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Preface

Professor Dmitry Anatol’evich Indeitsev is one of the leading Russian scientists in the
field of solid mechanics, who won recognition from the world scientific community.
A wide range of his scientific interests includes wave dynamics, dynamic problems of
coupled processes in continuum mechanics, wave and diffusion processes in multi-
component media, contact interaction of bodies with varying boundary. It should be
especially emphasized that Dmitry Indeitsev is one of the pioneers initiating inves-
tigation of the trapped mode phenomenon in solids. He found out a complete class of
mechanical models admitting closed form solutions. Study of this class allowed him
to formulate a number of fundamental results and identify the basic conditions for
existence of localized solutions. These results were later confirmed by a large number
of examples for more complex waveguide models of different physical nature (fluid—
structures interaction problems, film structures, meta-materials, etc.). His results
stimulated many scientists to carry out research in this particular field.

Another direction of research by Prof. Indeitsev is the development of new
approaches to description of dynamic processes in materials with a complex internal
structure on the basis of first principles of continuum mechanics. He developed a
mathematical model of influence of the dynamic stresses on the diffusion processes
in materials. The model is based upon the equations of a two-component medium
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and takes into account the internal interaction forces, as well as the effect of the
spherical part of stress tensor of the crystal lattice on the magnitude of these forces.
In recent years, Prof. Indeitsev was successfully engaged in the development of new
models of heat transfer in dielectrics and metals under laser excitation.

Dmitry Indeitsev was born on December 2, 1948, in Gorky, now Nizhny
Novgorod. In 1972, he graduated from the Leningrad Polytechnic Institute (now
Peter the Great St. Petersburg Polytechnic University), Faculty of Physics and
Mechanics with a degree in Dynamics and Strength of Machines. In 1972—-1987, he
was a member of the research laboratory of Leningrad Higher Naval Engineering
School named after F. E. Dzerzhinsky.

An important stage of scientific and organizational activities of Prof. Indeitsev is
associated with work at the Institute for Problems in Mechanical Engineering of the
Russian Academy of Sciences (IPME RAS) which he joined in March 1987. First
he worked as a senior researcher, in February 1989 he was appointed the head of
laboratory “Hydroelasticity” and in 1993 the deputy director for scientific work. In
1994, he defended his dissertation for the degree of Doctor of Sciences in Physics
and Mathematics (habilitation) and in 1999 he was awarded the title of Professor in
“Mechanics of Solids”. In July 2002, he was appointed the Acting Director, in May
2004 Director of IPME RAS, since June 2015 he is the Scientific Head of
IPME RAS. In May 2006, he was elected a Corresponding Member of the Russian
Academy of Sciences in the field of solid mechanics.

Under his supervision, the Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences has passed a difficult period of formation and
grown into an authoritative research center in Russia and abroad; nowadays it keeps
leading positions in many scientific fields of engineering, mechanics, and automatic
control. Many members of the Institute have achieved significant success in
research and teaching due to the great support and invaluable help by Prof.
Indeitsev. The most important role in the development of the Institute, as well as all
the Russian science, is played by regular scientific events organized by IPME RAS.
Since 1994, Prof. Indeitsev is the main organizer and supervisor of the Annual
International Summer School for mechanical scientists “Analysis and Synthesis of
Nonlinear Oscillatory Mechanical Systems. Actual Problems of Mechanics”, which
developed into a celebrated Annual International Conference “Advanced Problems
in Mechanics”, where numerous famous scientists from different countries have
reported their results. Regular participation of this conference helped young
researchers, not only the Institute members, went from being Ph.D. students to
candidates and doctors of science.

Professor Indeitsev is the Head of Department “Mechanics and Control
Processes” of the Institute of Applied Mathematics and Mechanics at Peter the
Great St. Petersburg Polytechnic University, he is also Professor of the Department
“Theory of Elasticity” of the Faculty of Mathematics and Mechanics at the
St. Petersburg State University.
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He is a member of many scientific societies: Russian National Committee on
Theoretical and Applied Mechanics (RNCTAM), European Mechanics Society
(EUROMECH), Society of Applied Mathematics and Mechanics, Germany
(GAMM), etc.

Professor Indeitsev is a member of the editorial boards of eight scientific jour-
nals, among them “Physics and Mechanics of Materials”, “Acta Mechanica”,
“Advances in Mechanics”, “Reviews on Advanced Materials”.

Professor Indeitsev is author of more than 200 scientific papers. He is not only a
brilliant scientist and organizer, but also a splendid scientific adviser who is able to
create an atmosphere of scientific creativity by generating bright and productive
scientific ideas. He belongs to those people who are able to unite the team, support
and cultivate young talents. His enthusiasm, true passion, and uncompromising
attitude toward science are transferred to all who have the good fortune to com-
municate with him. We are amazed by his human and scientific generosity which he
shares his time, forces, and ideas with us.

This volume of the Advanced Structured Materials Series is dedicated to the
seventieth birthday of Prof. Dmitry Indeitsev and contains a selection of scientific
papers prepared by his friends and colleagues from different countries. Some
of these works are devoted to research related to the scientific interest by Prof.
Indeitsev, while the others to some extent are inspired by fruitful scientific dis-
cussions with him. Finally, the collection presents works devoted to those modern
directions in mechanics that may become the subject of his scientific interest in the
future.

Magdeburg, Germany Holm Altenbach
St. Petersburg, Russia Alexander Belyaev
Gdansk, Poland Victor A. Eremeyev
St. Petersburg, Russia Anton Krivtsov
St. Petersburg, Russia Alexey V. Porubov

December 2018
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New Nonlinear Model for Ice Induced )
Vibrations o

A. K. Abramian and S. A. Vakulenko

Abstract In this paper a new simple oscillator model is considered describing ice
induced vibrations of upstanding, water surrounded, and bottom-founded offshore
structures. Existing models are extended by taking into account deformations of an
ice floe, and a moving contact interaction between an ice rod, which is cut out from
the floe, and the oscillator which represents the offshore structure. Special attention is
paid to a type of ice-induced vibrations (ITV) of structures, known as frequency lock-
in, and characterized by having the dominant frequency of the ice forces near a natural
frequency of the structure. We propose a new asymptotical method that allows us to
exclude ice floe deformations and obtain a nonlinear equation for structure vibrations.
We investigate instability onset, and resonance effects for these vibrations.

1 Introduction

In this paper, we investigate ice induced vibrations (IIV) of structures such as off-
shore drilling platforms, lighthouses, and bridge pierces. This problem has important
applications for engineering in Arctic region. In fact, as aresult of an ice sheet impact,
such structures can exhibit large amplitude vibrations, which break their functioning
and even destroying them. The IV are generated by a complicated process involving
ice failure, nonlinear dynamics of structures and an interaction between ice and struc-
tures. This problem was considered in many papers, and we, do not pretending on an
overview, concern here with some works, which were corner-stones for our model.
The first model of IIV was proposed in [1], where the ice failure was considered as
a sequence of discrete events. Actually, for small ice velocities interaction between
a structure and an ice sheet leads to a crack formation in the ice sheet. Then the ice
sheet crunches in the structure-ice contact area. This model was extended by Sodhi
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[2] and more recently [3], where randomness of the ice failure is taken into account.
Mathematically, these models describe oscillators under an external time depending
force, which simulates an action of the discrete events. These models exhibit a reso-
nance effect as a possible source of large ITV’s. Other II'V’s models treat the ice failure
as a continuous process (see, for example, [4]) and can be applied for large ice veloc-
ities. In this case the crushing ice force has a relatively low magnitude and structure
oscillations have low magnitudes and high frequencies. As it was mentioned in [3]
these situations are less important for safety applications since dangerous vibrations
start with smaller velocities. In this paper, we propose a model extending the previ-
ous ones, in particular, suggested in [1-3]. Following [1-3] we consider structures
as oscillators, however, we suppose that these oscillators can involve a number of
interaction modes. A novelty with respect to previous investigations is that we study
the ice sheets and ice-structure interactions in more detail. We describe deforma-
tions of the ice sheets taking into account a contact between structures and ice. For
oscillator-ice interactions, we take into account extrusion effects. This consideration
leads to a difficult problem, which involves partial differential equations (PDE’s) for
the ice sheets and ordinary differential equations (ODE’s) for structures. The main
difficulty is that these PDE and ODE are coupled via boundary conditions for the
ice sheet deformations on a contact line between the ice sheet and the structure. This
contact line is unknown. Such contact problems are difficult, nonetheless, we are
capable to resolve our problem using a new asymptotic approach. This approach
exploits mechanical properties of the ice sheet model, namely, we assume that the
ice sheet internal friction is small whereas the sound velocity of the ice is large. This
asymptotic approach based on such assumptions allows us to find an ODE for the
structure, where ice deformations are excluded. This equation describes (for a single
mode approximation) a linear oscillators perturbed different nonlinear terms. These
terms admit transparent physical interpretations and describe the following effects:

i The effect of water mass extrusion under the ice sheet action that leads to a
friction, nonlinear effects and a time periodic forcing;

ii The effect of a contact interaction between ice-sheet and structure that leads to
nonlinearities, a oscillator frequency shift, an “added” mass and a friction, which
depend on ice velocity V;

Note that in i and ii we take into account randomness of the ice failure process. The
resulting equation for the ITV terms involve many parameters, but a crucial parameter
is the ice velocity V. The dynamics of this oscillator model can be studied by well
known methods (for example, [5]). The following main results were obtained by this
asymptotic investigation and numerical simulations.

A resonance is possible for some V that can lead to large vibrations amplitude A.
We obtain a plot of V — A dependence, which, for some parameters choice, shows a
peak. This means that for small speeds V we have no amplitude increase, as well as
for large V. The height and width of the peak depend on the system parameters. The
randomness decreases the height and increases the width and a larger randomness
can produce many smaller peaks. Other parameters also affect the peak properties.
Note that simulations by Matlock and extended Matlock models [1, 3] show a few
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of peaks, and relatively small vibration amplitude increase (see Fig. 3 in [3]). Some
simulations by our models show similar pictures, but under an appropriate parameters
choice our model exhibits an essentially larger amplitude growth and a single peak.
Effect ii essentially depends on the ice velocity V. For V this effect reinforces the
resonance. Moreover, we obtained that increase of V can decrease the friction, which
can become even negative, and it also decreases the effective structure mass (effect of
negative “added mass”). These results are consistent with experimental data [6]. The
numerical simulations show an exponentially growth of amplitude vibrations when
a negative friction contribution is large enough. We find thus the second mechanism
of structure destruction alternative to the resonance.

For multi oscillator models peaks corresponding to the resonances becomes higher
and the peak width increases. Moreover, the peak form may be complicated as a
result of many resonances and a nonlinear interaction between modes. Note that the
vibrations for small V, resonance V and large V have quite different form. A Fourier
analysis of the structure response was made to understand oscillation form. For large
V the response is essentially more stochastic and noisy than for resonance and small
V.

2 Statement of the Problem

Our model is defined by a system of two equations. Following [1-3], we consider
the structure as a rigid body having a contact with the ice sheet. The first equation
describes a nonlinear oscillator and has the form

Mg, +Gq +g(q,q,t) = u(), (D

where g = ¢(t) is aunknown function of time #, which defines the structure vibration
amplitude, M and G are positive coefficients describing the mass and the stiffness of
the structure. The term g(q, g;, t) defines nonlinear effects caused by the interaction
of the structure with the water, which can depend on ¢. We assume that

qr — 5
g(Cl,CIzJ)=—aoq_s , ap > 0. 2)

The term p defines an influence of the ice on the structure and has the form
1) = pocgitx (X, Dl=q)» 3)

where u(x, t) is a displacement of the ice, pg and c( are positive parameters, where
po is the ice density and ¢y stands for the ice sound velocity. The oscillator frequency
is defined by w?> = G/M.

The second equation describes the displacement u(x, ¢) of the ice sheet, which
occupies the domain /I, = {x : ¢ < x < L}. This equation is a PDE, which reads

Uy — Co 2ty — Puy — ko = —Bs; + kos, 4)
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where u(x, t) is a unknown ice displacement, and 8 and k( are positive parameters,
which determine the internal ice sheet friction and the ice sheet compression, respec-
tively. The function s(¢) is a shift of the structure center and we suppose that s(¢) is
defined by

s(t)=s0—Vt+p@), V>0, (@)
where
M)
p) =) deH(t —1p). (©)
k=1

Here #;, are time moments when the ice sheet breaks, dj are lengths of ice blocks
(tooths) that split off and H (z) stands for the Heaviside step function. The time
moments #; are defined by the condition

p(t) = pe, (7

which means the pressure p attains a critical level p... The pressure p can be computed
by the relation

v(t —t)

p(®) = po 50 (®)

where #; is the moment of the previous break. Therefore, the breaks are determined
by the relation

V(tke1 — 1)
p(tiy1) = po—————— = Pe- &)
s (tey1)
1.4

o 12F L
=
a
£
g r 1
2
&
e 08} E
S
E
c 0B i
g
2
B
@ 04 -
&
o
S 02f ]

u 1

i 5 10 15 20 25

time

Fig. 1 This plot shows a dependence s(¢) on the time. Parameters are V = 2 and p. = 50, the
time step dt = 0.001. The quantities di are random numbers distributed according to the normal
law N(d, o), whered = 1 and 0 = 0.1
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Fig. 2 The pressure p for 60 . T . -
V =2and p. = 50, the time
step dt = 0.001

at :

pressure of ice massive on platform
b=
N

The pressure and s(¢) can be computed numerically and the corresponding plots are
represented by Figs. 1 and 2.

Note that for d; = const the pressure p(t) and the distance s(¢) are periodic time
functions and the corresponding period T equals

Ded

== 10
V(po + pe) (10

However, really the process of ice failure is random, thus, the intervals between
the breaks #; are random. We assume that the quantities d; are random numbers
distributed according to the normal law N(d, o) therefore the averaged period is d.
We set the following boundary conditions

u(g,1) =q@), u(L,1)=0 e3Y)

(the first one is a contact relation between the ice sheet and the structure) and the
initial conditions
u(x,00=0, u;(x,0)=0. (12)

3 Simplified Nonlinear Equation for Structure Vibrations

3.1 Equation for q

The aim of this subsection is to express the displacement u(x, ¢) via g and obtain an
equation involving ¢ only. We assume that parameters 8 and ¢, 2 are small:

0<B,c’ <1, (13)
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however, Bs; may be large. We suppose that the size L of the ice sheet is large:
L > 1. The following assumption is important: L~'/2 is much less than all the rest
small parameters, i.e., we suppose L™!/? « B, co 2. Note that the contact problems
are very complicated. Here, however, we can find an asymptotic solution. The main
mathematical idea of this asymptotic construction can be described as follows. First
we represent 1 in the form

u® = gexp(—a(x — ) +i(x, 1),
where ii is a new unknown function and L=/2 > « > L~!. Then the # satisfies the
following equation:
iy — Cq ity — ity — koii = h, (14)
where
h = —Bs; + kos + (¢y°qu + Bas + kog + &) exp(—a(x — ), (15
and the boundary conditions
u(g,t) =0, u(L,t)= O(exp(—al)). (16)
We see that the boundary condition at x = L is satisfied, up to exponentially small
terms.
Given a function 4 (x, t), under assumption (5) we can solve the initial boundary
value problem (22), (16) by iterations setting

W= a0 4 ...

For the main term #© one obtains

i) — kot = h, (17)
and for = gV
i) — ko = ¢ty + ity = g. (18)

The boundary conditions take the form
uq,0)=0, u(L,1)=0, i=0,1. (19)
Using assumptions (5) one obtains

i~ —ky' (1)1 — exp(—k (x — @))) exp(—a(x — q)), (20)
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where k2 = ko and

f(t) = —Bs; — kos + ¢y 2qu + Baqr + kog. 1)

Substituting this result into Eq. (18) and taking into account assumptions (5) we have

i) — kot =y, (22)

where
@0 = k' (= fi + exp(—k (x — ) (fi + kfq0),

i = kg ' (= fir +exp(—k(x — @) (fur + 26fiqr + f1*q} — kG ).

Finally,
y =ky'(Go+ Grexp(—k(x — q))), 23)

where

Go(t) = ¢y fu = Bfr» (24)
Gi(t) = ¢y (fu + 2crqi + f1Pq] — kPqf) + B(fi +fq). (25

We solve Eq. (18) and obtain
iV ~ Uy + U, (26)

where
Uy = —ky>Go(t)(1 — exp(—k (x — q))) exp(—a(x — q)), 27)

Uy = —(2kor) "' G1 (1) (x — q) exp(—k (x — @) exp(—a(x —q)).  (28)
These relations give
u:(q) = —k > f + Go+ G1/2). (29)

To simplify the expression for f, f; and f;, we take into account that for small p
we can use the approximation g;; & —w?q. Then by (5) we obtain

f = Bsi + kos + kog + Bg: + ¢ qurs (30)
fi = Bsu + kos: + (ko — w*cg Har + B @31

S = B + kosy — 0)2,3% + (ko — wzco—z)qm (32)
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Finally, using relations obtained above, one obtains an equation for g:

qu + o’ q = £(q, q), (33)
where £ is defined by
E=5—M'gq. q), (34)
and
& = /OoCOM "u.(q). (35)

In this equation the ice sheet deformation is excluded due to our asymptotic approach.
This main equation for structure vibrations describes a weakly perturbed linear oscil-
lator with the frequency w?.

3.2 Simplification of Vibration Structure Equation

Before solving Eq. (33) we simplify the right hand side £ of this equation and find a
physical meaning of different terms involving in &. To proceed we take into account
that B and ¢, 2 are small parameters, and removing terms of the order O (%) and
O(Bcy 2) in &, however, we conserve terms that involve 82V . Moreover, we assume
that the amplitude of oscillations g is small, therefore, we also remove nonlinear terms
in & proportional to 8 or ¢, 2. Inthe term g we conserve contributions O (g;) and O(q).
Moreover, we suppose po M ’100_ 2 = 0(1) and conserve some terms proportional 8,
since they can be large at the break time moments #.
After straight forward computations, we obtain the following relation:

o = h(t) + ttoq + m1qr + agu + O (B> + ¢, (36)
where
2 -1, -3 1 2 1
h(t) = _POC()M K (Ekoﬂst + kos + Eﬂsm)v (37)
[o(t) = —pocgM 'k, (38)
1 —3 /3 0
pi(t) = —pocgM ™ + ¢y kkosy), (39)
and L /3
_ S S
2 () = —poci M~ i3 (5 ko + ; =) (40)

The term p0q defines a perturbation of the oscillator vibration frequency, The term
14g; gives a contribution in the friction, and the term p, g, determines the effect of the
added mass. All these terms appear as a result of the ice sheet-structure interaction.
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Note that the friction perturbation — it ¢q; involves two terms. The first term is positive
and it does not depend on V, the second one is negative and proportional to V
(when t # 1, i.e., between breaks). The first term diminishes and the second one
increases the friction. The frequency shift does not depend on V and it is positive.
The dependence of the added mass term —u,q;, on V is similar to the friction
perturbation: we have a positive contribution independent on V and a negative one,
which is proportional to V. Finally, our main equation for g takes the following form:

qu +@*q = R(q, q), 41)

where

R(g,q) =—g(q,q,t) + h(t) + po(t)g + p1 (g, + na(t) g, (42)

Below we discuss two possible mechanisms of the structure instability.

4 A New Mechanism of Structure Instability

A mechanism of the structure instability may be connected with a dependence of
the friction on the speed V. We can therefore call this mechanism as “negative
friction” one. Let us linearize the Eq. (41) at ¢ = 0 assuming that oscillations are
small before the bifurcation point. We consider the case when the friction is defined
by physically realistic term (2). Removing external load terms we obtain then the
following equations for free vibrations

(1 4+ M)g + (0 + @)*q +6(t)q, =0, (43)

where M (7) and & are small perturbations of the mass and the frequency, respectively.
These perturbations can be computed by relations of the previous section, but in this
section the main role plays the friction term defined by

0(t) = ao/s(t) — p1 (). (44)

Let us compute 6(¢) between the two subsequent break moments #;, and #;,,;. We
obtain then by (39) that s(f) = dx — v(r — ;) and 11 (t) = —poc2M k3 (50 —
co 2Kk() V). Therefore,

0(t) = M~ ag(d — v(t — 1)) 4+ poc M~ k3 (2 — ¢y %kkoV) t € (tr, tig)-

(45)
Assuming that 6(¢) is small, we represent solutions of (43) as A(#) sin(wt + ¢ (1)),
where d A /dt < 1. A computation shows that the amplitude A(#) increases between

the two break moments if

o
2
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t+Ax
0= (A" / 0(s)ds > 0, (46)

13

where Ay = ;41 — 1 is the time interval between the breaks. We can find A; by
condition (9) that gives
ped

VA = .
Po + Pc

(47)
Finally,

6(V)=M"(V(d " (po+ po)p. " log(1 + pe/po) — pok ") + pocgr ™ ). @8)

Let us make a simple assumption that all d; are equal, dy = d and d does not depend
on V. Then we observe a bifurcation point and instability at V = V,,;, such that

0 (Verir) = 0. (49)
Such bifurcation is possible if
(po + pe)p: ' log(1 + pe/po) < dpox™". (50)
Under this condition, the critical velocity is defined by

pocok ™' B
2(pok =t —d='(po + pe)pc ' log(1 + pe/po))

Vcril - (51)

In this case the instability exists for all V > V,,;;.

Interesting effect can appear if we suppose that the average d of d; over k depends
on V and thatd(V) — 0as V — 4o00. Then if for some V condition (49) holds, the
function (V) has two roots V = Vj and V = V,. The first root corresponds to the
instability onset, and the second one corresponds to the instability fall.

5 Asymptotic Analysis of Nonlinear Equation

Under some assumptions we can consider (33) as an equation that describes a weakly
nonlinear oscillator with a weak damping. By this equation, we can describe both
mechanisms of instability: resonance and friction ones and also obtain resonance
conditions. We introduce a formal small parameter ¢ assuming that R = O(e). The
asymptotic approach to study such equations is well known, see [5]. Let T = et is a
slow time. We seek solutions in the form

g = A(@)sin(wt + ¢(x)) +eqi(t, ) + -+, (52)
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where A and ¢ are unknown slowly evolving in time the amplitude and the phase,
respectively. We have

G = —w’q + 2ew(A, cos(wt + ¢ (1)) — Ap, sin(wt + ¢ (1)) + O(?).
For any smooth function H (g, q;)
H(q,q;) = Hy+ O(¢e), Hy= g(Awcos(wt + ¢(1)), Asin(wt + ¢(1))).
Using these relations, for g one has
G, +o*q =S, 1,8), (53)
where
S, 1) =2w(—A; cos(wt + ¢ (1)) + Ap. sin(wt + ¢(7)) + Ro(A, @), (54)

and
Ro(A, ¢, 1) = R(Asin(wt + ¢(1)), Awcos(wt + @), t). (55)

For large times ¢ = O(e~") Eq. (53) has a bounded solution if and only if

T

lim T’I/S(t, ) cos(wt + ¢p)dt =0, (56)
T—+o00
0
and
T
lim 77! / S(t, 7) sin(wt + ¢)dt = 0. (57)
T—+o00
0

Finally, by (54) and (55) these relations lead to the following system of equations
for the amplitude A and the phase ¢:

T

wA; = lim T*I/RO(A,¢,r)cos(wt+¢)dz, (58)
T—+00
0
and
T
wAg, = —_lim 77! / Ro(A, ¢, 1) sin(wt + ¢)dt = 0. (59)
—+00

0

We investigate this system in the next section.
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6 Amplitude Evolution, Instability and Resonances

Let us focus our attention on the equation for amplitude A. Assuming that A < 1,
and therefore |g| < 1, we can represent the term g from (2) by the Taylor series

— (g =g =) =ssT tssT2q =5 g+ 55707 =5 2qiq + 0U + lai ).
(60)
We obtain then that (58) reduces to
dA 2 -
a)d— =DOA—D1A +a, (61)
T

where Dy, a and D; are coefficients depending on the system parameters. Equa-
tion (61) describes a simple dissipative system, where for a = 0 we are dealing
with a transcritical bifurcation. If Dy < 0 and D > 0, we have the stable equilibria
A, = 0, which is a local attractor corresponding to small amplitude vibrations and
the saddle solution Ay = Dy/D;. For Dy > 0 and D; > 0, we observe an inverse
picture: dynamics defined by (61) has the local attractor A,, = Do/D; and the sad-
dle solution A = 0. Therefore, then the structure exhibits oscillations with relatively
larger amplitudes.The bifurcation point is defined by condition Dy = 0.
We compute the coefficients D; and a using relations (38), (39), (40) and (60).
One has
Do = di + d, (62)

where

2!

d| = / (sin(wt + @) cos(wt + @) (—aoM 5,572 + po(t) — @’ (2))dt,
0

and
2rw!
= f cos2 (@t + ) (1 (1) + aoM ()",
0
27w !
_ -1 -2 2 .
Dy =agM 0/ (s(t) “wcos“(wt + ¢) sin(wt + ¢) 63)
— s:5(0) 73 sin?(wt + ¢) cos(wt + ¢))dt.
and
2rw!
a=2 / h(t) cos(wt + ¢)dt. (64)
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To calculate these coefficients, first let us consider the simplest case when the lengths
d; of the ice blocks equal a constant: d; = d. Then s(r) and Wu; are time periodic
functions, having a period 7 (V) defined by (10). By relations (65), (63) and (62)
one can show that the resonances occur on the frequencies w and 2w (terms with the
frequency 3w vanish that can be shown by an integration by parts).

As a result, we obtain the following resonance conditions:

2t~ =T(V), mo ' =T(V), (65)

where T (V) is deﬁne(_l by (10). Assume dj are random numbers distributed according
to the normal law N(d, o). Clearly, for large o these resonance effects vanish but for
small o they are possible that is checked by numerical simulations.

7 Multioscillator Model

In the previous section we have shown that in the ice sheet-structure system res-
onances appear, which can lead to an oscillation amplitude growth. Consider the
averaged amplitude A, as a function of speed V. The resonance effect leads to a
narrow peak in the plot of A, (V). Therefore, this resonance mechanism is not quite
consistent with experiments since experiments show existence of a sufficiently large
plato on the plot A.,(V), i.e., amplitudes A are sufficiently large for an interval of
values V.

In this section, to explain experimental data, we consider a multioscillator model.
The main idea of this model is simple. It is clear that real structures have a broad
spectrum of eigenfrequencies. Therefore, they can be represented as systems of
many connected oscillators with frequencies close to wy, . . ., w,. Then the resonance
effect appears if w;..(vo) ~ w; for some j. If we assume that there is a set of close
frequencies, located in an interval, then the peak extends. A model for multimode

situation has the form 5
d-q; d
g +ola =R 5. (66)

where ¢g; (¢) is an amplitude of i-th oscillator, R; are friction and nonlinearity terms
given by

Ri=M g2 =2
q-

+h(t) + no(g: + Ml(t)— + pa(t ) 7 2 . (67)

whereg =) . ciqi.p =), cl d &, c; are some weights that determines relative con-
tributions of the modes, 4 ; are defined by (38), (39) and (40). The asymptotic analysis
of (66) follows Sect. 5 and it leads to a system of equations for slowly time evolving
amplitudes A, (r). Note that although the terms R; are small and thus the oscillator
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interaction is weak, nonetheless, the observed effects may be essential. The peak
corresponding to resonance extends and can take a more complicated form (Fig. 3).

8 Numerical Simulations

Numerical simulations confirm analytical results and ideas of the previous sections.
For models with a single oscillator (n = 1) we have that the resonances exist even for
random tooth lengths d; but the vibration magnitude fall as randomness increases;
there are possible two resonances or a single one depending on parameters that is
consistent with resonance conditions; and the effects connected with the added mass
and negative friction essentially affect resonances. For example, the negative friction
reinforce the resonances and if this term is large enough, we obtain a “blow up”,
an exponential growth of the vibration amplitudes. The case of n = 2 oscillators
is investigated numerically. We took the matrix G with entries G;; = 100, G|, =
Gy = 20, Gy = 100 and compare two models: one oscillator model for w = 10 and
two oscillator model. The results are represented by Fig.4. For n = 1 we observe a
peak for a speed vy ~ v.. We have observed a resonance effect for two frequencies
that leads to the peak extension (Fig.4), and a beginning of a plato formation for the
case of three oscillators (see Fig.5).

35 T T T T T T T T T

averaged amplitude of oscillations

speed V'

Fig. 3 This plot shows a dependence of stationary averaged vibration amplitudes on V' for the case
of a single oscillator n = 1
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averaged amplitude of oscillations

speed V'

Fig. 4 This plot shows a dependence of stationary averaged oscillation amplitudes on the speed V
for the case of two oscillator

x 10

0B} .

06} -

04} 1

02¢ §

Fig. 5 This plot shows a dependence of stationary averaged oscillation amplitudes on the speed V
for the case of three connected oscillators. We see that the peak extends and takes a complicated
form with comparison to a single mode case

9 Conclusion

A new model of IV is presented. This model extends the previous ones (see [1,
3]) and allows to describe new effects in IIV. Mathematically the model leads to
a complicated system of PDE and ODE, nonetheless an asymptotic approach to
resolve this system is developed. The main new effect is that a ices-structure contact
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produces a negative contribution into the friction, which can reinforce resonance
an thus vibration amplitude, and destroy structure. Moreover, one can assume as a
hypothesis that there is possible a new mechanism of structure instability without
resonance effects and based on negative friction only.
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On the Deformation of a Hyperelastic m
Tube Due to Steady Viscous Flow Within | @

Vishal Anand and Ivan C. Christov

Abstract In this chapter, we analyze the steady-state microscale fluid—structure
interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube.
Physiological flows, especially in hemodynamics, serve as primary examples of
such FSI phenomena. The small scale of the physical system renders the flow field,
under the power-law rheological model, amenable to a closed-form solution using
the lubrication approximation. On the other hand, negligible shear stresses on the
walls of a long vessel allow the structure to be treated as a pressure vessel. The con-
stitutive equation for the microtube is prescribed via the strain energy functional for
an incompressible, isotropic Mooney—Rivlin material. We employ both the thin- and
thick-walled formulations of the pressure vessel theory, and derive the static relation
between the pressure load and the deformation of the structure. We harness the lat-
ter to determine the flow rate—pressure drop relationship for non-Newtonian flow in
thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples,
we discuss how a hyperelastic tube supports the same pressure load as a linearly
elastic tube with smaller deformation, thus requiring a higher pressure drop across
itself to maintain a fixed flow rate.

1 Introduction

Traditionally, physiological flows in soft and deformable tubes form a large class
of literature on collapsible tubes [19, 20, 39]. These phenomena related to air flow
in the lungs or blood flow in large blood vessels (such as arteries) are inherently
a moderate-to-large-Reynolds number phenomenon. At the extreme of very large
Reynolds number (inviscid) flow lies hydroelasticity (to use the term of the group
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sian Academy of Sciences in St. Petersburg). Nowadays, there is a vast literature
on hydroelasticity, covering both stable and unstable internal and external flows
[18, 35] that are capable of supporting nonlinear wave phenomena [22], including
wave localization [1]. A common example of such high-Reynolds-number hydroe-
lastic interactions is aerodynamic flutter [7], which can lead to potentially disastrous
instabilities such as failure of airplane wings and suspension bridges. A variety of
nonlinear wave phenomena also arise when embedding a linearly elastic solid body
(e.g., arod) into an ambient viscoelastic medium and studying the coupled structure—
structure interactions [37]. More recently, however, there has been significant interest
in “viscous—elastic” fluid—structure interactions (FSIs) between internal fluid flows
at low Reynolds numbers and soft tubes and annuli [10, 14, 15], including the effect
of non-Newtonian rheology [3, 9, 38]. This renewed interest comes from the need
for understanding these systems in order to design microfluidic [38] and soft robotic
[14] devices. At these smaller scales (or, for such “creeping” viscous flows), fluid
inertia is negligible.

Here, we present a first foray into the mathematical analysis of low-Reynolds-
number FSI, at steady state, due to the flow of a non-Newtonian fluid in a microtube
composed of a hyperelastic material. Hyperelastic materials have the “advantage” of
being completely specified by a strain energy functional from which the constitutive
equation between stress and strain follows. The structural response of complex soft
solids, such as biological tissue and blood vessels, can be appropriately described
by a hyperelastic solid with a pseudo strain energy function (see, e.g., [17, Chaps. 8
and 9]). Similarly, due to its complex constituents, blood is a non-Newtonian fluid
and an appropriate rheological model (beyond the simple Newtonian viscous fluid)
should be used (see, e.g., [17, Chap. 3]).

This chapter is thus organized as follows: in Sect. 2, we address the fluid mechanics
problem, including the velocity profile of a generalized Newtonian (specifically,
power-law) fluid in a tube of slowly varying cross-section. In Sect. 3, we discuss
the deformation of the soft hyperelastic microtube due to uniform loading from
within. Then, in Sect. 4, we specifically choose the load to be the hydrodynamic
pressure and obtain the appropriate pressure—deformation relations describing such
fluid—structure interactions. In Sect. 5, the results are discussed and compared to
limiting cases, such as a linearly elastic microtube, in order to highlight the effects
of hyperelasticity. Conclusions and avenues for future work are stated in Sect. 6. An
appendix is included for completeness, in which the pressure—deformation and flow
rate—pressure drop relations for FSI in a thick-walled linearly elastic tube are also
derived.

2  Summary of the Fluid Mechanics Problem

Consider a fluid flow v = v, & + v0 + v.Z in cylindrical coordinates. A diagram
of the deformed microtube geometry is shown in Fig. 1, specifically the tube has
uniform thickness ¢, undeformed inner radius a, and length ¢. Now, following [3],
let us assume that
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Fig. 1 Schematic of the
microtube geometry,
including notation used

1. The flow is steady: %( -)=0.
2. The flow is axisymmetric: %( -)=0and vy =0.
3. The geometry of the flow vessel is a slender tube: £ > a < a/l =€ K 1.

Assumption 3 is key to the mathematical analysis below. Specifically, this assumption
leads us to the appeal to the lubrication approximation of fluid mechanics (see, e.g.,
[27, 36]), which will allow us to solve for the flow profile analytically.

As shown with due diligence in our previous work [3], to the leading orderina/Z,
the velocity field is unidirectional [27]: v = V; Z but weakly varying with the (long)
flow-wise direction i.e., v; = v;(7, 7). Here, and henceforth, bars over quantities
denote dimensionless variables according to the following scheme:

F:r/a’ IEZP/PL’ ZZZ/E, ‘_}szz/(vzy ‘_}szr/(vra (1)

where the characteristic radial velocity scale is V, = €V,, the characteristic axial
velocity scale is V., and P, is the characteristic pressure scale. Upon specifying the
rheology of the fluid (see below), £, and V, will be related to each other.

Next, we specify the fluid’s rheological behavior. We are interested in biofluid
mechanics applications such as blood flow through a deformable artery or vein.
Blood is known to have a shear-dependent viscosity due to the fact that red blood
cells deform. Haemorheology is a complex topic [17, Chap. 3], nevertheless experi-
ments suggest [21] that blood flow can be accurately fit to a power-law fluid model
(a generalized Newtonian rheology often going by the name Ostwald—de Waele [6])
at steady state. Now, the dominant shear stress component is 7,; likewise the corre-
sponding rate-of-strain tensor component is just y,, = dv,/dr to the leading order
in a/¢ (i.e., under the slenderness assumption). Thus the fluid’s rheological model
takes the “simple shear” form:

v, |"" v, )
Lo=m|—| —,
‘ or ar
—_———

=n

where n is the apparent viscosity, m(>0) is the consistency factor, and n(>0) is the
power-law index. On making Eq. (2) dimensionless using the variables from Eq. (1),
we obtain the relationship between the axial velocity V, scale and the pressure scale

PV, = [a"'P./(m)]".
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The power-law rheological model captures the flow behavior of fluids that are
shear thinning (1 decreases with y,,), such as blood [11, 21] as mentioned above,
for n < 1. It also captures the flow behavior of shear-thickening fluids ( increases
with y,.) such as as woven Kevlar fabrics impregnated with a colloidal suspension
of silica particles [41] used for ballistic armors, for n > 1. The viscous Newtonian
fluid is obtained as the special case of n = 1 in Eq. (2). Our motivation is mainly
fluid mechanics of blood vessels, so our examples consider n < 1, but the theory
applies to both cases.

Finally, considering the dynamics of the flow under the constitutive relationship
in Eq. (2), we found that the dimensionless axial velocity profile is [3]:

1dp 1/n R}+1/n _ pltt/n
= (—22) (A—=—). )
2 dz 14+1/n

where R; = R;/a is the dimensionless inner radius of the deformed microtube. More
importantly, R; is not necessarily equal to unity because we allow the microtube to
deform due to FSI, as discussed in the next section. Likewise, the pressure gradient
dp/dz is not constant but, rather, varies with z. As a result, while p is at most a
function of z (but not a linear function), v; can depend upon both 7 and z.

vV

20

3 Structural Mechanics Problem: Solving for the
Deformation

In this section, we address the structural mechanics aspect of the coupled FSI problem
posed above. To this end, we treat the structure as a pressure vessel, wherein the only
load acting on the structure is the hydrodynamic pressure from the fluid, and the
load due to viscous and shear stresses is neglected. This assumption stems from the
lubrication approximation for the fluid flow, wherein the viscous shear stress scale is
~ € times the hydrodynamic pressure scale [36, Chap. 22]. We begin our discussion
by first analyzing a thin-walled pressure vessel, then we move onto its thick-walled
counterpart.

3.1 Thin-Walled Cylinder

Let us consider the case of a thin-walled initially cylindrical microtube with thickness
t < a.This assumption allows us to consider the cylinder in a state of plane stress and
plane strain, thus simplifying the analysis of the structural mechanics problem. As a
consequence, the walls of the cylinder act like a membrane, which does not sustain
any bending or twisting moments. There is no variation of stress and deformation
throughout the thickness of the cylinder.
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3.1.1 Deformation

In the undeformed material coordinate system, the coordinates of a material point
are givenbyr = a, 6 € [0, 2r], and z € [0, £]. Upon axisymmetric deformation, the
coordinates of the same material point become

R=R®r), ©=0, Z=uoaz “4)

We further assume that the deformation is homogeneous along the axial direction,
thus o = L/¢, with L being the deformed cylinder’s length and ¢ being the unde-
formed cylinder’s length (as in Fig. 1). Now, since the cylinder is clamped at both its
ends, its length does not change and L = ¢. Hence, o = 1. The foregoing discussion
reduces the coordinates of the point in the spatial coordinate system to:

R=R(r), ©=0, Z=z. (5)

As the shell is considered (infinitesimally) thin in this theory, we denote the inner
radius R; by R (in this section) without fear of confusion.

For the case of a deformation defined by Eq. (5), the deformation gradient tensor
¥ can be easily computed:

dR/or 0 0
F=| o Rr/rol. (6)
= 0 0 1

Since ¥ is a diagonal tensor, then its principal axes are just the r, 6, and z axes
of the cylindrical coordinate system. Indeed, we deduce from the deformation field
introduced in Eq. (5) that a line segment oriented along either the r, 6 or z coordinate
directions will, at most, only stretch and cannot rotate.

Consequently, for this type of deformation, the rotation tensor R = 7 (the identity
tensor) and the stretch tensor is simply -

1 00
=10x 0
0 0 A3

[N
I

(N

Here, X1, A, A3 are the principal stretches, which one can immediately write down
by comparison of Egs. (6) and (7). Now, since the material is incompressible,
det# = AiA2A3 = 1, we can determine A;, and thus

)LIZV/R, )\ZZR/I", )\,';Zl (8)
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3.1.2 Constitutive Equation

We consider the material from which the cylindrical tube is composed to be an
isotropic, incompressible, iyperelastic material. For such a material, the constitutive
equation is specified through a strain energy functional W [5, 8], which depends upon
the principal stretches A;, i.e., W = W (A, A2, A3). Specifically, we assume that the
hyperelastic material is defined by the incompressible Mooney—Rivlin constitutive
equation [5, 8, 29] with strain energy given by

W=Ci (AT +23+13) +Co (MA3 + A543 +24347)  (MAsds=1).  (9)

Here, C, and C,; are two material constants characterizing the structural response of
the hyperelasic material; they are determined empirically by comparison to experi-
ments [34]. Equation (9) is traditionally invoked to describe the response of highly
elastic, i.e., “rubber-like,” materials under isothermal conditions [34]. In particular,
setting C, = 0 reduces the Mooney—Rivlin model to the neo-Hookean solid. For
most “rubber-like” materials, C; > 0 and C, < 0 [28, 31, 32]. For compatibility
with linear (i.e., small-strain) elasticity theory (see [5, Eq. (6.11.29)]), we must have

G=2(C+Cy) (10)
as the shear modulus of elasticity. We also recall that, for a linearly elastic material,

2G(1+v) =E, (11)
where v is the Poisson ratio, and E is Young’s modulus.

Now, for isotropic materials, the principal Cauchy stresses are coaxial with the
principal stretches and are given by

ow ow
—03=Al— — A3—, 12

0p — 03 1a)¥1 38A3 (12a)

ow oW
-3 =AM —A3—. 12b
02 — 03 2 M (12b)

Substituting Eq. (9) into Eq. (12), we obtain

o1 — o3 =2C; (A —243) —2C> (A7° — 43), (13a)
0y — 03 = 2@1 ()\,% — )u%) — 2@2 ()»;2 — )»g) . (13b)

3.1.3 Static Equilibrium

As mentioned above, our exemplar thin-walled cylinder acts as a pressure vessel,
i.e., a structure that sustains only stretching and tension but no bending or twisting.
For such a structure, the equations of static equilibrium take the form:
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0| =0y = —PD, (143.)
R

0y = 0w = =, (14b)
PR

0‘3 = GZZ = 7 (140)

Since the tube is thin, i.e., t < a and R = O(a), then 0; K 0y ~ o3. Substituting
Egs. (14) (stress balance) into Egs. (13) (constitutive) and employing Eqs. (8) (defor-
mation), we obtain

PR a’® R?
T =2C (= —-1)-2C = -1 1
2 C <R2 ) C, <a2 ) ) (15a)
pR R? a®
= 20, (a2 1) 2C, <R2 1). (15b)

Combining the last two equations, we arrive at the pressure—radius relation

pa R a

9~ - _ 16
2t(C; + Cy) a R3’ (16)

where R = a + u, is the deformed tube radius, and u, is the radial deformation
(recall Fig. 1).

Notice that the cross-sectional area of the tube at some fixed axial location, z,
is A = R? [here, R = R(z) due to FSI]. Then, Eq. (16) can be rewritten as a
pressure—area relationship:

- /- 1
p(A) =2(C + Cz)ﬁ (A — Z) , (17)

where 7 = t/a is the dimensionless (reduced) thickness of the tube, and A=
A/ (ra?) is the dimensionless (reduced) area of the deformed tube under axisym-
metric conditions (initial circular cross-section remains circular under deformation).
Equation (17) represent a fube law [42] for microscale FSI in a hyperelastic pressure
vessel. This “law” is often used as a “constitutive” equation (closure) in unsteady
FSI problems in which the flow is cross-sectionally averaged [39]. Of interest is to
note that p(A) in Eq. (17) is nonlinear.
Finally, let us make Eq. (16) dimensionless using the following dimensionless
variables
up = u,/a, p=p/Pe, (18)

to yield
1 Pe

RS S "

5= (1 +iir) — -
yp =1+ 2(C; + Co)i
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where 1 = t/a as above, and we have defined y as a dimensionless parameter that
captures the “strength” of fluid—structure coupling, i.e., the so-called FSI param-
eter. In our previous work on linearly elastic incompressible microtubes [3], the
FSI parameter was defined as 8 = P./(Ef). To connect the hyperelastic theory to
the linearly elastic theory, we can use Egs. (10) and (11), taking v = 1/2 for an
incompressible material, to find that

y = B/3. (20)

A few remarks are in order. Equation (19) represents the final dimensionless form
of the pressure—deformation relation for a thin-walled incompressible hyperelas-
tic cylinder. Second, note that, being a quartic (polynomial) equation in (1 + i;),
Eq. (19) can be solved explicitly for i as a function of p using, e.g., MATHEMATICA.
However, the resulting expression is too lengthy to be worth including here. Third,
observe that both p and u; can (and do) depend on the dimensionless flow-wise coor-
dinate z, but zZ does not feature explicitly in the pressure—deformation relationship in
Eq. (19).

3.2 Thick-Walled Cylinder

In this section, we account for the non-negligible thickness of a cylinder, i.e., the
case of thick-walled pressure vessel, also known as Lamé’s first problem (see, e.g.,
[33D).

Unlike the case of a thin-walled cylinder, the inner and outer radii of the thick-
walled cylinder differ. They are, thus, denoted by r; and r, before deformation, and
by R; and R, after deformation. Specifically,

ri=a, (21a)
ro=a-+t, (21b)
Ri=a+u,, (21¢)

where u, is the radial displacement of the inner surface of the cylinder. For the prob-
lem that we have posed, the displacement of the outer surface is of no consequence
to the flow within the cylinder, hence we do not discuss it; then, denoting the dis-
placement of the inner surface by u, is unambiguous. Since the cylinder’s wall is
assumed to be composed of an incompressible material (constant volume), and it is
clamped at both its ends (constant length), its cross sectional area remains constant.
Therefore,
R — R} =r2 —r2. (22)
The cylinder kinematics (Sect. 3.1.1) and the hyperelastic constitutive equations
(Sect. 3.1.2) developed for the thin-walled cylinder also apply to the thick-walled one.



On the Deformation of a Hyperelastic Tube ... 25

However, unlike the previously discussed case, the stress and deformation fields are
not constant for a thick-walled cylinder. Specifically, the stress and deformation vary
across the thickness of the cylinder. Consequently, the equations for static equilibrium
of a thick-walled tube are differential equations. Neglecting body forces (due to the
small scale of the posed FSI problem) and shear stresses, the equations for static
equilibrium [13, 16, 24, 29] are thus:

00, 1
IR + E(Urr —0pg) =0, (23a)
30,
— =0. 23b
37 (23b)

The latter equations, when written in terms of material coordinates in association
with the deformation field described in Eq. (5), reduce to

d(Ro,,) r
Lo =0, 24
o +R090 (24a)
0
%z _ o, (24b)
0z

Note that Eq. (24b) is satisfied identically.

As above, 0, (= o01) and gy (= 0,) are also related by Eq. (13), i.e., the principal
stress relations for an isotropic, hyperelastic Mooney—Rivlin material. Thus, we can
eliminate oyy from the constitutive Eq. (13) and the static equilibrium equations (24).
Then, employing the expressions for the principal stretches A; and A, from Eq. (8),
we obtain the following differential equation governing o, :

d(Ro,) r R\* /ry2
= +E=mr+2((C1+C2)|:<7> —(E)“ﬂ. (25)

We solve Eq. (25) for o,, subject to the loading boundary conditions

arrlr:r(, =0, (268.)
0rr|r=r,- =D (26b)

to obtain the pressure—radius relation

L@ @eve
p= R% Ri2 1 2),

where, for convenience, the function f is defined (see also [29]) as

f(€):=§+Iné. (28)

Note that Eq. (27) is equivalent to Eq. (3.4.3) in [29, Chap. 9]. It is relevant to remind
the reader that p # p(r), so the integration of Eq. (25) is straightforward.
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Finally, substituting the geometric relationships from Egs. (21) and (22) into
Eq. (27), we obtain

p _ (1+t/a)2 . 1
Ci+C, |:f<(1 +t/a)r -1+ +u,/a)2> f <(1 +u,/a)2>:| - @)

The last equation can be re-written in dimensionless form using the variables from
Eq. (18) as

o (1+17) !

where y is the FSI parameter as defined in Eq. (19) above. Equation (30) represents
the final dimensionless form of the pressure—deformation relation for a thick-walled
incompressible hyperelastic cylinder.

4 Coupling of the Fluid and Structural Mechanics
Problems

We now turn to the main task, which is coupling the flow and deformation. As shown
in our previous work [3], this task is accomplished by computing the flow rate g
explicitly using its definition for an axisymmetric cylindrical tube:

2 R; R,
q :f f v.rdrdf = (Vz2ﬂa2/ v: 7 dr, (31)
0 0 0

where we have also introduced the dimensionless variables from Eq. (1). Now, sub-
stituting the expression for v; from Eq. (3) into Eq. (31), we obtain the dimensionless

flow rate Un 3341/
—\ 1/n n
qa ( 1 dp) R;

_(_2¢° , 32
V.wa? 2dz) 3+1/n (52)

q

where R; = | + ii; is the dimensionless inner radius of the deformed tube.
Thus, since g = const. by conservation of mass in a steady flow [36], Eq. (32)
becomes an ordinary differential equation (ODE) for p(z):
8 2G4+ 1wl + & @1 (33)
e q 7z )
Now, we must specify the deformation profile u; to complete the calculation. Even in
the special case of a Newtonian fluid (n = 1), Eq. (33) represents a strongly nonlinear
pressure gradient—deformation coupling.
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4.1 Thin-Walled Cylinder

To finish the derivation of the coupled FSI theory for a thin-walled cylinder, we
differentiate the pressure—deformation relation from Eq. (19) with respect to Z to

obtain 45 3 di
p Uy
L R B 34

Yz [ +(1+m)4] dz G

Then, we eliminate d p/dz between Eqs. (33) and (34) to obtain an ODE for u;:

du;

=27[G+ 1/mql" = [(1 + ap)* ™ + (1 +it7) >3] ¥E (35)

Since conservation of mass dictates thatg = const.,and y and n are known constants,
the ODE (35) can be separated and directly integrated, subject to the boundary
condition (BC) ii;(Z = 1) = 0,! to yield:

gy oy L a@P 4 a@Pt 6n
2B+ /mald =2 ===~ Gn—2) Gn+2)G3n — 2)3‘
(

Equations (19) and (36) fully specify (albeit implicitly) the static response of
a thin hyperelastic cylinder due to internal flow of a generalized Newtonian fluid
within it. For example, the displacement at 7 = 0 found from Eq. (36) can be used in
Eq. (19) to determine p(0) from which the full dimensionless pressure drop follows:
Ap := p(0) — p(1), where p(1) = 0 is our chosen pressure gauge for the pressure
at the outlet and also in the surrounding medium exterior to the cylinder. Thus, the
flow rate—pressure drop relationship (g as a function of Ap, or vice versa), i.e., a
generalized Hagen—Poiseuille law, in the presence of FSI can be obtained analytically.

4.2 Thick-Walled Cylinder

For a thick-walled cylinder, we differentiate Eq. (30) with respect to z to obtain

dp { 20+ 021 + iy) 2(1 + i)
Yoz T A @)+ 20, (0 @) + 2
2 2 } dii;
TU+an  (tapd) dz (37)
(I+a7)  (I4a;)3) dz

Note, more importantly, that although in general we cannot expect to satisfy clamping BCs, i.e.,
uip = duy/dz = 0atz = 0and z = 1 in this leading-order analysis of deformation, we must respect
the pressure outlet BC, i.e., p(z = 1) = 0. From Eq. (19), it is then clear that the pressure BC
requires that 7 (z = 1) = 0 as assumed.
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Then, we eliminate dp/dz between Egs. (33) and (37) to obtain an ODE for the
dimensionless transverse deflection u;:

2(1 +0)*(1 4 it5) 2(1 + itr) 2
{ [T+ D2+ @2 + 2P (L+02+ @) + 20 (1 +iip)
2 d”_t; _ 7 —n = \—(1+3n)
_m}d_i =ty[G+1/n)ql"(1 + u7) , (38)

subject to the BC that i;(1) = 0, as before. Unlike, Eq. (35), Eq. (38) cannot be
integrated directly, thus it must be solved numerically. We employ the odeint
subroutine of the Python package SciPy [23], with default error tolerances, for this
integration.

Equations (30) and (38) fully specify the static FSI response of the thick-walled
hyperelastic cylinder due to the flow of the generalized Newtonian fluid within.
Together these two equations can be used to develop the flow rate—pressure relation-
ship for a thick-walled hyperelastic tube, however the calculation must be done via
numerical quadratures, unlike the case of the thin-walled cylinder (Sect. 4.1).

5 Results and Discussion

Let us now illustrate the deformation—pressure and flow rate—pressure drop relation-
ships predicted by our FSI theory for the interaction between the steady flow of a
power-law fluid within a soft hyperelastic cylindrical vessel containing it. Specifi-
cally, in this section, we wish to highlight the effect of hyperelasticity on the structural
response of the microtube.

In Fig. 2, we plot the dimensionless pressure drop A p across a thin-walled micro-
tube as a function of the dimensionless inlet flow rate g for different values of the
FSI parameter 8(= 3y). The curves (solid) for the thin-walled hyperelastic tube
are obtained from the present theory, namely Egs. (19) and (36), while the curves
(dashed) pertaining to the thin-walled linearly elastic tube are calculated based on
the results from our previous study [3], namely:

_—; _ —n 1/(2+3”)_
AP = T ({1 +22 4+ 3n)(1 — v/2)BIG + 1/m)gl") 1)(,39)

We note that, for both linearly elastic and hyperelastic tubes, the pressure drop
decreases with (= 3y). This observation is attributed to the very definition of g
as the parameter symbolizing the strength of the FSI coupling. For large 8 values,
there is “stronger” FSI coupling than at small 8 values and, hence, there is larger
deformation of the tube. Consequently, the cross-sectional area increases, lowers the
resistance to the flow, and culminates in a smaller pressure drop for large 8 compared
to small .



On the Deformation of a Hyperelastic Tube ... 29
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Fig. 2 The dimensionless (full) pressure drop across a thin-walled microtube as a function of
the dimensionless inlet flow rate g for different values of FSI parameter § = 3y. Hyperelastic
thin-walled tubes correspond to solid curves, while linearly elastic thin-walled tubes correspond to
dashed curves for a a Newtonian fluid with n = 1.0 (e.g., blood plasma), and b a shear-thinning
fluid with n = 0.7 (e.g., whole blood). For the hyperelastic tube, the corresponding theory has been
presented in Sect. 4.1, while for linearly elastic tubes the predicted pressure drop is given by Eq. (39)
derived in [3]

Perhaps more attuned to the thesis of this chapter is the difference in the response
of a hyperelastic and the theory of a linearly elastic tube for the same FSI coupling
strength. Thus, comparing the solid and dashed curves, respectively, in Fig. 2 at fixed
y (i.e., same color), we observe that a hyperelastic tube supports a higher pressure
drop than a linearly elastic tube. We explain this trend by noting that a hyperelastic
tube, in general, is stiffer and has a higher tendency to preserve its original config-
uration compared to a linearly elastic tube. In other words, a hyperelastic material
requires higher pressure than a linearly elastic material to sustain the same deforma-
tions (see also [25, 26]).

Next, we move on to the case of thick-walled tubes and compare, in Fig. 3, the
flow rate—pressure drop relation in a thick-walled hyperelastic tube obtained from
the present theory, namely Eqgs. (30) and (38), with the corresponding relationship
for a thick-walled linearly elastic tube calculated based on

1 n
AP = ({1 +2@+3m8R61G + 1/ma1'}**" 1), (40)

which was derived from Eq. (52) in the appendix; & = [(1 +1)?(1 +v) + (1 —
2v)]/(2+1) and 7 = t/a. For the same reason as above, an increase in (= 3y)
causes Ap to decrease.

Things become more interesting, however, when the curves corresponding to
same value of the FSI parameter 8 are compared (solid vs. dashed) in Fig.3. For
small g and small B, the linearly elastic tube deforms less and sustains a larger Ap
compared to the hyperelastic one. However, this trend is reversed for large g and large
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B, for which the hyperelastic tube sustains a higher A p than the linearly elastic one.
This interesting observation can be explained by the very nature of hyperelasticity.
It is more difficult to deform a hyperelastic material as the deformation increases,
i.e., hyperelastic materials exhibit strain-stiffening [28, 31, 32]. Mathematically, this
resistance to deformation can be measured through the rate of change of the stress
with respect to the strain (or deformation). To this end, when we differentiate the
constitutive equation for a hyperelastic material, namely Eq. (13), with respect to
the principal deformation along the “1” direction, whilst keeping the deformations
in the other directions constant for simplicity, to obtain:

3
QN _ acn +4Cy /A3, 1)
N

From the latter equation it follows that the resistance to deformation increases with
deformation (keeping in mind that C, < 0). On the other hand, for a linearly elastic
material, the resistance to deformation is given by Young’s modulus E (at least for
a uniaxial load), which is a constant!

One could also interpret the much larger Ap in hyperelastic (over linearly elastic)
thin-wall cylinders in Fig. 2 as a consequence of strain-hardening. However, in that
case, due to significant resistance to deformation of the thin-walled hyperelastic
vessel (there is almost one order of magnitude difference in the vertical scales between
Figs. 2 and 3), the interplay between g and § values just described is not present.

