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Preface

The purpose of this volume in the established series Advances in Delays and
Dynamics (ADD@S) is to provide a collection of recent results on the design and
analysis of Delays and Networked Control Systems.

Many of current control systems operate in networks across several domains
such as Energy Systems, Robotics, and Biology. The possibilities are many as
resources can be shared, thanks to technological advances related to the use of
communication protocols of the networks. In these systems, the individual elements
such as sensor, actuators, and the computational elements might be spatially dis-
tributed, and an analysis of the individual components of the network may predict
the behavior of the interconnections. Therefore, these emerging applications of
controlled systems impose the study of interconnections and their effects on the
system performance. The development of methods and algorithms for this class of
systems is a challenge of nowadays’ applications in which not only the system
elements but also the interconnections are heterogeneous.

In this context, properties of the interconnections have to be assessed in terms of
properties of individual systems and require specific tools whenever delays, a
common phenomenon in communication networks, are introduced. Mathematical
models presenting delays may arise from communication or matter transportation,
from sampling phenomena or provide alternative representations of infinite-
dimensional systems such as the wave equation.

For interconnected systems with delays, the uncertainties and disturbances can
be related to the limitation of the communications and are induced by limited
bandwidth and packet losses. It is therefore important to evaluate the impact
of these disturbances in closed loop. A common strategy is to look at system
properties such as the Input-to-State Stability of the system. Even for standard
linear control strategies, it is important to evaluate the delays margins as a measure
of the expected performance when a control loop is implemented in a network.
Also, in some cases, the delays induced by the sampling or the communication can
be beneficial for the system robustness. Other phenomena related to interconnected
systems and communication protocols may lead to oscillations and strategies to
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understand and suppress undesired behavior required taking into account the
nonlinear elements in the control loops.

This volume proposes different methods and algorithms for the analysis of
interconnected systems, in particular systems presenting delays in interconnected
systems. The majority of the methods employed to study these classes of systems
are either Lyapunov methods, based on a time-domain representation of the system,
or spectral methods, based on the representation of linear systems in the frequency
domain. These are the main tools used by the contributions presented in the volume,
which reflects the contents of the talks presented in the 4th DelSys Workshop that
took place on November 25–27, 2015, in the Laboratoire des Signaux et Systèmes,
Gif-sur-Yvette, France. The workshop was the last of a series of meetings of the
International Scientific Coordination Network on Delay Systems—DelSys,
supported by the French Center for Scientific Research (CNRS). The DelSys
Network was established to promote research on delay systems and to enable
scientific exchanges among experts during the period of 2012–2015.

The contents of the book are organized in three parts:

Interconnected Systems Analysis

Part one of the volume exposes several methods and strategies to cope with the
analysis, control of interconnected systems. The seven chapters in this part cover
continuous-time dynamical systems characterized by linear and nonlinear dynamics
subject to state input or neutral delays as well as systems governed by a coupling
between ordinary and partial differential equations.

This part starts with a chapter “Singular Perturbation Approach for Linear
Coupled ODE-PDE Systems” authored by Ying Tang, Christophe Prieur and
Antoine Girard where the problem of the singular perturbation approach is
employed for the stability analysis and robustness of linear systems described by
the interconnection of ordinary and partial differential equations.

The second chapter “On Some Neutral Functional Differential Equations
Occurring in Synchronization” in this part, authored by Vladimir Răsvan, Daniela
Danciu and Dan Popescu, deals with the relevance of neutral functional differential
equations in the synchronization problem. The problem presented here arisen from
the original setting of Huygens oscillators, where it appears that the dynamics of the
coupled systems can be interpreted as neutral type of dynamics.

The third chapter “Dynamic Dissipativity Theory for Stability of Time-Delay
Systems” provided by Vijaysekhar Chellaboina and Wassim M. Haddad aims at
studying the dynamic dissipation theory for the stability analysis of time-delay
systems. The originality of this contribution is to provide a method for systems
subject to feedback interconnection that include delays. The main problem here is to
create and enhance the links between the Lyapunov theory, more particularly the
Lyapunov-Krasovskii method, and the dissipativity theory.
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The next chapter “Stability of Interconnected Uncertain Delay Systems: A
Converse Lyapunov Approach” in part one was contributed by Ihab Haidar, Paolo
Mason and Mario Sigalotti. The objective of this chapter is to study the stability of
interconnected uncertain systems subject to time delays. The originality of the
present chapter relies on the characterization of a converse Lyapunov theorem for
this class of systems.

