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1 Introduction

Study of multi-agent systems has attracted tremendous attention especially in the
past decade, with applications involving robotic networks [1], traffic flow dynamics
[2], human-machine interactions and collaborative human-robot systems [3]. While
such systems can enjoy rich information flow amongst the agents with the network
interconnectivity, distributed nature of the agents and the need to utilize advanced
technologies to tailor these agents inevitably bring about a number of unique chal-
lenges to the design and control of multi-agent systems. One key challenge is the
presence of time delays in the network dynamics [4], which may arise due to various
reasons including agents’ actuation times, the need to use a communication medium
to enable the agents to exchange information, and necessary computation times to
process and interpret large stream of data. The presence of time delay in a dynam-
ical system often imports undesirable characteristics, including poor performance,
oscillatory response, and instability [5]. Nevertheless, if carefully engineered, time
delay can also be used as a vehicle to craft the dynamic response, including fast
stabilization [6–11].

In the context of multi-agent networks however, use of delays as a design param-
eter to achieve fast stabilization is under-explored although this is of high interest
[12, 13]. One opportunity in this endeavor is to utilize reliable computational tools to
approximate the rightmost eigenvalues of the dynamics [14], or to use those tools to
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tune the controller gains via optimization schemes [15]. Other ideas to achieve fast
stabilization include strategically removing certain links between some of the agents
to expedite consensus reaching [16], or re-designing their coupling strengths [17].

Recent results on linear time-invariant (LTI) single-input single-output (SISO)
systems [9, 10] indicate that analytical tuning rules can be developed with certain
classes of controllers to optimize the spectrumof the closed-loop system.Specifically,
in [18, 19], authors analytically designed Proportional-Retarded (PR) protocols that
can assign a closed-loop system’s spectral abscissa to a user-defined location on the
complex plane. These results point out opportunities also for large scale LTI network
control problems see, e.g., [20–27] for studies utilizing PR controllers in network
settings.

In this chapter we seek to develop distributed PR-based protocols for a bench-
mark large-scale LTI consensus system. The main objective is to utilize Lambert W
functions to analyze the stability of the system in terms of PR protocol parameters.
For this, we first take advantage of standard decomposition tools to break down the
corresponding characteristic equation into subsystems and treat each subsystem sta-
bility one by one. This result provides a transparent understanding in terms of which
specific eigenvalue of the graph Laplacian underlying the network governs directly
the stability of the entire consensus system. Furthermore, it connects with our recent
study in [28] where, with each subsystem being in a particular form, we utilized
some inherent features of Lambert W functions to tune the PR protocol without any
approximation while shifting the spectrum of the subsystems all at once, thereby
yielding fast stabilization. With the novelty of the results pertaining to this tuning
approach left to [28], here we summarize some key findings from the cited work for
the completeness of the presentation. Overall, in an undirected network, the proposed
approach as we demonstrate is scalable and easy to implement, even in the presence
of signals with high-frequency noise components.

The rest of the chapter is organized as follows. Section2 describes the consensus
dynamics under analysis and states the problem formulation in light of the Lambert
W function. Section3 starts with a useful factorization of the system that enables
a comprehensive study of the stability of the complete network using dimensional
analysis. Section4 summarizes some results without proofs from [28] regarding
the design of the spectral abscissa of the system ensuring fast consensus. Section5
verifies the findings via the analysis of a challenging numerical example. Finally
some concluding remarks and further directions on research are given in Sect. 6.

2 Preliminaries and Problem Formulation

In the following we consider a system with n identical agents whose dynamics is
captured by the integrator plant

ẋi (t) = ui (t), (1)
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where xi (t) is the state of the i th agent and ui (t) is the control input by which
agent i communicates with the rest of the agents. The communication topology of
the network is described by an undirected weighted graph G = (N , E, A) where
N = {1, 2, . . . , n} is the set of nodes, E ⊂ N × N is the set of edges (communi-
cation channels), and A = [ai j ] is the weighted adjacency matrix. We assume that
each edge has an associated weight ai j = a ji , also known as the coupling strength,
where the indices (i, j) ∈ E indicate that agent i ∈ N receives information either
instantaneously or with delay from agent j ∈ N whenever ai j > 0.

