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1 Introduction

Feedback stabilization by means of static state-feedback, dynamic output-feedback
and input-output feedback linearization for nonlinear retarded systems has been
extensively studied in the literature (see, for instance, [1–5, 9–11, 16, 26–29, 43]).
Nevertheless, though many approaches are available, the stabilization problem for
general nonlinear systems, with an arbitrary number of discrete and distributed time-
delays, is still far from being fully solved. The technique of control Lyapunov func-
tions has been exploited to practically or asymptotically stabilize a large class of
time-invariant retarded systems in affine form in [16], using Lyapunov Razumikhin
functions. The domination redesign control methodology is employed (see [39]).
Results concerning the use of control Lyapunov-Krasovskii functionals (instead of
control Lyapunov-Razumikhin functions) for the design of stabilizing control laws
for retarded systems can be found in [7, 15, 21, 33, 34, 38]. In [15] a fixed type
of control Lyapunov-Krasovskii functionals is exploited. For this type of control
Lyapunov-Krasovskii functionals, remarkable results are achieved for a broad class
of retarded systems. For instance, it is shown that both Sontag’s (see [41]) and Free-
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man’s (see [8]) formulas can be successfully used for global stabilization purposes.
If the small control property holds (see [15, 41]), the proposed feedback control laws
are, at least, locally Lipschitz outside the origin and continuous at the origin. In [7]
the authors propose a predictive control schemewith guaranteed closed-loop stability
for nonlinear retarded systems, utilizing the same fixed type of control Lyapunov-
Krasovskii functionals as in [15]. In [21] the authors prove the equivalence of the
existence of a completely locally Lipschitz control Lyapunov-Krasovskii functional
satisfying the small control property (see [41] and references therein), and the stabi-
lizability property by means of completely locally Lipschitz control laws, for fully
nonlinear, retarded systems. Moreover, stabilizability is intended robust with respect
to vanishing disturbances. In [38] the inverse optimality approach for delay-free non-
linear systems is extended to time-delay systems, by the use of complete quadratic
control Lyapunov-Krasvoskii functionals. In the paper [33] it is shown how invari-
antly differentiable functionals (see [24, 25]) can play an important role for the
input-to-state practical stabilization (see Definition 2.1 in [17]) of retarded systems,
by using the Sontag’s universal formula with a slight modification. The hypothe-
ses introduced in [33] do not guarantee that the state feedback law obtained by the
Sontag’s formula, as proposed in [15], is locally Lipschitz. Therefore, the Sontag’s
formula extended to retarded systems is modified in the critical subsets of the infinite
dimensional state space where the Lipschitz property of the related feedback control
lawmay be lost. By this modification, the problem of non Lipschitz feedback control
law is solved. Then, an input-to-state stabilizing term (see [32, 35, 40]) is added to
the control law, thus achieving the twofold result of attenuation of the actuator dis-
turbance and attenuation of the bounded error due to the above modification of the
Sontag’s formula. Sontag’s stabilizer is studied in [34] also for neutral systems in
Hale’s form, which include retarded systems as a special case. Sufficient conditions
for both the global asymptotic stabilization and for the global practical stabilization,
by Sontag’s and modified Sontag’s formula, are provided. A robustifying controller
for retarded interconnected systems is studied in [12]. It is shown that, under a suit-
able small-gain condition (see [14]), decentralized controllers can be found in order
to achieve actuator disturbance attenuation, in the sense of input-to-state stability, for
interconnected systems stabilizable bymeans of decentralized state feedback control
laws. The interested reader can refer to the recent monograph [20] for an extensive
presentation of Lyapunov-based stabilization methods for nonlinear systems, in both
the finite dimensional and the retarded cases, in the continuous-time as well as in the
discrete-time. It is well known that finding control Lyapunov-Krasovskii functionals
is in general a not easy task, as well as that small-gain methods (see [18]) can provide
an important tool in order to simplify the construction of suitable Lyapunov func-
tions and Lyapunov-Krasovskii functionals (see [13, 14, 17]). For this reason, we
propose here a constructive methodology for the design of controllers for a class of
interconnected systems, which makes use of control Lyapunov-Krasovskii function-
als for each subsystem, aimed at simplifying the search of these functionals. Then,
for each subsystem, the locally Lipschitz control law proposed in [33] is found. By
means of a small-gain condition for retarded systems developed in [14], it is proved
that the resulting overall closed-loop system is input-to-state practically stable with
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respect to actuator disturbances. If the disturbances are bounded, it is proved that, by
suitably tuning a control parameter, the system state can be driven to an arbitrarily
small neighborhood of the origin. The easier search of control Lyapunov-Krasovskii
functionals is evident in the special case when delays appear on the communication
channels only. In this case, it is possible to look for just control Lyapunov functions
in Euclidean spaces, and transfer to the small-gain condition the problem of dealing
with interconnection delays (see (17) in [14]). Moreover, the provided conditions do
not include the small control property, which may well be not satisfied, as shown in
[33]. Actually, the small control property may be an additional property hard to be
satisfied for retarded systems (see examples in [33] and, in the neutral case, in [34]).
The proposed control law is locally Lipschitz in the infinite dimensional state space of
the systems described by retarded functional differential equations here considered.
Moreover, the control law is decentralized, that is, each control law depends only on
the state of each sub-system, which may be an interesting property for the practical
situation where subsystems are located far away each other, and each subsystem is
provided with a controller. A numerical example is studied in details, in order to
show the effectiveness of the proposed methodology.