A chapter “ISS-Stabilization of Delayed Neural Fields by Small-Gain Arguments”
prepared by Antoine Chaillet, Georgios Is. Detorakis, Stéphane Palfi and Suhan
Senova deals with the characterization of ISS stabilization for delayed neural fields by
small-gain arguments. The main motivations of this chapter are related to the fact that
integrodifferential equations describing the spatiotemporal activity of cerebral
structures include delayed interconnection. The theoretical contributions therein are
then to provide ISS properties of stabilization for this class of systems.

The following chapter “Robustness of Delayed Multistable Systems” copes with
the robustness of delayed multistable systems and has been authored by Denis
Efimov, Johannes Schiffer and Romeo Ortega. Sufficient conditions for
input-to-state stability of delayed systems are provided based on the application
of the Lyapunov-Razumikhin theorem. It is notably shown therein that ISS mul-
tistable systems are robust with respect to delays in the feedback path.

Part one ends with a chapter “A Small-Gain Method for the Design of
Decentralized Stabilizing Controllers for Interconnected Systems with Delays” on
the application of the small-gain theorem for the design of decentralized controllers for
interconnected systems with delays, whose authors are Pierdomenico Pepe, Hiroshi Ito
and Zhong-Ping Jiang. More particularly, a decentralized and practical input-to-state
stabilization method is provided for a class of interconnected systems, affected by time
delays in both the internal variables and in the communication channels, is considered.

Delay Systems: Modeling and Analysis

Part two of the volume exposes new trends in numeric as well as symbolic
developments in the qualitative analysis of infinite-dimensional dynamical systems.
As a matter of fact, both time-delay dynamical systems (continuous-time and
discrete-time) and wave propagation equations are considered. The latter is a typical
example of partial differential equations reducible to time-delay systems of neutral
type. This part contains seven chapters covering theoretical contributions as well as
applications in the control of infinite-dimensional systems.

This part opens with a chapter “Stability Analysis of Uniformly Distributed
Delay Systems: A Frequency-Sweeping Approach” authored by Xu-Guang Li,
Silviu-Iulian Niculescu, Arben Çela and Lu Zhang in which the stability of a class
of systems including uniformly distributed delays is addressed, and a
frequency-sweeping curve framework is proposed.

The second chapter “Asymptotic Analysis of Multiple Characteristics Roots
for Quasi-polynomials of Retarded-Type” of this part is authored by
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A. Martínez-González, S.-I. Niculescu, J. Chen, C.F. Méndez-Barrios, J.G. Romero
and G. Mejía-Rodríguez where the asymptotic behavior of multiple critical roots of
quasi-polynomials is addressed. The proposed analysis is based on the construction
Weierstrass polynomial.

The third chapter “Scanning the Space of Parameters for Stability Regions of a
Class of Time-Delay Systems; A Lyapunov Matrix Approach” authored by Carlos
Cuvas, Adrián Ramírez, Luis Juárez and Sabine Mondié proposes a numerical
stability test based on delay Lyapunov matrices allowing to detect stability regions
in the space of parameters.

The fourth chapter “A Symbolic Computation Approach Towards the
Asymptotic Stability Analysis of Differential Systems with Commensurate
Delays” of the third part authored by Yacine Bouzidi, Adrien Poteaux and Alban
Quadrat addresses the problem of delay perturbation effect on the stability of
dynamical systems. It proposes certified symbolic-numerical algorithms for com-
puting the set of critical pairs of a given quasipolynomial and for computing a
Newton-Puiseux series at a critical pair.

The fifth chapter “Delay-Dependent Reciprocally Convex Combination Lemma
for the Stability Analysis of Systems with a Fast-Varying Delay” is authored by
Alexandre Seuret and Frédéric Gouaisbaut. It deals with the stability analysis of
linear systems subject to fast-varying delays. The authors propose an improved
version of the reciprocally convex lemma and use the Wirtinger-based integral
inequality allowing to new stability conditions.

The sixth chapter “Wave Equation Modelling and Freeness Properties for Wind
Power Systems” of this part is authored by Hugues Mounier and Luca Greco; it
deals with some structural properties of partial differential equations. In particular, it
considers two-wave equation model for strings of generators connected to a wind
farm and investigates the differential flatness of the system.

This part closes by a chapter “A Delayed Mass-Action Model for the
Transcriptional Control of Hmp, an NO Detoxifying Enzyme, by the Iron-Sulfur
Protein FNR” on delayed mass-action model describing a biochemical reaction
authored by Marc R. Roussel. It consists of a qualitative/quantitative study of the
transcriptional control of an enzyme known to be a key contributor to the detoxi-
fication of nitric oxide.