Let L = [li j ] ∈ R
n×n be the Laplacian matrix with

li j =
{∑n

m=1,m �=i aim i = j,

−ai j i �= j,
(2)

then L is symmetric li j = l ji and accepts the diffusive property
∑n

j=1 li j = 0. Hence,
from the spectral theorem for Hermitian matrices [29], its eigenvalues are real.

The control objective, as proposed in [28], is to achieve agreement of the states
amongst all the agents of the network. To this end, we consider that the agents are
coupled via the Proportional-Retarded (PR) protocol originally developed for SISO
systems [11],

ui (t) = kp

n∑
j=1

ai j [x j (t) − xi (t)] − kr

n∑
j=1

ai j [x j (t − h) − xi (t − h)]. (3)

Here, kp and kr determine respectively the strength of the proportional and retarded
actions, and h > 0 is an intentional delay induced as part of the input with the aim of
obtaining a delayed term by which high-frequency measurement noise is attenuated.
We say that protocol (3) solves the consensus problem if lim

t→∞ ‖xi (t) − x j (t)‖ = 0,

for all i, j ∈ N .
Note that the introduction of the retarded part in the PR protocol mimics a pure

derivative action, thus improving transient response but being insensitive tomeasure-
ment noise. To see this, observe that (3) can be written in terms of the entries of L
as: ui (t) = −∑n

j=1 �i j [kpx j (t) − kr x j (t − h)]. Introducing the null term ±kr x j (t)

into the above and defining k̃ p ≡ kp − kr and k̃r ≡ hkr we obtain the following
alternative representation

ui (t) = −
n∑

j=1

�i j

[
k̃ px j (t) + k̃r

1

h

∫ t

t−h
ẋ j (τ )dτ

]
. (4)

Hence, the proposed protocol performs an averaged derivative action [11] distributed
throughout the network by which high-frequency noise components are attenuated
without relying on measurements or approximations of ẋ j (t).
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Let x = (
x1 · · · xn

)	
be the stack vector of the states at all nodes and {A0, A1} =

{−kp, kr } · L , then system (1) with (3) can be conveniently expressed in matrix form
as

ẋ(t) = A0x(t) + A1x(t − h), (5)

whose stability properties are defined by the location of the characteristic roots of
the function

f (s, kp, kr ) = det(s I − A0 − A1e−sh) = 0, (6)

which is also known as the characteristic equation of system (5). Let � be the
collection of all characteristic roots satisfying (6) and define the spectral abscissa

γ ∗ = max{R(s) | s ∈ �}. (7)

Then, γ ∗ < 0 implies that the spectrum of the system, �, lies in the open left-half of
the complex plane, thus leading to the following definition [10, 30].

Definition 1 The system (5) is exponentially stable if andonly if the spectral abscissa
is strictly negative.

Remark on the solution of DDEs via the Lambert W function: A Lambert W
function is any function W : C → C satisfying

W (z)eW (z) = z, (8)

for all z ∈ C. Due to the fact that W is multi-valued, it possesses infinitely-many
branches [31]. For a Delay-Differential Equation (DDE), such as the one in (1) with
(3), each of these branches can be associated to an element of its spectrum; i.e., to an
eigenvalue. In particular, the Lambert W function is useful for the stability analysis
and control of LTI-TDS represented byDDEs [32]. For example, the principal branch
W0 can be employed to find the system’s dominant root s0. Then, ifR(s0) is negative,
we can conclude that the system is stable.1 Computation of W0 follows from the
Lagrange inversion theorem [31] as the series expansion

W0(z) =
∞∑

r=1

(−r)r−1

r ! zr . (9)

Moreover, W0 may also be defined as the only branch of W that is analytic at 0.2 In
addition, the Lambert W function can also be extended to design feedback controllers
placing s0 at a desired position by using numerical procedures [33].