A preliminary version of this chapter has been published in [36].

Notation R denotes the set of real numbers, R� denotes the extended real line
[−∞,+∞], R+ denotes the set of non-negative reals [0,+∞). The symbol | · |
stands for the Euclidean norm of a real vector. The essential supremum norm of
an essentially bounded function is indicated with the symbol ‖ · ‖∞. A function v :
R+ → Rm ,m positive integer, is said to be essentially bounded if ess supt≥0 |v(t)| <

+∞. For given times 0 ≤ T1 < T2, with v[T1,T2) : R+ → Rm we mean the function
given by v[T1,T2)(t) = v(t) for all t ∈ [T1, T2) and = 0 elsewhere. An input v is said
to be locally essentially bounded if, for any T > 0, v[0,T ) is essentially bounded. For
a positive integer n, for a positive real � (maximum involved time delay), Cn andQn

denote the space of the continuous functions mapping [−�, 0] into Rn and the space
of the bounded, continuous except at a finite number of points with jump disconti-
nuities, and right-continuous functions mapping [−�, 0) into Rn , respectively. For
φ ∈ Cn , φ[−�,0) is the function inQn defined as φ[−�,0)(τ ) = φ(τ), τ ∈ [−�, 0). For
a continuous function x : [−�, c) → Rn , with 0 < c ≤ +∞, for any real t ∈ [0, c),
xt is the function in Cn defined as xt (τ ) = x(t + τ), τ ∈ [−�, 0]. For a positive real
δ, φ ∈ Cn , Iδ(φ) = {ψ ∈ Cn : ‖ψ − φ‖∞ ≤ δ}. For given positive integers n,m, a
map f : Cn → Rn×m is said to be: completely continuous if it is continuous and
takes bounded subsets of Cn into bounded subsets of Rn×m ; locally Lipschitz in Cn

if, for any φ ∈ Cn , there exist positive reals δ, η such that, for any φ1, φ2 ∈ Iδ(φ), the
inequality | f (φ1) − f (φ2)| ≤ η‖φ1 − φ2‖∞ holds. Let us here recall that a function
γ : R+ → R+ is: of class P if it is continuous, zero at zero, and positive at any posi-
tive real; of classK if it is of classP and strictly increasing; of classK∞ if it is of class
K and it is unbounded; of class L if it is continuous and it monotonically decreases
to zero as its argument tends to +∞. A function β : R+ × R+ → R+ is of classKL
if β(·, t) is of class K for each t ≥ 0 and β(s, ·) is of class L for each s ≥ 0. The
symbol ◦ denotes composition of functions. With the symbol Ma is indicated any
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functional mapping Cn into R+ (see [32]), such that, for someK∞ functions γa, γ a ,
the inequalities γa(|φ(0)|) ≤ Ma(φ) ≤ γ a(‖φ‖∞) hold for any φ ∈ Cn . Throughout
the chapter, RFDE stands for retarded functional differential equation, ISS stands for
input-to-state stability or input-to-state stable, ISpS stands for input-to-state practical
stability or input-to-state practically stable, GAS stands for global asymptotic sta-
bility or globally asymptotically stable. A system with an equilibrium at zero is said
to be 0-GAS if the zero solution is GAS. CLF stands for control Lyapunov function,
CLRF stands for control Lyapunov-Razumikhin function, CLKF stands for control
Lyapunov-Krasovskii functional.

