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Abstract The Atangana–Baleanu fractional differential and integral operators have
been used in this chapter to describe the crossover behavior of a chaotic complex
system. The existingmodel was extended andmodified by replacing the conventional
time local operator by the fractional differential operator with non-local and non-
singular kernel.We established the conditions underwhich the existence of a uniquely
exact solution can be found. A newly established numerical scheme was used to
solve the modified model and numerical solutions are displayed for different values
of fractional order.
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1 Introduction

Complex systems have attracted attention of all my kind due to their occurrence in
our daily life. They are omnipresent in the field of chaos, solitons, fractal, epidemi-
ology and other fields where complexities are observed such as groundwater and
biological models portraying the interaction among pieces. The description of these
complex natural occurrences can be achieved using the mathematical tools known
as derivative, and they can be classified in two big classes, the first class is the local
differential operator that uses the rate of chance to express the variation of a moving
object or change taking place in time and space [1, 2]. This first class was greatly used
in the classical mechanic, where there is no sign of complexity like heterogeneity,
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self-similarities, and a crossover in mean-square displacement. The connective evo-
lution equation of this differential operator obeys the so-called semi-group principle
thus, it cannot replicate the well-known Non-Markovian processes. The second class
was well-developed in the last years and is known as nonlocal differential operators.
This last class was born as result of discussion between Sir L’ Hopital and Leibniz,
where the nth derivative could be 1

2 . derivative. Then this was developed later on by
Riemann and Liouville, modified by Michele Caputo by transforming the derivative
of a convolution of a given function and the power law decay function to a convo-
lution of derivative of a derivative of first and the power law decay function [3–6].
The last class witness a split in the last decade, as the power law Riemann–Liouville
and Caputo derivatives have posed some problems, as it is imposing a kind of sin-
gularity to those models with no singularities. To solve this problem, a new class
was suggested where the power law kernel was replaced by exponential decay and
the generalized Mittag-Leffler function [7–16]. An analysis done by three senior
Brazilian researchers suggested that the two last suggested kernels have added a real
plus in the field as they are able to describe a crossover behavior that is observed in
many field of science, technology and engineering. With the new weapons brought
by the new class of non-local operators one can describe materials or moving object
taking place in different scales as they possesses a mean-square displacement with
crossover from normal to sub-diffusion and confined diffusion. In this chapter, we
aim to apply the Mittag-Leffler kernel derivative to a well-known complex system
able to describe chaotic behavior [17].

2 New Fractional Derivative with Non-singular
and Non-local Kernel

Let us remind the definitions of the new fractional derivative with non-singular and
non-local kernel [18–27].

Definition 1 Let f ∈ H 1(a, b), b > a, α ∈ [0, 1] then, the definition of the new
fractional derivative (Atangana–Baleanu derivative in Caputo sense) is given as:

ABC
a Dα

t f (t) = B(α)

1 − α

t∫

a

f
′
(x)Eα

[
−α

(t − x)α

1 − α

]
dx, (1)

where ABC
a Dα

t is fractional operator with Mittag-Leffler kernel in the Caputo sense
with order α with respect to t and B(α) = B(0) = B(1) = 1 is a normalization func-
tion [5].

It can be noted that the above definition is helpful to model real world problems.
Also it has a great advantage while using the Laplace transform to solve problem
with initial condition.
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Definition 2 Let f ∈ H 1(a, b), b > a, α ∈ [0, 1] and not differentiable then, the
definition of the new fractional derivative (Atangana–Baleanu fractional derivative
in Riemann–Liouville sense) is given as:

ABR
a Dα

t f (t) = B(α)

1 − α

d

dt

t∫

a

f (x)Eα

[
−α

(t − x)α

1 − α

]
dx. (2)

Definition 3 The fractional integral of order α of a new fractional derivative is
defined as:

AB
a Iα

t f (t) = 1 − α

B(α)
f (t) + α

B(α)Γ (α)

t∫

a

f (y)(t − y)α−1dy. (3)

When α is zero, initial function is obtained and when α is 1, the ordinary integral is
obtained.

