
 123

LN
BI

P
34

0

7th IFIP WG 2.6 International Symposium, SIMPDA 2017
Neuchatel, Switzerland, December 6–8, 2017
Revised Selected Papers

Data-Driven
Process Discovery
and Analysis

Paolo Ceravolo · Maurice van Keulen
Kilian Stoffel (Eds.)

Lecture Notes
in Business Information Processing 340

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Paolo Ceravolo • Maurice van Keulen
Kilian Stoffel (Eds.)

Data-Driven
Process Discovery
and Analysis
7th IFIP WG 2.6 International Symposium, SIMPDA 2017
Neuchatel, Switzerland, December 6–8, 2017
Revised Selected Papers

123

Editors
Paolo Ceravolo
Università degli Studi di Milano
Crema, Italy

Maurice van Keulen
University of Twente
Enschede, The Netherlands

Kilian Stoffel
IMI
University of Neuchâtel
Neuchâtel, Switzerland

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-11637-8 ISBN 978-3-030-11638-5 (eBook)
https://doi.org/10.1007/978-3-030-11638-5

Library of Congress Control Number: 2018967449

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-4519-0173
http://orcid.org/0000-0003-2436-1372
https://doi.org/10.1007/978-3-030-11638-5

Preface

The rapid growth of organizational and business processes data, managed via infor-
mation systems, has made available a big variety of information that consequently
created a high demand for making data analytics more effective and valuable. The
seventh edition of the International Symposium on Data-Driven Process Discovery and
Analysis (SIMPDA 2017) was conceived to offer a forum where researchers from
different communities can share their insights in this hot new field. As a symposium,
SIMPDA fosters exchanges among academic research, industry, and a wider audience
interested in process discovery and analysis. The event is organized by the IFIP WG
2.6. This year the symposium was held in Neuchatel, Switzerland.

Submissions cover theoretical issues related to process representation, discovery,
and analysis or provide practical and operational examples of their application. To
improve the quality of the contributions, the symposium is structured for fostering
discussion and stimulating improvements. Papers are pre-circulated to the authors, who
are expected to read them and make ready comments and suggestions. After the event,
authors have the opportunity to improve their work extending the presented results. For
this reason, authors of accepted papers were invited to submit extended articles to this
post-symposium volume. We received 19 submissions and six papers were accepted for
publication in this volume.

The current selection of papers underlines the most relevant challenges that were
identified and proposes novel solutions for facing these challenges.

In the first paper, “Online Detection of Operator Errors in Cloud Computing Using
Anti-Patterns,” Arthur Vetter studies the role of anti-patterns to support monotonic
inference in real-time event processing. In particular his word addresses monitoring on
a specific model, namely, the topology and orchestration specification for cloud
applications, which explicitly models the maintenance operations of IT service
applications.

The second paper, by Sebastian Steinau et al., is titled “Executing Lifecycle Pro-
cesses in Object-Aware Process Management” and presents an advanced methodology
for coping with object-aware process management, where the operational semantics is
not obtained by specifying a workflow but by constraining the data flow characterizing
business objects.

The third paper by Leonardi et al., “Towards Semantic Process Mining Through
Knowledge-Based Trace Abstraction” proposes an approach to lift the semantics of
event logs. The proposed framework is able to convert actions found in the event log
into higher-level concepts, on the basis of a domain knowledge. According to the
authors, the semantics lift process is proven to be a means to significantly increase the
quality of the mined models, when measured in terms of fitness.

The fourth paper by Gega et al., “Mining Local Process Models and Their Corre-
lations” aims at simplifying the integration of local process model (LPM) mining,
episode mining, and the mining of frequent subtraces. For instance, the output of a

subtrace mining approach can be used to mine LPMs more efficiently. Also, instances
of LPMs can be correlated together to obtain larger LPMs, thus providing a more
comprehensive overview of the overall process. The authors discuss the benefit of this
integration on a collection of real-life event logs.

The fifth paper by Couvreur and Ezpeleta, “A Linear Temporal Logic
Model-Checking Method over Finite Words with Correlated Transition Attributes”
presents an adaption of the classic timed propositional temporal logic to the case of
finite words and considers relations among different attributes corresponding to dif-
ferent events. The introduced approach allows for the use of general relations between
event attributes by means of freeze quantifiers as well as future and past temporal
operators. The paper also presents a decision procedure, as well as a study of its
computational complexity.

The sixth paper by Azzini et al., “A Report-Driven Approach to Design Multidi-
mensional Models” presents an approach that can generate a multidimensional model
from the structure of expected reports as data warehouse output. The approach is able
to generate the multidimensional model and populate the data warehouse by defining a
knowledge base specific to the domain. Although the use of semantic information in
data storage is not new, the novel contribution of this approach is represented by the
idea of simplifying the design phase of the data warehouse, making it more efficient, by
using an industry-specific knowledge base and a report-based approach.

We gratefully acknowledge the research community that gathered around the
problems related to process data analysis. We would also like to express our deep
appreciation of the referees’ hard work and dedication. Above all, thanks are due to the
authors for submitting the best results of their work to the Symposium on Data-Driven
Process Discovery and Analysis.

We are very grateful to the Università degli Studi di Milano and to IFIP for their
financial support, and to the University of Neuchatel for hosting the event.

November 2018 Paolo Ceravolo
Maurice Van Keulen

Kilan Stoffel

VI Preface

Organization

Chairs

Paolo Ceravolo Università degli Studi di Milano, Italy
Maurice Van Keulen University of Twente, The Netherlands
Kilan Stoffel University of Neuchatel, Switzerland

Advisory Board

Ernesto Damiani Università degli Studi di Milano, Italy
Erich Neuhold University of Vienna, Austria
Philippe Cudré-Mauroux University of Fribourg, Switzerland
Robert Meersman Graz University of Technology, Austria
Wilfried Grossmann University of Vienna, Austria

SIMPDA Award Committee

Paul Cotofrei University of Neuchatel, Switzerland
Paolo Ceravolo Università degli Studi di Milano, Italy

Web and Publicity Chair

Fulvio Frati Università degli Studi di Milano, Italy

Program Committee

Akhil Kumar Penn State University, USA
Benoit Depaire University of Hasselt, Belgium
Chintan Amrit University of Twente, The Netherlands
Christophe Debruyne Trinity College Dublin, Ireland
Ebrahim Bagheri Ryerson University, Canada
Edgar Weippl TU Vienna, Austria
Fabrizio Maria Maggi University of Tartu, Estonia
George Spanoudakis City University London, UK
Haris Mouratidis University of Brighton, UK
Isabella Seeber University of Innsbruck, Austria
Jan Mendling Vienna University of Economics and Business, Austria
Josep Carmona UPC - Barcelona, Spain
Kristof Boehmer University of Vienna, Austria
Manfred Reichert Ulm University, Germany
Marcello Leida TAIGER, Spain
Mark Strembeck WU Vienna, Austria

Massimiliano De Leoni Eindhoven TU, Netherlands
Matthias Weidlich HU Berlin, Germany
Mazak Alexandra Vienna University of Technology, Austria
Mohamed Mosbah University of Bordeaux, France
Mustafa Jarrar Birzeit University, Palestine
Robert Singer FH JOANNEUM, Austria
Roland Rieke Fraunhofer SIT, Germany
Schahram Dustdar Vienna University of Technology, Austria
Thomas Vogelgesang University of Oldenburg, Germany
Valentina Emilia Balas University of Arad, Romania
Wil Van der Aalst Technische Universiteit Eindhoven, The Netherlands

VIII Organization

Contents

Online Detection of Operator Errors in Cloud Computing
Using Anti-patterns . 1

Arthur Vetter

Executing Lifecycle Processes in Object-Aware Process Management 25
Sebastian Steinau, Kevin Andrews, and Manfred Reichert

Towards Semantic Process Mining Through Knowledge-Based
Trace Abstraction . 45

G. Leonardi, M. Striani, S. Quaglini, A. Cavallini, and S. Montani

Mining Local Process Models and Their Correlations 65
Laura Genga, Niek Tax, and Nicola Zannone

A Linear Temporal Logic Model Checking Method over Finite Words
with Correlated Transition Attributes . 89

Jean-Michel Couvreur and Joaquín Ezpeleta

A Report-Driven Approach to Design Multidimensional Models 105
Antonia Azzini, Stefania Marrara, Andrea Maurino, and Amir Topalović

Author Index . 129

Online Detection of Operator Errors
in Cloud Computing Using Anti-patterns

Arthur Vetter(B)

Horus software GmbH, Ettlingen, Germany
arthur.vetter@horus.biz

Abstract. IT services are subject of several maintenance operations like
upgrades, reconfigurations or redeployments. Monitoring those changes
is crucial to detect operator errors, which are a main source of service fail-
ures. Another challenge, which exacerbates operator errors is the increas-
ing frequency of changes, e.g. because of continuous deployments like
often performed in cloud computing. In this paper, we propose a mon-
itoring approach to detect operator errors online in real-time by using
complex event processing and anti-patterns. The basis of the monitor-
ing approach is a novel business process modelling method, combining
TOSCA and Petri nets. This model is used to derive pattern instances,
which are input for a complex event processing engine in order to analyze
them against the generated events of the monitored applications.

Keywords: Complex event processing · Anti-pattern · TOSCA ·
IT service management · Anomaly detection

1 Introduction

Operator errors have been one of the major reasons for IT service failures [1–6]
and will probably continue to be regarding current trends like continuous deliv-
ery, DevOps and infrastructure-as-code [7], which are especially very common in
cloud computing. In recent years, several studies and methods were developed
to detect errors in very complex IT systems [8]. Those traditional methods are
suited for detecting errors during “normal” operations, but not during change
operations like reconfigurations or rolling upgrades, when one node after the
other is upgraded [9]. The reason for the amount of operator errors is their
human nature, because change operations are either performed or initiated by
human operators.

This paper presents current research results of a novel monitoring approach
for those change operations. The monitoring approach is based on a process
model, combining TOSCA (Topology and Orchestration Specification for Cloud
Applications) and high-level Petri nets [8], which explicitly models the mainte-
nance operations of the IT service applications. This process model is used to
derive pattern instances from it. Those pattern instances are checked through
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 1–24, 2019.
https://doi.org/10.1007/978-3-030-11638-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_1

2 A. Vetter

a complex event processing engine against state events and transaction events.
State events describe the state of the application, whereas transaction events
describe each single operation performed on the application. Therefore, the logs
of the applications are filtered for meaningful transaction events and are sent to
the complex event processing engine, allowing the detection of operator errors
almost in real-time. The complex event processing engine compares the pattern
instances with the generated events through anti-patterns and creates an error
message, when an anti-pattern instance was detected. Figure 1 gives an overview
of the general monitoring approach.

Fig. 1. General monitoring approach

The remainder of this paper is organized as follows: The next section gives
a short overview of typical operator errors. Section 3 describes the fundamen-
tals of TOSCA and XML nets, which are used to model the actual mainte-
nance. Section 4 describes the concept of patterns and anti-patterns. Section 5
presents the proof of concept implementation. In the next section first experi-
mental results are presented and discussed in the following section. Afterwards
related work is presented. Section 9 concludes the paper.

2 Operator Errors

Oppenheimer et al. [5] and many other authors like [4,9] classify operator errors
in process errors and configuration errors. Process errors can be further differen-
tiated in following errors: forgotten activity, an unneeded activity was executed,
a wrong activity was executed or actual correct activities were executed in the
wrong order. Configuration errors can be separated in formatting errors and con-
figuration value errors [13]. Formatting errors can be further separated in lexical

Online Detection of Operator Errors in Cloud Computing 3

errors, syntactical errors and typos. Configuration value errors can be further
classified in local value inconsistencies and global environment inconsistencies.
A monitoring approach to detect operator errors should be able to detect all
those process and configuration error types. Table 1 gives an example for every
type of operator error and a reference to a study with further information and
examples.

Table 1. Operator error examples

Operator error Example Description Refer-
ence

Forgotten activity Forgot to restart a server [4]
Unneeded activity Unnecessary restart of a server [9]
Wrongly
executed activity

Restoration of a wrong backup [4]

Wrong order Bringing down two servers in parallel for configura-
tion instead of sequentially maintaining the servers

[9]

Local
Inconsistency

log_output = "Table"
log = query.log the user wanted to store logs

in a file, but the value

data in a database table

[10]

Global
Inconsistency

datadir =
/some/old/path path, which does not exist an-

ymore.

[10]

Lexical Errors InitiatorName:
iqn:DEV_domain

Only lowercase letters are al-

[10]

Syntactical Errors
extension = mysql.so

.....
extension = recode.so

in the wrong order

[10]

Typo extension = recdoe.so
extension = mysql.so

The correct writing of

[10]

3 Fundamentals

The process model is a combination of TOSCA and XML nets and was intro-
duced in a former paper [8]. In this chapter, we describe the fundamentals of
TOSCA and XML nets shortly and then describe how maintenance operations
can be modelled with TOSCA and XML nets.

3.1 TOSCA

TOSCA is a standard, released by OASIS [14] to support the portability of
cloud applications between different cloud providers and the automation of cloud
application provisioning. Therefore, TOSCA provides a modelling language to
describe cloud applications as Service Templates. A Service Template consists
of a Topology Template and of optional Plans (see Fig. 2).

4 A. Vetter

Fig. 2. TOSCA service template

A Topology Template describes the structure of a cloud application as a
directed graph and consists of Node Templates and Relationship Templates. A
Node Template represents a component of the cloud application, e.g. an appli-
cation server and is described by a Node Type. A Node Type defines

– properties of the component (Properties Definition),
– available operations to manipulate the component (Interfaces),
– requirements of the component (Requirement Definitions),
– possible lifecycle states of the component (Instance States) and
– capabilities it offers to satisfy other components’ requirements (Capability

Definitions).

Plans are models to orchestrate the management Operations, which are offered
by the cloud application components and can be written in BPMN, BPEL or
other languages.

As TOSCA Service Templates are written as XML documents, we decided to
use the notation of XML nets for the creation of Plans, which we name “mainte-
nance plan” in the rest of the paper. Using XML nets has the advantage that no
additional notation elements have to be defined like it is the case e.g. for BPMN
[25]. Apart of that, XML nets allow to describe detailed manipulations of XML
documents, which are used to model configuration operations in maintenance
plans.

3.2 XML Nets

XML nets [15] are a high-level variant of Petri nets, in which places represent
containers for XML documents. The XML documents must conform to the XML

Online Detection of Operator Errors in Cloud Computing 5

Schema, which is assigned to a specific place. Edges are labeled with Filter
Schemas, which are used to read or manipulate XML documents. Transitions
can be inscribed by a logical expression, whose variables are contained in the
adjacent edges. A transition in an XML net is enabled and can be fired for a
given marking, when the following three conditions hold. First, every place in the
pre-set of the transition holds at least one valid XML document, which conforms
to the Filter Schema inscribing the edge to the transition. Second, every place
in the post-set of a transition must contain one valid XML document, if the
XML document has to be modified. If an XML document has to be created
from scratch the place must not already contain this XML document. Third,
for the given instantiation of the variables, the transition inscription has to be
evaluated to true in order to enable the transition. If an enabled transition is
fired, XML documents in the pre-set places are (partially) deleted or read for the
given instantiation of variables, and new XML documents are created or existing
XML documents are modified in the post-set places of the transition.

3.3 Modelling Maintenance Plans

This section describes the modelling of maintenance plans with TOSCA and
XML nets, which allows to model applications and the orchestration of applica-
tions’ management operations in one integrated model. Such a model can then
be used to derive pattern instances. Therefore, we extend our former approach,
introduced in [8]. The following adjustments are made to the general definition
of TOSCA Node Templates:

– A Node Template represents exactly one instance of an application, that
means the attributes minIstances, maxInstances := 1.

– Node Templates are extended with the complex element InstanceState, which
stores the current state of the corresponding application.

The notation of XML nets is adjusted as follows:

– Places are containers for Service Templates. Every place is assigned to the
general TOSCA XML schema and additionally to a single Node Type, which
restricts the allowed filter schemas for corresponding Node Templates.

– Transitions represent operations, defined in Interfaces of the adjacent Node
Types.

– Filter Schemas can either be used to select Node Templates or to modify
Properties, or Instance States of a Node Template. Deleting whole Node Tem-
plates is in contrast to general XML nets not allowed. Node Templates can
only change their status, e.g. to undeploy, but they cannot be deleted. The
reason is, that for error detection purposes, even an undeployed Node has
to be monitored to be sure it was really undeployed and e.g. has not been
deployed by accident afterwards again. Deleting parts of a Node Template are
allowed, e.g. deleting a property.

– Transitions hold the attributes start and end, which define when the operation
has to be executed earliest and latest.

6 A. Vetter

We define a maintenance plan as a tuple MP = <P,T,A, Ψ, IP, IN, IA, IT,M0>,
where

(i) <P,T,A> is a Petri net with a set of places P, a set T of transitions,
and a set A of edges connecting places and transitions (the definition and
description of petri nets is excluded in this paper, but can be found, e.g.,
in [11]).

(ii) Ψ = <D,FT,PR> is a structure consisting of a finite and non-empty
individual set D, a set of term and formula functions FT defined on D,
and a set of predicates PR defined on D.

(iii) IP is the function that assigns the TOSCA XML Schema to each place.
(iv) IN is the function that assigns additionally a Node Type to each place.
(v) IA is the function that assigns a Filter Schema to each edge. The Filter

Schema must conform to the XML Schema and Node Type of the adjacent
place.

(vi) IT is the function that assigns a predicate logical expression as inscription
to each transition. The inscription is built on a given structure Ψ and a set
of variables. Only variables, which are contained in the Filter schemas of
adjacent arcs, are allowed. The inscription must evaluate to true in order
to enable the transition.

(vii) Each transition represents a value of the element operation, which is
defined in the complex element Interfaces of the Node Type in the postset
of the transition.

(viii) M0 is the initial marking. Markings are TOSCA Service Templates.
(ix) Each transition holds the attributes start and end.

Figure 3 shows an example of a maintenance plan to configure the database con-
nection of the application MyApplication (Filter Schemas are written informally
for readability reasons). It is assumed that the database and application are part
of the Service Template MyService. MyApplication is hosted on MyAppServer
and requires additionally the database TestDatabase (NT1). It is assumed, that
when the change is performed, MyApplication is started. In the first place, which
is linked to a Node Type Application, MyApplication is one possible representa-
tion. The first Filter Schema FS1 selects MyApplication. Before MyApplication
can be configured it has to be stopped, which is represented in the first transi-
tion. The condition in order to stop the application is, that MyApplication has
to be started. Stopping is one possible operation, which is given by the Node
Type Application. If at the beginning of executing the change, MyApplication is
already stopped instead of started, it is a hint, that an incident or something
unexpected happened, so the change execution should be interrupted. When
MyApplication is stopped, the database connection can be set. Therefore, the
Node Template TestDatabase is selected and the database connection is built up
on the properties of TestDatabase and inserted in MyApplication through the
Filter Schema FS5. Afterwards MyApplication can be started again, but only if
TestDatabase is running (inscription assigned to transition Start).

Online Detection of Operator Errors in Cloud Computing 7

Fig. 3. Example of a TOSCA based XML net

4 Pattern and Anti-pattern for Operator Error Detection

In computer science the term pattern is popular since the publication of the
book about design patterns from Gamma et al. [12]. In this book, Gamma et
al. describe patterns as solutions for recurring problems in a specific context.
Aalst et al. [13] used the concept of patterns for business process modelling and
described several patterns for the control flow perspective. Since then, many
patterns were described for different perspectives of business process modelling,
like for the data perspective [14,15]. Riehle and Züllighoven define a pattern
more general as an abstraction of a recurring concrete form in a specific context
[16]. A form is a finite number of distinguishable elements and their relationships
[16]. A context restricts the possible usage of a form, because the form has to fit
into this specific context. Based on the definition of Riehle and Züllighoven we
define a pattern and anti-pattern as following:

Definition 4.1 (Pattern). A pattern is an abstraction of a welcomed, recur-
ring, concrete form in a specific context.

Definition 4.2 (Anti-pattern). An anti-pattern is as an abstraction of an
unwelcomed, concrete form in a specific context.

In our work, we use patterns to describe the planned to be control flow, appli-
cation configurations and application states for the scheduled maintenance. So,
patterns are used during the design phase. Anti-patterns are used to check dur-
ing the actual execution of the maintenance (run-time), if a form of events exists,
which does not fit to the planned forms. In the following we restrict and formal-
ize the context of the used patterns and anti-patterns as well as the form of these
patterns and anti-patterns.

8 A. Vetter

4.1 Context

As described in Sect. 3, the monitoring approach is based on the comparison
between produced events of monitored applications and pattern instances of the
TOSCA management plan. Those parameters build the context of the patterns.
We separate two kinds of events in our context: state events and transaction
events. Definitions 4.3 and 4.4 formalize state events and transaction events in
this paper.

Definition 4.3 (State Event). A state event is a tuple se = (timestamp, app,
state), where:

– timestamp is the timestamp of the event creation.
– app is the Node Template id of the monitored application.
– state is the actual state of the application. Only values are allowed, which are

defined in the Node Type of the application by the element Instance States.

The set of all state events is defined as SES.

Definition 4.4 (Transaction Event). A transaction event is a tuple te=
(timestamp, st, app, op, prop, value), where:

– timestamp is the timestamp of the event creation.
– st is the Service Template id, which identifies the service the application

belongs to.
– app is the Node Template id of the monitored application.
– op describes the operation, which was conducted on the application. The

value of op must correspond to one of the values, which are defined in the
element operation of the Node Type of the application.

– prop describes the property, which was changed when the operation was exe-
cuted. If no property was changed during the operation prop is null.

– value is the value of the property, which was changed. If prop is null, value
also has to be null.

The set of all transaction events is defined as TES. State events and transac-
tion events represent the actual events during a maintenance. The correspond-
ing “to-be” events are conditions and activities, which can be derived from a
TOSCA management plan. A condition represents a possible transition inscrip-
tion, whereas activities represent firing sequences.

Definition 4.5 (Condition). A condition is a tuple (app, op, prop, zapp,
state), where:

– app is the id of the Node Template, on which the operation is performed.
– op is the operation, which is performed on the Node Template and is restricted

in the Node Type of the Node Template.
– prop is the property of the Node Template, which is changed during the

operation.

Online Detection of Operator Errors in Cloud Computing 9

– zapp is the id of the Node Template, which has to be in a specific state in
order to perform the operation.

– state describes in which state zapp has to be.

Let SM be the set of all maintenance plans. The set of all conditions of a main-
tenance plan is defined as SCi, i ∈ SM. The set of all transition inscriptions of a
maintenance plan is defined as STIi i ∈ SM. The function F: SCi → STIi assigns
a transition to each condition.

Definition 4.6 (Activity). An activity is a tuple a= (st, app, op, prop, value,
start, end), where:

– st is the Service Template id, which identifies the service template in the
TOSCA management plan.

– app is the id of the Node Template, on which the operation is performed.
– op is the operation, which is performed on the Node Template and is restricted

in the Node Type of the Node Template.
– prop is the property of the Node Template, which is changed during the

operation.
– value is the value of the property, which was changes. If prop is null, value

also has to be null.
– start describes when the activity has to start earliest.
– end describes when the activity has to end latest.

Be SM the set of all maintenance plans. The set of all activities of a maintenance
plan is defined as SAi, i ∈ SM. The set of all transitions of a maintenance plan
is defined as STi, ∈ SM. The function F: SAi → STi assigns a transition to each
activity.

Additionally, for some anti-patterns we need the history of transaction events
and the latest state of an application called the state event history.

Definition 4.7 (Transaction Event History). A transaction event history is
a selection on the set of transaction events, which are in the time scope of the
scheduled maintenance:
TEH :=σtimestamp≥maintenance start ∧ timestamp≤maintenance endTES

Definition 4.8 (State Event History). The state event history SEH stores
the latest state for each application in SES.

Furthermore, we define three functions, time, countTE and countA.

Definition 4.9 (Time). time is a function, which returns the current times-
tamp.

Definition 4.10 (CountTE). countTE(te,TEH) is a function, which counts
the number of occurrences of the transaction event te in the transaction event
history.

Definition 4.11 (CountA). countA(a, S) is a function, which counts the num-
ber of occurrences of an activity a in a set S.

After the description and definition of the context, the patterns and anti-
patterns are described.

10 A. Vetter

4.2 Pattern and Anti-pattern

All in all, we define ten patterns/anti-patterns in order to detect operation
errors. These are NEXT, IMMEDIATELY NEXT, PRECEDENCE, IMMEDI-
ATELY PRECEDENCE, OCCURRENCE, ALTERNATIVE OCCURRENCE,
ABSENCE, ALTERNATIVE ABSENCE, VALUE and STATE-CONDITION.
The first eight patterns are highly influenced by the specification pattern of
Dwyer et al. [17] and are used to detect process errors. Whereas the VALUE
anti-pattern is used to detect configuration errors. The STATE-CONDITION
anti-pattern is used to check, if a resource is in the planned state in order to per-
form a task on it. To describe the patterns and anti-patterns following template
is used:

– Name: The name of the pattern must be unique and should describe the
purpose of the pattern.

– Description: Here the form of the pattern is described, which should occur
in the maintenance.

– Instances: Here it is described, how instances of the pattern can be derived
from the maintenance plan.

– Example: Here, examples of pattern instances are given.
– Anti-pattern: A description of the corresponding anti-pattern and which

type of operator errors can be detected with the anti-pattern. Additionally,
we formalize the conditions, which have to be violated in order to detect an
operator error.

– Similar pattern: Here, similar patterns are referenced and differences are
named.

Pattern NEXT
Description: This pattern describes pairs of activities, defining which activ-
ity has to occur after another (with possible activities inbetween). The pattern
is used for controlling AND-joins, AND-splits and concurrent sequences in a
maintenance plan.
Instances: To get all instances of this pattern for a TOSCA management plan
i we create a relation P1 := AMi x AMi x AMi with the tuples (acur, anex, afar)
where,

– the corresponding transitions tcur and tnex of the activities acur and anex are
connected through the same place,

– tcur, tnex and tfar have to occur in the same path,
– tfar always has to occur after tcur,
– tfar and tcur may not be connected through the same place.

Example: In Fig. 4 instances of the pattern NEXT are (a1, a2, a4), (a1, a2, a6),
(a1, a3, a5), (a1, a3, a7), (a2, a4, a6) and (a3, a5, a7).

Online Detection of Operator Errors in Cloud Computing 11

Fig. 4. Example pattern NEXT

Anti-pattern: The anti-pattern allows to detect operator errors of the type
“wrong order”. Besides, it is possible to detect operator errors of the type syn-
tactical error, if a configuration parameter was changed in the wrong order. An
error message is created, when a transaction event tecur in the event stream
occurs and none of the next events tenex conforms to the next activity anex.
However, one of the next events conforms to an activity afar:

πapp,op,proptecur∈ πacur.app,acur.op,acur.propP1i � πapp,op,prop tenex ∈
πapp,op,prop (πafar(σacur.app=tecur.app ∧ acur.op=tecur.op ∧ acur.prop=cur.propP1i)) ∧

πapp,op,prop(πanex (
σacur.app=tecur.app ∧ cur.op=tecur.op ∧ acur.prop=tecur.prop ∧

afar.app=tenex.app ∧ afar.op=tenex.op ∧ afar.prop=tenex.propP1i)) /∈
πapp,op,prop(σtecur.timestamp > timestamp ∧ tenex.timestamp < timestampTEH)

Similar Pattern: The pattern IMMEDIATELY NEXT allows also to detect
operator errors of the type “wrong order”. However, the pattern IMMEDI-
ATELY NEXT would create wrong error messages for concurrent sequences and
can only be used for non-concurrent activities.

Pattern IMMEDIATELY NEXT
Description: This pattern describes pairs of activities, defining which activity
has to be executed right after another activity (without any other activities
occurring inbetween). The pattern is used for controlling XOR-joins, XOR-splits
and non-concurrent sequences in a maintenance plan.
Instances: To get all instances of this pattern for a maintenance plan i we create
a relation P2i := AMi x AMi with the tuples (acur, anex) where,

– the corresponding transitions of the activities acur and tanex are connected
through the same place, and

– the corresponding transitions cannot be executed concurrent to other transi-
tions.

Example: In Fig. 5 instances of the pattern IMMEDIATELY NEXT are (a1,
a2), (a1, a3), (a2, a4), (a3, a5), (a4, a6) and (a5, a7).

12 A. Vetter

Fig. 5. Example pattern IMMEDIATELY NEXT

Anti-pattern: The anti-pattern allows to detect operator errors of the type
“wrong order” for non-concurrent operations. An error message is created when
a transaction event tecur occurs in the event stream and the next following
transaction event tecur+1 of the same service template does not correspond to
the expected activity:

πapp,op,proptecur ∈ πacur.app,acur.op,acur.propP2i � πapp,op,prop(σst=tecur.sttecur+1)
/∈ πapp,op,prop(πanex(σacur.app=tecur.app∧acur.op=tecur.op∧acur.prop=tecur.propP2i))

Similar Pattern: The pattern IMMEDIATELY NEXT is similar to the pattern
NEXT. The difference is, that in the IMMEDIATELY NEXT pattern in contrast
to the pattern NEXT no activities of the same service template are allowed
between a pair of activities.

Pattern PRECEDENCE
Description: This pattern describes pairs of activities where one activity has
to occur before another one. Like the pattern NEXT it is allowed that other
activities occur inbetween the activities of such a pair of activities. The pattern
is used for controlling AND-joins, AND-splits and concurrent sequences in a
maintenance plan.
Instances: To get all instances of the pattern a relation P3i := AMi x AMi with
the tuples (acur, apre) is created where,

– the corresponding transitions of the activities acur and apre are connected
through the same place, and

– the corresponding transitions can be executed concurrent to other transitions.

Example: In Fig. 4 instances of the pattern PRECEDENCE are (a2, a1), (a3,
a1), (a4, a2), (a5, a3), (a6, a4) and (a7, a5).
Anti-pattern: With the anti-pattern it is possible to detect operator errors
of the type “wrong order”. An error message is created when a transaction
event te occurs in the event stream which corresponds to an activity acur, but
the corresponding transaction event for the activity apre does not exist in the
transaction event history:

πapp,op,propte ∈ πacur.app,acur.op,acur.propP3i
∧πapp,op,prop(πapre(σacur.app=te.app∧acur.op=te.op∧acur.prop=te.propP3i))

/∈ πapp,op,propTEH

Online Detection of Operator Errors in Cloud Computing 13

Similar Pattern: The pattern IMMEDIATELY PRECEDENCE is also used to
detect forgotten activities, which have to be executed before another activity. For
the pattern IMMEDIATELY PRECEDENCE no activities are allowed between
acur and apre, whereas for the pattern PRECEDENCE additional activities in
between are allowed. Besides, the pattern is similar to the pattern NEXT. The
difference is, that the pattern NEXT checks for future activities, whereas the
pattern PRECEDENCE checks for activities happened in the past of a mainte-
nance execution.

Pattern IMMEDIATELY PRECEDENCE
Description: This pattern describes which activity has to be executed imme-
diately before another one. It can be used for non-concurrent activities as well
as for XOR-joins and XOR-splits.
Instances: To get all instances of this pattern for a maintenance plan i we create
a relation P4i := AMi x AMi with the tuples (acur, apre), where

– the corresponding transitions of the activities acur and apre are connected
through the same place, and

– the corresponding transitions cannot be executed concurrent to other transi-
tions.

Example: In Fig. 5 instances of the pattern IMMEDIATELY PRECEDENCE
are (a2, a1), (a3, a1), (a4, a2), (a5, a3), (a6, a4) and (a7, a5).
Anti-pattern: With the anti-pattern it is possible to detect operator errors of
the type “wrong order”. An error message is created when a transaction event te
occurs in the event stream which corresponds to an activity acur, but the latest
transaction event of the same service template in the transaction event history
does not correspond to apre:

πapp,op,propte ∈ πacur.app,acur.op,acur.propP4i
∧πapp,op,prop(πapre(σacur.app=te.app∧acur.op=te.op∧acur.prop=te.propP4i))

/∈ πapp,op,prop(σmax(timestamp)(σtimestamp<te.timestamp∧st=te.st))TEH

Similar Pattern: The pattern PRECEDENCE describes also activities which
have to occur before another activity. In contrast to the pattern IMMEDIATELY
PRECEDENCE the pattern PRECEDENCE allows other activities of the same
service template to occur between a pair of activities.

Pattern STATE-CONDITION
Description: This pattern describes the state an application should have in
order to be able to perform an operation on either the same or another applica-
tion. Example: in order to shut down an application server, the database server
must be in the state offline.
Instances: Instances of this pattern are all conditions SCi for a maintenance
plan i.
Example: In Fig. 6, which is a snippet of Fig. 3, the instance of the pattern
STATE-CONDITION is (MyApplication, start, NULL, TestDatabase, started).

14 A. Vetter

Fig. 6. Example pattern STATE-CONDITION

Anti-pattern: This anti-pattern does actually not detect an error like described
in Sect. 2. Instead, it detects malicious prerequisites, which would lead to an
operation error. This is done by comparing the latest state of an application
with the planned state:

πapp,op,propte ∈ πapp,op,propSCi

∧ (πzapp,state(σapp=te.app∧op=te.op∧prop=te.propSCi)/πapp,stateSEH) �= ∅

Similar Pattern: There are no similar patterns for the STATE-CONDITION
pattern.

Pattern VALUE
Description: This pattern describes the value of a configuration parameter
which has to be changed during the maintenance.
Instances: To get all instances of this pattern a selection on the set of all activ-
ities of the maintenance plan is performed in order to get only those activities
which include a change of a property: P5 :=πapp,op,prop,value (σprop �=NULLSAi).
Example: In Fig. 3 the only instance of this pattern is (MyApplication, config-
ure, DB Connection, jdbc:mysql://localhost:1521/XE).
Anti-pattern: This anti-pattern allows to detect operator errors of the types
“wrongly executed activity”, “lexical error”, “local inconsistency”,“global incon-
sistency” and “typo” by checking the element value of a transaction event te:

πapp,op,propve ∈ πapp,op,propP5 ∧ πapp,op,prop,valueve /∈ P5i

Similar Pattern: This pattern can be seen as a more detailed version of the
OCCURRENCE pattern. However, the OCCURRENCE pattern just checks for
executed operations and properties, but not for the actual values of modified
properties.

Pattern OCCURRENCE
Description: This pattern includes all activities which have to be executed in
a maintenance plan independent of the chosen path through the maintenance
plan.
Instances: To get all instances of this pattern a set P6i with all activities of the
maintenance plan i is created, where

– every activity has to be executed independent of the chosen path in the main-
tenance plan.

Online Detection of Operator Errors in Cloud Computing 15

Example: In Fig. 3 the instances of this pattern are (MyService, MyApplication,
stop, NULL, NULL), (MyService, MyApplication, configure, DB Connection,
jdbc:mysql://localhost:1521/XE) and (MyService, MyApplication, start, NULL,
NULL).
Anti-pattern: The anti-pattern allows to detect errors of the kind “forgotten
activity”. An error message is created, when an activity was executed too sel-
dom:

∃ a ∈ σtime > a.endP6i ∧ countTE(πapp,op,propa,
πapp,op,prop(πtimestamp≥a.start ∧ timestamp≤a.endeTEH))

< countA(πapp,op,propa, πapp,op,prop(πstart≥a.start ∧ end≤a.endP6i))

Similar Pattern: With the anti-patterns NEXT, IMMEDIATELY NEXT,
PRECEDENCE and IMMEDIATELY PRECEDENCE it is also possible to
detect forgotten activities in a limited way. However it is only possible to detect
a forgotten activity right before or after another activity. As an example lets
assume we have a sequence (a, b, c, d, e). If the activity a and e occur, it is
possible to detect the forgotten activities b and d with the similar patterns, but
not the activity c. Only with the anti-pattern OCCURRENCE it is possible to
detect the forgotten activity c.

