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1 Introduction

Consider the following general distributed delay system

ẋ(t) = Ax(t) + B
∫ t

−∞
κ(t − θ)x(θ)dθ, (1)

under some appropriate initial conditions, where A and B are constance matrices
and κ(θ) : [0,∞) �→ [0,∞) is a scalar kernel function. The model (1) includes the
scenario of point-wise delay systems. For instance, if κ(θ) = δ(θ − τ) (δ(θ) is the
Dirac delta function), system (1) reduces to: ẋ(t) = Ax(t) + Bx(t − τ).

In the literature on distributed delay systems, there are two common kernel func-
tions: gamma distribution and uniform distribution. One may refer to e.g., [13] for
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a detailed introduction to these distributions from the perspective of probability and
statistics.

For system (1) with gamma distribution, the characteristic function is equivalent
to a quasipolynomial (as for a point-wise delay system), see the analysis in [12].
Therefore, the existing results for systems with point-wise delays can be applied,
directly or with some slight modifications, to such distributed delay systems.

In this chapter, we consider κ(θ) of uniform distribution:

κ(θ) =
{ 1

d1+d2
, if τ − d1 < θ < τ + d2,

0, otherwise,
(2)

where τ ≥ d1 ≥ 0, d2 ≥ 0, and d1 + d2 > 0.
The system described by (1)–(2) is called a uniformly distributed delay system

(UDDS). The application of the UDDS model can be found in e.g., [1, 2, 10, 14].
The objective of this chapter is to analyze the stability of the UDDS w.r.t. τ along

the whole interval [d1,∞), given d1 and d2. Compared to the studies for retarded and
neutral systems (for which the stability in the whole τ domain now can be solved),
some additional issues need to be considered for the UDDS.

Here, Let us have a quick look at a scalar UDDS (leaving the general UDDS to
be studied in later sections), i.e., when A and B are scalars a and b, which corre-
sponds to a simple characteristic function f (λ, τ ) : C × [d1,∞) �→ C = λ − a −
b e−(τ−d1)λ−e−(τ+d2)λ

(d1+d2)λ
. To study the stability for τ ∈ [d1,∞), three technical issues arise.

(i) First, f (λ, τ ) is not defined at λ = 0. However, λ = 0 may be a potential
characteristic root. By L’Hôpital’s rule, lim

λ→0
f (λ, τ ) = −a − b. Hence, λ = 0 is a

characteristic root if and only ifa + b = 0.One can see that ifλ = 0 is a characteristic
root, it is independent of τ . The criterion for the general case will be given in this
chapter.

(ii) Second, we need to analyze the spectrum at the minimum value of τ , i.e.,
τ = d1. This is a necessary step required by the τ -decomposition idea, which will be
explained later in this chapter. For a retarded system with its characteristic function,
say, λ − a − be−τλ, it is easy to study at the minimum value τ = 0: λ = a. However,
the UDDS is still infinitely dimensional at the minimum value τ = d1.

(iii) Third, we need to analyze the asymptotic behavior of the critical imaginary
roots (CIRs) at the corresponding critical delays (CDs). This is a key step of the
stability analysis for most types of delay systems (see more details in Sect. 2.2).
Suppose λ = jω∗ is a CIR for the UDDS at a CD τ = τ ∗ (i.e., f ( jω∗, τ ∗) = 0,
ω∗ ∈ R+, τ ∗ ∈ R+ ∪ {0}). Then, λ = jω∗ is a CIR for all τ = τ ∗ + 2kπ

ω∗ ≥ 0, k ∈ Z.
That is, a CIR has infinitely many CDs and hence it is impossible to analyze the
asymptotic behavior at all the infinitely many CDs one by one.

The stability of scalar UDDSs has been extensively investigated, see e.g., [1, 2]. In
this chapter, we will address the general form of the UDDS (i.e., the coefficients are
allowed to be matrices) and study the stability along the whole semi-infinite interval
[d1,∞).