1It is worthy ofmention that the radius of convergence of the series is e−1. For practical computation,
the reader is referred to [31] where additional asymptotic formulae can be found considering all the
branches of the Lambert W function.
2The scalar Lambert W function is available as embedded function in MATLAB, see the function
lambertw.
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3 Stability of the Network

Next, we present a decomposition of system (5) by which stability conditions can be
derived using the Lambert W function [33] and the D-subdivision method [34].

Factorization of the Consensus Dynamics

Let us begin with a modal transformation that rotates the vector fields of system
(5) aiming at obtaining a diagonal representation of it. Similar transformations have
been widely utilized in the context of time delay systems, see for example [35–38].
Here, we will say that both systems are equivalent if they share the same stability
properties in terms of their spectrum.

Proposition 1 Let {λ1, . . . , λn} be the set of eigenvalues of L ordered increasingly.
Then, system (5) is equivalent to the diagonal system

ξ̇ξξ(t) = ���0ξξξ(t) + ���1ξξξ(t − h), (10)

where {���0,���1} = {−kp, kr } · ���, and ��� = diag{λ1, . . . , λn}.
Proof Since the graph is undirected the Laplacian matrix is symmetric, hence the
Schur’s theorem [29] guarantees the existence of a nonsingular orthogonal matrix
U ∈ R

n×n , such that the following representation holds: L = U���U−1. Introducing
the change of variable x(t) = Uξξξ(t), system (5) is reduced to the diagonal form (10),
which can be treated as a set of n decoupled subsystems with dynamics

ξ̇m(t) = −λmkpξm(t) + λmkrξm(t − h), m = 1, . . . , n. (11)

The characteristic equation of any subsystem of the form (11) is

fm(s, kp, kr ) = s + λmkp − λmkr e−sh = 0. (12)

The fact that the matrix coefficients of systems (5) and (10) share the same set of
eigenvalues implies that each fm(s, kp, kr ) in (12) is a factor of f (s, kp, kr ) in (6);
i.e.,

f (s, kp, kr ) =
n∏

m=1

[
s + λmkp − λmkr e−sh

] = 0. (13)

Then, the spectra and thus the stability properties of (10) and (5) are equivalent.
� �

Proposition 2 The system (5) is exponentially stable if and only if

γ ∗ = max
{
γ ∗

m

}n

m=1 < 0, (14)

where
γ ∗

m = R
(
h−1W0

(
λmkr heλm kph

) − λmkp
)
, (15)
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and W0 is the principal branch of the Lambert W function.

Proof Consider the mth factor fm(s, kp, kr ) in (12). Multiplying both sides of this
equation by heλm kph yields

h
(
s + λmkp

)
eh(s+λm kp) = λmkr heλm kph . (16)

Comparing (8) and (16), we can see that h
(
s + λmkp

) = W (λmkr heλm kph). Solving
the above equation for s leads to the solution

s = h−1W
(
λmkr heλm kph

) − λmkp. (17)

Then, Eq. (15) follows from the real part of (17) using the principal branch W0. As
per Definition 1, the exponential stability of the system is equivalent to (14).� �

Assuming that agents are connected, matrix L has a zero eigenvalue λ1 = 0
corresponding to the consensus state, and with �i j > 0, its remaining eigenvalues
λ2, . . . , λn are positive [39]. Therefore, while ignoring the case of m = 1 since this
corresponds to the consensus state s = 0, we have the following corollary.

Corollary 1 Let γ ∗
m be the spectral abscissa corresponding to the mth subsystem

(11). Then, if γ ∗
m < 0 for all m = 2, . . . , n, system (5) is exponentially stable around

the consensus state of the network.

Proof Note that γ ∗
m < 0 for all m = 2, . . . , n guarantees γ ∗ < 0. � �

Corollary 1 states that separately analyzing the stability of the individual subsystems
is equivalent to analyzing the stability of the complete system.

