Paolo Ceravolo - Maurice van Keulen
Kilian Stoffel (Eds.)

Data-Driven
Process Discovery
and Analysis

7th IFIP WG 2.6 International Symposium, SIMPDA 2017
Neuchatel, Switzerland, December 6-8, 2017
Revised Selected Papers

LNBIP 340

@ Springer

Lecture Notes
in Business Information Processing 340

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany
John Mylopoulos
University of Trento, Trento, Italy
Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia
Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA
Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Paolo Ceravolo - Maurice van Keulen
Kilian Stoffel (Eds.)

Data-Driven
Process Discovery
and Analysis

7th IFIP WG 2.6 International Symposium, SIMPDA 2017
Neuchatel, Switzerland, December 6-8, 2017
Revised Selected Papers

@ Springer

Editors

Paolo Ceravolo Kilian Stoffel
Universita degli Studi di Milano IMI
Crema, Italy University of Neuchatel

. Neuchatel, Switzerland
Maurice van Keulen

University of Twente
Enschede, The Netherlands

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-11637-8 ISBN 978-3-030-11638-5 (eBook)

https://doi.org/10.1007/978-3-030-11638-5
Library of Congress Control Number: 2018967449

© IFIP International Federation for Information Processing 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-4519-0173
http://orcid.org/0000-0003-2436-1372
https://doi.org/10.1007/978-3-030-11638-5

Preface

The rapid growth of organizational and business processes data, managed via infor-
mation systems, has made available a big variety of information that consequently
created a high demand for making data analytics more effective and valuable. The
seventh edition of the International Symposium on Data-Driven Process Discovery and
Analysis (SIMPDA 2017) was conceived to offer a forum where researchers from
different communities can share their insights in this hot new field. As a symposium,
SIMPDA fosters exchanges among academic research, industry, and a wider audience
interested in process discovery and analysis. The event is organized by the IFIP WG
2.6. This year the symposium was held in Neuchatel, Switzerland.

Submissions cover theoretical issues related to process representation, discovery,
and analysis or provide practical and operational examples of their application. To
improve the quality of the contributions, the symposium is structured for fostering
discussion and stimulating improvements. Papers are pre-circulated to the authors, who
are expected to read them and make ready comments and suggestions. After the event,
authors have the opportunity to improve their work extending the presented results. For
this reason, authors of accepted papers were invited to submit extended articles to this
post-symposium volume. We received 19 submissions and six papers were accepted for
publication in this volume.

The current selection of papers underlines the most relevant challenges that were
identified and proposes novel solutions for facing these challenges.

In the first paper, “Online Detection of Operator Errors in Cloud Computing Using
Anti-Patterns,” Arthur Vetter studies the role of anti-patterns to support monotonic
inference in real-time event processing. In particular his word addresses monitoring on
a specific model, namely, the topology and orchestration specification for cloud
applications, which explicitly models the maintenance operations of IT service
applications.

The second paper, by Sebastian Steinau et al., is titled “Executing Lifecycle Pro-
cesses in Object-Aware Process Management” and presents an advanced methodology
for coping with object-aware process management, where the operational semantics is
not obtained by specifying a workflow but by constraining the data flow characterizing
business objects.

The third paper by Leonardi et al., “Towards Semantic Process Mining Through
Knowledge-Based Trace Abstraction” proposes an approach to lift the semantics of
event logs. The proposed framework is able to convert actions found in the event log
into higher-level concepts, on the basis of a domain knowledge. According to the
authors, the semantics lift process is proven to be a means to significantly increase the
quality of the mined models, when measured in terms of fitness.

The fourth paper by Gega et al., “Mining Local Process Models and Their Corre-
lations” aims at simplifying the integration of local process model (LPM) mining,
episode mining, and the mining of frequent subtraces. For instance, the output of a

VI Preface

subtrace mining approach can be used to mine LPMs more efficiently. Also, instances
of LPMs can be correlated together to obtain larger LPMs, thus providing a more
comprehensive overview of the overall process. The authors discuss the benefit of this
integration on a collection of real-life event logs.

The fifth paper by Couvreur and Ezpeleta, “A Linear Temporal Logic
Model-Checking Method over Finite Words with Correlated Transition Attributes”
presents an adaption of the classic timed propositional temporal logic to the case of
finite words and considers relations among different attributes corresponding to dif-
ferent events. The introduced approach allows for the use of general relations between
event attributes by means of freeze quantifiers as well as future and past temporal
operators. The paper also presents a decision procedure, as well as a study of its
computational complexity.

The sixth paper by Azzini et al., “A Report-Driven Approach to Design Multidi-
mensional Models” presents an approach that can generate a multidimensional model
from the structure of expected reports as data warehouse output. The approach is able
to generate the multidimensional model and populate the data warehouse by defining a
knowledge base specific to the domain. Although the use of semantic information in
data storage is not new, the novel contribution of this approach is represented by the
idea of simplifying the design phase of the data warehouse, making it more efficient, by
using an industry-specific knowledge base and a report-based approach.

We gratefully acknowledge the research community that gathered around the
problems related to process data analysis. We would also like to express our deep
appreciation of the referees’ hard work and dedication. Above all, thanks are due to the
authors for submitting the best results of their work to the Symposium on Data-Driven
Process Discovery and Analysis.

We are very grateful to the Universita degli Studi di Milano and to IFIP for their
financial support, and to the University of Neuchatel for hosting the event.

November 2018 Paolo Ceravolo
Maurice Van Keulen
Kilan Stoffel

Organization

Chairs

Paolo Ceravolo Universita degli Studi di Milano, Italy
Maurice Van Keulen University of Twente, The Netherlands
Kilan Stoffel University of Neuchatel, Switzerland

Advisory Board

Ernesto Damiani Universita degli Studi di Milano, Italy
Erich Neuhold University of Vienna, Austria

Philippe Cudré-Mauroux University of Fribourg, Switzerland
Robert Meersman Graz University of Technology, Austria
Wilfried Grossmann University of Vienna, Austria

SIMPDA Award Committee

Paul Cotoftrei University of Neuchatel, Switzerland
Paolo Ceravolo Universita degli Studi di Milano, Italy

Web and Publicity Chair

Fulvio Frati Universita degli Studi di Milano, Italy

Program Committee

Akhil Kumar Penn State University, USA

Benoit Depaire University of Hasselt, Belgium
Chintan Amrit University of Twente, The Netherlands
Christophe Debruyne Trinity College Dublin, Ireland
Ebrahim Bagheri Ryerson University, Canada

Edgar Weippl TU Vienna, Austria

Fabrizio Maria Maggi University of Tartu, Estonia

George Spanoudakis City University London, UK

Haris Mouratidis University of Brighton, UK

Isabella Seeber University of Innsbruck, Austria

Jan Mendling Vienna University of Economics and Business, Austria
Josep Carmona UPC - Barcelona, Spain

Kristof Boehmer University of Vienna, Austria

Manfred Reichert Ulm University, Germany

Marcello Leida TAIGER, Spain

Mark Strembeck WU Vienna, Austria

VI Organization

Massimiliano De Leoni
Matthias Weidlich
Mazak Alexandra
Mohamed Mosbah
Mustafa Jarrar

Robert Singer

Roland Rieke
Schahram Dustdar
Thomas Vogelgesang
Valentina Emilia Balas
Wil Van der Aalst

Eindhoven TU, Netherlands

HU Berlin, Germany

Vienna University of Technology, Austria
University of Bordeaux, France

Birzeit University, Palestine

FH JOANNEUM, Austria

Fraunhofer SIT, Germany

Vienna University of Technology, Austria
University of Oldenburg, Germany
University of Arad, Romania

Technische Universiteit Eindhoven, The Netherlands

Contents

Online Detection of Operator Errors in Cloud Computing
Using Anti-patternst
Arthur Vetter

Executing Lifecycle Processes in Object-Aware Process Management
Sebastian Steinau, Kevin Andrews, and Manfred Reichert

Towards Semantic Process Mining Through Knowledge-Based
Trace Abstraction
G. Leonardi, M. Striani, S. Quaglini, A. Cavallini, and S. Montani

Mining Local Process Models and Their Correlations
Laura Genga, Niek Tax, and Nicola Zannone

A Linear Temporal Logic Model Checking Method over Finite Words
with Correlated Transition Attributes.
Jean-Michel Couvreur and Joaquin Ezpeleta

A Report-Driven Approach to Design Multidimensional Models.
Antonia Azzini, Stefania Marrara, Andrea Maurino, and Amir Topalovié¢

Author Index e

®

Check for
updates

Online Detection of Operator Errors
in Cloud Computing Using Anti-patterns

Arthur Vetter(®)

Horus software GmbH, Ettlingen, Germany
arthur.vetter@horus.biz

Abstract. IT services are subject of several maintenance operations like
upgrades, reconfigurations or redeployments. Monitoring those changes
is crucial to detect operator errors, which are a main source of service fail-
ures. Another challenge, which exacerbates operator errors is the increas-
ing frequency of changes, e.g. because of continuous deployments like
often performed in cloud computing. In this paper, we propose a mon-
itoring approach to detect operator errors online in real-time by using
complex event processing and anti-patterns. The basis of the monitor-
ing approach is a novel business process modelling method, combining
TOSCA and Petri nets. This model is used to derive pattern instances,
which are input for a complex event processing engine in order to analyze
them against the generated events of the monitored applications.

Keywords: Complex event processing + Anti-pattern - TOSCA -
IT service management + Anomaly detection

1 Introduction

Operator errors have been one of the major reasons for IT service failures [1-6]
and will probably continue to be regarding current trends like continuous deliv-
ery, DevOps and infrastructure-as-code [7], which are especially very common in
cloud computing. In recent years, several studies and methods were developed
to detect errors in very complex IT systems [8]. Those traditional methods are
suited for detecting errors during “normal” operations, but not during change
operations like reconfigurations or rolling upgrades, when one node after the
other is upgraded [9]. The reason for the amount of operator errors is their
human nature, because change operations are either performed or initiated by
human operators.

This paper presents current research results of a novel monitoring approach
for those change operations. The monitoring approach is based on a process
model, combining TOSCA (Topology and Orchestration Specification for Cloud
Applications) and high-level Petri nets [8], which explicitly models the mainte-
nance operations of the IT service applications. This process model is used to
derive pattern instances from it. Those pattern instances are checked through

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019

P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 1-24, 2019.
https://doi.org/10.1007/978-3-030-11638-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_1

2 A. Vetter

a complex event processing engine against state events and transaction events.
State events describe the state of the application, whereas transaction events
describe each single operation performed on the application. Therefore, the logs
of the applications are filtered for meaningful transaction events and are sent to
the complex event processing engine, allowing the detection of operator errors
almost in real-time. The complex event processing engine compares the pattern
instances with the generated events through anti-patterns and creates an error
message, when an anti-pattern instance was detected. Figure 1 gives an overview
of the general monitoring approach.

IT service

operator actions
application 1

transaction event streams

operator actions - . .
application 2 complex event anti-pattern instances
processing engine (error message)
state event streams (checking for anti-
patterns)

operator actions L
application 3

monitoring
application

pattern instances

process model

'

Fig. 1. General monitoring approach

The remainder of this paper is organized as follows: The next section gives
a short overview of typical operator errors. Section 3 describes the fundamen-
tals of TOSCA and XML nets, which are used to model the actual mainte-
nance. Section4 describes the concept of patterns and anti-patterns. Section b
presents the proof of concept implementation. In the next section first experi-
mental results are presented and discussed in the following section. Afterwards
related work is presented. Section 9 concludes the paper.

2 Operator Errors

Oppenheimer et al. [5] and many other authors like [4,9] classify operator errors
in process errors and configuration errors. Process errors can be further differen-
tiated in following errors: forgotten activity, an unneeded activity was executed,
a wrong activity was executed or actual correct activities were executed in the
wrong order. Configuration errors can be separated in formatting errors and con-
figuration value errors [13]. Formatting errors can be further separated in lexical

Online Detection of Operator Errors in Cloud Computing 3

errors, syntactical errors and typos. Configuration value errors can be further
classified in local value inconsistencies and global environment inconsistencies.
A monitoring approach to detect operator errors should be able to detect all
those process and configuration error types. Table 1 gives an example for every
type of operator error and a reference to a study with further information and
examples.

Table 1. Operator error examples

tion instead of sequentially maintaining the servers

Operator error Example Description Refer-
ence

Forgotten activity | Forgot to restart a server [4]

Unneeded activity | Unnecessary restart of a server [9]

Wrongly Restoration of a wrong backup [4]

executed activity

Wrong order Bringing down two servers in parallel for configura- |[9]

ymore.

Local log_output ="Table" | According to the value “log”, |[10]
Inconsistency log = query.log the user wanted to store logs
in a file, but the value
“log.output” controls to store
data in a database table
Global datadir =|“datadir” points to an old|[10]
Inconsistency /some/old/path path, which does not exist an-

Lexical Errors

InitiatorName:
iqn:DEV_domain

Only lowercase letters are al-
lowed (“DEV™)

[10]

Syntactical Errors

“mysql.so” depends on ‘“re-

[10]

code.so” and was configured
in the wrong order

extension = recode.so
extension = recdoe.so
extension = mysql.so

The correct of

“recdoe.s0” is

writing
“recode.so”

Typo [10]

3 Fundamentals

The process model is a combination of TOSCA and XML nets and was intro-
duced in a former paper [8]. In this chapter, we describe the fundamentals of
TOSCA and XML nets shortly and then describe how maintenance operations
can be modelled with TOSCA and XML nets.

3.1 TOSCA

TOSCA is a standard, released by OASIS [14] to support the portability of
cloud applications between different cloud providers and the automation of cloud
application provisioning. Therefore, TOSCA provides a modelling language to
describe cloud applications as Service Templates. A Service Template consists
of a Topology Template and of optional Plans (see Fig. 2).

4 A. Vetter

Service Template

/ Topology Template Node Types \
Node Type Y
Capability Definitions
____________ 4] 03
; B o
typefor | @ -
Relationship <3 5
Template /' N\ . - Q Requiremehit Definitions V’j
i Relationship Types
| (", RelationshipType _
i |typefor | S G
2 5
Node 2 13
Template N Plans =/
(R

(
~
\\4

Fig. 2. TOSCA service template

A Topology Template describes the structure of a cloud application as a
directed graph and consists of Node Templates and Relationship Templates. A
Node Template represents a component of the cloud application, e.g. an appli-
cation server and is described by a Node Type. A Node Type defines

— properties of the component (Properties Definition),

— available operations to manipulate the component (Interfaces),

— requirements of the component (Requirement Definitions),

— possible lifecycle states of the component (Instance States) and

— capabilities it offers to satisfy other components’ requirements (Capability
Definitions).

