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Preface

In recent years, fractional calculus has allowed describing several complex problems
in the fields of mathematics, physics, biology, and engineering. The complexity
of these problems has led to researchers to develop mathematical theories to model the
complexities of nature taking into account the fractional calculus. The mathematical
models are powerful tools used for describing real-world problems; to develop
mathematical models, differential equations and differential operators are required. The
differential operators can be local or non-local. The non-local can further be divided
into three types: differential operators with a power-law kernel, differential operators
with exponential decay law, and finally, differential operators with Mittag-Leffler law.
The operators with non-singular kernel have the following features: They do not
impose artificial singularities on any model, they have at the same time Markovian and
non-Markovian properties, they are at the same time power law, stretched exponential
and Brownian motion, the mean square displacement is a crossover from usual dif-
fusion to sub-diffusion, the derivative probability distribution is at the same time
Gaussian and non-Gaussian, and it can cross over from Gaussian to non-Gaussian
even without passing through the steady state. It means that the fractional derivatives
with non-singular kernel are at the same time deterministic and stochastic.

The aim of this book is to present novel developments, trends, and applications of
fractional-order derivatives with a non-singular and non-local kernel in the areas of
chemistry, mechanics, chaos, epidemiology, fluid mechanics, modeling, and engi-
neering. Non-singular and non-local fractional-order derivatives have been applied in
the different chapters to describe complex problems. These 18 contributed chapters,
which were put together upon a rigorous review process, have been written by both
young and established researchers, who are specialists in their topic.

Cuernavaca, Mexico José Francisco Gómez
Mexico City, Mexico Lizeth Torres
Cuernavaca, Mexico Ricardo Fabricio Escobar
February 2019

v



Contents

Reproducing Kernel Method for Fractional Derivative with Non-local
and Non-singular Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ali Akgül

Necessary and Sufficient Optimality Conditions for Fractional
Problems Involving Atangana–Baleanu’s Derivatives . . . . . . . . . . . . . . . 13
G. M. Bahaa and A. Atangana

Variable Order Mittag–Leffler Fractional Operators on Isolated Time
Scales and Application to the Calculus of Variations . . . . . . . . . . . . . . . 35
Thabet Abdeljawad, Raziye Mert and Delfim F. M. Torres

Modeling and Analysis of Fractional Leptospirosis Model
Using Atangana–Baleanu Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Saif Ullah and Muhammad Altaf Khan

Dual Fractional Analysis of Blood Alcohol Model Via Non-integer
Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Kashif Ali Abro and J. F. Gómez-Aguilar

Parameter Estimation of Fractional Gompertz Model Using Cuckoo
Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
J. E. Solís-Pérez, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, L. Torres
and V. H. Olivares-Peregrino

Existence and Uniqueness Results for a Novel Complex Chaotic
Fractional Order System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Ilknur Koca and A. Atangana

On the Chaotic Pole of Attraction with Nonlocal and Nonsingular
Operators in Neurobiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Emile F. Doungmo Goufo, Abdon Atangana and Melusi Khumalo

vii



Modulating Chaotic Oscillations in Autocatalytic Reaction Networks
Using Atangana–Baleanu Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Emile F. Doungmo Goufo and A. Atangana

Development and Elaboration of a Compound Structure of Chaotic
Attractors with Atangana–Baleanu Operator . . . . . . . . . . . . . . . . . . . . . 159
Emile F. Doungmo Goufo

On the Atangana–Baleanu Derivative and Its Relation to the Fading
Memory Concept: The Diffusion Equation Formulation . . . . . . . . . . . . . 175
Jordan Hristov

Numerical Solutions and Pattern Formation Process in Fractional
Diffusion-Like Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Kolade M. Owolabi

Heat Transfer Analysis in Ethylene Glycol Based Molybdenum
Disulfide Generalized Nanofluid via Atangana–Baleanu Fractional
Derivative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Farhad Ali, Muhammad Saqib, Ilyas Khan and Nadeem Ahmad Sheikh

Atangana–Baleanu Derivative with Fractional Order Applied
to the Gas Dynamics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Sunil Kumar, Amit Kumar, J. J. Nieto and B. Sharma

New Direction of Atangana–Baleanu Fractional Derivative
with Mittag-Leffler Kernel for Non-Newtonian Channel Flow . . . . . . . . 253
Muhammad Saqib, Ilyas Khan and Sharidan Shafie

Exact Solutions for the Liénard Type Model via Fractional
Homotopy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
V. F. Morales-Delgado, J. F. Gómez-Aguilar, L. Torres,
R. F. Escobar-Jiménez and M. A. Taneco-Hernandez

Model of Coupled System of Fractional Reaction-Diffusion Within
a New Fractional Derivative Without Singular Kernel . . . . . . . . . . . . . . 293
K. M. Saad, J. F. Gómez-Aguilar, A. Atangana and R. F. Escobar-Jiménez

Upwind-Based Numerical Approximation of a Space-Time Fractional
Advection-Dispersion Equation for Groundwater Transport Within
Fractured Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
A. Allwright and A. Atangana

viii Contents



Reproducing Kernel Method for
Fractional Derivative with Non-local
and Non-singular Kernel

Ali Akgül

Abstract Atangana and Baleanu introduced a derivative with fractional order to
answer some outstanding questions that were posed by many investigators within
the field of fractional calculus. Their derivative has a non-singular and nonlocal
kernel. Therefore, we apply the reproducing kernel method to fractional differential
equations with non-local and non-singular kernel. In this work, a new method has
been developed for the newly established fractional differentiation. Examples are
given to illustrate the numerical effectiveness of the reproducing kernel methodwhen
properly applied in the reproducing kernel space. The comparison of approximate
and exact solutions leaves no doubt believing that the reproducing kernel method is
very efficient and converges toward exact solution very rapidly.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative ·
Reproducing kernel method

1 Introduction

Caputo and Fabrizio introduced a new operator that was called the Caputo–Fabrizio
derivative with fractional order [1, 2]. Due to the novelty of their results, many
researchers applied their derivative in few real world problems with great success
[3–17]. The novelty in their operator is that the derivative has no singular kernel
and finds applications in many problems in the field of groundwater and thermal sci-
ence. Atangana with Goufo enhanced the version based upon the Riemann–Liouville
approach, and the results were also acquired in the work by Caputo and Fabrizio [18–
21].Apart from the realworld applications donewith this novel idea,many theoretical
works were also given. A couple of issues were pointed out against both derivatives,
including the one in Caputo sense and the one in Riemann–Liouville sense.
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2 A. Akgül

(1) The kernel was not nonlocal.
(2) The integral associate is not a fractional operator but the average of the function

and its integral.
(3) The solution of the following equation dα y

dxα = −ay is an exponential equation
not a non-local function.

It is therefore concluded by some researchers that the operator was not a deriva-
tive with fractional order instead it is a filter with fractional parameter. The frac-
tional parameter can then be viewed as filter regulator. The well known Caputo and
Riemann–Liouville also have a big problem; their kernel is nonlocal, but is singular.
This weakness has effect when modeling real world problems.

In order to solve the above problems, Atangana and Baleanu suggested a new
operator with fractional order based upon the Mittag-Leffler function [22–24]. Their
operators have all the benefits of that of Caputo and Fabrizio; in addition, the kernel
used is nonlocal. The operators have all the benefits of those of Riemann–Liouville
fractional integral of the given function and the function itself. In addition to the
above benefits, the derivative was found very useful in thermal science and material
sciences [22–24]. These new derivatives with fractional orders are at the same time
filters and fractional derivatives [25].

Numerical methods have been known as strong mathematical tools to solve non-
linear ordinary differential equations with local and non-local operators. They have
been utilized in many models to predict the behavior of the dynamical system for
which the model was enhanced for. They are normally utilized when all the imple-
mented analytical techniques fail. Due to the problems posed by the fractional deriva-
tive with power-law kernel, a new fractional differentiation was given. The new
fractional differentiation, in order to complete the new fractional calculus, was uti-
lized to produced a new fractional integration. The new fractional differentiation has
therefore produced a new class of linear and non-linear ordinary differential equa-
tions [26]. We will apply the reproducing kernel method to solve fractional ordinary
differential equations that have exact solutions.

Whenmodeling physical processes, clear advantages accrue if the problem can be
formulated in a Hilbert space H of differentiable functions on a set E . An important
class of such spaces - the reproducing kernel Hilbert spaces - arose in the twentieth
century and has become increasingly prominent in the twenty-first [27].

Reproducing kernels were used for the first time at the beginning of the twentieth
century by Zaremba in his work on boundary value problems for harmonic and
biharmonic functions [28, 29]. The general theory of reproducing kernel Hilbert
spaces was established simultaneously and independently by Aronszajn [30] and
Bergman [31] in 1950. The introduction of the reproducing kernel Hilbert spaces
Wm

2 [a, b] by Cui and Lin [32, 33] in the 1980’s led to an explosion in applications of
reproducing kernel Hilbert space methods to many areas of mathematics: ordinary
and partial differential equations [33–37], fractional differential equations [38, 39],
nonlinear oscillators with discontinuities [40], nonlinear two-point boundary value
problems [41–43], difference equations [44], and integral equations [33, 45–51].
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In this paper, we solve the fractional differential equations with fractional deriva-
tive with non-local and non-singular kernel by the reproducing kernel method. To do
this we take into consideration the following fractional ordinary equation:

⎧
⎨

⎩

ABC
0 Du(x) = H(x, u(x)),

u(0) = u0.
(1)

The above equation can be transformed to a fractional integral equation by apply-
ing the fundamental theorem of fractional calculus:

u(x) − u(0) = (1−α)

ABC(α)
H(x, u(x)) + α

Γ (α)×ABC(α)

x∫

0
H(τ, u(τ ))(x − τ)α−1dτ.

(2)
This paper is organized as follows. Section2 introduces fractional derivative with

non-local and non-singular kernel. Some useful reproducing kernel functions are
presented in Sect. 3. Main results are given in Sect. 4. Examples are given in Sect. 5
illustrating the numerical effectiveness of the reproducing kernelmethod.A summary
of the results of this research is given in Sect. 6.

2 Fractional Derivative with Non-local and Non-singular
Kernel

In this section we present the basic definitions of the new derivatives with fractional
order proposed by Atangana and Baleanu.

Definition 1 Let f ∈ H 1(a, b), b > a, α ∈ [0, 1] then, Atangana–Baleanu frac-
tional derivative in Caputo sense is given as:

ABC
a Dα

t ( f (t)) = B(α)

1 − α

∫ t

a
f ′(x)Eα

[

−α
(t − x)α

1 − α

]

dx . (3)

Of course B has the same properties as in Caputo and Fabrizio case. The above
definition will be helpful to real world problem and also will have great advantage
when using Laplace transform to solve some physical problem with initial condition
[18].

Definition 2 Let f ∈ H 1(a, b), b > a, α ∈ [0, 1] and not necessary differentiable
then, the definition of the Atangana–Baleanu fractional derivative in Riemann–
Liouville sense is given as:

ABC
a Dα

t ( f (t)) = B(α)

1 − α

d

dt

∫ t

a
f (x)Eα

[

−α
(t − x)α

1 − α

]

dx . (4)
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Definition 3 The fractional integral associate to the new fractional derivative with
non-local kernel is defined as:

AB
a I α

t { f (t)} = 1 − α

B(α)
f (t) + α

B(α)Γ (α)

∫ t

a
f (y)(t − y)α−1dy. (5)

3 Reproducing Kernel Hilbert Spaces

In this section, we define the notion of a reproducing kernel Hilbert space, exhibit
some particular instances of these spaces which will play roles in this work, and
describe some well-known properties of these spaces. Convenient references for this
section are [30, 33, 52].

Definition 4 Let (H, 〈·, ·〉) be a Hilbert space of real functions defined on a
nonempty set E . A function K : E × E → R is called a reproducing kernel for
H if and only if

(a) K (·, z) ∈ H for each fixed z ∈ E ,
(b) 〈ϕ, K (·, z)〉 = ϕ(z) for all z ∈ E and all ϕ ∈ H .

We will refer to such a Hilbert space H for which there exists a reproducing kernel
function K as a reproducing kernel Hilbert space.

Condition (b) is called “the reproducing property” of the kernel K because the
value of an arbitrary function ϕ ∈ H at an arbitrary point z ∈ E is reproduced by
the inner product of ϕ with K (·, z). For brevity we will freely use RKHS instead of
the term reproducing kernel Hilbert space. Furthermore, we will usually adhere to
the standard convention Kz(·) = K (·, z) for denoting the reproducing kernel in such
spaces.

We now list some RKHSs on the closed, bounded interval [a, b]. In what follows
we will use the symbol AC[a, b] to denote the vector space of real, absolutely
continuous functions on the interval [a, b] and L2[a, b] to denote the real, Lebesgue
square integrable functions on [a, b] [27].

Definition 5 Let m be a positive integer. The space Wm
2 [a, b] consists of the

functions f : [a, b] → R such that f (m−1) ∈ AC[a, b] and f (m) ∈ L2[a, b]. Equip
Wm

2 [a, b] with the inner product [33]

〈 f, g〉Wm
2

=
m−1∑

i=0

f (i)(a)g(i)(a) +
∫ b

a
f (m)(x)g(m)(x)dx .
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Lemma 1 ([33], p. 8) If m is a positive integer then Wm
2 [a, b] is a RKHS.

One particular instance is

W 1
2 [0, 1] = { f ∈ AC[0, 1] : f ′ ∈ L2[0, 1]},

equipped with the inner product

〈 f, g〉W 1
2

= f (0)g(0) +
∫ 1

0
f ′(x)g′(x)dx .

The reproducing kernel Qy of W 1
2 [0, 1] is given by ([33], pp. 10 and 17)

Qy(x) =
{
1 + x, 0 ≤ x ≤ y ≤ 1,

1 + y, 0 ≤ y < x ≤ 1.
(6)

Definition 6 The space V 2
2 [0, a] is given by

V 2
2 [0, a] = {u ∈ AC[0, a] : u′ ∈ AC[0, a], u′′ ∈ L2[0, a], u(0) = 0},

〈u, v〉V 2
2 [0,a] = u(0)v(0) + u′(0)v′(0) +

∫ a

0
u′′(x)v′′(x)dx, u, v ∈ V 2

2 [0, a],

and
‖u‖V 2

2 [0,a] =
√

〈u, u〉V 2
2 [0,a], u ∈ V 2

2 [0, a],

are the inner product and the norm in V 2
2 [0, a] respectively.

Theorem 1 Reproducing kernel function Ry(ξ) of V 2
2 [0, a] is obtained as:

Ry(ξ) =

⎧
⎪⎨

⎪⎩

ξ y + 1
2 yξ

2 − ξ 3

6 , 0 ≤ ξ ≤ y ≤ a,

ξ y + 1
2 y

2ξ − y3

6 , 0 ≤ y < ξ ≤ a.

(7)

Proof We have

Ry(ξ) =

⎧
⎪⎨

⎪⎩

∑4
i=1 ci (y)ξ

i−1, 0 ≤ ξ ≤ y ≤ a,

∑4
i=1 di (y)ξ

i−1, 0 ≤ y < ξ ≤ a.

(8)
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Then, we obtain

〈
u,Ry(ξ)

〉

V 2
2 [0,a] = u(0)Ry(0) + u′(0)R ′

y(0) +
∫ a

0
u′′(ξ)

∂ ′′Ry(ξ)

∂ξ ′′ dξ,

= u′(a)
∂ ′′Ry(a)

∂ξ ′′ − u′(0)
∂ ′′Ry(0)

∂ξ ′′ −
∫ a

0
u′(ξ)

∂3Ry(ξ)

∂ξ 3
dξ.

We get 〈
u,Ry(ξ)

〉

V 2
2 [0,a] = u(y).

This completes the proof.

4 Main Results

The solution of (1) has been obtained in the reproducing kernel space V 2
2 [0, a] in

this section. On defining the linear operator

A : V 2
2 [0, a] → W 1

2 [0, 1],

as
Au(x) =ABC

0 Du(x), (9)

problem (1) converts the form:

{
Au(x) = H(x, u(x)), x ∈ [0, a],
u′(0) = u0.

(10)

Lemma 2 The operator A is a bounded linear operator [39].

Let us put ϕi (ξ) = Qξi (ξ) and ψi (ξ) = A∗ϕi (ξ), where A∗ is conjugate operator
of A. The orthonormal system {ψ̂i (ξ)}∞i=1 ⊆ A2

2[0, a] can be obtained from the
well-known Gram-Schmidt orthogonalization process of {ψi (ξ)}∞i=1:

ψ̂i (ξ) =
i∑

k=1

βikψk(ξ), (βi i > 0, i = 1, 2, ...). (11)

Lemma 3 Suppose {ξi }∞i=1 be dense in [0, a] and ψi (ξ) = AyRξ (y)|y=ξi . Then the
sequence {ψi (ξ)}∞i=1 is a complete system in V 2

2 [0, a] [39].
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Theorem 2 If u(ξ) is the exact solution of (1), then

u(ξ) =
∞∑

i=1

i∑

k=1

βik H(ξk, uk)ψ̂i (ξ), (12)

where {ξi }∞i=1 is dense in [0, a].
Proof We obtain

u(ξ) =
∞∑

i=1

〈
u(ξ), ψ̂i (ξ)

〉

V 2
2

ψ̂i (ξ),

=
∞∑

i=1

i∑

k=1

βik 〈u(ξ), ψk(ξ)〉V 2
2
ψ̂i (ξ),

=
∞∑

i=1

i∑

k=1

βik
〈
u(ξ), A∗ϕk(ξ)

〉

V 2
2
ψ̂i (ξ),

=
∞∑

i=1

i∑

k=1

βik 〈Au(ξ), ϕk(ξ)〉W 1
2
ψ̂i (ξ),

=
∞∑

i=1

i∑

k=1

βik
〈
H(ξ, u), Qξk

〉

W 1
2
ψ̂i (ξ),

=
∞∑

i=1

i∑

k=1

βik H(ξk, uk)ψ̂i (ξ).

Finite terms of this concludes the approximate solution:

un(ξ) =
n∑

i=1

i∑

k=1

βik H(ξk, uk)ψ̂i (ξ). (13)

5 Applications

Example 1 We take into consideration the following fractional differential equation,
where the fractional derivative is that of Atangana–Baleanu in the Caputo sense:

⎧
⎨

⎩

ABC
0 Dαu(x) = x2,

u(0) = 0.
(14)
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Table 1 Absolute errors in Example1 using the V 2
2 [0, 4] kernel and different points near the origin

in [0, 4]
x (α = 0.75) m = 36 m = 64 m = 81

0.0 0.000000000 0.000000000 0.000000000

0.5 3.907 × 10−7 9.300 × 10−9 5.300 × 10−9

1.0 9.373 × 10−7 5.270 × 10−8 1.270 × 10−8

1.5 1.922 × 10−6 7.800 × 10−8 1.800 × 10−8

2.0 3.085 × 10−6 2.150 × 10−7 1.500 × 10−8

2.5 5.289 × 10−6 1.100 × 10−8 3.100 × 10−8

3.0 8.980 × 10−6 3.800 × 10−7 4.000 × 10−8

3.5 1.138 × 10−5 5.800 × 10−7 5.000 × 10−8

4.0 1.963 × 10−5 1.430 × 10−6 4.000 × 10−8

The exact solution ofEq. (1) is obtained by applying theAtangana–Baleanu fractional
integral on both sides to obtain [26].

u(x) = 1−α
ABC(α)

x2 + 1
Γ (α)×ABC(α)

2xα+2

(α2+3α+2) ,

ABC(α) = 1 − α + α
Γ (α)

.

(15)

Applying the reproducing kernel method, we demonstrate the numerical solution
for α = 3

4 . The comparison of exact solution and numerical solution is given in
Tables1 and 2. The numerical representation let us conclude that the reproducing
kernel method is highly accurate and converges very quickly to the exact solution.
The numerical method does not depend on the fractional order. For all values of
α, we get good agreement between exact solution and approximate solution. More
importantly, the results showed that the convergence does not depend on the fractional
order.

Example 2 Let us consider the following oscillatory fractional differential equation.
Here the fractional derivative is also in Atangana–Baleanu in the Caputo sense:

⎧
⎨

⎩

ABC
0 Dαu(x) = sin(x),

u(0) = 0.
(16)

By applying, on both sides, the Atangana–Baleanu fractional integral, we acquire
the exact solution with LommelS1 as a special function [26]. We give the absolute
errors of Example1 for different values of α in Table2. Table3 shows the numerical
simulation obtained via the new method for Example2 for different values of α.
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Table 2 Absolute errors in Example1 using the V 2
2 [0, 4] kernel and 100 points near the origin in

[0, 4] for different values of α

x α = 0.8 α = 0.95 α = 0.3 α = 0.5

0.0 0.000000000 0.000000000 0.000000000 0.000000000

0.5 4.800 × 10−9 1.217 × 10−8 4.000 × 10−9 5.400 × 10−9

1.0 1.200 × 10−8 1.280 × 10−8 4.000 × 10−9 1.700 × 10−8

1.5 1.500 × 10−8 7.000 × 10−9 3.000 × 10−9 5.000 × 10−9

2.0 9.000 × 10−9 1.900 × 10−8 1.000 × 10−8 3.000 × 10−8

2.5 3.300 × 10−8 2.400 × 10−8 3.000 × 10−8 5.300 × 10−8

3.0 4.000 × 10−8 3.700 × 10−8 4.000 × 10−8 4.000 × 10−8

3.5 6.000 × 10−8 4.000 × 10−8 4.000 × 10−8 6.000 × 10−8

4.0 5.000 × 10−8 4.000 × 10−8 4.000 × 10−8 5.000 × 10−8

Table 3 Absolute errors in Example2 using the V 2
2 [0, 10] kernel and 100 points near the origin in

[0, 10] for different values of α

x α = 0.3 α = 0.5 α = 0.7 α = 0.8

0.0 0.000000000 0.000000000 0.000000000 0.000000000

1.0 1.700 × 10−8 5.590 × 10−8 1.089 × 10−7 1.007 × 10−7

2.0 6.300 × 10−8 1.070 × 10−7 2.460 × 10−7 2.310 × 10−7

3.0 6.760 × 10−8 1.507 × 10−7 3.870 × 10−7 4.110 × 10−7

4.0 2.390 × 10−8 1.826 × 10−7 5.578 × 10−7 5.731 × 10−7

5.0 1.300 × 10−8 4.010 × 10−7 7.808 × 10−7 7.525 × 10−7

6.0 3.780 × 10−8 4.279 × 10−7 1.050 × 10−6 1.093 × 10−6

7.0 1.580 × 10−7 3.179 × 10−7 1.232 × 10−6 1.283 × 10−6

8.0 5.160 × 10−7 1.001 × 10−6 1.833 × 10−6 1.951 × 10−6

9.0 8.392 × 10−7 9.998 × 10−7 1.637 × 10−6 1.572 × 10−6

10.0 3.275 × 10−7 3.950 × 10−7 1.219 × 10−6 1.884 × 10−7

After applying the RKM with the reproducing kernel for the space V 2
2 [0, a] and

an enumeration (xi , ti ) of the 36, 64, 81, 100 points of

{
1

10
,
1

5
,
3

10
,
2

5
,
1

2
,
3

5
,
7

10
,
4

5
,
9

10
, 1

}2

,

we obtain Tables1, 2 and 3.
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6 Conclusions

Atangana and Baleanu introduced a new kernel based upon the generalized Mittag-
Leffler function. In this paper, we applied the reproducing kernel method to the frac-
tional differential equations with novel fractional derivatives. The numerical simu-
lations were performed for different values of fractional order. Numerical examples
were given to illustrate the computational effectiveness of the reproducing kernel
method.
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1 Introduction

In recent years, numerous works have been dedicated to the fractional calculus of
variations. Most of them deal with Riemann–Liouville fractional derivatives (see
[2–5, 15, 16, 23, 33–35, 37, 39], and the references therein) and a few with Caputo
or Riesz derivatives [7–14, 24]. Depending on the type of the functional being con-
sidered, different fractional Euler–Lagrange type equations are obtained.

Here we propose a new kind of Atangana–Baleanu’s fractional derivative,
Atangana–Baleanu’s fractional integrals [6, 17–22, 25–32, 36, 38, 42, 43] and the
functional with a Lagrangian that containing not only Atangana–Baleanu’s frac-
tional derivative (ABFD) but also a Atangana–Baleanu’s fractional integral (ABFI).
We prove the necessary conditions of Euler–Lagrange type for the fundamental frac-
tional problem of the calculus of variations and for the fractional isoperimetric prob-
lem. Sufficient optimality conditions are also obtained under appropriate convexity
assumptions.

Fractional calculus represents a generalization of ordinary differentiation and
integration to arbitrary order [1–3]. During the last decades the fractional calculus
started to be used in various fields, e.g. physics, engineering, biology, and many
important results were obtained [32, 33].

Lagrangian mechanics and Hamiltonian mechanics are alternative formulations
of classical Newtonian mechanics. Their importance is represented by the fact that
any of them could be used to solve a problem in classical mechanics. We emphasize
that the Newtonian mechanics requires the concept of force, while Lagrangian and
Hamiltonian systems are expressed in terms of energy.

The first attempt to find the fractional Lagrangian and Hamiltonian for a given
dissipative system is due to Riewe [40, 41]. Important contributions were obtained
in the field of variational principles by Agrawal [2–5], Baleanu and Muslih in [16],
Baleanu and Avkar in [15], and Baleanu and Agrawal in [14]. Agrawal and Baleanu
presented a Hamiltonian formulation and a direct numerical scheme for fractional
optimal control problems [4].

For these reasons, the properties of the Lagrangian and Hamiltonian formalism of
the fractional extension of constrained systems are considered in this study. Within
the classical picture, using only the integer order time derivative, the canonical coor-
dinates of such systems do not remain linearly independent and certain constraints
appear among them.

In this study, by using the Atangana–Baleanu’s derivative we propose to gener-
alize the notion of equivalent Lagrangian for the fractional case. For a given classi-
cal Lagrangian, there are several proposed methods to obtain the fractional Euler–
Lagrange equations and the corresponding Hamiltonians. However, the fractional
dynamics depends on the fractional derivatives used to construct the Lagrangian to
start with; therefore, the existence of several options can be used to treat a specific
physical system. In this respect, application of the Atangana–Baleanu’s derivative
to the fractional dynamics will bring new opportunities in studying the constrained
systemsmainly because theAtangana–Baleanu’s derivative contains both the left and
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the right derivatives. In addition, the fractional derivative of a function is given by a
definite integral, which depend on the values of the function over the entire interval.
Therefore, the fractional derivatives are suitable to model systems with long range
interactions in space and/or time (memory) and process with many scales of space
and/or time involved.

In this chapter we compare the results of fractional Euler–Lagrange equations for
the classical Riemann–Liouville and Caputo fractional derivatives stated in [2–5]
corresponding to Atangana–Baleanu’s fractional derivatives defined in [6].

The plan of this chapter is as follows: In Sect. 2 we collect notations, definitions,
and we state the integration by parts involving the Atangana–Baleanu fractional
time derivative. Section3 contains a briefly review of the fractional Lagrangian and
Hamiltonian approaches of discrete systems based on fractionalAtangana–Baleanu’s
derivatives and some examples are investigated in detail. In Sect. 4, we calculate the
fractional canonical momenta, and we generalize the fractional Lagrangian to n state
equations. In Sect. 5 some generalizations for the problem are stated. In Sect. 6, the
constrained system within Atangana–Baleanu’s derivatives are also discussed and
some examples are investigated in detail. In Sect. 7, we discuss the sufficient condi-
tions for optimality. In Sect. 8, Fractional Optimal Control Problem FOCP involving
Atangana–Baleanu’s derivatives are presented. We state two FOCP, one for time
invariant FOCP and the other for time variant FOCP. Section9 is dedicated to our
conclusions.

2 Preliminaries

This section presents the basic definitions and properties of the new Atangana–
Baleanu’s derivatives in the Caputo and Riemann–Liouville sense. These include
the classical Riemann–Liouville, Grünwald–Letnikov, Weyl, Caputo, Marchaud,
and Riesz fractional derivatives (see [1] and the references therein). We will for-
mulate the problem in terms of the left and right Atangana–Baleanu’s derivatives
in the Riemann–Liouville and Caputo senses which will be given later. We also
define the classical Riemann–Liouville and Caputo derivatives as they are linked
to Atangana–Baleanu’s derivatives. We begin with the left and the right classical
Riemann–Liouville fractional integrals of order α > 0 of a function x(t) which are
defined as [6].

Definition 2.1 Let x : [a, b] → R be a continuous function on [a, b] and α > 0 be a
real number, and n = [α], where [α] denotes the smallest integer greater than or equal
to α. The left (left RLFI) and the right (right RLFI) Riemann–Liouville fractional
integrals of order α are defined by

a I
α
t x(t) = 1

Γ (α)

∫ t

a
(t − s)α−1x(s)ds (left RLFI), (1)
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t I
α
b x(t) = 1

Γ (α)

∫ b

t
(s − t)α−1x(s)ds (right RLFI), (2)

where

Γ (α) =
∫ ∞

0
e−t uα−1du, a I

0
t x(t) =t I

0
b x(t) = x(t). (3)

In the case of α = 1, the fractional integral reduces to the classical integral.
The left (left RLFD) and the right (right RLFD) Riemann–Liouville fractional

derivatives of order α are defined by

aD
α
t x(t) = 1

Γ (n − α)

dn

dtn

∫ t

a
(t − s)n−α−1x(s)ds (left RLFD), (4)

t D
α
b x(t) = (−1)n

Γ (n − α)

dn

dtn

∫ b

t
(s − t)n−α−1x(s)ds (right RLFD), (5)

where α ∈ (n − 1, n), n ∈ N .

Moreover, the left (left CFD) and the right (right CFD) Caputo fractional deriva-
tives of order α are defined by

C
a D

α
t x(t) = 1

Γ (n − α)

∫ t

a
(t − s)n−α−1x (n)(s)ds (left CFD), (6)

provided that the integral is defined.

C
t D

α
b x(t) = (−1)n

Γ (n − α)

∫ b

t
(s − t)n−α−1x (n)(s)ds (right CFD), (7)

provided that the integral is defined.
The relation between the right RLFD and the right CFD is as follows:

C
t D

α
b x(t) = t D

α
b x(t) −

n−1∑
k=0

x (k)(b)

Γ (k − α + 1)
(b − t)(k−α). (8)

If x and x (i), i = 1, . . . , n − 1, vanish at t = a, then aDα
t x(t) = C

a D
α
t x(t), and if

they vanish at t = b, then t Dα
b x(t) = C

t D
α
b x(t).

Further, it holds
C
0 D

α
t c = 0, where c is a constant, (9)

and
C
0 D

α
t t

n =
{
0, for n ∈ N0 and n < [α];

Γ (n+1)
Γ (n+1−α)

tn−α, for n ∈ N0 and n ≥ [α], (10)
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where N0 = 0, 1, 2, . . .. We recall that for α ∈ N the Caputo differential operator
coincides with the usual differential operator of integer order.

Lemma 2.1 Let T > 0, u ∈ Cm([0, T ]), p ∈ (m − 1,m),m ∈ N and v ∈ C1

([0, T ]). Then for t ∈ [0, T ], the following properties hold

aD
p
t v(t) = d

dt
a I

1−p
t v(t), m = 1, (11)

aD
p
t a I

p
t v(t) = v(t); (12)

0 I
p
t 0D

p
t u(t) = u(t) −

m−1∑
k=0

t k

k!u
(k)(0); (13)

lim
t→0+

C
0 D

p
t u(t) = lim

t→0+ 0 I
p
t u(t) = 0. (14)

Note also that when T = +∞, C
0 D

α
t f (t) is the Weyl fractional integral of order α

of f .

An important tool is the integration by parts formula forCaputo fractional derivatives,
which is stated in the following lemma.

Lemma 2.2 Letα ∈ (0, 1), and x, y : [a, b] → R be two functions of classC1. Then
the following integration by parts formula holds:

∫ b

a
y(t)Ca Dt x(t)dt = [

t I
1−α
b y(t)x(t)

]b
a +

∫ b

a
x(t)t D

α
b y(t)dt. (15)

Let us recall some useful definitions of fractional derivatives in the sense of
Atangana–Baleanu [6].

Definition 2.2 For a given function x(t) ∈ H 1(a, b), b > a, α ∈ (0, 1), the left
Atangana–Baleanu fractional derivative (AB derivative) of x(t) of order α in Caputo
sense ABC

a D
α
t x(t) (where A denotes Atangana, B denotes Baleanu and C denotes

Caputo type) with base point a is defined at a point t ∈ (a, b) by

ABC
a D

α
t x(t) = B(α)

1 − α

∫ t

a

d

ds
x(s)Eα[−γ (t − s)α]ds, (left ABCD), (16)

where γ = α
(1−α)

, and B(α) being a normalization function satisfying

B(α) = (1 − α) + α

Γ (α)
, (17)

where B(0) = B(1) = 1, Eα(.) stands for the Mittag-Leffler function defined by
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Eα,β(z) =
∞∑
k=0

zk

Γ (kα + β)
, Eα,1(z) = Eα(z) z ∈ C , (18)

which is an entire function on the complex plane andΓ (.) denotes the Euler’s gamma
function defined as

Γ (z) =
∫ ∞

0
t z−1e−t dt, R(z) > 0.

The Mittag-Leffler function Eα,β(z) is a two-parameter family of entire functions
of z of order α. The exponential function is a particular case of the Mittag-Leffler
function, namely

E1,1(z) = ez, E2,1(z) = cosh
√
z, E1,2(z) = ez − 1

z
, E2,2(z) = sinh

√
z√

z
.

The left Atangana–Baleanu fractional derivative in Riemann–Liouville sense defined
with:

ABR
a D

α
t x(t) = B(α)

1 − α

d

dt

∫ t

a
x(s)Eα[−γ (t − s)α]ds, (left ABRD). (19)

For α = 1 in (19) we consider the usual classical derivative ∂t .
The associated left AB fractional integral is also defined as

AB
a I α

t x(t) = 1 − α

B(α)
x(t) + α

B(α)Γ (α)

∫ t

a
x(s)(t − s)α−1ds, (left ABI),

= 1 − α

B(α)
x(t) + α

B(α)
a I

α
t x(t).

(20)

Notice that if α = 0 in Eq. (20) we recover the initial function and if α = 1 in Eq. (20)
we consider the usual ordinary integral.

The left AB Caputo fractional derivatives and the left AB Riemann–Liouville
derivative are related by the identity:

ABC
0D

α
t x(t) =ABR

0 Dα
t x(t) − B(α)

1 − α
x(0)Eα[−γ (t)α]. (21)

Some recent results and properties concerning this operator can be found in [6] and
papers therein. So from the definition in [6] we recall the following definition

Definition 2.3 For agiven function x(t) ∈ H 1(a, b), b > t > a, the rightAtangana–
Baleanu fractional derivative of x(t) of order α in Caputo sense with base point T is
defined at a point t ∈ (a, T ) by

ABC
t D

α
b x(t) = − B(α)

1 − α

∫ b

t
Eα

[
−γ (s − t)α

d

ds
x(s)

]
ds, (right ABCD), (22)
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and in Riemann–Liouville sense with:

ABR
t D

α
b x(t) = − B(α)

1 − α

d

dt

∫ b

t
x(s)Eα[−γ (s − t)α]ds, (right ABRD). (23)

The associated right AB fractional integral is also defined as

AB
t I α

b x(t) = 1 − α

B(α)
x(t) + α

B(α)Γ (α)

∫ b

t
x(s)(s − t)α−1ds, (right ABI),

= 1 − α

B(α)
x(t) + α

B(α)
b I

α
t x(t).

(24)

The right AB Caputo fractional derivatives and the right AB Riemann–Liouville
derivative are related by the identity:

ABC
t D

α
b x(t) =ABR

t Dα
b x(t) − B(α)

1 − α
x(b)Eα[−γ (b − t)α]. (25)

There are useful relations between the left and right AB FDs in the Riemann–
Liouville and Caputo senses and the associated AB fractional integrals as the fol-
lowing formulas state.

AB
a I α

t {ABR
a D

α
t x(t)} =AB

t I α
b {ABR

t D
α
b x(t)} = x(t), (26)

AB
a I α

t {ABCa Dα
t x(t)} = x(t) − x(a), (27)

AB
t I α

b {ABCt Dα
b u(t)} = x(t) − x(b), (28)

ABC
b D

α
t x(t) = − ABC

0D
α
t x(t). (29)

As a consequence, the backwards in time with the fractional-time derivative with
nonsingular Mittag-Leffler kernel at the based point T is equivalently written as a
forward in time operator with the fractional-time derivative with nonsingular Mittag-
Leffler kernel ABC

0D
α
t .

Note also that when T → +∞(Large enough), ABC
0 Dα

t f (t) is the Caputo frac-
tional derivative of order α of f and ABR

0 Dα
t f (t) is the Riemann–Liouville derivative

of order α of f .
Next we state the following proposition which gives the integration by parts [1].

Proposition 2.3 (Integration by parts) (see [1]) Let α > 0, p ≥ 1, q ≥ 1, and
1
p + 1

q ≤ 1 + α(p �= 1 and q �= 1 in the case 1
p + 1

q = 1 + α). Then for any φ(x) ∈
L p(a, b), ψ(x) ∈ Lq(a, b), we have
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∫ b

a
φ(x) ABC

a Dα
t ψ(x)dx =

∫ b

a
ψ(x) ABR

t Dα
b φ(x)dx + B(α)

1 − α
ψ(t)E1

α,1, −α
1−α

,b
φ(t)|ba,

(30)

∫ b

a
φ(x) ABC

t Dα
b ψ(x)dx =

∫ b

a
ψ(x) ABR

a Dα
t φ(x)dx − B(α)

1 − α
ψ(t)E1

α,1, −α
1−α

,a
φ(t)|ba,

(31)

∫ b

a
φ(x) ABR

a D
α
t ψ(x)dx =

∫ b

a
ψ(x) ABR

t D
α
bφ(x)dx, (32)

∫ b

a
φ(x) AB

a I
α
t ψ(x)dx =

∫ b

a
ψ(x) AB

t I
α
b φ(x)dx, (33)

∫ b

a
φ(x) AB

t I
α
b ψ(x)dx =

∫ b

a
ψ(x) AB

a I
α
t φ(x)dx, (34)

where the left generalized fractional integral operator

Eα
γ,μ,ω,ax(t) =

∫ t

a
(t − τ)μ−1Eα

γ,μ[ω(t − τ)γ ]x(τ )dτ, t > a,

and the right generalized fractional integral operator

Eα
γ,μ,ω,bx(t) =

∫ b

t
(τ − t)μ−1Eα

γ,μ[ω(τ − t)γ ]x(τ )dτ, t < b.

3 Fractional Variational Principles Within Fractional
Atangana–Baleanu’s Derivatives

The fractional Euler–Lagrange and fractional Hamilton equations within Atangana–
Baleanu’s derivatives are briefly presented in the following.

Theorem 3.1 Let J [x] be a functional of the form

J [x] =
∫ b

a
L(t, AB

a I
α−1
t x(t), ABC

a D
β
t x(t))dt, (35)

defined by the set of functions which have continuous Atangana–Baleanu fractional
derivative and integral in the Caputo sense on the set of order α in [a, b] and satisfy
the boundary conditions x(a) = xa and x(b) = xb. Then a necessary condition for
J [x] to have a maximum for given function x(t) is that x(t)must satisfy the following
Euler–Lagrange equation
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AB
t I

α−1
b

∂L

∂( AB
a I

α−1
t x(t))

+ ABR
t D

β

b

(
∂L

∂( ABC
a D

β
t x(t))

)
= 0. (36)

Proof To obtain the necessary conditions for the extremum, assume that x∗(t) is the
desired function. Let ε ∈ R, and define a family of curves

x(t) = x∗(t) + εη(t), (37)

where η(t) is an arbitrary curve except that it satisfies the boundary conditions, i.e.
we require that

η(a) = η(b) = 0. (38)

To obtain the Euler–Lagrange equation, we substitute equation (37) into (35), dif-
ferentiate the resulting equation with respect to ε and set the result to 0. This leads
to the following condition for extremum:

∫ b

a

[
AB

a I
α−1
t η(t) · ∂L

∂( AB
a I

α−1
t (x(t))

+ ABC
a D

β
t η(t) · ∂L

∂( ABC
a D

β
t x(t))

]
dt = 0,

(39)
using Eqs. (31) and (34), we obtain

∫ b

a

AB
a I

α−1
t η(t) · ∂L

∂( AB
a I

α−1
t x(t))

dt =
∫ b

a
η(t) · AB

t I
α−1
b

(
∂L

∂( AB
a I

α−1
t (x(t))

)
dt,

∫ b

a

ABC
a D

β
t η(t) · ∂L

∂( ABC
a D

β
t x(t))

dt =
∫ b

a
η(t) · ABR

t D
β

b

(
∂L

∂( ABC
a D

β
t x(t))

)
dt

+ η(t) · B(β)

1 − β
E1

β,1, −β

1−β
,b

(
∂L

∂( ABC
a D

β
t x(t))

∣∣∣∣
b

a

,

then Eq. (39) can be written as

∫ b

a

[
AB

t I
α−1
b

(
∂L

∂( AB
a I

α−1
t x(t))

)
+ABR

t Dβ

b

(
∂L

∂( ABC
a D

β
t x(t)

)]
η(t)dt

+ η(t)
B(β)

1 − β
E1

β,1, −β

1−β
,b

(
∂L

∂( ABC
a D

β
t x(t))

∣∣∣∣
b

a

)
= 0,

(40)

we call E1
β,1, −β

1−β
,b
( ∂L

∂( ABC
a D

β
t x(t))

|ba) = 0, the natural boundary conditions, since η(t) is

arbitrary, it follows from a well established result in calculus of variations that
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AB
t I

α−1
b

(
∂L

∂( AB
a I

α−1
t x(t))

)
+ABR

t Dβ

b

(
∂L

∂( ABC
a D

β
t x(t)

)
= 0. (41)

Equation (41) is the Generalized Euler–Lagrange Equation GELE for the Fractional
Calculus Variation (FCV) problem defined in terms of the Atangana–Baleanu Frac-
tional Derivatives ABFD. Note that the Atangana–Baleanu derivatives in the Caputo
and Riemann–Liouville sense appear in the resulting differential equations.

As α and β goes to 1, the fractional Euler–Lagrange equations (41) becomes the
classical Euler–Lagrange equation

∂L

∂x
− d

dt

∂L

∂x
= 0. (42)

Example Let us consider the following fractional Lagrangian is given by:

L = 1

2

[
AB

a I
α−1
t x(t) + ABC

a D
β
t x(t)

]2
, (43)

then independent fractional Euler–Lagrange equation (41) is given by

AB
t I

α−1
b

[
AB

a I
α−1
t x(t) + ABC

a Dβ
t x(t)

]
+ ABR

t Dβ
b

[
AB

a I
α−1
t x(t) + ABC

a Dβ
t x(t)

]
= 0.

(44)

4 The Fractional Canonical Momenta

For a given fractional Lagrangian

L = L(t, AB
a I

α−1
t x(t), ABC

a D
β
t x(t)), (45)

the fractional canonical momenta are defined as

Pα = ∂L

∂( AB
a I

α−1
t x(t))

, Pβ = ∂L

∂( ABC
a D

β
t x(t))

. (46)

Therefore, we construct the corresponding fractional Hamiltonian as follows,

H(x, Pα, Pβ) = Pα
AB

a I
α−1
t x(t) + Pβ

ABC
a D

β
t x(t) − L . (47)
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Then we have

dH =Pβd( ABC
a D

β
t x(t)) + ABC

a D
β
b x(t)dPβ + Pαd( AB

a I
α−1
t x(t)) + AB

a I
α−1
t x(t)dPα

− ∂L

∂t
dt − ∂L

∂( AB
a I

α−1
t x(t))

d( AB
a I

α−1
t x(t)) − ∂L

∂( ABC
a D

β
t x(t))

d( ABC
a D

β
t x(t)).

(48)
This suggests that H is a function of t, Pα, Pβ only. Therefore, we can write

dH = ∂H

∂t
dt + ∂H

∂Pα

dPα + ∂H

∂Pβ

dPβ. (49)

By using (41), (45) and (46) we obtain the fractional Hamilton’s equations

ABC
a D

β

b x(t) = ∂H

∂Pβ

, AB
a I

α−1
t x(t) = ∂H

∂Pα

, (50)

and
∂H

∂t
= −∂L

∂t
. (51)

Equation (50) represents two fractional deferential and integral equations of order
β, α respectively for the system which is equivalent to the system (41). Because of
their similarity with the canonical Euler equations for integer order systems, we call
Eqs. (50) the fractional canonical system of Euler equations or simply the fractional
canonical Euler equations.

Example Function L in Eq. (35) can be thought of as a function containing both
the left and the right Atangana–Baleanu in the Caputo sense Fractional Derivatives
ABCFDs

L = L(x, ABC
a D

α
t x(t),

ABC
t D

α
b x(t), )

for which the GELE is given as [21]

∂L

∂x
+ ABR

t D
α
b

∂L

∂ ABC
a D

α
t x(t)

+ ABR
a D

α
t

∂L

∂ ABC
t D

α
b x(t)

= 0. (52)

Also function L in Eq. (35) can be thought of as a function containing both the
left and the right Caputo Fractional Derivatives CFDs

L = L(x, C
a D

α
t x(t),

C
t D

α
b x(t)),

for which the GELE is given as [21]

∂L

∂x
+ t D

α
b

∂L

∂ C
a D

α
t x(t)

+ aD
α
t

∂L

∂ C
t D

α
b x(t)

= 0. (53)
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For α = 1, the Euler–Lagrange equation is given as

∂L

∂x
− d

dt

∂L

∂x
= 0. (54)

Equations (41), (51) (and its equivalent in terms of ABRFD) and (52) are similar,
and they all contain both forward and backward derivatives. Note that −d/dt is
essentially a backward derivative. Thus, backward derivatives in Eqs. (41) and (51)
appear explicitly, whereas they appear in Eq. (52) in a disguise form.

5 Some Generalization

We now give some generalizations of Theorem 3.1.

5.1 Extension to Several Dependent Variables

We can generalize in a straight forward manner to problems containing several
unknown functions. We denote byFn the set of all functions x1(t), x2(t), . . . , xn(t)
which have continuous left ABC fractional derivative of order α and right ABC
fractional derivative of order β for t ∈ [a, b] and satisfy the conditions

xi (a) = xia, xi (b) = xib, i = 1, 2, . . . , n.

The problem can be defined as follows: find the functions x1, x2, . . . , xn from Fn ,
for which the functional

J [x1, x2, . . . , xn] =
∫ b

a
L

[
t, AB

a I
α−1
t x1(t), . . . ,

AB
a I

α−1
t xn(t),

ABC
a D

β
t x1(t), . . . ,

ABC
a D

β
t xn(t)

]
dt,

has an extremum, where L(t, u1, . . . , un, v1, . . . , vn) is a function with continuous
first and second partial derivatives with respect to all its arguments. A necessary
condition for J [x1, x2, . . . , xn] to admit an extremum is that x1(t), x2(t), . . . , xn(t)
satisfy Euler–Lagrange equations:

AB
t I

α−1
b

(
∂L

∂( AB
a I

α−1
t xi (t))

)
+ABR

t Dβ

b

(
∂L

∂( ABC
a D

β
t xi (t)

)
= 0, i = 1, 2, . . . , n.

(55)

Example We consider the system of two planar pendula, both of length l and mass
m, suspended a same distance apart on a horizontal line so that they move in the
same plane. The fractional form of the Lagrangian is given by:
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L
(
t, AB

a I
α−1
t x1(t),

AB
a I

α−1
t x2(t),

ABC
a D

α
t x1,

ABC
a D

α
t x2

)
=

1

2
m

[(
ABC

a D
α
t x1

)2 +
(

ABC
a D

α
t x2

)2] − 1

2

mg

l

[(
AB

a I
α−1
t x1(t)

)2 +
(

AB
a I

α−1
t x2(t)

)2]
.

(56)

To obtain the fractional Euler–Lagrange equation, we use

AB
t I

α−1
b

(
∂L

∂( AB
a I

α−1
t xi (t))

)
+ABR

t Dβ

b

(
∂L

∂( ABC
a D

β
t xi (t)

)
= 0, i = 1, 2. (57)

It follows

AB
t I

α−1
b

(
−mg

l
( AB

a I
α−1
t x1(t)

)
+ABR

t Dβ

b (m ABC
a D

α
t x1) = 0, (58)

AB
t I

α−1
b

(
−mg

l
( AB

a I
α−1
t x2(t)

)
+ABR

t Dβ

b (m ABC
a D

α
t x2) = 0. (59)

These equations reduce to the equation of motion of the harmonic oscillator when
α → 1.

x1 + g

l
x1 = 0, x2 + g

l
x2 = 0. (60)

5.2 Extension to Variational Problems of Non-commensurate
Order

We now consider problems of the calculus of variations with Atangana–Baleanu’s
derivatives and integrals of non commensurate order, i.e., we consider functionals
containing ABFI and ABFD of different fractional orders. Let

J [x] =
∫ b

a
L

[
t, AB

a I
α1−1
t x(t), . . . ,ABa I

αn−1
t x(t), ABC

a D
β1
t x(t), . . . , ABC

a D
βm
t x(t)

]
dt,

where n and m are two positive integers and αi , β j ∈ (0, 1), i = 1, . . . , n and j =
1, . . .m. Following the proof of Theorem 3.1, we deduce the following result.

n∑
i=1

AB
t I

αi−1
b

(
∂L

∂( AB
a I

αi−1
t x(t))

)
+

m∑
j=1

ABR
t D

β j
b

(
∂L

∂( ABC
a D

β j
t x(t)

)
= 0, for all t ∈ [a, b].

(61)
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6 Fractional Variational Principles and Constrained
Systems Within Atangana–Baleanu’s Derivatives

The above fractional canonical equations are valid for the case when no primary
constraints exist; namely, all canonical momenta are linearly independent. Many
dynamical systems possessing physical interest have constraints. The problem can
be defined as follows. Find the extremum of the functional

J [x] =
∫ b

a
L(t, AB

a I
α−1
t x(t),ABCa Dβ

t x(t))dt,

subject to the dynamical constraint

∫ b

a
G(t, AB

a I
α−1
t x(t),ABCa Dβ

t x(t))dt = l,

with the boundary conditions

x(a) = xa, x(b) = xb,

where l is a prescribed value. This problem was solved in [8] for functionals con-
taining Caputo fractional derivatives and RLFI. Using similar techniques as the ones
discussed in [8], one proves the following. In this case we define the functional

S[x] =
∫ b

a
[λ0L + λG]dt,

where λ, λ0 are the Lagrange multipliers which are not both zero. Then Eqs. (41) in
this case take the form:

AB
t I

α−1
b

(
∂S

∂( AB
a I

α−1
t x(t))

)
+ABR

t Dβ

b

(
∂S

∂( ABC
a D

β
t x(t))

)
= 0, (62)

which can be written as

λ0

[
AB

t I
α−1
b

(
∂L

∂( AB
a I

α−1
t x(t))

)
+ABR

t Dβ

b

(
∂L

∂( ABC
a D

β
t x(t)

)]

+ λ

[
AB

t I
α−1
b

(
∂G

∂( AB
a I

α−1
t x(t))

)
+ABR

t Dβ

b

(
∂G

∂( ABC
a D

β
t x(t))

)]
= 0.

(63)

Example Let take

J [x] =
∫ 1

0
(ABC0D

β
t x(t))

2dt,
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with the boundary conditions

x(0) = 0, x(1) = 0,

K1[x] =
∫ 1

0

AB
0 I

α−1
t x(t)dt = 0, K2[x] =

∫ 1

0
t ABC0 D

β
t x(t)dt = 1.

Then we have:

S[x] =
∫ 1

0

[
λ0(

ABC
0D

β
t x(t))

2 + λ1
AB

0 I
α−1
t x(t) + λ2t

ABC
0 D

β
t x(t)

]
dt,

where λ0, λ1, λ2 are the Lagrange multipliers. Then Eq. (62) takes the form:

2λ0
ABR

t D
β

1 (ABC0 Dβ
t x(t)) + λ1

AB
t I

α−1
1 1 + λ2

ABR
t D

β

1 t = 0, (64)

which can be written as

2λ0
ABR

t D
β

1 (ABC0 Dβ
t x(t)) = −λ1

AB
t I

α−1
1 1 − λ2

ABR
t D

β

1 t. (65)

7 Sufficient Conditions

In this section we prove the sufficient conditions that ensure the existence of mini-
mums. Similarly to what happens in the classical calculus of variations, some con-
ditions of convexity are in order.

Definition 7.1 Given a function L, we say that L(x, u, v) is convex in S ⊂ R3 if ∂L
∂u

and ∂L
∂v exist and are continuous and verify the following condition:

L(x, u + u1, v + v1) − L(x, u, v) ≥ ∂L(x, u, v)

∂u
u1 + ∂L(x, u, v)

∂v
v1,

for all (x, u, v), (x, u + u1, v + v1) ∈ S.

Similarly, we can define convexity for L(x, u, v).

Theorem 7.1 . Let L(x, u, v) be a convex function in Ta; [a, b] × R2 and let x0 be
a curve satisfying the fractional Euler–Lagrange equation (36). Then, x0 minimizes
(35).



28 G. M. Bahaa and A. Atangana

Proof The following holds:

J (x0 + η) − J (x0) =
∫ b

a
[L(t, AB

a I
α−1
t x0(t) + AB

a I
α−1
t η(t), ABR

a D
β
t x0(t) + ABR

a D
β
t η(t))

− L(t, AB
a I

α−1
t x0(t),

ABR
a D

β
t x0(t))]dt

≥
∫ b

a

[
∂L(t, AB

a I
α−1
t x0(t), ABR

a D
β
t x0(t))

∂( AB
a I

α−1
t x0(t))

· AB
a I

α−1
t η(t)+

∂L(t, AB
a I

α−1
t x0(t), ABR

a D
β
t x0(t))

∂( ABR
a D

β
t x0(t))

· ABR
a D

β
t η(t))

]
dt

≥
∫ b

a

[
AB

t I
α−1
b

(
∂L(t, AB

a I
α−1
t x0(t), ABR

a D
β
t x0(t))

∂( AB
a I

α−1
t x0(t))

)
+

ABR
t D

β
b

(
∂L(t, AB

a I
α−1
t x0(t), ABR

a D
β
t x0(t))

∂( ABR
a D

β
t x0(t))

]
η(t)dt = 0.

Thus J (x0 + η) ≥ J (x0).

8 Fractional Optimal Control Problem Involving
Atangana–Baleanu’s Derivatives

Using the above definitions, the Fractional Optimal Control Problem FOCP under
consideration can be defined as follows. To find the optimal control u(t) for a FDS
that minimizes the performance index

J [u] =
∫ 1

0
F( ABC

0D
α
t x(t), u, t)dt, (66)

subject to the dynamical constraint

ABC
0 I

α−1
t x(t) = G(x, u, t), (67)

with the boundary conditions
x(0) = x0. (68)

where x(t) is the state variable, t represents the time, and F and G are two arbitrary
functions. Note that Eq. (66) may also include some additional terms containing state
variables at the end point. This term in not considered here for simplicity. When
α = 1, the above problem is reduced to a standard optimal control problem. Here the
limits of integration have been taken as 0 and 1. Furthermore, we consider 0 < α < 1.
These are not the limitations of the approach. Any limits can be considered and
the derivative can be of any order. However, these conditions are considered for
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simplicity. To find the optimal control we follow the traditional approach and define
a modified performance index as

In this case we define the functional

J [x] =
∫ 1

0
[F( ABC

0D
α
t x(t), u, t) + λ(G(x, u, t) −ABC

0 I α−1
t x(t))]dt, (69)

where λ is the Lagrange multiplier also known as a costate or an adjoint variable.
Taking variation of Eq. (64), we obtain

δJ [u] =
∫ 1

0

[
∂F

∂( ABC
0 D

α
t x(t))

δ( ABC
0 D

α
t x(t)) + ∂F

∂u
δu + δλ(G(x, u, t) − AB

0 I
α−1
t x(t)) +

λ

(
∂G

∂x
δx + ∂G

∂u
δu − δ( ABC

0 I
α−1
t x(t))

)]
dt,

(70)
Using Eq. (7), the last integral in Eq. (69) can be written as

∫ 1

0
λδ( AB

0 I
α−1
t x(t))dt =

∫ 1

0
δx(t)( AB

t I
α−1
1 λ)dt, (71)

provided δx(0) = 0 or λ(0) = 0, and λx(1) = 0 or λ(1) = 0. Because x(0) is spec-
ified, we have δx(0) = 0, and since x(1) is not specified, we require λ(1) to be
zero. With these assumptions, the identity in Eq. (70) is satisfied. Note that we have
assumed that the order of variation and the fractional derivative can be interchanged.
Using Eqs. (69) and (70), we obtain

δJ [u] =
∫ 1

0

[
δλ(G(x, u, t) − AB

0 I
α−1
t x(t)) + δ( ABC

0 Dα
t x(t))

(
∂F

∂( ABC
0 Dα

t x(t))

)

+ δx

[
λ

∂G

∂x
− AB

t I
α−1
1 λ

]
+ δu

[
∂F

∂u
+ λ

∂G

∂u

]]
dt.

,

(72)
Minimization ofJ [u] (and hence minimization of J (u)) requires that the coef-

ficients of δx, δu, and δλ in Eq. (71) be zero. This leads to

AB
0 I

α−1
t x(t) = G(x, u, t), (73)

AB
t I

α−1
1 λ = λ

∂G

∂x
, (74)

∂F

∂( ABC
0D

α
t x(t))

= 0, (75)

∂F

∂u
+ λ

∂G

∂u
= 0. (76)
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and
x(0) = x0 and λ(1) = 0. (77)

Equations (72)–(75) represent the Euler–Lagrange equations for the FOCP. These
equations give the necessary conditions for the optimality of the FOCP considered
here. They are very similar to the Euler–Lagrange equations for classical optimal
control problems except that the resulting differential equations contain the left and
the right fractional derivatives. Furthermore, the derivation of these equations is very
similar to the derivation for an optimal control problem containing integral order
derivatives. Determination of the optimal control for the fractional system requires
solution of Eqs. (72)–(76).

Observe that Eq. (72) contains left Atangana–Baleanu integral where as Eq. (73)
contains right Atangana–Baleanu integral. This clearly indicates that the solution of
optimal control problems requires knowledge not only of forward integrals but of
backward integrals to account for end conditions. In classical optimal control theories,
this issue is either not discussed or they are not clearly stated. This is mainly because
the backward integrals of order 1 turns out to be the negative of the forward integrals
of order 1.

As a special case, assume that the performance index is an integral of quadratic
forms in the state and the control,

J [u] = 1

2

∫ 1

0
[q(t)(ABC0D

α
t x(t))

2 + r(t)u2]dt, (78)

where q(t) ≥ 0 and r(t) > 0, and the dynamics of the system is described by the
following linear fractional differential equation,

AB
0 I

α−1
t x(t) = a(t)x + b(t)u, (79)

This linear system for α = 1 and 0 < α < 1 has been studied extensively, and formu-
lations and solution schemes for this system within the classical Riemann–Liouville
and Caputo derivatives are well documented in many textbooks and journal arti-
cles (see e.g. [2, 3]). Her we consider the new Atangana–Baleanu’s derivatives and
integers. For 0 < α < 1, the Euler–Lagrange Eqs. (72)–(75) lead to Eq. (78) and

AB
t I

α
1 λ = a(t)λ, (80)

q(t)ABC0D
α
t x(t) = 0, (81)

and
r(t)u + b(t)λ = 0. (82)

From Eqs. (78) and (81), we get

AB
0 I

α−1
t x(t) = a(t)x(t) − r−1(t)b2(t)λ. (83)
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The state x(t) and the costateλ(t) are obtainedby solving the fractional differential
equations (78)–(80) subject to the terminal conditions given by Eq. (82). Once λ(t)
is known, the control variable u(t) can be obtained using Eq. (81).

9 Conclusions

A general formulation has been presented for a class of fractional optimal control
problems involving the new Atangana–Baleanu’s fractional derivatives. The formu-
lation utilized the calculus of variations, the Lagrange multiplier technique, and the
formula for fractional integration by parts to obtain the Euler–Lagrange equations for
the fractional optimal control problems. The formulation presented and the result-
ing equations are very similar to those for classical optimal control problems. The
formulation is specialized for a system with quadratic performance index subject to
a fractional system dynamic constraint. From the above and other literature in the
field of fractional calculus, it is clear that many of the ideas of the ordinary calculus
can be extended to fractional calculus with only minor changes. The advantage of
the new fractional derivative has no singularity, which was not precisely illustrated
in the previous definitions.

As a final remark, we note that very little progress has been made in the field of
FOCP involving the new Atangana–Baleanu’s fractional derivatives. This is mainly
due to the fact that the underlying mathematics for fractional derivatives was not well
developed. Recent development in the field of fractional derivatives has eliminated
this barrier. From the formulation presented above, it is clear thatmanyof the concepts
of classical control theory can be directly extended to FOCPs. Although only one
class of FOCPs involving the new Atangana–Baleanu’s fractional derivatives was
considered here, the formulation can be extended to many other FOCPs involving
the new Atangana–Baleanu’s fractional derivatives. It is hoped that this observation
will initiate some interest in the areas of fractional variational calculus and fractional
optimal control.
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Variable Order Mittag–Leffler Fractional
Operators on Isolated Time Scales and
Application to the Calculus of Variations

Thabet Abdeljawad, Raziye Mert and Delfim F. M. Torres

Abstract We introduce new fractional operators of variable order in isolated time
scales with Mittag–Leffler kernels. This allows a general formulation of a class of
fractional variational problems involving variable-order difference operators. Main
results give fractional integration by parts formulas and necessary optimality condi-
tions of Euler–Lagrange type.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative ·
Fractional variational problems

1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
to an arbitrary non-integer order. It has been used effectively in the modeling of
many problems in various fields of science and engineering, reflecting successfully
the description of non-local properties of complex systems [12, 42]. For the sake
of finding more fractional operators with different kernels, recently several authors
have introduced and studied new non-local derivatives with non-singular kernels and
have applied them successfully to some real world problems [2, 3, 8–11, 19, 20,
27–29, 33, 34]. What makes those fractional derivatives with Mittag–Leffler kernels
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more interesting is that their corresponding fractional integrals contain Riemann–
Liouville fractional integrals as part of their structure. Moreover, such operators
enable numerical analysts to develop more efficient algorithms in solving fractional
dynamical systems by concentrating only on the coefficients of the differential equa-
tions rather than worrying about the singularity of the kernels, as in the case of
classical fractional operators [7].

In 1993, Samko and Ross investigated integrals and derivatives not of a constant
but of variable order [39–41]. Afterwards, several pure mathematical and applica-
tional papers contributed to the theory of variable order fractional calculus [6, 21–26,
32, 37, 38, 44, 50]. Here we continue this line of research.

The article is organized as follows. In Sect. 2, we introduce new definitions of two
different types of left and right nabla fractional sums of variable order, two different
types of discrete versions of the left and right generalized fractional integral operators,
together with two different types of fractional sums and differences of variable order
in the sense of Atangana–Baleanu. Afterwards, in Sect. 3, we prove integration by
parts formulas for Atangana–Baleanu fractional sums and differences with variable
order. We end with Sect. 4, applying our results to the calculus of variations.

2 Fractional Sums and Differences of Variable Order

The study of fractional calculus on time scales was initiated with the papers [13–15]
and is now under strong development: see, e.g., [16–18, 36, 43]. Here, inspired by
the results of [3, 8], we introduce new nabla fractional operators of variable order
in isolated time scales. The reader interested on the motivation and importance to
consider variable order operators is referred to [46–48] and references therein.

Let a, b ∈ R with b − a a positive integer. The sets Na , bN, and Na,b are defined
by

Na = {a, a + 1, a + 2, . . .}, bN = {. . . , b − 2, b − 1, b}, Na,b = {a, a + 1, a + 2, . . . , b},

respectively. Our operators use the concepts of rising function and discrete Mittag–
Leffler function.

Definition 1 (Rising function [30]) (i) For a natural number m and t ∈ R, the m
rising (ascending) factorial of t is defined by

tm =
m−1∏

k=0

(t + k), t0 = 1.

(ii) For any real number α, the (generalized) rising function is defined by

tα = Γ (t + α)

Γ (t)
, t ∈ R \ {. . . ,−2,−1, 0}, 0α = 0.
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Definition 2 (Nabla discrete Mittag–Leffler function [1, 4]) For λ ∈ R, |λ| < 1 and
α, β, z ∈ Cwith Re(α) > 0, the nabla discrete Mittag–Leffler function is defined by

Eα,β(λ, z) =
∞∑

k=0

λk zkα+β−1

Γ (αk + β)
.

For β = 1, we write

Eα(λ, z) � Eα,1(λ, z) =
∞∑

k=0

λk zkα

Γ (αk + 1)
.

To start, we define two different types of nabla fractional sums of variable order.

Definition 3 (Left nabla fractional sums of order α(t) — types I and I I ) Let
0 < α(t) ≤ 1 for all t ∈ Na . For a function f : Na → R,

1. the type I left nabla fractional sum of order α(t) is defined by

a∇−α(t) f (t) = 1

Γ (α(t))

t∑

s=a+1

(t − ρ(s))α(t)−1 f (s), t ∈ Na+1;

2. the type I I left nabla fractional sum of order α(t) is defined by

∗
a∇−α(t) f (t) =

t∑

s=a+1

(t − ρ(s))α(s)−1 f (s)
1

Γ (α(s))
, t ∈ Na+1.

Definition 4 (Right nabla fractional sums of order α(t) — types I and I I ) Let
0 < α(t) ≤ 1 for all t ∈ bN. For a function f : bN → R,

1. the type I right nabla fractional sum of order α(t) is defined by

∇−α(t)
b f (t) = 1

Γ (α(t))

b−1∑

s=t

(s − ρ(t))α(t)−1 f (s), t ∈ b−1N;

2. the type I I right nabla fractional sum of order α(t) is defined by

∗∇−α(t)
b f (t) =

b−1∑

s=t

(s − ρ(t))α(s)−1 f (s)
1

Γ (α(s))
, t ∈ b−1N.