Towards this end, we need to solve all the above technical issues. For technical
issue (ii), wewill adopt amethod based on the argument principle, while for technical
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issues (i) and (iii) the solutions can be obtained by extending the recently-proposed
frequency-sweeping framework [8].

Then, we will obtain a procedure for studying the stability of UDDS. This proce-
dure, mainly based on the frequency-sweeping approach, is simple to implement.

This chapter is organized as follows. Preliminaries and prerequisites are given in
Sect. 2. The main results are presented in Sect. 3. Illustrative examples are given in
Sect. 4. Finally, some concluding remarks end the chapter in Sect. 5.
Notations: R (R+) denotes the set of (positive) real numbers and C is the set of
complex numbers.C− andC+, denote respectively the left half-plane and right half-
plane in C. C0 is the imaginary axis and ∂D is the unit circle, in C. Z, N, and N+
are the sets of integers, non-negative integers, and positive integers, respectively. ε
is a sufficiently small positive real number, mainly used to describe the infinitesimal
change of λ (�λ = ±ε j) and τ (�τ = ±ε). I is the identity matrix of appropriate
dimensions. For γ ∈ R, 	γ 
 denotes the smallest integer greater than or equal to γ .
Finally, det(·) denotes the determinant of its argument.

2 Preliminaries and Prerequisites

In this section, preliminaries and prerequisites regarding the stability problem of
UDDSs are given.

2.1 Characteristic Function

The characteristic function of the general form of the UDDS is

f (λ, τ ) = det(λI − A − B e−(τ−d1)λ−e−(τ+d2)λ

(d1+d2)λ
), λ �= 0. (3)

Clearly, the characteristic function f (λ, τ ) (3) is not defined at λ = 0. As earlier
mentioned, λ = 0 may be a potential characteristic root. The related analysis will be
given in Sect. 3.1.

The asymptotic stability of UDDS is determined by its characteristic roots (i.e.,
the roots λ for the characteristic equation f (λ, τ ) = 0): The UDDS is asymptotically
stable if and only if all the characteristic roots are located in C−.

For any τ ∈ [d1,∞), the UDDS has infinitely many characteristic roots and hence
we need to follow the τ -decomposition idea for studying the stability problem in this
chapter, see the next subsection.
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2.2 Stability Problem and τ -Decomposition Idea

Naturally, we want to determine the stability property (asymptotically stable or not)
for the UDDS along the whole interval τ ∈ [d1,∞). This stability problem is the
objective of the current chapter.

As commonly adopted in the literature (see e.g., [7]), the notation NU (τ ) ∈ N

denotes the number of characteristic roots located in C+, in the presence of delay
τ . In order to study the stability, we will inspect NU (τ ) as τ increases from the
minimum point τ = d1. Clearly, for a given τ , the UDDS is asymptotically stable
if and only if there are no critical imaginary roots (CIRs), i.e., characteristic roots
located on the imaginary axis C0, and NU (τ ) = 0.

As for retarded and neutral delay systems, in this chapter we adopt the τ -
decomposition idea (see e.g., [7]), which is based on the continuity property of
the spectra. We now briefly introduce this idea.

As τ increases from d1, NU (τ ) changes only when the system has CIRs. The
values of τ at which the system has CIRs are called the critical delays (CDs). It is
trivial to conclude that if the system has no CDs for any τ ∈ [d1,∞), then NU (τ )

is a constant for all τ ∈ [d1,∞). Thus, in the sequel we mainly consider the case
with CDs. All the CDs divide the interval [d1,∞) into subintervals and within each
subinterval NU (τ ) is a constant. If we know the change of NU (τ ) at each CD
(corresponding to a boundary point of two adjacent subintervals), we are able to
inspect NU (τ ) along the whole interval [d1,∞).

The above is the so-called τ -decomposition idea, alongwhich the stability analysis
requires to solve the following Problems1 and 2.

