagnetic field model and establish
the direct analogy with mechanical power factors:

σi j � Ci jnm An,m � Ci jnm Rn,m (9)

Equation (9) defines the physical model of the considered space-time continuum.
The general expression for the elastic constants of such solids is

We consider the symmetry conditions of the potentiality Ci jnm � Cnmi j and
propose that the isotropic elastic body with symmetric stress tensor ti j has place for
three-dimension elasticity problem. Then, we receive:

Ci jnm �
� C1δ

∗
i jδ

∗
nm + C2Ni N jδ

∗
nm + C3δ

∗
i j NnNm + C4Ni N j NnNm

+ C5δ
∗
inδ

∗
jm + C6Ni Nnδ

∗
jm + C7δ

∗
in N j Nm

+ C8δ
∗
imδ∗

jn + C9Ni Nmδ∗
jn + C10δ

∗
im N j Nn (10)

The tensor of moduli Ci jnm for 4D-medium, which is transversely isotropic in
the direction of the ort Ni must satisfy the symmetry conditions of the potentiality
Ci jnm � Cnmi j , which lead to the following relations for the coefficients in tensor of
moduli (10):

C3 � C2, C10 � C9 (11)

In addition, the tensor of “stresses” which defines the interactions of the electro-
magnetic field with the medium, must be anti-symmetric for the classical electrody-
namic theory: σi j + σ j i � 0. This condition leads to the following additional group
of relations on the tensor of the elastic moduli (10):

C1 � 0, C2 � 0, C4 � 0

(C5 + C8) � 0, (C6 + C9) � 0, (C7 + C9) � 0 (12)
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As a result, taking account (11), (12), the tensor of the moduli becomes:

Ci jnm � C8(δ
∗
imδ∗

jn − δ∗
inδ

∗
jm)

+ C9(δ
∗
jn Ni Nm + δ∗

im N j Nn − δ∗
jm Ni Nn − δ∗

in N j Nm) (13)

Using (9), (13) we can write the equilibrium equations:

σi j, j + Ji �
� C8(δ

∗
imδ∗

jn − δ∗
inδ

∗
jm)Rn,mj+

+ C9[(δ
∗
jn Ni − δ∗

in N j )Nm + (δ∗
im N j − δ∗

jm Ni )Nn)Rn,mj + Ji � 0 (14)

here Ji is the density of generalized “forces” distributed over the space-time contin-
uum.

As is known, the governing equations of mechanics in displacements are the
equilibrium equations of the Lame-Navier, and the governing equations of electro-
dynamics in the terms of the vector of electric induction Di and the intensity of
magnetic field Hi are the Ampere equations. Let’s show that the generalized Lame-
Navier equations (14) can be transformed in such a way that they coincide exactly
with the Ampère equations. This will establish a correspondence between the stress
on the one hand and the electrical induction Di and magnetic strength Hi on the
other hand.

We believe in the future, that for the model of electrodynamics, the value Ji is
vector of 4D-currents. Let’s investigate the conditions under which in this case, the
equilibrium equations coincide with the equations of Ampere. First note that the
established properties of the tensor of elastic moduli provide identical performance
of equality σi j,i j � 0. Therefore, the divergence of the equilibrium equations σi j,i j +
Ji,i � 0 leads to equations:

Ji,i � 0 (15)

Equation (15) reflects the property of conservation of 4D-currents similar to the
law of conservation of currents in electrodynamics.

The proof of the following lemmas allows us to isolate in the equations of equi-
librium such operators over the displacement vector, which can be interpreted as
electric intensity Ei and magnetic induction Bi . Let’s transform equation (14) so,
that it took the standard form of Ampere equations. To do this, let’s first prove the
following lemmas.

Lemma 3 The equality takes place.
The proof of lemma follows from the sequence of equalities recorded below:
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Lemma 4 The equality takes place:

The proof is established by means of transformations, taking into account delta
Kronecker properties and properties of convolutions of Levi-Chivita tensors on two
indexes in 4D-space and taking into account the definition δ∗

i j � δi j − Ni N j :

Taking into account Lemmas 3 and 4, the equilibrium equations (14) take the
form:

Let’s use the definition (3) and introduce the classic definition of the vector of
electric induction Di and the intensity of magnetic field Hi (as stress analogs):

{

Di � εEi

Hi � Bi/μ
(16)

As a result, taking into account (16) we’ll receive:
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(17)

Here ε is the permittivity constant and, μ is the permeability constant.
Now let’s suppose that

{

C8 � −1/(2μ)
C9 � ε/2

(18)

Then, with the help of Eq. (18) the equilibrium equations (17) can be represented
in the form:

(19)

Finally, we expand 4D-Ampere equations (19) on the direction of the time coor-
dinate and orthogonal hyperplane and rewrite them in the following form:

(20)

Then we can see that first vector equation (20) is classical 3D-Ampere equation
and the second, scalar equation (20), is the Gauss equation for the electric field. In
what follows, the Eq. (19) we’ll call 4D-Ampere equation.

In conclusion, let’s give the set of conditions on the elastic moduli in the defining
relations (11), (12) and (18) which made it possible to ensure a complete correspon-
dence between the equilibrium equations (14) and the Ampere equations in classical
electrodynamics:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

C1 � 0

C2 � 0

C3 � 0

C4 � 0

⎧

⎪⎪⎨

⎪⎪⎩

C5 � 1/(2μ)
C6 � −(ε/2)
C7 � −(ε/2)
C8 � −1/(2μ)

{

C9 � (ε/2)
C10 � (ε/2)

Tensor of moduli takes the form (anti-symmetric with respect to the first indexes):

Ci jnm � (δ∗
inδ

∗
jm − δ∗

imδ∗
jn)/(2μ)+

+ (ε/2)(δ∗
jn Ni Nm + δ∗

im N j Nn − δ∗
jm Ni Nn − δ∗

in N j Nm)

Hooke’s law equations for electromagnetic field stresses take the form:

(21)
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By analogywith the definition (4) of anti-symmetric 4Dpseudo-tensor of rotations
ωi j we define the analogues of power factors for classical electromagnetic field
that have a sense of stresses in the generalized theory of elasticity for 4D-pseudo-
continuum.

Decipher the whole range of components of the “stress tensor” (19). To do this, we
use the general relations for the tensor of stresses that were set for dynamic thermo-
elasticity recorded for 4D space- time media [6, 9]. Note that in [6, 9] in describing
the thermo-mechanical interactions in the space-time of 4D Minkowski continuum,
the tensor of stresses σi j was determined, its general structure was listed. It was
found that in Minkowski space, the thermomechanical interactions are described by
the following tensor of generalized stresses:

The tensor of stresses σi j was introduced as an expansion to the following real
components:

• «3D- tensor-deviator» of stresses τi j � σnm(δ∗
inδ

∗
jm/2 + δ∗

imδ∗
jn/2 − δ∗

i jδ
∗
nm/3),

• «3D-pseudo-vector» of spatial unpaired tangent stresses,
• «3D-vector» of impulses pk � σnmδ∗

nk Nm/(iv),
• «3D-vector» of heat flux qk � σnmNnδ

∗
mk(iv),• «3D- scalar» of hydrostatic pressure p � σnmδ∗

nm—amplitude of “3D sphere-
tensor” of spatial stresses,

• «3D- scalar» of temperature T � σnmNi N j .

Here are the analogues of thermomechanical power factors for classical electro-
magnetic field:

From the point of view of classical electrodynamics the interaction with spatially-
isotropic material can be carried out only through spatial unpaired tangent stresses
by the magnetic field and through impulses and heat flows by the electric field.

Spatial unpairing of tangent stresses (in continuum mechanics) is not observed
experimentally, and if it took place, the speed of sound for the transverse waves in
the material would have to exceed the theoretical value v � √

G/ρ. Therefore, the
interaction of electromagnetic field with spatially-isotropic material by the magnetic
field, from the point of view of classical electrodynamics, seems unlikely.

Interaction of electromagnetic field with spatially-isotropic material by electric
field from the point of view of classical electrodynamics is acceptable and imple-
mented through impulses and heat flow. However, even here we can point to the
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existence of contradictions. In particular, in the medium the heat flow is potential,
which follows from the Fourier law of heat conduction, but the electric field can
excite only vortex heat fluxes proportional to Dk .

On this basis, it should be recognized that the model of classical electrodynamics
does not allow to build phenomenological theory of the interaction of electromagnetic
field with spatially-isotropic material.

3 Mechanistic Model of Nonclassical Electrodynamics

In this section, we’ll show that the model of non-classical electrodynamics can be
represented as generalized non-anti-symmetric theory of elasticity of 4D-continuum,
in which tensor of “stresses” has not only anti-symmetrical components.

Lets again consider the electromagnetic field theory as the four dimension theory
of elasticity and first discuss shortly the kinematic model for the generalized variant
of the mechanistic model. Accordingly, the normalized vector-potential of the elec-
tromagnetic field Ai , as a 4D-vector of “displacements”, as well as in the previous
section, is determined by (1). The real components of the dimensionless vector of
electric intensity Ei and ones of dimensionless pseudo-vector of magnetic induction
Bi are also expressed in through the real components of the vector-potential Ai by
the relations (3). At last, the 4D-Faraday Eq. (7), as a mechanical analogue of the
compatibility equations, are satisfied identically. Thus, the kinematic model of the
four-dimensional theory of elasticity, which is studied coincides completely with
kinematic model that was formulated in the previous section.

The proposed generalization of themechanisticmodel of the electrodynamics will
concern the constitutive equations and a choice of more general structure of tensor
of moduli which is transversally-isotropic in the direction of the time ort.

We try to receive the constitutive equation for the mechanistic four dimension
model of the electrodynamics which define the more common tensor of stresses that
is not antisymmetric as it was received for the space-time continuum model in the
case of classical electrodynamics.

To construct the generalized variant of the space—time continuum model, we
should refuse the hypothesis of “pure anti-symmetry of the stress tensor” (9) and
assume only that 4D-equations of Ampere (14), (19), (20) and the conservation
law of 4D-current (15) are valid. Assuming the existence of the potential energy
Ci jnm � Cnmi j and the corresponding Lagrangian, the tensor Ci jnm contains eight
modules:

Ci jnm �
� C1δ

∗
i jδ

∗
nm + C2(δ

∗
nmNi N j + δ∗

i j NnNm) + C4Ni N j NnNm+

+ C5δ
∗
inδ

∗
jm + C6δ

∗
jm Ni Nn + C7δ

∗
in N j Nm+

+ C8δ
∗
imδ∗

jn + C9(δ
∗
jn Ni Nm + δ∗

im N j Nn) (22)
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Let’s simmertrizise in (22) the basic tensors on the indices j,m:

Ci jnm � (Ci jnm + Cimnj )/2 + (Ci jnm − Cimnj )/2

Then we can show that the moduli included in the tensor (Ci jnm − Cimnj )/2 will
not appear in the equilibrium equations (equations of Ampere):

σi j, j + Ji � Ci jnm Rn,mj + Ji � (Ci jnm + Cimnj )Rn,mj/2

+ (Ci jnm − Cimnj )R
2
n,mj/2 + Ji � 0

Indeed, the first term is the convolution of two tensors that are symmetric over
the indices j,m and gives (Ci jnm +Cimnj )Rn,mj/2 � Ci jnm Rn,mj , the second term is
the convolution of antisymmetric and symmetric over the indices j,m tensors and
gives (Ci jnm − Cimnj )Rn,mj/2 ≡ 0.

Follow to (22) we can write:

(Ci jnm + Cimnj )/2 �
� (C1 + C8)(δ

∗
i jδ

∗
nm + δ∗

imδ∗
nj )/2+

+ (C2 + C9)(δ
∗
nmNi N j + δ∗

i j NnNm + δ∗
nj Ni Nm + δ∗

im NnN j )/2+

+ C4Ni N j NnNm + C5δ
∗
inδ

∗
jm + C6δ

∗
jm Ni Nn + C7δ

∗
in N j Nm

(Ci jnm − Cimnj )/2 �
� (C1 − C8)(δ

∗
i jδ

∗
nm − δ∗

imδ∗
nj )/2+

+ (C2 − C9)(δ
∗
nmNi N j + δ∗

i j NnNm − δ∗
nj Ni Nm − δ∗

im NnN j )/2 (23)

Both tensors (Ci jnm + Cimnj )/2 and (Ci jnm − Cimnj )/2 in (23) define the proper-
ties of the stress tensor which has now symmetric and antisymmetric components.
But only the symmetric tensor (Ci jnm + Cimnj )/2 enters into equilibrium equations
(Ampere equations).

Let’s consider the divergence of the equilibrium equations:

σi j,i j + Ji,i � 0 (24)

which we can call as the general law of conservation of 4D-current.
Using the first Eq. (23) we rewrite the law of conservation of 4D-current (24) in

a form that explicitly includes the differential operator on the value R2
k,k :

(C1 + C5 + C8)δ
∗
i jδ

∗
nm Rn,mji+

+ (C2 + C7 + C9)δ
∗
nmNi N j Rn,mji+

+ (C2 + C6 + C9)δ
∗
i j NnNm Rn,mji+

+ C4Ni N j NnNm Rn,mji + Ji,i �
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� [(C1 + C5 + C8)δ
∗
i j + (C2 + C7 + C9)Ni N j ]Rk,k ji+

+ [(C2 + C6 + C9) − (C1 + C5 + C8)]δ
∗
i j NnNm Rn,mji+

+ [C4 − (C2 + C7 + C9)]NnNmNi N j Rn,mji + Ji,i � 0

Formally, to satisfy last equality it is necessary to require the equality to zero of all
four linear combinations of moduli with differential operators of the vector-potential.
However, if we assume the necessity for further to introduce some calibration similar
to of Lorenz calibration Rk,k � 0, we can limit ourselves by requirements:

{

[(C2 + C6 + C9) − (C1 + C5 + C8)] � 0
[C4 − (C2 + C7 + C9)] � 0

Hence, we can get the following relationships:

{

(C2 + C6 + C9) � (C1 + C5 + C8) � C0

C4 � (C2 + C7 + C9)
⇒

⎧

⎨

⎩

(C1 + C8) � C0 − C5

(C2 + C9) � C0 − C6

C4 � C0 − C6 + C7

(25)

Then, the law of conservation of 4D-current takes the form:

[C0(. . .),i jδ
∗
i j + (C0 − C6 + C7)(. . .),i j Ni N j ]R

2
k,k + Ji,i � 0 (26)

Let’s consider the equilibrium equations σi j, j + Ji � 0. Taking into account (24),
Lemmas 3 and 4 leads to the following equations:

(27)

Thus, with use Eqs. (25)–(27) we can set the essential conditions to ensure that,
the equilibrium equations (27) would be strictly to the 4D-Ampere equations (19),
(20) and the law of conservation 4D-current (15)would be identically satisfied. These
are the following conditions:

(C0Rk,k),i � 0,

⎧

⎨

⎩

(C1 + C8) � C0 − 1/(2μ)
(C2 + C9) � C0 + ε/2
C4 � C0

⎧

⎨

⎩

C5 � 1/(2μ)
C6 � −ε/2
C7 � −ε/2

(28)

Accordingly to (28), the tensor of modules can be written in the form:

Ci jnm �
� C0(δi jδnm + δimδnj )/2+

+ (C1 − C8)(δ
∗
i jδ

∗
nm − δ∗

imδ∗
nj )/2+
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+ (C2 − C9)(δ
∗
nmNi N j + δ∗

i j NnNm − δ∗
nj Ni Nm − δ∗

im NnN j )/2+

+ (2δ∗
inδ

∗
jm − δ∗

i jδ
∗
nm − δ∗

imδ∗
nj )/(4μ)+

+ (ε/2)(δ∗
nmNi N j + δ∗

i j NnNm + δ∗
nj Ni Nm+

+ δ∗
im NnN j − 2δ∗

jm Ni Nn − 2δ∗
in N j Nm)/2 (29)

The difference between the classical electrodynamics and its non-classical ana-
logue is reduced to the differences in the structure of tensorCi jnm in accordance with
(21) and (29). Hooke’s law equations for mechanical analogues of “stresses” of the
electromagnetic field take the form:

The resulting structure of the stress tensor for the four dimensions continuum
of non-classical electrodynamics can be simplified by analogy with the theory of
connected dynamic thermo-elasticity and hyperbolic heat conduction through the
introduction of a similar simplifying hypotheses [15, 17]. It was defined “Hooke’s
law” for the heat flux qk in the form of a weakened Fourier hypothesis. It lies in
the fact that the 3D-vector of the heat flow in the general case is represented by
gradient of some 3D-scalar. Then, the heat flux is potential and can not have curls.
The analogue of “weakened Fourier hypothesis”—the heat flow is potential, for
qk � (εc2ϕ/2),mδ∗

mk gives:

(C0 − C2 + C9 + ε/2) � 0

An analogue of the “hypothesis of the classicism of impulse” for pk in the four
dimensions continuum of non-classical electrodynamics is performed at the same
time automatically:

pk � εȧk/(2c
2)

An analogue of the “hypothesis of the symmetry of spatial tangent stresses,” for
τk � 0, in the four dimensions continuum of non-classical electrodynamics gives:

[−C0 + C1 − C8 + 3/(2μ)] � 0
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From the point of view of non-classical electrodynamics, interaction with
spatially-isotropic material can be carried out in a wide range of interactions. In par-
ticular, as in classical electrodynamics—through the spatial unpaired tangent stresses
by the magnetic field and through impulses and heat flows by the electric field. Addi-
tionally, in contrast to the classical electrodynamics—through temperature T and
pressure p by means of two linear combinations of the magnetic an,mδ∗

nm and electric
ϕ̇ potentials as well as through the analogue of deviator of tangent stresses τpq by
the non-classical linear differential operator of the magnetic potential.

4 Conclusion

On the basis of mechanistic analogue it was implemented the modification of the
equations of electrodynamics, leading to the fact that the tensor of “stresses” may
not necessarily be purely anti-symmetric. In this case, 4D-equations of Faraday and
Ampere and the law of conservation of 4D-current retain their classic form.Uncertain
symmetry of electromagnetic “stresses”makes it possible to construct a bilinear form
of energy of interaction of electromagnetic field with isotropicmaterial and to predict
new effects of their interaction, such as: dynamic, thermal and striction.

It should be noted that this work is purely theoretical, and the existence of non-
classical effects in force interactions of the electromagnetic field should be checked
experimentally.
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Kinetic Theory of Dislocation
and Mesoscale Formation in Dynamically
Deformed Solids

Yu. I. Meshcheryakov

Abstract The tensor formof dislocation velocity distribution function is introduced.
The first and second statistical moments of the distribution function are constructed
to coincidewith the dynamic variables of continuous theory of dislocation—tensor of
dislocationdensity and tensor of dislocationflow.Byusing this approach, the problem
on mesoscale formation under shock loading is solved. The dynamic mesoparticles
are found to be the short-living groups of one-sigh dislocations. Under conditions
of dynamic deformation, such a kind of moving mesoparticles generate the velocity
pulsations which are experimentally registered as a mesoparticle velocity dispersion.
The mesoparticles in form of grains of powder has been discovered in spall zone of
target where all-round tension conditions allow to conserve the mesoparticles as
separate formations.

Keywords Dynamic deformation · Dislocation velocity · Tensor distribution
function · Mesoparticle · Velocity dispersion

1 Introduction

The problem of description of multiscale dynamic plasticity is a subject of inten-
sive investigations for last fifty years. As the first step, so-called Gilman-Johnston
dislocation model was developed as constitutive equation for locking the balance
equation of dynamically deformedmedium. The main merit of this approach is proof
of the fact that direct transition from dislocation dynamic to macroscopic description
of dynamic deformation isn’t possible as for the adequate description of dynamic
deformation the initial dislocation density must be increased by 2–3 order, which
isn’t corresponds to reality [1]. Besides, there are additional restrictions peculiar to
the approach: (i) one-dimensional charactermodel; (ii) themodel dealswithmultipli-
cation and motion of rectilinear dislocations; (iii) stochastic character of dislocation
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motion isn’t taken into account. As additional mechanism of plastic deformation the
so-called mesoscopic scale has been introduced. It is thought to occupy an interme-
diate position between atom-dislocation scale and macroscale [2–5]. However, as J.
R. Asay noticed, “mesoscale still does not incorporate into shock-wave process” [6].

In the case of dynamic processes in solids, an attempt to introduce multiscale
mechanisms of deformation faces three problems: (i) how dynamic mesoparticles
are formed; (ii) how to account for the mechanisms of dynamic deformation at the
mesoscale; (iii) how to account for the transition from one scale to another. It is
clear that deterministic approach to multiscale dynamic deformation is not possible.
Firstly, the elementary deformation mechanisms at different scales work in parallel
and, secondly, weight and deposit of different mechanisms into total deformation
depend on strain rate. The well-known Ashby’s formula [7]

�ρ ≡ ρ+
ik − ρ−

ik � −1

b
ei jl

∂ε jk

∂xl
,

which links the crystal lattice curvature and dislocation density proves to be appli-
cable only for perfect crystals. Here ρ+

ik and ρ−
ik are the densities of positive and

negative dislocations, b is the Burgers vector, eijk is the Levi-Chivita tensor and εjk
are the deformation tensor components.

The objective of this paper is to develop the dislocation theory which could satisfy
the following requirements: (i) to be three-dimensional; (ii) to reflect statistical char-
acter of dislocation motion; (iii) to provide the natural transition from dislocation
scale to mesoscale.

Solution to above problems is subdivided by two stages.

1. Working out the kinetic theory of continuously distributed dislocations.
2. Elaboration of mesostructure formation as collectivization process of disloca-

tions.

2 Kinetic Theory of Continuously Distributed Dislocations

To date the clear understanding of the mechanics of multiscale dynamic deformation
is absent. Specifically, it is not revealed the following features of multiscale dynamic
deformation;

(a) what dynamic mesoparticle represents as elementary carrier of deformation;
(b) how the forming of mesoparticle occurs in the process of dynamic deformation;
(c) how the statistical nature of motion of elementary carriers of deformation may

be taken into account.

The answers may be found by using the kinetic description of dislocation con-
tinuum in which dislocation densities and flows are determined as averaged values
of velocity distribution function. The kinetic equation for the distribution function
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must be self-consistently linked with the stress and strain fields through the continu-
ous theory of dislocations. When applied to high-velocity deformation processes in
solids, the theory must take into account: (i) inertial properties of elementary carri-
ers of deformation; (ii) dissipative character of dislocation motion; (iii) long-range
interaction dislocation with each other; (iv) collective features of dislocations.

Development of kinetic theory of dislocations includes the following steps.

1. Definition of velocity distribution function. Dislocation are considered to be the
objects, which in each point in space are characterized by tangent direction to
dislocation line and by Burgers-vector; separate segments of the dislocation line
may be of different orientations in space and different velocities.

2. Derivation of the kinetic equation for the velocity distribution function. The
convective and collision parts of the equation must take into account both the
dissipative features of the medium where dislocation move and their mutual
long-range interaction.

3. Definition of equilibrium dislocation function.
4. Derivation of the system of moment equations from the kinetic equation. This

system must coincide with the well-known equations of the continuous disloca-
tion theory, i.e. the balance equations for the momentum and mass conservation
for the medium with dislocations. Different approach based on the statistical
dislocation description and the Kirkwood transport equation system has been
developed by Zorski [8].

In this study we follow the above sequence in designing the kinetic theory of
dislocations. Taking into account the configurational complexity of dislocations, it
thought to be appropriate to use the tensor description of the dislocation continuum.
Such description is used in continuous dislocation theory where the dislocations
density is a second rank tensor. The first index characterizes the tangent direction
to the dislocation line and the second one is the direction of the Burgers vector.
According to this definition fik

(�r , �v, �t)d�r , d�v, d�t is a mathematical expectation of
the number of dislocation segments of type ik in the volume dr at the moment from
t to t + dt with the velocities in the range from v to v + dv. The zero moment of the
distribution function obtained by velocity averaging

ρik(�r , t) �
∞∫

−∞
fik(�r , �v, t)d�v (1)

yields the dislocation density tensor.
The first statistical moment of the distribution function defines the so-called dis-

location velocity tensor or dislocation flow tensor:

Ji j (�r , t) � eikl

∞∫

−∞
vl fk j (�r , �v, t)d�v (2)
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In such definition, the first and second statistical moments of the distribution
function coincide with the dislocation density tensor and dislocation flow tensor
introduced in the continuous theory of dislocations. The restrictions on dislocation
motion in continuum theorymust also be correct for the distribution function. Specif-
ically, from definition of dislocation density

ρik � −eilm
∂wmk

∂xl

it follows:

∂ρik

∂xi
� 0

Accordingly, an analogous restrictionmust be applied to components of the veloc-
ity distribution function:

∂ fik
∂xi

� 0, (3)

which means the conservation condition for the Burgers vector along the dislocation
line. The average flow of ik-dislocations in the direction p can be expressed in terms
of the dislocation density tensor as

Jik � ei jpu pρ jk, (4)

where up is the p-component of the average dislocation velocity which can be
expressed in terms of the instantaneous velocity v and the relative velocity c:

cp � vp − u p. (5)

By analogy with the kinetic theory of gas and fluids, one can introduce the sub-
sequent moments of the distribution function in the form:

Ji j (�r , t) � eikl

∞∫

−∞
vl fk j (�r , �v, t)d�v (6)

Pln � ei jk

∞∫

−∞
clck f jnd�v, (7)

Qmjn � e jkleils

∞∫

−∞
cmckcs flnd�v. (8)



Kinetic Theory of Dislocation and Mesoscale Formation … 399

Value mckcl f jn characterizes a carrying over the l-component of elementary
momentum in k-direction with dislocation segments of kind jn, having the veloc-

ities within interval �v and �v + d�v. In this case, �

P is the analog of stress tensor in the
kinetic theory of gas whereas the diagonal elements determine the energy of chaotic
motion on the background of flow motion of dislocations with the average velocity
�u. Lastly, curl of third statistical moment Q j jn can be identified with the flow of
chaotic motion of dislocations.

The common form of kinetic equation can be written in the form:

D f̂

Dt
� Hc. (9)

Kinetic equation for the continuously distributed dislocation must include both
the redistribution of dislocations in volume and change of their total number.

The left hand side of this equation represents the convective part of the kinetic
equation whereas the right hand side part is the so-called collision part:

D
�

f

Dt
� ∂

�

f

∂t
+ ∇r ×

(
�v × �

f

)
+ ∇v ×

(
∂�v
∂t

× �

f

)
� Hc (10)

Here Hc is the collision item which takes into account nucleation, annihilation
and interaction of dislocations. The components of dislocation acceleration ∂�v

∂t can
be determined from the equation of dislocation motion:

m
∂�v
∂t

� �F − B�v, (11)

where m is the “effective” dislocation mass, �F � σ̂ �b is the Peach-Koehler force due
to external action onto dislocation and B is the dislocation damping coefficient which
takes into account the interaction of moving dislocation with the medium. Then in
one-dimensional case the kinetic equation has the form:

∂
�

f

∂t
+ �v ∂

�

f

∂ �x +

( �F
m

+
B

m
�v
)

∂
�

f

∂�v +
B

m

�

f � Hc. (12)

One can see that convective part of the kinetic equation, due to dependence of the
acceleration of dislocations on their velocity, differs from that in classical mechanics
of fluids and gas where the particles interact with each other only. Both additional
terms B

m vx and
B
m f show the dependence of dislocation motion on their dissipative

interaction with the medium through the damping coefficient B. The collision item
includes two components every of which takes into account different kinds of inter-
action inside the dislocation continuum: Hc � H 1

c + H 2
c . For the case when only

a space redistribution of dislocation is taken into account, without change of their
density, it is thought to be sufficient to leave the first component only. In the case
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when processes of nucleation and annihilation of dislocation are also important, both
items should be taken into account.

In our theory, the collision part of the kinetic equation Hc is introduced in the
Fokker-Plank form:

Hc � −∇v × (D1 × f̂ ) +
1

2
∇v∇v : (D2 × f̂ ). (13)

Here D1 and D2 are the Fokker-Plank diffusion coefficients. D1 is the dynamic
friction coefficient and D2 is the coefficient of diffusion in the velocity space.

Now we in position to write the expression for the equilibrium form of distri-
bution function. For that we’ll use the Fokker-Plank form of the collision integral.
Combination of (11) and (12) yields:

∂2

∂2
(D2 f ) − 2

∂

∂ f
(D1 f ) − 2

(
F

m
− B

m
v

)
∂ f

∂v
+ 2

B

m
f � 0. (14)

In this analysis, we’ll assume that in equilibrium situation the diffusion coeffi-
cient doesn’t depend on dislocation velocity, which makes it possible to write the
equilibrium equation in the form:

∂2 f

∂v2
− 2

D2

(
F

m
− B

m
v

)
∂ f

∂v
+ 2

B

D2m
f � 0. (15)

If the integration constant is determined from the condition of constancy for
dislocation density, the solution to Eq. (15) yields:

f0(x, v) �
(

B

D2m

)1/2

ρ(x) exp

[

− B

D2m

(
v − F

m

)2
]

. (16)

The above expression characterizes the equilibrium velocity distribution func-
tion for one-dimensional motion of dislocations. The equilibrium distribution cor-
responds to a mean dislocation velocity u � F

m � σb
m and a velocity dispersion

〈�v�v〉 � D2m
B .

Diffusion Coefficients

The coefficient D1 � 〈�v�v〉
�t calls the dynamic friction coefficient. The valuem 〈�v�v〉

�t
is a friction force directed opposite to mean dislocation velocity u. In the case of
Fokker-Plank equation, the collision integralHc includes only themutual interactions
of dislocations. The breaking force due to this interaction is of fluctuative nature.
The breaking force due to interaction of dislocations with the medium is taken into
account in convective part of the kinetic equation.