Plans are models to orchestrate the management Operations, which are offered
by the cloud application components and can be written in BPMN, BPEL or
other languages.

As TOSCA Service Templates are written as XML documents, we decided to
use the notation of XML nets for the creation of Plans, which we name “mainte-
nance plan” in the rest of the paper. Using XML nets has the advantage that no
additional notation elements have to be defined like it is the case e.g. for BPMN
[25]. Apart of that, XML nets allow to describe detailed manipulations of XML
documents, which are used to model configuration operations in maintenance
plans.

3.2 XML Nets

XML nets [15] are a high-level variant of Petri nets, in which places represent
containers for XML documents. The XML documents must conform to the XML

Online Detection of Operator Errors in Cloud Computing 5

Schema, which is assigned to a specific place. Edges are labeled with Filter
Schemas, which are used to read or manipulate XML documents. Transitions
can be inscribed by a logical expression, whose variables are contained in the
adjacent edges. A transition in an XML net is enabled and can be fired for a
given marking, when the following three conditions hold. First, every place in the
pre-set of the transition holds at least one valid XML document, which conforms
to the Filter Schema inscribing the edge to the transition. Second, every place
in the post-set of a transition must contain one valid XML document, if the
XML document has to be modified. If an XML document has to be created
from scratch the place must not already contain this XML document. Third,
for the given instantiation of the variables, the transition inscription has to be
evaluated to true in order to enable the transition. If an enabled transition is
fired, XML documents in the pre-set places are (partially) deleted or read for the
given instantiation of variables, and new XML documents are created or existing
XML documents are modified in the post-set places of the transition.

3.3 Modelling Maintenance Plans

This section describes the modelling of maintenance plans with TOSCA and
XML nets, which allows to model applications and the orchestration of applica-
tions’ management operations in one integrated model. Such a model can then
be used to derive pattern instances. Therefore, we extend our former approach,
introduced in [8]. The following adjustments are made to the general definition
of TOSCA Node Templates:

— A Node Template represents exactly one instance of an application, that
means the attributes minlstances, maxInstances := 1.

— Node Templates are extended with the complex element InstanceState, which
stores the current state of the corresponding application.

The notation of XML nets is adjusted as follows:

— Places are containers for Service Templates. Every place is assigned to the
general TOSCA XML schema and additionally to a single Node Type, which
restricts the allowed filter schemas for corresponding Node Templates.

— Transitions represent operations, defined in Interfaces of the adjacent Node
Types.

— Filter Schemas can either be used to select Node Templates or to modify
Properties, or Instance States of a Node Template. Deleting whole Node Tem-
plates is in contrast to general XML nets not allowed. Node Templates can
only change their status, e.g. to undeploy, but they cannot be deleted. The
reason is, that for error detection purposes, even an undeployed Node has
to be monitored to be sure it was really undeployed and e.g. has not been
deployed by accident afterwards again. Deleting parts of a Node Template are
allowed, e.g. deleting a property.

— Transitions hold the attributes start and end, which define when the operation
has to be executed earliest and latest.

6 A. Vetter

We define a maintenance plan as a tuple MP = <P, T, A, ¥, Ip,In,Ia, I, Mg>,
where

(i) <P,T,A> is a Petri net with a set of places P, a set T of transitions,
and a set A of edges connecting places and transitions (the definition and
description of petri nets is excluded in this paper, but can be found, e.g.,
in [11]).

(i) ¥ = <D,FT,PR> is a structure consisting of a finite and non-empty
individual set D, a set of term and formula functions F'T defined on D,
and a set of predicates PR defined on D.

(iii) Ip is the function that assigns the TOSCA XML Schema to each place.

(iv) Iy is the function that assigns additionally a Node Type to each place.

) Ia is the function that assigns a Filter Schema to each edge. The Filter
Schema must conform to the XML Schema and Node Type of the adjacent
place.

(vi) It is the function that assigns a predicate logical expression as inscription
to each transition. The inscription is built on a given structure ¥ and a set
of variables. Only variables, which are contained in the Filter schemas of
adjacent arcs, are allowed. The inscription must evaluate to true in order
to enable the transition.

(vii) Each transition represents a value of the element operation, which is
defined in the complex element Interfaces of the Node Type in the postset
of the transition.

(viii) My is the initial marking. Markings are TOSCA Service Templates.

(ix) Each transition holds the attributes start and end.

Figure 3 shows an example of a maintenance plan to configure the database con-
nection of the application MyApplication (Filter Schemas are written informally
for readability reasons). It is assumed that the database and application are part
of the Service Template MyService. MyApplication is hosted on MyAppServer
and requires additionally the database TestDatabase (NT1). It is assumed, that
when the change is performed, MyApplication is started. In the first place, which
is linked to a Node Type Application, MyApplication is one possible representa-
tion. The first Filter Schema FS1 selects MyApplication. Before MyApplication
can be configured it has to be stopped, which is represented in the first transi-
tion. The condition in order to stop the application is, that MyApplication has
to be started. Stopping is one possible operation, which is given by the Node
Type Application. If at the beginning of executing the change, MyApplication is
already stopped instead of started, it is a hint, that an incident or something
unexpected happened, so the change execution should be interrupted. When
MyApplication is stopped, the database connection can be set. Therefore, the
Node Template TestDatabase is selected and the database connection is built up
on the properties of TestDatabase and inserted in MyApplication through the
Filter Schema FS5. Afterwards MyApplication can be started again, but only if
TestDatabase is running (inscription assigned to transition Start).

Online Detection of Operator Errors in Cloud Computing 7

/ T MyApplication NT1 N Ve 1D: MyApplication NTA ™
H NDdeTypepphcauon H NodeType;Application A

Properties Requirgments Instancestate: Started Properties Requirgments Instancestate: Stopped
User ; i user
Password i i |password H
DB Connection | [Host:MyAppServer | [Database: TestDatabase] H { |0 Connection: | [Host:MyAppServer | [Database:TestDatabase | |

i |idbc:mysqli//local H
i |host:1521/xE

o H Select NodeTemplate where H
\ s " / Change MyApplication.InstanceState
Change MyApplication.InstanceState | 1D="MyApplication’ = Started
=Stopped | T S — 6
Stop FS? Configure Start
Database.D =

Application Instancestate = MyApplication Requirements Database nstance State=Starte
Started Database A Application.
nstancestate = Stopped

[
Select Application where Select Application where Change MyApplication Properties.DB Connection =
D="MyApplication” 1D="MyApplication” pg; ,idbc:* & Database.Properties.Type & ,// &

Database Properties Host & ,* &

TD: TestDatabase NT3™ Database Properties Port &,/ &
i NnueTpra!abase i Database Properties.Name Fs:

Properties [“Requirements | [Capabilities.] [InstanceState: Started
Type: MysQL Host: DBServer
Host: localhost
Port: 1521
Name: XE

Select Database

Fig. 3. Example of a TOSCA based XML net

4 Pattern and Anti-pattern for Operator Error Detection

In computer science the term pattern is popular since the publication of the
book about design patterns from Gamma et al. [12]. In this book, Gamma et
al. describe patterns as solutions for recurring problems in a specific context.
Aalst et al. [13] used the concept of patterns for business process modelling and
described several patterns for the control flow perspective. Since then, many
patterns were described for different perspectives of business process modelling,
like for the data perspective [14,15]. Riehle and Ziillighoven define a pattern
more general as an abstraction of a recurring concrete form in a specific context
[16]. A form is a finite number of distinguishable elements and their relationships
[16]. A context restricts the possible usage of a form, because the form has to fit
into this specific context. Based on the definition of Riehle and Ziillighoven we
define a pattern and anti-pattern as following;:

Definition 4.1 (Pattern). A pattern is an abstraction of a welcomed, recur-
ring, concrete form in a specific context.

Definition 4.2 (Anti-pattern). An anti-pattern is as an abstraction of an
unwelcomed, concrete form in a specific context.

In our work, we use patterns to describe the planned to be control flow, appli-
cation configurations and application states for the scheduled maintenance. So,
patterns are used during the design phase. Anti-patterns are used to check dur-
ing the actual execution of the maintenance (run-time), if a form of events exists,
which does not fit to the planned forms. In the following we restrict and formal-
ize the context of the used patterns and anti-patterns as well as the form of these
patterns and anti-patterns.

8 A. Vetter

4.1 Context

As described in Sect.3, the monitoring approach is based on the comparison
between produced events of monitored applications and pattern instances of the
TOSCA management plan. Those parameters build the context of the patterns.
We separate two kinds of events in our context: state events and transaction
events. Definitions 4.3 and 4.4 formalize state events and transaction events in
this paper.

Definition 4.3 (State Event). A state event is a tuple se = (timestamp, app,
state), where:

— timestamp is the timestamp of the event creation.

— app is the Node Template id of the monitored application.

— state is the actual state of the application. Only values are allowed, which are
defined in the Node Type of the application by the element Instance States.

The set of all state events is defined as SES.

Definition 4.4 (Transaction Event). A transaction event is a tuple te=
(timestamp, st, app, op, prop, value), where:

— timestamp is the timestamp of the event creation.

— st is the Service Template id, which identifies the service the application
belongs to.

— app is the Node Template id of the monitored application.

— op describes the operation, which was conducted on the application. The
value of op must correspond to one of the values, which are defined in the
element operation of the Node Type of the application.

— prop describes the property, which was changed when the operation was exe-
cuted. If no property was changed during the operation prop is null.

— walue is the value of the property, which was changed. If prop is null, value
also has to be null.

The set of all transaction events is defined as TES. State events and transac-
tion events represent the actual events during a maintenance. The correspond-
ing “to-be” events are conditions and activities, which can be derived from a
TOSCA management plan. A condition represents a possible transition inscrip-
tion, whereas activities represent firing sequences.

Definition 4.5 (Condition). A condition is a tuple (app, op, prop, zapp,
state), where:

— app is the id of the Node Template, on which the operation is performed.

— opis the operation, which is performed on the Node Template and is restricted
in the Node Type of the Node Template.

— prop is the property of the Node Template, which is changed during the
operation.

Online Detection of Operator Errors in Cloud Computing 9

— zapp is the id of the Node Template, which has to be in a specific state in
order to perform the operation.
— state describes in which state zapp has to be.

Let SM be the set of all maintenance plans. The set of all conditions of a main-
tenance plan is defined as SC;, i € SM. The set of all transition inscriptions of a
maintenance plan is defined as STI; i € SM. The function F: SC; — STI; assigns
a transition to each condition.

Definition 4.6 (Activity). An activity is a tuple a = (st, app, op, prop, value,
start, end), where:

— st is the Service Template id, which identifies the service template in the
TOSCA management plan.

— app is the id of the Node Template, on which the operation is performed.

— op is the operation, which is performed on the Node Template and is restricted
in the Node Type of the Node Template.

— prop is the property of the Node Template, which is changed during the
operation.

— walue is the value of the property, which was changes. If prop is null, value
also has to be null.

— start describes when the activity has to start earliest.

— end describes when the activity has to end latest.

Be SM the set of all maintenance plans. The set of all activities of a maintenance
plan is defined as SA;, i € SM. The set of all transitions of a maintenance plan
is defined as ST;, € SM. The function F: SA; — ST, assigns a transition to each
activity.

Additionally, for some anti-patterns we need the history of transaction events
and the latest state of an application called the state event history.

Definition 4.7 (Transaction Event History). A transaction event history is
a selection on the set of transaction events, which are in the time scope of the
scheduled maintenance:

TEH:= Otimestamp>maintenance_start A timestampgmaintenance,endTES
Definition 4.8 (State Event History). The state event history SEH stores
the latest state for each application in SES.

Furthermore, we define three functions, time, countTE and countA.

Definition 4.9 (Time). time is a function, which returns the current times-
tamp.

Definition 4.10 (CountTE). countTE(te,TEH) is a function, which counts
the number of occurrences of the transaction event te in the transaction event
history.

Definition 4.11 (CountA). countA(a, S)is a function, which counts the num-

ber of occurrences of an activity a in a set S.

After the description and definition of the context, the patterns and anti-
patterns are described.

10 A. Vetter

4.2 Pattern and Anti-pattern

All in all, we define ten patterns/anti-patterns in order to detect operation
errors. These are NEXT, IMMEDIATELY NEXT, PRECEDENCE, IMMEDI-
ATELY PRECEDENCE, OCCURRENCE, ALTERNATIVE OCCURRENCE,
ABSENCE, ALTERNATIVE ABSENCE, VALUE and STATE-CONDITION.
The first eight patterns are highly influenced by the specification pattern of
Dwyer et al. [17] and are used to detect process errors. Whereas the VALUE
anti-pattern is used to detect configuration errors. The STATE-CONDITION
anti-pattern is used to check, if a resource is in the planned state in order to per-
form a task on it. To describe the patterns and anti-patterns following template
is used:

— Name: The name of the pattern must be unique and should describe the
purpose of the pattern.

— Description: Here the form of the pattern is described, which should occur
in the maintenance.

— Instances: Here it is described, how instances of the pattern can be derived
from the maintenance plan.

— Example: Here, examples of pattern instances are given.

— Anti-pattern: A description of the corresponding anti-pattern and which
type of operator errors can be detected with the anti-pattern. Additionally,
we formalize the conditions, which have to be violated in order to detect an
operator error.

— Similar pattern: Here, similar patterns are referenced and differences are
named.

Pattern NEXT

Description: This pattern describes pairs of activities, defining which activ-
ity has to occur after another (with possible activities inbetween). The pattern
is used for controlling AND-joins, AND-splits and concurrent sequences in a
maintenance plan.

Instances: To get all instances of this pattern for a TOSCA management plan
i we create a relation P1:=AM; x AM; x AM; with the tuples (acur, anex, afar)
where,

— the corresponding transitions tey, and thex of the activities acy, and ayey are
connected through the same place,

— teur, tnex and tg,, have to occur in the same path,

— tgar always has to occur after teyy,

— tgar and tey, may not be connected through the same place.