Delay Systems: Stabilization and Control Strategies

Part three of the volume focuses on various strategies used to stabilize and control
systems with delays. The five chapters in this part cover linear and nonlinear
dynamics, continuous- and discrete-time systems, as well as single-input
single-output (SISO) and multi-input multi-output (MIMO) systems.

This part opens with a chapter “A Comparison of Shaper-Based and Shaper-Free
Architectures for Feedforward Compensation of Flexible Modes” authored by Dan
Pilbauer, Wim Michiels and Tomáš Vyhlídal where the authors present a detailed
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study to compare the influence of shaper-based and shaper-free architectures for
feedforward compensation of flexible modes. One highlight of the chapter is that
shaper-free control design can be effective to achieve proper filtering; however,
certain limitations in such controllers further motivate the use of shaper-based
compensation schemes, which are designed using time delays.

The second chapter “Proportional-Retarded (PR) Protocol for a Large Scale
Multi-agent Network with Noisy Measurements; Stability and Performance” in this
part is authored by Adrián Ramírez and Rifat Sipahi on the stability analysis and
performance assessment of proportional-retarded (PR) controllers in a multi-agent
system. The authors identify the stable operating regions of the PR parameters with
respect to the eigenvalues of the graph Laplacian of the multi-agent system, and
present case studies on how PR controllers can help achieve fast consensus while
satisfactorily rejecting noise in measurements.

The third chapter “Inversion of Separable Kernel Operator and Its Application in
Control Synthesis”, authored by Guoying Miao, Matthew M. Peet and Keqin Gu,
demonstrates an operator-theoretic framework by which control synthesis problem
can be posed in a convex optimization form. The proposed framework makes use of
parameterization into finite-dimensional vectors, positive matrices, and certain
inversion using algebraic manipulation, to reach a control synthesis approach
amenable for computation of state-feedback controllers for differential-difference
equations, which include the class of delay differential equations with discrete
delays.

The next chapter “Delay Margin for Robust Stabilization of LTI Delay Systems”
in part three is authored by Tian Qi, Jing Zhu and Jie Chen, on the investigation of
delay margin for robust stabilization of LTI SISO closed-loop systems affected by a
delay. Here, the authors focus on open-loop plants with unstable poles and
non-minimum zeros, to first show a practical approach to obtain a lower bound on
the largest delay margin achievable in the closed-loop, and next show how the
results extend in the case of time-varying delays.

Part three closes with a chapter “Nonlinear Sampled-Data Stabilization with
Delays” on nonlinear sampled-data stabilization with delays, authored by Salvatore
Monaco, Dorothée Normand-Cyrot and Mattia Mattioni. In this chapter, the
authors demonstrate how the effects of sampling stabilize nonlinear dynamics with
delays. In particular, the authors demonstrate how to design sampled-data
controllers and how sampling could actually help in the stabilization effort. The
presentation includes comparisons of several pertaining approaches on this topic,
and results are illustrated over academic examples.

Gif-sur-Yvette, France Giorgio Valmorbida
Toulouse, France Alexandre Seuret
Boston, USA Rifat Sipahi
Gif-sur-Yvette, France Islam Boussaada
July 2018
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Singular Perturbation Approach for
Linear Coupled ODE-PDE Systems

Ying Tang, Christophe Prieur and Antoine Girard

1 Introduction

Systems modeled by coupled ordinary differential equations (ODEs)-partial differ-
ential equations (PDEs) have been studied in many research works [2, 5, 11]. It is
interesting to analyze such kind of systems due to their significant physical appli-
cations. For instance, elastic beams linked to rigid bodies in [12], power converters
connected to transmission lines in [4] etc.

Singular perturbation theory has been widely used in control engineering from
late 1960s. It is a powerful tool for analysis and design of control systems thanks to
the reduction of the system’s order by neglecting the fast transitions [7, 9, 10]. This
theory is effective in many applications, such as semiconductors, electrical chains
and so on.

Tikhonov approximation, which describes the limiting behavior of system’s solu-
tions, is an important method for analysis of singularly perturbed systems. Tikhonov
approach for finite dimensional systemsmodeledbyODEshas been considered in [6].
In [14], a Tikhonov theorem for infinite dimensional systems governed by hyperbolic
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PDEs has been established by means of a L2 Lyapunov function. The approximation
for linear hyperbolic systems has been improved by using a H 2 Lyapunov function
in [15].

