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1 Introduction

With a steadily growing interest, over the last two decades or so there have been sig-
nificant advances in the study of time-delay systems, thanks to the development of
analysis methods drawing upon robust control theory, and the development of com-
putational methods in solving linear matrix inequality (LMI) problems. In particular,
an extraordinary volume of the literature is in existence on stability problems, and
various time- and frequency-domain stability analysis approaches have been devel-
oped (see, e.g., [8, 16, 17, 21, 25], and the references therein).

Despite the considerable advances on stability studies, stabilization of time-delay
systems poses a more difficult problem. The existing work has been largely focused
on synthesis problems for systems with a fixed delay. Feedback design for such
systems can be conducted based on LQR and H, techniques (see, e.g., [20, 30]
and the references therein), via predictor feedback [14, 31], or using LMI-based
solutions [6, 17]. On the other hand, fundamental robustness of stabilization in the
presence of uncertain, variable delays has been seldom investigated. Nor is it clear
how the above methods may be extended to address the robust stabilization problem.
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In this vein, particularly noteworthy is the problem of delay margin [18], which by
nature addresses a system’s robust stabilization against uncertain delays and seeks
to answer the question: What is the largest range of delay such that there exists a
single feedback controller that can stabilize all the plants subject to delays within
the range? An age-old problem by itself [3, 5], this problem bears a close similarity
to the gain margin and phase margin problems, which are two classical stability
margin optimization problems solvable analytically by solving a finite-dimensional
‘H~ optimal control problem [4]. Unlike the gain and phase margin however, the
delay margin problem proves fundamentally more challenging, due to obstacles in
solving infinite-dimensional optimization problems. Indeed, the problem has been
open except in isolated cases. In [17, pp. 154], the delay margin was determined for
first-order systems achievable by static feedback, while in [27], the delay margin was
found for first-order systems when PID controllers are used instead. Other related
results concerning stabilizability via delayed feedback can be found in, e.g., [13, 22].

In [10, 18], upper bounds on the delay margin were obtained for general SISO
systems subject to an uncertain constant delay. These bounds serve to provide a limit
beyond which no single LTI output feedback controller may exist to robustly stabilize
the delay plant family within the margin. The results show that this fundamental limit
is determined by the unstable poles and nonminimum phase zeros in the plant. In its
essence, however, the work of [18] is by and large limited to systems with no more
than one unstable pole and nonminimum phase zero, for which the bounds were
found to be exact; otherwise, under more general circumstances, the bounds may be
crude and pessimistic. Moreover, the analysis in [18] was carried out largely case
by case, and for this reason, its technique does not appear readily generalizable. The
same can be said of the improvement in [10].

This chapter aims at developing lower bounds on the delay margin. Unlike in
[18], which addresses the question when a delay system is not stabilizable, we ask
when it is stabilizable. Thus, the results provide a guaranteed range of delay ensuring
robust stabilization. Built on small-gain stability conditions, our approach employs
rational approximation of delay elements, which enables us to cast the problem as
one of finite-dimensional, parameter-dependent H,, optimization; the latter may then
be tackled and solved using such analytic interpolation techniques as Nevanlinna-
Pick interpolation [1]. This operator-theoretic approach ensures not only that the
bounds can be efficiently computed, but also that it can be cohesively extended, and
indeed, in a unified manner, to more general classes of systems with more general
classes of delays, e.g., systems with time-varying delays. Furthermore, since the
approach amounts to solving a standard H., control synthesis problem, it in fact
yields a robustly stabilizing controller that achieves the bounds and guarantees the
stabilization for all possible delay values within the bounds.