Following [3], we now define two different discrete versions of the left and right
generalized fractional integral operators.
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Definition 5 (Discrete left generalized fractional integral operators — types I and
I I ) Let 0 < α(t) < 1/2 for all t ∈ Na . For a function ϕ : Na → R,

1. the type I discrete left generalized fractional integral operator is defined by

E
α(t),1, −α(t)

1−α(t) ,a+ϕ(t) = B(α(t))

1 − α(t)

t∑

s=a+1

E
α(t)

[ −α(t)

1 − α(t)
, t − ρ(s)

]
ϕ(s), t ∈ Na+1; (1)

2. the type I I discrete left generalized fractional integral operator is defined by

E
α(t),1, −α(t)

1−α(t) ,a+ϕ(t) =
t∑

s=a+1

B(α(s))

1 − α(s)
E

α(s)

[ −α(s)

1 − α(s)
, t − ρ(s)

]
ϕ(s), t ∈ Na+1. (2)

Definition 6 (Discrete right generalized fractional integral operators— types I and
I I ) Let 0 < α(t) < 1/2 for all t ∈ bN. For a function ϕ : bN → R,

1. the type I discrete right generalized fractional integral operator is defined by

E
α(t),1, −α(t)

1−α(t) ,b−ϕ(t) = B(α(t))

1 − α(t)

b−1∑

s=t

E
α(t)

[ −α(t)

1 − α(t)
, s − ρ(t)

]
ϕ(s), t ∈ b−1N; (3)

2. the type I I discrete right generalized fractional integral operator is defined by

E
α(t),1, −α(t)

1−α(t) ,b−ϕ(t) =
b−1∑

s=t

B(α(s))

1 − α(s)
E

α(s)

[ −α(s)

1 − α(s)
, s − ρ(t)

]
ϕ(s), t ∈ b−1N. (4)

We now define two different types of fractional sums and differences of variable
order in the sense of Atangana–Baleanu [8] (the so-called AB operators).

Definition 7 (Left AB nabla fractional sums of order α(t) — types I and I I ) Let
0 < α(t) ≤ 1 for all t ∈ Na . For a function f : Na → R,

1. the type I left AB nabla fractional sum of order α(t) is defined by

AB
a ∇−α(t) f (t) = 1 − α(t)

B(α(t))
f (t) + α(t)

B(α(t))Γ (α(t))

t∑

s=a+1

(t − ρ(s))α(t)−1 f (s)

= 1 − α(t)

B(α(t))
f (t) + α(t)

B(α(t))
a∇−α(t) f (t), t ∈ Na+1;

(5)
2. the type I I left AB nabla fractional sum of order α(t) is defined by

∗AB
a ∇−α(t) f (t) = 1 − α(t)

B(α(t))
f (t) +

t∑

s=a+1

α(s)

B(α(s))Γ (α(s))
(t − ρ(s))α(s)−1 f (s)

= 1 − α(t)

B(α(t))
f (t) +∗

a ∇−α(t) α f

B ◦ α
(t), t ∈ Na+1.

(6)

Definition 8 (Right AB nabla fractional sums of order α(t) — types I and I I ) Let
0 < α(t) ≤ 1 for all t ∈ bN. For a function f : bN → R,
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1. the type I right AB nabla fractional sum of order α(t) is defined by

AB∇−α(t)
b f (t) = 1 − α(t)

B(α(t))
f (t) + α(t)

B(α(t))Γ (α(t))

b−1∑

s=t

(s − ρ(t))α(t)−1 f (s)

= 1 − α(t)

B(α(t))
f (t) + α(t)

B(α(t))
∇−α(t)

b f (t), t ∈ b−1N;
(7)

2. the type I I right AB nabla fractional sum of order α(t) is defined by

∗AB∇−α(t)
b f (t) = 1 − α(t)

B(α(t))
f (t) +

b−1∑

s=t

α(s)

B(α(s))Γ (α(s))
(s − ρ(t))α(s)−1 f (s)

= 1 − α(t)

B(α(t))
f (t) +∗ ∇−α(t)

b

α f

B ◦ α
(t), t ∈ b−1N.

(8)

Note that in Definitions7 and 8, if α(t) ≡ 0, then we recover the initial function;
if α(t) ≡ 1, then we recover the ordinary sum.

Definition 9 (Left Riemann–Liouville AB nabla fractional differences of order α(t)
— types I and II) Let 0 < α(t) < 1/2 for all t ∈ Na . For a function f : Na → R,

1. the type I left Riemann–Liouville AB nabla fractional difference of order α(t)
is defined by

ABR
a ∇α(t) f (t) = ∇Eα(t),1, −α(t)

1−α(t) ,a
+ f (t), t ∈ Na+1; (9)

2. the type I I left Riemann–Liouville AB nabla fractional difference of order α(t)
is defined by

ABR
a ∇̂α(t) f (t) = ∇Eα(t),1, −α(t)

1−α(t) ,a
+ f (t), t ∈ Na+1. (10)

Definition 10 (Right Riemann–Liouville AB nabla fractional differences of order
α(t)— types I and II) Let 0 < α(t) < 1/2 for all t ∈ bN. For a function f : bN → R,

1. the type I right Riemann–Liouville AB nabla fractional difference of order α(t)
is defined by

ABR∇α(t)
b f (t) = −ΔEα(t),1, −α(t)

1−α(t) ,b
− f (t), t ∈ b−1N;

2. the type I I right Riemann–Liouville AB nabla fractional difference of order α(t)
is defined by

ABR∇̂α(t)
b f (t) = −ΔEα(t),1, −α(t)

1−α(t) ,b
− f (t), t ∈ b−1N.
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Definition 11 (Left Caputo AB nabla fractional differences of order α(t) — types
I and II) Let 0 < α(t) < 1/2 for all t ∈ Na . For a function f : Na → R,

1. the type I left Caputo AB nabla fractional difference of order α(t) is defined by

ABC
a ∇α(t) f (t) = Eα(t),1, −α(t)

1−α(t) ,a
+∇ f (t), t ∈ Na+1;

2. the type I I left Caputo AB nabla fractional difference of order α(t) is defined
by

ABC
a ∇̂α(t) f (t) = Eα(t),1, −α(t)

1−α(t) ,a
+∇ f (t), t ∈ Na+1.

Definition 12 (Right Caputo AB nabla fractional differences of order α(t)— types
I and II) Let 0 < α(t) < 1/2 for all t ∈ bN. For a function f : bN → R,

1. the type I right Caputo AB nabla fractional difference of order α(t) is defined
by

ABC∇α(t)
b f (t) = −Eα(t),1, −α(t)

1−α(t) ,b
−Δ f (t), t ∈ b−1N;

2. the type I I right Caputo AB nabla fractional difference of order α(t) is defined
by

ABC ∇̂α(t)
b f (t) = −Eα(t),1, −α(t)

1−α(t) ,b
−Δ f (t), t ∈ b−1N.

Remark 1 If we replace α(t) in (1) and (3) by α(t − s) and replace each α(s) in (2)
and (4) by α(t − s), then the ABR and ABC fractional differences with variable
order can be expressed in convolution form. Similarly, if we replace α(t) in (5) and
(7) by α(t − s) and replace each α(s) in (6) and (8) by α(t − s), then the second part
of the AB fractional integrals with variable order can be expressed in convolution
form.

3 Summation by Parts for Variable Order Fractional
Operators

Summation/integration by parts has a very important role in mathematics: see, e.g.,
[31, 35, 45]. This is particularly true in the calculus of variations and optimal con-
trol, to prove necessary optimality conditions of Euler–Lagrange type (cf. proof of
Theorem3).

Lemma 1 (Integration by parts formula for nabla fractional sums of order α(t))
Let 0 < α(t) ≤ 1 for all t ∈ Na,b. For functions f, g : Na,b → R, we have

b−1∑

t=a+1

f (t) a∇−α(t)g(t) =
b−1∑

t=a+1

g(t) ∗∇−α(t)
b f (t);
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b−1∑

t=a+1

f (t) ∇−α(t)
b g(t) =

b−1∑

t=a+1

g(t) ∗
a∇−α(t) f (t).

Proof From Definition3, and by changing the order of summation, we get

b−1∑

t=a+1

f (t) a∇−α(t)g(t) =
b−1∑

t=a+1

f (t)
1

Γ (α(t))

t∑

s=a+1

(t − ρ(s))α(t)−1g(s)

=
b−1∑

s=a+1

g(s)

(
b−1∑

t=s

(t − ρ(s))α(t)−1 f (t)
1

Γ (α(t))

)

=
b−1∑

s=a+1

g(s) ∗∇−α(t)
b f (s).

The proof of the second assertion follows similarly.

Now, with the help of Lemma1, we can prove the following integration by parts
formula for AB fractional sums of variable order.

Theorem 1 (Integration by parts formula for AB nabla fractional sums of order
α(t)) Let 0 < α(t) ≤ 1 for all t ∈ Na,b. For functions f, g : Na,b → R, we have

b−1∑

t=a+1

f (t) AB
a ∇−α(t)g(t) =

b−1∑

t=a+1

g(t) ∗AB∇−α(t)
b f (t);

b−1∑

t=a+1

f (t) ∗AB
a ∇−α(t)g(t) =

b−1∑

t=a+1

g(t) AB∇−α(t)
b f (t).

Proof From Definition7 and the first part of Lemma1, we get

b−1∑

t=a+1

f (t) AB
a ∇−α(t)g(t) =

b−1∑

t=a+1

f (t)
1 − α(t)

B(α(t))
g(t) +

b−1∑

t=a+1

f (t)
α(t)

B(α(t))
a∇−α(t)g(t)

=
b−1∑

t=a+1

f (t)
1 − α(t)

B(α(t))
g(t) +

b−1∑

t=a+1

g(t) ∗∇−α(t)
b

α f

B ◦ α
(t)

=
b−1∑

t=a+1

g(t)

(
1 − α(t)

B(α(t))
f (t) +∗ ∇−α(t)

b
α f

B ◦ α
(t)

)

=
b−1∑

t=a+1

g(t) ∗AB∇−α(t)
b f (t).

The proof of the second assertion is similar to the first one. It follows fromDefinition7
and the second part of Lemma1.
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Lemma 2 Let 0 < α(t) < 1/2 for all t ∈ Na,b. For functions f, g : Na,b → R, we
have

b−1∑

t=a+1

f (t) Eα(t),1, −α(t)
1−α(t) ,a

+g(t) =
b−1∑

t=a+1

g(t) Eα(t),1, −α(t)
1−α(t) ,b

− f (t);

b−1∑

t=a+1

f (t) Eα(t),1, −α(t)
1−α(t) ,a

+g(t) =
b−1∑

t=a+1

g(t) Eα(t),1, −α(t)
1−α(t) ,b

− f (t).

Proof From Definitions5 and 6, and by changing the order of summation, we have

b−1∑

t=a+1

f (t) E
α(t),1, −α(t)

1−α(t) ,a+g(t) =
b−1∑

t=a+1

f (t)
B(α(t))

1 − α(t)

t∑

s=a+1

E
α(t)

[ −α(t)

1 − α(t)
, t − ρ(s)

]
g(s)

=
b−1∑

s=a+1

g(s)
b−1∑

t=s

B(α(t))

1 − α(t)
E

α(t)

[ −α(t)

1 − α(t)
, t − ρ(s)

]
f (t)

=
b−1∑

s=a+1

g(s) E
α(s),1, −α(s)

1−α(s) ,b− f (s).

The proof of the second assertion follows similarly.

Theorem 2 Let 0 < α(t) < 1/2 for all t ∈ Na,b. For functions f, g : Na,b → R, we
have

b−1∑

t=a+1

f (t) ABC
a ∇α(t)g(t) = g(t) E

α(t),1, −α(t)
1−α(t) ,b− f (t)

∣∣∣
b−1

a
+

b−1∑

t=a+1

g(t − 1) ABR∇̂α(t)
b f (t − 1);

b−1∑

t=a+1

f (t) ABC
a ∇̂α(t)g(t) = g(t) E

α(t),1, −α(t)
1−α(t) ,b− f (t)

∣∣∣
b−1

a
+

b−1∑

t=a+1

g(t − 1) ABR∇α(t)
b f (t − 1);

b−1∑

t=a+1

f (t) ABC∇α(t)
b g(t) = −g(t) E

α(t),1, −α(t)
1−α(t) ,a+ f (t)

∣∣∣
b

a+1
+

b−1∑

t=a+1

g(t + 1) ABR
a ∇̂α(t) f (t + 1);

b−1∑

t=a+1

f (t) ABC ∇̂α(t)
b g(t) = −g(t) E

α(t),1, −α(t)
1−α(t) ,a+ f (t)

∣∣∣
b

a+1
+

b−1∑

t=a+1

g(t + 1) ABR
a ∇α(t) f (t + 1).

Proof Wewill only prove the first assertion. The proof of the others follow similarly.
From Definitions10 and 11, the first part of Lemma2 and the summation by parts
formula from ordinary difference calculus, we get
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b−1∑

t=a+1

f (t) ABC
a ∇α(t)g(t)

=
b−1∑

t=a+1

f (t) Eα(t),1, −α(t)
1−α(t) ,a

+∇g(t)

=
b−1∑

t=a+1

∇g(t) Eα(t),1, −α(t)
1−α(t) ,b

− f (t)

= g(t) Eα(t),1, −α(t)
1−α(t) ,b

− f (t)|b−1
a −

b−1∑

t=a+1

g(t − 1)∇Eα(t),1, −α(t)
1−α(t) ,b

− f (t)

= g(t) Eα(t),1, −α(t)
1−α(t) ,b

− f (t)|b−1
a −

b−1∑

t=a+1

g(t − 1)ΔEα(t),1, −α(t)
1−α(t) ,b

− f (t − 1)

= g(t) Eα(t),1, −α(t)
1−α(t) ,b

− f (t)|b−1
a +

b−1∑

t=a+1

g(t − 1) ABR∇̂α(t)
b f (t − 1).

The proof is complete.

4 Variable Order Fractional Variational Principles

The fractional calculus of variations of variable-order is a subject under strong current
development [5, 49]. However, to the best of our knowledge, available results are only
for the continuous time scale T = R. Here we obtain the main result of a variational
calculus, that is, an Euler–Lagrange necessary optimality condition, for the isolated
time scale T = Na+1,b−1.

Let J be a functional of the form

J ( f ) =
b−1∑

t=a+1

L(t, f ρ(t), ABC
a ∇α(t) f (t)),

where 0 < α(t) < 1/2 for all t ∈ Na+1,b−1, f : Na,b−1 → R and L : Na+1,b−1 ×
R × R → R.

Theorem 3 Let f be a local extremizer of J satisfying the boundary conditions

f (a) = A, f (b − 1) = B.

Then f satisfies the Euler–Lagrange equation

Lσ
1 (t) + ABR∇̂α(t)

b L2(t) = 0, t ∈ Na+1,b−2,



44 T. Abdeljawad et al.

where L1 = ∂L
∂ f ρ and L2 = ∂L

∂ ABC
a ∇α(t) f .

Proof Let ε be a small real parameter and η : Na,b−1 → R be a function such that
η(a) = η(b − 1) = 0. Consider a variation of f , say f + εη. Since the Caputo dif-
ference operator ABC

a ∇α(t) is linear, it follows that

J ( f + εη) =
b−1∑

t=a+1

L(t, f ρ(t) + εηρ(t), ABC
a ∇α(t) f (t) + ε ABC

a ∇α(t)η(t)).

Define Ĵ (ε) = J ( f + εη). Because f is a local extremizer of J , Ĵ attains a local
extremum at ε = 0. Differentiating Ĵ (ε) at zero, we get

b−1∑

t=a+1

ηρ(t)
∂L

∂ f ρ
(t, f ρ(t), ABC

a ∇α(t) f (t))

+ ABC
a ∇α(t)η(t)

∂L

∂ ABC
a ∇α(t) f

(t, f ρ(t), ABC
a ∇α(t) f (t)) = 0.

Using the first integration by parts formula in Theorem2, we have

b−1∑

t=a+1

ηρ(t)

[
∂L

∂ f ρ
(t, f ρ(t), ABC

a ∇α(t) f (t))

+
(

ABR∇̂α(t)
b

∂L

∂ ABC
a ∇α(t) f

(t, f ρ(t), ABC
a ∇α(t) f (t))

)
(t − 1)

]

+ η(t)

(
Eα(t),1, −α(t)

1−α(t) ,b
−

∂L

∂ ABC
a ∇α(t) f

(t, f ρ(t), ABC
a ∇α(t) f (t))

)
(t)

∣∣∣
b−1

a
= 0.

Since η(a) = η(b − 1) = 0 and η is arbitrary, it follows that

∂L

∂ f ρ
(t, f ρ(t), ABC

a ∇α(t) f (t)) +
(
ABR∇̂α(t)

b
∂L

∂ ABC
a ∇α(t) f

(t, f ρ(t), ABC
a ∇α(t) f (t))

)
(t − 1) = 0

for all t ∈ Na+2,b−1.

Although we only consider here a class of fractional variable order variational
problems (FVOVP), our Theorem3 can be easily extended to many other related
FVOVPs involving the newvariable-order fractional differences introduced inSect. 2.
We trust that this observation will initiate some interest in further future develop-
ments.
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Modeling and Analysis of Fractional
Leptospirosis Model Using
Atangana–Baleanu Derivative

Saif Ullah and Muhammad Altaf Khan

Abstract In this chapter, a fractional epidemic model for the leptospirosis disease
withAtangana–Baleanu (AB) derivative is formulated. Initially,we present themodel
equilibria and basic reproduction number. The local stability of disease free equilib-
rium point is proved using fractional Routh Harwitz criteria. The Picard–Lindelof
method is applied to show the existence and uniqueness of solutions for the model.
A numerical scheme using Adams–Bashforth method for solving the proposed frac-
tional model involving the AB derivative is presented. Finally, numerical simulations
are performed in order to validate the importance of the arbitrary order derivative.
The numerical result shows that the fractional order plays an important role to better
understand the dynamics of disease.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative ·
Leptospirosis model

1 Introduction

Leptospirosis is one of the most common bacterial infectious diseases which affects
both humans and animals. A spiral-shaped bacteria called Leptospira is responsible
for this infection. More than one million of the population are infected with this
infection each year around the word. Person to person transmission of this infection
is rare. It can be transferred to humans through direct or indirect contact with urine
of infected animals, wounds or any other contaminated fluid. Fever, headache, chills,
muscle aches, vomiting cough, conjunctival suffusion, jaundice, and sometimes a
rash are included in main symptoms of this disease. The incubation period is usually
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5–14days, with a range of 2–30days. The Leptospira bacteria appears in tropical and
subtropical regions and is capable to live in urban and suburban areas. The Rodents
are main carriers of this bacteria. It has been detected in more than 150 species of
mammals, specially in animals like dogs, cats, cattle and pigs. Leptospirosis infection
is present in almost all countries around the globe particularly, in South America,
Africa, Asian Pacific region, and in Mexico [1–3].

In the last decades, mathematical models have been used to better understand
the dynamics of various infectious diseases. In the existing literature a number of
such models have been formulated for the transmission dynamics of leptospirosis.
In [4], the authors studied the stability and controlling strategies for leptospirosis. A
transmissionmodel with possible infection of humans with animal or with free living
bacteria has been presented in [5]. Analysis of the leptospirosis infection in the pop-
ulation of Thailand has been carried out in [6]. Amodel with saturated incidence rate
is developed in [7]. An effective controlling strategies of transmission model with
time delay have been developed in [8]. Khan et al. developed a number of models
for the dynamics of leptospirosis and can be found in [9–12]. The above leptospiro-
sis models are restricted to classical integer-order, delay or stochastic differential
equations. In the present paper we extended the leptospirosis model in fractional
environment using AB derivative. First we give an overview of fractional calculus
(FC) and recent development in fractional mathematical models for such infectious
disease.

The FC deals with fractional-order differentiation and integration which are more
prominent and helpful than the classical integer order in the modeling of real phe-
nomena due to hereditary properties and description of the memory [13, 14]. Also in
the real world explanation, the integer-order derivative does not explore the dynamics
between two different points. Different types of the non-local or fractional orders
derivatives are suggested in the existing literature to handle the limitation of classical
derivative. For example, Riemann and Liouville introduced the concept of fractional
orders differentiation in [14] based on power law. In [15] a new fractional deriva-
tive using the exponential kernel has been proposed by Caputo and Fabrizio. This
derivative has some problems with respect to the locality of its kernel. Recently,
to overcome this limitation Atangana and Baleanu (AB) suggest another version of
fractional order derivative with the help of generalized Mittag-Leffler (ML) func-
tion as non-local and non-singular kernel in [16]. Due to the use of generalized ML
function as kernel the, AB derivative provides an excellent description of memory
and possess the crossover properties for the mean-square displacement [17–19]. Fur-
ther, the ML kernel in AB derivative guarantees no singularity, which provides good
information at the beginning and at the end of the evolution of the spread. Therefore,
this new derivative has been successfully implemented in the modeling of various
real phenomena such as [20–39]. Recently in 2018, the AB derivative is also suc-
cessfully used to model the infectious diseases. For example the transmission model
for the Ebola virus with AB derivative is presented in [40]. A fractional model for
the dynamics of smoking with local and non-local kernel is proposed in [41]. There
is no rich literature available on fractional models of leptospirosis infection. Only
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few fractional models have been found in recent past but they have been restricted
to ordinary fractional derivative [42, 43].

To the best of our knowledge no one has yet considered the fractional order
leptospirosis model with AB derivative. Therefore, motivated by the above works,
we consider a fractional order leptospirosis model using the new Atangana–Baleanu
derivative [16]. Fromnumerical simulation, one can see that the fractional leptospiro-
sismodel provides better andmore flexible results than the integer-order leptospirosis
model. In the next sectionwe present basic definitions of theAB fractional derivative.

2 Preliminaries

We first give the definitions of new fractional Atangana–Baleanu derivatives with
non-singular and non-local kernel, [16].

Let g ∈ H 1(a, b), b > a, σ ∈ [0, 1] then the new fractional derivatives in Caputo
sense is given below:

ABC
a Dσ

t (g(t)) = B(σ )

1 − σ

∫ t

a
g′(ξ)Eσ

[
− σ

(t − ξ)σ

1 − σ

]
dξ. (1)

Let g ∈ H 1(a, b), b > a, σ ∈ [0, 1] and not necessarily differentiable then the
AB fractional derivative in Riemann-Liouville sense is given as:

ABR
a Dσ

t (g(t)) = B(σ )

1 − σ

d

dt

∫ t

a
g(ξ)Eσ

[
− σ

(t − ξ)σ

1 − σ

]
dξ. (2)

The fractional integral associate to the new fractional derivative wit non local
kernel is defined as:

ABC
a I α

t (g(t)) = 1 − σ

B(σ )
g(t) + σ

B(σ )Γ (σ )

∫ t

a
g(y)(t − y)σ−1dy. (3)

The initial function is recovered when the fractional order turns to zero. Also when
the order turns to 1 we have the classical integral.

Theorem 2.1 Let g be a continuous function on a closed interval [a,b]. Then the
following inequality is obtained [16].

‖ABC
a Dσ

t (g(t))‖ <
B(σ )

1 − σ
‖g(x)‖, where ‖g(x)‖ = maxa≤x≤b|g(x)|. (4)

Theorem 2.2 Both of (ABC) and (ABR) derivatives satisfy the Lipschitz condition
given below, [16]:

‖ABC
a Dσ

t g1(t) − ABC
a Dσ

t g2(t)‖ < K1‖g1(t) − g2(t)‖, (5)
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and

‖ABC
a Dσ

t g1(t) − ABC
a Dσ

t g2(t)‖ < K2‖g1(t) − g2(t)‖. (6)

Theorem 2.3 The time fractional ordinary differential equation given below:

ABC
a Dσ

t g(t) = z(t), (7)

has a unique solution with applying the inverse Laplace transform and using the
convolution theorem below [16]:

g(t) = 1 − σ

ABC(σ )
z(t) + σ

ABC(σ )Γ (σ )

∫ t

a
z(ξ)(t − ξ)σ−1dξ. (8)

3 Leptospirosis Model with AB Derivative

In this sectionwe extend the leptospirosis diseasemodel [44], to fractional order using
generalized Mittag-Leffler function as kernel. The classical integer-order leptospiro-
sis disease model is formulated by the following nonlinear system of differential
equations:

dSH
dt = b1 − β1SH IH − β2SH IV + λH RH − μH SH ,

d IH
dt = β1SH IH + β2SH IV − (μH + δH + γH )IH ,

dRH
dt = γH IH − (μH + λH )RH ,

dSV
dt = b2 − γV SV − β3SV IH ,

d IV
dt = β3SV IH − (γV + δV )IV .

(9)

In the above model (9), SH (t), IH (t) and RH (t) represent the susceptible, infected
and recovered human respectively, while SV (t) and IV (t) are susceptible and infected
vectors. The detail description of model parameters and numerical values are given
in Table1.

In this paper our aim is to generalize the classical leptospirosis model (9) to a
fractional model by replacing the integer-order time derivative by AB derivative and
can be written as below:

ABC
0 Dσ

t SH = b1 − β1SH IH − β2SH IV + λH RH − μH SH ,

ABC
0 Dσ

t IH = β1SH IH + β2SH IV − (μH + δH + γH )IH ,

ABC
0 Dσ

t RH = γH IH − (μH + λH )RH ,

ABC
0 Dσ

t SV = b2 − γV SV − β3SV IH ,

ABC
0 Dσ

t IV = β3SV IH − (γV + δV )IV .

(10)
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Table 1 Description of the parameters and variables for the leptospirosis model (10)

Parameter Description Numerical values

b1 Human recruitment rate 0.9

b2 Vector recruitment rate 1.2

λH Recovery rate of infected human 0.066

δH Disease induced death rate in human 0.0001

μH Human natural death rate 0.00046

δV Disease induced death rate in vector 0.0001

γV Natural death rate in vector 0.0018

γH Transfer rate of IH to RH 0.027

β1 Contact rate of susceptible and infected human 0.0013

β2 Contact rate of infected vector with suspectable human 0.0089

β3 Contact rate of susceptible vector and infected human 0.0079

The initial conditions involved in (10) are

SH (0) = c1, IH (0) = c2, RH (0) = c3, SV (0) = c4, and IV (0) = c5. (11)

The disease free equilibrium M0 of system (10) is obtained by solving the fol-
lowing system:

ABC
0 Dσ

t SH =ABC
0 Dσ

t IH =ABC
0 Dσ

t RH =ABC
0 Dσ

t SV =ABC
0 Dσ

t IV = 0,

and is given by M0 = ( b1
μH

, 0, 0, b2
γV

, 0). The endemic equilibria denoted by M1 is
given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S∗∗
H = (δV +γV )(δH+γH+μH )(γV +β3 I ∗∗

H )

b2β2β3+β1(δV +γV )(γV +β3 IH )
,

S∗∗
V = b2

γV +β3 I ∗∗
H

,

I ∗∗
V = β3b2 I ∗∗

H
(δV +γV )(γV +β3 I ∗∗

H )
,

R∗∗
H = γH I ∗∗

H
μH+λH

.

The basic reproduction number R0, is the number of secondary cases that one case
would produce in a completely susceptible population of themodel obtained by using
the next generation technique [45] and is given below:

R0 = R01 + R02,

where



54 S. Ullah and M. A. Khan

R01 = β2β3b1b2
γVμH (δV + γV )(δH + γH + μH )

, R02 = β1b1
μH (δH + γH + μH )

.

Next, to proceed with the stability of the DFE, first, we calculate the following
Jacobian of the linearized system (10) as below:

JM 0 =

⎛
⎜⎜⎜⎜⎝

−μH −β1S0H λH 0 −β2S0H
0 −(δH + γH + μH ) + β1S0H 0 0 β2S0H
0 γH −(μH + λH ) 0 0
0 β3S0V 0 −γV 0
0 β3S0V 0 0 −(δV + γV )

⎞
⎟⎟⎟⎟⎠ .

Theorem 3.1 The DFE pointM0 of the model (10) is locally asymptotically stable
ifR0 < 1.

Proof The characteristic equation of the matrix JM 0 is given by

(Λ + μH )(Λ + (μH + λH ))(Λ + γV ) × (Λ2 + q1Λ + q2) = 0, (12)

where
q1 = (δV + γV ) + (δH + γH + μH )(1 − R02),

and
q2 = (δV + γV )(δH + γH + μH )(1 − R0).

The arguments of the roots of the equation Λ + μH = 0, Λ + (μH + λH ) = 0 and
Λ + γV = 0 clearly satisfy the conditions |argΛi | > α π

2 .
Further, it is clear that if R0 < 1, then q1 > 0 and q2 > 0. Hence using Ahmed

et al. [46], the Routh–Hurwitz conditions are necessary and sufficient for Matignon’s
conditions to be satisfied. Thus, the disease-free equilibrium is locally asymptotically
stable for α ∈ (0, 1) ifR0 < 1 and unstable otherwise.

4 Existence of Solutions for Fractional Leptospirosis
Infection Model

Since the model (10) is nonlinear and nonlocal, there is no particular method to
provide the exact solutions of this system. However, the existence of a solution
guarantees that under some conditions onewill have the exact solution. In this section,
we present the existence of the solution of the proposedmodel in detail via fixed-point
theorem Picard–Lindelof approach.
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Let us re-write the system (10) in the following convenient form

ABC
0 Dσ

t [SH (t)] = K1(t, SH ),

ABC
0 Dσ

t [IH (t)] = K2(t, IH ),

ABC
0 Dσ

t [RH (t)] = K3(t, RH ),

ABC
0 Dσ

t [SV (t)] = K4(t, SV ),

ABC
0 Dσ

t [IV (t)] = K5(t, IV ).

(13)

Now using theorem 3, the system (13) can be converted to the Volterra type integral
equation with the AB fractional integral as below.

SH (t) − SH (0) = (1−σ)

ABC(σ )
K1(t, SH ) + σ

ABC(σ )Γ (σ )

∫ t
0 K1(y, SH )(t − y)σ−1dy,

IH (t) − IH (0) = (1−σ)

ABC(σ )
K2(t, IH ) + σ

ABC(σ )Γ (σ )

∫ t
0 K2(y, IH )(t − y)σ−1dy,

RH (t)−RH (0)= (1−σ)

ABC(σ )
K3(t, RH )+ σ

ABC(σ )Γ (σ )

∫ t
0 K3(y, RH )(t − y)σ−1dy,

SV (t) − SV (0) = (1−σ)

ABC(σ )
K4(t, SV ) + σ

ABC(σ )Γ (σ )

∫ t
0 K4(y, SV )(t − y)σ−1dy,

IV (t) − IV (0) = (1−σ)

ABC(σ )
K5(t, IV ) + σ

ABC(σ )Γ (σ )

∫ t
0 K5(y, IV )(t − y)σ−1dy.

(14)

Theorem 4.1 The kernel K1 satisfy the Lipchitz condition and contraction if the
inequality given below holds

0 ≤ (β1a1 + β2a2 + μH ) < 1.

Proof Let SH and S1H be two functions, then

||K1(t, SH ) − K1(t, S1H )|| = || − (β1 IH + β2 IV + μH )(SH − S1H )||
≤ (β1‖IH‖ + β2‖IV ‖ + μH )‖SH (t) − SH (t1)‖
≤ (β1a1 + β2a2 + μH )‖SH (t) − SH (t1)‖
≤ M ||S(t) − S(t1)||. (15)

Where M = (β1a1 + β2a2 + μH ), ||IH (t)|| ≤ a1 and ||IV (t)|| ≤ a2. Hence

||K1(t, SH ) − K1(t, S1H )|| ≤ M ||S(t) − S(t1)||. (16)

Hence, for K1 the Lipschitz condition is obtained. Similarly for the remaining cases
the Lipschiz condition can be easily verified.

Theorem 4.2 The solution of leptospirosis fractional model given in (10) will exist
and will be unique under the conditions given below holds.

(1 − σ)

ABC(σ )
M + T σ σ

ABC(σ )Γ (σ )
M < 1. (17)
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Proof To proof the above theorem we apply the Picard–Lindelof approach along
with fixed theorem. To proceed let us consider

M1 = supA[c,v1]‖K1(t, SH )‖, M2 = supA[c,v2]‖K2(t, IH )‖, M3 = supA[c,v3]‖K3(t, RH )‖,
M3 = supA[c,v4]‖K4(t, SV )‖, M5 = supA[c,v5]‖K5(t, IV )‖,

where

A[c, v1] = [t − c, t + c] × [x − v1, x + v1] = C × V1,

A[c, v2] = [t − c, t + c] × [x − v2, x + v2] = C × V2,

A[c, v3] = [t − c, t + c] × [x − v3, x + v3] = C × V3,

A[c, v4] = [t − c, t + c] × [x − v4, x + v4] = C × V4,

A[c, v5] = [t − c, t + c] × [x − v5, x + v5] = C × V5.

We will employ the fixed point theorem using the metric on C[c, vi ] together with
uniform norm given below:

‖F(t)‖∞ = supt∈C |F(t)|. (18)

Consider the following Picard’s operator defined between two continuous functional
spaces.

Ψ : A(C, V1, V2, V3, V4, V5) → A(C, V1, V2, V3, V4, V5), (19)

defined as bellow:

Ψ [F(t)] = F0(t) + K (t, F(t))
(1 − σ)

ABC(σ )
+ σ

ABC(σ )Γ (σ )

∫ t

0
(t − y)σ−1K (y, F(y))dy,

where

F(t) = (SH (t), IH (t), RH (t), SV (t), IV (t)), F0(t) = (h1, h2, h3, h4, h5),

and

K (t, F(t)) = (K1(t, SH ), K2(t, IH ), K3(t, RH ), K4(t, SV ), K5(t, IV )).

Now we compute the following

‖Ψ [F1(t)] − Ψ [F2(t)]‖ = supt∈C |Ψ [F1(t)] − Ψ [F2(t)]|. (20)

Applying definition of the operator Ψ in Eq. (1), we have
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‖Ψ [F1(t)] − Ψ [F2(t)]‖ ≤
∥∥∥∥ (1 − σ)

ABC(σ )
(K (t, F1(t)) − K (t, F2(t)) + σ

ABC(σ )Γ (σ )
×

∫ t

0
(t − y)σ−1(K (y, F1(y)) − K (y, F2(y)))dy

∥∥∥∥. (21)

After using the triangular inequality and Lipschiz condition, we obtained

‖Ψ [F1(t)] − Ψ [F2(t)]‖ ≤
(

(1 − σ)M

ABC(σ )
+ σ

ABC(σ )Γ (σ )
MT σ

)
‖F1(t) − F2(t)‖.

Thus we obtained

‖Ψ [F1(t)] − Ψ [F2(t)]‖ ≤ L‖F1(t) − F2(t)‖, (22)

where

L = (1 − σ)M

ABC(σ )
+ σ

ABC(σ )Γ (σ )
MT σ .

The operator Ψ will be a contraction if condition (17) fulfil. Hence due to Banach
fixed point theorem, there exists a unique solution of the model (13).

5 Numerical Results

In this section, we present a numerical solution of the fractional order model (10).
Then The numerical simulations are obtained using the proposed scheme. For this
purpose we use the fractional Adams Bashforth method [34] to approximate the AB
fractional integral operator. To obtain an iterative scheme, we proceed with the first
equation of the system (14) as below:

SH (t) − SH (0) = (1 − σ)

ABC(σ )
K1(t, SH ) + σ

ABC(σ )Γ (σ )

∫ t

0
K1(y, SH )(t − y)σ−1dy.

At t = tn+1, n = 0, 1, 2, . . . , we have

SH (tn+1) − SH (0) = 1 − σ

ABC(σ )
K1(tn, SH ) +

σ

ABC(σ ) × Γ (σ)

∫ tn+1

0
K1(y, SH )(tn+1 − y)σ−1dy,

= 1 − σ

ABC(σ )
K1(tn, SH ) +

σ

ABC(σ ) × Γ (σ)

n∑
k=0

∫ tk+1

tk
K1(y, SH )(tn+1 − y)σ−1dy. (23)
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The function K1(y, SH ) can be approximated over [tk, tk+1], using the interpola-
tion polynomial

K1(y, SH ) ∼= K1(tk, SH (tk))

h
(t − tk−1) − K1(tk−1, SH (tk−1)),

h
(t − tk) (24)

which gives

SH (tn+1) = SH (0) + 1 − σ

ABC(σ )
K1(tn, SH ) +

σ

ABC(σ )Γ (σ )

n∑
k=0

(K1(tk, SH (tk))

h

∫ tk+1

tk

(t − tk−1)(tn+1 − t)σ−1dt

−K1(tk−1, SH (tk−1))

h

∫ tk+1

tk

(t − tk)(tn+1 − t)σ−1dt
)
. (25)

Now

Iσ,1 =
∫ tk+1

tk

(t − tk−1)(tn+1 − t)σ−1dt, (26)

and

Iσ,2 =
∫ tk+1

tk

(t − tk)(tn+1 − t)σ−1dt. (27)

Calculating these integrals we get

Iσ,1 = hσ+1 (n + 1 − k)σ (n − k + 2 + σ) − (n − k)σ (n − k + 2 + 2σ)

σ(σ + 1)
, (28)

and

Iσ,2 = hσ+1 (n + 1 − k)σ − (n − k)σ (n − k + 1 + σ)

σ(σ + 1)
. (29)

Finally

SH (tn+1) = SH (t0) + 1 − σ

ABC(σ )
K1(tn, SH (tn)) +

σ

ABC(σ )Γ (σ)

n∑
k=0(hσ K1(tk , SH (tk))

Γ (σ + 2)
((n + 1 − k)σ (n − k + 2 + σ) − (n − k)σ (n − k + 2 + 2σ))

−hσ K1(tk−1, SH (tk−1))

Γ (σ + 2)
((n + 1 − k)σ+1 − (n − k)σ (n − k + 1 + σ))

)
. (30)
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In similar way for the rest of equations of system (10) we obtained the recursive
formula as below:

IH (tn+1) = IH (t0) + 1 − σ

ABC(σ )
K2(tn, IH (tn)) +

σ

ABC(σ )Γ (σ)

n∑
k=0(

hσ K2(tk , IH (tk))

Γ (σ + 2)
((n + 1 − k)σ (n − k + 2 + σ) − (n − k)σ (n − k + 2 + 2σ))

−hσ K2(tk−1, IH (tk−1))

Γ (σ + 2)
((n + 1 − k)σ+1 − (n − k)σ (n − k + 1 + σ))

)
,

RH (tn+1) = RH (t0) + 1 − σ

ABC(σ )
K3(tn, RH (tn)) +

σ

ABC(σ )Γ (σ)

n∑
k=0(

hσ K3(tk , RH (tk))

Γ (σ + 2)
((n + 1 − k)σ (n − k + 2 + σ) − (n − k)σ (n − k + 2 + 2σ))

−hσ K3(tk−1, RH (tk−1))

Γ (σ + 2)
((n + 1 − k)σ+1 − (n − k)σ (n − k + 1 + σ))

)
,

SV (tn+1) = SV (t0) + 1 − σ

ABC(σ )
K4(tn, SV (tn)) +

σ

ABC(σ )Γ (σ)

n∑
k=0(

hσ K4(tk , SV (tk))

Γ (σ + 2)
((n + 1 − k)σ (n − k + 2 + σ) − (n − k)σ (n − k + 2 + 2σ))

−hσ K4(tk−1, SV (tk−1))

Γ (σ + 2)
((n + 1 − k)σ+1 − (n − k)σ (n − k + 1 + σ))

)
,

IV (tn+1) = IV (t0) + 1 − σ

ABC(σ )
K5(tn, IV (tn)) +

σ

ABC(σ )Γ (σ)

n∑
k=0(

hσ K5(tk , IV (tk))

Γ (σ + 2)
((n + 1 − k)σ (n − k + 2 + σ) − (n − k)σ (n − k + 2 + 2σ))

−hσ K5(tk−1, IV (tk−1))

Γ (σ + 2)
((n + 1 − k)σ+1 − (n − k)σ (n − k + 1 + σ))

)
. (31)

Now to give the numerical simulations of the fractional order model (10) with AB
derivative, we apply the iterative solution given in (30) and (31). The time level is
taken up to 100 unit. The numerical values of the parameters used in the simulations
are given in Table1. The behavior of the individuals of the model (10), for σ =
1, 0.90, 0.80, 0.70, 0.60, is given in Figs. 1, 2, 3, 4 and 5 respectively such that in
each figure the solid line represents the model simulations when its order is 1 while



60 S. Ullah and M. A. Khan

time
0 10 20 30 40 50 60 70 80 90 100

Su
sc

ep
tib

le
 h

um
an

10

15

20

25

30

35

40

time

In
fe

ct
ed

 h
um

an

20

30

40

50

60

70

80

90

100

time

R
ec

ov
er

ed
 h

um
an

5

10

15

20

25

30

35

40

time

Su
sc

ep
tib

le
 v

ec
to

r

10

15

20

25

30

35

40

45

50

55

time

In
fe

ct
ed

  v
ec

to
r

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

(a) (b)

(c) (d)

(e)

Fig. 1 Simulation of leptospirosis model (10) using AB derivative for σ = 1

the doted line is the graph of the model for specific values of σ other than 1. The
graphical results show that by decreasing the value of fractional parameter σ , the
number of susceptible human and vectors increases while the number of infected
classes decreases significantly.



Modeling and Analysis of Fractional Leptospirosis Model … 61

time

Su
sc

ep
tib

le
 h

um
an

10

15

20

25

30

35

40

time

In
fe

ct
ed

 h
um

an

20

30

40

50

60

70

80

90

100

time

R
ec

ov
er

ed
 h

um
an

5

10

15

20

25

30

35

40

time

Su
sc

ep
tib

le
 v

ec
to

r

10

15

20

25

30

35

40

45

50

55

time

In
fe

ct
ed

  v
ec

to
r

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

(a) (b)

(c) (d)

(e)

Fig. 2 Simulation of leptospirosis model (10) using AB derivative for σ = 0.90
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Fig. 3 Simulation of leptospirosis model (10) using AB derivative for σ = 0.80
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Fig. 4 Simulation of leptospirosis model (10) using AB derivative for σ = 0.70



64 S. Ullah and M. A. Khan

time

Su
sc

ep
tib

le
 h

um
an

10

15

20

25

30

35

40
(a)

time

In
fe

ct
ed

 h
um

an

20

30

40

50

60

70

80

90

100
(b)

time

R
ec

ov
er

ed
 h

um
an

5

10

15

20

25

30

35

40
(c)

time

Su
sc

ep
tib

le
 v

ec
to

r

10

15

20

25

30

35

40

45

50

55
(d)

time

In
fe

ct
ed

  v
ec

to
r

40

60

80

100

120

140

160
(e)

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Fig. 5 Simulation of leptospirosis model (10) using AB derivative for σ = 0.60
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6 Conclusion

A fractional order model for leptospirosis disease transmission with AB-derivative is
analyzed. The model equilibria, their steady state and basic properties are explored.
The local stability analysis is carried out usingMatignon’s conditions. The existence
and uniqueness of solutions for themodel with AB derivative is proved in detail using
Picard–Lindelof technique. The model numerical solution using two step fractional
modified Adams–Bashforth scheme with AB derivative is obtained. By taking dif-
ferent values of the fractional parameter σ , the numerical simulations are obtained
and briefly discussed. The graphical results show that the new fractional model con-
tinuously depend on the fractional parameter σ and provide better and more flexible
information to explore the dynamics of the leptospirosis infection.
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Dual Fractional Analysis of Blood
Alcohol Model Via Non-integer Order
Derivatives

Kashif Ali Abro and J. F. Gómez-Aguilar

Abstract The concentration of alcohol in blood differs with vessel diameter (arterial
diameter). In case of arteries having thinner diameter, alcohol concentrates around
their walls because of Fahraeus–Lindqvist effect. The fluctuating concentration of
alcohol in blood directly affects normal human body functions causing peptic ulcer
and hypertension. In this work, we made the comparative analysis of blood alcohol
model via Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. The gov-
erning ordinary differential equations of blood alcohol model have been converted
in terms of non-integers order derivatives. The analytic calculations of the concen-
trations of alcohol in stomach (C1(t)) and the concentrations of alcohol in the blood
(C2(t)) have been investigated by applying Laplace transform method. The general
solutions of the concentrations of alcohol in stomach (C1(t)) and the concentra-
tions of alcohol in the blood (C2(t)) are expressed in the terms of wright function
Φ(a, b; c). The graphs of both types of concentrations are depicted on the basis of
fractional parameters of Caputo–Fabrizio and Atangana–Baleanu fractional deriva-
tives. Finally, the comparative analysis of both fractional types of concentration of
alcohol level in blood decay faster for higher fractional order.
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1 Introduction

There is no denying fact that alcohol consumption not only effects in the area of
disorders but also influences the incidences of chronic diseases, injuries, and few
health problems. This is because alcoholic beverages have become a part of many
cultures for thousands of years. The impact of alcohol consumption is categorized
in three factors, namely (i) the quality of alcohol consumed, (ii) the volume of
alcohol consumed and (iii) the consumption pattern, on rare occasions. In context
with the above three categories, alcohol consumption has become a detrimental
and beneficial health impact. For instance few epidemiological and animal studies
suggested that excessive alcohol consumption depresses cardiac function and causes
cardiomyopathy or cardiomyopathy injury. The heavy alcohol consumption not only
depresses cardiac function, but also it includes being thirsty, tired, sleepy, drowsy,
weak and nauseaus as weil as having dry mouth and headache and several other
concentration problems [1–8]. On the other hand, theWorld Health Organization has
suggested a terrifying report, the harmful utilization of alcohol causes approximately
5.1% of the global burden of disease is which as attributable to alcohol consumption
and 3.3 million deaths every year (or 5.9% of all the global deaths) [9]. The non-
integer order derivatives have attracted many researchers and scientists due to its
several significant applications in science and engineering; these derivatives model
the various dynamical processes and they carry information regarding their present
as well as past states (memory effects). In order to characterize memory property of
complex systems, one need to employ the non-integer order derivatives because these
operators give a complete description of different physical processes with dissipation
and long-range interaction. On the basis of non-integer order derivatives, several
researchers have utilized these derivatives among different physical aspects. For
instance, pharmacokinetics [10], anomalous diffusion [11–14], control theory [15],
electromagnetism [16, 17], rheological fluids [18–21], electrical engineering [22,
23], and heat transfer [24, 25]. Ludwin in [26] investigated the blood alcohol content
as a function of time by employing direct integration method for the exact solutions
of the concentrations of alcohol in stomach and alcohol in the blood respectively.
Here, an experimental data was depicted with exact solutions of the concentrations
of alcohol in stomach and alcohol in the blood and it was suggested that the average
accuracy of the model was found to be 94.4%. Almeida et al. [27] compared integer
and fractional models versus real experimental data. Liouville–Caputo fractional
derivative was considered to solve the fractional order differential equations that
describe the process studied. A numerical optimization approach based on least
squares approximation was used to determine the order of the fractional derivative
that better describes real experimental data, as well as other related parameters.
Aqsa et al. [28] traced out the mathematical modeling of CD4 + T− cells through
analytical technique Optimal Variational Iteration Method (OVIM) on the system of
governing nonlinear differential equations.

In this paper, our aim is to analyze the blood alcohol model via Caputo–Fabrizio
and Atangana–Baleanu fractional derivatives in the Liouville–Caputo sense. The
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governing ordinary differential equations of blood alcohol model have been con-
verted in terms of non-integers order derivatives. The analytic calculations of the
concentrations of alcohol in stomach (C1(t)) and the concentrations of alcohol in the
blood (C2(t)) have been investigated by applying Laplace transform method. The
general solutions of the concentrations of alcohol in stomach (C1(t)) and the con-
centrations of alcohol in the blood (C2(t)) are expressed in terms of wright function
Φ(a, b; c).

2 Fractional Modeling of Blood Alcohol Model

The governing ordinary differential equations of blood alcohol model can be written
as [27]

dC1(t)

dt
+ R1C1(t) = 0, (1)

dC2(t)

dt
− R1C1(t) + R2C2(t) = 0, (2)

whereC1(t) andC2(t) represent the concentrations of alcohol in stomach and alcohol
in the blood respectively. R1 and R2 are non-zero constants. While the corresponding
initial conditions are taken into consideration for Eqs. (1) and (2) which satisfy the
analytic solutions for validations which are defined as

C1(0) = C0, C2(0) = 0. (3)

Equation (3) is the imposed condition for Eqs. (1) and (2) respectively. Convert-
ing Eqs. (1) and (2) in terms of non-integer time derivatives of Atangana–Baleanu–
Caputo type, we have [29–31]

ABC

(
dα1C(t)

dtα1

)
=

∫ t

0
Eα1

[
− α1(z − t)α1

1 − α1

]
C ′(t)
1 − α1

dt, 0 < α1 ≤ 1. (4)

Meanwhile, in the Caputo–Fabrizio–Caputo sense, we get [32–35]

CFC

(
dβ1C(t)

dtβ1

)
=

∫ t

0
exp

[
− β1(z − t)β1

1 − β1

]
C ′(t)
1 − β1

dt, 0 < β1 ≤ 1. (5)

Using Eqs. (4) and (5), we arrive at the generalized equations in fractional form
as

dα1C1(t)

dtα1
+ R1C1(t) = 0,

dα2C2(t)

dtα2
− R1C1(t) + R2C2(t) = 0, (6)
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and
dβ1C1(t)

dtβ1
+ R1C1(t) = 0,

dβ2C2(t)

dtβ2
− R1C1(t) + R2C2(t) = 0, (7)

where the fractional derivatives are in Atangana–Baleanu–Caputo and Caputo–
Fabrizio–Caputo sense, respectively.

The system of fractional differential equations (6) and (7) can be solved by the
technique of Laplace transforms with inversions. Even fractional differential equa-
tions (6) and (7) can be explained in principle by enormous methodologies and their
effectiveness is usually subjective by the domain of definition.

3 Solution of the Fractional Blood Alcohol Model

Calculation of the Problem via Atangana–Baleanu–Caputo Fractional
Operator

Applying Laplace transform on fractional differential equations (6) and using
imposed condition for Eq. (3), we obtain

sα1η1C1(s) − C0

sα1 + α1η1
+ R1C1(s) = 0,

sα2η2C2(s)

sα2 + α2η2
− R1C1(s) + R2C2(s) = 0, (8)

where η1 = 1
1−α1

and η2 = 1
1−α2

represent the letting parameters. SimplifyingEq. (8),
we get

C1(s) = C0λ0η1

sα1 + λ1
,

C2(s) = C0R1λ0λ2(sα2 + α2η2)

(sα1 + λ1)(sα2 + λ3)
, (9)

where λ0 = 1
η1+R1

, λ1 = η1R1α1

η1+R1
, λ2 = 1

η2+R2
and λ3 = η2R2α2

η2+R2
are the rheological

parameters. Employing the fact of infinite series 1
1+x = ∑∞

n=0(−x)n [36] on Eq. (9),
we investigated the equivalent form of Eq. (9) as

C1(s) = C0λ0η1

λ1

∞∑
n=0

(
− 1

λ1

)n
1

s−nα1
,
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C2(s) = C0R1λ0λ2

λ1

∞∑
n=0

(
− 1

λ1

)n ∞∑
m=0

(
− λ3

)m 1

s−nα1+mα2
+

+ C0R1λ0λ2α2η2

λ1λ3

∞∑
n=0

(
− 1

λ1

)n ∞∑
m=0

(
− 1

λ3

)m
1

s−nα1−mα2
. (10)

Applying inverse Laplace transform on Eq. (10), we have

C1(t) = C0λ0η1

λ1

∞∑
n=0

(
− 1

λ1

)n
t−nα1−1

Γ (−nα1)
,

C2(t) = C0R1λ0λ2

λ1

∞∑
n=0

(
− 1

λ1

)n ∞∑
m=0

(
− λ3

)m t−nα1+mα2−1

Γ (−nα1 + mα2)
+

+ C0R1λ0λ2α2η2

λ1λ3

∞∑
n=0

(
− 1

λ1

)n ∞∑
m=0

(
− 1

λ3

)m
t−nα1−mα2−1

Γ (−nα1 − mα2)
. (11)

In order to eliminate the Gamma function, Eq. (11) is expressed in terms of wright
function Φ(a, b; c) = ∑∞

n=0
(c)n

n!Γ (a−bn)
, we obtain the final expression of concentra-

tions of alcohol in stomach and concentrations of alcohol in the blood as

C1(t) = C0λ0η1

λ1t
Φ

(
0,−α1;− 1

λ1tα1

)
,

C2(t) = C0R1λ0λ2

λ1

∞∑
n=0

(
− 1

λ1

)n

Φ
(

− α1n, α2;−λ3t
α2

)
+

+ C0R1λ0λ2α2η2

λ1λ3

∞∑
n=0

(
− 1

λ1

)n

Φ

(
− α1n, α2;− 1

λ3tα2

)
. (12)

Equation (12) represents the final expressions for concentration of alcohol in stom-
ach and concentrationof alcohol in the blood in termsofAtangana–Baleanu fractional
operator in Liouville–Caputo sense. It is also pointed out that one can retrieve clas-
sical concentration of alcohol in stomach and concentration of alcohol in the blood
by taking α1 = α2 = 1 in Eq. (12).

Calculation of the Problem via Caputo–Fabrizio–Caputo Fractional Operator

Applying Laplace transform on fractional differential equations (7) and using
imposed condition for Eq. (3), we obtain
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sη3C1(s) − C0

s + β1η3
+ R1C1(s) = 0,

sη4C2(s)

s + β2η4
− R1C1(s) + R2C2(s) = 0, (13)

where η3 = 1
1−β1

and η4 = 1
1−β2

represent the letting parameters. Simplifying
Eq. (13), we get

C1(s) = C0Λ0η3

s + Λ1
,

C2(s) = C0R1Λ0Λ2(s + β2η4)

(s + Λ1)(s + Λ3)
, (14)

where Λ0 = 1
η3+R1

, Λ1 = η3R1β1

η3+R1
, Λ2 = 1

η4+R2
and Λ3 = η4R2β2

η4+R2
are the rheological

parameters. Employing the fact of infinite series 1
1+x = ∑∞

n=0(−x)n [36] on Eq. (14),
we investigated the equivalent form of Eq. (14) as

C1(s) = C0Λ0η3

Λ1

∞∑
n=0

(
− 1

Λ1

)n
1

s−n
,

C2(s) = C0R1Λ0Λ2

Λ1

∞∑
n=0

(
− 1

Λ1

)n ∞∑
m=0

(
− Λ3

)m 1

s−n+m
+

+ C0R1Λ0Λ2β2η4

Λ1Λ3

∞∑
n=0

(
− 1

Λ1

)n ∞∑
m=0

(
− 1

Λ3

)m
1

s−n−m
. (15)

Applying inverse Laplace transform on Eq. (15), we have

C1(t) = C0Λ0η3

Λ1

∞∑
n=0

(
− 1

Λ1

)n
t−n−1

Γ (−n)
,

C2(t) = C0R1Λ0Λ2

Λ1

∞∑
n=0

(
− 1

Λ1

)n ∞∑
m=0

(
− Λ3

)m t−n+m−1

Γ (−n + m)
+

+ C0R1Λ0Λ2β2η4

Λ1Λ3

∞∑
n=0

(
− 1

Λ1

)n ∞∑
m=0

(
− 1

Λ3

)m
t−n−m−1

Γ (−n − m)
. (16)

In order to eliminate the Gamma function, Eq. (16) is expressed in terms of the
wright function Φ(a, b; c) = ∑∞

n=0
(c)n

n!Γ (a−bn)
, we obtain the final expression of con-

centrations of alcohol in stomach and concentrations of alcohol in the blood as
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C1(t) = C0Λ0η3

λ1t
Φ

(
0,−1;− 1

Λ1t

)
,

C2(t) = C0R1Λ0Λ2

Λ1

∞∑
n=0

(
− 1

Λ1

)n

Φ
(

− n, 1;−λ3t
)
+

+ C0R1Λ0Λ2β2η4

Λ1Λ3

∞∑
n=0

(
− 1

Λ1

)n

Φ

(
− n, 1;− 1

Λ3t

)
. (17)

Equation (17) represents the final expressions for concentration of alcohol in stom-
ach and concentrationof alcohol in the blood in termsofAtangana–Baleanu fractional
operator in Liouville–Caputo sense. It is also pointed out that one can retrieve clas-
sical concentration of alcohol in stomach and concentration of alcohol in the blood
by taking α1 = α2 = 1 in Eq. (17).

4 Results and Conclusions

Now, a comparative analysis of blood alcohol model via Caputo–Fabrizio–Caputo
and Atangana–Baleanu–Caputo fractional derivatives is studied. The ordinary dif-
ferential equations of blood alcohol model are generalized via non-integers order
derivatives. The analytic calculations of the concentrations of alcohol in stomach
C1(t) and the concentrations of alcohol in the blood C2(t) have been traced out by
implementing a powerful technique namely Laplace transform method. The general
solutions of the concentrations of alcohol in stomach C1(t) and the concentrations
of alcohol in the blood C2(t) are expressed in the wright function Φ(a, b; c). The
graphical illustrations are based on smaller time t = 0.02 s and larger time t = 5 s,
for both types of concentrations. The influence of the fractional derivatives namely
Caputo–Fabrizio–Caputo andAtangana–Baleanu–Caputo fractional operators on the
concentrations of alcohol in stomach C1(t) is depicted through Mathcad software
as shown in Fig. 1a–f for smaller time t = 0.02 s and larger time t = 5 s. It can be
seen from Fig. 1a–f that the comparative analysis for the concentrations of alcohol
in stomach C1(t) suggested that for smaller time t = 0.02 s, the concentration of
alcohol in stomach C1(t) has increasing behavior with Atangana–Baleanu–Caputo
approach but decreasing with Caputo–Fabrizio–Caputo approach. While, for larger
time t = 5 s, the concentration of alcohol in stomach C1(t) with Caputo–Fabrizio–
Caputo and Atangana–Baleanu–Caputo fractional derivatives have reciprocal behav-
ior. On the other hand, for unit time t = 1s, the concentrations of alcohol in stomach
C1(t) are identical in both fractional approaches. The rheological impacts of the
fractional derivatives of Caputo–Fabrizio–Caputo and Atangana–Baleanu–Caputo
fractional type on the concentrations of alcohol in bloodC2(t) are showed in Fig. 2a–
f for smaller time t = 0.02 s and larger time t = 5 s. It is observed that in the
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Fig. 1 Comparative analysis of the concentrations of alcohol in the stomach C1(t) via Atangana–
Baleanu–Caputo and Caputo–Fabrizio–Caputo fractional derivatives for smaller and larger time
when embedded parameter are C0 = 225, R1 = 0.025, R2 = 0.031, α1 = β1 = [0, 1]

Atangana–Baleanu–Caputo fractional operators decrease the concentration of alco-
hol in bloodC2(t) for smaller time t = 0.02 s but for larger time t = 5 s, the concen-
tration of alcohol in blood C2(t) increases in the Atangana–Baleanu–Caputo frac-
tional derivative. Meanwhile, an opposite trend is perceived in the Caputo–Fabrizio–
Caputo sense for the concentration of alcohol in bloodC2(t). Finally, the comparative
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Fig. 2 Comparative analysis of the concentrations of alcohol in the stomach C2(t) via Atangana–
Baleanu–Caputo and Caputo–Fabrizio–Caputo fractional derivatives for smaller and larger time
when embedded parameter are C0 = 225, R1 = 0.025, R2 = 0.031, α1 = β1 = [0, 1]

analysis of both fractional types of concentration of alcohol level in blood decay
faster for higher fractional order. It is also pointed out that the comparison of frac-
tional model verses ordinary/classical model can also be depicted as well for both
concentrations of alcohol in stomach C1(t) and in blood C2(t).
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Parameter Estimation of Fractional
Gompertz Model Using Cuckoo Search
Algorithm

J. E. Solís-Pérez, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez,
L. Torres and V. H. Olivares-Peregrino

Abstract In this chapter, a meta-heuristic optimization algorithm, called cuckoo
search algorithm is applied to determine the optimal parameters of the fractional
Gompertz model via Liouville–Caputo and Atangana–Baleanu–Caputo fractional
derivatives. The numerical solutions of the proposed models were obtained using the
Adamsmethod.Theproposedmethodology is testedon epidemiological examples. In
the interval considered, the fractional models had the best fit for the epidemiological
data considered. The effectiveness of themethodology is shownby a comparisonwith
the classical models. A comparison between the fractional models and the classical
models was carried out to show the effectiveness of our methodology.

Keywords Fractional calculus · Liouville–Caputo fractional derivative ·
Atangana–Baleanu fractional derivative · Cuckoo search algorithm · Gompertz
model

1 Introduction

Benjamin Gompertz introduced in 1825 the Gompertz model [1], the model is based
on a sigmoid function and it can be applicable to the growth of animals and plants, as
well as to model the number or volume of bacteria and cancer cells [2–6]. Horiuchi
in [7], developed mathematical expressions to model the human mortality. In this
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work, six different mortality models were presented, in the presence or absence of
the Makeham term. In [8], the model was used for describing the emergence patterns
of the growing weed based on the temperature and soil moisture. Moummou in [8]
proposed a model that integrates the stochastic growth of a tumor cell population and
the effect of two therapies on the cell growth. One of them had an internal immuno-
logical effect, while the other was controllable from outside of the cell population.
Other applications of the Gompertz model are given in [9, 10].

Fractional Calculus (FC) represents complex physical phenomena accurate and
efficiently. In nature, many physical phenomena have “intrinsic” fractional order
descriptions, so FC is a necessary mathematical tool to explain them. FC modeling
has shown to be useful to describe and explain certain types of physical problems and
processes where memory effects have to be considered. These models carry informa-
tion from its different previous states and can be a useful way to include memory in a
dynamic process (the fractional derivative order can be interpreted as an index of the
memory [11]). Particularly, biology is a rich source for mathematical ideas [12–14].
There exist various definitions of fractional derivatives and integrals, these defi-
nitions includes, Riemann-Liouville, Liouville–Caputo, Grünwald-Letnikov, Mar-
chaud, Weyl, Riesz, Feller, Caputo-Fabrizio, Atangana–Baleanu, among others [15–
17]. This diversity of definitions is due to the lack of a consistent geometric and
physical interpretation of the fractional derivative and the fact that fractional deriva-
tives take different kernel representations.

Cuckoo Search (CS) algorithm is a relatively recent modern optimization method,
this algorithm has a vast number of applications [18, 19]. It was developed by Yang
and Deb [20], as a bio-inspired technique that mimics the particular brood parasitism
behavior of certain species of cuckoos in nature. CS algorithm can be described in
few words as a mutation-based swarm algorithm with Lévy-Flights.

The main aim of this article is to obtain a parameter estimation of fractional Gom-
pertz model using Cuckoo search algorithm. The Liouville–Caputo and Atangana–
Baleanu fractional derivatives were considered. We included some epidemiological
examples to compared with the ordinary Gompertz model. We considered fractional
orders γ ∈ (0; 1] and considering the CS algorithm, we investigated which fractional
order would help the fractional derivative to fit better to the experimental data.

2 Basic Definitions

TheLiouville–Caputo fractional order derivative (C) for (γ > 0) is defined as follows
[15]

C
0 D

γ
t {f (t)} = 1

Γ (n − γ )

∫ t

0

dn

dtn
f (θ)(t − θ)n−γ−1dθ, n − 1 < γ ≤ n, (1)

where f (n) is the derivative of integer nth order of f (t), n = 1, 2, . . . ∈ N .
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Now, we consider the following equation

C
0 D

γ
t f (t) = g(t, f (t)), f k(0) = f k0 , k = 0, 1, . . . , n − 1. (2)

Considering that the Eq. (2) has a unique solution defined in the interval t ∈ [0,T ]
and the above equation satisfies the following Volterra integral equation

f (t) =
n−1∑
k=0

f (k)
0

tk

k! + 1

Γ (γ )

t∫

0

(t − u)γ−1g(u, f (u))du, t < T , (3)

where γ > 0 and C
0 D

γ
t is the Liouville–Caputo fractional derivative given by Eq. (1).

The solution scheme used to solve Eq. (2) is known as predictor-corrector Adams–
Bashforth–Moulton method [21, 22]. The iterative solution is given by

f Pk+1 =
n−1∑
j=0

tjk+1

j! f (j)
0 + 1

Γ (γ )

k∑
j=0

bj,k+1g(tj, fj),

fk+1 =
n−1∑
j=0

tjk+1

j! f (j)
0 + 1

Γ (γ )

(
k∑

j=0
aj,k+1g(tj, fj) + ak+1,k+1g(tk+1, f Pk+1)

)
,

(4)

where

aj,k+1 = hγ

γ (γ + 1)
·
⎧⎨
⎩

(kγ+1 − (k − γ )(k + 1)γ ) j = 0,
((k − j + 2)γ+1 + (k − j)γ+1 − 2(k − j + 1)γ+1) 1 ≤ j ≤ k,
1 j = k + 1,

bj,k+1 = hγ

γ
((k + 1 − j)γ − (k − j)γ ), j = 0, 1, 2, . . . , k.

The fractional derivative of typeAtangana–Baleanu in theLiouville–Caputo sense
is defined as follows [17]

ABC
0 Dγ

t {f (t)} = B(γ )

n − γ

∫ t

0

dn

dtn
f (θ)Eγ

[
− γ

(t − θ)γ

n − γ

]
dθ, (5)

where, B(γ ) is a normalization function, B(0) = B(1) = 1. This fractional operator
uses the Mittag-Leffler law as nonsingular and nonlocal kernel.

The numerical approximation of Atangana–Baleanu fractional integral using the
Adams-Moulton rule is given by [23]
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AB
0 I γ

t [f (tn+1)] = 1 − γ

B(γ )

[ f (tn+1) − f (tn)

2

]
+ γ

Γ (γ )

∞∑
k=0

[ f (tk+1) − f (tk)

2

]
bγ

k , (6)

where, bγ

k = (k + 1)1−γ − (k)1−γ .

Gompertz Model

The Gompertz differential equation is given by

dN (t)

dt
= K · N (t) · ln

(
A

N (t)

)
, (7)

where N (t) represents the size of the population at time t, K and A the intrinsic rate
of growth and the maximum value of growth respectively.

Fractional Gompertz model is obtained from classical equation by replacing the
first order time derivative by a fractional derivative of order γ

0D
γ
t N (t) = K · N (t) · ln

(
A

N (t)

)
, (8)

where the fractional operator 0D
γ
t is of typeLiouville–Caputo orAtangana–Baleanu–

Caputo.

• First case. In the Liouville–Caputo sense, we have

N (t) =
n−1∑
i=0

N (0)(i)
ti

i! + 1

Γ (α)

∫ t

0
(t − k)α−1

(
K · N (k) · ln

(
A

N (k)

))
dk, t < T . (9)

The numerical approximation of Eq. (9) is obtained using the algorithm given by
Eq. (4).

• Second case. We use the numerical scheme developed in [23] for the fractional
derivative based on the Mittag-Leffler kernel

AB
0 Iα

t [f (tl+1)] = 1 − α

B(α)

[
f (tl+1 − f (tl)

2

]
+ α

Γ (α)

∞∑
z=0

[
f (tz+1) − f (tz)

2

]
bα
z ,

(10)
where

bα
z = (z + 1)1−α − (z)1−α, (11)
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and the model (8) is represented by

N(l+1)(t) − N(l)(t) = Nl
(1)(t)+⎧⎨

⎩
1 − α

B(α)

⎡
⎣K

⎛
⎝N(l+1)(t) · ln

(
A

N(l+1)(t)

)
− N(l)(t) · ln

(
A

N(l)(t)

)

2

⎞
⎠

⎤
⎦

⎫⎬
⎭+

α

B(α)

∞∑
z=0

bα
z ·

⎡
⎣K

⎛
⎝N(z+1)(t) · ln

(
A

N(z+1)(t)

)
− N(z)(t) · ln

(
A

N(z)(t)

)

2

⎞
⎠

⎤
⎦ .

