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Abstract Modelling groundwater transport in fractured aquifer systems is complex
due to the uncertainty associated with delineating the specific fractures along which
water and potential contaminants could be transported. The resulting uncertainty in
modelled contaminant movement has implications for the protection of the environ-
ment, where inadequate mitigation or remediation measures could be employed. To
improve the governing equation for groundwater transport modelling, the Atangana–
Baleanu in Caputo sense (ABC) fractional derivative is applied to the advection-
dispersion equation with a focus on the advection term to account for anomalous
advection. Boundedness, existence and uniqueness for the developed advection-
focused transport equation is presented. In addition, a semi-discretisation analysis is
performed to demonstrate the equation stability in time. Augmented upwind schemes
are investigated as they have been found to address stability problems when solute
transport is advection-dominated. The upwind-based schemes are developed, and
stability analysis conducted, to facilitate the solution of the complex equation. The
numerical stability analysis found the upwind Crank–Nicolson to be the most sta-
ble, and is thus recommended for use with the ABC fractional advection-dispersion
equation.
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1 Introduction

Real-world systems are complex. By definition, a complexity by which any one
method is not able to capture all the nuances of that system. It is this that compels
science to improve and continuously strive for new methods and approaches, ever
endeavouring to reconcile the difference between modelled and observed.

Simulating the transport of particles using the advection-dispersion equation is a
real-world problem, where the general discrepancy between modelled and observed
is particularly large. This discrepancy lead to the development of the term anoma-
lous diffusion (non-Fickian diffusion), especially when using linear or traditional
methods. For this reason, numerous nonlocal approaches have been applied to the
advection-dispersion equation to reduce this divergence, ranging from multiple-
rate mass transfer method and rate-limited mass transfer, stochastic averaging,
continuous-time random walk, to fractal and fractional differential equations [1–9].

Complexity from the perspective of fractional calculus is explored in [10], where
fractional differential equations are one method to improve the simulation of real
world problems. Fractional calculus is not a new topic, having its original inception
in the late 1600s, but the application of fractional derivations to practical problems
has steadily increased since the 1970s. With the endeavour to continually improve
simulation methods, a progression of fractional derivative definitions have been
developed over the years, with definitions including Riemann-Liouville, Caputo,
Caputo-Fabrizio, and the latest Atangana–Baleanu [11–21].

The newest fractional derivative definition Atangana–Baleanu, is used to develop
an advection-focused fractional transport equation. The suitability of this particu-
lar formulation and fractional derivative definition is investigated for the specific
real-world system of groundwater transport within fractured aquifers. Modelling
groundwater transport in fractured aquifer systems is complex due to the uncertainty
associated with demarcating the specific fractures along which water and potential
contaminants could be transported along. A result in this uncertainty is the misrep-
resentation of the expected movement of a potential contaminant in the groundwater
system. This potentially increases the impact on the environment because the mis-
represented transport could result in inadequate mitigation or remediation measures
[22–28].

A faster than expected transport along unknown fractures is referred to as super-
advection associated with anomalous advection by [29], and a fractional derivative
was applied to the advection term of the advection-dispersion equation to better
simulate this phenomena. A fractional derivative was also applied to the time com-
ponent of the advection-dispersion equation to activate the waiting-time distribution
properties as discussed by [30, 31]. A similar approach is followed in developing the
Atangana–Baleanu in Caputo sense (ABC) fractional advection-dispersion equation.
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2 Advection-Focused Space-Time Fractional Transport
Equation with Atangana–Baleanu in Caputo Sense
(ABC) Derivative

The one-dimensional, non-reactive fractional advection-dispersion equation with the
ABC fractional derivative definition is given by

ABC
0 Dα

t (c (x, t)) = −vABC0 Dα
x (c (x, t)) + DL

∂2

∂x2
(c (x, t)) . (1)

The boundedness, existence and uniqueness of the ABC fractional advection-
dispersion equation is first determined, using the Picard–Lindelöf theorem, before
the numerical approximation in the following sections.

2.1 Picard–Lindelöf Theorem for Existence and Uniqueness

Applying the AB integral to both sides of the ABC fractional advection-dispersion
equation, we get

c (x, t) − c (x, 0) =AB
0 Iα

x

(
−vABC0 Dα

x (c (x, τ )) + DL
∂2

∂x2
(c (x, τ ))

)
dτ

= 1 − α

AB (α)

(
−vABC0 Dα

x (c (x, τ )) + DL
∂2

∂x2
(c (x, τ ))

)

+ α

AB (α) Γ (α)

∫ t

0

(
−vABC0 Dα

x (c (x, τ )) + DL
∂2

∂x2
(c (x, τ ))

)
(t − τ)α−1 dτ.

(2)

Now, we consider a new function F (x, t, c) to simplify:

F (x, t, c) = −vABC0 Dα
x (c (x, t)) + DL

∂2

∂x2
(c (x, t)) . (3)

Thus

c (x, t) − c (x, 0) = 1 − α

AB (α)
F (x, t, c) + α

AB (α) Γ (α)

∫ t

0
F (x, t, c) (t − τ)α−1 dτ. (4)

Let
Cλ,β = Iλ (t0) × Bβ (x0) ,
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where
Iλ (t0) = [t0 − λ, t0 + λ] ,

Bβ (x0) = [x0 − β, x0 + β] .

The Banach fixed-point theorem is applied by introducing the norm of the supre-
mum (statistical limit of a set) for Iλ,

M = ‖ϕ‖∞ = sup|ϕ (t) |
t ∈ Iλ (t0) .

(5)

Considering the practical meaning of c (x, t), it can be assumed that the initial
concentration (c0) will always be greater than subsequent concentrations (cn) due to
advection, dispersion and diffusion processes which reduce the concentration over
time and space,

‖c‖∞ < c0. (6)

Considering the max norm for the function F (x, t, c),

‖F‖∞ =
∥∥∥∥−v

AB (α)

(1 − α)

∫ x

0

d

dτ
c (τ, x)Eα

[
− α

1 − α
(x − τ)α

]
dτ + DL

∂2

∂x2
(c (x, t))

∥∥∥∥∞
. (7)

Thus

‖F‖∞ ≤ v
AB (α)

(1 − α)

∥∥∥∥
∫ x

0

d

dτ
c (τ, x)Eα

[
− α

1 − α
(x − τ)α

]
dτ

∥∥∥∥∞
+ DL

∥∥∥∥ ∂2

∂x2
(c (x, t))

∥∥∥∥∞
.

(8)

Applying the proven theorem for partial differential Lipschitz condition in [9],
the second order derivative is bounded (M1), thus

‖F‖∞ ≤ v
AB (α)

(1 − α)

∫ x

0

∥∥∥∥ d

dτ
C (τ, x)

∥∥∥∥∞

∥∥∥∥Eα

[
− α

1 − α
(x − τ)α

]∥∥∥∥∞
dτ + DLM1.

(9)
TheMittag-Leffler function is bounded because 1 > α > 0. Thefirst-order deriva-

tive is bounded due to its physical meaning being related to the spread of a particle
defined by its concentration (M2). Thus, the derivative is considered at the maximum
physical time that is applicable to the existence of the concentration (Tmax),

‖F‖∞ ≤ v
AB (α)

(1 − α)
M2Tmax + DLM1 < ∞. (10)

Therefore, the solution is bounded because we obtain a positive constant, such
that
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A = ‖F‖∞ = sup|F (x, t, c) |
t ∈ Cλ,β .