The present work is concerned with a class of coupled singularly perturbed linear
ODE and linear hyperbolic PDE systems. Firstly, a sufficient stability condition is
proposed for both coupled ODE-fast PDE and PDE-fast ODE systems. The stability
of the full system implies the stability of both subsystems. Secondly, the Tikhonov
approximation for such systems is achieved by Lyapunovmethod. Under the stability
conditions of both subsystems, the coupled ODE-fast PDE system is approximated
by the two subsystems for ε sufficiently small. However, for PDE-fast ODE system,
the approximation is valid if the full system is stable. The error between the full
system and the subsystems is estimated as the order of the perturbation parameter ε.

The paper is organized as follows. The coupled ODE-PDE systems under con-
sideration are given in Sect. 2. The reduced and the boundary-layer subsystems are
formally computed in the same section. Section 3 provides sufficient stability condi-
tions for the full system and both subsystems. The Tikhonov approximation for such
systems is stated in Sect. 4. Numerical simulations on academic examples are shown
in Sect. 5. Concluding remarks end of this paper.

Notation. Given a matrix G in R
n×n , G−1 and G� represent the inverse and the

transpose matrix of G respectively. The minimum and maximum eigenvalues of a
symmetricmatrixG are denoted byλ(G) andλ(G). The symbol � in partitioned sym-
metricmatrix stands for the symmetric block. For a positive integer n, In is the identity
matrix inRn×n . | · |denotes the usualEuclideannorm inRn and‖ · ‖ is associatedwith
the usual 2-norm of matrices inRn×n . ‖ · ‖L2 denotes the associated norm in L2(0, 1)

space, defined by ‖ f ‖L2 =
√(∫ 1

0 | f (x)|2dx
)
for all functions f ∈ L2(0, 1). Simi-

larly, the associated norm in H 2(0, 1) space is denoted by ‖ · ‖H 2 , defined for all func-

tions f ∈ H 2(0, 1), by ‖ f ‖H 2 =
√(∫ 1

0 | f (x)|2 + | f ′(x)|2 + | f ′′(x)|2dx
)
. Given a

real interval I and a normed space J ,C0(I, J ) denotes the set of continuous functions
from I to J .

2 Singularly Perturbed Linear Coupled ODE-PDE Systems

In this section, the coupled ODE-fast PDE and PDE-fast ODE systems under con-
sideration are given respectively.
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2.1 Coupled ODE-Fast PDE System

We consider the following linear ODE-fast hyperbolic PDE system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ż(t) = AZ(t) + By(1, t), (1a)

εyt (x, t) + Λyx (x, t) = 0, (1b)

y(0, t) = K1y(1, t) + K2Z(t), (1c)

Z(0) = Z0, (1d)

y(x, 0) = y0(x), (1e)

where x ∈ [0, 1], t ∈ [0,+∞), Z : [0,+∞) → R
n , y : [0, 1] × [0,+∞) → R

m .
The perturbation parameter ε > 0 is a small constant and Λ is a diagonal positive
matrix inRm×m . The matrices A and B are of appropriate dimensions. The boundary
condition matrices K1 and K2 are constant matrices of appropriate dimensions.

Adopting the computations of the subsystems for singularly perturbed ODEs [8],
the reduced and the boundary-layer subsystems for system (1) are formally computed
as follows. By setting ε = 0 in Eq. (1b), we obtain

yx (x, t) = 0. (2)

It implies y(., t) = y(1, t). Assuming (Im − K1) invertible, the boundary condition
(1c) becomes

y(., t) = Kr Z(t), (3)

where Kr = (Im − K1)
−1K2. Using the right-hand side of (3) to replace y(1, t) in

(1a), the reduced subsystem is computed as

{ ˙̄Z(t) = Ar Z̄(t), (4a)

Z̄0 = Z0. (4b)

where Ar = A + BKr . The bar indicates that the variables belong to the systemwith
ε = 0. Using the following change of variable ȳ = y − Kr Z and a new time scale
τ = t/ε, we have

{
ȳτ (x, τ ) + Λȳx (x, τ ) = −εKr (AZ(τ ) + By(1, τ )),

ȳ(0, τ ) = K1 ȳ(1, τ ).