Theorem 1 The following time fractional ordinary differential equation

ABC
0 Dα

t f (t) = u(t), (4)

has a unique solution with taking the inverse Laplace transform and using the con-
volution theorem below [4]:

f (t) = 1 − α

B(α)
u(t) + α

B(α)Γ (α)

t∫

a

u(y)(t − y)α−1dy. (5)

3 Picard’s Existence and Uniqueness Theorem
for Atangana–Baleanu Fractional Complex System
in Caputo Sense

In this section, we will present the following existence and uniqueness theorems for
Atangana–Baleanu fractional complex system in Caputo sense via Picard’s theorem.
The theorem considered here is very easy to understand and has same the idea with
classical theorems known in the case of first order system of equations. Atangana–
Baleanu fractional complex system in Caputo sense is given below:
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ABC
0 Dα

t y1 (t) = ay3 (t) y5 (t) , (6)
ABC
0 Dα

t y2 (t) = ay4 (t) y5 (t) ,

ABC
0 Dα

t y3 (t) = b(y1 (t) − y3 (t)),
ABC
0 Dα

t y4 (t) = b(y2 (t) − y4 (t)),
ABC
0 Dα

t y5 (t) = 1 − y21 (t) − y22 (t) ,

and initial conditions

y1 (t0) = y1,0, y2 (t0) = y2,0, y3 (t0) = y3,0,
y4 (t0) = y4,0, y5 (t0) = y5,0.

(7)

Let us consider the right side of the system with a new expression as below:

C1(t, y1(t)) = ay3 (t) y5 (t) , (8)

C2(t, y2(t)) = ay4 (t) y5 (t) ,

C3(t, y3(t)) = b(y1 (t) − y3 (t)),

C4(t, y4(t)) = b(y2 (t) − y4 (t)),

C5(t, y5(t)) = 1 − y21 (t) − y22 (t) .

Then applying the Volterra type integral on the above complex fractional system, the
following integral system is written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 (t) = y1,0(0) + 1−α
B(α)

C1(t, y1(t)) + α
B(α)Γ (α)

t∫
0
C1(τ, y1(τ ))(t − τ)α−1dτ,

y2 (t) = y2,0(0) + 1−α
B(α)

C2(t, y2(t)) + α
B(α)Γ (α)

t∫
0
C2(τ, y2(τ ))(t − τ)α−1dτ,

y3 (t) = y3,0(0) + 1−α
B(α)

C3(t, y3(t)) + α
B(α)Γ (α)

t∫
0
C3(τ, y3(τ ))(t − τ)α−1dτ,

y4 (t) = y4,0(0) + 1−α
B(α)

C4(t, y4(t)) + α
B(α)Γ (α)

t∫
0
C4(τ, y4(τ ))(t − τ)α−1dτ,

y5 (t) = y5,0(0) + 1−α
B(α)

C5(t, y5(t)) + α
B(α)Γ (α)

t∫
0
C5(τ, y5(τ ))(t − τ)α−1dτ,

(9)

with initial conditions

y1,0(0) = 0, y2,0(0) = 0, y3,0(0) = 0,
y4,0(0) = 0, y5,0(0) = 0.

(10)

Theorem The kernels of systemCi(t, yi(t)), for i = 1, 2, 3, . . . 5, satisfy theLipschitz
condition and contraction if the following inequality holds:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ L1 < 1,
0 ≤ L2 < 1,
0 ≤ L3 < 1,
0 ≤ L4 < 1,
0 ≤ L5 < 1.

(11)

Proof First we start the kernel C1(t, y1(t)) = ay3 (t) y5 (t) . Let y1(t) and x1(t) be
two functions, so we have the following:

|C1(t, y1(t)) − C1(t, x1(t))| ≤ 0. |y1(t) − x1(t)| , (12)

taking asL1 = 0, theLipschitz condition and contraction are satisfied forC1(t, y1(t)).
It is easy to see that other kernels are also satisfy Lipschitz condition for 0 ≤ Li < 1,
for i = 2, . . . , 5.

Now we can give the existence of solution and uniqueness theorems for system
under Lipschitz condition with respect to yi and continuity condition with respect
to t.