Decomposition of the Space of Parameters

The above discussion indicates that the stability analysis of system (5) can be per-
formed by studying a finite set of subsystems with reduced complexity. With this in
mind, using the D-subdivision method, we next decompose the space of controller
parameters to study the stability switches of each subsystem (11) with the aim of
obtaining a complete stability picture of the system. First, we transform the char-
acteristic Eq. (12) into a dimensionless form. To this end, let the quasipolynomial
fm(s, kp, kr ) be scaled by h and introduce the time-scaled Laplace operator s̃ = hs,
this then transforms (12) into

h fm(s̃/h, kp, kr ) = s̃ + λmkph − λmkr he−s̃ = 0. (18)

Note that the new quasipolynomial retains the stability properties of the original one
but with a time delay transformed to unity and where h is now acting as a gain in
the system. Defining the lumped gains ρp = λmkph and ρr = λmkr h and the scaled
function f̃ (s̃, ρp, ρr ) = h fm(s̃/h, kp, kr ), we can recast (18) as

f̃ (s̃, ρp, ρr ) = s̃ + ρp − ρr e−s̃ = 0. (19)
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Remark 1 Observe that under this transformation, all factors fm(s, kp, kr ) in (12)
share the uniform structure (19). Hence, for the sake of generality, we temporarily
drop the index m associated with the mth eigenvalue.

Following the same logic as in Proposition 2, we multiply (19) by a factor e(s̃+ρp)

and obtain (s̃ + ρp)e(s̃+ρp) = ρr eρp with which, using the real part of the principal
branch W0 of the Lambert W function, we find the spectral abscissa

γ̃ ∗ = R(W0 (ρr eρp ) − ρp). (20)

As per Corollary 1, stability of any subsystem of the form (11) follows from (20) if
and only if γ̃ ∗ < 0.Moreover, a stability switch can only occur if some characteristic
roots cross the imaginary axis. Therefore, we next search for the lumped crossing
points (ρ



p, ρ



r ) and the corresponding scaled crossing frequencies ω̃ = ωh such that

f̃ ( jω̃, ρ

p, ρ



r ) = 0. (21)

Due to symmetry of the characteristic roots with respect to the real axis, we can
consider only nonnegative frequencies.

Proposition 3 For a given ω̃ �= kπ , k ∈ N the corresponding lumped crossing point
(ρ



p, ρ



r ) is given by

(ρ

p, ρ



r ) = (−ω̃ cos(ω̃)

/
sin(ω̃),−ω̃

/
sin(ω̃)

)
. (22)

Moreover, any point on the line

ρ

p − ρ


r = 0, (23)

is also a lumped crossing point.

Proof Collecting real and imaginary parts of (21) and some algebraic manipulations
generate (22), which are well defined for ω̃ �= kπ , k ∈ N. Corresponding to a root
on the origin of the complex plane, (23) satisfies (21) as ω̃ → 0. � �

Let (ρ

p, ρ



r ) be a lumped crossing point and define

C̃ = {
(ρ


p, ρ


r ) | ω̃ ∈ [0,∞), ω̃ �= kπ, k ∈ N

}
. (24)

The collection of points in (24) generates almost-everywhere smooth curves [40]
known as stability crossing boundaries. Then, C̃ decomposes the lumped space of
parameters D̃ = {(ρp, ρr ) ∈ R × R} into a finite number of regions. Since the spec-
trum of system (5), �, behaves continuously with respect to small variations of the
lumped parameters, each of these regions is characterized by the same number of
unstable roots ν. Let us denote each region by D̃(ν), thus,

D̃ =
∞⋃

ν=0

D̃(ν), (25)
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Fig. 1 (Left panel) Stability map obtained with the quasipolynomial (19), the stability crossing
boundaries C̃ are shown in solid lines and the (ρp, ρr ) pairs satisfying γ̃ ∗ < 0 are depicted with
isolated points. (Right panel) The stability crossing boundaries Cm obtained with Proposition 4 are
shown in solid lines and the (kp, kr ) pairs satisfying γ̌ ∗ < 0 are depicted with isolated points

forms a partition of the lumped space of parameters. Here, D̃(0) is referred to as the
lumped stability domain.