Pattern ALTERNATIVE OCCURRENCE
Description: This pattern describes a pair of activities which cannot be exe-
cuted together, like after XOR-Splits. However, one activity of such a pair of
activities has to be performed during the maintenance.
Instances: To get all instances of this pattern a relation P7i := AMi x AMi with
the tuples (acur, aalt), where

– the corresponding transitions of the activities acur and aalt do not occur
together in any path of the maintenance plan.

Example: In Fig. 5 instances of this pattern are (a2, a3), (a2, a5), (a2, a7), (a4,
a3), (a4, a5), (a4, a7), (a6, a3), (a6, a5), (a6, a7), (a3, a2), (a3, a4), (a3, a6),
(a5, a2), (a5, a4), (a5, a6), (a7, a2), (a7, a4) and (a7, a6).
Anti-pattern1: The anti-pattern allows to detect errors of the kind “forgotten
activity”. An error message is created, when activities of P6i were not executed.
However, no error message is created for activities, if one alternative activity was
already performed. The anti-pattern assumes, that the first executed alternative
activity is the right one and therefore ignores all other activities, which may not
be executed in conjunction with this first alternative activity.
Similar Pattern: The pattern OCCURRENCE does also detect forgotten
activities, but it would create wrong error messages for exclusive activities, if
already one of the exclusive activities was executed.

Pattern ABSENCE
Description: This pattern describes which activities may not occur during a
maintenance.
1 Due to space limitations we forgo the formal definition of the following anti-patterns.

16 A. Vetter

Instances: The instances of this pattern are all possible activities, which could
really occur during a maintenance, without all activities, which are also mod-
elled in the maintenance plan. Note that in a maintenance plan only a subset
of possible operations on service templates is modelled and therefore planned.
All other operations should not occur during the maintenance. The number of
instances of this pattern can get very high, because the number of possible oper-
ations, especially configurations can be huge. However, for the anti-pattern of
ABSENCE the generation of pattern instances of the type ABSENCE is not
needed as it is explained in the following.
Example: On the assumption that in Fig. 3 other possible operations of MyAp-
plication would be “deploy” and“undeploy”, some of the instances of the pattern
ABSENCE would be (MyService, MyApplication, deploy, NULL, NULL) and
(MyService, MyApplication, undeploy, NULL, NULL).
Anti-pattern: The anti-pattern detects errors of the kind “unneeded activity”.
An error message is created either when

– a transaction event does not correspond to one of the activities in P6i or P7i,
or

– a transaction event corresponds to one the of the activities in P6i or P7i, but
it did not occur during the planned maintenance window, or

– a transaction event corresponds to one the of the activities in P6i or P7i and
it occurred during the planned maintenance plan, but it occurred too often
during the maintenance window.

Similar Pattern: With the anti-patterns NEXT, IMMEDIATELY NEXT,
PRECEDENCE and IMMEDIATELY PRECEDENCE it is also possible to
detect unneeded activities, when the following or precedence activity was not
the planned one. However, these anti-patterns do not know, if the unneeded
activity is an activity which was just executed in the wrong order or if it is an
activity which should not occur at all.

Pattern ALTERNATIVE ABSENCE
Description: This pattern describes activities which are not allowed to be exe-
cuted depending on other activities. Such activities occur after XOR-Splits.
Instances: Instances of this pattern are the same like for the pattern ALTER-
NATIVE OCCURRENCE. Although the pattern instances are the same, the
anti-pattern is different to the anti-pattern of ALTERNATIVE OCCURRENCE.
Example: For an example please see the examples of the pattern ALTERNA-
TIVE OCCURRENCE.
Anti-pattern: An error message is created when one of the following conditions
hold:

– A transaction event corresponds to an activity in P7i. It is the first alterna-
tive activity and it occurred during the maintenance window, however it was
performed too often.

– A transaction event corresponds to an activity in P7i and it occurred during
the maintenance window, but an alternative activity was already performed
before.

Online Detection of Operator Errors in Cloud Computing 17

Similar Pattern: The pattern ABSENCE is similar, but the pattern does not
check the absence of activities dependent of other activities.

4.3 Derivation of Pattern Instances

Pattern instances can be derived from the maintenance plan by simulating it.
Therefore, the maintenance plan is marked with the Service Template of the to
be maintained IT Service. The resulting simulation log is used to create log-
based ordering relations and footprints like they are used in process mining and
described in [18,19]. Based on these ordering relations two footprints are created.
One footprint uses the basic ordering relations described in [18]. This footprint is
used to derive the pattern instances IMMEDIATELY NEXT, PRECEDENCE,
IMMEDIATELY PRECEDENCE and the activities acur and anex for the pattern
instances of NEXT. In order to get afar for the pattern instances of NEXT
the second footprint is used, which is based on the extended ordering relations
described in [19].

Instances of the pattern ALTERNATIVE OCCURRENCE and ALTER-
NATIVE ABSENCE are also derived from the second footprint. The pattern
OCCURRENCE is instantiated with all simulated activities, which occur in
every path of the simulation log. For the anti-pattern ABSENCE all possible
activities are needed, which can be derived directly from the simulation log.

Instances of the pattern STATE-CONDITION can be derived from the activi-
ties in the simulation log and the corresponding function defined in Definition 4.5.
The pattern VALUE can be instantiated by filtering all activities in the simula-
tion log, whose attribute prop is not NULL.

5 Implementation

The architecture of the proof of concept implementation consists of four main
components and is shown in Fig. 7. The first component is a modelling compo-
nent, which allows to model maintenance plans and derive pattern instances of
a maintenance plan. The modelling component is implemented in the software
tool Horus2 and already allows to model generic XML nets. The extension of
the tool in order to model TOSCA service templates and link them to an XML
net is currently under construction.

The second main component are the log agents. Log agents are used to get
every new log entry of an application, transform the log entry into the format of a
transaction event and send it to the complex event processing engine. In the proof
of concept log agents are implemented with Beats and Logstash3. Both products
are developed for fast log data extraction. Besides, Logstash contains a powerful
regular expression engine, which supports the transformation of proprietary log
entries into the generic format of transaction events.

2 www.horus.biz.
3 https://elastic.co.

www.horus.biz
https://elastic.co

18 A. Vetter

The third component is an IT infrastructure monitoring tool like Nagios4,
CloudWatch5, or Metricbeat6 which allows to check the state of an application
in order to generate the state events. In the proof of concept we use Metricbeat.

The fourth component is the complex event processing engine, which checks
incoming state and transaction events against the pattern instances of the main-
tenance plan. In the proof of concept the complex event processing system of
WSO27 is used. All anti-patterns are implemented as event queries in the event
pattern language Siddhi8 and have to be implemented only once. In order to
check future maintenance plans, only the corresponding pattern instances have
to be transferred to the complex event processing system. As an example, for
an anti-pattern written in Siddhi, see the following anti-pattern NEXT, imple-
mented as Siddhi query:

from te [(app == NEXT.appcur and op == NEXT.opcur
and prop == NEXT.propcur) in NEXT] insert into #temp;
from #temp as t join NEXT as n on t.app == n.appcur and
t.op == n.opcur and t.prop == n.propcur
select t.timestamp, n.appcur, n.opcur, n.propcur, n.appnex,
n.opnex, n.propnex, n.appfar, n.opfar, n.propfar
insert into #temp1;
from e1=#temp1 -> e2= incoming_te [e1.appfar == e2.app
and e1.opfar == e2.op and e1.propfar == e2.prop]
select e1.timestamp, e1.appcur, e1.opcur, e1.propcur,
e1.appnex, e1.opnex, e1.propnex, e2.timestamp as timestampfar
insert into #temp2;
from #temp2 [not((appnex == TEH.app and opnex == TEH.op
and propnex == TEH.prop in and timestamp < TEH.timestamp
and timestampentf > TEH.timestamp) in TEH)]
select str:concat("The activity ",appnex, ", ", opnex, ", "
, propnex, " was not performed after the activity ", appcur,
" ,", opcur, ", ", propcur, ".") as message
insert into error_message;

Apart of the modelling component all components and Siddhi queries are imple-
mented in a prototype, which is used to evaluate the approach. A first evaluation
experiment was conducted, which is described in the following.

4 https://nagios.org.
5 https://aws.amazon.com/en/cloudwatch/.
6 https://www.elastic.co/guide/en/beats/metricbeat/6.2/index.html.
7 https://wso2.com/products/complex-event-processor/.
8 https://github.com/wso2/siddhi.

https://nagios.org
https://aws.amazon.com/en/cloudwatch/
https://www.elastic.co/guide/en/beats/metricbeat/6.2/index.html
https://wso2.com/products/complex-event-processor/
https://github.com/wso2/siddhi

Online Detection of Operator Errors in Cloud Computing 19

Fig. 7. Implementation architecture

6 Experimental Results

To evaluate the approach an exemplary IT service maintenance was performed.
Therefore, we built an IT service environment using Amazon EC29 machines.
The environment contains five EC2 machines. On two machines we installed
an Apache webserver10 hosting the open source application SugarCRM11. On
two other machines Maria DB was installed. Both SugarCRM instances connect
to the same Maria DB instance. In the experiment the configuration of both
SugarCRM instances should be changed, so SugarCRM connects only to the
second Maria DB instance anymore. The fifth EC2 machine is used to host the
complex event processing engine and Logstash in order to transform log data and
check the data for anti-patterns. Figure 8 gives an overview of the maintenance
plan, which was used for evaluation and to derive the pattern instances for the
experiment. The maintenance plan is described shortly in the following.

According to the maintenance plan first of all the database server named
database2 needs to be started. Afterwards the loadbalancer is shut off in order
to avoid connections to the webservers. When the loadbalancer is offline, the two
webservers have to be stopped and reconfigured in order to connect to database2.
After reconfiguring and stopping the webservers, they can be started again. If
both webservers where stopped, the former database server can be shut down.
Finally, the loadbalancer ha to be started again in order to redirect requests to
the webservers. During the execution of this maintenance plan typical operator
errors, like they are described in Sect. 2, were injected. Namely, those operator
errors are:

9 https://aws.amazon.com/ec2/.
10 https://httpd.apache.org.
11 https://www.sugarcrm.com.

https://aws.amazon.com/ec2/
https://httpd.apache.org
https://www.sugarcrm.com

20 A. Vetter

1. Forgot to configure SugarCRM1
2. The loadbalancer was started before webserver2 was started
3. When configuring SugarCRM1 the IP address is changed and additionally

without need the user is modified
4. Instead of stopping databaseserver1, databaseserver2 is stopped
5. The wrong IP address is entered, when configuring SugarCRM1
6. When changing the IP address a typo happens, so that the format of the IP

address is xxx.xxx.xxxxxx instead of xxx.xxx.xxx.xxx
7. Webserver2 is started. However, the EC2 machine is stopped manually

in order to simulate a software bug which hinders the webserver to start
properly

8. A combination of error 1 and 2
9. A combination of error 3 and 4

10. A combination of error 3, 4 and 6.

In the first ten runs of the experiment one error was injected per run. After-
wards we repeated the experiment. However, in the second ten runs, errors were
corrected immediately after their detection. By correcting them, the actual main-
tenance execution differs from the maintenance plan, because we did not model
any procedural exception handlings.

In order to quantify the results, we used the metrics Recall, Precision and
F-Score known from machine learning evaluations [24].

In the first ten runs all errors were identified and no false positives were
reported, resulting in a Precision and Recall of 100%. The negative site of this
is, that error messages were created multiple times for the same root cause.
For example when the configuration of SugarCRM1 was forgotten (error 1) the
anti-pattern NEXT as well as the anti-pattern PRECEDENCE created an error
message, when the activity after the forgotten activity was executed. Addition-
ally, the anti-pattern OCCURRENCE created an error message, because the
occurrence of the activity could not be found in the transaction event history.
In some runs this led to a ratio of up to four created error messages for one root
cause.

In the second round of the experiment, when the errors were corrected after
their identification, the precision decreased to 41%. The reason was the increasing
number of false positives. For example when the forgotten configuration of Sug-
arCRM1 was identified, the error was corrected by stopping webserver1 again,
configuring SugarCRM1 and starting webserver1 again. When webserver1 was
stopped respectively started the anti-pattern ABSENCE created two error mes-
sages that webserver1 was stopped respectively started too many times. Nonethe-
less, all injected errors were identified resulting in a Recall of 100%. Besides, the
ratio of reported error messages to root causes improved, because of the imme-
diate error handling. The F-Score over all runs is 73%. The F-Score of the first
ten runs is 100%, whereas the F-Score only for the runs with immediate error
handling is 58%.

In the next months we plan to conduct additional experiments to test the
recall and precision of the method. Besides, we plan to perform performance

Online Detection of Operator Errors in Cloud Computing 21

Fig. 8. Maintenance plan used for the experiment

tests as this is one of our main objectives, that the method reports errors within
seconds. So, operators would have a realistic chance to correct their errors before
they manifest in an IT service.

7 Discussion

The high false positive rate when error handling was performed can be inter-
preted as overfitting. On the contrary, the false positive rate would decrease,
if error handling would be modelled explicitly in the maintenance plan. How-
ever, we think it is quite unlikely that an operator would model every possible
exception, because this could lead to a very complex unreadable maintenance
plan.

In general checking conformance of an event stream to a process model in an
online setting leads to new challenges, that do not exist for traditional offline con-
formance checking methods. In offline conformance checking methods, analyzing
event traces instead of event streams, the actual process execution can not be
influenced anymore (apart of long running process, which are not finished when
analyzing the log trace). In an online setting like in this work an operator would
adjust the process execution spontaneous, because of the identification of errors
or deviations from the process modell. This could lead to process executions
differing a lot from the actual modelled process.

An error detection method or conformance checking method should be able
to recognize, which deviations from the process modell are allowed ones, e.g.
because of correcting an error and which one are real errors in order to reduce
false positives. Therefore, we plan to extend our approach by adding a machine
learning component, which analyzes which error messages are real errors and
which were created because of correcting an already performed error.

22 A. Vetter

8 Related Work

Related work can be separated in different areas of work. One area of work is
the automation of typical operations like redeployments and integrated error
exception handling, like it is provided by popular configuration management
tools, e.g. Chef [21]. Those tools have the disadvantage, that they have just local
information for error handling and no global view of the whole maintenance,
which also could involve legacy systems [20].

Another area of work is the detection of configuration errors. Those
approaches can be divided in rule based methods and online configuration val-
idation [22]. Rule based methods try to avoid configuration errors a priori by
correctness checks. These, help to detect wrong planned configuration errors.
However, those approaches do not check if the configuration operation itself was
executed as planned. So, forgotten configurations e.g. because a server was down
or typos, when the configuration was done manually, cannot be detected.

The most related work to ours is the work of Xu et al. [20] and Farshchi et al.
[23]. Both works describe an approach to monitor sporadic operations in cloud
environments. Xu et al. developed a method called “POD-Diagnosis”. They use
a process model to detect operator errors through token replay by checking
the conformance of observed logs with the prebuild model and an additional
fault tree analysis in order to find the root cause of the error. In contrast to
our work only the control flow of the process is modelled and can therefore be
checked. Apart of that, in our approach no additional fault tree has to be build.
Farshchi et al. build a regression-based model to find correlation and causalities
between events described in logs and overserved metrics of resources. In their
approach, assertions are derived from the regression-based model. However, they
are also limited to control flow. Additionally, enough learning data is needed,
which practically limits their approach to automated cloud environments. Our
approach does not have to learn data and therefore can also be used to monitor
manually executed steps or changes in legacy systems as long as those actions
can be seen in the logs of the systems.

The field of business process compliance monitoring can also be seen as other
related work, which uses patterns to check that process executions adhere to pre-
defined compliance requirements [26]. Our work differs from this field in the way,
that we do not use patterns to make sure, that specific compliance requirements
like the “segregation of duty” pattern are covered during a process execution.
The patterns used in this work are only used in order to be able to instanti-
ate anti-patterns during process executions in order to identify situations, which
must not occur. The notion of anti-pattern can be seen as the counterpart to
compliance pattern [26]. The most related work to ours in this field is [27], who
also use the notion of anti-patterns instead of compliance patterns. However, in
our work no definition of patterns has to be performed by an user. Instances of
the patterns are derived automatically from the created maintenance plan dur-
ing design phase, which integrates the control flow and configuration modelling.
The instantiation of patterns can even be influenced after modelling by the sim-
ulation of the maintenance plan. If paths of the maintenance plan will not be

Online Detection of Operator Errors in Cloud Computing 23

simulated, those will not be represented in the simulation log and therefore can-
not be used for pattern instantiation. During the execution phase anti-patterns
check only deviations from the derived pattern instances.

9 Conclusion

In this paper, we describe an approach to detect operator errors online during
the execution of maintenance operations. Therefore, we define different anti-
patterns, which are implemented as complex event processing queries and check
in real time log entries and state metrics of observed resources against pattern
instances of a predefined process model. The process model itself is realized as
a TOSCA based XML net, combining the modelling of the control-flow and the
resources. A first evaluation with a prototype implementation was performed,
resulting in a very good error detection rate. On the contradictory site, the
approach can result in a high false positive rate, when the process execution is
adjusted spontaneously in order to correct the reported errors. Therefore, we
plan to extend our approach in order to deal with this spontaneous flexibility
during an IT service maintenance.

References

1. Gunawi, H.S., et al.: What bugs live in the cloud? A study of 3000+ issues in cloud
systems. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 1–14
(2014)

2. Hagen, S., Seibold, M., Kemper, A.: Efficient verification of IT change operations
or: how we could have prevented Amazon’s cloud outage. Presented at the Network
Operations and Management Symposium (NOMS), 2012 IEEE, pp. 368–376 (2012)

3. Dumitra, T., Narasimhan, P.: Why do upgrades fail and what can we do about it?
Toward dependable, online upgrades in enterprise system. In: Proceedings of the
10th ACM/IFIP/USENIX International Conference on Middleware, p. 18 (2009)

4. Pertet, S., Narasimhan, P.: Causes of failure in web applications. Parallel Data
Laboratory, p. 48 (2005)

5. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,
and what can be done about it? In: Proceedings of the 4th Conference on USENIX
Symposium on Internet Technologies and Systems, vol. 4, Berkeley, p. 1 (2003)

6. Scott, D.: Making smart investments to reduce unplanned downtime. Tactical
Guidelines Research Note TG-07-4033, Gartner Group, Stamford, CT (1999)

7. Elliot, S.: DevOps and the cost of downtime: fortune 1000 best practice metrics
quantified. International Data Corporation, IDC (2014)

8. Vetter, A.: Detecting operator errors in cloud maintenance operations. In: 2016
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 639–644 (2016)

9. Nagaraja, K., Oliveira, F., Bianchini, R., Martin, R.P., Nguyen, T.D.: Under-
standing and dealing with operator mistakes in internet services. In: OSDI 2004:
6th Symposium on Operating Systems Design and Implementation (2004)

24 A. Vetter

10. Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.: An
empirical study on configuration errors in commercial and open source systems. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, pp. 159–172 (2011)

11. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Upper
Saddle River (1981)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education, London (1994)

13. van der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

14. Russell, N., Ter Hofstede, A.H., Edmond, D., van der Aalst, W.M.: Workflow
Data Patterns. QUT Technical report, FIT-TR-2004-01. Queensland University of
Technology, Brisbane (2004)

15. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: identification, representation and tool support. In: Pastor, O.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005). https://doi.org/10.1007/11431855 16

16. Riehle, D., Züllighoven, H.: Understanding and using patterns in software devel-
opment. TAPOS 2(1), 3–13 (1996)

17. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, pp. 7–15 (1998)

18. Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19345-3

19. Weidlich, M., Mendling, J., Weske, M.: Computation of behavioural profiles of pro-
cess models. Business Process Technology, Hasso Plattner Institute for IT-Systems
Engineering, Potsdam (2009)

20. Xu, X., Zhu, L., Weber, I., Bass, L., et al.: POD-diagnosis: error diagnosis of
sporadic operations on cloud applications. In: 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, pp. 252–263 (2014)

21. Chef: About Handlers, 08 November 2017. https://docs.chef.io/handlers.html
22. Xu, T., Zhou, Y.: Systems approaches to tackling configuration errors: a survey

(2014)
23. Farshchi, M., Schneider, J.-G., Weber, I., Grundy, J.: Metric selection and anomaly

detection for cloud operations using log and metric correlation analysis. J. Syst.
Softw. 137, 531–549 (2017)

24. Powers, D.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

25. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: a domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33155-8 4

26. Becker, M., Klingner, S.: A criteria catalogue for evaluating business process pat-
tern approaches. In: Bider, I., et al. (eds.) BPMDS/EMMSAD-2014. LNBIP, vol.
175, pp. 257–271. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
43745-2 18

27. Awad, A., Barnawi, A., Elgammal, A., Elshawi, R., Almalaise, A., Sakr, S.: Run-
time detection of business process compliance violations: an approach based on
anti patterns. In: 12th Enterprise Engineering Track at ACM, SAC 2015 (2015)

https://doi.org/10.1007/11431855_16
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://docs.chef.io/handlers.html
https://doi.org/10.1007/978-3-642-33155-8_4
https://doi.org/10.1007/978-3-662-43745-2_18
https://doi.org/10.1007/978-3-662-43745-2_18

Executing Lifecycle Processes
in Object-Aware Process Management

Sebastian Steinau(B), Kevin Andrews, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany
{sebastian.steinau,kevin.andrews,manfred.reichert}@uni-ulm.de

Abstract. Data-centric approaches to business process management, in
general, no longer require specific activities to be executed in a certain
order, but instead data values must be present in business objects for a
successful process completion. While this holds the promise of more flex-
ible processes, the addition of the data perspective results in increased
complexity. Therefore, data-centric approaches must be able to cope with
the increased complexity, while still fulfilling the promise of high process
flexibility. Object-aware process management specifies business processes
in terms of objects as well as their lifecycle processes. Lifecycle processes
determine how an object acquires all necessary data values. As data val-
ues are not always available in the order the lifecycle process of an object
requires, the lifecycle process must be able to flexibly handle these devia-
tions. Object-aware process management provides operational semantics
with built-in flexible data acquisition, instead of tasking the process mod-
eler with pre-specifying all execution variants. At the technical level, the
flexible data acquisition is accomplished with process rules, which effi-
ciently realize the operational semantics.

Keywords: Lifecycle execution · Data-centric processes ·
Flexible data acquisition · Process rules

1 Introduction

Data-centric modeling paradigms part with the activity-centric paradigm, and
instead base process modeling and enactment on the acquisition and manip-
ulation of business data. In general, a data-centric process no longer requires
certain activities to be executed in a specific order for successful completion.
Instead certain data values must be present, regardless of the order in which
they are acquired. Activities and decisions consequently rely on data conditions
for enactment, e.g., an activity becomes executable once required data values
are present. While this holds the promise of vastly more flexible processes in
theory, it is no sure-fire success. The increased complexity from considering the
data perspective in addition to the control-flow perspective requires a thoughtful
design of any approach for modeling and enacting data-centric processes. This
design should enable the flexibility of data-centric processes, while still being
able to manage the increased complexity.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 25–44, 2019.
https://doi.org/10.1007/978-3-030-11638-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_2

26 S. Steinau et al.

Object-aware process management [16] is a data-centric approach to business
process support that aims to address this challenge. In the object-aware app-
roach, business data is held in attributes. Attributes are grouped into objects,
which represent logical entities in real-world business processes, e.g., a loan
application or a job offer. Each object has an associated lifecycle process that
describes which attribute values need to be present for successfully processing the
object. Lifecycle processes adopt a modeling concept that resembles an imper-
ative style, i.e., the model specifies the default order in which attribute values
are required. Studies have indicated that imperative models show advantages
concerning understandability compared to declarative models, which are known
for flexibility [11,19,20]. While the imperative style allows for an easy modeling
of lifecycle processes, it seemingly subverts the flexibility promises of the data-
centric paradigms, as imperative models tend to be rather rigid [25]. However,
in object-aware process management, the operational semantics of lifecycle pro-
cesses allow data to be entered at any point in time, while still ensuring correct
process execution. The imperative model provides only the basic structure. This
has the advantage that modelers need not concern themselves with modeling
flexible processes, instead the flexibility is built into the operational semantics
of lifecycle processes.

The functional specifications of the operational semantics of lifecycle pro-
cesses have partially been presented in previous work [15]. This paper expands
upon this work and contributes extended functionality and the technical imple-
mentation of the operational semantics, provided in the PHILharmonicFlows
prototype. In particular, the logic involving execution events has been com-
pletely redesigned to include completion and invalidation events. These event
types became necessary as otherwise the consistency of the lifecycle process
was not guaranteed. Further, decision making in lifecycle processes has been
improved by redesigning the data-driven operational semantics of decisions.

The technical implementation is based on the process rule framework, a
lightweight, custom process rule engine. The framework is based on event-
condition-action (ECA) rules, which enable reacting to every contingency the
functional specification of the operational semantics permit, i.e., correct lifecy-
cle process execution is ensured. The process rule framework will further provide
the foundation for implementing the operational semantics of semantic rela-
tionships and coordination processes, the object-aware concept for coordinating
objects and their lifecycle processes [23]. Such a coordination is necessary, as
objects interact and thereby form large process structures, constituting an over-
all business process [22]. As such, coordination processes enable collaborations
of concurrently running lifecycle processes, having the advantage of separating
lifecycle process logic and coordination logic. With the transition of PHILhar-
monicFlows to a hyperscale architecture [2], the process rule framework is fully
compatible with the use of microservices, enabling a highly concurrent execution
of multiple lifecycle processes with large numbers of user interactions.

The remainder of the paper is organized as follows: Sect. 2 provides the
fundamentals of object-aware process management. In Sect. 3, the extended

Executing Lifecycle Processes in Object-Aware Process Management 27

operational semantics are presented. The process rule framework at the core of
the operational semantics implementation is described in Sect. 4. Finally, Sect. 5
discusses related work, whereas Sect. 6 concludes the paper with a summary and
an outlook.

2 Fundamentals

Object-aware process management organizes business data in form of objects,
which comprise attributes and a lifecycle process describing object behavior.
PHILharmonicFlows is the implementation of the object-aware concept to pro-
cess management. Object-aware process management distinguishes design-time
entities, denoted as types (formallyT), and run-time entities, denoted as instances
(formallyI). Collectively, they are referred to as entities. At run-time, types may
be instantiated to create one or more corresponding instances. For the purposes
of this paper, object instance (cf. Definition 1) and lifecycle process instance (cf.
Definition 2) definitions are required. The corresponding type definitions can be
found in [16]. The “dot” notation is used to describe paths, e.g., for accessing
the name of an object instance. ⊥ describes the undefined value.

Definition 1. (Object Instance)
An object instance ωI has the form (ωT , n, ΦI , θI) where

– ωT refers to the object type from which this object instance has been generated.
– n is the name of the object instance.
– ΦI is a set of attribute instances φI , where φI = (n, κ, vκ), with n as the

attribute instance name, κ as the data type (e.g., String, Boolean, Integer),
and vκ as the typed value of the attribute instance.

– θI is the lifecycle process (cf. Definition 2) describing object behavior.

An object’s lifecycle process (cf. Definition 2) is responsible for acquiring data
values for the attributes of the object.

Definition 2. (Lifecycle Process Instance)
A lifecycle process instance θI has the form (ωI , ΣI , Γ I , T I , Ψ I , Eθ, μθ)
where

– ωI refers to the object instance to which this lifecycle process belongs.
– ΣI is a set of state instances σI , with σI = (n, Γ I

σ , T I
σ , Ψ I

σ , μσ) where
• n is the state name.
• Γ I

σ ⊂ Γ I is subset of steps γI .
• T I

σ ⊂ T I is a subset of transitions τ I .
• Ψ I

σ ⊂ Ψ I is a subset of backwards transitions ψI .
• μσ is the state marking.

– Γ I is a set of step instances γI , with γI = (φI , σI , T I
in, T I

out, P
I , λ, μγ , dγ)

where
• φI ∈ ωI .ΦI is an optional reference to an attribute instance φI from ΦI

of object instance ωI . Default is ⊥.
If φI = ⊥, the step is denoted as an empty step instance.

28 S. Steinau et al.

• σI ∈ ΣI is the state instance to which this step instance γI belongs.
• T I

in ⊂ T I
σ is the set of incoming transition instances τ I

in.
• T I

out ⊂ T I
σ is the set of outgoing transition instances τ I

out.
• P I is a set of predicate step instances ρI , P I may be empty, with

ρI = (γI , λ) where
* γI is a step instance.
* λ is an expression representing a decision option.

If P I �= ∅, the step instance γI is called a decision step instance.
• λ is an optional expression representing a computation.

If λ �= ⊥, the step instance γI is called a computation step instance.
• μγ is the step marking, indicating the execution status of γI .
• dγ is the step data marking, indicating the status of φI .

– T I is a set of transition instances τ I , with τ I = (γI
source , γ

I
target , ext , p, μτ)

where
• γI

source ∈ Γ is the source step instance.
• γI

target ∈ Γ is the target step instance.
• ext := γI

source .σ
I = γI

target .σ
I is a computed property, denoting the tran-

sition as external, i.e., it connects steps in different states.
• p is an integer signifying the priority of the transition.
• μτ is the transition marking.

– Ψ I is a set of backwards transition instances ψI , Ψ I may be empty, with
ψI = (σI

source , σ
I
target , μψ) where

• σI
source ∈ ΣI is the source state instance.

• σI
target ∈ ΣI is the target state instance, σI

target ∈ Predecessors(σI
source).

• μψ is the backwards transition marking.
– Eθ is the event storage for θI , storing execution events εE.
– μθ is the lifecycle process marking.

All sets are finite and must not be empty unless specified otherwise. The function
Predecessors: σI → ΣI determines a set of states from which σI is reachable. The
function Successors is defined analogously.

Note that for the sake of brevity the value of a step γI refers to the value of
the corresponding attribute γI .φI . Furthermore, correctness criteria have been
omitted from Definitions 1 and 2. For the sake of clarity, a lifecycle process
is described by a directed acyclic graph with one start state and at least one
end state. Figure 1 shows object instance Bank Transfer with its attributes and
lifecycle process. The object instance represents a simplified transfer of money
from one account to another. For this purpose, the states and the steps of a
lifecycle process can be used to automatically generate forms. This is unique for
process management systems, as in other systems, forms must still be designed
manually, leading to a huge difference regarding productivity [25]. Additionally,
when executing a process, the auto-generated forms are filled in by authorized
users. The PHILharmonicFlows authorization system and its connection to form
auto-generation has been discussed in [1]. In essence, forms may be personalized
automatically based on the user’s permissions, no different form designs showing
different form fields are necessary.

Executing Lifecycle Processes in Object-Aware Process Management 29

Bank Transfer - Decision

Bank Transfer - IniƟalized

RejectedRejected

ApprovedApproved

DecisionDecisionIniƟalizedIniƟalizedAmount : IntegerAmount : IntegerAmount : Integer

Date : DateDate : DateDate : Date

Approval : BoolApproval : BoolApproval : Bool

Comment : StringComment : StringComment : String

ObjectObject

AƩributesAƩributes

Lifecycle
Process
Lifecycle
Process

StateState

StepStep

Predicate StepPredicate Step

Backwards TransiƟonBackwards TransiƟon

TransiƟonTransiƟon

Amount

Date

Submit

Comment Approved

generates generates

Submit

FormForm Form FieldForm Field

External TransiƟonExternal TransiƟon

TransferTransfer
AmountAmount DateDate

Approval
[Approval] == true[Approval] == true

[Approval] == false[Approval] == false

Approval
[Approval] == true

[Approval] == false

Fig. 1. Example object and lifecycle process of a Transfer

As depicted in Fig. 1, the state σI
Initialized contains steps γI

Amount and γI
Date,

signifying that values for attributes φI
Amount and φI

Date are required during pro-
cess execution. For the sake of brevity, the properties of an entity (e.g., the
name of a step γ) may be written as a subscript, e.g., γAmount for the first step
in Fig. 1. The form corresponding to σI

Initialized contains input fields for steps
γI

Amount and γI
Date. This means a state represents a form, whereas the steps rep-

resent form fields. The φI
Comment field is an optional field visible to a user due

to the authorization system of PHILharmonicFlows. In state σI
Decision, a deci-

sion step γI
Approval represents the approval of the bank for the money transfer.

The automatically generated form displays γI
Approval as a drop-down field. End

states σI
Approved and σI

Rejected display an empty form, as the contained steps
are empty (cf. Definition 2). Transitions determine at run-time which attribute
value is required next, an external transition also determines the next state.
Backwards transitions allow returning to a previous state, e.g., to correct a data
value.

3 Lifecycle Process Operational Semantics

Data acquisition in PHILharmonicFlows is achieved through forms, which can
be auto-generated from lifecycle process models θI . A form itself is mapped to a
state σI of the lifecycle process θI ; form fields are mapped to steps γI . In conse-
quence, the operational semantics of lifecycle processes emulate the behavior of
electronic and paper-based forms, following a “best of both worlds” approach.
Paper-based forms provide a great overview over the form fields, i.e., every form
field may be viewed at any point in time. Further, they provide a reasonable
default structure, but allow filling form fields at any point in time and in any
order, e.g., starting to fill in form fields in the middle of the form is possible.
In turn, electronic forms usually provide less overview, i.e., viewing subsequent

30 S. Steinau et al.

forms is not possible before having filled out all mandatory fields in the cur-
rent form. In contrast to paper-based forms, however, electronic forms are able
to only display relevant fields, especially in context of decision branching. For
example, an electronic anamnesis form at a physician’s office may skip the ques-
tions related to pregnancy entirely if the patient is male. Additionally, electronic
forms allow for data values to be easily changed as well as for data input verifi-
cation, e.g., ensuring that a date has the correct format or all mandatory form
fields possess a value. PHILharmonicFlows combines the advantages of both
paper-based and electronic forms, providing flexibility in entering data while
ensuring a correct lifecycle process execution.

3.1 Lifecycle Process Execution

For realizing the combined benefits, the progress of a lifecycle process θI is
determined by its active state σI

A, i.e., marking σI .μσ = Activated . Only one
state σI of θI may be active at any point in time. Per default, the form of the
active state is displayed to a user when executing lifecycle process θI . How-
ever, the user may choose to display forms of other states. When processing θI ,
the active state changes, depending on data availability and decision results.
For example, in regard to Fig. 1, starting the execution of the lifecycle process
activates σI

Initialized. If values for steps γI
Amount and γI

Date are available (cf.
Sect. 3.2), σI

Initialized may be marked as μσ = Confirmed , and the next state
σI

Decision becomes active, i.e., σI
Decision.μσ = Activated . Depending on the value

of γI
Approval, either σI

Approved or σI
Rejected becomes active. As both states are end

states, the execution of θI terminates. The active state possesses a crucial role in
the execution of θI , as consequences from data acquisition or decisions are only
evaluated for the active state. For example, providing value true to γI

Approval

does not trigger the decision, if σI
Initialized is the currently active state. This

is to avoid inconsistent processing states, e.g., because a previous decision may
make filling out a state σI obsolete due to dead-path elimination [16].

For several reasons, including automatic form generation and process lifecycle
coordination, only exactly one state may be active at a given point in time. If
two or more state had become simultaneously active, it would be unclear which
form should be presented to the user, or what the progress of the lifecycle is.
State execution (cf. Sect. 3.2) must therefore enforce that only exactly one state
may activate at the conclusion of a previous one. In consequence, the enabling of
external transitions must be mutually exclusive. Regarding decisions steps and
its predicate steps, additional measures are required to prevent the simultaneous
enabling of different transitions.