Theorem (Picard’s existence theorem for system) Let B be a domain in R2 and
Ci : B → R, for i = 1, 2, . . . , 5 be a real functions of system satisfying the following
conditions:

(1) Ci are continuous on B, for i = 1, 2, . . . , 5.
(2) Ci(t, yi(t)), for i = 1, 2, . . . , 5 are Lipschitz continuous with respect to yi on D

with Lipschitz constants of Li > 0.

Let (t0, yi,0) are an interior point on B and k > 0, mi > 0 be constants such that the
rectangle

R = {
(t, yi) : |t − t0| ≤ k,

∣∣yi − yi,0
∣∣ ≤ mi, for i = 1, 2, . . . , 5

} ⊂ B. (13)

If we take

ci = max
(t,yi)∈R

Ci(t, yi(t)) and h = min

(
k,

mi

ci

)
, (14)

then the initial value problem has a unique solution of yi, for i = 1, 2, . . . , 5 on the
interval |t − t0| ≤ h.

Remark Since R is a closed rectangle in B, Ci(t, yi(t)) for i = 1, 2, . . . , 5 are satisfy
all properties in R.

{
If k < mi

ci
then h = k =⇒ R1 = R,

If mi
ci

< k then h = mi
ci

=⇒ R1 ⊂ R.
(15)

Here for i = 1, 2, . . . , 5,
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R = {
(t, yi) : |t − t0| ≤ k,

∣∣yi − yi,0
∣∣ ≤ mi

}
, (16)

R1 = {
(t, yi) : |t − t0| ≤ h,

∣∣yi − yi,0
∣∣ ≤ mi

}
.

We prove the theorem by successive approximation of the Picard’s iterants yi,n(t) for
i = 1, 2, . . . , 5, on |t − t0| ≤ h and are defined by

y1,n (t) = y1,0(0) + 1−α
B(α)

C1(t, y1,n−1(t)) + α
B(α)Γ (α)

t∫
0
C1(τ, y1,n−1(τ ))(t − τ)α−1dτ,

y2,n (t) = y2,0(0) + 1−α
B(α)

C2(t, y2,n−1(t)) + α
B(α)Γ (α)

t∫
0
C2(τ, y2,n−1(τ ))(t − τ)α−1dτ,

y3,n (t) = y3,0(0) + 1−α
B(α)

C3(t, y3,n−1(t)) + α
B(α)Γ (α)

t∫
0
C3(τ, y3,n−1(τ ))(t − τ)α−1dτ,

y4,n (t) = y4,0(0) + 1−α
B(α)

C4(t, y4,n−1(t)) + α
B(α)Γ (α)

t∫
0
C4(τ, y4,n−1(τ ))(t − τ)α−1dτ,

y5,n (t) = y5,0(0) + 1−α
B(α)

C5(t, y5,n−1(t)) + α
B(α)Γ (α)

t∫
0
C5(τ, y5,n−1(τ ))(t − τ)α−1dτ.

(17)
Now we divide the proof into 4 parts.

Part 1: In this part we will show some properties of the equations
{
yi,n (t)

}
for

i = 1, 2, . . . , 5. Let us give step by step of what we will obtain in part 1.
(i) The functions

{
yi,n (t)

}
for i = 1, 2, . . . , 5 defined above are well defined.

(ii) yi,n (t), s for i = 1, 2, . . . , 5 have continuous derivatives.

(iii)
∣∣yi,n (t) − yi,0 (0)

∣∣ ≤
(
1−α
B(α)

+ tα

B(α)Γ (α)

)
ci for i = 1, 2, . . . , 5 on [t0, t0 + h] .

(iv) Ci(t, yi,n(t)), for i = 1, 2, . . . , 5 are well defined.

