
Classifying Process Instances
Using Recurrent Neural Networks

Markku Hinkka1,2(B), Teemu Lehto1,2, Keijo Heljanko1,3, and Alexander Jung1

1 School of Science, Department of Computer Science,
Aalto University, Espoo, Finland

{markku.hinkka,keijo.heljanko,alex.jung}@aalto.fi
2 QPR Software Plc, Helsinki, Finland

teemu.lehto@qpr.com
3 HIIT Helsinki Institute for Information Technology, Espoo, Finland

Abstract. Process Mining consists of techniques where logs created by
operative systems are transformed into process models. In process mining
tools it is often desired to be able to classify ongoing process instances,
e.g., to predict how long the process will still require to complete, or to
classify process instances to different classes based only on the activities
that have occurred in the process instance thus far. Recurrent neural
networks and its subclasses, such as Gated Recurrent Unit (GRU) and
Long Short-Term Memory (LSTM), have been demonstrated to be able
to learn relevant temporal features for subsequent classification tasks.
In this paper we apply recurrent neural networks to classifying process
instances. The proposed model is trained in a supervised fashion using
labeled process instances extracted from event log traces. This is the
first time we know of GRU having been used in classifying business pro-
cess instances. Our main experimental results shows that GRU outper-
forms LSTM remarkably in training time while giving almost identical
accuracies to LSTM models. Additional contributions of our paper are
improving the classification model training time by filtering infrequent
activities, which is a technique commonly used, e.g., in Natural Language
Processing (NLP).

Keywords: Process mining · Prediction · Classification ·
Machine learning · Deep learning · Recurrent neural networks ·
Long Short-Term Memory · Gated Recurrent Unit ·
Natural Language Processing

1 Introduction

Unstructured event logs generated by systems in business processes are used
in Process Mining to automatically build real-life process definitions and as-is
models behind those event logs. There are growing number of applications for
predicting the properties of newly added event log cases, or process instances,
based on case data imported earlier into the system [3,4,12,14]. The more the
c© Springer Nature Switzerland AG 2019
F. Daniel et al. (Eds.): BPM 2018 Workshops, LNBIP 342, pp. 313–324, 2019.
https://doi.org/10.1007/978-3-030-11641-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11641-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-11641-5_25


314 M. Hinkka et al.

users start to understand their own processes, the more they want to optimize
them. This optimization can be facilitated by performing predictions. In order
to be able to predict properties of the new and ongoing cases, as much informa-
tion as possible should be collected that is related to the event log traces and
relevant to the properties to be predicted. Based on this information, a model of
the system creating the event logs can be created. In our approach, the model
creation is performed using supervised machine learning techniques.

In paper [7] we explored the possibility to use machine learning techniques
for performing classification and root cause analysis for a process mining related
classification task. In the paper, we tested the efficiency of several feature selec-
tion techniques and sets of features based on process mining models in the con-
text of a classification task. One of the biggest problems with that approach is
that, due to the simplicity of the features that are just numeric values, the user
still needs to select and generate the set of features from which to select the
final subset of features used for classification. For this purpose, we use Natural
Language Processing techniques together with recurrent neural network tech-
niques such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), the latter of which has not been used in process mining context before.
These techniques can also learn more complicated causal relationships between
the features in activity sequences in event logs. We have tested several differ-
ent approaches and parameters for the recurrent neural network techniques and
have compared the results with the results we collected in our earlier paper. As
in our previous paper, we focus on classification tasks yielding boolean results
which can be seen as responding to a query: Does this trace have the selected
properties or not? This approach provides a very flexible basis for implementing
additional functionalities such as, e.g., predicting the eventual duration, cate-
gory, or resource usage required for the trace to complete.

The primary motivation for this paper is the need to perform prediction and
classification based on activity sequences in event logs as accurately as possible
and while simultaneously maximizing the throughput. This motivation comes
from the need to build a system that can perform classification and prediction
activities accurately on user configurable phenomena based on huge event logs
collected and analyzed, e.g., using Big Data processing frameworks and methods
such as those discussed in our earlier paper [6]. Again, we focus on classification
response times by targeting web browser based interactive process mining tool
where user wants to perform classifications and expects classification results to
be shown within a couple of seconds. Due to this requirement, we also performed
some additional experiments for a couple of techniques in order to speed up the
classification process: Filtering out infrequent activities and truncating repeated
infrequent activities.

