
Singular Perturbation Approach for
Linear Coupled ODE-PDE Systems

Ying Tang, Christophe Prieur and Antoine Girard

1 Introduction

Systems modeled by coupled ordinary differential equations (ODEs)-partial differ-
ential equations (PDEs) have been studied in many research works [2, 5, 11]. It is
interesting to analyze such kind of systems due to their significant physical appli-
cations. For instance, elastic beams linked to rigid bodies in [12], power converters
connected to transmission lines in [4] etc.

Singular perturbation theory has been widely used in control engineering from
late 1960s. It is a powerful tool for analysis and design of control systems thanks to
the reduction of the system’s order by neglecting the fast transitions [7, 9, 10]. This
theory is effective in many applications, such as semiconductors, electrical chains
and so on.

Tikhonov approximation, which describes the limiting behavior of system’s solu-
tions, is an important method for analysis of singularly perturbed systems. Tikhonov
approach for finite dimensional systemsmodeledbyODEshas been considered in [6].
In [14], a Tikhonov theorem for infinite dimensional systems governed by hyperbolic
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PDEs has been established by means of a L2 Lyapunov function. The approximation
for linear hyperbolic systems has been improved by using a H 2 Lyapunov function
in [15].

The present work is concerned with a class of coupled singularly perturbed linear
ODE and linear hyperbolic PDE systems. Firstly, a sufficient stability condition is
proposed for both coupled ODE-fast PDE and PDE-fast ODE systems. The stability
of the full system implies the stability of both subsystems. Secondly, the Tikhonov
approximation for such systems is achieved by Lyapunovmethod. Under the stability
conditions of both subsystems, the coupled ODE-fast PDE system is approximated
by the two subsystems for ε sufficiently small. However, for PDE-fast ODE system,
the approximation is valid if the full system is stable. The error between the full
system and the subsystems is estimated as the order of the perturbation parameter ε.

The paper is organized as follows. The coupled ODE-PDE systems under con-
sideration are given in Sect. 2. The reduced and the boundary-layer subsystems are
formally computed in the same section. Section 3 provides sufficient stability condi-
tions for the full system and both subsystems. The Tikhonov approximation for such
systems is stated in Sect. 4. Numerical simulations on academic examples are shown
in Sect. 5. Concluding remarks end of this paper.

Notation. Given a matrix G in R
n×n , G−1 and G� represent the inverse and the

transpose matrix of G respectively. The minimum and maximum eigenvalues of a
symmetricmatrixG are denoted byλ(G) andλ(G). The symbol � in partitioned sym-
metricmatrix stands for the symmetric block. For a positive integer n, In is the identity
matrix inRn×n . | · |denotes the usualEuclideannorm inRn and‖ · ‖ is associatedwith
the usual 2-norm of matrices inRn×n . ‖ · ‖L2 denotes the associated norm in L2(0, 1)

space, defined by ‖ f ‖L2 =
√(∫ 1

0 | f (x)|2dx
)
for all functions f ∈ L2(0, 1). Simi-

larly, the associated norm in H 2(0, 1) space is denoted by ‖ · ‖H 2 , defined for all func-

tions f ∈ H 2(0, 1), by ‖ f ‖H 2 =
√(∫ 1

0 | f (x)|2 + | f ′(x)|2 + | f ′′(x)|2dx
)
. Given a

real interval I and a normed space J ,C0(I, J ) denotes the set of continuous functions
from I to J .

2 Singularly Perturbed Linear Coupled ODE-PDE Systems

In this section, the coupled ODE-fast PDE and PDE-fast ODE systems under con-
sideration are given respectively.
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2.1 Coupled ODE-Fast PDE System

We consider the following linear ODE-fast hyperbolic PDE system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ż(t) = AZ(t) + By(1, t), (1a)

εyt (x, t) + Λyx (x, t) = 0, (1b)

y(0, t) = K1y(1, t) + K2Z(t), (1c)

Z(0) = Z0, (1d)

y(x, 0) = y0(x), (1e)

where x ∈ [0, 1], t ∈ [0,+∞), Z : [0,+∞) → R
n , y : [0, 1] × [0,+∞) → R

m .
The perturbation parameter ε > 0 is a small constant and Λ is a diagonal positive
matrix inRm×m . The matrices A and B are of appropriate dimensions. The boundary
condition matrices K1 and K2 are constant matrices of appropriate dimensions.