Finally, we also note that an increase in the cylinder thickness will lead to a
corresponding decrease in the pressure drop, although this is not shown in Fig. 3,

- B=01
---- B=02
- B=03

(a) n = 1 (Newtonian) (b) n = 0.7 (pseudoplastic)

Fig. 3 The dimensionless (full) pressure drop across a thick-walled microtube as a function of the
dimensionless inlet flow rate g for different values of FSI parameter 8 = 3y and f = t/a = 0.3.
Hyperelastic thick-walled tubes correspond to solid curves, while linearly elastic thick-walled tubes
correspond to dashed curves, for a a Newtonian fluid with n = 1.0 (e.g., blood plasma), and b a
shear-thinning fluid with n = 0.7 (e.g., whole blood). For a thick-walled hyperelastic tube, the
corresponding theory was presented in Sect. 4.2, while for thick-walled linearly elastic tubes the
predicted pressure drop is given by Eq. (40) derived from the appendix
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in which all the curves have been plotted for a constant ratio f = f/a = 0.3. This
result is similar to the one for thick linearly elastic plates, which was discussed in
our previous work [4], and it can be attributed to an increase in the normal stress
throughout the structure’s thickness as 7 increases.

6 Conclusion

In this chapter, we have solved the problem of steady-state low Reynolds number
fluid—structure interaction (FSI) between a generalized Newtonian fluid and a hyper-
elastic cylindrical tube. The hydrodynamic pressure, which is needed to maintain
a unidirectional flow in a deformed cylindrical pipe, was transferred as a load onto
the elastic structure, the mechanics of which were analyzed using the thin and thick
pressure vessels theories for isotropic, incompressible Mooney—Rivlin materials. The
fluid and solid mechanics were brought together to yield a coupled equation relating
the constant inlet flow rate ¢ to the tube’s radial deformation u, (z). For a thin-walled
pressure vessel, the latter relation takes the implicit dimensional form

mG+1/mal" , ) _lat ()12 a2la 4 u, (2)]" 2
(C, + Co)t YT TGt 2) Gn—2)
6na

- (42)
Bn+2)3Bn —2)

As a special case, we have also found the flow rate—deformation relation for a New-
tonian fluid (n = 1, and m = p is the shear viscosity):

g, latw@P s _5a
m(é Z) = 5(,12 +a [a + Mr(Z)] 5 s (43)

which is an implicit relation for u,(z) given g. Whence, the equation relating the
pressure p(z) at an axial location z with the deformation u,(z) is

p2) =2(C +Cy) < > {[1 +u,(2)/a] — (44)

t
a m}

Consonant with our previous FSI results [3, 4], the pressure—deformation relationship
is set by the structural mechanics alone, hence it does not explicitly depend upon the
fluid’s rheology.

Equations (42) [or (43)] and (44) fully specify the FSI problem for a thin-walled
hyperelastic cylinder. In deriving these equations, we arrived at the dimensionless
FSI parameter y , which determines the “strength” of the coupling between flow and

deformation fields: P
. a
=— = 45
4 2(C1+(C2)(t) 43)
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for a hyperelastic cylinder with material constants C; and C,. Here, the pressure
scale . depends on the nature of the physical scenario at hand. For a flow-rate-
controlled experiment and/or simulation, as considered in this chapter for example,
we set P. = [¢q/(wa®)]"m¢t/a, as dictated by the fluid’s momentum balance. On the
other hand, for a pressure-drop-controlled experiment or simulation, we can directly
set P. = Ap, which means the fluids velocity scale V, discussed above becomes a
function of the dimensional pressure drop Ap.

We compared the predicted g — A p relation due to the hyperelastic FSI theory
developed in this chapter with the corresponding relation due to linearly elastic
FSI theory form previous work [3]. In particular, we concluded that a hyperelastic
microtube supports smaller deformations than a linearly elastic microtube for the
same hydrodynamic pressure, or conversely a hyperelastic microtube can sustain a
higher pressure drop than a linearly elastic one, for the same deformation. Finally,
our observation in Sect. 5 that the pressure drop across a soft microtube decreases
with the wall thickness is in agreement with the case of rectangular microchannels
with a plate for a top wall, which we considered in our previous work [4].

In future work, we will report benchmarks of this chapter’s purely theoretical
considerations against full-fledged three-dimensional FSI simulations and/or exper-
iments (as in [3, 4]). Future work could also include extending our approach to FSI
between internal viscous flows and composite structures governed by generalized
continua continua [2], such as Cosserat continua [30] or microstructured materials
[12].
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Appendix

In this appendix, we consider the flow rate—pressure drop relationship for steady
flow of a power-law fluid within a linearly elastic, thick-walled pressure vessel of
thickness ¢, and inner radius r; = a. The pressure vessel is subject only to an internal
distributed pressure load p, with zero external pressure. Then, the state of stress
evaluated at the inner radius (see [40]) is:

rg + rl.2
Opg = <W> ps (46a)
o1 = —p. (46b)

r2
0., = <—’2> p. (46¢)
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The hoop strain is given by the constitutive equations of linear elasticity as:

7. 1
g = — = E[Uee —v(o; +0,)] 47

i

Using Eqgs. (46) and (47) yields

w_ L[ (ke oy (48)
i E rg—ri2 p=v r(?—rl-2 Pl

which, upon using Egs. (18) and (21), becomes

ur __|:(1+t_)2(1+v)+(1—2v)

P
= e }ﬂp, B =% (49)

ri Et
After deformation, the inner radius is R; = r; + u, (where, initially, r; = a). Thus,
the dimensionless inner radius is

Ri:rﬂrur:“r&:“r

ri ri

(50)

(I+D>A+v)+ (1 —2v) 65
241 p:

Substituting the expression for R; from Eq. (50) into Eq. (33), we obtain an ODE for
the dimensionless pressure p:

dﬁ —1n =\ —(143n)

e =2[3+ 1/m)q]" (1 + RBp) ; (51
where we have defined £ := [(1 4 7)>(1 4+ v) + (1 — 2v)]/(2 + 1) for convenience.
As usual, the ODE (51) is separable and subject to a pressure outlet BC [i.e., p(1) =
0], thus we obtain:

oo 1 —n _ 1 1/2+3n)
PO =45 ({1 +22 4 3mRBIG + 1/m)Gl" (1 — 3)) _ 1) . (52)

Then, the full pressure dropis simply Ap = p(z = 0).Notethat & = (1 — v/2) + O(7),
thus the expression for A p based on Eq. (52) [i.e., Eq. (40) above] reduces to Eq. (39)
(based on [3]) identically for thin shells (7 < 1).
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Abstract The chapter is concerned with the model of multichannel diffusion of
hydrogen in a solid. The model is developed for analysis of diffusion of small, so-
called natural, hydrogen concentrations, describes experiments for the model ver-
ification, and presents data on the hydrogen binding energies in a solid obtained
by identifying the model parameters by means of the experimental data. A critical
analysis of some disadvantages of the widely known method of thermo-desorption
spectra is provided. The energy spectra of hydrogen obtained by the latter method
and the multichannel diffusion model are compared and discussed. 15 years ago we
first introduced Dmitry Indeitsev to the idea of applying the model of multichannel
diffusion to determine the hydrogen binding energy in a solid. He enthusiastically
supported our activity, both by discussing the results and participating in projects by
Russian Foundation for Basic Research. Our experimental results served as a basis
for the two-continuum model proposed by him. The authors express deep gratitude
to him for the extremely useful and friendly participation in the development of our
ideas.
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1 Introduction

The study of hydrogen diffusion in solids has a great practical importance. Its ade-
quate description is necessary for prediction of the working resource of constructions,
development of the storage systems and safe technologies aa well as for reliable mea-
surement of hydrogen concentration.

It was Gorsky [19, 20] who found out that, apart from temperature and concentra-
tion gradient, the mechanical stresses in crystal matrix affect the diffusion of atoms
in solids. This allows one to explain the mechanism of gradual evolution of hydrogen
embrittlement in metallic parts, elements and formation of cold cracks in welds. The
hydrogen diffusion plays an important role in the processes of corrosion, cracking
and brittle failure [12, 23, 27, 37, 44, 62]. The influence of hydrogen on electric
properties of semiconductors is also essential, see [39].

The systems for storage and transport of gas are designed to withstand high pres-
sure. Hydrogen diffuses into metal walls and other parts of these systems cf. [66].
The gradual accumulation of hydrogen in metal leads to the hydrogen embrittlement
and destruction.

There are some hydrogen storage systems in which the hydrogen is accumulated in
metals, composites and nanostructures. The hydrogen diffusion is the main working
process in charging and discharging, cf. [51].

In the thermonuclear reactors the diffusion of hydrogen and its isotopes leads to the
hydrogen saturation in the inner parts of reactor, cf. [2]. Increasing the temperature
of the inner walls leads to the hydrogen extraction from the walls to plasma, cf.
[10]. This process destroys the plasma’s stability during energy pumping. Hydrogen
accumulation results in cracking on the inner parts of reactor due to the hydrogen
embrittlement and temperature shocks. The tritium diffusion through the reactor
walls leads to reducing the level of radiation safety of the thermonuclear synthesis
technology.

In all these cases, the hydrogen concentrations are close to the upper limit for
structural materials.

However, hydrogen is always present in metals and semiconductors. For majority
of metals, the “natural” values of hydrogen concentration are in the range from
0.2 ppm (for aluminum alloys and high strength steels) up to 80 ppm (for titanium
alloys). Even the double excess of the “natural” hydrogen concentration leads to loss
of plasticity of structural materials, see [30, 32].

The hydrogen in solids was established to occupy several energy levels. It was
found that hydrogen with binding energy in the range of 0.2-0.4 eV considerably
influences on plasticity and strength of steels.

The method of thermo-desorption spectra (TDS) is usually utilised for deter-
mination of binding energy. This method is proposed in Ref. [28]. Extraction of
hydrogen from a sample is considered as a chemical reaction of the first order with
the activation energy equal to the binding energy. Thus the effect of the hydrogen
diffusion inside the studied sample is considered to be negligible. The TDS method
is widely used in material science. In practice, all studies of the effect of hydrogen
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on the structure and properties of metals and non-metals utilise this method, see e.g.
[11, 25, 34, 36, 38, 47, 57, 60]. An important feature of TDS is an independent
determination of the binding energy. Under identical conditions (size and shape of
the samples, the hydrogen charging conditions etc.) TDS method allows one to trace
the influence of sample structure and the concentration of individual alloy compo-
nents on the binding energy value, cf. [57]. However, significant differences appear
when we compare data from various researchers.

The influence of various factors on the result of research carried out by TDS
method is addressed in a number of papers. For instance, Ref. [26] reports the influ-
ence of the sample thickness and the holding time after hydrogen charging on the
shape and position of the TDS peak by means of the mathematical modeling. A
detailed description and benchmark of the hydrogen charging methods are provided
in [61]. The individual TDS peaks are shown to merge into one peak because of high
hydrogen concentrations under charging and it yields only an average value of the
energy of hydrogen bonds.

The use of additional assumptions allows one to interpret TDS even in the case
in which the test yields a single peak rather than several ones. A Finite-Element
Modeling of the hydrogen diffusion reported in [33] shows that a single peak of TDS
can be accurately and adequately approximated as the hydrogen desorption from
two energy levels by adjusting the prescribed diffusion constants and the binding
energy values. However, this approach deprives the main advantage of the TDS
method which is the possibility of independent determination of value of the hydrogen
binding energy from the test results.

The diffusion process is not taken into account in the TDS equations for binding
energies. Regretfully, this fact does not always take into consideration by researchers.
For example, Ref.[17] suggests the existence of several channels of hydrogen dif-
fusion in the martensitic steels. The authors of present paper have substantiated the
existence of such channels earlier in their paper [48, 49]. However, all measurements
in Ref. [17] were carried out by TDS method.

On the one hand, this contradicts to the experimental data since the account for
diffusion introduces essential corrections to the values of binding energy even for
relatively small sample sizes [42]. On the other hand, the experimental measurements
evidences for low accuracy of the TDS approach [56]. As a rule, the hydrogen’s
binding energies of about 0.2eV should yield notable hydrogen fluxes at normal
conditions which is not observed experimentally.

Regardless of the specific values of the hydrogen binding energy it is important to
know what happens to the hydrogen during annealing and how it changes the energy
spectrum since this change demonstrates the predominance of a particular structure
creating the hydrogen traps. This information allows one to simulate the behavior
of both materials and loaded structures [5, 7, 8] and predict the crack growth, cf.
[55, 65].

It is possible to estimate the binding energy using some other methods, e.g. the
spectral one [39]; however this method is adequate only for thin samples such as
films and membranes.
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Due to the strong influence of hydrogen with different binding energies on the
structure and strength of materials it becomes necessary to develop approaches which
take to account the diffusion as a main process the hydrogen redistribution inside a
solid body.

2 Measurement of Hydrogen Concentration by Vacuum
Hot Extraction Method

The vacuum heating method is used both in experiments and in industrial control
of hydrogen concentration in a solid probe [1, 29, 39, 46, 52] (Hydrogen Analysis
by Vacuum Hot Extraction, VHE). In our experiments we used industrial hydrogen
analyzer AV-1 with mass-spectrometric registration of dependence of hydrogen flux
from the sample on time, in the process of the sample heating in vacuum. The
apparatus exterior is shown in Fig. 1.

A schematic drawing of the AV-1 is presented in Fig. 2.

The system of probe preparation composed of the glass extractor made of the fused
silica (see Fig.2) and the radiation furnace whose temperature maintained constant
during the analysis. The samples are placed in the cold appendix of extractor. In

Fig. 1 Hydrogen analyzer
AV-1

Fig. 2 Scheme of the Conically tapered Vacuum - sample before and
hydrogen measurement in ground glass joints >\ 9'®a%¢  during the measurements
AV-1 Liquid nitregen agnetic pusher
t
= 3 ap Glas§r extractor
ecort y
module _l F2 )

with
monitor

spectrometer,

Vacuume
Pump

|
Furnace Magnetic shutter
= for metal vapors
{ | Furnace
2 control
Gas calibration.— Y

system Thermocouple
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performing analysis, the sample is thrown off to the analytical appendix without
spoiling of vacuum. The analytical appendix is maintained at a constant temperature
of extraction, which is provided by the furnace put on the appendix.

For majority of alloys the extraction temperature is in the range 400-800°C.
The extractor volume is pumped continuously with the analyzer pump down to the
working pressure of 100 wPa. The investigated sample is heated slowly up to the
extractor temperature. The hydrogen flux from the sample is measured by mass-
spectrometric analyzer preliminarily calibrated on the standard hydrogen containing
samples or on the gas calibration. As a result, dependence of hydrogen flux from
the extractor system on time (the extraction curve) is obtained. An integral of the
extraction curve over time is proportional to the amount of hydrogen extracted from
the sample. The shape of curve is typical for the aluminum, magnesium, titanium
alloys and the different marks of steels. In determining the diffusion parameters,
we compare the experimental extraction curve to the calculated one obtained by
mathematical modeling of the time dependent hydrogen diffusion in the sample
under consideration.

3 Modeling of Diffusion Process in Sample

For example, we consider the process of the sample heating in vacuum using the
titanium samples studied experimentally. The prismatic sample sizes are as follows:
a,l;b.

The extractor walls are made of fused silica. In the process of analysis, their
temperature is maintained at a constant value 7. The fused silica has practically
zeroth thermal conductivity, the area of the sample contact with the walls is small,
so the heat transfer occurs only due to radiation.

The fused silica does not transmit infrared radiation of the radiation furnace, that
is, the sample is heated due to the heat radiation of the extractor walls. The amount
of heat absorbed by the sample during the time interval dt is:

dQ =e,08(Ty — THdt, (D

where o = 5, 6687 - 1078 W/m?K* is the Stefan—Boltzmann constant, T is the sam-
ple temperature, Tj is the wall temperature of the analytical appendix of extractor
(see Fig. 1) and ¢, is the sample absorption coefficient.

1
1, s (1 ’
a+s(a—0
where ¢, is the absorption coefficient of titanium, & is the absorption coefficient of
fused silica walls of analytical appendix of extractor (equal to 1 for infrared radiation),

S is the sample area, S, is the area of wall of analytical appendix of extractor involved
in the heat transfer.

En =
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If &, =1 or &, >> ¢ then the approximate relation &, =~ ¢, can be used. For
titanium in the temperature range 200-900 °C we have

& =0.2. @)

In this condition, the heat capacity of titanium weakly depends on temperature
and equals ¢ = 0.6 kJ/kg-K. The heat d Q (1) absorbed by the sample gives rise to
the increase in the temperature by d7':

dQ = cpVdT, 3)
where p is mass density and V is volume of the sample.
From Eqgs. (1)—(3) one obtains the following equation for the sample heating:

dar oS 4 4
— =02 (Ty = T. “)
dt coV

Dependence of hydrogen concentration on coordinates and time is obtained from
solution of the time-dependent diffusion equation

1 9C
AC =55
Cls=0 )
Cli—o=Cy

where C is the hydrogen concentration, D = Dy - exp(—77) is the hydrogen diffu-
sion coefficient, u is the hydrogen activation energy, Dy is the diffusion constant and
k is the Boltzmann constant.

In the given boundary conditions, the first term of the Fourier expansion for the
hydrogen concentration C of the solution of Eq. (5) can be written as

3 X Ty b1 94

sin — - sin —— - sin — - f(¢, u, Dy) (6)
a b l

Comr
Cx,y, z,t) =

where [, a, b are the height and transversal sizes of the sample, respectively. Function
fi1(t, u, Dy) is solution of the following equation

fi+ Do exp(—) (5 + 5 + 5 1 =0, o
fl(O, u, D()) =1.

In tests, the apparatus registers the overall hydrogen flux ¢(#) thought the sample
surface as a time function. According to Fick’s law of diffusion we have:

q(t) = —/Dd—CdS, ®)
Ky dn

where S is the sample surface.
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Inserting Eq. (6) for the hydrogen concentration C in (8) and performing integra-
tion yields:

1

1 1
qit)y=m Coabl |: + = % 12

i| Dy - exp(——) fi(t, u, Do). )

When assuming that hydrogen in the sample is contained in the reversible traps
with different binding energies u;, the corresponding diffusion constants Dy; and
initial hydrogen concentrations C; we use the superposition principle because of
linearity of the diffusion equation (5).

The time dependence of the hydrogen flux ¢ (¢) from the sample is defined by the
following sum:

1

1
q(r)=n2abl'[ ot } Zco, Do; - exp(—x) - filt i D). (10)

where fi(¢, u;, Dy;) is solution of Eq. (7) for the given values of constants u;, Dy,
Cy; and the sample dimensions (I, a, b).

Comparison of the experimental extraction curve and the calculated curve Eq. 10
for initial concentrations Cy; and diffusion constants u; and Dy; yields the activation
energy and diffusion constants of hydrogen.

Figure3 shows the plots of extraction curves measured experimentally and
obtained by means of Eq. (10).

Therefore, the extraction curve measured by the hydrogen analyzer AV-1 by means
of the vacuum heating method allows one to determine fundamental parameters
characterizing the hydrogen state in the solid, namely (i) the energy levels of hydrogen
u;, (ii) the hydrogen concentration C,; in different energy states (populations of
energy levels), and (iii) the diffusion constant Dy; for hydrogen with binding energy
u;.

Fig. 3 Experimental 20 —
(points) and calculated (solid 1t q(t), [10°m"Pa/s]
line) extraction curves with
three maxima for the
titanium alloy PT7M

= = =

750 1500
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4 Verification of Main Approximations of Method
for Determination of Binding Energies

For experimental testing of reliability of the accepted assumption, the samples of
titanium alloy PT7M were prepared. which had shape of parallelepiped with the
sizes 2*2*2.5 mm. The samples were parallelepipeds of dimension 2*2*2.5 mm and
were cut from a tube of outer diameter of 28 mm.

Six samples were loaded in the extraction system of the hydrogen analyzer AV-1.
Testing of each sample was performed at the fixed extraction temperature, beginning
with 550°C and ending by 800 °C. The analytical appendix of extraction system was
heated up to the extraction temperature without sample, then the sample was placed
into the heated analytical appendix, and the extraction curve was recorded. Each
sample was tested only once, i.e. only a part of hydrogen was extracted from the
sample at low temperature. The test results are shown in Fig. 4.

Analysis of the extraction curves shows that the hydrogen diffusion from titanium
alloy has an activation character. The hydrogen with higher binding energy remains
in the sample when the extraction temperatures is under 700 °C.

Provided that the assumption about existence of states with different binding
energies u; and corresponding diffusion constants Dy; is valid then the measured
extraction curves for other temperatures can be properly described.

Modeling of the process of high-temperature vacuum extraction was performed six
times at different extraction temperatures with calculation of the extracted hydrogen
flux by means of (10).

The modeling result is shown in Fig.5. All the calculated extraction curves,
obtained at the analysis temperatures of 530°C, 600°C, 700°C, 750°C, 775°C,
800°C, are given in one plot by analogy with the experimental curves presented in
Fig.4.

The obtained modeling results show good agreement with experiment. The
modeling assumed diffusion parameters determined by analysis of the experimental

Fig. 4 Experimental
extraction curves for samples
of the titanium alloy PT7M
obtained at different
extraction temperatures

4
q(t), [10° m'Pals]
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k’ L_./ L\IA - [S]
N |
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Fig. 5 Results of modeling
of extraction curves for the
titanium sample PT7M at
different extraction
temperatures

6
q(t), [10° m*Pals]

530°C 775°C 800°C

t, [s]
0 3000 6000

extraction curve obtained at the temperature of 800 °C. It enables us to make extrap-
olation to lower temperatures without using adjustable parameters and obtain result
coinciding with the corresponding experiment.

Thus the proposed model is adequate to the real physical process occurring in
realization of the method of high-temperature vacuum extraction of hydrogen from
analyzed sample of solid probe.

In the model describing the process of sample heating, only transfer of heat due
to radiation was taken into account. Possible sources of uncertainly in determination
of activation energy of diffusion are as follows:

(i) non-zeroth thermal conductivity of fused silica,
(i1) uncertainty in used value of the absorption coefficient of heat radiation.

The following experiment was performed to test the proposed model of the sample
heating.

Two identical samples of diameter 2a = 8mm and length / = 15mm were
machined from the same rod of the aluminum alloy AMg6. Before loading in the
extractor the first sample was covered by soot obtained in incomplete combustion of
acetylene.

The sample heating was minimal due to small time of contact between the sample
and the flame of burner containing soot.

The working temperature of the extraction system was 530°C. The blackened
sample was placed in the analytical appendix by a magnetic pusher without spoiling
vacuum.

The extractor wall temperature was maintained equal to the working temperature.
The cold sample (at room temperature) was heated up to the extraction temperature
and then heated at this temperature up to the end of analysis.

A standard sample had small absorption ability which was typical for the alu-
minum alloy whereas the sample covered by soot had the absorption ability that was
practically equal to 1.
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Fig. 6 Initial part of the 10.00 —
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The extraction curves for blackened and standard samples were measured. They
are shown in Fig. 6. It is established that the sample covered by soot was heated about
20 times faster. If one suppose that the hydrogen diffusion has activating character
then the extractor curve can provide information on the rate of sample heating.

The first peak on the extraction curve is associated with absorption of the
“surface” hydrogen from the sample. The maximum position corresponds to the
sample temperature 100-150°C.

Equation (4) was used for modeling dynamics of sample heating. The absorption
coefficient was taken to be 1 for the sample covered by soot. Figure 7 shows results
of modeling dependence of the sample temperature on time.

Curve 1 corresponds to the sample covered by soot. Curve 3 is obtained for
pure polished aluminum, and curve 2 corresponds to the sample of aluminum alloy
AMg6 prepared according to the requirements of [1]. The absorption coefficient of
the sample corresponds to the experimental curve presented in Fig. 6.

Analysis of the presented results of modeling dynamics of the sample heating
allows us to make conclusion that the real absorption coefficient for aluminum alloys
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is higher than that for pure polished aluminum presented in literature. Probably this
is caused by existence of alloying and quality of treatment of the sample surface. The
performed experiments show that the real absorption coefficient can be determined
for each alloy.

The above technology of comparative analysis of the hydrogen amount in the
samples with regulated absorption coefficient allows more precise determination of
temporal dependence of the sample temperature during the process of analysis.

Other methods for determination of sample temperature in vacuum either distort
considerably results of the analysis or have low accuracy.

Fastening of a thermocouple on the sample in vacuum makes experiment and
extraction system very cumbersome. At 7 = 500—600°C it is necessary to isolate
the thermocouple conductors by special materials: the insulators themselves and ther-
mocouple materials can contain hydrogen, that will give rise to essential distortion
of the analysis result of, especially in determination of small hydrogen concentra-
tions. Fastening the thermocouple is possible only by its pressing in a cavity or in
the sample orifice, that results in considerable plastic deformation of material, even
at the sample masses of about 2-5g.

Mounting of the thermocouple on a special pedestal or melting pot leads to the
fact that material of the pedestal itself or melting pot can distort considerably the
analysis results. The use of pyrometers for determination of the sample temperature
does not provide the necessary accuracy in conditions of large hitch created by heat
radiation of the furnace. Moreover, at T < 500°C the pyrometry has uncertainty
higher than +50°C.

Therefore the proposed experimental procedure for determining time dependence
of the sample temperature in realization of the method of high temperature vacuum-
extraction of hydrogen allows one to obtain reliable data on the value of absorption
ability of the sample surface and to get adequate results in approximation of the
extraction curves for determination of binding energies u; and the diffusion constants
Dy; for hydrogen in various materials.

5 Multichannel Diffusion Versus TDS Model

The study of the binding energy of hydrogen carried out by TDS method in Ref. [31]
has a significant drawback. The hydrogen activation energy is changed twofold when
the tempering temperature changes in 100°C only. It is difficult to assume that the
physical nature of dislocations or the lattice structure is changing so drastically that
the binding energy changes twofold. In addition to this, only one peak is observed
in TDS, cf. [31]. Hence, the structure of the material changes completely, so that
there no longer exist the old type traps for hydrogen in the metal tempered at higher
temperatures. Similar discrepancies are observed in other publications where the
study was carried out by using the TDS method. For example, in Ref. [50] the binding
energy of hydrogen dislocations was specified as 24.1-29.9kJ/mol and the binding
energy of the grain boundaries was shown to lie in the range from 26kJ/mol to
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Fig. 8 Extraction curves for 1.2 3
samples M400 and M520 at q(), 10"mPals]
the extraction temperature of
900°C
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the extraction temperature of
400°C

0 3000 6000

53.1-58.9kJ/mol. The ranges of the binding energy of hydrogen traps of different
nature are overlapping and it greatly reduces the practical value of the TDS method.

We took the samples M400 (tempered at 400 °C) studied in [31] as well as M520
(tempered at 520°C) and applied different types of hydrogen analysis in order to
critically discuss and develop the results of Ref. [31].

The samples M400 and M520 were tested at extraction temperatures of 400—
900 °C with steps of 100 °C and cooled after complete degassing at each temperature
step. A set of extraction curves at different extraction temperatures was obtained and
shown in Figs. 8 and 9 for 900 and 400°C.

These extraction curves demonstrate the same energy spectrum of bound hydrogen
in samples M400 and M520. This fact has a physical reason. At temperature 400 °C
the main peak of extraction curve is well approximated by the multichannel diffusion
model.
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Fig. 10 Extraction curves 1.2 =%
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The results of this approximation are shown in Fig. 10 for the extraction temper-
ature 900°C and in Fig. 11 for the extraction temperature 400 °C.

The presence of small pulses indicates the great influence of the surface hydrogen
which is associated with microdefects on the sample surface after lathe treatment
(it will be discussed in what follows). The difference in extraction curves in Fig. 11
is most likely due to the different properties of the sample surface and presents a
shortcoming of the method. At low temperatures of about 400 °C the effect of surface
processes can be considerable for the hydrogen extraction. These processes are not
described by the diffusion mechanism. It should be mentioned that TDS method is
principally not appropriate for correct interpretation of the surface processes since it
aggregates them with the processes of internal desorption and hydrogen diffusion.

The total hydrogen content in sample M400 is 0.22 ppm and in sample M520 is
0.27 ppm. The overall spectra of the hydrogen binding energy are given in Table 1.
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Table 1 Values of the

T . # Hydrogen binding energy
hydrogen binding energy in

34CrNiMo6 kJ/mol
1 14.5
2 273
3 77.6
4 102

Practically the entire difference in the initial concentration corresponds to the
hydrogen binding energy with the levels lower than 80kJ/mol.

The binding energies with level 14.5kJ/mol and 27.3 kJ/mol agree very well with
the known data on the binding energies of hydrogen in steels [3, 63].

The initial hydrogen concentrations in both samples is small, however it was
determined experimentally that the higher level of initial concentration leads to lower
susceptibility to hydrogen embrittlement [31]. This fact is very well known and is
related to irreversible traps with activation energies higher than 60 kJ/mol [41], which
make the difference between the initial hydrogen concentrations in the samples M400
and M520. The initial volume of the irreversible traps in M520 is higher than in M400
and these traps lead to a greater resistance to hydrogen embrittlement.

Thus, it appears that the smaller initial volume of the traps with a binding energy
of about 80kJ/mol leads to greater sensitivity of mechanical properties of steels to
hydrogen. It should be noted that this result is difficult to obtain when the samples
are saturated by hydrogen because it occurs at the expense of other types of traps;
in this case we would obtain the opposite effect, namely the more hydrogen with
low binding energy (10—40kJ/mol) the higher degradation of mechanical properties.
Thus, the proposed approach allows us to obtain unique information about the initial
state of the material and predict its interaction with hydrogen at saturation.

The role of hydrogen embrittlement is correlated with the high-energy traps. The
energy range of 100kJ/mol is too high to see a significant change in the state of these
traps in a short time. Therefore, the outside saturation of the samples which is carried
out at TDS measurements is not appropriate for filling these traps uniformly. This
level of binding energy of hydrogen was not found out during the investigation by
TDS [31]. This is explained by the fact that hydrogen absorption for 30 min is not
sufficient to saturate this type of traps and the natural concentrations turn out to be
too low (0.04 ppm). As a result, hydrogen saturation results in non-uniform volume
distribution of the hydrogen, namely the low energy hydrogen is distributed more
uniformly (at high concentrations) in the sample whereas the hydrogen with high
binding energy saturates only a thin surface layer.

In the classical TDS analysis the hydrogen diffusion and the volume distribution
of hydrogen are not considered at all. Therefore, the traps with high binding energy
which are close to the sample surface do not exhibit any separate peak however these
traps significantly displace the hydrogen peaks with low binding energy towards
those with higher energies.
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These traps may have a strong covalent bond to hydrogen atoms which could be
addressed to sulfur and its compounds [18, 24]. Such covalent bonds accompanied
by complex chemical compounds of sulfur and hydrogen have minor influence on
the mechanical properties of the metal, however the chemical resistance to corrosion
is reduced due to the presence of sulfur.

The difference between the TDS and VHE methods is primarily concerned with
the hydrogen saturation which is necessary for TDS. This saturation does not allow
detecting traps with a small capacity limit which can play a role in other types of
exposure. The application of VHE however allows gaining additional information
about the hydrogen trapping.

It is justified in Refs. [21, 23] for iron that it is dislocations which are the main
traps with low energy in the annealed state. However, as pointed out in [21] this is
true for iron with a purity higher than 99.99%.

This issue requires further study for several reasons:

1. The model of hydrogen extraction from samples under the TDS process was first
reported in [28] however the diffusion of hydrogen in samples was ignored there.
Adequate results can only be obtained for thin films. In all other cases a slow
heating is used to reduce the influence of the hydrogen diffusion. The increase
in the temperature rate causes increasing error. To determine the binding energy
it is necessary to use at least three rates of warm-up. The diffusion shifts the
spectrum peaks toward greater binding energy under a faster heating.

2. Account for diffusion for TDS method carried out in [42, 43] did not allow one
to avoid saturation of samples with hydrogen. This account was performed for
only one type of steel and cannot be considered as a well established approach.

3. Slow heating at TDS can take dozens of hours, and one must have measured
the hydrogen flux from the sample during this time interval. As a result, the
TDS method does not work without special hydrogen saturation. In fact, one
measures the distribution of hydrogen traps that can be filled relatively quickly
when exposed to the electrolyte or gaseous hydrogen rather than the hydrogen
distribution over the binding energies in the sample. Saturation of hydrogen leads
not only to a structural change in the spectra of natural hydrogen but also to a
substantial change in the mechanical properties of metal itself. Reference [54]
reports the cases of twinning and hence the increase in the traps’ volume at
hydrogen saturation. Saturating carbon steels with external hydrogen leads to
appearance of methane which not only causes the formation of microvoids and
cracking (changes in the steel structure) but also absorbs the dissolved hydrogen
and changes its energy spectrum, cf. [53].

4. Physical methods of investigation of dislocations and other mechanical imper-
fections of the crystal structure does not always give a clear quantitative result.
For example, Ref. [59] reports that the dislocation density of the specimens was
measured by X-ray diffractometry after tensile testing in a hydrogen atmosphere.
It was found that all the hydrogen absorbed by high-strength low-alloy steel sam-
ples is accumulated in dislocations. This conclusion is based on the method of
Ref. [64] which measures the amount of dislocations. However, X-ray diffrac-
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tometry is known to measure the strains. Reference [64] suggests a formula for
determining the dislocation density according to X-ray diffractometry on the
basis of unsubstantiated assumption that the overall deformation of the sample
is caused by dislocations only.

5. All these factors lead to the fact that the levels of binding energies of hydrogen
traps of the same nature deviate considerably. E.g., for steels the binding energy
of hydrogen dislocations lies in the range of 26-35kJ/mol [45], 20-30kJ/mol
[13], 20-60kJ/mol [22].

Thus, applying the technique of [48] and VHE on the same samples, we were
able to determine more energy levels for bound hydrogen than by using TDS [31].
We estimated filling of each energy level or each type of traps by natural hydrogen
which was inside the metal when it was processed. The absence of procedure of
the hydrogen charging allowed us to keep the original natural structure of samples.
The results show that change in the trap volume with binding energy 77.6kJ/mol
occurs at different annealing temperatures. The physical nature of these traps requires
additional investigation, however we can use the mechanical models [6, 9, 58] for
predicting material properties.

6 Discussion of Results

No assumption about parameters of samples was made while determining the binding
energy by the method of thermo-desorption spectra. The algorithm for determining
the binding energies seems independent and objective. Such independence is not
always confirmed by experiments. In Ref. [42] the shape and sizes of samples were
taken into account and it changed essentially the data on binding energies. Study
[3] of a special sort of steels showed large spread of values of diffusion parameters.
Additionally the values of activation energy u; and diffusion constant Dy; were
strongly dependent of the sample sizes (also observed in Ref. [42]).

The TDS method is based on the hypothesis which states that there exists only
one channel for hydrogen diffusion in a solid and traps are uniformly distributed
in the sample. Hydrogen is accumulated in these traps. Physical considerations that
diffusion is only model for the process of statistically equilibrium variation of states
of atoms and molecules are not taken into account. The equations for hydrogen
diffusion and amount of hydrogen in traps are different. Let us study contradictions
of the approach on example of a thin sample.

Let us consider the case in which the hydrogen is contained in traps of several
types (with different binding energies or activation energies). After escaping from
the traps hydrogen passes to the diffusion-mobile state with binding energy ug. In
this state the hydrogen diffusion is possible in a thin layer of thickness / in direction
of Ox axis.

The equation for deallocation of hydrogen from traps with binding energy u; has
the standard form:
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—
w;i (0) = w;o

(1)

where w; (¢) is the hydrogen concentration in the trap, D; = DOie_k;ilw is the rate
of trap deallocation, Dy is the trap deallocation constant analogous to the diffusion
constant, k is Boltzmann’s constant, 7 (¢) is the layer’s temperature which is time
dependent. Let us assume that the distribution of traps over the layer’s volume is not
uniform, that is, w; (t,x) = w; (¢) sin(%").

The solution of Eq. (11):

wi(t) = wjo exp(—/ D;(0) do).
0

The diffusion equation is written as

M — Ddz_w -y, dw;
w(t 0) = w(t H=0 (12)
w(0, x) = wy sin(%*)

Here D = Dge™ T is the diffusion coefficient, w is the mass concentration of hydro-
gen in the layer, the source terms describing the flux of hydrogen from traps inside
the layer. Using (11) we can rewrite the diffusion equation in the form:

ow d*w
— =D— D;w;, 13
ot a2 T Z e (13)

The substitution T = [ D(¢)dt yields

du — dxz +Z _W“
w(r 0) = w(z, l) =0 (14)
w(0, x) = wo sin(5)

General solution of the homogeneous differential equation is written as
. WX m?
w(T, x) = wo SIH(T) GXP(—I—ZT), (15)
Solution to the homogeneous differential equation is given by

2

b4 . WX
w(t, x) = wpexp (—l—zr(t)> . s1n(T) +

) 2 _ .
+/ exp <_rr (r(®) 0)>ZDJ(9)Wj(9)d9'Sin(7TZ_x) (16)
0 .
j

? D(®)
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. . . . DJ(O) _ % _u,rfuo
The first important conclusion is that the ratios D@ = Do exp( _kT(e)) are

involved in the convolution integral in (16). It is possible to consider hydrogen tending
to diffusion of molecules located in a trap with binding energy u, and liberation of
hydrogen from traps as a transition from the energy level u; to the energy level ug
accompanied by the energy loss (u; — uo).

Let us now rewrite the time-dependent factor in (16) after inserting the solution
for mass concentrations w;:

z2 [t
wy (1) = wo exp (—1—2/ D(G)d@) +
0

Jo D(©)do 2" p _
N / oxp (_n (Jo D(6)do 9)) 5
0

l2

D;(6 o
X Z |: D]((O)) W0 €Xp <—/O D; (o) da)] do (17

J

and consider the case of very thin layer. Then Eq.(11) can be written as:

z2 [t
wy (1) & wg exp <_l_2/ D(G)d@) +
0

I? Dj(fot D(6)d9) /fg D()do
72 | D(fI D®)do) - Di(0)d 18
iz 2 [ D(f; D(©6)d6) WfoeXp< A (0)do) (18)

J

There is a principal difference between exponents of the first and second com-
ponents of the sum (18). In the first term, the exponent is multiplied by the scaling
factor 717—22, and this is not the case in the second term. Consequently, the diffusion
from traps practically does not depend on the layer thickness which contradicts the
experimental data.

In experiments with films of 7-10 pm thick, the duration of hydrogen peaks on
the extraction curve is 7-10 min.

Attempts for modeling fluxes of “natural” hydrogen from samples with thickness
of 10 pm using the model of “one-channel” diffusion lead to the fact that the activation
energy of the diffusion channel itself has reasonable values, 0.2-0.4 eV, and binding
energies in traps yield additional several hundredths eV. Thus the thermal motion
energy at room temperature is sufficient for effective emptying of traps.

On the contrary, the multichannel model yields the difference between activation
energies of different channels in the range 0.4—1.0eV.

Therefore the experimental data, physical arguments and relevant mathematical
modeling show that the multichannel model of hydrogen diffusion gives more accu-
rate description of experimental results.

There is an additional source of errors of the TDS method. It consists in existence
of background fluxes of hydrogen from the extraction system, which depends on the
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Table 2 The activation energies of the hydrogen determined for titanium alloys using different
models: a multi-channel diffusion (PT7M alloy) and the classical method TDS [28]

# | PTIM Ti-6Al-4V B -21S B 218 Ti—6.8Mo—4.5Fe—1.5Al
(a+pB alloy) | (a+p alloy) [14] | (B alloy) [15] | (8 alloy) [16] | (B alloy) [4]
eV eV eV eV eV
104 (1.04 — 1.29)2> | 0.12 1.15%¢ (0.49 — 0.66)>4
2108 0.280
314 1.06

2only one peak TDS was observed

bdepends on the method of the hydrogen introducing into the alloy

Cafter hydrogen introduced by GTAW welding in a mixed Ar + 5% H; shield
ddepends on the hydrogen saturation time

sample’s temperature. The temperature of surrounding parts of the extraction system
increases with the sample heating. In some cases the background flux of hydrogen
increases by several hundred times in the course of TDS measurement, Ref. [39].

Table 2 shows the comparison the activation energies for the different channels of
hydrogen diffusion in the titanium alloy PT7M and the hydrogen desorption activa-
tion energies obtained by the TDS.

Preliminary saturation of samples with hydrogen widely used in the TDS method
allows one to reduce the influence of background fluxes. To estimate their influence
in measuring natural concentrations of hydrogen, an experiment was performed on
stepwise changing temperature of the extraction system of hydrogen analyzer AV-1.
Figure 12 shows the extraction curve for the aluminum alloy sample with mass of
2g and hydrogen concentration of 0.2 ppm arising in the stepwise heating of the

Fig. 12 The extraction
curve for the background
fluxes arising in the stepwise
heating of the extraction | : ' / '.\
system with the aluminum : .
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Fig. 13 The extraction 0.38 T T T
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extraction system up to 700°C. Figure 13 shows background fluxes arising in the
stepwise heating of the void extraction system up to 700 °C.

The hydrogen flux from the wall of extraction system coincides with the flux from
sample, as seen from Figs. 12 and 13. Thus, the heating of the extraction system during
TDS can cause error in determining the hydrogen binding energy.

Prehydrogenated samples are typically applied for TDS method. During prelim-
inary saturation, we obtain a new hydrogen-material system whose properties can
differ from those of the original material (see Tables 1, 2). Increasing of hydrogen con-
centration is known to lead to changing the material properties. For example, casting
of aluminum alloys is cracked in the process of crystallization for double hydrogen
concentration compared with the natural one. As shown in Ref. [40] for steels, the
saturation of material with hydrogen gives rise to decreasing tensile strength up to
3-5 times. The strong side of our approach is the possibility of measuring the hydro-
gen binding energy without special hydrogenation of samples.

The mass-spectrometric hydrogen analyzer AV-1 measures the instantaneous
hydrogen flux from the sample. As shown in Fig.9, the extraction curves exhibit a
plurality of small peaks which are not observed under the higher temperature extrac-
tion, Fig. 8. The volume of molecular hydrogen that corresponds to these peaks is
approximately 1078-10~°mm?®. The average grain size in the samples is 50 pm.
Thus, each small peak can correspond to a single microcrack or dislocation at the
sample surface. According to [35] the grain size affects the hydrogen content. Assum-
ing that the surface dislocations and micro-cracks are of the order of grain size, the
volume of small hydrogen peaks corresponds to the volume of single dislocation.

This hypothesis has been verified. Experiments on the distribution of hydrogen dif-
fusion over some specially created lattice defects in silicon monocrystal were carried
out by authors of the present paper. The idea was to create some monocrystal inter-
nal defects of the size of about 30 wm and compare the results of high-temperature



Benchmark Study of Measurements of Hydrogen Diffusion in Metals 57

vacuum extraction of hydrogen of the original monocrystal and the monocrystal with
the artificially produced defects. An infrared pulse laser with a wavelength of 1024
nanometers was used for creating defects. The duration of the laser pulse was 12
nanoseconds and the energy of one pulse was 2 mJ. Such a laser is usually used for
creating chips in optical glass. The coherent infrared radiation of a pulse is focused
on a certain point in the glass. The size of focused spot is about 30pum. The energy
density in the focus is ca. 2 - 10’ W/m?. Such energy density can heat up the sub-
stance to ca. 1500°K depending on the coefficient of radiation absorption. In the
heat affected zone one can observe a visible chip. The monocrystal silicon plates
of the thickness of 0.3 mm were tested. The plates were placed in a parallelepiped
made of optical glass. Some other plates (not radiated by the laser) and the plate
with the chips on the surface were cut in prismatic samples of the size 8mm x
15mm x 0.3mm. They were placed in vacuum for carrying out experiments on the
hydrogen diffusion. After extraction of the hydrogen with lower binding energy the
gas accumulated in the surface defects starts moving and this effect is recorded as
a noise which in turn results in the noise in the form of a number of small peaks.
These peaks are due to the emission of hydrogen from silicon. For the regular holes
these peaks become regularised and increase their sizes, that is, the volume of the
extracted hydrogen increases as well. The observed effect can be interpreted as a
regularisation of the diffusion caused by a uniform grid of chips on the surface of
the sample. So the hypothesis verification gives us an opportunity to determine the
approximate number of surface microdefects and their average size with the help of
the hydrogen analyzer.

Summarizing, the extraction curve shows a lot of noise during constant hydrogen
charging and discharging of surface dislocations and micro-cracks. This may indicate
that in the investigated steel the main traps are released at a temperature of 400°C.

7 Conclusions

This study shows that by using the experimental technique of high temperature vac-
uum extraction the model of multichannel diffusion gives a more precise description
of the real hydrogen diffusion in solids than other approaches.

Application of the method of high temperature vacuum extraction with mass-
spectrometric measuring of instant values of the hydrogen flux allows recording
small natural hydrogen concentrations and the concentration distribution over the
activation energy.

There is no need of preliminary saturation of samples by hydrogen in tests. High
sensitivity of analysis using AV-1 makes it possible to trace evolution of natural hydro-
gen in samples under different thermo-mechanical and physical-chemical effects.

Application of the vacuum hot extraction analysis enbles detecting new energy
levels, namely at 77.6 kJ/mol and 102 kJ/mol, related to strong covalent bonds.

The increased hydrogen embrittlement resistance at 520 °C tempering condition
can be explained by its higher capacity of irreversible hydrogen.
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In contrast to TDS our study does not require pre-saturation of samples by hydro-
gen. This does keep the original structure of samples and ensures that all types of
traps are present in both M400 and M520 samples. Their binding energy does not
change, however the total amount of traps depends on the annealing temperature. It
was not possible to draw this obvious conclusion from TDS data since TDS provides
the researcher with a single binding energy.

The proposed method based on Vacuum Hot Extraction allows one to obtain ade-
quate data on the binding energies and hydrogen concentration. Additional research
is required to determine the nature of these traps.
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Abstract A general approach to modeling the effect of hydrogen on stress-strain
diagram of materials is addressed. A bicontinua model is constructed which allows
one to describe the kinetics of hydrogen in metals. The suggested rheological model
is appropriate for estimation of the hydrogen transition from mobile to bounded state
depending on the stress-state relation and description of localization of the bonded
hydrogen that results in the material fracture. A novel approach to modeling the
solids with account for the influence of hydrogen on properties of free surface on
monocrystals at various scales is suggested. The idea of representing two continua as
a single solid and describing the hydrogen effect on the material properties belongs to
D. A. Indeitsev. It was first consistently presented in his work Indeitsev and Semenov
(Acta Mechanica, 195:295-304, 2008, [32]). We see our task in generalization and
application of his idea to specific problems and classes of problems in solid mechan-
ics. We generalized the bicontinua model by Indeitsev to the multidimensional case.
For the first time, we considered the dissolved hydrogen as the second medium and
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1 Introduction

One of the most challenging problems of the material science is the influence of
hydrogen on the mechanical properties of materials. This influence itself is a good
example of crucial importance of small parameter in mechanics since the mean mass
concentration of 0.4—0.8 ppm causes hydrogen embrittlement in aluminum alloys.

The hydrogen embrittlement is a source of many technical catastrophes and for
this reason its nature is carefully investigated, cf. [15, 16, 29, 53]. Nowadays the
structural design is not possible without precise strength computation. However the
hydrogen considerably affects the strength of metals, that is why modeling of the
hydrogen influence is a subject of many papers.

It is worth mentioning several approaches which are: (i) account of the influence
of hydrogen on origination and motion of dislocations, (ii) account of the influence of
hydrogen on the crack development, (iii) account of the internal pressure of hydrogen
in metals and (iv) some physical approaches.

Origination and motion of dislocations as well as the hydrogen-enhanced localized
plasticity (HELP) in the vicinity of the crack tips leads to the local plasticity because
of the high concentration of dislocations. The very concept HELP was first developed
in [14]. Later, based upon the physical reasoning about the potential of interaction
of hydrogen with dislocations the constitutive laws modeling the local rheological
changes in the crack mouth were suggested in [19, 20, 66]. However the calculations
in [66] demonstrated that some considerable changes in the strain-stress diagram
take place only under the concentration about 9000 ppm which is extremely high
concentration for the majority of metals. The above constitutive law contains an
implicit dependence on the local hydrogen concentration which cannot be exactly
measured. In other words, the parameters of the law (the exponent included) can
be estimated only indirectly and this can lead to considerable errors. E.g. in [68]
a calculation of the local plasticity for a crack with special tip was carried out for
verification of the model. The local hydrogen concentrations reached at the modeling
are approximately 100 times higher than the initial mean values however the latter
are about 1 ppm, i.e. the increase even by the factor of 100 does not result in the
concentration of the order of 9000 ppm (for steels). A second source of possible errors
is the modified law by Fikh [41] which contains a temperature dependence of the
influence coefficients of the stress fields however it does not contain the exponential
dependence of the diffusion coefficient on temperature. The authors of the above
model discussed a plenty of uncertainties. In particular, they mentioned a nonlinear
dependence of the internal potential on the stresses and hydrogen concentration.
Since one deals with extremely high local concentrations these uncertain nonlinear
functional dependences will play more and more important part.

Another model which is analogous to the HELP is the De-cohesion model (hydro-
gen enhanced decohesion model, or HEDE for short), cf. [71]. The difference between
them is that the HEDE model takes into account that the energy of appearance of the
free surfaces of fracture reduces with increase of the local hydrogen concentration.
As mentioned in [30] the HELP approach requires a great computational costs for
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solving any practical problems. For this reason the only solution is utilizing a contin-
ual model of dislocation growth however this substitution turns out to be not adequate
and the authors suggest to make use of the criterion of growth of submicrocrack, i.e.
they reduce all the hydrogen problems to the modeling of the crack developing and
reduction of the crack resistance.

It should be noted that the HELP and HEDE models have become universally rec-
ognized in modern material science. Some inconsistencies, among them contradition
to the above experimental data, are ignored, and the latest scientific discussions are
reduced to applying these models to describe the same material. This is very dif-
ficult to manage due to large computational complexity; therefore, only quasistatic
problems of uniaxial stretching of cylindrical specimens are solved and analysed.

The development of the cracks induced by hydrogen is modeled in [69]. It is
assumed ab initio that a crack has already been formed along the tube wall and due
to the diffusion into the crack the hydrogen takes the form of molecular gaseous
state and causes excessive pressure which leads to the crack growth. The gradient of
the chemical potential is stress-dependent and is considered as a main cause of the
hydrogen diffusion. In addition to this, reduction of the crack resistance is taken into
account by changing parameters in the failure criterion for determining the conditions
of the crack growth. As a result, one succeeds only in estimation of the rate of the
crack growth which is compared with the test results, see [17]. However in this case
even the character of the crack model appears to be of crucial importance. The dif-
ference between two-dimensional and three-dimensional model of developing of the
hydrogen crack is discussed in [2]. There established some essential differences in the
following parameters: higher cohesive strength and threshold stress intensity which
should be prescribed for approximation the same test results in two-dimensional and
three-dimensional statements of the problem. These parameters are selected only
from three-dimensional model in [3]. Paper [57] reported results of calculation of
changing in the shear modulus and parameters of the crystal lattice of the alloy
platinum-zirconium carried out by means of plane-wave pseudopotential applied for
the relationship: one hydrogen atom versus 3—4 atoms of the matrix (4000 ppm)
which is absolutely not feasible to achieve in the conventional structural materials.

Some materials have a leading mechanism of destruction based on the formation
and development of micro voids and nano voids cf. [22, 23, 27, 45, 48, 65, 72,
75]. The formation and propagation of voids is associated with the accumulation and
redistribution of internal hydrogen in the material [8, 13, 37, 38, 62, 63, 74].

Modeling the development of voids is done by homogenization. Only there are
parameters involved in the homogenization of the representative volume [76]. This
reduces the possibility of strongly uneven concentrations of hydrogen in the presence
of voids.

Summarising, we can state that for adequate modeling the behaviour of structures
containing hydrogen one needs a special approach which is capable for account for
influence of small concentration of hydrogen on the mechanical characteristics of
materials.
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2 Bicomponent Continuum for Modelling the Hydrogen
Effects

Animportant role is played by the binding energy of hydrogen in material. It is known
that, inside the materials, hydrogen is found in traps with different binding energies.
In steels the total hydrogen content is 0.1-6 (n.sm3/100 g) (eq. 0.1-0.55 ppm), while
itis only hydrogen with a low binding energy that affects the strength, i.e. diffusively
mobile hydrogen. In aluminum alloys the entire hydrogen diluted in the metal has a
low binding energy—about 0.2-0.8 eV. The concentrations that are critical for the
mechanical strength of weakly bound hydrogen in steels and aluminum alloys are
similar—they are decimal ppm fractions. In aluminium alloys it includes the entire
diluted hydrogen, while in steels it amounts to 5-10% of the total amount of diluted
hydrogen.

Quite the contrary, the hydrogen with low binding energy tends to zones of ten-
sile stresses (Gorsky’s effect [24, 25]). Accumulation of hydrogen in the destruction
zone occurs both by the input from outside and by redistribution of natural hydro-
gen inside the material. The hydrogen with low binding energy is diffuse however
its interaction with material is very weak. The hydrogen with high binding energy
interacts with material very intensively resulting in degradation of the mechanical
material properties because of this interaction.

The mass equation for diffuse hydrogen inside volume V is given by

my = /p;dv
4

Here my; and p,; are the mass and volume density of the diffuse hydrogen respec-
tively. The differential form of the equation of mass balance is as follows

00y _ .
B_tH + V- (Vupy) = ju

where j, denotes the mobile hydrogen source and v, is the velocity of hydrogen

particles. In terms of the concentration N, = p,/mpy this mass balance equation

takes the form
ONy e JH
_Hvy. No) = 22
ot + (VH H) mpy

The bound hydrogen obeys the similar equation of the mass balance:

AN iy
H Ly (viEND) = 2L
ot + (VH H) mpy

Here N;; and v}, are the concentration and the particle velocity for bound hydro-
gen (and material particles bounded with them) and —j, = j}; = j denotes the
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redistribution hydrogen source inside the material. Since the concentrations are low
we can assume a linear dependence for this source on the concentrations

j=a(e T)Ny — Ble, T)N; (D

This equation describes the hydrogen redistribution over the different binding energy
levels. Here a(e, T) and B(e, T') are positive factors describing the sorption and
desorption of mobile hydrogen into the lattice from the diffusion channels.

In contrast to the classical approach to derivation of the hydrogen diffusion equa-
tions by Oriani [56], we use the denotation j only for a part of the distributed hydrogen
flux in the material volume. This flux is associated with changes in the binding energy
of hydrogen. The diffusion flux associated with the hydrogen concentration gradient
is described by the mass balance equation.

This approach does not contradict the model by Oriani [56].

First, Oriani discusses the equilibrium concentrations of hydrogen in various types
of traps, which are related by chemical equilibrium constant. The excessive hydro-
gen that does not fit in the traps should be distributed due to diffusion, therefore,
the variations of hydrogen concentrations in different types of traps do not result in
vanishing overall value. The above relations are valid for the instantaneous concen-
tration values, whereas their variations are related by the mass balance and yields
the zero mean value.

Secondly, we consider the hydrogen concentrations to be very small quantities.
Modern high-strength materials are very sensitive to hydrogen, and this effect was
not observed 40 years ago. The overall hydrogen concentration in steels, as Oriani
reported, is about 15 ppm, while the concentration of diffuse mobile phase is about
14.6 ppm. Modern high-strength steels begin to “feel” hydrogen at concentrations of
diffuse mobile hydrogen of about 0.1 ppm [54], which is a hundred times less than
the above value. Under these conditions, the possibility of overflowing traps can be
neglected and dependence j (N, N ;) can be considered in the linear approximation.

If we considered the interaction of external gaseous hydrogen with a solid, it would
be necessary to take into account the capacity of traps and their activity associated
with the Sieverts law [36]. Then the dependence of j on concentrations (1) would
be non-linear, however we consider the dissolved hydrogen with different binding
energies, therefore, there is no dissociation of molecules obeying Sieverts’s law.

The adequacy of our model will be discussed in what follows. The coefficients
a(e, T) and B(e, T) expose exponential dependence on temperature. The effect of
strains is determined by increasing the volume of traps due to development of micro-
cracks and formation of a large number of dislocations. These processes proceed
intensively at the upper boundary in the region of elastic deformations and plastic
flow in most metals. However the dependence is weak under small and moderate
elastic deformation.

Similar results are given by models describing accumulation of hydrogen damage
and destruction as a second-order phase structural transition, see [31].
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Now we proceed to the equation of dynamics. The rheological model of material
containing hydrogen assume bi-continuum. The first continuum is a solid and plays
a part of a carrying structure. The dynamic equation for the first continuum is

Vet=(po+pp)Vi + jvi; + R

Here 7 is the stress tensor and R is the force of interaction between the continua.

The second continuum models the behavior of hydrogen which behaves as a
gas. The gas is characterized by pressure p which is assumed to be positive for
compression. Hence we can put the dynamic equation in the form

—Vp=pyVy —jvy —R

The velocity v, of hydrogen particles is very low because is describes the hydrogen
diffusion in materials.