From Proposition 3, we compute the stability crossing boundaries depicted in
solid line in Fig. 1 (Left panel). The stability condition γ̃ ∗ < 0 is next tested, with γ̃ ∗
in (20), using the embedded function lambertw in MATLAB and sweeping both ρp

and ρr . The isolated points in Fig. 1 (Left panel) correspond to (ρp, ρr ) pairs where
the stability condition holds. Here, the stability domain is given by

D̃(0) = {(ρp, ρr ) | γ̃ ∗ < 0}, (26)

whose outlook, shaped by C̃ , remains invariant with respect to both the eigenvalues
of the Laplacian and the amount of induced delay.

To determine the impact of λm and h in the stability properties of the system in
the original coordinates (kp, kr ), we now consider a network with an infinite number
of agents (n → ∞) represented by an undirected graph. According to the spectral
theorem for Hermitianmatrices [29], all the eigenvalues of L are real.Without loss of
generality, let the set of eigenvalues {λ1, . . . , λn} ⊂ R

∞ be ordered increasingly and
define the merged parameter κm = λmh. Once again, we ignore λ1 = 0 as explained
above, and therefore κm > 0. Then, the following proposition is well defined.

Proposition 4 For a given κm > 0, m = 2, 3, . . ., and ω̃ �= kπ , k ∈ N the corre-
sponding crossing point (k


p, k

r ) is given by

(k

p, k


r ) = (−κ−1
m ω̃ cos(ω̃)

/
sin(ω̃),−κ−1

m ω̃
/
sin(ω̃)

)
. (27)

Moreover, any point on the line
k


p − k

r = 0, (28)

is also a crossing point.
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Proof The result follows directly from Proposition 3. � �

Since n → ∞ and �i j = � j i is a free parameter, the eigenvalues of L are allowed to
take any real value, then κm ∈ (0,∞) and κm+1 > κm withm = 2, 3, . . .. Considering
a fixed value of κm , the crossing points (k


p, k

r ) define the stability crossing boundary

Cm = {
(k


p, k

r ) | ω̃ ∈ [0,∞), ω̃ �= kπ, k ∈ N

}
. (29)

Associated with κm , let us define the stability domain

Dm(0) = {
(kp, kr ) | γ̌ ∗

m < 0
}
, (30)

where γ̌ ∗
m = hγ ∗

m follows from (15) and is given by

γ̌ ∗
m = R

(
W0

(
κmkr eκm kp

) − κmkp
)
. (31)

Corollary 1 states that the stability of all subsystems in (12) implies the stability of
the complete network. Moreover, as per Proposition 2, the stability of the complete
network implies

γ̌ ∗ = max
{
γ̌ ∗

m

}n

m=2 < 0. (32)

Conversely, condition (32) implies the stability of the complete network. FromPropo-
sition 4, we compute the stability crossing boundaries depicted in solid line in Fig. 1
(Right panel) with several values of κm → ∞. Condition γ̌ ∗ < 0 in (32) is next
tested, using the embedded function lambertw in MATLAB and sweeping both kp

and kr . The isolated points in Fig. 1 (Right panel) corresponds to (kp, kr ) pairs where
the stability condition of (32) holds. Here, the stability domain is given by

D(0) =
n⋂

m=2

Dm(0), (33)

where D(0) is the stability domain of the overall system (5). Note that D2(0) ⊃
D3(0) ⊃ · · · ⊃ Dn(0), therefore (33) reduces to

D(0) = Dn(0). (34)

Since Dn(0) is related to κn , and κn is related to λn , we can conclude that ensuring the
stability of the subsystem that corresponds to the largest eigenvalue of the Laplacian
will ensure the stability of the complete system. That is,

D(0) = {
(kp, kr ) | γ̌ ∗

n < 0
}
. (35)

The above result is formalized in the following proposition.
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Proposition 5 The stability domain of the consensus dynamics (5) in the parameter
space (kp, kr ) is equivalent to the stability domain of its subsystem associated with
the largest Laplacian eigenvalue in (11). �

Now, the problem is to find the setting for the parameters h, kp and kr as a function
of the Laplacian eigenvalues such that stability of (5) is guaranteed through (35).