We consider LTT output feedback controllers. Our contribution is twofold. First,
for a SISO system with an arbitrary number of plant unstable poles and nonmini-
mum phase zeros, we provide an explicit bound on the delay margin, which requires
computing only the largest real eigenvalue of a constant matrix. Second, we extend
our analysis to systems subject to time-varying delays, which yield similar bounds.
In both cases, which are unified in our interpolation approach, the results not only
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are computationally attractive, but shed useful conceptual insights; when specialized
to more specific cases, e.g., to plants with one unstable pole and one nonminimum
phase zero, they furnish analytical expressions exhibiting explicit dependence of
the bounds on the pole and zero, showing how fundamentally unstable poles and
nonminimum phase zeros may limit the range of delays over which a plant may be
robustly stabilized by a LTT controller. It should be emphasized nonetheless that the
results and conclusions presented herein address only the limitation of LTI controllers
in stabilizing time-delay systems. More general controllers with varying degrees of
implementation complexity, such as linear periodic controllers [19], nonlinear peri-
odic controllers [7], and nonlinear adaptive controllers [15, 23] can be constructed to
lend an infinite delay margin, allowing a LTI delay plant to be stabilized for arbitrarily
long uncertain delays.

The notation used throughout this chapter is fairly standard. Let R be the space of
real numbers, R” the space of n-dimensional real vectors, and R’} the n-dimensional
space of positive real numbers. For any complex number z, we denote its conjugate
by z. For any complex vector x, we denote its transpose by x” and its conjugate
transpose by x*/. Similarly, for any complex matrix A, A denotes its conjugate
transpose. The largest real eigenvalue of a matrix A will be written as o< (A), and
if A is a Hermitian matrix, its largest eigenvalue will be written as A(A). We write
A > 0 if A is nonnegative definite, and A > 0 if it is positive definite. The symbol
® denotes the Kronecker product. Let C_ := {s : Re(s) < 0},C; := {s : Re > 0},
and C, := {s : Re > 0} be the open left and the open right-half of the complex
plane, and the closed right-half of the complex plane, respectively. For any stable
transfer function matrix G(s), define its Hy, norm by |G (s) |l = supd (G(jw)),

where o () stands for the largest singular value. For any unitary vectors u, v € C", we

denote the principal angle between the directions spanned by # and v as cos Z(u, v) =
ufly|.

‘ W‘e note that subsequent to this chapter, an extended version reporting the results

herein has appeared in [24], which develops in full the approach with extensions to

multi-input multi-output delay systems. We refer to [24] as well for all the proofs of

the results in this chapter.

2 Bounds on Delay Margin of SISO Systems

In this section, we present the results for SISO delay systems, which consist of a
general lower bound on the delay margin that amounts to computing an eigenvalue
problem. We also present explicit bounds for more specialized cases, which exhibit
the dependence of the delay margin on the plant’s unstable poles and nonminimum
phase zeros.
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Fig. 1 Standard feedback
control structure Pe(s)
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The Delay Margin Problem

We consider the feedback control system depicted in Fig. 1, in which P, (s) represents
a family of plants subject to an unknown delay 7, with Py(s) being the delay-free
plant:

P.(s) =e " Py(s), T>0. (D

Suppose that Py(s) is stabilized by a certain finite-dimensional LTI controller K (s).
By continuity, K (s) can stabilize P, (s) for sufficiently small 7 > 0. But how large
may 7 be, before the system loses closed-loop stability?
The delay margin problem seeks to answer the above question, which amounts to
computing
t* =sup{v: K(s) stabilizes P.(s), VT € [0, v)}.

In other words, we want to determine the largest delay range within which P, (s)
can be stabilized by a finite-dimensional LTI controller K (s). Note that for K (s) to
stabilize P; (s), it is both necessary and sufficient that

14+ P.(s)K(s) #0, Vs eC,.
Under the condition that Py(s) is stabilized by K (s), this condition is equivalent to
1+ To(s) (7™ — 1) #0, Vs eCy, 2)

where Ty(s) = Py(s)K (s) (1 + Po(s)K (s))~" is the system’s complementary sensi-
tivity function. It is clear that there exists some stabilizing K (s) for all T € [0, 7]
if

inf || Tt -1 1.
0 B o0 =Dl < ©

Define

¢z(w) = sup e “4)

7€l0, 7]

o _q = {251n(wf/2), lwT| < 7,

2, |lwT| > 7.
Evidently, the condition (3) holds whenever

Il(r(lf) To(jo)pz(w)| <1, Vo eR. ®)
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Unfortunately, the problems in (3), (5) and the delay margin problem itself all pose a
formidable challenge, for they all require solving infinite-dimensional optimization
problems due to the presence of the weighting function (e’” — 1).