The strain energy of elastic solids is known to have two parts, namely the dilatation
energy and shear energy. So we introduce the spherical part and deviator of the stress
tensor by the equation

T=o0l+s

where o denotes the mean stress, s stands for the deviator and I is the unit tensor. The
Gorsky effect means that the dilatation energy determines the hydrogen diffusion and
its interaction with material. For this reason only spherical part of the stress tensor
is considered in what follows. The dynamic equations take now the form

Lovy
V0=(po+pH)W+JVH+R—V-S,

ovy
ot

—Vp=pg—- —Jjvp —R.

For the sake of simplicity the further analysis is limited to the one-dimensional case
since it allows the reader to catch the main idea of construction of the rheological
model for material with low hydrogen concentration.

Let us consider a virgin lattice. In one-dimensional case it can be schematically
depicted as a 1D spring. The weakening of the internuclear bonds caused by “land-
ing” of the hydrogen particles can produce the chain formations of new internu-
clear bonds, see Fig. 1, as the serial connections of elastic bonds of the basic lattice
and the introduced elastic bonds of new elements which are the hydrogen particles.

CO CH CO CU

ANAAAODemems l MO

Fig. 1 One-dimensional model of the lattice with “landed” hydrogen particles
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Obviously, such chain is possible under the assumption that the mass of particles of
a mobile structure is small, i.e. my > mpy.

The overall rigidity of the spring of with Ny volumetric concentration of particles
is obtained from the equation

No  No— Ny N N},
CE N C() CH

The constitutive equation for the equivalent 1D solid is obtained by analogy with the
above equation
EoEp Ny

O’=E':5‘, EEZ T
NoEy + N (Ey — Ep)

&

Here N, denotes the total volumetric concentration of the lattice particles in the ele-
mentary volume, N} is the volumetric concentration of lattice particles that attached
to the hydrogen with the bonds of rigidity C. On the other hand N} is the volumetric
concentration of the bound hydrogen particles.

The overall elastic modulus E'z of the lattice with hydrogen can be much lower
than the elastic modulus of the virgin material since £y < Ey

EyNy

Ee=Ey—2" N~ FEy——
NoEy + N} E (N7 /No)

< Ep 2

A strong influence of the concentration of the attached particles N;; on the overall
elastic property is also seen from the above equation, namely, the higher fraction N;
of the attached hydrogen, the lower the elastic modulus of the material.

The number of the lattice settled by the hydrogen particles depends on the stress
state of the lattice at every point and, in general, on time. The unknown functional
dependence of Ez on N; (&, x, t) should be determined with the help of the model
of bi-component continuum.

Taking into account Eq. (2) the state equation o = o (e, N; (e, x, 1)) can be pre-
sented in the standard form of 1D elastic solid

NT NT
— — H ~ H
o=FEge=Epec|1— T ~ Ege 1——+ ,
Ny + NoEp/(Ey — Eg) Ng + NoEg/Eo

confirming an essential dependence of the stress on concentration of the bounded
hydrogen.

By analogy with ideal gas occupying the clear space (voids) in porous medium
the state equation describing the relation between pressure p and density o, is given
by

3
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Here N, is the volumetric concentration of particles of mobile hydrogen, k is Boltz-
mann’s constant, 7 is the absolute temperature of the moving medium.

We suggest that the flux of the non-attached hydrogen particles through the lattice
of the carrying structure can be described within the approach used for the flow of
ideal gas. This us equivalent the following representation for R

R =F(@)pylvy — vl 3)

The interaction force can be taken as a linear function of the difference in the contin-
uum particles velocities. Parameter F(¢) (dependent on strain €) is proportional to
the passage cross-sectional area and is determined in terms of the material properties
such as crystal grain surface area, crystal grain volume etc.

The source term J is taken in the form of [32], i.e. in the form (1).

Let us prove the adequacy of dynamic mechanism of hydrogen trapping by means
of bi-continuum model are relation (1).

Assume a uniform volume distribution of the concentration of bound and mobile
hydrogen and constant temperature and equal strain in the whole solid, then we
can fix the factors of sorption and desorption o = «(gg, Tp) and g = B(ey, Tp). The
gradients vanish, i.e. the mass balance equation yields

ANy _ - +
T (XN H ,BN H

“4)

Assuming the following initial conditions
N} (0) =0, N0 =v",

we obtain the solution of system (4)

o
o+ B

Ni = W (1 — e @thry,

o
Ny =¥ [l — ——(1—e @Ph],
H [ a+ﬁ( )]

This time-dependences are shown in Fig.2. They demonstrate the process of hydro-
gen saturation in the carrying medium and decrease of the mobile hydrogen. Param-
eters o and B should be determined experimentally because they describe the rate of
the above processes.

The relation between these coefficients determines the filling level of different
traps resulting in dynamic equilibrium while the overall value determines the rate of
hydrogen redistribution between levels with different binding energies.

It should be noted that Eq. (4) describes the interchange of hydrogen particles
(bounded and mobile) under the condition that the mobile hydrogen particles have
zero velocity. As follows from Eq. (3), this is realized under the condition F (¢) = 0,
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Fig. 2 The diffuse and bound hydrogen concentrations versus time

i.e. easy access of free hydrogen particles is excluded. Obviously, in this case the
whole free hydrogen satisfies this condition; hence o > 8.

.
+ _ + - _ - +_ N
After apparent replacement py; =mpyNy, py =mpNy and n™ = F* we can
now write down the complete system of equations in one-dimensional case

2 = (oo + pi) Sk + V) + R,

ap _ — vy,
~3x = Pu Iy — R,
Z)po + 3(povH) -0 (3)

aN; a(N;v )
T e = J/mu

IN, a(N v)
arH + =4t = —J/mpy

where
EoEy

o= g,
Eyg+nt(Ey— Ep)

R = F(e)pylvi — vyl
j =ale, T)N;; — B(e, T)N},.

The derived system of Eq. (5) is complete however it is strongly nonlinear, for this
reason we limit our consideration by the simple static case of the uniaxial tension-
compression.

It is necessary to note here that the concept of a static stress state is rather con-
ditional since it is necessary to attribute the carrying component of medium with
regard for Eq. (5) stating that movement of the second component is determined
pure kinematically. In other words, the reorganization of the material structure with
time is a sort of dynamics. Therefore, it is natural to search for the solution of the
problem in the following form
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_ = + _ ~+ - _ ~—
e=¢ey+E(x, 1), VviE=0+V5, vyp=0+Vy

Here ¢y, is a homogeneous static strain field. It is obvious that N &= N,J; (x,¢&,t)can
be submitted as

N 3 N NG s
NH(x78St+8’t)=NH(x785tvt)+ 8(x3t)
L .
It is naturally to present stresses o as
nt nt
=0, +6=Ey|1l————|¢ Ey|l = ——|e+ O
7 =0 to 0[ EH/Eo+n+:| o 0[ EH/E0+”+i| tow

Note that o here is related to &, emphasizing that there is an induced strains due
to reorganization of internal structure and this strain generates stress 6. A complex
dependenceo = o (¢, N;(e, x,1)) =o(e, Ng - nt(e, x, t)) ondeformation converts
the first equation of system (5) into:

do de do [9dn™ de N ont (o0 + p5) 8v; 4 vt 4R
_— _— _— _— = _— Vv .
¢ 9x | on* | 9 ox | ox PO P H

Staying in the framework of the first approach, one can write down Eq. (5) in the

following form
00y 0y

25— 6
de ox ©)
96 L0V . do ont
— = A J._. v+ R|._, — — —_—
ax (po + IOH) o T |875J, at |57£s, ant . 9y .
Here
N
=i [t |
+
. . , (7N
o = E()S {1 - |:’1++IEH/EO] €=E“} >
ng:gﬂ = _F (851) p;]v;[
The second equation in (6) serves for definition of the induced field of strain & when
the main term jn—‘i . % is known.
E=Ey
For the second component we can state that
ap - 3.
_a = F(Est)mHNHVH’ pP= ENHkT 3

Here p,; = mpy - N, is the mobile hydrogen density.
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Equation (8) can be transformed into:

3 0Ny -
EkTW = —F(es,)mHNHvH

The latter equation is similar to the Darcy formula but it has the generalized factor

of diffusion dependent on the strain field ;.

Thus, we have

_ 3kT 1 ONg, ©)
Vv, = — — .
H 2F (es)my Ny 0x

As mentioned above, the dependence «(e, T) and (e, T) on strain is weak in
elastic regions, that is, it can be neglected. Let us introduce the denotation «(7T") =
a(e, T) and B(T) = B(e, T). The above equations should be added by the balance
equation for the number of bounded and free hydrogen particles:

Nof’;;, = a(T)Nj; — B(T)Non™

T+ T = —(@(T)Ny — B(T)Non™®)
Inserting Eq. (9) we obtain
32 + 33 +

9x?2 3t8x2

82n+ . . an+ SkT
aﬂ.+w()+ﬁ(D37‘ZEﬁT§3P()

}:o (10)

Equation (10) is the equation of mixed type since it contains terms inherent in
the hyperbolic equation, i.e. 3’17 /9t%, 3>n*/dx?, and also terms typical for the
parabolic equations dn*/dt, 9°n*/3tdx>. This means that the detailed analysis of
a non-stationary problem subjected to a finite initial perturbation should demon-
strate a characteristic moving front of increasing (or decreasing) bounded hydrogen
concentration, i.e. an exposed strong dispersion.

In order to carry out analysis of this equation let us apply the Fourier method of
separation of variables. To this end we assume

nt(t,x) =T (1) - X4 (x).

Then . .
T+ @D+ pINTL@)  Xi(x)

B0+ o) X

This yields the ordinary differential equation for X (x):
X100 + 77 X+(x) = 0.

and the ordinary differential equation for 7', (¢):
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. 3kT
T4 (1) + Vme—ﬁ(T)Tm) = 0.

. 2 3kT
L@ + @) + BT + vy 5 ach)

HF(gsz)

Let us solve the problem under the following initial condition

nt(0,x) =0,
Ny (0,x) =¥~ (1+cos *), (11)
it (0, x) = 4= (1 + cos )

where parameter A is determined by parameters of the particular microstructure of
the material under consideration.

To begin with, we obtain the solution for the constant term in Eq. (11). In this
case 2 = 0 and the equation for the time-dependent function 7'y (¢) takes the form

T () + @(T) + BTHTL (1) = 0.
The solution is as follows
T, (1) = Ty + Tye~ @D+AIN

where the integration constants Ty and 7; are determined by the initial conditions.
. 2 . . .
For the second term in Eq. (11) y2 = 4%2 and the equation for 7', () is given by

i+ (e s+ T N R e 2o
(12)
Introducing
G( )—Sk—T<2—ﬂ>2 =a(T), p = B(T)
)= dmg e \ 2 ) @ =P =P
We can rewrite Eq. (12) in the form
T () + (@4 B+ Glea) T4 (1) + G(eg) BT (1) = 0. (13)

The solution is
T, (1) = Tse 5 + Tye 5,

where

& = % [ot + B+ Gles) — \/(Ol + B+ Glen)’ - 4:36(8”)]

N =

[a +B+Glew) +/(@+ B+ Glen))? — 4ﬁG(8sr)]
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Satisfying the above initial condition yields

_ _ a¥~
Iy=-T =y

a¥

T = —-T4 =
3 4 N @t B—Glew) +4BG (o)

It allows one to write down the final expression for the concentration of the mobile
hydrogen

nt(t, x) =

a¥~ (- e*(OH’ﬂ)l) (efélt _ 6752’) cos MTX "
No atp \/(Ot+,3+G(5”))2 — 4BG (gy) ’

As might be expected, the uniformly distributed mobile hydrogen increases the bind-
ing energy regardless of the diffusion whereas the rate of diffusion of the non-
uniformly distributed hydrogen is determined by F'(e,) that characterizes the “flow
cross section” of the diffusion channel and depends on strain &, .

Decrease in F (&) leads increase in G (gy,). If F(g;,) — 0 & tends to zero and the
factor (e 6" — e¢~%7) in formula (14) tends to e~#*. This factor determines the nonuni-
formity of the concentration of hydrogen along 1D solid. Therefore, the alignment
of the hydrogen concentration due to diffusion is slowed down to the pure desorption
process. In limiting case we obtain

N al~ 1 e P 2w x
nt(t,x) = + cos— ).
No \a+8 G(es) A

Equation (7) is used for modelling the hydrogen influence on o (¢). It is necessary
to mention that the effects related to the temperature change as well as the nonlinear
effects caused by the change in the content of bound hydrogen due to the material
deformation can be described in terms of dependences of «, 8 on temperature and
strain. The experimental data [43] data indicate that the yield strength is particularly
strongly dependent upon the hydrogen concentration.

It is logically substantiated that for the elastic material the area of free surfaces
is proportional to the strain itself under small deformation. Therefore, the factors of
sorption « and desorption § of hydrogen are a linear function of strain. It allows one
to assume a linear relationship between these factors

B, T)
a(e, T)

= ko(T) + k1 (T)e (15)

The latter dependence describes the material properties modification during the
hydrogen redistribution within the material. The simple dependence (15) allows us
to make a good approximation of the experimental data. Figure 3 demonstrates the
dependence of the maximal tensile stress on the initial concentration of the diffuse
mobile hydrogen calculated by formulae (15) for steels. This experimental data [54]
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Fig. 3 Variations in notch G Gpa
AIST 4135 steel samples as a
function of diffuse hydrogen E
content: the present approach 2 F
(solid line) and test values
[54]

C,.ppm —

of the maximal tensile stress versus the concentration of the diffuse mobile hydrogen
in AIST 4135 steel are also displayed in the figure beneath.

The suggested approach is equally applicable for studying of the effect of hydrogen
on fatigue and destruction, cf. Refs. [6, 12].

3 Bicomponent Model of Fatigue

Fatigue of metals is a subject of great practical importance because most of the
material failures in engineering components and structures are fatigue failures cf.
[21]. The most striking characteristic of fatigue failures is the lack of deformation in
the region of the fractures, even in materials like mild steel, which are quite ductile
when broken by a static load. This is one of the dangers of fatigue, for there is
generally no prior indication of impending failure.

Among all the factors influencing fatigue, the hydrogen is the most dangerous and
unpredictable, cf. [52]. Numerous experimental studies have shown that the presence
of hydrogen in metal or environment accelerate the process of fatigue failure by tens
or even hundreds of times, cf. [35, 46, 50, 51, 55, 67, 70]. An important feature of
the hydrogen effect on fatigue is the dependence of failure acceleration on frequency
of external fatigue loading [46, 52, 73].

Modeling of the hydrogen effect on fatigue is usually attributed to consideration
of a single fatigue crack. As mentioned in [52], most research on hydrogen embrittle-
ment over the past 40 years have only examined the influence of hydrogen on tensile
properties. To calculate the growth rate, the models of static stretching are used as.
As a rule, the HEDE model and its various modifications are applied, cf. [2, 49].

As noted above, this approach is limited by the need to know the parameters of
crack initiation. Use of the bi-component model enables analysis of the destruction
causes without these additional assumptions.

Consider the one-dimensional case of periodic uniaxial fatigue loading of the rod.
We assume that the frequency of loading is low, relative to rate of the other processes.
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This will allow us to ignore the solid dynamics. In this case Eq. 10 describes the bound
hydrogen concentration. After the standard procedure of separation of variables, we
obtain Eq. 13 for the time concentration factor similar to the quasistatic version.

We consider a cyclic loading with small strain amplitude of frequency w, i.e.
e =-¢1-cos(wt), 0 <e; < 1. It allows us to linearise the dependence G (¢), to
have G (¢) = Gy + G - €. Substituting the latter into the second equation in Eq. 13
enables us to put it in the form of the generalized Mathieu equation

T +2I(1+y +2ucosw)T + 2%(1 + 2 cos w)T =0 (16)

where the new parameters are 2 = /GoB, U = G1/2Gy, I' = Go/2, v = (@ +
B)/Go, §2 having the dimension of frequency. The dimensionless parameter u can be
understood as the intensity of the external mechanical loading expressed in terms of
the hydrogen concentration. The first approximation of the boundary of the principal
region of instability of this equations allows one to obtain the functional dependence
u = i (w). According [?], the boundaries of the principle instability region of Eq. 16
are given by ,
[ - @] +lrea+ )

= 17
" 24 + I'w? 17

are shown in Fig.4. From this figure one can conclude that the boundary of the
instability region in the plane of parameters (u, &) with the frequency ratio§ = w/$2
has a minimum which can be understood as a safe level of load under which the
fatigue fracture does not occur at all. The exact expression for the boundary of the

Fig. 4 Stability chart of the
system under consideration
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instability region at the “resonance frequency” is rather cumbersome however it can
be approximated by
22 « +,3) (92 )“
2
W=+ 28 (5 +1 (18)
( B* B B*

4 Wave Approach for Modelling of Destruction

The majority of structural metals suffer from plastic deformation prior to failure. The
plastic deformations are observed even in the case of multicyclic fatigue. Therefore,
the process of plastic flow is critical for the strength of materials and the stability of
structures made of these materials.

The Portevin-Le Chatelier effect and the associated mechanism of formation of
plastic deformation localization bands (the Liiders bands) are important aspects of
plastic deformation. Different explanations of mechanisms of such localization are
proposed in the literature.

The main part of the authors are of the opinion that this phenomenon is due to the
non-monotonic dependence of stress on strain, cf. [40, 60].

The actual instability of the deformation process is also described by introducing
either nonlinearities [33, 47] or random variables [42] into the continuous medium
equations. The source of nonlinear dependences is the diffusion of vacancies and
associated dislocations, as well as the non-linear constitutive equations for the mate-
rial under consideration. The source of randomness is the process of dislocations
appearance.

In fact, the main feature of these approaches is that the one-dimensional approaches
are utilised. All equations are written down either for a homogeneous material, or for
composites consisting of inclusions of one material in the matrix of other material.
Meanwhile, it has been established that surface tension or surface forces of crystal-
lites play an important role in the plastic deformation of polycrystalline materials,
cf. [39]. Thus, it is necessary to take into account the presence of a surface layer with
special properties.

We conducted a study of samples with large plastic deformations and samples
after failure, see [5, 7, 9-11, 26, 63] for detail. Preloading of samples was carried
out in tensile machines as well as by various processing (pin-machining, thermo-
mechanical loads, grinding, etc.). The process of plastic deformation is accompanied
by a sharp change in acoustoelasticity of the sample material, cf. [9, 28, 34, 58, 59].
It is generally accepted that this is a consequence of turns of the metal grains and
residual stresses, see [58, 59]. Our study of samples after standard HIC test steels
allowed us to establish that this effect could be associated with microcracking [1].
Consequently, the surface microcracking can be one of the leading mechanisms for
the structure modification under plastic deformation.
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In order to prove this effect we measured the spatial distribution of hydrogen in
samples of the aluminum alloys obtained after cyclic and static loading in a tensile
machine. Samples were cut from plates of 16 to 20 mm thick. They had a standard
dumbbell shape and their sketch is depicted in Fig.5. The dashed line shows the
pattern of cutting samples for measuring the hydrogen distribution. The characteristic
size of the samples was 6 mm.

Cutting samples for measuring the hydrogen distribution was done by manual saw
to prevent their heating and the associated redistribution of hydrogen. A layer with a
thickness of about 500 pm was removed from surface of some samples of the large
donor specimen. The results of measurement are shown in Fig. 6 as function of the
distance (in centimeters) from the central part of the initial donor specimen.

The measurement techniques are described in Refs. [4, 61]. The aluminum alloys
are actually a saturated solution of hydrogen. A significant increase in the initial
hydrogen concentration is possible only in the case of appearance of the additional
pores and microcracks [4].

Our experimental studies of a large number of samples have shown that all these
pores and microcracks are concentrated in a thin surface layer of the metal. The new
regularity that we established allows us to model the material as a three-dimensional
medium containing a thin surface layer with some special properties.

We found out that the surface layer contains significant amounts of hydrogen and
this fact allows us to model it as a solid that consists of bicontinuous media.
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An important role is played by the binding energy of hydrogen in material. It is
known that, inside the materials, hydrogen is found in traps with different binding
energies. In steels the total hydrogen content is 0.1-6 ppm, while it is only hydrogen
with alow binding energy that affects the strength, i.e. diffusively mobile hydrogen. In
aluminum alloys the entire hydrogen diluted in the metal has a low binding energy—
about 0.2-0.8 eV. The concentrations that are critical for the mechanical strength of
weakly bound hydrogen in steels and aluminum alloys are similar—they are decimal
ppm fractions. In aluminium alloys it includes the entire diluted hydrogen, while in
steels it amounts to 5-10% of the total amount of diluted hydrogen.

Accumulation of hydrogen in the destruction zone occurs both by the input from
outside and by redistribution of natural hydrogen inside the material. The hydro-
gen with low binding energy is diffuse however its interaction with material is very
weak. The hydrogen with high binding energy interacts with material very inten-
sively resulting in degradation of the mechanical material properties because of this
interaction.

We assume that the thin surface layer is attached to the base material which is
slowly stretched by law &5, = &,,(¢). The strains are assumed to be small and

F (g5) = Fo — kog?,

is a decreasing function of strain value. From Eq. 10 we can put approximately

%nt @t p) ont 3kT a1+ ko 2 5 9%nt N 3nt
o ot - onon
or? ot 0x2 9tdx2

=0 19
ZmHFO FQSS[ i| ( )

In this equation, we can single out a small parameter that allows us to apply the
method of successive approximations. The generating solution is obtained from the
equation

3Znt L@t B) ont 3kT 3%nt N 33nt
o @
ot? ot 2my Fy 0x2 dt9x?

Then subtracting the generating solution from Eq. 19 we can obtain the following
approximation which has the order of O (¢2,). The generating solution can be consid-
ered as a wave solution. This is facilitated by the oscillatory nature of the distribution
of hydrogen concentrations observed experimentally, see Fig. 6.

We seek solutions in the following form

nt :n+(9), 0 =«kx — A+ o,

where «, A are the wave numbers and ¢ denotes the phase, then

)\’2

d*nt dnt 3kT [ 2dzn+ d3n+]
K =0

- A— — — KA
T AP TR T a0z~ aps
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3kT

Denoting y = g Fy W obtain
282 et @ g
K — YK — (a — =
Ve 463 S STE 0

This equation has constant coefficients and the eigenvalues are determined by the
equation

yi’ap’ + (W —yi*B)p’ — (@ + B)ip =0

—(\* —yk*B) £ /D
2y KA

D =+ 2B+ 202y B 4 4x vl

p1=0, pr3 =

’

The dispersion relationship is given by
— 2 2 : —
—iyk‘wo — o+ yk°B—i(a+ o =0,
therefore

o +iloe+ Bw _ l—aw2+i((o¢+ﬁ)w,3+a)3)
yB—iyw vy B* + o?

k=

Thus, the time-decay is combined with the positive real-valued part of the expo-
nential with respect to the coordinate and vice versa.

On the other hand, in the case k = ik, A = iw we obtain one zero and two purely
imaginary roots of different signs

(@ —yK*B) VD,
N 2yklw !
D = o* + y** B + 207y k2B + 4oty Ko

P23

It enables putting the solution in the following form
nt =n*6) = A + Ayexp(p26) + Az exp(ps6),

Here the second term describes a wave that attenuates in space but increases
exponentially to infinity. On the contrary the third term describes a solitary wave
decaying in time with an increase in amplitude over space.

In order to satisfy arbitrary boundary conditions one needs all three functions,
so in a linear formulation one cannot avoid the amplitude growth to infinity. On the
other hand, there is a stable solution

nt=nt©O)=A,.
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If the concentration is uniform, then this uniform concentration can remain forever.
Once distortions in the boundary conditions and/or any inhomogeneities occured,
all three solutions appear and the concentration magnitude increases exponentially.
This explains the critical effect of small inhomogeneities (hydrogen traps) and non-
uniform boundary conditions on stability of the entire system.

5 Discussion

The discrepancy between the theoretical and experimental data in Fig.3 observed
for small initial diffuse hydrogen content can be explained by the nonhydrogen
effect. The remaining points demonstrate a good coincidence which can be viewed
as confirmation that the present model is adequate.

This model describes the material fracture without any preliminary assumptions
about existence of microcracks or a certain concentration of dislocation and their
orientation [14]. This approach is also differs from the way of modeling the hydrogen
embrittlement by introducing the parameter of crack resistance [69].

According to alarge array of experimental studies that were carried out for decades
[44, 64] the extraordinary strong influence of hydrogen can be explained only by
the micro-localization of its accumulation in traps like cracks and dislocations. The
attempts to describe the mechanism by means of HELP or HEDE models lead to
a need to describe the processes at different scales simultaneously and even under
the condition that the process at the micro level is localized in the material and
unstable it time. As a result, one needs to prescribe some averaged characteristics
(i.e. smearing of singularities) which is actually deprives these models the initial
physical transparency.

To justify the constitutive law HELP model [66] has to use the models of the
hydrogen influence, which give a visible effect in terms of changes in the local
characteristics of the metal only at the local hydrogen concentrations of the order
of 1:1 with the atoms of metal. It is difficult to imagine from a physical perspective
since the lattice of the solid hydrogen has the constant which is one and half times
larger than the constant of the most metals.

The main advantage of the constitutive law and equations of the bi-component
model is that they are applicable at the macro-level. Micro-mechanisms of the influ-
ence of hydrogen have been included in the rheological model. Parameters «, B,
Ey, ko and k; should be determined in terms of the macro-quantities such as the
experimental strain—stress diagrams.

Despite the seeming simplicity of this approach and the large number of published
data, not all of them can be used for the approximation. Almost all experimental data
were obtained as a result of the saturation of specimens either in the electrolyte
solution or in gaseous hydrogen.

In spite of the established conception of the rapid redistribution of hydrogen inside
the metal under the concentration gradient, a simple calculation shows that such a
redistribution can last from tens of hours to several years depending upon the binding
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energy of the traps with hydrogen from the surface layer of the environment. Our
own experiments show that in the case of hydrogenation with the electroplating of
zinc the hydrogen concentrations are not aligned within one year of exposure of the
specimens at the room temperature.

Thus, when determining the characteristics of rheological model one should per-
form a correct determination of the hydrogen concentration and its volume distri-
bution. This presents problems and the most researchers determine this parameter
indirectly in terms of the cathode current and charging time. As a result, the data
obtained are not suitable for approximation since the hydrogen is localized on the
surface. For example, there exists no dependence of tensile strength on the hydrogen
charging time, cf. [18].

The presence of the descending part on o (¢) diagram of the material with hydrogen
implies instability of the material under load. Under real loading the failure will take
place when the maximum point of the curve o (¢) is achieved and this fact can be
interpreted as the tensile strength due to the hydrogen saturation.

The governing equation for 1-D diffusion is shown to be reduced to a generalized
Mathieu equation. A closed form expression for the principle instability regions is
obtained and a safe level of harmonic load is determined under which the fatigue
fracture does not occur. Using the bicontinual model, we were able to describe the
experimentally observed “resonant effect” which is observed experimentally [46,
52, 73]. This effect is described without additional assumptions about presence and
parameters of the fatigue crack.

The generating solution of the equations for concentration of the bound hydrogen
in a thin surface layer is of the wave nature for any non-uniform distribution of
hydrogen concentration over the surface.

This solution always has a complex frequency of oscillations which describes the
magnitude of the concentration wave that exponentially increases in time. Due to the
equations of bicontinua solid it leads to degradation of the mechanical characteristics
of the material in regions of maximum hydrogen concentration. Such non-uniform
characteristics can easily explain the occurrence of bands of localization of plastic
deformation especially since often they have a characteristic wavelength. In other
words, they are spaced approximately at the same distance from each other on the
sample surface.

This novel approach is of great practical importance since it makes it possible
to relate the hydrogen concentration to the plastic deformation of material. Thus
measurements of the concentration of dissolved hydrogen can be used to estimate
the residual life of materials and structures.

6 Conclusions

A model is constructed which allows one to describe the kinetics of hydrogen in
metals, and in particular to estimate the hydrogen transition from mobile into bounded
state depending on the stress-state relation and to describe the localization of the
connected hydrogen resulting in the material fracture.
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We suggest a novel approach to modeling the solids with account for the influence

of hydrogen on the properties of free surface on monocrystals at various scales.

Application of the bi-component model to describing the multiscale materials

allows obtaining the adequate results which describe the hydrogen influence on
properties of these structures.
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Modeling of Elastic-Plastic Deformation )
Based on Updated Initial Configuration L
of Solid Body

Nikolay M. Bessonov

Abstract In this paper we discuss some modifications of the classical two-step
algorithm (elastic-predictor, inelastic-corrector) usually called the radial return-map
method. The neo-Hooke rheological model is employed in the analysis of elastic
behavior instead of the Hooke model. The von Mises yield criterion —J,(S) < 032 /3
is used in the equivalent form —J,(Bp) < 0?/(3u?). The main difference of the
proposed algorithm in comparison with the traditional one is that in the simulations
of plastic deformations we switch the emphasis from corrections of the stress tensor
to irreversible corrections of the initial configuration of the solid body. The stress
tensor is automatically corrected by this procedure. The implicit integration method
is suggested for the correction of the initial configuration in the case of plastic flows.
While changing the initial configuration, we automatically get plastic (irreversible)
deformation at any time step. This algorithm allows us to calculate residual stresses
in the elastic-plastic solid after removing the external load as a result of unloading
after non-uniform plastic deformation. It is also used for an accurate simulation of
deformations of both perfectly plastic and elastic-plastic solids with workhardening
including the Bauschinger effect. Numerical examples show some advantages of the
algorithm developed in this work for a springback problem.

Keywords Clastic-plastic flow - Computational plasticity *
Return-map algorithm - Updated initial configuration - Bauschinger effect

AMS subject classification: 74C15 - 74M15 - 65M06

1 Introduction

A radial return-map two-step algorithm (elastic-predictor, plastic-corrector) was
developed in order to correct the stress tensor components. It is widely used for
time-discrete elastic-plastic models. At the first step, a purely elastic trial state is
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computed. If the constitutive model it violated, an inelastic correction is computed
at the second step using the trial state as an initial condition.

Wilkins [33, 34] was among the first who tried this algorithm, splitting the total
deformation between the elastic and plastic components. This approach is still being
used with few modifications ([1-4, 7-12, 17, 19, 20, 22, 23, 25, 26, 28-32, 35-37]
and more).

In the literature cited above, the return-map algorithm is used both directly and
with some additional development. In this paper we will discuss some possible mod-
ifications of the Wilkins (or classical) method whose efficacy we have verified in
practice. We use a more general formulation of the problem for simulation of the
elastic part of the deformation, neo-Hooke’s law instead of Hooke’s law. Moreover,
this formulation also allows us to avoid unnecessary differentiation with respect to
time and to avoid corrections of the stress rotation (Egs. 6 and 7). Thus, we consider
a more general formulation of the problem and simplify its practical realization. Let
us emphasize that the introduction of neo-Hooke’s law in the algorithm changes our
point of view on the plastic part of the deformation and brings us to the idea to
describe it as a process of continuous modification of the initial configuration of the
solid.

2 Short Description of the Classical Time-Stepping
Return-Map Algorithm

Let us analyze schematically the classical time-stepping return-map algorithm with
the minimum level of detail needed for the explanation of our modifications (see [33,
34] for further details).

Initially, the Lagrangian mesh is introduced; a fragment of the 2D mesh is shown
in Fig. l1a. The computational domain is divided into cells. Each cell consists of two
triangles in the 2D case (or six tetrahedra in the 3D case) called elements as illustrated
in Fig. 1b and 1c, respectively. A control volume V with mass M (gray in Fig. 1a)
corresponds to every node of the mesh.

For calculation of the new values of the velocity at each node, the explicit approx-
imation is used. The conservation of momentum law may be represented by the

equality: -
vn+ -

N

where V! and V" are velocities at the “new” and “old” time steps, respectively, At
is the time step, o is the stress tensor, S is the surface of V, ds = ndS, and 1 is
an outward normal vector to S. In the explicit algorithm, all quantities included in
the right-hand sides of the equations (in particular, in Eq. (1)) are taken from the old
time step unless they are already calculated at the new time step. In order to simplify
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(b)

X c
2

Fig. 1 a Fragment of 2D Lagrangian mesh (e are nodes); b 2D element; ¢ 3D element

the notation, we omit the superscript showing the number of the time step in the
right-hand sides of the equations.
For every node of the mesh we have
)‘inJrl _ )‘in

=V 2
A v, 2)

where X is the radius-vector of the node. The stress tensor ¢ is defined at the elements
of the mesh and decomposed as the sum of spherical and deviatoric parts:

o=Ip+S, 3)

where I is the unit tensor. A perfectly elastic material is characterized by a linear
relationship between the stress and the strain in the form of the Hooke model:

p=KVz-u, 4)
o o 2 -
S=M<Vgu+uV,;—I§Vg~u), (®)]

where K and p are the bulk and the shear elastic modulus, respectively, U is the
displacement of the node, Vil = duy/0x,,€,6;, UVz = duy/3x,,€€,, € are base
unit vectors of a fixed rectangular cartesian coordinate system (k = 1, 2, 3). The
summation convention over the repeated indices is assumed.
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Equations (4) and (5) are differentiated by time and are written, respectively, as

n+1

% = KV;-V, (6)
S-8 _ Ved + Vs — I2V5 -7 ) + (7)
At - l’l’ X X 3 X Y7

wherey =S - & — & - S corresponds to the correction resulting from the rigid body
rotation, € is the spin tensor. More detailed explanation why in left hand side of
Eq.(7) S is used instead of §"*! will be provided below.

According to the theory of plastic flows, all possible stress states corresponding
to the plastic yield constitute a closed hyper-surface in the stress space [21, 24]. The
yield function can be written in the general form as

FS) <K, ¥

where K is the material constant. Condition (8) determines the restrictions on the
stress field. The von Mises yield criterion is a particular case of condition (8) and is
conventionally used to describe the elastic limit:

o2

=L)< ?f ; &)
where oy is the limit of elastic stress. When the new values of the deviatoric part of
the stress tensor S’ are found from Eq. (7), condition (9) is verified (predictor step).
If (9) is satisfied, then S"t!' = §'; otherwise, the values of the deviatoric stress tensor
are corrected according to the formula (corrector step)

S = mS, (10)

where
US

- 11
" UBL®) (b

This approach allows the correction of the deviatoric stress tensor, so that the
following equation is valid:

o2

— h(S8") = ?Y : 12)

Finally, we find the new value of the stress tensor:
o't} :Ip”'H +Sn+l , (13)

and we can proceed to the next time step.
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3 Formulation of a New Time-Stepping Return-Map
Algorithm

3.1 1D Example

We start with a simple example. Let us consider an elastic-plastic spring with the
initial length X (at ¢+ = 0) and the actual length x (at time 7). We can represent the
spring as a single 1D elastic-plastic element of the mesh. Assume that the stress o
depends on x:

o:E(%—l) (14)

and the plasticity condition is
o? <ao?, (15)

where oy is the limit of elastic stress and E is the material coefficient. Using Egs. (14)
and (15), we obtain an equivalent expression for the plasticity condition:

(1 _ 1)2 <% =g (16)

where ¢; is the limit of elastic strain.

Let us solve the problem “numerically”, step by step in time. Suppose that the
length x changes at each time step and that we calculate the new value of the actual
length x"*! instead the old one x" (predictor step). After that we must check condition
(16). If this condition holds true, then the deformation remains elastic. This means
that once the force is removed, the spring returns to its initial length, i.e. x — X.

Suppose that at some time step, condition (16) is no longer satisfied. Therefore,
plastic deformation begins, and the change of the material is irreversible, i.e., it will
not return to the initial length X when we remove the external force. From this
analysis we can naturally conclude that if condition (16) is not satisfied, then we
must change the initial configuration X, which should also depend on n. We denote
it by X”. In particular, if condition (16) remains true, then X"*! = X",

Thus, if we calculate the value J, = — (x"*1/X" — 1)2 and find that —J, > k2,
then we make a corrector step and define the new, updated value of the initial con-
figuration X"+! which satisfies the following equation:

Kt 2
(Xn+1 - 1) =l (17)

All information about the initial configuration is contained in the multiplier 1/X in
condition (16). In order to have the presentation similar to the 3D case, which will
be considered below, we define here the initial configuration as 1/X, and not as X.
This modification is not essential for what follows.




94 N. M. Bessonov

If 1/X = 1/X", then condition (16) is violated while for 1/X = 1/x"*! it is
satisfied and the left-hand side of (16) becomes equal to zero. For this reason, we
choose 1/X"*! in the interval between 1/ X" and 1/x"*! | i.e.,

1
Xn+l

1
:aﬁ—l—(l—a)an , (18)

where a is a parameter, 0 < a < 1. Let us substitute (18) into Eq. (17) and choose a
such that the following equality is satisfied:

n+1 1 1 ? 2
X CIW—F(I—G)W —1 =& (19)

As a result we obtain

(20)

and keep only the positive solution. We calculate the new initial configuration 1/ X" +!
substituting the value of @ in (18). Note that in this example we can find 1/ X"*!
from Eq. (17) in a single step. We do it by intermediate of Eqgs. (18)—(20) in order to
show how it will work in the 3D case.

The new value of the initial configuration satisfies the plastic yield condition
exactly, so that we can move to the next time step.

Obviously, if we remove the external force at this time step, then the spring returns
back to the last updated value of the initial length,i.e.,x — X n+1 After the correction
of the initial configuration, the value of ¢"*! calculated from Eq. (14) satisfies the
equality in condition (15).

Let us summarize the above discussion. At each time step, if condition (16) is not
satisfied, then we adjust the initial configuration and calculate the new one. The old
one is “forgotten” by the material. If at this moment of time we remove the external
force, then the spring returns to its new initial length X"*!.

At the elastic stage the initial length does not change, X"*' = X". At each time
step, the difference X"*' — X" is equal to the plastic (irreversible) deformation.

We emphasize that the meaning of the expression “initial configuration” is
changed here. It is no longer the length at the initial moment of time but the length
to which the spring returns when we remove the external force. Hence, the initial
length defined in this way depends on time.

3.2 Return-Map Algorithm for 3D Case

We can now try to generalize the approach discussed above to the 3D unsteady elastic-
plastic problem. Let us critically review the basic system of equations employed in



Modeling of Elastic-Plastic Deformation Based ... 95

Wilkins’ method (Eqs. 1-5) in order to define the components responsible for the
initial configuration of the solid.

Equation (1) represents conservation of momentum expressed in the general inte-
gral form; Eq. (2) represents velocity as derivative of the displacement; Eq. (3) repre-
sents the stress tensor consisting of spherical and deviatoric parts. Equations (1)—(3)
are expressed in appropriate general form. More attention should be paid to Egs. (4)
and (5) where Eqgs. (6) and (7) follow from. The classical return map algorithm does
not include any evidence of the initial configuration of the solid. In order to bring it
back into the rheological model, we will use the neo-Hooke model with constitutive
equation for the Cauchy stress tensor [1, 27] instead of Egs. (4) and (5):

\%4
p:K<__1>, @

Vo
1
S=u [B - §IJ1 (B)} = uBp, (22)
where
B=F.F’ (23)

is the left Cauchy-Green deformation tensor,

8x1 8x1 8x1
. 0X; 90X, 0X3
dx ax,» N 8XQ 8X2 8XZ

dX 09X, 9X, 90X, 90X
3x31 8x32 8x33

9X) 90X, 0X3

(24)

is the deformation gradient, X is the actual position vector, X is the initial position
vector, V is the actual volume, and Vj, is the initial volume.

Le_t us analyze how Egs. (4) and (5) are obtained from Egs.(21) and (22). Let
X = X + u. Then

B =XVg - Vgx = (uVg +1I) - (Vxgia+1)

Next Vi A V; is assumed. At this point all the information about the initial config-
uration is lost. Further,

~@WVz+I) - (Vzu+ID) =1+ uViz+ Vzu +uVi - Vza
Assuming that i is small and the second order terms can be neglected, then

~T+1uVy + Vit 25)
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Using the same assumptions, it is possible to obtain
JiB)~2Vz-u+3 and p~ KVi-u (26)

Thus, relations (4) and (5) provide an approximation of relations (21) and (22).
In order to retain the information about the initial configuration in the rheological
model of the solid, we will use the neo-Hooke model (Egs.21 and 22) instead of the
Hooke model Eqs. (4) and (5).

Taking into account Eq. (22), we can write condition (8) in the alternative form

fBp) <k, 27)

where k is a material constant. Condition (27) will determine the restrictions on the
deformation field. For simplicity, we will limit our analysis to the von Mises yield
criterion (9). We can rewrite (9) in the following form:

4e2(1 +v)? _ 2

— L(Bp) = 3 =K,

(28)
where ¢, = o,/ E is the limit of elastic strain, v is Poisson’s ratio,and £ = 2u(1 + v)
is Young’s modulus.

We will illustrate the specific features of the new return-map algorithm considering
only one tetrahedral element of the mesh abcd, (Fig. 1c). We denote the initial
position of the tetrahedron vertices at the initial time by position-vectors Xa, Xb,
X and Xd Due to deformation, the vertices move from their initial positions. We
denote the actual position of the vertices at time ¢ by X, X, X, and X;. Let X; and X
(i = 1,2, 3) be the right-hand set of vectors directed along any three different ribs
of the tetrahedron:

- - - - - - - - -
X] =Xp — Xy, Xp=Xc—X;, X3=Xy7—Xq4 (29)

and . . . . . .
X=X - Xo, Xo=Xc-X,;,, X35=X;-X, (30)

We will use the following quantities:

1. .
V = 6X1~(X2 X X1) 31D

is the actual volume of the tetrahedral element,

N i2X§3 N ;(3X§1 N ;(lxiz
I = , X2 = , X = (32)
6V 6V 6V

is a set of vectors reciprocal with X;, with the properties
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X X" =8, XX =X'%; =1 (33)

and the second-order tensors:
R*=¢X, Rg=&%, (RH =X¢, Rl =x¢, (34)
G*=R*-RY", Gz=R; R (35)
with the properties which follow from Eq. (33):
R; - RYHT =R*.RI =RI .R¥= RY)T . Rz =1, (36)
G:=GI, G*=(GH", G- G;=6G;-G*=1, G*-G;=3 (37

(see also Appendix A). Similar to formulas (31)—(37), we introduce Vj, ii, RX, Ry,
GX, and G based on the set of vectors f(,-.

Having defined these values, we can return to the tetrahedral element under con-
sideration. Substituting V and V; into Eq.(21), we can find the pressure p in the
element. The next step is to define the approximation of the tensor B given by (23).
Let us introduce the linear transformation of the element from its initial to its actual
position [6]: L

X=A-X+Db, (38)

where A, and b are parameters of the transformation. Substituting (38) into (24), we
can find the tensor F in the element:

_ 0(AuXi+bi)..

F axm € e, = AikSkméiém =A. (39)

Using Eq. (38), we can write for vertices of the element as

%, =A-X,+b
ib:A-Xb-i-f)
% =A-X.+b
idZA'id—i-f)

(40)

In order to determine F (and then B) in the element, we should find the value of
A from system (40). Let us rewrite (40) in the following form:

X =A-X,
% =A-X, 41
§3=A‘X3
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Each equation of system (41) is multiplied from the right by a corresponding vector
€;. Taking their sum, we obtain

%6 = A -X,,6,. (42)

Using Eqgs. (34) and (36), we find the tensor A

A =%6 - (X,&,) ' =R -RX. (43)

Finally, combining Egs. (23), (35), (39), and (43), we obtain the finite difference
approximation of B for the element:

B=R! . G* R;. (44)
The tensor GX can be expressed as

) ) ) X.x!x!.x2x!.x3
GX=R¥ RYHT =¢X'.X"¢, = | X2. X! X2.X2Xx2.X3 (45)
X3.XIX3.X2X3.X3

As follows from Eq.(45), the components of the tensor GX are scalar products
between the vectors X!, X2, and X°, which determine the initial element. Obviously,
the translation and rotation of the initial element as a rigid body does not affect the
value of the tensor GX and of the tensor B. Specifically, if the initial and actual
configurations of an element coincide up to translation and rotation, then B = L.

It is important to stress that all information about the initial configuration of the
element contains in the tensor GX and in the initial volume Vj. If the external force is
removed, then GX* — GX and V — V. We can assert that GX and V; play the role of
the memory of the element and keep the information about its initial configuration.
We recall that neither GX nor V; depend on translations and rotations.

By virtue ofﬂ equality (44), among two values GX and V, the 9ondition 27
contains only GX. More general plasticity conditions including both GX and V, canbe
also analyzed. The tensor GX will play a crucial role in the subsequent considerations.
We call it the tensor of initial configuration. (In Sect. 3.1, the value 1/X served as
an analogue of GX for 1D problem.)

Here for simplicity we consider only the von Mises criterion in the form (28). In
the elastic regime, condition (28) holds and GX does not change. If the deformation
of the element exceeds the critical value, then condition (28) is not satisfied any more,
and the internal structure of the solid body is irreversibly changed. In other words,
the initial configuration of the element, and, consequently, the tensor GX should be
changed in such a way that the equation
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— L(Bp) =k (46)

is satisfied.

We proceed step by step in time. At the initial time step, in addition to all other
values, we have to calculate the values of GX and V), for every element of the mesh.
Assume that we have already found the new positions of the element vertices from
Egs. (1) and (2). After that we calculate the set of vectors ?(;‘*' from Eq.(29). We
carry out the predictor step and put

B' =R.. -GY - Ru, (47)
where R = éki}:“, and GX" is known from the previous time increment. If the

condition
— L(B)) <k (48)

is satisfied, then the tensor Gi" does not change, that is GX"H = Gxn.

Suppose that condition (48) does not hold. Then we should find the new tensor
GX"" for the element, such that B"*! = RL,. - GX"™"' . Ry satisfies the following
equation:

— LB = k% (49)

The value of Gx satisfying this condition should be in the range between GX" and
GX""'. Similar to the example above (see Eq. 18) we introduce the parameter a and
put

3+l

GX" = aGX + (1 —a)G¥". (50)
Using Eq. (50) we can write
B =Rl - [aGf‘" + (- a)G’“‘"*‘] Ry =aB +(1—a)I (51
and therefore
By =aB + (1 —a)l— % [a]y(B) +3(1 —a)]I=aB), (52)

Then from Eq. (52)
LBEY = a? L (B)). (53)

We would like to satisfy Eq.(49). Substituting Eq. (53) into Eq. (49), we obtain the

equality
k
a=t——-— (54)

J=h®})
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We will keep here only the positive solution.

Note that the value of a in (54) coincides exactly, up to notation, with m from
(11). This is related to the fact that S"*!, given by (10), can be written in the form
S"t! = mS + (1 — m)0, where 0 < m < 1. )

Substitution of a from (54) into (50) gives the new value of the tensor GX",
which satisfies (49). Obviously, condition (9) is also satisfied. We can now proceed
to the next time step.

Note that it is assumed in the theory of plastic flows that the plastic strain is
proportional to the stress deviator S at any time. From (52) and (22) we get the
following relation:

n n / a-— 1 n a— 1 n
ay = By = - B, = e = e s)

Let us make some preliminary conclusions. According to the discussion above,
at each time step we deal with three configurations of the element (Fig. 2): the
configuration, which is based on the set of vectors i;‘*', and related to the tensor
Gx" (Fig. 2¢); old initial configuration determined by the tensor GX' (Fig. 2a); new
initial configuration determined by the tensor GX"' (Fig. 2b).

Note that using the tensors GX" and GX""" we can reconstruct the shapes of both
old and new initial tetrahedron elements up to translation and rotation. However, this
is not required. )

The tensors GX and GX"" determine the critical elastic deformation of the
element allowed by condition (49), while the tensors GX"" and GX" determine the
plastic (irreversible) deformation. .

Having introduced the new independent value GX into the algorithm, we obtain
the following system of equations:

Elastic predictor

Flastic corrector
A

(a) (b) _ (c)
014 inital configuration New inital configuration New actual configutration
y v J . -
Plastic (irreversible) deformation Critical elastic deformation

Fig.2 Diagram of elastic-predictor/plastic-corrector. The old (a) and new (b) initial configurations
coincide up to translation and rotation. New actual configuration (c) is completely defined
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- - AV) -
Vn-H:Vn‘i‘M o" - ds
S

§n+1 — )—('n + At{;nﬂ

oo _ | 6%, I ACEY (56)
aGX' + (1 —a)G¥"' at — L(B)) > k2

Y+l
B""' =RL, -G - Rpn

+1_ +1
S" = uB}

Gn+1 — Ianrl + Sn+1

Itis written for the simplest explicit integration scheme. It is possible to develop more
accurate explicit and implicit schemes but this is beyond the scope of this paper.

4 Simulations

In this section we will illustrate the discussion above with some examples.

4.1 A Perfectly Elastic-Plastic Model

Let us consider a cylinder with typical material properties of p = 3000, kg/m?,
v = 0.45 and E = 100, GPa subjected to an uniaxial cyclic loading. We assume that
sliding is possible at the edges of the cylinder. Even though this problem is assumed
to be 1D, we will use a 3D code for the analysis.

The classical explicit numerical scheme by [33, 34] is employed. For the new
algorithm, a similar explicit procedure (with the exception of some minor changes
of low importance) was used during the code development.

Elements of the 3D mesh (top-right corner of Fig. 3) have tensile strain in lon-
gitudinal direction and compression strain—in transverse direction. One cycle for
the perfectly elastic-plastic model with no hardening of the material was simulated.
The limit of elastic strain was set to be ¢, = 0.01 (which corresponds to o, = 1, GPa
(28)).

The results of the modelling based upon classical and new algorithms with the
same time integration step dt are shown in Fig. 3. The curves obtained with two
different methods coincide rather accurately. Some high frequency vibrations taking
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Fig. 3 One cycle of calculations using perfectly elastic-plastic model for e, = 0.01

place during the slow quasi stationary process of deformation are related to the fact
that we use full dynamic formulation with rather small time integration step.

Some aspects of validation of the explicit integration procedure for a given quasi
stationary problem are not included in this paper. Employment of the same explicit
integration procedure for both methods is convenient for the comparison of the
results. The amplitude and the frequency of vibrations in both methods are iden-
tical (top-left corner of Fig. 3).

We can see from Fig. 3 that ab is the elastic part of the curve. When the elastic
strain ¢ is greater than &;, plastic flow occurs along bc, where o = oy. The unloading
cd and loading ef parts are the same. This corresponds to the physics of the process.

The CPU time of both simulations was approximately the same with some minor
advantage of the new algorithm. Most probably, it is related to a more detailed
development of the code for the new algorithm.

4.2 A Model with Hardening

Let us consider a similar problem as in Sect. 4.1 taking into account workhardening
of the material. In this case &, depends on plastic strain &,.

As {t was described in Sect. 3.2, at each time step, we calculate two tensors GX'
and GX""' corresponding to the old and new initial configurations of the element.
The deformation of the initial configuration corresponds to the plastic strain of the
element. We can define the effective plastic strain rate at any time step ds;’,“. Letus
introduce a deformation tensor for the new initial configuration relative to the old one:
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B, =R., -GX' Ry (57)
and define de’}*! like
dentl = [ (B )_L\/gj (B2) — J2 (B,) (58)
g = NG > (Bpp) = it 1(B5 i \bp

Using Eqgs. (34)—(37), we can transform Eq. (58) to the following form:

de;+1=%1_8\/3 (6500 - 6¥) -+ (650 - G¥) = ( XGX)2 (59)

Then total plastic strain accumulated in the element can be expressed as

i=n

entl = Z deit! (60)
i=1

Let us assume for simplicity, that &, depends linearly on ¢, i.e.,

et =gl ¢ 8;/82-“ (61)
Results of simulation for the elastic-plastic material with hardening Eq. (61) for
e, = 0.01 and ¢/ = 0.1 are shown in Fig. 4. The stress-strain function is piece-wise
linear. The part of the curve between b and ¢ corresponds to the plastic deformation
with hardening, which is more representative for the behavior of a real material than
the perfectly elastic-plastic model. As in the previous example in Sect. 4.1, Fig. 4
shows almost exact correspondence of the curves obtained with both methods.

4.3 Springback Problem

The problem of springback of parts stamped from sheet metal is a very well known
practical problem: as a result of an external load, a solid (sheet metal blank) is
undergoing plastic deformation, then the load is removed, and the deformed solid
unloads and takes a new shape (because of the elastic recovery of the material) which
needs to be defined.

In order to compare the results of modelling obtained with both methods, let us
consider the following simple problem. We take a 2D Cartesian mesh, which consists
of a single square cell with surface Sy and which includes four triangular elements
(Fig. 5a).

The material properties in this example are the same as in the previous example
in Sect. 4.2.



104 N. M. Bessonov

| ] —classical o, GPa -
=

mm
.02 00195

i
0.04 ¢ 0.05

Fig. 4 One cycle of calculations using elastic-plastic model with a simple model with hardening

(a) (b) (c) (d) (e)

time=0 time=0.01 time=0.01+At time=15 time=30

Method:

classic ¢— \—’ o< > > -

new — — Hé|>\—<|7‘/_’

Fig. 5 Shape of the solid versus time under tension parallel to the x axis

The stretching load is applied to the solid in the horizontal direction and then
removed at the time moment of 0.01 s (Fig. 5b).

Obviously, the solid body starts free vibrations, and the actual area of the solid §
will periodically change around its initial value Sp. A rapid change of compression
and tension will take place correspondingly, and at the moment when S becomes
equal to Sp, the value of p should be equal to zero. The shear stresses should be
equal to zero at any time. The shape of the solid should stay rectangular. This is the
expectation of how the solid body should behave in this example.

Now, let us review the results of the simulation. As it was expected, the calculated
values of the pressure in the solid, after the load was removed, changed periodically
around zero with the same amplitude: the values of pressure p obtained by two
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Fig. 6 Simple tension. Variation of a pressure p and b S/Sp

different methods are practically identical (Fig. 6a). The value of o, was equal to
zero, as it was expected.

We now compare the ability of the two methods to predict the evolution of the
shape of the solid during a substantial period of time. After relieving the external
load, the solid took the shape of a rectangle slightly elongated in the horizontal
direction. Then the shape stayed rectangular, and the solid rapidly vibrated around
some average position.

During relatively short period of time after the load removal, the condition S = S
is satisfied for both methods (Fig. 5). However, for a longer period of time, the
difference between the two methods becomes more and more visible. In the case
of the new method, the value of S/Sy oscillates around 1, while in case of the
classical method, S/Sy oscillates with the same amplitude but around the growing
value (Fig. 6b). The shapes of the solid obtained with both methods at the moments
of 15 and 30s are shown in Fig. 5d, e.

The results obtained with the classical method show that the average area of the
solid is growing with a constant velocity, and the effect of “swelling” of the mesh
was observed. This effect can be suppressed by reducing the time integration step
but can not be eliminated completely. The process of relaxation of the solid after the
external load is removed can be sufficiently long. Therefore, the decrease of the time
step is strongly undesirable. The new method is stable with respect to the “swelling”
of the mesh.

This effect is determined by the fundamental difference between the classical and
the new methods: the calculation of the pressure at the new time step p"*! in the
classical method is conducted according to formula (6), while in the new method
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(a) (b) (c) (d) (e)
time=0 time=0.1 time=0.1+At time=15 time=30
Method:
—
classic ><
new : _/'

Fig. 7 Shape of the solid versus time with simple shear

according to formula (21) where the initial volume Vj, of the cell (or the initial area Sy
in the 2D example) is included. As a result, according to formula (21), if the equation
V = Vy(or § = Sp) is violated, the counter pressure is generated. It tends to change
the shape of the solid in such a way that the equation V = Vj (or § = Sp) is restored.

When we calculate the pressure with the classical method according to formula
(6), p"*! is found as a result of adding the pressure increment At K Vs - V to its value
from the previous integration step p”. Therefore, after a large number of integration
steps, due to the accumulation of integration error, the information about the initial
volume (area) of the cell is gradually “forgotten” and, as a result, the observed non-
physical and unlimited “swelling” of the mesh takes place.

Let us carry out a similar comparison for the same mesh and for the same prop-
erties and configuration in the case of a simple shear. The initial shape and loading
conditions are shown in Fig. 7a, where « is the angle of the side deviation from the
y axis.

We can expect that when the load is removed, the angle « will gradually decrease,
and its value will oscillate around some fixed average value «y. The pressure p should
remain zero, and the stress tensor component o, should vary around its average value
equal to zero. The shape of the solid should be a parallelogram.

The results of the calculations of the value oy, obtained with the help of both
methods, are practically identical. The value of oy, varies periodically with consistent
amplitude (Fig. 8a). The value of pressure at any moment of time is equal to zero.

Asin the previous example, let us follow the evolution of the shape of the solid after
asubstantial interval of time. The value of the angle of inclination of the parallelogram
o, obtained with the new method varies around its steady average value o ~ 27°.

The value of oy, obtained with the help of the classic method is gradually increas-
ing, as shown in Fig. 8b. Additional calculations show that the growth of « in the
classical method can be decreased by decreasing the time step.