(11)

Let Cλ,β be a set where, F : Cλ,β → Cλ,β , such that

Γ φ (x, t) = c (x, 0) + 1 − α

AB (α)
F (x, t, φ) + α

AB (α) Γ (α)

∫ t

0
F (x, τ, φ) (t − τ)α−1 dτ.

(12)

Thus

‖Γ φ (x, t) − c (x, 0) ‖∞ =
∥∥∥∥ 1 − α

AB (α)
F (x, t, φ)

+ α

AB (α) Γ (α)

∫ t

0
F (x, τ, φ) (t − τ)α−1 dτ

∥∥∥∥∞
‖Γ φ (x, t) − c (x, 0) ‖∞

≤ 1 − α

AB (α)
‖F (x, t, φ) ‖∞ + α

AB (α) Γ (α)

∫ t

0
(t − τ)α−1 ‖F (x, τ, φ) ‖∞dτ.

(13)

The function F (x, t, c) has been shown to be bounded (Eqs. (7)–(11))

[
‖Γ φ (x, t) − c (x, 0) ‖∞ ≤ 1 − α

AB (α)
A + α

AB (α) Γ (α)
A

∫ t

0
(t − τ)α−1 dτ

]
.

The integral is considered at the maximum physical time that is applicable to the
existence of the concentration (Tmax)

[
‖Γ φ (x, t) − c (x, 0) ‖∞ ≤ 1 − α

AB (α)
A + α

AB (α) Γ (α)
A
T α
max

α

]

≤ 1 − α

AB (α)
A + AT α

max

AB (α) Γ (α)
< ∞.

Therefore Γ is well-posed because we obtain a positive constant.
We want to prove that Γ is Lipschitz

‖Γ φ1 − Γ φ2‖∞ =
∥∥∥∥ 1 − α

AB (α)
(F (x, t, φ1) − F (x, t, φ2))

+ α

AB (α) Γ (α)

∫ t

0
(F (x, τ, φ1) − F (x, τ, φ2)) (t − τ)α−1 dτ

∥∥∥∥
∞

‖Γ φ1 − Γ φ2‖∞

≤ 1 − α

AB (α)
‖ (F (x, t, φ1) − F (x, t, φ2)) ‖∞

+ α

AB (α) Γ (α)

∫ t

0
(t − τ)α−1 ‖F (x, τ, φ1) − F (x, τ, φ2) ‖∞dτ. (14)
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To achieve this, we first evaluate

‖F (x, t, φ1) − F (x, t, φ2) ‖∞

=
∥∥∥∥−vABC0 Dα

x (φ1 − φ2) + DL
∂2

∂x2
(φ1 − φ2)

∥∥∥∥∞
‖F (x, t, φ1) − F (x, t, φ2) ‖∞

≤ v‖ABC0 Dα
x (φ1 − φ2) ‖∞ + DL

∥∥∥∥ ∂2

∂x2
(φ1 − φ2)

∥∥∥∥∞
.

(15)

Applying the ABC fractional derivative, and the proven theorem for partial dif-
ferential Lipschitz condition in [9], the second order derivative is bounded (ρ2

2 )

‖F (x, t, φ1) − F (x, t, φ2) ‖∞

≤v
AB (α)

(1 − α)

∫ x

0

∥∥∥∥ d

dτ
(φ1 − φ2)

∥∥∥∥∞

∥∥∥∥Eα

[
− α

1 − α
(x − τ)α

]∥∥∥∥∞
dτ + DLρ

2‖ (φ1 − φ2) ‖∞.

(16)

Similarly as in Eq. (9), the Mittag-Leffler function is bounded due to the constrain
1 > α > 0, and the first order derivative is bounded as explained (ρ1). Thus, the
derivative is considered at the maximum physical space that is applicable to the
concentration (Xmax)

‖F (x, t, φ1) − F (x, t, φ2) ‖∞ ≤ v
AB (α)

(1 − α)
Xmaxρ1‖ (φ1 − φ2) ‖∞ + DLρ

2
2‖ (φ1 − φ2) ‖∞.

(17)

Simplifying

‖F (x, t, φ1) − F (x, t, φ2) ‖∞ ≤
(
v
AB (α)

(1 − α)
Xmaxρ1 + DLρ

2
2

)
‖ (φ1 − φ2) ‖∞

< Kα‖ (φ1 − φ2) ‖∞. (18)

Applying to Eq. (14), we get

‖Γ φ1 − Γ φ2‖∞ ≤ 1 − α

AB (α)
Kα‖ (φ1 − φ2) ‖∞

+ α

AB (α) Γ (α)
Kα‖ (φ1 − φ2) ‖∞

∫ t

0
(t − τ)α−1 dτ. (19)
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Applying a similar process as previously, we obtain

‖Γ φ1 − Γ φ2‖∞ ≤ 1 − α

AB (α)
Kα‖ (φ1 − φ2) ‖∞ + α

AB (α) Γ (α)
Kα‖ (φ1 − φ2) ‖∞

Tα
max

α

≤
(

1 − α

AB (α)
Kα + Tα

max

AB (α) Γ (α)
Kα

)
‖ (φ1 − φ2) ‖∞ ≤ V ‖ (φ1 − φ2) ‖∞. (20)

Therefore, Γ is a contraction when V < 1, which translates to a condition

Kα <
1

1−α
AB(α)

+ T α
max

AB(α)Γ (α)

. (21)

Then F (x, t, c) has a fixed point using the Banach fixed-point theorem and the
ABC fractional advection-dispersion equation is bounded and has a unique solution
under this condition.

2.2 Semi-discretisation Stability

The stability of the defined fractional advection-dispersion equation is evaluated in
time, and thus discretised in time while the concentration in space is considered
constant. The forward finite difference approximation in time is applied to the ABC
fractional derivative, considered for a specific time (tn), and the numerical integration
of the Mittag-Leffler function is performed in [32]

ABC
0 Dα

t (c (x, tn)) = AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
x − ckx

)
δα
n,k ,

where,

δα
n,k = (n − k)Eα,2

[
− αΔt

1 − α
(n − k)

]
− (n − k − 1)Eα,2

[
− αΔt

1 − α
(n − k − 1)

]
.

(22)

Now, substituting back into fractional advection-dispersion equation with the
ABC derivative, and applying the assumption of discretisation in time only

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
x − ckx

)
δα
n,k = −vABC0 Dα

x

(
cnx

) + DL
∂2

∂x2
(
cn+1
x

)
. (23)
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A function Aα
n,k is applied to simplify

n−1∑
k=0

(
ck+1
x − ckx

)
Aα
n,k = −vABC0 Dα

x

(
cnx

) + DL
∂2

∂x2
(
cn+1
x

)
. (24)

Reformulating to obtain,

(
cn+1
x − cnx

)
Aα
n +

n−1∑
k=0

(
ck+1
x − ckx

)
Aα
n,k = −vABC0 Dα

x

(
cnx

) + DL
∂2

∂x2
(
cn+1
x

)
. (25)

Rearranging

cn+1
x = cnx − v

Aα
n

ABC

0

Dα
x

(
cnx

) + DL

Aα
n

∂2

∂x2
(
cn+1
x

) − 1

Aα
n

n−1∑
k=0

(
ck+1
x − ckx

)
Aα
n,k . (26)

Equation (26) is the numerical approximation of the ABC fractional advection-
dispersion equation with respect to time. Now, the semi-stability can be evaluated
defining the following norms

(f , g) =
∫

Ω

(f · g) (x) dx,

where,
‖g‖0 =√

(g · g),

‖g‖1 =
√

‖g‖0 + ε‖ d2

dx2
g‖0.