Proof of Part 1: We prove this part by mathematical induction. Assume that yi,n−1(t)
exists, has continuous derivative on [t0, t0 + h] and it satisfies

∣∣yi,n−1 (t) − yi,0 (0)
∣∣ ≤ mi, for i = 1, 2, . . . , 5 on t ∈ [t0, t0 + h] . (18)

Here

mi =
(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci. (19)

This implies
(
t, yi,n−1 (t)

) ∈ R1. Also we have Ci(t, yi,n−1(t)) are defined and con-
tinuous on [t0, t0 + h] . Further

∣∣Ci(t, yi,n−1(t))
∣∣ ≤ ci on [t0, t0 + h] . Let us consider

absolute value on both sides of equation

∣∣yi,n (t) − yi,0(0)
∣∣ = 1 − α

B(α)

∣∣Ci(t, yi,n−1(t))
∣∣ (20)

+ α

B(α)Γ (α)

t∫

0

∣∣Ci(τ, yi,n−1(τ ))
∣∣ (t − τ)α−1dτ,
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with using triangle inequality we have

∣∣yi,n (t) − yi,0(0)
∣∣ ≤ 1 − α

B(α)
ci + α

B(α)Γ (α)

t∫

0

ci(t − τ)α−1dτ (21)

≤
(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci,

then ∣∣yi,n (t) − yi,0(0)
∣∣ ≤ mi. (22)

So
(
t, yi,n (t)

)
lies in the rectangleR1 and henceCi(t, yi,n(t)) is defined and continuous

on [t0, t0 + h].
When n = 1,

yi,1 (t) = yi,0(0) + 1 − α

B(α)
Ci(t, yi,0(t)) (23)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, yi,0(τ ))(t − τ)α−1dτ.

Obviously, yi,1 (t) is defined, has continuous derivative on [t0, t0 + h] . Also

∣∣yi,1 (t) − yi,0(0)
∣∣ ≤ 1 − α

B(α)

∣∣Ci(t, yi,0(t))
∣∣ (24)

+ α

B(α)Γ (α)

t∫

0

∣∣Ci(τ, yi,0(τ ))
∣∣ (t − τ)α−1dτ,

∣∣yi,1 (t) − yi,0(0)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci ≤ mi.

So
(
t, yi,1 (t)

)
lies in the rectangle R1 and hence Ci(t, yi,1(t)) is continuous on

[t0, t0 + h]. Properties are true for n = 1. Thus, by the method of mathematical
induction

{
yi,n (t)

}
sequence functions defined in integral system are possessing all

desired properties in [t0, t0 + h]. Hence part 1 of the proof is completed.

Part 2: The functions
{
yi,n (t)

}
, for i = 1, 2, . . . , 5 satisfy the following inequality

as below:

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci on [t0, t0 + h] . (25)

Proof of Part 2: We prove this part also by mathematical induction. Assume that
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∣∣yi,n−1 (t) − yi,n−2(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n−1

Ln−2
i cit ∈ [x0, x0 + h] . (26)

Then

∣∣yi,n (t) − yi,n−1(t)
∣∣ (27)

≤ 1 − α

B(α)

∣∣Ci(t, yi,n−1(t)) − Ci(t, yi,n−2(t))
∣∣

+ α

B(α)Γ (α)

t∫

0

∣∣Ci(τ, yi,n−1(τ )) − Ci(τ, yi,n−2(τ ))
∣∣ (t − τ)α−1dτ.

From part 1, we have

∣∣yi,n (t) − yi,0(0)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci, for ∀n ∈ R1. (28)

Hence (t, yi,n−1(t)), (t, yi,n−2(t)) also belong to in R1. From Lipschitz continuity of
all Ci for i = 1, 2, . . . 5, we have

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤ 1 − α

B(α)
Li

∣∣yi,n−1(t) − yi,n−2(t)
∣∣ (29)

+ αLi
B(α)Γ (α)

t∫

0

∣∣yi,n−1(τ ) − yi,n−2(τ )
∣∣ (t − τ)α−1dτ.

From assumption,

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤ 1 − α

B(α)

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n−1

Ln−1
i ci

+ tα

B(α)Γ (α)

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n−1

Ln−1
i ci

≤
(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci, |t − t0| ≤ h.

The inequality is true for n. Let take n = 1,

∣∣yi,1 (t) − yi,0(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci. (30)

By mathematical induction the inequality is true for all n.