Adopting the computations of the subsystems for singularly perturbed ODEs [8],
the reduced and the boundary-layer subsystems for system (1) are formally computed
as follows. By setting ε = 0 in Eq. (1b), we obtain

yx (x, t) = 0. (2)

It implies y(., t) = y(1, t). Assuming (Im − K1) invertible, the boundary condition
(1c) becomes

y(., t) = Kr Z(t), (3)

where Kr = (Im − K1)
−1K2. Using the right-hand side of (3) to replace y(1, t) in

(1a), the reduced subsystem is computed as

{ ˙̄Z(t) = Ar Z̄(t), (4a)

Z̄0 = Z0. (4b)

where Ar = A + BKr . The bar indicates that the variables belong to the systemwith
ε = 0. Using the following change of variable ȳ = y − Kr Z and a new time scale
τ = t/ε, we have

{
ȳτ (x, τ ) + Λȳx (x, τ ) = −εKr (AZ(τ ) + By(1, τ )),

ȳ(0, τ ) = K1 ȳ(1, τ ).

The boundary-layer subsystem is formally computed with ε = 0

⎧⎨
⎩

ȳτ (x, τ ) + Λȳx (x, τ ) = 0, (5a)

ȳ(0, τ ) = K1 ȳ(1, τ ), (5b)

ȳ0(x) = y0(x) − Kr Z0. (5c)
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2.2 Coupled PDE-Fast ODE System

Similar to system (1), we consider the following linear hyperbolic PDE-fast ODE
system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε Ż(t) = AZ(t) + By(1, t), (6a)

yt (x, t) + Λyx (x, t) = 0, (6b)

y(0, t) = K1y(1, t) + K2Z(t), (6c)

Z(0) = Z0, (6d)

y(x, 0) = y0(x). (6e)

The two subsystems are computed as follows. By formally setting ε = 0 in (6a)
and assuming A invertible, we have

Z = −A−1By(1). (7)

Substituting (7) into (6c), the reduced subsystem is

⎧⎨
⎩

ȳt (x, t) + Λȳx (x, t) = 0, (8a)

ȳ(0, t) = Kr ȳ(1, t), (8b)

ȳ(x, 0) = ȳ0(x) = y0(x), (8c)

where Kr = K1 − K2A−1B. Performing a change of variable Z̄ = Z + A−1By (1)
and using a new time scale τ = t/ε, we get

d Z̄(τ )

dτ
= AZ̄(τ ) − εA−1BΛyx (1, τ ).

The boundary-layer subsystem is formally computed with ε = 0

⎧⎨
⎩

d Z̄(τ )

dτ
= AZ̄(τ ), (9a)

Z̄(0) = Z̄0 = Z0 + A−1By0(1). (9b)

Remark 1 Due to [1, Theorem A.6.], the Cauchy problems (1) and (6) are well-
posed, that is, for every Z0 ∈ R

n , for every y0 ∈ L2(0, 1), systems (1) and (6) have
a unique solution Z ∈ C0([0,+∞),Rn), y ∈ C0([0,+∞), L2((0, 1),Rm)).
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3 Stability Condition of Coupled ODE-PDE Systems

We first provide a sufficient stability condition for both coupled ODE-PDE systems
(1) and (6). Then, we study the link of the stability between the full system and both
subsystems.

Proposition 1 Systems (1) and (6) are exponentially stable for all ε > 0 if there
exist diagonal positive matrix Q, symmetric positive matrix P and positive constant
μ such that the following holds

(
e−μQΛ−K�

1 QΛK1 −(K�
1 QΛK2+B�P)

� −(A�P+PA)−K�
2 QΛK2

)
> 0. (10)

The next two propositions show that condition (10) implies the stability of the
reduced and the boundary-layer subsystems.