(12)

The parameters of the Gompertz model can be obtained by: least squares, linear
and nonlinear regression, maximum likelihood estimation, partial derivatives and
region of exact confidence [24, 25]. In this chapter, we consider the CS algorithm to
find the optimal parameters.

3 Cuckoo Search

Cuckoo Search is a metaheuristic optimization algorithm based on the Nature and
developed in 2009 byXin-She Yang and Suash Deb [20]. It is based on the parasitism
of some Cuckoo species and involves Lévy flights to offer a more efficient algorithm
compared to Genetic Algorithms and Particle Swarm Optimization.

The three main rules governing this algorithm are

• A cuckoo deposits an egg in nests of other bird species.
• The best nests containing high-quality eggs pass to the next generation.
• There is a fixed number of nests. If a host bird discovers that the eggs in the nest
are not their own, they can be discarded from the nest, or abandoned, and build
another nest nearby.

Based on these three rules, the basic elements of the CS algorithm can be sum-
marized in Algorithm 1.

Algorithm 1 Cuckoo Search via Lévy Flights
1: initialization of n host nests
2: while stop criterion do
3: choose a cuckoo egg by Lévy flights and evaluate your fitness (Fi = min {RMSE})
4: an egg from another nest randomly choose and calculate your fitness (Fj = min {RMSE})
5: if Fi > Fj then
6: replace the jth egg for the ith egg
7: a fraction (pa) of the worst nests is demolished and replaced by new
8: good nests are preserved (better solutions)
9: end if
10: end while
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The general equation of the CS algorithm is given by

Xg+1;i = Xg;i + α ⊗ Lévy(β), (13)

where g and i denote the generation number (g = 1, 2, 3, . . . ,MaxGen) and the
pattern number (i = 1, 2, . . . , n), respectively. In addition α > 0 is the scaled step
size that could be related to the scales of the problem of interest and ⊗ means input
multiplications. The jth attributes of the ith pattern are initiated by

Xg=0;j,i = rand · (Ubi − Lbi) + Lbi, (14)

where Ubi and Lbi are the upper and lower limits of the jth attributes respectively.
The step φ used by Yang and Deb for the Lévy flight is given by

φ =
(

Γ (1 + β) · sin (π · β/2)

Γ (((1 + β)/2) · β · 2(β−1)/2)

)1/β

, (15)

and the step size required by the jth attributes can be calculated by

sj = 0.01 ·
(
uj
vj

)1/β

· (v − xbest), (16)

where u = φ · randn[D] and v = randn[D]. The donor pattern v is randomly adjusted
by

v = v + sj · randn[D]. (17)

TheCSalgorithmwill evaluate the fitting of the randompattern. If the best solution
is found, the xbest pattern is updated. The non-viable solutions are reviewed by the
cross operator given by the following equation

vi =
{
xi + rand · (xr1 − xr2), randi > p0

xi, other,
(18)

where p0 is the probability of mutation (p0 = 0.25).

Accuracy Prediction Criterion

In this work, the following indices are used to evaluate the accuracy of the proposed
model, e.g., the mean absolute percentage error (MAPE) and root mean square error
(RMSE).

If At is the tth value of the dataset, Pt is the estimated value of At and n the amount
of data in the set, so the mean absolute percentage error (MAPE) is defined by

MAPE =
∑n

t=1 |(At − Pt)/At|
n

× 100,% (19)
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Table 1 MAPE prediction levels proposed by [26]

MAPE (%) Level of prediction

<10 Highly accurate

10 − 20 Good

20 − 50 Reasonable

>50 Imprecise

and the RMSE (function to be minimized by CS)

RMSE =
√∑n

t=1(At − Pt)2

n
, (20)

minimize
γ,K,A

{RMSE},

where a small value of MAPE (see Table 1) or RMSE implies greater prediction
accuracy.

4 Tests

Example 1 People living with human immunodeficiency virus (HIV) in the world.
The estimated population living with HIV in the world was obtained from [27] which
includes,men andwomenof all ages. The data obtainedwas normalized to implement
the CS algorithm and for obtaining the parameters of the particular Gompertz models
in the sense of Liouville–Caputo (9) and Atangana–Baleanu–Caputo (10). In the
Table 2 we show the parameters obtained by CS algorithm, as well as, the evaluation
indices for each obtained models, the result of prediction is shown in Fig. 1.

Example 2 Zika virus in Latin America.
The number of confirmed cases with Zika virus in Latin America was obtained from
[28]. The CS algorithm was implemented to obtain the parameters of the models
given by Eqs. (9) and (10), its result is shown in Table 2 and Fig. 2.

Example 3 Breast cancer in France.
In the locality of France, tests were carried out to detect breast and cervix cancer,
specifically, cases of malignant neoplasm of breast. Statistical data of the imple-
mented program were obtained from [29]. The particular models given by Eqs. (9)
and (10) were obtained with CS and the results are shown in Table 2 and Fig. 3.
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Table 2 Estimated parameter values for each model through CS

Example K A γ Model Example K A γ Model

Case 1 0.1719 0.2489 1 Classical Case 4 0.4698 1.5423 1 Classical

0.1657 0.2412 0.9981 Caputo 0.3305 2.8711 0.6306 Caputo

0.1657 0.2412 0.9998 Atangana 0.3430 3.1758 0.7220 Atangana

Case 2 0.5302 0.8510 1 Classical Case 5 0.0878 0.3746 1 Classical

0.5760 1.8189 0.3201 Caputo 0.1231 2.4152 0.4374 Caputo

0.7250 1.7263 0.5060 Atangana 0.1838 0.9823 0.6150 Atangana

Case 3 0.7514 0.3332 1 Classical Case 6 0.1369 0.2555 1 Classical

0.6912 0.3282 0.9874 Caputo 0.0894 0.2111 0.9973 Caputo

0.6270 0.3295 0.9987 Atangana 0.0768 0.2223 0.9986 Atangana
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Fig. 2 Confirmed cases of Zika virus in Latin America. • Dataset, Classical model, Frac-
tional model with Liouville–Caputo derivative, Fractional model with Atangana–Baleanu–
Caputo derivative

Example 4 Capability to predict cancer in mice.
Bolton [14] proposes a prediction model in the Caputo sense to predict the growth of
malignant tumors in mice. In this paper, he proposes the least squares optimization
algorithm to find the model parameters and to minimize the RMSE (20), for this
case we implement the models given in Eqs. (9) and (10) and the CS algorithm. The
results are presented in Table 2 and Fig. 4.

Example 5 Patients with kidney transplantation due to end-stage renal disease.
For this example,we consider statistical data of patientswith kidney transplantation in
Spain [30]. The data are provided in absolute numbers and in population-standardized
rates (per 100 000 inhabitants). To predict the cases number of kidney transplantation
in the next years are used the models given in Eqs. (9) and (10) and the CS algorithm.
The results are presented in Table 2 and Fig. 5.

Example 6 Rate of detection of tuberculosis cases in Mexico.
The World Bank for Nutrition in Health and Population Statistics provides statistics
compiled from various international sources, where the main topic of interest to
apply the models (9) and (10) is: infectious diseases, specifically tuberculosis. This
statistical information was compiled and obtained from [31], where the parameters



90 J. E. Solís-Pérez et al.

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

N
um

be
r

40

42

44

46

48

50

52

Breast cancer in France

Dataset
GO

C
ABC

Fig. 3 Confirmed cases of breast cancer in France. • Dataset, Classical model, Fractional
model with Liouville–Caputo derivative, Fractional model with Atangana–Baleanu–Caputo
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obtained by CS are presented in Table 2 and the result of the prediction models is
shown in Fig. 6.

The parameters showed in the Table 2 represented the better fit to a particular set
of epidemiological dates analyzed. The fractional orders were obtained in the range
γ ∈ (0; 1].

Table 3 summarizes the prediction criteria used in the different examples for each
fractional model. This information is easy to observe in Fig. 7. The chosen models
have a small value for RMSE as well as a MAPE value less than 10%.
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Table 3 Prediction criterion for all fractional Gompertz models

Error Error

Example RMSE MAPE Model Example RMSE MAPE Model

Case 1 0.005308 2.6035 Classical Case 4 0.019401 1.8252 Classical

0.005244 2.2512 Caputo 0.014949 1.4691 Caputo

0.005576 2.7218 Atangana 0.008053 0.7451 Atangana

Case 2 0.058251 17.2277 Classical Case 5 0.010379 7.5878 Classical

0.062618 15.3974 Caputo 0.008778 11.9823 Caputo

0.056949 17.0980 Atangana 0.008932 13.6197 Atangana

Case 3 0.002804 0.6903 Classical Case 6 0.017245 8.7268 Classical

0.002506 0.7068 Caputo 0.015797 7.0239 Caputo

0.002772 0.7390 Atangana 0.015609 6.8655 Atangana
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Fig. 5 Number of patients with kidney transplantation due to end-stage renal dis-
ease. • Dataset, Classical model, Fractional model with Liouville–Caputo
derivative, Fractional model with Atangana–Baleanu–Caputo derivative

5 Conclusions

In this chapter, the Cuckoo search algorithm was proposed to solve the Gom-
pertz model considering fractional derivatives of Liouville–Caputo and Atangana–
Baleanu–Caputo types. Also, they were developed six epidemiological examples
using Cuckoo Search algorithm to show the effectiveness of this methodology. Each
optimisation procedure was repeated 50 times for statistical inferences. For future
work, this methodology can be applied considering other reparameterizations of the
Gompertz model, for example, four-parameter Gompertz, the Zwietering modifi-
cation, the Zweifel and Lasker reparameterization, and the Gompertz-Laird or the
Unified Gompertz. For these models, it is more difficult to finding and interpret their
parameters. Furthermore, this optimization strategy can be extended in a similar way
to the population-based algorithms, such as PSO and genetic algorithms to study
multi-objective constrained optimization problems.
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In this chapter, was showed that the fractional Gompertz model via Liouville–
Caputo and Atangana–Baleanu–Caputo fit better the dataset than the classical Gom-
pertz model. The fractional order derivatives with non-singular kernel can describe
two different waiting times distributions, this is ideal waiting time distribution as
such is observed in biological systems. The crossover behavior of these operators
is due to their capacity of not obeying the classical index-law imposed in fractional
calculus.



94 J. E. Solís-Pérez et al.

Fig. 7 RMSE and MAPE
for the six models fitting
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Existence and Uniqueness Results
for a Novel Complex Chaotic Fractional
Order System

Ilknur Koca and A. Atangana

Abstract The Atangana–Baleanu fractional differential and integral operators have
been used in this chapter to describe the crossover behavior of a chaotic complex
system. The existingmodel was extended andmodified by replacing the conventional
time local operator by the fractional differential operator with non-local and non-
singular kernel.We established the conditions underwhich the existence of a uniquely
exact solution can be found. A newly established numerical scheme was used to
solve the modified model and numerical solutions are displayed for different values
of fractional order.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative ·
Chaotic complex system

1 Introduction

Complex systems have attracted attention of all my kind due to their occurrence in
our daily life. They are omnipresent in the field of chaos, solitons, fractal, epidemi-
ology and other fields where complexities are observed such as groundwater and
biological models portraying the interaction among pieces. The description of these
complex natural occurrences can be achieved using the mathematical tools known
as derivative, and they can be classified in two big classes, the first class is the local
differential operator that uses the rate of chance to express the variation of a moving
object or change taking place in time and space [1, 2]. This first class was greatly used
in the classical mechanic, where there is no sign of complexity like heterogeneity,
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self-similarities, and a crossover in mean-square displacement. The connective evo-
lution equation of this differential operator obeys the so-called semi-group principle
thus, it cannot replicate the well-known Non-Markovian processes. The second class
was well-developed in the last years and is known as nonlocal differential operators.
This last class was born as result of discussion between Sir L’ Hopital and Leibniz,
where the nth derivative could be 1

2 . derivative. Then this was developed later on by
Riemann and Liouville, modified by Michele Caputo by transforming the derivative
of a convolution of a given function and the power law decay function to a convo-
lution of derivative of a derivative of first and the power law decay function [3–6].
The last class witness a split in the last decade, as the power law Riemann–Liouville
and Caputo derivatives have posed some problems, as it is imposing a kind of sin-
gularity to those models with no singularities. To solve this problem, a new class
was suggested where the power law kernel was replaced by exponential decay and
the generalized Mittag-Leffler function [7–16]. An analysis done by three senior
Brazilian researchers suggested that the two last suggested kernels have added a real
plus in the field as they are able to describe a crossover behavior that is observed in
many field of science, technology and engineering. With the new weapons brought
by the new class of non-local operators one can describe materials or moving object
taking place in different scales as they possesses a mean-square displacement with
crossover from normal to sub-diffusion and confined diffusion. In this chapter, we
aim to apply the Mittag-Leffler kernel derivative to a well-known complex system
able to describe chaotic behavior [17].

2 New Fractional Derivative with Non-singular
and Non-local Kernel

Let us remind the definitions of the new fractional derivative with non-singular and
non-local kernel [18–27].

Definition 1 Let f ∈ H 1(a, b), b > a, α ∈ [0, 1] then, the definition of the new
fractional derivative (Atangana–Baleanu derivative in Caputo sense) is given as:

ABC
a Dα

t f (t) = B(α)

1 − α

t∫

a

f
′
(x)Eα

[
−α

(t − x)α

1 − α

]
dx, (1)

where ABC
a Dα

t is fractional operator with Mittag-Leffler kernel in the Caputo sense
with order α with respect to t and B(α) = B(0) = B(1) = 1 is a normalization func-
tion [5].

It can be noted that the above definition is helpful to model real world problems.
Also it has a great advantage while using the Laplace transform to solve problem
with initial condition.
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Definition 2 Let f ∈ H 1(a, b), b > a, α ∈ [0, 1] and not differentiable then, the
definition of the new fractional derivative (Atangana–Baleanu fractional derivative
in Riemann–Liouville sense) is given as:

ABR
a Dα

t f (t) = B(α)

1 − α

d

dt

t∫

a

f (x)Eα

[
−α

(t − x)α

1 − α

]
dx. (2)

Definition 3 The fractional integral of order α of a new fractional derivative is
defined as:

AB
a Iα

t f (t) = 1 − α

B(α)
f (t) + α

B(α)Γ (α)

t∫

a

f (y)(t − y)α−1dy. (3)

When α is zero, initial function is obtained and when α is 1, the ordinary integral is
obtained.

Theorem 1 The following time fractional ordinary differential equation

ABC
0 Dα

t f (t) = u(t), (4)

has a unique solution with taking the inverse Laplace transform and using the con-
volution theorem below [4]:

f (t) = 1 − α

B(α)
u(t) + α

B(α)Γ (α)

t∫

a

u(y)(t − y)α−1dy. (5)

3 Picard’s Existence and Uniqueness Theorem
for Atangana–Baleanu Fractional Complex System
in Caputo Sense

In this section, we will present the following existence and uniqueness theorems for
Atangana–Baleanu fractional complex system in Caputo sense via Picard’s theorem.
The theorem considered here is very easy to understand and has same the idea with
classical theorems known in the case of first order system of equations. Atangana–
Baleanu fractional complex system in Caputo sense is given below:
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ABC
0 Dα

t y1 (t) = ay3 (t) y5 (t) , (6)
ABC
0 Dα

t y2 (t) = ay4 (t) y5 (t) ,

ABC
0 Dα

t y3 (t) = b(y1 (t) − y3 (t)),
ABC
0 Dα

t y4 (t) = b(y2 (t) − y4 (t)),
ABC
0 Dα

t y5 (t) = 1 − y21 (t) − y22 (t) ,

and initial conditions

y1 (t0) = y1,0, y2 (t0) = y2,0, y3 (t0) = y3,0,
y4 (t0) = y4,0, y5 (t0) = y5,0.

(7)

Let us consider the right side of the system with a new expression as below:

C1(t, y1(t)) = ay3 (t) y5 (t) , (8)

C2(t, y2(t)) = ay4 (t) y5 (t) ,

C3(t, y3(t)) = b(y1 (t) − y3 (t)),

C4(t, y4(t)) = b(y2 (t) − y4 (t)),

C5(t, y5(t)) = 1 − y21 (t) − y22 (t) .

Then applying the Volterra type integral on the above complex fractional system, the
following integral system is written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 (t) = y1,0(0) + 1−α
B(α)

C1(t, y1(t)) + α
B(α)Γ (α)

t∫
0
C1(τ, y1(τ ))(t − τ)α−1dτ,

y2 (t) = y2,0(0) + 1−α
B(α)

C2(t, y2(t)) + α
B(α)Γ (α)

t∫
0
C2(τ, y2(τ ))(t − τ)α−1dτ,

y3 (t) = y3,0(0) + 1−α
B(α)

C3(t, y3(t)) + α
B(α)Γ (α)

t∫
0
C3(τ, y3(τ ))(t − τ)α−1dτ,

y4 (t) = y4,0(0) + 1−α
B(α)

C4(t, y4(t)) + α
B(α)Γ (α)

t∫
0
C4(τ, y4(τ ))(t − τ)α−1dτ,

y5 (t) = y5,0(0) + 1−α
B(α)

C5(t, y5(t)) + α
B(α)Γ (α)

t∫
0
C5(τ, y5(τ ))(t − τ)α−1dτ,

(9)

with initial conditions

y1,0(0) = 0, y2,0(0) = 0, y3,0(0) = 0,
y4,0(0) = 0, y5,0(0) = 0.

(10)

Theorem The kernels of systemCi(t, yi(t)), for i = 1, 2, 3, . . . 5, satisfy theLipschitz
condition and contraction if the following inequality holds:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ L1 < 1,
0 ≤ L2 < 1,
0 ≤ L3 < 1,
0 ≤ L4 < 1,
0 ≤ L5 < 1.

(11)

Proof First we start the kernel C1(t, y1(t)) = ay3 (t) y5 (t) . Let y1(t) and x1(t) be
two functions, so we have the following:

|C1(t, y1(t)) − C1(t, x1(t))| ≤ 0. |y1(t) − x1(t)| , (12)

taking asL1 = 0, theLipschitz condition and contraction are satisfied forC1(t, y1(t)).
It is easy to see that other kernels are also satisfy Lipschitz condition for 0 ≤ Li < 1,
for i = 2, . . . , 5.

Now we can give the existence of solution and uniqueness theorems for system
under Lipschitz condition with respect to yi and continuity condition with respect
to t.

Theorem (Picard’s existence theorem for system) Let B be a domain in R2 and
Ci : B → R, for i = 1, 2, . . . , 5 be a real functions of system satisfying the following
conditions:

(1) Ci are continuous on B, for i = 1, 2, . . . , 5.
(2) Ci(t, yi(t)), for i = 1, 2, . . . , 5 are Lipschitz continuous with respect to yi on D

with Lipschitz constants of Li > 0.

Let (t0, yi,0) are an interior point on B and k > 0, mi > 0 be constants such that the
rectangle

R = {
(t, yi) : |t − t0| ≤ k,

∣∣yi − yi,0
∣∣ ≤ mi, for i = 1, 2, . . . , 5

} ⊂ B. (13)

If we take

ci = max
(t,yi)∈R

Ci(t, yi(t)) and h = min

(
k,

mi

ci

)
, (14)

then the initial value problem has a unique solution of yi, for i = 1, 2, . . . , 5 on the
interval |t − t0| ≤ h.

Remark Since R is a closed rectangle in B, Ci(t, yi(t)) for i = 1, 2, . . . , 5 are satisfy
all properties in R.

{
If k < mi

ci
then h = k =⇒ R1 = R,

If mi
ci

< k then h = mi
ci

=⇒ R1 ⊂ R.
(15)

Here for i = 1, 2, . . . , 5,
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R = {
(t, yi) : |t − t0| ≤ k,

∣∣yi − yi,0
∣∣ ≤ mi

}
, (16)

R1 = {
(t, yi) : |t − t0| ≤ h,

∣∣yi − yi,0
∣∣ ≤ mi

}
.

We prove the theorem by successive approximation of the Picard’s iterants yi,n(t) for
i = 1, 2, . . . , 5, on |t − t0| ≤ h and are defined by

y1,n (t) = y1,0(0) + 1−α
B(α)

C1(t, y1,n−1(t)) + α
B(α)Γ (α)

t∫
0
C1(τ, y1,n−1(τ ))(t − τ)α−1dτ,

y2,n (t) = y2,0(0) + 1−α
B(α)

C2(t, y2,n−1(t)) + α
B(α)Γ (α)

t∫
0
C2(τ, y2,n−1(τ ))(t − τ)α−1dτ,

y3,n (t) = y3,0(0) + 1−α
B(α)

C3(t, y3,n−1(t)) + α
B(α)Γ (α)

t∫
0
C3(τ, y3,n−1(τ ))(t − τ)α−1dτ,

y4,n (t) = y4,0(0) + 1−α
B(α)

C4(t, y4,n−1(t)) + α
B(α)Γ (α)

t∫
0
C4(τ, y4,n−1(τ ))(t − τ)α−1dτ,

y5,n (t) = y5,0(0) + 1−α
B(α)

C5(t, y5,n−1(t)) + α
B(α)Γ (α)

t∫
0
C5(τ, y5,n−1(τ ))(t − τ)α−1dτ.

(17)
Now we divide the proof into 4 parts.

Part 1: In this part we will show some properties of the equations
{
yi,n (t)

}
for

i = 1, 2, . . . , 5. Let us give step by step of what we will obtain in part 1.
(i) The functions

{
yi,n (t)

}
for i = 1, 2, . . . , 5 defined above are well defined.

(ii) yi,n (t), s for i = 1, 2, . . . , 5 have continuous derivatives.

(iii)
∣∣yi,n (t) − yi,0 (0)

∣∣ ≤
(
1−α
B(α)

+ tα

B(α)Γ (α)

)
ci for i = 1, 2, . . . , 5 on [t0, t0 + h] .

(iv) Ci(t, yi,n(t)), for i = 1, 2, . . . , 5 are well defined.

Proof of Part 1: We prove this part by mathematical induction. Assume that yi,n−1(t)
exists, has continuous derivative on [t0, t0 + h] and it satisfies

∣∣yi,n−1 (t) − yi,0 (0)
∣∣ ≤ mi, for i = 1, 2, . . . , 5 on t ∈ [t0, t0 + h] . (18)

Here

mi =
(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci. (19)

This implies
(
t, yi,n−1 (t)

) ∈ R1. Also we have Ci(t, yi,n−1(t)) are defined and con-
tinuous on [t0, t0 + h] . Further

∣∣Ci(t, yi,n−1(t))
∣∣ ≤ ci on [t0, t0 + h] . Let us consider

absolute value on both sides of equation

∣∣yi,n (t) − yi,0(0)
∣∣ = 1 − α

B(α)

∣∣Ci(t, yi,n−1(t))
∣∣ (20)

+ α

B(α)Γ (α)

t∫

0

∣∣Ci(τ, yi,n−1(τ ))
∣∣ (t − τ)α−1dτ,
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with using triangle inequality we have

∣∣yi,n (t) − yi,0(0)
∣∣ ≤ 1 − α

B(α)
ci + α

B(α)Γ (α)

t∫

0

ci(t − τ)α−1dτ (21)

≤
(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci,

then ∣∣yi,n (t) − yi,0(0)
∣∣ ≤ mi. (22)

So
(
t, yi,n (t)

)
lies in the rectangleR1 and henceCi(t, yi,n(t)) is defined and continuous

on [t0, t0 + h].
When n = 1,

yi,1 (t) = yi,0(0) + 1 − α

B(α)
Ci(t, yi,0(t)) (23)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, yi,0(τ ))(t − τ)α−1dτ.

Obviously, yi,1 (t) is defined, has continuous derivative on [t0, t0 + h] . Also

∣∣yi,1 (t) − yi,0(0)
∣∣ ≤ 1 − α

B(α)

∣∣Ci(t, yi,0(t))
∣∣ (24)

+ α

B(α)Γ (α)

t∫

0

∣∣Ci(τ, yi,0(τ ))
∣∣ (t − τ)α−1dτ,

∣∣yi,1 (t) − yi,0(0)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci ≤ mi.

So
(
t, yi,1 (t)

)
lies in the rectangle R1 and hence Ci(t, yi,1(t)) is continuous on

[t0, t0 + h]. Properties are true for n = 1. Thus, by the method of mathematical
induction

{
yi,n (t)

}
sequence functions defined in integral system are possessing all

desired properties in [t0, t0 + h]. Hence part 1 of the proof is completed.

Part 2: The functions
{
yi,n (t)

}
, for i = 1, 2, . . . , 5 satisfy the following inequality

as below:

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci on [t0, t0 + h] . (25)

Proof of Part 2: We prove this part also by mathematical induction. Assume that
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∣∣yi,n−1 (t) − yi,n−2(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n−1

Ln−2
i cit ∈ [x0, x0 + h] . (26)

Then

∣∣yi,n (t) − yi,n−1(t)
∣∣ (27)

≤ 1 − α

B(α)

∣∣Ci(t, yi,n−1(t)) − Ci(t, yi,n−2(t))
∣∣

+ α

B(α)Γ (α)

t∫

0

∣∣Ci(τ, yi,n−1(τ )) − Ci(τ, yi,n−2(τ ))
∣∣ (t − τ)α−1dτ.

From part 1, we have

∣∣yi,n (t) − yi,0(0)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci, for ∀n ∈ R1. (28)

Hence (t, yi,n−1(t)), (t, yi,n−2(t)) also belong to in R1. From Lipschitz continuity of
all Ci for i = 1, 2, . . . 5, we have

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤ 1 − α

B(α)
Li

∣∣yi,n−1(t) − yi,n−2(t)
∣∣ (29)

+ αLi
B(α)Γ (α)

t∫

0

∣∣yi,n−1(τ ) − yi,n−2(τ )
∣∣ (t − τ)α−1dτ.

From assumption,

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤ 1 − α

B(α)

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n−1

Ln−1
i ci

+ tα

B(α)Γ (α)

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n−1

Ln−1
i ci

≤
(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci, |t − t0| ≤ h.

The inequality is true for n. Let take n = 1,

∣∣yi,1 (t) − yi,0(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci. (30)

By mathematical induction the inequality is true for all n.

Part 3: While n → ∞,
{
yi,n (t)

}
, for i = 1, 2, . . . 5, converges uniformly to a con-

tinuous function yi on [t0, t0 + h].
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Proof of Part 3: From proof of part 2, we got inequality as below:

∣∣yi,n (t) − yi,n−1(t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci on [t0, t0 + h] . (31)

Let consider right side of equality as

∞∑
n=1

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci. (32)

It is clear that this series converges ıf

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
Li < 1 for i = 1, 2, . . . 5. (33)

Now consider left side of equality as

∞∑
n=1

∣∣yi,n (t) − yi,n−1(t)
∣∣ . (34)

Since ∞∑
n=1

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)n

Ln−1
i ci, (35)

converges then by Weierstrass M-test

∞∑
n=1

∣∣yi,n (t) − yi,n−1(t)
∣∣ , (36)

converges on [t0, t0 + h] .
If it is converges what is the limit of yi? Let us try to answer this question below:
Consider the sequence of partial sum of the above series with Sn(t).

Sn(t) = yi,0 (t) +
n∑

k=1

∣∣yi,k (t) − yi,k−1(t)
∣∣ = yi,n (t) . (37)

Here {Sn(t)} = {
yi,n (t)

}
converges uniformly to a limit function yi on [t0, t0 + h] .

The sequence of functions
{
yi,n (t)

}
defined by the Picard’s iterative scheme con-

verges uniformly to yi on [t0, t0 + h] . From part 1, each yi,n (t) is continuous on
[t0, t0 + h] and hence the limit function yi itself is continuous on [t0, t0 + h] .

Conclusion of part 3:
{
yi,n (t)

} → {yi} for i = 1, 2, . . . 5, on [t0, t0 + h] and yi ∈
C [t0, t0 + h] .
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Part 4: The limit function yi for i = 1, 2, . . . 5, satisfies the complex fractional order
system on the interval [t0, t0 + h] .

Proof of Part 4: Since each
{
yi,n (t)

}
for i = 1, 2, . . . 5, satisfies

∣∣yi,n (t) − yi,0 (t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci, (38)

on the interval [t0, t0 + h]. So we get

∣∣yi (t) − yi,0 (t)
∣∣ ≤

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
ci, (39)

on the interval [t0, t0 + h] for i = 1, 2, . . . 5.We also have yi,n (t) → yi (t) uniformly
converges. We will prove that Ci(t, yi,n(t)) → Ci(t, yi(t)) uniformly on [t0, t0 + h]
for i = 1, 2, . . . 5. If we find that by using Lipschitz argument

∣∣Ci(t, yi,n(t)) → Ci(t, yi(t))
∣∣ ≤ Li

∣∣yi,n(t) − yi(t)
∣∣ . (40)

Let us give the uniform convergence of
{
yi,n (t)

}
as below:

For ∀ε > 0, ∃N (ε) > 0 such that

∣∣yi,n(t) − yi(t)
∣∣ <

ε

Li
, (41)

for ∀n > N (ε). So for ∀n > N (ε)

∣∣Ci(t, yi,n(t)) → Ci(t, yi(t))
∣∣ ≤ Li.

ε

Li
(42)

≤ ε.

This shows Ci(t, yi,n(t)) → Ci(t, yi(t)) uniformly on [t0, t0 + h] for i = 1, 2, . . . 5.
Since Ci(t, yi,n(t) is continuous for each n on [t0, t0 + h] .

So, therefore

yi(t) = lim
n→∞

⎛
⎝

yi,n(t) = yi,0(0) + 1−α
B(α)

Ci(t, yi,n(t))

+ α
B(α)Γ (α)

t∫
0
Ci(τ, yi,n(τ ))(t − τ)α−1dτ

⎞
⎠ , (43)

yi(t) = lim
n→∞yi,n(t) = yi,0(0) + lim

n→∞
1 − α

B(α)
Ci(t, yi,n(t))

+ α

B(α)Γ (α)

t∫

0

lim
n→∞Ci(τ, yi,n(τ ))(t − τ)α−1dτ,
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yi(t) = yi,0(0) + 1 − α

B(α)
Ci(t, yi(t)) (44)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, yi(τ ))(t − τ)α−1dτ,

where yi(t) is limit function of
{
yi,n(t)

}
. From the basic lemma, the function yi,n(t)

satisfies the initial value problem. This proves the existence of a solution of complex
fractional Atangana–Baleanu system in Caputo sense.

Uniqueness of Solution

In this part, we will show the uniqueness of the solutions of the system. Assume that
we have other solution of complex fractional system as xi(t) for i = 1, 2, 3, . . . 5.
Then consider two different integral equations as below:

yi(t) = yi,0(0) + 1 − α

B(α)
Ci(t, yi(t)) (45)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, yi(τ ))(t − τ)α−1dτ,

and

xi(t) = xi,0(0) + 1 − α

B(α)
Ci(t, xi(t)) (46)

+ α

B(α)Γ (α)

t∫

0

Ci(τ, xi(τ ))(t − τ)α−1dτ,

for |t − t0| ≤ h. Then we have

yi(t) − xi(t) = 1 − α

B(α)
(Ci(t, yi(t)) − Ci(t, xi(t))) (47)

+ α

B(α)Γ (α)

t∫

0

(Ci(τ, yi(τ )) − Ci(τ, xi(τ ))) (t − τ)α−1dτ.

Let us put absolute value on both side of above equality and consider Lipschitz
condition, we have the following:

|yi(t) − xi(t)| = 1 − α

B(α)
|(Ci(t, yi(t)) − Ci(t, xi(t)))| (48)

+ α

B(α)Γ (α)

t∫

0

|(Ci(τ, yi(τ )) − Ci(τ, xi(τ )))| (t − τ)α−1dτ,
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|yi(t) − xi(t)| ≤ 1 − α

B(α)
Li |yi(t) − xi(t)| (49)

+ tα

B(α)Γ (α)
Li |yi(t) − xi(t)| .

Then this gives,

|yi(t) − xi(t)|
(
1 −

(
1 − α

B(α)
+ tα

B(α)Γ (α)

)
Li

)
≤ 0. (50)

It is verified with

|yi(t) − xi(t)| = 0 ⇒ yi(t) = xi(t), for i = 1, 2, 3, . . . 5. (51)

So we have that equation has a unique solution.

4 Numerical Scheme

Recently, Toufik and Atangana have developed a novel numerical scheme to solve
some special problems of fractional derivativewith non-local and non-singular kernel
[28]. In their paper, it can be easily seen that their method not only converges quickly
to the exact solutions but also is highly accurate. To explain their method, let us
consider the following non-linear fractional ordinary equation:

{
ABC
0 Dα

t x (t) = f (t, x(t)),
x(0) = x0.

(52)

This initial value problem is equivalent to fractional integral as below:

x(t) − x(0) = 1 − α

B(α)
f (t, x(t)) + α

B(α)Γ (α)

t∫

0

f (y, x(y))(t − y)α−1dy. (53)

At a given point t = tn+1, n = 0, 1, 2, . . . the above integral equation is written as

x(tn+1) − x(0) = 1 − α

B(α)
f (tn, x(tn)) + α

B(α)Γ (α)

tn+1∫

0

f (y, x(y))(tn+1 − y)α−1dy.

(54)
If we consider f (y, x(y)) via two-step Lagrange polynomial interpolation, the fol-
lowing expression will be obtained in the interval [tk , tk+1].
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pk(y) = f (y, x(y)) (55)

= y − tk−1

tk − tk−1
f (tk , x(tk)) − y − tk

tk − tk−1
f (tk−1, x(tk−1))

= f (tk , x(tk))

h
(y − tk−1) − f (tk−1, x(tk−1))

h
(y − tk)

� f (tk , xk)

h
(y − tk−1) − f (tk−1, xk−1)

h
(y − tk) .

If we put the above expression in where f (y, x(y)), then we have

xn+1 = x0 + 1 − α

B(α)
f (tn, x(tn)) (56)

+ α

B(α)Γ (α)

n∑
k=0

⎛
⎜⎜⎜⎝

f (tk ,xk )
h

tk+1∫
tk

(y − tk−1)(tn+1 − y)α−1dy

− f (tk−1,xk−1)

h

tk+1∫
tk

(y − tk) (tn+1 − y)α−1dy

⎞
⎟⎟⎟⎠ .

After calculating the integral expression in the above sum, we have the following
equality,

xn+1 = x0 + 1 − α

B(α)
f (tn, x(tn)) (57)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hα f (tk ,xk )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hα f (tk−1,xk−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ Rα
n ,

where Rα
n is the remainder term that is given by

Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫

tk

(y − tk) (y − tk−1)

2! (58)

.
∂2

∂y2
[
f (y, x(y))

]
y=εy

(tn+1 − y)α−1 dy.

The upper boundary of the error has been provided in their paper [4].
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4.1 Numerical Scheme for a Complex Fractional Order
System

Let us consider the complex fractional order system (6). We saw that by applying on
both sides, the Atangana–Baleanu fractional integral model can be written with Ci,

i = 1, 2, 3, 4 kernels as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 (t) = y1,0(0) + 1−α
B(α)

C1(t, y1(t)) + α
B(α)Γ (α)

t∫
0
C1(τ, y1(τ ))(t − τ)α−1dτ,

y2 (t) = y2,0(0) + 1−α
B(α)

C2(t, y2(t)) + α
B(α)Γ (α)

t∫
0
C2(τ, y2(τ ))(t − τ)α−1dτ,

y3 (t) = y3,0(0) + 1−α
B(α)

C3(t, y3(t)) + α
B(α)Γ (α)

t∫
0
C3(τ, y3(τ ))(t − τ)α−1dτ,

y4 (t) = y4,0(0) + 1−α
B(α)

C4(t, y4(t)) + α
B(α)Γ (α)

t∫
0
C4(τ, y4(τ ))(t − τ)α−1dτ,

y5 (t) = y5,0(0) + 1−α
B(α)

C5(t, y5(t)) + α
B(α)Γ (α)

t∫
0
C5(τ, y5(τ ))(t − τ)α−1dτ,

(59)
with initial conditions

y1,0(0) = 0, y2,0(0) = 0, y3,0(0) = 0,
y4,0(0) = 0, y5,0(0) = 0.

(60)

Now we can apply new numerical scheme for the system above at a given point
t = tn+1.

y1,n+1 = y1,0 + 1 − α

B(α)
C1(tn, y1(tn)) (61)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC1(tk ,y1,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC1(tk−1,y1,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 1R
α

n ,

y2,n+1 = y2,0 + 1 − α

B(α)
C2(tn, y2(tn)) (62)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC2(tk ,y2,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC2(tk−1,y2,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 2R
α

n ,
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y3,n+1 = y3,0 + 1 − α

B(α)
C3(tn, y3(tn)) (63)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC3(tk ,y3,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC3(tk−1,y3,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 3R
α

n ,

y4,n+1 = y4,0 + 1 − α

B(α)
C4(tn, y4(tn)) (64)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC4(tk ,y4,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC4(tk−1,y4,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 4R
α

n ,

y5,n+1 = y5,0 + 1 − α

B(α)
C5(tn, y5(tn)) (65)

+ α

B(α)

n∑
k=0

⎛
⎜⎜⎝

hαC5(tk ,y5,k )
Γ (α+2)

(
(n + 1 − k)α (n − k + 2 + α)

− (n − k)α (n − k + 2 + 2α)

)

− hαC5(tk−1,y5,k−1)

Γ (α+2)

(
(n + 1 − k)α+1

− (n − k)α (n − k + 1 + α)

)
⎞
⎟⎟⎠

+ 5R
α

n ,

where iRα
n , i = 1, 2, 3, 4, 5 are remainder terms given as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C1(τ, y1(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

2Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C2(τ, y2(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

3Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C3(τ, y3(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

4Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C4(τ, y4(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ,

5Rα
n = α

B(α)Γ (α)

n∑
k=0

tk−1∫
tk

(τ−tk )(τ−tk−1)

2!
∂2

∂τ 2

[
C5(τ, y5(τ ))

]
τ=ετ

(tn+1 − τ)α−1 dτ.

(66)
Using the numerical scheme of (60)–(65) we obtain the following numerical simu-
lations. We give these simulations in Figs. 1, 2, 3 and 4 for different values of alpha.
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Fig. 1 Numerical solution for α = 0.15. and numerical solution for α = 0.45, respectively

Fig. 2 Numerical solution for α = 0.85. and numerical solution for α = 1, respectively

Fig. 3 Chaotic attractor in y1, y2, y3 for α = 0.45 and Chaotic attractor in y1, y2, y3 for α = 0.85,
respectively
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Fig. 4 Chaotic attractor in y1, y2, y3 forα = 1 andChaotic attractor in y1, y2 forα = 1, respectively

5 Conclusion

To include into mathematical formulation the Markovian and non-Markovian pro-
cesses to a complex system describing chaotic behavior, we replaced the time deriva-
tive based on the concept of rate of change with that with nonlocal and non-singular
kernel. A detailed analysis of existence using the Picard’s method and the connec-
tion of the Banach space with contraction operator to establish the uniqueness of
the exact solution was developed. Very recently, a new numerical method was sug-
gested, combining the fundamental theorem of fractional calculus and the Lagrange
interpolation formulation. The method was found to be efficient than the well-known
Adams–Bashforth as the method is fast, accurate and friendly user. We use this new
numerical scheme to solve numerically themodifiedmodel and present the numerical
simulations.
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On the Chaotic Pole of Attraction with
Nonlocal and Nonsingular Operators
in Neurobiology

Emile F. Doungmo Goufo, Abdon Atangana and Melusi Khumalo

Abstract Until the neurologists J.L. Hindmarsh and R.M. Rose improved the
Hodgkin–Huxley model to provide a better understanding on the diversity of neu-
ral response, features like pole of attraction unfolding complex bifurcation for the
membrane potential was still a mystery. This work explores the possible existence of
chaotic poles of attraction in the dynamics of Hindmarsh–Rose neurons with exter-
nal current input. Combining with fractional differentiation, the model is generalized
with introduction of an additional parameter, the non-integer order of the derivative
σ and solved numerically thanks to the Haar Wavelets. Numerical simulations of the
membrane potential dynamic show that in the standard case the control parameter is
σ = 1, the nerve cell’s behavior seems irregular with a pole of attraction generating
a limit cycle. This irregularity accentuates as σ decreases (σ = 0.8 and σ = 0.5)
with the pole of attraction becoming chaotic.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative ·
Hindmarsh Rose neuron

1 Introduction to the Model

A considerable progress on improving the understanding of nerve cells’ functions
has been successfully achieved during the recent past decades. Living beings’ ner-
vous system is made of various type of cells with the nerve cells seen as the most
remarkable ones called neurons. A typical neuron, as depicted in Fig. 1, comprises
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an axon that extends the cell body to the terminal branches and dendrites. This cell
internal connection is very significant, especially in the transmission of information
both internally to the said cell and externally to other nerve cells. Transmission of an
electrical or chemical signal from a neuron to another is made possible via a structure
called synapses.

Literature on neurophysiology is well documented thanks to works like [1–6].
However, it was also essential tomathematically study the neuronal activities in order
to assess the spiking and bursting behavior of nerve cell’s components like the mem-
brane potential observed in some experiments involving a neuron. In thatmomentum,
pioneers like Hodgkin and Huxley [7, 8], two renowned neurophysiologists, started
by developing an empirical kinetic description of ionic mechanisms in a nerve cell.
This yielded the Hodgkin–Huxley mathematical model, a set of non-linear differen-
tial equations based on conductance and that describes the initiation and propagation
of action potentials in nerve cells. This model was eventually improved by two other
scientists, Hindmarsh and Rose [9] who simplified themodel of Hodgkin and Huxley
and proposed the Hindmarsh–Rose (HR) neuron model of Fitzhugh–Nagumo type
where they substituted some variables by constants and established the relations be-
tween those various unknowns. Hindmarsh and Rose proposed a system of two (2D)
and three (3D) non-linear first order differential equations that also study the spiking
and bursting dynamic of the neuron membrane potential while taking into account
the dynamics of ions across the membrane via the ion channels.

Let us recall that the main reason why the HR neuron model was established is
to be able to reproduce bursting behavior of nerve cells. On the other hand, recently
during experimentation on single rat neocortical pyramidal nerve cells [10], it was
observed that the firing rate of adaptation multiple time-scales is consistent even
for generalized models with fractional-order differentiation, and that HR neuron
models expressed with both integer and non-integer derivative order can successfully
exhibit bursting dynamics as well. Therefore, our prime objective is this work is to
investigate the dynamics of the 2D and 3D-generalized HR neuron model where we
have considered an additional parameter on top of other well known parameters of
the HR neuron model, including the external current I ext.

One main goal of this chapter is to study the dynamic of the HR neuron that is
usually expressed by a system of 3D nonlinear differential equations and expressed
in its general form by

⎧
⎨

⎩

ABC Dσ
t x(t) = I e + y − ax3 + bx2 − z,

ABC Dσ
t y(t) = c − dx2 − y,

ABC Dσ
t z(t) = η1[η2(x − xr ) − z],

(1)

where I e represents the the external current input while the system state x = x(t)
plays the role of the membrane potential, y = y(t) plays the role of a recovery
variable linked to the fast current of Na+ or K+ ions, and z = z(t) represents the
adaptation current related to the slow current of Ca2+ ion. Moreover, the parameters
a, b, c, d, η1, η2, xr are real numbers. The term ABC Dσ

t represents the Atangana–
Baleanu fractional derivative of order σ, with 0, σ ≤ 1 that will be comprehensively
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Fig. 1 Representation of theHRneuron dynamic (15)–(16) forα = γ = 1, δ = −1 and the control
parameters at a = c = 1, b = 3.1, d = 4, η1 = 65 × 10−3, η2 = 5, xr = −3/2, and, I e =
2.6, with σ = 1. The HR neuron behavior seems regular and simply periodic

defined in the next section. Knowing that

ABC D1
t u(t) ∼ du(t)

dt
, (2)

then, forσ = 1 themodel (1) obviously reduces to the standardwell-knowHindmarsh
Rose neurons with external current input given by the 3D non-linear differential
equations
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⎧
⎨

⎩

dx(t)
dt = I e + y − ax3 + bx2 − z,

dy(t)
dt = c − dx2 − y,

dz(t)
dt = η1[η2(x − xr ) − z].

(3)

Each parameter in the system has a biological meaning and plays a specific role.
For example, I e incarnates the membrane input current for nerve cells while the
switch between bursting process and spiking is controlled by the parameter b which
also regulates the spiking frequency. The slow variable symbolized by z in model (1)
has a speed regulated by η1 (It controls how efficiently slow routes exchange ions).
Parameter η2 is most concerned about adaptation for the system. This means one unit
of η2 (η2 = 1) symbolizes spiking process without accommodation and subthreshold
adaptation, while an increasing value of η2 (η2 = 4 for instance) provides a strong
accommodation and subthreshold overshoot, or even oscillations. Lastly the variable
xr stands for the resting potential of the whole system. Recall that the model (3) has
been comprehensively analysed in numerous works [11–16].

For instance, the authors in [11] successfully study a plethora of chaotic phenom-
ena in the HR neuron model using various computational techniques including the
bifurcation parameter continuation and spike-quantification. In the work [14] was
presented an adaptive neural network based sliding mode control for unidirectional
synchronization of HR neurons in a master-slave configuration. The authors first es-
tablished the dynamics of single HR neuron and thereafter formulated the problem.
The fractional-order HR neuronal model was investigated in [13], in this paper the
authors proved some useful results related to different chaotic and periodic firing
modes as the fractional order changes. The model (1) can appear to be tough and
hard to analyze due to the type of nonlinearity it shows as well as the external fac-
tor. Hence, to seize its dynamic, we first use the Haar wavelet numerical method to
approximate it in its general form and provide simulations for some particular cases.

2 Some Definitions on the Non-integer Order Derivatives

The concept of derivative with fractional order has been used intensively these last
decades to enhance, generalize and investigate non-linear mathematical models that
describe real life phenomena [17–39]. This was possible thanks to various definitions
of fractional derivatives that have never stopped growing. The version used in the
analysis of this paper is the Atangana–Baleanu fractional derivative born alongside
with the following fractional integral of order σ

I σu(t) = σ

W (σ )Γ (σ )

∫ t

0
(t − τ)σ−1u(τ )dτ + 1 − σ

W (σ )
u(t), (4)

that is based on Euler transform when applied to analytic function and Cauchy’s
formula for calculating iterated integrals. Hence, the Atangana–Baleanu fractional
derivative of order σ is defined for any t > 0 as
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ABC Dσ
t u(t) = W (σ )

(1 − σ)

∫ t

0
u̇(τ ) Eσ

[

−σ(t − τ)σ

1 − σ

]

dτ, (5)

with the derivative order σ ∈ [0, 1] andwhereW (σ ) defines a normalization function
such that

W (0) = W (1) = 1, (6)

where the function g that is from the first order Sobolev space

H 1(a, e) = {g : g, dg

dt
∈ L2(a, e)}. (7)

Before continuing let us at least mention some other versions of fractional deriva-
tive that piles up in the related literature. The list includes the oldest version that is the
Riemann–Liouville derivative andmore recently, the Caputo–Fabrizio derivative, the
new Riemann–Liouville fractional derivative, the one and two-parameter derivatives
with non-local and non-singular kernel. For more details on old and recent develop-
ments in fractional calculus, please refer to the works [17–20, 45–48] and also to the
references therein.

3 Generalities on the Haar Wavelets Method for Non-linear
Differential Equations

The Haar wavelet function h(t) defined on the set of real numbers R is given by
[40–42]

h(t) =
⎧
⎨

⎩

1, for 0 ≤ t < 1/2;
−1, for 1/2 < t ≤ 1;
0, elsewhere.

(8)

We can define the family

Hi (t) =
{
2

j
2 h(2 j t − l), for i = 1, 2, . . . ;

1, for i = 0,
(9)

for each i = 0, 1, 2, 3, . . . with t ∈ [0, 1), and knowing that each i = 0, 1, 2, . . . can
be expressed into the form i = 2 j + l with j = 0, 1, 2, . . . and l = 0, 1, 2, . . . , 2 j −
1. Hence, this yields the following result: {Hi (t)}∞i=0 forms a complete orthonormal
system in the Banach space of square-integrable function L2[0, 1). Furthermore,
by taking s in the Banach space of continuous functions C[0, 1) then, the series∑∞

i=0〈s,Hi 〉Hi converges uniformly to s with 〈s,Hi 〉 = ∫∞
0 s(t)Hi (t)dt. The same

function s can be expanded to become
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s(t) =
∞∑

i=0

AiHi (t),

where Ai = 〈s,Hi 〉. For reasons of practicability, the approximated solution reads
as

s(t) ≈ sl(t) =
l−1∑

i=0

AiHi (t),

where l ∈ {2 j : j = 0, 1, 2, . . .}.
Let e ∈ N, we can now use the Haar function translation on [0, e) to provide the

following definition:

Hr,i (t) = Hi (t − r + 1) r = 1, 2, . . . , e and i = 0, 1, 2, . . . , (10)

where Hi is given by (9). Obviously all the properties that are satisfied by Hi also
hold for Hr,i . Namely, the family {Hr,i (t)}∞i=0, (r = 1, 2, . . . , e) also forms a com-
plete orthonormal system in the Banach space of square-integrable function L2[0, e).
Hence it is also possible to exploit the following Haar orthonormal basis functions

Ar,i = 〈s,Hr,i 〉 =
∫ ∞

0
s(t)Hr,i (t)dt,

to expand the solution s ∈ L2[0, e) as the series

s(t) =
e∑

r=1

∞∑

i=0

Ar,iHr,i (t). (11)

In the same way and for reasons of simplicity, the approximated solution is given by

s(t) ≈ sl(t) =
e∑

r=1

l−1∑

i=0

Ar,iHr,i (t), (12)

where l ∈ {2 j : j = 0, 1, 2, . . .}. Solution (12) can be expressed into the compact
form

s(t) ≈ sl(t) = (ϕel×1)
Thel×1, (13)

with T symbol of the transpose vector so that (ϕel×1)
T is the vector given by

(ϕel×1)
T = (

A1,0, . . . , A1,l−1, A2,0, . . . , A2,l−1, . . . , Ae,0, . . . , Ae,l−1
)
,

and

hel×1 = (
H1,0, . . . ,H1,l−1,H2,0, . . . ,H2,l−1, . . . ,He,0, . . . ,He,l−1

)T
.
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4 Haar Wavelets Numerical Method for the System (1)

In this section, a comprehensive solvability of the model (1) is conducted. Let us first
define the system states variable

s(t) = (x(t), y(t), z(t))T ,

and
W0(x, y, z) = s(0) = (x(0), y(0), z(0))T .

Setting
x(0) = α, y(0) = δ and z(0) = γ,

and the matrix operator

M(s(t), t) = M(x(t), y(t), z(t), t),

= (M1(s(t), t), M2(s(t), t), M3(s(t), t))T ,

= (M1(x(t), y(t), z(t), t), M2(x(t), y(t), z(t), t), M3(x(t), y(t), z(t), t))
T ,

(14)

where
⎧
⎨

⎩

M1(s(t), t) = I e + x2(b − ax) + y − z,
M2(s(t), t) = c − dx2 − y,
M3(s(t), t) = ηx − ηxr − η1z.

We can now use those notations to express in a compact form the model (1)
equivalently written as

⎧
⎨

⎩

ABC Dσ
t x(t) = I e + x2(b − ax) + y − z,

ABC Dσ
t y(t) = c − dx2 − y,

ABC Dσ
t z(t) = ηx − ηxr − η1z,

(15)

with η = η1η2 and assumed to satisfy the following initial conditions

x(0) = α(x), y(0) = δ(y), z(0) = γ (z). (16)

Hence, the compact form of (15) is given by

ABC Dσ
t s(t) = M(s(t), t),

which is also expressed by

ABC Dσ
t x(t) = M1(s(t), t),

ABC Dσ
t y(t) = M2(s(t), t),

ABC Dσ
t z(t) = M3(s(t), t),

(17)
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and assumed to verify the initial conditions

x(0) = α(x), y(0) = δ(y), z(0) = γ (z). (18)

Approximating the Atangana–Baleanu fractional model (17)–(18) using Haar
wavelets numerical scheme given in (13) leads to the system

ABC Dσ
t x(t) = M1(s(t), t) ≈ ABC Dσ

t xl(t) =T ϕ1
el×1hel×1,

ABC Dσ
t y(t) = M2(s(t), t) ≈ ABC Dσ

t yl(t) =T ϕ2
el×1hel×1,

ABC Dσ
t z(t) = M3(s(t), t) ≈ ABC Dσ

t zl(t) =T ϕ3
el×1hel×1.

(19)

To obtain the solution we apply the Riemann–Liouville fractional integral (4) on
both side of each equation of (19) which gives

x(t) − α ≈ ABC Dσ
t xl(t) =T ϕ1

el×1F
σ
el×elhel×1,

y(t) − δ ≈ ABC Dσ
t yl(t) =T ϕ2

el×1F
σ
el×elhel×1,

z(t) − γ ≈ ABC Dσ
t zl(t) =T ϕ3

el×1F
σ
el×elhel×1,

(20)

also expressed by

x(t) ≈ xl(t) =T ϕ1
el×1F

σ
el×elhel×1 + α,

y(t) ≈ yl(t) =T ϕ2
el×1F

σ
el×elhel×1 + δ,

z(t) ≈ zl(t) =T ϕ3
el×1F

σ
el×elhel×1 + γ,

(21)

where Fσ
el×el defines the haar wavelets fractional operational matrix as developed

in the works [40, 41]. The next step is to exploit the Galerkin’s method based on
collocation points, to be able to solve the model (15)–(16). For that, we substi-
tute the approximated systems (19) and (21) into (15) and the three residual errors
err1, err2, err3 caused by such a substitution are obviously strongly dependent on
Haar orthonormal basis functions Ar,i . They all read as

err1
(
κ1, κ2, κ3, t

)

=T ϕ1
el×1hel×1 − M1

(
Tϕ1

el×1F
σ
el×elhel×1,

T ϕ2
el×1F

σ
el×elhel×1,

T ϕ3
el×1F

σ
el×elhel×1, t

)
,

err2
(
κ1, κ2, κ3, t

)

=T ϕ2
el×1hel×1 − M2

(
Tϕ1

el×1F
σ
el×elhel×1,

T ϕ2
el×1F

σ
el×elhel×1,

T ϕ3
el×1F

σ
el×elhel×1, t

)
,

err3
(
κ1, κ2, κ3, t

)

=T ϕ3
el×1hel×1 − M3

(
Tϕ1

el×1F
σ
el×elhel×1,

T ϕ2
el×1F

σ
el×elhel×1,

T ϕ3
el×1F

σ
el×elhel×1, t

)
,

(22)
where

κ1 = A1
1,0, . . . , A

1
1,l−1, . . . , A

1
e,0, . . . , A

1
e,l−1,
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κ2 = A2
1,0, . . . , A

2
1,l−1, . . . , A

2
e,0, . . . , A

2
e,l−1,

κ3 = A3
1,0, . . . , A

3
1,l−1, . . . , A

3
e,0, . . . , A

3
e,l−1,

and Ai·,· represents the i th components of (ϕi·×·)T .

Assuming that
err1

(
κ1, κ2, κ3, tr,i

) = 0,

err2
(
κ1, κ2, κ3, tr,i

) = 0,

err3
(
κ1, κ2, κ3, tr,i

) = 0,

where

tr,i = 2i − 1

2l
+ r − 1, r = 1, 2, . . . , e; i = 1, 2, . . . , l,

represent a e × l number of collocation points, this leaves us with a system of 3e × l
equations, with 3e × l unknowns defined by

A1
1,0, . . . , A

1
1,l−1, . . . , A

1
e,0, . . . , A

1
e,l−1,

A2
1,0, . . . , A

2
1,l−1, . . . , A

2
e,0, . . . , A

2
e,l−1,

A3
1,0, . . . , A

3
1,l−1, . . . , A

3
e,0, . . . , A

3
e,l−1.

Therefore, we easily obtain these unknowns and after substituting them into (21),
we obtain the desired approximation for the solution

s(t) ≈ (xl(t), yl(t), zl(t))
T .

5 Error Analysis and Convergence for the Numerical
Approximation by Haar Wavelets Method

Before visualizing the dynamic of solutions to our HR neuron model (15)–(16),
especially the dynamic of the membrane potential x, we have to address the conver-
gence of the Haar wavelets method used here above. We proceed by error analysis
method and aim to obtain here exact error bounds that were used in the mathematical
process. With the assumption that s ∈ L2[0, e), we can also consider x ∈ L2[0, e),
y ∈ L2[0, e) and z ∈ L2[0, e) and define

‖s‖2 = (‖x‖2L2 + ‖y‖2L2 + ‖z‖2L2

)1/2
, (23)
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which is evidently a norm with

‖x‖L2 =
(∫ e

0
|x(t)|2dt

)1/2
, ‖y‖L2 =

(∫ e

0
|y(t)|2dt

)1/2
, ‖z‖L2 =

(∫ e

0
|z(t)|2dt

)1/2
.

This norm (23) is essential here since its makes easy the use of some properties
related to the Sobolev space H 1 that is first considered in our analysis. Hence, we can
now give and prove that the following Theorem showing the desired convergence
result, particularly for functions x, y and z belonging to the Sobolev space H 1[0, e).

Theorem 1 Let 0 ≤ σ ≤ 1 and assume that x ∈ H 1[0, e), y ∈ H 1[0, e) and z ∈
H 1[0, e). Assuming that the approximation ABC Dσ

t sl(t) 
 ABC Dσ
t s(t) holds and

was obtained thanks to Haar wavelet approximation schemes defined above then,
the resulting exact upper bound is given by:

‖ABC Dσ
t s(t) − ABC Dσ

t sl(t)‖2 ≤ גג
−1
σ

√
3

W (σ )Γ (1 − σ)
, (24)

where ג is a real nonnegative numberand ג
−1
σ = 2

3
2 −σ

(1−σ)

e

√(
(1−l(1−σ))
22σ−1−1 + (1−l2(1−σ))

22σ−1−2

)
.

Proof Making use of (12) and (13), we may consider, as done in (21), that the
Atangana–Baleanu derivative ABC Dσ

t sl(t) of fractional order σ represents an ap-
proximation ABC Dσ

t s(t) given by

ABC Dσ
t s(t) ≈ ABC Dσ

t sl(t) =
e∑

r=1

l−1∑

i=0

Ar,iHr,i (t),

also written as

(
ABC Dσ

t xl (t),
ABC Dσ

t yl (t),
ABC Dσ

t yl (t)
)T = ABC Dσ

t sl (t),

=
e∑

r=1

l−1∑

i=0

Ar,iHr,i (t),

=
⎛

⎝
e∑

r=1

l−1∑

i=0

A1r,iHr,i (t),
e∑

r=1

l−1∑

i=0

A2r,iHr,i (t),

e∑

r=1

l−1∑

i=0

A3r,iHr,i (t)

⎞

⎠

T

,

where l ∈ {2 j : j = 0, 1, 2, . . .} and Ar,i = 〈ABC Dσ
t sl ,Hr,i 〉e = ∫ e

0
ABC Dσ

t sl(t)Hr,i

(t)dt,

A1
r,i = 〈ABC Dσ

t xl ,Hr,i 〉e =
∫ e

0

ABC Dσ
t xl(t)Hr,i (t)dt,
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A2
r,i = 〈ABC Dσ

t yl ,Hr,i 〉e =
∫ e

0

ABC Dσ
t yl(t)Hr,i (t)dt, (25)

A3
r,i = 〈ABC Dσ

t zl,Hr,i 〉e =
∫ e

0

ABC Dσ
t zl(t)Hr,i (t)dt.

Then,

ABC Dσ
t s(t) − ABC Dσ

t sl (t) =
e∑

r=1

∞∑

i=l

Ar,iHr,i (t),

=
e∑

r=1

∞∑

i=2 j

Ar,iHr,i (t) j = 0, 1, 2, . . . ,

=
⎛

⎝
e∑

r=1

∞∑

i=2 j

A1r,iHr,i (t),
e∑

r=1

∞∑

i=2 j

A2r,iHr,i (t),
e∑

r=1

∞∑

i=2 j

A3r,iHr,i (t)

⎞

⎠

T

,

(26)
with j = 0, 1, 2, . . . . From (23) and exploiting the haar wavelet expression (26) we
have

‖ABC Dσ
t s(t) − ABC Dσ

t sl (t)‖2

=
√(

‖ABC Dσ
t x − ABC Dσ

t xl ‖2L2 + ‖ABC Dσ
t y − ABC Dσ

t yl ‖2L2 + ‖ABC Dσ
t z − ABC Dσ

t zl ‖2L2
)

,

=
√(∫ e

0
|ABC Dσ

t x(t) − ABC Dσ
t xl (t)|2dt +

∫ e

0
|ABC Dσ

t y(t) − ABC Dσ
t yl (t)|2dt +

∫ e

0
|ABC Dσ

t z(t) − ABC Dσ
t zl (t)|2dt

)

,

=

√
√
√
√
√
√

⎛

⎜
⎝

∫ e

0

∣
∣
∣
∣
∣
∣

e∑

r=1

∞∑

i=l

A1r,iHr,i (t)

∣
∣
∣
∣
∣
∣

2

dt +
∫ e

0

∣
∣
∣
∣
∣
∣

e∑

r=1

∞∑

i=l

A2r,iHr,i (t)

∣
∣
∣
∣
∣
∣

2

dt +
∫ e

0

∣
∣
∣
∣
∣
∣

e∑

r=1

∞∑

i=l

A3r,iHr,i (t)

∣
∣
∣
∣
∣
∣

2

dt

⎞

⎟
⎠.

(27)
Recall as we mentioned in Sect. 3 that the sequence {Hi (t)}∞i=0 forms a complete
orthonormal system on L2[0, e), and this means that the following equality holds:∫ e
0 hel(t)Thel(t)dt = Jel (identity matrix). Hence exploiting that property together
with Fubini–Tonelli theorem for positive functions [43, 44] and knowing that l can
be written as the form of powers of 2 ( l ∈ {2 j : j = 0, 1, 2, . . .}) all lead to

‖ABC Dσ
t s(t) − ABC Dσ

t sl (t)‖2

≤

√
√
√
√
√
√

⎛

⎜
⎝

e∑

r=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ e

0

∣
∣
∣A1r,iHr,i (t)

∣
∣
∣
2
dt +

e∑

r=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ e

0

∣
∣
∣A2r,iHr,i (t)

∣
∣
∣
2
dt +

e∑

r=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ e

0

∣
∣
∣A3r,iHr,i (t)

∣
∣
∣
2
dt

⎞

⎟
⎠,

≤

√
√
√
√
√
√

⎛

⎜
⎝

e∑

r=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ e

0

∣
∣
∣A1r,i

∣
∣
∣
2
dt +

e∑

r=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ e

0

∣
∣
∣A2r,i

∣
∣
∣
2
dt +

e∑

r=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ e

0

∣
∣
∣A3r,i

∣
∣
∣
2
dt

⎞

⎟
⎠,

(28)
where the coefficients Aq

r,i , q = 1, 2, 3 are defined by (25). The calculation of each
Aq
r,i is now possible at this stage thanks to (25) and the definitions (9) and (10) of

Hr,i . Therefore we obtain
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A1
r,i = 2 j/2

⎛

⎜
⎜
⎜
⎝

l+ 1
2

2 j
−1+r
∫

l
2 j

−1+r

ABC Dσ
t x(t)dt −

l+1
2 j

−1+r
∫

l+ 1
2

2 j
−1+r

ABC Dσ
t x(t)dt

⎞

⎟
⎟
⎟
⎠

,

A2
r,i = 2 j/2

⎛

⎜
⎜
⎜
⎜
⎝

l+ 1
2

2 j
−1+r
∫

l
2 j

−1+r

ABC Dσ
t y(t)dt −

l+1
2 j

−1+r
∫

l+ 1
2

2 j
−1+r

ABC Dσ
t y(t)dt

⎞

⎟
⎟
⎟
⎟
⎠

, (29)

A3
r,i = 2 j/2

⎛

⎜
⎜
⎜
⎜
⎝

l+ 1
2

2 j
−1+r
∫

l
2 j

−1+r

ABC Dσ
t z(t)dt −

l+1
2 j

−1+r
∫

l+ 1
2

2 j
−1+r

ABC Dσ
t z(t)dt

⎞

⎟
⎟
⎟
⎟
⎠

.

We now make use of the Mean value theorem for definite integrals, to state the existence of two

times Tx ∈
(

l
2 j − 1 + r,

l+ 1
2

2 j − 1 + r

)

and T̃x ∈
(

l+ 1
2

2 j − 1 + r, l+1
2 j − 1 + r

)

so that

A1
r,i = (

√
2) j

(
1

2 j+1
ABC Dσ

t x(Tx )dt − 1

2 j+1
ABC Dσ

t x(T̃x )dt

)

,

= 2
−
(

j
2 +1

) (
ABC Dσ

t x(Tx )dt − ABC Dσ
t x(T̃x )dt

)
.

(30)

The definition (5) of Atangana–Baleanu derivative substituted into the later equation implies that

∣
∣
∣A1

r,i

∣
∣
∣ = 2

−
(

j
2 +1

) ∣
∣
∣
ABC Dσ

t x(Tx )dt − ABC Dσ
t x(T̃x )dt

∣
∣
∣ ,

=2
−
(

j
2 +1

)
1

W (σ )Γ (1 − σ)

∣
∣
∣
∣
∣

∫ Tx

0
(Tx − ξ)−σ dx (ξ)

dξ
dξ −

∫ T̃x

0

(
T̃x − ξ

)−σ dx (ξ)

dξ
dξ

∣
∣
∣
∣
∣
.

Under the assumption that x ∈ H1[0, e) hence, there exists a non-negative constant xג such that
‖ẋ (ξ) ‖ ≤ xג for all ξ ∈ (0, Tx ) and ξ ∈ (0, T̃x ). This yields

∣
∣
∣A1

r,i

∣
∣
∣ ≤ x2ג

−
(

j
2 +1

)
1

W (σ )Γ (1 − σ)

∣
∣
∣
∣
∣

∫ Tx

0
(Tx − ξ)−σ dξ −

∫ T̃x

0

(
T̃x − ξ

)−σ
dξ

∣
∣
∣
∣
∣
.

Integrating and simplifying finally leave us with

∣
∣
∣A1

r,i

∣
∣
∣ ≤ x2ג

−
(

j
2 +1

)

(1 − σ)W (σ )Γ (1 − σ)

∣
∣
∣Tx

(1−σ) − (T̃x )
(1−σ)

∣
∣
∣

≤ x2ג
−
(

j
2 +1

)

(1 − σ)W (σ )Γ (1 − σ)
2 j (1−σ),

(31)
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where the facts that 0 ≤ σ ≤ 1, Tx ∈
(

l
2 j − 1 + r,

l+ 1
2

2 j − 1 + r

)

and T̃x ∈
(

l+ 1
2

2 j − 1 + r, l+1
2 j − 1 + r

)

have been used.