For states Successors(σI
A), data values may be entered, but processing only

occurs once a state becomes active. All successor states possess marking μσ =
Waiting . If a user enters values for steps γI , these values will be stored and
taken into account if the corresponding state γI .σI becomes active. To indicate
the status of the corresponding attribute value, steps possess a data marking dγ .
When setting the data value for a step γI

hasV alue, where the state instance σI has

Executing Lifecycle Processes in Object-Aware Process Management 31

μσ = Waiting , the data marking of γI
hasV alue is set to dγ = Preallocated . Should

σI become active during process execution, dγ = Preallocated will indicate that
a value is present and thus is not be required anymore (cf. Sect. 3.2).

States that have already been processed, i.e., Predecessors(σI
A), will either

have marking μσ = Confirmed or μσ = Skipped . States with marking μσ =
Confirmed have previously been active, whereas skipped states have undergone
a dead-path elimination. For reasons of data integrity, the values of steps in
skipped or confirmed states must not be altered at any point in time. If allowed,
inconsistencies and unpredictable execution behavior may occur. For example,
changing values of decisions steps in an uncontrolled way might activate currently
eliminated states, whereas currently active states become eliminated. However, it
must be possible to correct mistakes for previously entered and accidentally con-
firmed data. Therefore, backwards transitions (cf. Definition 2) allow for the reac-
tivation of confirmed states in a controlled way, where the data may be altered
in a consistent and safe way; consequently, subsequent changes in decisions can
be handled properly. The reactivation of states and correction of mistakes con-
tributes much to the flexibility of object-aware lifecycle process execution.

3.2 State Execution

While PHILharmonicFlows is capable of auto-generating forms from states and
steps, so far, these forms are static. However, there are dynamic aspects to a
form, e.g., the indication which value is required next or which external transi-
tion or backwards transition may be committed. For this purpose, a lifecycle pro-
cess θI provides execution events εE and an event storage Eθ. Execution events
are dynamically created when processing a lifecycle process θI . When auto-
generating a form, the static form is enriched with dynamic information from
Eθ and displayed to the user. Execution events have different subtypes, namely
request events, completion events, and invalidation events. When request events
are created, they are stored in Eθ and are then used to enrich the form. Com-
pletion and invalidation events remove request events from Eθ, when a request
event are either fulfilled or no longer valid, respectively. The usage of the event
storage Eθ, in conjunction with the generated static forms, allows multiple users
access to the same form, due to the centralized storage of the dynamic form data.
The use of Eθ further allows preserving dynamic data over multiple sessions, i.e.,
a user may partially fill out a form, close it and do something else, and later
return and continue where the user previously stopped. It is even possible that
another user finishes filling out the form, introducing additional flexibility. In
general, storing execution events εE ensures consistency regardless of any user
interaction with the forms.

The creation and removal of execution events is primarily determined by the
respective marking μ of states, steps, transitions, and backwards transitions.
For steps with an attribute (i.e., γI .φI �= ⊥), data marking dγ is also taken into
account. For example, if step γI

Amount in Fig. 1 has marking μγ = Enabled , but
γI

Amount.dγ = Unassigned holds, an “attribute value request” event is created
and stored in Eθ after some intermediate processing steps. If a user accesses

32 S. Steinau et al.

the form for σI
Initialized, the form field for γI

Amount is tagged with an asterisk,
indicating that a value is mandatory (cf. Fig. 2). As soon as the user provides
a value for the γI

Amount form field, the data marking for γI
Amount is updated to

dγ = Assigned. This indicates that a value has been successfully provided for
γI

Amount. In consequence, the attribute value request event in Eθ is no longer
necessary. Therefore, setting dγ = Assigned triggers a completion event remov-
ing the “attribute value request” event from Eθ. After the completion event
has occurred, more markings change in a cascading fashion, leading to the step
γI

Amount being marked as Unconfirmed . This enables the outgoing transitions
γI

Amount, which, in turn, leads to the next step γI
Data receiving μγ = Enabled.

The data marking γI
Date.dγ = Unassigned triggers the same chain of events and

marking changes analogously to the marking change of γI
Amount.

Bank Transfer - IniƟalized

Amount*

Date

Submit

Comment

Fig. 2. Form enriched with execu-
tion events

Handling Preallocated Data Values. To
illustrate the automatic handling of pre-
allocated data values, it is assumed that
another user has already provided value
false for γI

Approval in state σI
Decision, i.e.,

γI
Approval.dγ = Preallocated holds. Note that

this provision of a value outside of the nor-
mal execution order is a feature of the oper-
ational semantics of lifecycle processes and
not merely part of the example. As σI

Decision

is not currently the active state (i.e., μσ =
Waiting), decision step γI

Approval is not eval-
uated. When reaching γI

Approval from γI
Date

after a state change, γI
Approval receives mark-

ing μγ = Enabled . Instead of creating an “attribute value request” event, the
combination of data marking dγ = Preallocated and marking μγ = Enabled
immediately switches data marking to dγ = Assigned. Consequently, as no
attribute value request event has been raised beforehand, the completion event
for providing a value is omitted. As γI

Approval is a decision step, value false

subsequently leads to the activation of state σI
Rejected (cf. Fig. 1), in which θI

terminates. Note that the end state remains active despite the termination of
the lifecycle process instance. In general, the operational semantics of lifecycle
processes ensure that a previously provided value requires no further user inter-
action by default. However, users may still change the value afterwards should
they wish to do so. Overall, the user may flexibly enter and alter data, and the
operational semantics ensure data integrity.

Handling Decision Steps. Previously, decision step γI
Approval was provided

with a preallocated data value and state σI
Rejected was reached, but the details

pertaining to the handling of decision steps were omitted. In the following, the
handling of a generic decision step γI

Dec with γI
Dec.P

I �= ∅ is discussed in detail.

Executing Lifecycle Processes in Object-Aware Process Management 33

The discussion uses the standard processing case γI
Dec.φ

I = ⊥, i.e., initially γI
Dec

has no preallocated data value. Due to the presence of one or more predicate
steps ρI ∈ γI

Dec.P
I representing decision options, more intermediate steps are

necessary for the handling of decision steps when compared to ordinary steps.
Until a completion event occurs after a value has been provisioned for a decision
step γI

Dec, the decision step behaves identically to an ordinary step. Initially,
when γI

Dec has marking μγ = Enabled and dγ = Unassigned , an attribute value
request event is raised, a data value will be provided, and subsequently a comple-
tion event erases the “attribute value request” event from the event storage. At
this point, the predicate steps ρI of the decision step is evaluated and it is deter-
mined which decision options apply. For each predicate step ρI , its expression
representing the predicate is evaluated.

For decision step γI
Approval , two predicate steps ρI

true and ρI
false exist. The

predicate steps are equipped with expressions representing the actual predicate,
λtrue : [Approval] == true and λfalse : [Approval] == false, respectively (cf.
Fig. 1). On provision of a value (w.l.o.g. it is assumed this value is false) for
γI
Approval , each predicate step is evaluated. For ρI

true, this evaluation returns
false and accordingly marking μρ = Bypassed is set. Marking Bypassed indicates
that this decision option is not valid and subsequent execution paths cannot be
taken. For ρI

false, the expression λfalse : [Approval] == false evaluates to true

and μρ = Activated is set. The markings of predicate steps ρI
true and ρI

false are
shown in Fig. 3.

RejectedRejected

ApprovedApproved

DecisionDecision

Approval

Enabled

[Approval] == false

AcƟvated

[Approval] == true

Bypassed

Fig. 3. Decision step execution status

Once each predicate step ρI has
been evaluated, the results affect the
marking of the decision step γI

Dec

itself. In general, two cases need to be
distinguished.

First, if all predicate steps possess
marking μρ = Bypassed , the decision
step γI

Dec must be marked as Blocked .
This marking indicates that the provi-
sioned value did not lead to a success-
ful evaluation of the decision options,
and the execution of the lifecycle pro-
cess can therefore not proceed. To rec-
tify the issue, a new value for γI

Dec

needs to be provided. In turn, this trig-
gers another evaluation of the predi-
cate steps, ensuring that process execution is not stuck when an invalid value
has been provisioned.

In the second case, at least one of the predicate steps’ expressions evaluate to
true and process execution may proceed. This is the case in Fig. 3 with the pred-
icate steps of γI

Approval . Decision step γI
Dec becomes marked as μγ = Activated .

Subsequently, a series of marking changes occurs, leading to the decision step and
its predicate steps with marking μρ = Activated to be marked as Unconfirmed .

34 S. Steinau et al.

For decision steps, this raises several challenges that need to be solved in regard
to its outgoing transitions becoming enabled. First, to allow modeling sophis-
ticated decisions, it is permitted that predicates overlap, i.e., for a given data
value, two or more predicates may evaluate to true. In turn, this might lead to
the simultaneous enabling of outgoing transitions of the predicate steps. This is
not permitted, as for example two states may be become active at the same time.
For this reason, lifecycle processes perform a priority evaluation when multiple
transitions are about to become enabled. Each transition τ I has an assigned pri-
ority τ I .p (cf. Definition 2). Only the transition with the highest priority becomes
enabled, whereas all others are marked as Bypassed . The priorities are assigned
by the process modeler at design time, allowing for full control over decision
options with overlapping predicates.

Handling Backwards Transitions and Invalidation Events. Consider
again the example from before, where at the moment the lifecycle process has
terminated and σI

Rejected is the active state. In this situation, a user decides he
wants to revise his decision for approval and thus change the value of γI

Approval

from false to true. After σI
Rejected had become active, two backwards transition

instances ψI
ToInit and ψI

ToDec became confirmable, i.e., their marking changed to
μψ = Confirmable. In consequence, two “backwards transition confirm request”
events were created, one for each backwards transition, and then were stored in
Eθ (Fig. 4).

RejectedRejected

To State
IniƟalized

To State
Decision

From State
Decision

Fig. 4. Backwards transitions

This allows going back to state
σI

Initialized, by using ψI
ToInit, or going

back to σI
Decision, by using ψI

ToDec. How-
ever, only one state may be active at
once. Therefore, only one backwards tran-
sition may be taken. To revise the value
of γI

Approval, ψI
ToDec must be confirmed.

Confirming ψI
ToDec causes its marking to

change to μψ = Ready . Analogously to
a step, a completion event is created,
which removes the corresponding “back-
wards transition confirm request” event

from Eθ. Subsequently, σI
Rejected is marked as μσ = Waiting and σI

Decision

is marked as μσ = Activated, which allows altering the value of γI
Approval to

true. As σI
Rejected is no longer active, ψI

ToInit and ψI
ToDec become marked as

μψ = Waiting . Resetting the markings of both ψI
ToInit, ψ

I
ToDec, and σI

Rejected

to Waiting enables their reuse, e.g., if the value of γI
Approval remains unchanged

and the same path is taken again.
With state σI

Decision becoming active again, it is possible to change the value
of σI

Approval. However, the “backwards transition confirm request” event belong-
ing to ψI

ToInit is still stored in Eθ, despite ψI
ToInit having been marked with

μψ = Waiting , i.e., confirming ψI
ToInit is no longer possible. Obviously, this con-

Executing Lifecycle Processes in Object-Aware Process Management 35

stitutes an inconsistency between the forms and the lifecycle process. The form
displays a button with the option that ψI

ToInit can be confirmed, but on press-
ing the button the PHILharmonicFlows system produces an error and other,
possibly worse, side effects. As a consequence, the operational semantics include
invalidation events, with the purpose to remove invalid or obsolete execution
events from event storage Eθ. An invalidation event occurs when entities with
a request event, e.g., backwards transitions, are not successfully completed, but
become changed due to other circumstances, e.g., the confirmation of another
backwards transition.

Request events, completion events, and invalidation events are used in many
more situations than discussed above. The basic principles, however, are always
the same, and, embedded in the overall operational semantics, provide a robust
and flexible way to acquire data values for lifecycle processes. The imperative-
like modeling style of lifecycle processes, from which forms can be auto-generated
directly, significantly reduces modeling time and efforts. The operational seman-
tics provide the necessary flexibility to users interacting with the forms. Further-
more, the use of forms and the emulation of standard form behavior simplifies
the usage of the PHILharmonicFlows system for non-expert users.

Overall, this section described the functional aspects of the operational
semantics of lifecycle processes. The technical implementation of these opera-
tional semantics with the Process Rule Framework is presented in Sect. 4.

4 The Process Rule Framework

In the description of the operational semantics of lifecycle processes (cf. Sect. 3),
at the lowest level, progress is driven by the change of markings. Marking changes
elicit the creation of execution events, which, in turn, results in user actions, e.g.,
the provision of a data value for an attribute. This user interaction is reflected in
the lifecycle process by setting new markings. This may be viewed as a chain of
events, and, consequently, event-condition-action rules are used as the technical
basis for the technical implementation of the operational semantics. In PHIL-
harmonicFlows, a specialized variant of ECA rules, denoted as process rules, is
employed for this purpose. Process rules and the means to specify them consti-
tute one part of the process rule framework. To create an execution sequence,
such as the one described in Sect. 3.2, process rules need to form process rule
cascades, i.e., a rule triggers an event, which may trigger another rule, which
again triggers an event. Furthermore, process rules are uniquely suited to deal
with the different eventualities emerging during the execution of lifecycle pro-
cesses. For example, a state σI may become active in context of normal process
execution progress or due to the use of a backwards transition ψI . Subsequently,
different follow-up measures may be required, e.g., the resetting of markings for
steps γI ∈ σI .Γ I in case the backwards transition became activated.

The basic definition of a process rule is given in Definition 3. In order to
distinguish these symbols from symbols used in the definition of object instances,
superscript R is used.

36 S. Steinau et al.

Definition 3. A process rule pR has the form (ε, eT , CR, AR) where

– ε is an event triggering the evaluation of the rule.
– eT is an entity type, e.g., a step type γT .
– CR is a set of preconditions in regard to eT .
– AR is a set of effects.

Process rules pR may be evaluated, i.e., their preconditions CR are checked
and, if all are fulfilled, the effects AR are applied. An evaluation is triggered when
the event ε occurs. Events ε are always raised by a particular entity instance eI ,
e.g., a step γI or a transition τ I . eT is an entity type that provides the context for
defining conditions and effects. Furthermore, it provides an implicit precondition,
meaning a rule is not evaluated if the entity instance eI raising ε was not created
from eT . Preconditions CR check different properties of an entity, e.g., whether
the entity has a specific marking. Effects AR apply different effects to an entity,
e.g., setting the marking of an entity. Note that preconditions and effects are
not limited to properties belonging to instances of eT . They may also access or
set properties of neighbor entities. For example, a rule defined for a step γT may
have effects that set markings for the outgoing transitions τ I

out ∈ γI .T I
out of the

corresponding step instance.

Fig. 5. Fluent interface definition of a marking rule in code

In the PHILharmonicFlows implementation, process rules are created using
a domain-specific language. Figure 5 shows an example of how a process rule is
represented. Process rules are often subject to change, as new features for PHIL-
harmonicFlows are added or errors in lifecycle process execution are resolved.
In order to be able to quickly adapt a process rule, the process rule framework
uses a fluent interface for process rule specification, i.e., the domain-specific lan-
guage is structured to resemble natural prose text. This allows for both a high
readability and maintainability.

The operational semantics introduced in Sect. 3 allow identifying different use
cases for process rules. For example, one type of process rule raises execution

Executing Lifecycle Processes in Object-Aware Process Management 37

events based on specific markings, while another type reacts to user input and
sets appropriate markings. Accordingly, process rules are subdivided based on
their purpose. The type determines the general type of preconditions and effects,
e.g., preconditions of marking rules check predominantly for specific markings.
The different types of process rules are summarized in Table 1. Request rule,
completion rule, and invalidation rule are subsumed under the term execution
rule (ER).

Table 1. Overview over the types of process rules

Rule Abbreviation Event Preconditions Effects

Marking rule MR Marking event Markings Markings

Request rule QR Marking event Markings Request event

Completion rule CR Marking event Markings Completion event

Invalidation rule IR Marking event Markings Invalidation event

Reaction rule RR User input event User input Markings

The most common event that is raised during the execution of a lifecycle
process instance is a marking event. An entity instance eI raises a marking event
whenever its marking eI .μ is changed. In order to determine which process rule
needs to be applied, the event is gathered by the process rule manager (PRM)
of the lifecycle process. The process rule manager is a small and lightweight
execution engine for process rules and constitutes the other part of the process
rule framework. Figure 6 shows a schematic view of the process rule manager
and its interactions with the lifecycle process and the (auto-generated) forms.

Starting at 1© in Fig. 6, data has been entered into a form field. The data is
then passed on to the lifecycle process θI and the corresponding step γI . As γI

has received a value, the step raises a user input event 2©. The event is passed
on to the process rule manager, which receives all events from its corresponding
lifecycle process θI and evaluates appropriate rules, i.e., process rules pR with
pR.eT = σT are not evaluated if the entity creating the event has type γT . Note
that this implicit precondition significantly reduces the search space for process
rule application. Once the PRM has identified all currently applicable rules, the
effects of each rule are applied. In the example, the PRM identifies a reaction
rule and applies its effects to the appropriate entities in the lifecycle process 3©.

Applying the effects from the reaction rule application raises marking events,
which trigger a completion rule and a marking rule in the PRM. The completion
rule raises a completion event 4©, removing the request event for the mandatory
form field from event storage Eθ of θI . In parallel, the marking rule sets markings
for the outgoing transitions T I of step γI . This again creates marking events,
resulting in a cascade of marking rules, i.e., the PRM alternates between 2© and
3© in Fig. 6. The process rule cascade stops when the next step becomes marked
with μγ = Enabled. This raises a request event, which is deposited in event
storage Eθ 4©. When a user views a form, the updated event storage Eθ and the

38 S. Steinau et al.

State State State

StepStep StepStep StepStep StepStep StepStep

AƩributeValueRequestEvent

AƩributeValueRequestEvent

AƩributeValueRequestEvent

TransiƟonConfirmRequestEvent

Object

ExecuƟon Event
Storage Eθ

Process Rule Manager

Forms

StaƟc form data
and execuƟon events

User input events
Marking events

ReacƟon rule applicaƟon
Marking rule applicaƟonCascading rule applicaƟon

Request events

Completion/invalidation events

Data (AƩribute Values, TransiƟon CobfirmaƟons,..)

1

2 3

4

5

Fig. 6. Process rule manager and schematic process rule application

static form data are combined into a new form 5©. When the user enters data
for the next form field, the cycle starts again at 1©.

When a user fills out a form, the form is expected to tell the user immediately
which form field is required next after providing data for a form field. Long
processing times are prohibitive for the usability of the PHILharmonicFlows
process management system. In order to have full control over processing times
and the tight connection of process rules with lifecycle process entities, it was
decided to implement the PRM as a custom, lightweight rule engine. A custom
PRM implementation offers a fine-grained control over process rule application.
By default, the PRM handles events in the order in which they arrive (FIFO
principle). However, in several cases, the handling of specific events needed to be
delayed or accelerated in order to ensure a form processing in compliance with the
operational semantics. For example, an event eτ triggering the transition τ I from
a source state σI

source to a target state σI
target is, under certain circumstances,

raised before all steps γI ∈ σI
source.Γ

I have been processed. This results in errors
in the application of the process rules, as the target state σI

target already received
μσ = Activated when events from γI ∈ σI

source.Γ
I arrive at the PRM. To prevent

such errors, the handling of the state transition event eτ must be delayed until
all steps γI in the source state σI

source have finished processing. In consequence,
the PRM was extended with a priority queue that retains the FIFO principle,
but allows assigning different priorities to events, accelerating or delaying them
as needed.

Executing Lifecycle Processes in Object-Aware Process Management 39

Fig. 7. Run-time environment of PHILharmonicFlows, executing a Transfer lifecycle
process

Figure 7 shows the run-time environment of the PHILharmonicFlows pro-
totype, which is currently executing a Transfer object. Besides the advantages
for the application of process rules, the lightweight nature of the PRM also
proves beneficial for the transition of PHILharmonicFlows to a microservice-
based architecture. The PRM was initially conceived as a monolithic rule engine,
i.e., all lifecycle processes use the same instance of the PRM. Currently, PHILhar-
monicFlows is moving towards a hyperscale architecture [2], based on a microser-
vice framework. A microservice is a lightweight and independent service that
performs single functions and interacts with other microservices in order to real-
ize a software application. In this new hyperscale architecture, an object and
its lifecycle process are implemented as a single microservice. A continued use
of a single PRM instance generates a significant performance overhead due to
the necessary message exchanges between the PRM and the microservices. The
single PRM instance is a bottleneck and puts a limit on the scalability of the
microservice-based architecture, i.e., it would no longer be warranted to desig-
nate the PHILharmonicFlows system as hyperscale. Furthermore, the communi-
cation overhead and the delays of process rule application in the PRM, due to the
high number of events simultaneously created by the object instance microser-
vices, would negatively affect the performance of the auto-generated forms.

Fortunately, the lightweight nature of the PRM offers a satisfactory solu-
tion. By integrating an instance of the PRM into the microservice of each object
instance, no message exchanges between PRM and lifecycle process are required.
Furthermore, a PRM instance is only responsible for exactly one lifecycle process
instance. This eliminates the delays in rule application due to the processing
of other lifecycle processes. This solution offers sufficient performance for dis-
playing dynamic forms while retaining the hyperscale property of the PHILhar-
monicFlows microservice-based architecture. The approach to integrate a PRM

40 S. Steinau et al.

instance into a microservice will also be used with the implementation of coor-
dination processes, where it will provide the same benefits.

Performance measurements of the whole PHILharmonicFlows prototype are
a delicate endeavor and are therefore subject to a separate publication, where
the performance measurements can receive the necessary context and diligence.
As a fully integrated system supporting high scalability and parallelism through
microservices, where also multiple concepts work together (objects, their rela-
tions, lifecycles and coordination processes to govern object interactions) to
achieve a meaningful business process, a performance evaluation of executing
one single lifecycle process is not particularly enlightening. A publication on
performance aspects of the PHILharmonicFlows systems is therefore subject to
future publications.

5 Related Work

Opus [8,10] is a data-centric process management system that bases its pro-
cesses on Petri nets. Petri nets are a popular and well-established formalism
for modeling business processes. Additionally, Petri nets provide several verifica-
tion techniques, e.g., soundness checks or deadlock detection, which may also be
applied to verify process model correctness. In Opus, the Petri net formalism is
extended with structured data tuples, which substitute the places of a standard
Petri net. The transitions of this extended Petri net provide operations on the
data, e.g., operations derived from operations of relational algebra. The Opus
approach does not support automatically generating forms from process models.
Furthermore, Petri nets are inherently more rigid in their execution and do not
provide the same built-in flexibility as PHILharmonicFlows and the operational
semantics of lifecycle processes. However, Opus is capable to explicitly model the
different execution paths to provide flexible process execution. Opus provides an
implemented prototype of the approach [9].

Case Handling [7,21,24] defines a case in terms of activities and data objects.
Activities are ordered in an acyclic graph in which edges represent precedence
relations. To execute an activity, all precedence relations before the activity must
be fulfilled. Furthermore, the execution of an activity is restricted by data bind-
ings. A data binding represents a condition so that a data object must have a
specific value at run-time. The values of the data objects are acquired by forms,
which are associated with activities. While case handling possesses forms, it is
unclear whether these can be auto-generated from the activities or must be cre-
ated manually. While both case handling and PHILharmonicFlows use an acyclic
graph to represent processes, the operational semantics for lifecycle processes in
PHILharmonicFlows allows for data to be acquired at any point in time. A case
acquires data by activities and that activities have a precedence relation, the
same flexibility in regard to data acquisition is not possible. A detailed compari-
son between case handling and object-aware process management was performed
in [4].

Executing Lifecycle Processes in Object-Aware Process Management 41

The Guard-Stage-Milestone (GSM) meta-model [14] is a declarative notation
for specifying artifact-centric processes [5,13,17]. An artifact consists of an infor-
mation model, i.e., attributes and a lifecycle model. The lifecycle model is spec-
ified using GSM. Its operational semantics are based on Precedent-Antecedent-
Consequent rules and possess different, but semantically equivalent formula-
tions [6]. In GSM, tasks provide the means to write attributes and acquire data.
Because of being declarative, guards, stages and milestones may be used in such
a way that flexible data acquisition, within certain constraints, becomes possi-
ble. Tasks may be defined so that attributes may be written at any point in
time and may be restricted, if necessary. Lifecycle processes defined in GSM are
able to react to the newly acquired data and might be more flexible than lifecy-
cle processes in PHILharmonicFlows. However, as a severe drawback, much of
this flexibility in data acquisition must be implemented by the process modeler.
Furthermore, the is no auto-generation of forms from GSM-specified lifecycle
models within the artifact-centric approach.

CMMN [18] is a standard notation for case management as proposed by
OMG. The notation is closely inspired by GSM and its execution semantics
and therefore inherits many of the same advantages and disadvantages. As such,
flexibility in practice has to be provided by the model and is not simply provided
by the operational semantics. Also, automatic generation of dynamic forms it
not supported.

Fragment-based case management [3,12] is a promising approach that defines
business processes in form of pre-specified process fragments. Fragments are
specified using activities and control flow. The execution order of fragments is, in
principle, completely free, i.e., any process process fragment may be executed at
any point in time. This freedom is only limited by data conditions that govern the
activation of a process fragment, i.e., a process fragment may only be executed if
the data conditions are met. In turn, process fragments may generate new data
to fulfill other data conditions and subsequently enable more process fragments.
As data is mostly required to enable process fragments and their activities, it is
unclear whether automatic form generation with dynamic control by the process
is achievable. Through breaking rigid control flow ordering of activities with
the use of process fragments, their flexible execution may only be achieved by
modeling appropriate data conditions and is not automatically provided by the
operational semantics, as accomplished in PHILharmonicFlows.

6 Summary and Outlook

The PHILharmonicFlows project is a full, though prototypical, data-centric pro-
cess management system incorporating modeling and execution environments.
One aspect of this system is to have highly flexible executions of object lifecycle
processes that require minimal effort on part of the process modeler. The sci-
entific contribution of this paper is to show that the intended level of flexibility
has been achieved. As proof, it is shown exactly how the flexibility is achieved
by describing its implementation and inner workings in full detail.

42 S. Steinau et al.

The technical implementation of the operational semantics of lifecycle pro-
cesses in object-aware process management is achieved by process rules, which
govern the changing of markings and the creation of execution events. This paper
presented the process rule framework, for which two aspects need to be empha-
sized. First, the process rule framework ensures that lifecycle processes execute
correctly and also provides the technical basis for the operational semantics of
coordination processes in PHILharmonicFlows. Coordination processes, as the
name suggests, coordinate lifecycle processes of multiple objects, so that complex
business processes can be realized. Its operational semantics will be based on the
process rule framework as well. Second, a performant, efficient and lightweight
technical basis for enacting lifecycle processes and coordination processes is cru-
cial for the transition of PHILharmonicFlows to a hyperscale architecture. The
operational semantics of lifecycle processes provide a flexible acquisition of data,
while modeling efforts are minimal due to an modeling style that is akin to an
imperative style. The flexibility is not provided by the lifecycle process model,
but by the operational semantics. The model of the lifecycle process and the oper-
ational semantics together provide the means to auto-generate dynamic forms.

Acknowledgments. This work is part of the ZAFH Intralogistik, funded by the Euro-
pean Regional Development Fund and the Ministry of Science, Research and the Arts
of Baden-Württemberg, Germany (F.No. 32-7545.24-17/3/1)

References

1. Andrews, K., Steinau, S., Reichert, M.: Enabling fine-grained access control in flex-
ible distributed object-aware process management systems. In: 21st IEEE Interna-
tional Conferences on Enterprise Distributed Object Computing (EDOC) (2017)

2. Andrews, K., Steinau, S., Reichert, M.: Towards hyperscale process management.
In: 8th International Workshop on Enterprise Modeling and Information Sys-
tems Architectures (EMISA), CEUR Workshop Proceedings, pp. 148–152. CEUR-
WS.org (2017)

3. Beck, H., Hewelt, M., Pufahl, L.: Extending fragment-based case management
with state variables. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP,
vol. 281, pp. 227–238. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
58457-7 17

4. Chiao, C.M., Künzle, V., Reichert, M.: Enhancing the case handling paradigm to
support object-aware processes. In: 3rd International Symposium on Data-Driven
Process Discovery and Analysis (SIMPDA), CEUR Workshop Proceedings, pp.
89–103. CEUR-WS.org (2013)

5. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. Bull. IEEE Comput. Soc. Tech. Committee Data Eng.
32(3), 3–9 (2009)

6. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with Guard-Stage-Milestone lifecycles. Inf. Syst.
38(4), 561–584 (2013)

https://doi.org/10.1007/978-3-319-58457-7_17
https://doi.org/10.1007/978-3-319-58457-7_17

Executing Lifecycle Processes in Object-Aware Process Management 43

7. Guenther, C.W., Reichert, M., van der Aalst, W.M.P.: Supporting flexible processes
with adaptive workflow and case handling. In: IEEE 17th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp. 229–234 (2008)

8. Haddar, N., Tmar, M., Gargouri, F.: A framework for data-driven workflow man-
agement: modeling, verification and execution. In: Decker, H., Lhotská, L., Link,
S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013. LNCS, vol. 8055, pp. 239–253. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40285-2 21

9. Haddar, N., Tmar, M., Gargouri, F.: Opus framework: a proof-of-concept imple-
mentation. In: IEEE/ACIS 14th International Conference on Computer and Infor-
mation Science (ICIS), pp. 639–641 (2015)

10. Haddar, N., Tmar, M., Gargouri, F.: A data-centric approach to manage business
processes. Computing 98(4), 375–406 (2016)

11. Haisjackl, C., et al.: Understanding declare models: strategies, pitfalls, empirical
results. Softw. Syst. Model. 15(2), 325–352 (2016)

12. Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution.
In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 38–54.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9 3

13. Hull, R., et al.: Business artifacts with Guard-Stage-Milestone lifecycles: manag-
ing artifact interactions with conditions and events. In: 5th ACM International
Conference on Distributed Event-based System (DEBS), pp. 51–62. ACM (2011)

14. Hull, R., et al.: Introducing the Guard-Stage-Milestone approach for specifying
business entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS,
vol. 6551, pp. 1–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19589-1 1

15. Künzle, V., Reichert, M.: A modeling paradigm for integrating processes and data
at the micro level. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD-2011. LNBIP,
vol. 81, pp. 201–215. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21759-3 15

16. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-
aware process management. J. Softw. Maint. Evol.: Res. Pract. 23(4), 205–244
(2011)

17. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428–445 (2003)

18. Object Management Group: Case Management Model and Notation (CMMN),
Version 1.1 (2016)

19. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: 11th IEEE International Conference on Enterprise
Distributed Object Computing (EDOC), p. 287 (2007)

20. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: an empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 383–
394. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2 37

21. Reijers, H.A., Rigter, J.H.M., van der Aalst, W.M.P.: The case handling case. Int.
J. Coop. Inf. Syst. 12(03), 365–391 (2003)

22. Steinau, S., Andrews, K., Reichert, M.: The relational process structure. In:
Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 53–67.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0 4

23. Steinau, S., Künzle, V., Andrews, K., Reichert, M.: Coordinating business processes
using semantic relationships. In: 19th IEEE Conference on Business Informatics
(CBI), pp. 33–43. IEEE Computer Society Press (2017)

https://doi.org/10.1007/978-3-642-40285-2_21
https://doi.org/10.1007/978-3-319-45468-9_3
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-21759-3_15
https://doi.org/10.1007/978-3-642-21759-3_15
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/978-3-319-91563-0_4

44 S. Steinau et al.

24. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

25. Weber, B., Mutschler, B., Reichert, M.: Investigating the effort of using business
process management technology: results from a controlled experiment. Sci. Com-
put. Program. 75(5), 292–310 (2010)

Towards Semantic Process Mining
Through Knowledge-Based Trace

Abstraction

G. Leonardi1, M. Striani2, S. Quaglini3, A. Cavallini4, and S. Montani1(B)

1 DISIT, Computer Science Institute, Università del Piemonte Orientale,
Alessandria, Italy

stefania.montani@uniupo.it
2 Department of Computer Science, Università di Torino, Turin, Italy
3 Department of Electrical, Computer and Biomedical Engineering,

Università di Pavia, Pavia, Italy
4 I.R.C.C.S. Fondazione “C. Mondino” - on behalf of the Stroke Unit Network (SUN)

Collaborating Centers, Pavia, Italy

Abstract. Many information systems nowadays record data about the
process instances executed at the organization in the form of traces in a
log. In this paper we present a framework able to convert actions found in
the traces into higher level concepts, on the basis of domain knowledge.
Abstracted traces are then provided as an input to semantic process min-
ing.

The approach has been tested in the medical domain of stroke care,
where we show how the abstraction mechanism allows the user to mine
process models that are easier to interpret, since unnecessary details are
hidden, but key behaviors are clearly visible.

Keywords: Semantic process mining ·
Knowledge-based trace abstraction · Medical applications

1 Introduction

Most commercial information systems, including those adopted by many health
care organizations, record information about the executed process instances in
a log [29]. The log stores the sequences (traces [29] henceforth) of actions that
have been executed at the organization, typically together with key execution
parameters, such as times, cost and resources. Logs can be provided in input to
process mining [29,30] algorithms, a family of a-posteriori analysis techniques
able to extract non-trivial knowledge from these historic data; within process
mining, process model discovery algorithms, in particular, take as input the log
traces and build a process model, focusing on its control flow constructs. Classical
process mining algorithms, however, provide a purely syntactical analysis, where
actions in the traces are processed only referring to their names. Action names
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 45–64, 2019.
https://doi.org/10.1007/978-3-030-11638-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_3

46 G. Leonardi et al.

are strings without any semantics, so that identical actions, labeled by synonyms,
will be considered as different, or actions that are special cases of other actions
will be processed as unrelated.

Relating semantic structures, such as ontologies, to actions in the log, not
only can solve the synonyms issue, but also can enable trace comparison and
process mining techniques to work at different levels of abstraction (i.e., at the
level of instances and/or concepts) and, therefore, to mask irrelevant details, to
promote reuse, and, in general, to make process analysis much more flexible and
reliable.

In fact, it has been observed that human readers are limited in their cognitive
capabilities to make sense of large and complex process models [1,33], while it
would be often sufficient to gain a quick overview of the process, in order to
familiarize with it in a short amount of time. Of course, deeper investigations
can still be conducted, subsequently, on the detailed (ground) process model.

Interestingly, semantic process mining, defined as the integration of
semantic processing capabilities into classical process mining techniques, has
been recently proposed in the literature (see Sect. 5). However, while more work
has been done in the field of semantic conformance checking (another branch
of process mining) [10,13], to the best of our knowledge semantic process model
discovery needs to be further investigated.

In this paper, we present a knowledge-based abstraction mechanism
(see Sect. 2), able to operate on log traces. In our approach:

– actions in the log are mapped to the ground terms of an ontology ;
– a rule base is exploited, in order to identify which of the multiple ancestors

of an action should be considered for abstracting the action itself. Medical
knowledge and contextual information are resorted to in this step;

– when a set of consecutive actions on the trace abstract as the same ances-
tor, they are merged into the same abstracted macro-action, labeled as the
common ancestor at hand. This step requires a proper treatment of delays
and/or actions in-between that descend from a different ancestor.

Our abstraction mechanism is then provided as an input to semantic pro-
cess mining (see Sect. 3). In particular, we rely on classical process model dis-
covery algorithms embedded in the open source framework ProM [32], made
semantic by the exploitation of domain knowledge in the abstraction phase.

We also describe our experimental work (see Sect. 4) in the field of stroke care,
where the application of the abstraction mechanism on log traces has allowed
us to mine simpler and more understandable (from the clinical point of view)
process models.