Proposition 2 Condition (10) implies

A�
r P + PAr < 0, (11)

which is equivalent to the stability of the reduced subsystem (4), and

e−μQΛ − K�
1 QΛK1 > 0, (12)

which implies the stability of the boundary-layer subsystem (5).

Proposition 3 Condition (10) implies

e−μQΛ − K�
r QΛKr > 0, (13)

which implies the stability of the reduced subsystem (8), and

A�P + PA < 0, (14)

which is equivalent to the stability of the boundary-layer subsystem (9).

In view of Proposition 1, the stability of the full systems (1) and (6) is guaranteed
for all positive ε under condition (10). For ε sufficiently small, the stability of both
subsystems (4) and (5) implies the stability of the coupled ODE-fast PDE system
(1), even though condition (10) is not satisfied. However, this result is not valid in
the context for PDE-fast ODE system (6). That is, system (6) could be unstable even
though the two subsystems (8) and (9) are stable. We refer the readers to [13] for
more details.
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4 Tikhonov Approximation of Coupled ODE-PDE Systems

We deal with the Tikhonov approximation of the coupled systems when ε is suffi-
ciently small as follows. If the two subsystems are stable, the coupled ODE-fast PDE
system can be approximated by the subsystems. The approach for coupled PDE-fast
ODE system is valid if the full system is stable.

4.1 Tikhonov Theorem for Linear ODE-Fast PDE System

Let us state Tikhonov theorem for system (1) in the next theorem.

Theorem 1 Consider system (1). If (11) and (12) are satisfied, there exist positive
values C1, C2, θ , ε∗, such that for all 0 < ε < ε∗, and for any initial conditions
Z0 ∈ R

n, y0 = Kr Z0, it holds for t � 0

|Z(t) − Z̄(t)|2 � εC1e
−θ t |Z̄0|2, (15)

‖y(., t) − Kr Z̄(t)‖2L2(0,1) � εC2e
−θ t |Z̄0|2. (16)

Before proving this theorem, we first write the error system of (1). Let us perform
the following change of variables

η = Z − Z̄ , (17a)

δ = y − Kr Z̄ , (17b)

where η represents the error between the slow dynamics of the full system and the
reduced subsystem while δ is the error between the fast dynamics of the full system
and its equilibrium point. Due to (1a) and (4), we write

η̇ = Ż − ˙̄Z = AZ + By(1) − Ar Z̄

= A(Z − Z̄) + B(y(1) − Kr Z̄).

Due to (1b) and (4), we compute

δt = yt − Kr
˙̄Z = yt − Kr (Ar Z̄),

δx = yx .

Due to (1c), we have

δ(0) = y(0) − Kr Z̄ = K1y(1) + K2Z − Kr Z̄

= K1

(
y(1) − Kr Z̄

)
+ K2Z − (Im − K1)Kr Z̄
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= K1

(
y(1) − Kr Z̄

)
+ K2Z − (Im − K1)(Im − K1)

−1K2 Z̄

= K1

(
y(1) − Kr Z̄

)
+ K2(Z − Z̄).

Thus, the error system is written as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η̇ = Aη + Bδ(1), (18a)

εδt + Λδx = −εKr Ar Z̄ , (18b)

δ(0) = K1δ(1) + K2η, (18c)

η0 = Z0 − Z̄0 = 0, (18d)

δ0 = y0 − Kr Z0. (18e)

Based on the above error system we are ready to prove Theorem 1.

Proof Let us consider the following candidate Lyapunov function for system (18)

W (η, δ) = η�Pη +
∫ 1

0
e−μx (δ − Krη)�Q(δ − Krη) dx, (19)

with μ > 0, matrices P and Q are specified later.
We rewrite W (η, δ) = W1 + W2, with W1 = η�Pη and W2 = ∫ 1

0 e−μx (δ − Krη)�
Q(δ − Krη) dx . The time derivative of W1 along the solution to system (18a) is
computed as

Ẇ1 = 2η�P η̇

= 2η�P(Aη + Bδ(1))

= η�
(
PAr + A�

r P

)
η + 2η�PB

(
δ(1) − Krη

)
.