The boundary-layer subsystem is formally computed with ε = 0

⎧⎨
⎩

ȳτ (x, τ ) + Λȳx (x, τ ) = 0, (5a)

ȳ(0, τ ) = K1 ȳ(1, τ ), (5b)

ȳ0(x) = y0(x) − Kr Z0. (5c)
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2.2 Coupled PDE-Fast ODE System

Similar to system (1), we consider the following linear hyperbolic PDE-fast ODE
system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε Ż(t) = AZ(t) + By(1, t), (6a)

yt (x, t) + Λyx (x, t) = 0, (6b)

y(0, t) = K1y(1, t) + K2Z(t), (6c)

Z(0) = Z0, (6d)

y(x, 0) = y0(x). (6e)

The two subsystems are computed as follows. By formally setting ε = 0 in (6a)
and assuming A invertible, we have

Z = −A−1By(1). (7)

Substituting (7) into (6c), the reduced subsystem is

⎧⎨
⎩

ȳt (x, t) + Λȳx (x, t) = 0, (8a)

ȳ(0, t) = Kr ȳ(1, t), (8b)

ȳ(x, 0) = ȳ0(x) = y0(x), (8c)

where Kr = K1 − K2A−1B. Performing a change of variable Z̄ = Z + A−1By (1)
and using a new time scale τ = t/ε, we get

d Z̄(τ )

dτ
= AZ̄(τ ) − εA−1BΛyx (1, τ ).

The boundary-layer subsystem is formally computed with ε = 0

⎧⎨
⎩

d Z̄(τ )

dτ
= AZ̄(τ ), (9a)

Z̄(0) = Z̄0 = Z0 + A−1By0(1). (9b)

Remark 1 Due to [1, Theorem A.6.], the Cauchy problems (1) and (6) are well-
posed, that is, for every Z0 ∈ R

n , for every y0 ∈ L2(0, 1), systems (1) and (6) have
a unique solution Z ∈ C0([0,+∞),Rn), y ∈ C0([0,+∞), L2((0, 1),Rm)).
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3 Stability Condition of Coupled ODE-PDE Systems

We first provide a sufficient stability condition for both coupled ODE-PDE systems
(1) and (6). Then, we study the link of the stability between the full system and both
subsystems.

Proposition 1 Systems (1) and (6) are exponentially stable for all ε > 0 if there
exist diagonal positive matrix Q, symmetric positive matrix P and positive constant
μ such that the following holds

(
e−μQΛ−K�

1 QΛK1 −(K�
1 QΛK2+B�P)

� −(A�P+PA)−K�
2 QΛK2

)
> 0. (10)

The next two propositions show that condition (10) implies the stability of the
reduced and the boundary-layer subsystems.

Proposition 2 Condition (10) implies

A�
r P + PAr < 0, (11)

which is equivalent to the stability of the reduced subsystem (4), and

e−μQΛ − K�
1 QΛK1 > 0, (12)

which implies the stability of the boundary-layer subsystem (5).

Proposition 3 Condition (10) implies

e−μQΛ − K�
r QΛKr > 0, (13)

which implies the stability of the reduced subsystem (8), and

A�P + PA < 0, (14)

which is equivalent to the stability of the boundary-layer subsystem (9).

In view of Proposition 1, the stability of the full systems (1) and (6) is guaranteed
for all positive ε under condition (10). For ε sufficiently small, the stability of both
subsystems (4) and (5) implies the stability of the coupled ODE-fast PDE system
(1), even though condition (10) is not satisfied. However, this result is not valid in
the context for PDE-fast ODE system (6). That is, system (6) could be unstable even
though the two subsystems (8) and (9) are stable. We refer the readers to [13] for
more details.
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4 Tikhonov Approximation of Coupled ODE-PDE Systems

We deal with the Tikhonov approximation of the coupled systems when ε is suffi-
ciently small as follows. If the two subsystems are stable, the coupled ODE-fast PDE
system can be approximated by the subsystems. The approach for coupled PDE-fast
ODE system is valid if the full system is stable.

4.1 Tikhonov Theorem for Linear ODE-Fast PDE System

Let us state Tikhonov theorem for system (1) in the next theorem.

Theorem 1 Consider system (1). If (11) and (12) are satisfied, there exist positive
values C1, C2, θ , ε∗, such that for all 0 < ε < ε∗, and for any initial conditions
Z0 ∈ R

n, y0 = Kr Z0, it holds for t � 0

|Z(t) − Z̄(t)|2 � εC1e
−θ t |Z̄0|2, (15)

‖y(., t) − Kr Z̄(t)‖2L2(0,1) � εC2e
−θ t |Z̄0|2. (16)

Before proving this theorem, we first write the error system of (1). Let us perform
the following change of variables

η = Z − Z̄ , (17a)

δ = y − Kr Z̄ , (17b)

where η represents the error between the slow dynamics of the full system and the
reduced subsystem while δ is the error between the fast dynamics of the full system
and its equilibrium point. Due to (1a) and (4), we write

η̇ = Ż − ˙̄Z = AZ + By(1) − Ar Z̄

= A(Z − Z̄) + B(y(1) − Kr Z̄).