2 Knowledge-Based Trace Abstraction

In our framework, trace abstraction has been realized as a multi-step mechanism.
The following subsections describe the various steps.

Semantic Process Mining 47

2.1 Ontology Mapping

As a first step, every action in the trace to be abstracted is mapped to a ground
term of an ontology, formalized resorting to domain knowledge.

In our current implementation, we have defined an ontology related to the
field of stroke management, where ground terms are patient management actions,
while abstracted terms represent medical goals. Figure 1 shows an excerpt of the
stroke domain ontology, formalized through the Protègè editor.

Fig. 1. An excerpt from the stroke domain ontology. The annotation shown for CAT
(computer assisted tomography) reports its SNOMED code

In particular, a set of classes, representing the main goals in stroke man-
agement, have been identified, namely: “Administrative Actions” (such as hos-
pital admission and discharge), “Brain Damage Reduction”,“Causes Identifi-
cation”, “Pathogenetic Mechanism Identification”, “Prevention”, and “Other”.
These main goals can be further specialized into subclasses, according to more
specific goals (e.g., “Parenchima Examination” is a subgoal of “Pathogenetic
Mechanism Identification”, while “Early Relapse Prevention” is a subgoal of
“Prevention”), down to the ground actions, that will implement the goal itself.

48 G. Leonardi et al.

Some actions in the ontology can be performed to implement different goals.
For instance, a Computer Assisted Tomography (CAT) can be used to monitor
therapy efficacy, or to assess therapy starting time (see class “Prevention” in
Fig. 1). The proper goal to be used in the abstraction phase will be selected on
the basis of the context of execution, as formalized in the rule base, described
in the following subsection.

All ground actions are being mapped to SNOMED concepts1. The ontology
partially showed in Fig. 1 is therefore being integrated with the most compre-
hensive and precise clinical health terminology product in the world, accepted as
a common global language for health terms. The figure, as an example, reports
the CAT SNOMED code, which is an attribute of the CAT action.

2.2 Rule-Based Reasoning for Ancestor Selection

As a second step in the trace abstraction mechanism, a rule base is exploited
to identify which of the multiple ancestors of an action in the ontology should
be considered for abstracting the action itself. The rule base encodes medical
knowledge. Contextual information (i.e., the actions that have been already exe-
cuted on the patient at hand, and/or her/his specific clinical conditions) is used
to activate the correct rules. The rule base has been formalized in Drools [20].

As an example, referring to the CAT action mentioned above, the rules
reported below state that, if the patient has experienced a severe brain dam-
age and suffers from atrial fibrillation, s/he must initiate a proper therapy. Such
a therapy starts with ASA (a class of anti-inflammatory drugs), and continues
with daily AC (anti-coagulant drug) administration. Before the first AC, a CAT
is required, to assess AC starting time, which could be delayed in case CAT
detects a hemorrhagic transformation. After a few days of AC administration,
another CAT is needed, to monitor therapeutic results. Therefore, depending on
the context, CAT can implement the “Timing” or the “Monitoring” goal (see
Fig. 1). Forward chaining on the rules below (showed as a simplified pseudocode
with respect to the system internal representation, for the sake of simplicity)
allows to determine the correct ancestor for the CAT action.

rule "SevereDamage"

when

(

Damage(value > threshold) &&

AtrialFibrillation(value=true)

)

then

logicalInsertFact (DamFib);

end

rule "Fibrillation1"

when

1 http://www.snomed.org/snomed-ct, last accessed on 02/08/2018.

http://www.snomed.org/snomed-ct

Semantic Process Mining 49

existInLogical(DamFib) &&

isBefore("CAT", "AC")

then

setAncestorName("CAT", "Timing");

end

rule "Fibrillation2"

when

existInLogical(DamFib) &&

isAfter("CAT", "AC")

then

setAncestorName("CAT", "Monitoring");

end

2.3 Trace Abstraction

Once the correct ancestor of every action has been identified, trace abstraction
can be completed.

In this last step, when a set of consecutive actions on the trace abstract as the
same ancestor, they have to be merged into the same abstracted macro-action ,
labeled as the common ancestor at hand. This procedure requires a proper treat-
ment of delays, and of actions in-between that descend from a different ancestor
(interleaved actions henceforth).

Trace abstraction has been realized by means of the procedure described in
Algorithm 1 below.

The function abstraction takes in input a log trace, the domain ontology
onto, and the level in the ontology chosen for the abstraction (e.g., level =
1 corresponds to the choice of abstracting the actions up to the sons of the
ontology root). It also takes in input three thresholds (delay th, n inter th and
inter th). These threshold values have to be set by the domain expert in order
to limit the total admissible delay time within a macro-action, the total number
of interleaved actions, and the total duration of interleaved actions, respectively.
In fact, it would be hard to justify that two ground actions share the same goal
(and can thus be abstracted to the same macro-action), if they are separated
by very long delays, or if they are interleaved by many/long different ground
actions, meant to fulfill different goals (where the term “long” may correspond
to different quantitative values in different application domains).

The function outputs an abstracted trace.
For every action i in trace, an iteration is executed (lines 3–27). First, a

macro-action mi, initially containing just i, and sharing its starting and ending
times, is created. mi is labeled referring to the ancestor of i (the one identified
by the rule based reasoning procedure) at the abstraction level provided as an
input. Accumulators for this macro-action (total-delay, num-inter and total-
inter, commented below) are initialized to 0 (lines 4–10). Then, a nested cycle
is executed (lines 11–25): it considers every element j following i in the trace,
where a trace element can be an action, or a delay between a pair of consecutive
actions. Different scenarios can occur:

50 G. Leonardi et al.

Algorithm 1. Multi-level abstraction algorithm
1 abs trace = abstraction(trace, onto, level, delay th, n inter th, inter th);
2 abs trace = ∅;
3 for every i ∈ actions in trace do
4 if (i.startF lag = yes) then
5 create : mi as ancestor(i, level);
6 mi.start = i.start;
7 mi.end = i.end;
8 total delay = 0;
9 num inter = 0;

10 total inter = 0;
11 for (every j ∈ elements in trace) do
12 if (j is a delay) then
13 total delay = total delay + j.length;
14 else
15 if (ancestor(j, level)=ancestor(i, level)) then
16 if (total delay < delay th ∧ num inter <

n inter th ∧ total inter < inter th) then
17 mi.end = max(mi.end, j.end);
18 j.startFlag = no;

19 end

20 else
21 num inter = num inter + 1;
22 total inter = total inter + j.length;

23 end

24 end

25 end

26 append mi to abs trace;

27 end
28 return abs trace;

– if j is a delay, total-delay is updated by summing the length of j (lines 12–14).
– if j is an action, and j shares the same ancestor of i at the input abstraction
level, then j is incorporated into the macro-action mi. This operation is
always performed, provided that total-delay, number-inter and total-inter do
not exceed the threshold passed as an input (lines 15–19). j is then removed
from the actions in trace that could start a new macro-action, since it has
already been incorporated into an existing one (line 18). This kind of situation
is described in Fig. 2 (a).

– if j is an action, but does not share the same ancestor of i, then it is treated
as an interleaved action. In this case, num-inter is increased by 1, and total-
inter is updated by summing the length of j (lines 20–23). This situation, in
the end, may generate different types of temporal constraints between macro-
actions, as the ones described in Fig. 2(b) (Allen’s during [2]) and Fig. 2(c)
(Allen’s overlaps [2]).

Semantic Process Mining 51

Fig. 2. Different trace abstraction situations: (a) two actions are abstracted to a single
macro-action macro1, with a delay in between; (b) two actions are abstracted to a
macro-action macro1, with an interleaved action in between, resulting in a different
macro-action macro2 during macro1; (c) two actions are abstracted to a macro-action
macro1, with an interleaved action in between, which is later aggregated to a fourth
action, resulting in a macro-action macro2 overlapping macro1.

Finally, the macro-action mi is appended to abs trace, that, in the end, will
contain the list of all the macro-actions that have been created by the procedure
(line 26).

Complexity. The cost of abstracting a trace is O(actions ∗ elements), where
actions is the number of actions in the input trace, and elements is the number
of elements (i.e., actions + delay intervals) in the input trace.

3 Semantic Process Mining

In our approach, process mining, made semantic by the exploitation of the
abstraction mechanism illustrated above, is implemented resorting to the well-
known process mining tool ProM, extensively described in [32]. ProM (and specif-
ically its newest version ProM 6) is a platform-independent open source frame-
work that supports a wide variety of process mining and data mining techniques,
and can be extended by adding new functionalities in the form of plug-ins.

For the work described in this paper, we have exploited ProM’s Heuristic
Miner [35]. Heuristic Miner is a plug-in for process model discovery, able to mine
process models from logs. It receives in input the log, and considers the order of
the actions within every single trace. It can mine the presence of short-distance
and long-distance dependencies (i.e., direct or indirect sequence of actions), with
a certain degree of reliability. The output of the mining process is provided as
a graph, known as the “dependency graph”, where nodes represent actions, and
edges represent control flow information. The output can be converted into other
formalisms as well.

Currently, we have chosen to rely on Heuristics Miner, because it is known
to be tolerant to noise, a problem that may affect medical logs (e.g., sometimes

52 G. Leonardi et al.

the logging may be incomplete). Anyway, testing of other mining algorithms
available in ProM 6 is foreseen in our future work.

4 Experimental Results

In this section, we describe the experimental results we have conducted, in the
application domain of stroke care.

First, we will present a case study, meant to showcase in an immediate fashion
the effects of abstraction of the quality of the mined process model.

Then, we will discuss a more complete validation work, able to properly
quantify the abstraction effects themselves.

In both studies the available log was composed of more than 15000 traces,
collected at the Stroke Unit Network (SUN) collaborating centers of the Lom-
bardia region, Italy. The number of traces varied from 266 to 1149. Traces were
composed of 13 actions on average.

4.1 Case Study

In the case study, we wanted to test whether our capability to abstract the log
traces on the basis of their semantic goals allowed to obtained process models
where unnecessary details are hidden, but key behaviors are clear. Indeed, if this
hypothesis holds, in our application domain it becomes easier to compare pro-
cess models of different stroke units (SUs), highlighting the presence/absence of
common paths, regardless of minor action changes (e.g., different ground actions
that share the same goal) or irrelevant different action ordering or interleaving
(e.g., sets of ground actions, all sharing a common goal, that could be executed
in any order)2.

Figure 3 compares the process models of two different SUs (SU-A and SU-
B), mined by resorting to Heuristic Miner, operating on ground traces. Figure
4, on the other hand, compares the process models of the same SUs as Fig. 3,
again mined by resorting to Heuristic Miner, but operating on traces abstracted
according to the goals of the ontology in Fig. 1. In particular, abstraction was
conducted up to level 2 in the ontology (where level 0 is the root, i.e.. “Goal”).

Generally speaking, a visual inspection of the two graphs in Fig. 3 is very
difficult. Indeed, these two ground processes are “spaghetti-like” [29], and the
extremely large number of nodes and edges makes it hard to identify common-
alities in the two models.

The abstract models in Fig. 4, on the other hand, are much more compact,
and it is possible for a medical expert to analyze them.

In particular, the two graphs in Fig. 4 are not identical, but in both of them
it is easy to a identify the macro-actions which corresponds to the treatment of
a typical stroke patient.
2 It is however worth noting that, within our framework, it is still possible to mine

the process models from ground traces, and investigate them in detail as a further
analysis step, if needed.

Semantic Process Mining 53

Fig. 3. Comparison between two process models, mined by resorting to Heuristic Miner,
operating on ground traces. The figure is not intended to be readable, but only to give
an idea of how complex the models can be

However, the model for SU-A at the top of Fig. 4 exhibits a more complex
control flow (with the presence of loops), and shows three additional macro-
actions with respect to the model of SU-B, namely “Extracranial Vessel Inspec-
tion”, “Intracranial Vessel Inspection” and “Recanalization”. This finding can be
explained, since SU-A is a better equipped SU, where different kinds of patients,
including some atypical/more critical ones, can be managed, thanks to the avail-
ability of different skills and instrumental resources. These patients may require
the additional macro-actions reported in the model, and/or the repetition of
some procedures, in order to better characterize and manage the individual
patient’s situation.

54 G. Leonardi et al.

Fig. 4. Comparison between the two process models of the same SUs as Fig. 3, mined
on abstracted traces. Additional macro-actions executed at SU-A are highlighted in
bold

On the other hand, SU-B is a more generalist SU, where very specific human
knowledge or technical resources are missing. As a consequence, the overall model
control flow is simpler, and some activities are not executed at all.

Interestingly, our abstraction mechanism, while hiding irrelevant details,
allows to still appreciate these differences.

Semantic Process Mining 55

4.2 Validation

For the validation study, we asked a SUN stroke management expert to provide
a ranking of some SUN stroke units (see Table 1, column 2), on the basis of the
quality of service they provide, with respect to the top level SU (referred as H0
in the experiments). Such a ranking was based on her personal knowledge of the
SUs human and instrumental resource availability (not on the process models);
therefore, it was qualitative, and coarse-grained, in the sense that more than one
SU could obtain the same qualitative evaluation. The expert identified 6 SUs (H1–
H6) with a high similarity level with respect to H0; 5 SUs (H7–H11) with a medium
similarity level with respect to H0; and 4 SUs (H12–H15) with a low similarity level
with respect to H0. The ordering of the SUs within one specific similarity level is
not very relevant, since, as observed, the expert’s ranking is coarse-grained. It is
instead important to distinguish between different similarity levels.

We mined the process models of the 16 SUs by resorting to Heuristic Miner,
both working on ground traces, and working on abstracted traces. We then
ordered the two available process model sets with respect to H0, resorting to
two different process model distances, i.e., the one described in [11], and the one
presented in [22], globally obtaining four rankings.

These two distance measures are quite dissimilar. In particular, the distance
in [11] provides a normalized version of the graph edit distance [5] for comparing
business process models, and defines syntactical edit operation costs for node sub-
stitution (relying on edit distance between action names), node insertion/deletion,
and edge insertion/deletion. On the other hand, the distance in [22] moves towards
a more semantic and knowledge-intensive approach: when actions are represented
in an ontology, as it is our case, it can adopt Palmer’s distance [23] for calculating
action node substitution costs. Palmer’s distance between two actions is set to the
normalized number of arcs on the path between the two actions themselves in the
ontology. So, given the semantics of our ontology, two different actions can be con-
sidered as more or less distant on the basis of their goal. Moreover, the distance in
[22] also considers edge substitution, which is disregarded in [11]. Indeed, Heuris-
tic Miner labels edges with information that can be relevant in graph compari-
son, such as reliability [35], while statistical temporal information can be easily
extracted from the log and saved as arc properties.

We exploited both these metrics because we wished to verify the effect of
trace abstraction independently of the simplicity or completeness of the distance
definition.

Results are shown in Table 1.
Column 1 in Table 1 shows the levels of similarity with respect to the refer-

ence SU. Column 2 shows the ranking according to the human medical expert;
columns 3 and 4 show the ranking obtained by relying on the distance in [11],
mining the process models on ground and abstracted traces, respectively. Sim-
ilarly, columns 5 and 6 show the results obtained by relying on the distance in
[22], mining the process models on ground and abstracted traces, respectively.
In particular, abstraction was conducted at level 1 in the ontology (where level
0 is the root).

56 G. Leonardi et al.

When working on ground traces, the distance in [11] correctly rates two
process models in the high similarity group (33%), one process model in the
medium similarity group (20%), and one process model in the low similarity
group (25%, column 3). When working on abstracted traces, on the other hand,
the distance in [11] correctly rates three process models in the high similarity
group (50%), one process models in the medium similarity group (20%), and one
process model in the low similarity group (25%, column 4).

When working on ground traces, the distance in [22] correctly rates two
process models in the high similarity group (33%), zero process model in the
medium similarity group (0%), and one process model in the low similarity
group (25%, column 5). When working on abstracted traces, on the other hand,
the distance in [22] correctly rates four process models in the high similarity
group (66%), two process models in the medium similarity group (40%), and
two process model in the low similarity group (50%, column 6).

In summary, when working on abstracted traces, both distances lead to rank-
ings that are closer to the qualitative ranking provided by the human expert,
but the improvement is larger when adopting the distance in [22], probably
because it is able to take into account semantic information. We plan to verify
this statement by means of further experiments in the future.

For the sake of completeness, we have also tested the effect of abstraction
by evaluating the capability of the two distances in locating the high level SUs

Table 1. Ordering of 15 SUs, with respect to a given query model. Correct positions
in the rankings with respect to the expert’s qualitative similarity levels are highlighted
in bold.

Similarity Medical expert [11] ground [11] abs [22] ground [22] abs

High H1 H15 H6 H3 H1

High H2 H8 H13 H2 H6

High H3 H5 H2 H15 H5

High H4 H6 H4 H10 H3

High H5 H12 H10 H8 H8

High H6 H11 H8 H11 H10

Medium H7 H4 H3 H4 H9

Medium H8 H3 H5 H12 H4

Medium H9 H14 H7 H6 H14

Medium H10 H2 H14 H1 H7

Medium H11 H10 H15 H13 H12

Low H12 H13 H9 H9 H13

Low H13 H9 H1 H14 H2

Low H14 H1 H11 H7 H11

Low H15 H7 H12 H5 H15

Semantic Process Mining 57

(i.e., the SUs with a high similarity with respect to H0) as the first six items
of the overall ranking. To this end, we calculated the nDCG6[7] index on the
rankings of Table 1. Also in this experiment, we were able to verify that the use
of abstraction leads to results that are closer to the (ideal) ones provided by
the human expert (see Table 2), with a larger improvement when adopting the
distance in [22].

Table 2. nDCG6 index calculation on the rankings provided by the two metrics.

[11] ground [11] abs [22] ground [22] abs

0.621 0.798 0.781 0.925

Table 3, on the other hand, reports our results on the calculation of fitness [29]
on the process models mined for our 16 SUs, at different levels of abstraction.
Fitness evaluates whether a process model is able to reproduce all execution
sequences that are in the log. If the log can be replayed correctly, fitness evaluates
to 1. In the worst case, it evaluates to 0. Fitness calculation is available in ProM.

Table 3. Fitness values calculated on the mined process models, when operating at
different levels of abstraction

SU Ground Abs. level 2 Abs. level 1

H0 0.58 0.83 0.87

H1 0.43 0.73 0.97

H2 0.47 0.72 0.87

H3 0.40 0.85 0.95

H4 0.42 0.91 0.93

H5 0.42 0.83 0.87

H6 0.52 0.76 0.95

H7 0.52 0.79 0.92

H8 0.75 0.78 0.92

H9 0.46 0.85 0.92

H10 0.41 0.83 0.87

H11 0.44 0.61 0.90

H12 0.49 0.67 0.89

H13 0.46 0.84 0.91

H14 0.43 0.85 0.90

H15 0.54 0.78 0.90

As it can be observed from the table, the more the traces are abstracted, the
more the fitness values increase in the corresponding mined models.

58 G. Leonardi et al.

In conclusion, our abstraction mechanism, while hiding irrelevant details,
allows to still appreciate relevant differences between models, such as, e.g., the
presence/absence of important actions, as commented in Sect. 4.1. Moreover,
when working on abstracted traces, the adoption of different distance definitions
leads to SU rankings that are closer to the qualitative ranking provided by the
human expert. Finally, very interestingly, abstraction proves to be a means to
significantly increase the quality of the mined models, measured in terms of
fitness, which is a well known and largely adopted indicator.

5 Related Works

The use of semantics in business process management, with the aim of operat-
ing at different levels of abstractions in process discovery and/or analysis, is a
relatively young area of research, where much is still unexplored.

One of the first contributions in this field was proposed in [6], which intro-
duces a process data warehouse, where taxonomies are exploited to add semantics
to process execution data, in order to provide more intelligent reports. The work
in [14] extends the one in [6], presenting a complete architecture that allows busi-
ness analysts to perform multidimensional analysis and classify process instances,
according to flat taxonomies (i.e., taxonomies without subsumption relations
between concepts).

Hepp et al. [17] propose a framework able to merge semantic web, seman-
tic web services, and business process management techniques to build semantic
business process management, and use ontologies to provide machine-processable
semantics in business processes [18]. The work in [26] develops in a similar con-
text, and extends OLAP tools with semantics (exploiting ontologies rather than
(flat) taxonomies).

The topic was studied in the SUPER project [25], within which several ontolo-
gies were created, such as the process mining ontology and the event ontology
[24]; these ontologies define core terminologies of business process management,
usable by machines for task automation. However, the authors did not present
any concrete implementations of semantic process mining or analysis.

Ontologies, references from elements in logs to concepts in ontologies, and
ontology reasoners (able to derive, e.g., concept equivalence), are described as
the three essential building blocks for semantic process mining in [10]. This paper
also shows how to use these building blocks to extend ProM’s LTL Checker [31]
to perform semantic auditing of logs.

The work in [8] focuses on the use of semantics in business process monitor-
ing, an activity that allows to detect or predict process deviations and special
situations, to diagnose their causes, and possibly to resolve problems by applying
corrective actions. Detection, diagnosis and resolution present interesting chal-
lenges that, on the authors’ opinion, can strongly benefit from knowledge-based
techniques.

In [8,9] the idea to explicitly relate (or annotate) elements in the log with
the concepts they represent, linking these elements to concepts in ontologies, is

Semantic Process Mining 59

addressed. This “semantic lifting” approach, to use a term borrowed from the
Web scenario, is also investigated in [3], to discover the process that is actually
being executed.

In [9] an example of process discovery at different levels of abstractions is pre-
sented. It is however a very simple example, where a couple of ground actions
are abstracted according to their common ancestor. However, the management
of interleaved actions or delays is not addressed, and multiple inheritance is not
considered. A more recent work [19] introduces a methodology that combines
domain and company-specific ontologies and databases to obtain multiple lev-
els of abstraction for process mining. In this paper data in databases become
instances of concepts at the bottom level of a taxonomy tree structure. If consec-
utive tasks in the discovered model abstract as the same concepts, those tasks
are aggregated. However, also in this work we could find neither a clear descrip-
tion of the abstraction algorithm, nor the management of interleaved actions or
delays.

Moreover, most of the papers cited above (including [9,10]) present theo-
retical frameworks, and not yet a detailed technical architecture nor a concrete
implementation of all their ideas.

Referring to medical applications, the work in [13] proposes an approach,
based on semantic process mining, to verify the compliance of a Computer Inter-
pretable Guideline with medical recommendations. In this case, semantic process
mining refers to conformance checking rather than to process discovery (as it is
also the case in [10]). These works are thus only loosely related to our contribu-
tion.

Besides the contributions listed above, most of which can be categorized as
normative/deductive approaches, it is worth citing some interesting emergent
approaches as well [4,27]. The work in [27] affords the problem of dealing with
very big log files, proposing solutions for scalable process discovery and extend-
ing XES [34], a log file format introduced to solve problems with the semantics of
additional attributes; the work in [4] moves even forward, presenting a method-
ology designed to implement consistent process mining algorithms in a Big Data
context, managing semantic heterogeneity.

Another interesting research direction adopts abstraction as a way to estab-
lish a relationship between the events typically recorded in the log by the infor-
mation system, and the high-level actions which are of interest when mining busi-
ness process models. In particular the work in [12] looks for mappings between
events and actions. The set of possible mappings can be large, and one should
focus on the mapping which has the highest coverage, meaning that the chosen
mapping should be applicable to the largest possible number of traces in the
log. The range of a mapping, i.e., the set of actions that appear in the mapping,
is also a very important factor. In particular, the authors adopt a greedy app-
roach, where they try to merge those mappings which, by themselves, already
have the largest range and highest coverage among their peers. The work in [28],
on the other hand, shows that supervised learning (namely Condition Random
Fields) can be leveraged for the event abstraction task when annotations with

60 G. Leonardi et al.

high-level interpretations of the low-level events are available for a subset of the
traces. Conditional Random Fields are trained on the annotated traces to create
a probabilistic mapping from low-level events to high-level actions. This map-
ping, once obtained, can be applied to the unannotated traces as well. In [21],
the authors align the behavior defined by activity patterns with the observed
behavior in the log. Activity patterns encode assumptions on how high-level
actions manifest themselves in terms of recorded low-level events. The work in
[16] exploits trace segmentation. Trace segmentation is based on the idea that
subsequences of events, which are supposed to be the product of a higher-level
action, are identified. From the co-occurrence of events in the log, the authors
derive the relative correlation between their event classes. All event classes found
in the log are successively combined into clusters, representing higher-level types.
In this hierarchy of event classes, an arbitrary level of abstraction can be chosen
to process the log.

Most of these constributions (see, e.g., [12,16]), however, adopt non-semantic
approaches. Moreover, as stated in the Introduction, in our work we assume
that traces are sequences of actions (i.e., with respect to event traces, they have
already been pre-processed). Therefore, this line of research is only loosely related
to ours.

In conclusion, in the current research panorama, our work appears to be very
innovative, for several reasons:

– many approaches, illustrating very interesting and sometimes ambitious ideas,
just provide pure theoretical frameworks, which can be very important to
inspire more engineering-style work. However, concrete implementations of
algorithms and complete architectures of systems are often missing, leaving
open research opportunities for contributions like the one we have presented;

– in semantic process mining, more work has been done in the field of confor-
mance checking (also in medical applications), while process discovery still
deserves attention (also because many approaches are still at the theoretical
level, as commented above);

– as regards trace abstraction, it is often proposed as a very powerful means
to obtain better process discovery and analysis results, but technical details
of the abstraction mechanism are usually not provided, or are illustrated
through very simple examples, where the issues related to the management
of interleaved actions or delays do not emerge.

6 Concluding Remarks and Future Work

In this paper, we have presented a framework for knowledge-based abstraction
of log traces. In our approach, abstracted traces are then provided as an input
to semantic process mining. Semantic process mining relies on ProM algorithms;
indeed, the overall integration of our approach within ProM is foreseen in our
future work.

Our case study in the field of stroke management suggests that the capability
of abstracting the log traces on the basis of their semantic goal allows to mine

Semantic Process Mining 61

clearer process models, where unnecessary details are hidden, but key behaviors
are clear.

Moreover, in our validation study we mined the process models of some SUs
by resorting to Heuristic Miner, both working on ground traces, and working on
abstracted traces. We then ordered the two available process model sets with
respect to the model of the best equipped SU in the SUN network, resorting
to two different process model distances, i.e., the one described in [11], and the
one presented in [22], globally obtaining four rankings. We verified that, when
working on abstracted traces, both distances lead to rankings that are closer
to the qualitative ranking provided by a domain expert, but the improvement
is much larger when adopting the distance in [22], probably because it is able
to take into account semantic information. Finally, abstraction proves to be a
means to significantly increase the quality of the mined models, when measured
in terms of fitness.

In the future, we would like to test the approach in different application
domains as well, even if we know that the task will require time and may present
some issues. Indeed, domain knowledge acquisition is typically time consuming:
our work on formalizing the stroke ontology and the rules required multiple ses-
sions of work with physicians. Moreover, the domain of stroke management can
count on internationally recognized guidelines, which are well detailed: therefore,
the acquired knowledge can be considered as comprehensive and accurate; this
may not hold in different domains. The domain choice will therefore be critical,
and possibly we will select a non medical application.

We also plan to apply the abstraction mechanism to subsets of the log,
obtained by clustering techniques or possibly by domain expert rating, in order
to test the effect of abstraction on a more homogeneous input.

The quality of the mined process models could also be evaluated by resorting
to conformance checking techniques.

We will also consider how to cobine our approach with the pattern-based
abstraction described in [21].

Finally, an abstraction mechanism directly operating on process models (i.e.,
on the graph, instead of the log), may be considered, possibly along the lines
described in [15], and abstraction results will be compared to the ones currently
enabled by our framework.

References

1. Aguilar, E.R., Ruiz, F., Garćıa, F., Piattini, M.: Evaluation measures for business
process models. In: Haddad, H. (ed.) Proceedings of the 2006 ACM Symposium on
Applied Computing (SAC), Dijon, France, 23–27 April 2006, pp. 1567–1568. ACM
(2006)

2. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23, 123–154
(1984)

62 G. Leonardi et al.

3. Azzini, A., Braghin, C., Damiani, E., Zavatarelli, F.: Using semantic lifting for
improving process mining: a data loss prevention system case study. In: Accorsi,
R., Ceravolo, P., Cudré-Mauroux, P. (eds.) Proceedings of the 3rd International
Symposium on Data-Driven Process Discovery and Analysis, CEUR Workshop
Proceedings, vol. 1027, pp. 62–73. CEUR-WS.org (2013)

4. Azzini, A., Ceravolo, P.: Consistent process mining over big data triple stores.
In: IEEE International Congress on Big Data, BigData Congress 2013, pp. 54–61.
IEEE Computer Society (2013)

5. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)

6. Casati, F., Shan, M.-C.: Semantic analysis of business process executions. In:
Jensen, C.S., et al. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45876-X 19

7. Croft, W.B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in
Practice. Alternative Etext Formats. Addison-Wesley, Boston (2010)

8. de Medeiros, A.K.A., et al.: An outlook on semantic business process mining and
monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007. LNCS, vol.
4806, pp. 1244–1255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76890-6 52

9. Alves de Medeiros, A.K., van der Aalst, W.M.P.: Process mining towards semantics.
In: Dillon, T.S., Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web
Semantics I. LNCS, vol. 4891, pp. 35–80. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-89784-2 3

10. Alves de Medeiros, A.K., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process
mining tools: core building blocks. In: Golden, W., Acton, T., Conboy, K., van der
Heijden, H., Tuunainen, V.K. (eds.) 16th European Conference on Information
Systems, ECIS 2008, Galway, Ireland, pp. 1953–1964 (2008)

11. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Rei-
jers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03848-8 5

12. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Improving process models by mining
mappings of low-level events to high-level activities. J. Intell. Inf. Syst. 43(2),
379–407 (2014)

13. Grando, M.A., Schonenberg, M.H., van der Aalst, W.M.P.: Semantic process min-
ing for the verification of medical recommendations. In: Traver, V., Fred, A.L.N.,
Filipe, J., Gamboa, H. (eds.) HEALTHINF 2011 - Proceedings of the Interna-
tional Conference on Health Informatics, Rome, Italy, 26–29 January 2011, pp.
5–16. SciTePress (2011)

14. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business
process intelligence. Comput. Ind. 53(3), 321–343 (2004)

15. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 24

16. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12186-9 13

https://doi.org/10.1007/3-540-45876-X_19
https://doi.org/10.1007/978-3-540-76890-6_52
https://doi.org/10.1007/978-3-540-76890-6_52
https://doi.org/10.1007/978-3-540-89784-2_3
https://doi.org/10.1007/978-3-540-89784-2_3
https://doi.org/10.1007/978-3-642-03848-8_5
https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1007/978-3-642-12186-9_13
https://doi.org/10.1007/978-3-642-12186-9_13

Semantic Process Mining 63

17. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: a vision towards using semantic web services for business
process management. In: Lau, F.C.M., Lei, H., Meng, X., Wang, M. (eds.) 2005
IEEE International Conference on e-Business Engineering (ICEBE 2005), 18–21
October 2005, Beijing, China, pp. 535–540. IEEE Computer Society (2005)

18. Hepp, M., Roman, D.: An ontology framework for semantic business process man-
agement. In: Oberweis, A., Weinhardt, C., Gimpel, H., Koschmider, A., Pankratius,
V., Schnizler, B. (eds.) eOrganisation: Service-, Prozess-, Market-Engineering: 8.
Internationale Tagung Wirtschaftsinformatik - Band 1, WI 2007, Karlsruhe, Ger-
many, 28 February–2 March 2007, pp. 423–440. Universitaetsverlag Karlsruhe
(2007)

19. Jareevongpiboon, W., Janecek, P.: Ontological approach to enhance results of busi-
ness process mining and analysis. Bus. Process Manag. J. 19(3), 459–476 (2013)

20. De Maio, M.N., Salatino, M., Aliverti, E.: Mastering JBoss Drools 6 for Developers.
Packt Publishing, Birmingham (2016)

21. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint,
P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa,
M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 8

22. Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: Improving struc-
tural medical process comparison by exploiting domain knowledge and mined infor-
mation. Artif. Intell. Med. 62(1), 33–45 (2014)

23. Palmer, M., Wu, Z.: Verb semantics for English-Chinese translation. Mach. Transl.
10, 59–92 (1995)

24. Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and min-
ing. In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.)
Proceedings of the Workshop on Semantic Business Process and Product Lifecycle
Management SBPM 2007, held in conjunction with the 3rd European Semantic
Web Conference (ESWC 2007), Innsbruck, Austria, 7 June 2007, vol. 251. CEUR
Workshop Proceedings (2007)

25. Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Ley-
mann, F.: Semantic business process management: scaling up the management of
business processes. In: Proceedings of the 2th IEEE International Conference on
Semantic Computing (ICSC 2008), 4–7 August 2008, Santa Clara, California, USA,
pp. 546–553. IEEE Computer Society (2008)

26. Sell, D., Cabral, L., Motta, E., Domingue, J., dos Santos Pacheco, R.C.: Adding
semantics to business intelligence. In: 16th International Workshop on Database
and Expert Systems Applications (DEXA 2005), 22–26 August 2005, Copenhagen,
Denmark, pp. 543–547. IEEE Computer Society (2005)

27. Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling pro-
cess discovery in the large. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.)
SIMPDA 2016. LNBIP, vol. 307, pp. 53–77. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74161-1 4

28. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.: Event abstraction for process
mining using supervised learning techniques. CoRR, abs/1606.07283 (2016)

29. van der Aalst, W.: Process Mining. Data Science in Action. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49851-4

30. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47,
237–267 (2003)

https://doi.org/10.1007/978-3-319-45348-4_8
https://doi.org/10.1007/978-3-319-74161-1_4
https://doi.org/10.1007/978-3-319-74161-1_4
https://doi.org/10.1007/978-3-662-49851-4

64 G. Leonardi et al.

31. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and
verification of properties: an approach based on temporal logic. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575771 11

32. van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., van der Aalst,
W.: The ProM framework: a new era in process mining tool support. In: Ciardo,
G., Darondeau, P. (eds.) Knowl. Mang. Integr. Elem., pp. 444–454. Springer, Berlin
(2005)

33. Vanderfeesten, I., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.:
On a quest for good process models: the cross-connectivity metric. In: Bellahsène,
Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-69534-9 36

34. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-17722-4 5

35. Weijters, A., van der Aalst, W., Alves de Medeiros, A.: Process Mining with the
Heuristic Miner Algorithm, WP 166. Eindhoven University of Technology, Eind-
hoven (2006)

https://doi.org/10.1007/11575771_11
https://doi.org/10.1007/978-3-540-69534-9_36
https://doi.org/10.1007/978-3-642-17722-4_5
https://doi.org/10.1007/978-3-642-17722-4_5

Mining Local Process Models
and Their Correlations

Laura Genga(B) , Niek Tax, and Nicola Zannone

Eindhoven University of Technology, 5600 Eindhoven, MB, The Netherlands
{l.genga,n.tax,n.zannone}@tue.nl

Abstract. Mining local patterns of process behavior is a vital tool for
the analysis of event data that originates from flexible processes, which in
general cannot be described by a single process model without overgener-
alizing the allowed behavior. Several techniques for mining local patterns
have been developed over the years, including Local Process Model (LPM)
mining, episode mining, and the mining of frequent subtraces. These pat-
tern mining techniques can be considered to be orthogonal, i.e., they pro-
vide different types of insights on the behavior observed in an event log. In
this work, we demonstrate that the joint application of LPM mining and
other patter mining techniques provides benefits over applying only one of
them. First, we show how the output of a subtrace mining approach can be
used to mine LPMs more efficiently. Secondly, we show how instances of
LPMs can be correlated together to obtain larger LPMs, thus providing
a more comprehensive overview of the overall process. We demonstrate
both effects on a collection of real-life event logs.