When n = 0, Eq. (26) becomes

c1x = c0x − v

Aα
n

ABC

0

Dα
x

(
c0x

) + DL

Aα
n

∂2

∂x2
(
c1x

)
. (27)

Simplifying using functions λ1 and λ2,

c1x = c0x − λABC
10 Dα

x

(
c0x

) + λ2
∂2

∂x2
(
c1x

)
. (28)

Applying the norm with respect to g,

(
c1x , g

) = (
c0x , g

) − λ1
(
ABC
0 Dα

x c
0
x ,

ABC
0 Dα

x g
) + λ2

(
∂2

∂x2
c1x ,

∂2

∂x2
g

)
. (29)
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Let ∀g ∈ H 1 (Ω) , g = c1x

(
c1x , c

1
x

) = (
c0x , c

1
x

) − λ1
(
ABC
0 Dα

x c
0
x ,

ABC
0 Dα

x c
1
x

) + λ2

(
∂2

∂x2
c1x ,

∂2

∂x2
c1x

)
. (30)

From the defined norms, the following statement is to be proven,

‖c1x‖1 ≤ ‖c0x‖0.

Reformulating in terms of the defined norms

(
c1x , c

1
x

) − λ2

(
∂2c1x
∂x2

,
∂2c1x
∂x2

)
= (

c0x , c
1
x

) − λ1
(
ABC
0 Dα

x c
0
x ,

ABC
0 Dα

x c
1
x

) ‖c1x‖21
=‖c0x‖0‖c1x‖0 − λ1‖ABC0 Dα

x c
0
x‖0‖ABC0 Dα

x c
1
x‖0, (31)

where,

[∥∥∥∥ABC
0 Dα

x c
0
x‖0 = ‖ AB (α)

(1 − α)

∫ x

0

dc0τ
dτ

Eα

[
− α

1 − α
(x − τ)α

]
dτ

∥∥∥∥
0

]
.

Thus,

∥∥∥∥ABC
0 Dα

x c
0
x‖0 ≤ AB (α)

(1 − α)

∫ x

0
‖dc

0
τ

dτ
‖0‖Eα

[
− α

1 − α
(x − τ)α

]∥∥∥∥
0

dτ. (32)

As before, the Mittag-Leffler function is bounded due to the limited range of
α, where 1 > α > 0. The first-order derivative represents the spread of a particle,
defined by its concentration, and is thus bound due to its inherent physical meaning.
The derivative is considered at the maximum physical space that is applicable to the
concentration (Xmax)

‖ABC0 Dα
x c

0
x‖0 ≤ AB (α)

(1 − α)

∫ x

0

∥∥∥∥dc
0
τ

dτ

∥∥∥∥
0
dτ ≤ AB (α)

(1 − α)
θ‖c0x‖0

∫ xmax

0
dτ ≤ AB (α)

(1 − α)
θ‖c0x‖0Xmax.

(33)

Substituting back into Eq. (31)

‖c1x‖21 < ‖c0x‖0‖c1x‖0 − λ1

(
AB (α)

(1 − α)
θ‖c0x‖0Xmax

)(
AB (α)

(1 − α)
θ‖c1x‖0Xmax

)
. (34)
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Rearranging

‖c1x‖21 < ‖c0x‖0‖c1x‖0 − λ1

(
AB (α) θXmax

(1 − α)

)2

‖c0x‖0‖c1x‖0

<

(
1 − λ1

(
AB (α) θXmax

(1 − α)

)2
)

‖c0x‖0‖c1x‖0. (35)

Applying the assumption that

‖c1x‖0 ≤ ‖c1x‖1.

Simplifying, the stability condition becomes

‖c1x‖21 <

(
1 − λ1

(
AB (α) θXmax

(1 − α)

)2
)

‖c0x‖0‖c1x‖1‖c1x‖1

<

(
1 − λ1

(
AB (α) θXmax

(1 − α)

)2
)

‖c0x‖0
‖c1x‖1
‖c0x‖0

< 1 − λ1

(
AB (α) θXmax

(1 − α)

)2

, (36)

where,

1 − λ1

(
AB (α) θXmax

(1 − α)

)2

< 1λ1

(
AB (α) θXmax

(1 − α)

)2

> 0.

The first condition is thus upheld and unconditionally stable.
Secondly, Let ∀g ∈ H 1 (Ω) , g = cn+1

x

(
cn+1
x , cn+1

x

)
=

(
cnx , c

n+1
x

)
− λ1

(
ABC
0 Dα

x c
n
x ,

ABC
0 Dα

x c
n+1
x

)
+ λ2

(
∂2

∂x2
cn+1
x ,

∂2

∂x2
cn+1
x

)

− λ3

n−1∑
k=0

((
ck+1
x , cn+1

x

)
−

(
ckx , c

n+1
x

))
, (37)

where,

λ3 = 1

Aα
n

Aα
n,k .

From the defined norms, the following statement is to be proven

‖cn+1
x ‖1 ≤ ‖c0x‖0.
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Reformulating Eq. (37) in terms of the defined norms, we have

(
cn+1
x , cn+1

x

) − λ2

(
∂2cn+1

x

∂x2
,
∂2cn+1

x

∂x2

)
= (

cnx , c
n+1
x

) − λ1
(
ABC
0 Dα

x c
n
x ,

ABC
0 Dα

x c
n+1
x

)

− λ3

n−1∑
k=0

((
ck+1
x , cn+1

x

) − (
ckx , c

n+1
x

))

‖cn+1
x ‖21 = ‖cnx‖0‖cn+1

x ‖0 − λ1‖ABC0 Dα
x c

n
x‖0‖ABC0 Dα

x c
n+1
x ‖0

− λ3

n−1∑
k=0

((‖ck+1
x ‖0‖cn+1

x ‖0
) − (‖ckx‖0‖cn+1

x ‖0
))

. (38)

Applying Eq. (33), we get

‖cn+1
x ‖21 ≤ ‖cnx‖0‖cn+1

x ‖0 − λ1A‖cnx‖0‖cn+1
x ‖0 − λ3

n−1∑
k=0

((
‖ck+1

x ‖0‖cn+1
x ‖0

)
−

(
‖ckx‖0‖cn+1

x ‖0
))

,

(39)
where,

A =
(
AB (α) θXmax

(1 − α)

)2

.