Part 3: While n → ∞,
{
yi,n (t)

}
, for i = 1, 2, . . . 5, converges uniformly to a con-

tinuous function yi on [t0, t0 + h].
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Proof of Part 3: From proof of part 2, we got inequality as below:

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci on [t0, t0 + h] . (31)

Let consider right side of equality as

∞∑
n=1

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci. (32)

It is clear that this series converges ıf

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
Li < 1 for i = 1, 2, . . . 5. (33)

Now consider left side of equality as

∞∑
n=1

∣∣yi,n (t) − yi,n−1(t)
∣∣ . (34)

Since ∞∑
n=1

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci, (35)

converges then by Weierstrass M-test

∞∑
n=1

∣∣yi,n (t) − yi,n−1(t)
∣∣ , (36)

converges on [t0, t0 + h] .
If it is converges what is the limit of yi? Let us try to answer this question below:
Consider the sequence of partial sum of the above series with Sn(t).

Sn(t) = yi,0 (t) +
n∑

k=1

∣∣yi,k (t) − yi,k−1(t)
∣∣ = yi,n (t) . (37)

Here {Sn(t)} = {
yi,n (t)

}
converges uniformly to a limit function yi on [t0, t0 + h] .

The sequence of functions
{
yi,n (t)

}
defined by the Picard’s iterative scheme con-

verges uniformly to yi on [t0, t0 + h] . From part 1, each yi,n (t) is continuous on
[t0, t0 + h] and hence the limit function yi itself is continuous on [t0, t0 + h] .

Conclusion of part 3:
{
yi,n (t)

} → {yi} for i = 1, 2, . . . 5, on [t0, t0 + h] and yi ∈
C [t0, t0 + h] .
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Part 4: The limit function yi for i = 1, 2, . . . 5, satisfies the complex fractional order
system on the interval [t0, t0 + h] .

Proof of Part 4: Since each
{
yi,n (t)

}
for i = 1, 2, . . . 5, satisfies

∣∣yi,n (t) − yi,0 (t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci, (38)

on the interval [t0, t0 + h]. So we get

∣∣yi (t) − yi,0 (t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci, (39)

on the interval [t0, t0 + h] for i = 1, 2, . . . 5.We also have yi,n (t) → yi (t) uniformly
converges. We will prove that Ci(t, yi,n(t)) → Ci(t, yi(t)) uniformly on [t0, t0 + h]
for i = 1, 2, . . . 5. If we find that by using Lipschitz argument

∣∣Ci(t, yi,n(t)) → Ci(t, yi(t))
∣∣ ≤ Li

∣∣yi,n(t) − yi(t)
∣∣ . (40)

Let us give the uniform convergence of
{
yi,n (t)

}
as below:

For ∀ε > 0, ∃N (ε) > 0 such that

∣∣yi,n(t) − yi(t)
∣∣ <

ε

Li
, (41)

for ∀n > N (ε). So for ∀n > N (ε)

∣∣Ci(t, yi,n(t)) → Ci(t, yi(t))
∣∣ ≤ Li.

ε

Li
(42)

≤ ε.

This shows Ci(t, yi,n(t)) → Ci(t, yi(t)) uniformly on [t0, t0 + h] for i = 1, 2, . . . 5.
Since Ci(t, yi,n(t) is continuous for each n on [t0, t0 + h] .

So, therefore

yi(t) = lim
n→∞

⎛
⎝

yi,n(t) = yi,0(0) + 1−α
B(α)

Ci(t, yi,n(t))

+ α
B(α)Γ (α)

t∫
0
Ci(τ, yi,n(τ ))(t − τ)α−1dτ

⎞
⎠ , (43)

yi(t) = lim
n→∞yi,n(t) = yi,0(0) + lim

n→∞
1 − α

B(α)
Ci(t, yi,n(t))

+ α

B(α)Γ (α)

t∫

0

lim
n→∞Ci(τ, yi,n(τ ))(t − τ)α−1dτ,
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yi(t) = yi,0(0) + 1 − α

B(α)
Ci(t, yi(t)) (44)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, yi(τ ))(t − τ)α−1dτ,

where yi(t) is limit function of
{
yi,n(t)

}
. From the basic lemma, the function yi,n(t)

satisfies the initial value problem. This proves the existence of a solution of complex
fractional Atangana–Baleanu system in Caputo sense.