2 Preliminaries

Let us consider the system described by the following RFDE

ẋ(t) = f (xt ) + g(xt )u(t), t ≥ 0, a.e.,

x(τ ) = ξ0(τ ), τ ∈ [−�, 0], ξ0 ∈ Cn, (1)

where: x(t) ∈ Rn , n is a positive integer;� > 0 is themaximum involved time delay;
the maps f : Cn → Rn and g : Cn → Rn×m are completely continuous and locally
Lipschitz in Cn , f (0) = 0; m is a positive integer; u(t) ∈ Rm is the input signal,
assumed to be Lebesgue measurable and locally essentially bounded.

Given a locally Lipschitz continuous functional V : Cn → R+, the upper right-
hand derivative D+V : Cn × Rm → R� of the functional V , in the Driver’s form (see
[6, 19, 37]), is defined, for φ ∈ Cn , v ∈ Rm , as

D+V (φ, v) = lim sup
h→0+

1

h
(V (φh) − V (φ)) , (2)

where φh ∈ Cn is given, for h ∈ [0,�), by

φh(θ) =
{

φ(θ + h), θ ∈ [−�,−h),

φ(0) + ( f (φ) + g(φ)v)(θ + h), θ ∈ [−h, 0] (3)

Remark 1 It is proved in [30] that, for locally Lipschitz continuous functionals V ,
the following equality holds

lim sup
h→0+

V (xt+h) − V (xt )

h
= D+V (xt , u(t)), t ∈ [0, b), a.e., (4)
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where xt is the solution of (1) in a maximal time interval [0, b), 0 < b ≤ +∞. It
is proved in [31] that, for locally Lipschitz functionals V , the problem of the local
absolute continuity of the function t → V (xt ) is overcome.

The following definition of invariant differentiable functionals is taken from [25],
see Definitions 2.2.1, 2.5.2 in Chap.2. The formalism used in [25] is here slightly
modified for the purpose of formalism uniformity over the chapter. For any given x ∈
Rn , φ ∈ Qn and for any given continuous functionY : [0,�] → Rn withY(0) = x ,
let ψ(x,φ,Y)

h ∈ Qn , h ∈ [0,�), be defined as

ψ
(x,φ,Y)

h (s) =

⎧⎪⎪⎨
⎪⎪⎩

φ(s), s ∈ [−�, 0), h = 0,

{
φ(s + h), s ∈ [−�,−h),

Y(s + h), s ∈ [−h, 0),

}
, h ∈ (0,�)

(5)

For φ ∈ Cn , h ∈ [0,�), let φh ∈ Cn be defined as follows

φh(s) =
{

φ(s + h), s ∈ [−�,−h)

φ(0), s ∈ [−h, 0] (6)

Definition 1 (see [25]) A functional V : Rn × Qn → R+ is said to be invariantly
differentiable if, at any point (x, φ) ∈ Rn × Qn , the following conditions hold:

(i) for any continuous function Y : [0,�] → Rn with Y(0) = x , the right-hand

derivative
∂V

(
x,ψ(x,φ,Y)

h

)
∂h

∣∣∣∣
h=0

exists and such derivative is invariant with respect

to the function Y;
(ii) the derivative ∂V (x,φ)

∂x exists;
(iii) for any given continuous function Y : [0,�] → Rn with Y(0) = x , the fol-

lowing limit holds (involved z ∈ Rn and h ∈ [0,�)),

lim
z→0, h→0+

1√
|z|2 + h2

·
⎛
⎝V

(
x + z, ψ(x,φ,Y)

h

)
− V (x, φ) − ∂V (x, φ)

∂x
z −

∂V
(
x, ψ(x,φ,Y)

�

)
∂�

∣∣∣∣∣∣
�=0

h

⎞
⎠ = 0

(7)

For a given locally Lipschitz and invariantly differentiable functional V : Rn ×
Qn → R+, let V0 : Cn → R+ be the locally Lipschitz continuous functional defined,
for φ ∈ Cn , as V0(φ) = V (φ(0), φ[−�,0)). Then, the following result holds, for any
φ ∈ Cn and any v ∈ Rm ,
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D+V0(φ, v) = ∂V (x, φ[−�,0))

∂x

∣∣∣∣
x=φ(0)

( f (φ) + g(φ)v) +
∂V

(
φ(0), φh[−�,0)

)
∂h

∣∣∣∣∣∣
h=0

,

(8)

where the second term of the right-hand side of (8) is a right-hand derivative (see
point (i) in Definition 1 and (6)).

In the following, for given positive integer n, Vn is the class of functionals V :
Rn × Qn → R+ which have the following properties: i) V is locally Lipschitz in
Rn × Qn and invariantly differentiable; ii) the maps (φ ∈ Cn , involved x ∈ Rn , h ∈
[0,�))

φ →
∂V

(
φ(0), φh

[−�,0)

)
∂h

∣∣∣∣∣∣
h=0

, φ → ∂V (x, φ[−�,0))

∂x

∣∣∣∣
x=φ(0)

(9)

are completely continuous and locally Lipschitz in Cn .