According to (11), there exists a symmetric positive matrix P such that

PAr + A�
r P < −In . (20)

Due to Cauchy Schwarz inequality, it holds

Ẇ1 � −|η|2 + 2‖PB‖ |δ(1) − Krη| |η|. (21)

The time derivative of W2 along the solution to system (18b) is
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Ẇ2 = 2
∫ 1

0
e−μx (δ − Krη)�Q(δt − Kr η̇) dx

= −2

ε

∫ 1

0
e−μx (δ − Krη)�QΛδx dx − 2

∫ 1

0
e−μx (δ − Krη)�QKr (Aη + Bδ(1)) dx

−2
∫ 1

0
e−μx (δ − Krη)�QKr Ar Z̄ dx . (22)

Performing an integration by parts on the first integral in the right-hand side of (22),
Ẇ2 follows

Ẇ2 = −1

ε

[
e−μx (δ − Krη)�QΛ(δ − Krη)

]x=1

x=0
− μ

ε

∫ 1

0
e−μx (δ − Krη)�QΛ(δ − Krη) dx

−2
∫ 1

0
e−μx (δ − Krη)�QKr (Aη + Bδ(1)) dx − 2

∫ 1

0
e−μx (δ − Krη)�QKr Ar Z̄ dx .

(23)

Let the first term in (23) be W21. Under the boundary condition (18c), we have

W21 = −1

ε

[
e−μ(δ(1) − Krη)�QΛ(δ(1) − Krη) − (δ(0) − Krη)�QΛ(δ(0) − Krη)

]

= −1

ε

[
e−μ(δ(1) − Krη)�QΛ(δ(1) − Krη)

−(K1δ(1) + K2η − Krη)�QΛ(K1δ(1) + K2η − Krη)

]
. (24)

We write

K2 − Kr = K2 − (Im − K1)
−1K2 = (Im − K1)(Im − K1)

−1K2 − (Im − K1)
−1K2

= (Im − K1 − Im) (Im − K1)
−1K2 = −K1Kr . (25)

Using the right-hand side of (25) to replace K2 − Kr in (24), we obtain

W21 = −1

ε

[
(δ(1) − Krη)�(e−μQΛ − K�

1 QΛK1)(δ(1) − Krη)

]
.

By using (12), there exists a diagonal positive matrix Q such that

e−μQΛ − K�
1 QΛK1 > λ(e−μQΛ − K�

1 QΛK1) > 0. (26)

Thus

W21 � −λ(e−μQΛ − K�
1 QΛK1)

ε
|δ(1) − Krη|2. (27)

Let W22 denote the second term in (23), it follows
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W22 � −μe−μλ(QΛ)

ε
‖δ − Krη‖2L2(0,1). (28)

Let the third term in (23) be W23, it follows

W23 = −2
∫ 1

0
e−μx (δ − Krη)�QKr

(
Arη + B(δ(1) − Krη)

)
dx .

Due to Cauchy Schwarz inequality, W23 follows

W23 � 2‖QKr Ar‖ |η| ‖δ − Krη‖L2(0,1) + 2‖QKr B‖ |δ(1) − Krη| ‖δ − Krη‖L2(0,1).