One instrumental step in our approach is to construct a parameter-dependent
rational approximation

be(s)  by(zs)t + -+ bi(ts) + by
a:(s)  ay,(xs)?+---+ay(rs) +ap’

we(s) =

(6)

such that
¢ (@) < w(jo)|, Yo eR. (7N

We require that w; (s) be stable and have no nonminimum phase zero, excluding the
origin where w (s) might have a zero, that is w;(0) = 0. This latter condition may
be imposed to ensure a close-fit of |w,(jw)| to ¢, (w) at low frequencies. Note that
under this requirement, with no loss of generality, it is necessary that a; > 0 fori =
0,1,...,g,and b; > Ofori =1, ..., g.Some of specific, low-order approximants
in this spirit can be found in, e.g., [9, 24, 28]:

wic(s) = Ts, ()
() i ©)
Wi (§) = ————,
: 1+ 75/3.465
) 1.2167s (10)
Wi (s) = ——,
’ 1+ 1s/2
75(2 x 0.2152%ts + 1)
T == ’ 11
War (5) (0215275 + 1)2 (b
ts  0.1791(zs)? +0.70937s + 1
Wwse(s) = (12)

1+15/20.1791(7s)? 4+ 0.57987s + 1’

s 0.02952(7s)* + 0.210172(15)3 + 0.70763(r5)% + 1.31887s + 1

1+ 75/20.02952(75)* + 0.191784(z5)3 + 0.64174(ts)2 + 1.1952827ts + 1°
(13)

wer (8) =

Note that we, (s), with a highest order, betters all other w;;(s), fori =1,...,5.
Figure 2 shows the magnitude responses of these rational functions.
With the rational approximant alluded to above, we may then attempt to compute

T =sup {‘L’ >0: [l{I’(lf) I To(s)w:(8)|loo < 1} , (14)

which, unlike in (5), amounts to solving a finite-dimensional H,, optimal control
problem, nonetheless parameterized by a nonnegative parameter t > 0; for a different
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Fig. 2 Rational approximation for ¢ (w)

Wiz (s), a corresponding Ho, problem is solved, resulting in a different z,. Clearly,
the condition (5) holds for ¢ () whenever

inf | To(s)we(s)| , < 1. (15)
K(s)

Note that ¢, (w) is monotonically increasing with t > 0 within the range of 0 <
ot < m. As such, 7 serves as a lower bound on the delay margin t*, and in turn
provides a range guaranteeing the stabilizability of P, (s): there exists a controller
K (s) that can stabilize P, (s) for all T € [0, 7).

A Computational Formula

We compute the lower bound 7 with a general rational approximant given in (6),
by casting the problem (14) into one of the Nevanlinna-Pick interpolation [1]. The
following result illustrates this point.

Theorem 1 Letp; e C.,i=1, ..., nandz; € Cy, i =1, ..., mbethedistinct
unstable poles and nonminimum phase zeros of Py(s), respectively. Assume that Py(s)
has neither zero nor pole on the imaginary axis. Then for any w.(s) in (6),
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— Oy Dy — D Dy, — D Dy,
» I 0 0
LZGmax : ’
0 I 0
_ Qp bo
where CI>0—|:bO aéZ’l ,
0 bk(D,lf)k
k k I 7—1nH\k—1 | » k=1, ..., q,
kap Zalak_leZ (Dp)
P, = =0
: / I =1, yH\k=I —
diag {0, > aiag—1D,Z7 (D)) , k=qg+1, ..., 2q,
I=k—q
Z=0,+000'0.,, D,=dag(p. ... p).
e e B ] R Perd
o latz ’ pi+pil i i—pil

We note that Theorem 1 can be extended to accommodate multiple poles and
zeros in Py(s), using a more sophisticated result on the mixed Nevanlinna-Pick and
Carathéodory-Fejér interpolation problem [26, 29]. Imaginary poles and zeros can
also be incorporated in the analysis as boundary interpolation constraints [1, 2]. For
technical simplicity, however, we choose not to address such poles and zeros herein.