The difference between the two methods is related to the fact that the calculation of
the components of the tensor S according to the new method employs Eq. (22), which
take into account the tensor of the initial configuration GX. In this example, the area
S of the solid is constant according to the formulation of the problem, and behavior
of the solid is determined by the shear strains. In this case, any deviation of the actual
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Fig.8 Simple shear. a Variation of oy, and b angle of inclination «

configuration of the cell from its initial configuration immediately generates opposite
stresses which tend to return the actual shape of the cell to its original shape. The

information about the initial configuration is kept in the tensor GX.

In the case of the classical method, calculation of the tensor S at the new time step is
conducted according to formula (7) which does not include directly the information
about the initial and actual configurations, unlike the new method. This leads to
gradual error accumulation for large number of integration steps. In this example, it
results in a non-physical unbounded growth of the angle « after removing the load.

Introduction of the artificial viscosity can suppress the high frequency oscillations
in both methods but the problem of slow drift of Sy or oy when using the classical
method can still appear.

Stability of the new method with respect to “swelling” of the mesh is a useful
property. This method was used to solve a number of practical problems in [5, 15,
16]. In particular, we have simulated a multi-steps flanging process based on the idea
of redistributing plastic strains around a larger area at each step, delivering additional
metal into the bending zone and creating an additional axial compression.

The results of numerical simulations of a three-step flanging process is shown in
Fig. 9. More details are given in the works cited above. Let us emphasize that we
need to model here not only the stages a — b, c — d and e — f but also the stages
b — c and d — e when the load is removed and the deformed solid takes a new
shape (Fig. 9).
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Fig. 9 Distribution of plastic strains in a three-step flanging process
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Fig. 10 Schematic representation of the multi-yield surfaces model

4.4 A Multi-yield Surfaces Model

The multi-yield surfaces generalization of the model (8) can be presented in the
following form
E(S_al)EKl’ l=177[’ (62)

where «; are the back stress tensors [21, 24]. A multi-yield surface model is used in
particular for simulation of cyclic plasticity. Many aspects of cyclic plasticity can be
obtained using the evolutive Masing model [13].

In our case, we have to deal with a variable initial configuration. We can assume
that the real structure of the solid body is not uniform. For example, we can consider
a polycrystal structure with different sizes and properties of individual crystals. Sup-
pose that each component behaves according to the perfectly elastic-plastic model,
however, plastic (irreversible) deformation of different components of the structure
can start at different levels of the strain gg;.

Let us first discuss the following generalization of the model example described in
a Sect. 3.1. The structure consists of I perfectly elastic-plastic sub-springs (Fig. 10b)
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loaded in parallel (Fig. 10a) and having individual values of &g;. This is so called
Masing model [13]. Assume that g1 < &5 < -+ < &7.

Let us apply an external tensile load to this structure. If the total deformation of the
system ¢ is less than g1, then it behaves as a single spring. The sub-springs are loaded
in parallel. If we remove the external load, the system will return back to its initial
configuration. If ¢ exceeded &1, then the first sub-spring turns to the plastic flow,
while the others are still in the elastic stage. The stress-strain dependence becomes
different. After that the next sub-spring turns to the plastic flow, and so on until all
the sub-springs will switch to the plastic regime and the external load will become
constant.

As aresult, we obtain the stress-strain curve schematically presented in Fig. 10c.
At this stage, if we relieve the external load, the system will not return to the initial
length of any sub-spring X;, but will stay somewhere in between. The residual stresses
will stay inside the sub-springs with no external load applied. These residual stresses
can be defined as a superposition of those for the sub-springs. Such process can
be simulated in the framework of the described model using specifically the initial
configuration of the solid body.

Thus, we can replace (14) by the following relation:

I I
a:Zy,m:EZyi<%—l>. (63)
i=1 i=1 !

Here the total stress o is the sum of the stresses o; of i sub-springs, y; is the input
of the given sub-spring, Z,I: 1 ¥i = 1. We assume, for simplicity, that all sub-springs
have the same elastic modulus E.

We note that all X; are the same at = 0. Gradually they become different from
each other when they are involved in plastic flow. Instead of the single condition
(16), we have the system of conditions:

2
(i—1> <ed, i=12...1L (64)

The algorithm in this case is a direct generalization of the algorithm described above.
At each time step we use Eqs. (18)—(20) for all the sub-springs.

Letus use a similar approach for a continuous model. We can now rewrite Eqs. (56)
for the one-yield surface case as
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[T — h(Bl,) < k2
S R S S L
aGi +(1-a)G* , at — L(Bjp) > k;

xn+1
B/"' =RL, -G - Rumn

1
1
Sn+1 =pu Z le:’l5r
i=1

a,n+l — Ipn+l + Sn+l

where B; = R,{ . GIX - Ry. At the initial moment of time, we have to calculate the
set of tensors GZX (i =1,...,1I) for each mesh element. Then at any time step, we
have to check the i-th yield condition and, if necessary, to correct the corresponding
tensor GX.

A test simulation for the same cylinder under the axial load for the 2-yield surfaces
model is shown in Fig. 11. Here ¢ = 0.01, &5 = 0.02, and y; = y» = 1/2. The ab

Fig. 11 One cycle for 2-yield surfaces model
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Fig. 12 2-yield surfaces model with various parameters: 1—eg1 = 0.015, g50 = 0.02, y; = 2 =
1/2;2—e51 = 0.01,650 =0.02, 91 = E/3, 92 =2/3;3—e51 =0.0l, 650 =0.02, 1 =2 = 1/2;
4—e51 = 0.01, 850 = 0.02, y1 = 1/3, y» = 2/3; 5—e51 = 0.005, 50 = 0.02, y; =y = 1/2

part of the curve corresponds to the elastic region, where both components are elastic.
For this region €, = ¢&;,. In the interval bc the first component is in the plastic regime,
the second one is in elastic regime and we obtain the hardening of the material. For
this range &, = &5,. In cd, both components are involved in the plastic flow. In de,
both components are elastic and unloading of the material takes place. As follows
from the Fig. 11, |oy4| > |o.|, and ¢4 — €, = 2¢;, which represents the Bauschinger
effect.

We vary the parameters for the 2-yield surfaces model (Fig. 12). The curve 3 here
corresponds to the same parameters as in Fig. 11. All the other curves are obtained
for different values of the parameters. The general trend of these curves is the same
as in Fig. 11. We can see that it is possible to change the curves in a wide range
varying the parameters of the model.

It is clear that the 2-yield surfaces model is rather rough and it does not give
a smooth stress-strain graph. For practical cases, the simulation can be performed
using a larger number of layers.

The results of the simulations for a 5-yield surface model with g5 = 0.01, &5, =
0.02, &3 = 0.03, g4 = 0.04, &5 =0.05, and y; = --- = y5 = 1/5 are shown in
Fig. 13. The segment ab is an elastic part for all the components. The segments
bc, cd, de, ef , fg correspond to the case where the components reach their critical
conditions one after another and enter the regime of plastic flow. The hardening part
of the curve bedef is more smooth than the same one in Fig. 11.
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Fig. 13 One cycle for 5-yield surfaces model

4.5 Calculation of Residual Stresses

During the stamping operations of metal parts, non-uniform distributions of stresses
and strains take place. As aresult, the residual stresses are generated after the removal
of external loads and relaxation of residual vibrations. The calculation of residual
stresses and of final position of the solid body has very important practical applica-
tions, in particular, for prediction and correction of springback of sheet metal parts
after stamping operations.

In order to solve this problem, it is necessary to simulate the whole process of
deformation, the unloading process with decreasing residual vibrations. Residual
stresses and the final positions of the nodes of the mesh will represent the solution
of this important problem.

In general, both Wilkins method and the new algorithm described above allow us
to determine the residual stresses. However, there is an important point of difference.
We recall that while using the Wilkins method we calculate the increments of p and
S from Eqgs. (6) and (7) at every integration step. Then we calculate the new values
of p"*! and S"*! as a sum of old values p” and S” and their increments.

The accuracy of calculation of increments of p and S is of the order O(Ar). This
means that the final error of calculations of o accumulated in the elements of the
mesh to the moment when the elastic vibrations and residual stresses relax depends
both on Az and on the number of iterations.

In the new algorithm, the calculation of the stress tensor at any element of the
mesh depends on the difference between the actual and the initial configurations.
This is an essential difference of the suggested algorithm and the Wilkins method.
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Let us consider the following example. We simulate the final stage of relaxation
of elastic vibrations. The initial configuration of each element does not change any
more. Each element taken independently would converge to it. However, taken all
together they cannot do it because of the mutual interaction. Due to the fact that
the initial configuration of every element is stabilized, the final error of calculations
does not depend neither on At nor on the number of iterations, no matter how large
this number can be. On the contrary, in the Wilkins method we are accumulating the
increments of the stress tensor and there is no “starting point”. Hence the error grows
even during elastic vibrations together with the number of integrations steps.

Earlier we discussed the calculation of residual stresses at different points of a
solid subjected to non-uniform plastic deformation. Applying the new algorithm and
using its multi-yield surface version, we can calculate the stresses in each structural
component separately. They can differ from each other even if the body is deformed
uniformly.

As was discussed in Sect. 4.2, total stress tensor consist of its components

I
o= voi (66)
i=1
where
o; =Ip,<+S,~. 67)

Let us return back to the simulation of the loading of the cylinder using a
multi-yield surfaces model. During its cyclic loading (Fig. 13), the total stress o,
equals to zero at points a and p. However, its components o,,; are not equal to
zero there because different components of the material experience different irre-

versible deformations and will have different initial configurations GX. We recall
that yy = --- = y5 = 1/5 here.

Figure 14 shows the part of the curve from Fig. 13 until the point where the total
stress oy, is equal to zero. This simulation is carried out assuming that all p; in
Eq. (67) are equal to the total pressure p (model 1). Because of this, the value of o,
continues to grow to a certain extent after the beginning of plastic flow in the 1st
component. On the contrary, the values of o,,s are less than in the case where the
material 5 deforms independently.

In Fig. 15 similar results are shown for the case

o= kB =3 68)
2
(model 2). It can be obtained from (4) and (26) under a certain approximation. The
components oy,; correspond better here to the ideal elastic-plastic model than in
Fig. 14 since the interconnection through p; is weaker than in model 1.
The results of calculations of o, ,; for both models are shown in the table below,
where the stresses are given at the intersections of the cyclic curve with the axis ¢.
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Model 1 Model 2 Model 1 Model 2
€ 0.0267 0.0272 —0.0292 —0.028
%oxxl —0.0997 —0.17 0.096 0.233
%axxz —-0.127 —0.216 0.127 0.289
%axx3 —0.0264 —0.0456 0.0261 0.0715
%axﬂ 0.0749 0.13 —0.0756 —0.152
%Uxxs 0.176 0.301 —0.178 —0.447
3

. T, GPa

|

150,05

15,4
1505,
| 1I5e5,,;
U505, 4
0a 0.01 0.02 0.03 0.04 0.05 g 006
A
Fig. 14 The values of the total stress oy and of its components oyy; (model 1)
3
2 1
4 1
115075
115014
150,

150,
1150,

Fig. 15 The values of the total stress oy, and of its components o,; (model 2)
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Fig. 16 Variation of plastic deformations for selected components of &

We can see for example from the first column that the components of the stress
are different from zero while the total stress o, equals zero. While the first three
components of the tensor pull the material in one direction, the the last two pull it in
the other direction. This cannot be distinguished at the level of the whole structure.
Even though the local values of the components of the stress tensor vary from one
model to another, the total stress oy, remains practically the same.

Figure 16 shows a plastic deformation of the same cylinder in the case of 5
level model. The components ¢,; are computed by Egs. (59) and (60). Obviously,
the first component accumulates the largest value of plastic deformation while the
last component accumulates the smallest value. Precise calculation of ¢,; for each
component can help to predict the fracture of the material in some manufacturing
processes such as stamping.

5 Conclusions

In conclusion we can say that the difference of the approach developed in this work
in comparison with the classic approach is that instead of changing the stress tensor
we change the tensor GX in the mesh elements. It corresponds to the change of the
internal structure of the solid. The corresponding algorithm is illustrated for the von
Mises yield criterion.

This algorithm allows us to adopt an alternative point of view on plastic flow
simulations. We switch the emphasis from correction of the stress tensor to correction
of the initial configuration of the solid body. In this case, the stress tensor is corrected
automatically.
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As far as it concerns the elastic part of deformation, we do not need to carry out
the correction related to the stress rotation (see (7)).

The difference in the physical interpretation between the approach developed in
this work and the classical algorithm is that the latter does not allow the stress tensor
to exceed the yield condition. In the method introduced here, we irreversibly change
the initial configuration of the solid body. As a result, the stress tensor is reduced
to the required limit. Thus, we deal with the reason of plasticity and not with its
consequences.

While changing the initial configuration, we can automatically get the plastic
(irreversible) deformation at any time step.

A multi-yield surfaces model is developed as a natural generalization of the
algorithm. It allows the simulation of multi-cycle loading with hardening and with
Bauschinger effect.

The new algorithm allows us to calculate residual stresses in elastic-plastic solids
after removing the external load as a result of unloading after a non-uniform plastic
deformation.

Note that at the global level all steps are essentially elastic, since the preliminary
predictor step adjusts the initial condition, and records the plastic strain, such that
the current step ends on the yield surface. Due to this modification, the stiffness
matrix does not need to be updated. Also, there is no need to calculate algorithmic
or consistent tangent stiffness matrices. This is a one of computational benefit of this
algorithm which allows the reduction of computational efforts.

As itis shown above, the “initial configuration” is always known as a byproduct of
the algorithm so that the configuration after the removal of stamping loads is always
available.

Introduction of the “initial configuration” in the algorithm reduces accumulation
of error during stress integration in comparison with the classical Wilkins method.
The results obtained with the classical method show the effect of unlimited “swelling”
of the mesh. This effect can be suppressed by reducing the time integration step but
can not be eliminated completely. The process of relaxation of the solid after the
external load is removed can be sufficiently long. Therefore, the decrease of the time
step is strongly undesirable. The new method is stable with respect to the “swelling”
of the mesh, which is essential from the point of view of the CPU time.
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A Notation

An orthogonal basis for the 3D vector space is a set of orthogonal unit vectors €;
(i =1,2,3). We use here only fixed rectangular Cartesian coordinate system. The
scalar product of any two of these vectors is
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1, ifk =y,

ek.eS=6ks={0’ lfk#s,

where 8, is the Kronecker delta symbol. A vector (first-order tensor) a can be
decomposed in the introduced basis as

5 = akék.

The usual summation convention is assumed over the repeated indices.

The dyadic product of the base vectors is the tensor €,€. This tensor serves as
a base tensor for the representation of a second-order tensor A = Ay, €;€,. In par-
ticular, A - B = A;;€;€; - By,€,€, = A;; By,€;81€; = Ay By€;€, is the second-order
tensor, AB = A;; By,€;€;€,€, is the fourth-order tensor, a - A = a;€; - Ay,€;€; =
a,-AkS(S,-kés = akAksés is the vector, A --B = Aijéiéj . 'Bksékés = AijBks(Sjk(sis =
Ak By 1s the scalar.
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Modulation Instability of Flexural Waves | m)
in Cylindrical Shells: Modified Criterion oo

Andrey V. Bochkarev, Vladimir I. Erofeev and Alexander 1. Zemlyanukhin

Abstract On the basis of asymptotic analysis of the Kirchhoff-Love cylindrical
shell’s element motion equations in displacements a nonintegrable fourth-order
quasi-hyperbolic equation with cubic nonlinearity is derived. For the analysis of
axisymmetric propagation of small-amplitude flexural-longitudinal waves along the
shell, this equation is reduced to the generalized nonlinear Schrodinger equation. A
criterion for the modulation instability of the waves is obtained, which clarifies the
known Lighthill criterion.

1 Introduction

Nonlinear wave dynamics of thin-walled deformable systems is one of the rapidly
developing areas of mechanics. The corresponding mathematical models are often
based on the theory of thin shells [1, 2]. The greatest practical interest is the study of
the process of development of modulation instability of propagating wave packets.
The consequence of such instability is the possibility of formation and long-term
propagation of stable stationary pulses in the form of envelope solitons, the param-
eters of which are used in the problems of acoustic diagnostics and non-destructive
testing of materials.

The aim of this work is to study theoretically the possibility of the development of
modulation instability of axisymmetric flexural waves propagating along the cylin-
drical shell.

The achievement of this goal is provided by the solution of the problem of mod-
eling the propagation process of axisymmetric flexural waves packages along the
cylindrical shell, the derivation and qualitative analysis of the nonintegrated quasi-
hyperbolic equation.
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In the first section, on the basis of asymptotic analysis of the Kirchhoff—Love
shell’s element motion equations, the nonlinear quasi-hyperbolic equation is derived.
In the second section, this equation, using the correct asymptotic procedure, is trans-
formed into a generalized nonlinear Schrodinger equation (GNLSE) and the mod-
ulation instability of its solutions is analyzed. In the third section the results are
discussed.

2 Asymptotic Analysis of the Shell’s Element Motion
Equations

Consider the thin-walled circular infinite cylindrical shell of the Kirchhoff-Love
model, directing the x-axis along its centerline, the y-axis in the circumferential
direction, and the z-axis in the radial direction from the center. The longitudinal,
circumferential and radial displacement of the element of the shell’s middle surface
are designated as u, v and w, respectively.

The motion equations of the shell interacting with an external nonlinear elas-
tic medium in the axisymmetric case (under the condition that the circumferential
displacement v, the derivatives with respect to circumferential coordinate y and the
parameter k, of the curvature in the longitudinal direction are equal to zero) have the
form [1]:

v1-w
g E

2
Uxxy — W kny + ﬁkywxx T WxWyy — u; =0,

S

h 3 (w2 n? 2 1 2
I_(Wxxxx - E(waxx)xx) — Whkyuy + Ekyuxxx + kyW — 3K kywy— (D)

-2 k k
_<Wx<ux —Mkyw+%w)2€)) +% AWy + W — Tmw =0,
— X

where E is the Young’s modulus, . is the Poisson ratio, k, = 1/R is the curvature
parameter in the circumferential direction, R is the radius of curvature, y is the unit
weight of shell material, g is the acceleration of gravity, 4 is the shell thickness, the
subscripts ¢ and x represent the partial derivatives with respect to the corresponding
variables, kj 1 k, are the parameters of the nonlinear elastic medium surrounding the
shell (Fig. 1). Note that we consider the case of “soft” nonlinearity of the environment
(the last two terms of the second equation of the system (1) have opposite signs).

The Eqgs. (1) contain several additional terms. The terms underlined by a single
line arise when taking into account the variation of geometrical parameters on the
thickness of the shell, [3], as well as in structurally inhomogeneous shells [4].

The twice-underlined summand appears due to the use of a refined expression for
the curvature K, which holds the first two terms of the expansion in a series by w:

K — Wiy N | 3,
T aewpr T )
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Fig. 1 Geometry of the shell

middle surface

elastic medium

For geometrically nonlinear flexible shells, the squares of rotation angles asso-
ciated with the shell’s deflection have the same order as the linear deformations in
the material array [5], so that the second equation of the system (1) holds the triple
underlined summand which is usually discarded.

After transition to dimensionless variables U, W, X, T

h2 12
u=—U, w=hW, x=I1X, t=— 4
l h\ g

T 2)

) 618 = 1_27 (3)
Equation (1) will take the form

Uxx —qeUrr — %WX + 15 Wxxx + WyWxx =0,
S Wxxxx + leHW +qWrr —wUx + 5 Uxxx + 5Wi + 0 WWxx — q(UxWx)x—
2
—%W3 — JWiWyxx — LH(WFWxx)xx = 0.
“)
For further asymptotic simplification of the system (4) we will use the approach

proposed in [6, 7]. Using the fact that the linear part of the system (4) has solutions
in the form of plane harmonic waves
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U = Uy expli(QT — kX)] + Uy exp[—i(QT — kX)],
W = Woexpli(QT — kX)] + Wy exp[—i(QT — kX)], 5)

where the upper dash denotes complex conjugation, to determine the amplitudes Uy,
Wy we have a homogeneous system of equations

12q(ge Q* — kM Uy + ik(k*ge + 12) Wy = 0,
ikq(k*qe + 120Uy + [k*q? — 12¢%Q% + 12(k; + 1)]W, = 0,
a non-trivial solution of which

kg — 124292 + 120k, + 1)
kq(k2qe + 12)

Up=1i Wo, (6)

exists if the dispersion relation is satisfied:

14443 Q* — 12q[k*q%e + 12k%q + 12e(k, + D] +
+ k%212 — %) + 144k%(ky + 1 — p2) — 24k*qpe = 0. (7)
The solution of Eq. (7) with respect to ©? has two branches, high-frequency and
low-frequency ones. In this paper we will consider the low-frequency branch.

Asymptotic simplification of the function (k) and expression (6) at k = O(1),
carried out under the assumption

1 1 1 1

- -, ——<et<— 8
5 =% =3 500 =° T 100 ®
leads to approximate equations:
k1 +1— LLZ 1 v
QP ———+ —k* Uymi—W,. 9
7 B o i Mo (€))

The revealed relationship between the amplitudes of longitudinal and transverse
displacements (9) allows us to record the relationship between the displacements
themselves in the form

w1y, (10)
W

Under the condition kg > p we have |Uy| < |Wpy|, that corresponds to predom-
inantly transverse (flexural-longitudinal) wave. Excluding with (10) the derivatives
of the function U included in Eq. (4) for the transverse displacement W, we obtain

1 3
—Wxxxx +c W+ Wrr — Wi — EW)% Wyxx +c3Wxx — ca(WiWxx)xx — csW? =0,

12
Y
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where T and X are dimensionless time and axial coordinates and coefficients

ki+1—p? W = qge ks
=—>5——, =", =1, G4=-, 5=, (12)
q 2q 129 8 q
contain the physical and geometrical parameters of the shell, as well as the small
parameter € = h/R, the ratio of the shell thickness to its radius.

3 Modulational Instability of Axisymmetric Flexural Waves

The construction of exact solutions for Eq. (11) is difficult, so we carry out its further
asymptotic simplification. It is known from the analysis of problems of nonlinear
acoustics that in media with cubic nonlinearity the effect of self-action of a wave
prevails over the effect of generation of higher harmonics. In this case, the solution
is found in the form of a traveling modulated wave with a slowly varying small
amplitude, resulting in the nonlinear Schrodinger equation (NLSE).

In the article [8] the Eq. (11) was transformed to the NLSE

iAc+pAg +NAPA =0, (13)

in which the complex amplitude A is a function of slow time Tt = a7 and slow
coordinate { = a(X — v, T);  is the small parameter, v, is the group velocity. It is
shown [8], that when the approximate inequality

1
ky > §k4q2 (14)

is fulfilled, the transverse axisymmetric wave is subject to modulation instability:
small harmonic perturbations of its amplitude grow indefinitely over time [9].

The inequality (14) is obtained using the well-known Lighthill criterion, which
for NLSE in the form (13) has the form

ph > 0. 5)

The analysis shows [8], that the inequality p > 0 is satisfied for any k, while the
nonlinear term coefficient \ is positive for small k and negative for large k. Therefore,
the upper limit kmax of the modulation instability zone is in the region of \-values
closing to zero. In this area, the correct description of the propagation of weakly
modulated nonlinear waves requires the retention of higher order nonlinear terms,
that is, requires the transition from NLSE to generalized NLSE (GNLSE).

We will use the method of many scales to derive the GNLSE [10]. Suppose that
the function W depends on three variables: fast phase 6 = kX —w T, slow coordinate
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¢ =aXandslowtimet = aT,a << 1,so that the Eq. (11) is transformed by
substitutions of derivatives of the form

Wrr — 0L2WTT — 200 Wy + w2W99,
WX —> ng +a Wg,
Wyx — o> Weg + 2ka Wee + k> Weg, (16)

and so on. Taking into account that the transformed Eq. (11) contains both quadratic
and cubic nonlinearity, we will look for its solution in the form

W = a[A(E, 1)’ + AE, Ve 1+ a®[B(E, V¥’ + B(E, Ve 2% + C(E, D]+ 0(),
(17)

including the first and second harmonics, as well as the average displacement
described by the summand C(&, 1).

We call the equation obtained from (11) after substitutions (16) and (17) as the
equation for the amplitudes. In this equation, we collect the terms proportional to ¢’
and equating the multiplier at a! to zero, obtain the dispersion relation

1
w::l:‘/ﬁk4—C3k2+c1. (18)

Limiting further to positive values of w and k, for phase velocity v, and group
velocity v, we have

do (K —6cy)k

= 1
ok 6w (19)

w
U.f:;, Ug:

In the following orders of a we obtain

@?[i(Ar + v Ag)]
s[ 1 (K 6« 3.4 5= .
+a [%((7 - C3>AEE — A + (C4k - Ek +3C5>A A+ 4crk AB>:|+
4|tk 1 4ain T : 247 :
+o7| — _EAEEE — ca4k A(4AAE + AAE) +3k“AAA: + c2(2BAg — ABg + ACy) | |+
()
+0(@@) =0. (20)

Expressing the second-order derivative with respect to time A, = UEAEE + O(w)

from the a®>—order of (20), substitute it in o> —order. Then we express from the
o —order the value of

_ 1 3 _
E =(AB): = _W[wwkm&; + (C4k6 - Ek“ + 3cs>(A2A)g} +0(0), (21)

and find the parameter y in the identity
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AB. =vE+(1 —y)(AB): — BA; + O(«), (22)

in such a way that after substitution (22) in a*—order of the Eq. (20) the coefficient
at Agg: would be equal to —(1/6)i wii. Turning to superslow time 7; and the running
variable ¢:

T =1, {=§—,T, (23)

for the Eq. (20) we have

1 3 I
& (iAg + 2K A+ — (csk® — Zk* +3c5 | A2A + 2k AB ) |+
2 2w 2 ®

al [ ork : 27 : T key
+o |:1 <—TA;§C +d1AAA + dy A"Ag + d3 BA + dyAB + XACZ>1|+
+0(’) = 0. (24)

In the Eq. (24), we introduced short notations for derivatives wy; =
0%w/0k?, wux = 0°w/dk>; the coefficients dj, ..., d4 depend on the wave num-
ber k and the coefficients cy, ..., ¢5 are not given here because of the bulkiness.

To express in A(E, 1) the function B(&, T), which is included in the a*—order
of (24), we collect all the summands proportional to ¢ in the equation for the
amplitudes. After switching to the variables (23), taking into account the equalities
(18) and (19), we have

o?[ek* A% + (k* = 3c))B] + &*[2i(c2kAA + K B)| + O(@h) = 0. (25)

Higher orders in (25) are not needed because in (17) the function A is multiplied
by a, while the functions B u C are multiplied by o?.
We will look for a solution of (25) in the form

B = By(t, 1) +iaBi(t, 1) + O?). (26)

Substituting (26) in (25), neglecting the terms with the order above o and equating
the real part to zero, we find

By = __9k o 27)
k4 — 36‘1

Substituting (27) in the equation for the imaginary part, we have

2](6‘2(](4 +3cy)
By =" T A4, 28
! (k* =3¢z T ° (25)
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To express in A(E, 1) the function C(§, T), which is included in the B a’- order of
(24), let us collect in the equation for the amplitudes all the terms that do not contain
an exponential factor:

o*[—2c2k* AA + ¢;C1 + &P[2icrk(AA, + AA)] + O(a*) = 0, (29)

from where we obtain

2C2k - L= - 2
C = = [kAA — ai(AA, — AA)] + O(d?). (30)
cy

Substituting (27) and (28) in (26), and then substituting (26) and (30) in (24), we
obtain the GNLSE for the amplitude A(g, t) of the first harmonic (17):

iAg +p A+ NAPA+ip Age +i MA(AA) +i MAAA =0, @31

1 3
p:%, x—<C4k6—2k4+3C5—

4k4C% _ | Oookkk
B = 20 » P1=

k* — 3¢y 6

A= l2a[—clc4kl7 + (186‘16‘36‘4 + c%)kl5 — (]86%6‘4 + 126‘%6‘3 + 96‘16‘3)]{13—
- ((1086‘36‘4 — 18)c; — c% — 3C5>k“ —9c¢ (15(2%(24 +6c1c3 + 26‘3(66‘% — C5)>k9*
— ((108 — 162c3¢4)ct + 7263 + 18cs)k7 —9¢2 (24C%C4 +9¢1c3 + de3 (263 — 3C5))k5+
+2763(6¢3 +cs)k® — 162C?C3csk] /0,

N = —akei[12¢4k'0 — 9(1 + 20c3c4)k ™ + 18(9¢3 + 8cica)k 2+
+ 6(4c§ —27¢; — 3cs + 180c1C3C4)k10 - 3(4c1 (99¢1c4 +81c3) + 12¢3(4c% — 3C5)>k8+
+9¢ (45c1(3 — dc3eq) + 863 + 12C5)k° +162¢, (12C%C4 +9cic3 — dc3 (23 + C5))k4—
- 54c%(732c§ +3601 + 3cs)k2 +81c2cre51/ 0,

0 = V3k* = 12¢3k% + 12¢1) 21 (k* = 3c1). (32)

The Eq. (31) has various classes of exact solutions, in particular, a plane wave
A = Age!Kemem) (33)

with complex amplitude A( and frequency €2 that satisfies the nonlinear dispersion
relation

Q=(p—mK)K?> = (n —MK)AA. (34)
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Let’s investigate the stability of the solution (33) to small periodic perturbations.
To do this, following [11], we will look for a solution to GNLSE (31) in the form

A=(1+3-E)Ape' Ko™, 35)

where 8 is the small real parameter and £ = E(t, 1) is the complex amplitude of
the perturbation. Substituting (35) in (31) and linearizing with respect to E, we have

PE. +(p—301K)+ Eg +ip1 Ege + (N — sz)AoA_o(E + E)+
+iNAgA(E + E) +i(haAgAg — 2 p K +3p1 K*)E, = 0. (36)

We will look for a solution to the Eq. (36) in the form
E — Elel’(l{chT]) + E2€7i(KZ7WT1), (37)

where E1, E, are complex constants, k is the real wave number, w is the frequency
of perturbation, which can be complex. The substitution (37) in (36) leads us to the
system of homogeneous equations for E;, E;:

(@a—b—c)E;+(d —c)E;, =0,
d+c)Ei+(@+b+c)E, =0, (38)

where

a = |<3p1 + K[391K2 —2pK — (N + )\Z)AOA_O] +w,
b=rk*p—301K), c¢=(0nK —NAyAg, d=—Kkh AoA,. (39)

Taking into account that AoAg = |A0|2, all values contained in the right parts
of (39) are real, with the exception, maybe, of frequency w. If the right part of the
compatibility condition

a’® = b* +2bc + d* (40)

of the system (38) is negative, then the frequency w must be complex and the initial
perturbations can grow with time. The condition for the right part of (40) to be
negative after the substitution (39) takes the

2

K
2(p = 3p1 K)(n — MaK) > W(p —3p1K)* + |AgI*2T. (41)
0

When the inequality (41) is satisfied, GNLSE solution (33) is modulation unstable.
In addition to the coefficients of the Eq. (31), this inequality contains the amplitude
A and the wave number K of the equality (33) together with the wave number k of
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modulation perturbation (37). If we put p; = A; = X\, = 0, then the GNLSE (31) is
reduced to NLSE (13) and the inequality (41) under the additional condition k = 0
turns into the Lighthill criterion (15).

4 Discussion of the Results

Let’s take the following values of constant parameters as basic ones: a = 1/10,
ki =ky=1,pn=1/4,qg=1,¢ = 1/100. Figure 2 for the case Ay = 1, kK = 0 shows
the dependence of the difference between the left and right sides of the inequality
(41) u (15) on the wave number k. Areas of positive ordinate values correspond to the
modulation instability of the solution. Neglecting the narrow resonance region of the
first and second harmonics of the solution (17) in the neighborhood k,., & 1.55, it
can be argued that the upper limit kmax of the instability zone depends significantly
on K: for positive K the zone is narrowed, for negative K it is expanded.

Fig. 2 Differences between 057 (a)
left and right sides of

inequalities (41) (solid line)

and (15) (dashed line) at
aK=1landbK = -1 0

=051

051 (b)




Modulation Instability of Flexural Waves in Cylindrical ... 129
1 -

K 0351
0 T T T )
05 1 15 2
k
_D_S.

_1_

Fig. 3 Instability zone in the coordinates (k, K)

On the contour plot (Fig. 3) of the instability zone in the coordinates (k, K) it can
be seen that at negative K the lower limit ki, also shifts and in general with an
increase in | K | the width of the zone decreases.

The size of the instability zone is very sensitive to the value of the parameter k, of
the elastic medium surrounding the shell. In Fig. 4, you can see that with increasing
in k; the upper boundary of zone kmax tends to k,..; with reduction in k; the zone is
narrowed and when you reach k, = 0 the zone disappears. Thus, for a linear elastic
medium (k, = 0) and for a nonlinear elastic one with a nonlinearity of the “rigid”
type (k» < 0) modulation instability is not observed.

Figure 5 shows the dependence of the upper boundary kmax of the instability zone
on the amplitude A of the first harmonic: the zone narrows with A, decreasing.

5 Conclusions

The system of element motion equations of the Kirchhoff-Love cylindrical shell
interacting with a nonlinear elastic medium is reduced to single 4th-order nonlin-
ear quasi-hyperbolic equation. For the slowly varying amplitude of small flexural-
longitudinal axisymmetric waves, a generalized nonlinear Schrédinger equation is
obtained. The modified criterion of the modulation instability of such waves allowed
us to significantly clarify the size of the instability zone for different combinations
of the shell’s geometric and physical parameters. It is shown that the modulation
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Fig. 4 Difference between left and right sides of inequality (41) at k, = 2 (solid line), k& = 0
(dashed line) and k, = —1 (dotted line) whena K = land b K = —1

instability is absent both in the case of linear and in the case of a rigid nonlinear
elastic law of deformation of the medium surrounding the shell.
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Fig. 5 Dependence of kmax 147
on Agp at K = 1,k = 1 (solid
line) andat K = 1,k = 0.1
(dashed line)
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A. M. Bragov, L. A. Igumnov, A. Yu. Konstantinov, A. K. Lomunov
and A. I. Razov

The results of dynamic tests of the TiNi and CuAINi shape memory alloys are given.
Compressive and tensile tests of the TiNi alloy were carried out in the temperature
range of 20-300 °C. A significant change was revealed in the elastic modulus before
the dislocation plastic flow and the dislocation yield stress with a change in the test
temperature in the range of the reverse martensitic transformation.

For the CuAINi alloy, the effect of the strain rate on the phase yield stress and
on the phase and dislocation moduli of elasticity was insignificant. In this case the
value of the dislocation yield stress increases markedly with increase in the strain
rate. Using the CuAINi alloy as an example, the method for determining the duration
of the reverse martensitic transformation was implemented and the shape recovery
diagram during this transformation was constructed.

1 Introduction

Thanks to unique properties of shape memory alloys (SMA), namely high corrosion
resistance and strength, good strain recovery parameters, high recovery stresses,
excellent biocompatibility, high damping ability, they are successfully used in many
areas of engineering [1, 2], medicine [3-5], space technology [2, 6, 7]. Nonlinear
elastic properties of these alloys are used to create energy-absorbing devices for
seismic protection of buildings and structures [8—11] as well as for various drives
and converters [12, 13].
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Shape memory alloys belong to a group of materials that, due to phase trans-
formations, can recover their original shape when heated. Examples of such alloys
are Ag-Cd, Au-Cd, Cu-Al-Ni, Cu-Sn, Cu-Zn—(X), In-Ti, Ni—Al, Ni-Ti, Fe-Pt,
Mn—Cu, Fe-Mn-Si and others. The shape memory effect is due to their temperature-
dependent crystal structure. When the SMA is below phase transition temperatures it
has a crystallography with low yield stress. In this state the material may be deformed
into other shapes by relatively small force. A new form is maintained, provided that
the material remains below the temperature of reverse transformation. When heated
above this temperature, the material returns to its parent structure and recovers its
original shape.

Thus, in the typical operating temperature range SMAs have two phases with the
different crystal structure each, and therefore have different properties. One of them is
the high-temperature phase called austenite (A), and the other is the low-temperature
phase called martensite (M). Austenite (usually cubic) has a crystal structure differ-
ent from martensite (tetragonal, rhombic or monoclinic). Transformation from one
structure to another is not a diffusion of atoms, but a distortion of the crystal lattice.
Such a transformation is known as martensitic transformation. To initiate such trans-
formations in the material either the mechanical stress or the temperature change can
be used.

A set of martensitic variants can exist in two forms. The first is the twinned marten-
site (M) which is formed by a combination of “self-sufficient” martensitic variants.
The second is the deterministic or reoriented martensite, in which the characteristic
variant (M) prevails. The reversible phase transformation from austenite (parent
phase) to martensite and vice versa is the basis of the unique behavior of SMA. This
behavior is found at the temperature range of My—A; which are the temperatures of
the ends of the direct and reverse martensitic transformations respectively.

The transformation temperatures increase with increasing of the load magnitude,
regardless of loading type (tension or compression). When an uniaxial tensile load
is applied with the corresponding stress o, the new transformation temperatures are
represented as M, M, A% and AY for the martensitic finish, martensitic start,
austenitic start and austenitic finish temperatures, respectively.

If the material temperature is slightly higher than Ay then, after loading the mate-
rial, accompanied by direct martensitic transformation, the complete recovery of the
shape occurs due to reverse martensitic transformation during unloading. This mate-
rial behavior is called the superelastic effect. The associated change in macroscopic
shape due to the applied load is reflected in the resulting stress-strain curve as shown
schematically in Fig. 1. The stresses, at which the initiation and the completion of the
direct martensitic transformation during loading occur, are marked as ¢™* and o™
respectively. Similarly, when the SMA is unloading, the stresses at which the reverse
transformation into austenite is initiated and completed are marked, respectively, as
o™ and o*. If the material in the austenitic phase is tested above the M temperature
but below the Ay temperature, only a partial recovery of the shape is observed.

Now there are the papers on study of structural features, martensitic transfor-
mations [14—16], mechanical properties [17-22] and behavior modeling of SMA
[23-25]. However, as noted in [20], the description of the mechanical behavior of



Dynamic Research of Shape Memory Alloys 135

Detwinned Martensite

)
"
7]
£ o
n Ms

Mf

As

Austenite

Strain, ¢

Fig. 1 Schematic superelastic o—¢ diagram

SMA in a wide range of strain rates requires the knowledge of empirical dependencies
of the deformation characteristics on loading parameters.

One of the most common alloys with shape memory is titanium nickelide (TiNi)
which has wide application in various fields from medicine to space technology.
However many applications require the characteristics titanium nickelide does not
hase. For example, the narrow hysteresis which allows deformation under almost
constant stress, or a perfect shape memory at high temperatures are required. In this
regard, it is of interest to consider copper-based alloys which both have the above
functional properties and also are less expensive.

An important feature of SMA is the possibility to generate the recovery stresses
(the ability to develop stresses under constrained strain conditions, due to the shape
memory effect during heating of predeformed specimens). This process is widely
used in various mechanical couplings and control devices, so the study of its response
time to high-strain-rate loading is very important.

In this paper the results of our study on the behavior of TiNi alloy during high-
strain-rate deformation in the temperature range of the reversible martensitic trans-
formation and the deformation diagrams of CuAINi alloy at the strain rates of 2000
and 6000 s~! are represented. In addition, for the CuAINi alloy the time of the
reverse martensitic transformation is estimated and the shape recovery diagram is
constructed.
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2 Specimens for Testing

For compression tests of the TiNi alloy the specimens in the form of short cylinders
with 8 mm in diameter and 4 mm in height were used. For high-strain-rate tension
the cylindrical specimens were used with threaded heads with the diameter and the
length of the working part of 5 mm and 10 mm respectively. All specimens were made
of hot-rolled TiNi-alloy bars. To reduce residual stresses and create an equilibrium
structure the specimens were annealed at 500 °C for 1 h and then cooled in a furnace.

The temperatures of the direct and reverse martensitic transformations of the
alloy were determined in the Mettler Toledo 822e differential scanning calorimeter
(DSC). The rate of cooling and heating of the samples in the calorimeter was 10 °/min.
The results of determining the temperatures of martensitic transformations by the
DSC method are presented in Fig. 2. As can be seen, after aging at 500 °C for 1 h
and subsequent cooling in the furnace the alloy had the following temperatures of
reversible martensitic transformation M = 74 °C, My = 32 °C, A, =74 °C, Ay =
98 °C.

These features of the structural-phase state of the alloy after aging should have
affected its mechanical behavior under quasistatic and high-strain-rate tension. To
separate the contributions of the structure and high strain rate into mechanical behav-
ior of the alloy we conducted quasistatic tension of the specimens at the strain rate of
1073 s~!, which was most often used to study the mechanical behavior of quenched
single-phase TiNi alloys under quasistatic tension.

Figure 3a shows the typical diagrams of quasistatic tension of the TiNi alloy
specimens at the temperatures of 20 and 130 °C. The choice of these diagrams

H, mW
T

M,=74°C
M= 32°C

40 80 120 160
T.°C

Fig. 2 Temperature dependence of heat release and heat absorption of TiNi alloy after aging at
500 °C for 1 h and cooling in a furnace
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Fig. 3 Typical diagrams of quasistatic a and dynamic b TiNi alloy loading in martensitic (at 20 °C)
and in austenitic (at 130 °C) states

is due to the fact that, according to the characteristic temperatures of martensitic
transformations, the specimens at these test temperatures were in the martensitic
and austenitic states, respectively. A distinctive feature of these diagrams from the
well-known TiNi binary alloys diagrams is the absence of the stress peak usually
observed at the beginning of the second stage of quasistatic tension and associated
with the formation, growth and fusion of localized deformation zones. If we turn to
the deformation diagrams under high-strain-rate loading at the same temperatures,
which are shown in Fig. 3b, in this case the stress peak is clearly visible. The diagrams
highlight three stages of deformation (I, II, and III), the choice of which is also based
on the different nature of the stress change.

In addition, the specimens of the CuAlINi alloy in the martensitic state (p =
7.2 g/cm3, E = 65 GPa, o, = 50 MPa, T),, = 1500 °C) in the form of tablets with
6 mm in diameter and 3 mm in height were made to study them under compression.

3 Methods of Testing

The dynamic tests of TiNi and CuAINi alloys at the strain rate of (1-6) x 10° s~!
were carried out on the installations that implement the split Hopkinson pressure
bar method [26] with measuring bars of 10 mm in diameter (compression) and
20 mm (compression and tension). The tensile tests were carried out according to
the Nicholas scheme [27, 28].

To provide the required test temperature, the coaxial electric heater was used which
was placed at the ends of the measuring bars and the specimen between them. The
specimen temperature was measured by a miniature thermocouple. When testing the
TiNi alloy, the test temperatures near the temperatures of martensitic transformations
were achieved by two ways. In the first, the specimens were heated to the selected
temperature from room temperature. In the second, the specimens were preheated
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Fig. 4 The scheme of the experiment to determine the time of the reverse martensitic transformation
(a) and pulses recorded in the measuring bars (b)

to 180 °C to convert them into the austenitic state, and then they were cooled to the
required test temperature. This made it possible to change the phase composition at
the same temperature within the interval of reversible martensitic transformations and
to compare the mechanical response of the alloy to high-strain-rate and quasistatic
tension, depending on its phase state.

The quasistatic tension of TiNi specimens at the strain rate of 1073 s~ under
the same temperatures was carried out in the Lloyd 30 K Plus universal mechanical
testing machine equipped with a heat chamber. The residual strain was 12-25%.

To determine the time of duration of the reverse martensitic transformation and
to plot the o-¢ curve in the process of shape superelastic recovering, a preformed
specimen of CuAINi alloy was placed between the measuring bars and heated in the
temperature range of the reverse martensitic transformation. During the heat-induced
transformation, the specimen recovered its shape rapidly. This process was accompa-
nied by pulsed loading of the measuring bars ends in contact with the specimen. As a
result, the elastic deformation waves in the bars were recorded by strain gauges. The
scheme of the specimen layout as well as pulses registration are shown in Fig. 4a.
Figure 4b shows the recorded strain pulses in the measuring bars.

The proposed method allowed us to estimate the duration of the process of recov-
ering the original (parent) shape during heating.

4 Results of TiNi Alloy Testing

Before testing the alloy was in the martensitic state.

Tests at elevated temperatures were carried out as follows. The specimen was
placed between the end faces of measuring bars, then heated to a temperature of
+180 °C and then cooled to the required test temperatures (+137, +117, +87 °C).
After that the specimen was subjected to high-strain-rate deformation. In addition,
the tests were performed when the specimen was heated to +300 °C. The selected
test temperatures correspond to the dilatogram points of this alloy (Fig. 5).
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Figure 6 shows the deformation curves of the TiNi alloy under compression at
a strain rate of 2000 s~!, obtained under various temperature conditions. The effect
of the test temperature and of the way of the test temperature achievement on the
phase yield stress, phase modulus and phase hardening modulus is insignificant. An
increase in the test temperature leads to significant decreases in the dislocation yield
stress and in dislocation modulus of elasticity. At the temperature of +300 °C there

is no phase transition.

Figure 7 shows the deformation curves of TiNi alloy under compression and

tension at the strain rates of 2500 and 1000 s~! respectively.
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Fig. 7 TiNi alloy deformation diagrams under compression and tension

To analyze the effect of the phase composition on the mechanical behavior of TiNi
quasistatic and high-strain-rate tension of the alloy were carried out at the tempera-
tures of 60, 77, 87 and 100 °C. To reach these test temperature two ways were used.
In one case the specimens were heated from the room temperature (martensitic state)
to the temperature at which the test deformation was performed. In the other case the
material was heated to 180 °C to transform it completely into the austenitic state, and
then the specimen was cooled to the specified temperatures at which the deformation
was performed. This approach is due to the fact that at the same temperature the alloy
could be in the martensitic, austenitic or in the mixed state with a different content
of the martensitic and austenitic phases depending on how the test temperature was
reached. The phase composition of the alloy at these temperatures can be estimated
as follows. At 60 °C in the first case (when the specimen was heated from room
temperature) the alloy was in a stable martensitic state, in the second case (preheat-
ing to 180 °C and then cooling) the alloy contained the austenitic and martensitic
phases in approximately equal proportions. At 77 °C in the first case the alloy was in
martensitic state with small amount of austenite, while in the second case it was in
austenitic premartensitic state probably with small amount of martensite. At 87 °C in
the first case the alloy contained martensitic and austenitic phases in approximately
equal proportions, while in the second case it was in the austenitic premartensitic
state. At 100 °C in the first case the alloy was in austenitic state with small proportion
of martensite, while in the second case it was in austenitic premartensitic state.

Figure 8 shows the quasistatic and dynamic stress-strain diagrams of the alloy
with different ways to achieve the temperature at which the loading was performed,
namely the heating from the room temperature to the test temperature or the cooling
from 180 °C to the test temperature. These diagrams show that the lengths of first
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stages on the curves of quasi-static tension of martensite were determined by the
transformations that took place under stress.

It is revealed that the phase and dislocation yield stresses behave differently when
the test temperature increases, but they have approximately the same values at the
room temperature. The phase yield stress continuously increases in the dynamic
case, and in the quasi-static case it firstly decreases to a certain minimum and only
then begins to increase. This means that the processes of twinning, detwinning and
reorientation of the martensitic phase are very sensitive to the loading rate. And the
value of the phase yield stress at high-strain-rate loading is always higher than that
at quasistatic loading.

The high tensile rate has influence on the dependence of the phase yield stress
on the test temperature, both for martensite and for austenite, and specifies at what
temperature the dislocation mechanism of deformation begins to act.

S Results of CuAlNi Alloy Testing

The tests of the CuAINi alloy in the martensitic state under compression at room
temperature were carried out using an installation with measuring bars of 10 mm in
diameter. Because the phase transformation temperatures for this alloy were about
+150 °C, the specimens during loading received the residual strain of 8% (at strain rate
of 5 x 10% s7) to 10% (at strain rate of 9 x 103 s~!). The phase transformation in this
case occurred under the applied stress. The above-mentioned increased residual strain
was associated with plastic deformation of the material after phase transformation.
Repeated loading of such specimen did not reveal a noticeable residual strain after
loading. Annealing at a temperature of +170 °C caused complete recovering of
the original specimen shape. Double reloading of the annealed specimen showed a
similar character of deformation. Figure 9 shows typical o-¢ curves (solid lines) and
the corresponding dependences of the change in strain rate (dashed lines in the lower
part of the figure), where 1 is the Ist cycle, initial state of the specimen; 2 is the 2nd
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Table 1 Mechanical characteristics of the CuAINi alloy

No Striker Residual | Load Module Unloading | Conventional yield
velocity, strain, % branch of branch stress, MPa
m/s module, hardening | module,
MPa site, MPa | MPa
1 24.6 8.4 5123 404 48,545 124.8
2 25.0 0.4 28,468 4842 55,221 1012.4
3 25.8 8.4 4436 311 49,225 122.6
4 25.8 0.4 29144 3497 43,560 1041.0

cycle, initial state; 3 is the Ist cycle, the specimen after annealing; 4 is the 2nd cycle,
after annealing.

The residual strain of the specimens after testing was 8.4% for the specimens in
the initial state and after annealing, as well as 0.4% for the specimens after their
preliminary elastoplastic deformation in the initial state and after annealing.

On the basis of the obtained stress-strain curves the elastic moduli in the parts of
active loading and unloading and the hardening modulus, as well as the conventional
yield stress were determined (see Table 1).

Because there is practically no a section of ideal yield of 8-9% on the repeated
loading diagrams (curves 2 and 4), unlike the first cycles (curves 1 and 3), the
maximum achieved stress in the specimen is accepted as the conventional yield
stress for curves 2 and 4.

Under other loading modes (according to the strain rate) the similar results were
obtained. The obtained o-¢ curves and corresponding dependences of the change in
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the strain rate of CuAlINi alloy in the initial (martensitic) state and after annealing of
deformed specimens are shown in Fig. 10.

To determine the duration of the reverse martensitic transformation and to plot
the diagram o—¢ in the process of unloading and shape recovering, a predeformed
specimen of the CuAlNi alloy was placed between the measuring bars and then
heated in the temperature range of reverse martensitic transformation (Fig. 4a). When
constructing the recovery diagram (the lower curve in Fig. 11), displacements and
forces on the two ends of the specimen were determined on the basis of the strain
pulses €;(¢) (i = 1, 2) in the measuring bars (Fig. 4b).

u;(t) = C/S,'dl‘,
0
Pi(t) = EA (1),

where ¢, E and A are the sound speed, the modulus of elasticity and the cross-sectional
area of the measuring bars, respectively. Then, using the Kolsky formulas [27], the
engineering stress and strain of the specimen were calculated as shown below

P P+ P
ou(t) = 5 = 2
A3 243
us(t) — uy (1)
en(t) = L
0

where A$ and Ly are the initial area and the length of the specimen, respectively.
Figure 11 shows the change in stress and in strain of the specimen in time
(Fig. 11a), and the diagram of the shape recovery when the specimen was heated
(lower curve) after active loading (upper curve) (Fig. 11b). It is clearly seen that
the deformation in martensitic state under applied dynamic stress takes about 20 s
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in a time, whereas the reverse martensitic transformation (martensite — austenite)
(recovery of the shape) with slow heating of the specimen occurs quickly taking
about 220 s.

6 Conclusion

Using the Kolsky technique, we obtained the diagrams of deformation of TiNi alloys
with the shape memory effect in the temperature range of the reverse martensitic
transformation, as well as that of CuAINi alloy at room temperature. Using the
CuAlNi alloy as an example, we developed a method for determining the duration of
the reverse martensitic transformation and constructed a diagram of the alloy shape
recovery.
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Methods of Finding of Exact Analytical )
Solutions of Nonautonomous Nonlinear oo
Klein-Fock-Gordon Equation

A. N. Bulygin and Yu. V. Pavlov

Abstract Methods of finding of exact analytical solutions of nonautonomous non-
linear Klein-Fock-Gordon (NKFG) equation are presented. They are based on the
principles of construction of functionally invariant solutions of the wave equation.
Solutions are sought as a composite function. The argument of the composite func-
tion (ansatz) is solution of the special equation. The choice of ansatz defines a type
of the solution. Examples of exact analytical solutions of NKFG equation are given.

1 Introduction

The NKFG equation
Uy
Ui+ Uy, + U, — 7= FU) (1)

plays a fundamental role in the theoretical and applied physics, mechanics and biol-
ogy. Here the lower index designates a partial derivative in respect to the corre-
sponding variable, and F'(U) is an arbitrary function. The most extensively studied
are cases with F(U) = exp U, sin U, sinh U [1, 2]. These equations are used in
the field theory and they are modeling various physical phenomena. However, usu-
ally it is supposed that media and external influences are uniform. More adequately
physical processes are described by the nonautonomous NKFG equation

U
Ue + Uyy + Uy, — v—;’ = p(x,y,2,1) F(U). 2)

Here p(x, y, z, t) is some function characterizing properties of the medium or the
external influences. Practically analytical methods of solution of the Eq. (2) are absent
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in the literature. The qualitative analysis of solutions of the Eq. (2) is made and its
numerical solutions are provided [3-5]. In the theory of linear waves the function
p(x, v, z, t) can describe concentrated or distributed inhomogeneities of the contin-
uous medium which cause localization of elastic waves [6—8]. Below are presented
proposed methods of finding of nonautonomous NKFG equation exact analytical
solutions based on the ideas and methods of finding of functionally invariant solu-
tions of the wave equation.

The idea of the existence of functionally invariant solutions was suggested by
Jacobi [9]. Forsyth [10] found functionally invariant solutions of the Laplace equa-
tion, wave equation, and of the Helmholtz equation. In studying of electromagnetic
waves, Bateman [11] fundamentally and consistently developed the Jacobi idea as
applied to the wave equation. Sobolev and Smirnov [12-15] successfully used the
method to construct functionally invariant solutions to solve problems of diffraction
and sound wave propagation in uniform and layered solid media. Erugin [16] made
a significant contribution to developing the theory of this method. Functionally-
invariant solutions of both autonomous and nonautonomous NKFG equation partic-
ularly sine-Gordon equation were obtained by authors in [17-21].

2 Methods of Obtaining of Analytical Solutions of
Nonautonomous Klein-Fock-Gordon Equation

We will seek solutions of nonautonomous NKFG Eq. (2) in the form of composite
function U = f(W). Then Eq. (2) is as follows

w? W,
1’ [Wf + Wy + W — U—;} + f [WM + Wy + W, — v—;’} =p FLf(W)].
3)

Here and elsewhere prime denotes ordinary derivative with respect to the argument.
Three obvious propositions could be made on the basis of (3).

Proposition 1 If function W satisfies to equations

W2 W,
WEAWI W2 = =5 =0, Wet Wy + Wee = — = p(x, 3,20, (4

then solution of Eq.(2) is given by inversion of the integral

af
/Ff) = W(x, y, 2, t). (5)

Proposition 2 [f function W satisfies to equations

w? W
Wf + W)% + Wf - v—t =p(x,y,2,1), Wy + Wy + W, — v_;f

L= =0, (6
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then solution of Eq. (2) is given by inversion of the integral

df
vE+V

Here F(U) = V'(U) and E is constant of integration.

= £V2W(x, y,z,1). (N

Proposition 3 If function W satisfies to equations
W2
W+ W, + W, — —& = p(x,y.z.)P(W), ®
Wee + Wy + Woe — —5 = plx, y, 2, ) Q(W),
v

then (W) will be the solution of the second order ordinary nonlinear differential
equation

PW)f"+ QW) f = F(f). )
Here P(W) and Q (W) are arbitrary functions.

In general case, i.e. for arbitrary functions P(W), Q(W) and F (f), solutions of
the Eq. (9) are not obtained. Its exact analytical solution can be found if functions of
P (W) and Q(W) are connected by a condition

P (W) =20(W). (10)

Taking into account (10) the Eq. (9) takes the form

d N2 _ d_V _
Yi [POW)(f)* =2V(H] =0, i = F(f). (11)

Its solution is sought in quadratures

/ df 13 dw
JYV(H+E JPW)'

Here E is an integration constant. The solution can be found by the inversion of the
first integral.