Uniqueness of Solution

In this part, we will show the uniqueness of the solutions of the system. Assume that
we have other solution of complex fractional system as xi(t) for i = 1, 2, 3, . . . 5.
Then consider two different integral equations as below:

yi(t) = yi,0(0) + 1 − α

B(α)
Ci(t, yi(t)) (45)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, yi(τ ))(t − τ)α−1dτ,

and

xi(t) = xi,0(0) + 1 − α

B(α)
Ci(t, xi(t)) (46)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, xi(τ ))(t − τ)α−1dτ,

for |t − t0| ≤ h. Then we have

yi(t) − xi(t) = 1 − α

B(α)
(Ci(t, yi(t)) − Ci(t, xi(t))) (47)

+ α

B(α)Γ (α)

t∫

0

(Ci(τ, yi(τ )) − Ci(τ, xi(τ ))) (t − τ)α−1dτ.

Let us put absolute value on both side of above equality and consider Lipschitz
condition, we have the following:

|yi(t) − xi(t)| = 1 − α

B(α)
|(Ci(t, yi(t)) − Ci(t, xi(t)))| (48)

+ α

B(α)Γ (α)

t∫

0

|(Ci(τ, yi(τ )) − Ci(τ, xi(τ )))| (t − τ)α−1dτ,
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|yi(t) − xi(t)| ≤ 1 − α

B(α)
Li |yi(t) − xi(t)| (49)

+ tα

B(α)Γ (α)
Li |yi(t) − xi(t)| .

Then this gives,

|yi(t) − xi(t)|
(
1 −

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
Li

)
≤ 0. (50)

It is verified with

|yi(t) − xi(t)| = 0 ⇒ yi(t) = xi(t), for i = 1, 2, 3, . . . 5. (51)

So we have that equation has a unique solution.

4 Numerical Scheme

Recently, Toufik and Atangana have developed a novel numerical scheme to solve
some special problems of fractional derivativewith non-local and non-singular kernel
[28]. In their paper, it can be easily seen that their method not only converges quickly
to the exact solutions but also is highly accurate. To explain their method, let us
consider the following non-linear fractional ordinary equation:

{
ABC
0 Dα

t x (t) = f (t, x(t)),
x(0) = x0.

(52)

This initial value problem is equivalent to fractional integral as below:

x(t) − x(0) = 1 − α

B(α)
f (t, x(t)) + α

B(α)Γ (α)

t∫

0

f (y, x(y))(t − y)α−1dy. (53)

At a given point t = tn+1, n = 0, 1, 2, . . . the above integral equation is written as

x(tn+1) − x(0) = 1 − α

B(α)
f (tn, x(tn)) + α

B(α)Γ (α)

tn+1∫

0

f (y, x(y))(tn+1 − y)α−1dy.

(54)
If we consider f (y, x(y)) via two-step Lagrange polynomial interpolation, the fol-
lowing expression will be obtained in the interval [tk , tk+1].
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pk(y) = f (y, x(y)) (55)

= y − tk−1

tk − tk−1
f (tk , x(tk)) − y − tk

tk − tk−1
f (tk−1, x(tk−1))

= f (tk , x(tk))

h
(y − tk−1) − f (tk−1, x(tk−1))

h
(y − tk)

� f (tk , xk)

h
(y − tk−1) − f (tk−1, xk−1)

h
(y − tk) .

If we put the above expression in where f (y, x(y)), then we have

xn+1 = x0 + 1 − α

B(α)
f (tn, x(tn)) (56)

+ α

B(α)Γ (α)

n∑
k=0

⎛
⎜⎜⎜⎝

f (tk ,xk )
h

tk+1∫
tk

(y − tk−1)(tn+1 − y)α−1dy

− f (tk−1,xk−1)

h

tk+1∫
tk

(y − tk) (tn+1 − y)α−1dy

⎞
⎟⎟⎟⎠ .

After calculating the integral expression in the above sum, we have the following
equality,

xn+1 = x0 + 1 − α

B(α)
f (tn, x(tn)) (57)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hα f (tk ,xk )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hα f (tk−1,xk−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ Rα
n ,

where Rα
n is the remainder term that is given by

Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫

tk

(y − tk) (y − tk−1)

2! (58)

.
∂2

∂y2
[
f (y, x(y))

]
y=εy

(tn+1 − y)α−1 dy.