3 Interconnected Retarded Systems

Consider an interconnected system � described by the following RFDEs

�

{
�1 : ẋ1(t) = f1(x1,t ) + H1(x1,t , x2,t ) + g1(x1,t )(u1(t) + d1(t))
�2 : ẋ2(t) = f2(x2,t ) + H2(x2,t , x1,t ) + g2(x2,t )(u2(t) + d2(t))

(10)

x1,0 = ξ1,0, x2,0 = ξ2,0,

where, for i = 1, 2: xi (t) ∈ Rni ; di (t) ∈ Rmi is a disturbance adding to the control
input (measurable, locally essentially bounded); ni and mi are positive integers; for
t ∈ R+, xi,t : [−�, 0] → Rni denotes (see Notation section) the function xi,t (τ ) =
xi (t + τ), τ ∈ [−�, 0], where� > 0 is themaximum involved delay; ξi,0 ∈ Cni . The
maps fi : Cni → Rni , Hi : Cni × Cn3−i → Rni , gi : Cni → Rni×mi are locally Lips-
chitz and completely continuous. We combine vectors as x(t) = [x1(t)T , x2(t)T ]T ∈
Rn , n = n1 + n2, u(t) = [u1(t)T , u2(t)T ]T ∈ Rm , d(t) = [d1(t)T , d2(t)T ]T ∈ Rm ,
m = m1 + m2, ξ0 = [ξ T

1,0, ξ
T
2,0]T ∈ Cn , f (·) = [ f1(·)T , f2(·)T ]T , H(·) = [H1(·)T ,

H2(·)T ]T and g(·) = [g1(·)T , g2(·)T ]T . The element xt ∈ Cn is defined as for its i-th
component xi,t (see Notations section). It is assumed that fi (0) = Hi (0, 0) = 0,
i = 1, 2. We use functionals Ma,i : Cni → R+ for which there exist class K∞ func-
tions γ

a,i
, γ a,i , such that

γ
a,i

(|φi (0)|) ≤ Ma,i (φi ) ≤ γ a,i (‖φi‖∞), ∀φi ∈ Cni

(11)
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For functionals Vi : Rni × Qni → R+ in the class Vni , i = 1, 2, let the maps
ai : Cni → R, bi : Cni → Rmi (row vectors), ci : Cni × Cn3−i → R, and ρi : Cni ×
Cn3−i → R be defined, for φi ∈ Cni , as follows:

ai (φi ) = ∂Vi (xi , φi[−�,0) )

∂xi

∣∣∣∣
xi=φi (0)

fi (φi ) +
∂Vi

(
φi (0), φ�

i[−�,0)

)
∂�

∣∣∣∣∣∣
�=0

,

bi (φi ) = ∂Vi (xi , φi[−�,0) )

∂xi

∣∣∣∣
xi=φi (0)

gi (φi ),

ci (φi , φ3−i ) = ∂Vi (xi , φi[−�,0) )

∂xi

∣∣∣∣
xi=φi (0)

Hi (φi , φ3−i ),

ρi (φi , φ3−i ) = −
√
a2i (φi ) + |bi (φi )|4 + ci (φi , φ3−i ) (12)

Moreover, for a positive real r , let ki,r : Cni → Rmi be defined as follows, for φi ∈
Cni ,

ki,r (φi ) =

⎧⎪⎪⎨
⎪⎪⎩

− ai (φi )+
√

a2i (φi )+|bi (φi )|4
|bi (φi )|2 bTi (φi ), |bi (φi )| > r,

− ai (φi )+
√

a2i (φi )+|bi (φi )|4
r2 bTi (φi ), |bi (φi )| ≤ r

(13)

The following assumption will be used in the forthcoming theorem (see Assumption
6 in [14], Hypothesis 4 in [33], Hypothesis 18 in [34]).