1 Introduction

Process Mining [1] has emerged as a new field that aims at business process
improvement through the analysis of event logs recorded by information systems.
Such event logs capture the different steps (events) that are recorded for each
instance of the process, and record for each event what was done, by whom,
for whom, where, when, etc. One of the main challenges within process mining
is process discovery, where the aim is to discover an interpretable and accurate
model of the process based on an event log. The resulting process model provides
insight into what is happening in the process and can be used as a starting point
for more in-depth process analysis, e.g., bottleneck analysis [26], and checking
compliance with rules and regulations [27].

In recent years, the scope of process discovery has broadened to novel applica-
tion domains, such as software analysis and human behavior analysis. In some of
those new application domains the logs have a high degree of variability, thereby
making it difficult to represent the behavior observed in the log in a process
model. High log variability significantly impacts the generation of insightful
models; the process models obtained using process discovery techniques often
do not provide useful insights into the process behavior, either because they
overgeneralize, thus tending to allow for any sequence of events (e.g., [20,35]),
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 65–88, 2019.
https://doi.org/10.1007/978-3-030-11638-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_4&domain=pdf
http://orcid.org/0000-0001-8746-8826
http://orcid.org/0000-0002-9081-5996
https://doi.org/10.1007/978-3-030-11638-5_4

66 L. Genga et al.

or because, on the contrary, they represent exactly all (or most of) the behav-
iors recorded in the log, thus providing a spaghetti-like representation that is
typically too complex to be exploited by a human analyst (e.g., [7]).

Several techniques aim to address this challenge of analyzing highly variable
event logs. Declarative process discovery (e.g., [23,29]) focuses on the mining of
binary relations between activities of the process. Local Process Model (LPM)
mining (e.g., [32,33]) aims at the mining of a collection of process models instead
of a single model, where each model captures a subset of the process behavior.
Subtrace mining (e.g., [3,9,19]) mines subtraces that represent relevant sequen-
tial portions of process executions (i.e., subprocesses). In this work we will focus
on subtrace and LPM mining. These techniques share similar goals, i.e., the
mining of relevant process execution patterns. However, they provide different
insights on the process and have their advantages and disadvantages.

Subtrace mining techniques derive frequent patterns of sequential executions
of process activities from event logs. Diamantini et al. [9] extend subtrace mining
to discover partial order relations between process activities by either relying on
a priori knowledge on concurrency relations or on concurrency detection mecha-
nisms provided by process discovery techniques. However, subtrace mining tech-
niques are not able to capture control-flow constructs other than sequential and
concurrency relations between process activities. Rather, some approaches focus
on relations between patterns instead of between activities from the process. For
instance, the work in [9] constructs hierarchies of patterns where subtraces are
ordered with respect to the inclusion relation. Genga et al. [13] apply frequent
itemset mining techniques to mine partial order relations between subtraces.

Local Process Model (LPM) mining aims at mining process patterns that can
describe any arbitrary combination of sequential ordering, concurrency, loops
and choice construct. However, mining LPM patterns is computationally expen-
sive, or even infeasible, for event logs with many activities. In practice, com-
putational problems can already arise at seventeen activities [32]. Therefore, a
set of heuristics have been proposed in [32] to speed up the mining process.
These heuristics discover subsets of process activities (called projections) that
are strongly related and apply the LPM miner to each projection individually,
aggregating the results by taking the union of the resulting LPMs. The downside
of these heuristics is the loss of formal guarantees that all frequent local process
models are found.

In this work, we explore the synergies between subtrace mining and LPM
mining in two ways. First, we investigate the application of the patterns obtained
using subtrace mining for LPM mining. This subtrace-based LPM mining app-
roach generates projections based on the subtraces mined using the technique
presented in [9] and furthermore extracts ordering constraints from the subtraces
to reduce the search space of LPM mining. We conjecture that using activities
from these subtraces as projections and ordering constraints can speed up the
LPM mining procedure. Secondly, we explore the application of approaches to
mine higher level relations between subtraces to generate larger LPMs. In partic-
ular, these approaches allow us to merge LPMs describing possibly unconnected

Mining Local Process Models and Their Correlations 67

portions of the process behavior, providing a more comprehensive overview of
the overall process, which would otherwise be difficult to achieve using original
LPM algorithms due to the large number of activities involved.

This paper is organized as follows. Section 2 introduces notation and basic
concepts that are used throughout the paper. Section 3 presents a projection
method and a constraint generation technique for LPM mining, while Sect. 4
presents a method to infer ordering relations between mined LPMs. In Sect. 5
we evaluate both techniques on a collection of real-life event logs. Finally, Sect. 6
discusses related work and Sect. 7 concludes the paper.

2 Background

In this section we introduce notation and basic concepts used throughout the
paper. We start by introducing event data and process models in Sect. 2.1 and
then we introduce methods for mining subprocess models from event logs in
Sect. 2.2.

2.1 Event Data and Process Models

Process models describe how processes should be carried out. Two process model
notations that are commonly used in process mining are process trees [5] and
Petri nets [28]. A process tree is a tree structure where leaf nodes represent pro-
cess activities, while non-leaf nodes represent operators that specify the allowed
behavior over the activity nodes. Allowed operator nodes are the sequence oper-
ator (→), which indicates that the first child is executed before the second, the
exclusive choice operator (×), which indicates that exactly one of the children
can be executed, the concurrency operator (∧), which indicates that every child
will be executed but allows for any ordering, and the loop operator (�), which
has one child node and allows for repeated execution of this node.

We formally define process trees recursively. Let Σ be the set of all process
activities, OP = {→,×,∧,�} a set of operators and symbol τ /∈ Σ denotes
silent activities. We define a process tree pt as follows:

– a ∈ Σ ∪ {τ} is a process tree M ;
– let {M1,M2, . . . ,Mn} be a set of process trees. Then ⊕(M1,M2, . . . ,Mn) with

⊕ ∈ OP is a process tree.

Hereafter, L(M) denotes the language of a process model M , i.e., the set of activ-
ity execution paths allowed by the model. Figure 1d shows an example process
tree M4, with L(M4)={〈a, b, c〉, 〈a, c, b〉, 〈d, b, c〉, 〈d, c, b〉}. Informally, it indicates
that either activity a or d is executed first, followed by the execution of activities
b and c in any order.

A Petri net N = 〈P, T, F, �〉 is a tuple where P is a finite set of places, T is
a finite set of transitions such that P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) is a set of
directed arcs, called the flow relation, and � : T � Σ is a labeling function that

68 L. Genga et al.

a
(a) M1

a b
(b) M2

a ∧

b c
(c) M3

×

a d

∧

b c
(d) M4

Fig. 1. An initial LPM (M1) and three LPMs built from successive expansions.

assigns process activities to transitions. Unlabeled transitions, i.e., t ∈ T with
t �∈ dom(l), are referred to as τ -transitions, or invisible transitions.

The state of a Petri net is defined by its marking. The marking assigns a finite
number of tokens to each place. Transitions of the Petri net represent activities.
The input places of a transition t ∈ T are all places for which there is a directed
edge to the transition, i.e. {p ∈ P |(p, t)∈ F}. The output places of a transition
are defined similarly as {p ∈ P |(t, p)∈ F}. Executing a transition consumes one
token from each of its input places and produces one token on each of its output
places. A transition can only be executed when there is at least one token in each
of its input places. Often we consider a Petri net in combination with an initial
marking and a final marking, allowing us to define language L(N), consisting
of all possible sequences of visible transition labels (i.e., ignoring τ -transitions)
that start in the initial marking and end in the final marking. It is worth noting
that process trees can trivially be transformed into Petri nets.

Process discovery aims to mine a process model from past process executions.
An event e is the actual recording of the occurrence of an activity in Σ. A trace
σ is a sequence of events, i.e., σ = 〈e1, e2, . . . , en〉 ∈ Σ∗. An event log L∈ N

Σ∗
is

a finite multiset of traces. For example, event log L = [〈a, b, c〉2, 〈b, a, c〉3] con-
sists of two occurrences of trace 〈a, b, c〉 and three occurrences of trace 〈b, a, c〉.
L�X represents the projection of log L on a subset of the activities X⊆Σ, e.g.,
L�{b,c} = [〈b, c〉5]. #(σ,L) denotes the frequency of sequence σ ∈ Σ∗ as a sub-
trace within log L, e.g., #(〈a, b〉, [〈a, b, c〉2, 〈a, b, d〉3])= 5. σ1 · σ2 denotes the
concatenation of sequences σ1 and σ2, e.g., 〈a, b〉 · 〈c, d, e〉= 〈a, b, c, d, e〉.

2.2 Subprocess Mining

Two methods to mine subprocesses from event logs are Local Process Mod-
els (LPMs) [33] and subtrace mining [3,9,19]. LPMs are process models that
describe frequent but partial behaviors seen in the event log, i.e., they model
subsets of the process.

LPM Mining. [33] is a technique to generate a ranked collection of LPMs
through iterative expansion of candidate process trees. This technique encom-
passes four steps: (1) the generation of an initial set of process trees, consisting
of one process tree for each activity; (2) the evaluation phase, where process tree

Mining Local Process Models and Their Correlations 69

event id activity time

1 a 15-4-2016 12:23
2 d 16-4-2016 14:38
3 b 16-4-2016 14:46
4 c 16-4-2016 15:46
5 d 16-4-2016 16:53
6 c 16-4-2016 16:58
7 a 16-4-2016 17:11
8 c 16-4-2016 17:45
9 b 16-4-2016 18:03
10 d 17-4-2016 12:09
11 a 17-4-2016 18:24
12 b 17-4-2016 18:36
13 a 17-4-2016 18:37

(a) A trace σ of an event log L

σ {a,b,c} = a,c,b,a,b,a

γ1 2 γ2 3

Гσ,LPM =
1

σ = a,d,b,c,d,c,a,c,b,d,a,b,a

(b) Segmentation of σ on M3

Fig. 2. Example of segmentation in LPM mining.

quality is assessed by a set of tailored metrics; (3) the selection phase, where
process trees that do not meet certain criteria are removed; (4) the expansion
phase, where candidates selected at the previous step are expanded by replacing
an activity node a by an operator node (→, ×, ∧ or �), whose children are the
replaced activity a and another activity b ∈ Σ of the process. Steps 2 to 4 are
repeated until no new candidate meets the criteria.

An LPM M can be expanded in many ways, as any one of its activity nodes
can be replaced, using any of the operator nodes in combination with any other
activity from the set of activities in the log. Exp(M) denotes the set of expansions
of M (described in more detail in [33]), and exp max the maximum number of
expansions allowed from an initial LPM, i.e., the LPMs generated in step 1.

Figure 1 provides an example of the expansion procedure, starting from the
initial LPM M1 of Fig. 1a. The LPM of Fig. 1a is first expanded into a larger
LPM by replacing a by operator node →, with activity a as its left child node
and b as its right child node, resulting in the LPM of Fig. 1b. Note that M1 can
also be expanded using any other operator or any other activity from Σ, and
LPM discovery recursively explores all possible process trees that meet a support
threshold by iterative expansion. In a second expansion step, activity node b of
the LPM of Fig. 1b is replaced by operator node ∧, with activity b as its left
child and c as its right child, resulting in the LPM of Fig. 1c. Finally, activity
node a of the LPM of Fig. 1c is replaced by operator node × with activity a
as its left child and activity d as its right child, forming the LPM of Fig. 1d. In
traditional LPM discovery the expansion procedure of an LPM stops when the
behavior described by the LPM is not observed frequently enough in an event
log L (i.e., with regard to some support threshold). LPMs are mined in process
trees representation, but often their Petri net representation is used to visualize
them.

To evaluate a given LPM on a given event log L, its traces σ ∈L are first
projected on the set of activities X in the LPM, i.e. σ′ = σ�X . The projected
trace σ′ is then segmented into γ-segments, i.e., segments that fit the behavior
of the LPM, and λ-segments, i.e. segments that do not fit the behavior of the

70 L. Genga et al.

c b d a b a

SUB1

a e c

SUB4

c d c a SUB1

SUB2

SUB4 SUB2

SUB5

Fig. 3. Example of SUBDUE hierarchy

LPM. Specifically, σ′ = λ1 · γ1 · λ2 · γ2 . . . λn · γn · λn+1 such that γi ∈L(LPM)
and λi �∈L(LPM). We define Γσ,LPM to be a function that projects trace σ on
the LPM activities and obtains its subsequences that fit the LPM, i.e. Γσ,LPM =
γ1 · γ2 . . . γn.

Let our LPM M3 under evaluation be the process tree of Fig. 1c and σ the
example trace shown in Fig. 2a. Function Act(LPM) gives the set of process
activities in the LPM, e.g. Act(M3) = {a, b, c}. The projection on the activities of
the LPM gives σ�Act(M3) = 〈a, b, c, c, a, c, b, a, b, a〉. Figure 2b shows the segmen-
tation of the projected trace on the LPM, leading to Γσ,LPM = 〈a, b, c, a, c, b〉.
The segmentation starts with an empty non-fitting segment λ1, followed by a fit-
ting segment γ1 = 〈a, b, c〉, which completes one run through the process tree. The
second event c in σ cannot be replayed on LPM, since it only allows for one c and
γ1 already contains a c. This results in a non-fitting segment λ2 = 〈c〉. Segment
γ2 = 〈a, c, b〉 again represents a run through the process tree; the segmentation
ends with non-fitting segment λ3 = 〈a, b, a〉. We lift segmentation function Γ to
event logs, ΓL,LPM = {Γσ,LPM |σ ∈ L}. An alignment-based [2] implementation
of Γ , as well as a method to rank and select LPMs based on their support, i.e.,
the number of events in ΓL,LPM , is described in [33].

LPMs only contain a subset of the activities of a log L, and therefore, each
LPM M can in principle be discovered on any projection on L containing the
activities used in M . The computational complexity of LPM mining depends
combinatorially on the number of activities in the log, and therefore, mining
LPMs on projections of the log instead of on the full significantly speeds up LPM
mining. However, this results in a partial exploration of the LPM search space
and does not guarantee that all LPMs meeting the support threshold are found.
In principle, when the activities frequently following each other are in the same
projection, the search space can be constrained almost without loss in quality
of the mined LPMs. Such projection sets could potentially be overlapping. This
is desired, since interesting patterns can potentially exist in some activity set
{a, b, c}, as well as in {a, b, d}, and discovering on both L �{a,b,c} and L �{a,b,d}
and then merging the results is faster than discovering on {a, b, c} ∪ {a, b, d} =
{a, b, c, d}. The typical approach to generate the projection set for LPM mining
is to apply Markov graph clustering [32] to a graph where vertices represent
activities and edges represent the connectedness of two activities a and b based

on following relations, i.e., connectedness(a, b, L) =

√
#(〈a,b〉,L)
#(〈a〉,L)

2
+ #(〈a,b〉,L)

#(〈b〉,L)

2
.

Mining Local Process Models and Their Correlations 71

Subtrace Mining aims at finding frequent subsequences from logs. Diamantini
et al. [9] apply frequent subgraph mining (FSM) to do so. In a first step, each
trace σ ∈ L is transformed into a directed graph g = (V,E, φ), with V the set of
nodes that correspond to events in σ, E the set of the edges that show ordering
relations between the events, and φ a labeling function associating nodes with
the activities of the corresponding events. A node is created for each event in the
trace and nodes representing subsequent events are connected with an edge. Once
the set of graphs is obtained, an FSM algorithm is applied to derive frequent
subgraphs from it, yielding the frequent subtraces in the event log. Diamantini
et al. [9] use the SUBDUE algorithm [18] that adopts Description Length (DL)
to iteratively select the most relevant subgraphs. Given a graph set G and a
subgraph s, SUBDUE uses an index based on DL, hereafter denoted by ν(s,G),
which is computed as ν(s,G) = DL(G)

DL(s)+DL(G|s) where DL(G) is the DL of G,
DL(s) is the DL of s and DL(G|s) is the DL of G where each occurrence of s
in G is replaced with a single node (i.e., compression). By doing so, SUBDUE
relates the relevance of a subgraph with its compression capability.

At each iteration, it extracts the subgraph with the highest compression
capability, i.e., the subgraph corresponding to the maximum value of the ν
index. This subgraph is then used to compress the graph set. The compressed
graphs are presented to SUBDUE again. These steps are repeated until no
more compression is possible or until a user-defined number of iterations is
reached. The outcome of SUBDUE consists of a set of subtraces ordered
according to their relevance. As an example, Fig. 3 shows a portion of the
SUBDUE output inferred from the set of graphs derived by the event log
L = {〈a, d, b, c, d, c, a, c, b, d, a, b, a〉2,〈a, e, c, c, d, c, a, c, b, d, a, b, a〉,〈a, e, c, b, d〉}.

At the top level, we have subgraphs involving only elements of the original
graphs set; while in the lower levels, we have subgraphs that involve upper level
subgraphs in their definition. Since top-level subgraphs correspond to the most
relevant subgraphs for the graphs set, we can reasonably expect to be able to
capture most of the process behaviors by only considering the latter. Note that in
this work we consider totally ordered traces, from which we construct sequential
graphs; hence, the mined subgraphs are limited to sequential traces. However,
SUBDUE can mine subgraphs that are more complex that just sequential traces,
e.g., when partially ordered logs are analyzed.

3 Mining LPMs Using Subtrace Constraints and
Projections

In this section, we present an approach to mine Local Process Models (LPMs) by
exploiting subtrace mining results. This extends traditional LPM mining [33] by
converting the set of subtraces (mined using the approach described in Sect. 2.2)
into a set of projections (i.e., sets of activities) and a set of ordering constraints
that are both used to restrict the set of possible expansions in the expansion
phase of LPM mining. Projections restrict the possible extensions to the set of

72 L. Genga et al.

a b c

(a) Subtrace
b a c b c a

×

a b

×

b c

×

a b

(b) Ordering constraints

Fig. 4. An example of subtrace and the corresponding ordering constraints.

activities in the projection, while ordering constraints prohibit expansions into
LPMs that violate ordering relations.

Each subtrace represents a frequent and connected portion of the process.
Activities that do not co-occur together in a subtrace are unlikely to co-occur in a
frequent LPM. Therefore, we extract one projection for each subtrace, consisting
of the activities in the subtrace. Furthermore, LPMs that directly contradict
the behavior of a subtrace can be extracted as ordering constraints, as they
unlikely represent execution orders between activities. Two types of constraints
can be derived from subtraces: constraints on exclusive choices and constraints
on sequential executions. Given a subgraph s = (V,E, φ), an ordering constraint
on s is defined as a process tree M = ⊕(a, b) with a, b ∈ V and ⊕ ∈ {→,×}.

Algorithm 1 describes the procedure to convert a subgraph into a set of order-
ing constraints. The algorithm generates a constraint for the exclusive choice tree
between each pair of activities in the subtrace and adds it to the set of ordering
constraints (line 4). Then, the algorithm checks for each pair of vertices in the
subtrace whether there exists a path (possibly transitively) from vertex vi to
vj (line 5). If so, a sequential constraint is added, thus prohibiting the reversed
ordering (line 6). Figure 4 shows the set of ordering constraints extracted for an
example subtrace. Figure 4a shows that most occurrences of activity a occurred
before b, which, in turn, mostly occurred before c. Transitively, this means that
a occurred before c. The three leftmost trees in Fig. 4b show the extracted order-
ing constraints that directly contradict those frequent orderings in the subtrace.
Furthermore, the existence of the subtrace indicates that the activities tend to
co-occur and do not tend to be mutually exclusive. Therefore, we can safely
remove from the LPM search space the process trees that contain exclusive
choices constructs between those activities.

Algorithm 2 describes how to mine LPMs from a log L given a set of subtraces
S. For each subtrace in S, its set of activities and the ordering constraints are
extracted (line 3), yielding set of projections and constraints CP . Algorithm
MiningLPMwithProjectionsAndConstraints is invoked on the event log and the
mined set of projections and constraints (line 13). This procedure mines LPMs in
the traditional way, with an additional step in which every generated expansion
Mi ∈ Exp(M) of LPM M is first checked against the set of ordering constraints
OC. If there exists a constraint oc ∈ OC such that oc is a subtree of Mi, then
Mi is discarded and not further expanded.

Mining Local Process Models and Their Correlations 73

Algorithm 1. Method FindOrderingConstraints
Input : subtrace s = (V, E, φ)
Output: set of ordering constraints OC

1 OC = {};
2 foreach vi ∈ V do
3 foreach vj ∈ V \ {vi} do
4 OC = OC ∪ {×(φ(vi), φ(vj))};
5 if existsPath(vi, vj , E) then
6 OC = OC ∪ {→ (φ(vj), φ(vi))};

7 return OC;

Algorithm 2. Mining LPM using Subtraces
Input : event log L, set of subtraces S
Output: set of local process models LPM

1 CP = 〈〉;
2 foreach si = (Vi, Ei, φi) ∈ S do
3 CP = CP · 〈({φi(vi)|vi ∈ Vi},findOrderingConstraints(si))〉;
4 CP ′ = ∅;
5 foreach i ∈ {1, 2, . . . , |CP}| do
6 (Vi,OC i) = CP(i);
7 if ∃j ∈ {1, 2, . . . , |CP |} : Vi ⊂ Vj ∨ (Vi = Vj ∧ j > i) then
8 continue;
9 foreach j ∈ {1, 2, . . . , i − 1} do

10 if (Vi ⊆ Vj ∨ Vj ⊆ Vi) then
11 OC i = OC i ∪ OC j

12 CP ′ = CP ′ ∪ {(Vi ,OC i)}
13 return MiningLPMwithProjectionsAndConstraints(L,CP ′);

4 Deriving Partial Order Relations over LPMs

In this section, we present an approach to discover partially ordered sets of
Local Process Models (LPMs), which we will refer to as PO-LPMs. We adopt
the approach in [13] for the mining of partial order relations between subtraces
and adapt it to mine such relations between LPMs. We extract the following
ordering relations between pairs of LPMs:

(i) the sequential relation, denoted as LPM 1 �seq LPM 2, indicates that LPM 2

occurs immediately after LPM 1;
(ii) the concurrent relation, denoted as LPM 1 �conc LPM 2, indicates that the

executions of the activities in the LPMs are interleaved;
(iii) the eventually relation, denoted as LPM 1 �ev LPM 2, indicates that LPM 2

occurs after LPM 1, but at least one other activity occurs between the two
LPMs.

Given a set of LPMs LPMS and log L, the approach first reduces LPMS
by removing redundant ones and then builds an occurrence matrix indicating

74 L. Genga et al.

σ1 : 〈 a b c f l m g o n r 〉
LPM 1

1 ×××
LPM 1

2 × ×
LPM 1

3 ×× ××

(a)

σ2 : 〈 a b c f g a b c n r 〉
LPM 1

1 ×××
LPM 2

1 ×××
LPM 1

2 ××
LPM 1

3

(b)

LPM 1
1 LPM 2

1 LPM 1
2 LPM 1

3

σ1 1 0 1 1
σ2 1 1 1 0

(c)

Fig. 5. Building of the occurrence matrix for LPM 1, LPM 2 and LPM 3 and traces
σ1, σ2.

in which traces each LPM occurs. Finally, it derives sets of the LPMs that
frequently co-occur by applying frequent itemset mining to the occurrence matrix
and then extracts the PO-LPM for each itemset by inferring the ordering relation
on the log for each pair of LPMs in the itemset. We now explain each step in
more detail.

Redundancy Reduction: First we apply existing techniques to remove redundant
LPMs from the mined set of LPMs, i.e. LPMs that only describe behavior that is
already represented by other LPMs in the set. This simplifies and speeds up the
partial orders inferring step. We use the redundancy reduction technique of [30],
which uses a greedy search approach to find a subset of LPMs that maximizes
the number of events in the log covered while minimizing the number of LPMs
used.

Occurrence Matrix: We build an occurrence matrix OM for event log L and
the LPMs LPMS ′ obtained using redundancy reduction, where each cell cij rep-
resents whether the j-th LPM occurs in the i-th trace. We build OM using
segmentation function Γ . As shown in Sect. 2.2, function Γ can identify multi-
ple instances of the same LPM in a single trace, therefore, in theory, multiple
ordering relations can hold for a given pair of LPMs on a given trace. To deal
with this property of Γ , we consider multiple instances of an LPM in a trace as
different LPMs. Whenever we have more than one instance in a trace, we create
a copy of the LPM for each of its occurrences and we set corresponding cells in
the matrix to 1.

For example, consider the set of LPMs consisting of LPM 1 = {→ (→
(a, b), c)}, LPM 2 = {∧(f, g)} and LPM 3 = {∧((→ (l,m), (→ (o, n))}. Figure 5
shows the occurrence matrix for these LPMs on traces σ1 (Fig. 5a) and σ2

(Fig. 5b), marking the events in the trace that belong to each LPM with ×.
All three LPMs occur exactly once in σ1, resulting in “1” values for all three
LPMs in the occurrence matrix of Fig. 5c. In contrast, σ2 contains two instances
of LPM 1 (i.e., LPM 1

1 and LPM 2
1) and one of LPM 2.

Deriving PO-LPMs: We infer sets of LPMs that frequently co-occur in the
same trace by applying any frequent itemset mining algorithm (see [12] for an

Mining Local Process Models and Their Correlations 75

LPM 1 LPM 2 LPM 3

LPM 1 2 174 0
LPM 2 0 0 0
LPM 3 0 0 0

Mseq

LPM 1 LPM 2 LPM 3

LPM 1 0 0 0
LPM 2 0 0 199
LPM 3 0 0 0

Mconc

LPM 1 LPM 2 LPM 3

LPM 1 0 25 199
LPM 2 0 0 0
LPM 3 0 0 0

Mev

(a) Ordering relation matrices

LPM 1 seq

ev

LPM 2 conc
LPM 3

(b) PO-LPM

Fig. 6. Deriving PO-LPMs for itemset {LPM 1,LPM 2,LPM 3}.

overview) using a support threshold ρ. Then, we determine the ordering rela-
tions between the LPMs per set of frequently co-occurring LPMs. For each set
of frequently co-occurring LPMs we extract the traces from the log in which
these LPMs co-occur. Using Γ we obtain the instances of the LPMs in these
traces, from which we can extract the starting and ending position of each
instance and determine whether LPM i �seq LPM j , LPM i �conc LPM j , or
LPM i �ev LPM j holds with LPMi, LPMj two co-occurring LPMs. For each
pair of LPMs occurring in the same itemset we store the number of traces for
which these relations between the LPMs hold respectively in matrices Mseq,
Mconc and Mev. Based on these matrices we extract as ordering relations between
LPMs those relations that exceed a user-defined support threshold η, resulting in
the PO-LPMs. Note that with ρ and η there are two distinct support thresholds.
This is motivated by the fact that a pair of LPMs can occur in different order in
different traces, and therefore the support of an ordering relation can be smaller
than the support of the itemset. Note that η can be considered as the confidence
of the ordering relations.

As an example, consider again LPMs LPM 1,LPM 2,LPM 3 and trace σ1, in
which all three LPMs occur. Analyzing the positions of the events belonging to
each LPM in Fig. 5a we observe that LPM 2 occurs immediately after LPM 1 (i.e.,
LPM 1 �seq LPM 2), that LPM 2 is interleaved with LPM 3 (i.e., LPM 2 �conc

LPM 3) and LPM 3 eventually occurs after LPM 1 (i.e., LPM 1 �ev LPM 3).
Suppose that for some set of LPMs and log L that among others contains σ1,
itemset {LPM 1,LPM 2,LPM 3} is extracted as a set of frequently co-occurring
LPMs, and Mseq , Mconc and Mev are as shown in Fig. 6a, then Fig. 6b shows
the PO-LPM for this itemset for η = 50% of the traces. Note that the use of the
thresholds ρ and η ensures us to infer PO-LPMs that meet minimum support
requirements, as in the case of single LPMs.

76 L. Genga et al.

5 Evaluation

In this section, we describe two sets of experiments. First, we evaluate the
speedup in Local Process Model (LPM) mining that is obtained by applying
the technique of Sect. 3. Secondly, we explore the resulting PO-LPMs obtained
by applying the technique of Sect. 4. We evaluate both on the same collection of
real-life event logs, which is described below.

Datasets: We evaluated our technique using four real-life event logs. The first
event log contains execution traces from a financial loan application process
at a large Dutch financial institution, commonly referred to as the BPI’12 log
[10]. This log consists of 13087 traces (loan applications) for which a total of
164506 events have been executed, divided over 23 activities. The second event
log contains traces from the receipt phase of an environmental permit application
process at a Dutch municipality, to which we will refer as the receipt phase
WABO log [4]. The receipt phase WABO log contains 1434 traces, 8577 events,
and 27 activities. The third event log contains medical care pathways of sepsis
patients from a medium size hospital, to which we will refer as the SEPSIS
log [24]. The SEPSIS log contains 1050 traces, 15214 events, and 16 activities.
Finally, as fourth event log we use a dataset from the lighting system of a smart
office environment, which was gathered in [36]. This dataset contains continuous
values for the color temperature and the light intensity of the lighting in four
different areas in the office space. Events correspond to interactions with the
lighting interface that result in changes in the color temperature and intensity of
the lighting in one or more areas and each case is a working day. The event names
are converted from continuous values to symbolic activities using the well-known
technique SAX [21], resulting in eight categories for each event representing the
color temperature and intensity in each of the four areas. We refer to this log as
Laplace and it contains 92 traces, 1557 events and 218 activities.

5.1 Mining LPMs Using Subtraces

We now explore the effect of using subtraces to the efficiency of LPM mining,
for which we perform two sets of experiments. First, we investigate the effects of
only using SUBDUE projections, i.e., using the projection-based LPM mining
procedure of [32] while using the activities in SUBDUE subtraces as projec-
tions. Then, we exploit both projections and ordering constraints as described
in Sect. 3.

Tools and Configurations: We use the iterative Markov LPM mining algorithm
implemented in the LocalProcessModelDiscovery package1 of the ProM frame-
work [34]. We have implemented the novel LPM mining approach based on SUB-
DUE projections and constraints in the ProM package LocalProcessModelDiscov-
eryWithSubdueConstraints2. For both Markov-based LPM and subtrace-based
1 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/.
2 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscoveryWithSub

dueConstraints.

https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/
https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscoveryWithSubdueConstraints
https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscoveryWithSubdueConstraints

Mining Local Process Models and Their Correlations 77

LPM mining we use the standard ProM configurations. For SUBDUE we use
the standard implementation3, in which we varied the number of iterations.
Note that a high number of SUBDUE iterations is expected to be beneficial for
the quality of the LPM results: more iterations lead to a more process behavior
being captured in subtraces. However, this negatively impacts the speedup of
LPM mining. Moreover, by construction, SUBDUE extracts the largest frequent
subtraces in the first iterations. Hence, we expect the obtained subtraces to be
able to represent most of the process behaviors even using only a few iterations.
Therefore, we explore using 1, 5 and 10 iterations, and to verify our assumption
we additionally use 10000 iterations. All experiments are performed on an 2.4
GHz Intel i7 machine, equipped with 16 Giga of RAM.

Methodology: We evaluate our approach using two dimensions. First, we con-
sider the reduction in the search space size, which represents how much speedup
is obtained in the mining procedure. Secondly, we consider the quality of the
mined LPMs by comparing the LPMs mined using SUBDUE projections and
constraints to those mined when using the full search space. This second dimen-
sion is relevant since using projections with LPM mining might lead to not all
LPMs being found [32]. By comparing the LPM rankings obtained by mining
with and without projections we can assess to what extent the use of projec-
tions affects the results. We compare the ranking using Normalized Discounted
Cumulative Gain (NDCG) [6,17], which is a widely used metrics to evaluate
ranked results in information retrieval. Generally, NDCG@k is used, which only
considers the top k elements of the ranking. NDCG consists of two compo-
nents, Discounted Cumulative Gain (DCG) and Ideal Discounted Cumulative
Gain (IDCG). DCG aggregates the relevance scores (i.e., the score obtained
with respect to the quality metrics) of individual LPMs in the ranking in such a
way that the graded relevance is discounted with logarithmic proportion to their
position in the ranking. This results in more weight being put on the top of the
ranking compared to lower parts of the ranking. Formally, DCG is defined as:
DCG@k =

∑k
i=1

2reli−1
log2(i+1) , where reli is the relevance of the LPM at position i.

Normalized Discounted Cumulative Gain (NDCG) is obtained by dividing the
DCG value by the DCG on the ground truth ranking (called Ideal Discounted
Cumulative Gain). Normalized Discounted Cumulative Gain (NDCG) is defined
as: NDCG@k = DCG@k

IDCG@k .
As a baseline we apply the Markov-based projection technique from [32]

iteratively until all projections contain at most seven activities, and compare
the search space reduction and the NDCG obtained when using this approach
with the search space reduction and NDCG obtained when using projections
and constraints from SUBDUE subtraces.

3 http://ailab.wsu.edu/subdue/.

http://ailab.wsu.edu/subdue/

78 L. Genga et al.

Table 1. The search space size and NDCG results for mining LPMs with and without
SUBDUE projections and constraints.

Event Log Projections

(iterations)

Constraints

(iterations)

Search space

size

Speedup NDCG@5 NDCG@10 NDCG@20

BPI’12 None None 1567250 - 1.0000 1.0000 1.0000

Iterative Markov None 36032 43.50x 0.9993 0.9987 0.9865

Iterative Markov SUBDUE (10k) 21084 74.33x 0.9993 0.9987 0.9865

SUBDUE (1) None 10608 147.74x 0.9993 0.9987 0.9830

SUBDUE (5) None 10740 145.93x 1.0000 0.9994 0.9870

SUBDUE (10) None 10904 143.73x 1.0000 0.9994 0.9903

SUBDUE (10k) None 12666 123.74x 1.0000 0.9994 0.9903

SUBDUE (1) SUBDUE (1) 2718 576.62x 0.9993 0.9987 0.9830

SUBDUE (5) SUBDUE (5) 2620 598.19x 1.0000 0.9994 0.9870

SUBDUE (10) SUBDUE (10) 2874 545.32x 1.0000 0.9994 0.9903

SUBDUE (10k) SUBDUE (10k) 4012 390.64x 1.0000 0.9994 0.9903

Receipt phase None None 1451450 - 1.0000 1.0000 1.0000

Iterative Markov None 12074 120.21x 0.9418 0.8986 0.8238

Iterative Markov SUBDUE (10k) 10610 136.80x 0.9418 0.8986 0.8238

SUBDUE (1) None 8176 177.53x 1.0000 0.9994 0.9903

SUBDUE (5) None 8256 175.81x 1.0000 0.9994 0.9903

SUBDUE (10) None 8264 175.64x 1.0000 0.9994 0.9958

SUBDUE (10k) None 8504 170.68x 1.0000 0.9994 0.9958

SUBDUE (1) SUBDUE (1) 4012 390.64x 1.0000 0.9994 0.9903

SUBDUE (5) SUBDUE (5) 1862 779.51x 1.0000 0.9994 0.9903

SUBDUE (10) SUBDUE (10) 2170 668.71x 1.0000 0.9994 0.9958

SUBDUE (10k) SUBDUE (10k) 2178 666.41x 1.0000 0.9994 0.9958

SEPSIS None None 315451 - 1.0000 1.0000 1.0000

Iterative Markov None 6304 50.04x 0.9332 0.9148 0.8613

Iterative Markov SUBDUE (10k) 3768 83.72x 0.9332 0.9148 0.8613

SUBDUE (1) None 12 26287.58x 0.5763 0.3771 0.2489

SUBDUE (5) None 334 994.46x 0.9916 0.9671 0.9472

SUBDUE (10) None 394 800.64x 0.9923 0.9692 0.9534

SUBDUE (10k) None 1034 05.08x 0.9923 0.9692 0.9534

SUBDUE (1) SUBDUE (1) 10 31545.10x 0.5763 0.3771 0.2489

SUBDUE (5) SUBDUE (5) 174 1812.94x 0.9916 0.9671 0.9472

SUBDUE (10) SUBDUE (10) 144 2190.63x 0.9923 0.9692 0.9534

SUBDUE (10k) SUBDUE (10k) 470 671.17x 0.9923 0.9692 0.9534

Laplace None None 4784569 - 1.0000 1.0000 1.0000

Iterative Markov None 1096 4365.48x 0.8261 0.7942 0.7635

Iterative Markov SUBDUE (10k) 746 6413.63x 0.8261 0.7942 0.7635

SUBDUE (1) None 12 398714.08x 0.4354 0.2836 0.1841

SUBDUE (5) None 42 113918.31x 0.5061 0.3296 0.2139

SUBDUE (10) None 72 66542.35x 0.7909 0.5683 0.3689

SUBDUE (10k) None 730 6554.20x 0.9096 0.8690 0.7928

SUBDUE (1) SUBDUE (1) 10 478456.90x 0.4354 0.2836 0.1841

SUBDUE (5) SUBDUE (5) 34 140722.62x 0.5061 0.3296 0.2139

SUBDUE (10) SUBDUE (10) 56 85438.73x 0.7909 0.5683 0.3689

SUBDUE (10k) SUBDUE (10k) 582 8220.91x 0.9096 0.8690 0.7928

Results: Table 1 shows the results for the four logs. The results obtained without
using projections or constraints are considered to be the ground truth LPM
ranking and therefore have NDCG@k values of 1.0 by definition. The results
obtained by the best heuristic configuration(s) are reported in bold and between
parenthesis is the number of SUBDUE iterations.