We can proceed in the same manner as above, for the variables y and z to easily show that there
also exist two non-negative constants yג and zג such that

∣
∣
∣A2

r,i

∣
∣
∣ ≤ y2ג

−
(

j
2 +1

)

(1 − σ)W (σ )Γ (1 − σ)
2 j (1−σ), (32)

and
∣
∣
∣A3

r,i

∣
∣
∣ ≤ z2ג

−
(

j
2 +1

)

(1 − σ)W (σ )Γ (1 − σ)
2 j (1−σ). (33)

We now choose ג to be ג = max(גx , yג , .(zג Substituting (31)–(33) into (28) leaves us with

‖ABC Dσ
t s(t) − ABC Dσ

t sl (t)‖2 ≤

√
√
√
√
√

⎛

⎝
3e2ג

4(W (σ )Γ (1 − σ))2(1 − σ)2

e∑

r=1

∞∑

j=0

2 j+1
∑

i=2 j

22 j (1−σ)

2 j

⎞

⎠,

≤
√
√
√
√

(
3e22ג

4(W (σ )Γ (1 − σ))2(1 − σ)2

(
22σ l(1−σ) − 22σ

2 − 22σ
+ 22σ l2(1−σ) − 22σ

4 − 22σ

))

,

≤ eג

2(W (σ )Γ (1 − σ))(1 − σ)

√
√
√
√

(
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22σ
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)

2 − 22σ
+ 3

22σ
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l2(1−σ) − 1

)

4 − 22σ
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,

≤ ג

W (σ )Γ (1 − σ)
· 2

3
2−σ e

√
3

(1 − σ)

√
√
√
√

((
1 − l(1−σ)

)

22σ−1 − 1
+
(
1 − l2(1−σ)

)

22σ−1 − 2

)

.

(34)
and the proof of the theorem is complete.

We may have the cases where all the conditions of the aforementioned Theorem 1
are not satisfied, especially those related to the variable functions x, y and z. For in-
stance wemight have x /∈ H 1[0, e), y /∈ H 1[0, e) and z /∈ H 1[0, e). In this situation,
the conditions x ∈ L2[0, e), y ∈ L2[0, e) and z ∈ L2[0, e) only are not enough to
prove the Theorem 1 here above. This is essentially due to the interval [0, e) that is
not closed and will have consequence that variable functions x, y and z together with
their respective first order derivatives dx(t)

dt , dy(t)
dt and dz(t)

dt might not be bounded nor
attain their bounds on the real interval [0, e). Thus, the proof of following Corollary
has just been done.

Corollary 1 Let 0 ≤ σ ≤ 1. Consider that the variable functions x ∈ L2[0, e),
y ∈ L2[0, e), z ∈ L2[0, e) and their respective first order derivatives dx(t)

dt , dy(t)
dt

and dz(t)
dt are continuous and bounded on [0, e). Assuming that the approximation

ABC Dσ
t sl(t) 
 ABC Dσ

t s(t) holds and was obtained thanks to Haar wavelet approx-
imation schemes defined above then, the resulting exact upper bound is given by:
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Fig. 2 Representation of theHRneuron dynamic (15)–(16) forα = γ = 1, δ = −1 and the control
parameters at a = c = 1, b = 3.1, d = 4, η1 = 65 × 10−3, η2 = 5, xr = −3/2, and, I e =
2.6, with σ = 0.8. The HR neuron behavior seems irregular with a pole of attraction that generates
a limit cycle

‖ABC Dσ
t s(t) − ABC Dσ

t sl(t)‖2 ≤ גג
−1
σ

√
3

W (σ )Γ (1 − σ)
, (35)

where ג is a real nonnegative numberand ג
−1
σ = 2

3
2 −σ

(1−σ)

e

√(
(1−l(1−σ))
22σ−1−1 + (1−l2(1−σ))

22σ−1−2

)
.
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Fig. 3 Representation of theHRneuron dynamic (15)–(16) forα = γ = 1, δ = −1 and the control
parameters at a = c = 1, b = 3.1, d = 4, η1 = 65 × 10−3, η2 = 5, xr = −3/2, and, I e =
2.6, with σ = 0.5. The irregularity of HR neuron behavior seems accentuates with the pole of
attraction becoming chaotic

6 Application to Particular Cases of HR Neuron
with External Current Input

Wenowwrap up this work by providing some visualization related to the evolution of
the variable functions, especially the one symbolizing themembrane potential. Hence
we perform some numerical simulations using the Haar wavelet scheme presented
above and proven to be convergent. Setting α = γ = 1, δ = −1 and the the control
parameters at
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a = c = 1, b = 3.1, d = 4, η1 = 65 × 10−3, η2 = 5, xr = −3/2, and, I e = 2.6,

yields the phase portraits in the 2D-plane x and the 3D-space x as depicted in Figs. 1,
2 and 3 for σ = 1, σ = 0.9 and σ = 0.85 respectively. Indeed, as expected in the
standard well-known case σ = 1, the HR neuron is shown to exhibit a dynamic with
a behavior that seems regular and simply periodic (Fig. 1a, b). When we change the
value of the fractional derivative to σ = 0.8, the HR neuron is shown to exhibit a
dynamicwith a behavior that seems irregular and characterized by a pole of attraction
that generates a limit cycle (Fig. 2a, b). When σ is decreased further (σ = 0.5), the
irregularity seems to accentuate with the pole of attraction becoming chaotic (Fig. 3a,
b).

7 Conclusion

We have explored the possible existence of chaotic poles of attraction in neurobiol-
ogy, especially in the dynamics of Hindmarsh–Rose neurons with an external current
input. The HR neuron model has been generalized with the introduction of an ad-
ditional parameter in order to give it the opportunity to exhibit that feature that was
still not pointed out yet. With the help of the Haar Wavelets numerical scheme, we
showed the convergence error analysis and we have managed to solve the non-linear
model and provided some graphical simulations with σ as the control parameter.
Those graphical simulations reveal that the nerve cell’s behavior is characterized by
irregularity with a pole of attraction that generates a limit cycle. The irregularity
nevertheless accentuates as σ decreases from 1 to 0, leaving us with a pole of at-
traction that becomes chaotic. This is a great observation showing some features of
Atangana–Baleanu derivative applied to neurobiology models like that of JL Hind-
marsh and RM Rose that were unknown until now. More analysis with certainly
follow.
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Modulating Chaotic Oscillations
in Autocatalytic Reaction Networks
Using Atangana–Baleanu Operator

Emile F. Doungmo Goufo and A. Atangana

Abstract Many mathematical models describing dynamics that occur in autocat-
alytic reaction networks have been proved to be chaotic, exhibiting orbits with
unpredictable outcomes. Is it always possible to modulate that chaos? We use Haar
wavelet numerical method to investigate a fractional system modeling autocatalytic
reaction networks, where particular attention is made on biochemical systems of
four-component networks. The convergence of the method is detailed through error
analysis. Graphical representations reveal that the dynamic of the whole system is
characterized by limit-cycles followed by period-doubling bifurcations that culmi-
nate with chaos, depending on the change of the total concentration of cofactor. The
behavior of the system becomes more unpredictable as the concentration of cofactor
increases, but the phenomenon is shown to be regulated by an additional parameter,
the order of the fractional derivative γ, which plays an important role in triggering
and controlling the appearance of chaos. Moreover, the chaotic behavior observed
in the cascade diagram of the pure fractional case is proven to appear earlier, show-
ing that the parameter γ is a valuable tool to regulate the chaos observed in some
biochemical systems.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative
Autocatalytic reaction networks

E. F. Doungmo Goufo (B)
Department of Mathematical Sciences, University of South Africa, Florida 0003,
South Africa
e-mail: dgoufef@unisa.ac.za

A. Atangana
Institute of Groundwater Studies, Faculty of Natural and Agricultural Sciences,
University of Free State, Bloemfontein 9301, South Africa

© Springer Nature Switzerland AG 2019
J. F. Gómez et al. (eds.), Fractional Derivatives with Mittag-Leffler Kernel,
Studies in Systems, Decision and Control 194,
https://doi.org/10.1007/978-3-030-11662-0_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11662-0_9&domain=pdf
mailto:dgoufef@unisa.ac.za
https://doi.org/10.1007/978-3-030-11662-0_9


136 E. F. Doungmo Goufo and A. Atangana

1 Introduction

Catalysis in replication networks is defined as a system that comprises certain ele-
ments (like molecules), and is characterized by a copying mechanism that auto-
produces a number of these elements and has become a significant issue in biol-
ogy and several domains of natural sciences. As examples we have polynucleotides
molecules (RNA or DNA) catalysis, idiotype recognition in the immune response,
and dynamical models of Maynard-Smith games in sociobiology [1–3]. Many cyclic
patterns of temporal self-organization were observed during the processes of various
reactions and biochemical regulation [1–5]. Those observations were carried out for
systems satisfying some global properties such as their availability to energy transfer
or to mass change, their distance away from equilibrium state (causing the steps of
particular reaction to be essentially irreversible), or the nonlinearity of their chemi-
cal reaction mechanism. Therefore, this type of systems is dominated by stable and
conservative chemical oscillations in cyclic and autocatalytic reaction networks of
p elements which may replicate independently according to the kinetic equation:

Gk + Gk+1
Fk−→ 2Gk+1, k = 1, 2, . . . , p, (1)

whereGk is the number of elements of the systemwith the constrainGk+p = Gk, and
Fk represents a kinetic constant involved in the replication dynamic symbolized in
(1) by the arrow. Note that the kinetic constant Fk contains a fixed energy source that
keeps the network away from equilibrium state. Let us denote by xk the concentration
of element Gk . Hence, xk changes in time t according to the differential equation

dxk
dt

= xk(Fk−1xk−1 − Fkxk+1), k = 1, 2, . . . , p. (2)

In this model, the element Gk is lost by interaction with the successive element, but
is gained by interaction with the preceding element. Then, expression (2) represents
the expansion of reaction rates in terms of concentrations.

1.1 Model’s Description

Herein, we consider the system of differential equations (2) with p = 4. This yields
a model of autocatalytic networks with four components driven from the outside by
a constant energy source. We assume that the reaction network contains not only
the four elements Gk, k = 1, 2, 3, 4, but also considers a cofactor assumed not
to be degraded and present in a constant quantity. A proton taken up at one step
and released in another step, in a chemical reaction is a concrete example of such a
cofactor. The kinetics are expressed as
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C + G1 + G2
F1−→ 2G2,

G2 + G3
F2−→ 2G3 + C,

G3 + G4
F3−→ 2G4,

G4 + G1
F4−→ 2G1,

(3)

with C representing the cofactor which interacts with G1 to produce G2 and is
liberated fromG2 to produceG3.Hence, the resulting systemof differential equations
reads as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = x1(F4x4 − F1zx2),
ẋ2(t) = x2(F1zx1 − F2x3),
ẋ3(t) = x3(F2x2 − F3x4),
ẋ4(t) = x4(F3x3 − F4x1),

(4)

where z is a real number denoting the cofactor activity. Tobetter assess themodulation
effects of the limit-cycle oscillations susceptible to appear in those autocatalytic
reaction networks, we extent the system (4) by considering the following model:

⎧
⎪⎪⎨

⎪⎪⎩

ABC Dγ
t x1(t) = x1(F4x4 − F1zx2),

ABC Dγ
t x2(t) = x2(F1zx1 − F2x3),

ABC Dγ
t x3(t) = x3(F2x2 − F3x4),

ABC Dγ
t x4(t) = x4(F3x3 − F4x1),

(5)

assumed to verify the initial conditions

x1(0) = ν1, x2(0) = ν2, x3(0) = ν3, x4(0) = ν4. (6)

Here ABC Dγ
t is the Atangana–Baleanu derivative of order γ (0 < γ ≤ 1) as detailed

in the follow-up section and νi , i = 1, 2, 3, 4, are real non negative functions. The
variables xk represent the concentrations of elements Gk respectively.

1. Note that the later model reduces to (4) for γ = 1.
2. Summing the four lines of (5) always gives zero and this is due to the fact that

the system is closed to its other elements.
3. The concentration sum m = z + x2, denotes the total concentration of cofactor

with x2 giving the quantity of cofactor linked to element G2.

We solve the model (5)–(6) by means of numerical simulations, and we evaluate its
dynamics using the Haar wavelet method.
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1.2 Fractional Derivatives with Non-local Kernel
and Variants

The past decades have seen a growing interest in using derivatives with non-integer
orders (real or complex) for systems modeling and analysis [6–35]. This is due to
observations in which many real life phenomena, including natural sciences, engi-
neering and biology can be described successfully bymodels using differential equa-
tions with fractional orders. Differential equations with fractional derivatives happen
to be useful assets to describe and investigate non-linear phenomena, found in various
branches of ecology, chemistry, engineering, biology and number of fields in applied
sciences. Recent literature in fractional calculus has been enriched by concrete mod-
els proven to give a better description of the phenomenon under investigation when
using non-integer order derivative. Some of those phenomena are from mathemat-
ical epidemiology, porous media, biomedical engineering, signal and image pro-
cessing, control theory, phase-locked loops, filters motion and nonlocal phenomena
[30, 36–39].

The derivatives with fractional order mostly used by researchers are the formu-
lations by Riemann–Liouville, Caputo and Atangana–Baleanu [10, 11, 20, 27, 40]
respectively, defined by

RL Dγ
t x(t) = d

dt
I 1−γ x(t),

= 1

W (γ )Γ (γ )

d

dt

∫ t

a
x (τ ) (t − τ)−γ dτ, 0 < γ ≤ 1, t > 0,

(7)

C Dγ
t x(t) = I 1−γ d

dt
x(t),

= 1

W (γ )Γ (γ )

∫ t

a

dx(τ )

dτ

(t − τ)γ
dτ, 0 < γ ≤ 1, t > 0,

(8)

where I γ is the fractional integral of order γ defined as

I γ x(t) = 1

Γ (γ )

∫ t

a

x (τ )

(t − τ)1−γ
dτ. (9)

and
ABC Dγ

t x(t) = W (γ )

(1 − γ )

∫ t

0
ẋ (τ ) Eγ

[

−γ (t − τ)γ

1 − γ

]

dτ, (10)

with the derivative order γ ∈ [0, 1] andwhereW (γ ) defines a normalization function
such that

W (0) = W (1) = 1. (11)
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It is important to recall the antiderivative that comes with Atangana–Baleanu deriva-
tive used in this analysis. It is given by the following antiderivative (also called
fractional integral of order γ ):

I γ x(t) = γ

W (γ )Γ (γ )

∫ t

0
(t − τ)γ−1x(τ )dτ + 1 − γ

W (γ )
x(t). (12)

Here we have ∞ ≤ a < t, b > a and x : (a, b) −→ R an arbitrary real and locally
integrable function, usually taken from the first order Sobolev space

H 1(a, b) =
{

x : x, dx

dt
∈ L2(a, b)

}

.

Other definitions of derivatives with fractional order have been proposed and intro-
duced recently into the literature of fractional calculus [8, 9, 38].

We believe that the choice of Atangana–Baleanu derivative in this paper is the
best in the sense that this fractional derivative offers better conditions of regularity
compared to any other fractional derivative, like for instance, the Riemann–Liouville
or Caputo derivative. A simple example is the fact that the Riemann–Liouville deriva-
tive of a constant function is different from zero, while the Caputo sense Atangana–
Baleanu derivative of a constant is zero but requires some conditions of differentiabil-
ity. Furthermore, it is important to mention that [7, 27] fractional-order initial states,
as required by fractional differential equations using Riemann–Liouville derivative,
are very difficult to obtain and sometimes appear to be physically non-realizable.
Liouville and Riemann, in their respective initialization, chose the lower limit to be
−∞, but they were in fact addressing problems related to the same type of initial-
ization [27]. However, Atangana–Baleanu [20, 27, 40] highlighted that to verify the
composition of the fractional differintegrals, the integrated function together with
all its integer-order derivatives must be equal to zero. Hence, by using Atangana–
Baleanu fractional derivative we have the mathematical advantage that the derivative
of a constant is zero and the model requires only integer order initial conditions (6).
However, we keep in mind that there are still, in the use of this derivative, many
insufficiencies in the physical reality of the initialization effects, especially when
applied to fractional differential equations. Indeed, a constant initialization of the
past lacks generality, as shown in the well-known Laplace transform for differinte-
grals based on that assumption. This insurgency can also be shown in solutions of
fractional differential equations with histories assumed to be the set of initializing
constants representing the values of fractional differintegrals at the beginning time
[27, 30].
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1.3 Haar Wavelet Method for System of Differential
Equations

We call Haar wavelet the real function expressed by [41–43]

H(t) =
⎧
⎨

⎩

1, 0 ≤ t < 1/2;
−1, 1/2 ≤ t < 1;
0, elsewhere,

that is definedon the real setR.Knowing that ifwe consider any i = 0, 1, 2, . . . , it can
always take the form i = 2 j + k with j = 0, 1, 2, . . . , and k = 0, 1, 2, . . . , 2 j − 1,
we can define for each i = 0, 1, 2, 3, . . . , the family

hi (t) =
{
2

j
2H(2 j t − k), for i = 1, 2, . . . ,

1, for i = 0,
(13)

for t ∈ [0, 1). Therefore, the resulting family {hi (t)}∞i=0 has been proven to form
a complete orthonormal system in the space of square-integrable function L2[0, 1)
[42, 43]. Considering the continuous function l ∈ C[0, 1), the series∑∞

i=0〈l, hi 〉hi
is uniformly convergent to l with 〈l, hi 〉 = ∫∞

0 l(t)hi (t)dt. It is therefore possible to
decompose l in such a way that it becomes

l(t) =
∞∑

i=0

aihi (t),

where ai = 〈l, hi 〉. Consequently, we can consider the approximated solution given
by

l(t) ≈ lk(t) =
k−1∑

i=0

aihi (t),

where k ∈ {2 j : j = 0, 1, 2, . . .}.
Taking n ∈ N, we can use the Haar function’s translation on [0, n) to define the

function

hm,i (t) = hi (t − m + 1) m = 1, 2, . . . , n and i = 0, 1, 2, . . . , (14)

where hi is defined in (13). Note that the same properties as those of hi hold for
hm,i .Hence, the family {hm,i (t)}∞i=0,m = 1, 2, . . . , n, forms a complete orthonormal
system in the space of square-integrable function L2[0, 1). Let us now exploit the
following Haar orthonormal basis functions

am,i = 〈l, hm,i 〉 =
∫ ∞

0
l(t)hm,i (t)dt,
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to expand the solution l ∈ L2[0, n) as the series

l(t) =
n∑

m=1

∞∑

i=0

am,i hm,i (t). (15)

Similarly, this brings us to consider the approximated solution

w(t) ≈ wk(t) =
n∑

m=1

k−1∑

i=0

am,i hm,i (t), (16)

with k ∈ {2 j : j = 0, 1, 2, . . .}.
Note that (16) can take the following compact form that will be significant in the

coming analysis.
w(t) ≈ wk(t) =T Ank×1Hnk×1, (17)

with TAnk×1 meaning the transpose vector of

Ank×1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1,0
...

a1,k−1

a2,0
...

a2,k−1
...

an,0
...

an,k−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Hnk×1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1,0
...

h1,k−1

h2,0
...

h2,k−1
...

hn,0
...

hn,k−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

2 Solvability of the Model by Means of Haar Wavelets

We exploit in this section the Haar wavelets numerical method to solve the model
(5)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ABC Dγ
t x1(t) = x1(F4x4 − F1zx2),

ABC Dγ
t x2(t) = x2(F1zx1 − F2x3),

ABC Dγ
t x3(t) = x3(F2x2 − F3x4),

ABC Dγ
t x4(t) = x4(F3x3 − F4x1),

(18)

that verifies the initial conditions
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x1(0) = ν1, x2(0) = ν2, x3(0) = ν3, x4(0) = ν4. (19)

To put the model (18)–(19) into the compact form, we can define the system state
vectors and matrices by

w(t) =

⎛

⎜
⎜
⎝

x1(t)
x2(t)
x3(t)
x4(t)

⎞

⎟
⎟
⎠ and f0(x1, x2, x3, x4) = w(0) =

⎛

⎜
⎜
⎝

x1(0)
x2(0)
x3(0)
x4(0)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ν1
ν2
ν3
ν4

⎞

⎟
⎟
⎠ .

S (w(t), t) = S (x1(t), x2(t), x3(t), x4(t), t) =

⎛

⎜
⎜
⎜
⎜
⎝

S1(w(t), t)

S2(w(t), t)

S3(w(t), t)

S4(w(t), t)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

S1(x1(t), x2(t), x3(t), x4(t), t)

S2(x1(t), x2(t), x3(t), x4(t), t)

S3(x1(t), x2(t), x3(t), x4(t), t)

S4(x1(t), x2(t), x3(t), x4(t), t)

⎞

⎟
⎟
⎟
⎟
⎠

,

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S1(w(t), t) = x1(F4x4 − F1zx2),

S2(w(t), t) = x2(F1zx1 − F2x3),

S3(w(t), t) = x3(F2x2 − F3x4),

S4(w(t), t) = x4(F3x3 − F4x1).

Therefore, (18) takes the form

ABC Dγ
t w(t) = S (w(t), t),

which is equivalent to

ABC Dγ
t x1(t) = S1(w(t), t),

ABC Dγ
t x2(t) = S2(w(t), t),

ABC Dγ
t x3(t) = S3(w(t), t),

ABC Dγ
t x4(t) = S4(w(t), t),

(20)

and verifies the initial conditions

x1(0) = ν1(x1), x2(0) = ν2(x2), x3(0) = ν3(x3), x4(0) = ν4(x4).

Exploiting the Haar wavelets numerical scheme in (17) leads us to approximate the
system with the Atangana–Baleanu fractional derivative (20) to get



Modulating Chaotic Oscillations in Autocatalytic Reaction Networks … 143

ABC Dγ
t x1(t) = S1(w(t), t) ≈ABC Dγ

t x
k
1 (t) =T A1

nk×1Hnk×1,
ABC Dγ

t x2(t) = S2(w(t), t) ≈ABC Dγ
t x

k
2 (t) =T A2

nk×1Hnk×1,
ABC Dγ

t x3(t) = S3(w(t), t) ≈ABC Dγ
t x

k
3 (t) =T A3

nk×1Hnk×1,
ABC Dγ

t x4(t) = S4(w(t), t) ≈ABC Dγ
t x

k
4 (t) =T A4

nk×1Hnk×1.

(21)

We now apply the Atangana–Baleanu operator (12) on both sides of (21) to obtain

x1(t) − ν1 ≈ABC Dγ
t x

k
1 (t) =T A1

nk×1Q
γ

nk×nkHnk×1,

x2(t) − ν2 ≈ABC Dγ
t x

k
2 (t) =T A2

nk×1Q
γ

nk×nkHnk×1,

x3(t) − ν3 ≈ABC Dγ
t x

k
3 (t) =T A3

nk×1Q
γ

nk×nkHnk×1,

x4(t) − ν4 ≈ABC Dγ
t x

k
4 (t) =T A4

nk×1Q
γ

nk×nkHnk×1,

(22)

which is equivalent to

x1(t) ≈ xk1 (t) =T A1
nk×1Q

γ

nk×nkHnk×1 + ν1,

x2(t) ≈ xk2 (t) =T A2
nk×1Q

γ

nk×nkHnk×1 + ν2,

x3(t) ≈ xk3 (t) =T A3
nk×1Q

γ

nk×nkHnk×1 + ν3,

x4(t) ≈ xk4 (t) =T A4
nk×1Q

γ

nk×nkHnk×1 + ν4,

(23)

with Qγ

nk×nk representing the Haar wavelets operational matrix [41, 42]. Solving the
system (18)–(19) through the Galerkin’s method on collocation points and substitut-
ing the approximations (21) and (23) into (18) leads to the residual errors expressed
by

ε1
(
η1, η2, η3, η4, t

) =T A1
nk×1Hnk×1

− S1

(
TA1

nk×1Q
γ

nk×nkHnk×1,
T A2

nk×1Q
γ

nk×nkHnk×1,
T A3

nk×1Q
γ

nk×nkHnk×1,
T A4

nk×1Q
γ

nk×nkHnk×1, t
)

,

ε2
(
η1, η2, η3, η4, t

) =T A2
nk×1Hnk×1

− S2

(
TA1

nk×1Q
γ

nk×nkHnk×1,
T A2

nk×1Q
γ

nk×nkHnk×1,
T A3

nk×1Q
γ

nk×nkHnk×1,
T A4

nk×1Q
γ

nk×nkHnk×1, t
)

,

ε3
(
η1, η2, η3, η4, t

) =T A3
nk×1Hnk×1

− S3

(
TA1

nk×1Q
γ

nk×nkHnk×1,
T A2

nk×1Q
γ

nk×nkHnk×1,
T A3

nk×1Q
γ

nk×nkHnk×1,
T A4

nk×1Q
γ

nk×nkHnk×1, t
)

,

ε4
(
η1, η2, η3, η4, t

) =T A4
nk×1Hnk×1

− S4

(
TA1

nk×1Q
γ

nk×nkHnk×1,
T A2

nk×1Q
γ

nk×nkHnk×1,
T A3

nk×1Q
γ

nk×nkHnk×1,
T A4

nk×1Q
γ

nk×nkHnk×1, t
)

,

(24)
with

η1 = a11,0, . . . , a
1
1,k−1, . . . , a

1
n,0, . . . , a

1
n,k−1,

η2 = a21,0, . . . , a
2
1,k−1, . . . , a

2
n,0, . . . , a

2
n,k−1,

η3 = a31,0, . . . , a
3
1,k−1, . . . , a

3
n,0, . . . , a

3
n,k−1,
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η4 = a41,0, . . . , a
4
1,k−1, . . . , a

4
n,0, . . . , a

4
n,k−1,

so that ai·,· represent the components of TAi·×·.
The following assumptions

ε1
(
η1, η2, η3, η4, tm,i

) = 0,

ε2
(
η1, η2, η3, η4, tm,i

) = 0,

ε3
(
η1, η2, η3, η4, tm,i

) = 0,

ε4
(
η1, η2, η3, η4, tm,i

) = 0,

lead to the system of 3nk equations, with 4nk unknowns given by

a11,0, . . . , a
1
1,k−1, . . . , a

1
n,0, . . . , a

1
n,k−1,

a21,0, . . . , a
2
1,k−1, . . . , a

2
n,0, . . . , a

2
n,k−1,

a31,0, . . . , a
3
1,k−1, . . . , a

3
n,0, . . . , a

3
n,k−1,

a41,0, . . . , a
4
1,k−1, . . . , a

4
n,0, . . . , a

4
n,k−1,

where

tm,i = 2i − 1

2k
+ m − 1, m = 1, 2, . . . , n, i = 1, 2, . . . , k,

denote a nk number of collocation points. Hence, solving for those unknowns and
substituting into (23) yields

w(t) ≈

⎛

⎜
⎜
⎝

xk1 (t)
xk2 (t)
xk3 (t)
xk4 (t)

⎞

⎟
⎟
⎠ ,

which is the desired solution.

3 Error Analysis and Convergence

Our goal is to present in this section the exact error bounds used in the above Haar
wavelet method to analyse the model (18)–(19). Because w ∈ L2[0, n), we take
x ∈ L2[0, n), y ∈ L2[0, n) and z ∈ L2[0, n) and define the norm
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‖w‖2 = (‖x1‖2L2 + ‖x2‖2L2 + ‖x3‖2L2 + ‖x4‖2L2

)1/2
, (25)

where

‖x1‖L2 =
(∫ n

0
|x1(t)|2dt

)1/2

, ‖x2‖L2 =
(∫ n

0
|x2(t)|2dt

)1/2

,

‖x3‖L2 =
(∫ n

0
|x3(t)|2dt

)1/2

, ‖x4‖L2 =
(∫ n

0
|x4(t)|2dt

)1/2

.

From expressions (16), (17) and (23), the fractional derivative ABC Dγ
t rK (t) is

considered as an approximation of ABC Dγ
t w(t) and given as

ABC Dγ
t w(t) ≈ABC Dγ

t w
k(t) =

n∑

m=1

k−1∑

i=0

am,i hm,i (t).

This equation is equivalent to

⎛

⎜
⎜
⎝

ABC Dγ
t x

k
1 (t)

ABC Dγ
t x

k
2 (t)

ABC Dγ
t x

k
2 (t)

ABC Dγ
t x

k
3 (t)

⎞

⎟
⎟
⎠ =ABC Dγ

t w
k(t) =

n∑

m=1

k−1∑

i=0

am,i hm,i (t) =

⎛

⎜
⎜
⎜
⎝

∑n
m=1

∑k−1
i=0 a

1
m,i hm,i (t)

∑n
m=1

∑k−1
i=0 a

2
m,i hm,i (t)

∑n
m=1

∑k−1
i=0 a

3
m,i hm,i (t)

∑n
m=1

∑k−1
i=0 a

4
m,i hm,i (t)

⎞

⎟
⎟
⎟
⎠

,

with k ∈ {2 j : j = 0, 1, 2, . . .} and am,i = 〈ABC Dγ
t w

k, hm,i 〉n = ∫ n
0

ABC Dγ
t w

k(t)
hm,i (t)dt,

a1m,i = 〈ABC Dγ
t x

k
1 , hm,i 〉n =

∫ n

0

ABC Dγ
t x

k
1 (t)hm,i (t)dt,

a2m,i = 〈ABC Dγ
t x

k
2 , hm,i 〉n =

∫ n

0

ABC Dγ
t x

k
2 (t)hm,i (t)dt,

a3m,i = 〈ABC Dγ
t x

k
3 , hm,i 〉n =

∫ n

0

ABC Dγ
t x

k
3 (t)hm,i (t)dt,

a4m,i = 〈ABC Dγ
t x

k
4 , hm,i 〉n =

∫ n

0

ABC Dγ
t x

k
4 (t)hm,i (t)dt.

(26)

Therefore,
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ABC Dγ
t w(t) − ABC Dγ

t w
k(t) =

n∑

m=1

∞∑

i=k

am,i hm,i (t)

=
n∑

m=1

∞∑

i=2 j

am,i hm,i (t) j = 0, 1, 2, . . .

=

⎛

⎜
⎜
⎝

∑n
m=1

∑∞
i=2 j a1m,i hm,i (t)∑n

m=1

∑∞
i=2 j a2m,i hm,i (t)∑n

m=1

∑∞
i=2 j a3m,i hm,i (t)∑n

m=1

∑∞
i=2 j a4m,i hm,i (t)

⎞

⎟
⎟
⎠ j = 0, 1, 2, . . .

(27)
From the norm (25), it is now possible to formulate and prove the following propo-

sition on the convergence of the numerical method. Note that functions x1, x2, x3 and
x4 are first taken in the Sobolev space H 1[0, n).

Proposition 1 Let 0 ≤ γ ≤ 1 and choose x1, x2, x3 ∈ H 1[0, n).The following exact
upper bound holds

‖ABC Dγ
t w(t) − ABC Dγ

t w
k(t)‖2 ≤ G

Gγ W (γ )Γ (γ )
, (28)

where ABC Dγ
t w(t) are approximated by the functions ABC Dγ

t w
k(t) through Haar

wavelet method, G ∈ R
+ and Gγ = 2(1−γ )

2γ n

(
(3−3k(1−γ ))

22γ −2 + (3−3k(2−2γ ))
22γ −4

)−1/2
.

Proof Considering (25) and (27) gives

‖ABC Dγ
t w(t) − ABC Dγ

t w
k (t)‖2,

=
(
‖ABC Dγ

t x − ABC Dγ
t x

k
1‖2L2 + ‖ABC Dγ

t y − ABC Dγ
t x

k
2‖2L2 + ‖ABC Dγ

t z − ABC Dγ
t x

k
3‖2L2 − ABC Dγ

t x
k
4‖2L2

)1/2
,

=
(∫ n

0
|ABC Dγ

t x1(t) − ABC Dγ
t x

k
1 (t)|2dt +

∫ n

0
|ABC Dγ

t x2(t)

− ABC Dγ
t x

k
2 (t)|2dt +

∫ n

0
|ABC Dγ

t x3(t) − ABC Dγ
t x

k
3 (t)|2dt +

∫ n

0
|ABC Dγ

t x4(t) − ABC Dγ
t x

k
4 (t)|2dt

)1/2

,

=
⎛

⎝

∫ n

0

∣
∣
∣
∣
∣

n∑

m=1

∞∑

i=k

a1m,i hm,i (t)

∣
∣
∣
∣
∣

2

dt +
∫ n

0

∣
∣
∣
∣
∣

n∑

m=1

∞∑

i=k

a2m,i hm,i (t)

∣
∣
∣
∣
∣

2

dt

+
∫ n

0

∣
∣
∣
∣
∣

n∑

m=1

∞∑

i=k

a3m,i hm,i (t)

∣
∣
∣
∣
∣

2

dt +
∫ n

0

∣
∣
∣
∣
∣

n∑

m=1

∞∑

i=k

a4m,i hm,i (t)

∣
∣
∣
∣
∣

2

dt

⎞

⎠

1/2

.

Since {hi (t)}∞i=0 forms a complete orthonormal systemon [0, n), (meaning
∫ n
0 Hnk(t)T

Hnk(t)dt = Ink (where Ink is the identity matrix), we can make use of Fubini-Tonelli
theorem [44, 45] to write
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‖ABC Dγ
t w(t) − ABC Dγ

t w
k(t)‖2

≤
⎛

⎝
n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a1m,i hm,i (t)

∣
∣2 dt +

n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a2m,i hm,i (t)

∣
∣2 dt

+
n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a3m,i hm,i (t)

∣
∣2 dt +

n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a4m,i hm,i (t)

∣
∣2 dt

⎞

⎠

1/2

≤
⎛

⎝
n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a1m,i

∣
∣2 dt +

n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a2m,i

∣
∣2 dt

+
n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a3m,i

∣
∣2 dt +

n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

∫ n

0

∣
∣a4m,i

∣
∣2 dt

⎞

⎠

1/2

.

(29)

Here arm,i , r = 1, 2, 3, 4, are defined by (26) and k belongs to {2 j : j =
0, 1, 2, . . .}). We can now compute each arm,i using (26) together with definitions
(13) and (14) of hm,i . Hence,

a1m,i = (
√
2) j

⎡

⎢
⎢
⎢
⎣

k+ 1
2

2 j
−1+m
∫

k
2 j

−1+m

ABC Dγ
t x1(t)dt −

k+1
2 j

−1+m
∫

k+ 1
2

2 j
−1+m

ABC Dγ
t x1(t)dt

⎤

⎥
⎥
⎥
⎦

,

a2m,i = (
√
2) j

⎡

⎢
⎢
⎢
⎣

k+ 1
2

2 j
−1+m
∫

k
2 j

−1+m

ABC Dγ
t x2(t)dt −

k+1
2 j

−1+m
∫

k+ 1
2

2 j
−1+m

ABC Dγ
t x2(t)dt

⎤

⎥
⎥
⎥
⎦

,

a3m,i = (
√
2) j

⎡

⎢
⎢
⎢
⎣

k+ 1
2

2 j
−1+m
∫

k
2 j

−1+m

ABC Dγ
t x3(t)dt −

k+1
2 j

−1+m
∫

k+ 1
2

2 j
−1+m

ABC Dγ
t x3(t)dt

⎤

⎥
⎥
⎥
⎦

,

a4m,i = (
√
2) j

⎡

⎢
⎢
⎢
⎣

k+ 1
2

2 j
−1+m
∫

k
2 j

−1+m

ABC Dγ
t x4(t)dt −

k+1
2 j

−1+m
∫

k+ 1
2

2 j
−1+m

ABC Dγ
t x4(t)dt

⎤

⎥
⎥
⎥
⎦

.

(30)

According to the mean value theorem for definite integrals, there exist τx1 ∈(
k
2 j − 1 + m,

k+ 1
2

2 j − 1 + m
)
and τ̃x1 ∈

(
k+ 1

2
2 j − 1 + m, k+1

2 j − 1 + m
)
such that
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a1m,i = (
√
2) j

(
1

2 j+1
ABC Dγ

t x1(τx1)dt − 1

2 j+1
ABC Dγ

t x1(̃τx1)dt

)

= 2
−
(

j
2 +1

)
(
ABC Dγ

t x1(τx1)dt − ABC Dγ
t x1(̃τx1)dt

)
.

(31)

Using the definition of Atangana–Baleanu derivative leads to

∣
∣
∣a1m,i

∣
∣
∣ = 2

−
(

j
2 +1

) ∣
∣
∣
ABC Dγ

t x1(τx1 )dt − ABC Dγ
t x1(̃τx1 )dt

∣
∣
∣

=2
−
(

j
2 +1

)
1

W (γ )Γ (γ )

∣
∣
∣
∣

∫ τx1

0

(
τx1 − ξ

)−γ dx1 (ξ)

dξ
dξ −

∫ τ̃x1

0

(
τ̃x1 − ξ

)−γ dx1 (ξ)

dξ
dξ

∣
∣
∣
∣ .

Because x1 ∈ H 1[0, n), there exists Gx1 ∈ R
+ so that ‖ẋ (ξ) ‖ ≤ Gx1 for ξ ∈ (0, τx1)

and ξ ∈ (0, τ̃x1). Therefore,

∣
∣a1m,i

∣
∣ ≤ Gx12

−
(

j
2 +1

)
1

W (γ )Γ (γ )

∣
∣
∣
∣

∫ τx1

0

(
τx1 − ξ

)−γ
dξ −

∫ τ̃x1

0

(
τ̃x1 − ξ

)−γ
dξ

∣
∣
∣
∣ .

Keeping in mind that 0 ≤ γ ≤ 1, τx1 ∈
(

k
2 j − 1 + m,

k+ 1
2

2 j − 1 + m
)

and τ̃x1 ∈
(
k+ 1

2
2 j − 1 + m, k+1

2 j − 1 + m
)

, we can integrate and simplify the previous expres-

sion and we have

∣
∣a1m,i

∣
∣ ≤ Gx12

−
(

j
2 +1

)

(1 − γ )W (γ )Γ (γ )

∣
∣τx1

(1−γ ) − (̃τx1)
(1−γ )

∣
∣ ≤ Gx12

−
(

j
2 +1

)

(1 − γ )W (γ )Γ (γ )
2 j (1−γ ).

(32)
A similar reasoning leads to constants Gx2 , Gx3 , Gx4 ∈ R

+ such that

∣
∣a2m,i

∣
∣ ≤ Gx22

−
(

j
2 +1

)

(1 − γ )W (γ )Γ (γ )
2 j (1−γ ), (33)

∣
∣a3m,i

∣
∣ ≤ Gx32

−
(

j
2 +1

)

(1 − γ )W (γ )Γ (γ )
2 j (1−γ ), (34)

∣
∣a4m,i

∣
∣ ≤ Gx42

−
(

j
2 +1

)

(1 − γ )W (γ )Γ (γ )
2 j (1−γ ). (35)

Now we set G = max(Gx1 ,Gx2 ,Gx3 ,Gx4) and substituting (32), (33) and (35) into
(29) yields
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‖ABC Dγ
t w(t) − ABC Dγ

t w
k (t)‖2 ≤

⎛

⎜
⎝

3nG 2

4(W (γ )Γ (γ ))2(1 − γ )2

n∑

m=1

∞∑

j=0

2 j+1
∑

i=2 j

22 j (1−γ )

2 j

⎞

⎟
⎠

1/2

,

≤
(

3n2G 2

4(W (γ )Γ (γ ))2(1 − γ )2

(
22γ − 22γ k(1−γ )

22γ − 2
+ 22γ − 22γ k(2−2γ )

22γ − 4

))1/2

,

≤ nG

2(W (γ )Γ (γ ))(1 − γ )

⎛

⎝3
22γ

(
1 − k(1−γ )

)

22γ − 2
+ 3

22γ
(
1 − k(2−2γ )

)

22γ − 4

⎞

⎠

1/2

,

(36)
and the proof is concluded.

If the functions x1, x2, x3 and x4 are not in H 1[0, n) but are in L2[0, n), then
we need additional statement for the Corollary 3.1, because [0, n) is not a closed
interval. That is, the functions x1, x2, x3, x4 and their derivatives of order one may
not be bounded and may not attain their bounds on [0, n). Hence we have proved the
following

Corollary 3.1 Let 0 ≤ γ ≤ 1, x1 ∈ L2[0, n), x2 ∈ L2[0, n), x3 ∈ L2[0, n) and x4 ∈
L2[0, n) and let us assume that ẋ1(t), ẋ2(t), ẋ3(t) and ẋ4(t) are continuous and
bounded on [0, n). The following exact upper bound holds

‖ABC Dγ
t w(t) − ABC Dγ

t w
k(t)‖2 ≤ G

Gγ W (γ )Γ (γ )
, (37)

where ABC Dγ
t w(t) are approximated by the functions ABC Dγ

t w
k(t) through Haar

wavelet method, G ∈ R
+ and Gγ = 2(1−γ )

2γ n

(
(3−3k(1−γ ))

22γ −2 + (3−3k(2−2γ ))
22γ −4

)−1/2
.

4 Applications to Biochemical Systems of Four-Component
Networks: Period-Doubling Bifurcations, Chaos
and Interpretations

The model that was solved in the previous section is typical in biochemical sys-
tems, where many networks elements can be seen as various allosteric states of
a polyfunctional macromolecule [2, 4, 5]. Recall that some biochemical systems
involve structures, functions and interactions of biological macromolecules, such
as proteins, nucleic acids, carbohydrates and lipids, which provide the structure of
cells and performing several of the functions associated with life. Then, autocatal-
ysis in the process itself necessitates contact (direct or indirect) between elements
and therefore, implies straight collision of the macromolecular states. Simple exam-
ples are found in biological membranes where proteins, nucleic acids, carbohydrates
and lipids are sometimes closely packed. The movement of those biological macro-
molecules is regulated and affected by the activity of a cofactor when it is involved
in the concerned autocatalytic reaction network (see Figs. 1 and 2).
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Fig. 1 Representation of cascade diagram for the model (18)–(19) in the standard case γ = 1
with ν1 = 0.95, ν2 = ν3 = 0.01, ν4 = 0.02, and the constants of the kinetic equations F1 =
12 s−1, F2 = F3 = F4 = 1 s−1. It shows limit-cycles followed by period-doubling bifurcations
that culminate with chaos, (a–e), versus the variation of the total concentration of cofactor m. In
a, the orbit for m = 0.51 has only two extremes that start to be doubled in b and it continues the
dynamics by increasing irregularities

The simulations of the system (18) assumed to be subject to initial conditions
(19) show a complex behavior in the dynamics of the network that seems to loose its
conservative property. Those simulations are performed in the standard case (γ = 1)
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Fig. 2 Representation of cascade diagram for the model (18)–(19) in the pure fractional case
γ = 0.8 with ν1 = 0.95, ν2 = ν3 = 0.01, ν4 = 0.02, and the constants of the kinetic equations
F1 = 12 s−1, F2 = F3 = F4 = 1 s−1. It shows again limit-cycles followed by period-doubling
bifurcations that culminate with chaos, (a–e), versus the variation of the total concentration of
cofactor m. However in a, in comparison to Fig. 1, the orbit for m = 0.51 does not have only two
extremes, but already the double of that. Irregular behaviors are shown to appear earlier in this case

and in the total fractional case (γ = 0.8 and 0.6). All the Figs. 1, 2 and 3 exhibit
different cascade diagrams that are characterized by limit-cycles followed by period-
doubling bifurcations caused, in one hand by the presence of fuzzy steady states, and
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the other side by the variation of the concentration summ = z + x2 denoting the total
concentration of cofactor. Note that x2 represents the quantity of cofactor linked to
element G2. To obtain these results, the following control values were adopted:
ν1 = 0.95, ν2 = ν3 = 0.01, ν4 = 0.02, and the constants of the kinetic equations
F1 = 12 s−1, F2 = F3 = F4 = 1.00 s−1. In Fig. 1, the horizontal axis represents
some values taken by the total concentration of cofactorm as it varies. For each value
ofm corresponds an orbit within the cascade diagram that can easily be traced. Some
of those orbits are represented in Fig. 1a–e for m = 0.51, 0.56, 0.57, 0.575, 0.576
respectively. Those values of m also hold for Fig. 2a–e (and Fig. 3a–e) respectively.
The resulting orbits are shown to be characterized by behaviors with complexity
proportional to the total concentration of cofactor m. The level of complexity of the
dynamics increases with m and ends up by becoming chaotic (Figs. 1e, 2e and 3e).

Another parameter comes into play here to make the difference between Figs.
1 and 2 (or Fig. 3). It is γ with chosen values γ = 1.00 for Fig. 1 and γ = 0.80
for Fig. 2 (or γ = 0.60 for Fig. 3). Indeed, the same value of m generates a more
unpredictable behavior within orbits in Fig. 2 (or Fig. 3) compared to those in Fig. 1.
For instance, limit-cycle in Fig. 1a has only two extremes while it is doubled for
the corresponding case in Fig. 2a (or Fig. 3a). Hence, chaos is shown to appear
earlier in the cascade diagram of Fig. 2 (or Fig. 3). This points out the very important
role of the parameter γ in controlling the dynamics that emerge in biochemical
systems of four-component reaction networks. Another illustration is depicted by
Fig. 4 that shows the limit cycle of model (18)–(19) plotted for the parameter values
γ = 1, 0.95, 0.90, 0.85, 0.8 with ν1 = 0.95, ν2 = ν3 = 0.01, ν4 = 0.02, and the
constants of the kinetic equations F1 = 12 s−1, F2 = F3 = F4 = 1.00 s−1. It shows
again limit-cycle oscillations with chaotic behavior becoming more irregular as γ

decreases. In Fig. 5, the same scenario and Fig. 4 occurs for F1 = 18 s−1, F2 =
F3 = F4 = 2.5 s−1 and γ = 1, 0.90, 0.80, 0.65, 0.50 with ν1 = 1.05, ν2 = ν3 =
0.01, ν4 = 0.02. Here we observe limit-cycles with a chaotic jump and trajectories
growing as γ decreases from 1 to 0.5.

5 Concluding Remarks

This paper, by means of Haar wavelets, solved a system modeling autocatalytic
reaction networks, with a special focus on biochemical systems of four-component
network.After showing the convergence of themethod through error analysis, several
numerical experiments revealed that the dynamics of the system is characterized
by limit-cycles followed by period-doubling bifurcations that culminate with chaos
according to the variation of the concentration of cofactorm. The level of complexity
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Fig. 3 Representation of cascade diagram for the model (18)–(19) in the pure fractional case
γ = 0.6 with ν1 = 0.95, ν2 = ν3 = 0.01, ν4 = 0.02, and the constants of the kinetic equations
F1 = 12 s−1, F2 = F3 = F4 = 1 s−1. It shows a dynamic closely similar to the one in Fig. 2

was found to be proportional to m. The parameter γ, that represents the derivative
order of the model, also plays an important role in triggering and controlling the
appearance of chaos. Moreover, the chaos is shown to appear earlier in the cascade
diagram of the fractional case. Hence, fractional chaotical models generalizing the
integer-order models in function of activity and total concentration, the parameter γ

is a valuable and promising tool to regulate this chaos.
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Fig. 4 The plot representing the projection of the limit cycle of model (18)–(19) for some values of
parameter γ with ν1 = 0.95, ν2 = ν3 = 0.01, ν4 = 0.02, and the constants of the kinetic equations
F1 = 12 s−1, F2 = F3 = F4 = 1 s−1. It shows again limit-cycles with chaotic trajectories growing
as γ decreases from 1 to 0.8
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Fig. 5 The plot representing the projection of the limit cycle of model (18)–(19) for some values of
parameter γ with ν1 = 1.05, ν2 = ν3 = 0.01, ν4 = 0.02, and the constants of the kinetic equations
F1 = 18 s−1, F2 = F3 = F4 = 2.5 s−1. It shows again limit-cycles with a chaotic jump and
trajectories growing as γ decreases from 1 to 0.5
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Development and Elaboration of a
Compound Structure of Chaotic
Attractors with Atangana–Baleanu
Operator

Emile F. Doungmo Goufo

Abstract After the finding of the compound structure for standard chaotic attractors,
the main concern was related to how to regulate such a fascinating dynamic. Hence,
the question about the existence of a compound structure for chaotic attractors gen-
erated by fractional systems was raised. In this work, we investigate the existence of
compound structure of a chaotic attractor generated from a Atangana–Baleanu frac-
tional system where two cases are studied: the integer case and the fractional one.
The model is first solved numerically thanks to the Haar Wavelets scheme whose
convergence is proved via error analysis. Numerical simulations are performed and
clearly reveal the existence of the desired compound structure in both cases and
characterized by the generation of a left-attractor seen as the reflection of a right
attractor through the mirror operation. Moreover, those two simple attractors can
always be combined together to form the resulting chaotic attractor. The mechanism
of forming those simple attractors is shown and leads to a bounded partial attrac-
tor. Furthermore, that same mechanism appears to be strongly dependent on two
parameters, the model parameter u and the Atangana–Baleanu derivative with order
α, important in controlling the systems. It is observed that, in the fractional case
(α = 0.9), the period-doubling bifurcations start at a higher value of u compared to
the integer case (α = 1).
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1 Introduction

Most of chaotic attractors that govern three-dimensional systems were shown for the
first time in the years 1960s. They include the chaotic Rössler system [1–3] and the
Lorenz system [2–4] respectively given by

⎧
⎪⎨

⎪⎩

d
dt x(t) = −y − z,
d
dt y(t) = x + σ y,
d
dt z(t) = ρx + z(x − δ),

(1)

and
⎧
⎪⎨

⎪⎩

d
dt x(t) = σ(y − x),
d
dt y(t) = x(ρ − z) − y,
d
dt z(t) = xy − δz,

(2)

with t > 0, where x = x(t), y = y(t), z = z(t) are the system state and σ, ρ, δ

some real parameters to the systems. However, more recently some authors [5] man-
aged to develop and propose an equivalent chaotic (Chen’s) attractor which, never-
theless is not similar to the previous ones (1) and (2). The authors rather considered
that new chaotic attractor as the dual to Lorenz attractor was generated by the system
(2). The main reason for that is due to the observations that Lorenz system and the
system that generates Chen’s attractor meet similar conditions related to the constant
matrix for the linear part of their systems [6, 7]. Consequently, an analysis linking
Lorenz attractor and Chen attractor was successfully proposed by the same authors.
In the same momentum, the Lorenz system was modified in [8] and shown to exhibit
a compound structure. The same analysis was done for Chen’s system in [9]. There-
fore, existence of a compound nature of both Lorenz and Chen attractors is no longer
a mystery and their chaotic character was successfully investigated. On the other
hand, models of types (1), (2) or Chen’s model were comprehensively analyzed us-
ing the fractional calculus, and their chaotic features were pointed out successfully
[2, 10–13]. For example in [12], the Atangana–Baleanu fractional derivative was
used together with Haar wavelet numerical scheme to investigate a chaotic four-
wing attractors generated by a three-dimensional (3D) system similar to the types
(1), (2) or Chen’s model. A similar analysis was performed in [2] making use of
the two-parameter derivative with non-local and non-singular kernel. The question
that predominates the present circumstance is about the existence of a compound
structure for fractional systems of types (1), (2) or Chen’s model when these are
expressed by means of fractional derivative like Atangana–Baleanu’s. Moreover, if
such structure exists, we would like to know how it is created, how it evolves and
how can it be controlled. This paper aims to address those concerns and for that, we
consider the following system:
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⎧
⎨

⎩

ABC Dα
t x(t) = a(x − y),

ABC Dα
t y(t) = −xz + cz + u,

ABC Dα
t z(t) = xz − bz,

(3)

where a, b, c ∈ R, x = x(t), y = y(t), z = z(t) the system state and the term
ABC Dα

t representing the Atangana–Baleanu fractional derivative [14–29] defined as

ABC Dα
t u(t) = W (α)

(1 − α)

∫ t

0
u̇(τ ) Eα − α(t − τ)α

1 − α
dτ, (4)

with the derivative orderα ∈ [0, 1] andwhereW (γ ) defines a normalization function
such that

W (0) = W (1) = 1. (5)

It is important to recall the antiderivative that comes with Atangana–Baleanu deriva-
tive and used in this analysis. It is given by the following antiderivative (also called
fractional integral of order α):

I αu(t) = α

W (α)Γ (α)

∫ t

0
(t − τ)α−1u(τ )dτ + 1 − α

W (α)
u(t). (6)

Because of the complex non-linear features of ABC Dα
t , model (3) is not always

straightforward to solve. That is why we are going to address the solvability of the
model by means of numerical approximations, namely the method of Haar wavelets
[10–12, 30].

1.1 A Particular Case for α = 1

Recall thatwhen theAtangana–Baleanu derivative order reduces toα = 1, the system
(3) takes the particular form

⎧
⎪⎨

⎪⎩

d
dt x(t) = a(x − y),
d
dt y(t) = −xz + cz + u,
d
dt z(t) = xz − bz.

(7)

This model with u = 0 is believed to be a kind of connection between the Lorenz and
Chens attractors [19]. It is characterized by a chaotic attractor when the parameters
a, b and c satisfy a = 35, b = 3, c = 22 as depicted in Fig. 1c. Now what happens
for α taken randomly in [0, 1]! We answer this question by means of Haar wavelet
method.
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Fig. 1 Chaotic dynamic given by themodel (3), with initial conditions x(0) = 1, y(0) = 1, z(0) =
12 and control parameters a = 35, b = 3, c = 22, u = −11, u = 11 and u = 0. The compound
structure dynamic manifests itself with the chaotic attractor in c and its left-attractor in a and
right-attractor in b

2 A Note on Haar wavelets

The following function that takes its values on the real set R and that reads as

H(t) =
⎧
⎨

⎩

1, for t ∈ [0, 1/2);
−1, for t ∈ [1/2, 1);
0, elsewhere.

(8)

is called the Haar wavelet [10, 11, 30]. Recall that each q = 0, 1, 2, . . . , can al-
ways take the form q = 2k + i with k = 0, 1, 2, . . . , and i = 0, 1, 2, . . . , 2k − 1.
Considering for each q = 0, 1, 2, . . . the family

hq(t) =
{
2

k
2H(2k t − i), for q = 1, 2, . . . ,

1, for q = 0,
(9)

for t ∈ [0, 1), then, the system {hq(t)}∞q=0 = 0 is well defined to form a complete
orthonormal system in L2[0, 1) (see [11, 30]). Assuming g ∈ C[0, 1), therefore, the
series

∑∞
q=0〈g, hq〉hq is uniformly convergent to g with 〈g, hq〉 = ∫ ∞

0 g(t)hq(t)dt
Thus, we are able to rewrite g as
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g(t) =
∞∑

q=0

ϕqhq(t),

with ϕq = 〈g,hq〉. We obviously get the approximated solution

g(t) ≈ gi (t) =
i−1∑

q=0

ϕqhq(t),

where i ∈ {2k : k = 0, 1, 2, . . .}.
Withm ∈ N, let us use the interval [0,m), as the translation of the Haar function.

It allows us to set

hp,q(t) = hq(t − p + 1) p = 1, 2, . . . ,m and q = 0, 1, 2, . . . , (10)

where the family hq is given by (9) and which verify the same properties as hp,q

does. Thus, {hp,q(t)}∞q=0, p = 1, 2, . . . ,m, also forms complete orthonormal system
in L2[0, 1). This generates the basis functions defined as

ϕp,q = 〈g,hp,q〉 =
∫ ∞

0
g(t)hp,q(t)dt,

and also called the Haar basis functions. Note that the family of Haar basis functions
forms an orthonormal system. Hence, the solution g ∈ L2[0,m) can be written as
the series

g(t) =
m∑

p=1

∞∑

q=0

ϕp,qhp,q(t), (11)

where we have used Haar basis functions. Similarly, the following approximation
can be performed:

g(t) ≈ gi (t) =
m∑

p=1

i−1∑

q=0

ϕp,qhp,q(t), (12)

with i ∈ {2k : k = 0, 1, 2, . . .}.
For the sake of notation simplicity in our analysis, the model (12) can take the

compact form when we set

g(t) ≈ gi (t) = Qmi×1
T
Hmi×1, (13)

with TQmi×1 the vector

Qmi×1 = (
ϕ1,0, . . . , ϕ1,i−1, ϕ2,0, . . . , ϕ2,i−1, . . . , ϕm,0, . . . , ϕm,i−1

)
,
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and T
Hmi×1 the transpose vector of

Hmi×1 = (
h1,0, . . . ,h1,i−1,h2,0, . . . ,h2,i−1, . . . ,hm,0hm,i−1

)
.

3 Solvability of the Model (3)

In this section, the model (3) is solved numerically by means of Haar wavelets. Thus,
we follow the same steps as [12]. We provide in the following lines some important
steps of the solvability. The model reads as

⎧
⎨

⎩

ABC Dα
t x(t) = a(x − y),

ABC Dα
t y(t) = −xz + cz + u,

ABC Dα
t z(t) = xz − bz,

(14)

and for the reasons of applicabilities, it is provided with to the initial conditions

X (0) = u(x), y(0) = v(y), z(0) = w(z). (15)

System (14)–(15) can take the a compact form when we proceed as follows: Let g
be the system state vector, then,

g(t) = (x(t), y(t), z(t)) and g0(x, y, z) = g(0) = (x(0), y(0), z(0)) = (u, v,w).

Let us set the matrix

P(g(t), t) = P(x(t), y(t), z(t), t) = (P1(g(t), t), P2(g(t), t), P3(g(t), t)),

(P1(x(t), y(t), z(t), t), P2(x(t), y(t), z(t), t), P3(x(t), y(t), z(t), t)),

where

(P1(g(t), t) = a(x − y), (P2(g(t), t) = −xz + cz + u, (P3(g(t), t) = xz − bz.

Thus, (14) takes the form

ABC Dα
t g(t) = P(g(t), t),

equivalently,

⎧
⎨

⎩

ABC Dα
t x(t) = P1(g(t), t),

ABC Dα
t y(t) = P2(g(t), t),

ABC Dα
t z(t) = P3(g(t), t),

(16)
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still providedwith to the initial conditions X (0) = u(x), y(0) = v(y), z(0) = w(z).
Considering the haar wavelet scheme (13) used to approximate the Atangana–
Baleanu fractional derivative as shown in (16), then,

ABC Dα
t x(t) = P1(g(t), t) ≈ABC Dα

t xi (t) = Q1
mi×1

T
Hmi×1,

ABC Dα
t y(t) = P2(g(t), t) ≈ABC Dα

t yi (t) = Q2
mi×1

T
Hmi×1,

ABC Dα
t z(t) = P3(g(t), t) ≈ABC Dα

t zi (t) = Q3
mi×1

T
Hmi×1.

(17)

Applying the Atangana–Baleanu fractional integral (6) on both side of (17), we get

x(t) − u ≈ABC Dα
t xi (t) = Q1

mi×1 J
α
mi×mi

T
Hmi×1,

y(t) − v ≈ABC Dα
t yi (t) = Q2

mi×1 J
α
mi×mi

T
Hmi×1,

z(t) − w ≈ABC Dα
t zi (t) = Q3

mi×1 J
α
mi×mi

T
Hmi×1,

(18)

equivalently

x(t) ≈ xi (t) = Q1
mi×1 J

α
mi×mi

T
Hmi×1 + u,

y(t) ≈ yi (t) = Q2
mi×1 J

α
mi×mi

T
Hmi×1 + v,

z(t) ≈ zi (t) = Q3
mi×1 J

α
mi×mi

T
Hmi×1 + w,

(19)

Here the operator Jα
mi×mi is theHaar wavelet fractional matrix. Formore details about

the Haar wavelets fractional operational matrix, the reader can consult the articles
[10, 11] and other references therein. By means of Galerkin’s techniques related to
collocation points, the system (14)–(15) is solved by substituting (17) and (19) into
(14). This substitution causes the following residual errors:

ζ1
(
ν1, ν2, ν3, t

)

= Q1
mi×1

T
Hmi×1 − P 1

(
Q1

mi×1 J
α
mi×mi

T
Hmi×1,Q2

mi×1 J
α
mi×mi

T
Hmi×1,Q3

mi×1 J
α
mi×mi

T
Hmi×1, t

)
;

ζ2
(
ν1, ν2, ν3, t

)

= Q2
mi×1

T
Hmi×1 − P 2

(
Q1

mi×1 J
α
mi×mi

T
Hmi×1,Q2

mi×1 J
α
mi×mi

T
Hmi×1,Q3

mi×1 J
α
mi×mi

T
Hmi×1, t

)
;

ζ3
(
ν1, ν2, ν3, t

)

= Q3
mi×1

T
Hmi×1 − P 3

(
Q1

mi×1 J
α
mi×mi

T
Hmi×1,Q2

mi×1 J
α
mi×mi

T
Hmi×1,Q3

mi×1 J
α
mi×mi

T
Hmi×1, t

)
,

(20)

where
ν1 = ϕ1

1,0, . . . , ϕ
1
1,i−1, . . . , ϕ

1
m,0, . . . , ϕ

1
m,i−1;

ν2 = ϕ2
1,0, . . . , ϕ

2
1,i−1, . . . , ϕ

2
m,0, . . . , ϕ

2
m,i−1;

ν3 = ϕ3
1,0, . . . , ϕ

3
1,i−1, . . . , ϕ

3
m,0, . . . , ϕ

3
m,i−1,
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and where ϕ
q·,· are the components of Qq

·×·.
When it is assumed that

ζ1
(
ν1, ν2, ν3, tp,q

) = 0;

ζ2
(
ν1, ν2, ν3, tp,q

) = 0;

ζ3
(
ν1, ν2, ν3, tp,q

) = 0,

then, we are left with a system of 3mi equations, with 3mi unknowns given by

ϕ1
1,0, . . . , ϕ

1
1,i−1, . . . , ϕ

1
m,0, . . . , ϕ

1
m,i−1;

ϕ2
1,0, . . . , ϕ

2
1,i−1, . . . , ϕ

2
m,0, . . . , ϕ

2
m,i−1;

ϕ3
1,0, . . . , ϕ

3
1,i−1, . . . , ϕ

3
m,0, . . . , ϕ

3
m,i−1.

Here the quantities

tp,q = 2q − 1

2i
+ p − 1, p = 1, 2, . . . ,m; q = 1, 2, . . . , i

give a 3mi number of collocation points. Finally, we easily get those unknowns and
substitute them into (19) to have the desired approximated solution reading as

g(t) ≈
⎛

⎝
xi (t)
yi (t)
zi (t)

⎞

⎠ .

4 Convergence Results

To check the convergence of that numerical method, we can proceed by means of
error analysis, which gives us the resulting exact error bounds used from applying the
method for solving (14)–(15). Thus, because g ∈ L2[0,m), we take x ∈ L2[0,m),
y ∈ L2[0,m) and z ∈ L2[0,m) and set

‖g‖2 = (‖x‖2L2 + ‖y‖2L2 + ‖z‖2L2

)1/2
, (21)

where

‖x‖L2 =
(∫ m

0
|x(t)|2dt

)1/2

, ‖y‖L2 =
(∫ m

0
|y(t)|2dt

)1/2

, ‖z‖L2 =
(∫ m

0
|z(t)|2dt

)1/2

.
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Obviously ‖g‖2 defines a norm. From (12) and (13) we consider that, like (19), the
Atangana–Baleanu derivative ABC Dα

t gi (t) approximates ABC Dα
t g(t) so that

ABC Dα
t g(t) ≈ABC Dα

t gi (t) =
m∑

p=1

i−1∑

q=0

ϕp,qhp,q(t).

Where,

⎛

⎝

ABC Dα
t xi (t)

ABC Dα
t yi (t)

ABC Dα
t yi (t)

⎞

⎠ =ABC Dα
t gi (t) =

m∑

p=1

i−1∑

q=0

ϕp,qhp,q (t) =
⎛

⎜
⎝

∑m
p=1

∑i−1
q=0ϕ

1
p,qhp,q (t)

∑m
p=1

∑i−1
q=0ϕ

2
p,qhp,q (t)

∑m
p=1

∑i−1
q=0ϕ

3
p,qhp,q (t)

⎞

⎟
⎠ ,

where i ∈ {2k : k = 0, 1, 2, . . .} and ϕp,q = 〈ABC Dα
t gi , h p,q〉m = ∫ m

0
ABC Dα

t gi (t)
h p,q(t)dt,

ϕ1
p,q = 〈ABC Dα

t xi , h p,q〉m =
∫ m

0

ABC Dα
t xi (t)h p,q(t)dt,

ϕ2
p,q = 〈ABC Dα

t yi , h p,q〉m =
∫ m

0

ABC Dα
t yi (t)h p,q(t)dt, (22)

ϕ3
p,q = 〈ABC Dα

t zi , h p,q〉m =
∫ m

0

ABC Dα
t zi (t)h p,q(t)dt,

Hence,

ABC Dα
t g(t) −ABC Dα

t gi (t) =
m∑

p=1

∞∑

q=i

ϕp,qhp,q(t),

=
m∑

p=1

∞∑

q=2k

ϕp,qhp,q(t), k = 0, 1, 2, . . .

=
⎛

⎜
⎝

∑m
p=1

∑∞
q=2kϕ

1
p,qhp,q(t)

∑m
p=1

∑∞
q=2kϕ

2
p,qhp,q(t)

∑m
p=1

∑∞
q=2kϕ

3
p,qhp,q(t)

⎞

⎟
⎠ k = 0, 1, 2, . . .

(23)
At this stage, we exploit the norm (21) to state the following convergence theorem,
valid especially for the state functions x, y and z taken from the Sobolev space
H 1[0,m).

Theorem 1 Considering 0 ≤ α ≤ 1 and assuming x ∈ H 1[0,m), y ∈ H 1[0,m)

and z ∈ H 1[0,m). If the Atangana–Baleanu fractional operator ABC Dα
t gi (t) ap-

proximate ABC Dα
t g(t) via the Haar wavelet technique detailed here above, then the

resulting exact upper bound is given by:
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‖ABC Dα
t g(t) −ABC Dα

t gi (t)‖2 ≤ AA−1
α

Γ (1 − α)
, (24)

where A is a real positive number and Aα = (1−α)

2α−1m

(
3−3i (1−α)

22α−2 + 3−3i (2−2α)

22α−4

)−1/2
.

Proof The proof follows from [11, Theorem 6.1], where we apply the exact same
steps.