In view of Theorem 1, a lower bound 7 on the delay margin can be found by
solving rather efficiently an eigenvalue problem, which guarantees that P, (s) can be
stabilized by a certain LTI controller K (s) for all T € [0, 7). Since t corresponds
to an optimal H., optimization problem, a robustly stabilizing controller can be
synthesized accordingly. Indeed, to synthesize this robustly stabilizing controller
K (s), it suffices to solve the standard H,, control problemin (15), once 7 is computed
according to Theorem 1. This gives rise to an optimal controller K (s) depending on
7. In this vein, it is worth pointing out that a lower order w. (s), such as those given
in (8)—(13), can be particularly desirable, since they potentially result in low-order
controllers.

Special Cases

A number of special cases are further examined in this section. The first result con-
cerns the circumstance where Py(s) has only a single unstable pole. In this case, an
explicit lower bound is obtained which exhibits how the plant unstable pole may
confine the delay margin.

Corollary 1 Suppose that Py(s) has only one unstable pole p € C,, and no non-
minimum phase zero. Then for any w.(s) in (6) with by < ay,
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)\min
T= , (16)
p
where
q
)\min = min {)\. >0: Z(bk—ak)kk IO} . (17)
k=0
In particular, if w.(s) = w;(s) forwi (s), i =1, ..., 6 givenin (8)—(13), then we

have T = z;, with

Mz, =1/p; () z,~1406/p; (3) 1;~1397/p; 4 z,~ 1.5582/p;
(5) 5~ 1.7008/p; (6) T4~ 1.722/p.

In other words, for plants with a sole unstable pole, it suffices to solve the smallest
positive real root of a polynomial.

While Corollary 1 shows a varying degree of conservatism in the various lower
bounds resulted from their respective approximants w;. (s), it is interesting to observe
that ws; (s) and we, (s), despite being only a third-order and a fifth-order approximant
respectively, provide rather accurate estimates of the true delay margin; in these
cases, s = 1.7008/p, andr, = 1.722/ p, respectively, as opposed to the exact delay
margin T* = 2/p, obtained in [18]. Note however that the exact delay margin 7% =
2/p may not be attainable in a realistic sense, for the robustly stabilizing controller
corresponding to t* will result in an arbitrarily small loop bandwidth [18] and thus
will be hardly of use. In practice, one must then accept to find a robustly stabilizing
controller for a smaller range of delay, which will be even closer to the lower bounds
obtained herein.

More generally, Corollary 1 can be extended to systems containing nonminimum
phase zeros as well, as demonstrated by the following result.

Corollary 2 Suppose that Py(s) has only one unstable pole p € C, and distinct
nonminimum phase zeros z; € C,, i =1, ..., m. Let

= (18)

where

q
Aminzmin {)\ >0: Z(bk—Mak))J‘ ZO} (19)
k=0
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Furthermore, for wo(s) = w;;(s), i =1, 2, 3 given in (8)—(10), we have T = 1,,
with

M

) L= G216=05m)p°

W= @ =
BT Y RT T 0somp

Evidently, Corollary 2 shows that in the presence of nonminimum phase zeros,
the range of delay with guaranteed stabilizability will be further shrunk. This is
consistent with the finding of [18], which shows that it is less likely to stabilize a
delay plant containing nonminimum phase zeros. The explicit relations given in (1)—
(3) of Corollary 2 show that t is a monotonically increasing function of M. In the
limit when M — 0, stabilization is rendered impossible. This scenario occurs when
the plant has a pair of closely located unstable pole and nonminimum phase zero.
Note also that for the fourth, fifth, and sixth order approximants wy; (s), ws. (s), and
we: (5), similar yet more complex expressions of T can be found explicitly in terms
of M, by more tedious calculations.