Using the inductive method for

‖cnx‖0 ≤ ‖c0x‖0,
Equation (39) becomes

‖cn+1
x ‖21 ≤ ‖c0x‖0‖cn+1

x ‖0 − λ1A‖c0x‖0‖cn+1
x ‖0 − λ3

n−1∑
k=0

((
‖c0x‖0‖cn+1

x ‖0
)

−
(
‖c0x‖0‖cn+1

x ‖0
))

.

(40)

Reformulating in terms of the defined norms, we have

‖cn+1
x ‖21 ≤ ‖c0x‖0‖cn+1

x ‖1 − λ1A‖c0x‖0‖cn+1
x ‖1. (41)

Rearranging and simplifying

‖cn+1
x ‖21 ≤ (1 − λ1A) ‖c0x‖0‖cn+1

x ‖1‖cn+1
x ‖1 ≤ (1 − λ1A) ‖c0x‖0, (42)

where,
[1 − λ1A < 1],

λ1A > 0.
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The second condition is thus unconditionally stable. This concludes the semi-
discretisation analysis for an evolution equation, where the proposed ABC fractional
advection-dispersion equation has been found to be stable in time.

3 Upwind Numerical Approximation Schemes

Boundedness, existence and uniqueness has been established for the ABC fractional
advection-dispersion equation. Furthermore, the stability in time has been demon-
strated for the equation. Numerical schemes for this equation are now explored
to facilitate the solution of the complex equation. Upwind-based finite difference
schemes are investigated asmotivated in [33], where upwind schemes aim to improve
the stability of advection-dominated transport [34].

3.1 First-Order Upwind Explicit

The numerical approximation of the ABC fractional derivative with respect to time
is considered, with the resulting scheme as [32]:

ABC
0 Dα

t (c (xm, tk )) = AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

) ⎛
⎝ (n − k)Eα,2

[
− αΔt

1−α
(n − k)

]
− (n − k − 1)Eα,2

[
− αΔt

1−α
(n − k − 1)

]
⎞
⎠ ,

(43)
where, a function δα

n,k is applied to simplify,

δα
n,k = (n − k)Eα,2

[
− αΔt

1 − α
(n − k)

]
− (n − k − 1)Eα,2

[
− αΔt

1 − α
(n − k − 1)

]
.

Thus,

ABC
0 Dα

t (c (xm, tk)) = AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k . (44)

The upwind finite difference scheme uses a one-sided finite difference in the
upstream direction to approximate the advection term of the advection-dispersion
equation (assuming v > 0). Applying the upwind scheme and the ABC fractional
derivative with respect to space (explicit) becomes [32]

ABC
0 Dα

x (c (xm, tk )) = AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

) ⎛
⎝ (m − i)Eα,2

[
− αΔx

1−α
(m − i)

]
− (m − i − 1)Eα,2

[
− αΔx

1−α
(m − i − 1)

]
⎞
⎠ ,

(45)
where, a function δα

m,i is applied to simplify
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ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i. (46)

Substituting into the ABC fractional advection-dispersion equation and using the
traditional finite difference approach for the local second-order derivative, we have

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i

− DL

(
cn−1
m+1 − 2cn−1

m + cn−1
m−1

(Δx)2

)
= 0. (47)

Reformulating the following can be obtained

AB (α)

(1 − α)

(
cnm − cn−1

m

)
δα
n,n−1 + AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

+v
AB (α)

(1 − α)

(
cn−1
m − cn−1

m−1

)
δα
m,i + v

AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i

− DL

(
cn−1
m+1 − 2cn−1

m + cn−1
m−1

(Δx)2

)
= 0. (48)

Rearranging

cnm
AB (α)

(1 − α)
δα
n,n−1 = cn−1

m

(
AB (α)

(1 − α)
δα
n,n−1 − v

AB (α)

(1 − α)
δα
m,i − 2DL

(Δx)2

)

+cn−1
m−1

(
v
AB (α)

(1 − α)
δα
m,i + DL

(Δx)2

)
+ cn−1

m+1

(
DL

(Δx)2

)
− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− v
AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i. (49)

The numerical scheme can be simplified using place-keeper functions as follows

acnm = bcn−1
m + dcn−1

m−1 + fcn−1
m+1 − g

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − vg

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i, (50)
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where,

a = AB (α)

(1 − α)
δα
n,n−1; b = AB (α)

(1 − α)
δα
n,n−1 − v

AB (α)

(1 − α)
δα
m,i − 2DL

(Δx)2
; d = v

AB (α)

(1 − α)
δα
m,i + DL

(Δx)2
,

f = DL

(Δx)2
; g = AB (α)

(1 − α)
.

3.2 First-Order Upwind Implicit

Following the same approach as the explicit upwind numerical approximation, the
following is obtained for the implicit upwind scheme

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

(
cni − cni−1

)
δα
m,i

− DL

(
cnm+1 − 2cnm + cnm−1

(Δx)2

)
= 0. (51)

Reformulating and rearranging the following can be obtained

cnm

(
AB (α)

(1 − α)
δα
n,n−1 + v

AB (α)

(1 − α)
δα
m,i + 2DL

(Δx)2

)
= cnm−1

(
v
AB (α)

(1 − α)
δα
m,i − DL

(Δx)2

)

+cnm+1
DL

(Δx)2
− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − v

AB (α)

(1 − α)

m∑
i=0

(
cni − cni−1

)
δα
m,i

+ cn−1
m

AB (α)

(1 − α)
δα
n,n−1. (52)

The numerical scheme is simplified by substituting functions as followings

hcnm = jcnm−1 + fcnm+1 − g
n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − vg

m∑
i=0

(
cni − cni−1

)
δα
m,i + acn−1

m ,

(53)
where,

h = AB (α)

(1 − α)
δα
n,n−1 + v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
; j = v

AB (α)

(1 − α)
δα
m,i −

DL

(Δx)2
.
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3.3 First-Order Upwind Crank Nicolson Scheme

The upwind Crank Nicolson finite difference scheme for ABC fractional advection-
dispersion equation is now considered [33]. The time component remains the same
as with the implicit/explicit upwind schemes, but the space components change to

ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

) + 0.5
(
cni − cni−1

))
δα
m,i. (54)

Substituting

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

)
+ 0.5

(
cni − cni−1

)]
δα
m,i

− DL

(
cnm+1 − 2cnm + cnm−1

(Δx)2

)
= 0. (55)

Reformulating and rearranging, the following can be obtained

cnm

(
AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2

)
= cn−1

m

×
(

AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i

)

+ cnm−1

(
0.5v

AB (α)

(1 − α)
δα
m,i −

DL

(Δx)2

)
+ cnm+1

DL

(Δx)2
+ cn−1

m−10.5v
AB (α)

(1 − α)
δα
m,i

− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − v

AB (α)

(1 − α)

m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

)
+ 0.5

(
cni − cni−1

)]
δα
m,i.

(56)

Simplifying by substituting place-keeper functions

lcnm = mcn−1
m + ocnm−1+fcnm+1 + pcn−1

m−1 − g
n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− vg
m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

) + 0.5
(
cni − cni−1

)]
δα
m,i, (57)
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where,

l = AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
;m = AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i,

o = 0.5v
AB (α)

(1 − α)
δα
m,i −

DL

(Δx)2
; p = 0.5v

AB (α)

(1 − α)
δα
m,i.