For the functions x, y and z that do not belong to H 1[0.m), then the only condi-
tions x ∈ L2[0.m), y ∈ L2[0.m) and z ∈ L2[0.m) are no longer enough to state the
previous theorem. The reason is that the interval [0.m) is not closed and the state
functions x, y, z and their first order derivatives may not be bounded nor attain their
bounds on [0.m). Hence the previous theorem, in this case adapts as follow [12,
Corollary 6.1]

Corollary 4.1 Considering 0 ≤ α ≤ 1, x ∈ L2[0,m), y ∈ L2[0,m), z ∈ L2[0,m)

and assuming that x ′, y′ and z′ are continuous and bounded on [0,m). If the
Atangana–Baleanu fractional operator ABC Dα

t gi (t) approximates ABC Dα
t g(t) via

theHaar wavelet technique detailed here above, then the resulting exact upper bound
is given by:

‖ABC Dα
t g(t) −ABC Dα

t gi (t)‖2 ≤ AA−1
α

Γ (1 − α)
, (25)

where A is a real positive number and Aα = (1−α)

2α−1m

(
3−3i (1−α)

22α−2 + 3−3i (2−2α)

22α−4

)−1/2
.

5 Simulations and Discussion on Mechanism of Forming
the “Fractional” Attractors

With the peace of mind that we can neglect the error made by applying the Haar
wavelets scheme as described here above, we are now studying the mechanism that
leads to the forming of the chaotic attractor observed in the dynamic of the system
(3). We proceed by numerical simulations in order to better access the resulting com-
pound structure and point out the topology that sustains such a compound structure.
As expected, Figs. 1 and 3 show chaotic dynamics and prove the existence of a
compound structure of chaotic attractors for both the standard integer case (where
α = 1) and fractional case (where α = 0.9). Indeed, we observe in both cases that
it possible to obtain the compound structure of the resulting chaotic attractor simply
by combining together two simple attractors: The one on the left (Fig. 1a or 3a) and
the one on the right (Fig. 1b or 3 b). In that structure, the left-attractor is considered
as the reflection of the right-attractor through the mirror operation. This result is
clearly depicted by the pairs (Fig. 1a, b) and (Fig. 3a, b) which, as u continues to
vary, will end-up with a full chaotic attractor as shown in Figs. 1c and 3c respectively.
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Fig. 2 Phase portraits of the model (3), figures showing the mechanism of forming the simple
attractor and the partial attractor. The initial conditions used are x(0) = 1, y(0) = 1, z(0) = 12
and the control parameters are a = 35, b = 3, c = 22, u = 15, u = 13, u = 12.5, u = 12 and
u = 10

Figures2 and 4 show mechanism of Forming those attractors with the standard in-
teger case of α = 1 and the fractional case of α = 0.9. The mechanism in the case
α = 1 starts by a limit cycle when u = 15 (Fig. 2a), followed by period-doubling
bifurcations when u decreases a bit as u = 13, 12.5, 12 (Fig. 2a–c respectively).
The mechanism pursues its dynamics as u continues to decrease by the creation of a
right-attractor for u = 11 (Fig. 1b) and the creation of a partial attractor for u = 10.
Moreover, this partial attractor is bounded as clearly depicted in Fig. 2e. When the
parameter u hits 0, we observe a complete attractor as depicted in Fig. 1c.
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Fig. 3 The fractional chaotic dynamic given by the model (3), with initial conditions x(0) =
1, y(0) = 1, z(0) = 12 and control parameters a = 35, b = 3, c = 22, u = −11, u = 11 and
u = 0. It reveals existence of a compound structure of the chaotic attractor in cwith the left-attractor
in a and right-attractor in b. Those two simple attractors can be combined together to generate the
desired compound structure

The same type of dynamics is globally observed for the fractional case where
α = 0.9. The mechanism of forming the ‘fractional’ attractors is revealed to be
similar to the one of the standard integer case. Such mechanism is depicted by
Figs. 3 and 4. We used the word “globally” because there is a slight difference
here and it is due to the fact that the period-doubling bifurcations start at a higher
value of u (u = 15) compared to u = 13 of the integer case α = 1. Hence, the
parameter α when combined with a decreasing u, appears to be an early trigger of
chaotic behavior for systems of type (3). Note that we have chosen some discrete
values of both parameters u and α to sustain our results here. The dynamics the the
system (3) varies continuously as u and α change. Therefore, the role played by both
parameters u and α is very important in regulating and controlling the system. The
complete dynamics are summarized by Table 1 (for α = 1) and Table 2 (for α = 0.9).
They correspond to the results in [31], proven for the integer case, but nevertheless,
support our statement by displaying various and different dynamics in both cases.
The intervals of dynamic applicability for u is given by those two tables.
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Fig. 4 Phase portraits of the model (3), and showing the mechanism of forming the “fractional”
simple attractor and the partial attractor. The initial conditions used are x(0) = 1, y(0) = 1, z(0) =
12 and the control parameters are a = 35, b = 3, c = 22, u = 15.3, u = 13, u = 12, 5, u = 12
and u = 10. Here, the period-doubling bifurcations start at u = 15, higher value compared to that
of Fig. 2. Therefore the parameter α, when combined with a decreasing u, appears to be a early
trigger of chaotic behavior for our system

6 Concluding Remarks

Wehave investigated the existence of compound structure of a chaotic attractor issued
fromaAtangana–Baleanu fractional dynamical system.We focussed on studying two
particular cases: the integer case where the Atangana–Baleanu derivative order was
set at α = 1) and the fractional one with α = 0.9. The model has first been solved
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Table 1 Types of dynamics due to the controller parameters u and α.

α = 1

Intervals applicability for u Resulting dynamics for system (3)

(−∞, −48] ∪ [48, +∞) Convergence to a point

[−47, −14.8] ∪ [14.8, 47] Existence of a limit cycle (Fig. 2a)

[−14.7, −11.5) ∪ (11.5, 14.7] Formation of period-doubling bifurcations
(Fig. 2b–d)

[−11.5, −10.9] ∪ [10.9, 11.5] Formation of left- or right-attractor (Fig. 1a or
b)

[−10.8, −3] ∪ [3, 10.8] Existence of a partial attractor, shown to be
bounded (Fig. 2e)

[−2; 2] Existence of a full attractor (Fig. 1c)

Table 2 Types of dynamics due to the controller parameters u and α.

α = 0.9

Intervals applicability for u Resulting dynamics for system (3)

(−∞, −48] ∪ [48, +∞) Convergence to a point

[−47, −15.3] ∪ [15.3, 47] Existence of a limit cycle (Fig. 4a)

[−15.2, −11.8) ∪ (11.8, 15.2] Formation of period-doubling bifurcations
(Fig. 4b–d)

[−11.7, −10.9] ∪ [10.9, 11.7] Formation of left- or right-attractor (Fig. 3a or
b)

[−10.8, −3] ∪ [3, 10.8] Existence of a partial attractor, shown to be
bounded (Fig. 4e)

[−2; 2] Existence of a full attractor (Fig. 3c)

numerically bymeans ofHaarWaveletsmethod. Its convergencewas proved via error
analysis before performing some numerical simulations. Those simulations clearly
revealed the existence of the compound structure in both cases and characterized by
the generation of a left attractor seen as the reflection of a right-attractor through
the mirror operation. We have observed in both cases the possibility of obtaining
the compound structure of the resulting chaotic attractor by combining together the
two simple attractors (left- and right-attractor). The mechanism of forming those two
simple attractors has been given in detail and shown to be strongly dependent on the
parameter α, as well as the model parameter u. This gives to those parameters the
important status of system’s controller or regulator. It has also been observed that,
in the fractional case (α = 0.9), the period-doubling bifurcations start at a higher
value of u compared to the integer case (α = 1). Therefore the parameter α, when
combined with a decreasing model parameter u, appears to be an early trigger of a
chaotic behavior for certain type of dynamical systems like the one analyzed in this
paper. This is a great observation that may be substantial in future related works.
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On the Atangana–Baleanu Derivative
and Its Relation to the Fading Memory
Concept: The Diffusion Equation
Formulation

Jordan Hristov

Abstract The constructions of physically adequate forms of the diffusion equa-
tion with implementation of the Atangana–Baleanu derivative with Mittag-Leffler
exponential kernel have been discussed. The specific form of the corresponding
Atangana–Baleanu integral relates it directly to the fading memory concept, fol-
lowing the Boltzmann linear superposition principle with the standard Riemann-
Liouville integral as the time-fading term. This approach relates the new fractional
operators with non-singular kernel to the classical Riemann-Liouville integral. Using
the concept of the fading memory and the specific form of the Atangana–Baleanu
integral three forms of the diffusion equation have been investigated. The adequate
definition of the flux to gradient relationship has been the main focus of the study re-
sulting in two physically adequate formulations of the diffusion equation. The direct
(formalistic) fractionalization of the classical diffusion equation results in physically
inadequate relationships.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative ·
Diffusion equation

1 Introduction

1.1 Fractional Diffusion Equation with Non-singular Kernel

This study addresses the construction of the fractional diffusion equation when the
time-fractional derivative is with non-singular kernel based on the Mittag-Leffler
function [2, 5, 12, 14, 16–19, 43]. The main idea relates the associated fractional
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integral to the concept of fading memory, modelling the flux relaxation in simple
materials [10, 11, 21, 22, 39–41]. The study demonstrates that starting from a simple
rate equation defined irrespectively of the type of the fractional derivative and the
associated fractional integral; it is possible to obtain formulations of the diffusion
equation. The development of the idea, expressed above, uses the new results of
Baleanu and Fernandez [3, 5, 14] and the classic formulations of heat diffusion
in materials with memory [11, 21]. Recently, Tateishi et al. [46] investigated the
effects of different fractional kernels K (t) in the right hand of the diffusion equation
formulated as

∂ f

∂t
= D0F

α
t

(
∂2 f (x, t)

∂x2

)
, Fα

t = ∂

∂t

∫ t

0
f (x, t)K (t − τ)dτ. (1)

This diffusion equation focuses on the formulation of the functional in the right-
hand side relating the flux to the space derivative. The latter is especially investigated
in the present studywhen the time derivative is theAtangana–Baleanu time-fractional
derivative [2, 5, 14] and the flux is related to the fading memory concept.

1.2 Problem Formulation

Consider the following general constitutive formulation of the continuity Eq. (2)

∂α f (x, t)

∂tα
= −∇ j (x, t), (2)

that should result in a diffusion equation generally formulated as (3)

∂α f (x, t)

∂tα
= Φ

[
∂2

∂x2
f (x, t)

]
. (3)

The right-hand side in (3) is a function of the gradient ∂ f/∂x , while ∂α f/∂tα is any
time-fractional derivative of causal function f (x, t). In general, the functional Φ

should be dependent on the gradient ∂ f/∂x , that is, we consider a simple medium, in
sense of Gurtin [11, 21, 38]. Precisely, in simple materials the flux j (x, t) is related
to the gradient, that is j (x, t) = Φ ′(∇ f ) so that ∇ • j (x, t) = Φ(� • f ) [45]. The
functional Φ is generally related to a memory integral with a kernel R(t)

j (x, t) ≡ −D(0)
∫ t

0
R(t − τ)

∂ f (x, τ )

∂t
dτ, (4)

following the Boltzmann [6] and Volterra [47] concepts (see the sequel).
In the case of instantaneous flux propagation (infinite speed), when α = 1

(local time derivative), we have the kernel R(t) = δD(t) (Dirac delta) so that
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∫ ∞
0 R(t)dt = ∫ ∞

0 δD(t)dt = 1 and consequently the Fourier (Fick) law j (x, t) =
−D(0)∇ • f (x, t) is recovered. Then, with the continuity equation (2) we get the
classical diffusion equation.

In this context, in the framework of the classical fractional calculus, if theContinu-
ous TimeRandomWalk (CTRW)mechanism describes the diffusion process [23, 33,
36, 37] with memory kernel R(t) ∝ t−α/Γ (α), α ∈ (0, 1), the derivative ∂α f/∂tα

is either Riemann–Liouville or Liouville-Caputo with singular kernels, namely [42]

RL D
α
t = 1

Γ (1 − α)

∫ t

0
f (s)

1

(t − s)α
ds, α ∈ (0, 1), t > 0, (5)

C D
α
t = 1

Γ (1 − α)

∫ t

0

d f (s)

dt

1

(t − s)α
ds, (6)

Then the flux j (x, t) is related to its history through theRiemann–Liouville fractional
integral [42]

RL I α(∇ • f ) = 1

Γ (α)

∫ t

0

∂ f (x, t)

∂x
(t − τ)−αdτ, α ∈ (0, 1), t > 0. (7)

As a result, the diffusion equation (2) takes the form [36, 42]

∂α f (x, t)

∂tα
= D0

∂2 f (x, t)

∂x2
, α ∈ (0, 1), t > 0. (8)

Now, the problem of interest is the formulation of the diffusion equation when
the time-fractional derivative has the non-singular Mittag-Leffler function Eα as
a memory kernel, that is ∂α f/∂tα is the Atangana–Baleanu (AB) time-fractional
derivative [2, 5] in two basic definitions, precisely ABR and ABC are defined in the
sequel.

2 Necessary Background

2.1 Derivatives with Non-singular Mittag-Leffler Kernels:
Definitions

One of the modern trends in fractional calculus is the development of fractional op-
erators with non-singular kernels. Here we focus the attention on Atangana–Baleanu
derivatives (AB derivatives) in two basic definitions



178 J. Hristov

Riemann–Liouville sense (ABR derivative)

ABRDα
a+ f (t) = B(α)

1 − α

d

dt

∫ t

0
f (z)Eα

[ −α

1 − α
(t − z)α

]
dz, (9)

with 0 < α < 1, a < t < b and f (x, t) ∈ l1[a, b]
Caputo sense (ABC derivative)

ABC Dα
a+ f (t) = B(α)

1 − α

∫ t

0

d f (z)

dt
Eα

[ −α

1 − α
(t − z)α

]
dz, (10)

with 0 < α < 1, a < t < b and f (x, t) is a differentiable function on [a, b] such
that d f (x, t)/dt ∈ l1[a, b].

The normalization function B(α) can be any function satisfying the conditions
B(0) = B(1) = 1 [2] (see also [5] for details). In these definitions Eα is one-
parameter Mittag-Leffler function [42]

Eα =
∞∑
0

zk

Γ (αk + 1
. (11)

The Mittag-Leffler function is an entire function of z and the series (11) are
converging locally uniformly in the whole complex plane.

2.1.1 AB Derivatives: Laplace Transforms and Relationships

The Laplace transform of ABR derivative is [2]

L
{
ABR
0 Dα

t [ f (t)]
}
(p) = B(α)

1 − α

pα

pα + α
1−α

L { f (t)} (p). (12)

Similarly for the ABC derivative

L
{
ABR
0 Dα

t [ f (t)]
}
(p) = B(α)

1 − α

pα

pα + α
1−α

[
L { f (t)} (p) − pα−1 f (0)

]
. (13)

Consequently, the relation between ABR and ABC is [2]

ABC
0 Dα

t [ f (t)] =ABR
0 Dα

t [ f (t)] − B(α)

1 − α
f (0)Eα

(
− α

1 − α
tα

)
. (14)

Hence, with zero initial conditions both derivatives are identical, a property al-
ready known from the classical Riemann-Liouville andCaputo-Liouville derivatives.
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2.1.2 ABR Derivative and the Related Fractional Integral

As it was demonstrated by Atangana and Baleanu [2] the following fractional dif-
ferential equation

ABR
0 Dα

t [ f (t)] = u(t), (15)

has a unique solution

f (t) = 1 − α

B(α)
u(t) + α

B(α)

1

Γ (α)

∫ t

0
u(τ )(t − τ)α−1dτ, (16)

where for α = 0 we recover the initial function, while for α = 1 we get the ordinary
Riemann integral.

The ABR fractional derivative can be expressed as [5]

ABR
0 Dα

t [ f (t)] = B(α)

1 − α

∞∑
k=0

( −α

1 − α

)k d

dt

[
RL I αk+1

a+ f (t)
]
. (17)

The AB fractional integral operator AB I α
a+ follows directly from the solution (16)

and can be precisely defined as [5]

AB I α
a+ f (t) = 1 − α

B(α)
f (t) + α

B(α)

RL
I α
a+ f (t), (18)

where RL I αk+1
a+ f (t) is the Riemann-Liouville fractional integral [42]. The relation

(18) can be easily developed by applying the Laplace transform to equation (15) as
it was demonstrated by Baleanu and Fernandez [5]. Further, we have the following
left and right inverse properties [5]

AB I α
a+

[
ABRDα

a+ f (t)
] = f (t), (19)

ABRDα
a+

[
AB I α

a+ f (t)
] = f (t), (20)

and the commutative properties for β ∈ (0, 1)

ABRDα
a+

[
ABRDβ

a+ f (t)
]

=ABR Dβ
a+

[
ABRDα

a+ f (t)
]
, (21)

AB I α
a+

[
AB I β

a+ f (t)
]

=AB I β
a+

[
AB I α

a+ f (t)
]
, (22)

ABRDα
a+

[
AB I α

a+ f (t)
] =AB I α

a+
[
ABRDα

a+ f (t)
]
. (23)

For the sake of the simplicity, assuming hereafter B(α) = 1, we get from (18)
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AB I α
a+u(t) = (1 − α)u(x, t) + αRL I α

a+u(x, t) = f (t), (24)

or equivalently

AB I α
a+u(t) = m(α)u(x, t) + λ(α)RL I α

a+u(x, t). (25)

The construction of Eqs. (24) and (25) are the same as that of the Boltzmann linear
superposition functional [6] expressing the fading memory concept [21, 40] with a
time-dependent memory (influence) function) R(t), namely

ϕ(x, t) = m [νx (x, t)] + λ

∫ t

0
R(t, z)νx (z)dz. (26)

The memory integral (the 2nd terms in (24) or (25 ) is the standard Riemann-
Liouville fractional integral RL I α

a+u(x, t). In (26) νx (z) = ∇ν(z) and ∇ • ∇ = � is
the Laplacian. The coefficients m and λ are weighting functions (transport coeffi-
cients) depending on the character of the modelled diffusion process (heat or mass).
The basic idea of the fading memory concept is explained in the next point.

2.2 Fading Memory Concept in Case of Diffusion of Heat
(Mass)

The fading memory concept relating the flux to its gradient, for simple materials [21,
38, 45], is modelled by the following integro-differential equation

j (x, t) = −D0∇C(x, t) − D′
∫ t

−∞
R(t − τ)∇C(x, τ )dτ, (27)

as amanifestation of theBoltzmann linear superposition functional (see (26) express-
ing the flux history [6, 21, 38] through the function of influence (memory kernel)
R(t, z). In (27) D0 and D′ are transport coefficients (diffusivities).

The appropriate history value problem for(27) is related to the following integral
[38]

d(t) = −
∫ t

−∞
R(t − τ)∇C(x, τ )dτ, (28)

allowing to give a function C(x, t) on −∞t < 0.
From (27) and (28) it follows that

∇ • j (x, t) = −D0�C(x, t) − D′
∫ t

0
R(t − τ)∇C(x, τ )dτ + ∇ • d(t). (29)
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Since C(x, t) is a causal function (vanishing for t < 0) and considered only for
0 < t < ∞, then we accept d(t) = ∇ • d(t) = 0 and therefore (29) can be rewritten
as

∇ • j (x, t) = −D0�C(x, t) − D′
∫ t

0
R(t − τ)∇C(x, τ )dτ. (30)

3 Diffusion Equation in Terms of ABR Derivative

3.1 Conjectures

Now, let us turn on to the basic formulation of the rate equation (15) expressed
through either ABR or ABC derivative [2, 5] allowing the time fractional derivative
to be related to the flux expressed as a function of the gradient ∂ f/∂x . The following
model development is based on two constitutive conjectures.

3.1.1 Conjecture 1

Assume that in (15) the function in the right-hand side is defined as u(x, t) =
(−∂ f/∂x), without loss of the generality of this equation. Consequently the AB
fractional integral operator AB I α

a+u(t) (see (24) as a construction) can be expressed
as

AB I α
a+ [u(x, t)] = −

{
m(α)

∂ f (x, t)

∂x
+ λ(α)RL I α

a+

[
∂ f (x, t)

∂x

]}
. (31)

Now, theweighting functionsm(α) = (1 − α) andλ(α) = α dependon the degree
of fractionality of the modelled diffusion process. For α = 1 we get m(α) = 0 and
λ(α) = 1. Actually, the expressions (30) and (31) coincide with the Coleman-Noll
definitions [11, 21, 38] (see the relation (27) and the others related to it) about the
flux of diffusant in simple materials (where the flux is proportional to the gradient
j (x, t) ≡ −∂ f/∂x [21, 45], following the Boltzmann superposition principle (26).

3.1.2 Conjecture 2

The flux relaxation follows the fading memory concept expressed by (30) or (26),
that is

ja(x, t) =AB I α
a+

[
−D0

∂ f

∂x

]
= −D0

{
m(α)

∂ f

∂x
+ λ(α)RL I α

a+

[
∂ f

∂x

]}
, (32)

where D0 is the transport coefficients (the diffusivity) for α = 1 (instantaneous flux
with an infinite speed).
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3.2 To the Diffusion Equation: Model 1

Hence, we may rewrite (15) as a continuity equation in terms of ABR derivative,
equivalent to (1), namely

∂α f (x, t)

∂tα
= − d

dx
ja(x, t). (33)

Differentiation with respect to x in (32) yields

− d

dx
ja(x, t) = D0

{
m(α)

∂2 f (x, t)

∂x2
+ λ(α)RL I α

a+

[
∂2 f (x, t)

∂x2

]}
. (34)

Therefore, using the above conjecture, the diffusion equation takes the form

∂α f (x, t)

∂tα
= D0

[
AB I α

a+
∂2 f (x, t)

∂x2

]
, (35)

or
ABRDα

a+ f (x, t) = D0

[
AB I α

a+
∂2 f (x, t)

∂x2

]
. (36)

Explicitly, setting the lower terminal the ABR derivative and the Riemann-
Liouville integral as a = 0, we get

ABRDα
a+ f (x, t) = D0

{
m(α)

∂2 f (x, t)

∂x2
+ λ(α)RL I α

a+

[
∂2 f (x, t)

∂x2

]}
. (37)

As commented above, for α = 1 we have m(α) = 0 and λ(α) = 1, and the mem-
ory integral in (37) becomes

[
AB I α

t

(
∂2 f (x, t)/∂x2

)]
. Hence, for α = 1 from (33)

we recover the Fourier (Fick) law jα=1 = −D0(∂ f/∂x) and equation (37) reduces to
the classical diffusion equation. Alternatively, for the sake of clarity of this statement,
we may express (37) as (with m(α) = 1 − α and λ(α) = α )

ABRDα
a+ f (x, t) = D0

{
∂2 f (x, t)

∂x2
+

[
α I α

t

(
∂2 f (x, t)

∂x2

)
− ∂2 f (x, t)

∂x2

]}
. (38)

For α → 1 the second term (in the squared brackets) tends to zero and we recover
the classical diffusion equation. Moreover, we can see that when the power-law
kernel controls the memory integral (see Eq. (7)) then m(α) → 0 and λ(α) → 1.
However, this is a formal comparison because the singular power-law kernel and the
non-singular one based on the Mittag-Leffler function describe different relaxation
processes andmodel different physical phenomena. Moreover, the formulations (33)
and (34) differ from the directly fractionalized diffusion model (discussed further in
this chapter)
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∂α f (x, t)

∂tα
= D0

∂2 f (x, t)

∂x2
, −∞ < x < +∞, t > 0, (39)

with conditions f (x, 0) = δD(x), f (±, t) = 0, and ∂
∂x f (±∞, t) = 0.

3.2.1 Front Propagation, Finite Speed Concept and Approximate
Integral Solution

The solution of the classical diffusion equation has infinite speed of propagation due
to missing damping flux relationship to the gradient, in accordance with the Fourier
(Fick) law. However, the incorporation of damping (memory) integral in the flux to
gradient relationship (irrespective to the type of memory kernel used) leads to the
concept of finite speed of propagation. In the light of these thoughts the diffusion
zone is defined as 0 ≤ x ≤ δ with f (x, t) > 0 and a virgin zone δ ≤ x ≤ ∞ where
f (x, t) = 0. This assumption means that at x = δ we have the boundary conditions
f (δ(t)) = 0 and ∂ f (δ)/∂x = 0, and consequently jδ(δ) = 0. To estimate how the
front behaves when the fractionality of the process varies we suggest that the solution
may be approximated by a parabolic profile with unspecified exponent [24, 26, 28,
32]

fa = fs
(
1 − x

δ

)n
. (40)

The solution about δ(t)will be performedby the double-integrationmethod (DIM)
successfully used to solve approximately subdiffusion [24, 28] and superdiffusion
[29, 30] problems. For the sake of simplicity we consider the Dirichlet problem that
means fs = f (0, t) = 1.

The application of the double integration method to the diffusion equation (37)
yields

∫ δ

0

∫ δ

x

[
ABR
0 Dα

t f (x, t)
]
dxdx =

=
∫ δ

0

∫ δ

x
D0

{
∂2 f (x, t)

∂x2
+

[
α I α

t

(
∂2 f (x, t)

∂x2

)
− ∂2 f (x, t)

∂x2

]}
dxdx . (41)

The integration in the right-hand side of (41) results in

∫ δ

0

∫ δ

x

[
ABR
0 Dα

t f (x, t)
]
dxdx = D0

{
m(α) f (0, t) + λ(α)RL0 I α

t [ f (0, t)]
}
. (42)

The integral relation (42), from a physical point of view, is amass (energy) balance
over the disturbed zone 0 ≤ x ≤ δ, that is the accumulated mass (energy) in the
diffusion layer (the integral in the left side of (41) is controlled by the flux of mass
(energy) at the boundary (the right-hand side of (42)).
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3.2.2 Front Propagation

Now, replacing f (x, t) in (42) by the assumed profile (40) and performing the double
integration we get

ABR
0 Dα

t

[
δ2

(n + 1)(n + 2)

]
= D0m(α) + λ(α)RL0 I α

t [1]. (43)

Simply, denoting N = (n + 1)(n + 2) we get

ABR
0 Dα

t [δ2] = D0N

[
(1 − α) + α

tα

Γ (α + 1)

]
. (44)

Equation (44) should have an initial condition δ(0) = 0 since there is no diffusant
penetration at t = 0.Moreover, the solution of (44) with respect to δ2 follows directly
from the definition of AB I α

0 f (t). Hence, we have

δ2 = D0N

[
(1 − α) + α

tα

Γ (α + 1)

]
+RL

0 I α
t

{
D0N

[
(1 − α) + α

tα

Γ (α + 1

]}
.

(45)
Consequently we get

δ2 = D0N

[
(1 − α) + α

tα

Γ (α + 1)

]
+ D0N

[
(1 − α) + α

Γ (α + 1)

Γ (2α + 1
t2α

]
, (46)

δ2 = D0N

{
(1 − α) + tα

Γ (α + 1)
+ α

Γ (α + 1)

Γ (2α + 1)
t2α

}
. (47)

Using the relationship yΓ (y) = Γ (y + 1) we get two equivalent forms (the dif-
ferences are in the last term)

δ2 = D0N

{
(1 − α) + tα

Γ (α + 1)
+ α2 Γ (α)

Γ (2α + 1)
t2α

}
, (48)

δ2 = D0N

{
(1 − α) + tα

Γ (α + 1)
+ α

2

Γ (α)

Γ (2α)
t2α

}
. (49)

From (49), for instance, we get

δ2 = D0Nt2α
{

(1 − α)

t2α
+ 1

Γ (α + 1)

1

tα
+ α

2

Γ (α)

Γ (2α)

}
. (50)

Then, for long times we have δ2 →
[
D0N

α
2

Γ (α)

Γ (2α)

]
t2α and therefore δ ∝ tα , that

is, this corresponds to a subdiffusive transport.
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3.2.3 Asymptotic Behaviour of the Front

Let us now estimate the asymptotic behaviour of δ2 for α → 0 and α → 1.

For α → 0 we have (1 − α) → 1, Γ (α + 1) → 1, Γ (2α + 1) → 1 and α2 could
be neglected. Then, the approximation is

δ2α→0 ≡ D0N

{
1 + tα

Γ (α + 1)

}
, δ2α→0 ≡ D0Ntα

{
1

Γ (α + 1)
+ 1

tα

}
. (51)

Hence for small α (strong fractionality) and long times the front exhibits power-
law (subdiffusion) behaviour and δα→0(t → ∞) ≡ √

D0Ntα as in the cases solved
in [24, 28, 32]. Actually, the first version of the estimation (51) can be presented as

δ2α→0 ≡ D0N

{
(tα)0

Γ α · 0 + 1
+ (tα)1

Γ (α · 1 + 1)

}
≡ D0N

1∑
0

(tα)k

Γ (αk + 1)
. (52)

Hence, for α → 0 the front propagation is modeled by the first two terms of
Eα(tα). Recall, that for α → 0 the relaxation is extremely slow and it could be
assumed that it practically does not happen. Moreover, for long times and α → 0
we get from the second form of (51) that δ2α→0 ≡ tα , i.e. subdiffusive behaviour is
modelled as in the case of the Riemann-Liouville derivative. The latter statement is
in agreement with the results of Atangana [1] and Atangana and Gomez [4] where
it was clearly proved that for long times the AB derivative behaves as the Riemann-
Liouville derivative and thus the propagator of the solution (in the present case this
is δ(t)) should exhibit a subdiffusive behaviour.

For α → 1 we have (1 − α) → 0, Γ (α + 1) → 1, Γ (2α + 1) → 2 and α2 → 1.
Then, we have

δ2α→1 ≡ D0N

{
tα + α2

2
t2α

}
≡ D0Nt2α

{
α2

2
+ 1

tα

}
. (53)

The approximation (53) indicates that for long times themovement is subdiffusive.

δα→0 ≡ √
D0Ntα. (54)

For t = 0 we have δ2 = 0 which means that there is no diffusant penetration into
the medium, which is a physically correct result. At this moment it is worthnoting
that the concept of the finite penetration depth comes from the approximate solutions
of integer-order parabolic equations [20, 26] as ad hoc correction of the unphysical
infinite flux speed. Besides, for short times and α → 1 we get δα→1 ≡ √

D0Ntα , a
solution known from subdiffusive cases when the fractional derivative of Riemann-
Liouville type [24, 28] was used. At this point we have to recall that for small times
the Mittag-Leffler function approaches the behaviour of the stretched Kohlrausch
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exponential [1]. Moreover, as it was discussed in [31] for short times the Kohlrausch
relaxation function exhibits the so-called algebraic decay (t/τ)−α thus matching
the behaviour of the singular power-law kernel of the Riemann-Liouville derivative.
Hence, despite the different approach using the behaviour of δ(t) to estimate the
type of the transport process modelled by the constituted diffusion equation (36)
the results are consistent with those of Atangana [1, 4] developed on the basis of
a formal diffusion equation of type (8) and (39) (see also (61) next) where the
time-fractional derivative is ABR. The similarities are based on the fact that the
asymmetric behaviour of the solution strongly depends on the asymmetric behaviour
of the fractional operator rather than on the diffusion term on the right side of the
model equation related to the gradient.

In the context of the above expressions about δ2 we may rearrange (49) as

δ2 = D0N

{
1∑
0

(tα)k

Γ (α + 1)
−

[
−α + (1 − α)

tα

Γ (α + 1)

]}
. (55)

3.2.4 The First Passage Time

Thefirst passage time distribution (FPT) distribution [13, 34, 48] is defined as F(t) =
d f f pt/dt where f f pt = ∫ L

0 f (x, t)dx .With the concept of the finite penetration depth
we have the upper terminal L = δ and consequently with the assumed profile (40)
we have

f f pt =
∫ δ

0

(
1 − x

δ

)n
dx = δ(x, t)

n + 1
. (56)

Then,

Fδ = d

dt

[
δ(x, t)

n + 1

]
. (57)

Moreover, the mean FPT (MFPT) is defined as [13, 34, 48]

TFPT =
∫ ∞

0
f f pt dt =

∫ ∞

0

[∫ δ

0

(
1 − x

δ

)n
dx

]
dt. (58)

Taking into account the results (48) and (49) about δ2 and the asymptotic estima-
tions, it is not possible to get a simple expression about δ allowing easy integration in
(62). Because of that, we will use the squared value of FPT termed here as Squared
First Passage Time distribution (SFPT) F2(t) = (d f f pt/dt)2 which with (61) results
in

F2
δ = d

dt

[
δ2(t)

(n + 1)2

]
. (59)

Consequently,
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(TFPT )2 =
(∫ ∞

0
f f pt dt

)2

=
∫ ∞

0

[∫ δ

0

(
1 − x

δ

)n
dx

]2

dt =

=
∫ ∞

0

D0N

(n + 1)

{
(1 − α) + tα

Γ (α + 1)
+ α

2

Γ (α)

Γ (2α)
t2α

}
dt. (60)

It is obvious that the integration in (60) (for any 0 < α < 1 ) yields (TFPT )2 → ∞.
Therefore, this result is consistent with the results in [13, 34, 48] that MFPT for
subdiffusive transport is infinite. To be precise, this statement is correct for any
α < 1/2. The result (60) shows that it should be also valid for 0.5 < α < 1 because
if δ2 ∝ t2α as it follows from the second term of (48) we may estimate that δ ∝ tα .
Then, repeating the estimation of TFPT we have TFPT ≡ ∫ ∞

0 δdt ≡ ∫ ∞
0 tαdt → ∞.

3.3 To the Diffusion Equation: Model 2

Approach 2 constitutes that the rate equation is

∂ f (x, t)

∂t
= − d

dx
ja(x, t), (61)

where ja(x, t) follows the fading memory concept expressed by Eq. (32). This ap-
proach leads

∂ f (x, t)

∂t
= − d

dx

{
AB I α

a+

[
−D0

∂ f (x, t)

∂x

]}
, (62)

∂ f (x, t)

∂t
= D0

d

dx

{
m(α)

∂ f (x, t)

∂x
+ λ(α)RL

∫ α

a+

[
∂ f (x, t)

∂x

]}
, (63)

or equivalently

∂ f (x, t)

∂t
= D0

{
m(α)

∂2 f (x, t)

∂x2
+ λ(α)RL

∫ α

a+

[
∂2 f (x, t)

∂x2

]}
. (64)

From (3) and (4) and α = 1 we recover the classical diffusion equation. Thus, the
compact form of the diffusion equation in terms of the AB integral only is

∂ f (x, t)

∂t
= DAB

0 I α
a+

[
∂2 f (x, t)

∂x2

]
. (65)

Equation (65) seems pretty but let test it with the integral-balance method in a
manner already used with Model 1. The double integration of (65) yields
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∫ δ

0

∫ δ

x

∂ f (x, t)

∂t
dxdx = D0

∫ δ

0

∫ δ

x

{
AB I α

a+

[
∂2 f (x, t)

∂x2

]}
dxdx . (66)

With the assumed parabolic profile (40) the differential equation about δ is

1

(n + 1)(n + 2)

dδ2

dt
= D0

{
AB I α

a+ [ fa(0, t)]
}
. (67)

For theDirichlet problemwe have fa(0, t) = 1 and the equation about penetration
depth with the initial condition δ(0) = 0 is

dδ2

dt
= D0N

[
m(α) + λ(α)

tα

Γ (α + 1)

]
= D0Ntα

[
m(α)

tα
+ λ(α)

Γ (α + 1)

]
. (68)

For α → 1we havem(α) → 0 and λ(α) → 1, andΓ (α + 1) → 1. Then, for long
times we get from (68) that the front moves in a subdiffusive manner, namely

dδ2

dt (α→1)
≡ D0t

α ⇒ δ(α→1,t→∞) ≡ √
D0tα. (69)

Also, for small α(α → 0) and small times we have

dδ2

dt (α→1,α→0)
≡ D0t

α ⇒ δ(α→0,t→0) ≡ √
D0tα. (70)

Hence, for these cases the behaviour is subdiffusive. Further, from (68), the solu-
tion about δ is

δ =
√

(D0t) + λ(α)

m(α)

tα+1

(α + 1)Γ (1 + α)

√
m(α)

√
N . (71)

Then the scaled penetration depth is

δ√
D0t

=
√
1 + 1

(D0t)

λ(α)

m(α)

tα

(α + 1)Γ (1 + α)

√
m(α)

√
N . (72)

Again, for small α(α → 0) we get δ√
D0t

= √
N which is the well-known result

of the integral-balance solution of the linear diffusion equation. Further, for α →
1 the ratio λ(α)/m(α) → ∞ and its weight increases, while (α + 1)Γ (α + 1) =
Γ (α + 2) → Γ (3) → 2 and tα+1 → t2. However, with 0 < α < 1 we have always
α + 1 < 2 and therefore for the intermediate values of α at any times the front
moves with a behaviour which is a crossover of normal diffusion (the first term) and
subdiffusion (second term) because (α + 1)/2 < 1.
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3.4 To the Diffusion Equation: Formal Approach
and Model 3

Now we turn on the problem of the formalistic fractionalization (denoted by the
subscript FF) which mechanistically leads to equation (39) with construction dif-
ferent from the results (37) or (38) developed in this work. The result presented as
(39), in fact, is a conservative law with a non-locality represented by both the ABR
derivative and the Riemann-Liouville integral. If the diffusion equation is constituted
(postulated) as (39) then we have a formal Model 3

ABR
0 Dα

t f (x, t) = D0
∂2 f (x, t)

∂x2
. (73)

For α = 1 Eq. (73) formally recovers the classical diffusion equation, but when
0 < α < 1 the corresponding integral is (see (16))

f (x, t) = 1 − α

B(α)

[
∂2 f (x, t)

∂x2

]
+ α

B(α)

1

Γ (α)

∫ t

0

[
∂2 f (x, t)

∂x2

]
(t − τ)α−1dτ.

(74)
Then, the flux jFF (t) ≡ − ∂ f

∂x and its space derivative can be defined as two un-
physical relationships (see (75) and (76)) with high order space derivatives

jFF (t) ≡ ∂ f

∂x
≡ D0

1 − α

B(α)

[
∂3 f (x, t)

∂x3

]
+

(75)

+D0
α

B(α)

1

Γ (α)

∫ t

0

[
∂3 f (x, t)

∂x3

]
(t − τ)α−1dτ,

and with d jFF (t)
dx ≡ − ∂2 f

∂x2

d jFF (t)

dx
≡ ∂2 f

∂x2
≡ D0

1 − α

B(α)

[
∂4 f (x, t)

∂x4

]
+

(76)

+D0
α

B(α)

1

Γ (α)

∫ t

0

[
∂4 f (x, t)

∂x4

]
(t − τ)α−1dτ.

It is hard to explain why from (76) when α → 1 in the left-hand side we have ∂2 f
∂x2 ,

while in the right-hand side it appears ∂4 f
∂x4 , since no physical meaning could be found

to support this. In contrast, for α → 1 equation (34) (Model 1 ) and (65) (Model 2)
simply lead to d ja(t)

dx = ∂2 f
∂x2 in accordance with the classical diffusion concept.

Besides, applying the right inverse property (20) to the diffusion equation (36)
one gets
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ABRDα
a+

[
ABRDα

a+ f (x, t)
] =ABR Dα

t

[
D0 I

α
a+

∂2 f (x, t)

∂x2

]
. (77)

This operation leads to

ABRDα
a+

[
ABRDα

a+ f (x, t)
] = D0

∂2 f (x, t)

∂x2
. (78)

This result resembles formally the formalistic equation (61) andmimics the classi-
cal subdiffusion equation with a power-law memory kernel but we have to remember
that with the ABR derivative (see (21))

ABRDα
a+

[
ABRDα

a+ f (x, t)
] �=ABR Dα+α

a+ f (x, t). (79)

Hence, the formal construction of the diffusion equation in terms of AB deriva-
tives, without a physical background about the flux relaxation concept is unreason-
able.

4 Discussion

The appearance of fractional derivatives with non-singular kernels [2, 4, 5, 8, 9,
25, 27] provoked a strong flux of articles (see [31] and the references therein) and
counted publications based on the pillars of the classical fractional calculus using
singular kernels as well. However, since the very begging of this new branch in
fractional calculus, precisely in the seminal articles of Caputo and Fabrizio [8, 9], it
was especially stated that these new derivatives are especially oriented to models of
dissipative phenomena which cannot be adequately described by the classical frac-
tional derivatives (see [31] about the discussion on the Caputo-Fabrizio derivative).
Despite this special notion in [8, 9], the formalism in applying the rules of classical
fractional calculus and the limited physical knowledge ofmathematical society using
fractional models resulted in complicated situations with unusual academic conflicts
and wrong critical publications.

In this chapter we especially related the results of the Atangana–Baleanu deriva-
tive, more precisely the form of the construction of its related integral in order to
draw the red line connecting the new and the old fractional operators. The fading
memory concept of Boltzmann [6] is about 100 years older that the famous Caputo
fractional derivative (1967) now considered as a standard fractional operator with a
singular kernel. Since the choice of the memory (influential) function in the memory
integral strongly depends on the physical process modelled, there are no restrictions
in selection of the memory kernel function if it obeys the only condition to disappear
at long times. As it is commonly discussed, it is quite important to see the asymptotic
behaviours of the fractional operator for small and long times [1, 4, 46].
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Here we have to stress the attention on the forgotten physics in eye of the unusual
conflict (battle) between the developers of new derivatives and the defenders of the
classics in the fractional calculus. Precisely, as it is clearly demonstrated in the book
of Findlay et al. [15], for instance, most of the applications of the integrals with
memory are related it should be et al. to non-linear phenomena where the influence
function is not a power-law. But, as it was especially considered in [15] only when
the response of the materials is considered for very short times, then the power-law-
approximation is applicable, and consequently it is possible to apply the tools of the
classical fractional calculus. Recall that, the Caputo derivative was conceived in 1967
[7] for description of linear short time elastic responses of deformed solids. It was
consequently applied to the field of linear viscoelasticity [35] where the Riemann-
Liouville derivative was already applied to describe viscoelastic effects [44].

Hence, all thoughts are following the natural way of evolution, that is when the
phenomena cannot be adequately described by the existing linear tools, then it is
reasonable to look for and invent if possible, new adequately working fractional
operators. Certainly, it is natural that features known from the linear operators cannot
be encountered in the non-linear operators such as the semi-group properties and the
index law [1, 4]. In this context, it is worth to note that, the Atangana–Baleanu
fractional operator, especially the fractional integral, provides a logical relationship
to the classical Riemann-Liouville integral [5] which is a basic construction of the
classical fractional calculus.

As it is demonstrated in [4], the asymptotic behaviours of either Atangana–
Baleanu or Caputo-Fabrizio fractional operators match the power-law behaviour.
The models constructed in this chapter relate the old idea of fading memory to the
new fractional derivatives with non-singular kernels. The approximate solutions of
Model 1 and Model 2 developed here reveal similar asymptotic behaviours for small
and long times and for small and large values of the fractional parameter as well.

Moreover, the new fractional operators have stronger and complex memories
allowing capturing behaviours combining simultaneously (crossover) classical dif-
fusion and anomalous behaviour [4, 46]. This point is commented in [31], especially
for the Caputo-Fabrizio derivative.

To recapitulate, the quest to model more complex and non-linear phenomena
invokes new operators, and they cannot be treated with the tools of the known linear
technology of the classical fractional calculus. This is natural and a good performance
of the evolution of knowledge. We believe this chapter took a step ahead relating the
new fractional operators and the forgotten physics that should be known in the new
era of fractional calculus.
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Numerical Solutions and Pattern
Formation Process in Fractional
Diffusion-Like Equations

Kolade M. Owolabi

Abstract Nowadays, a lot of researchers have challenged the use of classical dif-
fusion equation to model real life situations. To circumvent some of the up-roaring
challenges, time and space fractional derivatives have been proposed as alternative
to model some anomalous diffusion or related processes where a particle plume
spreads at inconsistent rate with the classical Brownian motion model. In this work,
we shall consider the general diffusion equations with fractional order derivatives
which describe the diffusion in complex systems. Fractional diffusion equation is
obtained by allowing the exponent order α to vary in the intervals (0, 1) and (1, 2)
which correspond to subdiffusion and superdiffusion special cases. For the numerical
approximations, we propose to use the newly correct version of theAdams-Bashforth
scheme which takes into account the nonlinearity of the kernels such as the Mittag-
Leffler law for the Atangana-Baleanu case, the power law for the Riemann-Liouville
and Caputo derivatives. The efficiency and accuracy of the numerical schemes based
on these operators will be justified by reporting their norm infinity and norm rel-
ative errors. The complexity of the dynamics in the equations will be discussed
theoretically by examining their local and global stability analysis. Our numerical
experiment results are expected to give a new direction into pattern formation process
in fractional diffusion-like scenarios.
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1 Introduction

In this paper we consider a general time-fractional diffusion equation of the form

∂αu(x, t)

∂tα
= d

∂2u(x, t)

∂x2
+ f (x, t), (x, t) ∈ [0, L] × [0, T ], (1)

where x and t are the respective space and time variables, d denotes an arbitrary
positive constant usually called the diffusion coefficient, f (x, t) stands for a suf-
ficiently smooth function or any of the nonlinearities often used in most models
ranging from combustion theory to ecology, 0 < α ≤ 1 and 0 < α ≤ 2 are the
sub-diffusive and super-diffusive scenarios, subject to the appropriate initial con-
ditions with either the Neumann or Dirichlet boundary conditions. In the present
case, u : [0, L] × [0, T ] → R, also f : [0, L] × [0, T ] → R. We apply both the
Atangana-Baleanu in caputo sense [3, 6] and the Caputo [10] fractional derivative
operators are respectively defined as

∂αu(t)

∂tα
= AB

a Dα
t [u(t)] = M(α)

1 − α

∫ t

a
u′(ξ)Eα

[
−α

(t − ξ)α

1 − α

]
dξ, (2)

and

∂αu(t)

∂tα
= C

0 D
α
t u(t) = 1

Γ (n − α)

∫ t

0

u(n)ξ

(t − ξ)α+1−n
dξ, n − 1 < α < n, n ∈ N,

(3)
Fractional reaction-diffusion equations represent the extension of classical equa-

tions of mathematical biology and physics [3, 5, 6, 8, 12–16, 20, 22–28, 33, 34,
40–44]. In recent decades, the concept of differentiation with fractional order, nowa-
days is increasingly popular and generates a lot of interest; however, it could be
seen as an old concept that has been studied by some researchers within the field of
fractional calculus.

Over the years, Laplace transformwas applied to solve a range of linear problems.
This perhaps motivates Michele Caputo to solve linear equation which describes a
real-world problem with the Laplace transform method. In his remarks, two defini-
tions based on power law were suggested. However, both definitions posed serious
setback to the derivatives due to singularity problem that occurs at the origin [4]. To
circumvent the problem of singularity, Caputo and Fabrizio [10, 11] constructed a
new derivative with no singularity by using the exponential decay law. Later, Atan-
gana and Baleanu [3] introduced the concept of the generalized Mittag-Leffler func-
tion to derive another derivative with no-singular and non-local kernel.

The time fractional reaction-diffusion-like equations have been used to describe
the most important physical phenomena arising in engineering and other physical
problems, for example, in fractals and groundwater models, biological systems, con-
trol, pattern formation processes, amorphous, comb structures, colloid, glassy and
porous materials, and percolation clusters, polymers, random and disordered media,
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dielectrics and semiconductors, signal processing, geophysical and geological pro-
cesses (see for instance [1, 2, 4, 19, 29, 30]). The major advantage of fractional
derivatives over its classical counterpart lies in the fact that they are suitable and
robust for modelling memory and hereditary properties of a lot of materials and
processes.

Fractional reaction-diffusion equations are an important class of differential equa-
tions. In these years, a lot of theory and numerical techniques for fractional differen-
tial equations have been addressed [14, 49]. Most of the analytical methods applied
to solve these equations have a lot of limitations in terms of application, and the
numerical techniques often applied give rise to round-off errors. Recently, Owolabi
and Atangana [44] proposed a new fractional Adams-Bashforth method with the
Caputo-Fabrizio derivative for the solution of linear and nonlinear fractional dif-
ferential equations. In line with this, we propose a new two-step Laplace Adams-
Bashforth scheme for the solution of time fractional diffusion-like and differential
equations. One of the major advantages of this method is due to its flexibility to
switch between ordinary and partial differential equations.

In this work, we use theMittag-Leffler function in conjunction with the Atangana-
Baleanu derivative in the sense of Caputo and the power law via Caputo fractional
derivative to model a range of time-fractional reaction-diffusion equations. The
Atangana-Baleanu fractional order derivatives are known to have possessed two
important roles; because, they serve as filters with fractional regulators and display
the role of non-integer derivatives. The nonlocal kernel role paves way for better
representation of median with different scales as well as the memory within struc-
ture, while the second role is the memory effect that the new derivative brought to
mathematical equations.

The remainder part of the work is structured as follows: Some useful prelimi-
naries and definitions are given. A viable numerical method for the approximation
of fractional derivative is formulated. We finally present some illustrative examples
of time-fractional reaction-diffusion problems that are still of current and recurrent
interest.

2 Some Basic Properties of Fractional Calculus

Here we briefly highlight some of the basic properties and definitions of fractional
calculus.

The fractional derivative denoted by operator Dα
y f (y) satisfies the properties:

(a)D0
y f (y) = f (y), that is, identity property. (b)Dα

y f (y) = f (y) is standard deriva-
tive if α α ∈ N. (c) Linearity property if Dα

y [a f (y) + bg(y)] = aDα
y f (y) + bD

α
y g(y).

(d) The Leibniz product rule, Dα
y [ f (y)g(y)] = ∑∞

k=0

(
α

k

)
Dα

y [ f (y)]D
α
y [g(y)].

Here we adopt the notation L to represent a Laplace transform with variable u
and F to represent a Fourier transform with variable, say ω. The term D denotes a
fractional derivative with respect to time t of order α.
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The Fourier transform pairs are given as

û(ω) =
∫ +∞

−∞
eiωxu(y)dy, u(y) = 1

2π

∫ +∞

−∞
e−iωx û(ω)dy, (4)

and the Laplace transform pairs

û(x) =
∫ ∞

0
e−xt u(t)dt, u(t) =

∫ c+i∞

c−i∞
ext û(x)dx . (5)

The following are some of the transform results for fractional derivatives:

(i) Atangana-Baleanu derivative in the sense of Caputo

ABC
a Dα

t u(t) = M(α)

1 − α

∫ t

a
u′(ξ)Eα

[
−α

(t − ξ)α

1 − α

]
dξ, (6)

with Laplace transform given as

L
{
ABC
0 Dα

t u(t)
}
(s) = M(α)

1 − α

sαL {u(t)}(s) − sα−1u(0)

sα + α(1 − α)−1
, (7)

where M(α) is the normalized function as defined by Caputo and Fabrizio [10],
and Eα is the one parameter Mittag-Leffler function defined by the following
power series in the entire complex plane

Eα(z) =
∞∑
n=0

zn

Γ (αn + 1)
, α > 0, z ∈ C, (8)

L

{
Eα

[
−

(
t

ξ

)α]}
= 1

x + x1−α

ξα

α > 0. (9)

Note that

E1(z) =
∞∑
n=0

zn

Γ (n + 1)
=

∞∑
n=0

zn

n! = ez . (10)

(ii) Caputo derivative

C
0 D

α
t u(t) = 1

Γ (n − α)

∫ t

0

u(n)ξ

(t − ξ)α+1−n
dξ, n − 1 < α < n, (11)

with Laplace transform

L
{
C
0 D

α
t u(t)

} = xα û(x) − [xα−1u(0)]. (12)
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(iii) Riemann-Liouville derivative

Dα
t u(t) = 1

Γ (α)

d

dt

(∫ t

0

u(ξ)

(t − ξ)1−αdξ

)
0 < α < 1, (13)

with Laplace transform

L
{
Dα

t u(t)
} = xα û(x) − [

Dα−1
t u(t)

]
t=0 , (14)

and Fourier transform

F
[
Dα

y u(y)
] = (iω)α û(ω). (15)

(iv) Atangana-Baleanu fractional derivative in Riemann-Liouville sense

ABR
a Dα

t [u(t)] = M(α)

1 − α

d

dt

∫ t

a
u(ξ)Eα

[
−α

(t − ξ)α

1 − α

]
dξ, (16)

with Laplace transform given as

L
{
ABR
0 Dα

t u(t)
}
(s) = M(α)

1 − α

sαL {u(t)}(s)
sα + α(1 − α)−1

. (17)

Many other fractional derivatives and their Laplace transforms can be found in clas-
sical books [32, 36, 37, 48].

3 Numerical Methods

We start our numerical approximation by first considering a semi-discrete equation
formed by a difference method through space. That is, we discretize the spatial
derivative by using a finite difference scheme on a uniform mesh on interval [0, L],
defined by

x0 = 0 < x1 < · · · < xM , xm = mΔx, Δx = L/M.

We adopt the second-order central difference method

∂2u(xi , t)

∂x2
= u(xi−1, t) − 2u(xi , t) + u(xi+1, t)

(Δx)2
+ ∂4u(τ, t)

∂x4
(Δx)2

12
, (18)

with τ ∈ [xi−1, xi+1], provided that function u is sufficiently smooth. Some of the
important features to take note about the centered finite difference schemes is that
they are symmetric in nature, and possess an even-order of accuracy [38]. Theweights
of some of the central finite difference methods are well presented in [18].
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In addition, we also consider second-order approximations of the Neumann type
at the boundary by the centered difference scheme

ux (x, t) = u(x + Δx, t) − u(x − Δx, t)

2Δx
+ (Δx)2

6
uxx (x, t) + O((Δx)4). (19)

By following [9, 31, 45, 46], at the internal mesh points we introduce the discrete
operator, say L , such that

L u(xi , t) = u(xi−1, t) − 2u(xi , t) + u(xi+1, t)

(Δx)2
, (20)

so that (1) becomes

∂αu(xi , t)

∂tα
= L u(xi , t) + f (xi , t) + E(xi , t), i = 1, 2, . . . , M − 1, (21)

where

|E(xi , t)| ≤ 1

12
max[0,L]×[0,T ]

∣∣∣∣∂
4u(x, t)

∂x4

∣∣∣∣ (Δx)2.

In compact form, the semi-discretization of equation (1) can be written as

∂αu(t)

∂tα
= Lu(t) + f (t), (22)

where u(t) = [u1(t), u2(t), . . . , uM−1(t)]T, ui (t) denotes an approximation of ui (xi ,
t), f (t) = [ f (x1, t), f (x2, t), . . . , f (xM−1, t)]T, and the tridiagonal matrix L ,
expressed as

L =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠

(M−1)×(M−1)

. (23)

If Eq. (19) is used to discretize the boundary conditions, we obtain

u−1(t) = u1(t) and uM+1(t) = uM−1(t). (24)

To fully discretize, one only require to approximate the component ui (t) of (22)
by uiN . By using the points t0 = 0 < t1 < t2 < · · · < tN = T , with

uiN (t) =
N∑
k

ωk(t)u
i
N (tk). (25)
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Further, we express
ωk(t) = 0D

α
t ωk(t),

so as to formulate the following approximation

0D
α
t u

i (t) =⇒ 0D
α
t u

i
N (t) =

N∑
k

ωk(t)u
i
N (tk).

Therefore

0D
α
t u

i (t j ) =⇒
N∑

k=0

ωk(t j )ui,k =
N∑

k=1

ωk(t j )ui,k + ω0(t j )u0(xi ), (26)

for j = 1, 2, . . . , N , ui,k = uiN (tk) =⇒ u(xi , tk) and u0(x) is the initial function
expected to be given.

For the boundary conditions, we employ the above centered difference approxi-
mation (19) to obtain (24), and by Eq. (22), we get

N∑
k=0

ωk(t j )u0,k = 2u1, j − 2u0, j
(Δx)2

+ f (x0, t j ),

N∑
k=0

ωk(t j )ui,k = ui−1, j − 2ui, j + ui+1, j

(Δx)2
+ f (xi , t j ), i = 1, 2, . . . , M − 1,

N∑
k=0

ωk(t j )uM,k = 2uM−1, j − 2uM, j

(Δx)2
+ f (xM , t j ), j = 1, 2, . . . , N .

Hence, the discretized form of problem (1) is represented by the linear system

AU + au0
T = UB

Δx2
+ F, (27)

with matrix B defines as

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
2 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 2
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

with
(A) j,k = ωk(t j ), (a) j = ω0(t j ), j, k = 1, 2, . . . , N ,
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and

(u0)i+1 = u0(xi ), (U ) j,i+1 = ui, j , (F) j,i+1 = f (xi , t j ), j = 1, 2, . . . , N , i = 0, 1, . . . , M.

Secondly, we follow [21] and derive a two-step Adams-Bashforth scheme via the
Laplace method to approximate (22) in the sense of the Caputo and the Atangana-
Baleanu fractional derivatives. This is achieved by taking the Laplace of both sides
of (22), to obtain

L

{
∂αu(x, t)

∂tα

}
= L {Lu(x, t) + Fu(x, t)} . (29)

In the sense of Caputo derivative, above expression transforms into

L

{
∂αu(x, t)

∂tα

}
︸ ︷︷ ︸

C
0 D

α
t u(t)

= L {Lu(x, t) + Fu(x, t)}︸ ︷︷ ︸
G (u,t)

, (30)

where C
0 D

α
t u(t) is the Caputo fractional derivative of order α as given above. Next,

the Caputo fractional integral operator is applied on both sides of (30) to get

u(t) − u(t0) = 1

Γ (α)

∫ t

0
(t − ξ)α−1G (u, ξ)dξ. (31)

With t = tn+1, one obtains

u(tn+1) = u0 + 1

Γ (α)

∫ tn+1

0
(tn+1 − ξ)α−1G (u, ξ)dξ.

Likewise, with t = tn yields

u(tn) = u0 + 1

Γ (α)

∫ tn

0
(tn − ξ)α−1G (u, ξ)dξ,

so that

un+1 − un = 1

Γ (α)

{∫ tn+1

0
(tn+1 − ξ)α−1G (u, ξ)dξ −

∫ tn

0
(tn − ξ)α−1G (u, ξ)dξ

}
.

(32)
Bear in mind that with

∫ tn+1

0
(tn+1 − ξ)α−1G (u, ξ)dξ =

n∑
i=0

∫ ti+1

ti

(tn+1 − ξ)α−1G (u, ξ)dξ,
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the nonlinear function G (u, t) in (30) can be approximated using the Lagrange poly-
nomial of the form

P(t) ≈ G = t − tn−1

tn − tn−1
Gn + t − tn

tn−1 − tn
Gn−1. (33)

Conveniently, we can write the fractional integral in (32) as

∫ tn+1

0
(tn+1 − ξ)α−1G (u, ξ)dξ =

n∑
i=0

∫ ti+1

ti
(tn+1 − t)α−1

(
t − tn−1

tn − tn−1
Gn + t − tn

tn−1 − tn
Gn−1

)
dt,

=
n∑

i=0

{
Gn

tn − tn−1

∫ ti+1

ti
(tn+1 − t)α−1(t − tn−1)dt + Gn−1

tn − tn−1

∫ ti+1

ti
(tn+1 − t)α−1(t − tn)dt

}
,

=
n∑

i=0

{
Gn
�

∫ ti+1

ti
(tn+1 − t)α−1(t − tn−1)dt − Gn−1

�

∫ ti+1

ti
(tn+1 − t)α−1(t − tn)dt

}
. (34)

By adopting some change of variables, such as τ = tn+1 − t, t = tn+1 − τ and dt =
−dτ , we have

∫ ti+1

ti
(tn+1 − t)α−1(t − tn−1)dt =

∫ tn+1−ti+1

tn+1−ti
τα−1(−τ + tn+1 − tn−1)dτ,

= 1

α + 1

{
τα+1

}tn+1−ti+1

tn+1−ti
− 2�

α

{
τα

}tn+1−ti+1
tn+1−ti

, (35)

= 1

α + 1

[
(tn+1 − ti+1)

α+1 − (tn+1 − ti )
α+1

]
− 2�

α

[
(tn+1 − ti+1)

α − (tn+1 − ti )
α
]
.

Similarly,

∫ ti+1

ti
(tn+1 − t)α−1(t − tn)dt = −

∫ tn+1−ti+1

tn+1−ti
τα−1(−τ + tn+1 − tn)dτ,

= 1

α + 1

{
τα+1}tn+1−ti+1

tn+1−ti
− �

α

{
τα

}tn+1−ti+1
tn+1−ti

, (36)

= 1

α + 1

[
(tn+1 − ti+1)

α+1 − (tn+1 − ti )
α+1] − �

α

[
(tn+1 − ti+1)

α − (tn+1 − ti )
α
]
,

which implies that

∫ tn+1

0
(tn+1 − ξ)α−1G (u, ξ)dξ = Gn

�

⎧⎨
⎩

n∑
i=0

[
1

α + 1

[
(tn+1 − ti+1)

α+1 − (tn+1 − ti )
α+1

]]

− 2�

α

n∑
i=0

([
(tn+1 − ti+1)

α − (tn+1 − ti )
α
])
⎫⎬
⎭

−Gn−1

�

⎧⎨
⎩

n∑
i=0

[
1

α + 1

[
(tn+1 − ti+1)

α+1 − (tn+1 − ti )
α+1

]]

− �

α

n∑
i=0

([
(tn+1 − ti+1)

α − (tn+1 − ti )
α
])
⎫⎬
⎭ . (37)
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That is,

∫ tn+1

0
(tn+1 − ξ)α−1G (u, ξ)dξ = Gn

�

[
2�

α
(tn+1 − t0)

α − 1

α + 1
(tn+1 − t0)

α+1

]

−Gn−1

�

[
�

α
(tn+1 − t0)

α − 1

α + 1
(tn+1 − t0)

α+1

]
,

= Gn

�

[
2�(n + 1)α�

α

α
− (n + 1)α+1

�
α+1

α + 1

]

−Gn−1

�

[
�(n + 1)α�

α

α
− (n + 1)α+1

�
α+1

α + 1

]
. (38)

By simplifying further, we obtain

∫ tn+1

0
(tn+1 − ξ)α−1G (u, ξ)dξ = �

α

{[
2(n + 1)α

α
− (n + 1)α+1

α + 1

]
Gn

−
[
(n + 1)α

α
− (n + 1)α+1

α + 1

]
Gn−1

}
. (39)

Similarly, we evaluate the second fractional integral in (32) as

∫ tn

0
(tn − ξ)α−1G (u, ξ)dξ =Gn

�

n−1∑
i=0

∫ ti+1

ti

(tn − t)α−1(t − tn−1)dt

− Gn−1

�

n−1∑
i=0

∫ ti+1

ti

(tn − t)α−1(t − tn)dt.

(40)

Next, we introduce some change of variables parameters as: τ = tn − t, t = tn −
τ, dt = −dτ , so that

∫ tn

0
(tn − ξ)α−1G (u, ξ)dξ = Gn

�

n−1∑
i=0

∫ tn−ti+1

tn−ti

(
τα − �τα−1

)
dτ − Gn−1

�

n−1∑
i=0

∫ tn−ti+1

tn−ti
ταdτ,

= Gn
�

n−1∑
i=0

[
τα+1

α + 1
− �τα

α

]tn−ti+1

tn−ti

− Gn−1

�

n−1∑
i=0

[
τα+1

α + 1

]tn−ti+1

tn−ti

,

= Gn
�

n−1∑
i=0

[
(tn − ti+1)

α+1

α + 1
− �(tn − ti+1)

α

α
− (tn − ti )

α+1

α + 1
− �(tn − ti )

α

α

]

−Gn−1

�

n−1∑
i=0

[
(tn − ti+1)

α+1

α + 1
− (tn − ti )

α+1

α + 1

]
,

= Gn
�

⎡
⎣n−1∑
i=0

(
(tn − ti+1)

α+1

α + 1
− (tn − ti )

α+1

α + 1

)
− �

α

n−1∑
i=0

(
(tn − ti+1)

α − (tn − ti )
α
)
⎤
⎦



Numerical Solutions and Pattern Formation … 205

−Gn−1

�

n−1∑
i=0

(
(tn − ti+1)

α+1

α + 1
− (tn − ti )

α+1

α + 1

)
,

which implied that

∫ tn

0
(tn − ξ)α−1G (u, ξ)dξ = Gn

�

[
− (tn − t0)α+1

α + 1
+ �(tn − t0)α

α

]

+Gn−1(tn − t0)α+1

�(α + 1)
. (41)

With tn = n� and tn+1 = (n + 1)� yields

∫ tn

0
(tn − ξ)α−1G (u, ξ)dξ = Gn

�

[
−nα+1

�
α+1

α + 1
+ nα

�
α+1

α

]
+ nα+1

�
α+1

α + 1
. (42)

Collecting the like terms in powers of � gives

∫ tn

0
(tn − ξ)α−1G (u, ξ)dξ = �

α

[(
nα

α
− nα+1

α + 1

)
Gn + nα+1

α + 1

]
. (43)

Next, we substitute for both Eqs. (39) and (43) in (32) so that

un+1 − un = �
α

Γ (α)

{[
2(n + 1)α

α
− (n + 1)α+1

α + 1

]
Gn

−
[

(n + 1)α

α
− (n + 1)α+1

α + 1

]
Gn−1 −

(
nα

α
− nα+1

α + 1

)
Gn − nα+1

α + 1
Gn−1

}
,

which on simplification results to

un+1 − un = �
α

Γ (α)

{[
2(n + 1)α − nα

α
+ nα+1 − (n + 1)α+1

α + 1

]
Gn

−
[
(n + 1)α

α
+ nα+1 − (n + 1)α+1

α + 1

]
Gn−1

}
.

(44)

It should be noted that when the value of α turns to unity in (44), we recover the
classical version of the Adams-Bashforth method.

By applying the inverseLaplace to (44),weobtain the followingnumerical scheme

u(x, tn+1) =L −1

{
un + �

α

Γ (α)

[(
nα+1 − (n + 1)α+1

α + 1
+ 2(n + 1)α − nα

α

)
Gn

−
(
nα+1 − (n + 1)α+1

α + 1
+ (n + 1)α

α

)
Gn−1

]}
.

(45)
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Theorem 3.1 Given the general time-fractional partial differential equation of the
form (1). The numerical solution with Laplace Adams-Bashforth scheme is expressed
as

u(x, tn+1) =L −1

{
un + �

α

Γ (α)

[(
nα+1 − (n + 1)α+1

α + 1
+ 2(n + 1)α − nα

α

)
Gn

−
(
nα+1 − (n + 1)α+1

α + 1
+ (n + 1)α

α

)
Gn−1

]
+ E α

n

}
,

(46)
where E α

n < ∞.

Proof See the work in Refs. [7, 21] for a similar proof.