Based on a the number of released papers on the subject of predictions and
process mining, the interest in combining these subjects has been rapidly increas-
ing. However, only in very recent years, deep learning techniques have been used
to perform the actual process mining prediction tasks. [3] and [14] describe tech-
niques for prediction cycle times and next activities of ongoing traces using



Classifying Process Instances Using Recurrent Neural Networks 315

LSTM. In [12], the authors further improve the LSTM based prediction tech-
nique by also incorporating a mechanism for including attributes associated to
events. In contrast, our experimental system is designed to be used as a foun-
dation to solve any classification problem based on activity sequences, including
the prediction of the next activity or cycle time using either LSTM or GRU.
In [4], the authors present a framework for predicting outcomes of user specified
predicates for running cases using clustering based on control flow similarities
and then performing classification using attributes associated to events. This
two phased process and the usage of event attributes are their biggest difference
to our one phase process using only activity sequences.

The rest of this paper is structured as follows: Sect. 2 introduces main con-
cepts related to this paper as well as our goals. Section 3 presents the test system,
framework, and the data sets used in implementing our experiments. The results
of these experiments will be presented in Sect. 4. Finally Sect. 5 draws the con-
clusions from the test results.

2 Problem Setup

The concepts and terminology used throughout this paper mostly follow those
commonly used in process mining and machine learning communities. However,
the following subsections will provide short introduction to the most important
concepts related to this paper. For more detailed examples and discussion about
event logs, activity sequences and other related terminology, see, e.g., the book
by van der Aalst [15].

2.1 Classification and Prediction

A common supervised analysis task solved by machine learning techniques is to
predict or classify data points based on their properties. The properties of data
points are often called also as predictors or features. Predictors as well as out-
comes of the prediction can be either continuous or they may be of enumerated
types which often are also known as categorical values or labels. When the out-
come of a prediction is this kind of a categorical value, such as a binary value,
the performed analysis task is often called classification.

Usually classification in machine learning consists of two phases: training a
model and performing the actual predictions using the trained model. In the
model training phase, a supervised machine learning algorithm is used to create
a model which produces a predicted outcome for a data point given in a form of
predictors. This model building is performed by repeatedly feeding the algorithm
with training data points consisting of predictors of an actual data point and
actual outcomes that the modeled system produced for that data point. Eventu-
ally the model learns to simulate the system it is modeling by becoming better
and better in predicting the outcomes for the training set. As a good training
data set is a representative sample of the actual test data to be used on the
model, the trained model will also be able to predict also the outcomes of the



316 M. Hinkka et al.

actual test data. If the accuracy of predictions for a training data is much better
than the accuracy achieved for the test data, the model is said to be overfitting :
The model has been trained with the biases in the training data and it is not
able to generalize its predictions for test data.

2.2 Recurrent Neural Networks

Artificial Neural Networks are computing systems inspired by biological neural
networks constituting animal brains. They consist of simple interconnected units,
also known as neurons. The whole network can be trained to provide desired out-
puts for desired inputs. Recurrent Neural Networks (RNN) are a kind of deep
neural networks that are connected in a way that provides the neural network
a capability to remember earlier inputs fed into the network or when producing
text, the network is capable of remembering what it has produced before. For
example, recurrent neural networks can be used to train to produce text sen-
tences. In this case it is essential to know what words have been produced before.
RNNs have been used for large variety of problems, such as speech recognition,
machine translation and automatic image captioning. Traditional RNNs have an
inherent problem called vanishing gradient problem that makes it very hard for
them to learn long distance dependencies [2].

Long Short-Term Memory and Gated Recurrent Unit. To overcome van-
ishing gradient problem, more complicated cell types have been developed, such
as Long Short-Term Memory (LSTM) [9] and Gated Recurrent Units (GRU) [1].