3 Systems with Time-Varying Delays

With an added advantage, the interpolation approach can be expanded to analyze
linear systems with time-varying delays. Consider the system

{X=Ax+Bu(t—T(f))» (20)

y=Cx.
It is customary to confine the time-varying delay 7 (¢) to a given range [0, 7),i.e.,
O0<z@) =71, (21)
and bound the variation rate ©(¢) as,
[t@#)| <8< 1. (22)
Let Py(s) = C(sI — A)~'B be the transfer function of the delay-free system. We

want to find a LTI controller K (s) so as to stabilize the delay system (20) by way of
the output feedback u(s) = K (s)y(s) within a region defined by (7, §).

Rate-Independent Bound

It is readily recognized that the closed loop system can be represented by Fig. 3, in
which A is a linear time-varying operator such that

Au(t) =ult —t(1)).
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Fig. 3 Feedback system X X
with time-varying input > B | i > C >
delay -
A
A K(s) [
Fig. 4 Small-gain setup of X

systems with time-varying A B L > C >
delay I -
s | A

K(s)

A

By employing the model transformation [8],

t

u@—1t() =u(l) — / u(o)do,

t—t(t)

the system can be transformed into the one depicted in Fig. 4, where

t
Ax = —/ x(o)do. 23)
t—1(t)

It is well-known [8] that the system in Fig. 3, i.e., the original system (20) with the
controller K (s), is stable whenever the system in Fig. 4 is stable. Thus, by applying
the small-gain condition developed in [12, 32], we conclude that K (s) stabilizes the
system (20) if it stabilizes Py(s) and the small-gain condition

1T5To(s)lloo < 1 (24)

holds. As a result, in much the same manner, a lower bound on 7 can be found by
solving the H,, optimization problem in (24), which will guarantee the existence of a
controller K (s) that can stabilize the system (20) for all () € [0, 7) regardless of §.
Evidently, this problem coincides with that in (14), with w;(s) = 7s. The following
result is thus clear.

Theorem 2 Letp; € C,,i=1, ..., nandz; € Cy,i =1, ..., mbethedistinct
unstable poles and nonminimum phase zeros of Py(s), respectively. Assume that Py(s)
has neither zero nor pole on the imaginary axis. Then the system (20) can be stabilized
by some K (s) for all ©(t) € [0, T) with

=17 (0,0 (@0 + 0107 00,1 ).
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where

1 1 DiDj Dj
Q=|: _:|,Q1=|:_ :|,Q2=|:—_ — |, =|—".
‘ Zi +2j i’ pi +pj ’ pi +pj i Zi— Ppj

Rate-Dependent Bound

More generally, it is possible to employ more elaborate approximations of the time-
varying operator A. It may also be useful to incorporate the delay variation rate
in the approximation. One such approximation scheme is suggested in [11], which
stipulates that for any T > 0 and 0 < § < 1, K(s) can stabilize the system (20)
whenever

To(jo)pe(jo)l <1, Vo eR, (25)

where 1 (s) is a stable rational function meeting the condition

/2
[Ve(jw)| > m¢t(w)+€

and hence can be constructed so that

[Ve(jo)| =/ % lw-(jo)| + €,

for any € > 0 and any rational function w, (s) given in (6) and satisfying (7). Since
€ > 0 can be made arbitrarily small, the condition (25) is met whenever

. 2—36
inf [[To(s)we () oo <4/ —5— - (26)
K(s) 2

As a consequence, the stabilizability of the system (20) can also be ascertained using
the same interpolation approach. The following result extends Theorem 1 to systems
described by (20), with time-varying delays.