Also for the Atangana-Baleanu operator when applied to (30), we get

u(t) − u(0) = 1 − α

AB(α)
G (u, t) + α

AB(α)Γ (α)

∫ t

0
G (u, ξ)(t − ξ)α−1dξ, (47)

with t = tn+1, the above expression becomes

u(tn+1) = u0 + 1 − α

AB(α)
G (tn+1) + α

AB(α)Γ (α)

∫ tn+1

0
G (u, ξ)(tn−1 − ξ)α−1dξ.

(48)
We let � = tn+1 − tn, n = 0, 1, 2, . . . and k = x j+1 − x j , so that if t = tn , we have

u(tn) = u0 + 1 − α

AB(α)
G (tn) + α

AB(α)Γ (α)

∫ tn

0
G (u, ξ)(tn − ξ)α−1dξ. (49)

By subtracting (49) from (48) we obtain

u(tn+1) − u(tn) = 1 − α

AB(α)
{G (tn+1) − G (tn)}

+ α

G (α)

{∫ tn+1

0
G (u, ξ)(tn+1 − ξ)α−1dξ −

∫ tn

0
G (u, ξ)(tn − ξ)α−1dξ

}
. (50)

Next, we apply the Lagrange interpolation on the function G (u, ξ) to get

u(tn+1) − u(tn) = �
α

Γ (α)

{[
2(n + 1)α − nα

α
+ nα+1 − (n + 1)α+1

α + 1

]
Gn

−
[
(n + 1)α

α
+ nα+1 − (n + 1)α+1

α + 1

]
Gn−1

}
(51)

+ 1 − α

AB(α)

[
G (tn+1) − G (tn)

]
.
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To obtain the numerical solution, we take the inverse Laplace transform of the above
equation as

u(tn+1) = L −1

{
u(tn) + �

α

Γ (α)

[[
2(n + 1)α − nα

α
+ nα+1 − (n + 1)α+1

α + 1

]
Gn

−
[
(n + 1)α

α
+ nα+1 − (n + 1)α+1

α + 1

]
Gn−1

]}
(52)

+ 1 − α

AB(α)
L −1

{[
G (tn+1) − G (tn)

]}
.

In space, Eq. (52) is discretized as

u(x, tn+1) =
{
u(x j , tn) + �

α

Γ (α)

[[
2(n + 1)α − nα

α
+ nα+1 − (n + 1)α+1

α + 1

]
G n

j

−
[
(n + 1)α

α
+ nα+1 − (n + 1)α+1

α + 1

]
G n−1

j

]}
(53)

+ 1 − α

AB(α)

[
G n+1

j − G n
j

]
,

which is the two-step Laplace Adams-Bashforth scheme.

4 Main Equations and Numerical Experiments

Here, we consider some illustrative examples of time-fractional reaction-diffusion-
like problems involving the numerical methods discussed in above section. For the
numerical computations, we apply the fractional two-steps Adams-Bashforth solver
in the commercial software package (MATLAB) to solve the time-fractional reaction-
diffusion equations in one and two dimensions at some instances of fractional index
denoted by α.

4.1 Diffusion-Like Equation with Atangana-Baleanu
Derivative

In this section, we first consider the classical diffusion-like equation in a modified
one dimensional form

ABC
0 Dα

t u(x, t) = dLu(x, t) + F(u(x, t)), −L ≤ x ≤ L , t > 0, α ∈ (0, 1),
(54)
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Fig. 1 One dimensional solution of fractional diffusion-like equation (54) for different values of
α, with μ = 0.8, κ = 1.0 and d = 0.1. Simulation runs for t = 1

where d > 0 is a diffusion constant, Lu(x, t) = ∂2u(x,t)
∂x2 and F(u(x, t)) represents a

nonlinear function given here as μu(x, t)
(
1 − u(x,t)

κ

)
. Parameters μ and κ are the

respective growth rate and carrying capacity of the species. This type of equation
has been used in the study of nuclear reactor and flame propagation [17, 35, 47].

The above equation is numerically solved using the fractional Adams-Bashforth
scheme as presented in Sect. 3. The right-hand side containing the second-order
approximation is given as follows:

∂2u(x, t)

∂x2
= 1

2

(
u j+1
i+1 − 2u j+1

i + u j+1
i−1

2(Δx)2
+ u j

i+1 − 2u j
i + u j

i−1

2(Δx)2

)

u(x, t) = 1

2

(
u j+1
i − u j

i

)
. (55)

Equation (54) is solved using the periodic boundary condition clamped at both ends
of the domain interval −∞ ≤ L ≤ ∞, subject to initial condition

u0(x) = 3 exp(−20(x + 4)2) + 2.05 exp(−10(x − 4)2) + exp(−20(x)2). (56)

In Fig. 1, we simulate with μ = 0.8, κ = 1.0 and d = 0.1 for different values of
α ∈ (0, 1) on different domain of lengths L = 8 and L = 10 for plots (a) and (b)
respectively. It should be mentioned that in attempt to provide enough room for the
waves patterns to propagate, the infinite domain is truncated at L > 0.

In two dimensions, we let Lu(·.t) =
(

∂2u
∂x2 + ∂2u

∂y2

)
, (x, y) ∈ � = (a ≤ x, y ≤ b)

for � ⊂ Rn×n , u(x, y, 0) = u0(x, y) and ∂u
∂x (a, x, t) = ∂u

∂x (b, x, t) = 0 with similar
expression for y-direction. The diffusion coefficients d = diag(d1, d2, . . . , dn). We
discretize in space with mesh (xi , y j )(a + i × �x , a + j × �y), where �x = (b −
a)/(Nx + 1), �y = (b − a)/(Ny + 1), for 0 ≤ i ≤ Nx + 1 and 0 ≤ j ≤ Ny + 1.We
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Fig. 2 Two dimensional results for fractional diffusion-like equation (54) for subdiffusive (column-
1 0 < α < 1) and superdiffusive (column-2 1 < α < 2) scenarios. Parameters are: μ = 0.5, κ =
2.0, d = 0.1. Simulation runs for t = 150

follow the finite difference technique discussed in [39] to approximate the second-
order partial derivatives in two dimensions.

In 2D we obtained the results in Fig. 2 with random initial condition and param-
eters d = 0.1, κ = 2, μ = 0.5,Δt = 0.25, � = 1/4. Columns-1 and -2 correspond
to subdiffusive (α ∈ (0, 1)) and superdiffusive (α ∈ (1, 2)) cases respectively. Apart
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from the spiral (oscillatory) waves obtained here, other spatial patterns such as spots
and stripes are possible depending on the choice of the initial conditions and other
parameter values.

4.2 Biological System

The biological system considered in this work models the three species food web
whichdefines inter-specific competition between twopreys and apredator. The scaled
model is of the form

du

dt
= fu(u, v,w) = u − u2 − uv − uw,

dv

dt
= fv(u, v,w) = −a1v + b1uv − b2v

2 − b3vw,

dw

dt
= fw(u, v,w) − a2w + c1uw + c2uv − c3w

2,

(57)

where a1, a2, bi and ci for i = 1, 2, 3 are positive parameters.
The essence of linear stability is to correctly guide in the choice of param-

eters when simulating the full reaction-diffusion system. Linear stability analy-
sis at fu(u, v,w) = fv(u, v,w) = fw(u, v,w) = 0 shows that the biological sys-
tem (57) has five equilibrium points E0 = (0, 0, 0) which corresponds to the total
washout of the species, E2 = (1, 00) that represents the existence of prey u only

with v = w = 0, E2 =
(
c3+a2
c1+c3

, 0, c3−a2
c1+c3

)
which shows no existence of prey v and

E3 =
(
b2+a1
b1+b2

, b1−a1
b1+b2

, 0
)
which corresponds to the predator w extinction. We are not

interested in the above four equilibrium points. Hence, we consider the last point that
represents the existence of the three species. The coexistence point that is biologically
meaningful is denoted by E∗ = (u∗, v∗,w∗) where

u∗ = b2c3 + b3c2 + (c2 + c3)a1 + (b2 − b3)a2
b2c3 + b3c2 + b1c3 − b3c1 + b1c2 + b2c1

,

v∗ = b1c3 + b3c1 − (b1 + c3)a1 + (b1 + b3)a2
b2c3 + b3c2 + b1c3 − b3c1 + b1c2 + b2c1

,

w∗ = b1c2 + b2c1 + (c1 − c2)a1 − (b1 + b2)a2
b2c3 + b3c2 + b1c3 − b3c1 + b1c2 + b2c1

. (58)

The community matrix of (57) at point E∗ is given by the Jacobian

J (E∗) =
⎛
⎝−u∗ −u∗ −u∗
b1v∗ −b2v∗ −b3v∗
c1w∗ c2w∗ −c3w∗

⎞
⎠

(u∗,v∗,w∗)

, (59)
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with characteristic equation

λ3 + Q1λ
2 + Q2λ + Q3 = 0, (60)

where Q1 = u∗ + b2v∗ + c3w∗, Q2 = (b1 + b2)u∗v∗ + (b2c3 + b3c2)v∗w∗ + (c1
+ c3)u∗w∗ and Q3 = (b2c3 + b3c2 + b1c3 − b3c1 + b1c2 + b2c1)u∗v∗w∗. We can
see that Q1,Q1Q2 − Q3 and Q3 are positive. Hence, by adopting the Routh’s sta-
bility criterion, obviously, the coexistence state is unconditionally stable.

In on attempt to examine the effect of non-local and nonsingular kernel into the
definition of fractional derivative,wefirstmodel (57) in the formof (1) and replace the
classical time derivative in Eq. (57) with the Atangana-Baleanu fractional derivative
in Caputo sense to obtain

ABC
0 Dα

t u(t) = d1
∂2u(x, t)

∂x2
+ u − u2 − uv − uw,

ABC
0 Dα

t v(t) = d2
∂2v(x, t)

∂x2
− a1v + b1uv − b2v

2 − b3vw,

ABC
0 Dα

t w(t) = d3
∂2w(x, t)

∂x2
− a2w + c1uw + c2uv − c3w

2.

(61)

In the experiment, we first observed the behaviour of the species in the absence
of diffusion, that is, when di = 0, i = 1, 2, 3. We observed in Fig. 3 that the three
specieswill coexist for period t > 0 ∈ T as displayed in the second panel. Emergence
of the attractor further shows the coexistence of the species. Parameter values used
are given in the figure caption.

One dimensional results for system (61) in the presence of diffusion at two
instances of fractional power α are displayed in Fig. 4. Plots (a-d) and (e-h) cor-
responds to α = 0.91 and α = 0.97 respectively.
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Fig. 3 Solution of the biological system (61) for α = 0.89 at di = 0, i = 1, 2, 3. Other
parameters are: (u0, v0,w0) = (0.2, 0.5, 0.8), a1 = 0.05, a2 = 0.09, b1 = 0.3, b2 = 0.15, b3 =
0.09, c1 = 0.18, c2 = 0.1 and simulation time t = 50
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Fig. 4 One dimensional experiment for system (61) with Atangana-Baleanu derivative at d1 =
0.007, d2 = 0.001, d3 = 0.002,α = 0.91 for plots (a–d) andα = 0.97 for plots (e–h).Other param-
eters are given in Fig. 3
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4.3 The Volta’s System

The Volta’s system displays classic chaotic behavior. The three parameter model
consider here is given as

du

dt
= −u(t) − φv(t) − v(t)w(t),

dv

dt
= −v(t) − ψu(t) − u(t)w(t),

dw

dt
= ϕw(t) + u(t) + v(t) + 1,

(62)

where φ,ψ and ϕ are the dimensionless positive parameters.
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Fig. 5 Numerical simulation of system (63) for different values of α, using the Atangana-Baleanu
fractional derivative (rows 1–3) and the Caputo operator (rows 4 and 5). Rows 1–4 correspond to
α = 0.55, α = 0.90, α = 0.95, α = 0.90 and α = 0.95 respectively
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We examine the effect of combining power law with the Mittag-Leffler ker-
nel by replacing the classical time derivative in (62) with both the Caputo and
Atangana-Baleanu fractional derivatives of order α ∈ [0, 1]. For instance, By using
the Atangana-Baleanu operator in the sense of Caputo, the above classical Volta’s
system becomes

ABC
0 Dα

t u(t) = −u(t) − φv(t) − v(t)w(t),
ABC
0 Dα

t v(t) = −v(t) − ψu(t) − u(t)w(t),
ABC
0 Dα

t w(t) = ϕw(t) + u(t) + v(t) + 1.

(63)

Figure 5 shows some numerical simulations obtained at different instances of
α ∈ [0, 1]. Rows 1–3 are obtained using the Atangana-Baleanu derivative in Caputo
sense for α = 0.55, α = 0.90 and α = 0.95 respectively. Similarly, we apply the
Caputo operator to get the results displayed in Rows 4 and 5 of Fig. 5 for the values
α = 0.90 and α = 0.95. It should be mentioned that the fractional derivative in this
system exhibits some chaotic scenarios that are completely missing in the classical
model.

5 Conclusion

We introduced a two-step Adams-Bashforth method to solve a range of time-
fractional reaction-diffusion problems. The classical derivatives in the problem are
replaced with either the Caputo derivative which follows the power law or the
Atangana-Baleanu operator which obeys the Mittag-Leffler law to formulate a frac-
tional derivative with no-singular and non-local kernel. The proposed method is flex-
ible and easy to use. Some illustrative examples of time-fractional reaction-diffusion
problems are given to justify the robustness of the derivative. The results obtained
in one and two dimensions for different values of α in subdiffusion and superdif-
fusion scenarios are in good agreement with the existing cases. Application of the
Atangana-Baleanu derivative to model space-fractional reaction-diffusion equation
is left for future research.
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Heat Transfer Analysis in Ethylene
Glycol Based Molybdenum Disulfide
Generalized Nanofluid via
Atangana–Baleanu Fractional Derivative
Approach

Farhad Ali, Muhammad Saqib, Ilyas Khan and Nadeem Ahmad Sheikh

Abstract At the end of 2016, Atangana and Baleanu introduced a new definition for
fractional derivatives, namely Atangana–Baleanu fractional derivatives with the non-
singular and non-local kernel. The idea of Atangana–Baleanu was used by several
authors for various types of fractional problems. However, for heat transfer problem,
this idea is rarely used in particular when nanofluid is considered. Based on this
motivation, this chapter aims to study the flow of ethylene glycol based Molybde-
num disulfide generalized nanofluid (EGMDGN) over an isothermal vertical plate.
A fractional model with non-singular and non-local kernel, Atangana–Baleanu frac-
tional derivatives is developed in the form of partial differential equations along with
appropriate initial and boundary conditions. Molybdenum disulfide nanoparticles of
spherical shape are suspended in Ethylene Glycol (EG) taken as conventional base
fluid. The exact solutions are developed for velocity and temperature profiles via the
Laplace transform technique. In a limiting sense, the obtained solutions are reduced
to fractional Newtonian (β → ∞), classical Casson fluid (α → 1) and classical
Newtonian nanofluids. The influence of various pertinent parameters is analyzed in
various plots and discussed physically.
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Nomenculture

Py - The yield stress of the non-Newtonian fluid.
π - The product of the component of deformation rate itself.
π - The critical value of the product.
μr - Plastic dynamic viscosity.
u - Velocity of the fluid.
T - Temperature of the fluid.
g - Acceleration due to gravity.
Cp - Specific heat at a constant pressure.
k f - Thermal conductivity of the base fluid.
T∞ - Fluid temperature far away from the plate.
q - Laplace transforms parameter.
v f - Kinematic viscosity of the base fluid.
μ f - Dynamic viscosity.
ρ f - Density of the base fluid.
ρs - The density of the solid.
U - The amplitude of the velocity.
βT - The volumetric coefficient of thermal expansion.
B0 - External Magnetic Field.
ρn f - Nanofluids density.
μn f - Dynamic viscosity of nanofluid.
σn f - The electrical conductivity of nanofluid.
β - The material parameter of Casson fluid.
(βT )n f - Thermal expansion coefficient of nanofluid.
(ρcp)n f - Specific heat capacity of nanofluid.
kn f - The thermal conductivity of nanofluid.
M - Magnetic parameter.
Gr - Thermal Grasshof number.
Pr - Prandtl number.
Nux - Nusselt number.
φ - Nanoparticles volume fraction.
α - Fractional order/fractional parameter.

1 Introduction

With the evolution of thermal science and engineering, it is of great concern to pro-
mote devices for the flow ofmicroscale liquid that have a high surface to volume ratio
and compactness as compared to the conventional flow system.These thermal devices
are the requirement to enhance heat transfer in various diverse industries including
microelectronics, chemical engineering, aerospace, manufacturing and transporta-
tion [1]. But the energy enhancement using such devices leads to an unacceptable
increase in the heat transport systems. It is strongly recognized bymany investigators



Heat Transfer Analysis in Ethylene Glycol Based Molybdenum Disulfide … 219

that the key factor that affects the efficiency of heat transport is the thermal conductiv-
ity of the conventional fluids such as water, alcohol, ethylene glycol and kerosene-oil
etc., [2–5]. Maxwell [6] initiated an efficient method to enhance the thermal con-
ductivity of the conventional fluids by suspending micro-sized or milli-sized solid
particles into them. However, he grasped that the large milli-sized or micro-sized
solid particles originate some scientific problems, i.e. (i) clogging micro-channel
of devices, (ii) sedimentation of large particles, (iii) abrasion of surfaces, (iv) ero-
sion of pipelines and (v) increasing drop in pressure [7]. Based on these problems,
in 1995, Choi [8] conferred the idea of enhancing thermal conductivity by adding
nanometer-sized nanoparticles (metal oxides, metals, polymers, carbon nanotubes
or silica) in conventional base fluids (water, alcohol, ethylene glycol and oil etc.)
referred to nanofluids. The studies of Das et al. [9], Wang and Mujumdar [10–12]
and Buongiorno [13] explained the mechanism that results the enhancement of the
heat transport in nanofluids. Later on, Ulhaq et al. [14], Shahzad et al. [15], Khan et
al. [16], Wakif et al. [17], Sheikholeslami [18, 19], Aman et al. [20] and Ali et al.
[21] enriched the literature of nanofluids.

However, there are still many questions that need to be answered. For example
which type of nanoparticles should be suspended in which type of base fluid to get
the maximum heat transfer rate. What should be the size, shape, structure etc. of
each nanoparticles? Therefore, several types of nanoparticles have been used by the
researchers in their experimental or theoretical studies. Among the different kinds
of nanoparticles, one of them is called Molybdenum disulfide nanoparticles. These
nanoparticles are rarely used in the literature particularly in theoretical work. MoS2
has a large band gaps structurewhich is closed to the structure of graphene, due to this
reason MoS2 has been applied at large scale in logic circuits and amplifier devices
[22–25]. Moreover, the thermo-physical properties of Molybdenum disulfide such
as capabilities of lubrication, thermal conductivity, and heat capacity can be used
in mechanical applications [26]. The lubricant graphite and Molybdenum disulfide
powders were coated with copper to reinforce their bonding to the copper particles
in the composites during sintering [27]. Mao et al. [28] investigated the tribological
properties of nanofluids used in minimum quantity lubrication (MQL) grading.

Recently, the first theoretical study on Molybdenum disulfide nanofluid was
carried out by Sharidan et al. [29] in a conference paper. Khan et al. [30] stud-
ied the effect of magnetic field on Molybdenum disulfide nanofluids in presence
of thermal radiation. Khan [31] investigated the effects of different shapes MoS2
nanoparticles in water based nanofluid. Nonetheless, in the discussed literature,
mostly viscous nanofluids model with the ordinary derivatives is considered whereas
the present study focused on non-Newtonian nanofluid model namely, the Cas-
son nanofluid model with the fractional derivative approach. It is well accepted
that fractional derivatives are more suitable than ordinary derivatives to describe a
physical phenomenon [32–48, 57]. But there are some discrepancies in the appli-
cation of Riemann–Liouville, Caputo and Caputo–Fabrizio fractional derivatives
which are recently addressed by Atangana et al. [49–54]. At the end of 2016, Atan-
gana and Baleanu introduced a new definition [53] namely, Atangana–Baleanu frac-
tional derivatives with the non-singular and non-local kernel. Inspired from this new
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approach of fractional derivatives, in the present study, we adopted the Atangana–
Baleanu fractional derivatives approach for the generalization of Casson nanofluid
for the first time in the literature. In this study, Ethylene glycol (EG) is chosen as a
base fluid and Molybdenum disulfide nanoparticles are dispersed into them in order
to enhance the heat transfer in fluid flow. The governing equations of the model are
solved via the Laplace transform technique to obtain the exact solutions. The exact
solutions obtained here are of great importance because these solutions can be used
as a benchmark by experimentalists and numerical solvers to check the accuracy of
their results.

2 Mathematical Formulation

Let us consider the unsteady flow of MDGCNF over a flat plate with constant wall
temperature. MoS2 nanoparticles are suspended in EG taken as conventional base
fluid. The flow is assumed to be along the x-direction. Initially, both the fluid and
plate are at rest with uniform temperature T∞. At t = 0+, the plate starts motion with
constant velocity as shown in Fig. 1.

For incompressible Casson fluid the rheological equation is given as the following
[55]:

τi j =
⎧
⎨

⎩

2
(
μγ + py√

2π

)
ei j , π > πc

2
(
μγ + py√

2πc

)
ei j , πc < π.

(1)

By using the Boussinesq’s approximation the free convective flow of Casson
nanofluid is governed by [21]:

Fig. 1 Geometry of the flow
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Table 1 Thermo-physical properties of nanofluids

Materials ρ (kgm−3) cp (kg−1K−1) k (Wm−1K−1) β × 10−5 (K−1) σ (s/m)

E.G 1115 2386 0.2599 3.41 × 10−8 1.07 × 10−8

Mos2 5.06 × 103 397.21 904.4 2.8424 2.09 × 10−4

ρn f
∂u

∂t
= μn f

(
1 + 1

β

)∂2u

∂t2
− σn f B

2
0u + (ρβT )n f g(T − T∞), (2)

(ρcp)n f
∂T

∂t
= kn f

∂2u

∂t2
, (3)

subject to the following conditions:

u(y, 0) = 0, T (y, 0) = T∞,

u(0, t) = U, T (0, t) = Tw, (4)

u(∞, t) = 0, T (∞, t) = T∞.

The nanoparticles expressions restricted to spherical shape [21] are used and the
thermo-physical properties of the materials are given in Table1:

Introducing the following dimensionless variables:

v = u

U
, ξ = U

v f
, τ = U 2

v f
, θ = T − T∞

Tw − T∞
,

into Eqs. (2)–(4), we get

∂v

∂τ
= 1

γ0

∂2v

∂ξ 2
− M0v + Gr0θ, (5)

δ0
∂θ

∂τ
= ∂2θ

∂ξ 2
, (6)

v(ξ, 0) = 0, θ(ξ, 0) = 0,

v(0, τ ) = 1, θ(0, τ ) = 1, (7)

v(∞, τ ) = 0, θ(∞, τ ) = 0,



222 F. Ali et al.

where

γ0 = bγ,
1

γ
= 1 + 1

β
, M0 = 1

Re
(1 − φ)2.5M, Gr0 = φ2Gr , δ0 = Prφ3

λn f
,

b = (1 − φ)2.5
[
(1 − φ) + φ

( ρs

ρ f

)]
, φ1 = 1 + 3(σ − 1)φ

(σ + 2) − (σ − 1)φ
,

φ2 =
(1 − φ)ρ f − φρs

( βT f
βTs

)

ρn f
, φ3 = (1 − φ) + φ

(
(ρcp)s
(ρcp) f

)

, λn f = kn f
k f

,

kn f
k f

= (ks + 2k f ) − 2ϕ(k f − ks )

(ks + 2k f ) + ϕ(k f − ks )
,

M = vσ f B
2
0

ρ f U2 , Gr = vgβT f

U3 (Tw − T∞), Pr = (μcp) f
k f

.

In order to develop a generalizedCasson nanofluidmodel,we have replaced partial
derivatives with respect to τ by Atangana–Baleanu fractional operator of order α,
which leads Eqs. (5) and (6) to the following form:

Dα
τ v(ξ, τ ) = 1

γ0

∂2v

∂ξ 2
− M0v + Gr0θ, (8)

δ0D
α
τ θ(ξ, τ ) = ∂2θ(ξ, τ )

∂ξ 2
, (9)

where Dα
τ (·) is the Atangana–Baleanu time fractional operator defined by [53]:

ABC Dα
τ ( f (τ )) = M(α)

1 − α

∫ τ

0
Eα

[

−α
(t − τ)α

1 − α

]

f ′(τ )dτ ; 0 < α < 1. (10)

where M(α) is a normalization function such that M(0) = M(1) = 1.

3 Solution of the Problem

In the virtue of Eq. (7), the Laplace transformation of Eqs. (8) and (9) is given as the
following:

d2θ̄ (ξ, q)

dξ 2
− δ1qα

qα + a1
θ̄ (ξ, q) = 0, (11)
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d2v̄(ξ, q)

dξ 2
−

[a2qα + a3
qα + a1

]
v̄(ξ, q) = −Gr1θ̄ (ξ, q), (12)

where

δ1 = δ0a0, a1 = αa0, a0 = 1

1 − α
, a2 = γ0(a0 + M0),

a3 = M0γ0a1, Gr1 = Gr0γ 0,

along with

θ̄ (0, q) = 1

q
, θ̄ (∞, q) = 0, (13)

v̄(0, q) = 1

q
, v̄(∞, q) = 0, (14)

The solution of Eqs. (11)–(14) is evaluated as

θ̄ (ξ, q) = 1

q1−α
Φ̄(ξ,

√
δ1, q, 0, 0, a1), (15)

v̄(ξ, q) = 1

q1−α

{

a6Φ̄(ξ
√
a2, q, a8, a5, a1) − a9Φ̄(ξ

√
a2, q, 0, a5, a1)−

− a6Φ̄(ξ
√

δ1, q, a8, 0, a1) + a7Φ̄(ξ
√

δ1, q, 0, 0, a1)

}

, (16)

where

a5 = a3
a2

, a6 = Gr1(a3 + a1a4)

a3a4
, a7 = Gr1a1

a3
, a8 = a3

a4
, a9 = a7 − 1.

Inverting the Laplace transforms of Eqs. (15) and (16), we get:

θ(ξ, τ ) = h(τ, α)Φ(ξ
√

δ1, τ, 0, 0, a1), (17)

v(ξ, τ ) = h(τ, α)∗
{

a6Φ(ξ
√
a2, τ, a8, a5, a1) − a9Φ(ξ

√
a2, τ, 0, a5, a1)−

− a6Φ(ξ
√

δ1, τ, a8, 0, a1) + a7Φ(ξ
√

δ1, τ, 0, 0, a1)

}

, (18)
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where

Φ̄(y, q, a, b, c) = 1

qα + a
exp

[

−y

√
qα + b

qα + c

]

,

and the inverse Laplace transform of θ̄ (y, q, a, b, c) is given by [56]:

Φ(y, τ, a, b, c) = 1

π

∫ ∞
0

∫ ∞
0

Φ1(y, u, a, b, c) exp(−τr − urα cos(απ)) sin(urα sin(απ))drdu,

h(τ, α) = 1

tα�(1 − α)
,

Φ̄1(y, q, a, b, c) = 1

q + a
exp

[

−y

√
q + b

q + c

]

,

Φ1(y, τ, a, b, c) = exp(−aτ − y)−

− y
√
b − c

2
√

π

∫ ∞

0

∫ τ

0

exp(−at)√
τ

exp
[
at − cτ − y2

4u
− u

]
I1(2

√
(b − c)uτ)dτdu,

where I1(·) is the Bessel function of the first kind.

3.1 Fractional Newtonian Fluid with Nanoparticles

By making β → ∞ ⇒ γ0 → 1, Eq. (18) reduces to the following expression for the
velocity of fractional Newtonian nanofluid

v(ξ, τ ) = h(τ, α)

{

a6Φ(ξ
√
a2, τ, a8, a5, a1) − a9Φ(ξ

√
a2, τ, 0, a5, a1)−

− a6Φ(ξ
√

δ1, τ, a8, 0, a1) + a7Φ(ξ
√

δ1, τ, 0, 0, a1)

}

, (19)

where

a2 = a0 + M0, a3 = M0a1, a6 = Gr0(a3 + a1a4)

a3a4
, a7 = Gr0a1

a3
.
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3.2 Classical Casson Nanofluid

For α = 1:

lim
α→1

Dα
τ (ξ, τ ) = lim

α→1
L−1

[
L
{
Dα

τ v(ξ, τ )
}]

,

= L−1
{

lim
α→1

qα v̄(ξ,q)−v(ξ,0)
(1−α)qα+α

}

= L−1
{
qv̄(ξ, q) − v(ξ, 0)

}
,

= L−1
[

L
{
v′(ξ, τ )

}]

= v′(ξ, τ ).

v(ξ, τ ) = 1
2

[

exp(−ξ
√
M0γ0)erfc

(
ξ

2
√

τ
− √

M0γ0τ
)

+ exp(ξ
√
M0γ0)erfc

(
ξ

2
√

τ
+ √

M0γ0τ
)]

+

+ Gr0
2M0γ0

[

exp(−ξ
√
M0γ0)erfc

(
ξ

2
√

τ
− √

M0γ0τ
)

+ exp(ξ
√
M0γ0)erfc

(
ξ

2
√

τ
+ √

M0γ0τ
)]

−

−
Gr0 exp

(
M0γ0

δ1
τ

)

2M1

[

exp
(

− ξ

√

M0γ0

(
1 − 1

δ1

))
erfc

(
ξ

2
√

τ
−

√

M0γ0

(
1 − 1

δ1

)
τ
)
+

+ exp
(
ξ

√

M0γ0

(
1 − 1

δ1

))
erfc

(
ξ

2
√

τ
+

√

M0γ0

(
1 − 1

δ1

)
τ
)]

− Gr0
M0γ0

erfc
(

ξ
√

δ0
2
√

τ

)
+

+
Gr0 exp

(
M0γ0

δ1
τ

)

2M0

[

exp
(

− a
√

δ0
M0γ0

δ1

)
erfc

(
ξ
√

δ0
2
√

τ
−

√
M0γ0

δ1
τ
)
+

+ exp
(
a
√

δ0
M0γ0

δ1

)
erfc

(
ξ
√

δ0
2
√

τ
+

√
M0γ0

δ1
τ
)]

.

(20)
which are the corresponding classical solutions of Eq. (18).

3.3 Classical Newtonian Fluid with Nanoparticles

Bymaking β → ∞ ⇒ γ0 → 1 and α = 1, Eq. (20) reduces to the following expres-
sion for the velocity of classical Newtonian nanofluid

v(ξ, τ ) = 1

2

[

exp(−ξ
√
M0)erfc

(
ξ

2
√

τ
− √

M0τ

)

+ exp(ξ
√
M0)erfc

(
ξ

2
√

τ
+ √

M0τ

)]

+

+ Gr0
2M0

[

exp(−ξ
√
M0)erfc

( ξ

2
√

τ
− √

M0τ
)

+ exp(ξ
√
M0)erfc

( ξ

2
√

τ
+ √

M0τ
)]

−

−
Gr0 exp

(
M0
δ1

τ
)

2M1

[

exp

(

−ξ

√

M0

(

1 − 1

δ1

))

erfc

(
ξ

2
√

τ
−

√

M0

(

1 − 1

δ1

)

τ

)

+

+ exp

(

ξ

√

M0

(

1 − 1

δ1

))

erfc

(
ξ

2
√

τ
+

√

M0

(

1 − 1

δ1

)

τ

)]

− Gr0
M0

erfc

(
ξ
√

δ0

2
√

τ

)

+
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+
Gr0 exp

(
M0
δ1

τ
)

2M0

[

exp

(

−a

√

δ0
M0

δ1

)

erfc

(
ξ
√

δ0

2
√

τ
−

√
M0

δ1
τ

)

(21)

+ exp

(

a

√

δ0
M0

δ1

)

erfc

(
ξ
√

δ0

2
√

τ
+

√
M0

δ1
τ

)]

.

4 Nusselt Number

The dimensionless expression for the Nusselt number is given by:

Nux = − (ks + 2k f ) − 2ϕ(k f − ks)

(ks + 2k f ) + ϕ(k f − ks)

∂θ(ξ, τ )

∂ξ

∣
∣
∣
∣
ξ=0

. (22)

5 Parametric Study

A fractional model for the flow of MDGCNF over an isothermal vertical plate is
studied. The coupled partial differential equations with Atangana–Baleanu time-
fractional derivatives are solved analytically by the Laplace transform method. The
solutions for fractional Newtonian nanofluid, classical Casson nanofluid and classi-
cal Newtonian nanofluid are presented as special cases. The influence of different
embedded parameters, such as α, φ, β, M , t and Gr are shown graphically.

Figures2, 3, 4, 5 and 6 depict the effect of fractional parameter α on v(ξ, τ ).
Clearly, increasing values of α decreases v(ξ, τ ). Moreover, classical velocity (α =
1) is less than fractional velocity. In classical case, (α = 1) the boundary layer is
stronger and thicker which reduces the fluids velocity.

Figure2 is plotted in order to compare Casson nanofluid (φ = 0.04)with custom-
ary Casson fluid (φ = 0.00). It is noticed that the velocity of customary Casson fluid
is higher than the velocity of Casson nanofluid. Physically, it is due to the higher
viscosity of Casson nanofluid as compared to customary Casson fluid.

The effect of φ of Molybdenum disulfide nanoparticles on the nanofluid velocity
is presented in Fig. 3. It is cleared from this figure that v(ξ, τ ) is a decreasing function
of φ. This is true because when φ increases, the fluid becomes more viscous which
leads to decrease the velocity of nanofluid. φ is also responsible for increase in the
thermal conductivity of the nanofluid.
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Fig. 2 Comparison of Casson nanofluid with customary Casson fluid when β = 2.5, Re = 1,
φ = 0.02, M = 2, Gr = 30 and t = 0.10

Fig. 3 Variation in the velocity profile for different values of φ when β = 2.5, Re = 1, φ = 0.02,
M = 2, Gr = 30 and t = 0.10
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Fig. 4 Variation in the velocity profile for different values of β when Re = 1, φ = 0.02, M = 2,
Gr = 30 and t = 0.10

Table 2 Variation in Nusselt number for various parameters

α σ t Nux

0.2 0.02 0.2 0.707

0.5 0.02 0.2 0.831

0.2 0.04 0.2 0.724

0.2 0.02 1 0.642

Figure4 depicts the variation in velocity distribution for different values of β.
For large values of β, the fluid velocity increases. This is physically possible, when
β increases, the momentum boundary layer significantly decreases. As a result, the
nanofluid velocity increases. Furthermore, for β → ∞ ⇒ γ0 → 1, fluid behaves as
Newtonian nanofluid. The influence of M is presented in Fig. 5. From this figure
it is noticed that the nanofluid velocity decreases when M is increased. M is a
dimensionless number whose increasing values enhances the Lorentz force which
retards the nanofluid velocity. The velocity profile for different values ofGr is plotted
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Fig. 5 Variation in the velocity profile for different values of M when β = 2.5, Re = 1, φ = 0.02,
Gr = 30 and t = 0.10

in Fig. 6. It is observed that the velocity of nanofluid increases with increasing values
of Gr . Physically, Gr increases the gradient of temperature as a result the buoyancy
force enhances and the velocity of nanofluid increases. Table2 exhibits variation
in Nux . For large values of α and φ, the rate of heat transfer increases whereas it
decreases with increase in τ . Large values of φ tend to more nanoparticle per unit
volume which enhance the thermal conductivity of the fluid.

6 Concluding Remarks

Using theAtangana–Baleanu time-fractional derivatives, amodel has been developed
for the free convection flow of generalized nanofluid with MoS2 nanoparticles. The
exact solutions are obtained via the Laplace transform method. The key findings of
the present study have been summarized as follows:

• Increasing values of φ,M decreases the nanofluid velocity.
• The nanofluid velocity enhances with enhancement in β and Gr .
• For large values of α,φ the rate of heat transfer increases.
• The rate of heat transfer decreases with increase in τ .
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Fig. 6 Variation in the velocity profile for different values ofGr when β = 2.5, Re = 1, φ = 0.02,
M = 2 and t = 0.10
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Atangana–Baleanu Derivative with
Fractional Order Applied to the Gas
Dynamics Equations

Sunil Kumar, Amit Kumar, J. J. Nieto and B. Sharma

Abstract We apply the new Atangana–Baleanu derivative in Caputo sense to study
gas dynamics equations of arbitrary order using modified homotopy analysis trans-
form method (MHATM). Atangana and Baleanu suggested an interesting fractional
operator in 2016 which is based on the exponential kernel. An alternative frame-
work of MHATM with Atangana–Baleanu derivative is presented and the modified
Gas dynamics equations are solved numerically and analytically using aforesaid the
method. Illustrative examples are included to demonstrate the validity and applica-
bility of the presented technique with new Atangana–Baleanu derivative.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative · Gas
dynamics equations

1 Introduction

In the past few decades, the remarkable achievement of fractional calculus in diverse
fields of engineering has been gradually realized. The fractional differential equations
have becomes a very important topic of many scholars and scientists. Anomalous
diffusion behaviors have been observed in several systems such as in polymers, bio-
polymers, organisms, liquid crystals, fractals and percolation clusters, proteins and
ecosystems. Some of the relevant applications are given in the books [1–6]. The
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famous Caputo fractional derivative first computes an ordinary derivative followed
by a fractional integral to achieve the desired order of fractional derivative, and the
Riemann–Liouville fractional derivative is computed in the reverse order and both
derivatives are based on singular kernel. In 2016, an interesting and new deriva-
tives without singular kernel were introduced by Atangana and Baleanu [7]. This
paper explores the relevancy of new derivatives applied in the field of applied model-
ing. Throughout this paper the time-fractional derivative is considered in Atangana–
Baleanu sense [8] .

It is well known that several physical phenomena are described by non-linear
differential equations (both ODEs and PDEs) and the solutions of that type of differ-
ential equations play an important role to study the behavior ofmodels. Therefore, the
study of the many analytical and numerical methods used for solving the non-linear
differential equations is a very important topic for the analysis of engineering practi-
cal problems [9–20]. The gas dynamics equation is the mathematical expressions of
conservation laws which exist in engineering practices such as conservation of mass,
conservation of momentum, conservation of energy etc. The nonlinear equations of
ideal gas dynamics are applicable for three types of nonlinearwaves like shock fronts,
rarefactions and contact discontinuities. The different types of gas dynamics equa-
tions in physics have been solved by several authors [21–31]. Recently, Kumar and
Rashidi [32] have obtained the solutions for the homogenous and non-homogenous
time fractional gas dynamics equation using homotopy analysis transform method
with Caputo derivative.

The homotopy analysis method (HAM) was first proposed and applied by Liao
[33–37] based on homotopy, a fundamental concept in topology and differential
geometry. The HAM is based on the construction of a homotopy which continuously
deforms an initial guess approximation to the exact solution of the given problem.
An auxiliary linear operator is chosen to construct the homotopy and an auxiliary
parameter is used to control the region of convergence of the solution series, which
is not possible in other methods like Adomian’s decomposition method [38, 39],
homotopy asymptotic method [40–43] and harmonic balance method [44, 45]. The
homotopy analysis method provides greater flexibility in choosing initial approx-
imations and auxiliary linear operators with Caputo derivative [46–48]. The main
goal of the present study is to find the semi analytic solution of the fractional Gas
dynamics equations using MHATM and the time fractional derivative is considered
in Atangana–Baleanu sense. To the best knowledge of the authors, the modified form
of the homotopy analysis transform method is not working with Atangana–Baleanu
sense.

The rest of the paper is systematized as follows: Basic definitions of new
Atangana–Baleanuderivative is presented inSect. 2. InSect. 3,Basic ideaofMHATM
with new derivative is presented. Convergence analysis of the proposed technique is
presented in Sect. 4. Next, application of MHATM with new derivative through few
examples is presented in Sect. 5. Finally, Sect. 6 concludes the output of the whole
paper.
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2 History of Fractional Order Derivatives Without
Singular Kernel

The old versions of Riemann–Liouville and Caputo derivatives of fractional order
are respectively defined as

Dα
x u(x, t) = 1

Γ (1 − α)

d

dx

∫ x

0
(x − t)−αu(x, t)dt 0 < α ≤ 1, (1)

and
cDα

x u(x, t) = 1

Γ (1 − α)

∫ x

0
(x − t)−α d

dt
u(x, t)dt, (2)

Definition 1 (Caputo–Fabrizio derivative with fractinal order(CFFD)): Let u(x, t)
be a function in H 1(a; b); b > a;α ∈ (0, 1) then the CFFD is defined as [2]:

CF Dα
t u(x, t) = M(α)

(1 − α)

∫ t

a
u′(x, τ )e− α(1−τ)

1−α dτ. (3)

Without loss of generality we can put a = 0 to have

CF Dα
t u(x, t) = M(α)

(1 − α)

∫ t

0
u′(x, τ )e− α(1−τ)

1−α dτ, (4)

where M(α) is a normalization function such that M(0) = M(1) = 1. But for the
function that does not belong to H 1(a; b), we defined its Caputo–Fabrizio fractional
as

CF Dα
t u(x, t) = αM(α)

(1 − α)

∫ t

a
(u(x, t) − u(x, τ ))e− α(1−τ)

1−α dτ. (5)

Definition 2 (Atangana–Baleanu derivative in Caputo sense): Let u(x, t) be a func-
tion in H 1(a; b); b > a;α ∈ (0, 1) then the Atangana–Baleanu derivative in Caputo
sense is defined as [7]:

ABC Dα
t u(x, t) = M(α)

(1 − α)

∫ t

a
u′(x, τ )Eα

[
−α

(t − τ)α

1 − α

]
dτ. (6)

Where M has the same properties as in Caputo–Fabrizio case. The above definition
will be helpful to real world problem and also will have great advantage when using
Laplace transform to solve some physical problems.

Definition 3 The Laplace transform of the Atangana–Baleanu derivative in Caputo
sense is given by [7]

L[ABC Dα
t u(x, t)](s) = M(α)

(1 − α)

F(s)sα − sα−1u(x, 0)

sα + α
1−α

.
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3 Basic Idea of the Modified Homotopy Analysis
Transform Method with New Atangana–Baleanu
Derivative in Caputo Sense

The basic concept of MHATM using new fractional derivative is discussed through
the following general form of the fractional differential equation:

ABC D(α+n)
t u(x, t) + R[x]u(x, t) + M[x]u(x, t) = g(x, t), t > 0, x ∈ R, 0 < α ≤ 1,

(7)
where R[x] is a general linear operator in x, N [x] is a general non-linear operator
in x , g(x, t) is a continuous function. For simplicity we ignore all boundary or initial
conditions, which can be treated in the similar way.

According to the methodology, applying Laplace transform to both sides of the
Eq. (7), we get

L[ABC D(α+n)
t u(x, t) + R[x]u(x, t) + M[x]u(x, t)] = L[g(x, t)]. (8)

Next, by using the property of Laplace transform we get

L[u(x, t)] −
(

1

sn+1

) n∑
k=0

sn−kuk(x, 0) +
(
s + α − αs

sn+2

)
L
[
R[x] + M[x] − g(x, t)

] = 0.

(9)
Now let us define a non-linear operator as

N [φ(x, t; q) = L[φ(x, t; q)] − 1

sn+1

n∑
k=0

sn−kuk +
(
s + α − αs

s

)
L
[
R[x] + M[x] − g(x, t)

] = 0,

(10)
where q ∈ [0, 1], be an embedding parameter and φ(x, t; q) is the real function of
x, t and q. By means of generalizing the zeroth order deformation equation is given
by

(1 − q)L[φ(x, t; q) − u0(x, t)] = �qH(x, t)M[φ(x, t; q)], (11)

where � is a nonzero auxiliary parameter which helps us to increase the conver-
gence results, H(x, t) an auxiliary function, u0(x, t) is an initial guess of u(x, t)
and φ(x, t; q) is an unknown function. It is important that one has great freedom to
choose auxiliary parameters in MHATM. This freedom plays an important role in
establishing the keystone of validity and flexibility of MHATM. Obviously, when
q = 0 and q = 1, it holds

φ(x, t; 0) = u0(x, t) and φ(x, t; 1) = u(x, t)

respectively. Thus, as q increases from 0 and 1, the solution varies from the initial
guess u0(x, t) to the solution u(x, t). Expanding φ(x, t; q) in Taylor’s series with
respect to q, we have
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φ(x, t; q) = u0(x, t) +
∞∑

m=1

qmum(x, t), (12)

where um(x, t) = 1
m!

∂mφ(x,t;q)

∂qm

∣∣∣
q=0

. Let us define a vector as

un = {u0(x, t), u1(x, t), . . . , un(x, t)}.

Differentiating equation (11) m times with respect to q and the setting q = 0 and
finally dividing by m! we obtain mth order deformation equation

L[um−1(x, t) − χmum−1(x, t)] = �qH(x, t)Rm(um−1, x, t), (13)

where

Rm(um−1, x, t) = 1

(m − 1)!
∂m−1

∂qm−1
M(φ(x, t; q))

∣∣∣
q=0

, (14)

and χm =
{
0, m ≤ 1,

1 m > 1
.

Operating inverse Laplace transform both sides on Eq. (13), we get

um−1(x, t) = χmum−1(x, t) + �qL−1[H(x, t)Rm(um−1, x, t)]. (15)

For convenience point of view, the present nonlinear operator form has beenmodified
in the homotopy analysis transforms method i.e., the nonlinear term M[x, t]u(x, t)
is expanded in terms of homotopy polynomials [49] as

M[u(x, t)] = M

(
m−1∑
k=0

um(x, t)

)
=

∞∑
m=0

Pmu
m . (16)

From Eq. (15), we calculate the terms um(x, t) , for m ≥ 1. Therefore, the series
solution of the (7) can be obtained as,

um(x, t) =
∞∑

m=0

um(x, t) . (17)

Often, one will be interested in a truncated series of the form
∑k

m=0 um(x, t) as this
serves as an approximation to the exact solution.
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4 Convergence Analysis of MHATM with New
Atangana–Baleanu Derivative in Caputo Sense

The convergence analysis of MHATM with new Atangana–Baleanu derivative in
Caputo sense is given through the following Theorem.

Theorem 1 The series solution
∑k

m=0 um(x, t) defined above converges if for a pre-
assigned positive ε there exist a natural number k such that

∣∣um+p

∣∣ < ε,∀m ≥ k and
p = 1, 2, 3 . . .

Proof Define the sequence of function {gm}∞m=0 as follows:

g0 = u0
g1 = u0 + u1
g2 = u0 + u1 + u2
...

gm = u0 + u1 + u2 + · · · + um .

We have to show that {gm}∞m=0 converges uniformly on �. From the assumption
of Theorem, we have

∣∣gm+p − gm
∣∣ = ∣∣um+p

∣∣ < ε∀ m ≥ k and p = 1, 2, 3, ... (18)

Therefore, by the well-known Cauchy criterion, we have the sequence {gm}∞m=0 con-
verges uniformly on � , and hence, series solution

∑k
m=0 um(x, t) converges.

5 Application of HATM with New Atangana–Baleanu
Derivative in Caputo Sense to Time Fractional Gas
Dynamics Equations

Example 1 In this example, we consider the following homogeneous time fractional
gas dynamics equation [31, 32]:

∂αu

∂tα
+ u

∂u

∂x
− u(1 − u) = 0, t > 0, x ∈ R, 0 < α ≤ 1, (19)

with initial condition u(x, 0) = e−x , and the solution u(x, t) = e−x+t is an exact
solution of standard gas dynamics equation [32], that is for α = 1. Applying Laplace
transform to both sides of Eq. (19) and after using the differential property of Laplace
transform , we get

(
s

s + α(1 − s)

)
[L {u(x, t)} − u(x, 0)] + L[uux − u + u2] = 0. (20)
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On simplifying and operating inverse Laplace transform on both sides, we get

u(x, t) − e−x + L−1

[(
s + α(1 − s)

s

)
L(uux − u + u2)

]
= 0. (21)

We consider the linear operator as

T [φ(x, t; q)] = L[φ(x, t; q)], (22)

with property T [c] = 0, where c is constant. Here non-linear operator defined as

N [φ(x, t; q)] = L[φ(x, t; q)] − s−1e−x +
[ s + α(1 − s)

s

]
L[φφx − φ + φ2].

(23)
Using the above definition, with assumption H(x, t) = 1, we construct the zeroth-
order deformation equation:

(1 − q)T [φ(x, t; q) − u0(x, t)] = q�N [φ(x, t; q)]. (24)

Obviously, when q = 0 and q = 1, φ(x, t; 0) = u0(x, t), and φ(x, t; 1) = u(x, t)
respectively. Thus, we obtain the mth-order deformation equation:

T [um(x, t) − χmum−1(x, t)] = �Rm(um−1, x, t). (25)

Operating inverse Laplace transform we get

um(x, t) = χmum−1(x, t) + L−1[�qRm(um−1, x, t)], (26)

where

Rm(um−1, x, t) = L[um−1] − (1 − χm)e−x +
[ s + α(1 − s)

s

]
L
[
P1
m − um + P2

m

]
.

(27)

Here P1
m and P2

m are homotopy polynomials given by

P1
m = 1

Γ (m + 1)

[
∂m

∂qm
N

[
(qφ(x, t; q))(q	(x, t; q))x

]]
q=0

,

P2
m = 1

Γ (m + 1)

[
∂m

∂qm
N

[(
(qφ(x, t; q))(q	(x, t; q))

)]]
q=0

.

(28)

Now the solution of the mth order Eq. (26) is given as

u(x,t) = (χm + �)um−1 − �(1 − χm)e−x + �L−1
[( s + α(1 − s)

s

)
L
[
P1
m − um + P2

m

]]
.

(29)
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Using the initial value u0(x, t) = u(x, 0) = e−x and the iterative scheme (29), we
get the following values:

u1(x, t) = −e−x
�(1 − α + αt),

u2(x, t) = −e−x
�(1 + �)(1 − α + αt) + e−x

�
2

[
(1 − α + αt)2 − t2α2

2

]
,

u3(x, t) = −e−x
�(1 + �)(1 − α + αt) + e−x

�
2

[
(1 − α + αt)2 − t2α2

2

]
− e−x

�
2t

(tα − α2 − α)(1 − 2� + 3�α) + e−x
�
2(α − 1)2(1 + α�) − 1

6
e−x

�
3t3α3.

In a similar manner, we can find the rest of the terms form ≥ 4, and the final solution
can be obtained as:

u(x, t) = u0(x, t) +
∞∑

m=0

um(x, t)

= e−x − e−x
�(1 − α + αt) − e−x

�(1 + �)(1 − α + αt) + e−x
�
2
[
(1 − α + αt)2 − t2α2

2

]

− e−x
�(1 + �)(1 − α + αt) + e−x

�
2
[
(1 − α + αt)2 − t2α2

2

]
− e−x

�
2t

(tα − α2 − α)(1 − 2� + 3�α) + e−x
�
2(α − 1)2(1 + α�) − 1

6
e−x

�
3t3α3 + · · ·

In particular, if we take α = 1, � = −1 the above solution reduced to the exact
solution e−x+t [32].

Next the obtained results are verified through the different graphical representa-
tion. Figure1 represents comparisons of the 4th order approximate solution of the
function u(x, t) for different values of the fractional derivative α with the known
exact solution. It can be noted that there exist a very good agreement between them.

To validate the efficiency and accuracy of the analytical scheme, we give the abso-
lute error curve E4 = |u(x, t) − u4(x, t)|. Figure2 shows that our solution obtained
by the proposed methods converges very rapidly to the exact solutions in only 4th
order approximations.

The behavior of the approximate analytical solution for different fractional Brow-
nian motions α = 0.7, α = 0.8, α = 0.9 and standard motions, i.e., α = 1 is shown
in Fig. 3. It is seen in Fig. 3 that the solution obtained byMHATMwith new derivative
increase very rapidly with the increases in t at the value of x = 1.

Figure4 shows the �− curves obtained from the 4th order approximation solution.
In our theory, it is obvious fromFig. 4 that the acceptable range of auxiliary parameter
� is −2.00 ≤ � < 0 and the valid region of convergence corresponds to the line
segment nearly parallel to the horizontal axis.

The comparison of the results between the proposed method with the exact solu-
tion, consequently the absolute error is presented in Table1. Tabulated data shows
that our approximate solution is also very near to the exact solution.
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Fig. 1 The surface graph of the exact solution u(x, t) and the 4th order approximate solution
u4(x, t) : (a) u(x, t)when α = 1, (b) u4(x, t)when α = 1, (c) u4(x, t)when α = 0.75, (d) u4(x, t)
when α = 0.5

Fig. 2 Plot of absolute error
E4(u) = |u(x, t) − u4(x, t)|
when α = 1
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Fig. 3 Plot of u(x, t) verses
x time for different values of
α at t = 1 and � = −1
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Fig. 4 Plot of �− curve for
different values of α at
x = 0.5 and t = 0.01
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Optimal Values of � in MHATM with New Derivative

At themth- order of approximation, one can define the exact square residual error as


u
m =

∫ 1

0

∫ 1

0

(
N

[
m∑
i=0

ui (x, t)

])2

dx dt, (30)

where N [u(x, t)] = ∂βu
∂tα + au ∂u

∂x + b ∂3u
∂x3 . However, the exact square residual error


m defined by (30) needs too much CPU time to calculate, even if the order of
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Table 1 The absolute error in the solution of fractional gas dynamic equation using MHATMwith
new derivative at different points of x and t when α = 1

(x,t) Exact solution Approximation
solution

|uexact − uMH AT M |

(0.1,0.1) 0.00498777 0.00498777 2.03442 × 10−16

(0.1,0.2) 0.00498801 0.00498801 3.26508 × 10−15

(0.1,0.3) 0.00498826 0.00498826 1.6523 × 10−14

(0.2,0.1) 0.00495082 0.00495082 1.89671 × 10−16

(0.2,0.2) 0.00495131 0.00495131 3.05813 × 10−15

(0.2,0.3) 0.0049518 0.0049518 1.54813 × 10−14

(0.3,0.1) 0.00488989 0.00488989 1.54813 × 10−16

(0.3,0.2) 0.00489062 0.00489062 2.72966 × 10−15

(0.3,0.3) 0.00489134 0.00489134 1.38293 × 10−14

Table 2 L2 and L∞ error norm for fractional gas dynamic equation using MHATM with new
derivative at various points x for α = 1

x L2 error norm L∞ error norm

0.1 1.43210 × 10−15 2.03442 × 10−16

0.2 1.65243 × 10−15 1.89671 × 10−16

0.3 1.98623 × 10−15 1.54813 × 10−16

Table 3 Optimal value of �

Order of approx. Optimal value of
� for α = 1

Optimal value of
� for α = 0.9

Value of Em for
α = 1

Value of Em for
α = 0.9

1 −0.93090 −0.921927 3.45691 × 10−5 2.56713 × 10−5

2 −0.92271 −0.95123 3.36789 × 10−6 3.23478 × 10−6

3 −0.96235 −0965467 1.56732 × 10−7 4.87612 × 10−7

approximation is not very high. Thus, to overcome this disadvantage i.e., to decrease
the CPU time, we introduced here the so-called averaged residual error defined by

Eu
m = 1

k21

k1∑
j=1

k1∑
l=1

(
N

[
m∑
i=0

ui ( j
x, l
t)

])2

, (31)

where 
x = 1
40k1

,
t = 1
40k2

, k1 = k2 = 5 for gas dynamic equation. The optimal
value of � can be obtained by means of minimizing the so called averaged residual
error Em defined by (31), corresponding to the nonlinear algebraic equations ∂Eu

m
∂�

= 0
(Tables2 and 3).



246 S. Kumar et al.

Above the table shows the selection of the values of � as well as the averaged
residual error Em for the different order of approximations. Here we see that there
is a great freedom to choose the auxiliary parameters �.

Example 2 In this example, we consider the following homogeneous nonlinear time-
fractional gas dynamics equation [31, 32]:

∂αu

∂tα
+ u

∂u

∂x
− u(1 − u) log a = 0, (32)

with the initial condition u(x, 0) = a−x , and the solution u(x, t) = at−x is the exact
solution for α = 1 [32].

Now, applying the aforesaid technique as Example1, we define a nonlinear oper-
ator as

N [φ(x, t; q)] = L[φ(x, t; q)] − 1

s
a−x + s + α(1 − s)

s
L
[
φ(x, t; q)φx (x, t; q)−

φ(x, t; q) log a + φ2(x, t; q) log a
]
. (33)

Therefore the mth order deformation equation is

T [um(x, t) − χmum−1(x, t)] = �Rm(um−1, x, t). (34)

Operating inverse Laplace transform we get

um(x, t) = χmum−1(x, t) + L−1[�qRm(um−1, x, t)], (35)

where

Rm(um−1, x, t) = L[um−1] − (1 − χm)a−x + �L−1

[
s + α(1 − s)

s
L[P1

m

− um log a + log aP2
m]

]
. (36)

Now the solution of the mth order of Eq. (35) is given as

um(x, t) = (χm + �)um−1 − �(1 − χm)a−x + �L−1

[
s + α(1 − s)

s
L[P1

m−

um log a + log aP2
m]

]
. (37)

Using the initial approx u0(x, t) = u(x, 0) = a−xand the iterative scheme (37), we
get
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u1(x, t) = −a−x
�(1 − α + αt) log a,

u2(x, t) = −a−x
�(1 + �)(1 − α + αt) log a + a−x

�
2
[
(1 − α + αt)2 − t2α2

2

]
(log a)2,

u3(x, t) = −a−x
�(1 + �)2(1 − α + αt) log a + a−x

�
2
[
(1 − α + αt)2 − t2α2

2

]
(log a)2 − a−x

�
2t

(tα − α2 − α)(1 − 2h + 3�α)(log a) + a−x
�
2(α − 1)2(1 + α�) − 1

6
a−x

�
3t3α3(log a)3.

In a similar manner, we can find the rest of the terms for m ≥ 4, and the final
solution can be obtained as:

u(x, t) = u0(x, t) +
∞∑

m=0

um(x, t).

In particular, if we take α = 1, � = −1 the above obtained solution is reduced to the
exact solution at−x [32].
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Fig. 5 The surface graph of the exact solution u(x, t) and the 4th order approximate solution
u4(x, t) : (a) u(x, t)when α = 1, (b) u4(x, t)when α = 1, (c) u4(x, t)when α = 0.75, (d) u4(x, t)
when α = 0.5
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Fig. 6 Plot of absolute error
E4(u) = |u(x, t) − u4(x, t)|
when α = 1
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Fig. 7 Plot of u(x, t) verses
x time for different values of
α at t = 1 and � = −1
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Figure5 represents comparisons of the 4th order approximate solution with the
exact solution. It can be noted that despite of different values of α, there exist a very
good agreement between them.

The absolute error curve E4 = |u(x, t) − u4(x, t)| is given in the Fig. 6. This
figure reflects the accuracy and flexibility of the proposed method by using the new
derivative.

The behavior of the approximate analytical solution for different fractional Brow-
nian motions α = 0.7, α = 0.8, α = 0.9 and standard motions, i.e., α = 1 is shown
in Fig. 7.

Figure8 shows the �− curves obtained from the 4th order approximation solution.
In our theory, it is obvious fromFig. 8 that the acceptable range of auxiliary parameter
� is −2.00 ≤ � < 0 and the valid region of convergence corresponds to the line
segment nearly parallel to the horizontal axis.
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Fig. 8 Plot of �− curve for
different values of α at
x = 0.5 and t = 0.01
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6 Conclusion

In this manuscript, a new derivative with non-singular kernel was discussed for
fractional Gas dynamics equations. An efficient and accurate method based on the
MHATMmethod is proposed for solving the nonlinear Gas dynamics equations with
newCaputo–Fabrizio derivative. Few numerical examples were given to demonstrate
the validity and applicability of the proposed method. The results show that the
MHATM method with new fractional derivative is simple and accurate. In fact by
selecting few terms, excellent numerical results are obtained.
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New Direction of Atangana–Baleanu
Fractional Derivative with Mittag-Leffler
Kernel for Non-Newtonian Channel Flow

Muhammad Saqib, Ilyas Khan and Sharidan Shafie

Abstract This book chapter higlights a new direction of Atangana–Baleanu frac-
tional derivative to channel flow of non-Newtonian fluids. Because the idea to apply
fractional derivatives with Mittag-Leffler kernel is a quite new direction for non-
Newtonian fluids when flow is in a parallel plate channel. This new and inreresting
fractional derivative launched by Atangana and Baleanu with a new fractional oper-
ator namely, Atangana–Baleanu fractional operator with Mittag-Leffler function as
the kernel of integration has attracted the interest of the researchers. Because this new
operator is an efficient tool to model complex and real-world problems. Therefore,
this chapter deals with modeling and solution of generalized magnetohydrodynamic
(MHD) flow of Casson fluid in a microchannel. The microchannel is taken of infinite
length in the vertical direction and of finite width in the horizontal direction. The
flow ismodeled in terms of a set of partial differential equations involvingAtangana–
Baleanu time fractional operator with physical initial and boundary conditions. The
partial differential equations are transformed to ordinary differential equations via
fractional Laplace transformation and solved for exact solutions. To explore the
physical significance of various pertinent parameters, the solutions are numerically
computed and plotted in different graphs with a physical explanation. The results
obtained here may have useful industrial and engineering applications.
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Nomenclature

u - Velocity of the fluid.
t - Time.
γ - Casson fluid parameter.
T - Temperature of the fluid.
U0 - Amplitude of the velocity.
g - Acceleration due to gravity.
Cp - Specific heat at a constant pressure.
k1 - Thermal conductivity of the fluid.
v - Kinematic viscosity of the fluid.
ν - Dimensionless velocity of the fluid.
B0 - External magnetic field.
γ0 - Dimensionless Casson fluid parameter.
ω - Frequency of oscillation.
py - Yield stress of the non-Newtonian fluid.
φ - Product of the component of deformation rate itself.
φc - Critical value of product.
βT - Volumetric coefficient of thermal expansion.
kε - Mean absorption coefficient.
μ - Dynamic viscosity.
ρ - Fluid density.
σ1 - Stephen-Boltzmann constant.
q - Laplace transforms parameter.
qr - Thermal radiation.
Gr - Thermal Grashof number.
α - Fractional order/Fractional parameter.
N (α) - Normalization function.
k - Permeability of porous medium.
φ - Porosity of porous medium.
Pr - Prandtl number.
Pref f - Effective Prandtl number.
K - Permeability of porous medium.
Kef f - Effective permeability.
τ - Shear stress.
ei j - (i, j)th component of deformation rate.

1 Introduction

Recently, it is recognized by many researchers that fractional calculus is an efficient
tool to describe complex and real-world problems including viscoelastic materials,
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rheology, fluid flow, diffusive transport, probability, electrical networks and electro-
magnetic theory [1–14]. It is worth mentioning here that the real world problems
obey three leading mathematical laws based on, exponential decay function, power
function and the generalized Mittag-Leffler function [15–20]. Now, there is a discus-
sion to distinguish that which fractional operator is suitable to describe the complex
and real-world problems. According to some applied mathematicians, the Caputo
fractional operator is an efficient tool to describe such problems because it allows
the usual initial conditions in the application of integral transform [21]. This argu-
ment is since the researchers want to see the fractional operator like a classical one.
On the other hand, some researchers have agreed that the Riemann–Liouville oper-
ator is more suitable because while using the Laplace transform, one gets the initial
conditions with a fractional exponent which is considered more realistic [22, 23].
However, it is pointed out that both the Riemann–Liouville and Caputo operators
have some discrepancies. The kernel of Caputo operator is a singular for t = τ ; in
the Riemann–Liouville case, the derivative of a constant is not zero [24, 25]. To
overcome this shortfall, Caputo and Fabrizio developed a fractional operator using
exponential decay law with non-singular but local kernel [26]. This new fractional
operator is considered as a filter in the literature and criticized by many researchers
[9, 27, 28]. Recently, Atangana and Baleanu introduced new fractional operators
namely, Atanaga–Baleanu operators in Riemann–Liouville and Caputo sense [29].
The kernel of these operators is based on the generalized Mittag-Leffler function
which is non-singular and non-local. These operators are more suitable to describe
the complex and real-world problems because the non-locality of the kernel gives a
better description of the memory within the structure with different scale [30]. Fur-
thermore, the Atangana–Baleanu operators satisfied all the mathematical principle
under the scope of fractional calculus [31, 32]. The idea of Atangana–Baleanu frac-
tional derivativeswas applied bySheikh et al. [33, 34] for the first time in the literature
to study the convective fluid problems. As discussed above, many knownmathemati-
cians, physicists and engineers contributed to the theory of fractional derivatives, yet
the idea of fractional derivatives particularly of Atangana–Baleanu fractional deriva-
tives, needs to be further explored.

The complex and real-world problems, particularly the flow problems in industry
and engineering are non-Newtonian in nature such as chocolates, polymers, paints,
varnishes, toothpaste, jelly, coffey and honey etc. Such types of fluids exhibit vis-
coelastic behavior and possess memory. The governing equations of these fluids are
challengeable to handle evenwith classical derivatives. Under some assumptions, the
numerical and approximate solutions are available in the literature, but exact ana-
lytical solutions are rare. However, classical derivatives are not suitable to interpret
the memory effect of these fluids [35, 36]. Among different types of non-Newtonian
fluids, the flow of Casson fluid is considered in a vertical microchannel embedded
porous medium due to industrial and engineering applications which include space
systems, glass blowing, polymer suspension, high-power-density chips, supercom-
puters, electronics, micro electro mechanical systems (MEMS), micro opto electro
mechanical systems (MOEMS), material processing operations, paper production
extraction of plastic sheets and many other [37–39]. Whereas, for better interpreta-
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tion of viscoelastic behavior and memory effect the fractional operator of Atangana
and Baleanu in Caputo sense is considered. The fractional Laplace transformation
is utilized to obtain exact analytical solutions. The obtained solutions are computed
numerically and plotted in various graphs with physical interpretation.

2 Mathematical Formulation

Let consider the MHD flow of a generalized Casson fluid in a vertical microchannel.
The channel consists two parallel plates at a distance d. The fluid flows in x-directions
whereas, the y-axis is chosen perpendicular to the flow direction. At the time, t = 0,
the fluid is at rest and the temperature of the plate at y = 0 is T0. After t = 0+,
the temperature of the plate at y = d is raised from T0 to Tw which enhances the
buoyancy force. The physical configuration is shown in Fig. 1 and the constitutive
equation of Casson fluid is given in [40]

τi j =
⎧
⎨

⎩

2
(
μγ + py√

2π

)
ei j , π > πc

2
(
μγ + py√

2πc

)
ei j , πc < π,

(1)

where

γ = μB
√
2πc

Py
. (2)

The flow of incompressible Casson fluid, under the influence uniform magnetic
field and porous medium along with heat transfer is governed by [40]

∂u(y, t)

∂t
= v

(

1 + 1

γ

)
∂2u(y, t)

∂y2
−

(
σ B2

0

ρ
+

(

1 + 1

γ

)
vφ

k

)

u(y, t) + gBT (T (y, t) − T0),

(3)

Fig. 1 Schematic diagram
for vertical microchannel



New Direction of Atangana–Baleanu Fractional … 257

ρcp
∂T (y, t)

∂t
= k1

∂2T (y, t)

∂y2
− ∂qr

∂y
, (4)

associated with the following physical initial and boundary conditions:

u(y, 0) = 0, T (y, 0) = T0,∀y ≥ 0, (5)

u(0, t) = 0, T (0, t) = T0,

u(d, t) = 0, T (d, t) = Tw, t > 0. (6)

The radiative flux is given as under [40]

qr = −4σ1

3kε

∂T 4

∂y
, (7)

T 4 is expended about T0 using Taylor series as

T 4 ∼= 4T T 3
0 − 3T 4

0 . (8)

Incorporating Eqs. (7) and (8) in Eq. (4), the energy equation becomes:

ρcp
∂T (y, t)

∂t
= k1

(

1 + 16σT0
k1kε

)
∂2T (y, t)

∂y2
. (9)

Introducing the following dimensionless variables

v = d

v f
u, ξ = y

d
, τ = v f

d2
t, θ = T − T0

Tw − T0
,

into Eqs. (3), (5), (6) and Eq. (9), we get:

∂v(ξ, τ )

∂τ
= 1

γ0

∂2v(ξ, τ )

∂y2
− kef f v(ξ, τ ) + Grθ(ξ, τ ), (10)

Pref f
∂θ(ξ, τ )

∂τ
= ∂2θ(ξ, τ )

∂ξ 2
, (11)

v(ξ, 0) = 0, θ(ξ, 0) = T0,∀ξ ≥ 0, (12)

v(0, τ ) = 0, θ(0, t) = 0,

u(1, t) = 0, θ(d, t) = 1, t > 0, (13)
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with

γ0 = γ

γ + 1
, M = σ B2

0d
2

μ
,

1

K
= φd2

k
, Kef f = M + 1

γ0K
,

Gr = d3gβT (Tw − T0)

v
, Pr = μCp

k
, R = 16σT 3

0

3kk1
, Pref f = Pr

R + 1
.