Assumption 1 There exist functionals Vi : Rni × Qni → R+, i = 1, 2, in the class
Vni , with corresponding maps ai , bi , ci , ρi , positive reals r , p, non-negative integers
h, hd , functions αi , αi , αi of class K∞, integers Si, j ∈ {0, 1}, functions σi, j of class
K and positive reals � j ∈ (0,�], j = 0, 1, . . . , h + hd , such that, ∀ φi ∈ Cni , the
following conditions hold, for i = 1, 2:

(i) αi (Ma,i (φi )) ≤ Vi (φi (0), φi[−�,0) ) ≤ αi (Ma,i (φi ));
(ii) (bi (φi ) = 0) ⇒ (ai (φi ) ≤ 0);
(iii)

ρi (φi , φ3−i ) ≤ −αi (Ma,i (φi )) + Si,0σi,0(Ma,3−i (φ3−i ))

+
h∑
j=1

Si, jσi, j
(
γ
a,3−i

(|φ3−i (−� j )|)
)

+
h+hd∑
j=h+1

Si, j

∫ 0

−� j

σi, j

(
γ
a,3−i

(|φ3−i (τ ))|
)
dτ ;

(14)

(iv) sup{ψi∈Ci , 0<|bi (ψi )|≤r}
ai (ψi )

|bi (ψi )| ≤ p.
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Remark 2 By h = 0 (resp., hd = 0), it is meant that the first (resp., second) sum in
(14) vanishes. Aswell, when hd = 0, themaximum term involving hd in forthcoming
equality (15) is meant to be zero.

Theorem 1 Let Assumption 1 hold. Let σi : R+ → R+, i = 1, 2, be the functions
defined, for s ∈ R+, as

σi (s) =
(
h+hd∑
k=0

Si,k

)
max

{
max

j=0,1,...,h
Si, jσi, j (s), max

j=h+1,...,h+hd
Si, j� jσi, j (s)

}
(15)

Assume also there exist reals ci > 1, i = 1, 2, such that, ∀s ∈ R+, the small-gain
inequality holds (see (17) in [14])

c1σ1 ◦ α−1
2 ◦ α2 ◦ α−1

2 ◦ c2σ2(s) ≤ α1 ◦ α−1
1 ◦ α1(s) (16)

Then:

(1) the maps ki,r : Cni → Rmi , i = 1, 2, are completely continuous and locally
Lipschitz in Cni ;

(2) there exist a function β of class KL and a function γ of class K such that,
chosen any positive real q, for any initial state ξ0 and any measurable, locally
essentially bounded disturbance d(t), the corresponding solution x(t) of the
closed loop system (10) with decentralized control laws

ui (t) = ki,r (xi,t ) − qbTi (xi,t ), i = 1, 2, (17)

exists for all t ≥ 0 and, furthermore, satisfies the following inequality

|x(t)| ≤ β(‖x0‖∞, t) + γ

(‖d[0,t)‖∞ + 2p + r√
q

)
(18)

Proof Let the map ki : Cni → Rmi , i = 1, 2, be defined, for φi ∈ Cni , as (Sontag’s
universal stabilizer, see [33, 34, 41])

ki (φi ) =

⎧⎪⎨
⎪⎩

− ai (φi )+
√

a2i (φi )+|bi (φi )|4
|bi (φi )|2 bTi (φi ), bi (φi ) �= 0

0, bi (φi ) = 0

(19)

Under Assumption 1, it is proved in [33] that the maps ki,r are completely continuous
and locally Lipschitz in Cni and satisfy the inequality

|ki,r (φi ) − ki (φi )| ≤ 2p + r, ∀φi ∈ Cni (20)
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LetWi : Cni → R+ be defined, for φi ∈ Cni asWi (φi ) = Vi (φi (0), φi[−�,0) ), i = 1, 2.
Then, the following inequalities hold for the functional D+Wi : Cni × Cn3−i ×
Rmi → R�, for any φi ∈ Cni , di ∈ Rmi , i = 1, 2,

D+Wi (φi , φ3−i , di ) =
ai (φi ) + bi (φi )ki,r (φi ) − qbi (φi )b

T
i (φi ) + ci (φi , φ3−i ) + bi (φi )di =

ai (φi ) + bi (φi )ki (φi ) + bi (φi )(ki,r (φi ) − ki (φi )) − q|bi (φi )|2 + ci (φi , φ3−i ) + bi (φi )di

(21)

By definition of the maps ki , it is obtained

ai (φi ) + bi (φi )ki (φi ) =
{

−
√
a2i (φi ) + |bi (φi )|4, bi (φi ) �= 0,

ai (φi ), bi (φi ) = 0
(22)

Therefore, by the point (ii) in Assumption 1, taking into account of the definition of
the map ρi in (12), it follows that

ai (φi ) + bi (φi )ki (φi ) + ci (φi , φ3−i ) = ρi (φi , φ3−i ) (23)

From (20), (21), (23), by Young’s inequality, it is obtained

D+Wi (φi , φ3−i , di ) ≤ |bi (φi )|(2p + r) − q|bi (φi )|2 + bi (φi )di + ρi (φi , φ3−i ) ≤
−q|bi (φi )|2 + |bi (φi )|(|di | + 2p + r) + ρi (φi , φ3−i ) ≤
−q|bi (φi )|2 + q|bi (φi )|2 + (|di | + 2p + r)2