It has been shown by Hubburd [9] that the coupling between first and second
diffusion coefficients of the Fokker-Plank equation has the form:
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D1 � 1

2

∂

∂v

[ 〈�v�v〉
�t

]
� 1

2

∂

∂v
(D2). (17)

Then the collision integral can be written in a more explicit form:

Hc � ∂2

∂v2

(
D2 f̂

)
. (18)

Now our goal is to obtain expression for D2. The latter can be obtained with the
help of the stress correlation function according to the following:

D2 � 〈�v�v〉
�t

� b2

m2

∞∫

−∞

〈
σ̂ (0, 0)σ̂ (vτ, τ )

〉
dt, (19)

where 〈σσ 〉 is the stress correlation function.
Derivation of the stress correlation function is based on the use of the continuous

dislocation theory developed by Mura [10], Kosevich and Natzic [11]:

ρ0
∂2Um

∂t2
� ∂σmn

∂xn;
;

∂wmn

∂t
� ∂vm

∂x
+ Jmn;

σik � λiklmwlm ; ρik � eikl
∂wlm

∂xm
. (20)

Here wlm—are the components of distortion tensor,U is the displacement, ρ0—is
the mass density of medium, σik are the components of stress tensor and λiklm are the
elastic modulus components. Define the Fourier-components of displacement and
stress tensor through the integrals:

Uk(r, t) �
∫ ∫

Uk(�k, ω)ei �k�r−iωt d�kdω

σpq (r, t) �
∫ ∫

σpq (�k, ω)ei �k�r−iωt d�kdω

In common case, the coupling between stress and distortion can be written in the
form:

σpq (�r , t) �
t∫

−∞
dt ′

∞∫

−∞
dr ′ λpqmn(�r − �r ′, t − t ′)wmn(�r ′, t ′),

or, in Fourier representation:

σpq (�k, ω) � λpqmn(�k, ω)wmn(�k, ω).
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In turn, the Fourier-components of elastic distortion tensor can be written through
components of dislocation flow tensor [11]:

wmn(�k, ω) � 1

ω
(λi jklGkmklkn − δmiδnj )Jji , (21)

where Gkm is the Green-function of dynamic theory of elasticity, Jji is the flow
dislocation tensor. Accordingly, the Furrier components of stress tensor equal:

σpq (�k, ω) � 1

ω
λpqmn(λi jklGkmklkn − δmiδnj )Jji . (22)

Let as to write the expression for the stress correlation function〈
σ̂ (�r , t)σ̂ (�r + �s, t + τ )

〉
, which should be understood as mean of product of two stress

values in the points �r and �r +�s at the moments of t and t + τ . In Furrier representation
the stress correlation function equals:

〈
σ̂ (�r , t)σ̂ 〉〈

σ̂ (�r , t)σ̂ (�r + �s, t + τ )
〉

�
∫ ∫ ∫ ∫ 〈

σ (�k′, ω′)σ (�k, ω)
〉
exp

[
i �k′�r + i �k(�r + �s) − iω′t − iω(τ + t)

]
d�k′dω′d�k dω

In Fourier representation this integral can be written through δ-functions:

〈
σ̂ (�k ′, ω′)σ (�k, ω)

〉
� (

σ̂ σ̂
)
�kωδ(�k + �k ′)δ(ω + ω′), (23)

from where

〈σ (�r + �s, t + τ )〉 �
¨

(σ̂ σ̂ )�kωe
i �k�r−iωt d�kdω. (24)

Expression (24) can be considered as definition of value (�σ �σ)�kω, which is the
Fourier-amplitude of correlation function. When s = 0 and τ = 0 the value (�σ �σ)�kω
has a meaning of spectral density of mean-square stress fluctuations:

〈
σ̂ σ̂

〉 �
¨ (

σ̂ σ̂
)
�kωd�kdω (25)

Using the relationships of dynamic elasticity theory, the expression (25) allows
to link the stress correlation function and correlation function of dislocation flow:

〈
σ (�k ′, ω′)σ (�k, ω)

〉
� −ηη

ω2

〈
Ĵ (�k ′, ω′) Ĵ (�k, ω)

〉
(26)

where

ηpqi j � λpqmn(λi jklklkm − δmjδnj ). (27)
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Introducing the spectral density of means-square density for flow dislocation
tensor, by analogy with (24) one obtains:

(
σ̂ σ̂

)
�kω � − η̂η̂

ω2
( Ĵ Ĵ )�kω. (28)

The value
(
Ĵ Ĵ

)

�kω
can be found by using dislocation velocity distribution func-

tion. It can be done with a following manner. Components of flow dislocation tensor
in point �r at the moment t are determined as follows:

Jpq (�r , t) � epmn

∑

j

ρmqv
j
nδ(�r − �r j (t)),

where r is the position of j-dislocation at the moment t′, v j
n is the velocity of j-

dislocation. In Fourier representation this expression can be written in the form:

J (�k, ω) � b2

(2π )4
∑

j

�v j
¨

e−i �k�r j (t ′)+iωt dtd�r .

Then for Fourier-amplitude of flow dislocation tensor one obtains:

〈J J 〉 � b4

(2π)8

∑

j

�v j �v j
¨ ¨ 〈

exp
[
−i �k′�r j (t ′) − i �k′�r j (t) + iωt ′ + iω′t

]〉
dtdt ′d�rd�r ′

In the last expression, the items related to different kinds dislocation are excluded.
Let as to express the displacements from position �r j (t) to position �r j (t ′) through
dislocation velocity �vd . Taking into account that dislocations of identical kind are
not distinguished, one obtains:

(J J ) � b2θ
(2π)8

¨ ¨
�v2 fθ (�v)

〈
exp

[
−i(�k + �k′)�r (t) + i(ω + ω′)t + i(ω − �k�v)τ

]〉
d�vdtdτd�r

where τ � t − t ′.
Exchange the integral on exponents by δ-functions. Then the expression for cor-

relation function for dislocation flow tensor has the form:

〈
J (�k ′, ω′)J (�k, ω)

〉
� b2θ

(2π)3
δ(�k + �k ′)δ(ω + ω′)

∫
v2 fθ (�v)δ(ω − �k�v)d�v.

Under conditions of �k � �k ′ and ω � ω′, one obtains the spectral density of
mean-square fluctuations for dislocation flow tensor:

〈
(J J )�kω

〉 � b2θ
(2π)3

∫
fθ (�v)v2δ(ω − �k�v)d�v. (29)
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Then the spectral density of mean-square fluctuations for stress equals:

(
σ̂ σ̂

)
�kω � − b2

ω2
(η̂η̂)

∫
v2 fθ (�v)δ(ω − �k�v)d�v. (30)

Lastly, after summarizing the expressions (22), (24) and (30), one obtains for the
diffusion coefficient:

D2 � − b4

(2π)3
�t

m2

¨
(ηη)

k2
fθ (�v)d�vd�k. (31)

Consider the simplest case when motion of dislocations occurs in a single plane
and tensor

(
η̂η̂

)
can simplified up to μ2. Then the expression (31) reduced to:

D2 � − b3

(2π)3
�t

m2
μ2ρ

∞∫

−∞

d
←
k

k2
, (32)

where ρ is the mean dislocation density according to definition. To avoid the non-
physical divergence in the core of dislocation, the cutting procedure on wave vector
should be carried out. In this case, as the integration limit, the wave vector k0, may
be taken. This wave-vector is determined by the relationship of k0b ≈ 1. Then the
diffusion coefficient becomes:

D2 � 1

(2π)3
b4

�t B2
μ2ρ, (33)

Interval �t can be found from equation for dislocation motion (11). Solution to
this equation yields the mean dislocation velocity:

ud � σb

B
(1 − e− t

�t ), (34)

where

�t � m

B
(35)

Then the diffusion coefficient takes the form:

D2 � 1

(2π)3
b4

�t B2
μ2ρ. (36)

The velocity dispersion equals:
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D2v � 〈�vd�vd〉 � 1

(2π)3
b4

B2
μ2ρ, (37)

which coincides with the expression obtained in [12].

3 Transport Equations

During the solution to concrete tasks of dynamic plasticity, the detail description of
elementary processes at the microscale with taking into account the velocity distribu-
tion is not always necessary. There is a lot of dynamic processes in solids which can
be solved at the so-called hydrodynamic scale. The macroscopic equations deal with
the averaged characteristics of inner structure in form of the so-called “representative
volume”. If instead, the moment equations for elementary carriers of deformation
(ECD) are obtained by means of averaging the kinetic equation for the elementary
carriers of deformation (ECD), one obtains the solution at the hydro-dynamical scale
for ECD only. In this case, to link the behavior of ECD with the macroscopical val-
ues, such as mean stress and strain one has to use continual theory of dislocations.
Just that approach is used in the our paper. At the beginning, the mean densities and
mean flow velocities for ECD are found, and after that macroscopic variable can be
expressed. The transport equation for dislocations can be obtained from the kinetic
equation by using the formal procedure which is commonly used in mechanics of gas
and fluids. In accordance with this procedure, the moment equations are obtained by
means of multiplying the kinetic equation by reciprocal degree of particle velocity
and following integration in velocity space [13].

To obtain the zero statistical moment of kinetic equation the latter must be multi-
plyed by the zero degree of dislocation velocity, i.e. by unit, and integrate on veloci-
ties. During the formal procedures of integration it is necessary to take into account
the tensor character of the dislocation velocity distribution function and remem-
ber about impossibility to move along the dislocation line. The integration of left
(convective) part of kinetic equation yields [14]:

(a)
∫

∂ f̂

∂t
d�v � ∂

∂t

∫
f̂ d�v � ∂

∂t
ρ̂;

(b)
∫

∂

∂�v ×
(�̇v × f̂

)
d�v � 0;

(c)
∫

∂

∂�r ×
(
�v × f̂

)
d�v � ∂

∂�r ×
∫ (

�v × f̂
)
d�v � ∂

∂�r × Ĵ . (38)

The second item disappears as the distribution function equal zero on integration
limits. For the collision item H ′′ one obtains:

(a)
∫

α
(
�v × f̂

)
d�v � α Ĵ ;
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(b)
∫

β f̂ (�v′)d�v′
∫

f̂ (�v)d�v � βρ̂ρ̂, (39)

so the collision item has the form:

H ′′ � α Ĵ − βρ̂ρ̂. (40)

To obtain the Fokker-Plank part of collision item H ′, let usmultiply the expression
(10) by function ϕ(�v) and integrate in the velocity space:

∫
ϕ(�v)

[
− ∂

∂vμ

(D1μ fi j ) +
1

2

∂

∂vμ

∂

∂vν

(D2νμ fi j )

]
d�v

�
∫

∂ϕ

∂vμ

(D1μ fi j )d�v − 1

2

∫
∂ϕ

∂vμ

∂

∂vν

(D2νμ fi j )d�v.

The items in the right hand side of equation equal to zero because of the rela-
tionship (17) between diffusion coefficients. This means that long-range interaction
between dislocations in Fokker-Plank collision item doesn’t influence on macro-
scopic carrying over the momentum and energy. This carrying over is described by
the second part of collision item H ′. Summarizing (38) and (39) yields the ultimate
form of zero moment of kinetic equation:

∂ρ̂

∂t
+

∂

∂�r × Ĵ � α Ĵ − βρ̂ρ̂. (41)

TheEq. (41) coincideswith the analogous equationof continual dislocation theory.
If the sources and stops of dislocations are absent, this equation means the Burgers-
vector conservation law.

In order to derivate the transport equation corresponding to the second statistical
moment of kinetic equation onemust multiply the latter by �v and integrate in velocity
space. The first item in left hand side gives:

∫
�v × ∂ f̂

∂t
d�v � ∂

∂t

∫ (�̇v × f̂
)
d�v −

∫ (
�v × f̂

)
d�v. (42)

To determine the acceleration of dislocations
→
v̇ in the second item, one can use

the equation of dislocation motion (11):

∫
�v × ∂ f̂

∂t
d�v � ∂

∂t
Ĵ − 1

m
σ̂ × ρ̂ +

B

m
Ĵ . (43)

∫
�v ×

(
∂

∂�r × (�v × f̂ )

)
d�v � − ∂

∂�r P̂ − ∂

∂�r
[�u(�u × ρ̂)

]
, (44)
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where P̂ is the kinetic stress tensor and �u is the mean dislocation velocity. The third
item in the left hand side of equation looks as follows:

∫
�v ×

[
∂

∂�v × (�v × f̂ )

]
d�v � 2

m
σ̂ × ρ̂ − 2

m
B Ĵ . (45)

Collision item of equation after multiplying by �v and integration in velocity space
yields:

α

∫
�v × (�v × f̂ ) d�v � α(Ŝ + �u × Ĵ ). (46)

β

∫
�v × f̂ (�v) ·

∫
f̂ (�v′)d�vd�v′ � β Ĵ ρ̂, (47)

where

Ŝ �
∫

�c × (�c × f̂ )d�v (48)

and �c � �v− �u is the relative velocity of dislocations. Summarizing the right and left
parts one obtains for the first moment equation:

∂ Ĵ

∂t
� ∂

∂�r ·
(
P̂ + �u Ĵ

)
+

1

m

(
σ̂ × ρ̂ − B Ĵ

)
� α

(
Ŝ + �u × Ĵ

)
− β Ĵ · ρ̂. (49)

In absence of sources and stops of dislocations, the transport equation for momen-
tum looks as follows:

∂ �u
∂t

× �ρ − ∂

∂�r · P̂ − ∂

∂�r
(�u · (�u × ρ̂)

)
+

1

m

[(
σ̂ × ρ̂

) − B �u × ρ̂
] � 0. (50)

This equation is the analog of thewell-known equation formomentum transport in
two-phase medium. In our case, one of phase is the dislocation structure and another
phase is the crystalline lattice.

Let us derivate the second moment equation of kinetic equation. For that we
must multiply two times by velocity vector and integrate on velocities. As result one
obtains:

(
∂

∂t
− B

m

)[
Ŝ − �u × (�u × ρ̂)

]
+

2

m

[�u × (
σ̂ × ρ̂

)] − 1

m
σ̂ × (�u × ρ̂

)

+
∂

∂�r
{
Q̂ + �u

[
Ŝ + �u × (�u × ρ̂

)]
+ P̂1

}
�

� α
{
�u ×

[
Ŝ + �u × (�u × ρ̂

)]
+ T̂ − 2�u · P̂

}
− β

[
Ŝ + �u × (�u × ρ̂

)] · ρ̂. (51)

Here the definitions for Q̂ and Ŝ are used.
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If Ŝ is the energy of chaotic motion of dislocations in random stress fields, then the

sum
[
Ŝ + �u × (�u × ρ̂

)]
can be related to common energy transported by dislocations.

Herewith, the second item beingmultiplying by dislocationmass has a sense directed
carrying over the kinetic dislocation energy. As the value Q̂ characterizes a carrying
over the chaotic energy (analog of heat flow vector in kinetic theory of gas) Eq. (51)
reflects the energy balance in the system of moving dislocations. Interaction with

crystalline lattice is described by the item B
m

[
Ŝ + �u × (�u × ρ̂

)]
. Action of external

forces on dislocation is reflected by the item 2
m

[�u × (
σ̂ × ρ̂

)] − 1
m σ̂ × (�u × ρ̂

)
.

Obtained above system for transport equations for dislocations in crystalline lat-
tice describes the deformation process at the scale level of elementary carriers of
deformation. When determined, the characteristics of dislocation motion can be
used for determination of macroscopical variables through the continuum theory
of dislocation. However, the equation system (50)–(51) remains non-locked till an
additional relationship between kinetic tensor P̂ and density of dislocations (analog
of equation of state in mechanics of fluid and gas) is absent. As a locking equation,
the relationship describing the long-range interaction of dislocations can be used:

P � −D2
∮

x1

ρ(s, t)

x − s
ds (52)

In developed approach, the accent lies in two aspects: (i) kind of rheological
coupling between dislocation and medium and (ii) kind of relationship between
dislocation themselves. Both kinds of coupling reflect the microscopical features of
material.

In the end of this paragraph, let us to write the one-dimensional version of energy
carrying over in the case of absence of sources and stops of dislocations:

(
∂

∂t
− B

m
)(S + u2ρ) +

1

m
σbuρ +

∂

∂x

[
Q + u

(
S + u2ρ

)
+ P1

] � 0

or

∂

∂t

(
S + u2ρ

)
+

1

m
σbρu − B

m

(
S + u2ρ

)
+

∂

∂x

[
Q + u(S + u2ρ) + P1

] � 0 (53)

Item
(
S + u2ρ

)
is the total energy of dislocation motion. Here S is the energy

of chaotic motion of dislocation and u2ρ is the energy of translational motion of
dislocations with the mean velocity u. Thus, Eq. (53) claims that the common energy
balance includes the following parts: (i) expenditure on energy of external forces, (ii)
ductile breaking in medium where dislocations move, (iii) energy of interaction of
dislocations with each other and (iv) heat transportation. In the presence of sources
and stops of dislocations, the right hand side of balance equation characterizes the
expenditure of external forces on activation of sources and stopping.
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4 Mesostructure Formation: Theory and Experiment
Obtained in Sect. 3 transport equations for dislocation structure can be applied for
building the new approach to solution the real tasks of dynamic plasticity. This
approach is based on joint solution to transport equations for moving dislocations.
The equations include: (i) interaction of dislocation with the medium through rheo-
logical equation for moving dislocations and (ii) interaction dislocations with each
other through the equation of state. The equations of continuity and momentum
carrying over in one-dimensional case look as follows:

∂ρ

∂t
+

∂

∂x
(ρu) � 0;

ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂P

∂x
− 2

m
(σb − Bu) � 0. (54)

Here ρ is the dislocation density, u is the mean velocity of dislocations, σ is the
external stress, b is theBurgers-vector,P is the stress due to interaction of dislocations
with each other and B is the damping coefficient. The Eq. (54) are obtained from the
kinetic equation for tensor velocity distribution function, so one-dimensional case
corresponds to behavior of one-sign dislocations. In this situation equation system
(54) describes the process of grouping of one-sing dislocations, which means that
one deals with the formation of mesostructure.

In the second equation kinetic stress tensor P, in accordance with the character of
interaction of dislocations in elastic medium, can be written in the form of Coashi-
integral

P � −D2
∮

x1

ρ(s, t)

x − s
ds. (55)

For the step-like loading of medium, the boundaries conditions take the form:

(1) v(x, 0) � 0
(2) ρ(x, 0) � ρ0

(3) σ (0, t) � σ (t)

In the present work, for the solution to this task the modified Picard’s method has
been used [14]. The solution concerns the step-like loading of A95 aluminum, as
fit-parameter, the damping coefficient B is used. The typical space profiles of dis-
location density for different values of damping parameter are provided in Figs. 1
and 2. The figures allow to see the kinetics of forming the mesoparticle as results
of collectivization of one-sign dislocations. Simulation shows that space profiles for
dislocation density are non-monotonous. In Fig. 1 a series of relative dislocation
density for damping coefficient value of B � 10−5 ns for different moments is pre-
sented. The moment t � 45 ns corresponds to beginning the mesoparticle forming
when density of dislocation till didn’t reach the maximum value. To the moment of t
� 60 ns the relative dislocation density reaches maximum value of ρ

ρ0
� 1, 4. Then
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Fig. 1 Space profiles of
one-sign dislocations for B �
10−5 ns at time moments:
1—45 ns, 2—60 ns, 3—90 n,
4—120 ns, 5—150 ns

Fig. 2 Space profiles of
one-sign dislocations for B
� 3 × 10−4 ns at time
moments: 1—45 ns,
2—60 ns, 3—90 n,
4—120 ns, 5—150 ns

the structure begins to gradually “wash-away” so to the moment of t � 150 ns dislo-
cations turn out be uniformly distributed in medium. The life-time of mesoparticle
equals 100–150 ns.

The increase of damping coefficient to B � 3 × 10−4 ns leads to stopping of
mesoparticle which is localized near the load surface of specimen.

The short-time grouping of one-sign dislocations and following “wash-away” can
be considered as pulsations of dislocation density. Simultaneously, the pulsations of
velocity occur. In dynamic experiments the pulsation are fixed in the form of the
particle velocity distribution the quantitative characteristic of which is the velocity
dispersion [15].

It follows from above simulation, that dynamic mesostructure and mesoparti-
cles themselves are the characteristics of the process but not a characteristics of
the state of material as it takes place in quasistatic situation. Existence of dynamic
mesostructure is possible only within time intervals during the loading pulse. Out-
side the loading pulse the conditions for dynamic mesoparticle existence disappear
as mesostructure comes to equilibrium state. In this state, the difference between
velocities of neighbor mesoparticles disappear and thereby the boundaries between
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Fig. 3 Mesoparticles in spall zone of shock-deformed copper

neighbor mesoparticles disappear as well. The only possibility for the visualization
of mesostructure is creating the conditions at which the mesoparticles are instantly
removing one from another so the equalization of their velocities has not time. This
situation is realized within the spall zone of shock deformed material where for a
very short time the all-round tension stress is initiated.

During spallation, the spall surfaces of target are quickly removed from each
other so the structure of material inside the spall zone is conserved. Accordingly,
the boundaries between mesoparticle which separate the volumes of medium with
different velocities are also conserved. Under conditions of high-velocity tension,
the separation of mesoparticles from each other happens whereas the mesoparticle
themselves transform into grains of powder. The typical relict meso-structure is pre-
sented in Fig. 3a–d. Every mesoparticle contains a series of shear bands of 5–10 μm
in width. The shear bands provide a homogenization of inner structure of mesoparti-
cle, the motion of medium during such a kind of homogenization is characterized by
the velocity distribution in the form of particle velocity dispersion. Just that velocity
distribution is fixed with the velocity interference technique [15].



412 Yu. I. Meshcheryakov

5 Conclusions

The theory of dynamic deformation based on the kinetics of elementary carriers
of deformation is developed. The theory combines both principles of the physical
kinetics for the continuously distributed dislocations and continual dislocation theory.
For that a concept of tensor dislocation velocity distribution function, the so-called
tensor field of deformed medium, is introduced.

The kinetic equation for the dislocation velocity distribution function includes
both long-range interaction of dislocations with each other and interaction with the
medium where they move. By using this theory it is shown that mesoparticle as
elementary carrier of deformation under conditions of high-velocity deforming is
short-living accumulation of one-sign dislocations the life-time of which is the order
of 100–150 nc. In the process of stochastic motion of mesoparticle, the pulsations of
mass velocity are generated which in experiment are fixed in the form of the particle
velocity distribution at the mesoscale.

The dynamic mesoparticle have been discovered inside the spall zone of dynam-
ically loaded copper targets.
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Interrelation of Heat Propagation and
Angular Velocity in Micropolar Media

Anna S. Morozova, Elena N. Vilchevskaya, Wolfgang H. Müller
and Nikolay M. Bessonov

Abstract This paper is concerned with a materials model within the framework
of an extended theory of micropolar media. The extension affects the balance for
the tensor field of micro-inertia which, in contrast to the common theory, will now
contain a production term. As a consequence the tensor of the moment of inertia
becomes an independent field varying in space and time and obeys its own partial
differential equation: an extended balance of micro-inertia. The production becomes
important if themicropolar material undergoes structural changes. In the present case
we consider on the mesoscale an assemblage of statistically uniformly distributed
particles of arbitrary shape, which we treat macroscopically as an isotropic linear-
thermoelastic continuum. The structural change is then due to a space-dependent
transient increase of the temperature field, which leads to an inhomogeneous time-
varying expansion of an equivalent thermo-elastic medium. On the continuum scale
this will lead to a changing moment of inertia field. For this situation a possible form
of the production term on the continuum level can be motivated from mesoscopic
considerations and then be evaluated numerically together with the extended balance
of micro-inertia. In addition, the temporal and spatial change of the macroscopic
inertia field influences rotational motion. By solving the balance of spin numerically
the angular velocity evolving in space and time will be determined. The impact of
viscosity in the expression of the couple stress will be investigated and different
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choices of boundary conditions will be proposed when solving the coupled thermo-
mechanical problem.

1 Introduction

In today’s materials science Generalized Continuum Theories (GCTs) gain increas-
ing importance. They are needed if one wishes to capture the mechanical behavior of
high performance materials possessing an inner structure and/or internal degrees
of freedom. The applications involve small as well as large structures and they
concern solids as well as liquids. There are many concrete examples in light-weight
aerospace and automotive technology. They range from liquid crystal displays to
micromechanical and microelectronical gadgets.

One particular form of GCTs is referred to a micropolar theory. It emphasizes the
aspect of inner rotational degrees of freedom of a material, see [2] for a modern ref-
erence. It is particularly suitable for modeling polycrystalline and composite matter,
granular and powder-like materials, and it can even be applied to porous media and
foams.

Continuummechanics of solids is traditionally formulated in the Lagrangian way,
a.k.a. material description. Here the concept of an indestructible “material particle”
prevails, identifiable by its reference position. Hence a bijective mapping for describ-
ing the particle’s path through three-dimensional space in time uniquely can be used.
Note that this requires the neighboring material particles to remain “close” to each
other during the motion. Furthermore note that a material particle in the continuum
sense is composed of myriads of atoms or molecules, so that statistical fluctuations
play no role in a macroscopic continuum. Furthermore there is no exchange of the
atoms and molecules between material particles: The mass of a material particle,
represented by the mass density, is conserved.

Traditionally this concept is also used in micropolar theory, see for example [5–
7]. One may say that the corresponding material particle consists of a statistically
significant number of subunits on a mesoscopic scale, for confusion often also called
“particles.”Now, if the Lagrangian idea of amaterial particle is followed, thematerial
particles must stay together during the motion and there should be no exchange of
subunits between them. Also note that within thematerial description of amicropolar
continuum, eachmaterial point is phenomenologically equivalent to a rigid body, and
its moment of inertia, the so-called micro-inertia, is a plain constant [7].

However, this is not always true. As a counterexample consider a granularmedium
being milled. This effects the material particle, because its subunits will be crushed.
They will change their mass and their moment of inertia and, what is more, during
the milling process there might even be an exchange of crushed subunits between
neighboring material particles, which are then no longer material in the original
sense. Consequently, on the macroscopic, i.e., on the continuum scale the moments
of inertia will change as well. It is for that reason that the authors of [9] have departed
from the idea of following the Lagrangian way and turn to the spatial perspective
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instead. Originally the spatial point of view stems from fluid mechanics. It does not
impose strict constraints on the motion of mass-conserved material particles. Rather
it embraces the idea of an open system, allowing a priori for exchange of mass,
momentum, energy, moment of inertia, etc., between the cells of a Eulerian grid. As
a matter of fact the materials considered within the framework of micropolar theory
are no longer strictly related to the solid or to the fluid state. They are somewhere
in-between, so-to-speak.

Moreover, the authors in [9] proposed a kinetic equation for the microinertia (the
field of the local inertia tensor), which in contrast to former theories contains a pro-
duction term. For a better understanding of this new concept they also presented an
underlying mesoscopic theory. Their idea is to connect information on a mesoscale
by taking the intrinsic microstructure within a spatial grid cell into account with the
macroscopic world, i.e., with the balances of micropolar continua in combination
with suitable constitutive equations. These new ideas including the transition from
the mesomechanical to the continuum scale have been illustrated by several exam-
ples in previous papers, see [9, 11–13, 13, 17]. In particular they considered (a) a
homogeneous mix of pressurized hollow spherical particles undergoing a uniform
change of external pressure so that their diameter and moment of inertia changes;
(b) Particles of type (a) but initially inhomogeneously distributed in an isothermal
atmosphere subjected to a barometric pressure distribution falling down and thereby
transporting a flux of into new observational points; (c) Changes of anisotropy due to
reorientation of initially randomly oriented ellipsoidal particles; (d) Fragmentation
of particles in a crusher, analytically as well as numerically; (e) Hollow spherical
particles rotating in an heterogeneous transient temperature field with a vanishing
couple-stress tensor (dust) when subjected to constant or harmonically oscillating
volume moment couples; (f) Interaction of ellipsoidal particles with electric fields
leading to their extension and further anisotropy on the continuum scale. What has
been missing so far were examples that show the impact of a changing moment
of inertia onto rotational motion in combination with a non-vanishing couple-stress
tensor.

In this paper the foundations of the extended continuum approach to micropolar
media will be presented first and a few remarks regarding the underlying mesoscopic
interpretation will be made. In particular, the necessity for a kinetic equation describ-
ing the temporal development of the field for the moment of inertia will be explained
and motivated. Second, the change of the state of rotation of a isotropic thermoelas-
tic continuum (a spherical material particle so to speak) will be studied, which shall
represent the behavior of a homogeneous mix of particles of arbitrary shape on the
mesoscale. The continuum particle will undergo a nonuniform change of external
temperature affecting its moment of inertia. Note that within the classical framework
of micropolar theory a change of temperature would not influence rotation. Within
the to-be-presented theory, however, changes in temperature will influence the iner-
tia tensor and hence couple to rotational speed. Additional attention will be paid to
the influence of the viscous part in the couple stress tensor. It will be shown that it
can have a considerable effect on the internal rotational state of matter. As far as the
volume couple moments are concerned use will again be made of the mesoscopic
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dipole model formulated before in [11] inspired by previous work of Zhilin and Kol-
pakov [19]. Finally note that the solution of Initial-Boundary-Value-Problems (IBVP)
in micropolar theory involves also the use of non-classical boundary conditions.
In the present case this concerns the behavior of the angular velocity at the bound-
ary. Therefore different choices for the boundary conditions will be proposed when
solving the heat conduction in combination with the spin equation.

2 Governing Equations

We shall now briefly present some essential basic relations of micropolar continuum
theory in spatial description for the next sections. The following thermodynamical
fields are required to be determined in micropolar theory of thermo-elasticity: the
scalar field ofmass density, ρ(x, t); the symmetric, second rank, and positive definite
specific moment of inertia tensor field, J(x, t); the vector field of linear velocity,
v(x, t); the angular velocity field, ω(x, t), and the temperature field, T (x, t), in all
points, x, and at all times, t , within a region of space,B, which can be either amaterial
volume, i.e., it consists of the same matter at all times, or be a region through which
matter is flowing.

These fields have to be determined from balance equations complemented by suit-
able constitutive relations. In regular points the balances for a micropolar medium
without coupling between translational and rotational kinetic energies read as fol-
lows:

• balance of mass:
δρ

δt
+ ρ∇ · v = 0, (1)

• balance of momentum:

ρ
δv

δt
= ∇ · σ + ρ f , (2)

• balance of spin:

ρ J · δω

δt
= −ω × J · ω + ∇ · μ + σ× + ρm. (3)

We denote by
δ(·)
δt

= d(·)
dt

+ (v − w) · ∇(·) (4)

the substantial derivative of a field quantity. d(·)/dt is the total derivative andw themap-
ping velocity of the observational point (see [8]). Moreover, σ is the non-symmetric
Cauchy stress tensor, f is the specific body force, μ is the couple stress tensor,
(a ⊗ b)× = a × b is the Gibbsian cross, and m are specific volume couples.
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For heat transfer, the dynamic Eqs. (2) and (3) are supplemented with the heat
conduction equation after [18]:

ρ cv

δT

δt
= σ d : (∇ ⊗

v + I × ω) + μd : ∇ ⊗
ω + ρq − ∇ · h . (5)

Here T is the absolute temperature, cv is the specific heat capacity at constant volume,
double convolution means (a ⊗ b) : (c⊗ d) = (a · c)(b · d), q is the heat source per
unit mass, h is the heat flux, and σ d and μd are the inelastic (dissipative) parts of the
stress tensor and couple stress tensor:

σ = σ e + σ d, μ = μe + μd, (6)

where σ e and μe are the elastic (velocity independent) parts of the stress tensor and
couple stress tensor.