The classical derivatives ∂ f (.,.)
∂τ

are replaced by Dα
τ f (., .) via Atangana–Baleanu

fractional operator into Eqs. (10) and (12) to generate the generalized model as:

Dα
τ v(ξ, τ ) = 1

γ0

∂2v(ξ, τ )

∂y2
− kef f v(ξ, τ ) + Grθ(ξ, τ ), (14)

Pref f D
α
τ θ(ξ, τ ) = ∂2θ(ξ, τ )

∂ξ 2
. (15)

The Atangana–Baleanu fractional operator with non-Singular and non-local ker-
nel based on Mittag-Leffler function is defined by [29]:

Dα
τ f (ξ, τ ) = N (α)

1 − α

∫ τ

0
Eα

(

−α
(τ − t)α

1 − α

)

f ′(ξ, τ )dt; for 0 < α < 1,

(16)
here

Eα(−tα) =
∞∑

k=0

(−t)αk

Γ (αk + 1)
,

is the Mittag-Leffler function.

3 Exact Analytical Solutions

Here the fractionalized Laplace transformation is applied to obtain solutions for
velocity and temperature distributions.

3.1 Solution of the Energy Equation

Applying fractional Laplace transformation on Eq. (15) using Eq. (16) and boundary
conditions from (13) yield to the following:
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d2θ̄ (ξ, q)

dξ 2
− Pref f a0

qα

qα + a1
θ̄ (ξ, τ ) = 0, (17)

θ̄ (0, q) = 0, θ̄ (1, q) = 1

q
, (18)

where a0 = 1
1−α

and a1 = a0α.
The solution of Eq. (17) using the transform boundary conditions from Eq. (18)

is given by:

θ̄ (ξ, q) = 1

q

sinh ξ

√
Pref f a0qα

qα+a1

sinh
√

Pref f a0qα

qα+a1

. (19)

To obtain the inverse Laplace transform Eq. (19) can be written in following form:

θ̄ (ξ, q) = 1

q1−α

( ∞∑

n=0

1

qα
exp (−(1 + 2n − ξ))

√
Pref f a0qα

qα + b1
−

∞∑

n=0

1

qα
exp (−(1 + 2n + ξ))

√
Pref f a0qα

qα + b1

)

. (20)

Upon inverting the Laplace transform, Eq. (20) Yield to the following form:

θ(ξ, τ ) = h(τ ) ∗
( ∞∑

n=0

Φ((1 + 2n − ξ), τ ; Pre f f a0, b1) −
∞∑

n=0

Φ((1 + 2n + ξ), τ ; Pre f f a0, b1)
)

,

(21)
here ∗ represents convolution product and the functions h(τ ) and Φ(η, t, a, b) are
presented in Appendix (A1)–(A3).

3.2 Solution of Momentum Equation

In the virtue of Eq. (16) the fractional Laplace transformation of Eq. (14) and of the
corresponding boundary conditions (13) is calculated as follow:

d2v̄(ξ, q)

dξ 2
−

(
γ0a0qα

qα + a1
+ γ0Kef f

)

v̄(ξ, τ ) = −γ0Gr

q

sinh ξ

√
Pref f a0qα

qα+a1

sinh
√

Pref f a0qα

qα+a1

, (22)

for
v̄(0, q) = 0, v̄(1, q) = 0. (23)
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The analytical solution of Eq. (22) using (23) is given by:

v̄(ξ, q) = γ0Gr (qα + a1)

a4qα + a3

1

q1−α

sinh ξ
√

a2qα+a3
qα+a1

qα sinh
√

a2qα+a3
qα+a1

− γ0Gr (qα + a1)

a4qα + a3

1

q1−α

sinh ξ

√
Pref f a0qα

qα+a1

qα sinh
√

Pref f a0qα

qα+a1

, (24)

where a2 = γ0(a0 + Kef f ), a3 = γ0a1Kef f , a4 = a0Pref f − a2.
Equation (24) is further simplified as

v̄(ξ, q) = a6

(
qα

qα + a5
+ a1

qα + a5

)
1

q1−α
×

[ ∞∑

n=0

1

qα
exp

(

−(1 + 2n − ξ)
a2q

α + a3
qα + a1

)

−
∞∑

n=0

1

qα
exp

(

−(1 + 2n + ξ)
a2qα + a3
qα + a1

)]

− a6

(
qα

qα + a5
+ a1

qα + a5

)
1

q1−α

×
[ ∞∑

n=0

1

qα
exp

(

−(1 + 2n − ξ)
a2qα + a3
qα + a1

)

−
∞∑

n=0

1

qα
exp

(

−(1 + 2n + ξ)
a2qα + a3
qα + a1

) ]

,

(25)
where a5 = a3

a4
, a6 = γ0Gr

a4
.

Taking the inverse Laplace Transform of Eq. (25) yield to the following form:

v̄(ξ, τ ) = h(τ ) ∗ [a6(Rα,α(−a5, τ ) + a1Fα(a5, τ ))] ∗
( ∞∑

n=0

Ψ ((1 + 2n − ξ), τ ; a2, a2, a1)

−
∞∑

n=0

Ψ ((1 + 2n + ξ), τ ; a2, a2, a1)
)

− h(τ ) ∗ [a6(Rα,α(−a5, τ ) + a1Fα(a5, τ ))]

∗
( ∞∑

n=0

Φ((1 + 2n − ξ), τ ; Pref f , a0, b1) −
∞∑

n=0

Φ((1 + 2n + ξ), τ ; τ ; Pref f , a0, b1)
)

.

(26)

The functions h(τ ) and Φ(η, t, a, b) are previously defined whereas, the new
function Ψ (η, t; a, b, c) is presented in Appendix (A4) and (A5). Here Rα,v(., .)

and Fα(., .) are the Lorenzo and Hartleys’ and Robotnov and Hartleys’ functions,
respectively. These special functions can be defined as [8]:

Rα,v(−m, t) =
(

qv

qα + m

)

=
∞∑

n=0

(−m)nt (n+1)α−1−v

Γ [(n + 1)α − v] , (27)
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Fα(−m, t) =
(

1

qα + m

)

=
∞∑

n=0

(−m)nt (n+1)α−1

Γ [(n + 1)α] . (28)

It is worth mentioning here that Eqs. (21) and (26) clearly satisfies all the imposed
initial and boundary conditions which validate our results.

4 Parametric Studies Through Graphs

This section deals with the physical influences of the various pertinent parameter on
velocity and temperature distributions. The results obtained for velocity distribution
are presented in figures. The influence of α, γ0, M , K , Gr and of Pr on the velocity
profile is discussed physically. Moreover, the results for velocity and temperature are
compared in tabular form.

Figures2a, b are plotted to study the impact ofα on the fluid velocity. These figures
clearly show that the physical significance ofα on the flow is very strong. The velocity
increases when α is increased. The classical velocity (α = 1) is maximum in case of
large time i.e. t = 1. This effect is because of the fact that the thickness momentum
boundary layer is minimum as compared to the thermal boundary layer in this case.
However, Fig. 2b justifies that this effect reverses for small time i.e. t = 0.1.

Figure3 depicts variation in velocity profile due to variation in γ0 and the rest of
parameters are kept constant. The increase in γ0 enhances viscous forces as compared
to thermal forces that tend to decrease fluid velocity. Figure4 presents the effect of
M on velocity profile. The velocity decrease with increase in M .

Large value of M physically, this is true due to the fact M strengthen the Lorentz
forces which tends to retard the velocity.

The influence of K is shown in Fig. 5. It is explored that velocity increases for
larger values of K . This effect can be physically justified as, when K is increased,
the drag forces became weaker consequently the velocity is increased. The influence
of Gr on the velocity distribution is displayed in Fig. 6. The increase in Gr causes
an increase in the buoyancy forces due to which the fluid velocity increases. The
effect of Pr on velocity profile is illustrated in Fig. 7. The Pr is of great physical
significance because it shows the ratio of vicious and thermal forces. Greater the
values of Pr , stronger will be the viscous forces compare to the thermal forces and
thereby the fluid velocity decreases.

Tables1 and 2 show the variation in velocity and temperature distributions due
to α. Clearly, both velocity and temperature distributions increase with an increase
in α. Moreover, these tables show that, our solutions satisfy the imposed initial and
boundary conditions
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Fig. 2 Influence of α on
v(ξ, τ ) when γ0 = 1.5,
M = 0.5, K = 1.5,
Gr = 10, Pr = 10, R = 1.5
and ωt = π

2

Fig. 3 Influence of γ0 on
v(ξ, τ ) when α = 0.5,
M = 0.5, K = 1.5,
Gr = 10, Pr = 10,
R = 1.5, t = 1 and ωt = π

2
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Fig. 4 Influence of M on
v(ξ, τ ) when α = 0.5,
γ0 = 1.5, K = 1.5,
Gr = 10, Pr = 10,
R = 1.5, t = 1 and ωt = π

2

Fig. 5 Influence of K on
v(ξ, τ ) when α = 0.5,
γ0 = 1.5, M = 0.5,
Gr = 10, Pr = 10,
R = 1.5, t = 1 and ωt = π

2

Fig. 6 Influence of Gr on
v(ξ, τ ) when α = 0.5,
M = 0.5, K = 1.5,
γ0 = 1.5, Pr = 10, R = 1.5,
t = 1 and ωt = π

2
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Fig. 7 Influence of Pr on
v(ξ, τ ) when α = 0.5,
γ0 = 1.5, M = 0.5,
Gr = 10, K = 1.5, R = 1.5,
t = 1 and ωt = π

2

Table 1 Variation in velocity distribution due to α

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

ξ Velocity
distribution

Velocity
distribution

Velocity
distribution

Velocity
distribution

Velocity
distribution

0 0 0 0 0 0

0.1 0.1190 0.0740 0.0460 0.0420 0.0720

0.2 0.2320 0.1440 0.0890 0.0830 0.1400

0.3 0.3330 0.2090 0.1300 0.1190 0.1910

0.4 0.4160 0.2640 0.1640 0.1480 0.2330

0.5 0.4710 0.3040 0.1900 0.1680 0.2640

0.6 0.4920 0.3230 0.2040 0.1750 0.2650

0.7 0.4670 0.3410 0.1990 0.1650 0.2390

0.8 0.3870 0.2660 0.1710 0.1360 0.1880

0.9 0.2360 0.1670 0.1080 0.0820 0.1140

1.0 −0.00000008 −0.00000008 −0.00000008 −0.00000008 −0.00000008

5 Concluding Remarks

The time fractional derivative approach with a non-singular and non-local kernel of
Atangana and Baleanu is utilized to fractionalize the flow. The fractional Laplace
transform technique is used to solve the set of partial differential equations. Para-
metric studies are carried out through graphs. From this study, the major key points
are summarized as follow:

• The fractional parameter α is of physical significance affecting viscous, as well
as, buoyancy forces.

• The velocity increases with increase in α for long timewhereas, this effect reverses
for a shorter time.
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Table 2 Variation in temperature distribution due to α

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

ξ Temperature
distribution

Temperature
distribution

Temperature
distribution

Temperature
distribution

Temperature
distribution

0 0 0 0 0 0

0.1 0.0580 0.0670 0.0800 0.0930 0.1000

0.2 0.1190 0.1360 0.1620 0.1870 0.2000

0.3 0.1840 0.2090 0.2460 0.1810 0.3000

0.4 0.2550 0.2870 0.3340 0.3770 0.3990

0.5 0.3360 0.3730 0.4260 0.4750 0.4890

0.6 0.4290 0.4680 0.5240 0.5750 0.5970

0.7 0.5380 0.5760 0.6290 0.6770 0.6980

0.8 0.6660 0.6980 0.7430 0.7820 0.8030

0.9 0.8180 0.8380 0.8660 0.8890 0.9100

1.0 0.99999994 0.99999994 0.99999994 0.99999994 0.99999994

• The velocity enhances with the enhancement of Gr and K .
• A decreasing behavior of velocity is observed while increasing γ0, M and Pr .
• The temperature profile is increased when α is increased.

Acknowledgements The authors would like to acknowledge Ministry of Higher Education
(MOHE) and Research Management Centre-UTM, Universiti Teknologi Malaysia UTM for the
financial support through vote numbers 15H80 and 13H74 for this research.

Appendix-A

Φ1(η, t; a, b) = L

[
1

q
exp

(

−η

(√
aq

q + b

)) ]

= 1 − 2a

π

∫ ∞

0

sin(ηs)

s(a + s2)
exp

(

− bts2

a + s2

)

ds, (A1)

Φ(η, t; a, b) = L

[
1

q
exp

(

−η

(√
aqα

qα + b

))]

= 1

π

∫ ∞
0

∫ ∞
0

Φ1(η, u; a, b) exp(−τ − r − urα cosαπ)(urα sin απ)drdu, (A2)

h(τ ) = L

(
1

q1−α

)

= 1

ταΓ (1 − α)
, (A3)
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Ψ1(η, t; a, b, c) = L

[
1

q
exp

(

−η

√
aq + b

q + c

)

= exp(−η
√
a) −

√
b − ac

2
√

π

∫ ∞

0

∫ τ

0

1√
t
exp

(
−ct − η

4u
− au

)
I1(2

√
(b − ac)ut)dtdu, (A4)

Ψ (η, t; a, b, c) = L

[
1

q
exp

(

−η

√
aqα + b

qα + c

)

= 1

π

∫ ∞
0

∫ ∞
0

Ψ1(η, u; a, b, c) exp(−τ − r − urα cosαπ)(urα sin απ)drdu. (A5)
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Exact Solutions for the Liénard Type
Model via Fractional Homotopy Methods

V. F. Morales-Delgado, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez
and M. A. Taneco-Hernandez

Abstract In this chapter, we present the solution for a Liénard type model of a
pipeline expressed by Liouville–Caputo and Atangana-Baleanu-Caputo fractional
order derivatives. For this model, new approximated analytical solutions are derived
by using the Laplace homotopy perturbation method and the modified homotopy
analysis transform method. Both the efficiency and the accuracy of the method are
verified by comparing the obtained solutions versus the exact analytical solution.

Keywords Fractional calculus · Atangana–Baleanu fractional derivative · Liénard
type model

1 Introduction

Many dynamical phenomena can be represented by the Liénard equation, such as
biological, mechanical, electronic and electrical systems [1–10]. Concerning to the
topic of the present paper, in [11–13], the authors proposed a Liénard type model for
representing the fluid dynamics of a pipeline; the motivation to formulate the model
was its application on parameter identification. However, a solution for this model
was not presented, which is a gap that should be fulfilled. The use of derivatives
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with fractional order sometimes is more convenient since models with this kind of
derivatives are more general in comparison with classical order models. In the recent
decades several physical problems have been represented mathematically by frac-
tional derivatives. These representations have offered excellent results for modelling
real world problems [14–21]. A physical interpretation of equations with fractional
derivatives with respect to time is connected with the memory effects. The fractional
derivatives include an integral operator of which kernel function (power, exponen-
tial o Mittag-leffler type) is a memory function that involves non-local interaction
[22–26].

It is very difficult to solve highly nonlinear differential equations of fractional
order. In this context, many powerful methods for finding exact solutions have been
developed to study the solutions of nonlinear FPDE’s, for instance, Hermite colo-
cation method [27], invariant subspace method [28], optimal homotopy asymptotic
method [29], Adomian decomposition methods [30], homotopy analysis Sumudu
transform method [31], homotopy decomposition method [32], the homotopy per-
turbation transform method [33–35], homotopy–Padé technique [36], the fractional
homotopy analysis transform method [37], and Chebyshev operational collocation
method [38].

The homotopy analysis method transforms a problem into an infinite number of
linear problems without using the perturbation techniques; this method employs the
concept of the homotopy from topology to generate a convergent series solution [39,
40]. The Laplace homotopy perturbation method (LHPM) is a combination of the
homotopy analysis method proposed by Liao [41] and the Laplace transform [42–
45]. The modified homotopy analysis transform method (MHATM) was proposed
in [46]; this method is an analytical technique based on the combination of the
homotopy analysis method and Laplace transform with homotopy polynomial. In
[46] considering the Liouville–Caputo fractional derivative, the authors developed
the MHATMmethod with homotopy polynomial for solving the time-fractional K-S
equation. A convergence analysis of MHATMwas obtained by the proposed method
and verified through different graphical representations.

In this chapter, we examine the fractional Lienard’s type model of a pipeline with
the aid of the LHPM and the MHATM using the fractional operators of Liouville–
Caputo and Atangana–Baleanu in Liouville–Caputo sense. The model considered
is expressed in terms of the flow rate or in terms of the pressure head as required.
The organization of this article is as follows: Sect. 2 presents the literature related to
Lienard’s typemodel of a pipeline. In Sects. 3 and 4, LHPMandMHATMare applied
to Lienard’s model via Liouville–Caputo and Atangana–Baleanu–Caputo fractional
order derivatives. Finally in Sect. 5, conclusions are presented.

2 Preliminaries

Chaudhry in [47], described the momentum and continuity equations that govern the
dynamics of a fluid in a horizontal pipeline, which are given by
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∂Q(z, t)

∂t
+ gAr

∂H(z, t)

∂z
+ f

2φAr
Q(z, t)|Q(z, t)| = 0, (1)

∂H(z, t)

∂t
+ b2

gAr

∂Q(z, t)

∂z
= 0, (2)

where (t, z) ∈ (0, L) × (0,∞) are the spatial coordinatesmeasured inmeters and the
temporal coordinates measured in seconds coordinates respectively; L is the length
of the pipe [m], H(z, t) is the pressure head [m], Q(z, t) is the flow rate [m3/s], b
is the wave speed in the fluid [m/s], g is the gravitational acceleration [m/s2], Ar

is the cross-sectional area of the pipe [m2], φ is the inside diameter of the pipe [m],
and f is the Darcy–Weisbach friction factor [48]. The above equations consider that
convective changes in the velocity are negligible, as well as, both the liquid density
and the cross-sectional area are constant.

The authors in [47, 50], presented the linearized version of Eqs. (1) and (2). The
linear version is given by

∂h(z, t)

∂z
+ 1

Ar

∂q(z, t)

∂t
+ f q0

2gφA2
r

q(z, t) = 0, (3)

∂q(z, t)

∂z
+ gAr

b2
∂h(z, t)

∂t
= 0, (4)

where q0 and h0 are the flow and pressure in equilibrium, q(z, t) and h(z, t) are
the flow rate and pressure head around the equilibrium (q0, h0), respectively. The
physical parameters of the pipeline can be redefined in terms of electrical parameters
as follows

L = 1

Ar
, C = gAr

b2
, R = f q0

2gφA2
r

, (5)

such that Eqs. (3) and (4) can be rewritten as

∂h(z, t)

∂z
+ L

∂q(z, t)

∂t
+ Rq(z, t) = 0, (6)

∂q(z, t)

∂z
+ C

∂h(z, t)

∂t
= 0. (7)

The abovementioned equations are theTelegrapher’s equationswithout the admit-
tance term G [51]. In an electrical transmission line, if G → ∞ means that there is
a short circuit in the line. In a pipeline, the meaning of this admittance term is a leak,
hence the following equations represent a pipeline with a leak at the point zL

∂h(z, t)

∂z
+ L

∂q(z, t)

∂t
+ Rq(z, t) = 0, (8)

∂q(z, t)

∂z
+ C

∂h(z, t)

∂t
+ Gδ(z − zL)u(t − tL)h(zL , t) = 0, (9)
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where G is given by
G = αλhχ−1

L0 ,

with hL0 as the equilibrium pressure at the leak position and χ is a constant that
depends on the geometry of the leak. For round holes, χ = 1.

By differentiating Eqs. (6) and (7) and applying some algebraic manipulation, we
obtain the following equations

∂2h(z, t)

∂z2
= LC

∂2h(z, t)

∂t2
+ (RC + GL)

∂h(z, t)

∂t
+ GRh(z, t), (10)

∂2q(z, t)

∂z2
= LC

∂2q(z, t)

∂t2
+ (RC + GL)

∂q(z, t)

∂t
+ GRq(z, t). (11)

Using the Liénard transform [52] in terms of the flow we get

Φ : (
x1(t) x2(t),

) → (
q(z, t) q̇(z, t) + F(q(z, t))

)
, (12)

or in terms of the pressure head

Φ : (
x1(t) x2(t),

) → (
h(z, t) ḣ(z, t) + F(h(z, t))

)
, (13)

the couple of Eqs. (6) and (7) becomes

∂x1(z, t)

∂t
− x2(z, t) +

(
RC + GL

LC

)
x1(z, t) = 0,

∂x2(z, t)

∂t
+

(
GR

LC

)
x1(z, t) −

(
1

LC

)
∂2x1(z, t)

∂z2
= 0. (14)

The above equations correspond to the LiénardModel of a fluid transmission line.
In the next section, we apply the Laplace homotopy perturbation method and the
modified homotopy analysis transform method for obtaining the new approximated
analytical solutions of the system (14).

3 Implementation of the Laplace Homotopy Perturbation
Method via Liouville–Caputo and
Atangana–Baleanu–Caputo Fractional Order Derivatives

Case 1. Liénard model of a fluid transmission line via Liouville–Caputo frac-
tional order derivative.
Usually, several authors replace the time integer derivative operator with fractional
ones on a purely mathematical basis omitting the dimensionality of the fractional
equation. The dimension mismatch of the fractional systems can be mathematically
corrected introducing an auxiliary parameter Ξ in the following way [53]
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d

dt
→ 1


1−α
· 0Dα

t , m − 1 < α ≤ m, m ∈ M = 1, 2, 3, . . . (15)

where α represents the order of the fractional temporal operator and Ξ has the
dimension of seconds. The parameter Ξ characterizes the existence of fractional
structures which emerge from the non-local behaviour of the system in time (these
components change the time constant of the system) [53]. The authors of [54] used
the Planck time, tp = 5.39106 × 10−44 s, for preserving the dimensional compati-
bility. Considering [54] the Ξ parameter corresponds to the tp for developing our
calculations. Following this idea, we consider the following fractional equations in
Liouville–Caputo sense

C
0 D

α
t x1(z, t) − t1−α

p
x2(z, t) + t1−α

p

( RC + GL

LC

)
x1(z, t) = 0, (16)

C
0 D

α
t x2(z, t) + t1−α

p

( RG

LC

)
x1(z, t) − t1−α

p

( 1

LC

)∂2x1(z, t)

∂z2
= 0, (17)

∂k xi (z, 0)

∂zk
= xi,k (z, 0), k = 0, 1, . . . , n − 1, (18)

xi (0, t) = xi,0(t). (19)

where C
0 D

α
t is the Liouville–Caputo operator (C) defined as follows [23]

C
0 D

α
t u(x, t) = 1

Γ (n − α)

∫ t

0
(t − θ)n−α−1un(x, θ)dθ, n − 1 < α < n, (20)

where un is the derivative of integer nth order of u(x, t), n = 1, 2, . . . ∈ N and
n − 1 < α ≤ n.

If 0 < α ≤ 1, then we define the Laplace transform for the Liouville–Caputo
fractional derivative as follows

L
[
C
0 D

α
t u(x, t)

]
(s) = sαL [u(x, t)](s) − sα−1[u(x, 0)]. (21)

Solution. Applying Laplace transform (21) to Eqs. (16) and (17) we have

X1(z, s) = x1(z, 0)

s
+ t1−α

p

1

sα

[
X2(z, s) −

( RC + GL

LC

)
X1(z, s)

]
,

X2(z, s) = x2(z, 0)

s
+ t1−α

p

1

sα

[
−

( RG

LC

)
+

( 1

LC

) ∂2

∂z2

]
X1(z, s). (22)

Applying the LHPM to above equation then
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∞∑

i=0

pi X1,i (z, s) = x1(z, 0)

s
+ p t1−α

p

1

sα

[ ∞∑

i=0

pi X2,i (z, s) −
( RC + GL

LC

) ∞∑

i=0

pi X1,i (z, s)
]
,

∞∑

i=0

pi X2,i (z, s) = x2(z, 0)

s
+ p t1−α

p

1

sα

[
−

( RG

LC

)
+

( 1

LC

) ∂2

∂z2
.
] ∞∑

i=0

pi X1,i (z, s). (23)

Comparing terms we obtain

p0 : X1,0(z, s) = x1(z, 0)

s
,

X2,0(z, s) = x2(z, 0)

s
,

p1 : X1,1(z, s) = t1−α

p

1

sα

[
X2,0(z, s) −

( RC + GL

LC

)
X1,0(z, s)

]
,

X2,1(z, s) = t1−α

p

1

sα

[
−

( RG

LC

)
+

( 1

LC

) ∂2

∂z2

]
X1,0(z, s),

...

pn+1 : X1,n+1(z, s) = t1−α

p

1

sα

[
X2,n (z, s) −

( RC + GL

LC

)
X1,n(z, s)

]
,

X2,n+1(z, s) = t1−α

p

1

sα

[
−

( RG

LC

)
+

( 1

LC

) ∂2

∂z2

]
X1,n(z, s), (24)

when p → 1, the approximated solutions of Eqs. (16) and (17) are given by

H1,n(z, s) =
n∑

i=0

X1,i (z, s),

H2,n(z, s) =
n∑

i=0

X2,i (z, s). (25)

Finally, applying inverse Laplace transform we get

x1(z, t) = L −1
[
H1,n(z, s)

]
,

x2(z, t) = L −1
[
H2,n(z, s)

]
. (26)

Considering the fractional equations (16) and (17) with initial conditions

x1(z, 0) =
(2

√
LC(CR + GL)

(CR − GL)

)
sin

( (CR − GL)

2
√
LC

z
)
,

x2(z, 0) =
( (CR + GL)√

LC(CR − GL)

)
sin

( (CR − GL)

2
√
LC

z
)
. (27)
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we get

p0 : x1,0(z, t) = x1(z, 0),

x2,0(z, t) = x2(z, 0),

p1 : x1,1(z, s) = L −1

{
t1−α

p

1

sα

[
X2,0(z, s) −

(
RC + GL

LC

)
X1,0(z, s)

]}
,

= t1−α
p

(
CR + GL

)
tα

Γ (α + 1)
√
LC

(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

x2,1(z, t) = L −1

{
t1−α

p

1

sα

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
X1,0(z, s)

}
,

= t1−α
p

(
CR + GL

)2
tα

2 Γ (α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

p1 : x1,2(z, t) = L −1

{
t1−α

p

1

sα

[
X2,1(z, s) −

(
RC + GL

LC

)
X1,1(z, s)

]}
,

= − t2(1−α)
p

(
CR + GL

)2
t2α

2 Γ (2α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

x2,2(z, t) = L −1

{
t1−α

p

1

sα

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
X1,1(z, s)

}
,

= − t2(1−α)
p

(
CR + GL

)3
t2α

4 Γ (2α + 1)
√

(LC)5
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

... (28)

The approximated solution is given by

x1,n(z, t) =
n∑

i=0

x1,i (z, t),

=
[

−
(
2
√
LC(CR + GL)

(CR − GL)

)

+ t1−α
p

(
CR + GL

)
tα

Γ (α + 1)
√
LC

(
GL − CR

)

− t2(1−α)
p

(
CR + GL

)2
t2α

2 Γ (2α + 1)
√

(LC)3
(
GL − CR

) + · · ·
⎤

⎦ sin

(
(CR − GL)

2
√
LC

z

)
.
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x2,n(z, t) =
n∑

i=0

x2,i (z, t),

=
⎡

⎣−
(

(CR + GL)√
LC(CR − GL)

)
+ t1−α

p

(
CR + GL

)2
tα

2 Γ (α + 1)
√

(LC)3
(
GL − CR

)

− t2(1−α)
p

(
CR + GL

)3
t2α

4 Γ (2α + 1)
√

(LC)5
(
GL − CR

) + · · ·
⎤

⎦ sin

(
(CR − GL)

2
√
LC

z

)
.

(29)

If n → ∞, we get

x1,n(z, t) =

⎡

⎢⎢
⎣

2 Γ (2α + 1)
√

(LC)3tα
p
exp

(
(CR+GL) tα tp

−Γ (2α+1)LC tαp

)

Γ (2α + 1)LCtα
p
(GL − CR)

⎤

⎥⎥
⎦ sin

(
(CR − GL)

2
√
LC

z

)
.

(30)

x2,n(z, t) =

⎡

⎢
⎢
⎣

2 Γ (α + 1)
√
LCtα

p
exp

(
(CR+GL) tα tp

−2 Γ (α+1)LC tαp

)

2 Γ (α + 1) LCtα
p
(GL − CR)

⎤

⎥
⎥
⎦ sin

(
(CR − GL)

2
√
LC

z

)
. (31)

Example

Consider the following values C = 4.8240, L = 12.3453 and R = 6.414 arbitrarily
chosen. Figure 1a–d show the numerical simulations of the Eqs. (30) and (31) for
α = 1 and α = 0.9.

Case 2. Liénard model of a fluid transmission line via Atangana–Baleanu–
Caputo fractional order derivative.

In this case, we consider the following fractional equations in ABC sense

ABC
0 Dα

t x1(z, t) − t1−α

p
x2(z, t) + t1−α

p

(
RC + GL

LC

)
x1(z, t) = 0, (32)

ABC
0 Dα

t x2(z, t) + t1−α

p

(
RG

LC

)
x1(z, t) − t1−α

p

(
1

LC

)
∂2x1(z, t)

∂z2
= 0, (33)

∂k xi (z, 0)

∂zk
= xi,k (z, 0), k = 0, 1, . . . , n − 1. (34)

xi (0, t) = xi,0(t). (35)

where tp corresponds to the Planck time and ABC
0 Dα

t is the fractional derivative with
generalized Mittag-Leffler law in Liouville–Caputo sense (ABC) defined as follows
[26]
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Fig. 1 Numerical simulation for the approximate solutions given by Eqs. (30) and (31). In a and b
Eq. (30) for α = 1 and α = 0.9, respectively. In c and d Eq. (31) for α = 1 and α = 0.9, respectively

ABC
0 Dα

t u(x, t) = B(α)

1 − α

∫ t

0
Eα

[
−α

(t − θ)α

n − α

]
un(x, θ)dθ, (36)

where B(α) is a normalization function, B(0) = B(1) = 1. This fractional operator
uses the Mittag-Leffler law as nonsingular and nonlocal kernel.

If 0 < α ≤ 1, then we define the Laplace transform for the Atangana–Baleanu
fractional derivative as follows

L
[
ABC
0 Dα

t u(x, t)
]
(s) =

(
sαL [u(x, t)] (s) − sα−1 [u(x, 0)]

sα (1 − α) + α

)
. (37)

Solution. Applying Laplace transform (37) to Eqs. (32) and (33) we have

X1(z, s) = x1(z, 0)

s
+ t1−α

p

(1 − α)sα + α

B(α)sα

[
X2(z, s) −

(
RC + GL

LC

)
X1(z, s)

]
,

X2(z, s) = x2(z, 0)

s
+ t1−α

p

(1 − α)sα + α

B(α)sα

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
X1(z, s).

(38)

Applying the LHPM to above mentioned equation then
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∞∑

i=0

pi X1,i (z, s) = x1(z, 0)

s
+ p t1−α

p

(1 − α)sα + α

B(α)sα

×
[ ∞∑

i=0

pi X2,i (z, s) −
(
RC + GL

LC

) ∞∑

i=0

pi X1,i (z, s)

]

,

∞∑

i=0

pi X2,i (z, s) = x2(z, 0)

s
+ p t1−α

p

(1 − α)sα + α

B(α)sα

×
[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

] ∞∑

i=0

pi X1,i (z, s). (39)

Comparing terms we obtain

p0 : X1,0(z, s) = x1(z, 0)

s
,

X2,0(z, s) = x2(z, 0)

s
,

p1 : X1,1(z, s) = t1−α
p

(1 − α)sα + α

B(α)sα

[
X2,0 (z, s) −

(
RC + GL

LC

)
X1,0(z, s)

]
,

X2,1(z, s) = t1−α
p

(1 − α)sα + α

B(α)sα

[

−
(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]

X1,0(z, s),

...

pn+1 : X1,n+1(z, s) = t1−α
p

(1 − α)sα + α

B(α)sα

[
X2,n (z, s) −

(
RC + GL

LC

)
X1,n(z, s)

]
,

X2,n+1(z, s) = t1−α
p

(1 − α)sα + α

B(α)sα

[

−
(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]

X1,n(z, s),

(40)

when p → 1, the approximated solutions of Eqs. (32) and (33) are given by

H1,n(z, s) =
n∑

i=0

X1,i (z, s),

H2,n(z, s) =
n∑

i=0

X2,i (z, s). (41)

Finally, applying inverse Laplace transform we get

x1(z, t) = L −1
[
H1,n(z, s)

]
,

x2(z, t) = L −1
[
H2,n(z, s)

]
. (42)

Considering the fractional equations (32) and (33) with initial conditions
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x1(z, 0) =
(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)
,

x2(z, 0) =
(

(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)
. (43)

we get

p0 : x1,0(z, t) = x1(z, 0),

x2,0(z, t) = x2(z, 0),

p1 : x1,1(z, s) = L −1
{
t1−α
p

(1 − α)sα + α

B(α)sα

[
X2,0 (z, s) −

(
RC + GL

LC

)
X1,0(z, s)

]}
,

=
t1−α
p

(
CR + GL

) (
α tα + (1 − α)Γ (α + 1)

)

B(α) Γ (α + 1)
√
LC

(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

x2,1(z, t) = L −1

{

t1−α
p

(1 − α)sα + α

B(α)sα

[

−
(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]

X1,0(z, s)

}

,

=
t1−α
p

(
CR + GL

)2 (
α tα + (1 − α)Γ (α + 1)

)

2 B(α) Γ (α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

p1 : x1,2(z, t) = L −1
{
t1−α
p

(1 − α)sα + α

B(α)sα

[
X2,1 (z, s) −

(
RC + GL

LC

)
X1,1(z, s)

]}
,

= −
t2(1−α)
p

(
CR + GL

)2 (
(1 − α)2Γ (α + 1)Γ (2α + 1) + 2α(1 − α)Γ (2α + 1) tα + α2Γ (α + 1)t2α

)

2 B(α)2 Γ (α + 1) Γ (2α + 1)
√

(LC)3
(
GL − CR

)

× sin

(
(CR − GL)

2
√
LC

z

)
,

x2,2(z, t) = L −1

{

t1−α
p

(1 − α)sα + α

B(α)sα

[

−
(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]

X1,1(z, s)

}

,

= −
t2(1−α)
p

(
CR + GL

)3 (
(1 − α)2Γ (α + 1)Γ (2α + 1) + 2α(1 − α)Γ (2α + 1) tα + α2Γ (α + 1)t2α

)

4 B(α)2 Γ (α + 1) Γ (2α + 1)
√

(LC)5
(
GL − CR

)

× sin

(
(CR − GL)

2
√
LC

z

)
,

.

.

. (44)

If n → ∞, we get
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Fig. 2 Numerical simulation for the approximate solutions given by Eqs. (45) and (46). In a and b
Eq. (45) for α = 1 and α = 0.9, respectively. In c and d Eq. (46) for α = 1 and α = 0.9, respectively

x1(z, t) =

⎡

⎢
⎢⎢
⎢
⎣

2 Γ (α + 1) Γ (2α + 1)
√

(LC)3tαp exp

(
(CR+GL) α tα tp(−Γ (α+1) Γ (2α+1)LC tαp−(1−α)Γ (α+1) tp (GL+CR)

)

)

(
Γ (α + 1) Γ (2α + 1)LCtαp + (1 − α)Γ (α + 1)tp

)
(GL − CR)

⎤

⎥
⎥⎥
⎥
⎦

×

sin

(
(CR − GL)

2
√
LC

z

)
. (45)

x2(z, t) =

⎡

⎢
⎢⎢
⎢
⎣

2 Γ (α + 1)
√
LCtαp exp

(
(CR+GL) α tα tp(−2 Γ (α+1)LC tαp−(1−α)Γ (α+1)tp (GL+CR)

)

)

(
2 Γ (α + 1) LCtαp + (1 − α)Γ (α + 1)(GL + CR)tp

)
(GL − CR)

⎤

⎥
⎥⎥
⎥
⎦

× sin

(
(CR − GL)

2
√
LC

z

)
. (46)

Example

Consider the following values C = 4.8240, L = 12.3453 and R = 6.414 arbitrarily
chosen. Figure 2a–d show the numerical simulations of the Eqs. (45) and (46) for
α = 1 and α = 0.9.
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4 Implementation of the Modified Homotopy Analysis
Transform Method via Liouville–Caputo and
Atangana–Baleanu–Caputo Fractional Order Derivatives

Case 1. Liénard model of a fluid transmission line via Liouville–Caputo frac-
tional order derivative.

In this section, we consider the MHATM [46] for solving the Liénard type model
of a fluid transmission line considering Liouville–Caputo and Atangana–Baleanu–
Caputo fractional order derivatives.

In this case, we consider the following fractional equations in Liouville–Caputo
sense

C
0 D

α
t x1(z, t) − t1−α

p
x2(z, t) + t1−α

p

(
RC + GL

LC

)
x1(z, t) = 0, (47)

C
0 D

α
t x2(z, t) + t1−α

p

(
RG

LC

)
x1(z, t) − t1−α

p

(
1

LC

)
∂2x1(z, t)

∂z2
= 0, (48)

x1(z, 0) =
(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)
, (49)

x2(z, 0) =
(

(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)
, (50)

where tp corresponds to the Planck time and C
0 D

α
t is the fractional derivative of

Liouville–Caputo type [23].

Solution. Applying Laplace transform (21) to Eqs. (47) and (48), and taking initial
conditions (49) and (50), we get

X1(z, s) = x1(z, 0)

s
+ t1−α

p

1

sα

[
X2(z, s) −

(
RC + GL

LC

)
X1(z, s)

]
,

X2(z, s) = x2(z, 0)

s
+ t1−α

p

1

sα

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
X1(z, s). (51)

applying the inverse Laplace transform to Eq. (51), we obtain

x1(z, t) = x1(z, 0) + L −1

{
t1−α

p

1

sα
L

[
x2(z, t) −

(
RC + GL

LC

)
x1(z, t)

]}
,

x2(z, t) = x2(z, 0) + L −1

{
t1−α

p

1

sα
L

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
x1(z, t)

}
.

(52)

We choose the linear operator as
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F
[
φ j (z, t; q)

] = L
[
φ j (z, t; q)

]
, j = 1, 2.

With property F(c) = 0, where c is a constant. Next, defining the system of non-
linear operator as

N
[
φ(z, t; q)

] = L
[
φ(z, t; q)

] −
(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)

− t1−α

p

1

sα
L

[
Φ −

(
RC + GL

LC

)
φ

]
, (53)

N
[
Φ(z, t; q)

] = L
[
Φ(z, t; q)

] −
(

(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)

− t1−α

p

1

sα
L

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
φ. (54)

Now, we construct the so-called zeroth-order deformation equation in the follow-
ing manner

(1 − q) F[φ j (z, t; q) − u0(z, t)] = q � N [φ j (z, t; q)], j = 1, 2.

when q = 0 and q = 1, we have

φ j (z, t; 0) = u0(z, t), φ j (z, t; 1) = u(z, t), j = 1, 2. (55)

Thus, we obtain the mth-order deformation equations as

L [x1m (z, t) − χmx1m−1(z, t)] = � Rm
(
x→
1m−1

, z, t
)
,

L [x2m (z, t) − χmx2m−1(z, t)] = � Rm
(
x→
2m−1

, z, t
)
, (56)

applying the inverse Laplace transform to Eq. (56) we get

x1m (z, t) = χmx1m−1(z, t) + � Rm
(
x→
1m−1

, z, t
)
, (57)

x2m (z, t) = χmx2m−1(z, t) + � Rm
(
x→
2m−1

, z, t
)
, (58)

where

Rm
(
x→
1m−1

, z, t
) = L [x1m−1 (z, t)] − (1 − χm)

(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)

− t1−α
p

1

sα
L

[
x2m−1 −

(
RC + GL

LC

)
x1m−1

]
,

Rm
(
x→
2m−1

, z, t
) = L [x2m−1 (z, t)] − (1 − χm)

(
(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)
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− t1−α
p

1

sα
L

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
x1m−1 . (59)

Now, the solution of mth-order deformation equations (56) are given as

x1m (z, t) = (χm + �)x1m−1 − �(1 − χm)

(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)

− � L−1
{
t1−α
p

1

sα
L

[
x2m−1 −

(
RC + GL

LC

)
x1m−1

]}
,

x2m (z, t) = (χm + �)x2m−1 − �(1 − χm)

(
(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)

− � L−1

{

t1−α
p

1

sα
L

[

−
(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]

x1m−1

}

. (60)

Taking initial conditions and the iterative scheme (60), we obtain the following
iterations

x1,0(z, t) = x1(z, 0),

x2,0(z, t) = x2(z, 0),

x1,1(z, t) = − t1−α
p

(
CR + GL

)
tα �

Γ (α + 1)
√
LC

(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

x2,1(z, t) = − t1−α
p

(
CR + GL

)2
tα �

2 Γ (α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

x1,2(z, t) = − t1−α
p

(
CR + GL

)
tα �(1 + �)

Γ (α + 1)
√
LC

(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

− t2(1−α)
p

(
CR + GL

)2
t2α �

2

2 Γ (2α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

x2,2(z, t) = − t1−α
p

(
CR + GL

)2
tα �(1 + �)

2 Γ (α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

− t2(1−α)
p

(
CR + GL

)3
t2α �

2

4 Γ (2α + 1)
√

(LC)5
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

... (61)

Finally the solutions of Eqs. (47) and (48) are given by
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Fig. 3 Numerical simulation for the approximate solutions given by Eqs. (62) and (63). In a and b
Eq. (62) for α = 1 and α = 0.9, respectively. In c and d Eq. (63) for α = 1 and α = 0.9, respectively

x1(z, t) =
∞∑

m=0

x1,m(z, t), (62)

x2(z, t) =
∞∑

m=0

x2,m(z, t). (63)

Example

Consider the following values C = 4.8240, L = 12.3453 and R = 6.414 arbitrarily
chosen. Figure 3a–d show the numerical simulations of the Eqs. (62) and (63) for
α = 1 and α = 0.9.

Case 2. Liénard model of a fluid transmission line via Atangana–Baleanu–
Caputo fractional order derivative.

In this case, we consider the following fractional equations in ABC sense

ABC
0 Dα

t x1(z, t) − t1−α

p
x2(z, t) + t1−α

p

(
RC + GL

LC

)
x1(z, t) = 0, (64)

ABC
0 Dα

t x2(z, t) + t1−α

p

(
RG

LC

)
x1(z, t) − t1−α

p

(
1

LC

)
∂2x1(z, t)

∂z2
= 0, (65)
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x1(z, 0) =
(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)
, (66)

x2(z, 0) =
(

(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)
, (67)

where tp corresponds to the Planck time and ABC
0 Dα

t is the fractional derivative with
generalized Mittag-Leffler law in Liouville–Caputo sense [26].
Solution. Applying the Laplace transform (37) to the Eqs. (64) and (65), we obtain

X1(z, s) = x1(z, 0)

s
+ t1−α

p

(1 − α)sα + α

B(α)sα

[
X2(z, s) −

(
RC + GL

LC

)
X1(z, s)

]
,

X2(z, s) = x2(z, 0)

s
+ t1−α

p

(1 − α)sα + α

B(α)sα

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
X1(z, s).

(68)

applying the inverse Laplace transform to Eq. (68), we obtain

x1(z, t) = x1(z, 0) + L −1
{
t1−α
p

(1 − α)sα + α

B(α)sα
L

[
x2 (z, t) −

(
RC + GL

LC

)
x1(z, t)

]}
,

x2(z, t) = x2(z, 0) + L −1
{
t1−α
p

(1 − α)sα + α

B(α)sα
L

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
x1(z, t)

}
.

(69)

We choose the linear operator as

F
[
φ j (z, t; q)

] = L
[
φ j (z, t; q)

]
, j = 1, 2.

With property F(c) = 0, where c is constant. Next, defining the system of non-
linear operator as

N
[
φ(z, t; q)

] = L
[
φ(z, t; q)

] −
(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)

− t1−α

p

(1 − α)sα + α

B(α)sα
L

[
Φ −

(
RC + GL

LC

)
φ

]
, (70)

N
[
Φ(z, t; q)

] = L
[
Φ(z, t; q)

] −
(

(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)

− t1−α

p

(1 − α)sα + α

B(α)sα
L

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
φ. (71)

Now, we construct the so-called zeroth-order deformation equation in the follow-
ing manner
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(1 − q) F[φ j (z, t; q) − u0(z, t)] = q � N [φ j (z, t; q)], j = 1, 2. (72)

when q = 0 and q = 1, we have

φ j (z, t; 0) = u0(z, t), φ j (z, t; 1) = u(z, t), j = 1, 2.

Thus, we obtain the mth-order deformation equations as

L [x1m (z, t) − χmx1m−1(z, t)] = � Rm
(
x→
1m−1

, z, t
)
,

L [x2m (z, t) − χmx2m−1(z, t)] = � Rm
(
x→
2m−1

, z, t
)
, (73)

applying the inverse Laplace transform to the Eq. (73) we get

x1m (z, t) = χmx1m−1(z, t) + � Rm
(
x→
1m−1

, z, t
)
, (74)

x2m (z, t) = χmx2m−1(z, t) + � Rm
(
x→
2m−1

, z, t
)
, (75)

where

Rm
(
x→
1m−1

, z, t
) = L [x1m−1 (z, t)] − (1 − χm)

(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)

− t1−α
p

(1 − α)sα + α

B(α)sα
L

[
x2m−1 −

(
RC + GL

LC

)
x1m−1

]
,

Rm
(
x→
2m−1

, z, t
) = L [x2m−1 (z, t)] − (1 − χm)

(
(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)

− t1−α
p

(1 − α)sα + α

B(α)sα
L

[
−

(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]
x1m−1 . (76)

Now, the solution of mth-order deformation equations (73) are given as

x1m (z, t) = (χm + �)x1m−1 − �(1 − χm)

(
2
√
LC(CR + GL)

(CR − GL)

)

sin

(
(CR − GL)

2
√
LC

z

)

− � L−1
{
t1−α
p

(1 − α)sα + α

B(α)sα
L

[
x2m−1 −

(
RC + GL

LC

)
x1m−1

]}
,

x2m (z, t) = (χm + �)x2m−1 − �(1 − χm)

(
(CR + GL)√
LC(CR − GL)

)
sin

(
(CR − GL)

2
√
LC

z

)

− � L−1

{

t1−α
p

(1 − α)sα + α

B(α)sα
L

[

−
(
RG

LC

)
+

(
1

LC

)
∂2

∂z2

]

x1m−1

}

.

(77)

Taking initial conditions and the iterative scheme (77), we obtain the following
iterations
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p0 : x1,0(z, t) = x1(z, 0),

x2,0(z, t) = x2(z, 0),

p1 : x1,1(z, s) = −
t1−α
p

(
CR + GL

) (
α tα + (1 − α)Γ (α + 1)

)
�

B(α) Γ (α + 1)
√
LC

(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

x2,1(z, t) = −
t1−α
p

(
CR + GL

)2 (
α tα + (1 − α)Γ (α + 1)

)
�

2 B(α) Γ (α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

p1 : x1,2(z, t) = −
t1−α
p

(
CR + GL

) (
α tα + (1 − α)Γ (α + 1)

)
�(1 + �)

B(α) Γ (α + 1)
√
LC

(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

− t2(1−α)
p

(
CR + GL

)2 (
(1 − α)2Γ (α + 1)Γ (2α + 1) + 2α(1 − α)Γ (2α + 1) tα + α2Γ (α + 1)t2α

)
�
2

2 B(α)2 Γ (α + 1) Γ (2α + 1)
√

(LC)3
(
GL − CR

)

× sin

(
(CR − GL)

2
√
LC

z

)
,

x2,2(z, t) = − t1−α
p

(
CR + GL

)2 (
α tα + (1 − α)Γ (α + 1)

)
�(1 + �)

2 B(α) Γ (α + 1)
√

(LC)3
(
GL − CR

) sin

(
(CR − GL)

2
√
LC

z

)
,

− t2(1−α)
p

(
CR + GL

)3 (
(1 − α)2Γ (α + 1)Γ (2α + 1) + 2α(1 − α)Γ (2α + 1) tα + α2Γ (α + 1)t2α

)
�
2

4 B(α)2 Γ (α + 1) Γ (2α + 1)
√

(LC)5
(
GL − CR

)

× sin

(
(CR − GL)

2
√
LC

z

)
,

... (78)

Finally, the solutions of the Eqs. (64) and (65) are given by

x1(z, t) =
∞∑

m=0

x1,m(z, t), (79)

x2(z, t) =
∞∑

m=0

x2,m(z, t). (80)

Example

Consider the following values C = 4.8240, L = 12.3453 and R = 6.414 arbitrarily
chosen. Figure 4a–d show the numerical simulations of the Eqs. (79) and (80) for
α = 1 and α = 0.9.
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5 Conclusions

In this chapter, the LHPM and MHATM have been applied to solve the fractional
Liénard type model of a pipeline via Liouville–Caputo and Atangana–Baleanu–
Caputo fractional order derivatives. The main aim of this chapter was to provide
the series solution of the time-fractional Liénard model by using these fractional
methods. Approximate analytical solutions and numerical simulations were obtained
for some parameters. We found that there is a very good approximation between our
solutions and the exact solution in the limit when α → 1. From the above discussion
we concluded that the present methods are reliable.

Both methods presented are an important mathematical tool for developing sci-
entific work in various areas of the natural sciences. The two definitions of fractional
operators considered in this work could be applied conveniently depending on the
nature and the phenomenological behavior of the system under consideration. The
illustrative examples showed that both methods are easy to use and represent an
effective tool to numerically solve fractional partial differential equations.

Fig. 4 Numerical simulation for the approximate solutions given by Eqs. (79) and (80). In a and b
Eq. (79) for α = 1 and α = 0.9, respectively. In c and d Eq. (80) for α = 1 and α = 0.9, respectively
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Abstract In this chapter, the approximate analytical solutions of a new reaction-
diffusion fractional time model are studied. For this analysis is used the p-homotopy
transformmethod based on different kernels (power, exponential andMittag-Leffler).
The system nonlinearities are addressed by the Adomian polynomials. The system
convergence is studied by determining the interval of the convergence by �-curves,
as well as, searching for the optimal value of � which minimize the residual error.
Therefore, the optimal � value is calculated to estimate the order β error. At the end
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1 Introduction

In this chapter, we study the reaction-diffusion traveling waves governed by cubic
auto-catalysis which can be initiated in a coupled isothermal chemical system. We
hypothesized that reactions occur along semipermeable membrane interfaces com-
monly occurs on one interface (region I) being cubic auto-catalysis (1)

U + V → 2V (rate r1uv
2), (1)

with the step of the linear termination (2)

V → W (rate r2v), (2)

where u and v correspond to the concentrations of the reactant U and auto-catalyst
V , respectively, the ri (i = 1, 2) represents the rate constants and W is some inert
product of reaction. On the other interface (region II), the reaction is assumed to be
just the autocatalytic step (1) with the same rate r1. Both regions are considered to
be coupled by a linear diffusive interchange of the auto-catalytic V . This yields to
the following system

∂u1
∂η

= ∂2u1
∂ξ 2

− u1v
2
1 + ν(u2 − u1), (3)

∂v1
∂η

= ∂2v1
∂ξ 2

+ u1v
2
1 − κv1, (4)

∂u2
∂η

= ∂2u2
∂ξ 2

− u2v
2
2 + ν(u1 − u2), (5)

∂v2
∂η

= ∂2v2
∂ξ 2

+ u2v
2
2, (6)

with the boundary conditions

ui (0, η) = ui (�, η) = 1, vi (0, η) = vi (�, η) = 0, (7)

where ν represents the coupling between (I) and (II) and κ represents the strength of
the auto-catalyst decay. For more details see [1].

In the recent decades, fractional calculus has been used to model real-world prob-
lems in many fields, such as: engineering, technology and science. Many definitions
of fractional order derivatives have been introduced, including: Riemann–Liouville
(RL), Grünwald–Letnikov (GL) and the Liouville–Caputo (LC) [2–5]. The RL
derivative involve the convolution of a power-law kernel and a given function [3].
It was constructed using the fundamental relations of the RL fractional integral [2].
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The LC fractional derivative involve the convolution of power law function and the
local derivative of a given function [3]. More recently, Caputo and Fabrizio (CF) in
[4] proposed a new fractional derivative based on the exponential decay law which
is a generalized power law function [5–11]. Atangana and Baleanu (AB) proposed
a fractional derivative with non-local kernel based on the Mittag-Leffler function.
With this fractional derivative, we can describe complex physical problems which
follows at the same time exponential decay law and power law [12–18].

In this chapter, our aim is to use p-homotopy analysis transform method (p-
HATM) based on LC , CF and AB operators to evaluate the approximate solutions
of the fractional time reaction-diffusion system (TFRDS). This chapter is divided
as follows: In second section we apply the p-HATM on the TFRDS with LC , CF
and AB. In section three, we evaluate the approximate solutions and discuss the
numerical simulation. Finally, in section four, we present the conclusion.

2 New p-HATM Solutions

In this section, we use the p-HATM on TFRDS applying LC ,CF and AB operators.

2.1 Application of Liouville–Caputo Fractional-Order
Derivative on TFRDS

In this section, the p-HATM is used applying the LC operator. Now, we develop a
new TFCAR by replacing Dη by the LC

0 Dβ
η . The set of the Eqs. (3)–(6) become

LC
0 Dβ

η u1 = u1,ξξ − u1v
2
1 + ν(u2 − u1), (8)

LC
0 Dβ

η v1 = v1,ξξ + u1v
2
1 − κv1, (9)

LC
0 Dβ

η u2 = u2,ξξ − u2v
2
2 + ν(u1 − u2), (10)

LC
0 Dβ

η v2 = v2,ξξ + u2v
2
2 . (11)

The LC
0 Dβ

η is given by

C
0 D

β
η ( f (η)) = Jm−βDm f (η) = 1

Γ (m − β)

∫ η

0
(η − t)m−β−1 f (m)(t) dt,

for m − 1 < β ≤ m, m ∈ N, t > 0, f ∈ Cm
μ , μ ≥ −1. We set the initial conditions

as
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ui (ξ, 0) = 1 −
∞∑
n=1

ai cos(0.5(� − 2ξ)λ) sin(λ�/2), (12)

vi (ξ, 0) =
∞∑
n=1

bi cos(0.5(� − 2ξ)λ) sin(λ�/2), (13)

where λ = nπ
�

, i = 1, 2.
We have from [19–27] that p-HAM is based on continuous mapping

ui (ξ, η) → φi (ξ, η; p), vi (ξ, η) → ψi (ξ, η; p), (14)

such that, as the embedding parameter p increases from 0 to 1/n; φi (ξ, η; p),
ψi (ξ, η; p) varies from the initial iteration to the exact solution.

Now, we define the nonlinear operators as

N1(φ1(ξ, η; p)) = L (φ1(ξ, η; p)) − 1

s
u1(ξ, 0) − Ω(·)(s, β)L

(
φ1,ξξ (ξ, η; p)

− φ1(ξ, η; p)ψ2
1 (ξ, η; p) − ν(φ2(ξ, η; p) − φ1(ξ, η; p)

)
,

M1(ψ1(ξ, η; p)) = L (ψ1(ξ, η; p)) − 1

s
v1(ξ, 0) − Ω(·)(s, β)L

(
ψ1,ξξ (ξ, η; p)

− κψ1(ξ, η; p) + φ1(ξ, η; p)ψ2
1 (ξ, η; p)

)
,

N2(φ2(ξ, η; p)) = L (φ2(ξ, η; p)) − 1

s
u2(ξ, 0) − Ω(·)(s, β)L

(
φ2,ξξ (ξ, η; p)

− φ2(ξ, η; p)ψ2
2 (ξ, η; p) − ν(φ1(ξ, η; p) − φ2(ξ, η; p)

)
,

M2(ψ2(ξ, η; p)) = L (ψ2(ξ, η; p)) − 1

s
v2(ξ, 0) − Ω(·)(s, β)L

(
ψ2,ξξ (ξ, η; p)

+φ2(ξ, η; p)ψ2
2 (ξ, η; p)

)
, (15)

where Ω LC(s, β) = s−β.

By using p, we can develop the following equations

(1 − np)L (φi (ξ, η; p) − ui,0(ξ, η)) = p�i H(ξ, η)Ni (φi (ξ, η; p)),

(1 − np)L (ψi (ξ, η; p) − vi,0(ξ, η)) = p�i H(ξ, η)Mi (ψi (ξ, η; p)), (16)

with initial conditions

φi (ξ, 0; p) = ui,0(ξ, 0), ψi (ξ, 0; p) = vi,0(ξ, 0),
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where �i �= 0 is the auxiliary parameter and H(ξ, η) �= 0 is the auxiliary function.
We expand φi (ξ, η; p) andψi (ξ, η; p) in series form by utilizing the Taylor theorem
w. r. t. p, and obtain the following equation

φi (ξ, η; p) = ui,0(ξ, η) +
∞∑

m=1

ui,m(ξ, η)pm,

ψi (ξ, η; p) = vi,0(ξ, η) +
∞∑

m=1

vi,m(ξ, η)pm, (17)

where

ui,m(ξ, η) = 1

m!
∂mφi (ξ, η; p)

∂pm
|p=0,

vi,m(ξ, η) = 1

m!
∂mψi (ξ, η; p)

∂pm
|p=0. (18)

The series (17) become after let p = 1
n as

ui (ξ, η) = ui,0(ξ, η) +
∞∑

m=1

ui,m(ξ, η)

(
1

n

)m

,

vi (ξ, η) = vi,0(ξ, η) +
∞∑

m=1

vi,m(ξ, η)

(
1

n

)m

. (19)

From [28, 29], we can build the mth-order deformation equation as follows

L (ui,m(ξ, η) − Xmui,(m−1)(ξ, η)) = �1H(ξ, η)RUi ,

L (vi,m(ξ, η) − Xmvi,(m−1)(ξ, η)) = �i H(ξ, η)RVi , (20)

with initial conditions um(ξ, 0) = 0 and vm(ξ, 0) = 0, for m > 1

R(·)
u1 = L

(
u1,(m−1)(ξ, η)

) − 1

s
u1(ξ, 0)

(
1 − Xm

n

)

− Ω(·)(s, β)L
(
u1,(m−1),ξξ (ξ, t) − N1(u1,(m−1)(ξ, η), v1,(m−1)(ξ, η))

+ ν(u2,(m−1)(ξ, η) − u1,(m−1)(ξ, η))
)

(21)

R(·)
v1 = L(m−1)

(
v1,(m−1)(ξ, η)

) − 1

s
v1(ξ, 0)

(
1 − Xm

n

)

− Ω(·)(s, β)L
(
v1,(m−1),ξξ (ξ, η) + N1(u1,(m−1)(ξ, η), v1,(m−1)(ξ, η))

− κv1,(m−1)(ξ, η)
)
. (22)
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R(·)
u2 = L

(
u2,(m−1)(ξ, η)

) − 1

s
u2(ξ, 0)

(
1 − Xm

n

)

− Ω(·)(s, β)L
(
u2,(m−1),ξξ (ξ, t) − N2(u1,(m−1)(ξ, η), v1,(m−1)(ξ, η))

+ ν(u1,(m−1)(ξ, η) − u2,(m−1)(ξ, η))
)

(23)

R(·)
v2 = L(m−1)

(
v2,(m−1)(ξ, η)

) − 1

s
v2(ξ, 0)

(
1 − Xm

n

)

− Ω(·)(s, β)L
(
v2,(m−1),ξξ (ξ, η) + N2(u1,(m−1)(ξ, η), v1,(m−1)(ξ, η))

)
.(24)

N1(u1,(m−1)(ξ, η), v1,(m−1)(ξ, η)) = u1,(m−1)(ξ, η)v21,(m−1)(ξ, η) (25)

=
m−1∑
k=0

Ak (26)

N2(u2,(m−1)(ξ, η), v2,(m−1)(ξ, η)) = u2,(m−1)(ξ, η)v22,(m−1)(ξ, η) (27)

=
m−1∑
k=0

Bk (28)

where

Am = 1

m!
[
dm

dλm
N1(u1,(m−1)(ξ, η), v1,(m−1)(ξ, η))

]
λ=0

, (29)

Bm = 1

m!
[
dm

dλm
N2(u2,(m−1)(ξ, η), v2,(m−1)(ξ, η))

]
λ=0

, (30)

where Am and Bm are called the Adomian polynomials [30–32].
If we putL = Laplace transform and then inverse Laplace transform=L −1, the

Eqs. (20)–(20) become

ui,m = Xmui,(m−1) + �iL
−1R(·)

ui ,

vi,m =Xmvi,(m−1) + �iL
−1R(·)

vi . (31)

2.2 Application of Caputo–Fabrizio Fractional-Order
Derivative on TFRDS

By replacing C
0 D

β
η (·) into (8)–(11) by CFC

0 Dβ
η (·),We obtain the TFRDSwith Caputo–

Fabrizio operator in Liouville–Caputo sense [4]
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CF
0 Dβ

η u1(ξ, η) − u1,ξξ (ξ, η) + u1(ξ, η)v21(ξ, η) − ν(u2(ξ, η) − u1(ξ, η)) = 0,
(32)

CF
0 Dβ

η v1(ξ, η) − v1,ξξ (ξ, η) − u1(ξ, η)v21(ξ, η) + κv1(ξ, η) = 0, (33)

CF
0 Dβ

η u2(ξ, η) − u2,ξξ (ξ, η) + u2(ξ, η)v22(ξ, η) − ν(u1(ξ, η) − u2(ξ, η)) = 0,
(34)

CF
0 Dβ

η v2(ξ, η) − v2,ξξ (ξ, η) − u2(ξ, η)v22(ξ, η) = 0, (35)

where CF
0 Dβ

η (·) is given by

CF
0 Dβ

η (·) = M(β)

1 − β

∫ η

0
exp

(−β(η − t)

1 − β

)
D(·)dt,

where M(β) is a normalization function such that M(0) = M(1) = 1.
The definition of the Laplace transform for the CF fractional derivative is given

by

L
[
CF
0 Dβ

t (·)
]
(s) = M(β)

(
sL [u(ξ, η)] (s) − u(ξ, 0)

s + β(1 − s)

)
., 0 < β ≤ 1. (36)

The Eqs. (32)–(35) become after applying the Laplace transform (36) on both
ends as follows

M(β)(sL (u1(ξ, η)) − u1(ξ, 0))

(s + β(1 − s))
= L

(
u1,ξξ (ξ, η) − u1(ξ, η)v21(ξ, η)

+ ν(u2(ξ, η) − u1(ξ, η))
)
, (37)

M(β)(sL (v1(ξ, η)) − v1(ξ, 0))

(s + β(1 − s))
= L

(
v1ξξ(ξ, η) + u1ξ, η)v21(ξ, η) − κv1(ξ, η)

)
, (38)

M(β)(sL (u2(ξ, η)) − u2(ξ, 0))

(s + β(1 − s))
= L

(
u2,ξξ (ξ, η) − u2(ξ, η)v22(ξ, η)

+ ν(u1(ξ, η) − u2(ξ, η))
)
, (39)

M(β)(sL (v2(ξ, η)) − v2(ξ, 0))

(s + β(1 − s))
= L

(
v2,ξξ (ξ, η) + u2ξ, η)v22(ξ, η)

)
. (40)

As in Sect. 2.1, we follow the same procedure and we obtain

ui,m = Xmu1,(m−1) + �L −1RCFC
ui , (41)
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vi,m =Xmv1,(m−1) + �L −1RCFC
vi , (42)

where RCF
ui and RCF

vi are given by (21)–(24) with ΩCF (s, β) = − β(1−s)+s
sM(β)

.

2.3 Application of Atangana–Baleanu Fractional-Order
Derivative on TFRDS

By replacing C
0 D

β
η (·) into (8)–(11) by AB

0 Dβ
η (·), we obtain the TFRDS with AB

operator in LC sense [5]

AB
0 Dβ

η u1(ξ, η) − u1,ξξ (ξ, η) + u1(ξ, η)v21(ξ, η) − ν(u2(ξ, η) − u1(ξ, η)) = 0,
(43)

AB
0 Dβ

η v1(ξ, η) − v1,ξξ (ξ, η) − u1(ξ, η)v21(ξ, η) + κv1(ξ, η) = 0, (44)

AB
0 Dβ

η u2(ξ, η) − u2,ξξ (ξ, η) + u2(ξ, η)v22(ξ, η) − ν(u1(ξ, η) − u2(ξ, η)) = 0,
(45)

AB
0 Dβ

η v2(ξ, η) − v2,ξξ (ξ, η) − u2(ξ, η)v22(ξ, η) = 0, (46)

where AB
0 Dβ

η (.) is given by

AB
0 Dβ

η (·) = M(β)

1 − β

∫ η

0
Eβ

(−β(η − t)

1 − β

)
D(·)dt,

where Eβ(z) = ∑∞
k=0

zk

Γ (βk+1) is Mittag-Leffler function and M(β) is defined above.
The definition of the Laplace transform for the AB fractional derivative is given

by

L
[
AB
0 Dβ

t (·)
]
(s) = M(β)

(
sβL [u(ξ, η)] (s) − sβ−1 [u(ξ, 0)]

sβ (1 − β) + β

)
, 0 < β ≤ 1.