3.4 First-Order Upwind-Downwind Weighted Scheme
(Explicit)

For the upwind-downwindweighted scheme, the upwind and downwind direction for
the advection term are both integrated using a weighting factor. The weighting factor
of upwind to downwind is defined as θ , where 0 ≤ θ ≤ 1 [33]. Thus, the advection
component is approximated as

ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

) + (1 − θ)
(
cn−1
i+1 − cn−1

i

)]
δα
m,i.

(58)
Substituting this back into the advection-dispersion equation

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

)
+ (1 − θ)

(
cn−1
i+1 − cn−1

i

)]
δα
m,i

−DL

(
cn−1
m+1 − 2cn−1

m + cn−1
m−1

(Δx)2

)
= 0. (59)

Reformulating and rearranging, the following can be obtained

cnm
AB (α)

(1 − α)
δα
n,n−1 = cn−1

m

(
AB (α)

(1 − α)
δα
n,n−1

−vθ
AB (α)

(1 − α)
δα
m,i + v (1 − θ)

AB (α)

(1 − α)
δα
m,i − 2DL

(Δx)2

)

+ cn−1
m−1

(
vθ

AB (α)

(1 − α)
δα
m,i + DL

(Δx)2

)
− cn−1

m+1

(
v (1 − θ)

AB (α)

(1 − α)
δα
m,i + DL

(Δx)2

)

− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − v

AB (α)

(1 − α)

m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

)
+ (1 − θ)

(
cn−1
i+1 − cn−1

i

)]
δα
m,i .

(60)

Place-keeper functions are used to simplify the explicit upwind-downwind
weighted scheme as followings
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acnm = qcn−1
m + rcn−1

m−1 − scn−1
m+1 − g

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

−vg
m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

) + (1 − θ)
(
cn−1
i+1 − cn−1

i

) ]
δα
m,i, (61)

where,

q = AB (α)

(1 − α)
δα
n,n−1 − vθ

AB (α)

(1 − α)
δα
m,i + v (1 − θ)

AB (α)

(1 − α)
δα
m,i −

2DL

(Δx)2
;

r = vθ
AB (α)

(1 − α)
δα
m,i +

DL

(Δx)2
,

s = v (1 − θ)
AB (α)

(1 − α)
δα
m,i +

DL

(Δx)2
.

3.5 First-Order Upwind-Downwind Weighted Scheme
(Implicit)

Correspondingly, both the upwind and downwind directions are considered for the
advection term in the implicit upwind-downwind weighted scheme and the space
advection component becomes

ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i. (62)

Substituting

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i

− DL

(
cnm+1 − 2cnm + cnm−1

(Δx)2

)
= 0. (63)

Rearranging

cnm

(
AB (α)

(1 − α)
δα
n,n−1 + vθ

AB (α)

(1 − α)
δα
m,i − v (1 − θ)

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2

)

= cnm+1

(
DL

(Δx)2
− v (1 − θ)

AB (α)

(1 − α)
δα
m,i

)
+ cnm−1

(
DL

(Δx)2
+ vθ

AB (α)

(1 − α)
δα
m,i

)
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+ cn−1
m

AB (α)

(1 − α)
δα
n,n−1 − AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− v
AB (α)

(1 − α)

m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i. (64)

Simplifying

ucnm = vcnm+1 + rcnm−1+acn−1
m − g

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− vg
m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i, (65)

where,

u = AB (α)

(1 − α)
δα
n,n−1 + vθ

AB (α)

(1 − α)
δα
m,i − v (1 − θ)

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
,

v = DL

(Δx)2
− v (1 − θ)

AB (α)

(1 − α)
δα
m,i.

This concludes the formulation of the numerical approximations schemes to be
investigated for the ABC fractional advection-dispersion equation. In the following
section, the numerical stability of each scheme will be assessed.

4 Numerical Stability Analysis

The numerical stability analysis is performed using the recursive numerical stability
method [33, 35, 36]. The numerical stability for the upwind schemes are evaluated
to validate their use in solving the ABC fractional advection-dispersion equation for
fracture flow in groundwater systems.

4.1 First-Order Upwind Implicit

Substituting the inductionmethod terms for the developed finite difference first-order
upwind (implicit) numerical scheme discussed in Sect. 3.2
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hcne
jkim = jcne

jki(m−Δm) + fcne
jkix(m+Δm) − g

n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

−vg
m∑
i=0

(
cne

jkim − cne
jki(m−Δm)

)
δα
m,i + acn−1e

jkim. (66)

Expand and simplify

hcn =jcne
−jkiΔm + fcne

jkiΔm − g
n−2∑
k=0

(ck+1 − ck) δα
n,k

− vg
m∑
i=0

(
cn − cne

−jkiΔm
)
δα
m,i + acn−1. (67)

The first procedure for the induction numerical stability analysis requires proving
for a set ∀ n > 1, that

|cn| < |co|. (68)

If n = 1, then

hc1 = jc1e
−jkiΔm + fc1e

jkiΔm − vg
m∑
i=0

(
c1 − c1e

−jkiΔm
)
δα
m,i + ac0. (69)

A subset for m is now considered, where m = 0

hc1 = jc1e
−jkiΔm + fc1e

jkiΔm + ac0. (70)

Simplifying and rearranging

c1
c0

= a

h − je−jkiΔm − fejkiΔm
. (71)

Taking the norm, the condition for the first induction requirement becomes

|a|
|h| + |j| + |f | < 1. (72)

The term is expanded using the simplification terms associated with Eq. (53)

∣∣∣ AB(α)

(1−α)
δα
n,n−1

∣∣∣∣∣∣ AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2

∣∣∣ +
∣∣∣v AB(α)

(1−α)
δα
m,i − DL

(Δx)2

∣∣∣ +
∣∣∣ DL

(Δx)2

∣∣∣ < 1. (73)
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The following assumption is made

[
v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2

]
.

Then, the condition is

AB(α)

(1−α)
δα
n,n−1

AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
+ v AB(α)

(1−α)
δα
m,i − DL

(Δx)2
+ DL

(Δx)2

< 1. (74)

Simplifying

2v
AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
> 0. (75)

Therefore, under this assumption, the first inductive stability condition for this
subset is upheld and unconditionally stable.

The complementary assumption is made, and the condition becomes

AB(α)

(1−α)
δα
n,n−1

AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
− v AB(α)

(1−α)
δα
m,i + DL

(Δx)2
+ DL

(Δx)2

< 1. (76)

Simplifying
4DL

(Δx)2
> 0. (77)

Thus, the first inductive stability condition for this subset is supported and uncon-
ditionally stable under this assumption as well.

A subset for (m) is now considered for all (m ≥ 1)

hc1 = jc1e
−jkiΔm + fc1e

jkiΔm − vg
m∑
i=0

(
c1 − c1e

−jkiΔm
)
δα
m,i + ac0 (78)

Simplifying

(
h − je−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

) m∑
i=0

δα
m,i

)
c1 = ac0. (79)

Expanding the summation, and simplifying

m∑
i=0

δα
m,i =

(
(m)Eα,2

[
− αΔx

1 − α
(m)

])
+

(
Eα,2

[
− αΔx

1 − α

]
− (−1)Eα,2

[
− αΔx

1 − α
(−1)

])
. (80)
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Substituting back into Eq. (77), we get

(
h − je−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

) ·(
(m)Eα,2

[− αΔx
1−α

(m)
] + Eα,2

[− αΔx
1−α

] − (−1)Eα,2
[− αΔx

1−α
(−1)

]))
c1 = ac0,

(81)
where the function βm,Eα,2 is used to simplify as follows

(
h − je−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

)
βm,Eα,2

)
c1 = ac0. (82)

Let a function simplify to
[φ = kiΔx],

where,
[e−jφ = e−jkiΔx].