Traditionally, in generalized theories, eachmaterial point (particle) of amicropolar
continuum is phenomenologically equivalent to a rigid body. Hence, its moments of
inertia do not change, see for example [4, 7, 10, 16]. Even if amicromorphic structure
is considered, following [3, 5, 7], many papers use an additional balance law for the
conservation of inertia (e.g., see [1, 14]).

δJ
δt

= ω × J − J × ω . (7)

Here the terms on the right hand side characterize the change of themoment of inertia
tensor due to rigid body rotation.

A different approach was suggested in [9], where a constant elementary volume
V was treated as a micropolar particle as is customary in the spatial description.
The tensor of inertia of the elementary volume is obtained as a result of averaging
of the tensors of inertia particles, of which a representative volume consists. It was
shown that in this case the inertia tensor of the volume may change due to the inertia
flux or internal structural transformations such as consolidation or defragmentation
of particles. Then the specific density of the tensor of inertia on the macrolevel has
to be treated as an independent structural field variable rather then parameter. As a
result the equation of the inertia conservation (7) should be extended by including
an additional production term, χ on the right hand side. On the continuum level
this term must be considered as a new constitutive quantity. It can depend on many
physical quantities: temperature, pressure, flow rate, etc., and its form is defined by
the process under consideration.

In this paper, we are going to consider a change of the moment of inertia initiated
by a temporal and spatial increase of temperature that, in turn, allows us to interrelate
the heat propagation in the media with a change of angular velocity.



418 A. S. Morozova et al.

3 Problem Statement

The general problem is as follows. We consider a medium consisting of spheri-
cal thermoelastic continuum particles homogeneously distributed over a rectangular
region: x ∈ [0, L], y ∈ [−Ly, Ly], z ∈ [−Lz, Lz]. Then, on a continuum level, the
homogenized tensor of inertia is isotropic J = J I. Initially the temperature of the
media is also homogeneous and equal to T0. However, the temperature of themedium
changes within time due to homogeneous heating of the right plate side, while the
left side is kept at the initial temperature T [x = 0, y, z, t] = T0.

Due to the increasing temperature field, the particles will expand, which, in turn,
leads to an increasingmoment of inertia. In order to find the corresponding production
term we consider the free thermal expansion of the spherical particle. In this case the
production term also has to be isotropic χ = χI.

Under the assumption that the temperature is instantaneously assumed by the
particle the dependence of the inertia moment on temperature field is:

J (x, t) = J0 [1 + α(T (x, t) − T0)]
2 , (8)

with J0 being the initial moment of inertia, and α being the linear coefficient of
thermal expansion. The production can now be found as:

χ = ∂ J

∂t
= 2J0α (1 + α(T − T0))

∂T

∂t
. (9)

For simplicity we suppose that the macro-particles have only rotational degrees of
freedomand their translational velocities are equal to zero. Then, for an unconstrained
medium in absence of body forces the moment balance equation is automatically
fulfilled.

Regarding the balance of angular momentum (3) we assume that the elastic part of
the couple stress tensor equals to zero, and write the following constitutive equation
for its dissipative part according to Zhilin [18]:

μd = −β(∇ × ω) × I, (10)

where β has the meaning of a frictional coefficient.
In order to keep the problem one-dimensional we also assume that:

ω(x, t) = ω(x, t)ez, m(x, t) = m(x, t)ez . (11)

Then Eq. (3) turns into a scalar one:

Jρ
∂ω

∂t
= β

∂2ω

∂x2
+ ρm. (12)
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Fig. 1 A simple model for
inducing angular rotation

Now we have to formulate a constitutive equation for the volume couple den-
sity. Two different cases will be considered. The simplest one where the density is
assumed to be constant,m(x, t) = m0, allows an easy comparison between the to-be-
obtained solution and the classical one. It will demonstrate the difference between
the two approaches. However, it is not obvious how the constant specific volume
couples can be realized and a time-dependent constant specific volume couples also
will be considered. Following ideas presented in [19] we imagine the particle to be
electrically polarized dipoles with zero net charge, q+ = −q− = q, as indicated in
Fig. 1. Now we apply a constant external electric field, E0, in negative x-direction.
The total Coulomb force, and therefore (after homogenization) the body force (in
x-direction) will then vanish. However, the moment couple acting on the sphere will
not. Rather it points in z-direction and is given by:

M = (
q+ − q−)

R × E0 = 2qRE0cosϕ(t)ez �= 0. (13)

q being the magnitude of the dipole charge, and R being the particle radius. Hence
in this model the volume moment couple density is time-dependent as follows:

m = m0cos

⎛

⎜
⎝

t̃=t∫

t̃=0

ω
(
t̃
)
dt̃

⎞

⎟
⎠ ez , m0 = 2

q

mp
RE0 (14)

for ϕ(0) = 0 and mp being the mass of one particle.
Thus the development of temperature, the moment of inertia and angular velocity

can be obtained as a result of solution of a coupled system of partial differential
equations:
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∂ T̄

∂ t̄
= δ

(
∂ω̄

∂ x̄

)2

+ ∂2T̄

∂ x̄2
,

∂ J̄

∂ t̄
= 2ᾱ[1 + ᾱ(T̄ − 1)]∂ T̄

∂ t̄
, (15)

J̄
∂ω̄

∂ t̄
= η

∂2ω̄

∂ x̄2
+ m̄,

ᾱ = αTini, δ = βm0

κTini J0
, η = βcv

κ J0
, m̄ = ω0

L2

D
,

ω0 =
√
m0

J0
, D = κ

ρcv

.

Here the Fourier law was assumed, h = −κ∇T , with κ being the thermal conduc-
tivity. The bar on symbols refers to dimensionless quantities, namely:

x̄ = x

L
, t̄ = D

L2
t, T̄ = T

T0
, J̄ = J

J0
, ω̄ = ω

ω0
. (16)

The initial conditions are:

T̄ (x̄, t̄ = 0) = 1, J̄ (x̄, t̄ = 0) = 1, ω̄(x̄, t̄ = 0) = 0. (17)

Furthermore we are going to consider different types of boundary conditions:

T̄ (x̄ = 0, t̄) = 1, T̄ (x̄ = 1, t̄) = TL
T0

or
∂ T̄

∂ x̄

∣
∣
∣
∣
x̄=1

= − hL

T0κ
,

ω̄(x̄ = 0, t̄) = ω̄(x̄ = 1, t̄) = 0 or
∂ω̄

∂ x̄

∣
∣
∣
∣
x̄=0;1

= 0,

(18)

where h is the heat flux at the boundary. The first conditions in the second line of
Eq. (18) are equivalent to “no slip” (or “strict adhesion,” [6], or velocity controlled)
boundary conditions for the angular velocity, while the second ones correspond
to an absent couple stress on the boundary, which we may also refer to as “force
controlled” boundary condition. It is also worth mentioning that the angular velocity
related boundary conditions are necessary only if the viscosity is taken into the
account. Note that the proper choice of boundary conditions for the angular velocity
is a complex issue. This was recently investigated in [15], where many references to
the pertinent literature can be found.

In the next section, this system of the differential equations is solved numerically
based on the finite difference method.
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4 Results and Discussion

We start with a simple case without viscosity: β = 0, m̄ = 100, T̄ (x̄ = 1, t̄) = 2.
Figure 2 shows the developments of temperature and angular velocity at three dimen-
sionless times, t̄ = 0.005 (green), t̄ = 0.01 (blue), and t̄ = 0.03 (red). Note that the
obtained profile of angular velocity is nonlinear in contrast to the classical approach
without structural change when the angular velocity does not change over the sample
length. The nonlinear behavior reflects the fact that distribution of inertia moment
over the sample mimics the temperature profile and as a result it follows from Eq.
(15) that the angular acceleration varies for particles with different temperature.

The analogue to Fig. 2 for the heat flux boundary condition is shown in Fig. 3
(q = 10). In contrast to the previous case the temperature at the right side of the
plate grows and, correspondingly, the moment of inertia goes up. This in turn leads
to a decrease of the angular velocity. When compared to the temperature governed
boundary condition, the decrease is slower at the first stage of the heating process
but then becomes more prominent.

Fig. 2 Temperature and angular velocity distribution over the sample at different moments of time
(for prescribed temperatures at the boundaries)

Fig. 3 Temperature and angular velocity distribution over the sample (for a prescribed heat flux at
the right boundary)
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Fig. 4 Angular velocity at different locations

We shall now consider the periodic specific volume couple

m̄ = 100 cos

⎛

⎜
⎝

t̃=t∫

t̃=0

ω
(
t̃
)
dt̃

⎞

⎟
⎠ ez . (19)

The numerical solution of the IBVP (15) yields the angular velocities as functions
of time shown in Fig. 4 when using the same initial and boundary conditions as for
the plots of Fig. 2. Three different positions are examined, namely x̄ = 0.1 (green),
x̄ = 0.7 (blue), and x̄ = 0.9 (red). The temperature change influences the amplitudes
and the frequencies of the oscillations noticeably. The green curve corresponds to the
angular velocity of particles with the initial moment of inertia. Within the classical
approach without structural change all particles would possess that angular velocity,
however, in our approach the amplitude and frequency of oscillation decrease with
increasing temperature.

So far viscous effects were not taken into account. In order to do so, we put
η = 1, δ = 1 and first focus on the velocity controlled boundary condition. The
other parameters, initial and boundary conditions are the same as used for plots in
Fig. 3. The temperature and angular velocity profiles are shown in Fig. 5. The viscous
friction leads to additional temperature increase, particularly noticeable at the left
side of the sample, and to a non-symmetric curve for the angular velocity.

As it can be seen in Fig. 6 for the case of a periodic specific volume couple the
presence of viscosity causes the angular velocity oscillation to die out. Analogously
to the situation depicted in Fig. 4 three different positions were considered, namely,
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Fig. 5 Temperature and angular velocity distribution over the sample (strict adhesion boundary
condition)

Fig. 6 Angular velocity at different locations

x̄ = 0.1 (green), x̄ = 1/3 (blue), and x̄ = 0.9 (red).As could be expected thematerial
points at a higher temperature rotate slower and with a lower frequency due to their
increasing inertia.

A comparison of the temperature and angular velocities distributions with and
without viscous effects at t̄ = 0.03 is shown in Fig. 7. The blue curves correspond
to the case without viscosity. They are the same as in Fig. 3. The red curves were
obtained for the viscous case with a force-controlled boundary condition. As to
be expected the temperature change in viscous media is more pronounced than in
non-viscous ones, which leads to a more significant decrease of the angular velocity.
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Fig. 7 Angular velocity and temperature profiles with and without viscosity

5 Conclusions and Outlook

This paper was devoted to a detailed numerical study of a model material within the
framework of micropolar theory. Attention has been drawn to the following issues:

• The fundamental balance equations for the fields of micropolar media were
discussed and presented.

• The reasons for extending the balance of micro-inertia by a production term were
explained: The tensor of micro-inertia can no longer be treated as a constant if the
micropolar medium undergoes structural change.

• An ensemble of stochastically arranged micro-particles of arbitrary shape was
considered on the mesoscale. On the macroscale their behavior was replaced by
an equivalent isotropic continuum. The change of its moment of inertia when
subjected to a change in temperature was then calculated based on linear thermo-
elasticity. This information was used to propose a constitutive relation for the
production of micro-inertia for the continuum particle.

• The coupled partial differential equations following from the balance of
micro-inertia, the spin balance, and the heat conduction equation were solved
numerically by using the finite difference method. A one-dimensional situation
was considered where the equivalent (one-dimensional) micropolar medium was
subjected to different boundary conditions. A linear viscous constitutive relation
was proposed for the viscous part of the couple stress tensor. The specific volume
couple vector was either assumed to be a constant or a harmonic function based
on a micro-dipole model. The influence of various types of boundary conditions
was studied: prescription of temperatures or of the heat flux as well as velocity
or force control for the angular velocity at the boundaries. The impact of couple
stress viscosity on the damping behavior of the rotational motion was investigated.

The stage is now set for studying three-dimensional problems ofmicropolarmedia
undergoing structural change on the mesoscale. A possible example are fluid flow
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problems involving liquid crystals where the structural state of the fluid matter is
actively controlled by applying electromagnetic fields from the outside.

Acknowledgements Support of this work by a grant from Russian Science foundation by RSF
grant no. 18-19-00160 is gratefully acknowledged.
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The BIE Method in the Problem of Wave
Propagation Through an Infinite
Doubly-Periodic Array of Elliptic
Obstacles

M. Yu. Remizov

Abstract In the present paper the author study the propagation of a plane wave
through a doubly-periodic infinite array of identical obstacles of elliptic shape. The
symmetry of the geometry allows us to reduce the problem to a certain single layer,
where a special form of the Green’s function leads to a basic boundary integral
equation (BIE) for this diffraction problem. The BIE is studied in the one-mode
frequency range. Then the author construct an appropriate numerical method, to
solve this integral equation, which allows us to evaluate the wave properties of
the periodic structure including the reflection and transmission coefficients versus
frequency parameter.

1 Introduction

Recently, many works have been devoted to the study of metamaterials as the media
containing gratings of periodic geometry [1–7]. New properties with impressive
mechanical, electromagnetic and acoustical applications have been found in such
materials, due to their specific periodic internal structure. The discovered phenom-
ena, such as negative refraction, selective filtration, cloaking, etc., result in numerous
applications of the metamaterials in various branches of science and engineering.
The most impressive contribution was made in the research of electromagnetic wave
processes in such materials. Currently, the problems of acoustic and elastic wave
propagation in metamaterials are also being studied very actively, since the phenom-
ena found in the field of electromagnetism pay important role also in mechanical
aspect.

Typically, the theoretical studies of the subject discussed above are being per-
formed by applying the Finite Element Method, the Boundary Element Method,
or some other direct numerical techniques. In recent years, the experimental base
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devoted to the subject under discussion has also begun to develop rapidly. Natu-
ral experiments on the propagation of elastic waves are carried out mainly in the
high-frequency ultrasonic range using the advanced modern facilities of ultrasonic
analysis. There are also semi-analytical approaches with possible application for infi-
nite or semi-infinite periodic structures. Usually, such methods are based on some
asymptotic considerations (low or high-frequency regime), being efficient in the
far zone of the wave field only [8–13]. The papers [9–12] provide explicit ana-
lytical formulas for reflection and transmission coefficients in the low-frequency
range for scalar acoustic or electromagnetic waves penetrating through doubly and
triple-periodic arrays of arbitrary-shaped apertures and volumetric obstacles. The
2-D problems on wave propagation through a periodic array of screens in elastic
solids for a single-periodic system of cracks have been considered in [11, 12], and
for the doubly-periodic geometry – in [10, 13].

The so-called “acoustic metamaterials” possess the property typical for acous-
tic filters – a cutoff of the propagating wave over certain frequency intervals. This
phenomenon for the elastic triple-periodic structures was recently discovered exper-
imentally, see [14]. Some fundamental properties of the acoustic metamaterials are
discussed, among many other publications, in [15–19]. The papers [20, 21] provide
explicit analytical formulas for scattering parameters in the low-frequency range,
in the case of the 3-D problem on elastic wave propagation through doubly and
triple-periodic arrays of apertures.

2 Mathematical Formulation of the Problem

To study the filtering properties of metamaterials, let us consider the normal inci-
dence of a plane wave pinc = eikx1 propagating through a doubly periodic system of
identical cylindrical obstacles, infinite in x3 direction and located in an unbounded
medium. Here k is the wave number, and i = √−1 is the imaginary unit. By the sym-
metry of the problem, the solutions at each section x3 = const is the same. Therefore,
the problem can be reduced to the two-dimensional form presented in Fig. 1.

According to the linear theory, the total wave field is represented as the sum of the
incident and reflected waves: p = pinc + psc, where psc is the scattered component.
The time-dependant factor e−iωt is hidden. In frames of the accepted hypotheses, the
wave field is described by the Helmholtz equation:

Δp + k2 p = 0. (1)

To complete the mathematical formulation, one should add to Eq. (1) some boundary
conditions. If the boundary of the obstacles is acoustically rigid, then the homoge-
neous Neumann boundary condition should be satisfied over the obstacles: vn|l = 0,
where v is the velocity vector, n is the outwards normal vector to the boundary and
l is the boundary contour.
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Fig. 1 Propagation of the
incident wave through a
periodic array of elliptic
obstacles

Using the expression for the velocity vector: v = (1/ iρω) ∂p/∂n, this boundary
condition can be rewritten in terms of pressure, as follows:

∂p

∂n

∣
∣
∣
∣
l

= 0 ∼ ∂psc

∂n

∣
∣
∣
∣
l

= −∂pinc

∂n

∣
∣
∣
∣
l

. (2)

According to [22], in the case of a doubly-periodic array of obstacles, infinite along
axis x2, the reduction of the problem to a single layer is possible only if the boundary
contour is symmetric along coordinate x2, i.e. if the cross-section of each obstacle is
symmetric with respect to axis x1. Note that the cross-sections of different obstacles
inside the selected horizontal layer may differ from each other. Let M designate the
number of vertical rows of obstacles in the array, therefore l = ∑M

j=1 l j .

3 Derivation of the Basic Integral Equation

Let us assume again that all boundary contours are acoustically hard. Then it is
known that the BIE method reduces the diffraction problem to the Fredholm integral
equation of the second kind over the boundary of the obstacles:

1

2
p(x) −

∫

l

[

p(y)
∂Φ(y; x)

∂ny

]

dly = eikx1 , x ∈ l, (3)

where x = (x1, x2), y = (y1, y2) and the Green’s function Φ(y; x) in the two-
dimensional case is expressed in terms of the Hankel function:

Φ(y, x) = i

4
H (1)

0 (k|x − y|) → ∂Φ(y, x)

∂ny
= − ik

4
H (1)

1 (kr)
(r, ny)

r
, (4)

where r = |x − y| is the distance between two points on the contour of integration.
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In such a setting, the integration is carried out along the boundary of each obstacle
in the doubly-periodic array under consideration. This can be reduced to integration
over the obstacles located inside a single layer, compare with [22].

For this aim let us construct a specific Green’s function, which satisfies the fol-
lowing conditions of periodicity:

p(y1, 0) = p(y1, d),
∂p

∂y2
(y1, 0) = ∂p

∂y2
(y1, d) (5)

where d is the thickness of one horizontal layer (which is the period of the grating
along the vertical direction). According to [8], the Green’s function is expressed in
the following form:

Φ(y, x) = ieik|y1−x1|

2kd
+

+∞
∑

n=1

e−βn |y1−x1| cos[(2πn/d)(y2 − x2)]
βnd

, (6)

where the indicated assumption k < 2π/d (i.e. λ = 2π/k > d) ensures that the coef-
ficients βn = √

(2πn/d)2 − k2 are always positive. Then the kernel of the integral
equation (3) is represented by the sum

∂Φ(y, x)

∂ny
= ny

1

∂Φ(y, x)

∂y1
+ ny

2

∂Φ(y, x)

∂y2
, (7)

ny
1

∂Φ(y, x)

∂y1
= −ny

1

sign(y1 − x1)

d

(
eik|y1−x1|

2
+ S1

)

, (8)

ny
2

∂Φ(y, x)

∂y2
= −ny

2

2π

d2
S2, (9)

S1 =
+∞
∑

n=1

e−βn |y1−x1| cos[(2πn/d)(y2 − x2)], (10)

S2 =
+∞
∑

n=1

n e−βn |y1−x1|

βn
sin[(2πn/d)(y2 − x2)]. (11)

For efficient treatment of infinite sums S1, S2 in (10), (11), let us extract the behav-
ior of the terms of these series as n → ∞ in explicit form, by taking into account that
βn ∼ 2πn/d, n → ∞. Then, omitting some routine mathematical transformations,
one obtains the following representation

∂Φ(y, x)

∂ny
= ∂Φ̂(y, x)

∂ny
− ny

1

sign(y1 − x1)

d
Ŝ1 − ny

2

2π

d2
Ŝ2, (12)
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where the two series

Ŝ1 =
+∞
∑

n=1

(

e−βn |y1−x1| − e−(2πn/d)|y1−x1|) cos[(2πn/d)(y2 − x2)], (13)

Ŝ2 =
+∞
∑

n=1

(
ne−βn |y1−x1|

βn
− de−(2πn/d)|y1−x1|

2π

)

sin[(2πn/d)(y2 − x2)], (14)

are rapidly convergent, and the asymptotic (singular) part

∂Φ̂(y, x)

∂ny
= 1

2d

{(

1 − eik|y1−x1|) sign(y1 − x1) n
y
1 −

− sinh[(2π/d)(y1 − x1)] ny
1 + sin[(2π/d)(y2 − x2)] ny

2

cosh[(2π/d)|y1 − x1|] − cos[(2π/d)(y2 − x2)]
}

(15)

coincides with the low-frequency approximation developed in [8].
In the case when all obstacles are identical ellipses, the canonical equation of the

ellipse is x21/a
2 + x22/b

2 = 1, and the equation of the tangent straight line constructed
at the point of the ellipse (x01 , x

0
2 ) is written in the form x1(x01/a

2) + x2(x02/b
2) = 1.

The components of the outer unit normal vector at this point are (x01/a
2, x02/b

2).
These can easily bewritten in the polar coordinates x1 = r1 cosϕ, x2 = r1 sin ϕ, ϕ ∈
[0, 2π ], where the distance r1 from the origin to the current point at the ellipse is
r1 = ab

√

a2 sin2 ϕ + b2 cos2 ϕ. The components of the unit normal vector at this
point in the polar coordinates are n̄ = {b2 cosϕ, a2 sin ϕ}/

√

a4 sin2 ϕ + b4 cos2 ϕ.
In the particular case a = b the ellipse is reduced to a circle, whose radius is denoted
as r0.

4 Numerical Treatment

The formulas obtained in the previous section make it possible to construct a numer-
ical solution of the described problem. The algorithm applied is based upon the BIE
described above, with the use of a collocation technique. According to the approach,
the contour of each obstacle is divided to a finite number n of small arcs. It allows to
replace the integral in Eq. (3) by a sum of n integrals over the set of the introduced
arcs. For the doubly periodic array of obstacles, the integral is replaced by a double
sum, where the first summation passes along M contours in the chosen single hor-
izontal layer and the second summation passes over small elementary arcs of each
obstacle:

∫

l

[

p(y)
∂Φ(y; x)

∂ny

]

dly =
M

∑

j=1

n
∑

m=1

∫

l jm

[

p(y)
∂Φ(y; x)

∂ny

]

dl jm (16)
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The nodes of the computational grid are arranged at the center of each small contour
l jm . Following the collocation method, both “external” nodes x and “internal” nodes
y in Eq. (3) run along the same set of nodes. If all elementary arcs are small, then
the integrand is approximately a constant over the small arc, hence in its resulting
discrete form the basic BIE is reduced to a system of linear algebraic equations
(SLAE), with a matrix of the size Mn × Mn, (u = 1, . . . , M; w = 1, . . . , n):

1

2
p(xuw) −

M
∑

j=1

n
∑

m=1

[

p(y jm)
∂Φ(y jm; xuw)

∂n jm
y

]

Δl jm = eikx1 , xuw ∈ luw. (17)

Note, that when the points of the both variables belong to the same elementary arc,
i.e. when x jm = y jm , a certain singularity takes place in the kernel of the integral
equation. This feature requires accurate calculation in the kernel in this case, when
taking integral over the elementary arc. In practice, this means that the integrals
over variable y in the singular asymptotic part of the kernel (15) over the small
vicinity of the node xuw ∈ luw should be carried out precisely. This is attained by
a numerical integration. The resulting SLAE (17) can be solved by any suitable
numerical technique, for example, by the Gauss elimination method.

Once the boundary values of the unknown wave field are known from the basic
BIE, the reflected and the transmitted wave can easily be calculated at arbitrary point
in the medium. According to the classical wave theory [23], if the full wave field is
a sum of the incident and the scattered ones:

p(x) = psc(x) + pinc(x), (18)

then the reflection and the transmission coefficients can be expressed in the left and
right far-zones, respectively, in the following form (compare also with [8]):

psc(x) = Re−ikx1 , p(x) = T eikx1 , (19)

where both the coefficients can be written in the form of relatively simple integrals,
as follows:

R = − 1

2d

∫

l
p(y)eiky1n1(y)dly, T = 1 + 1

2d

∫

l
p(y)e−iky1n1(y)dly . (20)

5 Results of the Calculations

When performing the numerical treatment, the basic attention is paid to the physical
properties of the doubly-periodic system as an acoustic filter. The author investigates
the possibility of using the correct lattice of artificial obstacles of elliptic cross-
section, made in the elastic material, to arrange some frequency intervals of locking
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in the propagation of the planewave.With so doing, n = 100 nodes over the boundary
of each obstacle are taken in our numerical experiments, to solve respective SLAE.

By considered elliptical obstacles of varying eccentricity, one can modify the
elliptic smooth boundary from the round shape up to a thin screen. This allows us to
test the precision of the developed approach, by using the known results published
in literature for these limiting cases. In all numerical experiments the elliptic domain
is set as the one inscribed inside a circle of radius r0. Numerous calculations show
that in practice the case b = r0, a = r0/100 gives the reflection and transmission
coefficients coinciding with those known for vertical screens, within two–three right
significant digits. The main problem when performing such tests is that to provide a
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Fig. 2 Reflection coefficient versus frequency parameter: M = 1, b = r0, line 1 – a = b = r0
(circle), line 2 – a = 0.75r0, line 3 – a = 0.50r0, line 4 – a = 0.25r0
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Fig. 3 Reflection coefficient versus frequency parameter: M = 2, b = r0, line 1 – a = b = r0
(circle), line 2 – a = 0.75r0, line 3 – a = 0.50r0, line 4 – a = 0.25r0
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significant precision for so elongated obstacles, one should take over each boundary
curve more than thousand nodes.

The distance between two adjacent obstacles is assumed to be the same in both
the directions, being equal to the layer thickness d = 0.02m. The wave speed c =
6000m/s corresponds to the longitudinal wave for a steel material. In such a case
the one-mode restriction k < 2π/d permits the physical analysis up to the frequency
f = 300kHz, where f = ω/(2π).
Some examples of the calculations are presented in Figs. 2, 3, 4, 5 and 6, for the

elliptic obstacles described by the canonical equation, where a, b are semiaxes, and
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Fig. 4 Reflection coefficient versus frequency parameter: M = 2, b = r0, line 1 – a = r0/15, line
2 – a = r0/1000 (thin screen)
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Fig. 5 Reflection coefficient versus frequency parameter: M = 2, b = r0, line 1 – a = b = r0
(circle), line 2 – a = r0/1000 (thin screen)
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Fig. 6 Reflection coefficient versus frequency parameter: M = 10, b = r0, line 1 – a = b = r0
(circle), line 2 – a = 0.5r0

parameter r0 = 0.0075m. There is also demonstrated the behavior of the reflection
coefficient |R| versus frequency parameter kd/2 for one, two and ten (M = 1, 2, 10)
periodic systems of the obstacles.

6 Physical Conclusions

The following physical conclusions can be extracted from the undertaken numerical
analysis:

1. The behavior of |R|(kd/2) for one periodic system (M = 1) in the transition
from a circular to elliptic obstacle (Fig. 2) differs rather weakly for low and middle
frequencies of the one-mode frequency interval. This is on the contrast to the case
of high frequencies, where the narrower shape of the elliptical obstacle leads to
an expansion of the locking region and to almost full reflection mode. For the most
vertically elongated shape, among four geometries considered inFig. 2, for the ratio of
the ellipse’s half-axes a/b = 0.25, the possibility of full transmission (when |R| = 0)
disappears.

2. With increasing number of the vertical arrays (M = 2, Fig. 3) and (M = 10,
Fig. 6) the behavior of the reflection coefficient keeps its qualitative properties. How-
ever, the filtering becomes more impressive, since the cut-off over a mid-frequency
interval is more uniform, |R| ≈ 1 in this frequency region, therefore the transmission
coefficient |T | is closed to the trivial value.

3. Figure4 confirms that the elliptic obstacles of small eccentricity may efficiently
simulate the thin-screen obstacles. In fact, the behavior of the reflection coefficient
over almost full one-mode range for the chosen pair of very narrow obstacles with
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b/a = 15 and b/a = 1000, where the latter is practically a thin screen, even being
formally slightly different, but physically are very close to each other. One may use
such a grating for a wave filtration both in the central and in the upper parts of the
one-mode frequency interval.

4. Figure5 (M = 2) illustrates the difference in the reflection properties between
the round obstacles and the thin screens. This figure indicates that the doubly periodic
array of round obstacles works well as an acoustic filter at the central part of the one-
mode frequency range, while the same doubly-periodic structure of the thin screens
is more efficient in this sense over a higher part of the considered frequency interval.
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Levitation of Small Diamagnetic Particle

D. Yu. Skubov, A. V. Lukin and I. A. Popov

Abstract The aim of this article consists in the construction of a magneto-electrical
scheme,which, due to distribution of amagnetic field, gives the opportunity of obtain-
ing the area of stable equilibrium for small diamagnetic (for example, biological)
particle, freely «soaring» in the gravitational field of Earth. At the same time due
to small diamagnetic susceptibility of the particle the magnetic field doesn’t have
essential distortion. This experiment can be considered as a model of a biological
object behavior in the weightless conditions or it may give the possibility for inves-
tigation of the properties of isolated particles under temperature, magnetic and other
physical exposures.

1 Introduction

In the works by Martynenko [1, 2] much attention is paid to the possibility of elec-
trostatic, electromagnetic and superconductor levitation, the latter of which opens
the opportunity of creating powerful diamagnetic suspensions, the magnetic field of
which has already been brought to super high values ~40–50 T . The lifting force
itself is given by the formula

F � 1

2
μ0(μ − 1)

∫
∇H 2dυ, (1)

where the integration is carried out over the total volume of a suspended diamagnetic
body.

In case of magnetic permeability μ < 1 for diamagnetic materials and in case
μ � 0 for superconductivity of the first or the second kind (HTSC-2), the latter of
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which is realized at liquid nitrogen temperature, the solid is pushed out from the
region with a stronger magnetic field in the direction opposite to the gradient of the
square of the induction.

In the present work the levitation of a small diamagnetic particle is considered
in a scheme involving the establishment of a large magnetic field gradient with a
sufficient area of stable equilibrium position.

The theoretical and experimental possibility of levitation was first shown by
Braunbek [3]. The magnetic suspension of ferrite bodies was realized in the thirties
of the last century. In 1945, a Moscow scientist VK Arkadiev created a contactless
suspension using the phenomenon of superconductivity. He “forced to levitate” a
small permanent magnet over the superconducting lead disk.