Both GRU and LSTM solve the problem using a gating mechanism that has
multiple layers of gates, which are actually a layers of neurons, that optionally
let information through. In LSTM, the purposes of the gates are: Forget gate
determines what information to throw away from the current hidden state, input
gate layer decides which values to update and output gate decides which values
the cell should output. In GRU, there are only two gates: Update gate determines
how much of the previous hidden state needs to be passed along to the future,
whereas reset gate determines how much of the previous hidden state to forget.

All of these layers are trained as any other neural network which usually
involves defining a cost function and using some method of gradient descent to
find out the optimal parametrization. The size of the hidden state defines how
long vector of numeric values is used to store the internal state of the unit. The
larger the hidden state size is, the more the model has potential for learning while
also taking more time to train. When using too large hidden states compared to
the actual modeled phenomenon, there is also a risk of overfitting the training
data.

According to the empirical evaluations [2,10], there is no clear winner on
whether GRU or LSTM is the preferred choice. Both the architectures yield
models with similar performance characteristics. However, due to GRU having
fewer parameters to train, it has the reputation of being somewhat faster to
train. In this paper we want to see if these observations carry over to process
mining.



Classifying Process Instances Using Recurrent Neural Networks 317

2.3 Natural Language Processing

Natural Language Processing is a field of study that focuses on studying inter-
actions between human languages and computers. It is used to tackle problems
involving speech recognition, understanding natural language and generating
natural language. In the context of this paper, we use similar approach often
used in tasks requiring understanding of a natural language. In a way, we pro-
duce a new language that consists of sentences consisting of words that represent
activities within traces. Using these artificial sentences and labels, representing
the desired labeling of the trace attached to each sentence, we train a deep neu-
ral network model to predict the eventual labels for these sentences, even for
activity sequences that represent process instances that have not yet finished.

2.4 Process Instance Classification

The goal of this paper was to produce a classification label using a trained RNN
for any given activity sequence based only on the activity identifiers contained
in the sequence itself. The actual labels for activity sequences used in this paper
were of boolean-type, but the used algorithms should work equally well also
with more than two possible labels. We did not set any limitations for the actual
property being labeled. However, in this paper we concentrated especially in
trace throughput time related properties, but it can as easily be related to, e.g.,
used resources, trace value or its type. We also experimented with a couple of
RNN-based approaches in predicting the eventual classification for unfinished
traces.

3 Experimental Setup

Tests were performed using five publicly available data sets. Table 1 shows the
details of each tested dataset including the number of traces, number of positive
classifications, the maximum activity sequence lengths of traces and the number
of unique activities. For all the other datasets except BPIC14, we used all the
available rows. For BPIC14 we used 40000 first cases of all the available 466616
traces in order for the results to be comparable with our earlier work in [7], which
had this limitation. For every data set, we selected at least one property that
somehow split the model into two segments with roughly 20%–40% of all the
traces in the positive segment and the rest in the negative. For BPIC14 model
we used two boolean labellings: Is the total duration of the case longer than
7 days, and does the case represent a “request for information” or something
else. Case duration-based labeling relies only on the contents of the events in the
event log, whereas the categorization uses a separate case attribute. For all the
other data sets we decided to test only case durations in order for the results
to be comparable with the tests performed in [7] and its extended version [8].
In BPIC12 and BPIC13, the duration threshold was set to 2 weeks. In BPIC17,
this threshold was set to 4 weeks and in Hospital data set to 20 weeks.



318 M. Hinkka et al.

Table 1. Used event logs and their relevant statistics

Event log # Traces # Positive % Positive Seq. length # Activities

BPIC14-40k [18] 40000 8108/7473 20%/19% 179 39

BPIC12 [17] 13087 3330 25% 176 36

BPIC13, incidents [13] 7554 1579 21% 124 12

BPIC17 [19] 31509 11584 37% 181 26

Hospital [16] 1143 372 33% 1201 624

The input given to the test framework was a CSV file that was formatted
in such a way that every row in the file had one column for the labeling and
another column for the activity sequence of a single trace in the source data set.
These CSV files were created using QPR ProcessAnalyzer Excel Client-process
mining tool1. The used CSV files are available in support materials [5].