4q
+ ρi (φi , φ3−i ) =

ρi (φi , φ3−i ) + σRi ◦ η(|di |), (24)

where η : R+ → R+ is the function defined, for s ∈ R+, as η(s) = s+2p+r√
q , and

σRi , i = 1, 2, is the function of class K∞ defined, for s ∈ R+, as σRi (s) = 1
4 s

2. We
now remark that Lemmas 21, 23 in [14] hold as well if the argument s ∈ R+ of
the functions σRi , i = 1, 2, as defined in (14) in [14], is replaced by a continuous,
increasing function mapping R+ to R+, as, for instance, η. Then, from point (iii) in
Assumption 1, from Theorem 8 in [14] (taking into account of the above remark),
it follows that there exist a locally Lipschitz functional Wcl : Cn → R+ (see (18) in
[14]), a functional Ma : Cn → R+, functions γ

a
, γ a , α, α and αcl of class K∞, and

a function σcl of class K , such that, for any φ ∈ Cn , d ∈ Rm , the inequalities hold
(see (18) and D.4 in [14]),

α(Ma(φ)) ≤ Wcl(φ) ≤ α(Ma(φ)), γ
a
(|φ(0)|) ≤ Ma(φ) ≤ γ a(‖φ‖∞), (25)

D+Wcl(φ, d) ≤ −αcl(Ma(φ)) + σcl ◦ η(|d|) (26)
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From (25), (26), it follows that the solution exists ∀t ≥ 0 and that the inequality (18)
holds. The same reasoning used in the proof of Theorem 3.1 in [37] can be used
here in order to obtain the ISpS result (see Definition 2.1 in [17]) described by the
inequality (18).

Remark 3 We provide here a discussion on Assumption 1. The point (i) in Assump-
tion 1 is standard in the 0-GAS, ISS theory for systems described by RFDEs (see [14,
37, 44], see in particular Lemma 4 in [14] as far as the lower bound is concerned).
The point (ii) is the standard key property for a function V to be referred as a CLF
(see [16, 20, 41]) and, for a functional V , to be referred as a CLKF (see, for instance,
[15, 20, 21]). Notice that, in this case, it is allowed, for non-zero φi ∈ Ci satisfying
bi (φi ) = 0, that ai (φ) = 0 (see related discussions in [33, 34]). The point (iii) allows
that, if the control input were equal to the state feedback obtained with Sontag’s uni-
versal formula, then the derivative inDriver’s form of the functionals Vi would satisfy
a very general dissipative inequality with supply rates which may cope with both
discrete and distributed time delays, in both subsystems and interconnections (see
(13), (14) and Remark 10 in [14]). Notice that, in each dissipative inequality, only the
map describing the dynamics of the related lower dimension subsystem is involved.
This lower dimension may significantly simplify the analysis (namely, the compu-
tation of involved functions of class K and K∞). The condition (14) incorporates
the fact that, if the interconnection terms were zero (i.e., Hi (φi , φ3−i ) = 0, i = 1, 2,
∀φ j ∈ Cn, j , j = 1, 2, and Si, j = 0, i = 1, 2, j = 0, 1, . . . , h + hd ), each resulting
subsystem would satisfy a standard inequality for 0-GAS, ISS concerns (see [14, 20,
22, 23, 37, 44]). The point (iv) is a key condition by which, using the methodology
presented in [33], the problems related to non locally Lipschitz maps ki , i = 1, 2,
in (19) (i.e., the Sontag’s universal stabilizers for subsystems), can be overcome. A
similar condition was introduced in [16] in the framework of CLRFs (see Assump-
tion 1 in [16]), and in [15] in the framework of CLKFs, for exploiting the domination
redesign formula (see [39]).

Remark 4 Because of the inequality (18), the closed-loop system (10), (17) is ISpS
(see Definition 2.1 in [17]) with respect to the disturbance d(t). Notice in (18) that, if
the disturbance is bounded, the solution can achieve an arbitrarily small neighborhood
of the origin by increasing the control tuning parameter q.