Due to (1b) and (4), we compute

δt = yt − Kr
˙̄Z = yt − Kr (Ar Z̄),

δx = yx .

Due to (1c), we have

δ(0) = y(0) − Kr Z̄ = K1y(1) + K2Z − Kr Z̄

= K1

(
y(1) − Kr Z̄

)
+ K2Z − (Im − K1)Kr Z̄
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= K1

(
y(1) − Kr Z̄

)
+ K2Z − (Im − K1)(Im − K1)

−1K2 Z̄

= K1

(
y(1) − Kr Z̄

)
+ K2(Z − Z̄).

Thus, the error system is written as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η̇ = Aη + Bδ(1), (18a)

εδt + Λδx = −εKr Ar Z̄ , (18b)

δ(0) = K1δ(1) + K2η, (18c)

η0 = Z0 − Z̄0 = 0, (18d)

δ0 = y0 − Kr Z0. (18e)

Based on the above error system we are ready to prove Theorem 1.

Proof Let us consider the following candidate Lyapunov function for system (18)

W (η, δ) = η�Pη +
∫ 1

0
e−μx (δ − Krη)�Q(δ − Krη) dx, (19)

with μ > 0, matrices P and Q are specified later.
We rewrite W (η, δ) = W1 + W2, with W1 = η�Pη and W2 = ∫ 1

0 e−μx (δ − Krη)�
Q(δ − Krη) dx . The time derivative of W1 along the solution to system (18a) is
computed as

Ẇ1 = 2η�P η̇

= 2η�P(Aη + Bδ(1))

= η�
(
PAr + A�

r P

)
η + 2η�PB

(
δ(1) − Krη

)
.

According to (11), there exists a symmetric positive matrix P such that

PAr + A�
r P < −In . (20)

Due to Cauchy Schwarz inequality, it holds

Ẇ1 � −|η|2 + 2‖PB‖ |δ(1) − Krη| |η|. (21)

The time derivative of W2 along the solution to system (18b) is
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Ẇ2 = 2
∫ 1

0
e−μx (δ − Krη)�Q(δt − Kr η̇) dx

= −2

ε

∫ 1

0
e−μx (δ − Krη)�QΛδx dx − 2

∫ 1

0
e−μx (δ − Krη)�QKr (Aη + Bδ(1)) dx

−2
∫ 1

0
e−μx (δ − Krη)�QKr Ar Z̄ dx . (22)

Performing an integration by parts on the first integral in the right-hand side of (22),
Ẇ2 follows

Ẇ2 = −1

ε

[
e−μx (δ − Krη)�QΛ(δ − Krη)

]x=1

x=0
− μ

ε

∫ 1

0
e−μx (δ − Krη)�QΛ(δ − Krη) dx

−2
∫ 1

0
e−μx (δ − Krη)�QKr (Aη + Bδ(1)) dx − 2

∫ 1

0
e−μx (δ − Krη)�QKr Ar Z̄ dx .

(23)

Let the first term in (23) be W21. Under the boundary condition (18c), we have

W21 = −1

ε

[
e−μ(δ(1) − Krη)�QΛ(δ(1) − Krη) − (δ(0) − Krη)�QΛ(δ(0) − Krη)

]

= −1

ε

[
e−μ(δ(1) − Krη)�QΛ(δ(1) − Krη)

−(K1δ(1) + K2η − Krη)�QΛ(K1δ(1) + K2η − Krη)

]
. (24)

We write

K2 − Kr = K2 − (Im − K1)
−1K2 = (Im − K1)(Im − K1)

−1K2 − (Im − K1)
−1K2

= (Im − K1 − Im) (Im − K1)
−1K2 = −K1Kr . (25)

Using the right-hand side of (25) to replace K2 − Kr in (24), we obtain

W21 = −1

ε

[
(δ(1) − Krη)�(e−μQΛ − K�

1 QΛK1)(δ(1) − Krη)

]
.