After reading these CSV files into memory, we used standard Natural Lan-
guage Processing techniques. I.e., every activity sequence is treated as a sen-
tence and every activity identifier as a word in a sentence. These sentences are
then converted by assigning a unique integer identifier for each unique activity
identifier and also for each classification label. Finally, when sending the activ-
ity sequences into the RNN, both in the training and in the actual validation
phase, these integers representing activities were “one-hot” encoded. The actual
“one-hot” encoded classification label for the trace was used as the expected
classification label in the training phase.

In order to enhance the training time performance, we experimented with
limiting the number of activity identifiers by only accepting N most common
activity identifiers in the training set and using a special unknown activity iden-
tifier to represent all the rest of the activity identifiers. We also ran an experiment
applying an additional truncation step where all continuous sequences of these
unknown activity identifiers were replaced with just one occurrence of the said
activity identifier.

Testing was performed on a single system having Windows 10 operating sys-
tem. The used hardware consisted of 3.5 GHz Intel Core i5-6600K CPU with
32 GB of main memory and NVIDIA GeForce GTX 960 GPU having 4 GB
of memory. The testing framework was built on the test system using Python
programming language. The actual recurrent neural networks were built using
Lasagne2 library that works on top of Theano3 which is an efficient mathemat-
ical expression evaluation library that can transparently perform computations
in GPU and can also perform symbolic differentiation efficiently. Theano was
configured to use GPU via CUDA for expression evaluation. The framework
allowed testing several different hyperparameter combinations. The source code
of the testing framework is available in support materials [5].

1 https://www.qpr.com/products/qpr-processanalyzer.
2 https://lasagne.readthedocs.io/.
3 http://deeplearning.net/software/theano/.

https://www.qpr.com/products/qpr-processanalyzer
https://lasagne.readthedocs.io/
http://deeplearning.net/software/theano/


Classifying Process Instances Using Recurrent Neural Networks 319

The model was trained using Adam-gradient descent optimizer that has been
found performing well with various types of neural networks [11]. We also used
fixed learning rate through all the test runs referred to in this paper. Cross-
entropy between the predicted and true labeling is used as the model training cost
function. Gradient clipping was also used to avoid exploding gradients problem.
All the training and prediction was performed in batches of configurable size
by creating a batch of sentences and then sending these batches as the training
or test data for the RNN to process. Batching is used to improve the efficiency
since it enables Theano to distribute calculations in bigger chunks to GPU for
parallel processing. All RNN unit gates, nonlinearities and weight matrices were
initialized with the default initialization values built-in to Lasagne library.

In most of the test runs, model was trained for 50 test iterations, each con-
sisting of total of 100000 traces, which translated roughly to minimum of 166 and
maximum of 5834 epochs, depending on the used dataset. After every iteration,
prediction accuracies, Area Under the Receiver Operating Characteristic curves
(AUROC) and confusion matrices were calculated for the whole validation data
set. The accuracy prediction was performed separately for traces of length 25%,
50%, 75% and 100% from the original length so that a continuous subsequence
starting from the first activity is used. Every test iteration consisted of one hun-
dred thousand training runs to train the model. One training run consisted of
one activity sequence and its associated outcome.

4 Experimental Results

Figure 1 shows the maximum validation set classification accuracy results for all
the tested datasets separately on both the RNN types having 32 as the size of
the hidden state and the number of layers set to 1. Similarly Fig. 2 shows the
AUROC values in the same test runs. From these results, it can be seen that
LSTM and GRU both manage to get almost the same classification accuracies
in both the measurements. AUROC values indicate that both RNN types have
been created in a way that the model is able to classify data quite accurately
and also that the model is not a trivial one such as always predicting a certain
classification.

Next we measured the time usage when training and testing models. Figure 3
shows how long it took to train the model for total of 100000 traces. Similarly
Fig. 4 illustrates the average time usage for one test iteration in the test involving
running the predictions four times for all the validation data set traces with all
the tested activity sequence subsets. From these figures it can clearly be seen
that GRU is faster to train and perform classifications with, than LSTM with
similar hidden state sizes and the default initializations. Based on these results,
we decided to use only GRU in our further tests.