Remembering Euler’s formula for complex numbers, and substituting back into
Eq. (80)

(
h − je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2

)
c1 = ac0. (83)

Applying a norm and simplifying

(|h| + |j| + |f | + v|g| (2 − 2cosφ) |βm,Eα,2 |
) |c1| = |a||c0|. (84)

Rearranging

|c1|
|c0| = |a|(|h| + |j| + |f | + v|g| (2 − 2cosφ) |βm,Eα,2 |

) . (85)

Thus, the condition becomes

|a|(|h| + |j| + |f | + v|g| (2 − 2cosφ) |βm,Eα,2 |
) < 1. (86)

The term is expanded using the simplification terms associated with Eq. (53)

| AB(α)

(1−α)
δα
n,n−1|(

| AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
| + |v AB(α)

(1−α)
δα
m,i − DL

(Δx)2
| + | DL

(Δx)2
|

+v| AB(α)

(1−α)
| (2 − 2cosφ) |βm,Eα,2 |

) < 1. (87)

The assumption is made where

[
v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2

]
.
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Then, the conditions is

2v
AB (α)

(1 − α)

(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 2DL

(Δx)2
> 0. (88)

Under this assumption, the first inductive stability condition for the second subset
of m is sustained and unconditionally stable.

The opposite assumption is made, and the condition becomes

4DL

(Δx)2
+ v

AB (α)

(1 − α)
(2 − 2cosφ) βm,Eα,2 > 0. (89)

The first inductive stability condition for the second subset of m is upheld and
unconditionally stable under this assumption as well.

The second procedure for the induction numerical stability analysis requires prov-
ing for a set ∀ n ≥ 1

|cn| < |co|. (90)

Rearranging Eq. (66) for cn

(
h + e−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

) m∑
i=0

δα
m,i

)
cn = acn−1 − g

n−2∑
k=0

(
ck+1 − ck

)
δα
n,k .

(91)

Following a similar simplification process as previously performed

(
h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2

)
cn

= acn−1 − g
n−2∑
k=0

(ck+1 − ck) δα
n,k . (92)

Applying a norm

∣∣(h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2

)
cn

∣∣
=

∣∣∣∣∣acn−1 − g
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ . (93)

Therefore,

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn|

< |a||cn−1| + |g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ . (94)
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Remembering that it has been proved that for a set ∀ n > 1

[|cn−1| < |co|].

Thus,

|h + je−jkiΔm−fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn| < |a||cn−1|

+|g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ < |a||co| + |g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ .
(95)

Therefore, it can be inferred that

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn|

< |a||co| + |g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ . (96)

The remaining summation is considered at the upper limit

∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ <

n−2∑
k=0

|ck+1|
(∣∣∣∣1 − ck

ck+1

∣∣∣∣
)

δα
n,k . (97)

Subset (k) will follow the same assumption made for a set (∀ n ≥ 1), where

n−2∑
k=0

ck+1

(
1 − ck

ck+1

)
δα
n,k < |c0|

n−2∑
k=0

δα
n,k .

Substituting back into Eq. (97)

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn| < |a||co| + |g||c0|
n−2∑
k=0

δα
n,k . (98)

Expanding the summation

n−2∑
k=0

δα
n,k =

(
(n)Eα,2

[
− αΔt

1 − α
(n)

])
+

(
2Eα,2

[
−2

αΔt

1 − α

]
− Eα,2

[
− αΔt

1 − α

])
.
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Substituting back into Eq. (98) and simplifying

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn| < |a||co| + |g||c0|βn,Eα,2 , (99)

where,

βn,Eα,2 = nEα,2

[
− αΔtn

1 − α

]
+ 2Eα,2

[
− 2αΔt

1 − α

]
− Eα,2

[
− αΔt

1 − α

]
.

Simplifying and rearranging

|cn|
|co| <

|a| + |g|βn,Eα,2

|h| + |j| + |f | + v|g| (|1 − cosφ| + i|sinφ|) |βm,Eα,2 |
. (100)

Thus, the condition becomes

|a| + |g|βn,Eα,2

|h| + |j| + |f | + v|g| (|1 − cosφ| + i|sinφ|) |βm,Eα,2 |
< 1. (101)

The condition is expanded using the simplification terms associated with Eq. (53)

| AB(α)

(1−α)
δα
n,n−1| + | AB(α)

(1−α)
|βn,Eα,2

| AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
| + |v AB(α)

(1−α)
δα
m,i − DL

(Δx)2
| + | DL

(Δx)2
|

+v| AB(α)

(1−α)
| (2 − 2cosφ) |βm,Eα,2 |

< 1. (102)

The following assumption is made

[
v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2

]
.

Simplifying

2v
(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 2DL

(Δx)2
> βn,Eα,2 . (103)

Under this assumption, the second inductive stability requirement is found to be
true. And, the numerical scheme is conditionally stable, under this condition.

The opposite assumption is made, and the condition becomes

2v (1 − cosφ) βm,Eα,2 + 4DL

(Δx)2
> βn,Eα,2 . (104)

Thus, under the opposite assumption, the second inductive stability condition is
also found to be appropriate. Moreover, under this condition the numerical scheme
is conditionally stable.
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This concludes the stability analysis for the implicit upwind scheme for the ABC
advection-dispersion equation, where the scheme is stable under the condition stated
in Eqs. (103) and (104). These conditions can be simplified to an overall condition

min (γ, η) > βn,Eα,2 ,

where,

γ = 2v
(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 2DL

(Δx)2
,

η = 2v (1 − cosφ) βm,Eα,2 + 4DL

(Δx)2
.

Under these conditions, the error of the approximation is not propagated through-
out the solution, but rather decreaseswith each time step, as according to the induction
method, where for all values of n, |cn+1| < |co|.

4.2 First-Order Upwind Explicit

The induction method terms for the developed explicit upwind numerical scheme
(Sect. 3.1) are substituted as follows

acne
jkim = bcn−1e

jkim + dcn−1e
jkix(m−Δm) + fcn−1e

jki(m+Δm) − g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

− vg
m∑
i=0

(
cn−1e

jkim − cn−1e
jki(m−Δm)

)
δα
m,i . (105)

The same procedure applied in Sect. 4.1 is followed for the explicit upwind numer-
ical scheme. When n = 1, and a subset form is considered wherem = 0, the explicit
upwind numerical scheme for the ABC fractional advection-dispersion equation is
conditionally stable, under the assumption

AB (α)

(1 − α)
δα
n,n−1 < v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
. (106)

Following the condition

2v
AB (α)

(1 − α)
δα
m,i +

4DL

(Δx)2
<

2AB (α)

(1 − α)
δα
n,n−1. (107)

When a subset for m is considered where m ≥ 1, the explicit upwind numerical
scheme is also conditionally stable under the same assumption, with the condition
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2v
AB (α)

(1 − α)

(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 4DL

(Δx)2
<

2AB (α)

(1 − α)
δα
n,n−1. (108)

Therefore, the assumption has been established where |cn−1| < |co|. The next step
for the recursive stability analysis is to use this assumption to demonstrate that for a
set ∀ n ≥ 1, that

|cn| < |co|.