Mining Local Process Models and Their Correlations 79

Iterative Markov [32] projections result in a reduction of the search space by
a factor between 43.50x (BPI’12) and 4365.48x (Laplace), while the high NDCG
values indicate that the majority of the top 20 LPMs of the ground truth are
still found. Using the constraints extracted from SUBDUE subtraces obtained
with 10k SUBDUE iterations together with iterative Markov projections further
increases the speedup of LPM mining on all four logs while resulting in identical
LPM rankings.

The search space size of LPM mining with SUBDUE projections depends
on the number of iterations performed by SUBDUE: more iterations result in
a larger number of unique sets of activities, leading to more projections and
a larger LPM search space, but at the same time increasing the quality of the
mined LPMs in terms of NDCG. Note that the quality of the LPM mining results
differs between the logs when one SUBDUE iteration is used. This is because
for logs with few activities a single subtrace can already capture most relevant
process behavior, while for logs with many activities it can only capture a small
part. The use of SUBDUE projections leads to a higher speedup than iterative
Markov projections on all logs, even SUBDUE constraints are not used. At the
same time, when enough SUBDUE iterations are used, SUBDUE projections
result in higher NDCG. This shows that SUBDUE subtraces are more effective
in finding related sets of activities for use as projections in LPM mining compared
to Markov clustering.

The constraints extracted from SUBDUE subtraces in combination with
SUBDUE-based projections results in considerably higher speedup on all logs
without resulting in lower NDCG. On three logs, using 10 SUBDUE iterations
is sufficient to achieve the highest quality LPMs, while only on the Laplace
log more iterations are needed. Using SUBDUE projections and constraints we
have found speedups between 598.19x (BPI’12) and 478456.90x (Laplace). To
put these results into perspective: this brought down the mining time on the
BPI’12 log from 24 min to less than two minutes. This shows that subtrace min-
ing results can be used to speed up LPM mining. Additionally, in [31] we showed
that the mined LPMs provide additional process insights in comparison to sub-
traces, meaning that it is actually useful to perform LPM mining after subtrace
mining.

5.2 Mining Ordering Relations over LPMs

In this section, we evaluate our approach to discover PO-LPMs from a set of
LPMs. We propose a set of measures to assess the quality of PO-LPMs and
we discuss the results that we obtained for the four logs. Note that the notion
of quality exploited in these experiments differs from the one used before. In
the previous experiments, the quality of the different LPMs set was intended
as their similarity with the set of LPMs discovered by the exhaustive search,
to evaluate the impact of the pruning of the search state. Here, we focus on
exploring the benefits of considering larger and possible unconnected portions
of process behaviors. Therefore, we evaluate the balance between the loss in
support and the gaining in size of PO-LPMs with respect to single LPMs sets.

80 L. Genga et al.

Additionally, we show how PO-LPMs can be used to merge LPMs resulting in
higher-level LPMs that describe a larger fragment of the process.

Tools and Configurations: For each log we use the set of LPMs that we obtained
in the experiments of Sect. 5.1 for projections using 10k SUBDUE iterations
and use the implementation of the technique to reduce redundancy in LPM
results [30] as available in ProM package LocalProcessModelConformance4. We
implemented the PO-LPM mining approach of Sect. 4 in PHP5 and use the
implementation of the FP-Growth itemset mining algorithm in the SPMF pat-
tern mining library [11] to obtain the frequent itemsets (FI hereafter), i.e. sets
of frequently co-occurring LPMs.

Methodology: We test our technique with three types of sets of FI : (1) the entire
set of FI ; (2) the set of closed FI, i.e. the subset of FI where for each itemset
i there exists no other itemset j such that i⊂ j with identical support to i; (3)
the set of maximal FI, i.e. FI where for each itemset i there exists no other
itemset j with i⊂ j where the support of j exceeds ρ. We vary ρ from 1% to
100% increasing it in steps of 1%. We set η = 50% since, as a rule of thumb, it is
reasonable to consider only ordering relations occurring at least in more than half
of the cases in which the LPMs occur together. Lower values for η would likely
result in PO-LPMs involving multiple and infrequent relations between pairs
of LPMs, thus affecting the understandability and the representative capability
of the output. We evaluate the quality of the discovered PO-LPMs along two
dimensions: (1) the amount of information provided on the process (i.e., pattern
size) and (2) the portion of process behaviors they represent (i.e., their support).
It is easy to see that there is a trade-off between these dimensions: larger patterns
typically have lower support. What is the optimal trade-off between the two
dimensions depends on the process analysis task at hand and needs to be decided
by the process analyst. Here, we investigate the trade-off between the dimensions
as a result of ρ. To capture both dimensions in a single measure we also define
Information Ratio (IR) measure as follows: IR = #activitiesLPM

#activitiesProcess × #occurrences
#traces .

Function IR yields values in interval [0, 1] with 0 corresponding to an empty set
of LPMs and 1 corresponding to a set of LPMs that involves all process activities
and occurs in all traces.

Results: Table 2 reports statistics on the set of PO-LPMs that are inferred from
three of the four logs for the three different itemset mining approaches, as well as
for the original set of LPMs (“-” in column FI). Columns #LPMs, Avg. #Act,
Avg. Supp (%), and Avg. IR respectively indicate the number of the LPMs in
the set, the average number of activities per LPM, the average support of the
LPMs, and the average information ratio. The receipt phase log is missing in the
table, as only two LPMs remained after the redundancy reduction step, between
which no ordering relation could be found.

4 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelConformance.
5 https://surfdrive.surf.nl/files/index.php/s/PeD64m5xr5hxcqi.

https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelConformance
https://surfdrive.surf.nl/files/index.php/s/PeD64m5xr5hxcqi

Mining Local Process Models and Their Correlations 81

Table 2. LPMs set statistics inferred from the three event logs.

Log FI #LPMs Avg. #Act Avg. supp (%) Avg. IR

BPI’12 - 5 2 41.6 0.036

All 210 7.05 3.16 0.006

Closed 9 7.6 20.5 0.035

Maximal 9 7.6 20.5 0.035

SEPSIS - 5 2.4 53.8 0.090

All 136 7.61 3.7 0.015

Closed 46 7.85 7.6 0.037

Maximal 26 8.69 8.8 0.038

Laplace - 18 2 9 0.0009

All 65758 15.97 1 0.0007

Closed 21 8.19 1 0.0004

Maximal 21 8.19 1 0.0004

It should be noted that by combining the LPMs inferred from each log,
for the BPI’12 log we derived 10 activities out of 23 activities in the process.
Respectively for the SEPSIS and Laplace logs we derived 10 out of 16 and 30
activities out of 218 activities. This suggests that the processes under analysis
involve many infrequent activities that do not need to be modeled to capture
most of the structure in the process, and therefore, they are not in the LPM
set. In turn, this implies that most of the LPMs involve only a small fraction
of the process activities. This explains why the IR values overall are very small,
regardless of log and settings. However, this does not affect our analysis, since
we investigate how IR values vary on the same log between different PO-LPMs
sets instead of considering their absolute value.

BPI’12. All FI configurations led to PO-LPMs involving over three times the
amount of activities of the initial LPMs. Using all PO-LPMs results in a large
support drop, while it does not lead to larger LPMs compared to the closed and
maximal PO-LPMs. Figure 7a shows more detailed results by plotting support
against the number of activities for single LPMs, and after merging them using
all, closed, and maximal frequent itemsets. We discretized support values in bins
of 5%. Each dot in the plot represents the set of LPMs that involve n activities
and has a support within [s−0.05, s], where s denotes the support represented by
the bin. The larger the size of the dot is, the larger the size of the corresponding
set of LPMs is.

All configurations led to LPMs with a dimension at least double than and
up to six times the dimension of single LPMs. The set of all PO-LPMs involves
a high number of LPMs with a support smaller or equal to 5%, which motivates
the low support values and, in turn, the worsening of the IR values with respect
to the single set. Note that most of these low-support PO-LPMs were discarded

82 L. Genga et al.

(i) All (ii) Closed (iii) Maximal

(a) BPI’12

(i) All (ii) Closed (iii) Maximal

(b) SEPSIS

(i) All (ii) Closed (iii) Maximal

(c) Laplace

Fig. 7. The support and the number of activities of each LPM in the result set using for
original LPMs (red diamonds) compared with PO-LPMs (blue circles) obtained using
all, closed and maximal frequent itemsets. (Color figure online)

in the closed and maximal sets, which involve only 10 LPMs each, against the
210 of all PO-LPMs. However, most of the LPMs in these sets have a support
lower than or equal to 20%, thus leading to an average support value equal to
around the half of single LPMs.

Figure 8 presents an example of a merged LPM that is built from the PO-
LPM obtained from the closed (maximal) set. The PO-LPM is represented as a
Petri net (introduced in Sect. 2.1), where circles represent places, rectangles rep-
resent transitions, and black rectangles depict τ -transitions. Places that belong
to the initial marking contain a token and places belonging to a final marking are

marked as The dotted lines surround the original LPMs and edges between
original LPMs are labeled with their ordering relation. This merged LPM con-
sists of eventually relations between LPM 1 and LPM 3 and between LPM 3
and LPM 2. This PO-LPM shows that after submitting a loan application it

Mining Local Process Models and Their Correlations 83

Fig. 8. One of the PO-LPMs from the closed set for BPI’12.

was accepted and finalized, followed by one or more calls to the customer for
additional information and finally a validation of the application documents.
This merged LPM occurs in 25% of the traces, which is significant given its size.
Note that LPMs of this size cannot be mined with existing techniques. Given its
size and support this PO-LPM provides the analyst with a higher-level and more
meaningful representation of the process compared to the three LPMs separately.

SEPSIS. We obtained a small number of single LPMs, mostly comprising two
activities, with one LPM involving 4 activities. PO-LPMs are on average three
times larger than the single LPMs. However, for this log the increase in size
was not enough to properly balance the loss in terms of support; indeed, all
configurations achieved IR values worse than the set of original LPMs. The set
of all PO-LPMs is again the one with the lowest IR value, while the closed and
maximal sets have similar performance. Figure 7b provides the scatter plot of
size/support for LPMs obtained from the SEPSIS log for all tested configura-
tions. The PO-LPMs have a size up to six times the one of most single LPMs;
however, many of them have a support between 1% and 5%. Some of these
low-support LPMs were not filtered neither in the closed nor in the maximal set.

Figure 9 reports one of the PO-LPMs with the highest support. It starts with
the registration of the patient in the emergency room (ER), followed by filling
the general triage document (ER Triage), which is done concurrently to either
filling in a triage form for sepsis cases (ER SEPSIS Triage) or the infusion of
some liquids (IV Liquid). Later in the process, LPM 4 and LPM 5 are executed in
parallel. LPM 4 shows that the patient was admitted into the normal care ward
and CRP was performed (i.e., a test to detect inflammation); LPM 5 shows that
the patient’s leukocytes were tested and she was then sent back to the emergency
room. Also here, we obtained a meaningful description of interconnected phases
of the process and obtained a reasonable support value (i.e., 12%).

Laplace. Both single LPMs and PO-LPMs lead to very low IR values for the
Laplace log. The reason is that this log is much less structured than the other
logs we analyzed, resulting in LPMs with a low support (1%−2%). Moreover,
because this process contains many activities, these LPMs involve a small frac-
tion of those activities. On this log, differently from the other logs, the all item-
sets configuration obtains high IR values than the others. All configurations led

84 L. Genga et al.

Fig. 9. One of the PO-LPMs from the maximal set for SEPSIS.

Fig. 10. One of the PO-LPMs from the closed set for Laplace.

to an average support of 1%; however, PO-LPMs obtained from all frequent
itemsets have twice the average size compared to closed and maximal item-
sets. The main reason is that the maximal and closed sets filter out many large
(but non-maximal or non-closed) PO-LPMs. Figure 7c provides the scatter plots
for size/support for LPMs in the Laplace log for all tested configurations. As
expected, we got many large LPMs in the lowest support interval for all con-
figurations. This is particularly evident for the first configuration. It is worth
noting that PO-LPMs were able to achieve growth of up to 15 times the average
size compared to single LPMs, although this growth comes with a decrease of
support from around 40% to a maximum of 1%.

Figure 10 shows one of the closed PO-LPMs with the highest support mined
for the Laplace log. The figure shows that when we have a couple of signals,
occurring in every order, representing a switch either from low to high values
or from high to low values for both the color tone and the light intensity for
the first office area, this pair is eventually followed by another pair of signals,
representing a switch of the light intensity values in the same area. The support
of this PO-LPM is 2%.

6 Related Work

We discuss two areas of related work: subprocess mining and partial order dis-
covery.

Subprocess Mining. Several approaches have been proposed to extract the most
relevant subprocesses (intended as subgraphs) from a set of process execution
traces. Some approaches propose to extract subprocesses from sequential traces
[3,16]. For instance, Bose et al. [3] mine subprocesses by identifying sequences
of events that fit a priori defined templates. Compared to these approaches, our

Mining Local Process Models and Their Correlations 85

approach does not require any predefined template and extracts subprocesses
that are the most relevant according to their description length.

Several other techniques, like LPM mining, focus on the mining of more
complex patterns that allow for control-flow constructs. Chapela-Campa et al.
[8] developed a technique called WoMine-i to mine subprocess patterns with mul-
tiple control-flow constructs that are infrequent. Lu et al. [22] recently proposed
an interactive subprocess exploration tool, which allows the discovery of sub-
process patterns that a process analyst can modify based on domain knowledge.
Greco et al. [14] propose a Frequent Subgraph Mining (FSM) algorithm that
exploits knowledge about relationships among activities (e.g., AND/OR splits)
to drive subgraphs mining. Graphs are generated by replaying traces over the
process model; however, this algorithm requires a model properly representing
the event log, which may not be available for many real-world processes.

Partial Order Discovery. The discovering of partial ordering relations among log
events has been traditionally addressed by Episode Discovery [25]. An episode is
defined as a collection of partially ordered events. The goal of Episode Discovery
consists in determining all the episodes in an event log whose support is above
a user-defined threshold. Episodes are usually detected by grouping together
events falling in the same window (e.g., a time or a proximity window), generat-
ing all possible candidates (i.e., all possible partial orders configuration) and then
checking the frequency of the candidates. Since the seminal work of Mannila et al.
[25], several approaches have been proposed to enhance the efficiency of episode
discovery, addressing different application domains (e.g., [15,37]). Recently, Lee-
mans et al. [19] introduced an approach tailored to discover episodes from event
logs generated by business processes, where it is possible to exploit the notion of
process instance to determine the episodes. The output of their approach consists
of directed graphs where nodes correspond to activities and edges to eventually
follow precedence relations. Our work presents some similarities with [19], in the
sense that also the discovery of our PO-LPMs is based on the notion of pro-
cess instances. However, our work defines ordering relations among patterns of
events, rather than between single events. Moreover, our approach provides a
more fine grained analysis by distinguishing among sequential, eventually and
concurrency relations.

7 Conclusions and Future Work

In this work, we have explored the synergy effects between subtrace and LPM
mining, showing how their combination enables the gathering of relevant process
insights that would remain hidden when both are applied separately. Specifically,
we extended the LPM algorithm in [32] to account for ordering constraints mined
using SUBDUE subtraces. Moreover, we proposed an approach (adapting the
approach of [13]) to derive ordering relations between LPMs to infer partial
orders between them. We evaluated our approach on four real-world event logs.
The results show that mining LPMs with SUBDUE projections and constraints

86 L. Genga et al.

outperforms the current state-of-the-art techniques for LPM mining both in
quality as well as in computation time. Our experiments also show that the
approach is able to infer partially ordered models, thereby providing a more
complete and meaningful overview on the process compared to single LPMs,
although this comes at the price of a loss in support.

In future work, we plan to explore the use of other subtrace mining techniques
to derive LPMs. Moreover, we plan to investigate semi-automatic techniques to
move from PO-LPMs to process models expressed in a standard notation by
converting the partial relations in actual process constructs. This will allow the
reuse of the discovered process patterns for further analysis.

Acknowledgement. This work is partially supported by ITEA3 through the APP-
STACLE project (15017) and by the RSA-B project SeCludE.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
discip. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)

3. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process
mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03848-8 12

4. Buijs, J.C.A.M.: Receipt phase of an environmental permit application pro-
cess (‘WABO’). CoSeLoG project (2014). https://doi.org/10.4121/uuid:a07386a5-
7be3-4367-9535-70bc9e77dbe6

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm
for discovering process trees. In: CEC, pp. 1–8. IEEE (2012)

6. Burges, C., et al.: Learning to rank using gradient descent. In: ICML, pp. 89–96
(2005)

7. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85758-7 26

8. Chapela-Campa, D., Mucientes, M., Lama, M.: Discovering infrequent behavioral
patterns in process models. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM
2017. LNCS, vol. 10445, pp. 324–340. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65000-5 19

9. Diamantini, C., Genga, L., Potena, D.: Behavioral process mining for unstructured
processes. J. Intell. Inf. Syst. 47(1), 5–32 (2016)

10. van Dongen, B.F.: BPI challenge (2012). https://doi.org/10.4121/uuid:3926db30-
f712-4394-aebc-75976070e91f

11. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1),
3389–3393 (2014)

12. Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey
of itemset mining. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 7(4) (2017)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-03848-8_12
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-65000-5_19
https://doi.org/10.1007/978-3-319-65000-5_19
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

Mining Local Process Models and Their Correlations 87

13. Genga, L., Potena, D., Martino, O., Alizadeh, M., Diamantini, C., Zannone, N.:
Subgraph mining for anomalous pattern discovery in event logs. In: Appice, A.,
Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS (LNAI),
vol. 10312, pp. 181–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61461-8 12

14. Greco, G., Guzzo, A., Manco, G., Saccà, D.: Mining and reasoning on workflows.
IEEE Trans. Knowl. Data Eng. 17(4), 519–534 (2005)

15. Huang, K.Y., Chang, C.H.: Efficient mining of frequent episodes from complex
sequences. Inf. Syst. 33(1), 96–114 (2008)

16. Huang, Z., Lu, X., Duan, H.: On mining clinical pathway patterns from medical
behaviors. Artif. Intell. Med. 56(1), 35–50 (2012)

17. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

18. Jonyer, I., Cook, D., Holder, L.: Graph-based hierarchical conceptual clustering.
J. Mach. Learn. Res. 2, 19–43 (2002)

19. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs.
In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp.
1–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27243-6 1

20. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

21. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: SIGMOD Workshop on Research
Issues in DM&KD, pp. 2–11. ACM (2003)

22. Lu, X., et al.: Semi-supervised log pattern detection and exploration using event
concurrence and contextual information. In: Panetto, H., et al. (eds.) CoopIS.
LNCS, vol. 10573. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
319-69462-7 11

23. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: CIDM, pp. 192–199. IEEE (2011)

24. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using
process mining. In: RADAR+EMISA, pp. 72–80. CEUR (2017)

25. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)

26. Măruşter, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology
based on simulation and process mining techniques. Knowl. Inf. Syst. 21(3), 267–
297 (2009)

27. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? Diag-
nostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E.
(eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32885-5 21

28. Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-69968-9

29. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational
perspective in agile business processes. In: Gaaloul, K., Schmidt, R., Nurcan, S.,
Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 37–52. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19237-6 3

30. Tax, N., Dumas, M.: Mining non-redundant sets of generalizing patterns from
sequence databases. arXiv preprint arXiv:1712.04159 (2017)

https://doi.org/10.1007/978-3-319-61461-8_12
https://doi.org/10.1007/978-3-319-61461-8_12
https://doi.org/10.1007/978-3-319-27243-6_1
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-69462-7_11
https://doi.org/10.1007/978-3-319-69462-7_11
https://doi.org/10.1007/978-3-642-32885-5_21
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-319-19237-6_3
http://arxiv.org/abs/1712.04159

88 L. Genga et al.

31. Tax, N., Genga, L., Zannone, N.: On the use of hierarchical subtrace mining for
efficient local process model mining. In: Proceedings of International Symposium
on Data-driven Process Discovery and Analysis, pp. 8–22. CEUR-WS.org (2017)

32. Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches
for generating local process models through log projections. In: CIDM, pp. 1–8.
IEEE (2016)

33. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process
models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)

34. Verbeek, H.M.W., Buijs, J.C.A., Van Dongen, B.F., van der Aalst, W.M.P.: ProM
6: the process mining toolkit. In: BPM Demos, vol. 615, pp. 34–39. CEUR (2010)

35. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68746-7 24

36. van de Werff, T., Niemantsverdriet, K., van Essen, H., Eggen, B.: Evaluating inter-
face characteristics for shared lighting systems in the office environment. In: DIS,
pp. 209–220. ACM (2017)

37. Zhou, W., Liu, H., Cheng, H.: Mining closed episodes from event sequences effi-
ciently. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010.
LNCS (LNAI), vol. 6118, pp. 310–318. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13657-3 34

https://doi.org/10.1007/978-3-540-68746-7_24
https://doi.org/10.1007/978-3-642-13657-3_34
https://doi.org/10.1007/978-3-642-13657-3_34

A Linear Temporal Logic Model Checking
Method over Finite Words with
Correlated Transition Attributes

Jean-Michel Couvreur1 and Joaqúın Ezpeleta2(B)

1 Laboratoire d’Informatique Fondamental d’Orléans (LIFO), Université d’Orléans,
Orléans, France

jean-michel.couvreur@univ-orleans.fr
2 Department of Computer Science and Systems Engineering,

Aragón Institute of Engineering Research (I3A),
University of Zaragoza, Zaragoza, Spain

ezpeleta@unizar.es

Abstract. Temporal logic model checking techniques are applied, in a
natural way, to the analysis of the set of finite traces composing a system
log. The specific nature of such traces helps in adapting traditional tech-
niques in order to extend their analysis capabilities. The paper presents
an adaption of the classical Timed Propositional Temporal Logic to the
case of finite words and considers relations among different attributes cor-
responding to different events. The introduced approach allows the use of
general relations between event attributes by means of freeze quantifiers
as well as future and past temporal operators. The paper also presents
a decision procedure, as well as a study of its computational complexity.

Keywords: Model checking · Freeze Linear Temporal Logic ·
Conformance checking · Log analysis

1 Introduction

Current information systems usually generate log files to record system and user
activities. System logs contain very valuable information that, when properly
analyzed, could help in getting a better understanding of the system and user
behaviors and then in improving the system. In many (most) cases the log can be
seen as a set of traces: a trace is a chronologically ordered sequence of events cor-
responding to a process execution. It can correspond, for instance, to the events
of a user session in an e-commerce website or database, the events corresponding
to the execution of a process in a workflow system, etc.

This work was done when J. Ezpeleta was a visiting researcher at the University of
Orléans. It has been partially supported by the TIN2017-84796-C2-2-R project, granted
by the Spanish Ministry of Economy, Industry and Competitiveness.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 89–104, 2019.
https://doi.org/10.1007/978-3-030-11638-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_5

90 J.-M. Couvreur and J. Ezpeleta

Process mining [1] is the set of techniques that try to analyze log files looking
for trace patterns so as to synthesize a model representing the set of event
sequences in the log. In some cases, when the system is governed by a rather
closed procedural approach, the model itself can be a quite constraining and
closed model (Petri net, BPMN process, etc.) fitting the log. In cases in which
the system does not really constrain the user possibilities (open or turbulent
environments), the utility of such constraining models decreases: the log can
contain so many different combinations of event sequences that the obtained
model will be a kind of spaghetti or flower, depending on the variety of such
combinations. For the last cases, a viable approach consists of establishing a set
of behavioral properties (described in a high level formalism, such as temporal
logic, for instance) describing possible model behaviors and then checking which
traces in the log satisfy them, looking for what are usually called a declarative
process (described in an implicit way by the set of formulas).

Conformance checking is the process by which a log and a model (either a
procedural model or a declarative one) are compared, so as to get a measure
of how well the log and the model are aligned. This paper concentrates on the
conformance perspective using a variant of temporal logic for property descrip-
tion and a model checker for conformance checking. Temporal logic has been
extensively used in process mining [20,22]. Initially, only control flow aspects
were considered. A case (trace) was defined as an ordered sequence of activities.
Later, a multi-perspective point of view was adopted. In this case, each event,
besides the activity, could contain additional data, as the time at which the event
happened, the resource that executed the activity, the duration, etc. [9,17,19,21].
As shown in [17], conformance results can significantly vary when data associated
to activities is considered.

Classical LTL temporal logic for declarative process conformance imposes
some constraints with respect to the kind of properties one can deal with. Let us
consider, as an example, a trace whose events are of the form (ac, re, ts), where
ac stands for the activity, re for the resource that executed it and ts for the event
time-stamp. It is possible to express by means of a classical LTL formula the
property that a concrete activity a executed by a concrete resource r is always
(G temporal logic operator) followed by a future (F temporal logic operator)
concrete activity b executed by the same concrete resource r: G((a, r) → F (b, r)).
However, it is not possible to express the property that a concrete activity a is
followed in the future by activity b, and both activities are carried out by the
same resource (being the resource “any” resource). In the case of finite domains
one could transform such formula into the disjunction of a set of formulas (one
per resource). However, this is infeasible for general data domains. Consider, for
instance, the necessity of correlating the times at which the considered events
happened, so as to ensure that both are in an interval of 30 min.

Focusing on real-time applications, different extensions of LTL have been
proposed in the literature with the aim of incorporating time and time-related
event correlations. Metric Temporal Logic (MTL) [13] considers the until modal-
ity with an interval window of validity. Timed Propositional Temporal Logic

LTL Model Checking over Datawords with Correlated Transition Attributes 91

(TPTL) [2] adds freeze variables as the way of referring and correlating to spe-
cific time values associated to different word positions. Metric First Order Tem-
poral Logic (MFOTL) [4] extends MTL with first order quantifiers, gaining in
description power. In the domain of log analysis, the work in [6] gives a big step
forward towards the full integration of the control and data perspectives, con-
sidering the time as a special part of the data associated with events. Authors
use MFOTL for the specification of behavioral properties, and propose model
checking functions for a subset of MP-Declare [21] patterns.

Freeze-like operators have also been applied in specific application domains.
[3] defines Biological Oscillators Synchronization Logic (BOSL) for the speci-
fication and verification of global synchronization properties for a set of cou-
pled oscillators. [5] defines the STL* logic (extended Signal Temporal Logic)
for checking temporal properties on continuous signals representing behaviors of
biological systems.

In this paper we propose the DLTL temporal logic as an adaption and exten-
sion of TPTL which allows a real integration of the data, control and time per-
spectives from both, future and past perspectives. The way the logic is defined
allows working with any data attributes associated to events as well as general
relations among them. The approach can be considered as an integrated multi-
perspective conformance checking method. The main contributions in the paper
are: (1) the proposal of the DLTL temporal logic able to deal with a whole multi-
perspective point of view; (2) the proposal of a general model checking algorithm
for such logic, with no constrain about the set of formulas that can be analyzed
and (3) the space and time complexity characterization of the proposed model
checking method.

The paper is organized as follows. Section 2 formally defines the logic and
also describes it by means of some intuitive examples. Section 3 proposes a model
checking algorithm and evaluates its time and space complexity. Section 4 shows
how the proposed logic and model checking are applied to the analysis of a
log corresponding to a workflow system, used in the literature. Section 5 briefly
describes a model checker prototype. Section 6 comments on some related work
which concentrate on (timed) temporal logic and model checking approaches.
Finally Sect. 7 establishes some conclusions of the work and gives some future
perspectives for its continuation.

2 DLTL

The logic we are proposing is based on the the Timed Propositional Temporal
Logic, TPTL, [2]. TPTL is a very elegant formalism which extends classical linear
temporal logic with a special form of quantification, named freeze quantification.
Every freeze quantifier is bound to the time of a particular state. As an example,
the property “whenever there is a request p, and variable x is frozen to the current
state, the request is followed by a response q at time y, so that y is at most,
x+10” is expressed in TPTL by the formula Gx.(p → Fy.(q ∧ (y ≤ x+10))) [2].
Since the formula requires to talk about two different points in the trace (p and

92 J.-M. Couvreur and J. Ezpeleta

q states), two freeze variables are used in order to be able to correlate the time
values of those states, and also the required constraint that both instants must
verify: x and y instants must not be separated more than 10 time units. A TPTL
formula can contain as many freeze operators as required.

The adaption of TPTL that we propose focuses on two different aspects. On
the one hand, we generalize the kind of relations between the attributes of the
events corresponding to freeze operators. TPTL constrained event correlations to
checking equality and usual relational operation between the attribute values of
freeze variables (positions in the word). In DLTL event correlations are allowed
to be more general (as general as any function correlating any attribute values).
On the second hand, DLTL also incorporates past temporal operators. Without
them, some interesting properties relating current and past word positions could
not be expressed.1

Freezing a variable by means of a freeze variable x will allow us to talk
about attributes of the event at that position, and then establish correlations
between attributes of different events by means of relations, of the form “The
resource associated to x is different than the resource associated to y” or “The
price of such product doubles between events separated more than two days”, for
instance. The timestamp of an event can be considered as just another attribute.
In the case of timestamp attributes we are going to assume they are coherent
with the ordering of events in the trace, so that if event e1 appears before than
event e2, the timestamp of e1 will be no greater than the one of e2 (the trace is
monotonic with respect to such attribute).

Let us now formally introduce the DLTL logic.

Definition 1. Let D be a set, called the transition domain; let V =
{x1, x2, . . . } be a finite set of freeze variables and let Φ = {ϕ1(x1

1, . . . ,
x1

m1
), ϕ2(x2

1, . . . , x
2
m2

), · · · | mi ≥ 0, xi
j ∈ V, ∀i, j} be a finite set of relationson

D.
The set of correct formulas, F(D,V,Φ), for the DLTL logic, is inductively

defined as follows:

– f ∈ Φ is a correct formula
– If x ∈ V and f1, f2 are correct formulas, so are ¬f1, f1 ∧ f2, Xf1, Y f1,

f1 U f2, f1 S f2, x.f1

In the previous definition, a relation with one variable will be called a propo-
sition.

Definition 2. Let f ∈ F(D,V,Φ) be a correct DLTL formula. A valuation v is a
mapping from the set of variables in f into D.

DLTL formulas of F(D,V,Φ) will be interpreted over non-empty finite words
of elements of D, of the form σ = σ1 · σ2 · . . . · σn (as usual | σ | denotes the
1 In the original logic, atomic formulas where associated to states. Since we are going

to concentrate on log traces, the point of view we adopt associates general data to
events.

LTL Model Checking over Datawords with Correlated Transition Attributes 93

length of the word). In order to make notations simpler, in the following, for a
giving word σ, when talking about a valuation v we will assume that for any
variable x, v(x) is one of the sets in the word, identified by its position in σ and,
therefore, 1 ≤ v(x) ≤ n.

Let us now define when a correct formula is satisfied by a word at a given
transition:

Definition 3. Let f ∈ F(D,V,Φ) be a correct DLTL formula; let σ = σ1 ·σ2 ·. . .·σn

be a finite word over D; let v be a valuation and let i be an index such that
1 ≤ i ≤ n. By σ, i |=v f we denote that σ satisfies f for valuation v at position
i. This relation is defined as follows:

– σ, i |=v �
– σ, i |=v p if p(σi), for any proposition p
– σ, i |=v ϕ(x1, . . . , xm) if ϕ(σv(x1), . . . , σv(xm)).
– σ, i |=v ¬f if ¬(σ, i |=v f)
– σ, i |=v f1 ∧ f2, for any pair f1 and f2, if σ, i |=v f1 and σ, i |=v f2
– σ, i |=v Xf , for any formula f , if i < n and σ, i + 1 |=v f
– σ, i |=v Y f , for any formula f , if 1 < i and σ, i − 1 |=v f
– σ, i |=v f1 U f2, for any pair f1 and f2, if there exists an index i ≤ k ≤ n

such that σ, k |=v f2 and, for any i ≤ j < k, σ, j |=v f1
– σ, i |=v f1 S f2, for any pair f1 and f2, if there exists an index j ≤ i such

that σ, j |=v f2 and, for any j + 1 ≤ k ≤ i, σ, k |=v f1
– σ, i |=v x.f , for any formula f and variable x if σ, i |=v[x←i] f , where v[x ← i]

represents the valuation such that v[x ← i](x) = i and v[x ← i](y) = v(y) for
any y
= x.

In the formula x.f , f is the scope of the freeze variable x. To avoid misinter-
pretations, we are not allowing to rebind a variable inside its scope. The set of
operators is extended with the classical abbreviations: f1 ∨ f2 ≡ ¬(¬f1 ∧ ¬f2),
Ff ≡ � U f , Gf ≡ ¬(F¬f), f ⇒ g ≡ g ∨ ¬f , f ⇔ g ≡ (f ⇒ g) ∧ (g ⇒ g),
O f ≡ � S f , Hf ≡ ¬(O ¬f) (here O operator stands for Once), and ⊥ = ¬�.

Example 1. As a first example, let us consider a trace of the execution of a
process. Let us consider a set of agents, Ag = {a, b, c}, a set of actions, Ac =
{req, ack, other}, and let D = Ag × Ac × IR. Let us now consider the following
word, corresponding to a trace of length 5:

σ = (a, req, 2)(b, req, 4)(a, ack, 6)(c, other, 8)(b, ack, 13)

For short, given d ∈ D, d.ag, d.act and d.t will denote the first, second and
third components, respectively.

The property that for any agent, every req is followed by the correspond-
ing ack of the same agent within a given time interval of 8 time units can be
expressed in DLTL this property can be established as follows:

f1 = G(x.(ϕ1(x) ⇒ Fy.(ϕ2(x, y) ∧ ϕ3(x) ∧ ϕ4(x, y))))

94 J.-M. Couvreur and J. Ezpeleta

with ϕ1(x) = (x.act = req), ϕ2(x, y) = (x.ag = y.ag), ϕ3(x) = (x.act = ack)
and ϕ4(x, y) = (y.t − x.t ≤ 8), being, in this case, Φ = {ϕ1, ϕ2, ϕ3, ϕ4}.