(47)

The Eqs. (43)–(46) become after applying the Laplace transform (47) on both ends
as follows

M(β)
(
L (u1(ξ, η))sβ − u1(ξ, 0)sβ−1

)
(1 − β)

(
β

1−β
+ sβ

) = L
(
u1,ξξ (ξ, η) − u1(ξ, η)v21(ξ, η)

+ ν(u2(ξ, η) − u1(ξ, η))
)
, (48)
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M(β)
(
L (v1(ξ, η))sβ − v1(ξ, 0)sβ−1

)
(1 − β)

(
β

1−β
+ sβ

) = L
(
v1ξξ(ξ, η) + u1ξ, η)v21(ξ, η) − κv1(ξ, η)

)
,

(49)

M(β)
(
L (u2(ξ, η))sβ − u2(ξ, 0)sβ−1

)
(1 − β)

(
β

1−β
+ sβ

) = L
(
u2,ξξ (ξ, η) − u2(ξ, η)v22(ξ, η)

+ ν(u1(ξ, η) − u2(ξ, η))
)
, (50)

M(β)
(
L (v2(ξ, η))sβ − v2(ξ, 0)sβ−1

)
(1 − β)

(
β

1−β
+ sβ

) = L
(
v2,ξξ (ξ, η) + u2ξ, η)v22(ξ, η)

)
.

(51)
As in Sect. 2.1, we follow the same procedure and we obtain

ui,m = Xmu1,(m−1) + �L −1RCFC
ui , (52)

vi,m =Xmv1,(m−1) + �L −1RCFC
vi , (53)

where RAB
ui and RAB

vi are given by (21)–(24) with Ω AB(s, β) = s−β−1(βsβ+1−sβ+1−βs)
M .

3 Numerical Results

In this section, we compute the first approximation for the three operators listed
above. Also, we evaluate the interval of convergence by plotting the �-curves and
the optimal values of � with ARE. Furthermore, we evaluate the residual function
for computing the accurate and efficient for LC ,CF and AB operators, respectively.
We set the initial approximation as

ui,0(ξ, η) = ui,0(ξ, 0), vi,0(ξ, η) = vi,0(ξ, 0). (54)

For m = 1, we obtain the first approximation as follows

u1,1(ξ, η) = �u1L
−1

(
L

(
u1,0(ξ, η)

) − 1

s
u1(ξ, 0)

(
1 − X1

n

)

+Ω(·)(s, β)L
(
u1,0,ξξ (ξ, η) − A0

))
+ ν(u2,0(ξ, η) − u1,0(ξ, η)), (55)
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v1,1(ξ, η) = �v1L
−1

(
L

(
v1,0(ξ, η)

) − 1

s
v(ξ, 0)

(
1 − Xm

n

)

+ Ω(·)(s, β)L
(
v1,0,ξξ (ξ, η) − κv1,0(ξ, η) + A0

) )
, (56)

u2,1(ξ, η) = �u2L
−1

(
L

(
u2,0(ξ, η)

) − 1

s
u2(ξ, 0)

(
1 − X1

n

)

+Ω(·)(s, β)L
(
u2,0,ξξ (ξ, η) − B0

))
+ ν(u1,0(ξ, η) − u2,0(ξ, η)), (57)

v2,1(ξ, η) = �v2L
−1

(
L

(
v2,0(ξ, η)

) − 1

s
v(ξ, 0)

(
1 − Xm

n

)

+ Ω(·)(s, β)L
(
v2,0,ξξ (ξ, η) + B0

) )
. (58)

Therefore,we obtain the first approximation for LC,CF and AB by takingΩ(·)(s, β)

= Ω LC(s, β),ΩCF (s, β) and Ω ABC(s, β), respectively.
We can evaluate the rest of the approximations by the similarmanner.We therefore

have p-HATM solutions via three operators LC , CF and AB as

ui (ξ, η) = ui,0(ξ, η) +
m∑
j=1

ui, j (ξ, η)

n j
, (59)

vi (ξ, η) = vi,0(ξ, η) +
m∑
j=1

vi, j (ξ, η)

n j
. (60)

Figure 1 shows the numerical solutions for ui,η(ξ, 0), vi,η(ξ, 0) against �, tak-
ing n = 5, κ = 0.1, ν = 0.2, � = 100, ξ = 4, η = 0, a1 = 0.001, b1 = 0.001, a2 =
0.002 and b2 = 0.002. We plot the �-curves of 4-terms of p-HATM solutions for
(8)–(11), (32)–(35) and (43)–(46) with the aim to observe the intervals of conver-
gence. It can be observed from this figure that the straight line that parallels to the
�-axis is in fact the interval of the convergence to be determined [23]. However, it
does not give us the optimal value of � to make the convergence faster and more
accurate, so estimate the residual error, then we minimize this error. The following
steps illustrate this [33–42].

Eui (�) = 1

(S + 1)(J + 1)

S∑
s=0

J∑
j=0

[
Ni

(
m∑

k=0

ui,k

(
10s

S
,
10 j

J

))]2

, (61)
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Evi (�) = 1

(S + 1)(J + 1)

S∑
s=0

J∑
j=0

[
Mi

(
m∑

k=0

vi,k

(
10s

S
,
10 j

J

))]2

, (62)

corresponding to a nonlinear algebraic equations

dEui (�)

d�
= 0, (63)

dEvi (�)

d�
= 0. (64)

The Eqs. (61)–(62) are called the average residual error (ARE). Figure 2 shows
the ARE for the LC ,CF and AB operators. This Figure shows the Eui (�) and Evi (�)

for 4-terms obtained with p-HATM. We set into (61)–(62) S = 10 and J = 10 with
κ = 0.1, ν = 0.2, � = 10, a1 = 0.001, b1 = 0.001, a2 = 0.002 and b2 = 0.002. To
get the optimal values of � we use the command “Minimize” of Mathematica for
plotting the AVE against �. From Fig. 2, we observe the ARE of order 10−6−10−9.
This observation assures that the p-HATM solutions of LC , CF , and AB converge
quickly. While an exact solution of the fractional time derivative system exists for
β = 1, there is no such exact solution for 0 < β < 1. So, we define the residual error
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Fig. 1 �-curves via LC (solid line), CF ( dashed line) and AB ( dashed-doted-dashed line) opera-
tors with β = 0.5, n = 5, ξ = 4, η = 0, κ = 0.1, ν = 0.2, � = 10, a1 = 0.001, b1 = 0.001, a2 =
0.002, b2 = 0.002
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function of thep-HATM solution as

REF (·)
0 = Dβ

η ui − ui,ξξ + uiv
2
i + (−1)i (u1 − u2), (65)

REF (·)
0 = Dβ

η vi − vi,ξξ − uiv
2
i + κ(2 − i)κv1, (66)

where ui and vi are the p-HATMsolution (59)–(60).Now,we substitute ui and vi from
(59)–(60) into (65)–(66) and then we can plot the REF, as in Fig. 2. Figure 3 shows
the residual error function for the p-HATMsolution (59)–(60) forη = 20, n = 5, � =
−3, κ = 0.1, ν = 0.2, � = 100, a1 = 0.001, b1 = 0.001, a2 = 0.002, b2 = 0.002.
From this figure, it can be seen that the p-HATM gives accurate solutions of the
fractional time derivatives LC , CF and AB.

Finally, we plot the p-HATM solutions for LC , CF and ABC for different values
of β. Figures 4, 5, 6 and 7 show the behavior of the TFRDS with three operators
for β = 1, 0.6, and 3. These figures show that the approximate solutions symmetry
about ξ = �/2 and go down when β increases for u1, u2 and up for v1, and v2.
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Fig. 2 Plotting the ARE for 4-terms of p-HATM solutions for LC (solid line), CF (dashed line)
and AB (dashed-dot-dashed line) with β = 0.6, n = 5, 0 ≤ η ≤ 10, 0 ≤ x ≤ 10, k = 0.1, ν =
0.2, � = 10, a1 = 0.001, b1 = 0.001, a2 = 0.002, b2 = 0.002
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Fig. 3 The plotting of the REF (65)–(66) for LC (solid line), CF (dashed line)
and AB (dashed-dot-dashed line) for η = 20, n = 5, � = −3, k = 0.1, ν = 0.2, � = 100, a1 =
0.001, b1 = 0.001, a2 = 0.002, b2 = 0.002

Fig. 4 The plot of 4-terms of p-HATM solutions for u1(ξ, η)with β = 0.7, n = 5, k = 0.001, ν =
0.2, � = 100, � = −0.1, � = 100, a1 = 0.1, b1 = 0.09, a2 = 0.2, b2 = 0.1. a LC ,bCF and c AB

Fig. 5 The plot of 4-terms of p-HATM solutions for v1(ξ, η)with β = 0.7, n = 5, k = 0.001, ν =
0.2, � = 100, � = −0.1, � = 100, a1 = 0.1, b1 = 0.09, a2 = 0.2, b2 = 0.1. a LC ,bCF and c AB
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Fig. 6 The plot of 4-terms of p-HATM solutions for u2(ξ, η)with β = 0.7, n = 5, k = 0.001, ν =
0.2, � = 100, � = −0.1, � = 100, a1 = 0.1, b1 = 0.09, a2 = 0.2, b2 = 0.1. a LC ,bCF and c AB

Fig. 7 The plot of 4-terms of p-HATM solutions for v2(ξ, η)with β = 0.7, n = 5, k = 0.001, ν =
0.2, � = 100, � = −0.1, � = 100, a1 = 0.1, b1 = 0.09, a2 = 0.2, b2 = 0.1. a LC ,bCF and c AB

4 Conclusion

In this chapter, the p-HATM was used to compute the approximate solutions of
TFCIACS using the LC , CF and AB operators. LC , CF and AB fractional-order
derivatives present alternative solutions of the TFCIACS.We expanded the nonlinear
terms using Adomian polynomial. We evaluated the order of the error using the ARE
and REF and we found the small order. Also, the interval of the convergence of
p-HATM and optimal value of � were compute. The numerical simulations showed
that the proposed methodology is accurate.
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Abstract Modelling groundwater transport in fractured aquifer systems is complex
due to the uncertainty associated with delineating the specific fractures along which
water and potential contaminants could be transported. The resulting uncertainty in
modelled contaminant movement has implications for the protection of the environ-
ment, where inadequate mitigation or remediation measures could be employed. To
improve the governing equation for groundwater transport modelling, the Atangana–
Baleanu in Caputo sense (ABC) fractional derivative is applied to the advection-
dispersion equation with a focus on the advection term to account for anomalous
advection. Boundedness, existence and uniqueness for the developed advection-
focused transport equation is presented. In addition, a semi-discretisation analysis is
performed to demonstrate the equation stability in time. Augmented upwind schemes
are investigated as they have been found to address stability problems when solute
transport is advection-dominated. The upwind-based schemes are developed, and
stability analysis conducted, to facilitate the solution of the complex equation. The
numerical stability analysis found the upwind Crank–Nicolson to be the most sta-
ble, and is thus recommended for use with the ABC fractional advection-dispersion
equation.
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1 Introduction

Real-world systems are complex. By definition, a complexity by which any one
method is not able to capture all the nuances of that system. It is this that compels
science to improve and continuously strive for new methods and approaches, ever
endeavouring to reconcile the difference between modelled and observed.

Simulating the transport of particles using the advection-dispersion equation is a
real-world problem, where the general discrepancy between modelled and observed
is particularly large. This discrepancy lead to the development of the term anoma-
lous diffusion (non-Fickian diffusion), especially when using linear or traditional
methods. For this reason, numerous nonlocal approaches have been applied to the
advection-dispersion equation to reduce this divergence, ranging from multiple-
rate mass transfer method and rate-limited mass transfer, stochastic averaging,
continuous-time random walk, to fractal and fractional differential equations [1–9].

Complexity from the perspective of fractional calculus is explored in [10], where
fractional differential equations are one method to improve the simulation of real
world problems. Fractional calculus is not a new topic, having its original inception
in the late 1600s, but the application of fractional derivations to practical problems
has steadily increased since the 1970s. With the endeavour to continually improve
simulation methods, a progression of fractional derivative definitions have been
developed over the years, with definitions including Riemann-Liouville, Caputo,
Caputo-Fabrizio, and the latest Atangana–Baleanu [11–21].

The newest fractional derivative definition Atangana–Baleanu, is used to develop
an advection-focused fractional transport equation. The suitability of this particu-
lar formulation and fractional derivative definition is investigated for the specific
real-world system of groundwater transport within fractured aquifers. Modelling
groundwater transport in fractured aquifer systems is complex due to the uncertainty
associated with demarcating the specific fractures along which water and potential
contaminants could be transported along. A result in this uncertainty is the misrep-
resentation of the expected movement of a potential contaminant in the groundwater
system. This potentially increases the impact on the environment because the mis-
represented transport could result in inadequate mitigation or remediation measures
[22–28].

A faster than expected transport along unknown fractures is referred to as super-
advection associated with anomalous advection by [29], and a fractional derivative
was applied to the advection term of the advection-dispersion equation to better
simulate this phenomena. A fractional derivative was also applied to the time com-
ponent of the advection-dispersion equation to activate the waiting-time distribution
properties as discussed by [30, 31]. A similar approach is followed in developing the
Atangana–Baleanu in Caputo sense (ABC) fractional advection-dispersion equation.
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2 Advection-Focused Space-Time Fractional Transport
Equation with Atangana–Baleanu in Caputo Sense
(ABC) Derivative

The one-dimensional, non-reactive fractional advection-dispersion equation with the
ABC fractional derivative definition is given by

ABC
0 Dα

t (c (x, t)) = −vABC0 Dα
x (c (x, t)) + DL

∂2

∂x2
(c (x, t)) . (1)

The boundedness, existence and uniqueness of the ABC fractional advection-
dispersion equation is first determined, using the Picard–Lindelöf theorem, before
the numerical approximation in the following sections.

2.1 Picard–Lindelöf Theorem for Existence and Uniqueness

Applying the AB integral to both sides of the ABC fractional advection-dispersion
equation, we get

c (x, t) − c (x, 0) =AB
0 Iα

x

(
−vABC0 Dα

x (c (x, τ )) + DL
∂2

∂x2
(c (x, τ ))

)
dτ

= 1 − α

AB (α)

(
−vABC0 Dα

x (c (x, τ )) + DL
∂2

∂x2
(c (x, τ ))

)

+ α

AB (α) Γ (α)

∫ t

0

(
−vABC0 Dα

x (c (x, τ )) + DL
∂2

∂x2
(c (x, τ ))

)
(t − τ)α−1 dτ.

(2)

Now, we consider a new function F (x, t, c) to simplify:

F (x, t, c) = −vABC0 Dα
x (c (x, t)) + DL

∂2

∂x2
(c (x, t)) . (3)

Thus

c (x, t) − c (x, 0) = 1 − α

AB (α)
F (x, t, c) + α

AB (α) Γ (α)

∫ t

0
F (x, t, c) (t − τ)α−1 dτ. (4)

Let
Cλ,β = Iλ (t0) × Bβ (x0) ,
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where
Iλ (t0) = [t0 − λ, t0 + λ] ,

Bβ (x0) = [x0 − β, x0 + β] .

The Banach fixed-point theorem is applied by introducing the norm of the supre-
mum (statistical limit of a set) for Iλ,

M = ‖ϕ‖∞ = sup|ϕ (t) |
t ∈ Iλ (t0) .

(5)

Considering the practical meaning of c (x, t), it can be assumed that the initial
concentration (c0) will always be greater than subsequent concentrations (cn) due to
advection, dispersion and diffusion processes which reduce the concentration over
time and space,

‖c‖∞ < c0. (6)

Considering the max norm for the function F (x, t, c),

‖F‖∞ =
∥∥∥∥−v

AB (α)

(1 − α)

∫ x

0

d

dτ
c (τ, x)Eα

[
− α

1 − α
(x − τ)α

]
dτ + DL

∂2

∂x2
(c (x, t))

∥∥∥∥∞
. (7)

Thus

‖F‖∞ ≤ v
AB (α)

(1 − α)

∥∥∥∥
∫ x

0

d

dτ
c (τ, x)Eα

[
− α

1 − α
(x − τ)α

]
dτ

∥∥∥∥∞
+ DL

∥∥∥∥ ∂2

∂x2
(c (x, t))

∥∥∥∥∞
.

(8)

Applying the proven theorem for partial differential Lipschitz condition in [9],
the second order derivative is bounded (M1), thus

‖F‖∞ ≤ v
AB (α)

(1 − α)

∫ x

0

∥∥∥∥ d

dτ
C (τ, x)

∥∥∥∥∞

∥∥∥∥Eα

[
− α

1 − α
(x − τ)α

]∥∥∥∥∞
dτ + DLM1.

(9)
TheMittag-Leffler function is bounded because 1 > α > 0. Thefirst-order deriva-

tive is bounded due to its physical meaning being related to the spread of a particle
defined by its concentration (M2). Thus, the derivative is considered at the maximum
physical time that is applicable to the existence of the concentration (Tmax),

‖F‖∞ ≤ v
AB (α)

(1 − α)
M2Tmax + DLM1 < ∞. (10)

Therefore, the solution is bounded because we obtain a positive constant, such
that
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A = ‖F‖∞ = sup|F (x, t, c) |
t ∈ Cλ,β .

(11)

Let Cλ,β be a set where, F : Cλ,β → Cλ,β , such that

Γ φ (x, t) = c (x, 0) + 1 − α

AB (α)
F (x, t, φ) + α

AB (α) Γ (α)

∫ t

0
F (x, τ, φ) (t − τ)α−1 dτ.

(12)

Thus

‖Γ φ (x, t) − c (x, 0) ‖∞ =
∥∥∥∥ 1 − α

AB (α)
F (x, t, φ)

+ α

AB (α) Γ (α)

∫ t

0
F (x, τ, φ) (t − τ)α−1 dτ

∥∥∥∥∞
‖Γ φ (x, t) − c (x, 0) ‖∞

≤ 1 − α

AB (α)
‖F (x, t, φ) ‖∞ + α

AB (α) Γ (α)

∫ t

0
(t − τ)α−1 ‖F (x, τ, φ) ‖∞dτ.

(13)

The function F (x, t, c) has been shown to be bounded (Eqs. (7)–(11))

[
‖Γ φ (x, t) − c (x, 0) ‖∞ ≤ 1 − α

AB (α)
A + α

AB (α) Γ (α)
A

∫ t

0
(t − τ)α−1 dτ

]
.

The integral is considered at the maximum physical time that is applicable to the
existence of the concentration (Tmax)

[
‖Γ φ (x, t) − c (x, 0) ‖∞ ≤ 1 − α

AB (α)
A + α

AB (α) Γ (α)
A
T α
max

α

]

≤ 1 − α

AB (α)
A + AT α

max

AB (α) Γ (α)
< ∞.

Therefore Γ is well-posed because we obtain a positive constant.
We want to prove that Γ is Lipschitz

‖Γ φ1 − Γ φ2‖∞ =
∥∥∥∥ 1 − α

AB (α)
(F (x, t, φ1) − F (x, t, φ2))

+ α

AB (α) Γ (α)

∫ t

0
(F (x, τ, φ1) − F (x, τ, φ2)) (t − τ)α−1 dτ

∥∥∥∥
∞

‖Γ φ1 − Γ φ2‖∞

≤ 1 − α

AB (α)
‖ (F (x, t, φ1) − F (x, t, φ2)) ‖∞

+ α

AB (α) Γ (α)

∫ t

0
(t − τ)α−1 ‖F (x, τ, φ1) − F (x, τ, φ2) ‖∞dτ. (14)
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To achieve this, we first evaluate

‖F (x, t, φ1) − F (x, t, φ2) ‖∞

=
∥∥∥∥−vABC0 Dα

x (φ1 − φ2) + DL
∂2

∂x2
(φ1 − φ2)

∥∥∥∥∞
‖F (x, t, φ1) − F (x, t, φ2) ‖∞

≤ v‖ABC0 Dα
x (φ1 − φ2) ‖∞ + DL

∥∥∥∥ ∂2

∂x2
(φ1 − φ2)

∥∥∥∥∞
.

(15)

Applying the ABC fractional derivative, and the proven theorem for partial dif-
ferential Lipschitz condition in [9], the second order derivative is bounded (ρ2

2 )

‖F (x, t, φ1) − F (x, t, φ2) ‖∞

≤v
AB (α)

(1 − α)

∫ x

0

∥∥∥∥ d

dτ
(φ1 − φ2)

∥∥∥∥∞

∥∥∥∥Eα

[
− α

1 − α
(x − τ)α

]∥∥∥∥∞
dτ + DLρ

2‖ (φ1 − φ2) ‖∞.

(16)

Similarly as in Eq. (9), the Mittag-Leffler function is bounded due to the constrain
1 > α > 0, and the first order derivative is bounded as explained (ρ1). Thus, the
derivative is considered at the maximum physical space that is applicable to the
concentration (Xmax)

‖F (x, t, φ1) − F (x, t, φ2) ‖∞ ≤ v
AB (α)

(1 − α)
Xmaxρ1‖ (φ1 − φ2) ‖∞ + DLρ

2
2‖ (φ1 − φ2) ‖∞.

(17)

Simplifying

‖F (x, t, φ1) − F (x, t, φ2) ‖∞ ≤
(
v
AB (α)

(1 − α)
Xmaxρ1 + DLρ

2
2

)
‖ (φ1 − φ2) ‖∞

< Kα‖ (φ1 − φ2) ‖∞. (18)

Applying to Eq. (14), we get

‖Γ φ1 − Γ φ2‖∞ ≤ 1 − α

AB (α)
Kα‖ (φ1 − φ2) ‖∞

+ α

AB (α) Γ (α)
Kα‖ (φ1 − φ2) ‖∞

∫ t

0
(t − τ)α−1 dτ. (19)
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Applying a similar process as previously, we obtain

‖Γ φ1 − Γ φ2‖∞ ≤ 1 − α

AB (α)
Kα‖ (φ1 − φ2) ‖∞ + α

AB (α) Γ (α)
Kα‖ (φ1 − φ2) ‖∞

Tα
max

α

≤
(

1 − α

AB (α)
Kα + Tα

max

AB (α) Γ (α)
Kα

)
‖ (φ1 − φ2) ‖∞ ≤ V ‖ (φ1 − φ2) ‖∞. (20)

Therefore, Γ is a contraction when V < 1, which translates to a condition

Kα <
1

1−α
AB(α)

+ T α
max

AB(α)Γ (α)

. (21)

Then F (x, t, c) has a fixed point using the Banach fixed-point theorem and the
ABC fractional advection-dispersion equation is bounded and has a unique solution
under this condition.

2.2 Semi-discretisation Stability

The stability of the defined fractional advection-dispersion equation is evaluated in
time, and thus discretised in time while the concentration in space is considered
constant. The forward finite difference approximation in time is applied to the ABC
fractional derivative, considered for a specific time (tn), and the numerical integration
of the Mittag-Leffler function is performed in [32]

ABC
0 Dα

t (c (x, tn)) = AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
x − ckx

)
δα
n,k ,

where,

δα
n,k = (n − k)Eα,2

[
− αΔt

1 − α
(n − k)

]
− (n − k − 1)Eα,2

[
− αΔt

1 − α
(n − k − 1)

]
.

(22)

Now, substituting back into fractional advection-dispersion equation with the
ABC derivative, and applying the assumption of discretisation in time only

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
x − ckx

)
δα
n,k = −vABC0 Dα

x

(
cnx

) + DL
∂2

∂x2
(
cn+1
x

)
. (23)
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A function Aα
n,k is applied to simplify

n−1∑
k=0

(
ck+1
x − ckx

)
Aα
n,k = −vABC0 Dα

x

(
cnx

) + DL
∂2

∂x2
(
cn+1
x

)
. (24)

Reformulating to obtain,

(
cn+1
x − cnx

)
Aα
n +

n−1∑
k=0

(
ck+1
x − ckx

)
Aα
n,k = −vABC0 Dα

x

(
cnx

) + DL
∂2

∂x2
(
cn+1
x

)
. (25)

Rearranging

cn+1
x = cnx − v

Aα
n

ABC

0

Dα
x

(
cnx

) + DL

Aα
n

∂2

∂x2
(
cn+1
x

) − 1

Aα
n

n−1∑
k=0

(
ck+1
x − ckx

)
Aα
n,k . (26)

Equation (26) is the numerical approximation of the ABC fractional advection-
dispersion equation with respect to time. Now, the semi-stability can be evaluated
defining the following norms

(f , g) =
∫

Ω

(f · g) (x) dx,

where,
‖g‖0 =√

(g · g),

‖g‖1 =
√

‖g‖0 + ε‖ d2

dx2
g‖0.

When n = 0, Eq. (26) becomes

c1x = c0x − v

Aα
n

ABC

0

Dα
x

(
c0x

) + DL

Aα
n

∂2

∂x2
(
c1x

)
. (27)

Simplifying using functions λ1 and λ2,

c1x = c0x − λABC
10 Dα

x

(
c0x

) + λ2
∂2

∂x2
(
c1x

)
. (28)

Applying the norm with respect to g,

(
c1x , g

) = (
c0x , g

) − λ1
(
ABC
0 Dα

x c
0
x ,

ABC
0 Dα

x g
) + λ2

(
∂2

∂x2
c1x ,

∂2

∂x2
g

)
. (29)
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Let ∀g ∈ H 1 (Ω) , g = c1x

(
c1x , c

1
x

) = (
c0x , c

1
x

) − λ1
(
ABC
0 Dα

x c
0
x ,

ABC
0 Dα

x c
1
x

) + λ2

(
∂2

∂x2
c1x ,

∂2

∂x2
c1x

)
. (30)

From the defined norms, the following statement is to be proven,

‖c1x‖1 ≤ ‖c0x‖0.

Reformulating in terms of the defined norms

(
c1x , c

1
x

) − λ2

(
∂2c1x
∂x2

,
∂2c1x
∂x2

)
= (

c0x , c
1
x

) − λ1
(
ABC
0 Dα

x c
0
x ,

ABC
0 Dα

x c
1
x

) ‖c1x‖21
=‖c0x‖0‖c1x‖0 − λ1‖ABC0 Dα

x c
0
x‖0‖ABC0 Dα

x c
1
x‖0, (31)

where,

[∥∥∥∥ABC
0 Dα

x c
0
x‖0 = ‖ AB (α)

(1 − α)

∫ x

0

dc0τ
dτ

Eα

[
− α

1 − α
(x − τ)α

]
dτ

∥∥∥∥
0

]
.

Thus,

∥∥∥∥ABC
0 Dα

x c
0
x‖0 ≤ AB (α)

(1 − α)

∫ x

0
‖dc

0
τ

dτ
‖0‖Eα

[
− α

1 − α
(x − τ)α

]∥∥∥∥
0

dτ. (32)

As before, the Mittag-Leffler function is bounded due to the limited range of
α, where 1 > α > 0. The first-order derivative represents the spread of a particle,
defined by its concentration, and is thus bound due to its inherent physical meaning.
The derivative is considered at the maximum physical space that is applicable to the
concentration (Xmax)

‖ABC0 Dα
x c

0
x‖0 ≤ AB (α)

(1 − α)

∫ x

0

∥∥∥∥dc
0
τ

dτ

∥∥∥∥
0
dτ ≤ AB (α)

(1 − α)
θ‖c0x‖0

∫ xmax

0
dτ ≤ AB (α)

(1 − α)
θ‖c0x‖0Xmax.

(33)

Substituting back into Eq. (31)

‖c1x‖21 < ‖c0x‖0‖c1x‖0 − λ1

(
AB (α)

(1 − α)
θ‖c0x‖0Xmax

)(
AB (α)

(1 − α)
θ‖c1x‖0Xmax

)
. (34)
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Rearranging

‖c1x‖21 < ‖c0x‖0‖c1x‖0 − λ1

(
AB (α) θXmax

(1 − α)

)2

‖c0x‖0‖c1x‖0

<

(
1 − λ1

(
AB (α) θXmax

(1 − α)

)2
)

‖c0x‖0‖c1x‖0. (35)

Applying the assumption that

‖c1x‖0 ≤ ‖c1x‖1.

Simplifying, the stability condition becomes

‖c1x‖21 <

(
1 − λ1

(
AB (α) θXmax

(1 − α)

)2
)

‖c0x‖0‖c1x‖1‖c1x‖1

<

(
1 − λ1

(
AB (α) θXmax

(1 − α)

)2
)

‖c0x‖0
‖c1x‖1
‖c0x‖0

< 1 − λ1

(
AB (α) θXmax

(1 − α)

)2

, (36)

where,

1 − λ1

(
AB (α) θXmax

(1 − α)

)2

< 1λ1

(
AB (α) θXmax

(1 − α)

)2

> 0.

The first condition is thus upheld and unconditionally stable.
Secondly, Let ∀g ∈ H 1 (Ω) , g = cn+1

x

(
cn+1
x , cn+1

x

)
=

(
cnx , c

n+1
x

)
− λ1

(
ABC
0 Dα

x c
n
x ,

ABC
0 Dα

x c
n+1
x

)
+ λ2

(
∂2

∂x2
cn+1
x ,

∂2

∂x2
cn+1
x

)

− λ3

n−1∑
k=0

((
ck+1
x , cn+1

x

)
−

(
ckx , c

n+1
x

))
, (37)

where,

λ3 = 1

Aα
n

Aα
n,k .

From the defined norms, the following statement is to be proven

‖cn+1
x ‖1 ≤ ‖c0x‖0.
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Reformulating Eq. (37) in terms of the defined norms, we have

(
cn+1
x , cn+1

x

) − λ2

(
∂2cn+1

x

∂x2
,
∂2cn+1

x

∂x2

)
= (

cnx , c
n+1
x

) − λ1
(
ABC
0 Dα

x c
n
x ,

ABC
0 Dα

x c
n+1
x

)

− λ3

n−1∑
k=0

((
ck+1
x , cn+1

x

) − (
ckx , c

n+1
x

))

‖cn+1
x ‖21 = ‖cnx‖0‖cn+1

x ‖0 − λ1‖ABC0 Dα
x c

n
x‖0‖ABC0 Dα

x c
n+1
x ‖0

− λ3

n−1∑
k=0

((‖ck+1
x ‖0‖cn+1

x ‖0
) − (‖ckx‖0‖cn+1

x ‖0
))

. (38)

Applying Eq. (33), we get

‖cn+1
x ‖21 ≤ ‖cnx‖0‖cn+1

x ‖0 − λ1A‖cnx‖0‖cn+1
x ‖0 − λ3

n−1∑
k=0

((
‖ck+1

x ‖0‖cn+1
x ‖0

)
−

(
‖ckx‖0‖cn+1

x ‖0
))

,

(39)
where,

A =
(
AB (α) θXmax

(1 − α)

)2

.

Using the inductive method for

‖cnx‖0 ≤ ‖c0x‖0,
Equation (39) becomes

‖cn+1
x ‖21 ≤ ‖c0x‖0‖cn+1

x ‖0 − λ1A‖c0x‖0‖cn+1
x ‖0 − λ3

n−1∑
k=0

((
‖c0x‖0‖cn+1

x ‖0
)

−
(
‖c0x‖0‖cn+1

x ‖0
))

.

(40)

Reformulating in terms of the defined norms, we have

‖cn+1
x ‖21 ≤ ‖c0x‖0‖cn+1

x ‖1 − λ1A‖c0x‖0‖cn+1
x ‖1. (41)

Rearranging and simplifying

‖cn+1
x ‖21 ≤ (1 − λ1A) ‖c0x‖0‖cn+1

x ‖1‖cn+1
x ‖1 ≤ (1 − λ1A) ‖c0x‖0, (42)

where,
[1 − λ1A < 1],

λ1A > 0.
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The second condition is thus unconditionally stable. This concludes the semi-
discretisation analysis for an evolution equation, where the proposed ABC fractional
advection-dispersion equation has been found to be stable in time.

3 Upwind Numerical Approximation Schemes

Boundedness, existence and uniqueness has been established for the ABC fractional
advection-dispersion equation. Furthermore, the stability in time has been demon-
strated for the equation. Numerical schemes for this equation are now explored
to facilitate the solution of the complex equation. Upwind-based finite difference
schemes are investigated asmotivated in [33], where upwind schemes aim to improve
the stability of advection-dominated transport [34].

3.1 First-Order Upwind Explicit

The numerical approximation of the ABC fractional derivative with respect to time
is considered, with the resulting scheme as [32]:

ABC
0 Dα

t (c (xm, tk )) = AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

) ⎛
⎝ (n − k)Eα,2

[
− αΔt

1−α
(n − k)

]
− (n − k − 1)Eα,2

[
− αΔt

1−α
(n − k − 1)

]
⎞
⎠ ,

(43)
where, a function δα

n,k is applied to simplify,

δα
n,k = (n − k)Eα,2

[
− αΔt

1 − α
(n − k)

]
− (n − k − 1)Eα,2

[
− αΔt

1 − α
(n − k − 1)

]
.

Thus,

ABC
0 Dα

t (c (xm, tk)) = AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k . (44)

The upwind finite difference scheme uses a one-sided finite difference in the
upstream direction to approximate the advection term of the advection-dispersion
equation (assuming v > 0). Applying the upwind scheme and the ABC fractional
derivative with respect to space (explicit) becomes [32]

ABC
0 Dα

x (c (xm, tk )) = AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

) ⎛
⎝ (m − i)Eα,2

[
− αΔx

1−α
(m − i)

]
− (m − i − 1)Eα,2

[
− αΔx

1−α
(m − i − 1)

]
⎞
⎠ ,

(45)
where, a function δα

m,i is applied to simplify
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ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i. (46)

Substituting into the ABC fractional advection-dispersion equation and using the
traditional finite difference approach for the local second-order derivative, we have

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i

− DL

(
cn−1
m+1 − 2cn−1

m + cn−1
m−1

(Δx)2

)
= 0. (47)

Reformulating the following can be obtained

AB (α)

(1 − α)

(
cnm − cn−1

m

)
δα
n,n−1 + AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

+v
AB (α)

(1 − α)

(
cn−1
m − cn−1

m−1

)
δα
m,i + v

AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i

− DL

(
cn−1
m+1 − 2cn−1

m + cn−1
m−1

(Δx)2

)
= 0. (48)

Rearranging

cnm
AB (α)

(1 − α)
δα
n,n−1 = cn−1

m

(
AB (α)

(1 − α)
δα
n,n−1 − v

AB (α)

(1 − α)
δα
m,i − 2DL

(Δx)2

)

+cn−1
m−1

(
v
AB (α)

(1 − α)
δα
m,i + DL

(Δx)2

)
+ cn−1

m+1

(
DL

(Δx)2

)
− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− v
AB (α)

(1 − α)

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i. (49)

The numerical scheme can be simplified using place-keeper functions as follows

acnm = bcn−1
m + dcn−1

m−1 + fcn−1
m+1 − g

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − vg

m∑
i=0

(
cn−1
i − cn−1

i−1

)
δα
m,i, (50)
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where,

a = AB (α)

(1 − α)
δα
n,n−1; b = AB (α)

(1 − α)
δα
n,n−1 − v

AB (α)

(1 − α)
δα
m,i − 2DL

(Δx)2
; d = v

AB (α)

(1 − α)
δα
m,i + DL

(Δx)2
,

f = DL

(Δx)2
; g = AB (α)

(1 − α)
.

3.2 First-Order Upwind Implicit

Following the same approach as the explicit upwind numerical approximation, the
following is obtained for the implicit upwind scheme

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

(
cni − cni−1

)
δα
m,i

− DL

(
cnm+1 − 2cnm + cnm−1

(Δx)2

)
= 0. (51)

Reformulating and rearranging the following can be obtained

cnm

(
AB (α)

(1 − α)
δα
n,n−1 + v

AB (α)

(1 − α)
δα
m,i + 2DL

(Δx)2

)
= cnm−1

(
v
AB (α)

(1 − α)
δα
m,i − DL

(Δx)2

)

+cnm+1
DL

(Δx)2
− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − v

AB (α)

(1 − α)

m∑
i=0

(
cni − cni−1

)
δα
m,i

+ cn−1
m

AB (α)

(1 − α)
δα
n,n−1. (52)

The numerical scheme is simplified by substituting functions as followings

hcnm = jcnm−1 + fcnm+1 − g
n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − vg

m∑
i=0

(
cni − cni−1

)
δα
m,i + acn−1

m ,

(53)
where,

h = AB (α)

(1 − α)
δα
n,n−1 + v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
; j = v

AB (α)

(1 − α)
δα
m,i −

DL

(Δx)2
.
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3.3 First-Order Upwind Crank Nicolson Scheme

The upwind Crank Nicolson finite difference scheme for ABC fractional advection-
dispersion equation is now considered [33]. The time component remains the same
as with the implicit/explicit upwind schemes, but the space components change to

ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

) + 0.5
(
cni − cni−1

))
δα
m,i. (54)

Substituting

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

)
+ 0.5

(
cni − cni−1

)]
δα
m,i

− DL

(
cnm+1 − 2cnm + cnm−1

(Δx)2

)
= 0. (55)

Reformulating and rearranging, the following can be obtained

cnm

(
AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2

)
= cn−1

m

×
(

AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i

)

+ cnm−1

(
0.5v

AB (α)

(1 − α)
δα
m,i −

DL

(Δx)2

)
+ cnm+1

DL

(Δx)2
+ cn−1

m−10.5v
AB (α)

(1 − α)
δα
m,i

− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − v

AB (α)

(1 − α)

m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

)
+ 0.5

(
cni − cni−1

)]
δα
m,i.

(56)

Simplifying by substituting place-keeper functions

lcnm = mcn−1
m + ocnm−1+fcnm+1 + pcn−1

m−1 − g
n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− vg
m∑
i=0

[
0.5

(
cn−1
i − cn−1

i−1

) + 0.5
(
cni − cni−1

)]
δα
m,i, (57)



324 A. Allwright and A. Atangana

where,

l = AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
;m = AB (α)

(1 − α)
δα
n,n−1 + 0.5v

AB (α)

(1 − α)
δα
m,i,

o = 0.5v
AB (α)

(1 − α)
δα
m,i −

DL

(Δx)2
; p = 0.5v

AB (α)

(1 − α)
δα
m,i.

3.4 First-Order Upwind-Downwind Weighted Scheme
(Explicit)

For the upwind-downwindweighted scheme, the upwind and downwind direction for
the advection term are both integrated using a weighting factor. The weighting factor
of upwind to downwind is defined as θ , where 0 ≤ θ ≤ 1 [33]. Thus, the advection
component is approximated as

ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

) + (1 − θ)
(
cn−1
i+1 − cn−1

i

)]
δα
m,i.

(58)
Substituting this back into the advection-dispersion equation

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

)
+ (1 − θ)

(
cn−1
i+1 − cn−1

i

)]
δα
m,i

−DL

(
cn−1
m+1 − 2cn−1

m + cn−1
m−1

(Δx)2

)
= 0. (59)

Reformulating and rearranging, the following can be obtained

cnm
AB (α)

(1 − α)
δα
n,n−1 = cn−1

m

(
AB (α)

(1 − α)
δα
n,n−1

−vθ
AB (α)

(1 − α)
δα
m,i + v (1 − θ)

AB (α)

(1 − α)
δα
m,i − 2DL

(Δx)2

)

+ cn−1
m−1

(
vθ

AB (α)

(1 − α)
δα
m,i + DL

(Δx)2

)
− cn−1

m+1

(
v (1 − θ)

AB (α)

(1 − α)
δα
m,i + DL

(Δx)2

)

− AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k − v

AB (α)

(1 − α)

m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

)
+ (1 − θ)

(
cn−1
i+1 − cn−1

i

)]
δα
m,i .

(60)

Place-keeper functions are used to simplify the explicit upwind-downwind
weighted scheme as followings
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acnm = qcn−1
m + rcn−1

m−1 − scn−1
m+1 − g

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

−vg
m∑
i=0

[
θ

(
cn−1
i − cn−1

i−1

) + (1 − θ)
(
cn−1
i+1 − cn−1

i

) ]
δα
m,i, (61)

where,

q = AB (α)

(1 − α)
δα
n,n−1 − vθ

AB (α)

(1 − α)
δα
m,i + v (1 − θ)

AB (α)

(1 − α)
δα
m,i −

2DL

(Δx)2
;

r = vθ
AB (α)

(1 − α)
δα
m,i +

DL

(Δx)2
,

s = v (1 − θ)
AB (α)

(1 − α)
δα
m,i +

DL

(Δx)2
.

3.5 First-Order Upwind-Downwind Weighted Scheme
(Implicit)

Correspondingly, both the upwind and downwind directions are considered for the
advection term in the implicit upwind-downwind weighted scheme and the space
advection component becomes

ABC
0 Dα

x (c (xm, tk)) = AB (α)

(1 − α)

m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i. (62)

Substituting

AB (α)

(1 − α)

n−1∑
k=0

(
ck+1
m − ckm

)
δα
n,k + v

AB (α)

(1 − α)

m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i

− DL

(
cnm+1 − 2cnm + cnm−1

(Δx)2

)
= 0. (63)

Rearranging

cnm

(
AB (α)

(1 − α)
δα
n,n−1 + vθ

AB (α)

(1 − α)
δα
m,i − v (1 − θ)

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2

)

= cnm+1

(
DL

(Δx)2
− v (1 − θ)

AB (α)

(1 − α)
δα
m,i

)
+ cnm−1

(
DL

(Δx)2
+ vθ

AB (α)

(1 − α)
δα
m,i

)
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+ cn−1
m

AB (α)

(1 − α)
δα
n,n−1 − AB (α)

(1 − α)

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− v
AB (α)

(1 − α)

m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i. (64)

Simplifying

ucnm = vcnm+1 + rcnm−1+acn−1
m − g

n−2∑
k=0

(
ck+1
m − ckm

)
δα
n,k

− vg
m∑
i=0

[
θ

(
cni − cni−1

) + (1 − θ)
(
cni+1 − cni

)]
δα
m,i, (65)

where,

u = AB (α)

(1 − α)
δα
n,n−1 + vθ

AB (α)

(1 − α)
δα
m,i − v (1 − θ)

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
,

v = DL

(Δx)2
− v (1 − θ)

AB (α)

(1 − α)
δα
m,i.

This concludes the formulation of the numerical approximations schemes to be
investigated for the ABC fractional advection-dispersion equation. In the following
section, the numerical stability of each scheme will be assessed.

4 Numerical Stability Analysis

The numerical stability analysis is performed using the recursive numerical stability
method [33, 35, 36]. The numerical stability for the upwind schemes are evaluated
to validate their use in solving the ABC fractional advection-dispersion equation for
fracture flow in groundwater systems.

4.1 First-Order Upwind Implicit

Substituting the inductionmethod terms for the developed finite difference first-order
upwind (implicit) numerical scheme discussed in Sect. 3.2
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hcne
jkim = jcne

jki(m−Δm) + fcne
jkix(m+Δm) − g

n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

−vg
m∑
i=0

(
cne

jkim − cne
jki(m−Δm)

)
δα
m,i + acn−1e

jkim. (66)

Expand and simplify

hcn =jcne
−jkiΔm + fcne

jkiΔm − g
n−2∑
k=0

(ck+1 − ck) δα
n,k

− vg
m∑
i=0

(
cn − cne

−jkiΔm
)
δα
m,i + acn−1. (67)

The first procedure for the induction numerical stability analysis requires proving
for a set ∀ n > 1, that

|cn| < |co|. (68)

If n = 1, then

hc1 = jc1e
−jkiΔm + fc1e

jkiΔm − vg
m∑
i=0

(
c1 − c1e

−jkiΔm
)
δα
m,i + ac0. (69)

A subset for m is now considered, where m = 0

hc1 = jc1e
−jkiΔm + fc1e

jkiΔm + ac0. (70)

Simplifying and rearranging

c1
c0

= a

h − je−jkiΔm − fejkiΔm
. (71)

Taking the norm, the condition for the first induction requirement becomes

|a|
|h| + |j| + |f | < 1. (72)

The term is expanded using the simplification terms associated with Eq. (53)

∣∣∣ AB(α)

(1−α)
δα
n,n−1

∣∣∣∣∣∣ AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2

∣∣∣ +
∣∣∣v AB(α)

(1−α)
δα
m,i − DL

(Δx)2

∣∣∣ +
∣∣∣ DL

(Δx)2

∣∣∣ < 1. (73)
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The following assumption is made

[
v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2

]
.

Then, the condition is

AB(α)

(1−α)
δα
n,n−1

AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
+ v AB(α)

(1−α)
δα
m,i − DL

(Δx)2
+ DL

(Δx)2

< 1. (74)

Simplifying

2v
AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
> 0. (75)

Therefore, under this assumption, the first inductive stability condition for this
subset is upheld and unconditionally stable.

The complementary assumption is made, and the condition becomes

AB(α)

(1−α)
δα
n,n−1

AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
− v AB(α)

(1−α)
δα
m,i + DL

(Δx)2
+ DL

(Δx)2

< 1. (76)

Simplifying
4DL

(Δx)2
> 0. (77)

Thus, the first inductive stability condition for this subset is supported and uncon-
ditionally stable under this assumption as well.

A subset for (m) is now considered for all (m ≥ 1)

hc1 = jc1e
−jkiΔm + fc1e

jkiΔm − vg
m∑
i=0

(
c1 − c1e

−jkiΔm
)
δα
m,i + ac0 (78)

Simplifying

(
h − je−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

) m∑
i=0

δα
m,i

)
c1 = ac0. (79)

Expanding the summation, and simplifying

m∑
i=0

δα
m,i =

(
(m)Eα,2

[
− αΔx

1 − α
(m)

])
+

(
Eα,2

[
− αΔx

1 − α

]
− (−1)Eα,2

[
− αΔx

1 − α
(−1)

])
. (80)
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Substituting back into Eq. (77), we get

(
h − je−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

) ·(
(m)Eα,2

[− αΔx
1−α

(m)
] + Eα,2

[− αΔx
1−α

] − (−1)Eα,2
[− αΔx

1−α
(−1)

]))
c1 = ac0,

(81)
where the function βm,Eα,2 is used to simplify as follows

(
h − je−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

)
βm,Eα,2

)
c1 = ac0. (82)

Let a function simplify to
[φ = kiΔx],

where,
[e−jφ = e−jkiΔx].

Remembering Euler’s formula for complex numbers, and substituting back into
Eq. (80)

(
h − je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2

)
c1 = ac0. (83)

Applying a norm and simplifying

(|h| + |j| + |f | + v|g| (2 − 2cosφ) |βm,Eα,2 |
) |c1| = |a||c0|. (84)

Rearranging

|c1|
|c0| = |a|(|h| + |j| + |f | + v|g| (2 − 2cosφ) |βm,Eα,2 |

) . (85)

Thus, the condition becomes

|a|(|h| + |j| + |f | + v|g| (2 − 2cosφ) |βm,Eα,2 |
) < 1. (86)

The term is expanded using the simplification terms associated with Eq. (53)

| AB(α)

(1−α)
δα
n,n−1|(

| AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
| + |v AB(α)

(1−α)
δα
m,i − DL

(Δx)2
| + | DL

(Δx)2
|

+v| AB(α)

(1−α)
| (2 − 2cosφ) |βm,Eα,2 |

) < 1. (87)

The assumption is made where

[
v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2

]
.
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Then, the conditions is

2v
AB (α)

(1 − α)

(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 2DL

(Δx)2
> 0. (88)

Under this assumption, the first inductive stability condition for the second subset
of m is sustained and unconditionally stable.

The opposite assumption is made, and the condition becomes

4DL

(Δx)2
+ v

AB (α)

(1 − α)
(2 − 2cosφ) βm,Eα,2 > 0. (89)

The first inductive stability condition for the second subset of m is upheld and
unconditionally stable under this assumption as well.

The second procedure for the induction numerical stability analysis requires prov-
ing for a set ∀ n ≥ 1

|cn| < |co|. (90)

Rearranging Eq. (66) for cn

(
h + e−jkiΔm − fejkiΔm + vg

(
1 − e−jkiΔm

) m∑
i=0

δα
m,i

)
cn = acn−1 − g

n−2∑
k=0

(
ck+1 − ck

)
δα
n,k .

(91)

Following a similar simplification process as previously performed

(
h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2

)
cn

= acn−1 − g
n−2∑
k=0

(ck+1 − ck) δα
n,k . (92)

Applying a norm

∣∣(h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2

)
cn

∣∣
=

∣∣∣∣∣acn−1 − g
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ . (93)

Therefore,

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn|

< |a||cn−1| + |g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ . (94)
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Remembering that it has been proved that for a set ∀ n > 1

[|cn−1| < |co|].

Thus,

|h + je−jkiΔm−fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn| < |a||cn−1|

+|g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ < |a||co| + |g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ .
(95)

Therefore, it can be inferred that

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn|

< |a||co| + |g|
∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ . (96)

The remaining summation is considered at the upper limit

∣∣∣∣∣
n−2∑
k=0

(ck+1 − ck) δα
n,k

∣∣∣∣∣ <

n−2∑
k=0

|ck+1|
(∣∣∣∣1 − ck

ck+1

∣∣∣∣
)

δα
n,k . (97)

Subset (k) will follow the same assumption made for a set (∀ n ≥ 1), where

n−2∑
k=0

ck+1

(
1 − ck

ck+1

)
δα
n,k < |c0|

n−2∑
k=0

δα
n,k .

Substituting back into Eq. (97)

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn| < |a||co| + |g||c0|
n−2∑
k=0

δα
n,k . (98)

Expanding the summation

n−2∑
k=0

δα
n,k =

(
(n)Eα,2

[
− αΔt

1 − α
(n)

])
+

(
2Eα,2

[
−2

αΔt

1 − α

]
− Eα,2

[
− αΔt

1 − α

])
.
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Substituting back into Eq. (98) and simplifying

|h + je−jkiΔm − fejkiΔm + vg (1 − cosφ + isinφ) βm,Eα,2 ||cn| < |a||co| + |g||c0|βn,Eα,2 , (99)

where,

βn,Eα,2 = nEα,2

[
− αΔtn

1 − α

]
+ 2Eα,2

[
− 2αΔt

1 − α

]
− Eα,2

[
− αΔt

1 − α

]
.

Simplifying and rearranging

|cn|
|co| <

|a| + |g|βn,Eα,2

|h| + |j| + |f | + v|g| (|1 − cosφ| + i|sinφ|) |βm,Eα,2 |
. (100)

Thus, the condition becomes

|a| + |g|βn,Eα,2

|h| + |j| + |f | + v|g| (|1 − cosφ| + i|sinφ|) |βm,Eα,2 |
< 1. (101)

The condition is expanded using the simplification terms associated with Eq. (53)

| AB(α)

(1−α)
δα
n,n−1| + | AB(α)

(1−α)
|βn,Eα,2

| AB(α)

(1−α)
δα
n,n−1 + v AB(α)

(1−α)
δα
m,i + 2DL

(Δx)2
| + |v AB(α)

(1−α)
δα
m,i − DL

(Δx)2
| + | DL

(Δx)2
|

+v| AB(α)

(1−α)
| (2 − 2cosφ) |βm,Eα,2 |

< 1. (102)

The following assumption is made

[
v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2

]
.

Simplifying

2v
(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 2DL

(Δx)2
> βn,Eα,2 . (103)

Under this assumption, the second inductive stability requirement is found to be
true. And, the numerical scheme is conditionally stable, under this condition.

The opposite assumption is made, and the condition becomes

2v (1 − cosφ) βm,Eα,2 + 4DL

(Δx)2
> βn,Eα,2 . (104)

Thus, under the opposite assumption, the second inductive stability condition is
also found to be appropriate. Moreover, under this condition the numerical scheme
is conditionally stable.
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This concludes the stability analysis for the implicit upwind scheme for the ABC
advection-dispersion equation, where the scheme is stable under the condition stated
in Eqs. (103) and (104). These conditions can be simplified to an overall condition

min (γ, η) > βn,Eα,2 ,

where,

γ = 2v
(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 2DL

(Δx)2
,

η = 2v (1 − cosφ) βm,Eα,2 + 4DL

(Δx)2
.

Under these conditions, the error of the approximation is not propagated through-
out the solution, but rather decreaseswith each time step, as according to the induction
method, where for all values of n, |cn+1| < |co|.

4.2 First-Order Upwind Explicit

The induction method terms for the developed explicit upwind numerical scheme
(Sect. 3.1) are substituted as follows

acne
jkim = bcn−1e

jkim + dcn−1e
jkix(m−Δm) + fcn−1e

jki(m+Δm) − g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

− vg
m∑
i=0

(
cn−1e

jkim − cn−1e
jki(m−Δm)

)
δα
m,i . (105)

The same procedure applied in Sect. 4.1 is followed for the explicit upwind numer-
ical scheme. When n = 1, and a subset form is considered wherem = 0, the explicit
upwind numerical scheme for the ABC fractional advection-dispersion equation is
conditionally stable, under the assumption

AB (α)

(1 − α)
δα
n,n−1 < v

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
. (106)

Following the condition

2v
AB (α)

(1 − α)
δα
m,i +

4DL

(Δx)2
<

2AB (α)

(1 − α)
δα
n,n−1. (107)

When a subset for m is considered where m ≥ 1, the explicit upwind numerical
scheme is also conditionally stable under the same assumption, with the condition
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2v
AB (α)

(1 − α)

(
δα
m,i + (1 − cosφ) βm,Eα,2

) + 4DL

(Δx)2
<

2AB (α)

(1 − α)
δα
n,n−1. (108)

Therefore, the assumption has been established where |cn−1| < |co|. The next step
for the recursive stability analysis is to use this assumption to demonstrate that for a
set ∀ n ≥ 1, that

|cn| < |co|.

Following the equivalent technique as shown in Sect. 4.1, and making the same
assumption, the scheme is conditionally stable, with the following condition

AB (α)

(1 − α)

(
2vδα

m,i − v (2 − 2cosφ) βm,Eα,2 + βn,Eα,2

) + 4DL

(Δx)2
<

2AB (α)

(1 − α)
δα
n,n−1.

(109)
This concludes the stability analysis for the explicit upwind scheme for the ABC

advection-dispersion equation, where the scheme is found to be conditionally stable
under the assumption made Eq. (106), with conditions Eqs. (107)–(109). The condi-
tions can be simplified into

max (λ, μ, ρ) <
2AB (α)

(1 − α)
δα
n,n−1,

where,

λ = 2v
AB (α)

(1 − α)
δα
m,i + 4DL

(Δx)2
; μ = 2v

AB (α)

(1 − α)

(
δα
m,i + (1 − cosφ) βm,Eα,2

)
+ 4DL

(Δx)2
,

ρ = AB (α)

(1 − α)

(
2vδα

m,i − v (2 − 2cosφ) βm,Eα,2 + βn,Eα,2

) + 4DL

(Δx)2
.

4.3 First-Order Upwind Crank–Nicolson Scheme

The recursive induction method terms are substituted into the upwind Crank–
Nicolson numerical scheme presented in Sect. 3.3

lcne
jkim = mcn−1e

jkim + ocne
jki(m−Δm) + fcne

jkix(m+Δm) + pcn−1e
jki(m−Δm)

−g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k − vg

m∑
i=0

[
0.5

(
cn−1ejkim − cn−1ejki(m−Δm)

)
+0.5

(
cnejkim − cnejki(m−Δm)

)
]

δα
m,i. (110)

In the same way, the method outlined in Sect. 4.1 is employed to determine the
numerical stability of the upwind Crank–Nicolson numerical scheme. If n = 1, and
a subset form is considered wherem = 0, then the scheme is unconditionally stable,
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under the following assumption

0.5v
AB (α)

(1 − α)
δα
m,i >

DL

(Δx)2
. (111)

With the following condition resulting in the unconditional stability

2DL

(Δx)2
> 0. (112)

If the complementary assumption is made

0.5v
AB (α)

(1 − α)
δα
m,i <

DL

(Δx)2
. (113)

The scheme is conditionally stable, with the following condition

v
AB (α)

(1 − α)
δα
m,i <

4DL

(Δx)2
. (114)

When a subset for m is considered for all m ≥ 1, under the assumption made in
Eq. (111), the scheme is unconditionally stable. Similarly, when the complementary
assumption is made, the scheme is conditionally stable.

The next step for the recursive stability analysis was performed as described in
Sects. 4.1 and 4.2. The same assumption is made as in Eq. (111), and once more the
same unconditionally stable condition was found. Likewise, the opposite condition
resulting in the same condition as in Eq. (114).

This completes the stability analysis for the upwind Crank–Nicolson scheme
for the ABC advection-dispersion equation, where the scheme is stable under the
following condition stated in Eq. (114). Under this single condition, the error of the
approximation is not propagated throughout the solution, but rather decreases with
each time step, as according to the induction method, where for all values of n,
|cn+1| < |co|.

4.4 Upwind-Downwind Weighted Scheme (Implicit)

Substituting the induction method terms for the developed finite difference implicit
upwind-downwind weighted numerical scheme discussed in Sect. 3.5
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ucne
jkim = vcne

jkix(m+Δm) + rcne
jki(m−Δm) + acn−1e

jkim − g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

− vg
m∑
i=0

[
θ

(
cne

jkim − cne
jki(m−Δm)

)
+ (1 − θ)

(
cne

jkix(m+Δm) − cne
jkim

)]
δα
m,i . (115)

A parallel procedure as applied in Sect. 4.1 is followed for the implicit upwind-
downwindweighted numerical scheme.When n = 1, and a subset form is considered
where m = 0, the scheme for the ABC fractional advection-dispersion equation is
unconditionally stable when 0.5 ≤ θ ≤ 1, but conditionally stable when 0 ≤ θ <

0.5, under the assumption

DL

(Δx)2
+ vθ

AB (α)

(1 − α)
δα
m,i > v

AB (α)

(1 − α)
δα
m,i. (116)

With the condition being

(2θ − 1) v
AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
> 0. (117)

If the opposed assumption is made

DL

(Δx)2
+ vθ

AB (α)

(1 − α)
δα
m,i < v

AB (α)

(1 − α)
δα
m,i. (118)

The implicit upwind-downwind weighted numerical scheme is conditionally sta-
ble, with the following condition

v
AB (α)

(1 − α)
δα
m,i >

(
δα
n,n−1 + vθδα

m,i

) AB (α)

(1 − α)
+ DL

(Δx)2
. (119)

A subset for m is then considered for all m ≥ 1. The assumption in Eq. (112) is
made again, under which the scheme is unconditionally stable when 0.5 ≤ θ ≤ 1;
and conditionally stable when 0 ≤ θ < 0.5, with the condition

(2θ − 1)
AB (α) v

(1 − α)
δα
m,i + (1 − cosφ)

AB (α) v

(1 − α)
βm,Eα,2 + 2DL

(Δx)2
> 0. (120)

If complementary assumption is made, and the scheme is conditionally stable
under the following condition

v
AB (α)

(1 − α)

(
βm,Eα,2 + δα

m,i

)
>

AB (α)

(1 − α)

(
δα
n,n−1 + vθδα

m,i + vcosφβm,Eα,2

) + DL

(Δx)2
.

(121)
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The next step for the recursive stability analysis was performed as described in
Sects. 4.1 and 4.2, and first the same assumption is made as in Eq. (116), and once
more the scheme is unconditionally stable when 0.5 ≤ θ ≤ 1; and conditionally
stable when 0 ≤ θ < 0.5, with the condition now being

2v
AB (α)

(1 − α)

(
δα
m,i (2θ − 1) + (1 − cosφ) βm,Eα,2

) + 4DL

(Δx)2
>

AB (α)

(1 − α)
βn,Eα,2 . (122)

In the same way, when the complementary assumption is made, the scheme is
conditionally stable, with the condition now being

2v
AB (α)

(1 − α)

(
(1 − θ) δα

m,i + (1 − cosφ) βm,Eα,2

) − 2DL

(Δx)2
>

AB (α)

(1 − α)

(
2δα

n,n−1 + βn,Eα,2

)
.

(123)

The stability analysis has established that the implicit upwind-downwindweighted
scheme is stable under the conditions in Eqs. (119)–(122). Additional conditions are
activated when the weighting factor is 0 ≤ θ < 0.5, as stated in Eqs. (117) and (120).
Only under these conditions, the error of the approximation made by the implicit
upwind-downwind weighted numerical scheme is not propagated throughout the
solution.

4.5 Upwind-Downwind Weighted Scheme (Explicit)

For the stability analysis of the explicit upwind-downwind weighted numerical
scheme (Sect. 3.4), the recursive induction terms are substituted as follows

acne
jkim = qcn−1e

jkim+rcn−1e
jki(m−Δm) − scn−1e

jki(m+Δm) − g
n−2∑
k=0

(
ck+1e

jkim − cke
jkim

)
δα
n,k

−vg
m∑
i=0

[
θ

(
cn−1ejkim − cn−1ejki(m−Δm)

)
+ (1 − θ)

(
cn−1ejkix(m+Δm) − cn−1ejkim

)
]

δα
m,i . (124)

Again, the process outlined in Sect. 4.1 is used to define the numerical stability
of the explicit upwind-downwind weighted numerical scheme. When n= 1, and a
subset for m is considered where m = 0, then the scheme is conditionally stable,
under the following assumption

AB (α)

(1 − α)
δα
n,n−1 + v

AB (α)

(1 − α)
δα
m,i < 2vθ

AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
, (125)
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with the condition

2v (θ − 1)
AB (α)

(1 − α)
δα
m,i +

2DL

(Δx)2
>

2AB (α)

(1 − α)
δα
n,n−1. (126)

A subset for m is then considered for all m ≥ 1, and under the same assumption
as in Eq. (121), the scheme is conditionally stable, under the following condition

2AB (α)

(1 − α)

(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
>

2AB (α)

(1 − α)

(
2vθδα

m,i + vβm,Eα,2

)
+ 4DL

(Δx)2
.

(127)

The subsequent stageof the recursive stability analysiswasperformedas described
in Sects. 4.1 and 4.2. The same assumption is made as in Eq. (125), and again the
scheme is conditionally stable, with the following stability condition

2AB (α)

(1 − α)

(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
>

AB (α)

(1 − α)

(
2vβm,Eα,2 + 4vθδα

m,i + βn,Eα,2

) + 4DL

(Δx)2
. (128)

The stability analysis for the explicit upwind-downwind weighted scheme is con-
cluded, where the scheme is conditionally stable under the assumption stated in
Eq. (125), with the conditions stated in Eqs. (126)–(128). Only under these con-
ditions, the error of the approximation made by the explicit upwind-downwind
weighted scheme is not proliferated throughout the solution.

5 Comparison of Numerical Stability

The stability conditions for the traditional upwind (implicit/explicit), and the new
upwindCrank-Nicholson andweightedupwind-downwind (implicit/explicit) numer-
ical schemes are tabulated in Appendix A. The traditional implicit upwind scheme
applied to the ABC fractional advection-dispersion equation is conditionally stable
under both assumptions made with a single condition for each assumption. There
is only one practically applicable assumption for the customary explicit upwind
scheme, which has three sub-conditions. The upwind Crank–Nicolson numerical
scheme applied to the ABC fractional advection-dispersion equation is uncondition-
ally stable under the first assumption, and has a single condition under the second
assumption made. The implicit upwind-downwind weighted numerical scheme is
conditionally stable under both assumptions made, but unconditionally stable for the
first assumption when the weighting factor is 0.5 ≤ θ ≤ 1. Similar to the explicit
upwind scheme, the explicit upwind-downwind weighted numerical scheme has one
practically applicable assumption, which has three conditions for stability. Table1
show the summary of numerical schemes.
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Table 1 Summary of numerical schemes

Summary

Scheme Assumption Stability conditions

Implicit upwind v AB(α)
(1−α)

δα
m,i > DL

(Δx)2
2v

(
δα
m,i + (1 − cosφ) βm,Eα,2

)
+ 2DL

(Δx)2
> βn,Eα,2

v AB(α)
(1−α)

δα
m,i < DL

(Δx)2
2v (1 − cosφ) βm,Eα,2 + 4DL

(Δx)2
> βn,Eα,2

Explicit upwind Assumption not made
AB(α)
(1−α)

δα
n,n−1 <

v AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2

max (λ, μ, ρ) <
2AB(α)
(1−α)

δα
n,n−1

Upwind Crank-Nicholson 0.5v AB(α)
(1−α)

δα
m,i > DL

(Δx)2

0.5v AB(α)
(1−α)

δα
m,i < DL

(Δx)2

Unconditionally stable v AB(α)
(1−α)

δα
m,i < 4DL

(Δx)2

Upwind-downwind
weighted scheme (implicit)

DL

(Δx)2
+ vθ AB(α)

(1−α)
δα
m,i >

v AB(α)
(1−α)

δα
m,i

(2θ − 1) v AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2
> 0

(2θ − 1) AB(α)v
(1−α)

δα
m,i+

(1 − cosφ)
AB(α)v
(1−α)

βm,Eα,2 + 2DL

(Δx)2
> 0

2v AB(α)
(1−α)

(
δα
m,i (2θ − 1) + (1 − cosφ) βm,Eα,2

)
+

4DL

(Δx)2
>

AB(α)
(1−α)

βn,Eα,2

Unconditionally stable when 0.5 ≤ θ ≤ 1

Conditionally stable when 0 ≤ θ < 0.5
DL

(Δx)2
+ vθ AB(α)

(1−α)
δα
m,i <

v AB(α)
(1−α)

δα
m,i

v AB(α)
(1−α)

δα
m,i >

(
δα
n,n−1 + vθδα

m,i

)
AB(α)
(1−α)

+ DL

(Δx)2

v
(
βm,Eα,2 + δα

m,i

)
AB(α)
(1−α)

>

2v
(
(1 − θ) δα

m,i + (1 − cosφ) βm,Eα,2

)
AB(α)
(1−α)

− 2DL

(Δx)2
>

(
2δα

n,n−1 + βn,Eα,2

)
AB(α)
(1−α)

Assumption not made

Upwind-downwind
weighted scheme (explicit)

AB(α)
(1−α)

δα
n,n−1 +

v AB(α)
(1−α)

δα
m,i <

2vθ AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2

2v (θ − 1) AB(α)
(1−α)

δα
m,i + 2DL

(Δx)2
>

2AB(α)
(1−α)

δα
n,n−1

(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
2AB(α)
(1−α)

>(
2vθδα

m,i + vβm,Eα,2

)
2AB(α)
(1−α)

+ 4DL

(Δx)2(
δα
n,n−1 + vδα

m,i + vcosφβm,Eα,2

)
2AB(α)
(1−α)

>(
2vβm,Eα,2 + 4vθδα

m,i + βn,Eα,2

)
AB(α)
(1−α)

+ 4DL

(Δx)2

6 Conclusions

An advection-focused fractional transport equation is developed using the ABC frac-
tional derivative. The boundedness, existence and uniqueness is determined using
the Picard–Lindelöf theorem. The semi-discretisation stability is evaluated in time,
and demonstrated that the developed equation is stable in time. Upwind-based finite
difference approximations were developed, and the stability of each was determined.
The implicit upwind formulations are found to be more stable than their comparable
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explicit formulations. The proposed implicit weighted upwind-downwind scheme
is more stable than the traditional upwind scheme when the weighting factor is
0.5 ≤ θ ≤ 1, which denotes at least half upwind-weighted or more, and the down-
wind influence less than half. Of the numerical schemes analysed, the upwindCrank–
Nicolson is the most stable numerical scheme, and would be suggested for use with
the ABC fractional advection-dispersion equation.
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