(12)

3 Exact Analytical Solutions of NKFG Equation

Suppose that anzatz

W=xL(a)+yM(a)+zN(a)—tsz(a)+G(oz). (13)
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Here L(x), M(x), N(a), D(«), G(«) are arbitrary functions of «, and value « is
a function of coordinates and time, which is implicitly set by the linear algebraic
equation

x (@) + ym(a) + zn(a) — tv’d(a) + g(a) = 0. (14)

Suppose that

(o) =Ly, m(ax)=M,, n(@) =N, d) =D, g =GaG,. (15)
Here the lower index designates a derivative with respect to an argument. The con-
dition (15) allows in a simple form to write down partial derivatives of ansatz W of

the first and second order

W,=L, Wy=M, W,=N, W,=-vD,

L Mg Nz 4 Dg
WX)CZ_F7 W_\’y=_75 WZZ:_Fv th:_v 77 (16)

:3 =X Lyq +yMaot + 2 Nyg _tszaa + Goo-

Taking into account (16) the Eq. (3) takes form

S
f”R—f/E =pF(f), a7)

R=L*>+M*+N*—v*D* S=1L2+M>+N>—v’D> (18)

The arbitrary functions L, M, N, D, G can be chosen in such way that the conditions
formulated in Propositions 1-3, will be satisfied and then it is possible to find the
exact analytical solution of the NKFG equation on the basis of the corresponding
assumption. Not focusing on finding of a general form of functions L, M, N, D, G
we will give examples of exact analytical solutions of the NKFG equation which are
found on the basis of Proposition 1:

1 1
1. L=a, M=—, N=—-2, vD=a+—, G=0,
o

o
ot 1
2= w2/ x -y —v) =2z, p=

T x—vt’ Jx =y —vt)’
(19)
1
2. L= , M=tanhae, N=0, vD=1, G =0,
cosh o
(20)

lgy~|-\/x2—|ry2 1
X

a=1lo , W=yx2+y2—vt, p=——,
/x2+y2
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«/fa Y, ﬁcx N 1 —a?

3,L:—, = —, = —F, UDZI, GZO,
14«2 14«2 14 «?
2D
—Z X+ 2 1
- #+£—ll,¥V=p—W,p=—,
p+z 2 0

For the cases (19)—(21) the condition of applicability of the Proposition 1 is satisfied
(R = 0). Therefore, accepting that

S
ARG = 7 22
p(x,y,2,1) 5 (22)

the solution of Eq. (2) can be found by inversion of the integral (5).
As an example we will consider a case

F(f) = —bsinh2f, b > 0. (23)
Then | W)
COS
F=30 Gmowy 24

In the Fig. 1 and 2 graphs of the functions p(x, y,z) and U(x, y, z,t) = f(W) are
given for the solutions (20), (21). For the case (20) function W has the form of cylin-
drical perturbations, which diameter increases over time. For the case (21) function
W at t = 0 has form of a soliton which is divided into two soliton perturbation over
time, the last extend along X OY plane to the opposite sides.

We will give examples of exact analytical solutions which are constructed on the
basis of the Proposition 2 (S = 0):

4. L =sina, M =—cosa, N=1, vD=«a, G =0, p=2—a2,
vt 4 x/x2 + y2 —v2g2

tana:y 4 ., W={x2+y2—0v22 + 7 — vta,
xvt — yy/x2 4+ y2 —v2f2

(25)

v'v‘v‘w \\\\ 0

.ouu‘«\u

Fig.1 The function p (at the left) and the solution 2 (see Eq. (20)) with z = 0, ¢t = 1 (at the centre)
and ¢ = 3 (at the right)



152 A. N. Bulygin and Yu. V. Pavlov

Fig.2 The function p (at the left) and the solution 3 (see Eq.(21)) with z = 0, t = 2 (at the centre)
and ¢ = 4 (at the right)

5. L=cosha, M=«, N=0, vD=sinhe, G=0, p=1+ca?

vt/x2 +y2 — v — x
tanho = 4 y’ W =+x2+ y2 — 022 + ya,
xy/x2 4+ y2 — 0212 — yut

(26)

6. L =sin"'tanha, M =logcosha, N =0, vD=a, G =0,
vi/x2 4+ y2 — 0212 — xy
Wk +y2 =022 — xvt

p= [sin’1 tanh oc]2 + log2 cosha — 2. 27

W = xsin”! tanh & + y logcosha — vrer,

tanha =

The function f can be found by the inversion of integral (7) for the solutions con-
structed on the basis of the Proposition 2. For the case (23) one has

k V2b [ E
f:sinh1|:zcn (Tw,kﬂ, k= D K'=+v1—k% (28)

In Fig. 3 graphs of the functions p(x, y, z,¢) and U (x, y, z, t) are given for the solu-
tion (25)with E = 1,v = 1,b = 0.1, z = 0. The solutions are real out of the domain
x? 4 y% < v?¢2. For t = 0 the solutions have the form (top view) of concentric rings
which transform into spirals with growth 7.

Further we consider the solution found on the basis of Proposition 3. The Eq. (17)
is reduced to the form

" f/
fW+7=F(f), (29)
taking into account that
R w s xL+yM+zN —v*tD+G S

1
=—, —.—= 3 . —. (30)
w B R xLyy+YMyy + 2Ngy — V?tDyy + Goew R 2

The second condition (30) will be satisfied if functions L, M, N, D, G satisfy to the
following equations
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;l.\ R

X

R

\\ X

-10 O 10 -10 O 10
X X

Fig. 3 The function p (at the top) and the solution 4 (see Eq. (25)) (at the bottom) with z = 0,
t = 0 (at the left), t = 3 (at the centre), t = 6 (at the right)

S S S S S
Laa = —ZLE, Maa = —2ME, Naa = —ZNE, DOtOl = —ZDE, Gaa = _ZGE
(31)
The system of Eq.(31) can be solved taking into account the following
2 Sa
LOtLOlOt + MaMata + NaNaa -V DaDaa = 7’ (32)
2 RO(O(
LLyy + MMyy + NNyy — v°DDyy = y S. (33)
Taking into account (32) and (33) the system of Eq. (31) takes the form
Sa _ _gBa R _ (34)
2 "R’ 2 7
From the first equation (34) one obtains
SR* = C. (35)

Here C is an integration constant. The function § can be expressed in terms of R
from second Eq. (34) with help of (35).

Ryo + — =0. (36)
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The Eq. (36) has partial solution
R = (90) 3?3, (37)

We will use it for finding the functions L, M, N, D, G. With help (37) one finds

g_l(eyr1 s_ 1 @8)
- 3\3) o R 9%

and system (31) takes the form

2 2 2
L, Myy=——5M, Nyy=—-—N, Dyy=—-—D. (39)

Loy =—
o Oq? 9a2 a2

902

The system of Eq. (39) has the solution

1
L = a1a1/3 — aza2/3, [l = 3 (a1a72/3 — 2a20fl/3) ,
1
M =ba'? —ba®?, m= (bla_2/3 — 2b2a_1/3) ,
(40)
N = c1a1/3 — cza2/3, n= (010172/3 — 2020[’1/3) ,

D =dia'? —dya??, d=

UJI»—AUJI»—AU)I

(dia P = 2dra~ '),
Here a), ay, by, by, c1, ¢2, dy, d, are arbitrary constants satisfying two equations
a3+ b3+ —vd? =0, ajay+biby + cicy — vididy = 0. (41)

On the basis (40) from the Eq.(13) we calculate ansatz W, from the Eq.(14) we
calculate value « and from first Eq. (30) we calculate p

X, )’ S 4 (42)
o = _— . = -, = —_—
2X2 4X2 P XZ

Here

X1 =xa + ybl +zc1 — Uztdl +e, Xo=xa+ yb2 + zco — vztdz + e7,
A =a,2+b%+c%—v2d]2,
43)
and also we assume that

1
g = 3 (ela_2/3 — Zeza_'/3) . 44)
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The solution of the Eq. (2), i.e. the function f = f(W) is given by the inversion of
first integral (12).

We will consider a special case. Let’s

F(f) =bsinh2f, V =bsinh?> f, b = const > 0. (45)

Then we will receive after calculation of integral (12) and its inversion

1. 1 Eq.k b b
_1()ng’ k2=1——,0<—<1,
2 "1-—sn(WEq, k) E E
1 bq.k E E
f(w) = logM R=1-2,0<Z <1, @6
sn (Vb g, k) b b
1. 1+sin(vEgq)
— log —————*, =b.
2 71 —sin(VEq)

Here g = 2\/W+ C, C = const.

Here we will note for W(x, y, z, t) and of p(x, y, z, t) received on the basis of
Propositions 1-3 the solution of the Eq. (2) is found in quadratures for any functions
F (U) for which integrals (5) and (7) exist. The exact form of the solutions are given
by its inversion.

Let ansatz W be the root of the equation

x (W) 4+ ym(W) + zn(W) — tv’q(W) + g(W) = 0. (47)
Here (W), m(W), n(W), g(W) and g(W) are arbitrary functions. Equation (47)

implicitly defines dependency of ansatz W from coordinates x, y, z and time ¢.
Following the rules of differentiation of implicit function we obtain from the Eq. (47)

2 2 2 W2 1
W+ Wy W, — — == P(W), (48)
v v v
W, 1
Wee o Wy + Wz = — = — Q(W), (49)
Here
P(W) =2(W) +m*(W) + n* (W) — v2g*(W), (50)
V1
QW) =Py — P—, (51)
v=xly+ymy+zny — v qw + gw, (52)

v = xlyw +ymww + z2nww — 1V’ qww + gww- (53)
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Accepting that
1
p(-xvy’zat)zﬁv (54)

according to the Proposition 3 functions f (W) shall be the solutions of the equation
Jww P(W) + fw Q(W) = F[f[W)]. (55)
As mentioned earlier Eq. (55) can be simply integrated if
Py =20(W). (56)
It is seen from the relationship (51) that condition (56) will be satisfied if

v Py

_——=— 57

v 2P 7
Therefore functions [(W), m(W), n(W), g(W) and g(W) should be selected so that
condition (57) be fulfilled

xlww + ymww +znww — 10’ qww + gww Ly +mmy +nnw —v’qwq
xly +ymwy + zny — tv2qw + gw N 12+ m? 4+ n? —v2q? )
Observe that the right part of the Eq.(58) does not depend from coordinates and
time. Therefore functions [(W), m(W), n(W) and g(W) should be selected so that
left part of Eq.(58) also does not depend from coordinates and time. It should be
done accepting that

/ _ PW—I Iy +mmy +nny —v’qwgq
Ww="Wop =W 124+ m?+n?—v2g?
Py Py
= —_—, = —_—, 59
My =My Aww =1y o (59)
_ g bv -4
qww qWZP’ Eww gW2P~

System of Eq. (5§9) can be integrated taking into account the following relationships

1

ly lww +mw mww +nw nww — vV’ qwqww = ESWv (60)

2 Pww 2 2 2 2.2
llww +mmyw +nnwyw — v qqww = - =S, S=ly+my +ny —viqy.
(61)

Multiplying first equation of the system (59) by /y, the second by my and similarly
transforming others then taking into account (61) we obtain
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S P
W_g " (62)
2 2P
Multiplying first equation of the system (59) by [, the second by m and similarly
transforming others then taking into account (61) we obtain

Pyw P}
— = S5S=—. 63
2 4P (63)
From (62) it follows that
S =P, (64)
and function P (W) according to (63) shall satisfy the equation
P2
Pyw =2P + X, (65)
ww op
It can be integrated and finally we obtain
P(W) = A% cosh®>(W + C). (66)

Here A and C are integration constants. Taking into account (66) we obtain from the
system of Eq. (59)

[ =a; +aysinh(W + C), m = by + bysinh(W + C),
n=c +aoc smh(W—l—C), q =d1 ~|—d2 s1nh(W+C), (67)
g = e + ey sinh(W + C).

Here ay, ay, by, by, c1, ¢2, dy, da, €1, e; are arbitrary constants. In order to satisfy
relationships (66) they shall satisfy the following conditions

ai +bi+cf —vdi = A%, a3 + b3+ —vidy = A%
ajap + b1b2 +cic — U2d1d2 =0. (68)

We obtain from the system of algebraic Eq. (68)

<a1> = A4 [\/1 + o2 cosacos B :I:cosasinﬁ],

ar V2
(Z;) =%[msinacos,3:tsinasmﬁ]’ (69)
(£)- asnen]

Here «, § are arbitrary angles and
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o =2%%/A%d =d, =d. (70)
From the Eq. (1) taking into account (66) we obtain the ansatz W

X
sinh(W + C) = —X—l, (71)
2

Xi=xa1+yb+zc —tv%d| + ey, X2:xa2+yb2+zcz—tv2d2+e2.

From the Eq. (52) taking into account (67) we get

v:chosh(W+C)=‘/X%+X%. (72)

Because functions P(W) and Q (W) satisfy the conditions (56) f (W) is found from
the equation

av
f" A% cosh> (W 4+ C) + f'A% cosh(W + C) sinh(W + C) = W (73)

Its solution is reduced the calculation and inversion of the integral

d 2 X
/—f _ Y2 <—‘) (74)
vE+V A X,
Here E is the constant of integration.

Therefore if ansatz W is found then on the basis of the Proposition 3 it is possible
to find the solution of the Eq. (2) with any integrated function F(U). Let us see the
examples of solutions for the following cases.

FWU)={e", e, sinhU, sinU}, (75)
VW)={E+e", E—¢Y, E+coshU, E—cosU}.

Onmitting algebraic calculations we state the final results:

U osu sy Ui FW)
wt Oyt la= = X2+ x%
1. FU)=¢Y U—n+logL (76)
' ’ sinh?(gVE/2)’
h%(gvVE/2
2 FU)=e¢Y, U=log W, (77)
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o 14 sn («/E+1q/2,r) E+1
s 1—sn (VE+T1q/2,r) | ’

log | — | E=1,
1+sin(q/ﬁ)

2tan~!

_\/E—lsn(«/E—I-lq/Z,k) E>1
s > 1,
E+1cn («/E~|—1q/2,k)

4. FWU)=sinU, U=19g_4@n'|ea/V2| E—1.

[ sn (g, 1/k)
Lcn (g, 1/k)

2 tan~! , o<E<1.

(79
Here sn (g, k) is the elliptic sine, cn (g, k) is the elliptic cosine,

( 9 ﬁt (X E—1 L 2 80)
y» Vo & = ——tan < ) r= o 40 = = . 1"
).z A X, VE+1 VE+1

The solution (79) (E > 1) can be written in another analytical form namely
U= —2am [K(k) — F@, k), k], ¢ = am [«/E+ 1 %,k], 81)

where am [, k] is Jacobi amplitude, K (k) is complete elliptic integral, F (i, k) is
incomplete elliptic integral. The first dependence (79) defines U as periodic function
and the second (81) continues U out of the period 0 < /E + 1q/2 < 2K (k) in the
form of a “ladder”. In the period value of U, calculated on (79) (E > 1) and (81)
coincide. On Fig. 4 graphs of the functions (79), (81) are represented with E = 1.2.

In the Fig. 5 graph of the solution (79) is given with E = 1,v = 1,e; = 1,¢; = 0,
a; = 0.38, a; =0.33, by =0.66, b, =0.57, ¢c; =0.66, c; =0.76,z =0, =0 at
the left and r = 2 at the right. Solution has the form of soliton propagating in the
plane XOY.

Fig. 4 The solutions (79) U
(blue line) and (81) (red line)
in the case E = 1.2 10
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Fig. 6 The solution (79) with E = 0.2, z = 0, t = 0.4 (at the left) and = 0.8 (at the right)

With the same parameters in the Fig. 6 graph of the solution (79) is given with
E =0.2,t = 0.4 at the left and r = 0.8 at the right. Solution has a form of kink also
propagating in the plane X OY.

4 Conclusion

Methods of obtaining of exact analytical solutions of the nonautonomous NKFG
equation are proposed. The most important step in realization of the proposed meth-
ods is the calculation of ansatz. It could be obtained from the separate equations
which can be algebraic, partial differential equations or equations of mixed type. It
is obtained on the basis of the methods developed in the theory of construction of
functionally invariant solutions of the wave equation. The choice of ansatz defines
a type of the solution. Important feature of the offered methods is that ansatz deter-
mines also the function p(x, y, z,t) which characterizes nonautonomous NKFG
equation. It, undoubtedly, imposes restrictions for the Eq.(2) which can be solved
by the proposed methods. However, methods proposed for obtaining of ansatz give
the system of the equations which contains more arbitrary functions than number of
required. The choice of these functions allows to receive rather broad set of analytical
expressions for the function p(x, y, z, ).
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Dynamic Fracture Analysis of Sandwich m
Composites with Face Sheet/Core e
Debond by the Finite Element Method

Vyacheslav N. Burlayenko, Holm Altenbach and Tomasz Sadowski

Abstract Numerical simulations using the finite element analyses within the code
ABAQUS™ are used to study a dynamic fracture behaviour developing along the
face sheet/core interface in sandwich panels. First, a virtual fracture test—the dou-
ble cantilever sandwich beam subjected to uneven bending moments is simulated.
In such analyses, the dynamic energy release rates and near-tip displacement and
stress fields are extracted from finite element models developed within the two-
dimensional elastodynamic theory and cohesive elements. These parameters are a
basis for understanding the face sheet/core interface fracture in sandwich materials.
Important computed results are that the inertia effects change the behaviour of frac-
ture debonding parameters. Moreover, the analyses demonstrated the capability and
the reliability of the finite element modelling technique for solving dynamic fracture
mechanics problems. Also simulated and discussed is the dynamic interface crack
progression in the sandwich specimen. In the second part of the work, the compu-
tational models are modified for analysing dynamic fracture of sandwich panels.
For this, tree-dimensional models of sandwich plates with a penny-shaped debonded
zone have been elaborated. In all simulations, computations of dynamic interface
crack propagation are carried out in such a way when the crack history and inertial
effects on cracking are direct outcomes of the analysis.
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Keywords Sandwich panels - Face sheet/core debonding - Interface fracture -
Finite element analysis

1 Introduction

The structural concept implying an assembly of two relatively stiff and strength
layers (face sheets or skins) separated by a lightweight material (core) has opened up
the possibility of creating constructions with new so-called sandwich materials. In
these materials the top and bottom face sheets carry the in-plane and bending loads
interacting through the core. In turn, the latter should be strong enough in order to keep
the desired distance between the face sheets and to prevent their sliding with respect
to each other [1]. As turned out, sandwich composites are competitive in comparison
to conventional metallic materials due to their inherent high-performance features
such as high specific stiffness and strength to weight ratios, acoustic and thermal
insulation, protection against impacts, corrosion and wear resistance, etc. [2]. Due
to these advantages, sandwich materials have found a wide engineering application,
e.g. in aerospace, automotive, civil, medical, sports and other modern industries, e.g.
[3-5].

The performance of such tri-material systems is highly dependent on the quality
of the interface between face sheets and a core. Meanwhile, the interface is influ-
enced by both initial bonding processes at a manufacturing stage (surface treatment,
roughness, rheology, chemicals) and in-service effects (loading, temperature, time,
moisture). Also, because of an inherent non-homogeneity of the sandwich struc-
ture, discontinuous stress fields exist at the material interface. All these factors make
premises for an inevitable susceptibility of sandwich materials to the interface dam-
age between the core and the face sheets called as debonding [6]. This damage
affects significantly the behaviour of sandwich materials due to violating the transfer
of mechanical responses between face sheets and a core. As a result, a substantial
reduction in the compressive and bending strength occurs. This leads to decreasing
overall load-carrying capability and increasing the risk of premature eventual failure
of sandwich structures [7]. The presence of debond also alters the linear vibration
characteristics of sandwich structures [8—10]. Moreover, it has also been shown that
essential non-linear dynamic effects arise due to pre-existing debond, which cause
quantitative and qualitative changes in the dynamics of sandwich structures in some
regimes [11-15]. On the other hand, the knowledge about the influence of debonding
on the dynamics is used as a means to identify and to quantify a dedonded site within
sandwich panes as demonstrated, e.g. in [16-20].

Since the debonding poses a threat to the structural integrity of a whole sand-
wich construction, sandwich composites should be validated in terms of damage
tolerance and possible failure [21]. In this respect, the engineering community has
given considerable attention to fracture mechanics methods for sandwich composites
subjected to static and dynamic loads. Herewith, the interface strength is quantified
using the concept of interface fracture toughness [22]. Fracture specimens are used to
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supply necessary information regarding the fracture resistance of the material [23].
The fracture parameters such as stress intensity factors or strain energy release rates
controlling the fracture process at the crack tip are inferred from the analysis of
the fracture specimens by experimental, analytical or numerical methods. However,
while testing methods for fracture research of composite laminates are at a high level
of maturity, e.g. [24-26], the development of standard fracture tests for sandwich
composites has not been completed yet [27]. This is related, from one hand, to the
complexity of testing and analysing test data due to the bi-material nature of the
face sheet/core interface and a non-symmetric geometry of sandwich specimens. On
the other hand, the experimental data reported in the literature highlight a signifi-
cant scatter in debonding toughness values for given sandwich systems because of
various methods used in testing. Finally, a large variety of geometrical and material
configurations of sandwich structures in service require an extensive campaign of
experimental studies. Nevertheless, some progress has been achieved in the evalua-
tion of interfacial fracture parameters under the assumption of static or quasi-static
conditions [28].

Besides quasi-static fracture models, generally accepted for studying a majority of
industrial applications of sandwich materials, there is a class of applications in which
dynamic effects play a basic role in understanding the debonding resistance. This
group includes the problems dealing with dynamic loading, in particular, impact-
induced processes or static loading with a fast propagating crack running at a finite
velocity. In these cases, to estimate accurately the face sheet/core interface strength,
techniques based on a dynamic fracture framework are required. It implies to take
into account inertia effects in the definition of the energy release rate and the crack
growth behaviour [29]. Experimental measurements of dynamic crack growth in
bi-material plate-like specimens [30, 31] revealed that cracks running along the
weak plane can propagate, relatively to external energy supplied to the specimen,
subsonically in predominantly Mode I or intersonically with the speed exceeding the
shear wave speed of the more compliant material in Mode II dominated conditions.
Discontinuous shock waves and a discernible contact zone were also observed for
intersonic cracks. The findings of authors in [32] showed that dynamic interface
cracks in laminated plates possess the similar features.

Despite these advances, dynamic face sheet/core interface fracture of sandwich
composites still remains incomplete. Experimental data are very limited because of
difficulties in obtaining accurate results when tracking a fast crack tip spped and a lack
of reliable test configurations. Some existing dynamic testing methods adopt systems
such as the split Hopkinson pressure bar, a one-point impact setup or the wedge
cleavage test method as reviewed in [33]. However, they are not commonly accepted
standards for dynamic fracture testing sandwich materials. Analytical solutions for
bi-material stationary or dynamically propagated interface cracks, to which the face
sheet/core debonding problem is attributed, exist mainly for infinite and semi-infinite
continua are based on simple beam models, e.g. in [34-39] among many others. An
attractive alternative is the use of numerical methods, among which the finite element
method (FEM) is more popular because of its versatility and the existence of many
commercially available FEM codes. Fracture mechanics-based tools implemented
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into commercial finite element analysis codes, for instance, ABAQUS™, ANSYS®,
MSC Marc®, and others enable to make simulations of face sheet/core debonding in
an effective and efficient way. The accuracy, however, of such predictions depends
essentially on the reliability of both the fracture data such as fracture toughness and
fracture criteria, which are used as inputs, and model-dependent parameters such as
the stress intensity factors (SIFs) or the strain energy release rate (ERR), which are
calculated during the analysis.

Within the context of FEM methodologies used for simulating dynamic fracture,
the cohesive crack zone model has been widely applied to simulate crack initiation
and propagation along an arbitrary, solution-dependent path in both homogeneous
materials and composites, e.g. [40, 41] among the earliest works and [42-44] as more
recent ones. In this modelling technique, discontinuities are easily incorporated into a
finite element approximation through special either zero or finite thickness interface
(cohesive) finite elements. A traction-separation law is embedded in the cohesive
element (CE) to describe initiation and evolution of damage behaviour of the crack
surface. This constitutive relationship defined in terms of strength and deformation
of the interface is an additional material law relatively to other ones attributed to
materials surrounding the cohesive interface. Local nonlinear assumptions near crack
tip can be employed to simulate the crack initiation and propagation and can be used
in appropriate fracture criteria of the cohesive crack model as well [45]. Also, CEs
include a mixed-mode formulation that provides their generality for using in a broad
variety of analyses. Nevertheless, the application of cohesive damage modelling in
sandwich structures for the simulation of dynamic debonding failure is still limited,
e.g. [46-48].

In light of the limited body of knowledge about dynamic fracture of sandwich
materials, this work deals with modelling dynamic debonding to provide an insight
into features of interfacial cracking of sandwich composites. The nonlinear dynamic
fracture behaviour is modelled by means of ABAQUS package [49]. In simulations,
the computations of dynamic interface crack propagation are carried out in such a
way that the crack history and the influence of inertial effects on cracking are direct
outcomes of the analyses with CEs. The present work is divided into two parts. The
first one concerns the development of two-dimensional (2-D) FE models for detailed
simulations of debonding in a double cantilever sandwich beam fracture specimen
subjected to uneven bending moments (DCB-UBM). The results for quasi-static and
dynamic loading are used as a basis for understanding the dynamic effects on fracture
of sandwich materials. Fracture features observed in the analysed sandwich specimen
have been discussed in detail. In the second part of the work, the results for the 2-
D computational models are modified for analysing dynamic fracture of sandwich
panels based on tree-dimensional (3-D) models. A rectangular sandwich plate with
a penny-shaped debonded zone subjected to dynamic loading is considered.
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2 Finite Element Methodology

A dynamic framework of the finite element method with cohesive finite elements
is used in the present study. A brief review of the main steps of the finite element
method strategy and some specific notes concerning the cohesive element model,
time integration schemes applied to perform simulations and methods employed for
extracting the fracture parameters are presented below.

2.1 Equation of Virtual Work with Cohesive Elements

We start from the principle of virtual work as a basis of the finite element method in the
mechanics of solids. Let us consider a general case of a deformable body represented
by a domain V C RY™ for I < dim < 3 with a boundary 3V C R%™~! oriented by
a unit normal n. Each a material point of the body is specified by x serving as a
particle label in Lagrangian description. The body undergoes a motion described
by a displacement field u: V x [0, T] — RI™ at time t € x[0, T] — R, under
prescribed surface traction t on the boundary 9V, and prescribed displacements i1 on
the boundary dV,,. The boundaries comply with 0V, UdV,, =dV and 0V, N adV, =
©@. Assume that the body is under the assumption on infinitesimal deformations,
then, at an arbitrary time ¢, a strain can be measured by a tensor g: V — Rdimxdim
defined as € = % (Vu + (Vu)T), while a stress state induced by the deformations is
defined by the Cauchy stress tensora : V — Rm*dim Tp addition, let the continuum
contain a crack (or cracks), the locus of which is on an internal cohesive surface
dV. = 9V U V. The cohesive surface formulation provides the incorporation of
the strong discontinuity in the displacement fields, caused by a localized fracture of
the material in the form of cracks, by the accommodation of displacement jumps A
across the crack flanks on 9Vt and 8V, and a cohesive driving traction T = o - n,
along the cohesive surface 9V, with unit normal n..

Under the conditions mentioned above, the weak form of the conservation of
linear momentum or the principal of virtual work without body forces is stated in
the form:

f (U:V8u+,0ii-8u)dV+/ T~8AdA—/ t-SudA=0 (D)
VAOV, Ve v

for all virtual (kinematically admissible) displacement fields du. Also, in (1) p is the
density of material, and the superscript dot means a time derivative, i.e. i stands for
the acceleration filed.

Finally, to complete the formulation of the problem at hand, a set of constitutive
relations for the bulk material and the cohesive layer should be specified. The con-
stitutive relations between the cohesive traction and the displacement jump on 9V,
are independent on the material laws describing the bulk behaviour of the material
surrounding the crack.
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2.2 Constitutive Equations

As mentioned the continuum is featured by two sets of constitutive equations. The
first one defines the behaviour of a bulk material in V x [0, T'] and the second one
is a traction-separation law (TSL) given on 9V, x [0, T].

2.2.1 Bulk Material Properties

Since an interfacial crack problem is considered, we assume that the crack modelled
by a cohesive layer divides the continuum in two parts, i.e. V- = Vi U Vi, which, in
general, are different in geometrical configurations and material properties. Let the
materials of each part (k = #1, #2) be orthotropic linear elastic obeying the general
Hookes law in the form [50]:

€11 S11 812 S13 o1

&2 S12 S22 823 0 on
€33 | _ | S13823 833 Jos ?)

2e3 Saa 023

2¢e13 0 Sss 013

21 Se6 o1
where 511 = L] S = ELZ 533 = Sn=S=—2=-2.,853= 531 =-F
523 = 532 = = S44 = 1/G23, 555 = == and SG() = Gn .In plane

E
stress the compliance matrix reduces toa3 x 3 matrix w1th components S;jfori, j =

1,2,6 and Sjs = Sz¢ = 0. In plane strain the coefficients of the reduced compliance
matrix should be replaced by S;; = §;; — S‘;—i” fori,j=1,2,6.

2.2.2 Cohesive Elements and TSL

In the FEM context, the cohesive surface is represented by cohesive elements. The
main idea of the cohesive element is a representation of crack initiation that reflects
changes in the fracture process zone due to microscopic damage accumulation at the
crack tip and a subsequent crack growth that is a creation of new free surfaces in
the body. The element is idealized by a pair of separate top and bottom faces. In the
finite element mesh, the element nodes have the same coordinates, but different node
numbers as shown for 2-D and 3-D cohesive elements in Fig. 1a, b, respectively.

A TSL incorporating the ability of the cohesive element to simulate fracture is
usually formulated in such a way that the onset of the softening process at the crack
tip is a result of a strength-based analysis, whereas the crack propagation conditions
are realized by satisfying fracture mechanics criteria. There have been proposed a
number of TSLs in the literature. They can be subdivided into two groups: intrinsic
and extrinsic relatively handling an initial elastic range within the cohesive element, in
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Fig. 1 A sketch of cohesive elements after [49]: a 2-D line element; b 3-D surface element
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Fig. 2 A cohesive bilinear TSL after [49] for: a normal mode; b shear mode; ¢ mixed mode

turn, all they are distinguished from each other as potential-based and non-potential-
based models depending on assumptions adopted for the fracture energy potential
[51]. A typical bilinear cohesive law for single fracture modes is presented in Fig. 2a,
b. The law contains an initial linear region defined by a penalty stiffness k and the
softening part starting from the value A°, where the traction reaches a maximum
normal/shear cohesive value 7° and, then, evolving linearly till A/, where complete
failure occurs. The irreversibility conditions are assumed to be realized by unloading
to the origin from the current state. The area under the lines being the work done per
unit area for complete fracture defines the strain energy release rate. Analytically,
for each fracture mode (i = I, I1, 111) the bilinear TSL can be presented as follows
[52]:

ki A; A < A
T=1{(0-Dpka A" < A, < A/ 3)

0 A= A
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Here, a damage variable D can be calculated as a function of current separation

. . Al (4-4?)
between the cohesive element faces, i.e. D; = — 77—,
ai(al-a)
In the case of mixed modes, an effective displacement jump A,, = Zlﬁi 1 A?

where M = I, 11, 111 is the number of modes involved, is introduced and the dam-
age initiation and evolution criteria are to be formulated in terms of interaction
between the fracture parameters of each mode, Fig. 2c. In this regard, the equivalent
mixed mode separations at damage onset A, and failure A}, are to be defined. Fol-
lowing [52] the damage initiation based on the quadratic stress initiation criterion
takes the form:

1 2
A% = A9A, \/ S )
0 0
(r49)" + (4%)
where y = S is a mixed mode ratio, whereas the damage propagation relying on

the Benzeggagh Kenane (B-K) fracture toughness criterion reads:

1 G G K
A= {AgA{ + (04! - M0a) [g—] } )
1 T

where A,/ A% RS A% 11> G is the total ERR and 7 is a parameter obtained by curve-
fitting the fracture toughness of mixed mode tests. Once mixed mode separations are
known the mixed mode damage parameter D,, can be calculated identical to the
expression for D; using A,,, A% and A}l instead the pure mode components there.

2.3 Contact and Friction Conditions

The crack flanks are assumed to be traction free. However, upon cracking the crack
faces may come into contact as well as dynamic loading may cause interactions
between them. Thus, contact and friction are to be determined as a part of the solution
at a certain load level and an instant of time. In doing so, the cohesive interface model
is included into the overall contact algorithm through nodal forces of the cohesive
elements which are related to the cohesive traction vector. Thus, during the finite
element analysis two possibilities for the calculation of nodal forces are handled.
The first is the case of separation considered already in Sect.2.2, and the second
is the case of contact and friction, in which equivalent normal and tangential nodal
forces are computed using a certain contact algorithm and a friction law. A brief
description of the modelling of contact and friction constraints is given below.
From the modelling point of view, to impose contact and friction constraints within
contact surfaces, the contact traction t. acting between them is decomposed into
normal ty and tangential t; components. Each the traction component is associated
with an appropriate displacement jump. Using the master-slave contact definition,
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the displacement jumps can be expressed by the normal gy = (x~ — x*) -} and
tangential g7 = gr,a™" with g7, = (x~ —x*)-a} gap functions. We denote that
X~ is a point of the slave surface and X" (§ L E 2) is its orthogonal projection on
the master surface parameterized by £%, o = 1, 2; ﬁj is the unit normal vector of
the master surface and ﬁ;, a = 1,2 are the tangent base vectors at the point X
(see for more details in [53, 54] and the references there). The functions gy and
gr depend on a current displacement field induced by given loads at a time instant
t. Then, the impenetrability and friction constraints are stated in the form of the
Karush-Kuhn-Tucker conditions as follows:

tv <0, gy >0and tygy =0 (6)

and
Itrll < terirs llgrll = 0 and ([Itr ]| — 7)) lIg7l = O, (7N

respectively. Here, #y is the scalar quantity of the normal traction component, i.e.
ty = tyng; 7. 1S a threshold of tangential contact traction due to the tangential slip.
In the case of the Coulomb friction model, this value is expressed as t..;; = uty,
where  is the coefficient of friction.

Accounting for contact and friction leads to appearance of an additional term
referred to as the work of contact forces in the variational equality (1). Therefore,
this expression takes a new form:

f‘/\avc (6 : Véu+ pii - sSu)dV + fa‘_,t_ T.-SAdA+ ®
/aw (tydgn +tr - 8g7)dA — fav, t-sSudA =0

In general, contact problems are inherently nonlinear since the contact region is
a priori unknown and nodal contact forces related to contact traction on this contact
zone are a part of the solution. Also, the contact and friction laws are expressed
by non-smooth multivalued force displacement relationships. In this respect, con-
tact algorithms within the FEM context are subdivided into two major steps: con-
tact detection and contact resolution [55]. The latter step depends also on a time-
integration scheme used in the finite element discretization, [53, 54].

2.4 Finite Element Discretization

Following the FEM framework, the actual continuous model is idealized as an assem-
blage of finite elements interconnected at nodal points. Consequently, (8) is trans-
formed to the discrete system of equations of motion with respect to nodal degrees
of freedom, e.g. displacements {U}, at time ¢ as follows:

[M] {U}z + {Rint}z + {Rcoh}z + {Rcant}t = {Rext}t 9
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where {R;,;}, {Rext}, { Reon } and { R.,,,; } are the vectors attributed to the nodal internal,
external, cohesive and contact forces, respectively, calculated using the correspond-
ing integrals in (8); [M] is the mass matrix associated with inertial properties; {U/}
are the nodal accelerations. It should be noted that in the system (9) damping is
not included and the nonlinearities other than contact and cracking with cohesive
elements are not taking into account. The calculations of nodal equivalent forces
require an approximation of the displacement field within the finite element in terms
of shape functions and a set of the nodal displacements [56].

Besides the discretization in space, the finite element equations (9) still need to
be discretized in time, i.e. [0, T] = {J,, [#x. fa+1]- For this, either explicit or implicit
time-stepping strategies are used. Two numerical methods implemented in ABAQUS
[49] as main solution schemes are briefly presented below.

2.4.1 Explicit Integration Scheme

The explicit central difference time integrator is used in the dynamic explicit analysis.
Accelerations and velocities at a particular time point #,, are assumed to be constant
during a time increment Af = ¢, — f, and are used to find a solution at the next
point in time 7, . Then, the accelerations are computed at the start of the increment
by solving (9) as follows:

{0}, = M1 ({Rexs}y — (Rint}y — (Reon}s — {Reont}y) (10)

To find velocities and displacements, ABAQUS/Explicit utilizes a forward Euler
integration scheme, i.e. {U}H%A, = {U}t,%A, + At{i]}r and (U}, =1{U}, +
AU Yi1 40> respectively. In (10) [M] is a lumped mass matrix obtained by the
transformation of the consistent mass matrix [M] for the purpose of efficiency. The
explicit scheme is stable if the time increment satisfies to the limit: A < wi, where
Wmay 18 the highest natural frequency in the finite element mesh of the discretized
system [56].

2.4.2 Implicit Integration Scheme

The dynamic implicit analyses are carried out by using the implicit Hilber-Hughes-
Taylor (HHT) temporal integrator in ABAQUS/Standard. In accordance with the
HHT scheme, the equations of motion (9) at a particular time point ¢, = ¢t + At
can be rewritten in terms of displacements, velocities and accelerations at the point
t, =t as follows:

[M] {U}t+At + (1 + a) ({Rint}tJrAt + {R(‘oh}tJrAz + {Rcont}[+At) =

~ 11
{Rext}z+(1+E)Az + o ({Rint}t + {Rcoh}[ + {Rcom‘}z) s ( )
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where displacements and velocities at the time point ¢ + Af are approximated
by the expressions: {U},, o, = {U}, + AU}, + AT’Z [(1 — 2,3) {U}t + ZE{U}HA,]
and {U},, 5 = (U}, + At[(1 =) {U}, + P{U}, a], correspondingly. The
scheme is second order accurate and unconditionally stable for —% <a<0,y=
% (1—2&) and B = }1 (1 — @)2, [56]. The solution of the implicit analysis from 7 to
t + At is updated incrementally within the well-known Newton-Raphson iterative
scheme for finding the roots of (11).

2.5 Near-Tip Fields at Bi-material Interface

The analysis of bi-material interface cracks is more complicated than for cracks in
homogeneous materials since bi-material cracks exhibit a coupling of tensile and
shear effects even in the cases of pure either opening or shearing loading. Also, the
oscillatory character of stress and displacement fields occurs. It leads to the variation
of mode-mixity ratio with distance from the crack tip. To characterise the singular
stress and displacement fields, a complex stress intensity factor (SIF), K together
with the oscillation index, ¢ relating to the elastic properties of the materials are used
[35, 36]. Following these authors the structure of the asymptotic near-tip fields for
either stationary or dynamically propagating interface crack results from the solution
of the eigenvalue problem induced by the traction free boundary conditions on the
crack flanks as

Hw = ¢”"*Hw, (12)

where H is a 3 x 3 positive defined compliance-like Hermitian matrix involving the
bi-material elastic constants and H is its complex conjugate matrix. Three eigenpairs
such as (g, w), (—&, w) and (0, ws3), where w, w and w3 are complex, complex
conjugate and real eigenvectors, respectively, are the solutions of (12). Then, the
stresses at the crack tip and the relative displacements at a distance r behind the
crack tip take the form [36, 57]:

0O (r,0) = = {Re [Kr'¢] iy L, (0, &) +

~ i i 111 (13)
Im [Kr®] @ Zy, 0. 8) + K30 S, (0)}
and
A(r.60) = (H+H) \/T Kitw __, Refw
r,o) = = : : w3rs
27 | (1 4+ 2ig)coshme (1 —2ie)coshme 33
(14)

relatively, where m,n = 1, 2; k = #1,#2 denotes the materials of the interface,
K=K, +iK, =|K|eV with K| and K, used instead of K; and K;; adopted
for homogeneous materials and K3 is the SIF associated with non-singular stress
field in mode 111, ) Z‘,ffn with M = I, 11, 111 are universal angular functions in
polar (r, 6) or Cartesian (x, x;) coordinate systems centred at the crack tip. The
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oscillation index ¢ can be expressed in the form:

1 1-8
e=—Ih|——), (15)
27 1+ 8
where 8 is the second Dundurs parameter defined by
5 oL (3mm 2 16)
=— | —=tr
2 Re[H]

An alternative description of the near-tip stress field involves the energy release
rate (ERR), ¢ together with the mode mixity parameter, ¥ . To avoid oscillations
in the mode mixity parameter, a characteristic length scale, [ chosen in consistence
with discussions in [22, 57] is introduced. Then, the non-oscillatory phase angle 1/}
is established as follows:

Y = tan™' <2>
on /|-

Here K/'¢ = K is a normalized complex SIF with ordinary units of the SIF in homo-
geneous materials. The amplitudes of K and K are the same, but their phase angles
are different, i.e. 1/A/ =Y +e¢eln I. Following [36, 57] the expression of the ERR can
be written in the form:

Im[Ki"*
= an ! 2L (17)
i Re[Ki“]

w (H+H)w 1 .
¢ =———"—|KP’+ -w] (H+H)w;K3 18
4cosh’ e K] 8 ) wsK; (18)
In the case of orthotropic materials surrounding the interface crack, the material
symmetry axes of which are aligned along the face sheet-to-core interface (Fig. 3b),
the matrix H takes the form [58]:

Hy = [2nk‘/4JW' + [271)»1/4 S1182 ]
Hy, = [2”)\71/4\/ S”SQZ [211)& «/ S11852 w0
Hyy = Hy =i [+/S118n + 512]#, [v/S1182 + Si2],, -
Hss = [/SasSss ), + [V/SaaSss),, » Hiz = Hz) = Hy3 = H3p =0,

19)

where A = §,/S,, = E»/E; and o = (gs‘é—J%fB) = Vzlé‘fz — J/V12vy are parame-

ters of anisotropy and n = . Moreover, the eigenvectors take the form:
w={-5 3/, 0} and ws = (0,0, 1),

The stresses 02, and o, at a distance r in front of the crack tip at &6 = 0 between
two orthotropic materials can be inferred from (13) as follows [36, 57]:

+0)
2
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H22 + . K (r)is (20)
—0 iopn = ~
Hi, 2 2 V2mr \I

and the associated relative crack surface displacements (jumps) A; and A, at a
distance r behind the crack tip at 8 = £, can be derived from (14) in the form

[36, 57]:
LIPS 2H,K (r)i“f o
g iA = -
Hy o : 2w (1 +2ig)coshme \ [

The relations (20) and (21) give a basis for numerical calculations of the interface
crack fracture parameters within the framework of the FEM.

2.6 Evaluation of Interface Dynamic Fracture Parameters

In LEFM the Rices J-integral is identical to the ERR. The generalization of this
fundamental concept on an elastic solid with a crack advancing straightway along
the x;-axis direction under dynamic conditions can be expressed as [59]:

G(t)=J = lim/ [(W+T)n1—<a'a—u)-n}d1“, (22)
r—oJr d

X1

where the path I” is an arbitrary contour surrounding a crack tip; n is an outward unit
normal of I"; W is the strain energy density and 7 is the kinetic energy density at a
material point. Under a steady state crack growth condition, the dynamic integral (22)
is path independent and corresponds to the instantaneous energy release rate for any
crack configuration including the interface crack between two dissimilar orthotropic
materials [59].

The domain integral formulation, which invokes the divergence theorem to convert
a line integral to a domain one of the same filed, allows a simple FEM computation
of the dynamic J'-integral (22). With using a weight function g, (x), the line integral
(22) is transformed to a domain integral, i.e. the dynamic ERR can be evaluated by
computing the expression [59]:

du '\ 9q g1 0’u du  Ju 9*u
(23)
where A is the domain enclosed between the contour I", an arbitrary contour %
with unit normal m, which embraces I" and the surfaces of crack flanks, %, and
@ between the two contours (Fig. 3a). The weighting parameter ¢; is chosen as a
smooth function of x which takes the values from zero on the %-contour to unity
on I'. A geometrical interpretation of g;(x) is a virtual displacement of the crack
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Fig. 3 Sketches of: a a closed contour € + ¢+ + I" + ¢ around the crack tip; b displacements
of crack flanks at bi-material crack bounded by orthotropic materials

tip region, Al. In the FEM model, g; is interpolated with the shape function of the
element, N, (§), i.e. 1 (X) = )_; N;(§)g{, where g{ are nodal values.

If the crack faces are not traction free, for instance, due to forces arising in con-
tact, an additional term — fﬂ 4o teo ;7“1611 dI" should be added to (23). Finally,
the domain (2-D or 3-D) integral (23) is evaluated over a group of finite elements
forming a ring around the crack tip, which are enclosed into the domain A, Fig. 3a.
The numerical integration is achieved element by element with using the Gaussian
quadrature. Then, the total result is a summation over all elements belonging A.
A general form used for numerical computations of (23) can be presented by the
expression:

El G
G0 =Y (DAY Y@, | /4L (24)
n=I1 p=1

n

where n and p indicate that all the entities are associated with the n-th finite element
of the area A and are determined at the p-th Gauss integration point; [ f] are the
integrands in (23), |j| is the determinant of Jacobian matrix and w is the weight of
the Gauss numerical quadrature. The domain integral is calculated by post-processing
of results of the finite element analysis. The details of computational implementation
of (24) in ABAQUS can be found in [49].

Although the J-integral approach allows calculating the dynamic ERR, the contri-
bution of a separate fracture mode in its value remains unknown. Other methods are
needed to evaluate the components of the mixed-mode ERR. Two of such methods
suitable for bi-material interface cracks are described below. The methods are stated
for a stationary crack, but they could be applied to a dynamically propagating crack
by post-processing the displacement and stress fields in the vicinity of a moving
crack tip at a certain instant of time.
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2.6.1 Interaction Integral Method

The interaction integral method is based on the idea of superposition of actual and
auxiliary fields (aux), where the latter are assumed to be known. An approximation is
to take as the auxiliary fields the asymptotic Williams type solutions of corresponding
material system regardless of the actual problem. Following Shih and Asaro [60] the
interaction integral definition for a straight crack for any of fracture modes M =
I, 11,111 can be presented as

T = lim m- Q" -qdr". (25)
F=>0J¢ 16, +r+6_

with the integrand Q¥ given as

M
Q"=0:@),1-0- (8—“> — (@) ;—: (26)

axl aux

On the other hand, the interaction integral can be expressed in terms of the stress
intensity factors of both the actual and auxiliary fields in the form:

T = % (K\ K™ 4+ Ky K§™) , with H = $eoitxe 27)

Thereafter, making a judicious choice of the auxiliary stress intensity factors,

which are assumed to be known, and taking the appropriate auxiliary displacement

and stress fields from the known analytical solutions, e.g. [61], the separate stress
intensity factors can be evaluated as follows:

H oy

Ky ::53%§?;°Gm

(28)

In the FEM context, the interaction line integral (25) is computed similar to the
domain formulation of the integral (23). The interaction integral method for the cal-
culation of SIFs of a crack between two dissimilar isotropic materials is implemented
into the ABAQUS code [49].

2.6.2 Crack Flank Displacements (CFD) Method

The CFD method is based on the approach proposed by Smelser [62], where SIFs
have been determined from crack front displacements (Fig. 3b) by calculations of the
absolute value of complex SIF and its phase angle. The method has an advantage of
obtaining SIF components in terms FEM formulation since the displacement field is a
direct outcome of the finite element analysis. In this respect, using (21) in conjunction
with the expressions for the mode-mixity parameter (17) and the ERR (18) yields
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the following formulae:

A~ 1 H]]A] r 1
Y = tan H_22A_2 —eln ? +tan~ 2¢ 29)

Hi K| 1+4e?) (H
e (30)
4cosh“ e SHy, (r/l)

and

22

where A; = u; (r, r) — u; (r, —m) represents the relative crack flank displacements
at distance r behind the crack tip, H;; and H,; are components of the matrix H in
(19). The nodal displacements are collected from opposing faces of the two crack

flank elements that are approximately at a chosen specific distance r = 1l_0 away from
the crack tip [63].

3 Numerical Examples

In this section, the results of numerical simulations are presented. The simulations
are carried out for both stationary interface crack problems and dynamic interface
crack propagation tasks in sandwich panels idealized by beams and plates. The 2-D
and 3-D models within the ABAQUS are developed for this purpose. Responses of
static and dynamic fracture parameters are shown.

3.1 DCB UBM Specimen

A sketch of the DCB UBM specimen of length L = 270 mm fixed at the ends of
length Ly = 27 mm with a crack of length a = 90 mm, which consists of face sheets
of thicknesses of #; = h, = 2.4 mm and a core of thickness of 4, = 50 mm is shown
in Fig. 4a. The specimen is subjected to uneven bending moments, M and M, (both
being defined per unit specimen width, B) as illustrated in Fig. 4a. One of advantages
of this test method is that the specimen allows loading the crack tip by a variety of

(a) Neutral axis of “D” J’ﬁ (b)
s i
M, Tk i M
- [ 8 o —
a4 | I - s leo "
M( Neutral axis of “S” Neutral axis of 07 N E’(-/Z y )P A E— e M=M+M,
M* -
[elelelolel0¢ T
h
2 X
L L

Fig. 4 DCB UBM specimen: a geometry and loading; b force and moment resultants
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mode mixities by changing the moment ratio Mg = M; /M, [64]. For this specimen,
the steady state ERR can be determined analytically from the specimen geometry,
elastic properties and applied external moments inducing a state of pure bending,
then, the J-integral calculated along the outer boundaries of the specimen (Fig. 4b)
leads to the expression [65]:

RSN LS S G
2B |(EA)p (EAs (EDp  (Elg

where N = oMo, M = M| — ysMpand M* = N (es + h” + h‘) M are the equiv-
alent ax1a1 load and bending moments, respectively, and Yy = ((’2‘;;” (eo + ’ﬁ + h—‘)

and y3 = E 1)) ; eo and e, are the locations of neutral axes of the whole specimen and

the substrate, Flg 4b; (EA); and (EI); are generalized axial and flexural rigidities of
the debonded portion “D”, substrate “S” and whole specimen “0”,i.e. i = D, S, 0.

In the model, we assume that the principal axes of material orthotropy of both the
debonded face sheet and the core are aligned with the co-ordinate axes of the spec-
imen. The generalized Youngs moduli associated with the orthotropy directions of
each the material along the x-axis of the beam define the generalized stiffness values
mentioned in (31). The material properties of the sandwich specimen constituents
related to the coordinated system in Fig. 4 are summarized in Table 1.

A 2-D finite element model of the DCB-UBM specimen is developed using eight-
node reduced integration plane strain finite elements (CPE8R) available in ABAQUS,

Table 1 Material properties of the DCB UBM sandwich specimen

Constituents Material constants
GFRP face sheet E, = E; =16.5GPa; E;, = 3.8 GPa; G,y = G,; = 1.3 GPa;
Gy; = 6.6 GPa; vy, = 0.05; vy; = vy, = 0.25; p = 1650 kgm™3
PVC H 100 foam core Ey =Ey=E; =105MPa; G,y = G,; = Gy; = 78 MPa;
Vyy = Vyz = vy = 0.325; p = 100 kgm™3
G-VE/H 100 interface ki =ki; = ky;; = 100 GPa; G . = 400 Jm™2;
Grie =Gyrre =500 Jm_z; T; = 10 MPa; T;; = Ty = 20 MPa

(a) (b)

Fig. 5 Finite element models of the DCB UBM specimen: a 2-D model; b 3-D model
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Fig. 5a. The mesh contains a refinement near the crack-tip region as shown in Fig. 5a.
A more complex 3-D finite element model of the specimen has also been elaborated.
A layer-wise shell-solid approach for 3-D modelling of sandwich panels [14] is
used. Eight-node reduced integration quadrilateral continuum shell elements (CS8R)
obeying the assumptions of the FSDT theory and eight-node hexahedral (brick)
elements (C3D8R) are utilized for the discretization of the face sheet and the core,
respectively, as shown in Fig. 5b. In the calculations, bending moments are applied
to the arms of DCB-UBM specimen at the points of the arms neutral axes, Fig. 5a.
Coupling kinematic constraints between the nodes of the arm edge and the points
of neutral axis are used to enforce equal rotation of the entire edge. The debonded
region of the specimen is modelled by a real gap of 1% along the damaged interface.
The contact and friction conditions similar to (6) and (7) are introduced between the
faces of finite elements along the pre-cracked interface. The contact behaviour under
the assumptions of small displacement kinematics was assumed to be governed by
the hard contact model with frictionless conditions [49]. In the case of the explicit
dynamic analysis (10) the contact constraints were resolved using the kinematic
predictor corrector method [49, 53], while the penalty contact algorithm was used
for tracking contact in the case of the implicit dynamic analysis (11) as described in
[49, 54].

3.1.1 A Stationary Crack Under Quasi-static Loading

To demonstrate the performance of the developed finite element models, steady
state ERRs, ¥, for a variety of moment ratios are computed by using both the J-
integral option of ABAQUS [49] and the CFD method realized by post-processing
the finite element results with an add-on subroutine in Matlab® environment. In the
calculations, the bending moments were either rotated in opposite directions or co-
rotated, but in all the cases they induced nearly the same ERRs. The results computed
numerically were compared with those found using the analytical formula (31). A
good agreement between the both solutions has been achieved as seen in Table 2,
where, also, the phase angle @ computed within the framework of the CFD method
with the Matlab subroutine is presented.

Table 2 Calculations of the ERR and the phase angle with respect to the moment ratio Mg

M; (Nmm) 75.6 103.42 123.4 104.13  |73.8
M; (Nmm) —15122 | —10342 |—1234 1041.3 1476
Mg —0.05 —0.1 —-1.0 0.1 0.05

ERR @FEM (N/mm) 0.399 0.399 0.403 0.399 [0.377
@Al (N/mm) 0.351 0.363 0.376 0.365 |0.332

Phase angle| ¢ (°) 30.26 11.31 —17.16 —51.87 —70.71
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(a) (b) (e)

Fig. 6 Contour plots of the stress components at the crack tip of the DCM-UBM specimen w.r.t.
the moment ratio Mg of: a —0.05; b —0.1; ¢ —1;d 0.1; and e 0.05

The contour plots of the stress tensor components associated with the moment
ratio My listed in Table 2 are illustrated in Fig. 6, where the first row of the images
corresponds to oy, the second and third ones show o7,, and o, respectively. A
complicated nature of the near-tip stress field is clearly observed there. One can see
that the shear stress exists in the vicinity of crack regardless of the loading case as seen
in the third row of Fig. 6. This is an apparent evidence of the mode mixity condition
being expected in sandwich type structures. The sign of the shear stress ahead crack
may be used to define a favourable direction of interface crack propagation of the
bi-material interface crack as mentioned in [27, 66]. The presence of the shear stress
in the near tip region explains the differences in computations of the ERRs between
the analytic formula and the FEM model. The former is not able to take into account
the shear effect.

The 3-D model was adopted to study a distribution of the fracture parameters
across the specimen width. For this purpose, a 3-D version of the J-integral available
in ABAQUS and the CFD method have been used. Herewith, to apply the CFD
method for the computations, the crack front of the specimen was cut in 12 sections
through the width, and the Griffith energy and the mode mixity have been calculated
in those locations using the formula (29) and (30). In Fig. 7 the width-wise variation
of both the ERR and the phase angle and, also, the comparisons between the 2-D and
3-D models are illustrated. A large deviation between the 2-D and 3-D predictions is
found for the phase angle values calculated in the middle part of the specimen width.

Also, the calculations showed that the displacement and stress fields computed
using the 2-D and 3-D models are nearly identical as seen in Fig. 8, i.e. it has
been proven that the 2-D model is valid for simulations of fracture. Thus, the 2-D
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Fig. 7 The width-wise variation of the fracture parameters: a the ERR; b the phase angle
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Fig. 8 The comparison between 2-D and 3-D models: a transverse displacements; b o1, stresses

model is used in subsequent dynamic fracture analyses due to its substantially lower
computational cost in comparison with the 3-D model.

3.1.2 A Stationary Crack Under Dynamic Loading

In the dynamic fracture analyses, the influence of inertia on the fracture parameters
is considered as direct outcomes of the calculations. The dynamic ERR and dynamic
SIFs are computed in the same way as for a static case, but dynamic mechanical fields
calculated at each time increment are used instead. For the sake of simplicity, the
materials of the sandwich specimen constitutive layers are reduced to linear isotropic,
defined by elastic constants in the direction of x-axis, thatis, E, and v, characterize
their mechanical properties. Then, the dynamic SIF components are computed using
the interaction integral method implemented in ABAQUS.

First, the effects of impulse loading on the transient dynamic SIFs are examined.
The bending moments are applied to the sandwich specimen arms as two impulses.
Several types of the impulses of different forms such as a step function, a rectangular
pulse and a triangular pulse and durations related to the values of #,, which defines
either a time of rising (aramp time) of the step function or a time of the pulses duration,
have been used in the calculations. The dynamic SIF components normalized by the
corresponding static values of the SIFs versus time are presented in Fig. 9, where the
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Fig. 9 Transient dynamic SIFs: a step loading with fo = 1 ms; b step loading with #p = 0.1 ms;
¢ rectangular pulse with #p = 1 ms; d rectangular pulse with 7y = 0.1 ms; e triangular pulse with
to = 1 ms; f triangular pulse with 7o = 0.1 ms

plots in the columns are related to different 7y of 1 ms and 0.1 ms, respectively, and
those in the rows correspond to the different forms of the pulses. One can see that
the transient dynamic SIFs oscillate due to an evident effect of inertia. The latter is
so remarkable that the dynamic SIFs exceed their static counterparts for all cases of
impulse loading. Herewith, both the impulse duration and the impulse form strongly
affect the dynamic SIFs. Moreover, it is obviously from the predictions that dynamic
loading generates a significant mode II component, which is much larger than that
in the static case.