Problem 1 How to exhaustively detect the critical imaginary roots (CIRs).
As a straightforward application of the frequency-sweeping framework [8], Prob-

lem1 can be easily solved from the FSCs.
Letting z = e−τλ andμ(λ) = ed1λ−e−d2λ

(d1+d2)λ
, we can rewrite the characteristic function

f (λ, τ ) (3) as
p(λ, z) = det(λI − A − Bμ(λ)z), λ �= 0. (4)

Furthermore, we express p(λ, z) as a polynomial of z:

p(λ, z) = a0(λ) + a1(λ)μ(λ)z + · · · + aq(λ)μq(λ)zq , (5)

where ai (λ) are polynomials of λ such that

deg(a0(λ)) > max{deg(a1(λ)), . . . , deg(aq(λ))}.

Remark 1 We rule out a trivial case that a0(λ), . . ., aq(λ)μq(λ) have common zeros
inC+ ∪ C0 (otherwise, the UDDS is not asymptotically stable for any τ ∈ [d1,∞)).

The detection of the CIRs and CDs for f (λ, τ ) = 0 amounts to detecting the criti-
cal pairs (λ, z) (λ ∈ C0 and z ∈ ∂D) for p(λ, z) = 0. Due to the conjugate symmetry
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of the spectrum, it suffices to consider only the CIRs with non-negative imaginary
parts.

Without loss of generality, suppose there are u such critical pairs denoted by
(λ0 = jω0, z0), . . ., (λu−1 = jωu−1, zu−1) with 0 < ω0 ≤ · · · ≤ ωu−1. Once all the
critical pairs (λα, zα) are found, all the critical pairs (λ, τ ) for f (λ, τ ) = 0 can
be obtained: For each CIR λα , the corresponding (infinitely many) CDs are given

by τα,k
�= τα,0 + 2kπ

ωα
, k ∈ N, τα,0

�= min{τ ≥ d1 : e−τλα = zα} (recall that τ ≥ d1 for
the UDDS). The pairs (λα, τα,k), k ∈ N, define a set of critical pairs associated with
(λα, zα).

All the critical pairs may be detected from the frequency-sweeping curves (FSCs),
which are generated by the procedure to be introduced in Sect. 2.3.

Problem 2 How to analyze the asymptotic behavior of the CIRs w.r.t. the infinitely
many CDs.

For aCIRλα , its asymptotic behavior at a CD τα,k > d1, from the stability perspec-
tive, can be described by a notation�NUλα

(τα,k). Recall that the notation�NUα(β),
where (α, β) is a critical pair, stands for the number change of the unstable roots
caused by the variation of the CIR λ = α as τ increases from β − ε to β + ε.

The value of �NUλα
(τα,k) at a τα,k can be precisely calculated by invoking the

Puiseux series for the critical pair (λα, τα,k). The general method for invoking the
Puiseux series can be found in Chap.4 of [8]. However, since a CIR has infinitely
many CDs, such a method can not be applied to all the infinitely many CDs one
by one. That is why we need an in-depth understanding of the CIRs’ asymptotic
behavior for the UDDS.

In this chapter, we will prove that for a CIR λα , �NUλα
(τα,k) is a constant for all

τα,k > d1. With this crucial property, called the invariance property, we can solve
Problem2.

Finally, wewill obtain the explicit expression of NU (τ ) and hencewe can analyze
the stability for the UDDS in the whole τ domain.

2.3 Frequency-Sweeping Framework

For the UDDS, the frequency-sweeping curves (FSCs) can be generated by the fol-
lowing procedure.

Frequency-Sweeping Curves (FSCs): Sweep ω > 0 and for each λ = jω we have q
solutions of z such that p( jω, z) = 0 (denoted by z1( jω), . . . , zq( jω)). In this way,
we obtain q FSCs �i (ω): |zi ( jω)| vs. ω, i = 1, . . . , q. For simplicity, we denote by
I1 the line parallel to the abscissa axis with ordinate equal to 1. If (λα, τα,k) is a
critical pair, then some FSCs intersect I1 at ω = ωα .