4 Tuning of the PR Protocol

The approach presented below is summarized from [28] for completeness. Readers
are referred to the cited study for all relevant proofs. Here, we wish to show how
PR protocol can be tuned for the network system in (5). As concluded above, the
stability of the subsystem related to the largest eigenvalue of the Laplacian implies
the stability of (5). This is now connected to the results in [28] where the objective
is to place the spectral abscissa of the consensus dynamics at a desired position γd .

First, choose an arbitrary eigenvalue λ̄ of L . Associated with λ̄ we have that

γ̄ ∗ = R

(
h−1W0

(
λ̄kr heλ̄kph

)
− λ̄kp

)
. (36)

Using the delay and the gains

(h, kp, kr ) = (1/λ̄, W0(1) − γd/λ̄, e−kp ), (37)

into (36) reduces γ̄ ∗ to
γ̄ ∗ = γd , (38)

where γd is a free parameter introduced to arbitrarily place γ̄ ∗.
Second, study the impact of h, kp and kr in the rest of the subsystems. To this

end, consider a generic spectral abscissa γ̂ ∗ associated with the eigenvalue λ̂ > λ̄.
Employing (37) along with λ̂ into (15) we have the spectral abscissa

γ̂ ∗ = λ̄R
(

W0

(
λ̂λ̄−1e

kp

(
λ̂λ̄−1−1

))
− λ̂λ̄−1kp

)
. (39)

Define δ = λ̂λ̄−1, since λ̂ > λ̄ > 0, then δ > 1. Moreover, whenever kp remains
positive, W0 is real and positive [31]. Hence, (39) is equivalent to

γ̂ ∗ = λ̄
[
W0

(
δekp(δ−1)

)
− δkp

]
. (40)

Third, introduce the identity

F(δ) = γ̄ ∗ − γ̂ ∗, (41)
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relating the spectral abscissas. Here, if F(δ) > 0 for all δ ∈ (1,∞), this would imply
that the systems associated with λ̂ and with λ̄ are both stable provided that γd in (38)
is strictly negative. As per proofs in [28], indeed F(δ) > 0 holds so long as kp > e−1.

Fourth, let λ̄ = λmin = min{λm}n
m=1 �= 0. Since F(δ) > 0 holds for kp > e−1, it

follows that γ̄ ∗ > γ̂ ∗, where γ̄ ∗ is the spectral abscissa associated with λmin, and
γ̂ ∗ is the spectral abscissa associated with any of the remaining eigenvalues of L .
Here, λ1 = 0 is once again ignored as explained above. We conclude that, under
parameters (h, kp, kr ) in (37), the spectral abscissa of the overall network is a function
of λmin and can be placed at any desired position; i.e., γ ∗ = γ̄ ∗ = γd . Moreover, if
λ̂ = λmax = max{λm}n

m=1, choosing γd < 0 such that kp > e−1 implies γ̂ ∗ < 0. In
other words, the subsystem associated with λmax is stable and hence, system (5) is
stable as per our result in the previous section.

Finally, we have the following proposition by which the γ -stability of system (5)
is ensured by means of the tuning of the parameters of the PR protocol.

Proposition 6 ([28]) Let λmin = min{λm}n
m=1 �= 0 be the smallest eigenvalue of L ,

and let γd < 0 be a desired locus for the spectral abscissa γ ∗ of system (5), then a
dominant root at γd is placed by the following tuning of the PR protocol gains

(h, kp, kr ) =
(

1

λmin
,
λmin� − γd

λmin
, e−kp

)
, (42)

where � = W0(1) = 0.5671 is the omega constant.

To summarize, on the network system at hand controlled by PR protocol, we have
two key messages: (a) The maximum of the eigenvalue λmax of the graph Laplacian
L dictates the ultimate stability characteristics in terms of PR protocol gains, and
(b) the minimum of the eigenvalue λmin of the graph Laplacian L dictates how the
PR protocol gains must be designed to place the dominant root of the dynamics at a
user-defined spectral abscissa γd .