Next, it is assumed that the specimen is subjected to the bending moments varying
harmonically in time with driving frequencies, which could be either fraction or
multiplier, § = 2 /w; (1/2, 3/2, 3, 5) of the fundamental frequency of the same
intact sandwich beam. The frequency w; was computed as 130.42 Hz. A long-term
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behaviour of the dynamic complex SIF components is illustrated in Fig. 10, where the
unsteady oscillations are included as well. The numerical results reveal that the long-
term dynamic SIFs highly depends on the driving frequency value. The amplitude
of the dynamic SIFs tends to increase with increasing the driving frequency. Also,
the form of oscillations of the SIFs changes from a regular form at the low driving
frequency in Fig. 10a to irregular ones at the higher driving frequencies as shown
in Fig. 10b—d. Similar to the case of impulse loading, the intensity of shear stress
is substantial in the harmonically loaded specimen as well, but it depends on the
driving frequency.

3.1.3 Crack Propagation Analyses

In crack propagation analyses the cohesive elements, embodying the idea of the
cohesive zone, in conjunction with appropriate contact algorithms are used to sim-
ulate the debonding behaviour in the sandwich DCB-UBM specimen. Four-node
zero-thickness cohesive elements (COH2D4) available in ABAQUS for 2-D models
were inserted into the finite element mesh between the CPE8R  solid elements rep-
resenting the face sheet and core of the specimen in Fig. 5a. The materials of the
basic elements were assumed to be orthotropic linear elastic with parameters defined
in Table 1. The CEs have been endowed with the properties of the face sheet/core
interface listed in Table 1. The bi-linear TSL introduced in Sect.2.2.2 was used for
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Fig. 11 Quasi-static debonding propagation: a force-displacement curve; b deformation state and
stress contour plots at the beginning of the debonding; and ¢ deformation state and stress contour
plots at the end of the debonding

modelling the debonding process. Tied constraints were applied to link the cohesive
and solid elements together. In the case of contact, the hard contact model with no
friction was exploited. This contact model defining the initial pre-cracked interface
was then extended onto surfaces newly appeared along the interface due to cracking.
It also was assumed that a presumed crack path is confined only the face sheet/core
interface, i.e. no kinking is considered. The calculations have been performed under
displacement-controlled loading, i.e. the specimen arms were subjected to prescribed
rotations. Explicit time integration scheme with kinematic contact algorithm was
used for the simulations of impact loading, while implicit time-stepping algorithm
with penalty contact method was exploited for the simulations of quasi-static and
long-term dynamic responses.

First, the case of quasi-static pure bending induced by prescribed rotations is
simulated and force-displacement curve is extracted from the finite element solution
as shown in Fig. 11. From this plot, one can see that the interface crack propagates
between the face and the core in a stable manner as expected from this test method.
Also, it is worth to note that the near crack tip stress field during the debonding
growth involves both the normal and shear components as seen in Fig. 11c. This
stress state is qualitatively similar to that in the linear phase of deformation of the
specimen (Fig. 11b) except for a larger zone of negative shear stress beneath the
crack tip which increases with increasing the crack length.
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Fig. 12 Debonding propagation under the impulse loads: a debonding extension vs. time curve; b
deformation state for the case of 75 = 0.01 s at an instant of # = 3 ms; ¢ deformation state for the
case of 1p = 0.01 s at an instant of # = 5 ms; and d deformation state for the case of 1o = 0.01 s at
an instant of = 20 ms

Next, the impulsive rotations of different durations, #;, but the same step function
like forms are applied to the DCB-UBM specimen. For all cases of loading, the
same rotation magnitude is held. In Fig. 12a the simulations demonstrate that the
total debonding extension increases with decreasing the impulse duration and for the
shortest impulse load a complete disintegration of the specimen occurs. In the cases
of loading without final failure, the debonding extends with a relatively constant
speed after a short interval of fast growing. This time interval of fast crack speed
becomes shorter with decreasing the pulse duration. The deformation and stress states
of the specimen at different instants of time for the loading pulse with 5 = 1 ms are
presented in Fig. 12b—d.

Finally, the sandwich specimen is subjected to harmonic rotations with a given
driving frequency accepted as high as 3/2 of w,;. The analysis was limited by 3000
increments and was lasting at least 100 increments after the steady state oscillation
regime had been achieved. The results of simulation of the debonding behaviour
under harmonic loading are shown in Fig. 13. It is seen that in this case the debonding
propagates in a stick-slip manner, i.e. by jumping from one debonded state to another
one. Moreover, the simulations revealed that the interface crack was intensively
growing when the detached vibrating face sheet had the form of a concave downward
curve, Fig. 13c. In doing so, the induced shear stress in the vicinity of the crack tip
took values of different signs through the interface, Fig. 13c. This is associated with
a mode II dominated regime. Unlike this situation, only small extensions of the
debonding were observed in a mode I dominated state, shown in Fig. 13b.
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Fig. 13 Debonding propagation under the harmonic load: a debonding extension versus time curve;
b deformation state and stress contour plots at mode I dominated debonding; and ¢ deformation
state and stress contour plots at the mode II dominated debonding

3.2 Rectangular Panel with a Circular Debonded Zone

To simulate debonding growth in a sandwich plate with a central penny-shaped
debonded zone, the 2-D finite element model elaborated earlier was extended to
a three-dimensional case. The finite element model of a tri-layer debonded plate
was developed in ABAQUS using the layer-wise shell-solid approach [8] with an
additional layer of eight-node 3-D cohesive elements (COH3D8) inserted into the
interface between the shell continuum elements SC8R representing the face sheet
and the solid continuum elements C3D8R discretizing the core. The TSL used in the
previous 2-D cohesive zone model was generalized for the 3-D cohesive elements
following the relations in Sect. 2.2.2. The surface-to-surface contact definition within
the small-sliding displacement kinematics was used to model the hard pressure pen-
etration law and the Coulomb friction law. The contact constraints were imposed on
both the surfaces of the initially debonded region and the surfaces underlaying the
cohesive elements along the face sheet/core interface.

One configuration of the sandwich plate is used throughout the current study. It is
a simply supported rectangular sandwich plate of 180 by 270 mm x mm consisting
of a 50 mm-thick WF51 foam core and of 2.4 mm-thick GFRP face sheets, which is
weakened by a penny-shaped debonded zone of a radius of 39.3 mm at a plate centre.
The constituent bulk materials of the plate are assumed to be orthotropic linear elastic
with the material constants listed in Table 3. The cohesive layer obeying the 3-D bi-
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Fig. 14 Sketches of: a a half of the finite element model of sandwich plate; and b graphs of
prescribed displacements

linear constitutive law adopts the fracture parameters and the interfacial strength
values associated with the resin-reach interface as defined in Table 3.

3.2.1 Impulse Loading

The debonded sandwich plate is assumed to be loaded by a prescribed impulsive
displacement U at the centre of detached upper face sheet, Fig. 14a. The impulses
had the form of a step function with various durations of the ramp time #; (a ramp
time) defining the loading rate, v; (i = 1, 2, 3) of the applied displacement (see
Fig. 14b), i.e. the shorter is the ramp time, the larger is the loading rate. The total
opening displacement is supposed to be the same for all cases of loading and when
this displacement is achieved, it is held constant during the analysis. Also, the loading
rates were estimated relatively to the Rayleigh wave speed of a more compliant foam
material, which was found as 107 mm/s. Although, the dynamic crack propagation
is analysed, static critical ERRs have been used in the fracture criteria defined for
the TSL of the cohesive elements due to deficiency of experimental data for this
problem.

Table 3 Material properties of the sandwich plate

Constituents Material constants

GFRP face sheet E, = E; =193 GPa; E, = 3.48 GPa; G,y = G,; = 1.65 GPa;
Gy, = 7.7 GPa; vy, = 0.05; vy, = vy, = 0.25; p = 1468 kgm >
WF51 foam core Ey, = Ey = E; =85MPa; G, = Gy; = G,; = 78 MPa;

Vyy = Vxz = Vy; = 0.325; p =52 kgm 3

Resin interface k; = ky; = krrp = 100 GPa; Gy = 375 Jm™2;

G[[,; = G][]C = 2125 Jm_2; T[ =3 MPa; T[] = T[” = 17.2 MPa
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Fig. 15 Debonding propagation under impulse loading: a static case v = 0; b v; = 10> mm/s;
¢ v = 10* mm/s; d vz = 10° mm/s at 1 = 0.001 ms; f v3 = 10° mm/s at 7 = 0.01 ms; g v3 =
10° mm/s at f = 0.1 ms; and h vz = 105 mm/s at 7 = 1 ms

Figure 15 shows the debonding area being grown under the impulsive displace-
ments of the different rates. One can see that the debonded area increases with
increasing the loading rate. Moreover, it was found that the inertia effect is minor
for the first two rates of the loading, i.e. the quasi-static approach still remains valid
for them. However, when the rate of the applied impulsive displacement increases
to a value Us comparable with the Rayleigh wave speed, oscillations produced by
incident and reflected stress waves become very strong inside the sandwich plate, i.e.
inertia contributes much into its dynamic behaviour. As a result of the inertia effect, at
the beginning of loading the debonding was postponed growing in comparison with
the two previous cases, but after few a while the induced dynamic stresses promoted
the debonding to advance up to the end of the analysis as shown in Fig. 15d-h.

Fig. 16 Debonding propagation under harmonic loading:at =0 ms; bf=1ms;ct =3 ms; d
t=5ms;et ="7ms;andf ¢t = 10 ms
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3.2.2 Harmonic Loading

Because a long-term cracking resistance is of concern rather than particular transient
events, the debonded sandwich plate is considered to be subjected to harmonic load-
ing. A concentrated force of the amplitude of 10 N oscillating with the frequency of
1000 Hz, which is less than the fundamental frequency of the same intact sandwich
plate (about 1300 Hz), was applied to the centre of the bottom face sheet perfectly
glued to the core. The results of the simulation of debonding growth are illustrated
in Fig. 16, where the form and size of the debonded area are shown at different
instants of time. As seen in the plots, the debonding grows with time. However,
unlike the impulse loading, where the debonded area was increasing continuously
with time and was spreading relatively uniformly in all directions, in this case the
debonding advances in a stick-slip manner. The debonding becomes spontaneously
growing and spreading in certain directions depending on the dynamic stress state at
a current instant of time. In turn, the stress field in the debonded sandwich plate is
very complicated because it combines incident and reflected stress waves which are
generated by both the external harmonic load and due to intermittent contact between
the detached face sheet and the core.

4 Conclusions

A finite element methodology to simulate the debonding of the face sheet from the
core in sandwich panels under dynamic loading is presented. The main features of the
problem are highlighted. A finite element implementation of the cohesive zone model
accounting for contact and friction is used to model the dynamic fracture of sandwich
panels. The interaction integral and crack flank displacement methods exploited for
computing the fracture parameters of the face sheet/core interface crack such as
complex SIFs, energy release rate and phase angle are reported. The applicability
of the numerical schemes described in the present work is assessed by performing
2-D and 3-D finite element fracture analyses with ABAQUS for both the fracture
specimen DCB-UBM and the sandwich plate with a central penny-shaped debonded
zone.

A stationary debonding of a sandwich material consisting of orthotropic linear
elastic constitutive layers within the DCB-UBM test is firstly considered. A two-
dimensional finite element model has been used for predictions. The character of
the stress field in the vicinity of the interface crack tip and the value of extracted
fracture parameters have been examined over a wide range of bending moment
ratios applied to the specimen. As revealed the stress profile shows a strong coupling
between normal and shear stresses regardless the loading type, i.e. material-induced
mode mixity of a bi-material interface crack has clearly been demonstrated. The
dependence of ERR and phase angle on the mixed mode conditions has been shown as
well. Moreover, the simulations with the 3-D model illustrated a width-wise variation
of the mentioned fracture parameters. Secondly, the DCB-UBM sandwich specimen
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with stationary debonding has been studied under dynamic impulsive and harmonic
loads. The 2-D dynamic virtual tests showed that significant mode II component is
generated during dynamic loading. In addition, it was found that the dynamic SIFs
are strongly dependent on both the form and duration of the impulses and the driving
frequency.

The predictions of debonding propagation in the DCB-UBM specimen proved a
stable character of the interface crack growth under quasi-static loading as expected
from the analytic considerations. In contrast to this, the simulations of the specimen
under dynamic loading have demonstrated an unstable debonding propagation, espe-
cially in the cases of the high rate impulse or harmonic loading at the high driving
frequency. In all those cases, it was clearly observed that the debonding growth is
associated with mode II dominated fracture.

The influence of dynamic loading on the debonding behaviour in sandwich plates
has been examined using 3-D finite element models. The essential role of the load-
ing rate on the debonding behaviour in the sandwich plate has been established by
comparing the responses of the plates subjected to step function-like impulses of
different intensities. The initial delay in the debonding growth and then its extensive
advance due to inertia effects have been found in the cases of high rate impulse
and harmonic load acting at high driving frequency. Also, a spontaneous debonding
growth (a stick-slip behaviour) in the sandwich plate under harmonic loading has
been observed. As found, this behaviour is governed by a complicated dynamic stress
field at a current time instant, where the stresses evolve with time as a combination
of incident and reflected stress waves generated by both the external harmonic load
and intermittent contact between the detached face sheet and the core.
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On Dynamic Boundary Conditions )
Within the Linear Steigmann-Ogden L
Model of Surface Elasticity and Strain
Gradient Elasticity

Victor A. Eremeyev

Abstract Within the strain gradient elasticity we discuss the dynamic boundary
conditions taking into account surface stresses described by the Steigmann—Ogden
model. The variational approach is applied with the use of the least action functional.
The functional is represented as a sum of surface and volume integrals. The surface
strain and kinetic energy densities are introduced. The Toupin—Mindlin formulation
of the strain gradient elasticity is considered. As a result, we derived the motion
equations and the natural boundary conditions which include inertia terms.

1 Introduction

Nowadays the interest to modelling of surface phenomena is growing with respect
to developments in manufacturing of micro- and nanostructured materials. Among
the surface-related phenomena approaches the models of surface elasticity by Gurtin
and Murdoch [18, 19] and by Steigmann and Ogden [34, 35] are often used for
modelling of micro- and nanostructured materials, see, e.g., [9, 13, 20-22, 37, 38]
and the reference therein. The presence of surface stresses changes essentially the
natural boundary conditions and the properties of solutions of the corresponding
boundary-value problems, see [3, 12, 24, 32].

Here we consider the dynamic boundary conditions which follow from the least
action principle as natural ones. We use here the linear Steigmann—Ogden model of
surface elasticity. The peculiarity of the model is the dependence of the surface strain
energy on second derivatives of displacements. So for consistency with the material
behaviour in the bulk we use the strain gradient elasticity introduced by Toupin [36]
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and Mindlin [28, 29], see also [30, 31] and more recent works by Eringen [16];
Aifantis [2]; Maugin [27]; Bertram [5]; Eremeyev et al. [14]. Let us also note that
the strain gradient elasticity is also used for modelling of the material behavior at the
nanoscale, see, e.g., [6, 23]. Unlike the classic linear elasticity the dynamic boundary
conditions here include not only spatial derivatives of displacements but also their
time derivatives. So inertia terms play a role also in boundary conditions.

2 Constitutive Relations

In what follows we consider the case of small deformations. As a result, the kine-
matics is described through the displacement vector

u=u(x,1),

which is a differentiable vector-function of the position vector x and time ¢.
For a hyperelastic solid we introduce the surface and bulk strain energies as follows

U =UE,x), W =WI(eKk), (1)
where the strain measures are given by

e=e() =3(Vu+Vu'), k=VVu,
e=e@) =1(Vyu-A+A- V'),
n=3xW)=1(V;» A+A-V®"), 9=Vw+B u

Here w = u - n, “-” denotes the scalar product, B = —V;n is the tensor of curvature,
n is the unit outward normal to the body boundary 0V, and we introduce the spatial V
and surface V; nabla-operators, Vi = A - V, A =1 — n ® n, L is the 3D unit tensor.
Hereinafter we use the direct (coordinate-free) tensor calculus as in [14, 25, 26, 33].
Examples of %7 and # can be found in [5, 8, 12, 38]. A particular class of strain
gradient media are Korteweg fluids, see [4, 11]. Here we will not specify the form
of these functions.
We introduce the following stress measures

oW oW o o
=—, tT=—, T=—, M= —.
oe ok e 0x

Here o, T, T and M are the stress, hyper-stress, surface stress and surface couple
stress tensors, respectively. Note that tensors o, T and M are symmetric second-order
tensors, and T and M satisfy to relations

n-T=0, n-M=0.
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For dynamics we define the surface kinetic energy as a quadratic function of the
velocity v = 1 and its surface gradient

%:%mv-v+%V3V:J0:VSV+VSV:J1~V,

where m is the surface mass density, the overdot stands for the derivative with respect
to t, Jo and J; are forth- and third-order tensors of surface microinertia, respectively.
Here for arbitrary second-order tensors X and Y we introduce the scalar product
operation as follows

X:Y=t(X-YD).

Note that Jy and Jy have the following properties
n-Jo=0, Jo:m®a)=0 VvVa, n-J, =0. 2)
The kinetic energy in the bulk takes the following form
H = %,OV~V+%VVZK():VV~I—VV:K1 -V,

where p is the mass density, Ky and K are forth- and third-order tensors of microin-
ertia, respectively.

3 Hamilton’s Variational Principle

In order to obtain the natural boundary conditions we use the Hamilton variational
principle (the least action principle). For the least action principle in strain gradient
media we refer to [1, 4] and the reference therein. Here the functional is given by

15)
Hiu] = f (K — E) dr, 3)
151
where
K:KS+KB, E:B+S,
and

Ks=/%/sd5, ngfde
A v

]B%:/V/(e(u),k(u))dV, S:/%(s(u),x(u))ds.
v A
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Here A C 9V is the part of the body surface where the surface stresses are defined,
t; and f, are two time instants. Functionals B and S are the energy and surface
energy functionals, respectively. For simplicity we omit here external loading. In
other words, we consider a free surface with surface stresses.

Using standard calculus of variations from

SH=0

with constraints
Su =0, Su =0,

1=t 1=t

we intend to derive the natural boundary conditions at A and its contour d A. Here
du is a vector of admissible virtual displacements.

In what follows we are restricted ourselves by smooth enough surface and contour,
that is without edges and corner and end points.

3.1 First Variation of the Kinetic Energy Functional

Let us consider the calculations of the first variation of the kinetic energy. In order

to find
%)
1) / Kpdt
1

we successively consider all terms in .. First, we get

15 n
5/[ %pv-vdth:f/pv-&'ldth
\4 \%4
I 151

__ / / (ov) - Sudvdr. @)
|4

For the second term in ¥~ we have

15 [5)
5// %VV:KO:VVdth:/[VV:KO:VBﬁdth
Vv Vv
I 1

15}

=— // (Vv :Kp) : VéudVdr
14

1
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%) 15}
= // V- (Vv:Kpy) -dudVdr —/f n-(Vv:Ky) -éudSdr. (5)
v av
13

Note that in (5) we used twice the integration by parts. Finally, we get the first
variation of the third term

15 15}
8//VV:K1~Vdth://[VV:K1~81'1+V8l'1:K1oV]dth
v 1%
%)
—/f [(VV:KI)'-8u~|—V8u:(K1-V)'] dvde
1%

://[V-(Kl~v)'—(VV:K1)']~8udth—// n- (K;-v) -SudSdr.
14 A%

(6)

As a result, we obtain

%) %)
S/Kgdt=// [—(ov) + V- (Vv:Ko) + V- (K;-v) — (Vv:K))]-sudVdr
\%4
[5)
—// n-[(Vv:Ko) + (Ki-v)]-sudSdr. 7
aVv

In a similar way we find the first variation of the surface kinetic energy

/stt // —(mv) + Vs - (Vev:Jo) + V- J1-v) — (Vsv: Jl)] sdudSdr
// [(Vsv:Jo) + 1 - v)] - Sudsdr. ®)

Here v is the unit normal to d A such that v - n = 0. Note that here we used (2)
and formula (31) of the integration by parts.
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3.2 First Variation of the Surface Energy Functional

We have

5S[u] =/ 8% (e(n), 2(u))dS = / (ﬁ 1 8¢ + % : 8}:) ds
A A e 03¢

=/(T:8£+M:8%)dS. ©)
A

Here & = £(6u) and 63 = 32(Su).
With identities

T:8e =T: (Vidu-A) =tr[T-AT - (V,su)' ] =tr [T - (V,8u)’]
=T : (V,éu)

and applying the surface divergence theorem (31) we integrate by part the first term
in the line integral in (9) as follows

/T:Sst:—/(VS~T)-8udS+/ v-T-Suds. (10)
A A aA
In a similar way we get
/M:SedS:/M:(VX(Sz?)dS
A A
=—/(V5~M)~819dS+/ v-M- 59 ds. (11
A 9A

Substituting into (11)
8% = Viéw+ B - du (12)

we have
/M:Bst:—f(V_Y-M)~B~8udS—/(VX~M)~V‘Y8wdS
A A A
+/ v-M-.8%ds
3A
:—f(VS-M)~B~8udS
A
+f [V (Vs - M) +2Hn - (Vs -M)]éwdS
A

—/ v- (Vs -M)dwds
IA
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osw ad
+ vM-B-du+v- M-v— — — (v-M-1)déw| ds.
dA av as
(13)

Asn - (V- M) # 0, for integration by parts we applied here Eq. (30). Here we also

use the representation of V;

\% 9 +1T 9
s =V — >
av as

where t is the unit vector tangent to dA, and % and % denotes the normal and
tangent derivatives, respectively. Additionally, in (13) we performed the integration
by parts along 0 A to exclude %Sw.

Finally, the first variation of S takes the form

88:/[—VS~T—(VX~M)~B+VS-(VS-M)n+2Hn~(VS-M)n]~8udS
A
0
+/ [v-T+v~M-B—v-(VX~M)n—8—(v-M-t)ni|~8uds
9A s

asw
+ [ v Mg (14)
9A ov

Using the identity
V-(a®b)=(V-a)b+a-Vb

we prove that

Vi - (Vs -M)n =V; - [(Vy - M)n] — (V- M) - Vin
=V, [(Vs : M)n] + (Vs : M) -B.

As aresult, Eq. (14) transforms into a more compact form
3S =/ [V [T— (Vs -M)n]+2Hn - (Vs - M)n] - SudS
A
0
—i—/ [v-T—i—v-M'B—w(VS-M)n—8—(v-M-r)n] -duds
aA s
a6
+/ v-M-v 22 s, (15)
A ov

Similar variational technique was used in the case of statics of simple elastic solids
within the Steigmann—Ogden model in [38]. The static boundary conditions for strain
gradient fluids with surface stresses as in Gurtin-Murdoch approach were derived by
Eremeyev and Altenbach [11]; Eremeyev [10]. Let us also note that S = O results
in static equations which are similar to ones used in the Kirchhoff-Love shell theory,
see Lebedev et al. [25].
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3.3 First Variation of the Strain Energy in the Bulk

In the bulk we have

e
de ok

5B[u] =/ S (e(u), k(u)) dV =/ ( .-.5k> av
\%4 |4

=/ (@ : e+t .- 0Kk dV. (16)
|4

Here ée = e(5u), 5k = VV(Su), and “.*.” stands for the inner product in the space
of third-order tensors.
Using the identity o : §e = o : Véu and applying the divergence theorem we get

/a:(SedV:/ n-a-éudS—/(V~a)~8udV. a7n
v av 4
In a similar way we have

ft.'.Sde:/ n~r:V8udS—/(V-1:):V8udV
1% av v

=/V-(V-t)~6udV—/ n-(V-1)-suds
|4 A%

—i—/ n-t:VéudS. (18)
av

With the surface divergence theorem the last integral can be transformed as follows:

06
[ n~1::V5udS:/ |:n-t:VX8u+n-1::<n®—u>:|dS
av av on

:/ v-(m-7)-duds
3V
—/ [Vi-(n-t)-du+2HM®@n) : T -5u] dS
av

35
+ | men:t s,
v 8n

Here f—n denotes the normal derivative whereas 90V means a contour which bounds
aV if it exists or edges in the case of non-smooth surface. In what follows we assume
that 9V = A and, therefore, 00V = 0A.
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As aresult, Eq. (18) takes the following form

/t.'.Bde:/V-(V~t)-8udV
v 14
—i—/ v-(n-71)-duds
EENG
déu
+ m®n):t.-—dS
AV Bn
—/ n-(V-t)-éuds
av
— [Vi-(n-t)-6u+2HM®@n) : T -5u] dS.
av
Thus, summarizing we have
8B[u]=—/[V-U—V~(V-r)]-8udV
14
+/ v-(n-t)-duds
vV
aéu
+ m®n):t-—dS
vV on

+ m-fco—V-t]—-V,-(n-7) —2HMm®n) : t}-dudS (19)
av

Let us note that the variational equation §B[u] = O results in the homogeneous equi-
librium equations and natural boundary conditions for linear strain gradient media,
see, e.g., [5, 14] for more details.

3.4 Motion Equations and Natural Boundary Conditions

Summarizing (7), (8), (15) and (19) we obtain the following rather awkward expres-
sion of the first variation §H:

8H:f/ [—(pv)'+V~(VV:K0)'+V~(K1-V)'—(VV:KI)'
14
+V-0 —V-(V-1)]-dudVdrs
+// [_(mv).+vs'(VsV:J0)‘+Vs'(JI'V)‘_(VsV:JI).
A

—n-[(Vv:Kp) + (K; - v) ]
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+ V[T - (Y, -M)n] —2Hn - (V, - M)n
—n-lc—V-1]4+V,-(n-1)+2HM®n) : t]-sudSdr

5]

a6
—//(n@n):t-—udet
A Bn

+// {—v~[(VSV:JO)'~|—(J|~V)']—v~(n~1:)
dA

0
—|:v-T+v-M-B—v-(VS-M)n—a—(v-M-r)n:H~8udsdt
S

5]
R
_// v M2 dsdr. 20)
S Joa v
1

Following standard technique of the calculus of variations from éH = 0 we get
the motion equations in V

V.o—-V-(V-1)=pii— V- (Vii:Kp) — V- (K;-ii) + Vii : K;. (21)
From §H = 0 we also get the homogeneous boundary conditions on A

mi— V- (Vi : Jo) = V- (J1-i) + Vi : J; +n- [Vii: Ky + K| -]

=V, -[T—(Vy-M)n] —2Hn - (V, -M)n
—n-lc—-V-t]+V,-n-7)+2HM ®n) : T, (22)

m®n):t=0. (23)

Neglecting the microinertia terms that is when
Ko=0, K =0, Jp=0, J =0,
Egs. (21) and (22) take more simple form
V.o —V-(V-1)=pi, (24)

mi=V,-[T—V,-M)n] —2Hn- (V;-M)n
—n-lc—-V-t]+V,-n-t)+2HMQ®n) : T, 25)

In the case of statics and for simple materials that is if T = 0, Eq. (25) coincides
with the boundary conditions presented by Zemlyanova and Mogilevskaya [38]

V- [T—(Vy-M)n]—2Hn - (V- M)n=n-o. (26)
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For the Gurtin-Murdoch model and for simple materials that is if M = 0 and
t = 0, instead of (22) we have

Vi-T=n-o + mii. 27

As was shown by Eremeyev et al. [13] the presence in (27) the dynamic term mii
results in new type of surface waves, which do not exists in the standard elasticity.
These antiplane surface waves exist also within the Toupin—Mindlin strain gradient
elasticity, see [17] and the comparison of these waves with ones in media with surface
stresses given by Eremeyev et al. [15].

The analysis of the natural boundary conditions along d A requires further assump-
tions on the kinematics at 9 A and behaviour of admissible variations. So we will con-
sider this analysis as well as analysis of dynamic boundary conditions along edges
and at the corner point will be given in the forthcoming papers.

4 Conclusions

With the use of the least action principle we derived the motion equations and the
natural boundary conditions on a free surface with surface stresses and discussed
it along contours. Here we consider both strain gradient elasticity in the bulk and
the Steigmann-Ogden model of surface elasticity. The natural boundary conditions
include inertia terms which may change the wave propagation in such media. In
particular, these inertia terms are responsible for new type of surface anti-plane
waves, see [13, 15]. Here we have also the inertia terms in conditions along possible
edges. The further analysis of the dynamic conditions along edges can be provided
as was done by dell’Isola and Seppecher [7]; Eremeyev [10].

Acknowledgements Authors acknowledges financial support from the Russian Science Founda-
tion under the grant “Methods of microstructural nonlinear analysis, wave dynamics and mechanics
of composites for research and design of modern metamaterials and elements of structures made
on its base” (No 15-19-10008-P).

Appendix: Surface Divergence Theorems and Integration
by Parts

For integration by parts we used the surface divergence theorem. Here we recall
two statements, see, e.g., [14, 25] for details. Let X be a continuously differentiable
tensor-valued field given on a smooth surface A with the smooth contour 0 A. Then
the following statement is valid

f(vs.XJran.X)dS:/ v - Xds, (28)
A dA



206 V. A. Eremeyev

where 2H = tr B is the mean curvature, B = —V;n, n is a unit normal to A, and v
is outward normal to 0 A such thatv - n = 0.

Ifn-X = 0or H = 0 then we get the following reduced form

/V5~XdS:/ v - Xds. (29)
A A

Using (28) we get the following formula of integration by parts

/X:VSde:/ v-X-yds—/[(VS~X)~y+2Hn~X-y]dS (30)
A A A

for ant fields X and y. In particular, if n- X =0 or H# = 0 we have more simple
relation

/X:Vsde:/ v~X-yds—/(Vs-X)~de. 31)
A 0A A
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Simple Energy Control m
in Frenkel-Kontorova Model e

Alexander L. Fradkov, Egor V. Usik and Boris Andrievsky

Abstract In the paper the energy control problems for Frenkel-Kontorova Model
are posed and their connection to the pendula chains control is discussed. Speed-
gradient based energy control algorithm is proposed and analyzed. Simulation results
illustrating the convergence of the proposed algorithm are presented.

1 Introduction

The celebrated Frenkel-Kontorova (FM) model since its first appearance in the paper
by Ya. I. Frenkel and T. A. Kontorova in 1938 is getting more and more popular as
a tool for description and analysis of nonlinear effects (solitons, kinks, breathers,
etc.) in complex physical systems [1]. It has a variety of applications to study of
dislocations in the crystalline structure of a solid body, study of friction mechanisms
at nanoscale, to study of biological chains e.g. DNA), etc. In many cases, the elements
of the FK model really correspond to real atoms, but they can also to simulate
whole groups of atoms, as in the case of DNA type molecular chains, they can
correspond magnetic circuit backs or even describe some complex objects such as
point Josephson contacts in some lattice.
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As a model of the motion of a dislocation in a crystal the FK model takes into
account two chains of atoms, which are an approximation of two layers of atoms,
with the bottom layer of atoms being replaced by a sequence of hills and hollows.
In the hollows there are balls connected by elastic springs. Thus, the interaction of
balls — “atoms” between themselves and with the bottom layer of “atoms” is taken
into account [1].

The ultimate case of dislocation is the “hole” in the crystalline lattice. Such a hole
can move through the crystal. To flip a nearby atom to an empty space, one needs to
“swing it” so that it can break away from the surrounding atoms. A defect in which
atoms around the “hole” are also shifted is easier to move.

One of the simplest macroscopic models describing the dynamics of the FK model
was first proposed by Alvin Scott [2, 3]. This is an experimental mechanical trans-
mission line, which is an effective pedagogical tool for observing kinks and study
their remarkable properties. Then he showed [2] that such the mechanical system
can be easily designed as a line of screws screwed into copper cylinders that are con-
nected by steel springs and kept in horizontal position by the piano string. Changing
the stiffness of the springs, one can get a chain, described either quasi-continual, or a
strictly discrete FK model. Useful portable version of this mechanical transmission
line can be constructed in a simpler way using rubber tape and dressmakers [4]. Thus,
the FK system can be interpreted by a chain of pendulums, in which each pendulum
is connected to its neighbors by elastic springs.

In the recent years the methods of cybernetics are penetrating a number of the
physics areas and the whole new area in physics named “Cybernetical Physics” is
getting more and more visible [5]. Since FK model has so many applications, it
becomes of interest to investigate its controlled version. The first results of such
kind related to control of friction were published both in physical journals [6] and
in control related journals [7, 8]. However the problem of energy control was not
addressed. The energy control problem for FK model was first posed in [5, 9] where
the control of energy algorithm was also proposed. However neither analytical nor
numerical study of energy control were performed previously up to the best authors’
knowledge, though the related problem for sine-Gordon equation was studied more
intensively [10-13].

Such an investigation is the mail aim of the present paper. In the next section the
energy control problem for sine-Gordon system is recalled and the simple energy
control problem for FK model is formulated. Then the control algorithm for FK
model is described and the achievement of the control goal is examined.

In Sec. 3 some general nonlinear control framework useful in control of physical
system is described. In Sec.4 this framework will be applied to a more advanced
problem when an integrator appears in the control loop. Section4 is devoted to the
problem of energy control in cascaded FK model. The simulation results are presented
in Sec. 5. Concluding remarks in Sec. 6 finalize the paper.
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2 Simple Energy Control for Sine-Gordon and
Frenkel-Kontorova Models

Let us study possibilities of the speed-gradient method for control of energy in

0 92
sin-Gordon-like systems [5]. Using the following notations: x; = —x, Xy = a—;,

at
ox 0%x 0%x . . .
Xy, = consider the system, described by sin-Gordon

i o Xt = Xriry = ’
ar; " ar; ot " 3}’12
equation with dissipation

Jx; = kAx — Esinx — px;, @))

where x = x(r, t) is the function of the system state; » € X C R” is the spatial
variable, taking values from a set X; A is Laplace operator; Ax = Y x,.,.; J, k, p
i=1
are parameters of the system; £ = E(¢) is the external action (e.g. external force or
intensity of the external electrical field). Assume that £ = Ey + u(t), where Ej is
the base level of the intensity of the force or field; u(¢) is the controlling variable.
The system (1) can be considered as a model of diffusively coupled oscillators (e.g.
pendulums, magnetic domains liquid crystals), each being positioned in the spatial
point r. Then x (7, ) is the deflection angle of rth oscillator at time 7. Such a system
belongs to a class of reaction-diffusion systems, but its study is of independent value.
Let us pose the problem of controlling the energy of the free system

1 0x\2
H = 5/ <J(E> +k|V{,x}2+2Eo(l —cosx)) dr )
X

to the prespecified level H,. It means that we introduce the control goal as follows:
lim H(t) = H,. 3)
1—>00

First let p = 0 and evaluate the rate of changing the energy along trajectories of
the system (1) assuming that the controlling variable is frozen, u(t) = u:

dH .
W: Ix; - x4 — kAxx, + Egsinx - x, dr =
. &)
= /xt( — Esinx + Ej sinx) dr = —u(t)fx, sin x dr.
X X

It is easy to see that the choice of the control in the form
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u(t) =—y /x, sin x dr, ®))
X
where y > 0, guarantees that the energy H (¢) will not decrease in time.

1
Introducing the goal function V (¢) = E(H @) — H*)z, and evaluating the time

derivative of V (¢), we obtain

V= ‘Z—‘t/ = —u(t)(H(t) — H,) / x; sinx dr, (6)
X
and V < 0 for
u(t) = y(H(t) — H*)/x, sinx dr. @)
X

Thus, if the system is affected by the action (7) it will have a tendency to approach
the goal.

Consider in more detail the spatially one-dimensional, spatially discrete version
of the problem, described by equations

.k . .
ijzh—z(xjﬂ—2xj+xj,1)—(E0+u(t)) sinx;—px;, j=1,2,....,N. (8
It corresponds to a continuous system
Jxy = kx, — (EO + u(t)) sinx — px; )]

defined in the set X = [a, b], if the correspondence is defined by the relations x; =
x(a+jb—-a)/(N+1)),j=0,2,...,N+ 1.

The system (8) is suggested to be a controlled version of the classical Frenkel—
Kontorova chain, proposed in 1939 and studied in numerous works, see, e.g. [14].

Before designing the control law, let us discuss the choice of boundary conditions.
Usually when studying an uncontrolled system (9) two types of boundary conditions
are used: either zero boundary conditions x(a, t) = x(b, t) = 0, corresponding in
the discrete system (8) to the relations

xo(t) = xyy1() =0, (10)
or periodic (no flux across the boundary) conditions x, g =Xy = 0, corre-
sponding to the relations

X0 = X1, XN = XN4l. (11)

The speed-gradient energy control algorithm looks as follows:
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u(t) =y H(t) — Xjsinx;, (12)

||M2

where y > 0., H(t) is adiscrete analogue of (2), see (26) It follows from [5, Theorem
3.1] that the control goal (3) in the system (8), (12) for o = 0 is achieved if the energy
layer in the system phase space between the energy levels H(0) and H, does not
contain equilibria satisfying conditions sinx; =0, j =1,..., N.

3 Nonlinear Control and Passivity

Consider the following non-affine time-invariant model of a nonlinear system:
Xx=F(x,u), y=hx) (13)

where x(t) € R” is the system state, u(¢) € R™ denotes the control input, y(t) € R™
is the system output. System (13) behavior is considered on the temporary axis
[0, co) with initial condition x (0) = xo. It is assumed that the set of admissible input
functions consists of all piecewise-continuous, locally bounded functions. u : R, —
R™, function F : R" x R™ x Ry — R" is locally Lipshitz on x, u, and besides
F(0,0) =0and 2(0) =0.

Definition 1 System (13) is called passive [15] if there is a non-negative V : R" —
R, function, called the storage function, and all solutions satisfy the system integral
dissipation inequality: V (x(¢)) — V(x(0)) < fot y(t)"u(r)dz. If, moreover, the stor-
age function V (x) is differentiable, then the dissipation inequality can be rewritten
in differential form: V <y'u.

Passivity is closely related to stability: foru = 0, a passive system with a positively
defined storage function is Lyapunov stable.

Definition 2 [15] System x = f(x) + g(x)u, y = h(x) possesses the Yakubovich—
Kalman—Popov property (YKP-property) if there is a non-negative continuously dif-
ferentiable function V : R" — R, V(0) = 0 such that

(ViV() f() <0, (VV()'gx) =h(x)".

Lemma 1 [15] System x = f(x) + g(x)u, y = h(x) is passive with a continuously
differentiated storage function if and only if it possesses the property of YKP.

The backstepping method [15] is based on the following statement
Statement. If system x = f(x, £), & = u is defined in R” and is locally asymp-
totically stabilized at the point x = x* using control £ = Ug(x), then the control
algorithm
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oU,
u=3fﬂmﬁ+%@—%@»

where ko < 0, ensures (local) asymptotical stability of the initial system in the point
(x,§) = (x*,0). O

Definition 3 The Poisson bracket of smooth functions f(gq, p) and g(g, p) is

defined as .
. af 9g  df og
8l = Z (3%‘ op;  Op; 3%‘)

i=l1

Consider the mathematical model of the system in the Hamiltonian form as fol-
lows:

q‘ =VPH(q7 p’u)’ (14)
pz_qu(% psu)s (15)
where g€ R", pe R" are vectors of generalized coordinates and generalized
momenta; #(¢) € R is the controlling input.
It is assumed that the Hamiltonian H (g, p, u) is a continuously differentiable
function on its arguments.

Consider the problem of approaching free (uncontrolled) system energy to a given
energy level H,, i.e. pose the following control aim:

lim Ho(q(1). p(t) = H.,

where Hy(q, p) = H(q, p, 0) is the Hamiltonian of a free system, which is described
by following equations:

g = V,Hy(q, p),

Introduce the following goal function
1 2
Q) = 5 (Ho(p. q) = H.)",
where x = col(q, p). Then the control aim can be written as
lim Q(x(¢)) =0. (16)
—>00
In what follows it is assumed that the Hamiltonian is linear in control:

H(q7 p,l/t) = HO(qv P) +H1(C]» p)Tu»
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where Hy(g, p) denotes the free system Hamiltonian; H;(q, p) is the vector of the
so-called interaction Hamiltonians.
Based on the Speed-gradient method [5, 15], the following control law is obtained:

u=—yy((Hy— H){Ho, H}"), y >0. (17)

The following Theorem is known.

Theorem 1 [15]. Let the first and second partial derivatives of functions Hy, H, on
the set Qo = {x : Q(x) < Qo} are bounded for some Qo > O, and function ¥ (x) is
continuous and satisfies the following strict pseudo-gradient condition y(z)"z > 0
asze R, z # O.

Then algorithm (17) in system (14) for initial condition x(0) € Qg ensuresu(t) —
0 as t — oo and, besides, the following alternative is valid: on the trajectory x(t)
either the aim (16) is achieved, or convergence of { Hy, H }(x(t)) — 0 is ensured as
t — oQ.

Additionally, let the following conditions be fulfilled:

1. For any c # H, there exists € > 0 such that any non-empty connected subset of
a set
Dec = {x: [{Ho(x), Hi(x)}| <&, |Hy(x) —c| <&} N

is bounded.

2. The largest invariant set M C Dy of the free system (i.e., the set of whole tra-
Jjectories of system (14), contained in Dy), where Dy = {x {Hy(x), Hi(x)} =
0} () Qo consists of no more than a countable number of isolated points without
finite condensation points.

then any solution to (14), (17) either ensures aim (16), or tends to some point in
Dy, which is the free system equilibrium. In addition, the set of initial conditions,
for which the solution to system (14), (17) tends to an unstable equilibrium of a free
system, has a zero measure.

Consider a Hamiltonian system with an integrator:

g =V,H(q, p,u), (18)
p=-V,H(q, p,u), (19)
0=uw, (20)

where g € R", p € R" are the vectors of generalized coordinates and generalized
momenta; u(¢) € R denotes the virtual control (an integrator); w(¢) € R is a control-
ling input.

Moreover, function H(q, p, u) is an invariant for a free system
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qg=V,H(q, p,u),
p = _qu(q7 ps u)s
u = const.

Consider the problem of approaching the system energy to a given level H,. To
this end, let us introduce the objective function

1
0(x) = S (Ho(p. @) — H.)?,
where x = col(q, p), Hy(p, q) = H(p, g, 0). Then the control aim has a form:
llim O(x(t)) =0. (21

The following Theorem is valid.

Theorem 2 Let H(x, u) = Hy(x) + H,(x)u. Suppose that for system (18), (19) the
following conditions are fulfilled:

1. Foranyc # H,, there exists ¢ > 0 such that any non-empty connected subset of
a set
Do = {x : |{Hy(x), Hi(0)}| <&, [Ho(x) —c| < &} )

is bounded.

2. The largest invariant set M C Dy of the free system (i.e., the set of whole trajec-
tories of system (18), (19), containedin D), where Dy = {x A{Hy(x), HH(x)} =
O} N Qo consists of no more than a countable number of isolated points without
finite condensation points.

3. System (18), (19) is globally asymptotically stabilizable by means of feedback

a(p, q).

Then control
w=—ypu—a(p,q)) +Va(p,q)' <;]7> +w, (22)

where w is a new input of the system, passifies system (18)—(20) with a new output

y =2y (u—alp.q)
In addition, for w = 0, control (22) ensures the control aim fulfillment for system
(18)—(20).

Proof of Theorem 2
Define the storage function as:

Wx,u) = Q)+ ' lu —a(p, @I (23)

where x = col(q, p).
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By definition, a system is passive (see [15]) if the inequality
Wix,u) < y'w

is fulfilled. Let us prove this.

W, u) = 0x) + 275 lu — a(p, )l (it — Vap, @) (Z) )=
= 0(0) = 2lu —a(p, I + 2v " (w = a(p, @)w < y'w.
To prove the fulfillment of the control goal in a closed-loop system, let us consider
function (23) as a Lyapunov function.

Calculate the time derivative of (23) along the system trajectories, using Theorem 1
and control (22):

Werw = 00 +2v5 " lu — a(p. )l it = Ver(p )’ (Z) )=
= Q() = 2Ju —a(p.q)I* < 0.
Applying the Barbalat lemma to the inequality obtained above, one obtains that

QO(x) = 0ast — oo, i.e. the control goal is achieved.
Thus, the theorem is proven.

4 Control of Energy in Cascaded FK Model

Consider the following FK-model with an integrator [16]:
. k . .
¥ =3 =20 x50 = (Eo + u()) sin(x;) — pi;, (24)
U =ow, j=12,...,N, (25)
where k, p are the system parameters, @ (¢) is the control action, Ej is the base field

level, xo(t) = x1(t), xy+1(t) = xy(¢) (the so-called zero flux conditions).
The energy of (24) is determined by the equation:

N N N
1 Lk
H = 5 ;:1 X7+ 3 ;:1 (xj41 —x))> + Eg (N - ;:1: cos(x,)). (26)
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Let us pose two following problems:

1. Passification of system (24), (25);

2. System (24), (25) synchronization with bringing the system energy to the specified
level H,:
lim H(t) = H,.

—>00

To solve the problem in question, let us formulate Theorem 1 in a more general
form.

Let us represent the state vector of system (24) as follows:

V1
X1

YN
XN

where y; = X;.
Then system (24), (25) can be represented as

% (x2 — 2x1 + x0) — (Eo + u(1)) sin(x1) — pyi
V1
= , 27
& (tng1 — 2xy 4 xy-1) — (Eg + u(t)) sin(xy) — pyny
YN

U= w. (28)
Let us introduce a new goal function:

N-1

1 2 1 2
Q@) = 01(2) + 02(2) = o Z(yi + i)+ (1 = Ot)E(H —H)", (29

i=l1

where o (0 < o < 1) is a weight coefficient.
The first term, Q(z), corresponds to the requirement that the oscillations are in

antiphase. The second one, 0,(z), guarantees achievement of the required energy
level.

System (24), (25) Hamiltonian is determined by the equation

1L,k N
H = > ;sz + 3 ;(xjﬂ —xj)Z + (Eo +u)(N — Zcos(xj)). (30)

j=1
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Let us show that for a free system

.. k . .
Xj= ﬁ(x,ur] —2x; +xj_1) — (Eo + u(?)) sin(x;) — px;,

u=const, j=12,...,N,

Hamiltonian (30) is an invariant.

N N N
H = Zx]xj —k Z(X‘H_] — 2Xj + x.,-_l)fcj + (u+ Ey) Z sin(xj))'cj =0
j=1 =1 =1

As follows from Theorem 2, control goal (29) in system (24), (25) with p = 0 and
o = 0 is achieved if the energy layer between levels H(0) and H, does not contain
equilibria of the system, satisfying conditions sin(x;) =0, j =1,..., N.

Theorem 3 Let the energy layer between the levels H(0) and H, does not contain
equilibria of the system, satisfying conditions sin(x;) =0, j=1,...,N; p =0,
o = 0, then the control law

N
o(t) = —yg(u—yp(H — Hy) Y yjsin(x;)+
j=1
ol k
yo(H —Hy) Y ((sinGep) (5 Cepn =25 +j-0) = (Bo+u(0) sin(x)) ) 7 cos(x)) )+,
j=I

obtained by applying the Speed-gradient method, and 7 is defined by (27),
passifies system (24), (25) with respect to a new output Yn., = u — yp(H — H,)
Zj.v:l y; sin(x;). The control goal is achieved when w = Q.

Remark 1 For o # 0, an expression for «(z) has the following form:

N
a(z) = yp(l —a)(H — H,) Y y;sin(x;)+

j=1
N-1
r(( D (o124 S+ (31 +32) sin(e) + G- +3w) sinGay) ).
j=2

5 Simulation Results

The simulations were done for the FK-chain (8) consisting of N = 20 elements
and the following dimensionless parameters: J = 1,k = 0.12, Ey = 1, h = 0.0476.
The dissipation parameter p was taken as p = 0 (non-dissipative case) and p =
0.25 (dissipative case) in different simulation runs. Desired energy level was set
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to H, = 50. Initial conditions were taken as x; = 1 — cos(2mr;), where r; = jh,
Jj =1, ..., N;initial values of x; were set to zero. For simulations control algorithm
(7) with y = 2 was used.

The simulation results are depicted in Figs. 1, 2 and 3. As is seen from the plots,
in the non-dissipative case the error in energy H(#) — H, may be neglected for

H(), H,
60 ® T ] T T T

ot N
7/

40 2 .

301 1

20 1

0 1 1 1 1

0 0.2 0.4 ¢ 0.6 0.8 1

Fig. 1 Energy H(t), reference value H, time histories. 1 — H(¢) for non-dissipative case,
p = 0;2— H(z) for dissipative case, p = 0.25

400 u(t) , , , ,

300 1
200 - 1

100 J

0 / e |
V \~_‘\ SN ———

_100 1 1 1 1
0 0.2 0.4 ¢ 0.6 0.8 1

Fig. 2 Control action u(t) time history. 1 — non-dissipative case, p = 0; 2 — dissipative case,
p=0.25
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Fig.3 x;(t) time histories. j =1, ..., 20, non-dissipative case, p = 0

sufficiently large 7. In the presence of dissipation in the model, the visible control
error arise.

6 Conclusions

The paper is dedicated to study of the energy control problem for celebrated Frenkel—
Kontorova model describing numerous physical systems like dynamics of disloca-
tions in the crystalline structure of a solid body, friction mechanisms at nanoscale,
dynamics of biological chains e.g. DNA, etc. To this end modern nonlinear con-
trol methods like speed-gradient and passivity methods [5, 15] are employed. The
analytical conditions of the achievement of the prespecified energy level in the con-
trol system are proposed and illustrated by computer simulation. It is seen from the
simulation results that for sufficiently long chains the error in the limit energy is
rather small and may be neglected. The proposed methods are also applied to a more
advanced problem when an integrator appears in the control loop.

Acknowledgements The authors deeply appreciate the wisdom leadership of Professor Dmitry
Indeitsev who was keeping and still is keeping a wonderful creativity atmosphere in the IPME
institute for many years and made it possible to perform such researches like ours.
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On Kinetic Nature of Hysteresis )
Phenomena in Stress-Induced Phase e
Transformations

A. B. Freidin and Victor A. Eremeyev

Abstract A simplest model is developed which demonstrates that hysteresis phe-
nomena in stress-induced phase transformations may have a kinetic nature and fol-
low from the discrepancy between strain rate and characteristic rate of the new phase
growth.

1 Introduction

Stress-induced phase transformations in shape memory alloys lead to pseudoelastic-
ity with recovering relatively large strains (see, e.g., [1, 2]). Initially a material is in
a austenite phase. At some stress martensite phase nucleates and then increases its
volume fraction. Changing the geometry of a lattice, i.e. a transformation strain, pro-
duces a macroscopic deformation at practically constant stress, and a plateau appears
at the stress-strain diagram. Unloading leads to a reverse transformation that takes
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place at lower stress that corresponds to another plateau at the diagram. As aresult a
flag-type stress-strain diagrams are formed with upper boundary corresponding to the
direct transformation and lower boundary corresponding to the reverse transforma-
tion. The height and thickness of the flag depend on the temperature and loading rate.
Kinetics of stress-induced phase transformations was studied by many researchers
from various points of view, see, e.g., [3-5] and reference therein. In the present
paper, we relate such a flag-type behavior with the discrepancy between strain rate
and characteristic rate of the new phase growth with the kinetics considered within
the frames of mechanics of configurational forces. We also discuss barrier effects of
various nature. To demonstrate the role of various factors, for the simplicity sake,
we consider 1D-case.

2 Phase Equilibrium and Kinetics in 1D-Model

Consider a rod x € [0, L] made of a material undergoing a phase transformation,
u(x) is the displacement of a material point x, & = du/dx is the strain, #(0) = 0 and
u(L) = uy are the displacements prescribed at the ends of the rod.

Assume that the Helmholtz free energy per unit length of the rod is represented

as
f-(e)=fy + % C_¢?, e <7,
fle) = X (1)
fi@e) = fif + 5 Cle = e")?, e>F,

where C. are Yong’s modules of the phases “+”, &'" is the transformation strain,
foi are the chemical energies of the phases (the temperature dependent Helmholtz
free energies in stress-free states). The strain ¢ divides the domains of existence of
the phases “4” and “—"" and can be found from the equality of the energies, i.e. is
defined by the equation

C.F@=C,F—e")?+2y.

where y = [foll is the energy parameter acting as a temperature in the model,
square brackets denote the jump of a value due to the phase transformation,
[-1=0+—0-

If u;, increases then the part of the rod transforms into a new phase state. Let pL
(p € [0, 1]) be the total length occupied by the phase “+”, ¢, and ¢_ be the strains
in the phases “+” and “—” correspondingly. Then the average strain and average
energy

e=(-pe_ +pey, (2)
F=0=p)f(e2)+ pfiler) 3)

The stress o in the rod is continuous and can be calculated as
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oc=C_e_=Cy(e, —&") 4)

Thermodynamic equilibrium corresponds to zero configurational force given by
the formula

X = —— at & = const
4

Simple calculations give [6] (see also [7])
x =Lf1-olel (3)
After simple derivation the expression (5) takes the form analogous to the expression

for layered two-phase microstructure in the 3D-case where tensorial values have been
presented [7]:

1 1
x=y+ 5[[3]]—1@")2 - 5([[011—1 + B_)(Q-e)* =0, (©6)

where
O ={CI'+(0—-pB)", e=é—[CI'Cie".

From the equation x = 0 and relationships (2), (4) it follows that the dependence of
the equilibrium new phase fraction p,, on average strain and stresess o, at which
the equilibrium is possible are given by formulas

T—0o*/C_ o

Peq = 2y[o* —¢gP
. elr N 1 . (8")2 (8)

o = — —_— Yy
Y27 Bl [ 18] [B]
where By = C;l. The transformation takes place at strains € € [&°, &1, where

g'=— (p=0), ef =Ly T (p=1 €))

C_ o* _

The dependence of the free energy and the stress-strain diagram for the case of
equilibrium two phase states are shown in Fig. 1. Note that there is no hysteresis in
this case.

If the thermodynamic equilibrium condition is not reached than x # O is a ther-
modynamic (configurational, driving) force. By linear thermodynamic approach, the
new phase fraction is changing according to the kinetic equation

p=—Lx(p,&y), pel01], (10)
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where the dot denotes the derivative with respect to time ¢ and L is a kinetic coeffi-
cient. The kinetic equation (10) is solved at initial conditions

t=1ty, p=po. E&=2%&

and a given loading law & = £(¢) and/or temperature time dependence via y = y (¢).
The choice of pg and &y depends on the nucleation assumptions.

3 Results

The dependencies of stresses on strains at stretching with a constant rate at various
“temperatures” y for the case C; > C_ are shown in Fig. 2. Horizontal dash lines
correspond to equilibrium transformation. Upper and lower plateaus correspond to
the direct and reverse transformations. The thickness of the flag decreases and the
equilibrium stress increases if y increases.

The effect of strain rate is presented in Figs. 3, 4. If the loading rate decreases
then upper and lower plateaus converge to the equilibrium dash line, as it is to be.
The character of the influence of strain rate on stress-starin diagrams and the shape
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Fig. 2 Stress-strain diagrams at various energy parameters y (various ‘“‘temperatures”):
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Fig. 3 Stress-strain diagrams at various strain rates v, C4 < C_
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Fig. 4 Stress-strain diagrams at various strain rates v, C4 > C_

of the diagram at higher rates depend on the relationship of Yong’s modules C and
C_.

Further modifications of the model can be considered in two directions: introduc-
ing a metastability barrier and a nucleation barrier. In the first case we assume that
the direct reaction goes if the thermodynamic force is not just negative but is less
than some negative number, and reverse transformation goes if the thermodynamic
force is not just positive but is bigger than some positive number. This may be related
with a hidden entropy production at the reaction front (as it was done recently for
a chemical reaction front [8]). Such an assumption leads to the hysteresis even in
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Fig. 5 Stress-strain diagrams with a metastability barrier at various strain rates, Cy < C_
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Fig. 6 Stress-strain diagrams with a nucleation barrier at various strain rates, C; < C_

quasi-equilibrium case and modifies the kinetic equation as follows:

0, X1 < X+
P=13—k(x+x), x<—x«<0
—k(X — X)), X > X«

(for simplicity sake we assume that the positive and negative barriers are of the same
absolute values). Stress strain diagrams are shown in Fig.5 for various strain rates.
Dash lines correspond to equilibrium transformation without and with a barriers. The
effects of the nucleation barrier at various strain rates are shown in Fig. 6.