In this example, variable x is used to “freeze” a position in the word, while
variable y refers to a later position. ϕ3 and ϕ4 establish two different relations
among the attributes in that positions.

Example 2. Considering the same example, we can also easily express the prop-
erty that every ack must be preceded by a req of the same agent in the previous
8 time units

f2 = G(x.((x.act = ack) ⇒ O(y.((x.ag = y.ag)∧(y.act = req)∧(x.t−y.t ≤ 8)))))

Example 3. Let us now consider two sets, A and B, with characteristics functions
CA and CB, respectively. And let us assume we want to state the property that
every pair of positions x and y verify the relation ϕ(x, y). This property could
be checked by means of the following formula:

G(x.(CA(x) ⇒ H(y.(CB(y) ⇒ ϕ(x, y))) ∧ G(y.(CB(y) ⇒ ϕ(x, y)))))

Example 4. Let us now assume that the third component corresponds to the
event timestamp. The following formula expresses whether the trace duration is
greater than 10 time units, which is true (¬X� is true only at the last event):

x.(F (y.(¬X� ∧ (y.t − x.t > 10))))

Example 5. One interesting aspect is the possibility of referring to the position
of an event in the trace, if we consider that each event has such position as an
attribute. The following formula expresses whether the trace contains at least 20
events, which is false (# is the event attribute with its position inside the trace):

F (x.(¬X� ∧ (x.# ≥ 20)))

3 The Complexity of Model Checking a DLTL Formula

[12] presents a deep and clear study of the complexity of the problem of verifying
a TPTL formula against a finite word, which can be easily adapted to the case
of DLTL formulas. In this section we introduce a detailed description of the
problem in DLTL with the aim of pointing out the reasons behind the cost of
the verification process. Besides of proving that it is in PSPACE [12], we prove
that it is exponential in time with respect to the number of freeze variables, and
linear with respect to the rest of the involved parameters (size of the formula
and length of the word).

We first introduce a recursive procedure for model checking DLTL formu-
las, and then we evaluate the complexity of the method. Since the complexity
depends on the evaluation of the relations in Φ we are going to assume that the
cost of evaluating such relations is “reasonable”.

LTL Model Checking over Datawords with Correlated Transition Attributes 95

Checking function dltl sat(σ, i, v, f) takes as parameters a word, σ, a position
in the word, i, a valuation v and a DLTL formula, f . Checking f on the word
σ is carried out by means of the evaluation of dltl sat(σ, 1, ∅, f) (valuation v
will be dynamically defined as long as the formula is checked). The algorithm
is, basically, a recursive implementation of the inductive definition of DLTL
formulas. In the case of parameter i being outside the range of σ, we consider
the formula is false. Freeze variables are considered as word position variables.
In the case of f being a relation ϕ(x1, . . . , xm), we assume in the evaluation
of dltl sat(σ, i, v, f) that valuation v binds a value for each variable x1, . . . , xm.
This way evaluating the function is the same as evaluating ϕ(v(σx1), . . . , v(σxm

)).
Notice that such evaluation does not depend on parameter i (provided i is in
the range of σ). Evaluating a formula x.f for a position i is the same a making
x = i in v.

function dltl sat(σ,i,v,f)
if i ≤ 0 or i > |σ| then

return false
elseif f = ϕ(x1, . . . , xm) then

return ϕ(v(σx1), . . . , v(σxm))
elseif f = p then

return p(σi)
elseif f = Xf1 then

return dltl sat(σ,i + 1,v,f1)
elseif f = f1Uf2 then

return dltl sat(σ,i,v,f2) ∨ (dltl sat(σ,i,v,f1) and dltl sat(σ,i + 1,v,f))
elseif f = Y f1 then

return dltl sat(σ,i − 1,v,f1)
elseif f = f1Sf2 then

return dltl sat(σ,i,v,f2) ∨ (dltl sat(σ,i,v,f1) and dltl sat(σ,i − 1,v,f))
elseif f = x.f1 then

local old x = v[x]
v[x] = i
ans = dltl sat (σ,i,v,f1)
v[x] = old x
return ans

end

Let us now concentrate on the complexity of the proposed algorithm. The
cost clearly depends on the cost of evaluating relations ϕ(v(σx1), . . . , v(σxm

)).
We are going to assume that they are PSPACE with respect to the size of f
(as usual, the size is the number of operands and operators in the formula) and
the length of σ, |σ|. With respect to the time, we are going to denote K|f |,|σ| a
bound for all of them.

The following propositions establish the time and space complexity of
dltl sat(σ, i, v, f).

Proposition 1. The model checking problem for σ |= f , where σ is a finite word
and f is a DLTL formula, is PSPACE.

96 J.-M. Couvreur and J. Ezpeleta

Proof. Evaluating dltl sat(σ, 1, ∅, f) will require, at most, |f | recursive invoca-
tions. At each invocation dltl sat(σ, i, v, g), where g is a subformula of f , val-
uation v can be passed as a reference to an |Varf |-indexed array, being Varf

the set of freeze variables in the formula. On the other hand, f is coded by
its syntax tree being each subformula g a node. As a consequences, the size
of the parameters of each invocation are of constant size (the considered refer-
ences plus the size of old x when needed). Provided that we are assuming that
evaluating ϕ(v(σx1), . . . , v(σxm

)) is PSPACE, we can conclude that evaluating
dltl sat(σ, 1, ∅, f) is also PSPACE.

In order to obtain a better time execution cost, we use dynamic programming
techniques as the way of avoiding recomputing the same subformula more than
once for the same parameters.

Proposition 2. The model checking problem for σ |= f , where σ is a finite word
and f is a DLTL formula, can be solved in O((K|f |,|σ| + |Varf |) × |σ||Varf | ×
|f | × |σ|) time.

Proof. Provided that the same subformula is not going to be computed more
than once, |σ| × |σ||Varf | × |f | is an upper bound for the number of invocations.
In the case the subformula is ϕ(v(σx1), . . . , v(σxm

)), the cost is K|f |,|σ|. When
out of the word range, the cost is constant. We have also to consider the cost
added by the dynamic programming technique. For that, we can use an array of
size |Varf | + 2, so that the cost of looking for a value is O(|Varf |). This way, we
can conclude.

Let us now prove that the problem of checking a DLTL formula for a finite
word is PSPACE HARD. Let us first prove that the problem of satisfying a QBF
(Quantified Boolean Formula) can be translated into a checking problem.

Lemma 1. Let φ(x1, . . . , x2n) be a boolean formula. Let Φ the the following
quantified boolean formula:

Φ = ∀x1,∃x2, . . . ∀x2n−1,∃x2n, φ(x1, . . . , x2n)

Let us consider the word σ = (1, true) · (2, false) . . . (2 ∗ i + 1, true) · (2i +
2, false) . . . (2 ∗ n − 1, true) · (2n, false) and the following DLTL formula f =
y0 · L∀(1) defined as follows (for each transition x in the word, x.t and x.val
denote the first and second components, respectively):

L∀(2n + 1) = φ(y1.val, . . . , y2n.val)
L∀(i) = G(yi · (yi.t − yi−1.t ≤ 1 ⇒ L∃(i + 1)))
L∃(i) = F (yi · (yi.t − yi−1.t ≤ 1 ∧ L∀(i + 1)))

Then Φ is true iff σ fulfills the DLTL formula f .

LTL Model Checking over Datawords with Correlated Transition Attributes 97

Proof. We are going to prove, by induction, that

LΦ(2i + 1)(y1.t, . . . , y2i.t) = ∀x2i+1,∃x2i+2, . . . ∀x2n−1,

∃x2n, φ(y1.val, . . . , y2i.val, x2i+1, . . . x2n)

When i = n, L∀(2n + 1) does not depend on the position in the word, and the
equality is verified everywhere:

L∀(2n + 1) = Φ(2n + 1) = φ(y1.val, . . . , y2n.val)

Assuming now the property is satisfied for i + 1, let us prove that it is also
true for i. L∀(2i + 1) can be expressed in terms of L∀(2i + 3) as follows:

L∃(2i + 2) = F (y2i+2 · (y2i+2.t − y2i+1.t ≤ 1 ∧ L∀(2i + 3)))
L∀(2i + 1) = G(y2i+1 · (y2i+1.t − y2i.t ≤ 1 ⇒ L∃(2i + 2)))

Applying induction hypothesis for L∃(2i + 2) we get:

L∃(2i + 2) = F (y2i+2 · (y2i+2.t − y2i+1.t ≤ 1 ∧ Φ(2i + 3)))

for every position until 2i + 2. When evaluating F and freezing variable y2i+2,
only two non-trivial positions have to be considered: either the same position
or the next one. Since two consecutive positions cover both boolean values, the
formula can be simplified as follows:

L∃(2i + 2) = Φ(2i + 3)(y1, . . . , y2i+1, false) ∧ Φ(2i + 1)(y1, . . . , y2i+1, true)
= ∃x2i+2, Φ(2i + 3)(y1, . . . , y2i+1, x2i+2)

Doing analogously for the formula L∀(2i + 1) and positions until 2i + 1, we
reach the searched result:

L∀(2i + 1) = ∀x2i+1∃x2i+2, Φ(2i + 3)(y1, . . . , x2i+1, x2i+2)
= Φ(2i + 1)

Proposition 3. The model checking problem for σ |= f , where σ is a finite word
and f is a DLTL formula, is PSPACE-Hard.

Proof. Immediate from Lemma 1

4 An Application Example

As an application case, let us consider the log described and analyzed in [16]2.
The log corresponds to the trajectories, obtained from the merging of data from
the ERP of a Dutch hospital, followed by 1050 patients admitted to the emer-
gency ward, presenting symptoms of a sepsis problem. The total number of
events was 15214. Each event is composed of the activity (there are 16 differ-
ent activities, categorized as either medical or logistical activities -ER Sepsis
Triage, IV Antibiotics, LacticAcid, IV Liquid,...-), as well as additional informa-
tion (time-stamps, in seconds, of the beginning and end of the activities, data
2 https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

98 J.-M. Couvreur and J. Ezpeleta

from laboratory tests and triage checklists, etc.). [16] applies different automatic
process discovery techniques and obtain different models.

The objective of this section is to show how some of the system requirements,
including time constraints, can be expressed in terms of DLTL formulas and
checked for conformance with the log. In the following, for an event x of a trace,
x.a and x.t correspond to the activity and time-stamp in seconds, respectively.

Requirement: “Between ER Sepsis Triage and IV Antibiotics actions should
be less than 1 h”3. Since a-priori we do not know whether there exists any
causal relation between the considered activities, we are going to check the
requirement as follows. Let

r1 0 = F (ER Sepsis Triage) ∧ F (IV Antibiotics)
r1 1 = F x.(ER Sepsis Triage ∧

F y.(IV Antibiotics ∧ y.t − x.t ≤ 3600))
r1 2 = F x.(IV Antibiotics ∧

F y.(ER Sepsis Triage ∧ y.t − x.t ≤ 3600))

be the formulas that check how many traces contain both activities, how
many execute the second activity no later than one hour after the first and
how many execute the first activity no later than one hour after the second
one, respectively. Checking r1 0, r1 1 and r1 2 gives, respectively, 823, 342
and 0 positive answers. This means that the requirement is fulfilled in 41.5%
cases and, therefore, violated in 58.5% of the cases. Notice also that there
is a causal relation between both events, since the ER Sepsis Triage always
precedes IV Antibiotics. This result coincides with the one presented in [16].

Requirement: “Between ER Sepsis Triage and LacticAcid should be less than
3 h”. Let us now consider the following formulas:

r2 0 = F (ER Sepsis Triage)
r2 1 = F (ER Sepsis Triage) ∧ F (LacticAcid)
r2 2 = F x.(ER Sepsis Triage ∧

(F y.(LacticAcid ∧ (y.t − x.t ≤ 10800)) ∨
O z.(LacticAcid ∧ (x.t − z.t ≤ 10800))))

r2 0 gives that there are 1048 cases in which ER Sepsis Triage happens, r2 1 is
satisfied by 859 cases while r2 2 states there are 842 cases with the appropriate
time distance between the considered events. If one just considers those cases
in r2 1, the property is held in 98.02%, and violated in only 1.98%. This result
is different than the 0.7% reported in [16]. The discrepancy could be explained
in the way requirements have been checked. In our case, we directly work with

3 As in [16], we are using “≤” to check the properties, besides “should be less than
1 h” suggests “<” should be used.

LTL Model Checking over Datawords with Correlated Transition Attributes 99

the log, considering every trace. However, [16] checks the requirement against
a model extracted from the log using Multi-perspective Process Explorer,
which fits 98.3% of traces. On the other hand, if one considers the time
constraint must be verified for every case in which ER Sepsis Triage occurs
(r2 0), the property is true in only 80.34% of the cases.

Requirement: Another proposed question is related to the patients returning
to the service. Formula r3 0 = F (Return ER) gives 28% of positive answers
(27.8% in [16]). They are also interested in knowing how many of them return
within 28 days. This can be checked with the formula

r3 1 = x.(F y.(Return ER ∧ y.t − x.t ≤ 28 ∗ 24 ∗ 3600))

obtaining 94 traces, a 8.95% (12.6% in [16]).

As an additional question, one could ask whether there is a relation between
the two first requirements and the third one. As an example of a formula with
more than two variables, let us check this property by means of the formula
r3 1 ∧ r4, where

r4 = F (x.(ER Sepsis Triage ∧
(F y.(IV Antibiotics ∧ (y.t − x.t <= 3600))) ∧
(F z.(LacticAcid ∧ (z.t − x.t ≤ 10800)) ∨
O w.(LacticAcid ∧ (x.t − w.t ≤ 10800)))))

The result is 27 traces (out of 94), which means that only 28.7% of those
patients that return within 28 days correspond to patients that verify the con-
straints of one and three hours previously checked, which can be pointing to the
adequacy of respecting the established time intervals.

5 About the Model Checking Process

In this section, we briefly describe a way of implementing a DLTL model checker.
The algorithm here described is different from the direct recursive description
used in Sect. 3. Having the same complexity, the use of symbolic storage of
formulas together with some techniques of dynamic programming allowed us to
obtain better execution performances with this second approach.

In order to describe the way DLTL formulas can be checked, let us consider
Example 1 again:

f = G(x.((x.act = req) ⇒ Fy.((x.ag = y.ag) ∧ (y.act = ack) ∧ (y.t − x.t ≤ 8))))

Walking over the syntax tree of the formula allows to build the tableau used
for checking it, as in Table 1. After analyzing the leaves of the ∧ subtrees, a row
is added, whose column values are the symbolic representation of the formula

100 J.-M. Couvreur and J. Ezpeleta

φ(x, y) = (x.ag = y.ag) ∧ (y.act = ack) ∧ (y.t − x.t ≤ 8). Next, the y.φ(x, y) is
evaluated: for each column c, y must take the value σc, giving the corresponding
φ(x, c) symbolic column. For instance φ(x, 5) = (x.ag = b)∧(y.act = ack)∧(13−
x.t ≤ 8). Next row corresponds to F (y.φ(x, y)), and so on until the complete
tree is evaluated. As a result, a vector of true/false values is obtained. The value
in position 1 is the result of checking the formula for the word. In this case, the
answer of the model checker is (and should be) false.

Table 1. Checking tableau for the formula in Example 1

i 1 2 3 4 5

σi (a,req,2) (b,req,4) (a,ack,6) (c,other,8) (b,ack,13)

...

φ(x, y) φ(x, y) φ(x, y) φ(x, y) φ(x, y) φ(x, y)

f1(x) = y · φ(x, y) φ(x, 1) φ(x, 2) φ(x, 3) φ(x, 4) φ(x, 5)

f2(x) = F (f1(x)) ∃i ≥ 1, φ(x, i) ∃i ≥ 2, φ(x, i) ∃i ≥ 3, φ(x, i) ∃i ≥ 4, φ(x, i) φ(x, 5)

f3(x) = (x.act = req) x.act = req x.act = req x.act = req x.act = req x.act = req

f4 = x · (f3(x) ⇒ f2(x)) f3(1) ⇒ f2(1) f3(2) ⇒ f2(2) f3(3) ⇒ f2(3) f3(4) ⇒ f2(4) f3(5) ⇒ f2(5)

True False True True True

G(f4) False False True True True

As stated, the required time can be exponential with respect to the number of
freeze variables. In order to get insight of the real time required we have carried
out some experiments measuring the user time required for checking formulas
with an increasing number of freeze variables. For that, we have considered the
following parametrized formula

φ(n) = Fx1.(Gx2.(Fx3.(Gx4.(. . . Fx2n−1.(Gx2n.(
2n∧

i=2

(x.ti − x.ti−1 ≤ 100) . . .)

Figure 1 shows the chart corresponding to checking the formula for differ-
ent values of parameter n against the sepsis log used in Sect. 4. The curve is
as expected. It fits the exponential y = 0.9270899856 · e0.1030458522·x (R2 =
0.9956898464, rss = 297.8737955). Notice that the method is able to efficiently
deal with “many” freeze variables. If we constraint ourselves to a set of usual pat-
terns involving a small set of freeze variables (as it is the case of the DECLARE
formalism, for instance, whose patterns require two freeze variables at most) the
model checking method is quite efficient (for instance, checking r2 2, which only
involves three freeze variables, against the sepsis log, needed 0.07 s).

The experiments have been carried out with a prototype of the model checker
implemented in lua 5.3, and executed in a Intel(R) Core(TM) i7-4790K CPU @
4.00 GHz computer with a Ubuntu 16.04 operating system.

LTL Model Checking over Datawords with Correlated Transition Attributes 101

Fig. 1. Time versus number of freeze variables for formula φ(n), compared to y =
0.9270899856 · e0.1030458522·x (continuous line corresponds to experimental results)

6 Related Work

Temporal logic with data has been used in different domains. [11] proposes
Quantified-Free First-Order LTL (QFLTL(R)) where transitions, besides atomic
propositions, can also contain real data attributes. QFLTL formulas are allowed
to include classical operators between real expressions. Global variables can be
used to correlate data of different transitions. Checking a formula is translated
into finding intervals of the involved real variables verifying the constraints in
the formula. The logic is constrained to some specific event structure and opera-
tions, of interest for the concrete domain it is proposed for. Temporal databases,
together with temporal logic, have been used as a way to correlate time and
data, allowing to analyze data correlations between the values of the database
states at different time instants [7,8].

The addition of freeze variables (also named as counters in the domain) to
classical LTL, as proposed in TPTL [2] allows correlating values of different
points in a word. For the case of more general data in transitions (the term
dataword is also used in the literature to refer to general words whose elements
are data of a given domain), freezeLTL [10] is able to deal with correlations
between attributes checking the equality of the considered values for a subset
of TPTL. For the full TPTL, [12] studies the complexity of model-checking a
TPTL formula against a finite word.

As stated in the introduction, freeze variables have been used in specific
application domains. The Biological Oscillators Synchronization Logic, BOSL,
introduced in [3], uses freeze operators for the specification of global synchro-
nization properties for a set of coupled oscillators (modeled as a set of timed
automata). Allowed propositions in the logic are constrained by the applica-
tion domain and are comparisons of linear combinations of remaining times of
oscillators at different time instants. The proposed model checking is a direct
implementation of the recursive definition of the logical operators. [5] defines

102 J.-M. Couvreur and J. Ezpeleta

the STL* logic, which extends the Signal Temporal Logic, STL [15], adding the
signal-value freeze operator, allowing the specification of properties related to
damped oscillations. The way the model checking is developed imposes proposi-
tions in states to be constrained to comparisons of linear combinations of signal
variables.

In the domain of process mining many works have dealt with conformance
checking using LTL as the way of specifying behavioral properties. Since in
most cases authors are interested in imposing or finding some process structures,
they usually concentrate on a restricted set of patterns which reflect usual and
interesting event dependencies. This is the case of the set of patterns in the
Declare [18] workflow management system. The Declare approach focused on
the control perspective, defining a specific set of patterns. Instances of such
patterns define specific constrains the system must verify. [21] proposed MP-
Declare, an extension of Declare including the data perspective of events. The
paper also proposes a checking method for the considered logic, based on SQL.

[14] uses Timed-Declare as the formalism to add time to Declare. They con-
straint Metric Temporal Logic (MTL) [13] to the set of Declare patterns and
adapt it to finite traces. Besides detecting that a constraint has already been
violated, the proposed method can be used for the monitoring of the system
evolution allowing an early detection that a certain constraint would be violated
in the future, allowing for an a-priori guidance to avoid undesired situations.

In [6] the authors propose an approach which allows a multi-perspective
point of view in which data and timestamps (those must be natural numbers)
of events are considered as two parallel structures (according to [7], they adopt
a snapshot perspective). MFOTL [4] (adapted for finite traces) is used as the
formalism for the specification of properties. The paper reformulates MP-Declare
patterns as MFOTL formulas, and presents a general framework for conformance
checking. The framework is based on a general skeleton algorithm, which requires
a different instance for each MP-Declare pattern.

The two previous methods, as stated, concentrate on a subset of MP-Declare,
and specific methods must be developed for specific patterns, either as a specific
function in the second case or as a specific SQL query in the first. On the
other hand, given the specific application domain both methods are devoted,
the proposed methods do not provide with a general procedure to model check
any formula. The focus is on relations between pairs of events (the activation
event, which imposes requirement conditions for the target event by means of a
relation that must be satisfied by the corresponding associated data).

7 Conclusions

The paper has introduced a linear temporal logic able to deal with correlations
among different values associated to different points in a finite word. Also, a
model checking procedure has been introduced, and its complexity established
in terms of the formula and word sizes. The interest of working with finite words
comes from the fact the logic is going to be applied to the analysis of system logs.

LTL Model Checking over Datawords with Correlated Transition Attributes 103

For testing purposes, a model checker prototype has been developed in lua (not
described in the paper) which has been used for the application example. The
introduced method is general in the sense that it imposes no constraint neither
with respect to the set of temporal logic formulas that can be checked nor with
respect to the attributes that can be handled by the logic.

The interest of using the proposed approach is not limited to the case of tur-
bulent environments, where process mining methods would generate spaghetti
or flower models, but also in those cases in which a good model can be synthe-
sized. The model itself can suggest implicit behavioral properties that could be
model-checked against the log.

One direction for future work is to explore whether the proposed approach
can be effectively used for complex logs with complex formulas. In the experi-
ments we have carried out the response time was really short, but deeper analysis
is necessary to deduce its applicability to big logs. The problem of dealing with
a big number of traces can be alleviated by parallelizing the checking procedure:
just use different parallel processors for dealing with different subsets of traces.
The expensive dimensions are the length of the trace and the number of freeze
variables.

References

1. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from work-
flow logs. In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT 1998.
LNCS, vol. 1377, pp. 467–483. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0101003

2. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)
3. Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of

biological oscillators by model checking. Theor. Comput. Sci. 411(20), 1999–2018
(2010). Hybrid Automata and Oscillatory Behaviour in Biological Systems

4. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
Proceedings of the 28th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2008) (Dagstuhl, Ger-
many, 2008). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)

5. Brim, L., Dluhoš, P., Šafránek, D., Vejpustek, T.: STL: extending signal temporal
logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)

6. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert. Syst. Appl. 65, 194–211 (2016)

7. Chomicki, J., Toman, D.: Temporal Logic in Information Systems. In: Chomicki,
J., Saake, G. (eds.) Logics for Databases and Information Systems, vol. 436, pp.
31–70. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4615-5643-5 3

8. Chomicki, J., Toman, D.: Temporal logic in database query languages. In: Liu,
L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 2987–2991. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-0-387-39940-9 402

9. de Leoni, M., van der Aalst, W.: Data-aware process mining: Discovering decisions
in processes using alignments. In: Proceedings of the 28th ACM Symposium on
Applied Computing (SAC 2013) 18–22 March, Coimbra, Portugal, pp. 113–129
(2013)

https://doi.org/10.1007/BFb0101003
https://doi.org/10.1007/BFb0101003
https://doi.org/10.1007/978-1-4615-5643-5_3
https://doi.org/10.1007/978-0-387-39940-9_402

104 J.-M. Couvreur and J. Ezpeleta

10. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Logic 10(3), 16:1–16:30 (2009)

11. Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical
data time series. Theor. Comput. Sci. 408(1), 55–65 (2008)

12. Feng, S., Lohrey, M., Quaas, K.: Path checking for MTL and TPTL over data
words. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 326–339. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21500-6 26

13. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

14. Maggi, F.M., Westergaard, M.: Using timed automata for a priori warnings and
planning for timed declarative process models. Int. J. Coop. Inf. Syst. 23(01),
1440003 (2014)

15. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.)
Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78127-1 26

16. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using
process mining. In: RADAR+EMISA 2017, CEUR-WS.org, pp. 72–80 (2017)

17. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

18. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: full support for loosely-
structured processes. In: Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference, p. 287. IEEE Computer Society, Wash-
ington, DC (2007)

19. Räim, M., Di Ciccio, C., Maggi, F.M., Mecella, M., Mendling, J.: Log-based under-
standing of business processes through temporal logic query checking. In: Meers-
man, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 75–92. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45563-0 5

20. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

21. Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-
perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46295-0 6

22. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and
verification of properties: an approach based on temporal logic. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575771 11

https://doi.org/10.1007/978-3-319-21500-6_26
https://doi.org/10.1007/978-3-540-78127-1_26
https://doi.org/10.1007/978-3-662-45563-0_5
https://doi.org/10.1007/978-3-319-46295-0_6
https://doi.org/10.1007/11575771_11

A Report-Driven Approach to Design
Multidimensional Models

Antonia Azzini1(B), Stefania Marrara1, Andrea Maurino2, and Amir Topalović1

1 Consorzio per il Trasferimento Tecnologico, C2T, Milan, Italy
{antonia.azzini,stefania.marrara,amir.topalovic}@consorzioc2t.it

2 Dipartiment of Informatics, Systemistics and Communication,
Universitá degli studi di Milano Bicocca, Milan, Italy

maurino@disco.unimib.it

Abstract. Today, large organisations and regulated markets are subject
to the control of external audit associations, which require the submis-
sion of a huge amount of information in the form of predefined and rigidly
structured reports. The compilation of these reports requires the extrac-
tion, transformation and integration of data from different heterogeneous
operational databases. This task is usually performed by developing a
software ad hoc for each report, or by adopting a data warehouse and
analysis tools, which are now established technologies. Unfortunately,
the data warehousing process is notoriously long and error prone, and is
therefore particularly inefficient when the output of the data warehous-
ing is represented by a limited number of reports. This article presents
“MMBR”, an approach that can generate a multidimensional model from
the structure of expected reports as data warehouse output. The app-
roach is able to generate the multidimensional model and populate the
data warehouse by defining a knowledge base specific to the domain.
Although the use of semantic information in data storage is not new, the
novel contribution of our approach is represented by the idea of simplify-
ing the design phase of the data warehouse, making it more efficient, by
using an industry-specific knowledge base and a report-based approach.

Keywords: Multidimensional design · Knowledge base ·
Report driven methodology

1 Introduction

Business reporting is a strategic but heavy activity defined as “the public report-
ing of operating and financial data by a business enterprise,” [1] or the reg-
ular provision of information to support decision-makers within organizations.
Reporting is a fundamental part of the business intelligence and knowledge man-
agement activity and it is strongly required by audit organizations. Reporting
activity can be realized in an ad hoc way by means of specific and complex

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
P. Ceravolo et al. (Eds.): SIMPDA 2017, LNBIP 340, pp. 105–127, 2019.
https://doi.org/10.1007/978-3-030-11638-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11638-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-11638-5_6

106 A. Azzini et al.

softwares, or by involving typical operations of extracting, transforming, and
loading (ETL) procedures in coordination with a data warehouse.

Reports can be distributed in printed form, via email or accessed via a corpo-
rate intranet. In sectors as banking, reports are required by both National and
European Central Bank organizations on regular basis, and all required reports
must comply specific templates provided by the organizations themselves.

In particular, reports for auditing are often very specific, and their structure
is usually imposed by the supervising organizations (e.g. European Central Bank,
or the rating agency Moodys). The data included in the report are, in most cases,
not useful for decision making activities due to the “control” nature of these
reports. As a consequence, companies are forced to develop complex systems to
compute data that are not useful for their business activities. In this context, it
is clear that the need to develop a new approach able to support, in a fast and
efficient way, the generation of reports is compelling.

In this scenario we propose to adopt a data warehouse as storage system for
data, but we introduce a new approach aimed at designing the multidimensional
models on the basis of the structure of the report itself in a (semi-)automatic
way, in order to reduce the time needed to produce the report. A data ware-
house essentially combines information from several heterogeneous sources into
one comprehensive database. By combining all of this information in one place,
a company can analyze its data in a more holistic way, ensuring that it has
considered all the information available. Data warehousing also makes possible
data mining, which is the task of searching for patterns in the data that could
disclose hidden knowledge.

At the basis of a data warehouse lies the concept of the multidimensional
(MD) conceptual view of data. The main characteristic of the multidimensional
conceptual view of data is the fact/dimension dichotomy, which represents the
data in an n-dimensional space. This representation facilitates the data inter-
pretation and analysis in terms of facts (the subjects of analysis and related
measures) and dimensions that represent the different perspectives from which
a certain object can be analyzed.

Even if data warehousing benefits are well recognized by enterprises, it is
well known that the warehousing process is time consuming, complex and error
prone. Today the increasing reduction of the time-to-market of products forces
enterprises to dramatically cut down the time devoted to the design ad the
development of MD models, which support the evaluation of the key performance
indicators of services and products.

There are different ways to design a data warehouse and many tools are avail-
able to help different systems to “upload” their data into a data warehouse for
analysis purposes. However, all techniques are based on first extracting data from
all the individual sources, by then removing redundancies and finally organizing
the data into a format that can be interrogated.

As use case for presenting our approach we propose securitization, which is
known by the literature as the financial practice of pooling various types of con-
tractual debt such as residential mortgages, commercial mortgages, auto loans

A Report-Driven Approach to Design Multidimensional Models 107

or credit card debt obligations (or other non-debt assets which generate receiv-
ables) and selling their related cash flows to third party investors as securities
[2]. Mortgage-backed securities, which are the case study presented in this paper,
are a perfect example of securitization. By combining mortgages into one large
pool, the issuer can divide the large pool into smaller parts based on each indi-
vidual mortgage’s inherent risk of default and then sell those smaller pieces to
investors.

In this scenario we propose the MMBR (Multidimensional Model By Report)
approach, which is able to automatically create the structure of a multi dimen-
sional model (MD in the follow) and fill it on the basis of a knowledge base
enriched with mapping information that depend on the specific application con-
text. The preprocessing phase of the report (often a quite complex Excel file) is
based on a table identification algorithm, which is able to extract the informa-
tion needed to define the MD structure of the data warehouse. The approach
has been tested in the context of financial data with the aim to automatically
create the reports required by the Italian National Bank and by the European
Central Bank.

The term “by report” refers to the capability of our solution to create a
multidimensional model starting from a given report (typically expressed as
Microsoft Excel files) that must to be filled with real data. MMBR is also able
to generate the relational data structure related to the created MD, and it is
also in charge of filling both fact and dimensional tables supported by domain
ontologies and by mapping information to the operational sources.

In the literature there are many methodologies for creating MDs starting by
requirements, but this is the first attempt to define an approach for creating a
MD model starting directly from the structure of the final reports only.

The remaining of the paper is organized as follows: Sect. 2 introduces the
state of the art. Section 3 presents the proposed approach, while Sect. 4 describes
the knowledge base that is a key element in the MMBR methodology, and the
report graph. In Sect. 5, the table identification algorithm is presented, while
Sect. 6 describes the creation of the MD model. A real example taken from the
financial domain is then reported in Sect. 7. Conclusions and final remarks are
reported in Sect. 8.

2 Related Work

In the literature several approaches for creating conceptual MD schema from het-
erogeneous data sources have been presented. According to [3], these approaches
can be classified into three broad groups:

– Supply-driven: starting from a detailed analysis of the data sources these
techniques try to determine the MD concepts. By using this approach, it is
possible to waste resources by specifying unnecessary information structures,
and by not being able to really involve data warehouse users. See for instance
[4–6].

108 A. Azzini et al.

– Demand-driven: These approaches focus on determining the MD requirements
based on an end-user point of view (as typically performed by other informa-
tion systems), and mapping them to data sources in a subsequent step (see
for example [7,8]).

– Hybrid approaches: Some authors (see for example [9–11]) propose to com-
bine the two previously presented approaches in order to harmonize, in the
design of the data warehouse, the data sources information with the end-user
requirements.

All the methodologies available in literature, however, have the goal to create a
MD model as general as possible in order to allow the generation of any report.
This assumption requires a lot of effort in both the warehouse conceptualization
phase and in the ETL procedure design and development. In several industrial
contexts, there is the need to produce a limited number of reports only and,
sometimes, with a very strict and well defined structure due to auditing rules
or for specific business requirements. In the finance domain, for example, banks
are required by central authorities and rating agencies to produce very specific
reports related to the securization activities they perform.

In the field of the Semantic Web, Bontcheva and colleague [12] present an app-
roach for the automatic generation of reports from domain ontologies encoded in
Semantic Web standards like OWL. The novel aspects of their so-called “MIAKT
generator” are in the use of the ontology, mainly the property hierarchy, in order
to make it easier to connect a generator to a new domain ontology.

Another interesting approach is presented in [13], where the authors propose
a framework for designing a semantic data warehouse. They represent the topic
of analysis, measures and dimensions in the requirements. In such an approach
they derive the MIO (Multidimensional Integrated Ontologies) along with the
knowledge from external ontology sources and domain ontologies. Nebot and
colleagues [13] propose an approach in which a Semantic Data Warehouse is
considered as a repository of ontologies and other semantically annotated data
resources. Then, they propose an ontology-driven framework to design multi-
dimensional analysis models for Semantic Data Warehouses. This framework
provides means for building an integrated ontology, called the Multidimensional
Integrated Ontology (MIO), including the classes, relationships and instances
representing the analysis developed over dimensions and measures.

Romero and colleague [14] introduce a user-centered approach to support
the end-user requirements elicitation and the data warehouse multidimensional
design tasks. The authors explain how the feedback of a user is needed to fil-
ter and shape results obtained from analyzing the sources, and eventually pro-
duce the desired conceptual schema. In this scenario, they define the AMDO
(Automating Multidimensional Design from Ontologies) method, aimed at dis-
covering the multidimensional knowledge contained in the data sources regard-
less of the user’s requirements.

The implemented process derives the multidimensional schema from a con-
ceptual formalization of the domain, by defining a fully automatic supply-driven
approach working at the conceptual level. Differently from the idea implemented

A Report-Driven Approach to Design Multidimensional Models 109

in this work, based on the report as starting point, they consider the queries as
first. Such an identification comes from the categorization they introduced from
a first analysis, that divides different contributions within a so-called demand
“driven”, “supply-driven” or “hybrid” framework. The first one focuses on deter-
mining the end-user multidimensional requirements to produce a multidimen-
sional schema; the second one starts from a detailed analysis of the data sources
to determine the multidimensional concepts in a re-engineering process. The
latter refers to the approaches that combine the two previous frameworks.

Another interesting work aimed at supporting the multidimensional schema
design is given by [15], in which the authors propose an extension of their previ-
ous work [16]. They follow a hybrid methodology where the data source and the
end-user requirements are conciliated at the early stage of the design process, by
deriving only the entities that are of interest for the analysis. The requirements
are converted from natural language text into a logical format. The concepts
in each requirement are matched to the source ontology and tagged. Then, the
multidimensional elements such as fact and dimensions are automatically derived
using reasoning.