Example: In Fig. 4 instances of the pattern NEXT are (al, a2, a4), (al, a2, a6),
(al, a3, ab), (al, a3, a7), (a2, ad, a6) and (a3, ab, aT).

Online Detection of Operator Errors in Cloud Computing 11

Fig. 4. Example pattern NEXT

Anti-pattern: The anti-pattern allows to detect operator errors of the type
“wrong order”. Besides, it is possible to detect operator errors of the type syn-
tactical error, if a configuration parameter was changed in the wrong order. An
error message is created, when a transaction event te., in the event stream
occurs and none of the next events tepex conforms to the next activity apex.
However, one of the next events conforms to an activity ag,:
71-aqap,op,proptecurE 7Tacm-.zﬂ:)p,a\cm-.op;alcm-ApropPli - T app,op,prop temex S
Tapp.op.prop (Taga: (Tacuapp=tecur.app A dcur.0p=tecur-0p A acur-prop=cur.propt 1i)) A
Tapp,op,prop (Tages (
UaC|,r.app:tcc.,r.app A cur.op=tecyr.op A acur.prop=tecyr.prop A
afar-apP=tenex-apP A afar.-Op=tenex.0p A afar.pr0p:tencx.pr0pPli)) ¢
7Tapp,op,prop(O-tecur.timesta»mp > timestamp A tepex.timestamp < timestampTEH)

Similar Pattern: The pattern IMMEDIATELY NEXT allows also to detect
operator errors of the type “wrong order”. However, the pattern IMMEDI-
ATELY NEXT would create wrong error messages for concurrent sequences and
can only be used for non-concurrent activities.

Pattern IMMEDIATELY NEXT

Description: This pattern describes pairs of activities, defining which activity
has to be executed right after another activity (without any other activities
occurring inbetween). The pattern is used for controlling XOR-joins, XOR-splits
and non-concurrent sequences in a maintenance plan.

Instances: To get all instances of this pattern for a maintenance plan i we create
a relation P2;:= AM; x AM; with the tuples (acyr, anex) where,

— the corresponding transitions of the activities acy, and tayex are connected
through the same place, and

— the corresponding transitions cannot be executed concurrent to other transi-
tions.

Example: In Fig. 5 instances of the pattern IMMEDIATELY NEXT are (al,
a2), (al, a3), (a2, ad), (a3, ab), (ad, a6) and (ab, a7).

12 A. Vetter

Fig. 5. Example pattern IMMEDIATELY NEXT

Anti-pattern: The anti-pattern allows to detect operator errors of the type
“wrong order” for non-concurrent operations. An error message is created when
a transaction event te., occurs in the event stream and the next following
transaction event te.y,41 of the same service template does not correspond to
the expected activity:

Wapp,op,proptecur S Wac\,r.app,acm..op,acur.propPQi > Tapp,op,prop (Ust:tecur.sttecur+1)

¢ 7Tamwp,prOP(7Tanex (Uacur-app:tecur-appAacur-op:tem-0p/\acur.pr0p:tecm-pr0pP2i))

Similar Pattern: The pattern IMMEDIATELY NEXT is similar to the pattern
NEXT. The difference is, that in the IMMEDIATELY NEXT pattern in contrast
to the pattern NEXT no activities of the same service template are allowed
between a pair of activities.

Pattern PRECEDENCE

Description: This pattern describes pairs of activities where one activity has
to occur before another one. Like the pattern NEXT it is allowed that other
activities occur inbetween the activities of such a pair of activities. The pattern
is used for controlling AND-joins, AND-splits and concurrent sequences in a
maintenance plan.

Instances: To get all instances of the pattern a relation P3; := AM; x AM; with
the tuples (acur, apre) is created where,

— the corresponding transitions of the activities acy,r and ap.. are connected
through the same place, and
— the corresponding transitions can be executed concurrent to other transitions.

Example: In Fig. 4 instances of the pattern PRECEDENCE are (a2, al), (a3,
al), (a4, a2), (ab, a3), (a6, ad) and (a7, ab).

Anti-pattern: With the anti-pattern it is possible to detect operator errors
of the type “wrong order”. An error message is created when a transaction
event te occurs in the event stream which corresponds to an activity acy,, but
the corresponding transaction event for the activity apr. does not exist in the
transaction event history:

Wapp,op,propte € Tacur-aPP,agyy-OPscyy .propP3i

A Tapp,op,prop (Trapre (Tacur.app=te.appAacus .op=te.opAacus prop=te.prop3i))

¢ Tapp,op,prop 1 EH

Online Detection of Operator Errors in Cloud Computing 13

Similar Pattern: The pattern IMMEDIATELY PRECEDENCE is also used to
detect forgotten activities, which have to be executed before another activity. For
the pattern IMMEDIATELY PRECEDENCE no activities are allowed between
acur and apre, whereas for the pattern PRECEDENCE additional activities in
between are allowed. Besides, the pattern is similar to the pattern NEXT. The
difference is, that the pattern NEXT checks for future activities, whereas the
pattern PRECEDENCE checks for activities happened in the past of a mainte-
nance execution.

Pattern IMMEDIATELY PRECEDENCE

Description: This pattern describes which activity has to be executed imme-
diately before another one. It can be used for non-concurrent activities as well
as for XOR-joins and XOR-splits.

Instances: To get all instances of this pattern for a maintenance plan i we create
a relation P4; := AM; x AM; with the tuples (acur, apre), where

— the corresponding transitions of the activities acu, and ape are connected
through the same place, and

— the corresponding transitions cannot be executed concurrent to other transi-
tions.

Example: In Fig.5 instances of the pattern IMMEDIATELY PRECEDENCE
are (a2, al), (a3, al), (a4, a2), (ab, a3), (a6, ad) and (a7, ab).

Anti-pattern: With the anti-pattern it is possible to detect operator errors of
the type “wrong order”. An error message is created when a transaction event te
occurs in the event stream which corresponds to an activity acyur, but the latest
transaction event of the same service template in the transaction event history
does not correspond to apyc:

Tapp,op,propt€ € Ma,,.app,acy,-0p,acy, propl 4i
A Tapp,op,prop (Wapm (Uacur-app:te-appAawr .op=te.opAacur -pr0p:te‘pr0pP4i))

¢ Tapp,op,prop (Umax(timestamp) (Utinlestamp<te.timestamp/\st:te.st)) TEH

Similar Pattern: The pattern PRECEDENCE describes also activities which
have to occur before another activity. In contrast to the pattern IMMEDIATELY
PRECEDENCE the pattern PRECEDENCE allows other activities of the same
service template to occur between a pair of activities.

Pattern STATE-CONDITION

Description: This pattern describes the state an application should have in
order to be able to perform an operation on either the same or another applica-
tion. Example: in order to shut down an application server, the database server
must be in the state offline.

Instances: Instances of this pattern are all conditions SC; for a maintenance
plan i.

Example: In Fig.6, which is a snippet of Fig.3, the instance of the pattern
STATE-CONDITION is (MyApplication, start, NULL, TestDatabase, started).

14 A. Vetter

Change MyApplication.InstanceState
= Started
Start

O+ O

Fig. 6. Example pattern STATE-CONDITION

Anti-pattern: This anti-pattern does actually not detect an error like described
in Sect. 2. Instead, it detects malicious prerequisites, which would lead to an
operation error. This is done by comparing the latest state of an application
with the planned state:

Tapp,op,prop € € Tapp,op,propSCi

A (Wzapp,state(Uapp:te.app/\op:te40p/\prop=te4propSci)/Wapp,stateSEH) 7é 0

Similar Pattern: There are no similar patterns for the STATE-CONDITION
pattern.

Pattern VALUE

Description: This pattern describes the value of a configuration parameter
which has to be changed during the maintenance.

Instances: To get all instances of this pattern a selection on the set of all activ-
ities of the maintenance plan is performed in order to get only those activities
which include a change of a property: P5 := Tapp op,prop,value (Tprop£NULLSA;).
Example: In Fig. 3 the only instance of this pattern is (MyApplication, config-
ure, DB Connection, jdbc:mysql://localhost:1521/XE).

Anti-pattern: This anti-pattern allows to detect operator errors of the types
“wrongly executed activity”, “lexical error”, “local inconsistency”, “global incon-
sistency” and “typo” by checking the element value of a transaction event te:

Tapp,op,propVe € Tapp.op,prop D A Tapp,op,prop,valueve & P5;

Similar Pattern: This pattern can be seen as a more detailed version of the
OCCURRENCE pattern. However, the OCCURRENCE pattern just checks for
executed operations and properties, but not for the actual values of modified
properties.

Pattern OCCURRENCE

Description: This pattern includes all activities which have to be executed in
a maintenance plan independent of the chosen path through the maintenance
plan.

Instances: To get all instances of this pattern a set P6; with all activities of the
maintenance plan i is created, where

— every activity has to be executed independent of the chosen path in the main-
tenance plan.

Online Detection of Operator Errors in Cloud Computing 15

Example: In Fig. 3 the instances of this pattern are (MyService, MyApplication,
stop, NULL, NULL), (MyService, MyApplication, configure, DB Connection,
jdbe:mysql://localhost:1521/XE) and (MyService, MyApplication, start, NULL,
NULL).

Anti-pattern: The anti-pattern allows to detect errors of the kind “forgotten
activity”. An error message is created, when an activity was executed too sel-
dom:

3 a € Otime > a.enaP6i A cOUNt TE(Tapp op propa,s
7Tapp,op,prop(7"-timesta»mpZa.start A timestampSa.endeTEH))
< CountA(ﬂ'app,op,propaa 7Taupp,op,pmp(7"'stza‘1r‘52a.sta1rt A endga.endP6i))

Similar Pattern: With the anti-patterns NEXT, IMMEDIATELY NEXT,
PRECEDENCE and IMMEDIATELY PRECEDENCE it is also possible to
detect forgotten activities in a limited way. However it is only possible to detect
a forgotten activity right before or after another activity. As an example lets
assume we have a sequence (a, b, ¢, d, e). If the activity a and e occur, it is
possible to detect the forgotten activities b and d with the similar patterns, but
not the activity c¢. Only with the anti-pattern OCCURRENCE it is possible to
detect the forgotten activity c.

Pattern ALTERNATIVE OCCURRENCE

Description: This pattern describes a pair of activities which cannot be exe-
cuted together, like after XOR-Splits. However, one activity of such a pair of
activities has to be performed during the maintenance.

Instances: To get all instances of this pattern a relation P7; := AM; x AM; with
the tuples (acur, aa1), where

— the corresponding transitions of the activities ac,; and a,; do not occur
together in any path of the maintenance plan.

Example: In Fig. 5 instances of this pattern are (a2, a3), (a2, ab), (a2, a7), (a4,
a3d), (a4, ab), (a4, a7), (ab, a3), (ab, ab), (ab, a7), (a3, a2), (a3, ad), (a3, ab),
(ab, a2), (ab, ad), (ab, ab), (a7, a2), (a7, ad) and (a7, ab).

Anti-pattern': The anti-pattern allows to detect errors of the kind “forgotten
activity”. An error message is created, when activities of P6; were not executed.
However, no error message is created for activities, if one alternative activity was
already performed. The anti-pattern assumes, that the first executed alternative
activity is the right one and therefore ignores all other activities, which may not
be executed in conjunction with this first alternative activity.

Similar Pattern: The pattern OCCURRENCE does also detect forgotten
activities, but it would create wrong error messages for exclusive activities, if
already one of the exclusive activities was executed.

Pattern ABSENCE
Description: This pattern describes which activities may not occur during a
maintenance.

! Due to space limitations we forgo the formal definition of the following anti-patterns.

16 A. Vetter

Instances: The instances of this pattern are all possible activities, which could
really occur during a maintenance, without all activities, which are also mod-
elled in the maintenance plan. Note that in a maintenance plan only a subset
of possible operations on service templates is modelled and therefore planned.
All other operations should not occur during the maintenance. The number of
instances of this pattern can get very high, because the number of possible oper-
ations, especially configurations can be huge. However, for the anti-pattern of
ABSENCE the generation of pattern instances of the type ABSENCE is not
needed as it is explained in the following.

Example: On the assumption that in Fig. 3 other possible operations of MyAp-
plication would be “deploy” and “undeploy”, some of the instances of the pattern
ABSENCE would be (MyService, MyApplication, deploy, NULL, NULL) and
(MyService, MyApplication, undeploy, NULL, NULL).

Anti-pattern: The anti-pattern detects errors of the kind “unneeded activity”.
An error message is created either when

— a transaction event does not correspond to one of the activities in P6; or P7;,
or

— a transaction event corresponds to one the of the activities in P6; or P7;, but
it did not occur during the planned maintenance window, or

— a transaction event corresponds to one the of the activities in P6; or P7; and
it occurred during the planned maintenance plan, but it occurred too often
during the maintenance window.

Similar Pattern: With the anti-patterns NEXT, IMMEDIATELY NEXT,
PRECEDENCE and IMMEDIATELY PRECEDENCE it is also possible to
detect unneeded activities, when the following or precedence activity was not
the planned one. However, these anti-patterns do not know, if the unneeded
activity is an activity which was just executed in the wrong order or if it is an
activity which should not occur at all.

Pattern ALTERNATIVE ABSENCE

Description: This pattern describes activities which are not allowed to be exe-
cuted depending on other activities. Such activities occur after XOR-Splits.
Instances: Instances of this pattern are the same like for the pattern ALTER-
NATIVE OCCURRENCE. Although the pattern instances are the same, the
anti-pattern is different to the anti-pattern of ALTERNATIVE OCCURRENCE.
Example: For an example please see the examples of the pattern ALTERNA-
TIVE OCCURRENCE.

Anti-pattern: An error message is created when one of the following conditions
hold:

— A transaction event corresponds to an activity in P7;. It is the first alterna-
tive activity and it occurred during the maintenance window, however it was
performed too often.

— A transaction event corresponds to an activity in P7; and it occurred during
the maintenance window, but an alternative activity was already performed
before.

Online Detection of Operator Errors in Cloud Computing 17

Similar Pattern: The pattern ABSENCE is similar, but the pattern does not
check the absence of activities dependent of other activities.