Following the equivalent technique as shown in Sect. 4.1, and making the same
assumption, the scheme is conditionally stable, with the following condition

AB (α)

(1 − α)

(
2vδα

m,i − v (2 − 2cosφ) βm,Eα,2 + βn,Eα,2

) + 4DL

(Δx)2
<

2AB (α)

(1 − α)
δα
n,n−1.

(109)
This concludes the stability analysis for the explicit upwind scheme for the ABC

advection-dispersion equation, where the scheme is found to be conditionally stable
under the assumption made Eq. (106), with conditions Eqs. (107)–(109). The condi-
tions can be simplified into

max (λ, μ, ρ) <
2AB (α)

(1 − α)
δα
n,n−1,

where,

λ = 2v
AB (α)

(1 − α)
δα
m,i + 4DL

(Δx)2
; μ = 2v

AB (α)

(1 − α)

(
δα
m,i + (1 − cosφ) βm,Eα,2

)
+ 4DL

(Δx)2
,

ρ = AB (α)

(1 − α)

(
2vδα

m,i − v (2 − 2cosφ) βm,Eα,2 + βn,Eα,2

) + 4DL

(Δx)2
.

4.3 First-Order Upwind Crank–Nicolson Scheme

The recursive induction method terms are substituted into the upwind Crank–
Nicolson numerical scheme presented in Sect. 3.3

lcne
jkim = mcn−1e

jkim + ocne
jki(m−Δm) + fcne

jkix(m+Δm) + pcn−1e
jki(m−Δm)

−g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k − vg

m∑
i=0

[
0.5

(
cn−1ejkim − cn−1ejki(m−Δm)

)
+0.5

(
cnejkim − cnejki(m−Δm)

)
]

δα
m,i. (110)

In the same way, the method outlined in Sect. 4.1 is employed to determine the
numerical stability of the upwind Crank–Nicolson numerical scheme. If n = 1, and
a subset form is considered wherem = 0, then the scheme is unconditionally stable,
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under the following assumption

0.5v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2
. (111)

With the following condition resulting in the unconditional stability

2DL

(Δx)2
> 0. (112)

If the complementary assumption is made

0.5v
AB (α)

(1 − α)
δα
m,i <

DL

(Δx)2
. (113)

The scheme is conditionally stable, with the following condition

v
AB (α)

(1 − α)
δα
m,i <

4DL

(Δx)2
. (114)

When a subset for m is considered for all m ≥ 1, under the assumption made in
Eq. (111), the scheme is unconditionally stable. Similarly, when the complementary
assumption is made, the scheme is conditionally stable.

The next step for the recursive stability analysis was performed as described in
Sects. 4.1 and 4.2. The same assumption is made as in Eq. (111), and once more the
same unconditionally stable condition was found. Likewise, the opposite condition
resulting in the same condition as in Eq. (114).

This completes the stability analysis for the upwind Crank–Nicolson scheme
for the ABC advection-dispersion equation, where the scheme is stable under the
following condition stated in Eq. (114). Under this single condition, the error of the
approximation is not propagated throughout the solution, but rather decreases with
each time step, as according to the induction method, where for all values of n,
|cn+1| < |co|.

4.4 Upwind-Downwind Weighted Scheme (Implicit)

Substituting the induction method terms for the developed finite difference implicit
upwind-downwind weighted numerical scheme discussed in Sect. 3.5
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ucne
jkim = vcne

jkix(m+Δm) + rcne
jki(m−Δm) + acn−1e

jkim − g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

− vg
m∑
i=0

[
θ

(
cne

jkim − cne
jki(m−Δm)

)
+ (1 − θ)

(
cne

jkix(m+Δm) − cne
jkim

)]
δα
m,i . (115)

A parallel procedure as applied in Sect. 4.1 is followed for the implicit upwind-
downwindweighted numerical scheme.When n = 1, and a subset form is considered
where m = 0, the scheme for the ABC fractional advection-dispersion equation is
unconditionally stable when 0.5 ≤ θ ≤ 1, but conditionally stable when 0 ≤ θ <

0.5, under the assumption

DL

(Δx)2
+ vθ

AB (α)

(1 − α)
δα
m,i > v

AB (α)

(1 − α)
δα
m,i. (116)

With the condition being

(2θ − 1) v
AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
> 0. (117)

If the opposed assumption is made

DL

(Δx)2
+ vθ

AB (α)

(1 − α)
δα
m,i < v

AB (α)

(1 − α)
δα
m,i. (118)

The implicit upwind-downwind weighted numerical scheme is conditionally sta-
ble, with the following condition

v
AB (α)

(1 − α)
δα
m,i >

(
δα
n,n−1 + vθδα

m,i

) AB (α)

(1 − α)
+ DL

(Δx)2
. (119)

A subset for m is then considered for all m ≥ 1. The assumption in Eq. (112) is
made again, under which the scheme is unconditionally stable when 0.5 ≤ θ ≤ 1;
and conditionally stable when 0 ≤ θ < 0.5, with the condition

(2θ − 1)
AB (α) v

(1 − α)
δα
m,i + (1 − cosφ)

AB (α) v

(1 − α)
βm,Eα,2 + 2DL

(Δx)2
> 0. (120)

If complementary assumption is made, and the scheme is conditionally stable
under the following condition

v
AB (α)

(1 − α)

(
βm,Eα,2 + δα

m,i

)
>

AB (α)

(1 − α)

(
δα
n,n−1 + vθδα

m,i + vcosφβm,Eα,2

) + DL

(Δx)2
.

(121)
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The next step for the recursive stability analysis was performed as described in
Sects. 4.1 and 4.2, and first the same assumption is made as in Eq. (116), and once
more the scheme is unconditionally stable when 0.5 ≤ θ ≤ 1; and conditionally
stable when 0 ≤ θ < 0.5, with the condition now being

2v
AB (α)

(1 − α)

(
δα
m,i (2θ − 1) + (1 − cosφ) βm,Eα,2

) + 4DL

(Δx)2
>

AB (α)

(1 − α)
βn,Eα,2 . (122)

In the same way, when the complementary assumption is made, the scheme is
conditionally stable, with the condition now being

2v
AB (α)

(1 − α)

(
(1 − θ) δα

m,i + (1 − cosφ) βm,Eα,2

) − 2DL

(Δx)2
>

AB (α)

(1 − α)

(
2δα

n,n−1 + βn,Eα,2

)
.

(123)

The stability analysis has established that the implicit upwind-downwindweighted
scheme is stable under the conditions in Eqs. (119)–(122). Additional conditions are
activated when the weighting factor is 0 ≤ θ < 0.5, as stated in Eqs. (117) and (120).
Only under these conditions, the error of the approximation made by the implicit
upwind-downwind weighted numerical scheme is not propagated throughout the
solution.