Theorem 3 Letp; € C.,i=1, ..., nandz; € Cy, i =1, ..., mbethedistinct
unstable poles and nonminimum phase zeros of Py(s), respectively. Assume that Py(s)
has neither zero nor pole on the imaginary axis. Then the system (20) can be stabilized
by some K (s) forall t(t) € [0, T), |[t(t)| <5 if

— Oy Dy =D Dy — D Dy,
I .. 0 0
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where for any w.(s) in (6), @y, k =1, ..., 2q are defined as in Theorem I, and
D is given by

with Q, and Z defined in Theorem I as well.

Analogously, explicit bounds can be obtained for more special cases. The fol-
lowing corollary summarizes the time-varying counterparts to Corollaries 1 and 2.

Corollary 3 Suppose that Py(s) is minimum phase and has only one unstable pole
p € C,. Define
234

N=,——.
2

Then the system (20) can be stabilized by some K (s) for all t(t) € [0, T) with
T=17,i=1, ..., 4 where

N N
Du=1/p; @ b=——rco—: OB B=—F7—"77—:
D a=1/pr @ 2=0"4tx08, @ ®= q26-053p
_ 10.81 — 4.654N — </116.9 — 57.32N
4) 4= .
(N=2)p
Additionally, suppose also that Py(s) has distinct nonminimum phase zeros z; € C,
i=1, ..., m. Let M be defined in Corollary 2. Then the system (20) can be
stabilized by some K (s) forallt(t) € [0, T)witht =71;, i =1, ..., 4, where
1 =M/ 2t N M; 3) 7 N M
= ’ = —-— , MmM==—
! p T (1—-0.289N)p T (1216 — 0.5N)p
_ 10.81 —4.654N — /116.9 — 57.32N
(4) Ty = M.
(N=2)p

Theorems 2 and 3 differ from each other due to the incorporation of the variation
rate §, which results from the difference between (24) and (26). Similarly, in Corollary
3, the bound 7, is derived using the condition (24), while 7,, 73 and 7,4 are obtained
using (26), together with wy,(s), w3, (s) and wy, (s), respectively. Among the rate-
dependentbounds, 7;,i = 2, 3, 4become progressively less conservative. Compared
to the rate-independent 7, they may or may not be advantageous depending on the
value of §. It is also worth noting that for § = 0, the condition (26) reduces to (15),
and hence the results in this section all recover the bounds for LTI systems presented
in Sect. 3.
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4 Examples

We now consider a number of illustrating examples. Example 1 presents a system
with a constant delay, while Example 2 addresses systems with a time-varying delay.
In both examples, we assume that the plant is excited by a unit step input.

Example 1 Consider the plant

0.1(s — 10)(s — 0.1659)
(s — 0.1081)(s2 + 0.2981s + 0.06281)

Po(s) = 27)

This system has an unstable pole p = 0.1081 and two nonminimum phase zeros z; =
10, z» = 0.1659. Using the approximant we, (s), we find 7, = 2.0741, achievable
by the optimal controller K (s) solving (15):

10643(s + 0.9643) (s + 0.2981s + 0.06282)
(s + 1044)(s + 30.13)(s + 1.134)(s + 0.7959)
(s2 + 1.965s + 1.109) (s + 1.167s + 1.651)

(s +0.617)(s2 + 1.27s + 1.647)

K(s) =

(28)

The closed-loop output response is plotted in Fig.5 for r = 0.6, 1, 1.5, 2, respec-
tively. For T = 2, Fig.6 shows the state responses of the system (27). Clearly, the
system is internally stable. Moreover, Fig.7 shows the magnification of the output
responses forz € [0, 25], exhibiting the typical undershoot behavior of nonminimum
phase systems.

Example 2 The following system, given in state-space form, contains a time-varying
delay t(7):

. —599 600 1

yt)y=[1 =3]x@.