Diamagnetic materials, originally used for suspension, such as bismuth and
graphite, have very weak diamagnetic properties with coefficient of magnetic per-
meability μ close to 1. Therefore, till recently, it was possible to hang out only small
masses of the order of several tens of milligrams. The appearance of new rare-earth
permanent magnets, high-temperature conductivity, substances with better diamag-
netic properties allow, in particular, to create heat-shielding coatings for spacecrafts
from pyrolytic graphite, whose magnetic susceptibility is several times greater than
the one of conventional polycrystalline graphite.

Applying of samarium-cobalt magnets and pyrolytic graphite in Perm University
in 1978 made it possible to bring the weight up to 26.7 g [4]. The simplicity of the
construction of such a suspension is based on the fact that the displayed magnet is
locatedbetween thediamagnetic plates and itsweight is compensatedbyan additional
stationary permanent magnet. The analysis of stability and the estimation of the
maximum mass that can be “hung out” in this way were carried out in [5].

Many substances, such as water, wood, plants, animals, the human body are weak
diamagnetics. The invention of powerful magnets, creating an induction of a mag-
netic field of 16Tl, allow to hang biological objects, for example, mice and frogs,
arising a new interest in the diamagnetic suspension [6]. The non-uniform magnetic
field created by superconducting magnets opens new possibilities for the control of
biological objects, for the synthesis of new materials, and the design of new non-
contact devices. The most accessible and complete description of the methods of
levitation in electric and magnetic fields is given in a popular scientific paper by Yu.
G. Martynenko [2].

Diamagnetic suspension can be used in a system of torque measurement [7] and
in electrometer for searching free quarks [8]. A dipmeter with a diamagnetic mass,
which register tidal oscillations, seismic waves and microseisms is described in [9].
The necessary damping is provided by the eddy currents induced in the suspended
mass during its motion in the magnetic field of the suspension.

Nowadays levitation is actively used in toy products and advertising that allows to
maintain the interest in levitation technologies and produce new industrial devices.
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2 Mathematical Description

In the present work high-gradient magnetic field is provided by using a simple elec-
trical circuit which is represented by a set of micro-coils. In this case, the possibility
of levitation for an extremely small (micro or even nano) particle, for example, a bio-
logical cell or a molecule, is considered. Essentially, the electromagnetic parameters
necessary to realize such a suspension are evaluated.

Numerically-analytical calculation of the magnetic field is carried out in a linear
performance. The vector of magnetic induction is given by Bio-Savart law (2) where
the integral is taken along the lines of current conductors

�B(�r ) � μ0

4π

∫
V j1(�r1) × (�r − �r1)

|�r − �r1|3
dυ1. (2)

The vector magnetic potential �A introduced by relation

�B � ∇ × �A, ∇ · �A � 0. (3)

is determined by solving Poisson’s equation

� �A � −μ0 �j, �A � μ0

4π

∫
V

�j(�r1)
|�r − �r1| dυ1. (4)

In the case of a single ring, the vector potential is found by calculating the integral

�A � μ0

4π

∫
S

�jds
r

. (5)

Here r is the distance from the point of the ring to the point P, where the magnetic
potential is determined. If the point P is located at the height h above the plane of
the ring with radius a, then this distance in cylindrical coordinates rp, ϕ, z is given
by r2 � r2p + a2 − 2rpa cosϕ + h2. After introducing the dimensionless variables
ρ � rp

a , ζ� z
a the vector potential takes the form

�A � �eϕ

μ0 I

4π

2π∫

0

dϕ√
1 + ρ2 + ς2 − 2ρ cosϕ

� �eϕ

μ0 I

4π

2π∫

0

dϕ√
(1 + ρ)2 + ς2 − 4ρ cos2 ϕ

2

(6)

where I signifies the value of the current. In case of a plane ring the vector potential
has only a tangential component Aϕ . Substituting into (6) the distance r , one can
obtain
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�A � Aϕ�eϕ � �eϕ

μ0 I

π

1√
(1 + ρ)2 + ς2

K (κ). (7)

Here the modulus of the elliptic integral of the first kind is given by the expres-
sion in terms of dimensionless elliptic coordinates κ2 � 4ρ

(1+ρ)2+ζ 2 . The projections
of magnetic induction vector in this case are determined by the derivatives of the
tangential component of the vector potential:

�B � ∇ × �A � �ez
(

∂Aϕ

∂r
�ez + Aϕ

r

)
− �er ∂Aϕ

∂z
� 1

a

{
�ez

(
∂Aϕ

∂ρ
�ez + Aϕ

ρ

)
− �er ∂Aϕ

∂ς

}
.

(8)

For calculating of magnetic induction (8) the well-known relations are used
∂K
∂κ

� 1
κ

( E(κ)
1−κ2 − K (κ)

)
, ∂E

∂κ
� 1

κ
(E(κ) − K (κ)). For a system of rings with cur-

rents, due to the linear statement of the problem, considered in this case, the total
vector potential is found as the sum of the potentials of each ring. For example, for a
system of two parallel rings with identically directed current, the magnetic potentials
in the cylindrical coordinate system with the center located on the vertical axis in the
middle between them have the form

�Ai � �eϕ

μ0 I

π

1√
(1 + ρ)2 + ζ 2

i

K (κi ), κ2
i � 4ρ

(1 + ρ)2 + ζ 2
i

, i � 1, 2. (9)

where ζ1 � h+z
a , ζ2 � h−z

a and 2h is the distance between the rings. From (9) we
obtain the expressions of components for magnetic induction

Bz,i � μ0 I

πa

⎧⎨
⎩− (1 + ρ)[

(1 + ρ)2 + ζ 2
i

] 3
2

K (κi ) +
∂K

∂κi

(
1 − ρ2 + ζ 2

i

)
[
(1 + ρ)2 + ζ 2

i

]4
ρ

1
2

+
1

ρ

√
(1 + ρ)2 + ζ 2

i

K (κi )

⎫⎬
⎭

Br,i � (−1)i−1 μ0 I

πa

⎧⎨
⎩− ζi[

(1 + ρ)2 + ζ 2
i

] 3
2

K (κi ) +
∂K

∂κi

2ρ
1
2 ζi[

(1 + ρ)2 + ζ 2
i

]4
ρ

1
2

⎫⎬
⎭, i � 1, 2

(10)

Small diamagnetic particle with weak negative magnetic susceptibility can’t exert
a significance influence on external magnetic field and its magnetic energy in this
case is given by

W � −1

2

∫
�J · �B0dυ, (11)
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where �B0 is induction of external magnetic field, �J � χ �H—magnetization vector,
χ � μ − 1 – magnetic susceptibility.

Thus, we obtain

W = − 1

2
χμ0H

2
0 V � −1

2

χB2
0V

μ0
. (12)

HereV is the volumeof the particle. The totalmagnetic induction in the considered
case in a single cylindrical coordinate system is determined by the vector sum of
induction introduced by each of the rings

�B �
∑
i

�Boi �
∑
i

�Boi �er + B0zi �ez + B0ϕi �eϕ. (13)

Therefore, the energy of the particle can be presented as the sum:

W � − χV

2μ0

∑
B2
0r+B

2
0z + B2

0ϕ. (14)

In the symmetric case for identical parallel ringswith equal currentswithout taking
into account gravitation the investigation of stability region of equilibrium is reduced
to the problem with only one geometrical dimensionless parameter α � h

a . An
analytic estimation of stability regions in case of single ring and in case of two rings
with parallel equal currents with opposite direction is given in [10]. A numerical-
analytic approach, developed in the present work allows to construct regions of
stability for a diamagnetic particle in a system of multi-coil rings [11].

For the particle located in the middle of a ring system, it is possible to determine
the energy level distribution in a single axisymmetric coordinate system in different
cross sections along the vertical between the rings. The graph of magnetic energy
distribution for the system of two rings with equal currents in opposite direction for
different values of parameter α is shown in Figs. 1, 2 and 3.

These graphs demonstrate that during the reduction of the distance between the
rings, energy maximum in the centre gradually decreases, turning to minimum, cor-
responding to the stable equilibrium position. Moreover, in the regions between the
central maximum of the energy and the circumferential maximum, there exists an
axisymmetric region of the minimum for the magnetic energy. In this case, it is not
difficult to find the values of the parameter α corresponding to the branch points of
the equilibriums, and to estimate the region of attraction to them.

In general case of a system of parallel rings with the same radius, a cylindrical
coordinate system with the center at the symmetry point is introduced. If the polar
coordinates of the center of the ring are denoted as ri , βi , hi and rp, ψ, z signify the
polar coordinates of a diamagnetic particle, then the position vector of the particle
relatively to the center of the ring is given by

r2 � r2f + a2 − 2r f a cosϕ + (z − hi )
2. (15)



444 D. Yu. Skubov et al.

Fig. 1 Axisymmetric distribution of energy α � 0.25

Fig. 2 Axisymmetric distribution of energy α � 0.2

where

r2f � r2p + r2i − 2rpri cosϕ(βi − ψ). (16)

Therefore, after introducing dimensionless coordinates ρ f � r f
a , ρi � ri

a we
obtain the magnetic potential for one of the rings

�Ai � �eϕ

μ0 I

π

1√(
1 + ρ f

)2
+ (ζ − αi )2

K (κi ), κ2
i � 4ρ f(

1 + ρ f
)2

+ (ζ − αi )2
, (17)
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Fig. 3 Axisymmetric distribution of energy α � 0.15

Fig. 4 Magnetic field lines of four-ring system

where κi is elliptic module and αi � hi
a —corresponding dimensionless parameter.

The distribution of magnetic field lines for the system consisting of four rings with
equal current in the same direction in two of them, located on one vertical, and in
the opposite direction in another pair, is depicted in Fig. 4. The region of stable
equilibrium position is located in the center of the ring system.
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3 Conclusion

In conclusion we make the estimation for the currents of the ring system necessary
to provide the levitation region for a micro-diamagnetic. Owing to the smallness
of the magnetic susceptibility of the diamagnetic, one can neglect the distortion of
the external magnetic field and assume that the magnetization is proportional to the
external magnetic field with distributed intensity �H0. In a quasi-homogeneous field,
which can be considered constant throughout the whole volume of the body, in the
first approximation, ponderomotive forces and angular momentum take the form

�F � χμ0

2
∇H 2

0 V, �M � χμ0

2
�rc × ∇H 2

0 V . (18)

where gde �rc � ∫
V

�rdV is the radius vector of the center of mass. Basing on relation

given in [11], it is possible to calculate the lifting force acting on a diamagnetic
particle of radius b � 1 μm

F0z � −3χμ0

2a
H 2V . (19)

Taking the radius of the coil a � 10 μm, density ρv � 2.2 ·102 K�/M3, magnetic
susceptibility χ � μ − 1 � −0.1 and using equilibrium condition we obtain

H 2 � −2ρvga

3χμ0
� 11.43 · 105 A

2

m2
. (20)

It gives the following estimation for the current of a micro-coil with 100 turns and
for the weight of the particle: I � 2.14 · 10−4A, w � 8.8 · 10−12g.
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Applied Theory of Dynamics
of Micropolar Elastic Thin Shells
and Variation Principles

Samvel H. Sargsyan

Abstract Micropolar elastic thin shells are complex dynamic systems. To study the
dynamic phenomena in these systems, the problem of construction of the applied
theory becomes of actual importance. This will enable to adequately describe all the
characteristic features of the deformation. To describe the dynamic deformation of
micropolar elastic thin shell, starting from the three-dimensional equations of the
dynamic theory, a mathematical model based on hypotheses will be constructed in
this paper. These hypotheses adequately replace the basic qualitative properties of
the asymptotic solution of the three-dimensional boundary value problem in a thin
region of the shell. For the constructed applied dynamic theory of micropolar elastic
thin shells, D’Alembert-Lagrange and Hamilton variation principles, as well as the
general variation principle of Hu-Washizu type are established.

Keywords Micropolar · Elastic · Shell · Dynamics · Applied theory · Variation
principles

1 Introduction

One of the main fields of the development of the moment theory of elasticity is the
construction of mathematical models of thin shells and plates based on the three-
dimensional theory.

Currently, the construction of the applied theories of micropolar elastic thin shells
and plates is most frequently performed with the application of Cosserat surface
approach. This approach is developed in papers [1–4] and others. A review of the
works related to this issue is demonstrated in paper [5].

In this paper, a different approach is developed, namely, on the basis of assump-
tions (hypotheses), which adequately replace the basic qualitative properties of the
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asymptotic solution of the three-dimensional dynamic problem of the micropolar
theory of elasticity in a thin shell region [6–8], the construction of an applied (two-
dimensional) theory of the dynamics of micro-polar shells is demonstrated. Variation
principles such as d’Alembert-Lagrange, Hamilton, a general variation principle
of Hu-Washizu type are established for the mentioned applied dynamic theory of
micropolar elastic thin shells.

2 Main Equations of Dynamics of the Three-Dimensional
Micropolar Theory of Elasticity with Free Fields
of Displacements and Rotations

We will consider a shell of thickness 2 h as a three-dimensional micropolar isotropic
elastic body, which, under the influence of certain factors, is in a state of motion and
is subject to deformation. As a result, each point (we assume the applicability of the
concept of “body-point” [9]) will receive a displacement (denoted by the vector �V )
and a free rotation (denoted by the vector �ω).

The basic linear equations of motion of a micropolar elastic medium with free
fields of displacement and rotation are given by three groups of relations [10, 11]:

Motion equations

∇σ̂ � ρ
∂2

⇀

V

∂t2
, ∇μ̂ + σx � J

∂2 �ω
∂t2

(1)

Geometric relations

γ̂ � ∇ �V + Î × �ω, χ̂ � ∇ �ω (2)

Physical relations of elasticity

∇σ̂ � λI I · ·γ̂c + 2μγ̂c + 2αγ̂a,

∇μ̂ � βI I · ·χ̂c + 2γχ̂c + 2εχ̂a . (3)

Here σ̂ is the tensor of stresses, μ̂ is the tensor of moment stresses, γ̂ is the tensor
of deformation, χ̂ is the tensor of bending-torsion, λ,μ, α, β, γ, ε are the elastic
constants of the micropolar body, ∇ is Hamilton’s differential operator, Î is the
unitary tensor, σ̂x is the vector invariant of the tensor of stress σ̂, ρ is the density, J
is the measure of inertia during the rotation of material.

The complete system of relations, given in the invariant form for determination
of all characteristics of the motion of an elastic micropolar body, in the studied case
will be connected to the coordinate system α1, α2, z, where α1, α2 are lines of the
main curvatures of the middle surface of the shell (z � 0), and the rectilinear axis z
is directed along the normal to this surface.
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It is necessary to add boundary and initial conditions to the system of Eqs. (1)–(3).
It is assumed that on the facial surfaces of the shell stresses and moment stresses are
given:

σ3i |z�±h � q±
i , σ33|z�±h � q±

3 , μ3i |z�±h � m±
i , μ33 � m±

3 . (4)

On the surface of the shell edge
∑ � ∑′ +

∑′′
, stresses and moment stresses are

given on
∑′

, displacements and free rotations-on
∑′′

.

Using the initial conditions in case of t � t0 , components of the displacement
vector �V and rotation vector �ω, as well as components of the linear speed ∂ �V

∂t and
components of the angular speed ∂ �ω

∂t are given.

3 Hypotheses of the Construction of the Applied Theory
of Dynamics of Micropolar Elastic Thin Shells.
Displacements and Rotations. Deformations
and Bending-Torsions. Stresses and Moment Stresses.
Averaged Efforts, Moments and Hypermoments

Themain problem of the general theory of thin shells [12] consists in an approximate
but adequate reduction of the formulated three-dimensional boundary value problem
to a two-dimensional one.

Using the asymptotic method of integration of the three-dimensional boundary-
value problem of the moment theory of elasticity with free fields of displacements
and rotations in a thin region of the shell (or plate), the problem of reduction is
considered in papers [6–8]. Now, bypassing the related mathematical problems, the
reduction problem will be solved using some general assumptions (hypotheses), the
validity of which is justified in paper [8]. On the other hand, it is necessary to take
into account that due to its clarity the method of hypotheses can relatively quickly
and simply lead to final results for engineering practice. Thus, our main aim is to
construct a general linear theory of micropolar elastic thin shells with free fields of
displacements and rotations based on the hypotheses method. We assume that the
shell is thin if the dimensionless thickness h

R0
(R0 is the smaller of two main radii of

curvature of the middle surface of the shell) can be neglected in relation to unit, i.e.

1 +
z

R1
≈ 1, 1 +

z

R2
≈ 1, −h ≤ z ≤ h.

The problem of reductionwill be solvedwith the help of some general hypotheses,
namely:

Hypothesis 1 is based on the following assumption: in the process of deformation,
initially straight and normal to the middle surface fibers freely rotate in space as
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a rigid whole at a certain angle, without changing their length and not remaining
perpendicular to the deformed middle surface, while in this angular motion free
rotations also have their share, forwhich the linear lawof variation along the thickness
of the shell will be assumed.

The accepted kinematic hypothesis can be mathematically written as follows:
tangential displacements and the normal rotation are distributed along the thickness
of the shell according to a linear law

Vi � ui (α1, α2, t) + zψi (α1, α2, t), i � 1, 2, ω3 � �3(α1, α2, t) + zι(α1, α2, t),
(5)

and the normal displacement and tangential rotations do not depend on the transverse
coordinate z, i.e.

V3 � w(α1, α2, t), ωi � �i (α1, α2, t), i � 1, 2. (6)

It should be noted that from the point of view of displacements the accepted
hypothesis (5), (6) coincides with the well-knownTymoshenko kinematic hypothesis
in the classical theory of elastic shells [13]. Having this in mind, as a whole we call
hypothesis (5), (6) Tymoshenko generalized kinematic hypothesis in the micropolar
theory of shells (with free fields of displacements and rotations).

Formulas (5) and (6), with the help of which the components of displacements
and free rotations of an arbitrary point of a thin shell are determined through the
components of displacements and free rotations of its middle surface, will be put
in the base of all relations of the theory of dynamic deformation of a micropolar
thin shell, so they should be considered as initial geometric relations in the indicated
theory of thin shells.

Hypothesis 2 is based on the assumption that stress σ33 plays a secondary role, so
that in the generalized Hooke’s law (3) this stress will be neglected with respect to
the stresses σ11, σ22, and also, in the generalized Hooke’s law (3) moment stresses
μ3i (i � 1, 2) will be neglected with respect to the moment stresses μi3(i � 1, 2).

Hypothesis 3 is based on the assumption that in order to determine deformations,
bending-torsions, stresses and moment stresses, first, for tangential stresses σ31,σ32
and moment normal stress μ33 , we take

σ31 � 0
σ31(α1, α2, t), σ32 � 0

σ32(α1, α2, t), μ33 � 0
μ33(α1, α2, t). (7)

After the calculation of the abovementioned quantities, the values σ31, σ32 andμ33

will finally be determined by adding to each expression from (7) a term, determined
by the integration of corresponding motion equations from (1) by z, in each case
requiring a condition that the obtained average over the thickness of the shell integral
is equal to zero.
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The accepted hypotheses enable us to obtain definite distributions for displace-
ments, rotations, deformations, bending-torsions, force and moment stresses along
the thickness of the shell package.

In accordance with the adopted laws of distribution of displacements (5) and free
rotations (6), substituting them into formulas (2) and using the assumption of the
thinness of the shell, we obtain the following formulas for deformations:

γi i � �i i (α1, α2, t) + zKii (α1, α2, t), γi j � �i j (α1, α2, t) + zKi j (α1, α2, t),

γi3 � �i3(α1, α2, t), γ3i � �3i (α1, α2, t),

χi i � kii (α1, α2, t), χi j � ki j (α1, α2, t), γ33 � 0, (8)

χi3 � ki3(α1, α2, t) + zli3(α1, α2, t), χ33 � k33(α1, α2, t),

χ3i � 0, i, j � 1, 2, i �� j, (9)

where

�i i � 1

Ai

∂ui
∂αi

+
1

Ai A j

∂Ai

∂α j
u j +

w

Ri
, �i j � 1

Ai

∂u j

∂αi
− 1

Ai A j

∂Ai

∂α j
ui − (−1) j�3,

(10)

Kii � 1

Ai

∂ψi

∂αi
+

1

Ai A j

∂Ai

∂α j
ψ j , Ki j � 1

Ai

∂ψ j

∂αi
− 1

Ai A j

∂Ai

∂α j
ψi − (−1) j ι, (11)

Γi3 � −ϑi + (−1) jΩ j , �3i � ψi − (−1) j� j , ϑi � − 1

Ai

∂w

∂αi
+
ui
Ri

, (12)

kii � 1

Ai

∂� j

∂αi
+

1

Ai A j

∂Ai

∂α j
� j +

�3

Ri
, k33 � ι,

ki j � 1

Ai

∂� j

∂αi
− 1

Ai A j

∂Ai

∂α j
�i , ki3 � 1

Ai

∂�3

∂αi
− �i

Ri
, li3 � 1

Ai

∂ι

∂αi
, i, j � 1, 2, i �� j.

(13)

Here, �i i , �i j characterize tangential deformations of the shell middle surface, quan-
tities Kii , Ki j -bending deformation and torsion of the shellmiddle surface associated
with the displacements, Γi3, Γ3i− the angles of rotation caused by transverse and
related shifts, kii , ki j , k33, ki3 -bending deformation and torsion of the shell middle
surface associated with the free rotation, li3− hyper-bendings or hyper-torsions of
the shell middle surface.

Formulas (5), (6), (8)–(13) determine the geometric model of the deformed state
of micropolar thin shells with free fields of displacements and rotations.

Taking into consideration formulas (8) and (9), which determine the distribution
over the thickness of the shell of the components of the deformation and bending-
torsion tensors, using hypotheses 2 and 3, on the basis of physical relations of elas-
ticity (3), for the components of tensors of stress and moment stresses (including)
0
σ3i (i � 1, 2),

0
μ33 , we obtain
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σi i � 0
σi i (α1, α2, t) + z

1
σi i (α1, α2, t), (i � 1, 2),

σi j � 0
σi j (α1, α2, t) + z

1
σi j (α1, α2, t), (i � 1, 2, i �� j), (14)

σi3 � (μ + α)�i3 + (μ − α)�3i , (i � 1, 2),
0
σ3i � (μ + α)�3i + (μ − α)�i3, (i � 1, 2), (15)

μi i � βkmm + 2γkii , (i � 1, 2), kmm � k11 + k22 + k33,

μi j � (γ + ε)ki j + (γ − ε)k ji , (i, j � 1, 2, i �� j), (16)

0
μ33 � βkmm + 2γk33, μi3 � 0

μi3(α1, α2, t) + z
1
μi3(α1, α2, t) (i � 1, 2) (17)

σ33 � 0
σ33(α1, α2, t) + z

1
σ33(α1, α2, t),

μ3i � 0
μ3i (α1, α2, t) + z

1
μ3i (α1, α2, t) (i � 1, 2). (18)

Here

0
σi i � E

1 − ν2

(
�i i + ν� j j

)
,

1
σi i � E

1 − ν2

(
Kii + νK j j

)
, (i, j � 1, 2, i �� j),

0
σi j � (μ + α)�i j + (μ − α)� j i ,

1
σi j � (μ + α)Ki j + (μ − α)K ji , (i, j � 1, 2, i �� j), (19)

0
μi3 � (γ + ε)ki3,

1
μi3 � (γ + ε)li3 (i � 1, 2), (20)

0
σ33 � q+3 − q−

3

2
,

1
σ33 � q+3 + q−

3

2h
,

0
μ3i � m+

i − m−
i

2
,

1
μ3i � m+

i + m−
i

2h
(i � 1, 2). (21)

For stresses σ3i (i � 1, 2) and moment stress μ33 we finally obtain:

σ3i � 0
σ3i (α1, α2, t) − z

⎧
⎪⎪⎨

⎪⎪⎩

1

Ai A j

⎡

⎢
⎢
⎣

∂

(

A j
0
σi i

)

∂αi
+

∂

(

Ai
0
σ j i

)

∂α j

⎤

⎥
⎥
⎦ +

1

Ai A j

∂Ai

∂α j

0
σi j +

+
σi3

Ri
− 1

Ai A j

∂A j

∂αi

0
σ j j

}

+

(
h2

6
− z2

2

)
⎧
⎪⎪⎨

⎪⎪⎩

1

Ai A j

⎡

⎢
⎢
⎣

∂

(

A j
1
σi i

)

∂αi
+

∂

(

Ai
1
σ j i

)

∂α j

⎤

⎥
⎥
⎦ +

+
1

Ai A j

∂Ai

∂α j

1
σi j − 1

Ai A j

∂A j

∂αi

1
σ j j

}

(i, j � 1, 2, i �� j), (22)
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μ33 � 0
μ33(α1, α2, t) − z

⎧
⎪⎪⎨

⎪⎪⎩

1

A1A2

⎡

⎢
⎢
⎣

∂

(

A2
0
μ13

)

∂α1
+

∂

(

A1
0
μ23

)

∂α2

⎤

⎥
⎥
⎦ −

(
μ11
R1

+
μ22
R2

)

+

(
0
σ12 − 0

σ21

)
⎫
⎪⎪⎬

⎪⎪⎭

+

+

(
h2

6
− z2

2

)
⎧
⎪⎪⎨

⎪⎪⎩

1

A1A2

⎡

⎢
⎢
⎣

∂

(

A2
1
μ13

)

∂α1
+

∂

(

A1
1
μ23

)

∂α2

⎤

⎥
⎥
⎦ +

(
1
σ12 − 1

σ21

)
⎫
⎪⎪⎬

⎪⎪⎭

. (23)

Thus, distribution of stresses and moment stresses along the shell thickness is
determined. As a result, on the basis of the accepted hypotheses, the first stage of the
problem of reducing the three-dimensional problem to the two-dimensional one for
a thin shell is performed.

In order to finally solve this problem and construct a dynamic applied (two-
dimensional) theory of micropolar elastic thin shells with free fields of dis-
placements and rotations, instead of stresses and moment stresses we intro-
duce statically equivalent integral characteristics-forces Tii , Si j , Ni3, N3i , moments
Mii , Hi j , Lii , Li j , Li3, L33 and hypermoments 	i3, which, combined with the con-
dition of the thinness of the shell, are expressed as follows:

Tii �
h∫

−h

σi i dz, Si j �
h∫

−h

σi j dz, Ni3 �
h∫

−h

σi3dz, N3i �
h∫

−h

σ3i dz,

Mii �
h∫

−h

σi i zdz, Hi j �
h∫

−h

σi j zdz,

Lii �
h∫

−h

μi i dz, Li j �
h∫

−h

μi j dz, L33 �
h∫

−h

μ33dz,

Li3 �
h∫

−h

μi3dz, 	i3 �
h∫

−h

μi3zdz. (24)

Here Tii are normal stresses; Si j− tangential forces; Ni3, N3i− shearing forces and
related forces; Mii− bending moments, Hi j− rotational moments from stresses;
Li j , Li3− bending moments, Lii , L33− rotational moments from moment stresses;
Λi3− hypermoments from moment stresses.
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4 Basic Equations, Boundary and Initial Conditions
for the Dynamics of the Applied Theory of Micropolar
Elastic Thin Shells with Free Fields of Displacements
and Rotations

If we accept the averaged characteristics (24) in the formulas for stresses andmoment
stresses (14)–(18), we obtain the physical relations of the elasticity of micropolar
thin shells:

Physical relations of elasticity

Tii � 2Eh

1 − ν2

(
�i i + ν� j j

)
, Si j � 2h

[
(μ + α)�i j + (μ − α)� j i

]
,

Mii � 2Eh3

3
(
1 − ν2

)
(
Kii + νK j j

)
, Hi j � 2h3

3

[
(μ + α)Ki j + (μ − α)K ji

]
,

Ni3 � 2h[(μ + α)�i3 + (μ − α)�3i ], N3i � 2h[(μ + α)�3i + (μ − α)�i3],

Lii � 2h
[
(β + 2γ)kii + β

(
k j j + ι

)]
,

Li j � 2h
[
(γ + ε)ki j + (γ − ε)k ji

]
, L33 � 2h

[
(β + 2γ)k33 + β(k11 + k22)

]
,

Li3 � 2h
4γε

γ + ε
ki3, 	i3 � 2h3

3

4γε

γ + ε
li3, i, j � 1, 2; i �� j. (25)

Using the expressions for stresses σ31, σ32, σ33 andmoment stressesμ31,μ32,μ33,
satisfying boundary conditions (4) on the facial surfaces of the shell, we consequently
obtain the motion equations of micropolar thin shells:

Motion equations

1

Ai A j

[
∂
(
A j Tii

)

∂αi
+

∂
(
Ai S ji

)

∂α j

]

+
1

Ai A j

∂Ai

∂α j
Si j +

Ni3

Ri

− 1

Ai A j

∂A j

∂αi
Tj j � −(

q+i + q−
i

)
+ 2ρh

∂2ui
∂t2

,

T11
R1

+
T22
R2

− 1

A1A2

[
∂(A2N13)

∂α1
+

∂(A1N23)

∂α2

]

� (
q+3 + q−

3

) − 2ρh
∂2w

∂t2
,

N3i −
{

1

Ai A j

[
∂(A j Mii )

∂αi
+

∂(Ai Hji )

∂α j

]

+
1

Ai A j

∂Ai

∂α j
Hi j − 1

Ai A j

∂A j

∂αi
M j j

}

� h
(
q+i − q−

i

) − ρ
2h3

3

∂2ψi

∂t2
,

1

Ai A j

[
∂(A j Lii )

∂αi
+

∂(Ai L ji )

∂α j

]

+
1

Ai A j

∂Ai

∂α j
Li j +

+
Li3

Ri
− 1

Ai A j

∂A j

∂αi
L j j + (−1) j

(
N j3 − N3 j

) � −(
m+

i + m−
i

)
+ 2Jh

∂2�i

∂t2
,

L11

R1
+
L22

R2
−

{
1

A1A2

[
∂(A2L13)

∂α1
+

∂(A1L23)

∂α2

]

+ S12 − S21

}

� (
m+

3 + m−
3

) − J
∂2�3

∂t2
. (26)

L33 −
{

1

A1A2

[
∂(A2	13)

∂α1
+

∂(A1	23)

∂α2

]

+ (H12 − H21)

}



Applied Theory of Dynamics of Micropolar Elastic Thin … 457

� h
(
m+

3 − m−
3

) − J
2h3

3

∂2ι

∂t2
.

The system of motion equations (26), the physical elasticity relations (25), and
the geometric relations (10)–(13) are the basic equations of the applied theory of
the dynamics of micropolar elastic thin shells with free fields of displacements and
rotations, to which boundary and initial conditions must be added.