The next step was to figure out whether it is of any use to use more than one
GRU layer for our classification task. Based on our tests, it was found out that
having two layers brings only very minimal value in our test case. In some of the
tested datasets, it takes longer for the two layer model to even start getting any



320 M. Hinkka et al.

70%
75%
80%
85%
90%
95%

Su
cc

es
s 

Ra
te

gru

lstm

Fig. 1. Maximum classification accu-
racy for data sets for both the exper-
imented RNN types

0,70
0,75
0,80
0,85
0,90
0,95
1,00

AU
RO

C

gru

lstm

Fig. 2. Maximum AUROC values for
data sets for both the experimented
RNN types

0

10

20

30

40

50

Av
er

ag
e 

Tr
ai

ni
ng

 T
im

e 
(s

/t
ra

in
 b

at
ch

)

gru

lstm

Fig. 3. Training time usage by RNN
type

0

2

4

6

8

10

Av
er

ag
e 

Te
s

ng
 T

im
e 

(s
/t

es
t b

at
ch

)

gru

lstm

Fig. 4. Testing time usage by RNN type

84,0 %

84,5 %

85,0 %

85,5 %

86,0 %

86,5 %

16 32 64 128

Su
cc

es
s 

Ra
te

Hidden State Size

Fig. 5. The effect of hidden state size
to test accuracy

15

20

25

30

35

40

16 32 64 128

Av
er

ag
e 

Tr
ai

ni
ng

 T
im

e 
(s

/t
ra

in
 b

at
ch

)

Hidden State Size

Fig. 6. The effect of hidden state size to
training time usage

60 %
65 %
70 %
75 %
80 %
85 %
90 %
95 %

Su
cc

es
s 

Ra
te

Max of 100%
traces

Max of 75% traces

Max of 50% traces

Max of 25% traces

Fig. 7. Prediction accuracy for incom-
plete traces

60%
65%
70%
75%
80%
85%
90%
95%

Su
cc

es
s 

Ra
te

50% Traces used in
training

100% Traces used
in training

Fig. 8. Prediction accuracy for incomplete
traces using model trained using incomplete
traces



Classifying Process Instances Using Recurrent Neural Networks 321

0

10

20

30

40

50

0 1 2 3 4 5 10 15 20 25 30 40 50 100 All

Ti
m

e 
U

se
d 

fo
r T

ra
in

in
g 

(s
/t

ra
in

 b
at

ch
)

Vocabulary Size

Fig. 9. Training time usage by vocab-
ulary size for Hospital dataset

60%
65%
70%
75%
80%
85%
90%

0 1 2 3 4 5 10 15 20 25 30 40 50 100 All

Su
cc

es
s 

Ra
te

Vocabulary Size

Fig. 10. Maximum classification accuracy
by vocabulary size for Hospital dataset

real advantage over the always predicting the most common outcome, whereas
the one layer model learns clearly faster. In addition to this, it was seen that
training two layers required double the amount of time. While the maximum
accuracy was in some cases slightly better for the two layer model, we chose
to continue our tests only with one layer model. It is also characteristic of the
test runs that the accuracy first rises from the trivial classification accuracy to
its maximum, after which it starts to slowly degrade. This indicates that after
certain point, the model starts to over-fit the data and does not generalize that
well any more.

Next, we wanted to test the effect of the hidden state size into the accuracy
of the classification. Figure 5 illustrates this by showing the average achieved
accuracy for all the tested datasets, except Hospital. It can be seen that using
hidden state size of 32 yields the most accurate results in the experimented cases.
Since also Fig. 6 shows that the average time usage for each training iteration is
the smallest when using 32 as the hidden state size, we chose 32 as the hidden
state size for all the remaining experiments.