(29)

We denote the last term in (23) as W24. It holds

W24 � 2‖QKr Ar‖ ‖δ − Krη‖L2(0,1) |Z̄ |. (30)

Combining (27), (28), (29) and (30), the following hold for all κ > 0,

Ẇ2 � −λ(e−μQΛ − K�
1 QΛK1)

ε
|δ(1) − Krη|2 − μe−μλ(QΛ)

ε
‖δ − Krη‖2L2(0,1)

+2‖QKr Ar‖ |η| ‖δ − Krη‖L2(0,1) + 2‖QKr B‖ |δ(1) − Krη| ‖δ − Krη‖L2(0,1)

+κ‖QKr Ar‖ |Z̄ |2 + ‖QKr Ar‖
κ

‖δ − Krη‖2L2(0,1). (31)

Combining (21) and (31), Ẇ follows

Ẇ � −
⎛
⎝ |δ(1) − Krη|

|η|
‖δ − Krη‖L2(0,1)

⎞
⎠

�

M

⎛
⎝ |δ(1) − Krη|

|η|
‖δ − Krη‖L2(0,1)

⎞
⎠ + κ‖QKr Ar‖ |Z̄ |2,

where M =
(
M1 M2

� M4

)
, with M1 =

(
M11 M12

� M14

)
=

(
λ(e−μQΛ−K�

1 QΛK1)

ε
−‖PB‖

� 1

)
,

M2 =
( −‖QKr B‖

−‖QKr Ar‖
)
, M4 =

(
μe−μλ(QΛ)

ε
− ‖QKr Ar‖

κ

)
.

Since M14 > 0, there exists ε∗
1 > 0 such that for ε ∈ (0, ε∗

1), M11 − M12M
−1
14 M�

12 >

0. Due to the Schur complement, it holds M1 > 0. There exists σ > 0 sufficiently
large such that M4 > 0 with κ = σε. Then, there exists ε∗

2 > 0, such that for all
0 < ε < min(ε∗

1, ε
∗
2), we have M1 − M2M

−1
4 M�

2 > 0. Using again the Schur com-
plement, it holds M > 0. Hence, the following holds

Ẇ � −θW + σε‖QKr Ar‖ |Z̄ |2,
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for any 0 < θ � min
{

λ(M)

λ(P)
,

λ(M)

λ(Q)

}
. Condition (11) implies the exponential stability

of the reduced subsystem (4a), that is, there exist positive constants C̄ and r , such
that for all t � 0,

|Z̄(t)|2 � C̄e−r t |Z̄0|2.

Thus we get
Ẇ � −θW + C̄σεe−r t‖QKr Ar‖ |Z̄0|2.

It holds

W � e−θ tW (η0, δ0) + C̄σε‖QKr Ar‖ |Z̄0|2
∫ t

0
e−θ(t−s)e−rsds

� e−θ tW (η0, δ0) + C̄σε‖QKr Ar‖e−θ t
(
1 − e(θ−r)t

)
r − θ

|Z̄0|2.

We may assume that r > θ , the above inequality becomes

W � e−θ t

(
W (η0, δ0) + C̄σε‖QKr Ar‖

r − θ
|Z̄0|2

)
.

The function W is lower and upper bounded by

λ(P) |η|2 + e−μλ(Q) ‖δ − Krη‖2L2(0,1) � W � ‖P‖ |η|2 + ‖Q‖ ‖δ − Krη‖2L2(0,1).

Since the initial conditions are η0 = δ0 = 0, we obtain

|η|2 � εC1e
−θ t |Z̄0|2,

where C1 > 0. Moreover, it holds

‖δ‖L2(0,1) = ‖δ − Krη + Krη‖L2(0,1) � ‖δ − Krη‖L2(0,1) + Kr |η|.

Hence, we obtain

‖δ‖2L2(0,1) � εC2e
−θ t |Z̄0|2,

where C2 > 0. This concludes the proof of Theorem 1. �
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4.2 Tikhonov Theorem for Linear Hyperbolic PDE-Fast
ODE System

Following the similar computation in Sect. 4.1, the error system of (6) is written as
follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε
˙̃
δ(t) = Aδ̃ + Bη̃(1) − εA−1BΛȳx (1), (32a)

η̃t + Λη̃x = 0, (32b)

η̃(0) = K1η̃(1) + K2δ̃, (32c)

δ̃0 = Z0 + A−1B ȳ0(1), (32d)

η̃0 = y0 − ȳ0, (32e)

where η̃ = y − ȳ, δ̃ = Z + A−1B ȳ(1).