The boundary conditions on the boundary contour � of the region of the middle
surface of the shell (for example α1 � const) have the form:

T11 � T ∗
11 or u1 � u∗

1, S12 � S∗
12 or u2 � u∗

2, N13 � N ∗
13 orw � w∗,

M11 � M∗
11 or K11 � K ∗

11, H12 � H∗
12 or K12 � K ∗

12,

L11 � L∗
11 or k11 � k∗

11, L12 � L∗
12 or k12 � k∗

12,

L13 � L∗
13 or k13 � k∗

13,	13 � 	∗
13 or l13 � l∗13. (27)

Boundary conditions (27) will be derived with the help of the variation principle.
With the help of the initial conditions, at a point in time t � t0, the values of

ui , w,ψi ,�k, ι (i � 1, 2; k � 1, 2, 3) and their derivatives with respect to t are
given as functions of coordinates α1, α2 .

Thus, a general applied dynamic theory of micropolar elastic thin shells with free
fields of displacements and rotations is constructed, which opens great opportunities
for solving problems of natural and forced oscillations, as well as other dynamic
problems.

5 D’Alembert-Lagrange Principle. The Uniqueness
of the Solution. Hamilton Principle

5.1 D’Alembert-Lagrange Principle. The Law
of Conservation of Mechanical Energy. The Uniqueness
of the Solution

To formulate D’Alembert-Lagrange principle in the applied dynamic theory of
micropolar elastic thin shells with free fields of displacements and rotations, we
will be guided by the hypotheses we have adopted (see Sect. 2) or, what is the
same, we will use the obtained formulas of Sect. 2 for displacements and rotations,
deformations and bending-torsions.

Performing this, from the equation ofD’Alembert-Lagrange principle of the three-
dimensional theory [10], we obtain a variation equation of an analogous principle
for the applied theory of micropolar elastic thin shells:
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δ

¨

(S)

W0A1A2dα1dα2 �
¨

(S)

{[
(
q+1 + q−

1

) − 2ρh
∂2u1
∂t2

]

δu1 +

[
(
q+2 + q−

2

) − 2ρh
∂2u2
∂t2

]

δu2+

+

[
(
q+3 + q−

3

) − 2ρh
∂2w

∂t2

]

δw +

[

h
(
q+1 − q−

1

) − 2h3

3
ρ

∂2ψ1

∂t2

]

δψ1 +
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(
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2

) − 2h3

3
ρ

∂2ψ2

∂t2

]
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(
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1

) − 2Jh
∂2�1

∂t2
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δ�1 +

+
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(
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2 + m−
2

) − 2Jh
∂2�2

∂t2

]

δ�2 +

[
(
m+

3 + m−
3

) − 2Jh
∂2�3

∂t2

]

δ�3 +

+

[

h
(
m+

3 − m−
3

) − 2h3

3
J

∂2ι

∂t2

]

δι

}

A1A2dα1dα2 +

+
∫

(�′
1)

(T 0
11δu1 + S012δu2 + N 0

13δw + M0
11δψ1 + H0

12δψ2

+ L0
11δ�1 + L0

12δ�2 + L0
13δ�3 + 	0

13δι)A1dα1 +
∫

(�′
2)

(S021δu1 + T 0
22δu2 +

+ N 0
23δw + H0

21δψ1 + M0
22δψ2 + L0

21δ�1 + L0
22δ�2 + L0

23δ�3 + 	0
23δι)A2dα2. (28)

Here W0 is the surface density of the potential energy of deformation.

W0 � 1

2

{
2Eh

1 − ν2

(
Γ 2
11 + 2νΓ12Γ21 + Γ 2

21

)
+

2Eh3

3
(
1 − ν2

)
(
K 2

11 + 2νK11K22 + K 2
22

)
+

+ 2h
[
(μ + α)Γ 2

12 + 2(μ − α)Γ12Γ21 + (μ + α)Γ 2
21

]
+

+
2h3

3

[
(μ + α)K 2

12 + 2(μ − α)K12K21 + (μ + α)K 2
21

]
+

+ 2h
[
(β + 2γ )

(
k211 + k222 + ι2

)
+ 2β(k11k22 + k11ι + k22ι)

]
+

+ 2h
[
(γ + ε)k212 + 2(γ − ε)k12k21 + (γ + ε)k221

]
+

+ 2h
4γ ε

γ + ε

(
k213 + k223

)
+
2h3

3

4γ ε

γ + ε

(
l213 + l223

)
}

. (29)

The equation in variations (28) is considered together with the geometric relations
(10)–(13) and with geometric boundary conditions on �′′

1 and �′′
2 (�i � �′

i ∪�′′
i , i �

1, 2).Equation (28) expresses the principle of possible displacements in the dynamics
of micropolar elastic thin shells. From Eq. (28) it follows that the virtual work of
external forces and moments, forces and moments of inertia is equal to the variation
of the potential energy of deformation. FromEq. (28) differential equations ofmotion
(26) and static boundary conditions on �′

1 and �′
2 can be obtained.

For real displacements and rotations, instead of D’Alembert-Lagrange variation
principle (28), we can obtain the law of conservation of mechanical energy in the
applied theory of micropolar elastic thin shells:
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d
dt

(˜
(S)

K0A1A2dα1dα2 +
˜
(S)

W0A1A2dα1dα2

)

�

� ˜
(S)

[(
q+
1 + q−

1

) du1
dt +

(
q+
2 + q−

2

) du2
dt +

(
q+
3 + q−

3

)
dw
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(
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1 − q−

1

)
∂ψ1

∂t +

+ h
(
q+
2 − q−

2

)
∂ψ2

∂t +
(
m+
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1

) d�1
dt +

(
m+

2 + m−
2

) d�2
dt +

(
m+

3 + m−
3

) d�3
dt +
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(
m+

3 − m−
3

)
∂ι
∂t

]
A1A2dα1dα2 +

∫

(�′
1)

(T 0
11

∂u1
∂t + S012

∂u2
∂t + N 0

13
∂w
∂t + M0

11
∂ψ1

∂t +

+ H 0
12

∂ψ2

∂t + L0
11

∂�1
∂t + L0

12
∂�2
∂t + L0

13
∂�3
∂t + 	0

13
∂ι
∂t )A1dα1+

+
∫

(�′
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(S021
∂u1
∂t + T 0

22
∂u2
∂t + N 0

23
∂w
∂t + H 0

21
∂ψ1

∂t + M0
22

∂ψ2

∂t + L0
21

∂�1
∂t +

+ L0
22

∂�2
∂t + L0

23
∂�3
∂t + 	0

23
∂ι
∂t )A2dα2,

(30)

where K0-is surface density of kinetic energy of the shell.

K0 � 1

2

[

2ρh

(
∂u1
∂t

)2

+ 2ρh

(
∂u2
∂t

)2

+ 2ρh

(
∂w

∂t

)2

+
2ρh3

3

(
∂ψ1

∂t

)2

+

+
2ρh3

3

(
∂ψ2

∂t

)2

+ 2Jh

(
∂�1

∂t

)2

+ 2Jh

(
∂�2

∂t

)2

+

+ 2Jh

(
∂�3

∂t

)2

+
2Jh3

3

(
∂ι

∂t

)2
]

. (31)

Based on this law, we assert that the increment in time of the kinetic and potential
energy of the shell is equal to the increment of work performed by external surface,
contour forces and moments.

On the basis of the energy equation (30), we can prove the uniqueness theorem
in the applied dynamic theory of micropolar elastic thin shells with free fields of
displacements and rotations.

5.2 Hamilton’s Principle

To construct the variation equation of Hamilton’s principle for the applied dynamic
theory of micropolar elastic thin shells, similarly with the previous case, we take the
equation of Hamilton’s principle for the three-dimensional theory [10] as the basis
and, in accordance with the applied theory of thin shells, this equation is reducible
to the two-dimensional one. As a result, we obtain the following variation equation:
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t2∫

t1

⎡
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¨
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⎩
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δu2 +

(
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3 + q−

3

)
δw+
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dt +
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⎧
⎪⎨

⎪⎩

∫

(l ′1)

(T 0
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12δψ2+
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}
dt.

(32)

The variation equation (32) is the Hamilton’s principle of the applied theory of
the dynamics of micropolar elastic thin shells with free fields of displacements and
rotations.

Euler’s equations of Hamilton’s variation equation (32) lead to motion equa-
tions (29) of the applied dynamic theory of micropolar thin shells and to the static
boundary conditions on the contours l ′1 and l ′2 of the middle surface of the shell.

5.3 The General Variation Principle (Hu-Washizu Type)

During the formulation of the general variation principle of the applied dynamic the-
ory ofmicropolar elastic thin shellswith free fields of displacements and rotations,we
proceed from the general variation principle of the corresponding three-dimensional
theory [10] and, in accordance with the theory of shells, wewill bring this equation to
a two-dimensional continuum. Using the averaged over the shell thickness concepts
(24), as a result the following variation equation will be obtained:
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Assuming that all the functional arguments ui , w,ψi ,�k, ι (i � 1, 2; k �
1, 2, 3), �i i , Kii , �i j , Ki j , �i3, �3i , kii , k33, ki j , ki3, li3, Tii , Si j , Ni3, N3i , M11, Hi j ,

Lii , L33, Li j , Li3, 	i3 (i, j � 1, 2; i �� j) are free, and their variations are arbitrary,
after varying the physical relations of elasticity (25), the motion equations (26), the
geometric relations (10)–(13) and the boundary conditions (27) will be obtained:
static ones on the l ′1, l ′2 and geometric ones on l ′′1 , l ′′2 .

The variation principle (33) is rather general, however not an extremal. Equa-
tion (33) expresses only the condition of stationarity of a definite functional. This
means that among all possible stress-strain states of micropolar elastic thin shells
with free fields of displacements and rotations, the genuine is the one, for which the
specified functional takes a stationary value.

Various private variation principles can be obtained from the above introduced
variation equation (which can be also called Hamilton’s generalized variation equa-
tion). First, taking some expressions from Euler equations and natural boundary con-
ditions as additional conditions, then eliminating the dependent part of the functional
arguments in Eq. (33) with the help of the mentioned conditions, the corresponding
particular variation principle will be obtained.

6 Conclusion

In the present paper a general applied theory of the dynamics ofmicropolar elastic thin
shells with free fields of displacements and rotations is constructed. The constructed
applied dynamic theory of micropolar thin shells makes it also possible to calculate
the distribution of stresses and moment stresses along the thickness of the shell.
D’Alembert-Lagrange variation equation, the law of conservation of the mechanical
energy, Hamilton’s variation principle, and the general variation principle of Hu-
Washizu type (or Hamilton’s generalized variation principle) are established for this
theory.
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Nonlinear Modulation of Surface SH
Waves in a Double Layered Elastic Half
Space

Mevlüt Teymur, Halil İbrahim Var and Ekin Deliktas

Abstract The nonlinear shear horizontal (SH) surface waves in an elastic half space
coated with two different layers of uniform thickness are examined. The half space
and both layers are assumed to be homogeneous, isotropic, incompressible, elastic
and having different mechanical properties. In the analysis it is assumed that linear
shear velocity of the top layer is slower than velocities of the internal layer and the
half space. By employing the method of multiple scales, it is shown that nonlin-
ear modulation of SH waves is governed asymptotically by a nonlinear Schrödinger
(NLS) equation. The coefficients of this equation depend on, in a complicatedway, on
linear and nonlinear material parameters of the layered half space, the thicknesses of
the layers and also the wave number of the waves. The effect of the existence of a sec-
ond layer on the existence of solitary waves has been investigated numerically. Also
a comparison between the coefficients of the NLS equation for the double layered
half space and that of a single layered half space has been made. It is remarked that
the existence of the envelope and dark solitons is affected strongly by the nonlinear
material parameter of the top layer.

Keywords Surface SH waves · Double layered half space
Nonlinear Schrödinger equation

1 Introduction

Linear elastic waves in wave guides made by homogeneous isotropic linear elastic
materials are dispersive due to the repeated reflection processes which occur at the
boundaries between different media. Dispersive elastic waves have been extensively
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studied because of their important applications in geophysics, nondestructive testing
of materials, electronic signal processing devices, etc. (see, e.g. [2, 6, 7] and refer-
ences there in). In recent years, connected with these applications, the effect of the
constitutional nonlinearities on the propagation characteristics of dispersive elastic
waves is investigated by employing the asymptotic perturbation methods previously
used in the fields of fluidmechanics, lattice dynamics, plasma physics etc., examining
the propagation of weakly nonlinear waves (see, e.g. [1, 4, 10, 28]). In these investi-
gations, as a result of balance between nonlinearity and dispersion several different
types of nonlinear evolution equations such as Korteweg–de Vries (K–dV), modified
K–dV, NLS and Boussinesq (BE), etc. have been derived to describe the propaga-
tion of nonlinear elastic waves in media having boundaries causing dispersion such
as rods, plates, layered half spaces, etc., asymptotically. Then several aspects of
problems, such as nonlinear stability of modulated waves, steady state solutions, the
existence of various types of solitary waves, etc. were discussed on the basis of these
equations. (see e.g. [3, 8, 13, 14, 20, 21, 23, 25–27]). For an extensive review of
most of these works we refer [15–19, 22].

In the present work, the propagation of nonlinear shear horizontal (SH) waves in a
half space covered by two homogenous isotropic incompressible elastic layers having
different mechanical properties is considered. The corresponding linear problem
has been firstly examined by Stoneley and Tillotson [24] since it is a theoretical
basis of a method which is developed in order to calculate the thickness of the
subcontinental layer. Firstly, [9] calculated the thickness of the subcontinental layer
of granite overlying a half space of rock. Stoneley and Tillotson [24] claimed that
Jeffrey’s study was inadequate, since the existence of a basalt layer under the granite
was not regarded, hence they have constituted a two layered half space model on
the assumption that the half space, the internal layer and the top layer consist of
rock, basalt and granite, respectively. In this analysis it was assumed that between
the linear shear velocities of the top layer c1, the internal layer, c2, and the half space,
c3, the inequality c1 < c2 < c3 is valid. If the phase velocity c of the wave satisfies
either the condition c1 < c2 < c < c3 or the one c1 < c < c2 < c3, it is shown that a
surface wave propagates. Under these two conditions, the present work extends this
study to the nonlinear propagation of the surface SHwaves. The constituent materials
are assumed to be generalized neo-Hookean materials having different mechanical
properties. In the linear limit, the problem reduces to the problem investigated by
Stoneley and Tillotson [24]. Then the propagation of small but finite amplitudewaves
is considered. By employing a multiple scale perturbation method (see, e.g. [10]), an
NLS equation is obtained for the nonlinear modulation of the waves. The coefficients
of this equation depend on linear and nonlinear material parameters of the layered
half space, the thickness ratio of the layers and also the wave number of the waves. It
is also observed that when the thickness of the top layer goes to zero, the coefficients
of the NLS equation approach to those of the NLS equation for a single layered half
space. Then, since the properties of solutions of the NLS equation strongly depend
on the sign of the product of its coefficients, the variation of this product with the
wave number is evaluated numerically by giving appropriate values to the material
constants and to the thickness ratio of the layers. To observe the effect of nonlinearity
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on the coefficients, consequently on the solutions of the NLS equation, the linear
material constants are held fixed while the nonlinear ones are being changed. From
the comparison of the coefficients of the NLS equations for a double layered half
space and a single layered half space, it is observed that the propagation is affected
considerably by the existence of a second layer. Moreover, for relatively long waves
the nonlinear properties of the half space dominate the modulation of the waves.

2 Formulation of the Problem

Let (x1, x2, x3) and (X1, X2, X3) be, respectively, the spatial andmaterial coordinates
of a point referred to the same rectangular Cartesian system of axes. Consider an
elastic half space covered by two different elastic layers each of uniform thickness.
In the reference frame (X1, X2, X3), the top layer (R1), the intermediate layer (R2)

and the half space (R3) occupy the regions, respectively

R1 = {(X1, X2, X3) | 0 < X2 < h1 − ∞ < X1 < ∞, −∞ < X3 < ∞} (1)
R2 = {(X1, X2, X3) | −h2 < X2 < 0 − ∞ < X1 < ∞, −∞ < X3 < ∞} (2)
R3 = {(X1, X2, X3) | −∞ < X2 < −h2 − ∞ < X1 < ∞, −∞ < X3 < ∞} (3)

where h1 and h2 are positive constants. It is assumed that the free boundary X2 = h1
is free of traction, the stresses and displacements are continuous at the interfaces
X2 = 0 and X2 = −h2; moreover the displacement in the half space goes to zero as
X2 → −∞.

Now, we consider a shear horizontal (SH) wave propagating along the X1-axis in
this layered half space described by the equations

x1 = X1, x2 = X2, x3 = X3 + u(r)(X1, X2, t) r = 1, 2, 3 (4)

where t is the time, the superscript r refers to the region Rr , u(r) is the displacement
of a particle in the X3 direction in the region Rr . Since detxk,K = 1, the deformation
field (4) is isochoric and the density ρ(r) in motion remains constant. Then in the
absence of body forces, the equations of motion in the reference state are written as

T (r)
Kβ,K = 0, β = 1, 2; T (r)

K3,K = ρ(r)ü(r), r = 1, 2, 3 (5)

where T (r)
Kl is the first Piola-Kirchoff stress tensor, Latin and Greek indices take the

respective ranges (1, 2, 3) and (1, 2), subscripts preceded by a comma indicate partial
differentiation with respect to the material coordinates and an over dot represents the
partial differentiation with respect to t .

The assumption of vanishing tractions on the free surface X2 = h1 imposes the
boundary condition

T (1)
2k = 0, on X2 = h1, (6)
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while continuity of stresses and displacements at the interfaces X2 = 0 and X2 =
−h2 is satisfied if

T (1)
2k = T (2)

2k , and u(1) = u(2) on X2 = 0, (7)

and
T (2)
2k = T (3)

2k , and u(2) = u(3) on X2 = −h2, k = 1, 2, 3. (8)

In this work, it is assumed that the constituent materials are homogenous, nonlin-
ear, isotropic, incompressible elastic and their strain energy functions are only the
functions of the first invariant of Finger deformation tensor c−1 = [xk,K xl,K ], i.e.
�(r) = �(r)(I (r)) where I (r) = trc−1, r = 1, 2, 3. Namely, the double layered half
space is made of generalized neo-Hooken materials (see, e.g. [11]). For the antiplane
motion (4), the first invariants I (r) are found to be

I (r) = 3 + K(r) K(r) =
(

∂u(r)

∂X1

)2

+
(

∂u(r)

∂X2

)2

r = 1, 2, 3 (9)

Stress constitutive equations for a generalizedneo-Hookeanmediumcanbe expressed
as (see, e.g. [5])

tkl = −pδkl + �c−1
kl with � = 2

∂�

∂ I
(10)

where tkl is the components ofCauchy stress tensor and p(XK , t) is a hydrostatic pres-
sure function. Then, by using the relation TKl = j XK ,k tkl , where j = det (xk,K ) = 1,
the components of the Piola-Kirchoff stress tensor are written as (see [26] for details)

T (r)
αβ = T (r)

33 = 0 , T (r)
α3 = T (r)

3α = �(r)u(r)
,α (11)

Hence the first two equations in (5) are satisfied identically and therefore the anti-
planemotion (4) can exist in the double layered elastic half spacemade of generalized
neo-Hooken materials without body forces. Let X = X1, Y = X2, Z = X3, then the
third equation in (5) and the boundary conditions of the problem can be written as

∂

∂X

(
�(r) ∂u

(r)

∂X

)
+ ∂

∂Y

(
�(r) ∂u

(r)

∂Y

)
= ρ(r) ∂

2u(r)

∂t2
r = 1, 2, 3 (12)

∂u(1)

∂Y
= 0 on the free boundary Y = h1 (13)

u(1) = u(2) and �(1) ∂u
(1)

∂Y
= �(2) ∂u

(2)

∂Y
on Y = 0 (the interface between R1 and R2)

(14)
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u(2) = u(3) and �(2) ∂u(2)

∂Y
= �(3) ∂u(3)

∂Y
on Y = −h2 (the interface between R2 and R3)

(15)

u(3) → 0 as Y → −∞ (the radiation condition) (16)

3 Small but Finite Amplitude Waves

We now examine the propagation of small but finite amplitude surface SH waves. To
do this we will employ the method of multiple scales by introducing the following
new independent variables

xi = εi X, ti = εi t, y = Y, i = 0, 1, 2 (17)

in which ε > 0 is a small parameter whichmeasures the weakness of the nonlinearity
and (x1, x2, t1, t2) are the slow variables describing the slow variations in the problem
whereas (x0, t0, y) are fast variables describing the fast variations. Then u(r), r =
1, 2, 3, are taken to be functions of these new independent variables and they are
expanded in the following asymptotic series in ε:

u(r) =
∞∑
n=1

εnu(r)
n (x0, x1, x2, y, t0, t1, t2) (18)

Writing the governing equations and boundary conditions in terms of the new inde-
pendent variables (17) and then employing the expansions (18) in the resulting expres-
sions and collecting the terms of like powers in ε yield a hierarchy of problems
from which it is possible to determine u(r)

n , successively. Up to third order in ε these
are given as below:
O(ε):

L(u(r)
1 ) = ∂2u(r)

1

∂t20
− c2r

(
∂2u(r)

1

∂x20
+ ∂2u(r)

1

∂y2

)
= 0 r = 1, 2, 3 (19)

∂u(1)
1

∂y
= 0 at y = h1 (20)

u(1)
1 = u(2)

1 and
∂u(1)

1

∂y
− γ1

∂u(2)
1

∂y
= 0 at y = 0 (21)

u(2)
1 = u(3)

1 and
∂u(2)

1

∂y
− γ2

∂u(3)
1

∂y
= 0 at y = −h2 (22)

u(3)
1 → 0 as y → −∞ (23)
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O(ε2):

L(u(r)
2 ) = 2

(
c2r

∂2u(r)
1

∂x0∂x1
− ∂2u(r)

1

∂t0∂t1

)
r = 1, 2, 3 (24)

∂u(1)
2

∂y
= 0 at y = h1 (25)

u(1)
2 = u(2)

2 and
∂u(1)

2

∂y
− γ1

∂u(2)
2

∂y
= 0 at y = 0 (26)

u(2)
2 = u(3)

2 and
∂u(2)

2

∂y
− γ2

∂u(3)
2

∂y
= 0 at y = −h2 (27)

u(3)
2 → 0 as y → −∞ (28)

O(ε3):

L(u(r)
3 ) = 2

(
c2r

∂2u(r)
2

∂x0∂x1
− ∂2u(r)

2
∂t0∂t1

)
+ c2r

(
∂2u(r)

1

∂x21
+ 2

∂2u(r)
1

∂x0x2

)
− ∂2u(r)

1

∂t21
− 2

∂2u(r)
1

∂t0t2

+ nr

(
∂

∂x0

(
∂u(r)

1
∂x0

K0(u
(r)
1 )

)
+ ∂

∂Y

(
∂u(r)

1
∂Y

K0(u
(r)
1 )

))
r = 1, 2, 3 (29)

∂u(1)
3

∂y
= 0 at y = h1 (30)

u(1)
3 = u(2)

3 and

∂u(1)
3

∂y
− γ1

∂u(2)
3

∂y
= γ1β2

∂u(2)
1

∂y
K0(u

(2)
1 ) − β1

∂u(1)
1

∂y
K0(u

(1)
1 ) at y = 0 (31)

u(2)
3 = u(3)

3 and

∂u(2)
3

∂y
− γ2

∂u(3)
3

∂y
= γ2β3

∂u(3)
1

∂y
K0(u

(3)
1 ) − β2

∂u(2)
1

∂y
K0(u

(2)
1 ) at y = −h2 (32)

u(3)
3 → 0 as y → −∞ (33)

where

K0(ψ) =
(

∂ψ

∂x0

)2

+
(

∂ψ

∂y

)2

. (34)

In the above equations the constants cr , r = 1, 2, 3 are the linear shear velocities in
the top layer, intermediate layer and half space, respectively, and they are defined as
c2r = μ(r)/ρ(r) whereμ(r) are linear shearmodulus given asμ(r) = 2d�(r)(3)/d I . nr
defined as nr = (2/ρ(r))d2�(r)(3)/d I 2 are nonlinear material constants. If nr > 0,
the relevant medium is hardening in shear, else it is softening. The constants γr
and βr are defined as γr = μ(r+1)/μ(r), βr = nr/c2r . Note that, these perturbation
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problems, at each step, are linear and first order problem is simply the classic linear
wave problem which was first investigated by Stoneley and Tillotson [24]. They
showed that between the linear shear velocities of the layers and the half space if
the inequalities c1 < c2 < c3 hold then when the phase velocity c of the SH wave
satisfies the either inequality

c1 < c2 < c < c3 or c1 < c < c2 < c3 (35)

then SH waves are dispersive. We proceed first by assuming that the first inequality
is satisfied by the phase velocity c of the surface SH wave.We also assume that
the nonexistence of the long waves in the initial disturbances. Hence by using the
separation of variables method and also by employing the radiation conditions (23),
the solutions of the Eqs. (19) are found to be

u(1)
1 =

∞∑
l=1

{
A(l)
1 (x1, x2, t1, t2)e

ilkp1 y + B(l)
1 (x1, x2, t1, t2)e

−ilkp1 y
}
eilθ + c.c (36)

u(2)
1 =

∞∑
l=1

{
C (l)
1 (x1, x2, t1, t2)e

ilkp2 y + D(l)
1 (x1, x2, t1, t2)e

−ilkp2 y
}
eilθ + c.c (37)

u(3)
1 =

∞∑
l=1

E (l)
1 (x1, x2, t1, t2)e

lkv3 yeilθ + c.c (38)

where

θ = kx0 − ωt0 , p1 = (c2/c21 − 1)1/2 , p2 = (c2/c22 − 1)1/2 , v3 = (1 − c2/c23)
1/2

(39)

and k is the wave number, ω is the angular frequency, c = ω/k is the phase
velocity, the symbol ′′c.c.′′ denotes the complex conjugate of the preceding terms,
A(l)
1 , B(l)

1 , C (l)
1 , D(l)

1 and E (l)
1 are the first order slowly varying amplitude functions

of the waves to be determined by using the boundary conditions of the first order
perturbation problem.Hence the substitution of first order solutions into the boundary
conditions of the first order perturbation problem yields

Wl U(l)
1 = 0, l = 1, 2, . . . , (40)

where Wl is the dispersion matrix defined as

Wl =

⎛
⎜⎜⎜⎜⎝

iklp1eil P1 −iklp1e−il P1 0 0 0
iklp1 −iklp1 −iγ1klp2 iγ1klp2 0
1 1 −1 −1 0
0 0 iklp2e−il P2 −iklp2eil P2 −γ2klv3e−lV3

0 0 e−il P2 eil P2 −e−lV3

⎞
⎟⎟⎟⎟⎠ (41)
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and the vectors U(l)
n , n = 1, 2, . . . , are defined as

U(l)
n = (A(l)

n , B(l)
n ,C (l)

n , D(l)
n , E (l)

n )T . (42)

det W1 = 0 gives the dispersion relation of the linear waves

p1 p2 tan P1 + γ2 p1v3 tan P1 tan P2 − γ1γ2 p2v3 + γ1 p
2
2 tan P2 = 0 (43)

where P1 = kp1h1, P2 = kp2h2, which is first derived by [24]. Note that, when the
thickness of the top layer goes to zero, h1 = 0, this dispersion relation reduces to

− γ2 p2v3 + p22 tan P2 = 0 (44)

which is the dispersion relation obtained for the propagation of Love waves in a half
space covered by a single layer [12]. In this work, nonlinear self modulation of a
group of surface SH-waves centered around a wave number k and corresponding
frequency ω is investigated. Thus the harmonic-resonance phenomena is excluded
in the analysis. Then for l ≥ 2

det Wl �= 0 . (45)

Hence, considering (45) the solutions of the homogeneous algebraic systems are
found to be

U(1)
1 = A1(x1, x2, t1, t2)R (46)

U(l)
1 ≡ 0 for l ≥ 2 (47)

where A1 is a complex function, representing thefirst order slowlyvarying amplitude
of the self modulation and R is a column vector satisfying

W1R = 0. (48)

By using (46) and (47) the first order solutions are written explicitly as

u(1)
1 = A1(R1e

ikp1 y + R2e
−ikp1 y)eiθ + c.c (49)

u(2)
1 = A1(R3e

ikp2 y + R4e
−ikp2 y)eiθ + c.c (50)

u(3)
1 = A1R5e

kv3 yeiθ + c.c (51)

where Rm , m = 1, . . . , 5 are the components of R, their explicit forms are given
in the Appendix A.