The upper boundary of the error has been provided in their paper [4].
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4.1 Numerical Scheme for a Complex Fractional Order
System

Let us consider the complex fractional order system (6). We saw that by applying on
both sides, the Atangana–Baleanu fractional integral model can be written with Ci,

i = 1, 2, 3, 4 kernels as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 (t) = y1,0(0) + 1−α
B(α)

C1(t, y1(t)) + α
B(α)Γ (α)

t∫
0
C1(τ, y1(τ ))(t − τ)α−1dτ,

y2 (t) = y2,0(0) + 1−α
B(α)

C2(t, y2(t)) + α
B(α)Γ (α)

t∫
0
C2(τ, y2(τ ))(t − τ)α−1dτ,

y3 (t) = y3,0(0) + 1−α
B(α)

C3(t, y3(t)) + α
B(α)Γ (α)

t∫
0
C3(τ, y3(τ ))(t − τ)α−1dτ,

y4 (t) = y4,0(0) + 1−α
B(α)

C4(t, y4(t)) + α
B(α)Γ (α)

t∫
0
C4(τ, y4(τ ))(t − τ)α−1dτ,

y5 (t) = y5,0(0) + 1−α
B(α)

C5(t, y5(t)) + α
B(α)Γ (α)

t∫
0
C5(τ, y5(τ ))(t − τ)α−1dτ,

(59)
with initial conditions

y1,0(0) = 0, y2,0(0) = 0, y3,0(0) = 0,
y4,0(0) = 0, y5,0(0) = 0.

(60)

Now we can apply new numerical scheme for the system above at a given point
t = tn+1.

y1,n+1 = y1,0 + 1 − α

B(α)
C1(tn, y1(tn)) (61)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC1(tk ,y1,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC1(tk−1,y1,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 1R
α

n ,

y2,n+1 = y2,0 + 1 − α

B(α)
C2(tn, y2(tn)) (62)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC2(tk ,y2,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC2(tk−1,y2,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 2R
α

n ,
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y3,n+1 = y3,0 + 1 − α

B(α)
C3(tn, y3(tn)) (63)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC3(tk ,y3,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC3(tk−1,y3,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 3R
α

n ,

y4,n+1 = y4,0 + 1 − α

B(α)
C4(tn, y4(tn)) (64)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC4(tk ,y4,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC4(tk−1,y4,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 4R
α

n ,

y5,n+1 = y5,0 + 1 − α

B(α)
C5(tn, y5(tn)) (65)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC5(tk ,y5,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC5(tk−1,y5,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 5R
α

n ,

where iRα
n , i = 1, 2, 3, 4, 5 are remainder terms given as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C1(τ, y1(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

2Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C2(τ, y2(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

3Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C3(τ, y3(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

4Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C4(τ, y4(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

5Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C5(τ, y5(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ.

(66)
Using the numerical scheme of (60)–(65) we obtain the following numerical simu-
lations. We give these simulations in Figs. 1, 2, 3 and 4 for different values of alpha.
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Fig. 1 Numerical solution for α = 0.15. and numerical solution for α = 0.45, respectively

Fig. 2 Numerical solution for α = 0.85. and numerical solution for α = 1, respectively

Fig. 3 Chaotic attractor in y1, y2, y3 for α = 0.45 and Chaotic attractor in y1, y2, y3 for α = 0.85,
respectively
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Fig. 4 Chaotic attractor in y1, y2, y3 forα = 1 andChaotic attractor in y1, y2 forα = 1, respectively

5 Conclusion

To include into mathematical formulation the Markovian and non-Markovian pro-
cesses to a complex system describing chaotic behavior, we replaced the time deriva-
tive based on the concept of rate of change with that with nonlocal and non-singular
kernel. A detailed analysis of existence using the Picard’s method and the connec-
tion of the Banach space with contraction operator to establish the uniqueness of
the exact solution was developed. Very recently, a new numerical method was sug-
gested, combining the fundamental theorem of fractional calculus and the Lagrange
interpolation formulation. The method was found to be efficient than the well-known
Adams–Bashforth as the method is fast, accurate and friendly user. We use this new
numerical scheme to solve numerically themodifiedmodel and present the numerical
simulations.
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