On the other hand, Benslimane and colleague [17] define a contextual ontol-
ogy as an explicit specification of a conceptualization, while Barkat [18] proposes
a complete and comprehensive methodology to design multi-contextual semantic
data warehouses. This contribution is aimed to provide a context meta model
(language) that unifies the definitions provided in Database literature. This lan-
guage is considered as an extension of OWL, which is the standard proposed
by the W3C Consortium [19] to define ontologies. It is defined by the authors
in order to provide a contextual definition of the used concepts, by offering an
externalization of the context from the ontology side.

Pardillo and colleagues [20] present an interesting approach aimed at describ-
ing several shortcomings of the current data warehouse design approaches, show-
ing the benefits of using ontologies to overcome them. This work is a starting
point for discussing the convenience of using ontologies in the data warehouse
design. In particular the authors present a set of situations in which ontolo-
gies may help data warehouse designers with respect to some critical aspects.
Examples are the requirement analysis phase, where new concepts and tech-
niques meaning should be clarified to be used by stakeholders, or the phase of
reconciling requirements and data sources.

As also considered in this approach, it is important to underline that a
domain specific ontological knowledge allows to enrich a multidimensional model
in aspects that have not been taken into account during the requirement analysis
or data-source alignment phases, as well as other aspects, like for example the
application of statistic functions in order to aggregate data. Table 1 summarizes
the main concepts explained into the literature reported by the above mentioned
contributions.

110 A. Azzini et al.

Table 1. Related work summary.

Author Reference Principal

explained topics

Work description

Bontcheva et al. [12] Semantic Web

ontologies

Report automatic generation from property

hierarchy encoded in Semantic Web (OWL)

Nebot et al. [13] Semantic

Multidimensional

Multidimensional Integrated Onto. definition with

Semantic DW as repository

Romero et al. [14] User-centered

AMDO

User-centered app. to user support and automated

multidim. design from ontologies

Thenmozhi et al. [15] Hybrid approach Matching among req. concepts to the source

ontology and tagging process

[16] Data source

end-user req.

Conciliation among sources user req. for

interesting entity extraction

Benslimane et al. [17] Contextual

ontology

Contextual ontology definition and explicit

specification of a conceptualization

Barkat et al. [18] Multi-context

semantic DW

Context meta model language as OWL extension

for semantic DW definition

Pardillo et al. [20] Ontologies DW

design

Use ontologies for DW design to overcome the

shortcomings of DW design

3 Description of the Approach and Outline
of the Architecture

The MMBR approach main phases are shown in Fig. 1: (1) Table Processing
(TP), (2) Row and Column Header Identification and Extraction (RCHIE), (3)
Ontology Annotation (OA), (4) Management of Non-Identified labels (MNL),
(5) creation of the MD model, (6) ETL Schema Generation (ETL), and, finally,
(7) the Report Generation (RG). The input of the TP phase is the template file
that has to be filled with the data extracted from an Operational Data Base
(ODB). In the TP phase the preprocessing of the template is performed by
removing icons and other figures, moreover all terms in the schema are lowered
and comment and description fields are removed.

The RCHIE phase is based on the table identification algorithm aimed at
identifying and extracting the row and column headers in the template. The
details of the table identification algorithm are presented in Sect. 5.

The list of terms recognized in the reports by the table identification algo-
rithm is then annotated on the basis of a knowledge base (see Sect. 4). This phase
produces two lists; the first one is the list of identified terms annotated w.r.t.
the knowledge base, the second one is the list of terms that are not annotated.
There are several possible reasons of failure for the annotation activity. The
most frequent reason is that a given term may be not included in the knowledge
base because it is not relevant to the domain (e.g. “Total”). It is also possible
that a term is not annotated because it is a composition of different terms (such
as “MortageLoan” or “DelinquentLoan”)1. Moreover some terms are written in
a language different from English (e.g. “garantito” that means guaranteed in

1 The description of these terms is reported in Sect. 7.

A Report-Driven Approach to Design Multidimensional Models 111

Fig. 1. Overall representation of the approach.

Italian). In all these cases, not annotated terms are manually checked and, if
relevant, added to the ontology by defining the corresponding rdf:label prop-
erty. The annotated list of terms is the input for the creation of the dimensional
fact model (see Sect. 6). This logical model is translated into a relational star
schema. In this phase the relational database is filled with data coming from
the ODB. This activity is performed on the basis of the mapping rules included
in the knowledge base. This activity is fully described in Sect. 4. Once the data
warehouse is filled, the report generation phase is in charge of populating the
report template by translating annotation of the report graph into SQL queries
executed over the data warehouse. Query results are then inserted in the report
template to generate the final output.

The architecture supporting the MMBR approach is represented in Fig. 2.
The Annotation Editor is in charge of the first three phases of the MMBR
approach, by removing non relevant strings and images from the input file (e.g.
logo, comments), and by identifying the terms that are annotated w.r.t. the KB
and by creating the report Graph. The Schema builder is the software component
aimed at creating the logical relational description of the MD model. The ETL
generator is in charge of extracting, on the basis of the Report Graph and the
KB, the information necessary to create the extraction-transformation-load data
from the ODB to the data warehouse. The Knowledge base manager is in charge
of managing and evolving the knowledge base. Any popular tool as, for instance,
Protege2 may be used for the KB creation. The Report generator finally allows
to fill the report template by capturing the data from the DW according to the
queries build on the base of the annotation included in the Report Graph.

2 https://protege.stanford.edu/.

https://protege.stanford.edu/

112 A. Azzini et al.

Fig. 2. Representation of the overall architecture.

4 The MMBR Knowledge Base and the Report Graph

At the core of the proposed approach lies the creation of the knowledge base
KB, which includes:

– the set of MD concepts and relations (fact, dimensions, measures, attributes);
– the list of terms adopted in the specific application domain (eg. ecommerce,

bank securitization,. . .);
– the Operational DataBase (ODB) schema.

In order to create a knowledge base that could be easily shared in the financial
domain we started by using an already existing ontology and only in case of need
we created new concepts.

The ontology we used as starting point for creating new MD concepts in the
KB is a simplified version of the data cube vocabulary3, i.e., a W3C recommen-
dation for modeling multidimensional data. The top level representation of the
defined KB is shown in Fig. 3.

Fig. 3. Top level representation of the knowledge base.

3 https://www.w3.org/TR/vocab-data-cube/.

https://www.w3.org/TR/vocab-data-cube/

A Report-Driven Approach to Design Multidimensional Models 113

The MD concepts are organized as follows. A fact (the event that is the tar-
get of a report, e.g., a sell in a e-commerce domain, a loan in the bank domain)
is described by a set of measures and can by analyzed by considering its dimen-
sion and descriptive attributes. In the data cube vocabulary dimensions, mea-
sures and descriptive attributes are described by the concept component proper-
ties instances. Dimensions, measures and descriptive attributes are terms of the
application domain and they are defined by the human (domain) expert trough
the Knowledge Base. In fact, the KB annotation specifies if a KB component
refers to a fact, a measure or to a dimension. Such elements are then compared
with each label extracted from the Excel file in order to define fact, measures and
dimensions of the corresponding model. In order to build a KB related to the
e-commerce domain, it is possible, for example, to use concepts described in the
good relation section of the vocabulary4. In this scenario instances of Dimension-
Properties are gr:ProductOrService, gr:Brand, while instances of dq:Measure are
gr:UnitPriceSpecification, gr:amountOfThisGood. If no vocabulary is available,
a new, ad-hoc, vocabulary has to be defined as first (as also reported in Sect. 7).

The concept qd:ComponentProperty can have one or more rdf:label properties
associated to, that represent the references to the instances of the target concept.
For example the dimension gr:Brand may be labeled as “NameOfProduct” or
“BrandName”. During the annotation phase, labels are used to associate terms
of the report to the application domain concepts.

In order to populate the MD model it is necessary to know how the
qb:componentProperties are described in the operational DB (ODB). This map-
ping is described in the KB itself, by means of the c2t:mappingRule con-
cept, which associates a c2t:mappingFormula related to a given instance of the
qb:ComponentProperties. The c2t:mappingFormula contains a reference to some
tables of the ODB and a query predicate over their tuples.

For example, in a bank scenario we can assume that the TLoan table of the
ODB contains all information related to loans. A loan with a fixed rate (i.e.,
a loan where the interest rate on the note remains the same through the term
of the loan) can be represented in the ODB by the predicate InterestRate= 1,
while a floating rate can be described by the predicate InterestRate > 1. The
formula c2t:mappingFormula includes the references to the TLoan table and the
predicate regarding the InterestRate.

The concept c2t:context in Fig. 3 assumes value when the reports provided by
different audit authorities contain different mapping formulas for the dimension
dq:componentProperties. For example, a given audit authority may classify a
company as “small” if the employee number does not reach 10, while for another
authority a company is small if it has less than 15 people employed. In this case
we will have two different c2t:MappingFormula.

4 http://www.heppnetz.de/projects/goodrelations/.

http://www.heppnetz.de/projects/goodrelations/

114 A. Azzini et al.

4.1 Report Graph

Starting from such a schema the ontology has been defined by using the Protégé
editor [21]. Protégé is a free, open source, ontology editor and a knowledge
management system with an user friendly graphic interface. It also includes some
classifiers to validate that models are consistent and to infer new information
based on the analysis of an ontology [21,22].

The report graph is a rdf representation of the report template, which
includes the annotation of each value cell in terms of KB elements.

The top level of the ontology represents the description of the structure of
the reports. It includes a set of qd:observation elements (i.e., each cell of the
report), each of them characterized by the two properties (c2t:hasPosX and
c2t:hasPosY) representing their coordinates in the report. An observation ele-
ment may contain a measure (c2t:hasValue) if it contains values from the ODB
aggregated by means of an aggregation operator (e.g. sum, avg. . .) as in the tra-
ditional data warehouse. Moreover an observation element includes the dimen-
sions, which are used for the analysis. Both dimensions and measure are fully
described in the KB. An example of a report graph annotation is as follows:

eg:o1 a qb:Observation;
c2t:hasValue fibo:outstandingPrincipal;

c2t:isAggregatedBy "Sum";
c2t:hasPosX "C";
c2t:hasPosY "9";

c2t:hasDimensionalProperty ontoLoan:Performing;
c2t:hasDimensionalProperty ontoLoan:Mortage;

.

In the example, the cell whose coordinates are column “c” and row “9” will
contain the sum of Outstanding Principal extracted from the loans that are at
the same time Performing and with a mortgage guarantee.

5 Table Identification

Reports required by audit organizations are usually structured documents rep-
resented by tables. Each table can be divided into different areas or sections,
according to their structure. Thus, being able to correctly identify the inner
structure of the table is important to find the concepts relevant to the MD mod-
els generation. As discussed in the introduction, a multidimensional model repre-
sents the data into a n-dimensional space; under this perspective each report can
be considered as one of the possible hyperplanes slicing the n-dimensional cube
of data. To represent this hyperplane into a bi dimensional table it is necessary
to reduce the dimensions. In Fig. 4 the MD is composed by three dimensions
(time, nations and type of sold goods) that are “flattened” into a bi-dimensional
space by associating the values of type of sold goods (Food and non Food) to

A Report-Driven Approach to Design Multidimensional Models 115

Fig. 4. Example of report.

the nation dimension. According to this assumption, rows and columns header
may contain dimensions, values of dimensions and measures of the MD.

In our approach, during the RCHIE phase a table was assumed as composed
by three types of cell: respectively textual, data and schema ones. Figure 5 shows
the general schema. The cell identifiers are represented by the couple <X,Y >,
as reported in the table shown in Fig. 5.

Fig. 5. Example of table used by the table identification algorithm.

The table may contain several types of cells, as defined in the following way:

– textual-cell: this cell is not used for table annotation, these cells are shown
in grey in Fig. 5, and they may contain simple text.

– data-cell: it contains data that are computed on the basis of the MD model.
These cells are represented by the white colour in the figure.

– schema-cell: it specifies properties over a set of data-cells. It is shown in
dark grey in the figure. This cell defines the header h =<x, y> of a set of
data cells, by specifying some semantic aspects (i.e., the measure or a value
on a dimension).

Rows and columns are identified in order to extract the labels correspond-
ing, respectively, to measures, dimensions, instances of the dimensions, etc. (for
instance not relevant information as the TOTAL value shown in Fig. 6). These
labels represent the input of the annotation phase, which produces the annotated
list of terms as output.

In the literature different table identification algorithms aimed at handling
the tables structure have been proposed [23]; in our work the focus is identifying

116 A. Azzini et al.

Fig. 6. Example of table.

and removing multi spanning cells. An example is reported in Fig. 6, where one of
the reports related to securitization is shown. The Stub Header cell details infor-
mation w.r.t. the measures Loan and Outstanding Principal of different types of
companies, as Corporate, SME and “Impresa” (it refers to retail companies in
the Italian jargon). Measures, names and instances of dimensions are placed in
the Box Header and/or the Stub areas as headers, and they are used to index the
elements located in the Body area of the table. The Stub Header may also contain
a header naming or describing the dimensions located in the stub. The outcomes
of the table identification algorithm are shown in Fig. 7 where all data-cells are
semantically associated to their row and column headers.

Finally, the RCHIE phase extracts a list of unique terms that are in the col-
umn and row headers. These terms are then annotated by means of the knowl-
edge base, by evaluating the labels related to the application domain concepts
and the terms extracted from the report table. In this task, the domain expert
are forced to take action only for those text strings that do not have the corre-
sponding ontology term (an example is given by the string performing and the
term in Bonis).

6 The Dimensional Fact Model

Generally speaking, the Dimensional Fact Model (DFM) [24] is a graphical con-
ceptual model for data warehouse aimed to:

– effectively support the conceptual project,
– define an environment over which intuitively define the queries of a user,
– allow the interaction between the designer and the final user for specific

request refinements,
– produce useful and non ambiguous documentation.

A Report-Driven Approach to Design Multidimensional Models 117

Fig. 7. Example of flattened table.

The conceptual representation deriving from DFM is defined by a set of fact
schema. The basic elements modeled by such a schema are the so called fact,
measures and dimensions. A fact is useful for the decisional process: it models a
set of events coming from the analysis context; it needs to be time evolving. A
measure represents a numeric property of a fact, and it describe a quantitative
aspect useful for further analysis. Finally, a dimension is a property with a finite
domain of a fact and it describes one of the analysis coordinates.

According to the literature [4] a dimensional scheme consists of a set of
fact schemes. The components of fact schemes are facts, measures, dimensions
and hierarchies. A fact is a focus of interest for the decision-making process;
typically, it models an event occurring in the enterprise world (e.g., sales and
shipments). Measures are continuously valued (typically numerical) attributes
which describe the fact from different points of view; for instance, each sale is
measured by its revenue. Dimensions are discrete attributes which determine the
minimum granularity adopted to represent facts; typical dimensions for the sale
fact are product, store and date. Hierarchies are made up of discrete dimension
attributes linked by one-to-one relationships, and determine how facts may be
aggregated and selected significantly for the decision-making process. The dimen-
sion in which a hierarchy is rooted defines its finest aggregation granularity;
the other dimension attributes define progressively coarser granularities. Hier-
archies may also include non-dimension attributes. A non-dimension attribute
contains additional information about a dimension attribute of the hierarchy,
and is connected by a one-to-one relationship (e.g., the address); unlike dimen-
sion attributes, it cannot be used for aggregation. At a conceptual level, dis-
tinguishing between measures and dimensions is important since it allows the
logical design to be more specifically aimed at the efficiency required by data
warehousing applications.

118 A. Azzini et al.

6.1 Queries Representation

In general, querying an information system means linking different concepts
through user defined paths in order to retrieve some data of interest; in particu-
lar, for relational databases this is done by formulating a set of joins to connect
relation schemes. On the other hand, a substantial amount of queries on DWs are
aimed at extracting summary data to fill structured reports to be analysed for
decisional or statistical purposes. Thus a typical DW query can be represented
by the set of fact instances, at any aggregation level, whose measure values have
to be retrieved.

The sets of fact instances can be denoted by writing fact instance expressions.
The simple language proposed in the literature [24] is aimed at defining, with
reference to a dimensional scheme, the queries forming the expected workload
for the DW, to be used for logical design; thus, it focuses on which data must
be retrieved and at which level they must be consolidated.

A fact instance expression has the general form:

<fact instance expression> ::= <fact name>
(<pattern clause> ; <selection clause>)

<pattern clause> ::= comma-list of <pattern elements>
<pattern elements> ::= <dimension name> |

<dimension name>.<attribute name>
<selection clause> ::= comma-list of <predicate>

The pattern clause describes a pattern. The selection clause contains a set
of Boolean predicates which may either select a subset of the aggregated fact
instances or affect the way fact instances are aggregated. If an attribute involved
either in a pattern clause or in a selection clause is not a dimension, it should
be referenced by prefixing its dimension name.

6.2 MD Creation and Population on MMBR Approach

The Dimensional Fact Model (DFM) [4] approach has been used in our solution
to describe the MD model. The list of annotated terms and the KB are the only
two elements necessary to design and populate the MD. Each annotated term
of the list is enriched by its type or subclass in order to understand if it is a
measure, a dimension or an instance of a dimension. This can be realized by
means of a set of SPARQL5 queries over the KB (an example of query is shown
in Sect. 7) generated by the Schema builder component. With this information
it is possible to create the DFM and the corresponding logical relational schema
by means of the original methodology proposed in [4]. The relational schema is
then populated according to the mapping information defined in the knowledge
base.

All dimensional tables are populated with the instances defined in the KB,
while the fact table is defined in a two steps procedure. In the first step all
5 https://www.w3.org/TR/rdf-sparql-query/.

https://www.w3.org/TR/rdf-sparql-query/

A Report-Driven Approach to Design Multidimensional Models 119

instances of the facts (e.g. sell or loan) are selected from the ODB by taking
into account only the measures available in the annotated list. The second step
is in charge of connecting the fact table with the dimensional tables. An Update
query is executed to associate each instance of the fact table with the instances
of the dimensions tables. Even in this case the KB plays a strategic role since it
allows to extract the mapping formula at the basis of the SPARQL queries (see
Sect. 7).

7 Case Study

After a brief introduction over the ontology defined in this work, an example of
two financial reports that have to be filled is reported, together with an example
of the mapping rules and the defined sparql queries. The implemented software
prototype, supporting the MMBR approach, and a brief discussion about the
methodology are finally presented.

7.1 The Considered Reports

The scenario motivating the definition of a report driven approach for the design
of multidimensional models is related to the financial domain. In particular, the
reporting activity of securitization was analyzed.

Applying the MMBR approach in this context, the first activity to be faced
is the generation of the domain KB and vocabulary. The literature proposes
two different vocabularies that partially describe the loan domain: FIBO6 and
Schema.org7. FIBO, a Financial Industry Business Ontology, contains the loan
terms definitions without any further specification. Schema.org does not contain
a full exhaustive specification of the securitization domain, but it includes the
LoanOrCredit concepts8 only. The KB defined in this work to describe the secu-
ritization domain is the ontology OntoLoan. During the KB definition, domain
experts are in charge to define the main terms and concepts. The OntoLoan
ontology is not freely available, since it is covered by the company’s intellectual
properties. However, the top level of OntoLoan is shown in Fig. 8, while Fig. 9
shows an example of securization report. Note that all private data related to
the bank owning the report are removed for privacy issues, while the values for
different kinds of loans are reported.

The term Performing Loans refers to those loans that have no overdue inter-
est payments, or with unpaid installments due, even if under the maximum
number of delay days outstanding (which changes according to the securitiza-
tion contract terms). Delinquent Loan refers to the loans close to default, i.e., to
unpaid installments due to a delay in payments close to the limit on the delay
of days overdue. Defaulted Loans refers then to loans with significant delays in
payments.
6 https://www.edmcouncil.org/financialbusiness.
7 https://schema.org.
8 https://schema.org/LoanOrCredit.

https://www.edmcouncil.org/financialbusiness
https://schema.org
https://schema.org/LoanOrCredit

120 A. Azzini et al.

Any kind of loan is further divided according to other features, generating
the definition of Mortgage Loan, Guaranteed Loan, i.e. loans insured not by
mortgages but by other guarantees (e.g., pledges), and, finally, Unguaranteed
Loan, i.e. not insured.

The first phase of the MMBR approach removes text fields that do not carry
relevant information from the report. An example of removed test is the string
“A. PORTFOLIO OUTSTANDING BALANCE”. The annotation tool removes
the cell spanning from the table of Fig. 9, creating the table structure shown in
Fig. 10. The data-cell in position <3, 3> represents the aggregation of the values
of Outstanding Principal of loans that are both performing and able to pay off the
loan even in case of default of the borrower. The value in the cell with position
<3, 4> represents the aggregation of the Outstanding Principal of loans that are
both performing and guaranteed. The mapping rule MR1 is described as follows:

MR1 :mappingRule1 rdf:type :MappingRule ;
:hasContext :context1;

:hasTargetDimension :defaulted ;
:hasMappingFormula "rating_34=10 and
rating5 between 1 and 7"^^xsd:string

.

The rule MR1 indicates that for the context context1 the defaulted value
(instance of performance category) is associated to the loans having a rating34
equals to 10 and a rating5 between 1 and 7.

7.2 SPARQL Queries Definition

With this first activity the following list of terms related to the domain is
extracted loan:Performing, loan:Mortgage, loan:Guaranteed, loan:Unguaranteed,
loan:Delinquent, loan:Defaulted, loan:DelinquentInstalments, loan:Outstanding
Principal, loan:AccruedInterest, loan:PrincipalInstalment, loan:Interest
Instalment. For each element of the list, MMBR retrieves from the KB the name
of the dimensions or measures related to it, by means of SPARQL queries.

An example of query is the following.

SELECT distinct ?x, ?p
WHERE {
loan:Guarantee rdf:type ?x.
?x rdfs:subClassOf ?p
}

The example query is able to recognize, as shown in Fig. 8, that the
loan:Guarantee element is member of an entity namedGuarantee Category, which
is a subclass of qb:DimensionProperty. Figure 8 also shows the query properties.
After the identification of the measures and the dimensions, the DFM is designed
as shown in Fig. 11, according to Literature (see [25]) for the schema definition.

A Report-Driven Approach to Design Multidimensional Models 121

Fig. 8. The top level representation of OntoLoan.

Fig. 9. An example of report template.

Fig. 10. An example of flattened report.

122 A. Azzini et al.

Fig. 11. Dimensional fact model schema example.

The DFM is then translated into a relational schema, whose instance is cre-
ated in a relational DBMS as described in Sect. 6, and shown in Fig. 12.

Fig. 12. Data warehouse schema.

In order to update the fact table, it is possible to retrieve the mapping formula
in the KB, by means of a SPARQL query. For example to update the guaranteed
loan, first we retrieve from the KB the corresponding mapping formula by using
the following query:

A Report-Driven Approach to Design Multidimensional Models 123

SELECT ?table, ?rule
WHERE {
?s rdf:type loan:MappingRule.
?s loan:hasContext loan:context1.
?s loan:hasTargetDimension loan:Guarantee.
?s loan:refersToTable ?table.

?s loan:hasMappingFormula ?rule.
}

The result is the following predicate:

TLoan
VAL_IPOTECA = 0 and (flag_garanzia_confidi=’Y’ or
(importo_pegno + importo_garan_pers) > 0)"?^^string

The corresponding update query using IBM DB2 SQL is:

UPDATE Fact

SET id_Guarantee_category=

(SELECT \Guarantee"?

FROM fact join odb.TLoan

WHERE fact.id=obd.TLoan.id and

VAL_IPOTECA = 0 and

(flag_garanzia_confidi=’Y’ or (importo_pegno + importo_garan_pers) > 0)

)

The last phase is related to the generation of the report. Let us assume
to generate a report where the cell corresponding to the coordinates F and 22
contains the sum of interest installments of all defaulted and guarantee loans.
In the report graph the cell F22 is annotated as follows:

#Cell F22
eg:o36 a qb:Observation;

c2t:hasDimensionalProperty ontoLoan:Defaulted;
c2t:hasDimensionalProperty ontoLoan:Unguaranteed;
c2t:hasValue ontoloan:InterestInstalment;
c2t:isAggregatedBy "Sum"
c2t:hasPosY "22";
c2t:hasPosX "F";

The ReportGenerator module creates the aggregate SQL query able to com-
pile the cell. First of all, it retrieves the correct aggregation operator to be
used, i.e. here it is a sum, then by querying the rdf fragment of the report
graph it discovers that the values to be aggregated belong to the attribute
InterestInstalment. To create the FROM statement of the query the Report-
Generator interrogates the ontology finding that both ontoLoan:Defaulted and
ontoLoan:Unguaranteed concepts are instances of ontoLoan:DimensionalProperty

124 A. Azzini et al.

and that both attributes are included in the Loans table. Thus, the FROM condi-
tion includes the Loans table only. The WHERE condition is composed creating a
conjunctive predicates of current performance category=Defaulted and guaran-
tee category=Unguaranteed. The final SQL query for computing the value of the
Cell F22 is the following:

SELECT sum(InterestInstalment)
FROM Loans
WHERE current_performance_category="Defaulted" AND

guarantee_category="Unguaranteed"

The report generated is show in Fig. 13.

Fig. 13. Report generated.

7.3 Discussion

The MMBR methodology and related techniques supporting the creation of mul-
tidimensional model able to produce a given (set of) report(s). The term “by
report” refers to the capability of our solution to create a multidimensional
model starting from a given report (typically expressed as Microsoft Excel file)
that must to be filled with real data. MMBR is also able to generate the rela-
tional data structure related to the created a MD model and it is also in charge
of filling both fact and dimensional tables thanks to the use of domain ontologies
enriched with mapping information to the operational sources. According to the
literature, this is the first attempt to define a methodological approach for cre-
ating MD starting directly from the reports only. The methodology starts with
the acquisition of the excel file and, thanks to an table identification algorithm,
then it extracts rows and headers representing domain concept from the report,

A Report-Driven Approach to Design Multidimensional Models 125

and the extracted terms are annotated by using a domain ontology enriched with
md concepts. The ontological terms are finally used to design the MD.

One of the most important elements in our methodology is the use of a
domain ontology, applied in order to annotate terms available in the report. Such
ontological terms are used to identify fact, dimensions and instances of dimension
that allow the creation and population of the MD model, by generating the
Dimensional Fact model and the Entity Relational schema.

A prototype supporting the proposed methodology has been developed in
the experimental session. The report graph is created by using Protegé, which is
adopted to support the RCHIE phase in a semiautomated way. The phases of the
methodology involved into the creation and population of the data warehouse are
supported by a custom tool we named “CreDaW”, (Create a Data Warehouse).

The tool, as described in Sect. 6, creates the DW schema by querying the
Report graph. The relational tables implementing the DW schema are populated
by querying the KB as reported in Sect. 7. The prototype is developed and tested
on an Intel I7-6700 personal computer with 3.4 GHz, 16 GB ram and 1 TB hdd
and it is able to create and populate a DW in two different relational database
management systems, MySQL and IBM DB2.

The data warehouse population phase requires around 13 s for loading more
than 400.000 loans.

The last phase (the “Report generation”) of the methodology is totally auto-
mated by the tool ReGe. The tool is able to read the report graph and, by using
the Apache POI library (https://poi.apache.org/), the report template. For each
observation in the report graph a SQL query is created and executed; the result
fills the corresponding cell of the report template. A report generation requires
less than 2 s.

8 Conclusions and Future Work

This work presents a “Multidimensional Model By Report” (MMBR) approach
supporting the creation ofmultidimensionalmodels able to produce a given (set of)
report(s). The term “by report” refers to the ability to create a multidimensional
(MD) model starting from a given report (typically expressed as Microsoft Excel
file) that has to be filled with data extracted from a set of heterogeneous sources.

Important contributions refer to the automatic generation of the relational
data structure correlated to the MD models generated by the approach, and
to the ability to fill both fact and dimensional tables on the basis of domain
ontologies enriched with mapping information related to the data sources.

There may be several future directions of research. The first one is related
to the definition of an approach for the automatic computation of aggregates
of data according to the topological position of the cells that contain them, by
taking into account row and column headers.

Another interesting research activity will study how to enrich the table iden-
tification algorithm. The aim is to allow the management of a larger (w.r.t.,
the actual algorithm) number of types of report, improving the efficiency of the
presented approach.

https://poi.apache.org/

126 A. Azzini et al.

References

1. Lymer, A., Debreceny, R., Gray, G.: Business Reporting on the Internet (1999)
2. Simkovic, M.: Competition and crisis in mortgage securitization. Indiana Law J.

88, 213 (2013)
3. Winter, R., Strauch, B.: A method for demand-driven information requirements

analysis in data warehousing projects. In: 36th Hawaii International Conference
on System Sciences (HICSS-36 2003), CD-ROM/Abstracts Proceedings, HI, USA,
6–9 January 2003, p. 231. IEEE Computer Society, Big Island (2003)

4. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model
for data warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)

5. Golfarelli, M., Graziani, S., Rizzi, S.: Starry vault: automating multidimensional
modeling from data vaults. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P.
(eds.) ADBIS 2016. LNCS, vol. 9809, pp. 137–151. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-44039-2 10

6. Blanco, C., de Guzmán, I.G.R., Fernández-Medina, E., Trujillo, J.: An architecture
for automatically developing secure OLAP applications from models. Inf. Softw.
Technol. 59, 1–16 (2015)

7. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Mayorova, D.: A requirement-
driven approach to the design and evolution of data warehouses. Inf. Syst. 44,
94–119 (2014)

8. Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based data warehouse design
method. Decis. Support Syst. 42(3), 1449–1473 (2006)

9. Nabli, A., Feki, J., Gargouri, F.: Automatic construction of multidimensional
schema from OLAP requirements. In: 2005 ACS/IEEE International Conference
on Computer Systems and Applications (AICCSA 2005), 3–6 January 2005, Egypt,
p. 28. IEEE Computer Society, Cairo (2005)

10. Giorgini, P., Rizzi, S., Garzetti, M.: Grand: a goal-oriented approach to requirement
analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008)

11. Blanco, C., de Guzmán, I.G.R., Fernández-Medina, E., Trujillo, J.: An MDA app-
roach for developing secure OLAP applications: metamodels and transformations.
Comput. Sci. Inf. Syst. 12(2), 541–565 (2015)

12. Bontcheva, K., Wilks, Y.: Automatic report generation from ontologies: the
MIAKT approach. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol.
3136, pp. 324–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27779-8 28

13. Nebot, V., Berlanga, R., Pérez, J., Aramburu, M., Pedersen, T.: Multidimensional
integrated ontologies: a framework for designing semantic data warehouses. J. Data
Semant. XII I, 1–36 (2009)

14. Romero, O., Abelló, A.: A framework for multidimensional design of data ware-
houses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)

15. Thenmozhi, M., Vivekanandan, K.: An ontology based hybrid approach to derive
multidimensional schema for data warehouse. Int. J. Comput. Appl. 54(8), 36–42
(2012)

16. Thenmozhi, M., Vivekanandan, K.: A framework to derive multidimensional
schema for data warehouse using ontology. In: Proceedings of National Confer-
ence on Internet and WebSevice Computing, NCIWSC (2012)

17. Benslimane, D., Arara, A., Falquet, G., Maamar, Z., Thiran, P., Gargouri, F.:
Contextual ontologies. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS 2006. LNCS,
vol. 4243, pp. 168–176. Springer, Heidelberg (2006). https://doi.org/10.1007/
11890393 18

https://doi.org/10.1007/978-3-319-44039-2_10
https://doi.org/10.1007/978-3-319-44039-2_10
https://doi.org/10.1007/978-3-540-27779-8_28
https://doi.org/10.1007/978-3-540-27779-8_28
https://doi.org/10.1007/11890393_18
https://doi.org/10.1007/11890393_18

A Report-Driven Approach to Design Multidimensional Models 127

18. Barkat, O., Khouri, S., Bellatreche, L., Boustia, N.: Bridging context and data
warehouses through ontologies. In: Proceedings of the Symposium on Applied Com-
puting, pp. 336–341. ACM (2017)

19. W3C: W3C Standard Consortium. http://www.w3.org
20. Pardillo, J., Mazón, J.N.: Using ontologies for the design of data warehouses. Int.

J. Database Manag. Syst. (IJDMS) 3(2), 73–87 (2011)
21. Protégé: Protégé Ontology Editor. https://protege.stanford.edu/
22. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.

Lingvisticae Investigationes 30(1), 3–26 (2007)
23. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition. Doc. Anal.

Recogn. Models Obs. Transform. Infer. 7(1), 1–16 (2004)
24. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model

for data warehouses. Int. J. Coop. Inf. Syst. 7(02n03), 215–247 (1998)
25. Sugumaran, V., Storey, V.C.: Ontologies for conceptual modeling: their creation,

use, and management. Data Knowl. Eng. 42(3), 251–271 (2002)

http://www.w3.org
https://protege.stanford.edu/

Author Index

Andrews, Kevin 25
Azzini, Antonia 105

Cavallini, A. 45
Couvreur, Jean-Michel 89

Ezpeleta, Joaquín 89

Genga, Laura 65

Leonardi, G. 45

Marrara, Stefania 105
Maurino, Andrea 105
Montani, S. 45

Quaglini, S. 45

Reichert, Manfred 25

Steinau, Sebastian 25
Striani, M. 45

Tax, Niek 65
Topalović, Amir 105

Vetter, Arthur 1

Zannone, Nicola 65

	Preface
	Organization
	Contents
	Online Detection of Operator Errors in Cloud Computing Using Anti-patterns
	1 Introduction
	2 Operator Errors
	3 Fundamentals
	3.1 TOSCA
	3.2 XML Nets
	3.3 Modelling Maintenance Plans

	4 Pattern and Anti-pattern for Operator Error Detection
	4.1 Context
	4.2 Pattern and Anti-pattern
	4.3 Derivation of Pattern Instances

	5 Implementation
	6 Experimental Results
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Executing Lifecycle Processes in Object-Aware Process Management
	1 Introduction
	2 Fundamentals
	3 Lifecycle Process Operational Semantics
	3.1 Lifecycle Process Execution
	3.2 State Execution

	4 The Process Rule Framework
	5 Related Work
	6 Summary and Outlook
	References

	Towards Semantic Process Mining Through Knowledge-Based Trace Abstraction
	1 Introduction
	2 Knowledge-Based Trace Abstraction
	2.1 Ontology Mapping
	2.2 Rule-Based Reasoning for Ancestor Selection
	2.3 Trace Abstraction

	3 Semantic Process Mining
	4 Experimental Results
	4.1 Case Study
	4.2 Validation

	5 Related Works
	6 Concluding Remarks and Future Work
	References

	Mining Local Process Models and Their Correlations
	1 Introduction
	2 Background
	2.1 Event Data and Process Models
	2.2 Subprocess Mining

	3 Mining LPMs Using Subtrace Constraints and Projections
	4 Deriving Partial Order Relations over LPMs
	5 Evaluation
	5.1 Mining LPMs Using Subtraces
	5.2 Mining Ordering Relations over LPMs

	6 Related Work
	7 Conclusions and Future Work
	References

	A Linear Temporal Logic Model Checking Method over Finite Words with Correlated Transition Attributes
	1 Introduction
	2 DLTL
	3 The Complexity of Model Checking a DLTL Formula
	4 An Application Example
	5 About the Model Checking Process
	6 Related Work
	7 Conclusions
	References

	A Report-Driven Approach to Design Multidimensional Models
	1 Introduction
	2 Related Work
	3 Description of the Approach and Outline of the Architecture
	4 The MMBR Knowledge Base and the Report Graph
	4.1 Report Graph

	5 Table Identification
	6 The Dimensional Fact Model
	6.1 Queries Representation
	6.2 MD Creation and Population on MMBR Approach

	7 Case Study
	7.1 The Considered Reports
	7.2 SPARQL Queries Definition
	7.3 Discussion

	8 Conclusions and Future Work
	References

	Author Index