Theorem 2 Consider system (6). If (10) is satisfied, there exist positive values C1,
γ , ε∗, such that for all 0 < ε < ε∗, for any initial condition y0 ∈ H 2(0, 1) satisfying
the compatibility conditions y0(0) = Kr y0(1) and y0x (0) = Λ−1KrΛy0x (1), with
ȳ0 = y0, and for Z0 ∈ R

n, it holds for t � 0

‖y(., t) − ȳ(., t)‖2L2(0,1) � εC1e
−γ t

(
‖ȳ0‖2H 2(0,1) + |Z0 + A−1B ȳ0(1)|2

)
. (33)

Proof We consider the following candidate Lyapunov function for system (32).

Lε(η̃, δ̃) = εδ̃�P δ̃ +
∫ 1

0
e−μx η̃�Qη̃ dx .

Adopting the similar computations in the proof of Theorem 1, the time derivative of
Lε(η̃, δ̃) along the solution to system (32) is

L̇ε(η̃, δ̃) = −
(

η̃(1)
δ̃

)�
T

(
η̃(1)
δ̃

)
− μ

∫ 1

0
e−μx η̃�QΛη̃ dx + 2εδ̃�P(A−1BΛ)ȳx (1),

where T =
(

e−μQΛ−K�
1 QΛK1 −(K�

1 QΛK2+B�P)

� −(A�P+PA)−K�
2 QΛK2

)
.

According to (10), using Cauchy Schwarz inequality and Young’s inequality, the
above inequality holds for all κ > 0

L̇ε(η̃, δ̃) � −λ(T )|δ̃|2 − μe−μλ(QΛ)‖η̃‖2L2(0,1)

+κε‖P(A−1BΛ)‖|δ̃|2 + ε‖P(A−1BΛ)‖
κ

|ȳx (1)|2. (34)

The function Lε(η̃, δ̃) is upper and lower bounded as
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e−μλ(Q) ‖η̃‖2L2(0,1) + ελ(P) |δ̃|2 � Lε(η̃, δ̃) � ‖Q‖ ‖η̃‖2L2(0,1) + ε‖P‖ |δ̃|2. (35)

By choosing κ = 1, there exist ε∗, γ > 0, such that for all ε ∈ (0, ε∗), the following
holds from (34)

L̇ε(η̃, δ̃) � −γ Lε(η̃, δ̃) + ε‖P(A−1BΛ)‖|ȳx (1)|2. (36)

Condition (10) implies that e−μQΛ − K�
r QΛKr > 0. Let  be a diagonal posi-

tive matrix and Q = 2Λ−1. It holds 2 − K�
r 2Kr > 0, which is equivalent to

‖Kr
−1‖ < 1. Then according to [3, Theorem 2.3], the reduced subsystem (8) is

exponentially stable in H 2-norm. Thus, we deduce from (36)

L̇ε(η̃, δ̃) � −γ Lε(η̃, δ̃) + Crεe
−ct‖P(A−1BΛ)‖ ‖ȳ0‖2H 2(0,1), (37)

where Cr and c are positive values.
The following holds

Lε(η̃, δ̃) � e−γ t Lε(η̃0, δ̃0) + Crε‖P(A−1BΛ)‖ ‖ȳ0‖2H 2(0,1)

∫ t

0
e−γ (t−s)e−csds.

We may assume that γ < c, the above inequality becomes

Lε(η̃, δ̃) � e−γ t Lε(η̃0, δ̃0) + e−γ t Crε

c − γ
‖P(A−1BΛ)‖ ‖ȳ0‖2H 2(0,1).