4.3 Derivation of Pattern Instances

Pattern instances can be derived from the maintenance plan by simulating it.
Therefore, the maintenance plan is marked with the Service Template of the to
be maintained IT Service. The resulting simulation log is used to create log-
based ordering relations and footprints like they are used in process mining and
described in [18,19]. Based on these ordering relations two footprints are created.
One footprint uses the basic ordering relations described in [18]. This footprint is
used to derive the pattern instances IMMEDIATELY NEXT, PRECEDENCE,
IMMEDIATELY PRECEDENCE and the activities acy, and ayey for the pattern
instances of NEXT. In order to get ag, for the pattern instances of NEXT
the second footprint is used, which is based on the extended ordering relations
described in [19].

Instances of the pattern ALTERNATIVE OCCURRENCE and ALTER-
NATIVE ABSENCE are also derived from the second footprint. The pattern
OCCURRENCE is instantiated with all simulated activities, which occur in
every path of the simulation log. For the anti-pattern ABSENCE all possible
activities are needed, which can be derived directly from the simulation log.

Instances of the pattern STATE-CONDITION can be derived from the activi-
ties in the simulation log and the corresponding function defined in Definition 4.5.
The pattern VALUE can be instantiated by filtering all activities in the simula-
tion log, whose attribute prop is not NULL.

5 Implementation

The architecture of the proof of concept implementation consists of four main
components and is shown in Fig.7. The first component is a modelling compo-
nent, which allows to model maintenance plans and derive pattern instances of
a maintenance plan. The modelling component is implemented in the software
tool Horus? and already allows to model generic XML nets. The extension of
the tool in order to model TOSCA service templates and link them to an XML
net is currently under construction.

The second main component are the log agents. Log agents are used to get
every new log entry of an application, transform the log entry into the format of a
transaction event and send it to the complex event processing engine. In the proof
of concept log agents are implemented with Beats and Logstash?. Both products
are developed for fast log data extraction. Besides, Logstash contains a powerful
regular expression engine, which supports the transformation of proprietary log
entries into the generic format of transaction events.

2 www.horus.biz.

3 https://elastic.co.

www.horus.biz
https://elastic.co

18 A. Vetter

The third component is an IT infrastructure monitoring tool like Nagios?,
CloudWatch®, or Metricbeat® which allows to check the state of an application
in order to generate the state events. In the proof of concept we use Metricbeat.

The fourth component is the complex event processing engine, which checks
incoming state and transaction events against the pattern instances of the main-
tenance plan. In the proof of concept the complex event processing system of
WSO027 is used. All anti-patterns are implemented as event queries in the event
pattern language Siddhi® and have to be implemented only once. In order to
check future maintenance plans, only the corresponding pattern instances have
to be transferred to the complex event processing system. As an example, for
an anti-pattern written in Siddhi, see the following anti-pattern NEXT, imple-
mented as Siddhi query:

from te [(app == NEXT.appcur and op == NEXT.opcur

and prop == NEXT.propcur) in NEXT] insert into #temp;

from #temp as t join NEXT as n on t.app == n.appcur and
t.op == n.opcur and t.prop == n.propcur

select t.timestamp, n.appcur, n.opcur, n.propcur, n.appnex,
n.opnex, n.propnex, n.appfar, n.opfar, n.propfar

insert into #templ;

from el=#templ -> e2= incoming_te [el.appfar == e2.app

and el.opfar == e2.op and el.propfar == e2.prop]

select el.timestamp, el.appcur, el.opcur, el.propcur,
el.appnex, el.opnex, el.propnex, e2.timestamp as timestampfar
insert into #temp2;

from #temp2 [not((appnex == TEH.app and opnex == TEH.op

and propnex == TEH.prop in and timestamp < TEH.timestamp
and timestampentf > TEH.timestamp) in TEH)]

select str:concat("The activity ",appnex, ", ", opnex, ", "
, propnex, " was not performed after the activity ", appcur,
",", opcur, ", ", propcur, ".") as message

insert into error_message;

Apart of the modelling component all components and Siddhi queries are imple-
mented in a prototype, which is used to evaluate the approach. A first evaluation
experiment was conducted, which is described in the following.

* https://nagios.org.

5 https://aws.amazon.com/en/cloudwatch/.

6 https://www.elastic.co/guide/en/beats/metricbeat/6.2/index.html.
" https://wso2.com/products/complex-event-processor/.

8 https://github.com/wso2/siddhi.

https://nagios.org
https://aws.amazon.com/en/cloudwatch/
https://www.elastic.co/guide/en/beats/metricbeat/6.2/index.html
https://wso2.com/products/complex-event-processor/
https://github.com/wso2/siddhi

Online Detection of Operator Errors in Cloud Computing

19

modelling component

complex event processing

process modelling

TOSCA modelling

simulation component

pattern instances generator

database

display error messages

le—|

anti pattern querys

e —
in memory database

transaction
events

IT service

application

application

application

application

event reveiver

pattern instances
receiver

application

application

application

pattern instances

state
events

application

Upily ;1
Upily iyt

application

application

E=

Fig. 7. Implementation architecture

6 Experimental Results

To evaluate the approach an exemplary IT service maintenance was performed.
Therefore, we built an IT service environment using Amazon EC2° machines.
The environment contains five EC2 machines. On two machines we installed
an Apache webserver'® hosting the open source application SugarCRM''. On
two other machines Maria DB was installed. Both SugarCRM instances connect
to the same Maria DB instance. In the experiment the configuration of both
SugarCRM instances should be changed, so SugarCRM connects only to the
second Maria DB instance anymore. The fifth EC2 machine is used to host the
complex event processing engine and Logstash in order to transform log data and
check the data for anti-patterns. Figure 8 gives an overview of the maintenance
plan, which was used for evaluation and to derive the pattern instances for the
experiment. The maintenance plan is described shortly in the following.

According to the maintenance plan first of all the database server named
database2 needs to be started. Afterwards the loadbalancer is shut off in order
to avoid connections to the webservers. When the loadbalancer is offline, the two
webservers have to be stopped and reconfigured in order to connect to database2.
After reconfiguring and stopping the webservers, they can be started again. If
both webservers where stopped, the former database server can be shut down.
Finally, the loadbalancer ha to be started again in order to redirect requests to
the webservers. During the execution of this maintenance plan typical operator
errors, like they are described in Sect. 2, were injected. Namely, those operator
errors are:

9 https://aws.amazon.com/ec2/.
19 https://httpd.apache.org.
1 https://www.sugarcrm.com.

https://aws.amazon.com/ec2/
https://httpd.apache.org
https://www.sugarcrm.com

20 A. Vetter

1. Forgot to configure SugarCRM1
The loadbalancer was started before webserver2 was started
3. When configuring SugarCRM1 the IP address is changed and additionally
without need the user is modified
4. Instead of stopping databaseserverl, databaseserver2 is stopped
5. The wrong IP address is entered, when configuring SugarCRM1
6. When changing the IP address a typo happens, so that the format of the IP
address is xxx.xxx.xxxxxx instead of xxx.XXX.XXX.XXX
7. Webserver2 is started. However, the EC2 machine is stopped manually
in order to simulate a software bug which hinders the webserver to start
properly
8. A combination of error 1 and 2
9. A combination of error 3 and 4
10. A combination of error 3, 4 and 6.

N

In the first ten runs of the experiment one error was injected per run. After-
wards we repeated the experiment. However, in the second ten runs, errors were
corrected immediately after their detection. By correcting them, the actual main-
tenance execution differs from the maintenance plan, because we did not model
any procedural exception handlings.

In order to quantify the results, we used the metrics Recall, Precision and
F-Score known from machine learning evaluations [24].

In the first ten runs all errors were identified and no false positives were
reported, resulting in a Precision and Recall of 100%. The negative site of this
is, that error messages were created multiple times for the same root cause.
For example when the configuration of SugarCRM1 was forgotten (error 1) the
anti-pattern NEXT as well as the anti-pattern PRECEDENCE created an error
message, when the activity after the forgotten activity was executed. Addition-
ally, the anti-pattern OCCURRENCE created an error message, because the
occurrence of the activity could not be found in the transaction event history.
In some runs this led to a ratio of up to four created error messages for one root
cause.

In the second round of the experiment, when the errors were corrected after
their identification, the precision decreased to 41%. The reason was the increasing
number of false positives. For example when the forgotten configuration of Sug-
arCRM1 was identified, the error was corrected by stopping webserverl again,
configuring SugarCRM1 and starting webserverl again. When webserverl was
stopped respectively started the anti-pattern ABSENCE created two error mes-
sages that webserverl was stopped respectively started too many times. Nonethe-
less, all injected errors were identified resulting in a Recall of 100%. Besides, the
ratio of reported error messages to root causes improved, because of the imme-
diate error handling. The F-Score over all runs is 73%. The F-Score of the first
ten runs is 100%, whereas the F-Score only for the runs with immediate error
handling is 58%.

In the next months we plan to conduct additional experiments to test the
recall and precision of the method. Besides, we plan to perform performance

Online Detection of Operator Errors in Cloud Computing 21

Change SugarCRMAppL.
Properties.db_host_name
:= Maschine5 Properties.IP.

Change Webserverl
tate

configure start started
[WebserverT.instance|
State. state =

stopped

Change databasel.
InstanceState.state :=
stopped

Change Webserverl.
InstanceState.state :=
stopped

Change database2
InstanceState.state :=
started

loadbalancer.Instanc
eState state =
stopped

start

start

|Webserverd.Instancest|

jate.state = started AND|
|Webserver2.Instancest|

ate.state = started

Change loadbalancer.
InstanceState state :=
stopped

database2.
instanceState state =
started

Change Webserver2.
InstanceState state :=
. stopped

start
[Webserver2.Instance|
State. state =
stopped

[oadbalancer Instanc
eState.state =
stopped

Change loadbalancer.
InstanceState.state :=
started

configure

Change Webserver2.

tarted
Change SugarCRMApp2. el

Properties.db_host_name
= MaschineS Properties.IP

Fig. 8. Maintenance plan used for the experiment

tests as this is one of our main objectives, that the method reports errors within
seconds. So, operators would have a realistic chance to correct their errors before
they manifest in an IT service.

7 Discussion

The high false positive rate when error handling was performed can be inter-
preted as overfitting. On the contrary, the false positive rate would decrease,
if error handling would be modelled explicitly in the maintenance plan. How-
ever, we think it is quite unlikely that an operator would model every possible
exception, because this could lead to a very complex unreadable maintenance
plan.

In general checking conformance of an event stream to a process model in an
online setting leads to new challenges, that do not exist for traditional offline con-
formance checking methods. In offline conformance checking methods, analyzing
event traces instead of event streams, the actual process execution can not be
influenced anymore (apart of long running process, which are not finished when
analyzing the log trace). In an online setting like in this work an operator would
adjust the process execution spontaneous, because of the identification of errors
or deviations from the process modell. This could lead to process executions
differing a lot from the actual modelled process.

An error detection method or conformance checking method should be able
to recognize, which deviations from the process modell are allowed ones, e.g.
because of correcting an error and which one are real errors in order to reduce
false positives. Therefore, we plan to extend our approach by adding a machine
learning component, which analyzes which error messages are real errors and
which were created because of correcting an already performed error.

22 A. Vetter

8 Related Work

Related work can be separated in different areas of work. One area of work is
the automation of typical operations like redeployments and integrated error
exception handling, like it is provided by popular configuration management
tools, e.g. Chef [21]. Those tools have the disadvantage, that they have just local
information for error handling and no global view of the whole maintenance,
which also could involve legacy systems [20].

Another area of work is the detection of configuration errors. Those
approaches can be divided in rule based methods and online configuration val-
idation [22]. Rule based methods try to avoid configuration errors a priori by
correctness checks. These, help to detect wrong planned configuration errors.
However, those approaches do not check if the configuration operation itself was
executed as planned. So, forgotten configurations e.g. because a server was down
or typos, when the configuration was done manually, cannot be detected.

The most related work to ours is the work of Xu et al. [20] and Farshchi et al.
[23]. Both works describe an approach to monitor sporadic operations in cloud
environments. Xu et al. developed a method called “POD-Diagnosis”. They use
a process model to detect operator errors through token replay by checking
the conformance of observed logs with the prebuild model and an additional
fault tree analysis in order to find the root cause of the error. In contrast to
our work only the control flow of the process is modelled and can therefore be
checked. Apart of that, in our approach no additional fault tree has to be build.
Farshchi et al. build a regression-based model to find correlation and causalities
between events described in logs and overserved metrics of resources. In their
approach, assertions are derived from the regression-based model. However, they
are also limited to control flow. Additionally, enough learning data is needed,
which practically limits their approach to automated cloud environments. Our
approach does not have to learn data and therefore can also be used to monitor
manually executed steps or changes in legacy systems as long as those actions
can be seen in the logs of the systems.

The field of business process compliance monitoring can also be seen as other
related work, which uses patterns to check that process executions adhere to pre-
defined compliance requirements [26]. Our work differs from this field in the way,
that we do not use patterns to make sure, that specific compliance requirements
like the “segregation of duty” pattern are covered during a process execution.
The patterns used in this work are only used in order to be able to instanti-
ate anti-patterns during process executions in order to identify situations, which
must not occur. The notion of anti-pattern can be seen as the counterpart to
compliance pattern [26]. The most related work to ours in this field is [27], who
also use the notion of anti-patterns instead of compliance patterns. However, in
our work no definition of patterns has to be performed by an user. Instances of
the patterns are derived automatically from the created maintenance plan dur-
ing design phase, which integrates the control flow and configuration modelling.
The instantiation of patterns can even be influenced after modelling by the sim-
ulation of the maintenance plan. If paths of the maintenance plan will not be

Online Detection of Operator Errors in Cloud Computing 23

simulated, those will not be represented in the simulation log and therefore can-
not be used for pattern instantiation. During the execution phase anti-patterns
check only deviations from the derived pattern instances.

9 Conclusion

In this paper, we describe an approach to detect operator errors online during
the execution of maintenance operations. Therefore, we define different anti-
patterns, which are implemented as complex event processing queries and check
in real time log entries and state metrics of observed resources against pattern
instances of a predefined process model. The process model itself is realized as
a TOSCA based XML net, combining the modelling of the control-flow and the
resources. A first evaluation with a prototype implementation was performed,
resulting in a very good error detection rate. On the contradictory site, the
approach can result in a high false positive rate, when the process execution is
adjusted spontaneously in order to correct the reported errors. Therefore, we
plan to extend our approach in order to deal with this spontaneous flexibility
during an IT service maintenance.