To complete the first order solutionsA1 has to be determined. This has been done
by examining the higher order perturbation problems. Using the first order solutions
in the differential equations of the second order perturbation problem yields
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L(u(1)
2 ) = 2iM (1)

11 (R1e
ikp1 y + R2e

−ikp1 y)eiθ + c.c (52)

L(u(2)
2 ) = 2iM (2)

11 (R3e
ikp2 y + R4e

−ikp2 y)eiθ + c.c (53)

L(u(3)
2 ) = 2iM (3)

11 R5e
kv3 yeiθ + c.c (54)

where

M (α)
11 = ω

∂A1

∂t1
+ kc2α

∂A1

∂x1
, α = 1, 2, 3 (55)

The solutions u(r)
2 , r = 1, 2, 3, of this problem are decomposed as

u(r)
2 = ū(r)

2 + ũ(r)
2 (56)

where u(r)
2 , r = 1, 2, 3, are the particular solutions of the nonhomogeneous dif-

ferential equations while ũ(r)
2 are the solutions of the corresponding homogeneous

equations satisfying the nonhomogeneous boundary conditions derived from the
boundary conditions of the second order perturbation problem by considering the
decompositions (56). The solutions u(r)

2 are found by the method of undetermined
coefficients. For ũ(r)

2 the solutions satisfying the radiation condition are written as
in the first order problem

ũ(1)
2 =

∞∑
l=1

{
A(l)
2 (x1, x2, t1, t2)e

ilkp1 y + B(l)
2 (x1, x2, t1, t2)e

−ilkp1 y
}
eilθ + c.c. (57)

ũ(2)
2 =

∞∑
l=1

{
C (l)
2 (x1, x2, t1, t2)e

ilkp2 y + D(l)
2 (x1, x2, t1, t2)e

−ilkp2 y
}
eilθ + c.c. (58)

ũ(3)
2 =

∞∑
l=1

E (l)
2 (x1, x2, t1, t2)e

lkv3 yeilθ + c.c. (59)

The second order slowly varying amplitudes U(l)
2 = (A(l)

2 , B(l)
2 ,C (l)

2 , D(l)
2 , E (l)

2 )T of
the waves are determined by employing the nonhomogeneous boundary conditions.
Then the use of ũ(r)

2 together with the solutions u(r)
2 , r = 1, 2, 3, in the boundary

conditions of the second order problem yields the following systems of algebraic
equations

Wl U(l)
2 = b(l)

2 (60)

where

b(1)
2 = −i

(
∂A1

∂t1

∂W1

∂ω
− ∂A1

∂x1

∂W1

∂k

)
R and b(l)

2 ≡ 0 for all l �= 1 (61)

Since it is assumed that det Wl �= 0 for l ≥ 2, for these cases the solutions of (60)
are

U(l)
2 ≡ 0, l ≥ 2 (62)
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Since det W1 = 0 and b(1)
2 �= 0, in order that the Eq. (60) to have a solution for

U(1)
2 the compatibility condition

L.b(1)
2 = 0 (63)

must be satisfied, where L is a left vector defined by LW1 = 0. Then the compati-
bility condition (63) leads to the result

∂A1

∂t1
+ Vg

∂A1

∂x1
= 0 (64)

where Vg = dω
dk = − (

L ∂W1
∂k R

)
/
(
L ∂W1

∂ω
R

)
is the group velocity of the waves. The

Eq. (64) implies that the amplitude A1 remains constant in a frame of reference
moving with the group velocity Vg . That is,A1 = A1(x1 − Vgt1, x2, t2). Then U(1)

2
is found to be

U(1)
2 = A2R − i

∂A1

∂x1

(
∂R
∂k

+ Vg
∂R
∂ω

)
(65)

where A2 = A2(x1, x2, t1, t2) is a complex function representing the second order
slowly varying amplitude of the wave modulation, and it can be determined from
higher-order perturbation problems. But, since this work is centered around the small
but finite amplitudewaves, the aim is here to obtain just the uniformly valid first-order
solution. Note that, we assume thatA2 depends on x1 and t1 through the combination
x1 − Vgt1 as A1, so it is not necessary to evaluate A2, it is sufficient to determinate
A1 only to obtain the first order solution, and this will be done at the third order
perturbation problem. The substitution of the first and second order solutions into
the third order equations (29) gives

L(u(1)
3 ) = (D1e

ikp1 y + D2ye
ikp1 y + D3e

−ikp1 y + D4ye
−ikp1 y

+D5e
3ikp1 y + D6e

−3ikp1 y)eiθ + c.c. + terms in (e±3iθ ), (66)

L(u(2)
3 ) = (D7e

ikp2 y + D8ye
ikp2 y + D9e

−ikp2 y + D10ye
−ikp2 y

+D11e
3ikp2 y + D12e

−3ikp2 y)eiθ + c.c. + terms in (e±3iθ ) (67)

L(u(3)
3 ) = (D13e

kv3 y + D14ye
kv3 y + D15e

3kv3 y)eiθ + c.c. + terms in (e±3iθ ) (68)

The explicit forms of the coefficientsDi , i = 1, . . . , 15will be given in the Appendix
B. The solutions of the third order problem can be sought as in the second order
problem. That is we decompose the solutions as

u(r)
3 = ū(r)

3 + ũ(r)
3 , r = 1, 2, 3 (69)
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where u(r)
3 , r = 1, 2, 3, are the particular solutions found by using the method

of undetermined coefficients. ũ(r)
3 , r = 1, 2, 3, the solutions of the corresponding

homogenous equations satisfying the nonhomogeneous boundary conditions (30)–
(33) are written as in the second order problem replacing U(l)

2 by U(l)
3 respectively in

(57)–(59). U(l)
3 = (A(l)

3 , B(l)
3 ,C (l)

3 , D(l)
3 , E (l)

3 )T are third order amplitude functions
depending on the slow variables x1, x2, t1, t2.

The particular solutions ū(r)
3 , r = 1, 2, 3, can be expressed as a sum of linearly

independent terms of the forms

ū(r)
3 = f (1)

r (x1, x2, t1, t2)e
iθ + f (3)

r (x1, x2, t1, t2)e
3iθ + c.c. r = 1, 2, 3 (70)

where the terms f (1)
r , r = 1, 2, 3, are related with the self-interaction of the waves

while the terms f (3)
r , r = 1, 2, 3, are representing the third harmonic interaction

effects. Since, we are only interested in the self interaction, the explicit form of term
f (3)
r , r = 1, 2, 3, will not be required. Therefore, we only calculate f (1)

r , r = 1, 2, 3.
Hence, these solutions are obtained by the method of undetermined coefficients as

f (1)
1 = (ε1 + ε2y)ye

ikp1 y + (ε3 + ε4y)ye
−ikp1 y + ε5e

3ikp1 y + ε6e
−3ikp1 y + c.c (71)

f (1)
2 = (ε7 + ε8y)ye

ikp2 y + (ε9 + ε10y)ye
−ikp2 y + ε11e

3ikp2 y + ε12e
−3ikp2 y + c.c (72)

f (1)
3 = (ε13 + ε14y)ye

kv3 y + ε15e
3kv3 y + c.c (73)

Explicit forms of the εi , i = 1, 2, . . . , 15 are given in theAppendixB.Then, the use of
these solutions together with u(r)

1 , and ũ(r)
1 , r = 1, 2, 3, in the boundary conditions

of the third-order problem yields the following systems of algebraic equations to
determine U(l)

3 ’s;
Wl U(l)

3 = b(l)
3 . (74)

where b(1)
3 �= 0, b(3)

3 �= 0 and b(l)
3 ≡ 0 for all l �= 1, 3, and b(1)

3 can be written as in
the form

b(1)
3 =

[
−i

(
∂W1

∂ω

∂A1

∂t2
− ∂W1

∂k

∂A1

∂x2

)
+ 1

2

(
∂2W1

∂ω2

∂2A1

∂t21
− 2

∂2W1

∂k∂ω

∂2A1

∂x1∂t1
+ ∂2W1

∂k2
∂2A1

∂x21

)]
R

+
(

∂W1

∂k

∂2A1

∂x21
− ∂W1

∂ω

∂2A1

∂x1∂t1

) (
∂R
∂k

+ Vg
∂R
∂ω

)
+ F | A1|2A1 . (75)

where F is a constant vector depending onmaterial parameters and the wave number
k, their components are given in Appendix B. The explicit form of the vector b(3)

3
is not given, since it is not required for self modulation solution. Since we have
assumed that det Wl �= 0 for l �= 1 the solutions of (74) are found to be

U(3)
3 = W−1b(3)

3 and U(l)
3 ≡ 0 for l �= 1, 3

Since det W1 = 0, in order that (74) has a solution for U(1)
3 the compatibility

condition
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L.b(1)
3 = 0 (76)

must be satisfied. This compatibility condition yields the following nonlinear
Schrödinger (NLS) equation

i
∂A
∂τ

+ �
∂2A
∂ξ 2

+ � | A |2 A = 0.

with the following definitions

τ = ωt2 , ξ = kε−1(x2 − Vgt2) = k(x1 − Vgt1) , A = kA1,

� = k2

2ω

d2ω

dk2
, � = 1

ωk2

[
−(L.F)

/
[L(∂W1/∂ω)R]

]
.

Thus the task is completed, since a solution for A is derived from NLS equation
for a given initial value of the form A(ξ, 0) = A0(ξ) then the first-order solutions
u(r)
1 can be obtained from (49)–(51).
This analysis is also carried out for the case in which c1 < c < c2 < c3 and we

obtain dispersion relation as

p1v2 tan P1 + γ2 p1v3 tan P1 tanh V2 − γ1γ2v2v3 − γ1v
2
2 tanh V2 = 0 (77)

where V2 = kv2h1. For the nonlinear wave modulation of the waves again an NLS
equation is obtained whose coefficients � and � can be obtained by substituting
p2 = iv2 in previous ones.

4 Conclusions

It is known that the sign of the product �� is important in determining how a given
initial data will evolve for long times for the asymptotic wave field governed by
the NLS equation. An initial disturbance vanishing as | ξ |→ ∞ tends to become
a series of envelope solitary waves if �� > 0, while it evolves into the decaying
oscillations if �� < 0. (see, e.g. [1, 4]). The traveling wave solutions of the NLS
equation of the form

A(ξ, τ ) = φ(η)ei(Kξ−�τ), η = ξ − V0τ, V0 : constant (78)

also depend on sign of ��. For �� > 0, if φ → 0 and dφ/dη → 0 as |η| → ∞,
the envelope or bright soliton φ can be obtained as

φ = φ0sech
[
(�/2�)1/2 φ0η

]
, (79)
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where V0 = 2K�, � = �K 2 − �φ2
0/2. For �� < 0 and (�K 2 − �)/�φ2

0 = 1, if
φ → φ0 as η → −∞, the solution for φ which represents the propagation of a phase
jump can be expressed as

φ = φ0 tanh
[
(−�/2�)1/2 φ0η

]
, V0 = 2K�. (80)

Also for �� < 0 dark soliton solutions exist [29]. By taking into account the above
review about the effect of the sign of �� on the properties of the solutions of an
NLS equation, the behaviour of the solutions for SH waves propagating in a double
layered nonlinear half space is now examined. As the properties of solutions of the
NLS equation strongly depend on the sign of the product ��, the variation of it
with respect to the nondimensional wave number K = k(h1 + h2) has to be found
out. In this paper, the evaluation of these coefficients is carried out numerically
for the lowest branch of the dispersion relation giving appropriate values to the
materials constants. Similar calculations may be performed for any other branch of
the dispersion relations.

The coefficient� depends only on the linearmaterial constants and the ratioh2/h1,
whereas � also depends on nonlinear material properties. Therefore to observe the
variation in the �� with nonlinearity, in the numerical evaluations of ��, the linear
material constants are fixed to be ρ(1) = ρ(2) = ρ(3) = 1, μ1 = 1, μ2 = 4, μ3 = 9
while the nonlinear ones β1 = n1/c21, β2 = n2/c22 and β3 = n3/c23 are being changed.
In Fig. 1 the variation of � with respect to K for the first branch of the dispersion
relations (43) and (77) is plotted forh2/h1 = 1 and also forh1 = 0 for a single layered
half space. Note that for h2/h1 = 1, � is zero approximately at K ≈ 2.18 where
the related group velocity curve has a minimum. As mentioned before, if βr > 0
the relevant medium exhibits hardening characteristic, while if βr < 0 softening
characteristic. First we consider the variation of��with respect to K for a hardening
internal layer and a hardening half space with the nonlinear parameters β2 = β3 = 2

Fig. 1 � versus K for
h1/h2 = 1 and h1 = 0
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Fig. 2 �� versus K for
fixed β3 = 2.0, β2 = 2.0
(hardening half space
covered by hardening
internal layer) and for
β1 = −1,−2 (softening top
layers), β1 = 1, 2 (hardening
top layers). The curve for
β3 = 2.0, β2 = 2.0 and
h1 = 0 represents the ��

versus K curve for a single
layered half space

in Fig. 2. To observe the effect of the nonlinearity of the top layer on��;β2 andβ3 are
fixed and the variation of �� with K is computed for β1 = −1, β1 = −2 (softening
nonlinear layers) and for β1 = 1, β1 = 2 (hardening nonlinear layers). When β1 = 1
and β1 = 2 (i.e. a hardening half space covered by two hardening top layers), � < 0
for all K > 0, therefore the sign of �� will be positive when K < 2.18 since � < 0
then envelope solitary wave solution given by (79) will exist but ��will be negative
for K > 2.18 as it is seen in Fig. 2, then only the dark solitons exist for this case.When
β1 = −1 and β1 = −2 (i.e. a hardening half space covered by softening top layer
and hardening internal layers) � < 0 initially and its sign changes with the variation
in the nonlinear material parameter of top layer. In Fig. 2 the second zero of each ��

curve is the zero of � curve and the first one is the zero of � curve. Since the linear
material constants and the ratio h2/h1 are fixed for all nonlinear models, the second
zeros are the same for all �� curves, the other zeros are changing depending on the
nonlinear material parameter of the top layer. For softening half space covered by
softening internal layer and different top layer models, variations of ��with respect
to K are given in Fig. 3. It is seen that the curves having same absolute βr , r = 1, 2, 3
values are symmetric with respect to K axis. Therefore the behavior of the solutions
of the NLS equation is reversed. In Figs. 2 and 3 the variations of �� with K for a
single layered half space (for h1 = 0) are also depicted. From these figures, it can be
seen that the wave propagation is affected considerably by the existence of a second
(top) layer. As a result of the numerical evaluation of �� for fixed linear material
properties, it is observed that the existence of the envelope solitary waves are affected
strongly the nonlinear material parameter of top layer.
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Fig. 3 �� versus K for
fixed β3 = −2.0, β2 = −2.0
(softening half space covered
by softening internal layer)
and for β1 = −1,−2
(softening top layers),
β1 = 1, 2 (hardening top
layers). The curve for
β3 = −2.0, β2 = −2.0 and
h1 = 0 represents the ��

versus K curve for a single
layered half space

5 Appendix A

R1 = 1

2 cos P1
e−(i P1+V3)

(
cos P2 + v3γ2 sin P2

p2

)
, R2 = R1 (81)

R3 = 1

2
ei P2−V 3

(
1 − i

v3γ2
p2

)
, R4 = R3, R5 = 1 (82)

6 Appendix B

D1 = 2�1
∂

∂x1
M(1)

11 + R1N (1) + 2i R1M(1)
12 − P−

1 + 2i R1M(1)
21

D2 = −i
2R1

p1kc21

(
ω

∂

∂t1
+ kc21

∂

∂x1

)
M(1)

11

D3 = 2�2
∂

∂x1
M(1)

11 + R2N (1) + 2i R2M(1)
12 − P+

1 + 2i R2M(1)
21

D4 = 2i R2

p1kc21

(
ω

∂

∂t1
+ kc21

∂

∂x1

)
M(1)

11

D5 = Q−
1
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D6 = Q+
1

D7 = 2�3
∂

∂x1
M(2)

11 + R3N (2) + 2i R3M(2)
12 − P−

2 + 2i R3M(2)
21

D8 = − 2i R3

p2kc22

(
ω

∂

∂t1
+ kc22

∂

∂x1

)
M(2)

11

D9 = 2�4
∂

∂x1
M(2)

11 + R4N (2) + 2i R4M(2)
12 − P+

2 + 2i R4M(2)
21

D10 = 2i R4

p2kc22

(
ω

∂

∂t1
+ kc22

∂

∂x1

)
M(2)

11

D11 = Q−
2

D12 = Q+
2

D14 = 2R5

v3kc23

(
ω

∂

∂t1
+ kc23

∂

∂x1

)
M(3)

11

D15 = n3k
4(−3 + 2v23 + 9v43)R

3
5 |A1|2A1 (83)

and

M(α)
βγ = ω

∂Aβ

∂tγ
+ kc2α

∂Aβ

∂xγ

N (α) = c2α
∂2A1

∂x21
− ∂2A1

∂t21

�α =
(

∂Rα

∂k
+ vg

∂Rα

∂ω

)

P−
1 = n1k

4
(
9p41 + 2p21 + 9

)
R1|R1|2|A1|2A1

P+
1 = n1k

4 (
9p41 + 2p21 + 9

)
R2|R2|2|A1|2A1

Q−
1 = n1k

4
(
9p41 − 2p21 − 3

)
R3
1 |A1|2A1

Q+
1 = n1k

4
(
9p41 − 2p21 − 3

)
R3
2 |A1|2A1

P−
2 = n2k

4
(
9p42 + 2p22 + 9

)
R2
3R4|A1|2A1

P+
2 = n2k

4
(
9p42 + 2p22 + 9

)
R2
4R3|A1|2A1

Q−
2 = n2k

4
(
9p42 − 2p22 − 3

)
R3
3 |A1|2A1

Q+
2 = n2k

4
(
9p42 − 2p22 − 3

)
R3
4 |A1|2A1 (84)

where |φ| denotes the modulus of φ.

ε1 = iD1

2kp1c21
− D2

4k2 p21c
2
1

, ε2 = iD2

4kp1c21
, ε3 = − iD3

2kp1c21
− D4

4k2 p21c
2
1

ε4 = −i
D4

4kp1c21
, ε5 = D5

8k2 p21c
2
1

, ε6 = D6

8k2 p21c
2
1

, ε7 = iD7

2kp2c22
− D8

4k2 p22c
2
2
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ε8 = iD8

4kp2c22
ε9 = − iD9

2kp2c22
− D10

4k2 p22c
2
2

, ε10 = − iD10

4kp2c22

ε11 = D11

8k2 p22c
2
2

, ε12 = D12

8k2 p22c
2
2

, ε13 = − D13

2kv3c23
+ D14

4k2v23c
2
3

ε14 = − D14

4kv3c23
, ε15 = − D15

8k2v23c
2
3

(85)

F1 = −β1h1
k4(9p41 + 2p21 + 9)

8 cos3 P1

(
γ2v3
p2

sin P2 + cos P2

)3

e−3V3 (86)

F2 = β1
k3(9p41 + 2p21 + 9)

8p1 cos3 P1
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γ2v3
p2
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)3
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−3V3
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F3 = −β1
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F4 = β2
k3

(
9 + 2p22 + 9p42

)
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p22

)
v3γ2
p2

e−3V3
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F5 = −β2
h2k3
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9 + 2p22 + 9p42

)
8p2

(
1 + v23γ
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p22

)
v3γ2
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e−3V3
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Wave Dynamics of Deformation
and Fracture

Sanichiro Yoshida

Abstract Deformation and fracture of solids are formulated comprehensively as
wave dynamics based on a gauge field theoretical approach. With the application
of the least action principle, a set of field equations are derived, which describe the
dynamics of deformation that propagates as a wave. The elasticity and plasticity are
characterized by the form of the longitudinal force term of the field equations. For
elasticity, the longitudinal term represents elastic force proportional to the volume
expansion. For plasticity, the longitudinal force term represents the velocity damping
force that causes the irreversibility of plastic deformation and the decaying feature in
the wave characteristics. The oscillatory feature of plasticity comes from the elastic
shear force. The fracture is characterized as the final stage of plastic deformation
where the solid totally loses the restoring mechanism. Consequently, the dynamics
loses the oscillatory feature and the displacement becomes unidirectional generat-
ing material discontinuity. A number of supporting experimental observations are
presented.

1 Introduction

The conventional approach to deformation and fracture of solids involves the use
of stage-dependent theories. Continuum mechanics [1, 2] is predominantly used to
describe deformation in the elastic stage based on the linear constitutive relation.
Various theories are available for deformation in the plastic stage. They are mostly
a phenomenological theory [3–6] based on a certain physical process such as dis-
locations and thermodynamic processes, or a mathematical theory [7, 8] based on
empirically known or numerically modeled nonlinear constitutive relation. There are
a number of theories for fracture mechanics as well. These theories usually assume
the existence of a crack in the solid and describe the crack propagation considering
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the underlying physics such as the energy balance or using an empirical parameter
such as the crack resistance.

These theories are well-established and able to accurately describe the defor-
mation phenomenon in the respective stages. However, they have limitations when
applied to some engineering problems. In the field of nondestructive inspections, the
evaluation of the transition from one stage to the next is important. Often, mechanical
systems fail because at the time of inspection a defect that can cause failure does
not exist. It is possible that an aircraft passes the routine inspection for that reason
and a crack newly generated after the take off leads to a catastrophic accident. It is
desirable that the inspection uses a theory that can describe deformation and frac-
ture comprehensively, and thereby formulate the dynamics of the transitional stage.
Another area of application to be mentioned is the strength evaluation of new mate-
rials and conventional materials with an unconventional size. New materials do not
have empirical constitutive data, and therefore modeling of nonlinear deformation
is difficult. It is well known that a microscopic or nanoscopic-scale object of con-
ventional materials shows different phenomenological behaviors than a macroscopic
object of the same material. It is desirable to have a universal theory of deformation
and fracture that does not rely on phenomenology.

This situation motivates us to develop a comprehensive theory of deformation and
fracture. A possible approach to this end is to describe deformation and fracture at a
fundamental level of physics.Wehave been developing the present theory [9, 10] over
the last couple of decades with such a concept, conducting a number of experiments
[11–16] to support the theoretical development. Using the physical principle known
as the symmetry in physics [17], this theory formulates the dynamics of all stages
of deformation, including fracture, on the same basis. This approach yields a set
of field equations that describe the displacement and velocity fields of solids under
deformation. The field equations yield wave equations that describe the oscillatory
dynamics of deformation field that propagates through the solid. In this formalism,
the nonlinearity of plastic deformation is formulated with a curvilinear coordinate
system in conjunction with the introduction of a compensation (gauge) field [18–20].
The irreversibility in the plastic regime is considered as energy dissipative feature of
the wave dynamics.

Some authors apply the same concept for different symmetry to describe disloca-
tion dynamics [21–23]. Panin et al. [24–27] introduce a gaugefield in associationwith
theGL(3, R)Lie transformation group and derive field equations that representwave
dynamics of plastic deformation. The group reports a number of experimental stud-
ies that evidence the wave dynamics of plastic deformation [28–30]. Our approach
stems from their work. Noting that after the summation over the group index the
GL(3, R) transformation matrix reduces to the deformation gradient tensor, we start
from the deformation gradient tensor as the transformation to represents deforma-
tion. We request local symmetry in the transformation, and derive the same type of
field equations as Panin et al.’s. Through interpretation of various terms of the field
equations and experimental observations, we derive the wave equation that describes
the elastoplastic behavior of the deformation field [31]. We formulate fracture as the
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condition where the solid completely loses the elastic mechanism for the oscillatory
behavior of the deformation field, and thereby generates discontinuity [31].

The aim of this chapter is to review past work on this topic, interpret various
experimental observations based on the wave dynamics, and discuss new findings.
In Sect. 2, the gist of the formalism is described. After the qualitative explanation of
the formalism, the gauge field is introduced and its physical meaning is discussed.
The Lagrangian associated with the gauge term is identified and the field equations
are derived. In Sect. 3, experimental observations are presented. These observations
are important because various aspects of the theoretical development are based on the
interpretation of these experimental observations. Section4 focuses on the dynamical
aspect of the formalism. One of the field equation is interpreted as the equation of
motion that governs the dynamics of deformation, and the pertinent term is interpreted
as medium force acting on the unit volume. This force can be elastic or energy
dissipative. The equation of motion is further transformed into a wave equation,
which represents the oscillatory and energy dissipative nature of the deformation
field associated with the elastic and energy dissipative medium forces.

2 Formalism

2.1 The Big Picture

The present theory is based on two postulates. The first postulate is that a solid under
plastic deformation locally obeys the law of linear elasticity. This postulate is justified
by the fact that when a plastically deformed specimen is reloaded (after the removal
of the initial load) the loading characteristic always shows linearity at the beginning
[32].Wecall the local entity that obeys the linear elastic law thedeformation structural
element (DSE) [9, 26]. The second postulate is that all DSEs are logically connected
as long as the object is a continuum. This postulate is associated with the concept
known as the gauge (compensation) field theory. Figure1 illustrates the concept of
DSE schematically. Figure1a represents the situation that under the tensile load, the
elastic object is stretched vertically in accordance with Hooke’s law and compressed
horizontally according to Poisson’s effect. Figure1b represents the situation where
the sameobject undergoes plastic deformation.The central part of the object isweaker
than the rest due to a defect. Consequently, the same external load as (a) causes the
different deformation behavior. The four blocks (DSEs) around the central defect are
still linear elastic, and therefore, their deformations respectively obey Hooke’s law
when described with the local coordinate system. However, at the global level the
overall deformation does not obey Hooke’s law as the law does not incorporate the
local weakness or the rotational behaviors of the DSEs.

In a gauge theory, a gauge (compensation) field is introduced so that at the global
level the dynamics obeys the same physical law as the local level. It is also said that
the gauge fieldmakes the underlying theory locally symmetric. In the present context,
we introduce a gauge field so that at the global level we can apply the law of linear
elasticity to a plastically deformed solid. When the deformation exceeds the linear
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Fig. 1 a Elastic deformation
obeying Hooke’s law and
Poisson’s effect; b Plastic
deformation with local
elasticity

(a) (b)

elastic limit the specimen does not follow the linear elastic constitutive relation. At
the global level, the overall deformation is not proportional to the applied force. On
the other hand, at the local level each individualDESobeys the law of linear elasticity.
The gauge field compensates this conflict. More specifically, the logic is as follows.
We first pretend that we can describe the dynamics of plastic deformation at the
global level using the law of linear elasticity. Then we compensate the discrepancy
from the true dynamics by taking the dynamics that governs the gauge field into
consideration.

As a simple analogy, we can digest the concept by considering the following
thought experiment. Suppose we analyze the dynamics of a simple pendulum in a
swirling wind pattern. Imagine that we place the pendulum at a location where the
wind blows the bob to the left. The bob will swing more to the left than the right from
the neutral position. When we repeat the same experiment on the other side of the
circular path of thewind pattern, the bobwill swingmore to the right. It is obvious that
the usual equation of motion for a simple pendulum written in the global coordinate
system affixed to the ground does not describe this pendulum motion. However, if
we somehow add the effect of the wind as an extra potential energy in addition to
the gravitational potential energy, we should be able to solve the problem.

In the case of deformation, we can formulate the above logic by the use of the
transformation associatedwith the deformation gradient tensor. The deformation gra-
dient tensor represents an orientation preserving transformation [33]. This is because
the law of linear elasticity is orientation preserving. If we apply a tensile load to an
elastic object along a certain direction, the resultant stretch is parallel to this axis.
The linear elastic law (Hooke’s law) is the underlying physical law. If we apply the
Poisson’s effect, we can argue that the object is compressed in the directions orthog-
onal to the tensile axis. As long as the medium is linear elastic, there is no stretch or
compression in other directions. This fact is justified by the concept of the principal
axes. If we use the principal axes to express linear elastic deformation, the elastic
matrix is diagonal. When the object undergoes plastic deformation, it is obvious
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Fig. 2 Vector potential
aligns DESs at global
coordinate (X, Y, Z) and
(X + dX, Y, Z − dZ) so
that they are oriented in the
same direction

that we cannot express the deformation with a diagonal matrix because there are no
principal axes at the global level. However, in each individual DSE, we should be
able to express the local linear elastic deformation using a locally defined diagonal
matrix.

Now the question becomes how we can introduce a gauge field in the above
situation. The answer is rather straightforward. Since the deformation gradient tensor
is an orientation preserving transformation, all we need to do is to align all the DSEs
in the same orientation. The gauge field does this aligning operation. Since each DSE
has a coordinate system of its own principal axes in a certain direction in the global
coordinate system, this aligning operation is a vector quantity with the dimension
of displacement. We can identify this displacement vector as the vector potential
associated with the gauge field. Figure2 illustrates the situation schematically.

Once we align all DSEs we can apply the law of linear elasticity at the global
level. However, this is not all.We need to somehow take “the compensation part” into
consideration. This can be done by applying the Lagrangian formalism to the gauge
field in conjunction with the replacement of usual derivatives with the covariant
derivatives [34]. The covariant derivative eliminates the geometric factor from the
differentiation so that it is physicallymeaningful.When the coordinate axis is curved,
the usual differentiation does not represent the physics underlying the differentiation.
Consider a force vector at point P in Fig. 3. This vector represents the normal force
exerted by the spherical surface on the point mass to counteract to the centripetal
force exerted by the sphere. There is no other external force acting on the point
mass. At another point P ′, a tangential force is acting on a point mass identical to
the one at point P . Consequently, the total force exerted by the spherical surface
has a tangential component. The friction of the spherical surface counteracts to the
tangential force and therefore the point mass is still. How can we find the tangential
force? The answer is easy. Simply compare the total force exerted by the spherical
surface and the normal force at point P ′. Now imagine that the point mass is initially
at point P , and is displaced to point P ′ on the exertion of the tangential force. In
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Fig. 3 Covariant derivatives

P’

this case, we cannot simply compare the two vectors before and after the exertion of
the tangential force. It is because the normal force at point P ′ is different from the
normal force at point P on the global coordinate system. They are normal in the local
coordinate systems at the respective points. In order for us to evaluate the tangential
force using the global coordinate system, it is necessary to remove the change in
direction due to the curvature of the surface. The covariant derivative makes this
correction.

The necessity of this operation regarding the differentiation in the present case
makes total sense if we look at the dynamics in the following way. The governing
law is Hooke’s law where the elastic force is proportional to the stretch, which is the
spatial differentiation of the displacement. When DSEs have different orientations,
we cannot define derivatives at the global level because the spatial differentiation
proportional to the force for all DSEs have different orientation. So, in order to use
the differential operation at the global level, we need to realign the orientation of
the differential operation. This can be done by adding a gauge term to the usual
derivatives. The resultant derivative is the covariant derivative Di .

Di ≡ ∂

∂xi
− Γi (1)

Here the subscript i denotes the differentiation with respect to the variable xi . At a
given point in a three-dimensional geometry, we need to consider Di for i = 1, 2, 3
separately.

By replacing the usual derivatives with covariant derivatives, we can use the defor-
mation gradient tensor with the global coordinates. We say that we make the elastic
force law locally symmetric. Naturally, the guage term Γi is related to the vector
potential. We can easily understand the relation by considering the total differen-
tial Diξi .
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We can formulate the dynamics of the gauge field by considering the field stress
tensor, which represents the interaction of the field to the dynamic system. In this
process, we find a quantity that is invariant under the transformation.We can interpret
this quantity as the Lagrangian, and by applying the least action principle we can
formulate the law of dynamics for the gauge field. This yields a set of field equations
similar to Maxwell equations of electrodynamics [35]. If we add Lagrangian of
materials, the field equations reduce to the the equation of motion associated with the
guage field and that associated with the linear elastic law. The situation is analogous
to the electromagnetic field. If we add the material Lagrangian terms, the Lagrangian
equation ofmotion reduce to both Schrödinger equation andMaxwell equations [36].

2.2 Deformation Gradient Tensor

Linear elastic deformation is defined as the deformation in which an external load
causes a tensile or compressive stress to a solid and the resultant strain is proportional
to the stress. The constant of proportionality is referred to as the elastic modulus and
it is a material constant. Being connected by a constant, the stress and strain have a
linear relationship, hence the deformation is linear. If the external load is removed,
the solid regains the initial state with no deformation.

Mathematically, we can express deformation using the deformation gradient ten-
sor. Figure4 illustrates the concept of deformation gradient tensor. Deformation dis-
places Point P to point P ′ and point Q to Q′, respectively. The displacement vector
ξ depends on the coordinate variables x and y. Consequently, the position (line ele-
ment) vector

−→
PQ changes both its magnitude and direction by being transformed to−−→

P ′Q′, i.e., deformation takes place. Although Fig. 4 uses a two-dimensional picture
for simplicity, the same concept applies to three-dimensions. Equation (2) shows a
compact form of the deformation gradient tensor.