5 Numerical Examples

In this section, we present numerical results for the consensus dynamics in (5) where
the parameters of the PR protocol are tuned using Proposition 6.

We investigate a fully connected topology of 5 agents with heterogeneous cou-
pling strengths. Here, {0, 25.74, 41.84, 58.08, 70.76} is the set of eigenvalues of the
Laplacian matrix L given by

L =

⎛
⎜⎜⎜⎜⎝
45.7273 −14.9896 −9.7127 −17.2060 −3.8190

∗ 49.0701 −1.9947 −13.1760 −18.9099
∗ ∗ 26.8209 −0.8211 −14.2924
∗ ∗ ∗ 34.5030 −3.2999
∗ ∗ ∗ ∗ 40.3212

⎞
⎟⎟⎟⎟⎠ . (43)
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With the eigenvalues λm at hand, the quasipolynomial f (s, kp, kr ) = det(s I − A0 −
A1e−sh), where {A0, A1} = {−kp, kr } · L , is factorized with Proposition 1 as

f (s, kp, kr ) = s ×
f (λmin)↑[

s + 25.74kp − 25.74kr e−sh
] × [

s + 41.84kp − 41.84kr e−sh
]

× [
s + 58.08kp − 58.08kr e−sh

] × [
s + 70.76kp − 70.76kr e−sh

]
↓

f (λmax)

.

(44)

Using Proposition 6, one can now place the spectral abscissa of f (λmin) in (44) at
a stable locus, which in turn implies that F(δ) in (41) remains strictly positive for
any δ > 1, and therefore the spectral abscissa of f (λmax) must also be placed at a
stable locus.3 We can conclude that the subsystem associated with λmax is stable and
hence, as per Proposition 5, the complete consensus network is stable.

Figure2 shows the time simulations for the 5-agent network and considering
γd ∈ {−10,−20,−30}. The initial states of the agents in the time interval t ∈ [−h, 0]
are [−0.19, 0.19,−0.59, 0.05, 0.89]	. In addition, we have injected uniformly dis-
tributed random signals into the network’s communication channels to mimic high-
frequency noise measurements of the states with a flat power spectral density and
infinite total energy. Two observations are in order: i) agents’ dynamics are only
minimally affected by the simulated high-frequency noise in the measurements as
opposed to using a controller with pure derivatives (plots suppressed due to lack
of space) and ii) pushing the spectral abscissa deeper into the left-hand side of the
complex plane increases the velocity of response of the system. Following these
observations, we can say that the PR protocol can process the noisy measurements
without any need for further filtering. Moreover, the convergence rate of the consen-
sus network is dictated by the tuning rules in Proposition 6, hence, faster consensus
can be achieved by choosing smaller negative γd values.

6 Conclusions

This chapter studies the stability of a LTI consensus dynamics under a PR protocol
that utilizes delays as tuning parameters. We present how the PR protocol gains
influence the stability of the dynamics and how the maximum eigenvalue of the
underlying graph Laplacian alone ultimately determines the stability of the overall

3Note that Proposition 6 uses λmin to guarantee the placement of γ ∗ at a desired location γd through
a stabilizing pair (kp, kr ). Since γd < 0 is a necessary and sufficient condition for the stability of
the consensus network, it can be conjectured that the stabilizing pair (kp, kr ) must lie within the
stability domain associated with λmax. Therefore, one may consider Proposition 6 as a link between
two important Laplacian eigenvalues, namely, λmin and λmax.
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Fig. 2 5-agent network subject to high-frequency noise measurements. (Left panels) Agents’ states
with respect to time. (Right panels) Spectrum distribution of the consensus dynamics computedwith
QPMR [14]. (Top) γd = −10. (Center) γd = −20. (Bottom) γd = −30

network dynamics. Recent results from [28] are then summarized showing how to
tune the PR protocol to achieve fast consensus. Further research directions include
the analysis of different consensus protocols and the use of multiple delays.
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