4 Conclusions

The presented simplest model allowed us to give a qualitative description of hys-
teresis phenomena accompanying stress-induced phase transformations including
systematic analysis of the kinetics itself as well as the role of various barriers. Fur-
ther progress may be expected on the way of taking into account accompanying
inelastic strains, microstresses and internal stresses produced by the transformation
in 3D-case.
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An Infinite-Length System Possessing m
a Unique Trapped Mode Versus a Single oo
Degree of Freedom System:

A Comparative Study in the Case

of Time-Varying Parameters

S. N. Gavrilov, E. V. Shishkina and Yu. A. Mochalova

Abstract We compare large time behavior of an infinite system, with time-varying
parameters, possessing a unique trapped mode (characterized by frequency £2y(e7)),
with the behavior of a single degree of freedom system j + £22(e7)y = 0 (a linear
mass-spring oscillator with time-varying stiffness). The infinite length system is a
string, lying on the Winkler foundation, and equipped with a discrete linear mass-
spring oscillator of time-varying stiffness. We demonstrate that the classical formula
Y o 2, 12 that relates the amplitude Y (¢7) and the frequency £2¢(e7) for the single
degree of freedom system is valid for amplitude of the localized string oscillation if
and only if the oscillator mass, attached to the string, is big enough.

1 Introduction

In this paper we consider a mechanical system with mixed spectrum of natural oscil-
lations. Namely, we deal with an infinite taut string, lying on the Winkler foun-
dation, and equipped with a discrete linear mass-spring oscillator of time-varying
stiffness (Fig. 1). In the case of a constant string tension the discrete part of the spec-
trum for such a system may contain unique (positive) eigenvalue, which is less than
the lowest frequency for the string on the uniform foundation. This special natural
frequency corresponds to a trapped mode of oscillation with eigenform localized
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To gKO () To

Fig. 1 The schematic of the system

near the spring. The phenomenon of trapped modes was discovered in the theory of
surface water waves [ 1]. The examples of various mechanical systems, where trapped
modes can exist, can be found in studies [2-25].

It is known [5, 17, 22-27] that applying non-stationary external excitation to a
system possessing trapped modes leads to the emergence of undamped oscillations
localized near the inhomogeneity. If the system possesses a unique trapped mode and
such an excitation is applied only during a finite interval of time, then, after sometime
has passed, the system becomes to be similar, in some sense, to a single degree of
freedom system (with natural frequency equal to the trapped mode frequency). The
large time asymptotics for undamped oscillation can be found [5, 22, 23, 27] by
means of the method of stationary phase [28, 29].

Gavrilovin [5, 8] suggested an asymptotic procedure based on successive applica-
tion of two asymptotic methods, namely the method of stationary phase [28, 29] and
the method of multiple scales [29, 30] that allows us to investigate non-stationary
processes in perturbed systems, with slowly time-varying parameters, possessing
trapped modes. In studies [5, 8] the problem concerning non-uniform motion of a
point mass along a taut string on the Winkler foundation was considered and solved.
Note that later the same problem was reconsidered in paper [31] by Gao et al. in very
particular case of uniform motion at a given speed.

It is well known that for a single degree of freedom system with slowly time-
varying stiffness y + .Qg (et)y =0, formulaY o 2, 172 relates the amplitude Y (¢1)
and the frequency £2¢(e7) of free oscillation (the Liouville—Green approximation
[30]).! The aim of this paper is to compare the law describing the evolution of
the amplitude of undamped localized oscillation in the system possessing a unique
trapped mode with this classical result for the single degree of freedom system. To do
this in a correct way we need to consider (for first time in this context) a mechanical
system with inhomogeneity of more complex structure (a discrete oscillator possess-
ing both the inertia and the time-varying stiffness) than we considered in previous
papers [5, 8, 22-25] where the evolution of the amplitude of a trapped mode was
investigated in the cases of pure inertial [5, 8, 22] or pure elastic [23-25] inhomo-
geneity. We will demonstrate that for the system under consideration the classical
formula for a single degree of freedom with time varying stiffness is valid if and only
if the oscillator mass, attached to the string, is big enough.

We dedicate this paper to Prof. D. A. Indeitsev who initiated and stimulated our
interest to linear wave localization. He is one of the pioneers in this field, who

Here ¢ is a formal small parameter, 7 is the dimensionless time.
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was the first suggested simple and physically clear models, which made possible
the analytical investigation of trapped modes in solids. His kind attitude and wise
advices are always very helpful to his colleagues in their work.

2 Mathematical Formulation

We consider transverse oscillation of an infinite taut string on the Winkler elastic
foundation. The string is equipped with a discrete mass-spring oscillator of time-
varying stiffness. The schematic of the system is shown in Fig. 1. Introduce the
following notation: u(x, t) is the displacement of a point of the string at the position
x and time ¢, . is the string tension, p is the mass of the string per unit length,
constant My > 0 is the value of mass in the discrete oscillator, Ky(#) is the spring
stiffness for the discrete oscillator (a given function of time), &y is the stiffness for the
Winkler foundation, Py () is the unknown force on the string from the spring, po(?) is
the given external force on the string. Quantities .7, ko, p are positive constants. We
do not assume that K, > 0 (hence, the spring stiffness can be negative [15, 23-25]
or zero).>
The governing equations are

Do xx — Py — kou = —Po(1) §(x), )
Py(t) = —Mou,(0,1) — Ko(1)u(0, 1) + p(2). 2

Here § is the Dirac delta-function.
Now we introduce the dimensionless variables

t=tvko/p, & =xvko/ T 3)

and rewrite governing equations (1), (2) in the following form

u' —ii—u=—P(t)s(), 4)
P(t) = —-Mii(0,7) — K(t)u(0, v) + p(7), 5
where
My | ko Ky Po
M = — -, K = 5 = . 6
o\ % Vo7 U7 Uk ©

Here and in what follows, we denote by prime the derivative with respect to spatial
coordinate £ and by overdot the derivative with respect to time t.

2It may be noted that springs with negative stiffness may be used in applications related to con-
structing dynamic metamaterials [32-39].
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The initial conditions for Eq. (4) can be formulated in the following form, which
is conventional for distributions (or generalized functions) [40]:

ul,_,=0. (7)
Note that according to Egs. (4), (5), (7) we restrict ourselves to the important par-
ticular case of the general problem concerning non-stationary oscillation, where any
external excitation (and, in particular, non-zero initial conditions) is applied only to
the point of the string under the concentrated spring.

The problem under consideration (4), (5), (7) is symmetric with respect to & = 0.
Integrating (4) over & = 0 results in the following condition

('] = —P(r) = Mii(0, t) + Ku(0, t) — p(2). ®)

Here, and in what follows, [1] = w(€ + 0) — (£ — 0) for any arbitrary quantity p.
Due to symmetry one has [u'] = 2u’(§ + 0). Thus, the problem for infinite string
can be equivalently reformulated as the problem for homogeneous equation

u —ii—u=0 9
for £ > 0 with boundary condition at £ = 0

Mii(0, 7) + Ku(0, t) — p(1)

u'(0,7) = 5

(10)
This equivalent formulation (9), (10), (7) is used for numerical calculations (Sect. 5).

3 The Mass-Spring Oscillator with a Constant Spring
Stiffness

In this section we assume that the stiffness of discrete mass-spring oscillator is a
constant: K = const.

3.1 Spectral Problem

Put p = 0 and consider the steady-state problem concerning the natural oscillations
of the system described by Egs. (4), (5). Take

u=u(&) exp(—if27). an
Let us show that such a system possesses a mixed spectrum of natural frequencies.

There exists a continuous spectrum of frequencies, which lies higher than the cut-off
(or boundary) frequency: |§2| > §2, = 1. The modes corresponding to the frequen-
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cies from the continuous spectrum are harmonic waves. Trapped modes correspond
to the frequencies from the discrete part of the spectrum, which lies lower than the
cut-off frequency:

0< |2 <l (12)

We want to demonstrate that for the problem under consideration the only one trapped
mode can exist. Trapped modes are modes with finite energy, therefore, we require

+00 +00

/ a*dg < oo, / a'?dg < oo. (13)

—00 —00
Now we substitute Eq. (11) into Eq. (4). This yields
0" — AX(2)ia = (K — M2*)a(0) 8(¢), (14)

where
AX(2)=1- Q7% (15)

Here, by definition, we assume that
A(£2) >0 (16)
for 0 < £2 < 1. The dispersion relation for the operator in the left-hand side of (14)
: o+ A*(R2) =0, (17
therefore, the wavenumber w can be expressed as follows:
w = F+iA(£2). (18)

The solution of Eq. (14), which satisfies (13), is

exp (— A(R)[£])

A~ _ 2\ A
u=—(K—-MS22°)u0) AR

19)

Calculating the left-hand side of (19) at £ = 0 yields the frequency equation

2,1 — 923 =M} K, (20)

where £2 is the trapped mode frequency.
Consider the case M > 0 (the corresponding analysis for the special case M = 0
can be found in [23]). It follows from (20) that
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K 2
— <82y <1, K > 0;
M 21

0<2i <1, K<O0

and
K < M. (22)

Provided that restrictions (21) and (22) are true, we can square both sides of Eq. (20).
This yields the biquadratic equation

M*Q§ —2(MK —2)20 + K> —4=0 (23)

with its discriminant
2 =16(M* — MK + 1). (24)

The right-hand side if (24) is positive if and only if K < M + 1/M, which is true,
according to (22). Thus,

22 :i M2—MK+1+M—1. (25)
0 = 33 >

Proposition 1 Provided that (22) is true, the root 22—, does not satisfy restrictions
(21), whereas the root Q§(+) satisfy both restrictions simultaneously if and only if

K > -2. (26)

Proof At first, consider inequality Qg(i) < 1. It may be equivalently rewritten as
2 +vM? MK+1—|—MK 1 1
— — —_— = <
M? 2
1 1
— VM2 -MK+1< 5(MZ—MK+1)+§
—
z

— Z’F2Z4+1>0 < ZF1*>>0,
(27

which is true due to (22).
Consider inequality .Qg > K /M in the case K > 0. One has

2 MK K
— | £+ Mz—MK+1+T—1 > — &= +/M?-MK-+1>1,

M? M
(28)

which is true if and only if £23 1) = 28 4.
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Consider inequality £23_) > 0 an the case K < 0. One has

2 MK MK
- M2—MK—|—1+T—1 >0 &= - M2—MK+1>1—T,

g
(29)
which is false.
Finally, consider inequality £27 (4, > 0 an the case K < 0. One has

2 MK MK
— (+VM?2—-MK+1+——-1)>0 << +VM?-—MK+1>1-——
M2 2 2
M2K?

M?>—MK+1>1—MK + = KkZ<4. (30

Thus, provided that restrictions (21) and

—2<K<M (31)
are true, there exists the unique trapped mode with frequency
22 =22, (32)

The critical value K = —2 (§29 = 0) corresponds to the possibility of localized buck-
ling of the string.
In the special case M = 0, one can obtain [23] formulas

—2<K <0, (33)

(34)

instead of formulas (31), (32), respectively.
Note that for the first time this spectral problem in the particular case of point
inertial inclusion (M > 0, K = 0) was investigated in paper [2].

3.2 Inhomogeneous Non-stationary Problem

Putnow p # 0. Applying to Egs. (4) and (5) the Fourier transform in time t results in
wy — A2(R2)ur = (Kup(0, 2) — M2%ur(0, 2) — pr(£2)) 8(), (35)

where u (0, £2), pr(£2) are the Fourier transforms of u (0, ) and p(t), respectively.
Resolving Eq. (35) withrespecttou ¢ (0, §2) and applying the inverse transform yields

+00

(0 ) 1 / pFe_i.Qr de (36)
u,7) = —
) 21— 27— (M2 —K)

—0Q
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Consider the case when p(t) is a vanishing as T — oo function such that its
Fourier’s transform pr(£2) does not have singular points on the real axis. Apply-
ing the residue theorem, Jordan’s lemma, and the method of stationary phase to
asymptotic evaluation of the integral in the right-hand side of (36) results in [28, 41]

1 _
e,
2T — 22— (MR2 — K) )

+ o(1), T — 00.
(37)

exp(—if27)

u0, 1) = —i Z pf((z)Res<

Q=+0,—i0

Here symbol Res ( f(£2), .(_2) means the residue of function f(£2) ata pole 2 =

£2. The terms —i0 in the expression for the poles
2 =+8020—i0 (38)

are taken in accordance with the principle of limit absorption. One has

1 V1 —$22
Res < , 182 — iO) =F , 39
21 =022 — (M2 —K) 2820(1 + M1 — 22)
thus
V11— 926 |pr(20)|
u,17) = sin (.QO‘L' — argpp(.Qo)) +o(l), T — o0.

2 (1 + M1 - szg)

(40)

Hence, for the large times, the non-stationary response of the system under consid-
eration is undamped oscillations with the trapped mode frequency £2.

4 The Mass-Spring Oscillator with Slowly Varying Spring
Stiffness

Assume that the stiffness of the discrete mass-spring oscillator is a slowly varying
piecewise monotone function of the dimensionless time t: K = K (¢t). Here e is a
formal small parameter. We use an approach [5, 8, 22] based on the modification of
the method of multiple scales (see [30], Sect. 7.1.6) for equations with slowly varying
coefficients. The corresponding rigorous proofs, which validate such asymptotic

3The asymptotic order of the reminder in formula (37) depends on the properties of pr. In a
common case when pr has no singular points on real axis, the main contribution is due to the
cut-off frequency £2,. = 1 and has order O (t3/2) [26]. Therefore, in the case when £2 approaches
2, = 1 asymptotical formula (40) needs to be refined (the case of merging singularities).
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approach in the case of a one degree of freedom system, can be found in [42]. We
look for the asymptotics for the solution under the following conditions:

e ¢ =o0(1),
e T=0(""),
e K (et) satisfies restriction (31) for all 7.

To construct the particular solution of (4) and (5), which describes the evolution
of the trapped mode of oscillation in the case of slowly varying K, we require that
in the perturbed system

e Frequency equation (20) for the trapped mode holds for all t;
e Dispersion relation (17) at £ = =0 holds for all 7.

Accordingly, we use the following ansatz (r > 0, § < 0):

uE. 1) = WX, T) expg(. 0. (1)

T =¢e1, X =¢¢&, 42)

¢ =iwX,T), ¢=—-1R2(X,T), (43)

WX T) = &/ WX, T). (44)
j=0

Here the amplitude W (X, T'), the wavenumber w (X, T'), and the frequency £2(X, T)
are the unknown functions to be defined in accordance with Eq. (4). The variables
X, T, ¢ are assumed to be independent. Accordingly, we use the following repre-
sentations for the differential operators:

()=—iRd,+¢dr,
() =292, — 261202 — eiR2'7 8, + O(eY),
() =iwd, + ¢ dyx,

() = -0, +26iwi,y + ciwy 0, + O().

(45)

We require that w(X, T) and £2(X, T) satisfy dispersion relation (17) and equation
Q%+ o =0 (40)

that follows from (43). Since in the case of a mass-spring oscillator with a constant
stiffness the undamped oscillation can be described by Eq. (40), we assume that

(0, T) = 2o(T). (47)
Additionally, we require that

(W]=0, [¢]=0. (48)
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In Eq. (47) the right-hand side is defined in accordance with the frequency equation
(20), wherein K = K (T). The phase ¢ (&, t) should be defined by the formula

g;:i/(wdé—.th). (49)

For large times, integrating formally Eq. (4) with respect to £ over the infinitesi-
mal vicinity of £ = 0 taking into account (5), one gets (8), wherein p = 0. Now we
substitute ansatz (41)—(44) and representations (45) into Eq. (8) and equate coeffi-
cients of like powers ¢. Taking into account frequency equation (20), and Eq. (47),
one obtains that to the first approximation

MQ20Wo)y + 207 Wo) = il Wol]. (50)

Note that in the special case M = 0 considered in [23], the corresponding equation
has the form of
[Wox] =0, (5D

i.e. it can be obtained as limiting case of (50) as M — +0.

On the other hand, the quantity in the left-hand side of (50) can be defined by
consideration of Eq. (4) at § = £0. To do this, we substitute ansatz (41)—(44) and
representations (45) into Eq. (4) and equate coefficients of like powers ¢. Taking into
account dispersion relation (20) and Eq. (47), one obtains that to the first approxi-
mation

2w WO/X + CL);( Wo + 2829 WO/T + ‘QO/T Wy =0 (52)

at £ = £0. Due to (46) one has
Wy = 0 2y = —wp Wy, (53)

where the right-hand side should be calculated in accordance with Eq. (18). Thus,
Egs. (52) and (53) result in

2820 Wo'p + (—wpoy + 207) Wo

Woy = — , 54
o 2iy A(20) o9
where y = sign &. Accordingly,
AWy + AWy,
Woyl = —————L, 55
[Wox]1 A2y (35)
A =28, (56)

Ay = A (20)A7(20) + 207, (57)
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where the right-hand side of Eq. (55) is taken at £ = 0. Using (15), one gets

£29
Ap = ———, (58)
J1— 28
2092,
= T (59)

Al = :
J1— 22

Substituting these expressions into (57) yields

220,
Ay =9 L 60

Now, equating the right-hand sides of Egs. (50) and (55) results in the first approx-
imation equation for Wo(T') = Wy,(0, T):

=, o= AQWO + Ay WO/T
M (220 Wy, + 20 Wo) = — 20 21707 61)
(2620Wof + 2u7 Wo) A(20)
or, equivalently,
20 20820 -
or 4 02707 Wp = 0. (62)

WO/T-F
282 2(1—93)(1+M 1—93)

The general solution of the last equation is

Wy = 9exp _/_d.QO —/ $20ds2 (63)
2 282 21 —95)(1+M 1-95)

where Cy is an arbitrary constant. Calculating the integrals yields the final result:

_C
Wy = 7”%(90, M), (64)

(1-%5)
2 (14 M1 - 23)

1/4

(65)

A (R0, M) = vod

The plots of @7 (£2y, M) against §2 for different values of M are given in Fig.2.
Combining the solution in the form of Egs. (41)-(44) with its complex conjugate,

we get the non-stationary solution as the following ansatz:
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Fig. 2 Plots of function
o/ (§29, M) defined by
Eq. (65) against £2¢ for
different values of M

01 02 03 04 05 06 07 08 09 1.0
Qo
u(O,r)~C0d(.QO(T),M)sin(/ QO(T)dT—D()), (66)
0

where 7 is defined by (65). The unknown constants Cy and Dy should be defined
by equating the right-hand sides of (40) and (66) taken at T = 0. This yields

(1—22)" | pr(2000)]

= , (67)
95/2(0)<1 M J1— 523(0))1/2
Dy = arg pr(£20(0)). (68)

In what follows, we restrict ourselves to the particular case p(t) = §(r).* Thus,

(1 - 230)"

Q(}/z(O)(l +M)1— 525(0))1/2

Do = 0. (70)

Co= , (69)

4Some examples of more complicated p are considered in studies [8, 24, 25] for different, but
similar problems.
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5 Numerics

In previous studies [5, 8, 22—-24] we dealt with several problems for linear PDE with
constant coefficients. Numerical solutions were obtained by means of the reduction of
the corresponding problem to an integral Volterra equation of the second kind with
its kernel expressed in terms of the fundamental solution of corresponding PDE.
This cannot be done for the problem under consideration in this paper, since for
M > 0 we can obtain only integro-differential equation in such a way. Now we use
alternative approach [25] based on finite difference schemes. The applicability of the
approach was validated in the case M = 0 by comparison with the results obtained
by numerical solution of the Volterra integral equation. To perform the numerical
calculations we use SCIPY software. To discretize PDE (9) we use the following
implicit difference scheme:

i i i i+1 i i—1 i+1 i—1
uj+1—2uj+uj_1_uj —2uj—|—uj _uj +uj _0 a1
(A£)? (Ar)? 2 ’

where integers i, j (0 < j < N, —1 < i) are such that
' = u(jAg,iAT). (72)
This scheme conserves [43, 44] the discrete energy for a nonlinear Klein-Gordon

equation with constant coefficients. Numeric boundary conditions that correspond
to (10) are taken in the form [45]

—3u6+1 + 4u"1'H - u?‘l —3u6_1 + 4uil_l - ug_l
248 2A¢
B KH—lué')-H —G—Ki_luf)_] B u6+1 _2“6+”6_1 pH—l +pi—1 _
2 (Ar)?
(73)
where '
K' = K(@iA7). (74)
At the right end we use the non-reflecting boundary condition [46]
uhy = uby_, (75)

that corresponds to the physical boundary condition #’ = 0. Actually, the specific
form of this boundary condition is not very important in our calculations, since we
consider the discrete model of the string with big enough length such that the wave
reflections at the right end do not occur.
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Numerical initial conditions are
W =ul'=0. (76)
All numerical results below are obtained for the case
A& =0.008, At = 0.002. an

When considering p(t) = §(r) and calculating the corresponding numerical solu-
tions, we approximate the Dirac delta-function as follows:

p =15 (H()~ H( ). (78)
Now we want to compare the analytical and numerical solutions and demonstrate

the difference in the behavior of the system under consideration and a single degree
of freedom system with time-varying stiffness.

6 Comparison with a Single Degree of Freedom System

The result in the form of formulas (64), (65) is rather similar to the classical result
for a single degree of freedom system with time-varying stiffness

¥+ 25(Ty =0, (79)
where the following formula
1
Y X — (80)
o2

0

for the amplitude of free oscillations Y is valid (the Liouville—Green approximation
[30]). If £29 — +O0 (or, equivalently, K — —2 + 0), then Egs. (64), (65) result in

- C
Wo = —15 +o(l), 81)
282,

where Cy = Cy/+/1+ M is a constant. Hence, localized low-frequency oscillations
with increasing amplitude precede the localized string buckling. On the other hand,
unlike single degree of freedom system (79), for the system under consideration,
formula (81) is valid only in the limiting case 29 — +-0. For finite £2, the dependence
(65) is more complicated. Formulas (64), (65), coincide with formula (80) inside the
whole interval 0 < £2¢ < 1 of the admissible values for the trapped mode frequency
£20(T) only in the limiting case, where
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M > 1, (82)

and K (T') is an uniformly bounded function: for all T there exists a positive §; such
that

—2<K({T) <M —6. (83)

Indeed, provided that conditions (82), (83) are true, using Egs. (64), (65) and
Egs. (25), (32), respectively, one gets

, 2 . MK K
2= 5 (VP —MK 414+ == 1) ~ . (84)

1/4 A

Co (I_Qg)/ Co

Co (820) = (85)

12 2~ Sipe
My oM+ 1-2)" %

where C‘O = Cy/~/ M is aconstant. In terms of the original problem (1), (2) conditions
(82), (83) are equivalent to the set of the following restrictions:

| 7, My |k
My p k—;) ) k0%<K0(T)<<70 %—30) VkoTo.  (86)

To compare the behavior of the system under consideration for various values of
M with the behavior of a single degree of freedom system it is very useful to consider
the normalized amplitude function

o/ (820, M)

A (20, 20, M) = ——2—"2
(829, §20, M) (S0, M)

(87)

Analogously, introduce the normalized amplitude function for a single degree of
freedom system with time-varying stiffness

_ B !—21/2
B(20, 20) = —75- (88)
‘Q()

These curves describe the evolution of the normalized amplitude of the localized
oscillations (with respect to initial value of the amplitude) for the corresponding
systems wherein §20(0) = £2o. The plots of o (820, 20, M) and B (82, $20) against
£2, for different values of M are given in Fig. 3, (a) 20 = 0.1, (b) 29 = 0.9718. One
can see that in both cases the cyan lines corresponding to o/ at M = 100 almost
coincide (excepting a narrow left vicinity of the cut-off frequency £2, = 1) with the
black dotted lines corresponding to 2. This large enough value of M corresponds
to the limiting case (82). Decreasing of M changes the behavior of the system under
consideration to be farther from a single degree of freedom system with time-varying
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Fig. 3 Plots of functions
o (820, 20, M) (the color
solid lines) and (2, $20)
(the black dotted line),
defined by Eqgs. (87) and
(88), respectively, against
0. (a) 29 = 0.1, (b)
£20=0.9718
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parameters. The special case M = 0 is the farthest one from a single degree of

freedom system.

To demonstrate that numerics confirms our findings we take M = 0.5 and compare
the analytical and numerical results obtained for the case of p = §(r) and mono-
tonically varying K (e7) (Figs.4, 5).5 Figure 4 corresponds to the case of increasing

5The case of oscillating properties is considered in [25] for a different, but similar problem.
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Fig.4 Comparing the analytical solution in the form of Egs. (64), (65), (66), (69), (70) obtained for
p = 8(7) (the red dashed line) and the numerical solution obtained for p(7) = 7, ! (H(t) — H(t —
70)) (the blue solid line) in the case K(et) = —1.9 +et. Here M = 0.5, ¢ = 0.01, 79 = 0.2. At
T = 240 the trapped mode frequency §2¢(¢7) approaches the cut-off frequency 2, = 1. The black
dotted line corresponds to the evolution of the amplitude (80) in a single degree of freedom system

with time-varying stiffness

0.00 1
u(0,7) -0.254
-0.50 1
-0.75 1

-1.00 1

50

100 150 200
T

Fig.5 Comparing the analytical solution in the form of Egs. (64), (65), (66), (69), (70) obtained for
p = 8(7) (the red dashed line) and the numerical solution obtained for p(t) = 7, ! (H(t) — H(t —
79)) (the blue solid line) in the case K (et) = 0.15 — et. Here M = 0.5, ¢ = 0.01, 19 = 0.2. The
localized buckling occurs at T = 215. The black dotted line corresponds to the evolution of the
amplitude (80) in a single degree of freedom system with time-varying stiffness
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K (et) and £2¢(e7), whereas Fig.5 corresponds to the case of decreasing K (e7)
and £2p(e7). One can observe that the asymptotic solution (the red dashed line)
approaches the numeric one (the blue solid line) very quickly (although the method
of stationary phase yields reasonable results only after some time has passed). The
black dotted line corresponds to the evolution of the amplitude (80) for a single
degree of freedom system with time-varying stiffness.

In Fig.4 one can observe that the asymptotic solution and the numerical one
slightly diverge, when the trapped mode frequency §2¢ approaches the cut-off fre-
quency £2, = 1 (that corresponds to K = 0.5, T = 240). This is expectable, since
the trapped mode exists only for £2p < 1. Moreover, for £29 — 1 — 0 the finiteness
of the string, assumed in the framework of numerics, becomes to be a very important
factor. Thus, in our opinion, in the left vicinity of £29 = 1, where the asymptotic and
numeric solutions diverge, we cannot trust in either of the solutions.

To consider the case of decreasing K (e7) and £2y(e7) (Fig.5) we take K (0) =
0.15 that corresponds to £2¢(0) = 0.9718 (this value is used in Fig.3 (b)). One can
observe that the asymptotic solution approaches the numeric one very quickly. The
localized buckling occurs at T = 215 that corresponds to the critical value K = —2.

Finally, let us return to the beginning of Sect.4 and formally

e put
W=Ww(T), W;=WiT) (89)

in Egs. (41), (44);
e do not require that dispersion relation (17) at § = £0 holds for all 7.

Provided that M > 0, this simplified (and asymptotically inconsistent) procedure
leads to the first approximation equation

2920Woly + 20 Wo =0 (90)

(instead of (61)) and formula (80) (instead of Egs. (64), (65)) for a single degree of
freedom system. In the special case M = 0 considered in [23], the first approximation
equation has the form of Eq. (51) and cannot be obtained in such a way.

7 Conclusion

In the paper we have considered a localized oscillation of a string, lying on the
Winkler foundation, and equipped with a discrete linear mass-spring oscillator of
time-varying stiffness. The most important result is analytical formulas (64), (65),
which allow us to describe the large time evolution of the amplitude of this oscillation.
The obtained analytical results were verified by independent numerical calculations
based on the finite difference method. The analysis shows us that the system under
consideration behaves like a single degree of freedom system (79) with time-varying
stiffness if and only if the oscillator mass is big enough (to be more precise, if and
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only if conditions (82), (83) are true). We also have demonstrated that simplified
approach (see Eq. (89)) is asymptotically inconsistent and leads to formula (80) for
a single degree of freedom system in all cases excepting the special case M = 0,
wherein this approach becomes to be inapplicable.
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Reduced Enhanced Elastic Continua m)
as Acoustic Metamaterials e

Elena F. Grekova

Abstract We consider a linear complex elastic material whose body point motion is
described by two vectorial generalised co-ordinates of any dimension. We suppose
that the medium obeys Lagrange equations. Elastic energy depends on both of these
vectorial generalised co-ordinates but does not depend on the gradient of one of them
(“special” co-ordinate). Such a complex medium can be interpreted as a “bearing
continuum” (corresponding to the non-special co-ordinate), whose body points are
enhanced by body points of “continuum of dynamic absorbers” (corresponding to
the special co-ordinate), the latter not connected directly between them. We obtain
that under some restrictions for the strain energy bulk plane harmonic waves in this
infinite medium have a band gap (or band gaps), the medium being thus a single
negative acoustic metamaterial, and for some cases decreasing part(s) of dispersion
curve, thus being a double negative acoustic metamaterial in this zone. We consider
some examples of such continua with rotational degrees of freedom.

1 Introduction

Acoustic metamaterials are a popular direction of research nowadays [3—6, 16]. The
medium is a single negative acoustic metamaterial in a certain frequency domain
if harmonic waves with these frequencies do not propagate, and it is a double neg-
ative acoustic metamaterial if its dispersion curves have a decreasing part, i.e. if
the frequency of harmonic wave decreases as the wave number increases. Acoustic
metamaterials are a mechanical analogue of electromagnetic metamaterials, media
with negative effective magnetic (electric) permettivity, whose existence was pre-
dicted by Veselago [21]. Acoustic metamaterials can be used, for instance, for noise
reduction or for the control of wave beams, which can be important in applications.
There are acoustic metamaterials of various kinds, among them those with rotational
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degrees of freedom. Elastic and viscoelastic reduced Cosserat media, elastic reduced
gyrocontinua, as well as other elastic reduced continua, whose strain energy depends
on a certain generalised co-ordinate, but does not depend on its gradient, appear to be
acoustic metamaterials, whose parameters in some cases can be controlled by means
of external loading.

Among works on acoustic metamaterials one can mention [1, 2, 18]. Vasiliev
and co-authors [20] have considered wave filters present in 2D Cosserat lattices. In
work [15] it is shown that there exist a class of complex elastic media with band gaps,
where these media act as single negative acoustic metamaterials. In this chapter we
find another class of complex elastic media which appear to be acoustic metamaterials
(single negative or double negative in different domains of frequencies). A body point
of such a material may have many degrees of freedom.

In this chapter we generalise for n dimensions work [9] for anisotropic contin-
uum consisting of 3D “bearing” continuum enhanced by 3D “dynamic absorber”
continuum, which appears to be an acoustic metamaterial. We also consider some
examples of these media with rotational degrees of freedom.

The author is delighted to devote this work to Prof. Dmitri A. Indeitsev on the
occasion of his 70th anniversary expressing her very best and warmest wishes. She
is deeply grateful to Prof. Indeitsev for the fruitful discussions, for his interest to
her work, for his scientific open-minded enthusiasm and care about his colleagues,
which created and keeps the true scientific ambience in the IPME RAS.

2 Lagrange Equation for a Linear Reduced Elastic
Continuum

Consider a linear continuum, whose body point’s kinematics is described by scalar
generalised co-ordinates ¢;, i = 0, n. The body point may contain elements of various
nature with elastic or rigid bonds: point masses, infinitesimal rigid bodies etc. All
constraints are supposed to be holonomic and ideal. We suppose that this medium
exists, i.e. the principle of material objectivity [17] is satisfied. We have to check it
when we set a particular strain energy depending on certain generalised co-ordinates.
The modified Lagrange equations of such a medium [14] can be written as follows

e Y (1

Here L = K — U, K is the mass density of the kinetic energy, U is the mass density
of the strain energy. In terms of vectorial generalised co-ordinates (of any dimension)
we can write down the same equation as follows

d oL 0L aL
v

¢ —_— = 2
dr 9q 8q+ avVq @
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Here we have introduced a vector of generalised co-ordinates q = ¢,i’, where i’
is an orthonormal basis in the space of generalised co-ordinates, s = 1, ..., n. Let
there exist a vectorial generalised co-ordinate qg = q‘?is, s =1,...,np,suchthat U
depends on it but does not depend on Vqy. Let us call such a generalised co-ordinate
“special”. For this generalised co-ordinate the last term in the left part of Eq. (2) is
zero, and the form of Lagrange equations is the same as for the discrete system:

S o, 3)

where for the rest of generalised co-ordinates (“bearing” vectorial co-ordinate q) it
has its general form

S hv. =, @)

Near its partial frequency the dynamics of the generalised co-ordinate g may
start to prevail in the system. We can call this phenomenon “effect of the distributed
dynamic absorber”. Indeed, the medium can be considered now as the “bearing con-
tinuum”, described by a generalised vectorial co-ordinate q; = ¢!i*,s = 1,...,ny,
on whose gradient U depends, each body point of which is enhanced with another
body point—complex dynamic absorber, whose kinematics is described by qg, but
the dynamic absorbers are not connected between them (see Fig. 1). In this figure we
show a simple example of the body point, but it may be very complex and have many
degrees of freedom of different nature, depending on the concrete medium. Con-
tinuum, in which we have the special vectorial generalised co-ordinate—*“dynamic
absorber”, we call the reduced continuum.

We will consider the linear case, i.e. we suppose (g, q; and all their derivatives in
space and time to be infinitesimal. Supposing this, we exclude from the consideration
gyrocontinua [12], where the velocity of proper rotation is large, which results in the
finite dynamic spin. We consider a particular case, when the mass densities of the
elastic and kinetic energy of the linear reduced elastic material have the form

Fig. 1 Reduced continuum. Continuum of mass centres of the spherical particles is the bearing
continuum, rotations and translations of ellipsoidal particles form the special vectorial generalised
co-ordinate—distributed dynamic absorber
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U=Vq]--*K--Vqi/2+ Cnqi - qi/2+ qo - Coo - qo/2+
+ Vg, --*Nig - qo +qi - Cio - qo,
K =qo-Aoo-qo/2+ Anq: - q:/2. )

Here *K, C,1, Coo, N1o, Cyo are elastic tensorial/scalar characteristics of the medium,
Ago, Ay and A are inertial ones. We will require Coy = ®o*Agp, i.e. the existence
of the unique partial frequency wy of the special co-ordinate. Denote the partial
frequency of the bearing co-ordinate w; = +/Cy;/A;.

Dynamic equations (3), (4) for these densities of kinetic and strain energy K, U
look as follows:

Aoo - (o + wo’qo) + Vg, - -*Nig+q; - Co =0, (6)
An(qr + w%‘]l) +Cio-qo—V-(*K--Vq; +°Njp-qo) =0. (7

‘We consider two cases:
(1) *Njg #0, Cyo = 0;
(2) 3Njp =10, Cyo # 0.

The frequency wy is a characteristic frequency for the system in both these cases.

3 Motion at @ = ®¢. Regime of Independent Oscillators

(1) 3Nj9 # 0, C1p = 0. This case corresponds to the coupling in the elastic energy
between two subcontinua which only couples the gradient of the bearing co-
ordinate with the special (dynamic absorber) co-ordinate. Then at w = wy there
exist a “regime of independent oscillators” q; = 0, qo = Qpe'®, if V- Ny -
Qo) = 0 (for instance, if Qg does not depend on the point in space).

(2) 3Nip =0, C1 # 0. In this case for non-degenerate Cj at w = @ there exist no
k, even a complex one: equations of motion (6) and (7) give a trivial solution.

4 Dispersive Relations. Anisotropic Case

Let us look for the solution of (6), (7) inthe form qg = Qe ®T+) q; = Qe *kr+en,
Here vectors Qg, Q; have dimensions ng, ny, respectively. Then we have

(—@* + @o*)Ago - Qo + Qi - (ik - *Njg + Cj) = 0, (8)
k'K -k + (—0® + o)) AHE) - Qi + (Cio— ik - *Nijg) - Qo =0.  (9)
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Here E is the identity tensor. If w # @y, and Agy is non-degenerate (i.e. all the
generalised co-ordinates have inertia), we can express Qg via Q; from Eq. (8) and
substitute this expression into (9):

Qo = (@ — @) 'Ayy - (Cio + ik - *Nio) " - Qy, (10)
kK -k + (—o* + o)A E+

(11)
+ (@* — wp?) T (Cro — ik - *Nyg) - Ayy - (Cio + ik -*Njp) ") - Q; = 0.

Equation (11) is a reduced spectral problem for the “bearing” generalised co-
ordinate q.

4.1 Coupling Between the Gradient of the Bearing
Co-ordinate and Special (Dynamic Absorber)
Co-ordinate (Cy9 = 0). Band Gaps and Decreasing Parts
of Dispersion Curves for the Plane Waves

If Cjp = 0 and w # wy, we can write the reduced spectral problem (7) as follows

(A (o — ME+ KK + (@ — ) "'v)) - Q1 =0, (12)

where . . ) . ot
k=k-K-k, v=k-Ny-Ay -(k-Nyp" = vee, (13)
e; being an orthonormal basis, formed by eigen vectorsv,v; > 0,i = 1, ..., n; being

the eigen values of the tensor v, depending on the elastic and inertial characteristics
and the direction of wave propagation.

Let us consider approximations for the dispersional relation near wg and near .
In the vicinity of wy at wy # oy, v; > 0, the dispersional curves look as

k2~ (0 — wp)2A1100(0F — o) /v;. (14)

Indeed, at w — wy the eigen values of k are much less than v;/ (w* — w?), and the
spectral problem (12) can be written as

(A1 (@0F — 0HE 4+ K2 ((0* — ) "'v) - Q) =0, (15)

which results in (14). If the direction of wave propagation is not a special direction
for inertial and elastic tensors, i.e. if v; > 0, then all the n; dispersion curves have
a band gap, limited by wy (below wy if wy > w;, and above it if wy < w;). Tensor
v will be non-degenerate if the elastic tensor Ny participating in the coupling will
have a sufficiently low group of symmetry. (For the case wy = w; we obtain ki2 ~
A1 (@® — ®3)2/v; in the vicinity of this frequency, i.e. there is no band gap.)
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In the vicinity of w;, on the contrary, A;; (w? — w?) is much less then eigen values
of the tensor k + (a)% — wp?) v, if only the parameters are not chosen in such a way
that this tensor is degenerate. For this reason in the vicinity of w; we have k ~ 0,
more exactly,

®— w; %kzi, (16)
2(1)1

where &;,i = 1, ..., n; are eigen vectors of the tensor k + v/(a)% — wp?). Thus the
sign of k2 also changes when w passes through ;. Depending on the sign of &; the
band gap is situated just below or just above w;.

Performing a detailed asympthotical analysis, we obtain that at wy < w; band
gaps (or band gap) are situated below w; and above wj, where the medium is a single
negative acoustic metamaterial, and that there is a decreasing part of the dispersion
curve just below wy, where the medium is a double negative acoustic metamaterial.

In the case wy > w1, if both characteristic frequencies are sufficiently close to
each other, or if the coupling between the bearing generalised co-ordinate and the
dynamic absorber (special generalised co-ordinate) is strong enough, band gap(s) is
(are) situated between these w; and wy, and there is a decreasing part of dispersion
curve just below w;.

If partial frequencies are equal to each other (wy = w;), then the band gap near
wy is absent, but we have a decreasing part of dispersion curve just below wy: the
medium is a double negative metamaterial in this zone. In the opposite case there are
two band gaps, just below of each of partial frequencies wy, ;.

4.2 Coupling Between Bearing Generalised Co-ordinate and
Special (Dynamic Absorber) Generalised Co-ordinates
(N19 = 0). Band Gaps and Decreasing Parts
of Dispersion Curves for the Plane Waves

The spectral problem (10), (11) in this case looks as follows:

(A (@} — 0ME — (0* — ) 'Cio-Ayy - Cly +K%)- Qi =0,  (17)
Qo = —Ay - Cly- Qo/(@* — w}). (18)

Near wy we have n; dispersion curves with the band gap just above wy:

K =—

Xi
5 (19)

a)z—(,z)()

Here x;,i = 1, ..., n; are the eigenvalues of tensor k =12 - Cyg - Agg - C, - k712,
they are non-negative if the strain energy is non-negatively defined. We consider the
case when they are not zero. An isotropic material with 3D bearing and 3D special
generalised co-ordinates has two band gaps [8].
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5 Dispersional Relations for an Isotropic Material with 3D
Vectorial Bearing and Special (Dynamic Absorber)
Isotropic Generalised Co-ordinates

Several results of this section (concerning shear waves) can be found in [8], but we
repeat them shortly here for the sake of completeness. For an isotropic material,
whose body point is characterised by 3D vectorial special and bearing generalised
co-ordinates, we have

A()() = A()()E, C10 = CloE, N = NE x E, (20)
K = AEE + 20 (i"i")5 (ipin)® + 20 (") (ipnin)?, 1)

where i, is an orthonormal basis. The equations of motion for this medium are

Aoo(do + 03q0) — NV x q; + Coq; =0, (22)
Angr +Cnqr +Ciogqo — A +21)VV - q1 + (0 + )V x (V x q1)

23
—NVX(]()IO. ( )

As in the general (anisotropic) case, discussed in the previous section, at Cjy = 0,
N # 0 there exists a regime q; = 0, qo = Qe!™',if Vx Qy=0.If N =0, Cjy #
0, on the contrary, for @ = wy there exists only a trivial solution.

The spectral problem (10), (11) can be written as follows:

—iNKk x Q] +C10Q1

— , 24
@ Ago(@? — wp?) @4
2 2, Ch 1
(All(w] —o°) + _ﬁ)Ql + A+ 2uwkk - Q+
Ago 0 — wy
NZ 1 NCy 1
- ———)k x (K —i —k =0.
(M+06+A00w2_w02) x (kx Q) —i Agy & — oy x Qq

(25)

5.1 Longitudinal Wave

Note that the reduced spectral problem (25) allows us to obtain the dispersion relation
for the longitudinal wave:

A4 2 2N (2 2
10} (0 — o) (w0 — )
ok’ = — o] — — s = — ) (26)
w” — o w” — o
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Here s
A+2 . C
2= K Of = 10

, = , 27
P Aq AgoAr

expressions for w,, w_ are given by formulae (28), (29), and w_ < wy < w4. In the
case when all the inertial and elastic characteristics participating in this equation are
not equal to zero, we have a band gap with the lower boundary wy. The dispersion
curve approaches from below the asymptote w = wy. If the strain energy is positively
defined with respect to qo, q;, we have C3; < Cj;Cop, and we obtain then wy’w? >
®*. Tt means that k> < 0 at w = 0, thus there exist a cut-off frequency, and the plane
wave has two band gaps, where the medium is a single negative acoustic metamaterial
with respect to the longitudinal waves.
After calculations we obtain: k2 > 0 either if

2 2 1/2
sz(wﬂ/ﬁ) orif (28)
2 2 172
o — (@ _ @) << wy, where (29)
2 _ 2.2
D= (%) + @4, (30)
wy) <wy, 0<ow_. G

The graph of dispersion relation is shown in Fig. 2. It looks in this way if Cjy # 0.
Otherwise @ = 0, w_ = wy, w; = wy, and we have only one branch with the cut-off
frequency wy. Note that this relation does not depend on modulus N responsible for
the coupling between Vq; and q.

lwo=1, Wwo=15 wi/wo=2.5_ w,/wg=2.66, w_/wo=0.41

4.0

3.5

3.0

2.5

2.0

w/Wo

15
1.0

0.5 /

0.0

Fig. 2 Dispersion relation for the longitudinal wave in the isotropic material with 3D bearing and
3D dynamic absorber generalised co-ordinates (with both coupling terms)
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There exist two band gaps: [0; w_) and [wp; w+). We have k — 400 at w —
wy — 0,and @ — ¢,k at k — oo. We will discuss here shear waves in two particular
cases.

5.2 Shear Plane Waves at C19 = 0

As it is easy to see from Eq. (26), the dispersion curve for the longitudinal wave
in the isotropic material at Cj9 = 0, C1; # 0 is a parabola @* = c2k* + w?. If we
have Cy; = 0, then the longitudinal wave is non-dispersive. The reduced spectral
problem (25) for shear waves at Cjy = O takes form

NZ 1 .
[An(@; —o?) + P (u+a+-———)E-Kkk)-Q =0. (32
A()() (,()2 - 61)02
Thus the dispersional relation for the shear wave is
2o An (@ — oD —w?)

- 2 _ 2
u+a W™ — w;

; (33)

where w? = wy> — N?/((u + a)Ago). Graphs for shear dispersion relations are

shown in Fig. 3. There are two band gaps, where the continuum is a single neg-
ative acoustic metamaterial with respect to the shear waves. It holds w, < wy. For
sufficiently large value of N, responsible for the coupling of the bearing and spe-
cial (dynamic absorber) generalised co-ordinates, when w, < w;, there appears a

o 0]
do
l»c
35 dk so 35
" “ do c
dk Nl
25 25
2 2 4 max (® , )
15 15
®p 10 10 min (@7, ®)
] o \_
05 05
0 00
W05 0 15 20 25 W 315 4 W 05 W 15 20 25 30 35
k k

Fig. 3 Dispersion curves for the shear wave in the isotropic material, Cjo = 0. Frequency w, <
wo decreases when the coupling between bearing and dynamic absorber generalised co-ordinates
increases. cfa = (u + a)/A11. Numerical example for c;q = 1, wp = 1, left: w1 = 0.5, w, = 0.7,
right: ) =2, w, = 0.5
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decreasing part of dispersion curve, where the continuum is a double negative acous-
tic metamaterial for shear waves (right part of the figure).

5.3 Shear Plane Waves at N = ()

Note that the longitudinal wave in the isotropic material does not depend on the
elastic modulus N, determining the coupling term of the special (dynamic absorber)
co-ordinate and the gradient of the bearing co-ordinate. The dispersion relation in
this case coincides with the expression (26).

The reduced spectral problem for shear waves can be obtained from (25):

A4

w A A
(@} — @ + ———)(E—kk) - Q —c},k x (k x Q) =0. (34)
w* — o

Thus we obtain the dispersion relation

A4 22N o2
2,2_ .2 2 2 (0" o)) (0" —w?)
Cok” =" —o) + — 5 5

(35)

w? — wy? w? — wy

It coincides with the dispersion relation for the longitudinal wave (26) with the
only difference: characteristic speed ¢, (the velocity of the longitudinal wave at high
frequencies) has to be changed for the velocity ¢y, (the speed of the shear wave

Cplwo =2, Cplwo=1, Wwo=1.5 wi/wo=2.5 wslwg=2.66, w_/wo=0.41

4.0

3.5

3.0

2.5

2.0

w/wo

15

1.0

0.5

0.0

Fig. 4 Dispersion curves for an isotropic material, Njg = 0. Cut-off frequencies w_ and w are
determined by medium parameters, w_ — w- increases as the coupling increases. Solid line corre-
sponds to the longitudinal plane wave, dashed line to the transversal one (if ¢, > c5o)
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at high frequencies). Band gaps for both waves are the same. In these domains of
frequencies the medium is a single negative acoustic metamaterial with respect to all
waves. Their dispersion curves are shown in Fig. 4.

6 Reduced Continua with Rotational Degrees of Freedom

6.1 Linear Reduced Cosserat Medium as an Example
of a Single Negative Acoustic Metamaterial with C19 = 0

Reduced linear elastic isotropic Cosserat medium is an example of a reduced contin-
uum considered in previous sections. Its equations were suggested for the first time
in [19]. Waves in this medium were investigated, in particular, in [13]. In this section
we give only the results to illustrate the idea of the reduced continua as acoustic
metamaterials.

Reduced Cosserat medium can serve as a model for soils and granular media
in elastic domain. Each body point of this medium is an infinitesimal rigid body
performing translational and rotational motions. Turns and translations are indepen-
dent, however, this medium does not react to the gradient of turn. Let u, 8 be vectors
of infinitesimal translations and turns, respectively. In the elastic isotropic reduced
linear Cosserat medium with spherical density of the inertia tensor /E

1 .
K = (oW + 6%, (36)

U= %(Vu)s -+ (AEE 4+ 2p (™M) @™i"%) - - (Vu)’ + %(x(B —Vxu/2)%. (37)

This medium is an example of the material considered in Sect. 5.2. In this medium
w; = 0, so the first cut-off frequency is absent, and in this particular case the group
velocity at w = w; = 0is different from zero, contrary to the media with non-zero w; .
The longitudinal wave is the same as in the classical medium (again contrary to other
media of this type with w; # 0), and the wave of shear—rotation obeys the dispersion
relation s i
kzzw_z(l_w/w())’ (38)
& (1= w/a?)
whose graph is presented in Fig. 5. Here ¢2 = u/p, ¢2, = (u + a)/p, 0} = 4a/I,
o? = 03/(1 +a/p).
The regime of “independent oscillators” exists at w = wp, V x @y = 0.
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w/wg

2.0 2.5 3.0 3.5

k

Fig.5 Dispersion curves of the elastic linear isotropic reduced Cosserat medium (w; = 0,C9 = 0).
A numerical example for w, = 0.5wg, ¢ = 2, ¢5¢ = 1. Shear wave: solid line, pressure wave:

dashed line. The group velocity at @ = 0 is not zero, contrary to the case w; # 0

6.2 Birotational Material with an Anisotropic Coupling
Between the Special Co-ordinate and the Gradient

of the Bearing Co-ordinate

Consider the medium whose body point contains two infinitesimal rigid bodies (two
subparticles) with spherical tensors of inertia I)E, I1E, connected by elastic spiral
springs with the rigid continuum of mass centres. Denote infinitesimal vectors of

turn of subparticles 8¢, 0.
Let the densitites of the kinetic and elastic energy of the material be

1 ) - 2
K = 5(1090 +1,0,), (39)
K 1
U= 5(v-01)2+§(c003+c10f)+1vv-oln-eo. (40)
Here K = kEE, N = NEn. Condition U > 0 is fulfilled if kcy > N2
Dynamic equations of such a material look as follows:
1o + coBo+ NV -0n =0, (41)
(42)

16, +c0, —kVV -0, — NV, -n=0.
Looking for their solution in the form 8, = @1 ,¢'@*%™) we obtain the spectral

problem:
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((a)2 — a)(z))(a)2 — a)lz) (E — Rﬁ)
+ (0% — ) (@* — &) — K’k (0 — 0}/ 1)KK) - ©, = 0.
Ip(w} — ©*)@¢ = —ink - O |N
Here w} > ? oo w3 — N?/(x1p) = 0since U > 0.
There exist two regimes of “independent oscillators™:
(1) w=wy,0; =0,0) = Oue!™’, where VO, - n = 0, and
Q) w=w;,00=0,0, = O, where V- @ = 0. Shear waves in such a mate-

rial do not propagate, the last regimes corresponds to the degenerate transverse
wave.

For the longitudinal wave @ = @1R, Oy, = —iNkOn, %= k/1;, and the

P
dispersion relation is

(@

— a)(z))(a)2 — w%).

(cpk)* = > (43)

®? — w?
The graph of the dispersion relation is presented in Fig. 3, since it is the same as for
the transverse wave in the isotropic case.

The same dispersion relation is true for the isotropic nonlinear elastic Cosserat
reduced medium in the vicinity of the nonlinear isotropic prestressed state [7]. Effec-
tive elastic constants depend on the first and second derivatives of the nonlinear strain
energy with respect to the nonlinear strain tensors in the prestressed state. Changing
the pressure or tension in such a material, we may partially control the band gap.

Linear elastic reduced Cosserat continuum with axisymmetric coupling between
volumetric and vortex deformations is also a single negative acoustic metamaterial (in
corresponding domains of frequencies) with respect to all the waves, with exception
of waves propagating orthogonal to the axis of symmetry, for certain domain of
parameters [10]. The medium with isotropic elastic tensors and anisotropic tensor of
inertia has more band gaps [11].

6.3 Birotational Isotropic Material as an Example of the
Single Negative Acoustic Metamaterial with N1g = 0

Consider the medium whose body point contains two infinitesimal rigid bodies (two
subparticles) with spherical inertia tensors, and their centres of mass are fixed. Denote
the densities of tensors of inertia IyE, I, E. Subparticles are attached by elastic spi-
ral springs to the continuum of centres of mass of body points. Denote vectors of
infinitesimal turn of subparticles 8, 0. Elastic interaction between subparticles is
determined by the elastic constant Cjy.

Let the densities of kinetic (K) and elastic (U) energies equal
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1. .
K = 5(1093 + 1,87, (44)

1
U=3V6;--GEE+ 20 (i) (i) + 20 (i) (i) ?) - - VO,
1 1
+§C10% + ECOO(Z) + c1091 -90, (45)

U >0atcocr > iy Dynamic Eq. (23) look as follows:

[Oé() 4+ coBo + c1001 = 0, (46)
16, 410 + 1080 = V- (AEV -0, +2uV07 +2aVO?). (47)

We look for the plane wave solution 8y = Qe' @K1 9, = Q¢!+ After stan-
dard calculations we obtain that the spectral problem looks as

Qo = CooQ1/ (A (g — @), (48)

2
A N ‘10 E
(A1 (@] — o) Aoo(a)g _ wz))

+ 13O0+ 2Kk + (u + @) (E —kKk)) - Q; = 0. (49)

The dispersion relations both for longitudinal and transversal wave have the form

2
2.2 2 2 €10
ckk=0w"—wy + —mF——, (50)
' ApAn (@} — o)

For the loragitudinal wave Q; = Qll::, ¢ = (A +2u) /A1, and for the transversal
wave Q; -k =0,c? = (u+a)/Aj.

7 Conclusion

We have shown that if a linear elastic continuum with holonomic ideal constraints is
a reduced medium, i.e. its elastic energy does not depend on the gradient of certain
generalised co-ordinates, under certain conditions for the elastic and inertial con-
stants this continuum will have (a) band gap(s), where it is a single negative acoustic
metamaterial, and in some cases the continuum has a decreasing part of dispersion
curve, where it is a double negative acoustic metamaterial. The special vectorial
generalised co-ordinate, whose gradient does not influence the strain energy, corre-
sponds to the “distributed dynamic absorber”, attached to the “bearing continuum”
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described by another vectorial generalised co-ordinate. At the frequencies close to
the partial frequency of the generalised co-ordinate it changes essentially the dynam-
ics of the system. The band gap (or band gaps) exist in all non-degenerate cases. It
is shown that if there is a strong coupling between the special co-ordinate and the
gradient of the bearing co-ordinate, as well as in the case when the partial frequency
of the special co-ordinate (“dynamic absorber” wy) is less than the partial frequency
of the bearing co-ordinate wj, the transversal wave has a decreasing part of dispersion
curve. For the isotropic material with wy > w; this interval increases as the elastic
modulus responsible for the coupling, increases. This work does not consider the
case when we have finite velocities, for example, as it is in reduced gyrocontinua.
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Stability Theory of Solitary Loops )
Propagating Along Euler’s Elastica i

Andrej II’ichev

Abstract The problem of dynamic stability of twist free solitary wave solutions of
the equations describing oscillations of an inextensible elastic rod (Euler’s elastica)
is treated. The governing equations describe sufficiently large displacements, though
we are restricted to small strains. We show that under the condition of well-posedness
of the initial value problem (in some specific sense) the family of solitary wave
solutions is nonlinearly stable for two-dimensional perturbations not coming out
from the plane of principal bending. The framework of the analysis is largely based
on the spectral properties of the “linearized Hamiltonian” .. We show that for
planar perturbations 7 is positively semidefinite subject to a certain constraint,
which implies the orbital stability. We consider also the case of perturbing the solitary
wave by three-dimensional spatial perturbations. As aresult of linearization about the
solitary wave solution, we obtain an inhomogeneous scalar equation. This equation
leads to a generalized eigenvalue problem. To establish the instability, we must verify
the existence of an unstable eigenvalue (an eigenvalue with a positive real part). The
corresponding proof of the instability is done using a local construction of the Evans
function depending only on the spectral parameter. This function is analytic in the
right half of the complex plane and has at least one zero on the positive real axis
coinciding with an unstable eigenvalue of the generalized spectral problem.

1 Introduction

The dynamical equations of the theory of elastic rods were formulated in the works
[1, 2] (see, also [3]). The forms of bending waves in inextensible thin rods were for
the first time, apparently, described by Euler (see [4]). The dynamics of the flexure
of a flat rod was discussed in [5], where the traveling waves were classified and it
was also noted that the system of dynamical equations can be reduced to a single
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partial differential equation and an algebraic equation representing the inextensibility
condition. This observation raised the supposition that the system of equations
describing the dynamics of a flat inextensible rod is completely integrable. But the
numerical results obtained in [6] suggest that the system is nonintegrable because the
solitary waves of a flat inextensible rod interact inelastically, i.e., are not solitons in
the strict sense. Solutions of the type of traveling waves in a linearly extensible and
unshearable (thin) flat rod were obtained in a closed form in [7]. In [8], the authors
described inextensible rods with torsion and obtained expressions for spatial (three-
dimensional) traveling waves in the presence of a torsional moment. The dynamics of
the flexure of a flat inextensible rod was discussed in [9] with neglect of the rotational
part of the kinetic energy, which is small compared with the total energy of the rod.
The orbital stability of the solitary wave solutions in the form of a loop under planar
perturbations was proved. In [10], the stability analysis was generalized to the case
without such a neglect. Methods used for the proof of such a stability can be found in
[11] (see also references therein). In the case of deviations of the rod from the prin-
cipal plane of flexure, the instability of solitary waves under spacial perturbations
(departures from the principal plane of flexure) was established in [12, 13], (see,
also [14]). In [15], the authors considered the question of the existence of solitary
waves in a general model taking the effects of shear and contraction/extension into
account.