4 Illustrative Numerical Example

Consider the interconnected system described by the following RFDE

ẋ1(t) = x31(t) + ω1x1(t)x2(t − �) + u1(t) + d1(t),

ẋ2(t) = x2(t) + ω2x
2
1 (t − �) + x2(t) (u2(t) + d2(t)) , (27)

where xi , ui , di ∈ R, i = 1, 2, � is a positive unknown real, ωi ∈ (−2, 2), i = 1, 2.
Let Vi : R × Q1 → R+, i = 1, 2, be defined, for xi ∈ R, ψi ∈ Q1, as Vi (xi , ψi ) =
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1
2 x

2
i . Let Ma,i : C1 → R+, i = 1, 2, be defined, for φi ∈ C1, as Ma,i (φi ) = |φi (0)|.

As far as (11) and point (i) in Assumption 1 are concerned, they are satisfied by the
functions γ

a,i
, γ a,i , αa,i , αa,i of class K∞, i = 1, 2, defined, for s ∈ R+, as

γ
a,i

(s) = γ a,i (s) = s; αi (s) = αi (s) = 1

2
s2. (28)

As far as the functions ai , bi , ρi , i = 1, 2, defined in (12) are concerned, we have,
for φi ∈ C1, i = 1, 2,

a1(φ1) = φ4
1(0); b1(φ1) = φ1(0); c1(φ1, φ2) = ω1φ

2
1(0)φ2(−�);

ρ1(φ1, φ2) = −φ2
1(0)

√
1 + φ4

1(0) + ω1φ
2
1(0)φ2(−�);

a2(φ2) = φ2
2(0); b2(φ2) = φ2

2(0); c2(φ2, φ1) = ω2φ2(0)φ
2
1(−�);

ρ2(φ2, φ1) = −φ2
2(0)

√
1 + φ4

2(0) + ω2φ2(0)φ
2
1(−�)

(29)

Point (ii) in Assumption 1 is satisfied. As far as the point (iv) in Assumption 1
is concerned, it is satisfied and, in particular, for any positive real r , we obtain
p = max{r3, 1}. As far as the point (iii) in Assumption 1 is concerned, the following
inequalities hold, for any φi ∈ C1, i = 1, 2,

ρ1(φ1, φ2) ≤ − (
Ma,1(φ1)

)4 + 1

2
|ω1|

(
Ma,1(φ1)

)4 + 1

2
|ω1|φ2

2(−�);

ρ2(φ2, φ1) ≤ − (
Ma,2(φ2)

)2 + 1

2
|ω2|

(
Ma,2(φ2)

)2 + 1

2
|ω2|φ4

1(−�)

(30)

Therefore, the point (iii) in Assumption 1 is satisfied with h = 1, hd = 0 S1,0 =
S2,0 = 0, S1,1 = S2,1 = 1, and the functions αi , σi,1, i = 1, 2, of class K∞ defined,
for s ∈ R+, as

α1(s) =
(
1 − 1

2
|ω1|

)
s4; σ1,1(s) = 1

2
|ω1|s2;

α2(s) =
(
1 − 1

2
|ω2|

)
s2; σ2,1(s) = 1

2
|ω2|s4 (31)

Let σi , i = 1, 2, be the functions of class K∞ defined, for s ≥ 0, as σi (s) = σi,1(s),
according to (15). If the inequality holds

|ω1| + |ω2| < 2, (32)



110 P. Pepe et al.

then the small-gain inequality (16) is satisfied for this example. All the hypotheses
of Theorem 1 are satisfied for this example, provided that (32) holds. By Theorem
1, the feedback control law, for any chosen positive real q (see (13), (17)),

u1(t) =

⎧⎪⎪⎨
⎪⎪⎩

−x1(t)

(
x21 (t) +

√
1 + x41(t)

)
− qx1(t), |x1(t)| > r

− 1
r2 x

3
1(t)

(
x21 (t) +

√
1 + x41(t)

)
− qx1(t), |x1(t)| ≤ r,

u2(t) =

⎧⎪⎨
⎪⎩

−1 −
√
1 + x42(t) − qx22 (t), x22 (t) > r,

− 1
r2 x

4
2(t)

(
1 +

√
1 + x42(t)

)
− qx22 (t), x

2
2 (t) ≤ r,

(33)

is such that the closed-loop system (27), (33) satisfies the inequality (18), provided
that the inequality (32) is satisfied. The control law (33) ismemoryless, decentralized.
As can be seen, since the system (27) involves time delays only in interconnections,
the CLKFs, used for each subsystem, are actually CLFs defined in R.