The delay-free part of the system has an unstable pole p = 1 and a nonminimum
phase zeros z = 3. The time-varying delay under consideration is described by

() = a(l — sin(Bt))

forsomea > 0, B > 0.Itisevidentthat0 < t(¢) < 2«, and § = 8. From Theorem
2, we assert that the system (29) is robustly stabilizable regardless of 8 whenever
a < 0.25. For all a € [0, 0.25), the system (29) can be stabilized by the feedback
controller K (s) solving the H, optimal control problem in (24):

(s + 600) (s + 100)
(s + 3.2 x 100)(s 4 1640)(s + 5.853) "

K(s) = —1.0273 x 108 (30)
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Fig. 6 State response of the system (27) with controller (28) for t = 2
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Fig. 7 Step response of the system (27) with controller (28) ¢ € [0, 25]

0.2

~ — —a=0.15=10
-0.2f — — 0=0.24,3=0.5 | |
0=0.24,3=10

Amplitude

_14 L

0 50 100 150 200 250 300 350 400
Time(sec)

Fig. 8 Output response of the system (29) with controller (30)
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Fig. 9 State response of the system (29) with controller (30) for ¢ = 0.24, 8 = 0.5

Figure 8 shows the stable output responses of the closed-loop system for various
combinations of o within the interval [0, 0.25) and arbitrarily selected 8. For o« =
0.24, g = 0.5, Fig. 9 shows the state responses.

5 Conclusion

In this chapter we have studied the delay margin and delay robust stabilization prob-
lems for linear delay systems. Our solutions seek to ascertain the existence of a
finite-dimensional LTI output feedback controller that can robustly stabilize an entire
family of plants subject to uncertain, possibly time-varying delays within a given
range. Built on small-gain stability conditions, we employed analytic interpolation
and rational approximation techniques to develop bounds on the delay margin. The
development has led to a unified interpolation-based approach, applicable to SISO
systems with constant and time-varying delays. The results consist of readily com-
putable bounds on the delay margin of SISO systems, within which a delay plant is
guaranteed to be stabilizable. The bounds can in general be computed by solving an
eigenvalue problem. For more special plants admitting, e.g., only one unstable pole,
explicit results are found which show how unstable poles and nonminimum phase
zeros may fundamentally confine the range of delay allowed for robust stabilization.



Delay Margin for Robust Stabilization of LTI Delay Systems 297

Acknowledgements The authors gratefully acknowledge the support of Hong Kong RGC under
the projects CityU 11200415, CityU 11201514, and the support of Natural Science Foundation of
China under grant numbers 61603179 and 61603141.

References

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Ball, J.A., Gohberg, 1., Rodman, L.: Interpolation of Rational Matrix Functions. Birkhduser,

Basel (1990)
Chen, J.: Logarithmic integrals, interpolation bounds, and performance limitations in MIMO
feedback systems. IEEE Trans. Autom. Control. 45(6), 1098—1115 (2000)

. Devanathan, R.: A lower bound for limiting time delay for closed-loop stability of an arbitrary

SISO plant. IEEE Trans. Autom. Control. 40(4), 717-721 (1995)

Doyle, J.C., Francis, B.A., Tannenbaum, A.: Feedback Control Theory. Macmillan Publishing
Company, New York (1992)

Foias, C., @Zbay, H., Tannenbaum, A.: Robust Control of Infinite Dimensional Systems:
Frequency Domain Methods. Lecture Notes in Control and Information Sciences, vol. 209.
Springer, New York (1996)

Fridman, E.: Tutorial on Lyapunov-based methods for time-delay systems. Eur. J. Control.
20(6), 271-283 (2014)

Gaudette, D.L., Miller, D.E.: Stabilizing a SISO LTI plant with gain and delay margins as large
as desired. IEEE Trans. Autom. Control. 59(9), 2324-2339 (2014)

Gu, K., Kharitonov, V., Chen, J.: Stability of Time-delay Systems. Bitkhauser, Boston (2003)
Huang, Y., Zhou, K.: Robust stability of uncertain time delay systems. IEEE Trans. Autom.
Control. 45(11), 2169-2173 (2000)