Here we treat both the cases of planar as well as three dimensional perturba-
tions. For planar perturbations we investigate nonlinear (Lyapunov stability). This
investigation is based on the Hamiltonian formulation of the system of equations in
question. We prove the orbital Lyapunov stability in this case. We use the smallness
of the rotational part of the kinetic energy compared with the total energy of the rod.
We therefore consider the terms corresponding to the rotational kinetic energy in
the linearized equation to have the second order of smallness, and we consequently
neglect them. The stability is due to the fact that we are able construct the Lyapunov
function (functional) in this case. The Hessian 5# has empty negative spectrum,
only one null eigenfunction (due to the translational invariance) and positive spec-
trum bounded away from zero. The stability occurs due to the fact that the Lyapunov
functional has its local minimum on some linear space. The dynamics of the spa-
cial (not planar) rod is described by taking the torsion into account. In this case we
obtain the instability results using the properties of the Evans function. Equation
for the unstable eigenfunction has the same form as the corresponding equation in
[16], but the potential py in this equation differs from the potential in [16], which
leads to a nontrivial analysis and a difference between the Evans functions in the
two cases (see [12]). The authors of [16] generalized the results in [17] to the case
of Boussinesq-type equations where two modes decaying at infinity are present in
the solutions of the corresponding generalized spectral problem. The ideas of Evans
[18] in parabolic problems were developed in [19-21].

The present paper organized as follows. In Sect. 2 we treat the stability of the soli-
tary loop under the planar perturbations. Section 3 is devoted to the proof of spectral
(linear) instability of the loop under three dimensional perturbations coming out of
the plane of principal bending. In Sect. 4 we give our conclusions and discussion.
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2 Nonlinear Stability of the Loop About Plane
Perturbations

2.1 General Translationally Invariant Hamiltonian Systems:
Stability of Solitary Waves

2.1.1 Translationally Invariant Hamiltonian Systems

Let X be a functional space of an infinite dimensional hamiltonian system

du SE
E :JE(U(Z‘)), ueM, @9)

where E is a functional (“energy”), J is a skew-symmetric operator:
(Ju,v) = —(u,Jv), u,veD(),

(-,-) the scalar product in L*(R) x L*(R) x --- x L*(R), which is the product of
spaces of square integrable functions on the real axis R, M is some closed submani-
fold in X, §/8u denotes the conditional variational derivative with respecttou € X,
u = u(z, x), x € R under the conditionu € M.

Let E: X — R be the C? functional, which is defined on the whole space X, and
let T(w): X — X be the one parametric group of translations

T(w)w(,x) =w(,x+w) = exp(a) Bx)w(~, X).
Assume, that E is invariant under the action of 7', i.e.
E(T(w)u) = E(u). )

Differentiating (2) with respect to @ and putting w to zero we get
d d
(E'(w), —T(Ow) =0, ——T(0) =2,
dow dow

where prime denotes the variational derivative.
Assume further, that there exists the bounded operator B: X — X* (x denotes
the conjugation), such that JB = dT(0)/dw. Define the functional Q: X — R by

the equality
1
Q) = §<Bu, u).

It is easily seen, that Q(u) is also invariant under the action of the grout 7':
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O(T(w)u) = Q), weR, ueX.

Indeed

d
—T(0)T (w)u) = (BT (w)u, JBT (»)u) =

d /
%Q(T(w)u) = (0 (T(w)u), To

Note, that the functionals £ and Q are formally conserved under the flow of (1).

Indeed
dE

o < "(w), —>= (E'(w), JE'(w)) =

and it follows that

dQ

du , _
o <Q( ) d_> = (Bu, JE'(n)) =

—(JBu, E'(w)) = — <%T(O)u, E’(u)> =

2.1.2 Basic Assumptions

Let us denote by ¢. = ¢.(x — ct), where c is a constant wave velocity, a solution of
Eq. (1) of solitary wave type.

Definition 1 We call the Cauchy problem for Eq. (1) well posed, if for arbitrary wy €
X near ¢ in X, ||[wWg — ¢.|| < y, there exist T = T'(y) > 0 and the vector function
w(t) € C([0,T), X) (continuous in # with values in X, || - || denotes the norm in X ),
w(0) = wg such that forall £,0 <t < T, and E(w) = E(wg), Q(w) = Q(Wwy).

Further we consider that the following assumptions are valid.
Assumption 1 The solution of the Cauchy problem exists in the above sense.

Assumption 2 There exist ¢; < ¢, and a smooth mapping ¢ — ¢, of the interval
(c1, ¢p) in X, such that for all ¢ € (cq, ¢3)

(@) R(¢e) = E'(¢pc) +c Q' (¢e) = 0;
(b) dT(0)/dw - . # 0.

Next define the operator from X to X *:

A =E"(¢c) +c Q" (o).

Itis proved in [11] that 5Z: X — X * is self-adjoint and also that the translational
invariance in x implies the existence of the zero eigenvalue of this operator with the
associated eigenvector

d
%T(O)‘Pc = 8x¢c-
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Assumption 3 There is no negative spectrum of 7, its kernel is spanned on
dd—wT(O)¢c and the positive spectrum of .77 is bounded away from zero.

2.1.3 Stability of Solitary Waves

Solitary wave which is close to a given solitary wave has, nevertheless, slightly dif-
ferent velocity, and, hence, the distance between the both solitary waves will increase
with time. Therefore, under dynamic stability of a solitary wave we understand the
orbital stability or the stability in form.

Definition 2 The orbit {T'(—ct)¢., t € R} is stable, if for ¢ > 0 there exists § > 0,
such that if |jug — ¢.|| < § and u(¢) on some semi-interval [ 0, #y) with u(0) = uy,
then u(¢) can be continued to the solution on 0 < ¢ < oo and

sup_inf [[u(r) — T(@)cl| <e.

0<t<oo @€

Otherwise, the orbit is called unstable.

The neighborhood U, of the solitary wave orbit is defined by the following way:

Us={weX, inﬂfQ [IwW(, 1) = T(@)¢cll < €}.

There exist & > 0 and the smooth mapping such that w: U, — R such that for all
w e U,

(T (0 (W))W, 3:¢) =0, ¢ =x—ct. 3)

This fact for general case of translationally invariant hamiltonian systems was
proved in [11] by the use of the implicit function theorem. It means that for w € U,
there exists the optimal shift, which gives the minimum to the distance between the
solitary wave and w.

Let L be the linear space tangent to M in ¢, for ¢ € (cy, ¢2). Then, the following
Theorem follows from the Assumption 3 [11].

Theorem 1
(Hy.y) = coly,y), yeLi, Li=LN(y, ¢ =0. 4)
In the case to be considered here the inequality (4) can imply the inequality
(Hy.y) zcllyll’, yeLi
We assume further, that there exists one more continuous in X conserving func-

tional under the flow (1) denoted by N. Let R(u) = E(u) + cQ(u)) — N(u). Then
the following theorem is valid [9].
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Theorem 2 The solitary wave ¢, is stable if
(i) Assumptions 1, 2 is valid;
(i) R(W) — R(¢c)) = c||T (0 (W))W — ¢ ||* withw (W) from(3)andw € U, N M.

2.2 Formulation, Solitary Waves, Symmetries and Stability

Consider nonlinear planar bending oscillation of a thin inextensible shear-free elastic
rod (Euler’s elastica) of infinite length under the action of the tension force and in the
undisturbed state coinciding with the x;-axis of the Cartesian coordinate system. The
total energy of the rod consists of kinetic and bending energies (the torsion energy is
absent because only plane motions are considered in the principal plane od bending
x1x7). Corresponding linear densities kinetic K and potential W energies are given
by expressions

K = %pr;xi,, W = %IonégxiEg,
where x;, i = 1, 2 are the coordinates of points of the neutral curve of the rod (elas-
tica), p is the density, S is the area of the cross section of the rod, pI is the moment
of inertia of the cross section about a line orthogonal to the principal plane of bend-
ing x1x, Ey is the Young module, and & denotes the arc-length of the elastica. The
summation is assumed under the repeating indices. The form of the elastica are given
by the equation x' = x'(¢, &). For thin rods, the rotational part of the kinetic energy
K, = % plxﬁgx,-,g is small compared to the kinetic energy K and bending energy W
and is of order S /R?, where R is the curvature radius of the elastica [9] and we neglect
it here.

The equations of motion can be obtained by taking the variational derivative of
the lagrangian A,

t o0
1 A .
A= 5/ /(,on;xi, - IEx’ggx,-gg)dé dt
thy —o0
under the condition of the inextensibility : x,-gxé = 1. These equations are given by
prﬁt = (Pxig)gf — IExiggg:-g, xigxé = 1, (5)
where P(t,&) = p(t, &) + po is the Lagrange multiplier, corresponding to physi-

cal value of the extension force, p — 0 for £ — £oo. Making in (5) the scaling
transformations
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and preserving the former notations, we get

Ty = (PT)ee + Tee — Teeee
‘L'iTi = 1,

11—>1, ©3—0, &— £oo. (6)

where 7; = x;.
System of Eq. (6) is written in Hamiltonian form

. d8E , 9SE
=—— V=—— TTn=I, @)
IE Sv; € 81

where
o0
E = / [ + Tt + p(x'r — D] dE.
—0Q

Along with Hamiltonian E the following two formally conserved quantities take
place:

o0 o0
Q:/(rf—r;o)v,-dg, N:/(r‘—l)ds, =1, 2’ =0
—0Q —0Q

Denote further ¢. = {rf) -1, rg, v?, vg}T (v(l) = —c(rl0 — 1), vg = —crzo), and
w(t) = {r; — 1, 1, vi, 2} for vector functions, and also X = H'(R) x H'(R) x
L*(R) x L*(R) for the Hilbert space with the norm || - ||.

Hence, Eq. (6) has the Hamiltonian form (7),

M={t—-1,1: 7l = 1.}

The functionals E, Q, and also N are continuous as the functionals from the Hilbert
space X to R (the last one as a consequence of the fact that 7;—1 e L!(R), which
follows from the inextensibility condition in (6)).

In this section we present the proof of the following

Theorem 3 Let 3 = 0 andforall wy € X near ¢. inX, ||wo — ¢.|| < y, there exist
T=T()>0 and vector-function w(t) e C([0,T),X) (continuous with
valuesinX ), w(-,0) = wg = {té, 0, v(l), 07,1 =1,2, such, thatforallt, 0 <t <T,
titoi = t'ti = 1 and H(w) = H(wp), Q(W) = Q(Wy), N(W) = N(wo). Then for
arbitrary € > O there exists 5 > 0 such, that if ||wo — ¢.|| < 8, then

sup in&”w([, )= ¢ (- F+w)ll <e.

>0 @€
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The proof of this Theorem is based on the fact, that a family of translations of the
solitary wave (orbit) gives the local minimum to the conserved quantity R(w) on the
closed submanifold M € X. This, in its turn, follows that “linearized Hamiltonian”
H(¢e) = 8% R(¢.)/8>w has exactly one zero eigenvalue and its positive spectrum
is bounded away from zero.

2.2.1 Solitary Wave Solutions

Solitary wave solutions of (6) are the solutions of traveling wave type tending to
zero at infinity. Traveling waves depend on the self-similar combination { = & — ¢t
and the equations describing them can be obtained by the integration of (6). These

equations have the form

—c(ri — rc’;o) =,

—cvizpri—réo—rég, Ty = 1. 3
Multiplying the second equation in (8) by 7; and summing by index i, we get
p= c2 + - Cz)Téo‘L',' — ‘L';'L’,'g.

Further, multiply the same equation by ré and sum. In the result we get

1 . .
——T,Tig — Szféol’i{ =0, s=+v1-—¢c2,

and after one time integration

1, 2_i
—5 C‘t,-;—s TOO'L',‘ZH. (9)
Put further IT = —s2. Define the new angle variable 6 as 7y = cosf, 1, = sin6.

In new variables (9) takes the form
07 = 4s>sin’0/2,
which can be easily integrated. Finally, we have

p=—p°=—6(1—c*)sech’/1—c2, 13=0,
n=1=1- ZSechzm;,
v =70 = —2sech®/1 — ¢ sinh/1 =%, ¢ =k —ct, 0<c<l. (10)

Classification of various forms of elastic lines was first given Euler, who derived
the ordinary differential equation, describing the shape of thin non-tensile rods under



Stability Theory of Solitary Loops Propagating Along Euler’s Elastica 277

Fig. 1 Form of solitary xz
wave on the elastica and a
tangent vector { r?, rg, 07

A

by the action of tension force (see, for example, [4]). Elastic curve of the rod of infinite
length can have a loop shape, which is the running solitary wave, given by (10) (see
Fig.1).

We note, that system (8) for solitary wave solutions may be also written in the
form

R (¢c) = (E(¢c) + cQ(¢e) — N(¢o)} = 0. (1)

2.2.2 Well-Posedness of the Cauchy Problem

We call the Cauchy problem for (6) well posed if Assumption 1 in slightly modified
form is valid, namely the Cauchy problem for Eq. (6) is well posed if for arbitrary
wo € X near ¢, in X, ||wog — ¢.|| < v, there exist T = T(y) > 0 and a vector func-
tionw(z, ) € C([0, T), X) (continuous with values in X ), w(-, 0) = wo = {t, vi} ",
i=1,2,3, such, that for all t, 0 <t < T, ‘Eé‘l,'o,- =1it; =1 and E(w) = E(w),
Q(w) = Q(wo), N (W) = N (Wo).

2.2.3 Symmetry

The functionals E, Q and N are invariant under the action of the Lie group of trans-
lations
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e T:X — X:
T(w(, &) =w(-, &+ w) exp(wag)w(-, &), welkR

The vector k = 9, ¢, is the unique null eigenvector of the operator 7#. Moreover,
for the case in question (3) has the place.

2.2.4 Spectral Properties of the Operator 7

Let us introduce the following notations: u = {uy, u,, uz, uy, }T is the unknown vec-
tor function, L = {fu € X, rf)ul + rguz = 0} is linear closed subspace of X, tangent
to the submanifold M = {ue X, ;7' = 1} ata point u = ¢ (see Sect. 2.1.3).

The following inequality takes place (#7u, u) > 0 u € L. Indeed, resolving the
equality 787’ = 0, we get

stu=1), 89, 8ty =—1)80.

The bilinear form (78w, §w) in L is given by

o0
. d? . .
(HSW, SW) = / [(w <_@ +1 —p0> 8T + 8v'ov; +2€8v’8r{| dg =

—00

= / |:819 <_F +c?+st— 2szch_2s§> 89 + 2¢ty 80 8vy

—00

—2ct{ 89 8v, + 8v/6v;] dE.

The eigenvalue problem for the operator .77 is formulated as follows
oy = VX, 12)
where

S+ cr) —cr)

=\ cf 1 0 |, x={0xx’
—ct) 0 1
2

d
JH = _E + s>—2sech’s¢.

The eigenvalue problem (12) can be rewritten in components:
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0 0

2
cT cT c*v
XN=—x, B=—-"— Hxi=v- X1
v—1 v—1 v—1

and, consequently, it is reduced to the Sturm-Liouville eigenvalue problem for the
component x;. From Sturm-Liouville theory it is known, that the operator .7 has the
unique null eigenvalue (with the associated eigenfunction d;t)/7), corresponding
to dz¢.), and the other spectrum is positive and is bounded away from zero.

From the expression for the zero eigenvalue

C2V

v—1

)

one has vp = 0, v, = 14 ¢ > 0. Essential spectrum .7# satisfies the condition

2
cTv )

> 57,

v—
v—1

from which it follows that
v>1-—c
and, consequently the spectrum is bounded away from zero for the fixed velocity
cel0,1).
It follows then (see Theorem 1 in Sect. 2.1.3), that if u € L and (u, 9;¢.) =0,
then
(Hu, 1) > ap(u, u). (13)
Besides, if u € L and (u, 9;¢.) =0, then
(70, u) > ay|[u] . (14)

in fact, multiplying both sides of inequality (13) on 1 — ¢, where ¢ is a sufficiently
small constant, we get

oo

(#u,u) > ¢ / [(Bgul)z + (8gu2)2 + Po(u% + u%) + ui + u%-i—
—0oQ
+2¢ (ujuy + upus) | dé + (1 — &)ap (u, u) >
o
> / (613 +ud) + Bo(ud +1u2) + (313 + dgud)]dg, PO = —p¥ +1,
—00

where B = (1 — &)ap + (1 — 65> —¢) and B, = (1 — &)y — ec. In order to get
the estimate (14), choose «; = min(f, B2, €).
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2.2.5 Stability

Let w(z, -) be the solution of Cauchy problem (6) on some semi-interval [ 0, T"). Then
the orbit is considered to be stable according Definition 2 of Sect. 2.1.3.
According Theorem 2 the orbit of the solitary wave in question is stable if

the Cauchy problem for (6) is well posed (in the sense of Definition 1);
R(w) — R(¢.) > a||T(a)(w))w — ¢c||* forw € U, N M, (« is some positive con-
stant, w(w) is from (3)).

So, it remains to prove that for w € U, N M the equality is valid
R(W) = R(¢) = al|T (0(W)w — ¢c||*.
Letw € U, N M . Make the decomposition
p=T(@wW)w—g¢.=u’+u,
where p = {p1, p2,, P3, P4, }T, uy = {u(f, ug, 0}7 u e L. Next, note that
2(t)p + o) = —a, (15)

where a = pf + p3. Equality (15) follows from the inclusion 7' (w(w))w € M . From
(15) it follows that tu} + tyu3 = —a/2. Resolving the last equality with respect to
u(l) and ug we get

a a
u) = —Er?, u) = —5120. (16)

For w € U, "' M according to (11) one has
1 2
R(w) — R(¢.) = §<%”p, p) + o(llpll")-
Next, we note that

(u,0;¢.) = (T(2(W)) — ¢ —u’, 0:¢,) =0

as the consequence of the equalities (¢, 3;¢.) = 0, (u’, 9;¢.) = 0.The lastequality
follows from (16). Consequently, u belongs to the positive subspace .7 (.7u, u) >
o ||ul|?. Finally,

llull = 1lp =l = [lpll = [l = llpll = O(lpl1P),

and for small enough p
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R(W) — R(¢,) > %Hpnz = allpl.

3 Spectral Instability of the Loop About Three
Dimensional Perturbations

3.1 Formulation, Basic Equations

3.1.1 Basic Equations

In this section we choose the Cartesian coordinate system x=(x, y, z). As before,
we consider a spatial curve ¢ (¢) (elastica), which is the centerline of a prismatic,
dynamically symmetric, inextensible rod. We assume that this curve initially coin-
cides with the z-axis. The position of the curve can vary with time, i.e., x = x(&, 7).
At each point of the curve, we define a director basis (d;, dy, d3), where d; = dx/0&
and d;, d; are unit vectors in the plane normal to ds. The triple (d;, d,, d3) forms a
right-hand orthonormal basis at each point of ¢ (¢). The Euler angles 0, v and ¢ in
the rod motion depend on & and ¢; 6 is the angle between the z-axis and the tangent
vector d3, ¥y measures the deviation of ¢ (¢) from the principal bending plane (x, z),
and ¢ is the angle of torsion (see Fig. 1 in [8]). The tangent vector d3(s, ¢) has the
components Ty, T, and 73:

Ty =cosf, T, =cosy sinf, T3 =siny siné.

The expressions for d; and d; in terms of the angles 6, ¥ and ¢ are given in [8].
Together with the trapped basis {d;}, i = 1, 2, 3, we introduce the orthonormal basis
{&,-}, which is obtained by a clockwise rotation of the pair (d;, d,) about d3 through
the torsion angle ¢, i.e.,

d, = (cos¢)d, — (sinp) ds,
d; = (sing) d; + (cos ¢) dy,
d; =d;.

In the Kirchhoff rod dynamics model, the total force F = F(&, ¢) and the total
moment M = M(£, r) can be expressed in terms of the director basis d;: F =
Z?:I fidi, M = Z?: | M;d;. The constitutive relation of linear elasticity theory up to
terms of the order O(S/R?) (recall that S is the square of the rod cross section and
R is the radius of curvature of 4 (1)) is [3, 8]

M = Eylxd| + Elkrd; + 1 k3ds, 17
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where p is the shear modulus, and 7 is the moment of inertia of the cross section as
before. The elastic parameter J is given by formula (2.24) in [8], and is equal to 2/
for rods with a circular cross section. The values «;, i = 1, 2, 3, are the components
of the curvature vector

Kk = k1d; + kd; + K3ds.

The conservation of linear and angular momentum together with constitutive
relation (17) lead to the force and moment equations [3, 8]

F = pSX,
M’+X’xF:pI(d1x&1+d2Xaz), (18)

where the prime denotes differentiation with respect to the arc-length &, the dot
denotes differentiation with respect to ¢, and p is the rod mass density.
We next apply the scaling transformations

2
v
s—>vs, x—>vx, t— fBt, F— —F,

B2
where v is the characteristic wave length and 8 = v2/pS/EI. This scaling implies

the replacementsd; — d;, 6 — k/v,M — EI v~!M . In the new dimensionless vari-
ables, Egs. (17) and (18) become

F// =&3’
M/+d3 XF:S(d[ Xal+d2X&2),
My =k1; My =1, M3= ks, (19)

where 2 = uJ /EI, ¢ = 1/(v2S) ~ §/R? is a small quantity (as before). In the basis
{d;},i=1,2,3, k; are given by [8]:
ki = 0g0 sin¢ — 3z sin 6 cos @,
ky = 00 cos ¢ — O sin O sin ¢,
k3 = 0g Y cos 6 + 0.
Projecting the first equation in (19) on the fixed Cartesian basis and the second
equation on the vector basis d;, i = 1, 2, 3, we obtain six equations for 6, ¥, ¢, F”*,
FY, and F*:
BéFX = ai(cos Y cos0),
9 FY = 9;(sin ¢ sin6),
9z F* = 0,(cos 0),
aéw sin 0+20; 1 9:0 cos 0 —$2 (0 Y cos O + 9:¢)9:0 —F* sin y+F” cos ¢ =
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= (37 sin® — 20,00,4),

920 — (9cv)” sin 6 cos 0+82 0z cos O + 0:$)dz Y sin O+ (F* cos v+

+ Fsiny) cos @ — F*sin® = (3,0 + (3,%) sin6 cos 0 + 28,3, sin6),
§20g (0 cos O + 0:¢p) = 2€0,(0; ) cos O + 9;¢). (20)

3.1.2 Solitary Wave Solutions

The planar dynamics (pure flexure) of the rod is described by the system of equations
that follow from (20) by setting ¥ = ¢ = 0:
9;7(cos0) = 9z, (T cos® — G sin6),
97 (sin0) = agé(T sin® + G cos ),
€d;0 — 050 =G, 2D

where T is the tension, G is the shear force,
F = F'i+ F°k = Td; + Gn,
ds and n(=d,) are the respective tangent and normal vectors,
d; =icosfd +ksinf, n=—isind +Kk cosf.

We assume that 7(§ = 00, 1) = Too = poo = coNSt.
System (21) describes the planar dynamics of a torsion-free rod. It has a solitary
wave solution [9, 10], which is a traveling wave with the constant speed ¢

=140@), 5=140@), T'=T"°+0(), T’ = (T — )1} = ,

where

rlo =1 —2sech®y/Ts — c2¢,
79 = F2sech’/To, — 2¢ sinhy/To, —€2¢, ¢ =& —ct, 0<c <Tn. (22)

Expressions (22) are in full correspondence with (10).

We note that the tension at infinity T, can be set equal to unity by the transfor-
mations t — t/Tso, s = §/+/Too. We introduce the new coordinates (xi, x») and the
curve £ such that along % (see Sect. 2.2),

da _ o o
1> d§_2

ac = °
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The form of J# (the form of the soliton of elevation to the lowest order in €) is shown
in Fig. 1.

3.2 Linearization and Stability Analysis

3.2.1 Linearization
We consider Euler angles of the forms
0=0", ¥=y"+38¢, ¢=¢"+359,
where (6°, %, ¢*) are the Euler angles corresponding to the solitary wave solution
and (8, 8¢ ) are infinitesimal perturbations. The perturbation of the third component
of the tangent vector then becomes
813 = 8 sin6’. (23)
We assume that
{e8y, e8¢} ~ ((6Y)*. (5¢)°) (24)
because ¢ is considered to be small.
We linearize Eq. (20) about the solitary wave solution (taking (24) in account)
and assume that the twisting moment M3 in the perturbed state is absent (no-twist

perturbations):

AZ8FY = 32(8 sinb*),
028 sin 6°4-20,89,0° cos 0° —F* 8y +8F> = 0,
20,(0,8Y cos 0° + 3,8¢) = 0. (25)

From (25), using (23) we obtain
0873 = =045 (p"873) + 03873 — 0707, (26)
where (see (10)).

=T — @3, t)* — (3, t)? — 1 = —6(1 — ) sech®v/1 — c2¢.

3.2.2 Instability of the Solitary Wave

We seek the growing solution of Eq. (26) in the form
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sts=e"wh,0), (=&—ct, 0<c<]l,

285

where w decays exponentially as { — FooandRe A > 0.Itis easy to understand that
the function w(X, ¢) must satisfy an ordinary differential equation with coefficients

depending on ¢ and 1

d\° d? d* .,
A—c— w:—w——w——(pw).
d¢ dg? dct dg?
Equation (27) can be written in the matrix form

Yy =4 0y,

y=0LynLynyad, yi=w, yp=w, yy=w', y=w",

where the prime denotes now differentiation with respect ¢ and

0 1 0 0

0 0 1 0

MO8 = 0 0 0 1
224" 2xc+2pY 1-24p° 0

The equation conjugate to (27) is written as

d\’ d> d* d?
()\ + C—) w* = * * _pO_W*

dt acz’ Tagtt TP age
or
7 =—z.4(,0),
z=1{2,2, 2. u) u=w" z3=—w", =w" — (1= +p")w",

2=—w" +1=74p)w" — Qrc+pV)w*.
Because y(4, ¢) and z(A, ¢) respectively satisfy (28) and (30),
(201, &) -y, §)) =0,

where the dot denotes the scalar product of two vectors.

27)

(28)

(29)

(30)
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3.2.3 Local Analysis

We set A (A) = lirf M (A, ¢)andlet uy, (M) (@ = 1,2, 3, 4) be the eigenvalues of
[Gug==cq]

the matrix .#, (1), and r, (1) ans 1, (1) be the right and left eigenvectors of .#Zy, ().
The matrix .#,, (1) has the same form as the corresponding matrix in [16]:

0O 1 0 0
0o 0 1 0
M)=1" o o
A2 2xc 1= 0

The characteristic equation det [.#, (1) — u&] = 0, where & is the unit matrix,
has the form

ut— (1 = Au? = 2uck + 22 =0. a3

The asymptotic behavior of solutions of (26) is obviously determined by these eigen-
values.
The following was shown in [16]

e If |c| < 1 and X is not on the imaginary axis, then (31) has two roots in the right
complex half-plane and two in the left complex half-plane. For A in the right
half-plane, we let ) and p3; denote the two roots in the left half-plane.

e The functions w (1) and w3 (1) ave branch points for A in the right half-plane, and
they are analytic in a neighborhood of the origin:

2
pid) = —v1—c2+ A + L2
1—c2  2(1 —c?)5?

A
w(h) = —1—+ 00%); (32)

A2+ 00,

e The solutions y; and z;, k = 1, 3, of (28) and (30) satisfying
lim e ™'y, (0, £) = 1 (L),
{—00
Jim V') = L) k=13, (33)
——00

at infinity are analytic in A in a neighborhood of the origin.

Let Y be the first component and Z; be the last component of the vectors y; and
7, k = 1, 3, respectively satisfying (28) and (30). From (32) and (33), we have

242 2
Yy c¢ c¢ 1+2¢ 2 3
Y, = e 1 A 2} +002),
1=e <+1—c2 +[2(1—c2)2+2(1—c2)5/2§ TOG)
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¢ 12
1—c’\+§(1—c)2

Ys=1-— A2+ 00% (34)

as ¢ — oo and

242 2
e 29 ¢ I +2c 2 3
Z = 1- A - 22 +00%),
1=e ( - +[2(1—c2)2 2 —aypn bt h ) o)
Zi=1+ 3 A+1 ¢ A+003) (35)
l—c” " 2(1—c)p2

as ¢ — —oo.
We seek solutions of (27) and (29) for A in a neighborhood of the origin in the
form of the expansions

1
Yi(A) = Yio + AV + EXZYkz +0MY),
1
Ze(\) = Zio + AZiy + §K2Zk2 +00%, k=1,3,
The coefficients of these equations satisfy certain equations [16] that can be solved
analytically.
3.2.4 External Systems

We consider the vectors y" (A, ¢) and z" (A, ¢) with the components

)’QM; = Y1aY3p — Y1BY3a>
Zonp = AaZ3p — UpTBas @ < B, B=1,2,3,4,

where yy,, and zx, are the components of the respective vectors y; and z;. We set a
correspondence between o A B and the numbers as follows: | A2 — 1,1 A3 — 2,
1Ad—3,2A3—>4,2A4— 5,and 3 A4 — 6. The vectors y* (A, £), 2" (A, )
satisfy the linear systems

Y\ ="y, 2 = =2 (D), (36)
where
0 1 0 0 0 0
0 0 1 1 0 0
2ac+2p" 1=c2+p° 0 0 1 0
A _
A0 8) = 0 0 0 0 1ol
22 —pY 0 0 1—-c2+p° 0 1
0 A2=p" 0 =2xc—2p" 0 0
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with the asymptotic matrixIt is easy to verify that the matrix

0 1 0 0 00
0 0 1 1 00

non  n |2 1= 0 o0 10
ML) = M (N, o) = 0 0o 0 0 1 0
22 0 0 1—-¢2 0 1

0 A2 0 —2x 0 O

It is easy to verify that the matrix .ZZ (1) has the eigenvalues

l‘(/a()‘) +,uﬁ()")’ 1 = Ol,ﬁ = 4’ o< :3

3.2.5 Evans Function

For A in the right complex half-plane, the matrix .#., (1) has two eigenvalues in the
left half-plane. The matrix .#Z (1) therefore has a simple (hence analytic) leftmost
eigenvalue with the least real part u”(A) = u3(A) + w1 (1) for A in the right half-
plane. By an exact direct analogy with (33), there are solutions of (36) such that

Jim. e Wy, L) =1 (),

lim e“ ™'z° 0., ¢) = 1" (),
{—>—00

where r* (1) and 1" (1) are the eigenvectors associated with p”(A). It can be shown
thaty” (A, ¢) (A, ¢) are analytic functions of A for A in the right half of the complex
plane [16].

We define the nonnormalized Evans function by

a Ny — Zl()»af)'YI()wf), Zl()"vé‘)'yfi(}"a{)
by =2y _det(zau,c»yl(x,;), Z3()»,§)'Y3()»,§)>' 37

The last equality in (37) holds in the neighborhood U, (0) of the origin where the
functions y (X, ¢) and z; (A, ¢), k = 1, 3 are analytic.

For Re A > 0 the function b(k) is zero if and only if there is a solution of (27)
decaying exponentially as ¢ — oo [16, 20].

The normalized Evans function D (1) has the form

D)

PO = oy

For A € U, (0), we have
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L) () L()-r3d) 2\3/2 2
1" = det = —4(1 =AY+ 002).
ro=de (ls(k)n(?») LG - 1300 (1= eya+ 009
It was proved in [16] (also see [17]) that D(A) — 1 as |A| — oo.

The following theorem can be proved using the expressions for the coefficients
Yko, Ykls Yst ZkO’ Zkl and Zk2 and conditions (34) and (35) []2]

Theorem 4 The Evans function D()), constructed for the function w(i, ¢) in (27),
is analytic in a neighborhood of the origin and is expanded there in a convergent
Taylor series of the form

1-232 5, & .
D)) = 4(1_—62)3A + Zen(c),\ ) (38)
n=3

For ¢? < 1/2 the first coefficient in expansion (38) is negative. It hence follows
that in a sufficiently small neighborhood of the origin, the Evans function D(A) is
negative on the real axis (because D(A) is real for real A). Comparing the behavior
of the analytic Evans function in the vicinity of the origin and at infinity indicates
that this function must vanish in a finite domain on the real axis. This zero coincides
with the unstable eigenvalue of generalized spectral problem (27).

4 Conclusion and Discussion

We have discussed questions of the dynamical stability of the Kirchhoff-Clebsch
theory of elastic rods. We treat the rod as thin and inextensible. At each instant
t, the arc-length & of the centerline curve ¥ (¢) (elastica) is regarded as a spatial
coordinate. We consider both stability to planar perturbations (lying in the plane of
principal bending) as well as to perturbations coming out of the plane of principal
bending.

The rod dynamics is fully determined by the evolution of the three Euler angles
0, ¥, and ¢. The rod is considered dynamically symmetric. The rod motion is planar
if ¥ = ¢ =0 and ¥ (¢) is in the plane curve belonging to the pane containing the
principal axis of inertia of the cross section (principal plane of bending)). If ¥ # 0,
then the curve ¢(¢) cannot be embedded in a single plane, and the motion of the rod
is three-dimensional. We note that in the general case, a nonzero ¥ implies torsion
in the rod, i.e., ¢ # 0, and a three-dimensional rod motion occurs in the presence
of nonzero torsion. The energy of torsion can be neglected only in the case of small
twist-free deviations (M3 = 0) from the principal plane of flexure (cf., e.g., [12]).
The equations giving the rod dynamics in the general case have forms (17) and (18).

For the planar perturbations we investigate nonlinear (Lyapunov stability). This
investigation is based on the Hamiltonian formulation (1) of the system of equation in
question. This is due to the fact that the plane motion is twist free and the torsion for it
equals to zero. We prove the orbital Lyapunov stability (see Definition 2). The stability
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is due to the fact that we are able construct the Lyapunov function (functional) in this
case. The Hessian ¢ has empty negative spectrum, only one null eigenfunction (due
to the translational invariance) and positive spectrum bounded away from zero. The
stability occurs due to the fact that the Lyapunov functional has its local minimum
on the linear space L tangent to the closed submanifold M where solutions of the
basic equations (6) live intersected with the kernel of 7.

Unlike the case of plane perturbations the elastica is unstable about three dimen-
sional perturbations. As itis pointed above the torsion in this case can not be neglected
and we need to treat the full system (19). Equations (19) describe the balance of the
bending energy, the energy of torsion, the kinetic energy of a point of the elastica, and
the kinetic energy of the rotation of the rod cross section. The terms corresponding
to the rotational energy of the cross section are collected in the right-hand side of the
second equation in (19). Using a natural scaling transformation, we showed that the
contribution of the rotational kinetic energy to the total energy is much less than the
contribution of the kinetic energy of a point of the elastica (as in the two dimensional
case). Therefore, in linearized equations (25), we can neglect the perturbations of
the corresponding terms, assuming that they are of the second order of smallness.
We considered a particular form of perturbations for which a torsional moment is
absent. Linearized equations (25) turned out to be equivalent to the single Eq. (26).

Instability results for (26) were previously obtained in [12] using the properties
of the Evans function for the solitary wave solution, solutions of basic equations (6)
(or (21)) of the type of a planar solitary wave in a loop form. Equation (26) (and
spectral problem (27) as a consequence) appear as aresult of linearizing much simpler
equations for the rod dynamics [12]. These results were schematically reproduced
here in Sect. 3.2.2.

The Evans function D()) was constructed as an analytic function in the right
half of the complex plane of the spectral parameter, where it vanishes at points of
the discrete spectrum of generalized spectral problem (27). The Evans function is
real on the real axis and tends to unity as |A| — oo. Our instability results followed
from comparing the behavior of the Evans function in the neighborhood of the origin
(where the function is analytic) with its asymptotic behavior at infinity. Direct calcu-
lations using the Matematica package allowed obtaining an analytic expression for
the first coefficient of the Taylor expansion of the Evans function around the origin in
the complex A-plane [12], which is negative for speeds c¢? < 1/2. Consequently, for
small positive values of A, the function D(A) < 0. It hence follows immediately that
the Evans function vanishes on the positive half-axis, i.e., there exists at least one
unstable eigenvalue. This in turn means that solitary waves moving not very rapidly
in an inextensible rod are unstable under spatial (non-planar) perturbations of the
wave form.

The question about stability of the loop solitary wave for ¢ € [1/+/2, 1) remains
open, but there is no doubt that the momentum of the traveling solitary wave for
the indicated range of speeds stabilizes it. The analogy with another problem serves
as the justification for this assertion. Linearized equation (26) turns out to be abso-
lutely identical to the corresponding linear equation in the problem posed in [22] (also
see [14]). That problem relates to wave propagation in one composite-material model
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representing the idealized case of an elastic matrix with elastic rods with a significant
flexural rigidity continuously distributed in it. In such a composite, there exist two
families of solitary waves. Written for convenience in dimensionless variables, one
family is orbitally (nonlinearly) stable for ¢?> > 1/2. In these variables, the equa-
tions linearized about the solitary wave of this family reduce to a single equation
having exactly the same form as (26) with py given by formulas (10) and (27). This
result, as already mentioned, most likely means that linearized problem (26) with pg
determined by (27) does not have unstable eigenvalues for ¢> > 1/2.

We performed an experiment with a long fishing line. We took a sufficiently thick
line (although its thickness was small compared with the curvature radius of the
evolving elastica) to model an elastic rod with a large value of Young’s module. Static
(c = 0) solitary wave (10) or (27) could be easily produced. It was clearly unstable
under spatial perturbations. The experiment showed that the unstable solitary wave
under the influence of a twist-free perturbation evolved into a three-dimensional
structure with localized torsion (¢ rapidly decaying at infinity).

One of the basic questions in the theory of the stability of flows and states is the
form of a stable secondary structure forming from an unstable state. The complete
class of solitary wave solutions was obtained in [8]. Among them, solutions are found
with a nonzero constant twist moment M3. They correspond to helical structures
with ¢ — oo as & — £00. We note that helical structures are near the threshold
of instability of a twisted straight rod and their stability was investigated in several
papers; see, e.g., [23-25]. Solitary wave (10) of pure flexure is the only twist-free
solitary wave solution.
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Abstract The present paper considers the homogenization problems for two-phase
piezocomposite materials with random inclusions and with taking into account the
mechanical imperfect interface boundaries. The accepted constitutive equations on
the interface correspond to the Gurtin—-Murdoch model for surface stresses and give
a significant effect only for nanosized inclusions. To find the effective material prop-
erties, an integrated approach was used, based on the effective moduli method, on the
modelling of representative volume element and on the finite element method. A set
of boundary value problems was presented, which allow one to determine a complete
collection of effective stiffness moduli, piezomoduli, and dielectric permittivities for
a piezocomposite of arbitrary anisotropy class. The numerical realization was carried
out in the ANSYS finite element package, which was used for representative vol-
ume modelling and for computation of the effective properties for piezocomposite
material. The representative volume consisted of a regular mesh of cubic piezo-
electric finite elements with the material properties of two phases. The interphase
boundaries were covered with anisotropic elastic membrane elements that simulated
surface stresses. As an example, the homogenization problem for one ceramomatrix
piezocomposite with nanosized inclusions was solved numerically. It was noted that
the interface stresses can essentially increase the effective stiffness moduli. However,
the mechanical interface had a small influence on the effective piezomoduli and on
the dielectric permittivities.
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1 Introduction

Piezocomposite materials and, in particular, two-phase piezoceramic materials with
nanosized pores or inclusions are being actively developed in the recent years [27—
29]. New nanostructured piezoelectric composite materials have a range of important
advantages, such as the possibilities of controllable variation of the functional char-
acteristics within a wide range, the ultra-low mechanical quality factor, etc. Further-
more, the modelling of composite micro- and nanomaterials has the specific features
[5, 7, 15, 30, 31]. It is known that some nanomaterials have unconventional phys-
ical properties that considerably differ from the characteristics of usual macrosized
bodies. Thus, the experimental fact is the increasing of the stiffness with reducing
the sizes of nanoobjects. One of the factors that are responsible for this behavior
can be surface or interface effects. As research of the recent years shows, for the
bodies of submicro- and nanosizes the surface stresses are important and influence
the deformation of the bodies. In connection to this, the actual problem can be an
extension of this approach to the nanostructured piezoelectric composite materials.
Theoretical and numerical investigations of piezoelectric nanosized materials with
surface effects and imperfect interface models were also presented in [4, 9, 11-13,
20, 21, 26], etc. Homogenization problems for nanoisized piezoelectric composites
were considered in [3, 10, 32-34], etc.

In present investigation the models of two-phase piezoelectric composite materials
developed in the framework of classic continuum approaches of solid mechanics
and methods of composite mechanics. These models were used to construct more
complicated models of the nanosized piezocomposites that were take into account
the surface or interphase mechanical boundary conditions with anisotropic surface
properties.

We use an integrated approach to the determination of the effective moduli of
nanostructured piezoelecrtric composites with stochastically distributed nanosized
inclusions. In order to take into account nanoscale level at the borders between
two material phases, the Gurtin—-Murdoch model of surface stresses are used [5, 7,
14, 15, 30]. ANSYS finite element package was used to simulate representative
volumes and to calculate the effective moduli. This approach is based on the theory
of effective moduli of composite mechanics, modelling of representative volumes
and the finite element method [24, 25]. Here, the contact boundaries between two
material phases were covered by the surface membrane elements in order to take the
surface stresses into account. The next step consisted in solving the static problems
for representative volume with the boundary conditions which were conventional
for effective moduli method. Further, the averaged stresses and electric fluxes were
calculated, both on the volume finite elements and on the surface finite elements
for mechanical stresses. Finally, the effective moduli were calculated by using the
estimated average characteristics.
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2 Homogenization Problem by Effective Moduli Method

Let 2 = 21 U 2@ be a representative volume occupied by a two-phase medium,
composed of piezoelectric matrix (phase 1) and nanosized piezoelectric or elastic
inclusions (phase 2); 22/ is the volume or the set of volumes occupied by the material
of the phase with number j; I" = 952 is the external boundary of representative
volume 2; I'* = 92V N 32? is the aggregate of interface surfaces of materials
with different phases; n is the vector of external unit normal to I or to the boundary,
outward with respect to the volume 21; x = {x1, x», x3} is the vector of the special
coordinates; u = u(x) is the vector-function of mechanical displacements; ¢ = ¢(x)
is the function of electric potential.

Then, for finding the effective moduli of such composite we can solve in §2
the static piezoelectric homogenization problems, presented here in a nonstandard
vector-matrix form convenient for applying the finite element method

L*(V)-T=0, V-D=0, (1)
T=c¢c-S—e*-E, D=e-S+«-E, 2)
S=L(V)-u, E=-Vg, (3)
910 0 0030, d1
L'M)=|08038508|, V=11, 4)
008382810 83

L*m) - [T]=L*(V")-T°, n-[D]=0, [u]=0, [¢]=0, xelI*, (5
T=c¢ S8, S=LV) v, v=A-u A=I-nn*, (6)
u=L*x)-Sy, xel, 7)

where L*(a) is the matrix operator dependent on the components of the vector a;
T = {011, 022, 033, 023, 013, 012} is the array of the stresses o;;; S = {e11, ex, €33,
2623, 2613, 2¢12} is the array of the strains ;;; D and E are the electric flux den-
sity vector called also the electric displacement vector and the electric field vector,
correspondingly; €op = cfﬁ is the 6 x 6 matrix of elastic stiffness moduli cqg; € is
the 3 x 6 matrix of piezoelectric moduli c;g; k = kS = &% is the 3 x 3 matrix of
dielectric permittivity moduli «;;; S is the six-dimensional array of the constant
components Sog; Eg is the constant vector; superscript “*” denotes the transposition
operation, and (...) - (...) is the scalar product operation. Here, o, 8 =1, ..., 6;
i,j=1,23T=T%P, ¢=cP, etc. forx € 20,

In Eqgs. (5), (6) in accordance with the Gurtin-Murdoch model we assume that
on nanosized interphase boundaries I™ only the surface mechanical stresses o}

are exist. Here, [T] = TV — T@ is the jump stresses on the interphase boundary;
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equality n - [D] = 0 means the continuity of the value D, on the transition across
the interface, etc.; V¥ = V —n(d/dr) is the surface gradient operator, where r is
the coordinate, measured by the normal to I'*; T* = {0}, 05,, 033, 033, 073, 0}, } is
the array of surface stresses 0733 S = {e7,, &3,, €33, 2635, 2613, 2¢7,} is the array of
surface strains efj; ¢’ is the matrix of surface elastic moduli 6 x 6; I is the 3 x 3
identity matrix.

By using (7), we can select such boundary conditions that enable us to obtain
obvious expressions for the effective moduli c(fg, el%ff, /cl.‘;.ff. Thus, under the assump-
tion of the general form anisotropy for piezoelectric composite, the effective material
moduli can be determined, if we solve nine static piezoelectric boundary problems
(1)—(7) with various values of Sy and E(, having set in (7) only one of the components
Soc or Egx (¢ =1,...,6;k=1,2,3) not equal to zero.

In particular, if in (7) we accept (problems I-VI, 8 =1, ..., 6)

Soc = Soép;, Eo =0, (8)
then from the solution (1)—(7), (8) we find
¢y = (Tu)ar/So. €4 =(Dj)a/S- 9)
Similarly, if in (7) we assume (problems VII-IX, j =1, 2, 3)
So=0, Ep = Eodji, (10)
then from (1)—(7), (8) we obtain

e = —(Tu)ar/Eo, &' =(Di)o/Eq. (11)

Here,in(9),(11)a =1,...,6;i = 1, 2, 3; the angle brackets ((...)) o i denote the
averaged by the volume 2 bulk and interface integral values, and the angle brackets
((...)) 2 denote the averaged only by the volume bulk integral values

((.Neor = i(/(...)d:z + /(...)S dr), (D))o = i(/(...)dﬂ). (12)
@i/ J @i\

Note that the boundary value problems (1)—(7) with (8) or (10) differ from the
usual piezoelectric problems by the presence of the interface boundary conditions
(5), (6) for nanosized structures which are typical for the Gurtin-Murdoch model of
surface stresses [2, 16]. In addition, as we can see from (9), (11), (12), to determine
the effective moduli from the solution of the homogenization problems, itis necessary
to use not only the volume integrals, but also the interface surface integrals.
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3 Finite Element Modelling in ANSYS Package. Case
of Ceramomatrix Composite

For solving the piezoelectric problem (1)—(7) with (8) or (10) we can pass to their
weak statement, use the finite element approximation, and in the result we get the
finite element system

Ky -U+K, @ =F,, (13)

K, - U+K, -®=F,, (14)
where U is the vector of nodal displacement, @ is the vector of nodal electric potential,

the vectors F,, F, are obtained from the boundary conditions (7), and the finite
element matrices are given by the formulas

Kuu = K.Quu + KFuu s (15)

KQuuZ/BZ'C'BudQ, K[‘uu:/B;*'CS'BZdF, (16)
2 b

KW=/B;-e*-B¢dQ, Kw¢=/B;.x-B¢d:2, (17)
2 2

B, =L'(V)-N;, B{=L*(V)-A-N;, B,=VN;. (18)

Here, £2), is the volume of finite element mesh; 17 is the finite element approxi-
mation of the interface boundary I7,; N*, N;; are the matrix and the row vectors of
approximating finite element basis functions (u ~ u, =N, - U ¢ = ¢, = N7 - ).

In (16)—(18) the matrices K, K, and K, are the standard finite element matri-
ces of piezoelectric analysis for solid bodies. The matrix K¢, defines by the surface
stresses. This matrix is analogous to the stiffness matrix for surface or interphase elas-
tic membranes. Hence, for realization the finite element piezoelectric analysis for the
bodies with mechanical surface or interphase effects it is necessary to have surface
or interphase structural membrane elements along with ordinary solid piezoelectric
finite elements.

The system (13), (14) with (15)—(18) was formed and solved in the finite element
package ANSYS. The representative volume element (RVE) §2 was chosen in the
shape of a cube with the side L, which was evenly divided into smaller geometrically
identical cubes. These cubes were eight node hexahedral finite elements SOLIDS with
capability of piezoelectric analysis. As a result, the volume £2 was included ngo = n’
brick finite elements, where n is the number of elements along one of the axis. For
the simulation of a two-phase composite, the finite elements were endowed with
material properties of one of the phases. Initially, all elements had the properties of
the first phase. Farther, based on the required input percentage of the material of the
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second phase p,, for the randomly selected n,, = NINT(ng, p,/100) finite elements,
their material properties were modified to the properties of the second phase. Here,
NINT is the function to nearest integer in ANSYS APDL programming language.
The resulting percentage of inclusions p = 100n,/ng can negligible small differ
from the input value p,.

Next, the interphase boundaries of the elements with different material properties
were automatically covered by four-node shell elements SHELL181 with the option
of membrane stresses, which simulated the interface stresses (5), (6) on the bound-
aries I'*. A detailed description of this algorithm was given in [22]. Farther, it was
necessary to provide an anisotropy type for the shell elements SHELL181 which
would be conformable with the hexagonal anisotropy of the brick finite elements
SOLIDS. For a hexagonal system of anisotropy on the interface, supplementary pro-
cedure was implemented for the shell elements SHELL181, located perpendicular
to the isotropy plane Oxx,, by permutation of the stiffness moduli in rows and in
columns corresponding to the axes x, and x3. As a result, all interface boundaries
became coated by the membrane finite elements which simulated the interface effect
of surface stresses.

Figure 1 shows an examples of the representative volumes generated by the simple
random algorithm for n = 20 with p = 10%, p = 50% and p = 90%.

Figure 2 illustrates the surface interface elements for different inner structures,
corresponding to RVE shown in Fig. 1. The shell elements located perpendicular to
the plane Ox;x, are shown in crimson color, and the shell elements located parallel
to the plane Ox;x, are shown in blue. The varicolored shell elements were endowed
here with different anisotropic material properties, conformable to the structures of
the surface stiffness moduli ¢® from (5).

At the next stage, for the generated representative volume element, we solve
static problems (1)—(7) with (8) or (10), and after that in ANSYS postprocessor
we calculate the averaged stresses and electric fluxes by both volume and surface
elements. Lastly, using formulae (8), (10) and the obtained averaged stresses and
electric fluxes, we determine the effective moduli of the piezocomposite, taking into
account the interface stresses.

(a) (b) (c)

Fig. 1 Examples of RVE with different percents of inclusions: a 10%, b 50%, ¢ 90%
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Fig. 2 Examples of a interface boundaries for RVE with different percents of inclusions: a 10%,
b 50%, ¢ 90%

4 Numerical Examples

As an example, in this section we consider PZT-4/Al,03 piezoceramic/monocrystal
composite material. We determine the effective moduli of polycrystalline piezoce-
ramic in two stages. At the first stage, we calculate the effective moduli for material of
inclusions. At the second stage, we consider a piezocomposite with isotropic inclu-
sions as a two-phase composite. Here we use the models of representative volume
elements with random distributed inclusions, described in the previous sections.

In accordance with [1], after the first stage we obtain the averaged moduli of
a-corundum as an isotropic elastic material: E® = 40.26 - 10'° (N/m?); v® =
0.23; ¢\ =46.88-10'0 (N/m2); ¢\ =14.22- 10 (N/m?); «@ = 10gy; &) =
8.85- 107! (F/m). In the calculations, we will consider this material as a piezo-
electric material with negligible piezomoduli. For dense piezoceramic PZT-4 we
assume the following material constants: ¢\ = 13.9 - 10! (N/m?); ¢!} =7.78 -
1010 (N/m?); ¢ = 7.43 - 10" (N/m?); ¢ = 11.5 - 1010 (N/m?); i) = 2.56 - 10'°
(N/m?); ef) = —5.2 (C/m?); €fy) = 15.1 (C/m?); ey = 12.7 (C/m?); kf)) = 730¢0;
Ky = 635¢.

Note that in order to determine in ANSYS a shell element with membrane option,
it is necessary to define the elastic stiffness moduli ¢y and the thickness h™. As it
was indicated in [22], we can use the membrane element ANSYS as the interface
element, simulated the surface conditions (5), (6), if we pose cgﬂ = mcg;,.

Consequently, here the products of the stiffness moduli ¢ of the membrane ele-
ment by its thickness 2™ are the important values, but not the values of the stiffnesses
Cup and of the thickness ™ separately. In continuation of the approaches described
in [22], in this investigation we define the representative volume in dimensionless
way where the finite element side was equal to one. Therefore, the space dimension-
ing parameter was equal to the minimal size of the inclusion element a. As there
is not enough reliable data on the values of the surface stiffness moduli for inter-
face between different elastic piezoelectric materials, then in accordance with the
data for another materials, we assume that in the case of nanostructured ceramo-
matrix piezocomposite the surface stiffness moduli were connected to the volume
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moduli of piezoceramics and of inclusions by the formula ¢, = I, |c;1ﬁ) - cffﬁ) |, where

I; = 107'° (m). Let us also accept that " = a, c(’fﬁ = kslcgg — cfﬂ)l, where k° is

the dimensionless factor. Then, czﬁ = h’”cgfﬁ = ksa|c((x:3) — c((jg)| = (kK’a/ ld)c;;ﬂ, ie.
a = l;/k*, and thus the coefficient k° is inversely proportional to the minimal size of
the inclusions a. Further in computational experiments with constant surface mod-
uli ¢4 the coefficient k* and the inclusion percentage p were varied. As it can be
seen, the growth of factor k° corresponds to the decrease of the minimal inclusion
size a, and for k* > 1 the value a becomes smaller as compared with parameter
l; = 1071(m).

For the analysis of the influence of the inclusion percentage and surface stress on
the effective moduli, we have carried out the computer calculations of the effective
moduli for a fixed number of the elements n = 20 along the axes of RVE, but for var-
ious percentage of inclusions p and various but not very large values of the factor k°.
The numerical results are presented in Figs. 3, 4 and 5. Here and after (. . .) denotes
the relative values of the effective modulus, with respect to the corresponding values
of the modulus for zero percentage of inclusions. For example, r(c33) = cggf /€33,
where ¢S is the effective stiffness modulus for the nanostructured ceramomatrix
piezocomposite, which takes the surface stress into account, ¢33 is the corresponding

0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Inclusions p (%) Percentage of Inclusions p (%)

Fig.3 Dependencies of the relative effective moduli cggf (a)and ciﬂf (b) versus inclusion percentage

(b) 5
4
-
< 3
&l
w2
1
0 e | 0 ——————
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Inclusions p (%) Percentage of Inclusions p (%)

Fig. 4 Dependencies of the relative effective modulus cht (a) and area of interface A” (b) versus

inclusion percentage
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O 20 40 60 80 100 0 20 40 60 80 100

Percentage of Inclusions p (%) Percentage of Inclusions p (%)

Fig. 5 Dependencies of the relative effective piezomodulus egﬁf (a) and dielectric permittivity K§§f

(b) versus inclusion percentage

value of the stiffness modulus for an ordinary dense material of piezoceramic and so
on. The curves 1 correspond to the case k* = 0, when there are no surface effects,
the curves 2 correspond to the case k* = 0.1, the curves 3 correspond to the case
k* = 0.5, and the curves 4 correspond to the case k¥ = 1.

As Figs. 3 and 4 demonstrate, for relatively small values of the factor k* (curves 1
and 2) the interface effects do not affect the material moduli. However, for any per-
centage of inclusions the interface stresses are larger than the effective stiffnesses of
the composite material. Moreover, there are cases when the composite material with
interfaces can have greater stiffness than the more rigid material in the composite.
This situation takes place when k* = 1 for the stiffness modulus ¢S if p > 45%,
for the stiffness modulus ¢§ff if p > 66%, and for the modulus ¢ if p > 75%, (see
curves 4 which are located higher that the dashed lines in the Figs. 3 and 4a).

Note that the percentage of tougher inclusions and the interface stresses have
the same influence on the effective stiffness: a simple increase of the percentage of
tougher inclusions leads to a increase in the stiffness moduli, as well as the interface
stresses increase the stiffness. Therefore, these two effects lead to an increase in the
total stiffness of the piezocomposite. But with very small and with very large percent-
ages of inclusions, the integral area of the interphase is small (Fig. 4b), and therefore
the effective stiffness moduli of the composite become close to the corresponding
stiffness moduli of the main material or inclusions.

Meanwhile, the uncoupled surface stresses have much less effect on the effective
piezomoduli ¢ff and almost do not influence on the dielectric permittivities &5
Thus. Figure 5 illustrates the dependencies of the most different relative effective
transverse piezomodulus €S (Fig. 5a) and dielectric permittivity <51 (Fig. 5b) versus
percentage of inclusions p.

Note that the influence of the surfaces stresses is significant mostly for the relative
values of the transverse piezomodulus 7 (eS), and the curves for other piezomoduli
and dielectric permittivities for diff