It is easy to see that all the CIRs and CDs can be detected from the FSCs (i.e.,
Problem1 may be solved without much difficulty).



122 X.-G. Li et al.

A new idea of the frequency-sweeping framework established in [8] is that the
asymptotic behavior of the FSCs is taken into account. For a set of critical pairs
(λα, τα,k), theremust exist some FSCs such that zi ( jωα) = zα = e−τα,0λα intersecting
I1 when ω = ωα . Among these FSCs, we denote the number of those when ω =
ωα + ε (ω = ωα − ε) above I1 by NFzα

(ωα + ε) (NFzα
(ωα − ε)). We introduce a

notation �NFzα
(ωα) to describe the asymptotic behavior of the FSCs, as

�NFzα
(ωα) = NFzα

(ωα + ε) − NFzα
(ωα − ε). (6)

Remark 2 It is a useful property that for a set of critical pairs (λα, τα,k), k ∈ N,
the corresponding �NFzα

(ωα) is a constant, independent of k. For retarded- and
neutral-type delay systems, the invariance property was confirmed through proving
that�NUλα

(τα,k) = �NFzα
(ωα) (themathematical development is from an analytic

curve perspective, see [8]). This line will be used as well in this chapter.

3 Main Results

In this section, the three technical issues mentioned earlier will be solved separately
and then a procedure for the stability analysis along the whole interval τ ∈ [d1,∞)

will be presented.

3.1 Detecting Characteristic Roots λ = 0

As mentioned, f (λ, τ ) (3) is not defined at λ = 0. In this chapter, we study the case
λ → 0 by using L’Hôpital’s rule and have:

Property 1 For the uniformly distributed delay system described by (1) and (2),
λ = 0 is a characteristic root for all τ ∈ [d1,∞) if and only if det(A + B) = 0.

Proof In view of the expression (5), Property1 can be proved if the two conditions
“z = e−τ×0 = 1 is a characteristic root for p(λ, z) = 0 as λ → 0” and “det(A +
B) = 0” are equivalent.

By L’Hôpital’s rule, lim
λ→0

μ(λ) = 1 and hence

lim
λ→0

p(λ, z) = a0(0) + a1(0)z + · · · + aq(0)z
q . (7)

It is not hard to find that the limit (7) is exactly the expression of det(−A − Bz) =
det(−(A + Bz)). The equivalence can be seen and thus the proof is complete.� �

Furthermore, we may directly check the condition in Property1 from the FSCs
(without calculating det(A + B)), as stated below.
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Fig. 1 FSCs for Example1
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Property 2 For the uniformly distributed delay system described by (1) and (2),
λ = 0 is a characteristic root for all τ ∈ [d1,∞) if and only if there exists a zi ( jω)

(i ∈ {1, . . . , q}) such that lim
ω→0

zi ( jω) = 1.

(Recall that zi ( jω), i = 1, . . . , q, denote the q solutions of p( jω, z) = 0, see the
procedure for generating the FSCs introduced in Sect. 2)

Proof The FSCs are generated according to the equation p( jω, z) = 0. It follows
from (7) that

lim
ω→0

p( jω, z) = a0(0) + a1(0)z + · · · + aq(0)z
q .

Then, following the line of the proof of Property1, wemay prove Property2.� �

That is, if λ = 0 is a characteristic root, one of the FSCs must approach I1 as
ω → 0.

Obviously, the UDDS can not be asymptotically stable for any τ ∈ [d1,∞) if
λ = 0 is a characteristic root.

Example 1 Consider the UDDS with

A =
⎛
⎝−1 0.5 2.5

1 3 2
−1 0 1

⎞
⎠ , B =

⎛
⎝2 0.5 −1.5
3 2 4
3 2 1

⎞
⎠ .