By using (12), there exists a diagonal positive matrix Q such that

e−μQΛ − K�
1 QΛK1 > λ(e−μQΛ − K�

1 QΛK1) > 0. (26)

Thus

W21 � −λ(e−μQΛ − K�
1 QΛK1)

ε
|δ(1) − Krη|2. (27)

Let W22 denote the second term in (23), it follows
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W22 � −μe−μλ(QΛ)

ε
‖δ − Krη‖2L2(0,1). (28)

Let the third term in (23) be W23, it follows

W23 = −2
∫ 1

0
e−μx (δ − Krη)�QKr

(
Arη + B(δ(1) − Krη)

)
dx .

Due to Cauchy Schwarz inequality, W23 follows

W23 � 2‖QKr Ar‖ |η| ‖δ − Krη‖L2(0,1) + 2‖QKr B‖ |δ(1) − Krη| ‖δ − Krη‖L2(0,1).

(29)

We denote the last term in (23) as W24. It holds

W24 � 2‖QKr Ar‖ ‖δ − Krη‖L2(0,1) |Z̄ |. (30)

Combining (27), (28), (29) and (30), the following hold for all κ > 0,

Ẇ2 � −λ(e−μQΛ − K�
1 QΛK1)

ε
|δ(1) − Krη|2 − μe−μλ(QΛ)

ε
‖δ − Krη‖2L2(0,1)

+2‖QKr Ar‖ |η| ‖δ − Krη‖L2(0,1) + 2‖QKr B‖ |δ(1) − Krη| ‖δ − Krη‖L2(0,1)

+κ‖QKr Ar‖ |Z̄ |2 + ‖QKr Ar‖
κ

‖δ − Krη‖2L2(0,1). (31)

Combining (21) and (31), Ẇ follows

Ẇ � −
⎛
⎝ |δ(1) − Krη|

|η|
‖δ − Krη‖L2(0,1)

⎞
⎠

�

M

⎛
⎝ |δ(1) − Krη|

|η|
‖δ − Krη‖L2(0,1)

⎞
⎠ + κ‖QKr Ar‖ |Z̄ |2,

where M =
(
M1 M2

� M4

)
, with M1 =

(
M11 M12

� M14

)
=

(
λ(e−μQΛ−K�

1 QΛK1)

ε
−‖PB‖

� 1

)
,

M2 =
( −‖QKr B‖

−‖QKr Ar‖
)
, M4 =

(
μe−μλ(QΛ)

ε
− ‖QKr Ar‖

κ

)
.

Since M14 > 0, there exists ε∗
1 > 0 such that for ε ∈ (0, ε∗

1), M11 − M12M
−1
14 M�

12 >

0. Due to the Schur complement, it holds M1 > 0. There exists σ > 0 sufficiently
large such that M4 > 0 with κ = σε. Then, there exists ε∗

2 > 0, such that for all
0 < ε < min(ε∗

1, ε
∗
2), we have M1 − M2M

−1
4 M�

2 > 0. Using again the Schur com-
plement, it holds M > 0. Hence, the following holds

Ẇ � −θW + σε‖QKr Ar‖ |Z̄ |2,
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for any 0 < θ � min
{

λ(M)

λ(P)
,

λ(M)

λ(Q)

}
. Condition (11) implies the exponential stability

of the reduced subsystem (4a), that is, there exist positive constants C̄ and r , such
that for all t � 0,

|Z̄(t)|2 � C̄e−r t |Z̄0|2.

Thus we get
Ẇ � −θW + C̄σεe−r t‖QKr Ar‖ |Z̄0|2.

It holds

W � e−θ tW (η0, δ0) + C̄σε‖QKr Ar‖ |Z̄0|2
∫ t

0
e−θ(t−s)e−rsds

� e−θ tW (η0, δ0) + C̄σε‖QKr Ar‖e−θ t
(
1 − e(θ−r)t

)
r − θ

|Z̄0|2.

We may assume that r > θ , the above inequality becomes

W � e−θ t

(
W (η0, δ0) + C̄σε‖QKr Ar‖

r − θ
|Z̄0|2

)
.

The function W is lower and upper bounded by

λ(P) |η|2 + e−μλ(Q) ‖δ − Krη‖2L2(0,1) � W � ‖P‖ |η|2 + ‖Q‖ ‖δ − Krη‖2L2(0,1).

Since the initial conditions are η0 = δ0 = 0, we obtain

|η|2 � εC1e
−θ t |Z̄0|2,

where C1 > 0. Moreover, it holds

‖δ‖L2(0,1) = ‖δ − Krη + Krη‖L2(0,1) � ‖δ − Krη‖L2(0,1) + Kr |η|.