References

1. Gunawi, H.S., et al.: What bugs live in the cloud? A study of 3000+ issues in cloud
systems. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 1-14
(2014)

2. Hagen, S., Seibold, M., Kemper, A.: Efficient verification of IT change operations
or: how we could have prevented Amazon’s cloud outage. Presented at the Network
Operations and Management Symposium (NOMS), 2012 IEEE, pp. 368-376 (2012)

3. Dumitra, T., Narasimhan, P.: Why do upgrades fail and what can we do about it?
Toward dependable, online upgrades in enterprise system. In: Proceedings of the
10th ACM/IFIP/USENIX International Conference on Middleware, p. 18 (2009)

4. Pertet, S., Narasimhan, P.: Causes of failure in web applications. Parallel Data
Laboratory, p. 48 (2005)

5. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,
and what can be done about it? In: Proceedings of the 4th Conference on USENIX
Symposium on Internet Technologies and Systems, vol. 4, Berkeley, p. 1 (2003)

6. Scott, D.: Making smart investments to reduce unplanned downtime. Tactical
Guidelines Research Note TG-07-4033, Gartner Group, Stamford, CT (1999)

7. Elliot, S.: DevOps and the cost of downtime: fortune 1000 best practice metrics
quantified. International Data Corporation, IDC (2014)

8. Vetter, A.: Detecting operator errors in cloud maintenance operations. In: 2016
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 639-644 (2016)

9. Nagaraja, K., Oliveira, F., Bianchini, R., Martin, R.P., Nguyen, T.D.: Under-
standing and dealing with operator mistakes in internet services. In: OSDI 2004:
6th Symposium on Operating Systems Design and Implementation (2004)

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Vetter

Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.: An
empirical study on configuration errors in commercial and open source systems. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, pp. 159-172 (2011)

Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Upper
Saddle River (1981)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education, London (1994)

van der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5-51 (2003)

Russell, N., Ter Hofstede, A.H., Edmond, D., van der Aalst, W.M.: Workflow
Data Patterns. QUT Technical report, FIT-TR-2004-01. Queensland University of
Technology, Brisbane (2004)

Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: identification, representation and tool support. In: Pastor, O.,
Falcao e Cunha, J. (eds.) CAIiSE 2005. LNCS, vol. 3520, pp. 216-232. Springer,
Heidelberg (2005). https://doi.org/10.1007/11431855.16

Riehle, D., Ziillighoven, H.: Understanding and using patterns in software devel-
opment. TAPOS 2(1), 3-13 (1996)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, pp. 7-15 (1998)

Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19345-3

Weidlich, M., Mendling, J., Weske, M.: Computation of behavioural profiles of pro-
cess models. Business Process Technology, Hasso Plattner Institute for IT-Systems
Engineering, Potsdam (2009)

Xu, X., Zhu, L., Weber, 1., Bass, L., et al.. POD-diagnosis: error diagnosis of
sporadic operations on cloud applications. In: 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, pp. 252-263 (2014)
Chef: About Handlers, 08 November 2017. https://docs.chef.io/handlers.html
Xu, T., Zhou, Y.: Systems approaches to tackling configuration errors: a survey
(2014)

Farshchi, M., Schneider, J.-G., Weber, 1., Grundy, J.: Metric selection and anomaly
detection for cloud operations using log and metric correlation analysis. J. Syst.
Softw. 137, 531-549 (2017)

Powers, D.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37-63 (2011)
Kopp, O., Binz, T., Breitenbiicher, U., Leymann, F.: BPMN4TOSCA: a domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38-52.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33155-8_4
Becker, M., Klingner, S.: A criteria catalogue for evaluating business process pat-
tern approaches. In: Bider, 1., et al. (eds.) BPMDS/EMMSAD-2014. LNBIP, vol.
175, pp. 257-271. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
43745-2_18

Awad, A., Barnawi, A., Elgammal, A., Elshawi, R., Almalaise, A., Sakr, S.: Run-
time detection of business process compliance violations: an approach based on
anti patterns. In: 12th Enterprise Engineering Track at ACM, SAC 2015 (2015)

https://doi.org/10.1007/11431855_16
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://docs.chef.io/handlers.html
https://doi.org/10.1007/978-3-642-33155-8_4
https://doi.org/10.1007/978-3-662-43745-2_18
https://doi.org/10.1007/978-3-662-43745-2_18

®

Check for
updates

Executing Lifecycle Processes
in Object-Aware Process Management

Sebastian Steinau®™) | Kevin Andrews, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany
{sebastian.steinau,kevin.andrews,manfred.reichert}@uni-ulm.de

Abstract. Data-centric approaches to business process management, in
general, no longer require specific activities to be executed in a certain
order, but instead data values must be present in business objects for a
successful process completion. While this holds the promise of more flex-
ible processes, the addition of the data perspective results in increased
complexity. Therefore, data-centric approaches must be able to cope with
the increased complexity, while still fulfilling the promise of high process
flexibility. Object-aware process management specifies business processes
in terms of objects as well as their lifecycle processes. Lifecycle processes
determine how an object acquires all necessary data values. As data val-
ues are not always available in the order the lifecycle process of an object
requires, the lifecycle process must be able to flexibly handle these devia-
tions. Object-aware process management provides operational semantics
with built-in flexible data acquisition, instead of tasking the process mod-
eler with pre-specifying all execution variants. At the technical level, the
flexible data acquisition is accomplished with process rules, which effi-
ciently realize the operational semantics.

Keywords: Lifecycle execution - Data-centric processes *
Flexible data acquisition - Process rules

1 Introduction

Data-centric modeling paradigms part with the activity-centric paradigm, and
instead base process modeling and enactment on the acquisition and manip-
ulation of business data. In general, a data-centric process no longer requires
certain activities to be executed in a specific order for successful completion.
Instead certain data values must be present, regardless of the order in which
they are acquired. Activities and decisions consequently rely on data conditions
for enactment, e.g., an activity becomes executable once required data values
are present. While this holds the promise of vastly more flexible processes in
theory, it is no sure-fire success. The increased complexity from considering the
data perspective in addition to the control-flow perspective requires a thoughtful
design of any approach for modeling and enacting data-centric processes. This
design should enable the flexibility of data-centric processes, while still being
able to manage the increased complexity.

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019

P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 25-44, 2019.
https://doi.org/10.1007/978-3-030-11638-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_2

26 S. Steinau et al.

Object-aware process management [16] is a data-centric approach to business
process support that aims to address this challenge. In the object-aware app-
roach, business data is held in attributes. Attributes are grouped into objects,
which represent logical entities in real-world business processes, e.g., a loan
application or a job offer. Each object has an associated lifecycle process that
describes which attribute values need to be present for successfully processing the
object. Lifecycle processes adopt a modeling concept that resembles an imper-
ative style, i.e., the model specifies the default order in which attribute values
are required. Studies have indicated that imperative models show advantages
concerning understandability compared to declarative models, which are known
for flexibility [11,19,20]. While the imperative style allows for an easy modeling
of lifecycle processes, it seemingly subverts the flexibility promises of the data-
centric paradigms, as imperative models tend to be rather rigid [25]. However,
in object-aware process management, the operational semantics of lifecycle pro-
cesses allow data to be entered at any point in time, while still ensuring correct
process execution. The imperative model provides only the basic structure. This
has the advantage that modelers need not concern themselves with modeling
flexible processes, instead the flexibility is built into the operational semantics
of lifecycle processes.

The functional specifications of the operational semantics of lifecycle pro-
cesses have partially been presented in previous work [15]. This paper expands
upon this work and contributes extended functionality and the technical imple-
mentation of the operational semantics, provided in the PHILharmonicFlows
prototype. In particular, the logic involving execution events has been com-
pletely redesigned to include completion and invalidation events. These event
types became necessary as otherwise the consistency of the lifecycle process
was not guaranteed. Further, decision making in lifecycle processes has been
improved by redesigning the data-driven operational semantics of decisions.

The technical implementation is based on the process rule framework, a
lightweight, custom process rule engine. The framework is based on event-
condition-action (ECA) rules, which enable reacting to every contingency the
functional specification of the operational semantics permit, i.e., correct lifecy-
cle process execution is ensured. The process rule framework will further provide
the foundation for implementing the operational semantics of semantic rela-
tionships and coordination processes, the object-aware concept for coordinating
objects and their lifecycle processes [23]. Such a coordination is necessary, as
objects interact and thereby form large process structures, constituting an over-
all business process [22]. As such, coordination processes enable collaborations
of concurrently running lifecycle processes, having the advantage of separating
lifecycle process logic and coordination logic. With the transition of PHILhar-
monicFlows to a hyperscale architecture [2], the process rule framework is fully
compatible with the use of microservices, enabling a highly concurrent execution
of multiple lifecycle processes with large numbers of user interactions.

The remainder of the paper is organized as follows: Sect.2 provides the
fundamentals of object-aware process management. In Sect.3, the extended

Executing Lifecycle Processes in Object-Aware Process Management 27

operational semantics are presented. The process rule framework at the core of
the operational semantics implementation is described in Sect. 4. Finally, Sect. 5
discusses related work, whereas Sect. 6 concludes the paper with a summary and
an outlook.

2 Fundamentals

Object-aware process management organizes business data in form of objects,
which comprise attributes and a lifecycle process describing object behavior.
PHILharmonicFlows is the implementation of the object-aware concept to pro-
cess management. Object-aware process management distinguishes design-time
entities, denoted as types (formally”), and run-time entities, denoted as instances
(formally’). Collectively, they are referred to as entities. At run-time, types may
be instantiated to create one or more corresponding instances. For the purposes
of this paper, object instance (cf. Definition 1) and lifecycle process instance (cf.
Definition 2) definitions are required. The corresponding type definitions can be
found in [16]. The “dot” notation is used to describe paths, e.g., for accessing
the name of an object instance. | describes the undefined value.

Definition 1. (Object Instance)
An object instance w! has the form (wT,n, &1, 07) where

— WwT refers to the object type from which this object instance has been generated.

— n is the name of the object instance.

~ @ is a set of attribute instances ¢!, where ¢! = (n,r,v.), with n as the
attribute instance name, K as the data type (e.g., String, Boolean, Integer),
and vy, as the typed value of the attribute instance.

— 01 is the lifecycle process (cf. Definition 2) describing object behavior.

An object’s lifecycle process (cf. Definition 2) is responsible for acquiring data
values for the attributes of the object.

Definition 2. (Lifecycle Process Instance)
A lifecycle process instance 67 has the form (w!, X1, 11, TT, Wl Ey, ug)
where

— w! refers to the object instance to which this lifecycle process belongs.
— X1 is a set of state instances o!, with o! = (n, I'l, TL, Wl 11,) where
n is the state name.
'l c I'! is subset of steps y!.
TE C T is a subset of transitions 1.
vl cwl s a subset of backwards transitions .
® L, is the state marking.
— I'! is a set of step instances v, with v' = (¢!, 0!, TL T1,,,
where
o ¢! € wl.®! is an optional reference to an attribute instance ¢* from !
of object instance w'. Default is L.
If ¢ = L, the step is denoted as an empty step instance.

P' X iy, dy)

28 S. Steinau et al.

ol € X1 is the state instance to which this step instance v belongs.
TE C TI is the set of incoming transition instances T, .
TL., CTE is the set of outgoing transition instances 7.,
P! is a set of predicate step instances p', P! may be empty, with
ol = (v, \) where
* 4l is a step instance.
* X\ is an expression representing a decision option.
If PT £ 0, the step instance v is called a decision step instance.

e)\ is an optional expression representing a computation.

If X\ # L, the step instance ' is called a computation step instance.

® [y is the step marking, indicating the execution status of ~.

o d, is the step data marking, indicating the status of o,
- TT is a set of transition instances 77, with 1 = (ygome,y{met, ext, p, fbr)

where

YL ree € T is the source step instance.
’ytIMget € I' is the target step instance.
o et =L .0l = 'ytjarget.al is a computed property, denoting the tran-
sition as external, i.e., it connects steps in different states.
e p is an integer signifying the priority of the transition.
e (- 1S the transition marking.
~ Wl s a set of backwards transition instances ', U1 may be empty, with
¢I = (agource’ O-tjargeﬂ /-“ﬁ) where
ol e € X1 is the source state instance.
[Ufarget € X1 is the target state instance, atImyet € Predecessors(ol,,,c.)-
o [y 15 the backwards transition marking.
— Ey is the event storage for 67, storing execution events €.

— g 1s the lifecycle process marking.

All sets are finite and must not be empty unless specified otherwise. The function
Predecessors: 0T — X1 determines a set of states from which o' is reachable. The
function Successors is defined analogously.

Note that for the sake of brevity the value of a step «! refers to the value of
the corresponding attribute v'.¢!. Furthermore, correctness criteria have been
omitted from Definitions1 and 2. For the sake of clarity, a lifecycle process
is described by a directed acyclic graph with one start state and at least one
end state. Figure 1 shows object instance Bank Transfer with its attributes and
lifecycle process. The object instance represents a simplified transfer of money
from one account to another. For this purpose, the states and the steps of a
lifecycle process can be used to automatically generate forms. This is unique for
process management systems, as in other systems, forms must still be designed
manually, leading to a huge difference regarding productivity [25]. Additionally,
when executing a process, the auto-generated forms are filled in by authorized
users. The PHILharmonicFlows authorization system and its connection to form
auto-generation has been discussed in [1]. In essence, forms may be personalized
automatically based on the user’s permissions, no different form designs showing
different form fields are necessary.