Ju, P., Zhang, H.: Further results on the achievable delay margin using LTI control. IEEE Trans.
Autom. Control. (99) (2015)

Kao, C., Rantzer, A.: Stability analysis of systems with uncertain time-varying delays. Auto-
matica 43(6), 959-970 (2007)

Kao, C.Y., Lincoln, B.: Simple stability criteria for systems with time-varying delays. Auto-
matica 40(8), 1429-1434 (2004)

Kharitonov, V.L., Niculescu, S.I., Moreno, J., Michiels, W.: Static output feedback stabilization:
necessary conditions for multiple delay controllers. IEEE Trans. Autom. Control. 50(1), 82-86
(2005)

Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhzuser, Basel
(2009)

Liberis, N.B., Krstic, M.: Nonlinear Control Under Nonconstant Delays. SIAM, Philadelphia
(2013)

Loiseau, J.J., Michiels, W., Niculescu, S.I., Sipahi, R.: Topics in Delay Systems: Analysis,
Algorithms and Control. Lecture Notes in Control and Information Sciences, vol. 388. Springer,
Berlin (2009)

Michiels, W., Niculescu, S.I.: Stability and Stabilization of Time-Delay Systems: An
Eigenvalue-Based Approach. SIAM, Philadelphia (2007)

Middleton, R.H., Miller, D.E.: On the achievable delay margin using LTI control for unstable
plants. IEEE Trans. Autom. Control. 52(7), 1194-1207 (2007)

Miller, D.E., Davison, D.E.: Stabilization in the presence of an uncertain arbitrarily large delay.
IEEE Trans. Autom. Control. 50(8), 1074-1089 (2005)

Mirkin, L., Palmor, Z.J.: Control issues in systems with loop delays. Handbook of Networked
and Embedded Control Systems Control Engineering, pp. 627-648. Birkhduser, Basel (2005)
Niculescu, S.I., Gu, K.: Advances in Time-Delay Systems. Springer, Heidelberg, Germany
(2004)



298

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L
32.

T. Qi et al.

Niculescu, S.I., Michiels, W.: Stabilizing a chain of integrators using multiple delays. IEEE
Trans. Autom. Control. 49(5), 802-807 (2004)

Pietri, D.B., Chanvin, J., Petit, N.: Adaptive control scheme for uncertain time-delay systems.
Automatica 48, 1536-1552 (2012)

Qi, T., Zhu, J., Chen, J.: Fundamental limits on uncertain delays: when is a delay system
stabilizable by LTI controllers? IEEE Trans. Autom. Control. 63(3), 1314-1328 (2017)
Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems.
Automatica 39(10), 1667-1694 (2003)

Rosenblum, M., Rovnyak, J.: Hardy Classes and Operator Theory. Oxford University Press,
Oxford, New York (1985)

Silva, G.J., Datta, A., Bhattacharyya, S.P.: New results on the synthesis of PID controllers.
IEEE Trans. Autom. Control. 47(2), 241-252 (2002)

Wang, Z.Q., Lundstrom, P., Skogestad, S.: Representation of uncertain time delays in the Huo
framework. Int. J. Control. 59(3), 627-638 (1994)

Xu, D, Ren, Z., Gu, G., Chen, J.: LFT uncertain model validation with time- and frequency-
domain measurements. IEEE Trans. Autom. Control. 44(7), 1435-1441 (1999)

Zhong, Q.C.: Robust Control of Time-delay Systems. Springer, Berlin (2006)

Zhou, B.: Truncated Predictor Feedback for Time-Delay Systems. Springer, Berlin (2014)
Zhu, J., Qi, T., Chen, J.: Small-gain stability conditions for linear systems with time-varying
delays. Syst. Control. Lett. 81, 42-48 (2015)



	Delay Margin for Robust Stabilization  of LTI Delay Systems
	1 Introduction
	2 Bounds on Delay Margin of SISO Systems
	3 Systems with Time-Varying Delays
	4 Examples
	5 Conclusion
	References