Next task we wanted to experiment with was the prediction: What is the
accuracy of trace classification when the trace is still ongoing? Figure 7 shows
the maximum prediction accuracies for all the experimented datasets when the
model was trained only with full length traces but the validation was performed
with continuous subsequences of 25%, 50%, 75% and 100% of all the activities
within traces. Based on this figure, one can draw a conclusion that the prediction
accuracy clearly depends on the data set and the classification task being per-
formed. E.g., in BPIC12, BPIC13 and BPIC14 data set, it is possible to achieve
over 80% accuracy when the classification is performed based on the duration of
the cases even when the trace being predicted has only 50% of the activities of
a full trace. However, BPIC17 and Hospital perform much worse both providing
over 80% accuracy only when given full traces.

The next Fig. 8 compares the classification prediction accuracies of models
built using two different methods. In the first method, the model is trained with
full traces as in Fig. 7 whereas in the second method the model is trained with
first 50% of the activities in the traces. In both the cases, 50% traces are used as
test data set. Based on these results, a conclusion can be drawn that it is best
to train the model using traces having as similar characteristics as possible to
the traces used in the testing. Thus, predicting the labeling of an ongoing trace,



322 M. Hinkka et al.

it is recommended that the model has also been trained with ongoing traces in
similar phase. The phase could be measured, e.g., by measuring a life-time of
the trace thus far or even using a separate neural network model trained for that
purpose. It should, however, be noted also that for some datasets the prediction
works nearly as well with full traces as with partial traces. Next we compared
the maximum prediction accuracies achieved with GRUs to those achieved using
Gradient Boosting Machine (GBM)-based technique while also applying feature
selection as discussed in paper [7]. The differences in the accuracies achieved in
these experiments are quite consistently in favor of GRU technique. Especially
in the Hospital data set the accuracy improvement was exceptionally good.

We also compared the time required for GBM to reach its maximum accuracy
for each dataset, in the experiments made for [8], with the time required for GRU
to train a model that has at least similar accuracy as the GBM. In this test,
GBM had better response times in BPIC12 and BPIC17. Hospital training time
performance was also clearly worse in GRU. Partially the reason for that was the
fact that we had to use four times smaller batch size in training since the GPU
in the test system did not have enough memory to use larger batch sizes used in
other datasets. Another issue to be noted especially in Hospital dataset is that
by using feature selection the amount of features can be brought down to a very
small number, for which GBM can be performed very efficiently. However, the
GRU still has to work with full activity sequences and full vocabularies.

For these purposes, we also experimented with vocabularies that were limited
to a selected number of the most common activity identifiers. The results of
these tests for Hospital data set are shown in Figs. 9 and 10, which illustrate
that the best training times as well as accuracies were achieved using a limited
vocabulary. The time required to build the model with the vocabulary size of
20, which achieved the most accurate classification results, is only about 16% of
the time required to train with full vocabulary. Using this same model, the time
required to reach GRU’s best performance was 119 s, which still was slower than
GBM’s 29 s. Thus it seems that the length of the sequence is also a bottleneck.
Finally, we made a test runs where vocabulary size was set to 20 and we also
truncated all the sequences so that successive infrequent words that were not in
vocabulary were replaced with only one occurrence of the word representing an
infrequent word. In this case, the model training took about 20% less time with
very small effect to the accuracy. This way, we managed to reach the GBM’s
best performance in 46 s. Finally using similar approach for a model built using
vocabulary of size 5, the result was achieved faster than GBM. In this case, the
maximum sequence length was almost halved due to the truncation down to 610
unique activity identifiers.

Thus, in the end, GRU managed to outperform more traditional GBM in
all the measured metrics based on the classification accuracy and training time.
GRU, which has not been earlier used in process mining context, also clearly
outperformed LSTM in the required training time while still achieving similar
accuracy. GRU based solutions offer also various other simple means to improve
the accuracy and required training time, such as using different gradient descent



Classifying Process Instances Using Recurrent Neural Networks 323

optimization algorithms, modifying the learning rate and also using bigger batch
sizes if there is enough memory available in the GPU. Also, in order to avoid
overfitting, a regularization method, such as dropout, could be applied.