Using (35), we get

‖η̃‖2L2(0,1) � C1e
−γ t

(
‖η̃0‖2L2(0,1) + ε|δ̃0|2 + ε‖ȳ0‖2H 2(0,1)

)
,

where C1 is positive constant. Since η̃0 = 0, the inequality (33) holds for all t � 0.
This concludes the proof of Theorem 2. �

5 Numerical Simulations

Let us first show the numerical simulations on anODE-fast PDE system (1), in which
condition (10) is not satisfied. The full system is approximated by both subsystems
under the stability conditions of the subsystems for ε sufficiently small. We next
provide the numerical simulations on an academic example of PDE-fast ODE sys-
tem (6). The Tikhonov approximation is achieved under the full system’s stability
condition (10).
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0

ȳ
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Fig. 1 Time evolutions of subsystems (4) and (5)

Table 1 Estimates of the error for different values of ε with the initial condition y0 = Kr Z0

ε 0.03 0.02 0.01

|Z(t) − Z̄(t)|2 4.8 × 10−2 2.1 × 10−2 5.0 × 10−3

‖y(., t) −
Kr Z̄(t)‖2

L2(0,1)

2.2 × 10−4 1.0 × 10−4 2.6 × 10−5

5.1 Numerical Simulations on an ODE-Fast PDE System

Let us consider system (1) with A = 1, B = −1, Λ = 1, K1 = 1
2 , K2 = 1. The

initial conditions (1d)–(1e) are selected as Z0 = 0.5 and y0(x) = cos(4πx) − 1.
The perturbation parameter ε is chosen as ε = 0.01. It is computed Ar = −1 for the
reduced subsystem (4). The initial condition (4b) is chosen as the same as for the full
system Z̄0 = Z0 = 0.5. The boundary condition for the boundary-layer subsystem
is K1 = 1

2 . The initial condition is chosen as ȳ0 = cos(4πx) − 3
2 . In view of Ar ,

condition (11) is satisfied for any P > 0. By choosing Q = 1, condition (12) holds.
Figure 1 shows that the reduced and the boundary-layer subsystems converge to the
origin as time increasing.

Let us choose ε = {0.03, 0.02, 0.01}, the initial condition y0 is selected as the
equilibrium point y0 = Kr Z0. Table 1 shows that the errors between the full system
and the reduced subsystem decrease as ε decreasing, as expected from Theorem 1.

5.2 Numerical Simulations on a PDE-Fast ODE System

We consider system (6) with A = −1, B = 1
2 and Λ = 1. The boundary condition

(6c) is given by K1 = − 1
4 , K2 = − 1

2 . The initial conditions (6d)–(6e) are selected
as Z0 = 0.2 and y0(x) = cos(4πx) − 1. The perturbation parameter is ε = 0.01. By
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Fig. 2 Time evolutions of the full system (6)
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Fig. 3 Time evolutions of subsystems (8) and (9)

Table 2 Estimates of the error for different values of ε

ε 0.03 0.02 0.01

‖y(., t) − ȳ(., t)‖2
L2 1.9 × 10−3 5.7 × 10−4 1.4 × 10−5

choosing P = Q = 1, the stability condition (10) is satisfied. Therefore, Proposition
1 applies. In Fig. 2, the solutions of the slow and the fast dynamics of the full system
tend to zero when time increases, as expected from Proposition 1.

Moreover, we compute the boundary condition matrix for the reduced subsystem
as Kr = − 1

2 . The initial condition (8c) is chosen as ȳ0 = y0(x) = cos(4πx) − 1. It
is observed in Fig. 3 that the solutions of both subsystems converge to the origin as
time increasing.

Let us choose ε = {0.03, 0.02, 0.01}. Table 2 shows that the errors between the
slowdynamics of the full system and the reduced subsystemdecrease as ε decreasing,
as expected from Theorem 2.
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6 Conclusions

A class of singularly perturbed linear ODE coupled with linear hyperbolic PDE
systems has been considered in this work. The two subsystems have been formally
computed based on the singular perturbation method. A general sufficient stability
condition has been provided, which guarantees the stability of the full coupled ODE-
PDE system and both subsystems. The Tikhonov approximation for full systems has
been established by Lyapunov method. More precisely, based on the stability of both
subsystems, the full ODE-fast PDE system is approximated by the subsystems. The
estimate error is the order of the perturbation parameter ε. However, for PDE-fast
ODE system, the approximation is valid if the general sufficient stability condition
is satisfied.
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