Executing Lifecycle Processes in Object-Aware Process Management 29

_.---1Bank Transfer - Initialized
- T - .
Date : Bank Transfer - Decision
e |:| Approved
e [Submic]
tate i
- R = Approved
Attributes . S~ A Predicate Step i A PP
— ~ - reden gy
2 Object} N
Amount : Integer D . 4 Initialized P
: i 1
Date : Date D ' Amount Date
=1 Transfer - 11
H / ! 5
: | Rejected
Approval : Bool B H / S H N
H / |

I v / 1
iy P | N
: Lifecycle 1/ ;S i N
N : Process | y T ,,‘ T
Comment : String B - N | External Transition [
Step/ ¥ | ! e U
o ! Backwards Transition_~__

/
P
Transition_{

Fig. 1. Example object and lifecycle process of a Transfer

As depicted in Fig. 1, the state o/ contains steps Y4, unt @0 Y5 4tes
signifying that values for attributes ¢4, . and ¢L_,. are required during pro-
cess execution. For the sake of brevity, the properties of an entity (e.g., the
name of a step) may be written as a subscript, e.g., Yamount for the first step
in Fig. 1. The form corresponding to of, contains input fields for steps
fyimmmt and 5 ate- This means a state represents a form, whereas the steps rep-
resent form fields. The ¢L,,,mens field is an optional field visible to a user due
to the authorization system of PHILharmonicFlows. In state aémsion, a deci-
sion step %{‘ppmwl represents the approval of the bank for the money transfer.
The automatically generated form displays vflppmwl as a drop-down field. End
states Uﬁppmved and oéejected display an empty form, as the contained steps
are empty (cf. Definition 2). Transitions determine at run-time which attribute
value is required next, an external transition also determines the next state.
Backwards transitions allow returning to a previous state, e.g., to correct a data
value.

3 Lifecycle Process Operational Semantics

Data acquisition in PHILharmonicFlows is achieved through forms, which can
be auto-generated from lifecycle process models §7. A form itself is mapped to a
state o of the lifecycle process 87; form fields are mapped to steps v!. In conse-
quence, the operational semantics of lifecycle processes emulate the behavior of
electronic and paper-based forms, following a “best of both worlds” approach.
Paper-based forms provide a great overview over the form fields, i.e., every form
field may be viewed at any point in time. Further, they provide a reasonable
default structure, but allow filling form fields at any point in time and in any
order, e.g., starting to fill in form fields in the middle of the form is possible.
In turn, electronic forms usually provide less overview, i.e., viewing subsequent

30 S. Steinau et al.

forms is not possible before having filled out all mandatory fields in the cur-
rent form. In contrast to paper-based forms, however, electronic forms are able
to only display relevant fields, especially in context of decision branching. For
example, an electronic anamnesis form at a physician’s office may skip the ques-
tions related to pregnancy entirely if the patient is male. Additionally, electronic
forms allow for data values to be easily changed as well as for data input verifi-
cation, e.g., ensuring that a date has the correct format or all mandatory form
fields possess a value. PHILharmonicFlows combines the advantages of both
paper-based and electronic forms, providing flexibility in entering data while
ensuring a correct lifecycle process execution.

3.1 Lifecycle Process Execution

For realizing the combined benefits, the progress of a lifecycle process 07 is
determined by its active state oy, i.e., marking ol.u, = Activated. Only one
state o of 87 may be active at any point in time. Per default, the form of the
active state is displayed to a user when executing lifecycle process 6. How-
ever, the user may choose to display forms of other states. When processing 6/,
the active state changes, depending on data availability and decision results.
For example, in regard to Fig. 1, starting the execution of the lifecycle process
activates of If values for steps v}, un: @a0d vh,,. are available (cf.
Sect.3.2), 07, itiatizeq May be marked as p, = Confirmed, and the next state
05 cision Decomes active, i.e., oL .. .u, = Activated. Depending on the value
of Wippmml, either aippmved or Uzlzejected becomes active. As both states are end
states, the execution of 67 terminates. The active state possesses a crucial role in
the execution of §7, as consequences from data acquisition or decisions are only
evaluated for the active state. For example, providing value true to ’yippmml

does not trigger the decision, if J{mtmlized is the currently active state. This
is to avoid inconsistent processing states, e.g., because a previous decision may
make filling out a state o/ obsolete due to dead-path elimination [16].

For several reasons, including automatic form generation and process lifecycle
coordination, only exactly one state may be active at a given point in time. If
two or more state had become simultaneously active, it would be unclear which
form should be presented to the user, or what the progress of the lifecycle is.
State execution (cf. Sect. 3.2) must therefore enforce that only exactly one state
may activate at the conclusion of a previous one. In consequence, the enabling of
external transitions must be mutually exclusive. Regarding decisions steps and
its predicate steps, additional measures are required to prevent the simultaneous
enabling of different transitions.

For states Successors(c)), data values may be entered, but processing only
occurs once a state becomes active. All successor states possess marking p, =
Waiting. If a user enters values for steps v/, these values will be stored and
taken into account if the corresponding state 4/.07 becomes active. To indicate
the status of the corresponding attribute value, steps possess a data marking d. .
When setting the data value for a step ’Y}Ims\/aluev where the state instance o/ has

Executing Lifecycle Processes in Object-Aware Process Management 31

e = Waiting, the data marking of 'Yflmsvalue is set to d, = Preallocated. Should
o’ become active during process execution, d, = Preallocated will indicate that
a value is present and thus is not be required anymore (cf. Sect. 3.2).

States that have already been processed, i.e., Predecessors(c;), will either
have marking u, = Confirmed or u, = Skipped. States with marking u, =
Confirmed have previously been active, whereas skipped states have undergone
a dead-path elimination. For reasons of data integrity, the values of steps in
skipped or confirmed states must not be altered at any point in time. If allowed,
inconsistencies and unpredictable execution behavior may occur. For example,
changing values of decisions steps in an uncontrolled way might activate currently
eliminated states, whereas currently active states become eliminated. However, it
must be possible to correct mistakes for previously entered and accidentally con-
firmed data. Therefore, backwards transitions (cf. Definition 2) allow for the reac-
tivation of confirmed states in a controlled way, where the data may be altered
in a consistent and safe way; consequently, subsequent changes in decisions can
be handled properly. The reactivation of states and correction of mistakes con-
tributes much to the flexibility of object-aware lifecycle process execution.

3.2 State Execution

While PHILharmonicFlows is capable of auto-generating forms from states and
steps, so far, these forms are static. However, there are dynamic aspects to a
form, e.g., the indication which value is required next or which external transi-
tion or backwards transition may be committed. For this purpose, a lifecycle pro-
cess 0! provides ezecution events € and an event storage Ep. Execution events
are dynamically created when processing a lifecycle process #7. When auto-
generating a form, the static form is enriched with dynamic information from
Ey and displayed to the user. Execution events have different subtypes, namely
request events, completion events, and invalidation events. When request events
are created, they are stored in Fy and are then used to enrich the form. Com-
pletion and invalidation events remove request events from FEjy, when a request
event are either fulfilled or no longer valid, respectively. The usage of the event
storage Ey, in conjunction with the generated static forms, allows multiple users
access to the same form, due to the centralized storage of the dynamic form data.
The use of Fy further allows preserving dynamic data over multiple sessions, i.e.,
a user may partially fill out a form, close it and do something else, and later
return and continue where the user previously stopped. It is even possible that
another user finishes filling out the form, introducing additional flexibility. In
general, storing execution events ¢ ensures consistency regardless of any user
interaction with the forms.

The creation and removal of execution events is primarily determined by the
respective marking p of states, steps, transitions, and backwards transitions.
For steps with an attribute (i.e., v/.¢! # 1), data marking d. is also taken into
account. For example, if step 7}, .., in Fig. 1 has marking p, = Enabled, but
YA mount-dv = Unassigned holds, an “attribute value request” event is created
and stored in Fjy after some intermediate processing steps. If a user accesses

32 S. Steinau et al.

the form for of the form field for 44, is tagged with an asterisk,
indicating that a value is mandatory (cf. Fig.2). As soon as the user provides
a value for the ’yf‘mount form field, the data marking for 'yimmmt is updated to
d, = Assigned. This indicates that a value has been successfully provided for
Yhmount- I consequence, the attribute value request event in Ey is no longer
necessary. Therefore, setting d, = Assigned triggers a completion event remov-
ing the “attribute value request” event from Fy. After the completion event
has occurred, more markings change in a cascading fashion, leading to the step
v Amount being marked as Unconfirmed. This enables the outgoing transitions
Yhmounts Which, in turn leads to the next step V5, receiving u, = Enabled.
The data marking 75 _,..d, = Unassigned triggers the same chain of events and
marking changes analogously to the marking change of v, .

Handling Preallocated Data Values. To

Bank Transfer - Initialized illustrate the automatic handling of pre-

Amount* ’ l allocated data values, it is assumed that
another user has already provided value
Date l l false for 4l v I State ohigion, i€

'yj{mpmml.dﬂY = Preallocated holds. Note that
this provision of a value outside of the nor-
mal execution order is a feature of the oper-
ational semantics of lifecycle processes and
not merely part of the example. As of,_ ...
is not currently the active state (i.e., p, =
Waiting), decision step %{‘ppmwl is not eval-

Comment

Fig. 2. Form enriched with execu-

tion events .
uated. When reaching yippmwl from 'yéate

after a state change, 'yflppmwl receives mark-
ing py = Enabled. Instead of creating an “attribute value request” event, the
combination of data marking d, = Preallocated and marking p., = Enabled
immediately switches data marking to d, = Assigned. Consequently, as no
attribute value request event has been raised beforehand, the completion event
for providing a value is omitted. As ’yflpproval is a decision step, value false
subsequently leads to the activation of state Uz{zejected (cf. Fig. 1), in which 67
terminates. Note that the end state remains active despite the termination of
the lifecycle process instance. In general, the operational semantics of lifecycle
processes ensure that a previously provided value requires no further user inter-
action by default. However, users may still change the value afterwards should
they wish to do so. Overall, the user may flexibly enter and alter data, and the
operational semantics ensure data integrity.

Handling Decision Steps. Previously, decision step yippmwl was provided
with a preallocated data value and state aéejected was reached, but the details
pertaining to the handling of decision steps were omitted. In the following, the
handling of a generic decision step v5_. with v5__.PT # () is discussed in detail.

Executing Lifecycle Processes in Object-Aware Process Management 33

The discussion uses the standard processing case v5,__.¢7 = L, i.e., initially v5__
has no preallocated data value. Due to the presence of one or more predicate
steps p! € *yIIDeC.PI representing decision options, more intermediate steps are
necessary for the handling of decision steps when compared to ordinary steps.
Until a completion event occurs after a value has been provisioned for a decision
step 75, the decision step behaves identically to an ordinary step. Initially,
when ~v5_. has marking y, = Enabled and d., = Unassigned, an attribute value
request event is raised, a data value will be provided, and subsequently a comple-
tion event erases the “attribute value request” event from the event storage. At
this point, the predicate steps p’ of the decision step is evaluated and it is deter-
mined which decision options apply. For each predicate step p!, its expression
representing the predicate is evaluated.

For decision step 'yf‘ppmwl, two predicate steps pf,.,. and p}alse exist. The
predicate steps are equipped with expressions representing the actual predicate,
AMtrue @ [Approval] == true and Afqse @ [Approval] == false, respectively (cf.
Fig.1). On provision of a value (w.l.o.g. it is assumed this value is false) for
Wippmml, each predicate step is evaluated. For pf.., this evaluation returns
false and accordingly marking 11, = Bypassed is set. Marking Bypassed indicates
that this decision option is not valid and subsequent execution paths cannot be
taken. For pfcalse, the expression Afqse @ [Approval] == false evaluates to true
and i, = Activated is set. The markings of predicate steps pf,,. and pj,,, are
shown in Fig. 3.

Once each predicate step p! has Approved
been evaluated, the results affect the
marking of the decision step ~5_. Decision
itself. In general, two cases need to be —_— p
distinguished. Approval 17
First, if all predicate steps possess e
marking p, = Bypassed, the decision el =te)/
step 'yéec must be marked as Blocked. ~| ™7 Evpasscd Rejected
This marking indicates that the provi- [Approval] == false
sioned value did not lead to a success- Activated) it N
ful evaluation of the decision options, Enabled
and the execution of the lifecycle pro-
cess can therefore not proceed. To rec-

tify the issue, a new value for ~v5__
needs to be provided. In turn, this trig-
gers another evaluation of the predi-
cate steps, ensuring that process execution is not stuck when an invalid value
has been provisioned.

In the second case, at least one of the predicate steps’ expressions evaluate to
true and process execution may proceed. This is the case in Fig. 3 with the pred-
icate steps of 7}, ,uq- Decision step v, becomes marked as pu, = Activated.
Subsequently, a series of marking changes occurs, leading to the decision step and
its predicate steps with marking p, = Activated to be marked as Unconfirmed.

Fig. 3. Decision step execution status

34 S. Steinau et al.

For decision steps, this raises several challenges that need to be solved in regard
to its outgoing transitions becoming enabled. First, to allow modeling sophis-
ticated decisions, it is permitted that predicates overlap, i.e., for a given data
value, two or more predicates may evaluate to true. In turn, this might lead to
the simultaneous enabling of outgoing transitions of the predicate steps. This is
not permitted, as for example two states may be become active at the same time.
For this reason, lifecycle processes perform a priority evaluation when multiple
transitions are about to become enabled. Each transition 7! has an assigned pri-
ority 71.p (cf. Definition 2). Only the transition with the highest priority becomes
enabled, whereas all others are marked as Bypassed. The priorities are assigned
by the process modeler at design time, allowing for full control over decision
options with overlapping predicates.

Handling Backwards Transitions and Invalidation Events. Consider
again the example from before, where at the moment the lifecycle process has
terminated and U}I%ejected is the active state. In this situation, a user decides he
wants to revise his decision for approval and thus change the value of 'yx{‘ppmwl
from false to true. After of{ejected had become active, two backwards transition
instances ¥4, ;, .. and 1. - became confirmable, i.e., their marking changed to
ty = Confirmable. In consequence, two “backwards transition confirm request”
events were created, one for each backwards transition, and then were stored in
Ey (Fig. 4).

From State This allows going back to state

Decision. ol .. by using L , .. or going

\ Rejected Inztzalzzed[’ Yy .Tolnz}’

N back to 0p, isions PY using ¥y, p... How-
ever, only one state may be active at
To State To State AN once. Therefore, only one backwards tran-
Initialized Decision .. .