5 Conclusions

Employing Recurrent Neural Network based classification for process mining
traces, processed by Natural Language Processing techniques into sequences of
words, can achieve at least similar level of performance as feature selection and
GBM based classification. One big advantage for RNN based solution is that
the amount of input data required is very small; just the list of traces with
their activity sequences and the classification information for the training data.
For more traditional classification solutions, user needs to provide the full set
of features based on which the training and classifications are made. Extract-
ing these features out of activity sequences can be a very expensive process in
itself. This feature selection was the core of our earlier paper [7]. Our experi-
ments in this paper clearly showed that GRU based models yield more accurate
classification results faster than more traditional GBM based classification using
any of the structural feature combinations experimented in our previous work.
All the experiments were performed on a framework that offloaded most of the
calculations to GPU for improved performance and scalability.

One of our main results is the suggestion to use GRU models for predicting
process instance outcomes as GRU, that has not previously been used in process
mining context, is usually better choice for RNN type than LSTM mostly due
to it being faster to train and its ability to achieve almost identical classification
and prediction accuracy. We experimented also two approaches for the prediction
of eventual classification label for still ongoing traces. From this test we found
out that it is always clearly better to train a model with traces at as similar
phases of their lifetime as possible to the traces being tested.

We also investigated how to improve the required training time, especially
when using data sets having long activity sequences and a lot of activities com-
pared to the number of training data activity sequences. We found out that the
number of activities can be decreased by treating all the infrequent activities as
one activity without it having a big effect to the classification accuracy, while still
having a noticeable effect in throughput time and GPU memory requirements.
We also found out that replacing long sequences of infrequent activities with
just one activity representing all the infrequent activities can further improve
the throughput time without it affecting dramatically into classification accu-
racy.

All the raw test results gathered from the performed experiments, some of
which was not discussed nor explored in this paper in detail, together with the
developed python source code for the test framework, can be found in the support
materials [5].

Acknowledgements. We want to thank QPR Software Plc for funding our research.
Financial support of Academy of Finland projects 139402 and 277522 is acknowledged.



324 M. Hinkka et al.

References

1. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat,
M., Carreras, X., Vecchi, E.M. (eds.) Proceedings of SSST@EMNLP 2014, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014, pp. 103–111. Association for Computational Linguistics
(2014)

2. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. CoRR, abs/1412.3555 (2014)

3. Evermann, J., Rehse, J.-R., Fettke, P.: Predicting process behaviour using deep
learning. Decis. Support Syst. 100, 129–140 (2017)

4. Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. CoRR, abs/1506.01428 (2015)

5. Hinkka, M.: Support materials for articles (2018). https://github.com/mhinkka/
articles. Accessed 11 Mar 2018

6. Hinkka, M., Lehto, T., Heljanko, K.: Assessing big data SQL frameworks for ana-
lyzing event logs. In: 24th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, PDP 2016, Heraklion, Crete, Greece,
17–19 February 2016, pp. 101–108. IEEE Computer Society (2016)

7. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Structural feature selection for event
logs. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 20–35.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 2

8. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Structural feature selection for event
logs. CoRR, abs/1710.02823 (2017)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Józefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent
network architectures. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6–11
July 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp. 2342–2350.
JMLR.org (2015)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR,
abs/1412.6980 (2014)

12. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware
remaining time prediction of business process instances. In: 2017 IEEE Sympo-
sium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, 27
November–1 December 2017, pp. 1–7. IEEE (2017)

13. Steeman, W.: BPI challenge 2013, incidents (2013)
14. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-

itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

15. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19345-3

16. Van Dongen, B.: Real-life event logs - hospital log (2011)
17. Van Dongen, B.: BPI challenge 2012 (2012)
18. Van Dongen, B.: BPI challenge 2014 (2014)
19. Van Dongen, B.: BPI challenge 2017 (2017)

https://github.com/mhinkka/articles
https://github.com/mhinkka/articles
https://doi.org/10.1007/978-3-319-74030-0_2
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3

	Classifying Process Instances Using Recurrent Neural Networks
	1 Introduction
	2 Problem Setup
	2.1 Classification and Prediction
	2.2 Recurrent Neural Networks
	2.3 Natural Language Processing
	2.4 Process Instance Classification

	3 Experimental Setup
	4 Experimental Results
	5 Conclusions
	References