Fig. 4 Deformation gradient
tensor
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Ui j = δi j + ∂ξi

∂x j
(2)

where δi j is the unit matrix and ξi is the i component of displacement vector ξ . The
second term is referred to as the displacement gradient tensor, and often split into
the symmetric and asymmetric terms as follows.

∂ξi

∂x j
= εi j + ωi j (3)

The symmetric term εi j and the asymmetric term ωi j are known as the strain and
rotation tensors. Equations (4) and (5) are explicit forms of the two tensors.

εi j =

⎡
⎢⎢⎢⎣

∂ξx
∂x

1
2

(
∂ξy
∂x + ∂ξx

∂y

)
1
2

(
∂ξx
∂z + ∂ξz

∂x

)

1
2

(
∂ξy
∂x + ∂ξx

∂y

)
∂ξy
∂y

1
2

(
∂ξz
∂y + ∂ξy

∂z

)

1
2

(
∂ξx
∂z + ∂ξz

∂x

)
1
2

(
∂ξz
∂y + ∂ξy

∂z

)
∂ξz
∂z

⎤
⎥⎥⎥⎦ (4)

ωi j =

⎡
⎢⎢⎢⎣

0 − 1
2

(
∂ξy
∂x − ∂ξx

∂y

)
1
2

(
∂ξx
∂z − ∂ξz

∂x

)

1
2

(
∂ξy
∂x − ∂ξx

∂y

)
0 − 1

2

(
∂ξz
∂y − ∂ξy

∂z

)

− 1
2

(
∂ξx
∂z − ∂ξz

∂x

)
1
2

(
∂ξz
∂y − ∂ξy

∂z

)
0

⎤
⎥⎥⎥⎦ (5)

Here the symmetric term represents the strain and the asymmetric term rigid-
body rotation. The linear relationship between the stress and strain is conveniently
expressed in the following matrix form.

σi j = Ckl
i j εkl (6)

where Ckl
i j is called the stiffness tensor. Note that in the law of linear elasticity, only

the symmetric term represents deformation.
It is convenient to express the dynamics of deformation as a linear transformation

U as follows. Here U transforms the line element vector from the before deforma-
tion state η to the after deformation state η′. Figure5 illustrates the transformation
schematically. Notice that the line element changes its length and orientation. The
length change is represented by the strain tensor and the orientation change by the
rotation tensor.

η′ = Uη (7)

The linearity between the stress and strain breaks when the deformation reaches
the linearity limit referred to as the yield point. Beyond this point, the relation between
the strain and stress becomes nonlinear at the global level. This can be explained as
follows. After the yield point, due to the increased dislocation density, the solid starts
to have weak areas. Consequently, at the global level the stress becomes lower than
before for the same strain. At the same time, different parts of the specimen have
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Fig. 5 Transformation U
representing deformation
gradient tensor

A 

B 

B’ 

A’

Deformation gradient tensor

Orientation preserving mapping

′ = A′B′ ≡ ′
= AB

′ =
= ′

different elastic modulus because the weakening does not occur uniformly over the
entire specimen. This situation makes impossible to describe the global deformation
based on the linear elastic model because the elastic modulus is no more a constant
for the entire specimen. However, within each area where the elastic modulus is
considered to be the same (within the same DSE), the deformation is still linearly
elastic. At the boundary of a pair of DSEs represented by mutually different elastic
modulus, the two DSEs share the same stress. However, due to the difference in the
elasticmodulus, the resultant strain is different from each other. Under this condition,
it becomes necessary to make U coordinate dependent.

The coordinate dependence of U causes a problem in the description of dynam-
ics at the global level as follows. Consider differential of the line element of the
deformed state using Eq. (7). Since U depends on the coordinate, we must consider
the differentiation of it as follows.

∂η′

∂xi
= U

∂η

∂xi
+ ∂U

∂xi
η (8)

Equation (8) indicates that under this condition, the differential of the line element
vector does not transform in the same fashion as the line element vector itself (Eq. (7)).
There is the additional term that contains the coordinate dependence of the transfor-
mation (∂U/∂xi ). Since the description of linear elastic law involves the differential
operation, it is necessary that the differential transforms in the same fashion as the
vector. Because of this extra term, we cannot describe linear elastic deformation at
the global level. We can solve this problem by replacing the derivatives with the
covariant derivative (1) as discussed in the next section.

2.3 Gauge Term and Covariant Derivatives

Using covariant derivative (1), we can write the left-hand side of Eq. (8) as follows.
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D′
iη

′ = D′
i (Uη) (9)

Here subscript i denotes the partial differentiation with respect to xi , and the prime ′
indicates that the differentiation is performed after the transformation.

Now we force that the differential after the transformation is the same as the
transformation of the differential with the following equality.

D′
iη

′ = U (Diη) (10)

The next step is to find the necessary condition for the above equality. Substitute
Eq. (1) into (10).

(
∂ ′
iU

)
η +U

(
∂ ′
iη
) − Γ ′

i (Uη) = U (∂iη) −U (Γiη) (11)

Since the usual derivative is invariant under the transformation [9], ∂ ′
i = ∂i , the second

term on the left-hand side and the first term on the right-hand side cancel each other.
Viewing Γ ′

i U ,UΓi and ∂i are operators operating on vector η, we find the following
equality as the necessary condition that Γ must obey.

Γ ′
i U = UΓi + ∂iU (12)

Here, knowing the usual partial differentiation is invariant under transformation U ,
we replace ∂ ′

i with ∂i in Eq. (12). Further, by multiplyingU−1 from the right, we can
rewrite Eq. (12) in the form that explicitly describe how Γ transforms.

Γ ′
i = UΓiU

−1 + ∂U

∂xi
U−1 (13)

With transformation (13), the differential Diη transforms in the same fashion as η.

D′
iη

′ = U (Diη) (14)

The pair of transformations (7) and (13) is referred to as the gauge transformation
that makes the differential of vector transform in the same fashion as the vector itself
under U .

According to the argument made in Sect. 2.1, the above gauge transformation
makes the linear elastic law locally symmetric. If we apply the same rule of differen-
tiation to the displacement vector ξ , it becomes clear that the gauge transformation
indeed makes the elastic law locally symmetric. Using the covariant derivatives with
the gauge term Γ , express the total differential of the displacement vector, ξ .
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Dξi =
(

∂ξi

∂x
− Γxξi

)
dx +

(
∂ξi

∂y
− Γyξi

)
dy +

(
∂ξi

∂z
− Γzξi

)
dz

=
(

∂ξi

∂x
dx + ∂ξi

∂y
dy + ∂ξi

∂z
dz

)
− (

Γxξi dx + Γyξi dy + Γzξi dz
)

≡ dξi − Ai (15)

Note that the first part of the second line of Eq. (15) is the total differential of the usual
derivatives, and hence it represents the change in the length of the line element vector
(Fig. 5). The second term on the second line represents the effect due to the gauge
field on the i component of the displacement vector. Repeating the same argument
for the other components and noting that the first term in the second line of Eq. (15)
has the form of a diagonalized strain tensor times vector (dx, dy, dz), we obtain the
following expression.

Dξ =
⎛
⎝

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎞
⎠
⎛
⎝
dx
dy
dz

⎞
⎠ −

⎛
⎝

0 −ωz ωy

ωz 0 −ωz

−ωy ωx 0

⎞
⎠
⎛
⎝
dx
dy
dz

⎞
⎠

≡ dξ − A (16)

Thus, we can naturally interpret the second term of Eq. (16) as the explicit form of
the vector potential. As discussed in Sect. 2.1, vector potential A rotates the DSEs so
that with the total differential represents the deformation. In this fashion the gauge
field makes the law of linear elastic deformation locally symmetric. The component
of vector potential can be expressed as follows.

Ai = ω j dx
k − ωkdx

j ; i, j, k = x, y, z (17)

Equation (17) explicitly represents the meaning of the vector potential in con-
nection with the material’s differential rotation. Note that Ai comes from the gauge
term Γi as part of the spatial covariant derivative Di . It constitutes the spatial part
of the gauge field. To complete the role of the gauge field as the compensation field
to make the linear elastic dynamics locally symmetric, we need to introduce the
temporal component D0 in association with the temporal derivative ∂/∂t . We will
discuss the temporal covariant derivative along with the physical meaning of the cor-
responding potential A0 in the following section in association with the field stress
tensor.1

1See Ref. [9] for more detailed explanation about D0.
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Fig. 6 Interaction with
gauge field

2.4 Least Action Principle and Field Equations

With the explicit form of Ai (17) and the quantity known as the field stress tensor,
we can discuss the interaction of the gauge field with the deformation. The result of
this discussion represents the dynamics of the gauge field. The field stress tensor is
defined as the commutation of the covariant derivatives [20].

[
Dμ, Dν

]
ξsds = (

∂ν Aμ − ∂μAν

) + 1

ξsds

[
Aμ, Aν

] ≡ Fμν (18)

Here ds = dxν = dxμ. In the infinitesimal limit, dxν and dxμ can be considered to
be equal to each other.

Figure6 illustrates the meaning of
[
Dμ, Dν

]
. Here the horizontal and vertical

axes are defined as xμ and xν . Consider differentiation with respect to point P and
P ′ using covariant derivative D. There are two pathways to reach point P ′ from P in
conducting this differentiation. The clockwise differentiationmeans thatwe apply Dν

first and then Dμ. The counterclockwise differentiation means the application of the
respective covariant derivatives in the reversed order. The commutation in Eq. (18)
indicates the difference in the result between the clockwise and counterclockwise
differentiation. If the answer is not zero, it means that the gauge field does somework
on the physical system. Remember the thought experiment on the simple pendulum
discussed as an analogy in Sect. 2.1. Apparently, the swirling wind does work on
the pendulum in the direction of the wind. If there is no wind, the clockwise and
counterclockwise application of the covariant derivative do not differ from each
other.

Now consider how Fμν transforms under U . From Eq. (14), we find

D′ (Uη) = U (Dη) . (19)

Rearranging the terms in Eq. (19), we therefore can express the covariant derivative
after the transformation as follows.

D′ = UDU−1. (20)

Using expression (20), we can write Fμν after the transformation as follows.
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F ′
μν = [

D′
μ, D′

ν

]
ξsds = (

D′
μD

′
ν − D′

νD
′
μ

)
ξsds

= (
UDμU

−1UDνU
−1 −UDνU

−1UDμU
−1
)
ξsds

= U
[
Dμ, Dν

]
U−1ξsds = UFμνU

−1 (21)

Apparently, F ′
μν �= Fμν , indicating that the stress tensor is not invariant under the

transformation.However,wefind its trace F ′
μνF

′μν is invariant from themathematical
identity tr(AB) = tr(BA) holding for general matrices A and B.

tr
(
F ′

μνF
′μν) = tr

(
UFμνU

−1UFμνU−1
) = tr

(
UFμνF

μνU−1
)

= tr
(
U
[
FμνF

μνU−1
]) = tr

([
FμνF

μνU−1
]
U
)

= tr
(
FμνF

μν
)

(22)

We can interpret this quantity FμνFμν , which is invariant under the gauge transfor-
mation, as the Lagrangian associated with the dynamics of the gauge field.

Before discussing this Lagrangian, it is a good idea to write down Fμν and Fμν

explicitly. To this end, the relativistic expression of the time and space components
(the four vector) is convenient [20, 35]. So we take some time to review this expres-
sion. The physical quantity including the coordinate variables are expressed in the
following fashion.

xμ = (x0, x1, x2, x3) = (ct, x, y, z) (23)

xμ = (x0, x1, x2, x3) = (ct,−x,−y,−z) (24)

Here the superscript and subscript are defined in accordance with the Einstein’s
notation of summation. The superscript represents a component of a vector and the
subscript a component of a covector. If a pair of superscript and subscript appear
next to each other in the form of a product, the product is a inner product.

xμx
μ =

3∑
μ=0

= (x0)2 − (x1)2 − (x2)2 − (x3)2 = (ct)2 − (x2 + y2 + z2) (25)

In general relativity, Eq. (25) indicates the invariance of the space-time interval [34].
Vector potential A can be written in the same fashion.

Aμ = (A0, A1, A2, A3) =
(

φ0

c
, Ax , Ay, Az

)
(26)

Aμ = (A0, A1, A2, A3) = (A0,−A1,−A2,−A3) =
(

φ0

c
,−Ax ,−Ay,−Az

)
(27)

The quantity φ0 in Eqs. (26) and (27) is the scalar potential, which constitutes the
time component of the four vector potential (A0, A1, A2, A3). Its physical meaning
will be discussed shortly.
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The partial derivatives can also be expressed in the four vector notation as follows.

∂μ =
(

∂

∂x0
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
=
(
1

c

∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
(28)

∂μ =
(

∂

∂x0
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
=
(
1

c

∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
(29)

Note that the sign of the spatial components of the derivatives behave opposite to
those of the vector components.

With the above four vector notations, the field stress tensor Fμν and Fμν can be
expressed compactly as follows.

Fμν = ∂μAν − ∂ν Aμ = ∂Aν

∂xμ
− ∂Aμ

∂xν
(30)

Fμν = ∂μAν − ∂ν Aμ = ∂Aν

∂xμ

− ∂Aμ

∂xν

(31)

When μ and ν are spatial coordinate variables, Eqs. (26)–(29) yield the following
expressions. We use Eq. (17) in going through the rightmost equal sign.

Fi j = −∂A j

∂xi
+ ∂Ai

∂x j
= −

(
∂A j

∂xi
− ∂Ai

∂x j

)
= −ωk (32)

Fi j = ∂(−A j )

∂xi
− ∂(−Ai )

∂x j
= −

(
∂A j

∂xi
− ∂Ai

∂x j

)
= −ωk (33)

When the time coordinate variable is involved, we obtain the following expressions.

F0i = ∂Ai

∂x0
+ ∂A0

∂xi
= 1

c

(
∂Ai

∂t
+ ∂φ0

∂xi

)
= vi

c
(34)

F0 j = ∂(−Ai )

∂x0
− ∂A0

∂xi
= −1

c

(
∂Ai

∂t
+ ∂φ0

∂xi

)
= −vi

c
(35)

Here we use the analogy to electrodynamics in the rightmost expression in Eqs. (34)
and (35); v andω correspond to the electric andmagnetic fields as wewill see shortly.
More generally, this expression can be put as follows.

v = ∂A
∂t

+ ∇φ (36)

The meaning of the first term on the right-hand side of Eq. (36) is straightforward.
The temporal derivative of the vector potential is velocity. The second term indicates
the physical meaning of the scalar potential as a source of velocity such as the
gravitational potential. As far as the wave dynamics is concerned, the scalar potential
is not significant.
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Using Eqs. (32)–(35), we can express the field stress tensor explicitly.

Fμν =

⎛
⎜⎜⎝

0 v1/c v2/c v3/c
−v1/c 0 −ω3 ω2

−v2/c ω3 0 −ω1

−v3/c −ω2 ω1 0

⎞
⎟⎟⎠ (37)

Fμν =

⎛
⎜⎜⎝

0 −v1/c −v2/c −v3/c
v1/c 0 −ω3 ω2

v2/c ω3 0 −ω1

v3/c −ω2 ω1 0

⎞
⎟⎟⎠ (38)

The above expression allows us to put the Lagrangian density FμνFμν in a physically
meaningful form.

FμνF
μν = F01F

01 + F10F
10 + F02F

02 + · · · + F12F
12 + F21F

21 + · · ·

= −2

{(
v1

c

)2

+
(
v2

c

)2

+
(
v3

c

)2
}

+ 2
{
(ω1)2 + (ω2)2 + (ω3)2

}

= −2

{(v
c

)2 − ω2

}
(39)

Equation (39) indicates that if we use the expression of the shear wave velocity for c
and divide by 4, FμνFμν has the form of the kinetic energy minus potential energy
per unit volume. Thus we can identify the Lagrangian density as follows.

c =
√
G

ρ
(40)

LFμν
= −G

4
FμνF

μν = 1

2
G

(
v2

c2
− ω2

)
= ρ

2
v2 − G

2
ω2 (41)

In Eq. (41) the subscript Fμν denotes that this Lagrangian density is associated with
the field stress tensor, which originates from the temporal and spatial differentiation
of the gauge (vector) potential A (Eqs. (32)–(35).) By adding Lagrangian density
terms associated with the A, we can express the total Lagrangian density due to the
gauge field as follows.

Ltot = −G

4
FμνF

μν + GjμAμ = ρv2

2
− Gω2

2
+ G

c
j0A0 + Gji Ai (42)

On the right-hand side of Eq. (42), the terms containing A0 and Ai represent the
Lagrangian density associatedwith the temporal and spatial components of the vector
potential, respectively. The quantity j0 and j i are referred to as the charge and current
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of symmetry [20]. These are conserved quantity whose physical meanings will be
discussed later.

With the total Lagrangian density expression (42), we obtain the following expres-
sion for the total variation of action.

δS =
∫

dt
∫ (

∂Ltot

∂Aμ

δAμ + ∂Ltot

∂(∂Aμ/∂xi )
δ

(
∂Aμ

∂xi

)
+ ∂Ltot

∂ Ȧμ

δ Ȧμ

)
dxi (43)

Here the second integration iswith respect to the spatial coordinates.We can integrate
the second and third terms of the integrand by parts with respect to space and time,
respectively, and write δS as follows.

δS =
∫

dt
∫

∂Ltot

∂Aμ

δAμdx
i

+
∫

dt

[
∂Ltot

∂(∂Aμ/∂xi )
δAμ

]∞

∞
−
∫

dt
∫

dxi
(

∂

∂xi
∂Ltot

∂(∂Aμ/∂xi )

)
δAμ

+
∫

dxi
[
∂Ltot

∂ Ȧμ

δAμ

]t2

t1

−
∫

dt
∫

dxi
(

∂

∂t

∂Ltot

∂ Ȧμ

)
δAμ

Putting the surface integrals zero,

δS =
∫

dt
∫

dxiδAμ

(
∂Ltot

∂Aμ

− ∂

∂xi

(
∂Ltot

∂(∂Aμ/∂xi )

)
− ∂

∂t

(
∂Ltot

∂ Ȧμ

))
(44)

Putting the variation δS = 0, we obtain the Lagrange equation of motion from
Eq. (44).

∂Ltot

∂Aμ

− ∂

∂xi

(
∂Ltot

∂(∂Aμ/∂xi )

)
− ∂

∂t

(
∂Ltot

∂ Ȧμ

)
= 0 (45)

With the use of Lagrangian density (42), Lagrangian equation of motion (45) yields
the following field equations.

∇ · v = − j0 (46)

∇ × v = ∂ω

∂t
(47)

∇ × ω = − ρ

G

∂v
∂t

− j (48)

∇ · ω = 0 (49)

Equations (46) and (48) come from Lagrangian equation of motion (45), Eq. (47) is
the relation between the translational and rotational displacement (∇ × ξ = ω) and
Eq. (49) comes from the mathematical identity ∇ · (∇ × ω) = 0 (rotational field is
divergenceless).
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Field equations (46)–(49) are very similar to Maxwell equations. The similarity is
not only formulaic. The electromagnetic field and deformation field have similarities
in the fundamental level of physics. Among those physical similarities, the wave
dynamics is the most important one. It is clear that field equations (47) and (48) yield
wave equations. In the following sections, we discuss a number of wave dynamical
behaviors of deformationfield.Before these discussions,wefirst reviewexperimental
observations.Many of these wave dynamical behaviors of deformation field and their
field theoretical explanations have been found from experiments.

3 Experimental Observations

We have conducted a number of experiments to characterize the deformation field of
thin metal specimens under tensile loads using an optical interferometric technique
known as the Electronic Speckle-Pattern Interferometry (ESPI) [37, 38]. In this
section we discuss various experimental observations from the viewpoint of wave
dynamics.

Fig. 7 Horizontally-sensitive and vertically-sensitive ESPI setups. P1–P3 are reference points
where data are evaluated in Fig. 11
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3.1 Experimental Arrangement

Figure7 illustrates the arrangement of a typical ESPI experiment. A laser beam is
split into interferometric paths (labeled Beam 1 and Beam 2 in the figure) with a
beam splitter. Each of these beams is directed to the specimen with a folding mirror
after expanded with a beam expander (not shown in the figure) to cover the area of
interest. The two beams are recombined on the specimen so that the two optical fields
interfere with each other. Because of the surface roughness, the reflection from the
specimen is diffusive. Thus, on the image plane of the CCD (Charge CoupledDevise)
camera, the reflections from the respective beams form speckle patterns. Since each
speckle results from coherent superposition of the laser light associated with the
diffusive reflection, it has a definite optical phase. Therefore, when a pair of speckles
(one from one interferometric path and the other from the other interferometric path)
overlap at a point on the image plane, the two speckles interfere with each other.
If the interference is destructive, the intensity of the overlapping point is low, if the
interference is constructive the intensity is high. In this fashion, the superposition of
the two speckle fields form a map of relative phase difference at all points on the
image plane.

When the specimen undergoes deformation due to the load applied by the tensile
machine, points on the specimen undergoes displacement. When the displacement at
a point on the specimen surface is rightward (in the direction to the folding mirror for
Beam 1), the optical phase for this interferometric path decreases. At the same time,
the phase for the other interferometric path increases. Consequently, the relative
phase difference at the corresponding point on the image plane changes from the

Fig. 8 Loading curve of aluminum alloy 7075 T6 and fringe patterns corresponding to horizontal
(u) and vertical (v) displacement components
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Fig. 9 Interpretation of
fringe patters

value before the deformation. Thus, by subtracting the image data taken before the
deformation from the one taken after the deformation, an interference fringe pattern
is formed. Here, if the relative phase change due to the deformation is destructive,
the corresponding point on the subtracted image appears dark. Those points where
the interference is constructive, the image appears bright. The interference fringe
pattern is a map of contours of the destructive interference. The lower part of Fig. 8
shows typical interference fringe patterns.

By configuring a similar arrangement of interferometric paths vertically (as shown
in Fig. 7 with dashed lines), and taking the same image acquisition and processing
procedures as the horizontal case, we can form fringe patterns that represent vertical
deformation. Hereafter we call the interferometric arrangement sensitive to horizon-
tal displacement the horizontally-sensitive ESPI configuration, and the one sensitive
to vertical displacement the vertically sensitive ESPI configuration.

Figure8 [39] shows a series of typical fringe patterns observed in a tensile test on a
thin plate specimen of an aluminum alloy 7075 T6 along with the loading curve. The
dimension of the specimen is 25mm long, 10mm wide (the parallel part of the dog-
bone shape specimen) and 5mm thick. The tensile speed is constant at 1.0mm/min.
In the fringe patterns, those labeled “u” are generated with the horizontally sensitive
ESPI configuration, and those labeled “v” are by the vertically sensitive configuration.
Several points on the loading curve are marked “a” through “e”. The fringe patterns
formed at these points are identified by the corresponding letter in the parenthesis
above the pair of “u” and “v” fringe patterns.

Fringe patterns generated from a horizontally or vertically sensitive ESPI config-
uration indicates a certain pattern of deformation. Consider a sample fringe image
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where dark fringes are parallel. Figure9 illustrates some possibilities. Here the left
two images are formed by a horizontally sensitive ESPI configuration (called the u
fringe pattern) and the right two images are formed by a vertically sensitive ESPI
configuration (the v fringe pattern). It is assumed that a tensile load is applied ver-
tically. Each dark fringe represents a contour of a displacement that corresponds to
an integral multiple of unit displacement (see the next paragraph for the definition
of the unit displacement). Arrows in the images indicate the constant displacements
corresponding to the respective dark fringes. In the upper images, u fringes are hori-
zontally parallel and the v fringes are vertically parallel. On the other hand, the lower
images show vertically parallel fringes in the u fringe pattern and horizontally paral-
lel fringes in the v fringe pattern. Since the displacement caused by the tensile load
is dominantly vertical, if the deformation is uniform the v fringe pattern is expected
to show a gradual increase in the displacement as the lower right image indicates,
whereas the u fringe pattern is expected to show a uniform compressive displacement
according to the Poisson’s effect (the lower left image). If the fringe patterns are like
the upper images, the u and v fringe patterns indicate ∂u/∂y �= 0 and ∂v/∂x �= 0,
respectively. These are when the specimen undergoes rotation or shear deformation.
More specific will be discussed under Sect. 4.2.4.

In the case where the two interferometric beams have the same angle of incidence
(like Fig. 7), the displacement and the fringes corresponding to integer multiples of
unit displacement have a simple relation. Let δ be the displacement of a speckle
pattern in a direction that the ESPI configuration is sensitive. The change in the
relative phase difference due to δ is given by the following equation.

φ

2
= 2π

δ sin θ

λ
(50)

where λ is the wavelength of the laser, and θ is the angle of incidence (Fig. 7). A
dark fringe represents the contour of displacement where the change in the relative
phase difference φ is an integral multiple of the period, i.e., φ = 2nπ (n: integer). By
substituting this condition into Eq. (50), we can find the displacement corresponding
to nth dark fringe as follows.

u = nλ

2 sin θ
(51)

The unit displacement is the minimum displacement represented by a dark fringe. In
Eq. (51), the unit displacement corresponds to u with n = 1, i.e., u0 = λ/(2 sin θ).
With a typical angle of incident 45◦, the unit displacement u0 is 1/

√
2 of the wave-

length.
Between dark fringes, we can evaluate the relative phase changes by interpolation.

Figure10a illustrates that we can assign the fringe order for a tensile experiment from
the stationary grip side. Figure10b shows the continuous phase map resulting from
interpolation. Once we know the relative phase φ continuously, we can convert it to
displacement data using Eq. (50) backward (find δ from φ).
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Fig. 10 Intensity and phase map [39]

3.2 Plastic Deformation Wave

Figure11 [40] shows wave characteristics observed in the velocity component per-
pendicular to the tensile axis. The specimen is an aluminum alloy A6063 plate of
200mm long, 25mm wide and 1mm thick. The grain size is approximately 15µm.
A tensile load is applied at a constant rate of 0.1mm/min. The horizontally sensi-
tive ESPI configuration shown in Fig. 7 takes interferometric images continuously,
and fringe patterns are formed at a constant rate by the image subtraction procedure
described above. The relative phase change of the speckles are evaluated on the dark
fringes along the vertical central line on which three reference points are set. The
phase data are interpolated between dark fringes and converted to continuous data as
shown in Fig. 10. With the use of Eq. (51), the phase data are converted into the dis-
placement data occurring between the two time steps used for the image subtraction.
Thus, the evaluated data has the dimension of velocity, and called the velocity data
hereafter. The three reference points are along the center of the specimen parallel to
the tensile axis at the vertical center, and at a upper and lower point approximately
the same vertical distance from the central point. These points are marked P1–P3 in
Fig. 7 and called “upper” - “lower” in the legend of Fig. 11. Also shown in Fig. 11 is
the loading curve. The horizontal axis of this figure indicates the time elapsed from
the beginning of the tensile load.

The three plots shown in Fig. 11 show the oscillatory behavior of the velocity
component perpendicular to the tensile load. The oscillation rises slightly prior to
the yield point observed at approximately 14 min after the tensile loading starts.
Among the three reference points, the velocity data at the upper reference point
are greater than the other reference points, indicating that the tensile load causes
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the specimen to undergo a lateral swinging motion in which the upper side of the
specimen swings more largely than the lower side. There is a time delay among the
three reference points in the first peaks observed slightly before 15 min. The dashed
line connecting the peaks of the three reference points indicates the time delay. The
fact that the upper reference point is behind the other reference points with the greater
amplitude indicates that the specimen undergoes rotation with the rotational center
located somewhere lower than the lower reference point.We can view this time delay
as the transverse velocity-wave travels upwards along the tensile axis. Interestingly,
the time delay disappears at the third peak observed slightly before 20 min. As the
time delay decreases, the peak height decays exponentially, as the curved dashed line
connecting the peaks indicates. The specimen fractures after the third peak.

We can explain the above observation from the wave dynamics in the following
fashion. Every wave carries energy. The present velocity wave carries themechanical
energy as follows.When a point is swinging to a side with velocity u, the unit volume
has the kinetic energy ρu2/2, where ρ is the density. When the swinging motion
reaches the turning point, the velocity becomes zero. However, at that point the
rotational energy is at a maximum because the angle of rotation is at a maximum.
This rotational potential energy can be expressed with the shear modulus as Gω2/2.
Thus, as the oscillatory swinging motion continues, the form of the mechanical
energy switches between the kinetic and potential energy (per unit volume). When
the kinetic energy is at the maximum, the potential energy is zero, and when the
potential energy is at the maximum the kinetic energy is zero. Since the vector ω is
out of plane and v is in plane, this energy flow can be considered as analogous to
the Poynting vector of the electromagnetic field. Apparently, the electric field vector
corresponds to v and the magnetic field vector corresponds to ω.

When the phase delay disappears, we can interpret that the velocity wave stops
traveling. From the viewpoint of the energy carried by the velocity wave, this is
when the mechanical energy stops being carried. If the external load continues,
the specimen does not have a mechanism to consume the energy. This leads to the
fracture. From the viewpoint ofwavepropagation, the zerowavevelocity corresponds
to zero frequency, or infinite period. The swingingmotion cannot change its direction
any more, and consequently, the velocity of the point does not change its sign. This
makes the point keep being displaced in one direction. Naturally, a discontinuity is
generated and the solid fractures. In Fig. 11, this phenomenon is observed after the
third peak; all the three reference points keeps going in the positive direction. The
specimen fractures immediately after this happens.

3.3 Shear Bands

In many occasions [14, 15, 41, 42], shear bands appear in the fringe images. The
band pattern consists of parallel concentrated dark fringes running at approximately
45◦ to the tensile axis. One specific feature of the fringe pattern representing a shear
band is that the u and v fringe patterns overlap each other [41]. This observation can
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be explained as follows. When a shear bad is formed, dislocations starting from one
side of the specimen propagate to the other side. When the dislocations bridge the
specimen laterally in this fashion, the banded area where a shear band runs undergoes
a concentrated stretch isolated from the rest of the specimen. A previous study [12]
indicates that the formation of a shear band is accompanied by acoustic emission.
This is consistent with the above explanation that the formation of a shear band is due
to the bridging of dislocations. When the dislocations complete their propagation to
the other side of the specimen, the material snaps causing acoustic emission. At the
same time, the stress is relaxed and the relaxation causes serration [43, 44] in the
loading curve.

The shear band observed in a tensile experiment with a constant pulling rate
travels along the specimen. Figure12 [15] shows an example of traveling shear band.
The numbers put under the images indicate the frame number when the shear band
image above the number is recorded. Note that the numbers are separated by an
approximately constant increment and the shear bandmoves approximately the same
distance, indicating that themoving speed of the shear band is constant. Other similar
study reveals that the motion of shear bands is at a constant rate proportional to the
tensile speed [15]. Another interesting observation is that the shear band appears
narrower as it travels [41]. This observation indicates that with the elapse of time,
the strain associated with the shear band is more concentrated. We will discuss the
shear band later in this chapter in association with a velocity wave in the form of a
solitary wave.