A sition may be taken. To revise the value
| l———— 4 of ’yl{lppmwl, Yl pe. must be confirmed.

| Confirming 94, ;.. causes its marking to
change to puy = Ready. Analogously to
a step, a completion event is created,
Fig. 4. Backwards transitions which removes the corresponding “back-
wards transition confirm request” event

from Ey. Subsequently, U{%ejected is marked as p, = Waiting and ok__, .

is marked as p, = Activated, which allows altering the value of 'Y,{mproual to
true. As aéejected is no longer active, w%olnit and ’(/J%ODEC become marked as
iy = Waiting. Resetting the markings of both w%ojmt,z%ODec, and Uzl%ejected
to Waiting enables their reuse, e.g., if the value of V,qupmml remains unchanged
and the same path is taken again.

With state o], _...,,, becoming active again, it is possible to change the value
of (fﬁlppmwl. However, the “backwards transition confirm request” event belong-

ing to ¥k ; .. is still stored in Ep, despite 1L ; .. having been marked with
wy = Waiting, i.e., confirming 1%, .. is no longer possible. Obviously, this con-

Executing Lifecycle Processes in Object-Aware Process Management 35

stitutes an inconsistency between the forms and the lifecycle process. The form
displays a button with the option that Q/J’JI"oInit can be confirmed, but on press-
ing the button the PHILharmonicFlows system produces an error and other,
possibly worse, side effects. As a consequence, the operational semantics include
invalidation events, with the purpose to remove invalid or obsolete execution
events from event storage Fy. An invalidation event occurs when entities with
a request event, e.g., backwards transitions, are not successfully completed, but
become changed due to other circumstances, e.g., the confirmation of another
backwards transition.

Request events, completion events, and invalidation events are used in many
more situations than discussed above. The basic principles, however, are always
the same, and, embedded in the overall operational semantics, provide a robust
and flexible way to acquire data values for lifecycle processes. The imperative-
like modeling style of lifecycle processes, from which forms can be auto-generated
directly, significantly reduces modeling time and efforts. The operational seman-
tics provide the necessary flexibility to users interacting with the forms. Further-
more, the use of forms and the emulation of standard form behavior simplifies
the usage of the PHILharmonicFlows system for non-expert users.

Overall, this section described the functional aspects of the operational
semantics of lifecycle processes. The technical implementation of these opera-
tional semantics with the Process Rule Framework is presented in Sect. 4.

4 The Process Rule Framework

In the description of the operational semantics of lifecycle processes (cf. Sect. 3),
at the lowest level, progress is driven by the change of markings. Marking changes
elicit the creation of execution events, which, in turn, results in user actions, e.g.,
the provision of a data value for an attribute. This user interaction is reflected in
the lifecycle process by setting new markings. This may be viewed as a chain of
events, and, consequently, event-condition-action rules are used as the technical
basis for the technical implementation of the operational semantics. In PHIL-
harmonicFlows, a specialized variant of ECA rules, denoted as process rules, is
employed for this purpose. Process rules and the means to specify them consti-
tute one part of the process rule framework. To create an execution sequence,
such as the one described in Sect. 3.2, process rules need to form process rule
cascades, i.e., a rule triggers an event, which may trigger another rule, which
again triggers an event. Furthermore, process rules are uniquely suited to deal
with the different eventualities emerging during the execution of lifecycle pro-
cesses. For example, a state ol may become active in context of normal process
execution progress or due to the use of a backwards transition 1!. Subsequently,
different follow-up measures may be required, e.g., the resetting of markings for
steps v/ € of.I'T in case the backwards transition became activated.

The basic definition of a process rule is given in Definition 3. In order to
distinguish these symbols from symbols used in the definition of object instances,
superscript ¥ is used.

36 S. Steinau et al.

Definition 3. A process rule p™ has the form (e,e”, C®, A%) where

— € is an event triggering the evaluation of the rule.
el is an entity type, e.g., a step type vT.
~ OR is a set of preconditions in regard to eT.

— AR s a set of effects.

Process rules p® may be evaluated, i.e., their preconditions C* are checked
and, if all are fulfilled, the effects A™ are applied. An evaluation is triggered when

the event € occurs. Events € are always raised by a particular entity instance el,

e.g., astep ! or a transition 7. €T is an entity type that provides the context for
defining conditions and effects. Furthermore, it provides an implicit precondition,
meaning a rule is not evaluated if the entity instance e’ raising e was not created
from e”. Preconditions C* check different properties of an entity, e.g., whether
the entity has a specific marking. Effects A® apply different effects to an entity,
e.g., setting the marking of an entity. Note that preconditions and effects are
not limited to properties belonging to instances of e”. They may also access or
set properties of neighbor entities. For example, a rule defined for a step 47 may
have effects that set markings for the outgoing transitions 7%, € v/.TZ,, of the

corresponding step instance.

public class MarkingRuleMrl4A : AbstractEffectRule<TransitionInstance>
public MarkingRuleMr14A()

Name = "Marking Rule Mr14A";
ShortDescription = "Marking steps and predicate steps as Enabled if the transition is internal and marked as Ready”;

ionInstance,Transitiontarkings>(trans => trans.Marking).IsMarked(Transitiontarkings.Ready);
onInstance,bool>(trans => trans.IsExternal).SatisfiesPredicate(x => !x);

PreconditionFor< Tra
PreconditionFor< Tra

//If the step is a decision step, mark its predicate steps also as Enabled
EffectForEach<PredicateStepInstance, StepMarkings>(
trans => trans.Target.Cast<DecisionStepInstance>().PredicateSteps.Select(x => x.Marking))
.AssignMarking(Steptarkings.Enabled)
.When(trans => trans.Target is DecisionStepInstance);

//Mark the target micro step as Enabled
EffectFor<AbstractStepInstance, SteplMarkings>(trans => trans.Target.Marking).AssignMarking(Stepiarkings.Enabled);

Fig. 5. Fluent interface definition of a marking rule in code

In the PHILharmonicFlows implementation, process rules are created using
a domain-specific language. Figure 5 shows an example of how a process rule is
represented. Process rules are often subject to change, as new features for PHIL-
harmonicFlows are added or errors in lifecycle process execution are resolved.
In order to be able to quickly adapt a process rule, the process rule framework
uses a fluent interface for process rule specification, i.e., the domain-specific lan-
guage is structured to resemble natural prose text. This allows for both a high
readability and maintainability.

The operational semantics introduced in Sect. 3 allow identifying different use
cases for process rules. For example, one type of process rule raises execution

Executing Lifecycle Processes in Object-Aware Process Management 37

events based on specific markings, while another type reacts to user input and
sets appropriate markings. Accordingly, process rules are subdivided based on
their purpose. The type determines the general type of preconditions and effects,
e.g., preconditions of marking rules check predominantly for specific markings.
The different types of process rules are summarized in Table1. Request rule,
completion rule, and invalidation rule are subsumed under the term execution
rule (ER).

Table 1. Overview over the types of process rules

Rule Abbreviation | Event Preconditions | Effects

Marking rule MR Marking event Markings Markings
Request rule QR Marking event Markings Request event
Completion rule | CR Marking event Markings Completion event
Invalidation rule | IR Marking event Markings Invalidation event
Reaction rule RR User input event | User input Markings

The most common event that is raised during the execution of a lifecycle
process instance is a marking event. An entity instance el raises a marking event
whenever its marking e.u is changed. In order to determine which process rule
needs to be applied, the event is gathered by the process rule manager (PRM)
of the lifecycle process. The process rule manager is a small and lightweight
execution engine for process rules and constitutes the other part of the process
rule framework. Figure 6 shows a schematic view of the process rule manager
and its interactions with the lifecycle process and the (auto-generated) forms.

Starting at (D in Fig. 6, data has been entered into a form field. The data is
then passed on to the lifecycle process 87 and the corresponding step v'. As 7!
has received a value, the step raises a user input event 2. The event is passed
on to the process rule manager, which receives all events from its corresponding
lifecycle process 6 and evaluates appropriate rules, i.e., process rules p® with
pR.eT = o are not evaluated if the entity creating the event has type 47. Note
that this implicit precondition significantly reduces the search space for process
rule application. Once the PRM has identified all currently applicable rules, the
effects of each rule are applied. In the example, the PRM identifies a reaction
rule and applies its effects to the appropriate entities in the lifecycle process @).

Applying the effects from the reaction rule application raises marking events,
which trigger a completion rule and a marking rule in the PRM. The completion
rule raises a completion event @, removing the request event for the mandatory
form field from event storage Ey of #!. In parallel, the marking rule sets markings
for the outgoing transitions T of step 4'. This again creates marking events,
resulting in a cascade of marking rules, i.e., the PRM alternates between) and
@ in Fig. 6. The process rule cascade stops when the next step becomes marked
with p, = Enabled. This raises a request event, which is deposited in event
storage Fg @. When a user views a form, the updated event storage Ey and the

38 S. Steinau et al.

| |
®| \ Static form data Data (Attribute Values, Transition Cobfirmations,..)
1 \ and execution events ® |
\
[|
Bxecution Event |
Storage Eq [

|AttributeValueRequestevent |\

ey AN eqsestevents — — — —

\ @
reanstoncontimpequestevent [y

|
|
I
+
I
PR !
¢ = — — — — — Completion/invalidation events— — — T
|
|
|
|
|
|
I
I
2

At

1 .
User input events Reaction rule application
Marking events Cascading rule application Marking rule application
’ 1

| @ N2, ' ®

X

State State State

Step Step Step Step Step
Object - —|-— -

Fig. 6. Process rule manager and schematic process rule application

static form data are combined into a new form). When the user enters data
for the next form field, the cycle starts again at (D.

When a user fills out a form, the form is expected to tell the user immediately
which form field is required next after providing data for a form field. Long
processing times are prohibitive for the usability of the PHILharmonicFlows
process management system. In order to have full control over processing times
and the tight connection of process rules with lifecycle process entities, it was
decided to implement the PRM as a custom, lightweight rule engine. A custom
PRM implementation offers a fine-grained control over process rule application.
By default, the PRM handles events in the order in which they arrive (FIFO
principle). However, in several cases, the handling of specific events needed to be
delayed or accelerated in order to ensure a form processing in compliance with the
operational semantics. For example, an event e, triggering the transition 77 from
a source state ol . .. to a target state cr,{mngelt is, under certain circumstances,
raised before all steps v/ € ol ...I'! have been processed. This results in errors
in the application of the process rules, as the target state o/, get already received
po = Activated when events from v/ € o, .I' arrive at the PRM. To prevent
such errors, the handling of the state transition event e, must be delayed until
all steps 7! in the source state o, have finished processing. In consequence,
the PRM was extended with a priority queue that retains the FIFO principle,
but allows assigning different priorities to events, accelerating or delaying them
as needed.

Executing Lifecycle Processes in Object-Aware Process Management 39

i
iy Inialized Approval Co
LT Amount Date e
ose Confirme Ready.
watng
Confirmed Confirmed
,
Confirmed IE Waiting
Rejected
Waiting
Waiting

Fig. 7. Run-time environment of PHILharmonicFlows, executing a Transfer lifecycle
process

Figure 7 shows the run-time environment of the PHILharmonicFlows pro-
totype, which is currently executing a Transfer object. Besides the advantages
for the application of process rules, the lightweight nature of the PRM also
proves beneficial for the transition of PHILharmonicFlows to a microservice-
based architecture. The PRM was initially conceived as a monolithic rule engine,
i.e., all lifecycle processes use the same instance of the PRM. Currently, PHILhar-
monicFlows is moving towards a hyperscale architecture [2], based on a microser-
vice framework. A microservice is a lightweight and independent service that
performs single functions and interacts with other microservices in order to real-
ize a software application. In this new hyperscale architecture, an object and
its lifecycle process are implemented as a single microservice. A continued use
of a single PRM instance generates a significant performance overhead due to
the necessary message exchanges between the PRM and the microservices. The
single PRM instance is a bottleneck and puts a limit on the scalability of the
microservice-based architecture, i.e., it would no longer be warranted to desig-
nate the PHILharmonicFlows system as hyperscale. Furthermore, the communi-
cation overhead and the delays of process rule application in the PRM, due to the
high number of events simultaneously created by the object instance microser-
vices, would negatively affect the performance of the auto-generated forms.

Fortunately, the lightweight nature of the PRM offers a satisfactory solu-
tion. By integrating an instance of the PRM into the microservice of each object
instance, no message exchanges between PRM and lifecycle process are required.
Furthermore, a PRM instance is only responsible for exactly one lifecycle process
instance. This eliminates the delays in rule application due to the processing
of other lifecycle processes. This solution offers sufficient performance for dis-
playing dynamic forms while retaining the hyperscale property of the PHILhar-
monicFlows microservice-based architecture. The approach to integrate a PRM

40 S. Steinau et al.

instance into a microservice will also be used with the implementation of coor-
dination processes, where it will provide the same benefits.

Performance measurements of the whole PHILharmonicFlows prototype are
a delicate endeavor and are therefore subject to a separate publication, where
the performance measurements can receive the necessary context and diligence.
As a fully integrated system supporting high scalability and parallelism through
microservices, where also multiple concepts work together (objects, their rela-
tions, lifecycles and coordination processes to govern object interactions) to
achieve a meaningful business process, a performance evaluation of executing
one single lifecycle process is not particularly enlightening. A publication on
performance aspects of the PHILharmonicFlows systems is therefore subject to
future publications.

5 Related Work

Opus [8,10] is a data-centric process management system that bases its pro-
cesses on Petri nets. Petri nets are a popular and well-established formalism
for modeling business processes. Additionally, Petri nets provide several verifica-
tion techniques, e.g., soundness checks or deadlock detection, which may also be
applied to verify process model correctness. In Opus, the Petri net formalism is
extended with structured data tuples, which substitute the places of a standard
Petri net. The transitions of this extended Petri net provide operations on the
data, e.g., operations derived from operations of relational algebra. The Opus
approach does not support automatically generating forms from process models.
Furthermore, Petri nets are inherently more rigid in their execution and do not
provide the same built-in flexibility as PHILharmonicFlows and the operational
semantics of lifecycle processes. However, Opus is capable to explicitly model the
different execution paths to provide flexible process execution. Opus provides an
implemented prototype of the approach [9].