We may know that λ = 0 is a characteristic root for all τ ∈ [d1,∞) either by Prop-
erty1 or by Property2 (the FSCs are shown in Fig. 1). �

Although the UDDS in Example1 can not be asymptotically stable, we may use
the procedure to be developed to check if the UDDS may be marginally stable, if
needed.

Remark 3 For other types of distributed delay systems,λ = 0may be a characteristic
root only at finitely many values of τ , see [16].
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3.2 Some Spectral Properties at Minimum Value of τ

For most types of time-delay systems, the minimum value of τ is 0. For instance,
a retarded system ẋ(t) = Ax(t) + Bx(t − τ) reduces to ẋ(t) = (A + B)x(t) at the
minimum point τ = 0 whose (finite-dimensional) spectrum is simply composed of
the eigenvalues of A + B.

However, it is not as straightforward to study the UDDS at the minimum value of
τ (i.e., d1), since the UDDS retains infinitely dimensional at τ = d1.

For this reason, we will adopt an argument principle-based method to compute
NU (d1 + ε) (the value of NU (d1 + ε) is always needed for studying the stabil-
ity problem in this chapter, see Theorem3 given later). Similar applications of the
argument principle can be found in e.g., [4, 6, 15].

First, it is easy to see that any nonzero characteristic root for the UDDS must be
a characteristic root for the following characteristic equation

det(λ2 I − λA − B
e−(τ−d1)λ − e−(τ+d2)λ

d1 + d2
) = 0. (8)

As the characteristic function in (8) is a quasipolynomial of retarded type (i.e., the
highest-order termofλ does not involve a transcendental term),we have the following
properties (from Proposition 1.8 and Corollary 1.9 of [11]).

Property 3 For a finitely large τ ≥ d1, NU (τ ) for the uniformly distributed delay
system described by (1) and (2) is finite.

Property 4 If the uniformly distributed delay system described by (1) and (2) has
unstable roots, their real parts and imaginary parts must be bounded.

Therefore, if the UDDS has unstable roots, they must lie in the interior of a
positively oriented Jordan curve l, where l = l1 ∪ l2 ∪ l3 ∪ l4 ∪ l5 ∪ l6 is depicted in
Fig. 2. The construction of l is explained below:

First, since the characteristic function (3) is not defined at λ = 0, we choose a
semicircle sufficiently close to the origin, l2, to link l1 and l3. In this way, the Jordan

Fig. 2 Jordan curve

Real axis
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curve l does not pass through the origin. Second, for simplicity, the Jordan curve
l is constructed in a symmetric structure w.r.t. the real axis. Finally, to assure that
all unstable roots (if any!) are contained in the interior of l, we may simply let the
lengths of l1, l3, l4, l5, and l6 be sufficiently large.

Then, according to the argument principle (see e.g., Chap. 4 of [5]), we have the
following theorem.

Theorem 1 The value of NU (d1 + ε) equals the winding number of f (λ, d∗) w.r.t.
the origin as λ varies along the positively oriented Jordan curve l, where

d∗ =
{
d1, if d1 is not a critical delay,
d1 + ε, otherwise.

Remark 4 If d1 is a CD, then the image of f (λ, d1) passes through the origin. Thus,
for a practical application of Theorem1, it is easy to examine if d1 is a CD.

Remark 5 As will be illustrated by Examples2 and 3, Theorem1 mainly requires an
argument test. The computational load for such a graphical method is not high.

Example 2 Consider the UDDS with d1 = d2 = π
2 and

A =
(

0 1
−π4+3π2−4

π2(π2+1)
2π

π2+1

)
, B =

(
1 0

π2+4
π(π2+1)

−1
π2+1

)
.

We use Theorem1 to analyze the spectrum at the minimum value of τ . As d1 is
not a CD, we analyze the argument of f (λ, d1) as λ varies along the Jordan curve.
The image of f (λ, d1) is given in Fig. 3a, where we see that the winding number
w.r.t. the origin is 2. According to Theorem1, NU (d1 + ε) = 2. �
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Example 3 Consider the UDDS with d1 = d2 = 0.2 and

A =
(
0.2 0
0.2 0.1

)
, B =

(−1 0
−1 −1

)
.