Finding controllers, by Sontag’s formula, for (27) directly with an overall CLKF
would be, at least, much more complicated than the methodology here presented,
since this overall CLKF should involve integral terms to cope with the time-delays.
One could try, for instance,with the candidateCLKFV : R2 × Q2 → R+ defined, for

x ∈ R2, φ =
[

φ1

φ2

]
∈ Q2, as V (x, φ) = xT Px + ∫ 0

−�
eμθ (φ4

1(θ) + gφ2
2(θ))dθ,with

μ, g suitable positive reals and P a suitable positive definite symmetric matrix to be
chosen. Then, one should prove that the points (i) − (iv), Hypothesis 4, in [33], are
satisfied. The analytical proof is not easy and, anyway, the resulting controller would
be neithermemoryless nor decentralized.Notice also that the small control property is
not satisfied by subsystem 2 and V2. If one applied the Sontag’s universal formula for
the controller in the subsystem 2, that controller would be not continuous whenever
x2(t) = 0. This would mean discontinuity of the overall feedback control law in the

infinite dimensional subspace

{
φ =

[
φ1

φ2

]
∈ C2, φi ∈ C1, i = 1, 2, φ2(0) = 0

}
.

By the use of the results in [33] this discontinuity problem is overcome (the feed-
back control law (33) is locally Lipschitz in C2). If the disturbances di (t), i = 1, 2,
are bounded, then an arbitrarily small neighborhood of the origin can be reached,
by increasing the control parameter q (see the inequality (18)). Simulations have
been performed with r = 1, q = 10,ω1 = ω2 = 0.9, d1 = sin(2t), d2(t) = cos(2t),
t ≥ 0, x0(τ ) = [ 1 −1 ]T , τ ∈ [−�, 0], � = 1.2. The state variables are reported in
Fig. 1. As can be seen, the state variables are kept suitably bounded by the control law
(33), thus validating the theoretical results. In Fig. 2 the control signals are reported.
If u1(t) = u2(t) = 0, t ≥ 0, then simulations show divergence of the magnitude of
the state variables to∞. As well, simulations show that, increasing the tuning param-
eter q, smaller neighborhoods of the origin are asymptotically reached. In Fig.3, the
state variables are reported with the tuning parameter choice q = 100. The better
performance with the increased value of the parameter q is achieved at the price of
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Fig. 1 State variables of (27), (33), with � = 1.2, q = 10, r = 1, ω1 = ω2 = 0.9
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Fig. 2 Control signals (33), with � = 1.2, q = 10, r = 1, ω1 = ω2 = 0.9

an increased control effort (the control signals reach in this case a maximum absolute
value close to 120).

Remark 5 In general, when delays appear in the subsystems, CLKFs are involved
for subsystems and checkingAssumption 1 becomesmore difficult, even in the linear
case (the proposed control law is nonlinear also in this case), because of involved
integral terms (see [14]). Numerical software tools may often be used to provide
a sufficient confidence about satisfaction of inequalities involved in Assumption 1.
Alternative conditions, which however require the satisfaction of the small control
property, may be used in the disturbance-free case (see Hypothesis 8 in [34]). These
alternative conditions avoid the use of the Ma functionals and may return to be easier
to be checked, than the ones inAssumption 1, provided that the small control property
holds. These alternative conditions will be topic of forthcoming investigation, as far
as the control design by small-gain arguments is concerned.
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Fig. 3 State variables of (27), (33), with � = 1.2, q = 100, r = 1, ω1 = ω2 = 0.9

5 Conclusions

Since finding a CLKF, and a related controller, for retarded systems, is in general not
an easy task, this chapter has the aim to provide a constructive methodology for the
design of controllers for a class of systems which are in the interconnection form.
The approach makes use of a CLKF for each subsystem and of a suitably modified
Sontag’s universal formula. By suitable hypotheses, the resulting closed-loop system
is proved to be ISpS with respect to actuator disturbances, exploiting a small-gain
condition which copes with time delays. Here time delays in both subsystems and
interconnections are dealtwith, and a significant simplification of the control design is
achieved, with respect to the case of control design by an overall CLKF. For instance,
when the delays affect only the interconnections, the CLKF for each subsystem
becomes aCLF, defined on finite dimensional Euclidean spaces rather than on infinite
dimensional Banach spaces, with evident improvement towards simplification. On
the other hand, a small gain condition is required to be satisfied. A major goal of
this work is to make it possible to exploit, in a unified framework, some existing
results in the past literature, at the aim of the controller design. We still assume the
strict matching condition (i.e., disturbance belonging to the input space and adding to
the control law) in the chapter. This restrictive assumption may be removed through
systematic use of backstepping and small-gain techniques. An interesting research
topic may be the application of the methodology here shown to networked systems,
for instance by the use of the small-gain results provided in [13, 42]. This would
further simplify the design of decentralized, input-to-state practically stabilizing
controllers, provided that a suitable network small-gain condition can be satisfied.
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