Case Handling [7,21,24] defines a case in terms of activities and data objects.
Activities are ordered in an acyclic graph in which edges represent precedence
relations. To execute an activity, all precedence relations before the activity must
be fulfilled. Furthermore, the execution of an activity is restricted by data bind-
ings. A data binding represents a condition so that a data object must have a
specific value at run-time. The values of the data objects are acquired by forms,
which are associated with activities. While case handling possesses forms, it is
unclear whether these can be auto-generated from the activities or must be cre-
ated manually. While both case handling and PHILharmonicFlows use an acyclic
graph to represent processes, the operational semantics for lifecycle processes in
PHILharmonicFlows allows for data to be acquired at any point in time. A case
acquires data by activities and that activities have a precedence relation, the
same flexibility in regard to data acquisition is not possible. A detailed compari-
son between case handling and object-aware process management was performed
in [4].

Executing Lifecycle Processes in Object-Aware Process Management 41

The Guard-Stage-Milestone (GSM) meta-model [14] is a declarative notation
for specifying artifact-centric processes [5,13,17]. An artifact consists of an infor-
mation model, i.e., attributes and a lifecycle model. The lifecycle model is spec-
ified using GSM. Its operational semantics are based on Precedent-Antecedent-
Consequent rules and possess different, but semantically equivalent formula-
tions [6]. In GSM, tasks provide the means to write attributes and acquire data.
Because of being declarative, guards, stages and milestones may be used in such
a way that flexible data acquisition, within certain constraints, becomes possi-
ble. Tasks may be defined so that attributes may be written at any point in
time and may be restricted, if necessary. Lifecycle processes defined in GSM are
able to react to the newly acquired data and might be more flexible than lifecy-
cle processes in PHILharmonicFlows. However, as a severe drawback, much of
this flexibility in data acquisition must be implemented by the process modeler.
Furthermore, the is no auto-generation of forms from GSM-specified lifecycle
models within the artifact-centric approach.

CMMN [18] is a standard notation for case management as proposed by
OMG. The notation is closely inspired by GSM and its execution semantics
and therefore inherits many of the same advantages and disadvantages. As such,
flexibility in practice has to be provided by the model and is not simply provided
by the operational semantics. Also, automatic generation of dynamic forms it
not supported.

Fragment-based case management [3,12] is a promising approach that defines
business processes in form of pre-specified process fragments. Fragments are
specified using activities and control flow. The execution order of fragments is, in
principle, completely free, i.e., any process process fragment may be executed at
any point in time. This freedom is only limited by data conditions that govern the
activation of a process fragment, i.e., a process fragment may only be executed if
the data conditions are met. In turn, process fragments may generate new data
to fulfill other data conditions and subsequently enable more process fragments.
As data is mostly required to enable process fragments and their activities, it is
unclear whether automatic form generation with dynamic control by the process
is achievable. Through breaking rigid control flow ordering of activities with
the use of process fragments, their flexible execution may only be achieved by
modeling appropriate data conditions and is not automatically provided by the
operational semantics, as accomplished in PHILharmonicFlows.

6 Summary and Outlook

The PHILharmonicFlows project is a full, though prototypical, data-centric pro-
cess management system incorporating modeling and execution environments.
One aspect of this system is to have highly flexible executions of object lifecycle
processes that require minimal effort on part of the process modeler. The sci-
entific contribution of this paper is to show that the intended level of flexibility
has been achieved. As proof, it is shown exactly how the flexibility is achieved
by describing its implementation and inner workings in full detail.

42 S. Steinau et al.

The technical implementation of the operational semantics of lifecycle pro-
cesses in object-aware process management is achieved by process rules, which
govern the changing of markings and the creation of execution events. This paper
presented the process rule framework, for which two aspects need to be empha-
sized. First, the process rule framework ensures that lifecycle processes execute
correctly and also provides the technical basis for the operational semantics of
coordination processes in PHILharmonicFlows. Coordination processes, as the
name suggests, coordinate lifecycle processes of multiple objects, so that complex
business processes can be realized. Its operational semantics will be based on the
process rule framework as well. Second, a performant, efficient and lightweight
technical basis for enacting lifecycle processes and coordination processes is cru-
cial for the transition of PHILharmonicFlows to a hyperscale architecture. The
operational semantics of lifecycle processes provide a flexible acquisition of data,
while modeling efforts are minimal due to an modeling style that is akin to an
imperative style. The flexibility is not provided by the lifecycle process model,
but by the operational semantics. The model of the lifecycle process and the oper-
ational semantics together provide the means to auto-generate dynamic forms.

Acknowledgments. This work is part of the ZAFH Intralogistik, funded by the Euro-
pean Regional Development Fund and the Ministry of Science, Research and the Arts
of Baden-Wiirttemberg, Germany (F.No. 32-7545.24-17/3/1)

References

1. Andrews, K., Steinau, S., Reichert, M.: Enabling fine-grained access control in flex-
ible distributed object-aware process management systems. In: 21st IEEE Interna-
tional Conferences on Enterprise Distributed Object Computing (EDOC) (2017)

2. Andrews, K., Steinau, S., Reichert, M.: Towards hyperscale process management.
In: 8th International Workshop on Enterprise Modeling and Information Sys-
tems Architectures (EMISA), CEUR Workshop Proceedings, pp. 148-152. CEUR-
WS.org (2017)

3. Beck, H., Hewelt, M., Pufahl, L.: Extending fragment-based case management
with state variables. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP,
vol. 281, pp. 227-238. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
58457-7_17

4. Chiao, C.M., Kiinzle, V., Reichert, M.: Enhancing the case handling paradigm to
support object-aware processes. In: 3rd International Symposium on Data-Driven
Process Discovery and Analysis (SIMPDA), CEUR Workshop Proceedings, pp.
89-103. CEUR-WS.org (2013)

5. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. Bull. IEEE Comput. Soc. Tech. Committee Data Eng.
32(3), 3-9 (2009)

6. Damaggio, E., Hull, R., Vaculin, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with Guard-Stage-Milestone lifecycles. Inf. Syst.
38(4), 561-584 (2013)

https://doi.org/10.1007/978-3-319-58457-7_17
https://doi.org/10.1007/978-3-319-58457-7_17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Executing Lifecycle Processes in Object-Aware Process Management 43

Guenther, C.W., Reichert, M., van der Aalst, W.M.P.: Supporting flexible processes
with adaptive workflow and case handling. In: IEEE 17th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp. 229-234 (2008)
Haddar, N., Tmar, M., Gargouri, F.: A framework for data-driven workflow man-
agement: modeling, verification and execution. In: Decker, H., Lhotskd, L., Link,
S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013. LNCS, vol. 8055, pp. 239-253. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40285-2_21

Haddar, N., Tmar, M., Gargouri, F.: Opus framework: a proof-of-concept imple-
mentation. In: IEEE/ACIS 14th International Conference on Computer and Infor-
mation Science (ICIS), pp. 639-641 (2015)

Haddar, N., Tmar, M., Gargouri, F.: A data-centric approach to manage business
processes. Computing 98(4), 375-406 (2016)

Haisjackl, C., et al.: Understanding declare models: strategies, pitfalls, empirical
results. Softw. Syst. Model. 15(2), 325-352 (2016)

Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution.
In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 38-54.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9_3

Hull, R., et al.: Business artifacts with Guard-Stage-Milestone lifecycles: manag-
ing artifact interactions with conditions and events. In: 5th ACM International
Conference on Distributed Event-based System (DEBS), pp. 51-62. ACM (2011)
Hull, R., et al.: Introducing the Guard-Stage-Milestone approach for specifying
business entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS,
vol. 6551, pp. 1-24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19589-1_1

Kiinzle, V., Reichert, M.: A modeling paradigm for integrating processes and data
at the micro level. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD-2011. LNBIP,
vol. 81, pp. 201-215. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21759-3_15

Kiinzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-
aware process management. J. Softw. Maint. Evol.: Res. Pract. 23(4), 205-244
(2011)

Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428-445 (2003)

Object Management Group: Case Management Model and Notation (CMMN),
Version 1.1 (2016)

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: 11th IEEE International Conference on Enterprise
Distributed Object Computing (EDOC), p. 287 (2007)

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: an empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 383—
394. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_37
Reijers, H.A., Rigter, JJH.M., van der Aalst, W.M.P.: The case handling case. Int.
J. Coop. Inf. Syst. 12(03), 365-391 (2003)

Steinau, S., Andrews, K., Reichert, M.: The relational process structure. In:
Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 53-67.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_4

Steinau, S., Kiinzle, V., Andrews, K., Reichert, M.: Coordinating business processes
using semantic relationships. In: 19th IEEE Conference on Business Informatics
(CBI), pp. 33-43. IEEE Computer Society Press (2017)

https://doi.org/10.1007/978-3-642-40285-2_21
https://doi.org/10.1007/978-3-319-45468-9_3
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-21759-3_15
https://doi.org/10.1007/978-3-642-21759-3_15
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/978-3-319-91563-0_4

44 S. Steinau et al.

24. van der Aalst, W.M.P., Weske, M., Griinbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129-162 (2005)

25. Weber, B., Mutschler, B., Reichert, M.: Investigating the effort of using business
process management technology: results from a controlled experiment. Sci. Com-
put. Program. 75(5), 292-310 (2010)

®

Check for
updates

Towards Semantic Process Mining

Through Knowledge-Based Trace
Abstraction

G. Leonardi', M. Striani?, S. Quaglini®, A. Cavallini*, and S. Montani' ™)

! DISIT, Computer Science Institute, Universita del Piemonte Orientale,
Alessandria, Italy
stefania.montani@uniupo.it
2 Department of Computer Science, Universita di Torino, Turin, Italy
3 Department of Electrical, Computer and Biomedical Engineering,
Universita di Pavia, Pavia, Italy
4 LR.C.C.S. Fondazione “C. Mondino” - on behalf of the Stroke Unit Network (SUN)
Collaborating Centers, Pavia, Italy

Abstract. Many information systems nowadays record data about the
process instances executed at the organization in the form of traces in a
log. In this paper we present a framework able to convert actions found in
the traces into higher level concepts, on the basis of domain knowledge.
Abstracted traces are then provided as an input to semantic process min-
ing.

The approach has been tested in the medical domain of stroke care,
where we show how the abstraction mechanism allows the user to mine
process models that are easier to interpret, since unnecessary details are
hidden, but key behaviors are clearly visible.

Keywords: Semantic process mining -
Knowledge-based trace abstraction - Medical applications

1 Introduction

Most commercial information systems, including those adopted by many health
care organizations, record information about the executed process instances in
a log [29]. The log stores the sequences (traces [29] henceforth) of actions that
have been executed at the organization, typically together with key execution
parameters, such as times, cost and resources. Logs can be provided in input to
process mining [29,30] algorithms, a family of a-posteriori analysis techniques
able to extract non-trivial knowledge from these historic data; within process
mining, process model discovery algorithms, in particular, take as input the log
traces and build a process model, focusing on its control flow constructs. Classical
process mining algorithms, however, provide a purely syntactical analysis, where
actions in the traces are processed only referring to their names. Action names

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019

P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 45-64, 2019.
https://doi.org/10.1007/978-3-030-11638-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_3

46 G. Leonardi et al.

are strings without any semantics, so that identical actions, labeled by synonyms,
will be considered as different, or actions that are special cases of other actions
will be processed as unrelated.

Relating semantic structures, such as ontologies, to actions in the log, not
only can solve the synonyms issue, but also can enable trace comparison and
process mining techniques to work at different levels of abstraction (i.e., at the
level of instances and/or concepts) and, therefore, to mask irrelevant details, to
promote reuse, and, in general, to make process analysis much more flexible and
reliable.

In fact, it has been observed that human readers are limited in their cognitive
capabilities to make sense of large and complex process models [1,33], while it
would be often sufficient to gain a quick overview of the process, in order to
familiarize with it in a short amount of time. Of course, deeper investigations
can still be conducted, subsequently, on the detailed (ground) process model.

Interestingly, semantic process mining, defined as the integration of
semantic processing capabilities into classical process mining techniques, has
been recently proposed in the literature (see Sect. 5). However, while more work
has been done in the field of semantic conformance checking (another branch
of process mining) [10,13], to the best of our knowledge semantic process model
discovery needs to be further investigated.

In this paper, we present a knowledge-based abstraction mechanism
(see Sect. 2), able to operate on log traces. In our approach:

— actions in the log are mapped to the ground terms of an ontology;

— a rule base is exploited, in order to identify which of the multiple ancestors
of an action should be considered for abstracting the action itself. Medical
knowledge and contextual information are resorted to in this step;

— when a set of consecutive actions on the trace abstract as the same ances-
tor, they are merged into the same abstracted macro-action, labeled as the
common ancestor at hand. This step requires a proper treatment of delays
and/or actions in-between that descend from a different ancestor.

Our abstraction mechanism is then provided as an input to semantic pro-
cess mining (see Sect.3). In particular, we rely on classical process model dis-
covery algorithms embedded in the open source framework ProM [32], made
semantic by the exploitation of domain knowledge in the abstraction phase.

We also describe our experimental work (see Sect. 4) in the field of stroke care,
where the application of the abstraction mechanism on log traces has allowed
us to mine simpler and more understandable (from the clinical point of view)
process models.

2 Knowledge-Based Trace Abstraction

In our framework, trace abstraction has been realized as a multi-step mechanism.
The following subsections describe the various steps.

Semantic Process Mining 47

2.1 Ontology Mapping

As a first step, every action in the trace to be abstracted is mapped to a ground
term of an ontology, formalized resorting to domain knowledge.

In our current implementation, we have defined an ontology related to the
field of stroke management, where ground terms are patient management actions,
while abstracted terms represent medical goals. Figure 1 shows an excerpt of the
stroke domain ontology, formalized through the Protege editor.

v
> Administrative_Actions
v Brain_Damage_Reduction
> In-Hospital__Disability__Reduction
> NeuroProtection
> Operation
> Recanalization_therapy
> TPA
> Endovascular_Procedure
> Causes_ Identification
> Other
v Pathogenetic_Mechanism_Identification

CardioEmbolic_Mechanism
Coagulation_Screening
Extracranial__Vessel_Inspection
Intracranial__Vessel_Inspection
Parenchima_Examination

MRI

MRI_with_CE

MRI_with_DWI

> CAT_with_CE

v Prevention

v Early_Relapse_Prevention

4vVyVvYyYy

vvyyYy

> Antiaggregants_no_TPA
> Anticoagulant_no_TPA
> Anticoagulant_oral_thera Annotations
v Monitoring rdfs:label [language: en]
> @CAT CAT
v Timing
> CA