As the system has no CIRs when τ = d1, we analyze the argument of f (λ, d1)
according to Theorem1. The image of f (λ, d1) as λ varies along the Jordan curve is
shown in Fig. 3b. As the winding number w.r.t. the origin is 0, NU (d1 + ε) = 0 in
the light of Theorem1. �

3.3 Invariance Property

It was seen in Sect. 3.1 that if λ = 0 is a characteristic root then the UDDS is not
asymptotically stable for any τ ∈ [d1,∞). In this context, when considering the
asymptotic behavior of CIRs and the related invariance property, we refer to the
nonzero CIRs.

The characteristic functions for the retarded- and neutral-type delay systems are
quasipolynomials of the form

f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ, (9)

where a0(λ), . . . , aq(λ) are polynomials of λ with real coefficients.
It was confirmed in [8] that for the CIRs of f (λ, τ ) = 0 (with f (λ, τ ) in the form

(9)), the invariance property holds. The main result is given by Theorem8.5 therein
(the idea of the proof is introduced in Remark2 of this chapter).

We now analyze if the above invariance property holds for the UDDS.
First, in view of (5), the characteristic function f (λ, τ ) (3) can be expressed as:

f (λ, τ ) =
q∑

i=0

ãi (λ)e−qτλ, (10)

where
ãi (λ) = ai (λ)μi (λ).

The characteristic functions (9) and (10) have two common points: (i) They are
both polynomials of e−τλ and the corresponding coefficient functions (i.e., ai (λ) for
(9) and ãi (λ) for (10)) are all independent of τ . (ii) The coefficient functions for (9)
and (10) are all analytic near the CIRs (it is easy to see that ai (λ) are analytic in C

and that ãi (λ) are analytic in C/ {0}).
Then, based on the above common points and following the line of the proof for

Theorem8.5 in [8], we have:
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Theorem 2 Fora critical imaginary rootλa of the uniformly distributeddelay system
described by (1) and (2), �NUλa (τa,k) is a constant �NFza (ωa) for all τa,k > d1.

The contribution of Theorem2 is twofold: First, the invariance property is con-
firmed for the UDDS, with which we will be able to systematically study the stability
(see Sect. 3.4). Second, a graphical criterion is obtained to determine �NUλa (τa,k)

(since the constant value of �NFza (ωa) can be easily observed from the FSCs).

Remark 6 The invariance property for the UDDS (Theorem2) may also be proved
from the perspective of general quasipolynomials [9]. From this perspective, the
invariance property for a broader class of time-delay systems, such as retarded-type,
neutral-type, distributed-type, fractional-order time-delay systems, and systems with
incommensurate delays, can be proved.

Example 4 Consider the UDDS in Example2.
At τ = (2k + 1)π , λ = j is a CIR: λ = j is a double CIR at τ = π while λ = j

is simple at all τ = (2k + 1)π, k ∈ N+.
The FSCs are given in Fig. 4a, where we see that �NF−1(1) = 0. Then, by The-

orem2 , �NUj ((2k + 1)π) = �NF−1(1) = 0 for all k ∈ N.
Next, we verify the above result through the series analysis. The Puiseux series

for the critical pair ( j, π) is

�λ = (0.2290 + 0.2930 j)(�τ)
1
2 + o((�τ)

1
2 ).

The Taylor series for the critical pairs ( j, 3π) and ( j, 5π) are respectively:

�λ = −0.1592 j�τ + (−0.0283 + 0.0324 j)(�τ)2 + o((�τ)2),

and
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Fig. 4 FSCs and root loci for Example4
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�λ = −0.0796 j�τ + (−0.0035 + 0.0072 j)(�τ)2 + o((�τ)2).

We also numerically generate the root loci of the double CIR j near the critical
pair (λ, π) (using the MATLAB-based package DDE-BIFTOOL [3]), as shown in
Fig. 4b.