Under some condition, the ESPI fringe patterns shows both a plastic deformation
wave like the one shown in Fig. 11 and a shear band. Figure13 shows the oscillatory
characteristics of the velocity component perpendicular to the tensile axis and the
location of the shear band as a function of the elapse time from the beginning of
the tensile loading [40]. The plots marked “Shear-band” indicates the location that
the shear band appears on the specimen as a function of time. It is seen that as the

Fig. 11 Velocity wave and
loading curve
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shear band appears intermittently the oscillation of the velocity becomes discontin-
uous. This observation is consistent with the above observation and explanation that
the formation of a shear band accompanies stress relaxation. Each time the stress
is relaxed in conjunction with the formation of a shear band, the material recoils
breaking the oscillatory behavior of the velocity field. After the stress relaxation,
the stress is recovered and it is accompanied by the reappearance of the oscillatory
feature of the velocity field. It is interesting to note that even the oscillatory behavior
is intermittent the peak of the oscillation decays exponentially as indicated by the
solid curve in Fig. 13.

Figure14 shows the location of shear bands and the loading curve [45]. It is seen
that initially the shear band moves across the specimen for the entire vertical span
of the specimen back and forth. With the elapse of the time, the slope of the shear
band location with the time decreases, indicating that the moving speed of the shear

Fig. 12 Shear band
traveling along specimen

Fig. 13 Velocity wave,
shear band locations and
loading curve

Fig. 14 Shear band and
loading curve
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band decreases. Eventually, the shear band stops moving and stays at the location
marked 22mm on the vertical axis. Approximately 10 s after the shear band becomes
stationary the specimen fractures as the loading curve indicates. The fracture always
occurs at the location where the shear band becomes stationary and the fracture line
runs exactly on the stationary shear band [46]. This observation supports the above
explanation that the shear band accompanies a concentrated stretch and stress relax-
ation. The same phenomenon is observed in a number of similar ESPI experiments
[14, 41, 42]. The fact that the fracture is accompanied by the stationary shear band is
explained later in this chapter in association with the solitary wave representing the
shear band and its energy. Like the velocity wave discussed with Fig. 11, when the
solitary wave stops traveling the material loses its mechanism to consume the work
provided by the external load and stagnated energy causes material discontinuity that
leads to the fracture.

4 Dynamics of Deformation and Fracture

In Sect. 2, we formulated the nonlinear deformation by requesting the local symmetry
in the law of linear elastic deformation. We derived field equations that describe the
displacement and velocity field of nonlinear deformation. There we discussed that
the dynamics is applicable to plastic deformation but did not clearly discuss the
irreversibility of plastic deformation. The field equations have the form that yields
wave dynamics of the displacement and velocity field. In Sect. 3,we discussed various
wave-like phenomena of deformation observed in experiments. It is time to develop
the discussion of the field theoretical description of deformation to the next level
using experimental observations. In this section, we first interpret one of the field
equations as the equation of motion. This allows us to interpret some quantities
resulting from the field theoretical formalism from the viewpoints of dynamics. The
irreversibility of plastic deformation is explained as the velocity damping force that
the solid exerts. These discussions are followed by the derivation of wave equations
from the field equations, and the explanation of various experimental observations
as the wave dynamics of deformation. These discussions lead to the comprehensive
description of all stages of deformation, including the fracture dynamics, based on
the same theoretical foundation.

4.1 Equation of Motion

Wecan interpret oneof thefield equations derived above as the equationofmotion that
governs the dynamics of solid under deformation [10]. Rearrange field equation (48)
as follows.

ρ
∂v
∂t

= −G∇ × ω − Gj (52)
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Fig. 15 a Shear elastic force
and b longitudinal elastic
force [10]

(a) (b)

The left-hand-side of Eq. (52) is the mass times acceleration of the unit volume.
Hence, we can interpret that the right-hand side of this equation represents the exter-
nal force acting on the unit volume. Further, from its form of differential rotation
times shear modulus, we can interpret the first term as the shear force acting on the
unit volume exerted by the neighboring unit volumes as schematically illustrated by
Fig. 15a. Here Fig. 15b illustrates the longitudinal elastic force of linear elasticity
for contrast. Note that the shear elastic force is proportional to differential rota-
tion whereas the longitudinal elastic force is proportional to the differential volume
expansion. Later we will discuss more on this type of longitudinal elastic force.

The second term Gj has a deeper physical meaning. Since vector Gj is in line
with the acceleration ∂v/∂t with the negative sign, we can view this term as the lon-
gitudinal resistant force exerted by the solid. Different stages of deformation can be
identified by the form of the longitudinal resistant force, and by expressing this term
appropriately, we can describe all the stages including fracture in a comprehensive
fashion. In the following section we discuss this term for each dynamics.

4.1.1 Plastic Deformation Dynamics

As clear from the above interpretation, the oscillatory feature of plastic deformation is
causedby the shear elastic force.Wealsoknow that plastic deformation is irreversible,
which means that the energy associated with plastic deformation is not recoverable
as a form of mechanical energy, or it is dissipative. Equation (52) indicates the other
external force on the unit volume is the longitudinal force. It is natural to interpret
that this longitudinal force is the source of energy dissipation in plasticity. This
interpretation is justified by the following argument.

Take divergence of Eq. (52) and use the mathematical identity ∇ · (∇ × ω) = 0.
We obtain the following equality.

∂∇ · (ρv)
∂t

= −G∇ · j (53)

The left-hand side of Eq. (53) is the temporal change of the net momentum of all the
particles in the unit volume. Particles flow into the unit volume with certain velocity
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and flow out from the volume with certain velocity. If the average velocity of the
flowing-in particles is greater than that of the flowing-out particles, there is a net loss
of the total momentum by the unit volume over the time of the particles’ flow. If the
flowing-out particles have a greater average velocity, the volume experiences a net
momentum gain. ∇ · ρv represents this net momentum gain or loss. Equation (53)
tells such a net momentum gain (loss) in the unit volume over time is equivalent
to the differential value of Gj expressed by ∇ · Gj. According to Newton’s second
law, the momentum change per unit time is equal to the net external force. From this
argument, we can interpret that the quantity Gj is a field-force like entity where the
differential value ∇ · Gj represents the net force on the unit volume. Being a field
force, it is a function of the coordinate variables. From the fact that the differential
force takes the form of divergence as ∇ · Gj, we can further interpret that Gj is a
longitudinal force. It is a function of the coordinate variable associated with the axis
along which the particles flow.

The longitudinal force Gj can be elastic or inelastic force to change the particle’s
momentum. It depends on the interaction that particles undergo inside the unit vol-
ume. If the interaction is elastic, the corresponding longitudinal force is an elastic
force, and if the interaction is inelastic, the longitudinal force is energy dissipative
force. It should be noted that the particles flowing out from the unit volume are not
the one flowing in to the volume. These particles are not free particles but part of the
solid (atoms). When particles move to the unit volume, they feel reaction force from
the particles ahead of them. The incoming particles exert force in the direction of
their flow and the particles inside the unit volume (the existing particles) push them
backward. While this happens, the existing particles come out of the unit volume and
appear to be the flowing out particles. When reacting to the incoming particles, the
existing particles exert resisting force in accordance with the force law determined
by the solid. If the solid is purely elastic, the force law is Hooke’s law. The incom-
ing particles lose their momentum and the existing particles gain the momentum.
The momentum of the total system is conserved. Since the interaction is elastic,
the mechanical energy of the total system is also conserved. If the solid is plastic,
the situation is different. Although the existing particles gain their momentum as
much as the incoming particles lose, the mechanical energy of the total system is not
conserved.

The above dynamics is analogous to the classical problem of collisions between
two billiard balls. Consider that a billiard ball (Ball 1) collides with another identical
billiard ball (Ball 2) that is stationary, and that the two billiard balls undergo a
perfectly elastic collision. Themomentum is transferred fromBall 1 to Ball 2. Having
the same mass as Ball 1, Ball 2 moves with the Ball1’s velocity before the collision.
Instead, Ball 1 becomes stationary after the collision. Now consider that the collision
is inelastic. Although the momentum of the two-ball system is conserved upon the
collision, the energy is not conserved. On the right-hand side of Eq. (53),Gj describes
the force law. If the force law represents perfect elasticity, the flowing out particles
have the same average velocity as the incoming particles (assumed to be initially
stationary). The same interaction keeps occurring as the elastic wave (compression
wave) travels through the solid, as a number of billiard balls are arranged and the Ball
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Fig. 16 Velocity damping
force

1’s collision initiates a number of collisions like a domino-like chain-reaction. The
particles keep the initial average velocity. In fact, whenGj represents an elastic force
in proportion to the volume expansion (Fig. 15b), Eq. (53) yields to a compression
wave equation [10]. If the force law represents inelasticity, the particle velocity
decreases as the wave travels. In this case, Eq. (53) yields a decaying wave equation
[10].

A possible scenario for the inelastic case is that Gj represents a velocity damping
force. The friction that dynamic dislocations undergo is a possible micromechani-
cal mechanism to explain the velocity damping force [47]. Figure16 illustrates this
effect schematically. A group of particles with an average velocity of vx are flowing
in the positive x-direction into a unit volume where the medium in that region exerts
velocity damping force. As the interaction travels downstream, the flowing-out par-
ticles keep losing the average velocity. Hence, ∂∇ · (ρv)/∂t < 0. This causes the
dynamics to lose the mechanical energy with the passage of time, and explains the
energy dissipative feature of plasticity. We can interpret that the longitudinal force
Gj proportional to the particle velocity represents the velocity-damping mechanism
of the solid.

From the gauge theoretical viewpoint, Eq. (53) raises an interesting point. Using
Eq. (46) we can put Eq. (53) in the following form.

∂(ρ j0)

∂t
= −∇ · (Gj) (54)

We can view Eq. (54) as an equation of continuity associated with conservation of
the quantity ρ j0. Here, j0 is the charge of symmetry, corresponding to the electric
charge density in electrodynamics. InMaxwell’s electrodynamics theory, the electric
charge is a conserved quantity and therefore temporal change in a unit volume must
be accounted for by electric current. In the present case, the current of symmetry j
corresponds to the electric current. The associated law of conservation is Newton’s
law in the sense that the momentum is conserved. Also, this argument characterizes
the quantity ρ j0 as a charge of symmetry, which is a conserved quantity as the electric
charge is [20].

The above velocity damping mechanism allows us to replace the longitudinal
force term Gj as follows in the pure plastic dynamics.
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Gj = Wdρ j0 (55)

Gj = Wdρ(∇ · j) = ρ(∇ · v)σ0v (56)

Here Wd is the drift velocity of the volume moving as a whole in Fig. 16, σ0 is the
quantity representing the proportionality of Wd with particle velocity v, equivalent
to the electric conductivity. It represents the above argument that in the pure plastic
dynamics, the longitudinal force is not a restoring (elastic) force but energy dissi-
pative resistance force. The solid reacts to the load in the pure plastic dynamics by
exerting velocity-damping resistance force, as opposed to exerting elastic resistance
force in the elastic dynamics. The conductivity indicates how easily the charge can
flow in the particle’s velocity field.

With Eq. (56), we can rewrite field Eq. (48) as follows.

∇ × ω = − ρ

G

∂v
∂t

− ρ(∇ · v)σ0v (57)

= − ρ

G

∂v
∂t

− σcv (58)

Note that in the pure plastic dynamics, the solid still possesses shear elastic force. This
is the drivingmechanismof the plastic deformationwave. InEq. (58)σc = ρ(∇ · v)σ0

represents the rate of the velocity damping. Experiments indicate that σ0 is a material
constant [41, 48]. For a given material, the velocity damping, hence the energy
dissipation intensifies with (∇ · v). This indicates that the more the deformation
becomes non-uniform, the faster the solid loses its kinetic energy associated with the
shear elastic force.

There is another possible scenario to make the equality represented by Eq. (53) as
shown in Fig. 15b. In this case, the force acting on the boundaries of the unit volume
is proportional to the volume expansion ∇ · ξ . Here ξ represents the displacement
vector associated with the spatial components of vector potential A. As we discuss
more in the following section, this force is an elastic force. This form is possible only
when the compensation potentialA is associated with elastic nonlinear deformation;,
i.e., for some reason originally linear-elastic deformation becomes nonlinear, and
consequently, different DSEs start to posses their own orientation. This requires A
to align all DSEs so that linear elastic law is applicable at the global level. However,
the process does not involve energy dissipation, the corresponding force term Gj
represents the elastic force. In the case the solid enters nonlinear regime due to
yield, it is unlikely that Gj represents an elastic force. However, as a possibility, this
option should be considered. More importantly, as will be discussed in the following
section, the material displacement (the displacement irrelevant to the compensation
field) exerts this form of longitudinal force. By allowing Gj to have this form, we
can describe plastic and elastic dynamics in the same form.
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Fig. 17 Possible mechanism
of shear band formation

∆
4.1.2 Elastic Deformation Dynamics

In the above discussed plastic deformation dynamics, the longitudinal force term
comes to the field equation from the Lagrangian’s potential energy term as its depen-
dence on the vector potential. Besides the special case discussed above where the
solid exhibits nonlinear elasticity, the elastic longitudinal force does not arise from the
gauge field. Rather it comes from the Lagrangian representing the normal (material’s
not the gauge field’s) potential energy term. Thus, most naturally, we can include the
longitudinal force term representing the elastic force in the following form.

Gje = (λ + 2G)∇(∇ · ξ) (59)

Here on the left-hand side Gje denotes the elastic longitudinal force acting on the
unit volume.

4.1.3 Shear Band Dynamics

It is widely known that from time to time plastic deformation shows shear bands.
In the case of steel, the shear band is known as the Lüders band [49] and normally
appears in the post-yield plateau of the stress-strain curve. Our study [50] indicates
that the dynamics associated with the shear band formation is formulated through
consideration of an order higher term in the Lagrangian of the material energy.

∂L

∂φ
− ∂t

(
∂L

∂(∂tφ)

)
− ∂x

(
∂L

∂(∂xφ)

)
+ ∂t t

(
∂L

∂(∂t tφ)

)
+ ∂xx

(
∂L

∂(∂xxφ)

)
= 0

(60)
We have not understood details of this dynamics, but experimentally observed

phenomena indicate that it represents a one-dimensional case of the charge∇ · v [31,
50]. So, here we restrict the discussion in one-dimension.

Figure17 shows a possible mechanism of the elastic deformation associated with
the shear band. The displacement field is characterized by a concentrated stretch
running in the direction of maximum shear stress. Here xp and xs are coordinate
variable parallel and perpendicular to the band.

The Lagrangian that represents the above potential energy can be given as follows.
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Lsb = E

2

(
∂2ξs

∂x2s

)2

(δxsΔxs) (61)

Considering the term corresponding to the last term on the left-hand side of Eq. (60),
we obtain the following force term for the longitudinal force associated with the
dynamics of shear band.

Gjsb = ∂2

∂x2xs

(
∂Lsb

∂(∂2
xs ξs)

)
= E

∂4ξs

∂x4s
(δxsΔxs) (62)

Thus we can identify Gjsb as follows.

Gjsb = E
∂4ξs

∂x4s
(δxsΔxs) (63)

4.2 Wave Equations

4.2.1 Plastic Deformation Wave

We can eliminate ω or v from Eqs. (47) and (48). The resultant equation represents
the wave dynamics of v and ω, respectively.

ρ
∂2v
∂t2

− G∇2v + σc
∂v
∂t

= −G∇ (∇ · v) (64)

ρ
∂ω

∂t2
− G∇2ω + σc

∂ω

∂t
= 0 (65)

Note that the wave equation that governs v (64) has the source term−G∇ (∇ · v). We
can view this source term as the gradient of the charge j0 = ∇ · v. When the charge
is distributed uniformly, even if ∇ · v �= 0 , its gradient can be considered to be
negligible. Under this condition, the right-hand side of Eq. (64) can be approximated
by null, and the solution has the following general form.

vp = e− σc
2ρ t cos

{(
G

ρ
k2 − σ 2

c

4ρ2

)1/2

t − k · r
}

(66)

Here k is the propagation vector and r = x x̂ + y ŷ + zẑ. Solution (66) is a decaying
sinusoidal wave.

Our numerical study [31] indicates that when the right-hand side of Eq. (64) is not
negligible, the system becomes unstable and the solution represents an exponentially
growing displacement field. We can interpret this situation as the fracture. When
the charge ∇ · v becomes nonuniform, the solid fractures. From this viewpoint, we
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can interpret that the source term −G∇ (∇ · v) represents the stress concentration.
Quite interestingly, when the solid possesses longitudinal elasticity, the system is
still stable [31].

Wave equation (65) indicates that the rotation wave also has the same general
form as (66). The difference is that in the case of the rotational wave, there is no
source term under all conditions. This comes form the fact that there is no rotational
charge as field Eq. (48) indicates. The situation is analogous to the electromagnetic
field where there is no magnetic monopole.

ωp = e− σc
2ρ t cos

{(
G

ρ
k2 − σ 2

c

4ρ2

)1/2

t − k · r
}

(67)

4.2.2 Elasto-Plastic Waves

When elastic and plastic deformation coexist, the wave equation should have source
terms representing the elastic and plastic source terms. To formulate this dynamics,
first integrate wave equation (64) with respect to time.

ρ
∂2ξ

∂t2
− G∇2ξ + σc

∂ξ

∂t
= −G∇ (∇ · ξ) (68)

Now to include the linear elastic dynamics, we can add the elastic longitudinal
force Gje (59) to the right-hand side of Eq. (68). In doing so, we should note that
the displacement vector ξ in Eq. (68) represents the displacement associated with
the gauge potential A whereas the displacement vector in expression (59) is the
usual displacement arising from the Lagrangian of strain energy. We have not fully
understood the relation between these two types of displacement but we know that
they are parallel to each other. So here, we absorb the discrepancy from the true
displacement associated with the strain energy into the parameter λ; we can use λ

different from the normal value for the stage where the deformation is dominantly
linear elastic. This treatment is legitimate because under the condition where elastic
and plastic deformation is coexist, the value of λ is considered to be different from
the normal value.

ρ
∂2ξ

∂t2
− G∇2ξ + σc

∂ξ

∂t
= −G∇ (∇ · ξ) + (λ + 2G)∇ (∇ · ξ) (69)

4.2.3 Solitary Waves

Experiments indicate that the contours of displacement run parallel to the xp-axis.
This allows us to assume the following condition.
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∂ξx

∂xp
= ∂ξy

∂xp
= 0 (70)

Condition (70) represents the experimental observation that both components of the
displacement in the two-dimensional field are independent of variable xp. Under this
condition, the s-component of the shear restoring force G∇ × ω is null. Also, the
fringe pattern generated by the horizontally sensitive and vertically sensitive setup
of the same ESPI interferometer show the same pattern [41].

(∇ × ω)s = ∂ωp

∂z
− ∂ωz

∂xp
= − ∂

∂xp

(
∂ξs

∂xp
− ∂ξp

∂xs

)
= 0 (71)

In Eq. (71), ∂/∂z = 0 because we consider the dynamics in the xp − xs plane as a
one-dimensional model and ∂/∂xp = 0 because the displacement components are
independent of xp.

With condition(∇ × ω)s = 0 shown byEq. (71) and the longitudinal force expres-
sion (63), we can rewrite equation of motion (52) as follows [50].

ρ
∂vs
∂t

+ ρσ0
∂vs
∂xs

vs + EδxsΔxs
cs

∂3vs
∂x3s

= 0 (72)

Equation (72) is known as the Korteweg–de Vries equation, and yields a solitary
wave solution in the following form.

vs = Asech2 (b(xs − cst)) (73)

Here A is the amplitude of the solitary velocity wave in (m/s), b is a shape factor
in (1/m) that determines the width of the shear band. The greater the value of b, the
narrower the shear band. Substitution of solution (73) into wave equation (72) leads
to the following conditions.

cs = σ0A

3
(74)

b =
(

σ0A

3

)√
ρ

4EδxsΔxs
(75)

The sign of solitary wave velocity cs determines the direction of the wave [31]. The
physical mechanism that determines the direction of the solitary wave has not been
fully understood. However, the following speculation seems reasonable. When the
deformation develops to the level where a shear band is formed, dislocations starting
from one side of the specimen propagate along the line of maximum shear stress.
When they reach the other side of the specimen, the trajectory of the dislocations
undergoes a large stretch. This stretch is observed as a shear band, and it travels as a
solitary wave. When this stretching event happens, the particles on the respect side
of the stretch recoil in mutually opposite directions away from the shear band. This
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Fig. 18 Solitary waves
traveling mutually opposite
directions

direction determines the sign of the amplitude A. If the recoil is in the positive xs
direction, cs > 0, and if it is in the negative xs direction, cs < 0 (Fig. 18). In principle,
a pair of solitary waves traveling opposite directions can be generated from the same
large stretching event. However, experiments indicate that from one event, only one
solitary wave is generated and travels in a direction. The probability to travel in the
positive direction seems to be the same as to travel in the negative direction. It is not
clear at this time what determines the direction of the solitary wave.

4.2.4 Evolution of Deformation Dynamics

Figure19 is a close view of fringe patterns (b) and (c) in Fig. 8. The arrows inserted
in (b) indicate the horizontal and vertical displacement components. The pair of the
fringe patterns show the rotational features in both displacement components. Notice
that the v pattern shows that the fringes above the stretched region marked “1” run
from the top left to the bottom right. Since these fringes are formed by a tensile
deformation, the fringes appearing toward the top of the specimen represent greater
upward displacement than the one towards the bottom. So, above the region “1”,
the upward displacement is greater in going to the right side of the specimen. The
situation is opposite below region “1”. The fringes run from the top right to the bottom
left.2 In other words, the rotation is counterclockwise above the stretched region3 and
clockwise below the region, indicating ∇ × ω �= 0 at this stage. In contrast, Fig. 19c
indicate less∇ × ω feature, and instead, shows clearly a rather uniform∇ · ξ feature
(∂u/∂x �= 0 and ∂v/∂y �= 0 and the patterns are uniform over the specimen). The
loading curve in Fig. 8 indicates that the stress increase in stage (b) is slightly higher

2The arrows are drawn longer here to emphasize that the displacement is greater on the left side.
The lengths are not to scale as compared with above region “1”.
3The fringes in the u pattern also indicate counterclockwise rotation.
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(b) (c)

Fig. 19 Close view of fringes in Fig. 8. Arrows represent components of displacement occurring
during time difference of two interferometric images used for subtraction of fringe formations

(a) (b) (c) (d) (e) (f) (g)

Fig. 20 Loading curve of aluminum alloy 7075 T7 and fringe patterns corresponding to horizontal
(u) and vertical (v) displacement components [39]

than (c). It is possible to interpret that the stress increase in these stages is due to the
shear force G∇ × ω and the shear force is greater in (b) than (c).

The change in the fringe pattern in associationwith the evolution of deformation is
also seen in Fig. 20 [39]. This figure shows the fringe patterns at several points on the
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Fig. 21 Comparison of
charges ∂v/∂y between
stages (c) and (d)

loading characteristics for a specimen of aluminum alloy 7075 T7, and is equivalent
to Fig. 8 for aluminum alloy 7075 T6. Here, aluminum alloy 7075 T7 is slightly
softer than aluminum alloy 7075 T6 with the same chemical composition4 At stage
(a), the v fringe pattern shows equidistant, straight dark fringes indicating uniform
∇ · ξ , and ω = 0, hence ∇ × ω = 0. This characterizes linear elastic deformation.
The loading curve indicates that this stage is well before the yield point.

In stage (b), the fringe pattern indicates the ∇ × ω �= 0 feature similar to Fig. 8b.
The rotational feature diminishes in going to stage (c), while ∇ · ξ is uniform, as
is the case of Fig. 8c. The non-uniformity of ∇ · ξ increases with the evolution of
deformation toward the final fracture. The ∂v/∂y pattern is more concentrated to the
middle of the specimen keeping the horizontal symmetry.

Figure21 plots ∂v/∂y along the vertical central line for v fringe images at stage
(c) and (d). It is seen that the ∂v/∂y (the one dimensional∇ · ξ ) is more concentrated
in the middle region in stage (d) than (c).

At stage (e), the symmetry starts to break. The curved feature observed on the left
side in the u fringe (highlighted with a dashed circle) indicates that the rotational
feature becomes prominent again as the ∇ · ξ pattern becomes more concentrated.
At stage (f), the right side of the specimen shows rotational feature in the opposite
direction to the one on the left side. At the same time, more concentrated ∇ · ξ

pattern appears at the boundary of the mutually opposite rotational features, running
diagonally at approximately 45◦ to the tensile axis. It is natural to interpret that this
concentrated∇ · ξ along the boundary of rotations develops to a shear band. At stage
(g), the u and v patterns are very similar to each other, showing the characteristic
feature of the fringe pattern of a shear band, i.e., the u and v fringe patterns show the
same feature as condition (70) holds (see Sect. 4.2.3).

4The aluminum alloy 7705 (Al-Zn-Mg-Cu alloy) specimen was first solid-solution treated and
hardened by nano-scale precipitates up to the peak hardness (7075 T6). Subsequently, the alloy was
over-aged at 400 ◦C for 30 min to soften the matrix by coarsening the precipitates (7075 T7).
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In terms of the wave dynamics, we can discuss the above transition as follows.
In the initial stage when the deformation is characterized as linear elasticity (stage
(a)), the displacement field does not have the rotational feature. Therefore, ∇ ×
ω = ∇(∇ · ξ) − ∇2ξ = 0. In addition, the solid does not have velocity damping
mechanism. In wave equation (69), the corresponding terms ∇2ξ and ∇(∇ · ξ) do
not appear on the left-hand and right-hand sides of equation, respectively, and σc = 0.
The only remaining terms are ρ∂2ξ/∂t2 and (λ + 2G)∇ (∇ · ξ). Consequently, the
wave equation takes the following form.

ρ
∂2ξ

∂t2
= ∇(∇ · ξ) (76)

If divergence is applied to both-hand side, Eq. (76) reduces to the well-known equa-
tion of compression wave.

ρ
∂2(∇ · ξ)

∂t2
= ∇2(∇ · ξ) (77)

When the deformation develops to stage (b), the rotational effect becomes signif-
icant. This makes ∇ × ω terms appear in the equation. However, since (∇ · ξ) is still
uniform, the ∇(∇ · ξ) is not effective. Only ∇2ξ and σc(∂ξ/∂t) terms appear in the
wave equation. This situation yields a sinusoidal decaying wave solution represented
by Eq. (66) and Fig. 11.

As the deformation develops further, the shear elastic mechanism represented by
G∇2ξ decreases. The v fringe pattern in this stage is characterized by unequally
distanced pseudo-parallel horizontal fringes getting concentrated to the middle of
the specimen (stage (c)–(f)). This change is accompanied by the reduction in the
positive slope (the slope is proportional toG) on the loading curve. Thewave solution
is still sinusoidal-like but with the reduction in the shear modulus G, the wave
velocity decreases, and consequently, the oscillation period increase. Eventually, the
oscillation period becomes infinite and this generates discontinuity in the solid.

When the displacement field starts to show a concentrated ∂v/∂y running diag-
onally across the specimen, the dislocations are ready to bridge the width of the
specimen. At this point, the elasticity is not sustained by G∇2ξ but the longitudinal
force (63) associated with the potential energy of shear band. The wave equation
takes the form of Eq. (72) yielding the solitary wave solution.

4.2.5 Fracture

In the preceding section we discussed various forms of deformation wave. Experi-
ments indicate thatwhen the deformationwave stops traveling the specimen fractures.
Waves in general carry energy. As discussed above, the deformation wave carry the
strain energy. It is naturally understood that when a deformation wave stops traveling
and the external load keeps providing the specimen with energy, the solid material
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loses the mechanism to transfer energy from one point to another. Consequently,
the strain energy stagnates at a certain point and that causes the fracture. Tensile
experiments [41] indicate that in some cases the shear band does not appear until
the very last stage of deformation when the specimen fractures, and in other cases
a dynamics shear band appears in an early stage and fracture occurs when the shear
band becomes stationary. Call the first type “Type 1 fracture” and the second type
“Type 2 fracture”, and consider the fracture mechanism for the respective cases.

Type 1 Fracture

In this case, the decaying sinusoidal wave explains the fracture.When the wave stops
traveling, the fracture occurs. The wave velocity is the product of the wavelength
and frequency. Normally, the wavelength is determined by the boundary condition
such as the way the specimen is clamped. When the wave velocity becomes zero and
the boundary condition remains the same, hence the wavelength remains the same, it
follows that the frequency approaches zero. Zero frequency means a infinite period,
indicating that the displacement does not change the sign. Consequently, the points
on the specimen keep moving in the same direction, and this leads to the generation
of discontinuity. In a three dimensional picture, this can be expressed as an infinite
volume expansion.

Type 2 Fracture

In this case, the solitary wave carries concentrated stress energy. The material resists
to the external load via velocity damping force.When the external load keeps provid-
ing the specimen with energy and the solitary wave stops moving, the following con-
ditions hold in the energy damping force expression Gjp = Wdρ(∇ · v)); Gjp �= 0
andWd = 0. Since ρ is a finite value, these conditions lead to (∇ · v) → ∞, indicat-
ing that the particles flow out from a unit volume at the infinite rate. It is also possible
to interpret this condition as the infinite rate of volume expansion. Naturally, it causes
material discontinuity and the specimen fractures.

5 Conclusions

Deformation and fracture of solids have been discussed comprehensively as wave
dynamics based on the same theoretical basis. The nonlinearity of deformation in the
plastic stage is formulated through the application of the local symmetry principle
to the theory of linear elasticity. In this process, the compensation (gauge) field has
been introduced and the corresponding Lagrangian has been identified. With the
application of the least action principle, a set of field equations have been derived.

From the dynamical point of view, thefield equations describe the translational and
rotational behaviors of the deformation field. Transverse and longitudinal forces are
identified as being represented by certain terms of the field equations. The elasticity
and plasticity are characterized by the respective forms of the longitudinal force term.
For elasticity, the longitudinal force term represents elastic force proportional to the
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volume expansion. For plasticity, the longitudinal force term represents a velocity
damping force that causes the irreversibility of plastic deformation. These forces are
interpreted as the resistance force exerted by the solid in response to the external
load. The oscillatory feature of plasticity comes from the elastic shear force.

The fracture has been identified as the final stage of plastic deformation where the
solid totally loses the elastic restoring mechanism. Consequently, the dynamics loses
the oscillatory feature and the displacement field becomes unidirectional. This causes
the solid to generate material discontinuity. A number of experimental observations
that support the theoretical development have been presented and interpreted based
on the present theory.
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