4.5 Upwind-Downwind Weighted Scheme (Explicit)

For the stability analysis of the explicit upwind-downwind weighted numerical
scheme (Sect. 3.4), the recursive induction terms are substituted as follows

acne
jkim = qcn−1e

jkim+rcn−1e
jki(m−Δm) − scn−1e

jki(m+Δm) − g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

−vg
m∑
i=0

[
θ

(
cn−1ejkim − cn−1ejki(m−Δm)

)
+ (1 − θ)

(
cn−1ejkix(m+Δm) − cn−1ejkim

)
]

δα
m,i . (124)

Again, the process outlined in Sect. 4.1 is used to define the numerical stability
of the explicit upwind-downwind weighted numerical scheme. When n= 1, and a
subset for m is considered where m = 0, then the scheme is conditionally stable,
under the following assumption

AB (α)

(1 − α)
δα
n,n−1 + v

AB (α)

(1 − α)
δα
m,i < 2vθ

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
, (125)



338 A. Allwright and A. Atangana

with the condition

2v (θ − 1)
AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
>

2AB (α)

(1 − α)
δα
n,n−1. (126)

A subset for m is then considered for all m ≥ 1, and under the same assumption
as in Eq. (121), the scheme is conditionally stable, under the following condition

2AB (α)

(1 − α)

(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
>

2AB (α)

(1 − α)

(
2vθδα

m,i + vβm,Eα,2

)
+ 4DL

(Δx)2
.

(127)

The subsequent stageof the recursive stability analysiswasperformedas described
in Sects. 4.1 and 4.2. The same assumption is made as in Eq. (125), and again the
scheme is conditionally stable, with the following stability condition

2AB (α)

(1 − α)

(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
>

AB (α)

(1 − α)

(
2vβm,Eα,2 + 4vθδα

m,i + βn,Eα,2

) + 4DL

(Δx)2
. (128)

The stability analysis for the explicit upwind-downwind weighted scheme is con-
cluded, where the scheme is conditionally stable under the assumption stated in
Eq. (125), with the conditions stated in Eqs. (126)–(128). Only under these con-
ditions, the error of the approximation made by the explicit upwind-downwind
weighted scheme is not proliferated throughout the solution.

5 Comparison of Numerical Stability

The stability conditions for the traditional upwind (implicit/explicit), and the new
upwindCrank-Nicholson andweightedupwind-downwind (implicit/explicit) numer-
ical schemes are tabulated in Appendix A. The traditional implicit upwind scheme
applied to the ABC fractional advection-dispersion equation is conditionally stable
under both assumptions made with a single condition for each assumption. There
is only one practically applicable assumption for the customary explicit upwind
scheme, which has three sub-conditions. The upwind Crank–Nicolson numerical
scheme applied to the ABC fractional advection-dispersion equation is uncondition-
ally stable under the first assumption, and has a single condition under the second
assumption made. The implicit upwind-downwind weighted numerical scheme is
conditionally stable under both assumptions made, but unconditionally stable for the
first assumption when the weighting factor is 0.5 ≤ θ ≤ 1. Similar to the explicit
upwind scheme, the explicit upwind-downwind weighted numerical scheme has one
practically applicable assumption, which has three conditions for stability. Table1
show the summary of numerical schemes.
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Table 1 Summary of numerical schemes

Summary

Scheme Assumption Stability conditions

Implicit upwind v AB(α)
(1−α)

δα
m,i > DL

(Δx)2
2v

(
δα
m,i + (1 − cosφ) βm,Eα,2

)
+ 2DL

(Δx)2
> βn,Eα,2

v AB(α)
(1−α)

δα
m,i < DL

(Δx)2
2v (1 − cosφ) βm,Eα,2 + 4DL

(Δx)2
> βn,Eα,2

Explicit upwind Assumption not made
AB(α)
(1−α)

δα
n,n−1 <

v AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2

max (λ, μ, ρ) <
2AB(α)
(1−α)

δα
n,n−1

Upwind Crank-Nicholson 0.5v AB(α)
(1−α)

δα
m,i > DL

(Δx)2

0.5v AB(α)
(1−α)

δα
m,i < DL

(Δx)2

Unconditionally stable v AB(α)
(1−α)

δα
m,i < 4DL

(Δx)2

Upwind-downwind
weighted scheme (implicit)

DL

(Δx)2
+ vθ AB(α)

(1−α)
δα
m,i >

v AB(α)
(1−α)

δα
m,i

(2θ − 1) v AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2
> 0

(2θ − 1) AB(α)v
(1−α)

δα
m,i+

(1 − cosφ)
AB(α)v
(1−α)

βm,Eα,2 + 2DL

(Δx)2
> 0

2v AB(α)
(1−α)

(
δα
m,i (2θ − 1) + (1 − cosφ) βm,Eα,2

)
+

4DL

(Δx)2
>

AB(α)
(1−α)

βn,Eα,2

Unconditionally stable when 0.5 ≤ θ ≤ 1

Conditionally stable when 0 ≤ θ < 0.5
DL

(Δx)2
+ vθ AB(α)

(1−α)
δα
m,i <

v AB(α)
(1−α)

δα
m,i

v AB(α)
(1−α)

δα
m,i >

(
δα
n,n−1 + vθδα

m,i

)
AB(α)
(1−α)

+ DL

(Δx)2

v
(
βm,Eα,2 + δα

m,i

)
AB(α)
(1−α)

>

2v
(
(1 − θ) δα

m,i + (1 − cosφ) βm,Eα,2

)
AB(α)
(1−α)

− 2DL

(Δx)2
>

(
2δα

n,n−1 + βn,Eα,2

)
AB(α)
(1−α)

Assumption not made

Upwind-downwind
weighted scheme (explicit)

AB(α)
(1−α)

δα
n,n−1 +

v AB(α)
(1−α)

δα
m,i <

2vθ AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2

2v (θ − 1) AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2
>

2AB(α)
(1−α)

δα
n,n−1

(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
2AB(α)
(1−α)

>(
2vθδα

m,i + vβm,Eα,2

)
2AB(α)
(1−α)

+ 4DL

(Δx)2(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
2AB(α)
(1−α)

>(
2vβm,Eα,2 + 4vθδα

m,i + βn,Eα,2

)
AB(α)
(1−α)

+ 4DL

(Δx)2

6 Conclusions

An advection-focused fractional transport equation is developed using the ABC frac-
tional derivative. The boundedness, existence and uniqueness is determined using
the Picard–Lindelöf theorem. The semi-discretisation stability is evaluated in time,
and demonstrated that the developed equation is stable in time. Upwind-based finite
difference approximations were developed, and the stability of each was determined.
The implicit upwind formulations are found to be more stable than their comparable
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explicit formulations. The proposed implicit weighted upwind-downwind scheme
is more stable than the traditional upwind scheme when the weighting factor is
0.5 ≤ θ ≤ 1, which denotes at least half upwind-weighted or more, and the down-
wind influence less than half. Of the numerical schemes analysed, the upwindCrank–
Nicolson is the most stable numerical scheme, and would be suggested for use with
the ABC fractional advection-dispersion equation.
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