Both the series analysis and the root loci are consistent with the result derived
from Theorem2. �

3.4 Stability Analysis Procedure

Combining the results proposed in the previous subsections, we are now able to study
the stability of the UDDS along the whole delay interval τ ∈ [d1,∞). The procedure
is as follows:

Step 1: Generate the frequency-sweeping curves (FSCs).
Step 2: Check if λ = 0 is a characteristic root for all τ ∈ [d1,∞) by Property2.

If so, the UDDS can not be asymptotically stable for any τ ∈ [d1,∞).
Step 3: Determine all the critical imaginary roots (CIRs) and the corresponding

critical delays (CDs) according to the FSCs.
Step 4: Calculate NU (d1 + ε) by using Theorem1.
Step 5: For each CIR λα , we may choose any CD τα,k > d1 to compute �NUλα

(τα,k) (the value is denoted by Uλα
). Alternatively, we may directly have from the

FSCs that Uλα
= �NFzα

(ωα), according to Theorem2.
With the steps above, we obtain the explicit expression of NU (τ ) for the UDDS,

as stated in the following theorem.

Theorem 3 For any τ > d1 which is not a critical delay, NU (τ ) for the uniformly
distributed delay system described by (1) and (2) can be explicitly expressed as

NU (τ ) = NU (d1 + ε) +
u−1∑
α=0

NUα(τ ), (11)

where

NUα(τ ) =
{
0, τ < τα,0,

2Uλα

⌈
τ−τα,0

2π/ωα

⌉
, τ > τα,0,

if τα,0 �= d1,

NUα(τ ) =
{
0, τ < τα,1,

2Uλα

⌈
τ−τα,1

2π/ωα

⌉
, τ > τα,1,

if τα,0 = d1,

The UDDS is asymptotically stable if and only if τ lies in the interval(s) with
NU (τ ) = 0 excluding the CDs.
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(a) (b)

Fig. 5 FSCs and NU (τ ) plot for Example6

4 Illustrative Examples

Some examples are given to illustrate the proposed procedure for stability analysis.

Example 5 Study the stability of the UDDS in Examples2 and 4.
The FSCs were already given in Fig. 4a (Step 1). From the FSCs, we know that

λ = 0 is not a characteristic root (Step 2) and this system has only one set of critical
pairs (Step 3). Next, in Example2 we have that NU (d1 + ε) = 2 (Step 4). The
invariance property was illustrated in Example4 (Step 5).

Finally, according to Theorem3, for all τ ∈ [d1,∞) other than the CDs,
NU (τ ) = 2. �

Example 6 Consider the UDDS in Example3.
The FSCs are shown in Fig. 5a (Step 1). From the FSCs, we know that λ = 0

is not a characteristic root (Step 2) and that the system has two sets of critical
pairs: (λ0 = 0.9734 j, τ0,k = 1.4056 + 2kπ

0.9734 ) and (λ1 = 0.9885 j, τ1,k = 1.4871 +
2kπ

0.9885 ), k ∈ N (Step 3). In Example3, we have that NU (d1 + ε) = 0 (Step 4). We
have from the FSCs that, for all k ∈ N, �NUλ0(τ0,k) = +1 and �NUλ1(τ1,k) = +1
(Step 5).

Finally, we have the explicit expression of NU (τ ) (by Theorem3) as plotted in
Fig. 5b. The UDDS is asymptotically stable if and only if τ ∈ [0.2, 1.4056). �

5 Conclusion

We studied the stability of uniformly distributed delay systems (UDDSs). For such
systems, three new technical issues need to be specifically addressed, compared
to the existing results for retarded- and neutral-type delay systems. For one of the
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technical issues, we adopt an argument principle-based method and the other two
technical issues can be covered by the frequency-sweeping framework, which was
recently established for solving the stability problems of retarded and neutral delay
systems. As a consequence, the stability of UDDSs in the whole domain of delay
can be systematically studied.
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