Hence, we obtain

‖δ‖2L2(0,1) � εC2e
−θ t |Z̄0|2,

where C2 > 0. This concludes the proof of Theorem 1. �
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4.2 Tikhonov Theorem for Linear Hyperbolic PDE-Fast
ODE System

Following the similar computation in Sect. 4.1, the error system of (6) is written as
follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε
˙̃
δ(t) = Aδ̃ + Bη̃(1) − εA−1BΛȳx (1), (32a)

η̃t + Λη̃x = 0, (32b)

η̃(0) = K1η̃(1) + K2δ̃, (32c)

δ̃0 = Z0 + A−1B ȳ0(1), (32d)

η̃0 = y0 − ȳ0, (32e)

where η̃ = y − ȳ, δ̃ = Z + A−1B ȳ(1).

Theorem 2 Consider system (6). If (10) is satisfied, there exist positive values C1,
γ , ε∗, such that for all 0 < ε < ε∗, for any initial condition y0 ∈ H 2(0, 1) satisfying
the compatibility conditions y0(0) = Kr y0(1) and y0x (0) = Λ−1KrΛy0x (1), with
ȳ0 = y0, and for Z0 ∈ R

n, it holds for t � 0

‖y(., t) − ȳ(., t)‖2L2(0,1) � εC1e
−γ t

(
‖ȳ0‖2H 2(0,1) + |Z0 + A−1B ȳ0(1)|2

)
. (33)

Proof We consider the following candidate Lyapunov function for system (32).

Lε(η̃, δ̃) = εδ̃�P δ̃ +
∫ 1

0
e−μx η̃�Qη̃ dx .

Adopting the similar computations in the proof of Theorem 1, the time derivative of
Lε(η̃, δ̃) along the solution to system (32) is

L̇ε(η̃, δ̃) = −
(

η̃(1)
δ̃

)�
T

(
η̃(1)
δ̃

)
− μ

∫ 1

0
e−μx η̃�QΛη̃ dx + 2εδ̃�P(A−1BΛ)ȳx (1),

where T =
(

e−μQΛ−K�
1 QΛK1 −(K�

1 QΛK2+B�P)

� −(A�P+PA)−K�
2 QΛK2

)
.

According to (10), using Cauchy Schwarz inequality and Young’s inequality, the
above inequality holds for all κ > 0

L̇ε(η̃, δ̃) � −λ(T )|δ̃|2 − μe−μλ(QΛ)‖η̃‖2L2(0,1)

+κε‖P(A−1BΛ)‖|δ̃|2 + ε‖P(A−1BΛ)‖
κ

|ȳx (1)|2. (34)

The function Lε(η̃, δ̃) is upper and lower bounded as
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e−μλ(Q) ‖η̃‖2L2(0,1) + ελ(P) |δ̃|2 � Lε(η̃, δ̃) � ‖Q‖ ‖η̃‖2L2(0,1) + ε‖P‖ |δ̃|2. (35)

By choosing κ = 1, there exist ε∗, γ > 0, such that for all ε ∈ (0, ε∗), the following
holds from (34)

L̇ε(η̃, δ̃) � −γ Lε(η̃, δ̃) + ε‖P(A−1BΛ)‖|ȳx (1)|2. (36)

Condition (10) implies that e−μQΛ − K�
r QΛKr > 0. Let  be a diagonal posi-

tive matrix and Q = 2Λ−1. It holds 2 − K�
r 2Kr > 0, which is equivalent to

‖Kr
−1‖ < 1. Then according to [3, Theorem 2.3], the reduced subsystem (8) is

exponentially stable in H 2-norm. Thus, we deduce from (36)

L̇ε(η̃, δ̃) � −γ Lε(η̃, δ̃) + Crεe
−ct‖P(A−1BΛ)‖ ‖ȳ0‖2H 2(0,1), (37)

where Cr and c are positive values.
The following holds

Lε(η̃, δ̃) � e−γ t Lε(η̃0, δ̃0) + Crε‖P(A−1BΛ)‖ ‖ȳ0‖2H 2(0,1)

∫ t

0
e−γ (t−s)e−csds.

We may assume that γ < c, the above inequality becomes

Lε(η̃, δ̃) � e−γ t Lε(η̃0, δ̃0) + e−γ t Crε

c − γ
‖P(A−1BΛ)‖ ‖ȳ0‖2H 2(0,1).

Using (35), we get

‖η̃‖2L2(0,1) � C1e
−γ t

(
‖η̃0‖2L2(0,1) + ε|δ̃0|2 + ε‖ȳ0‖2H 2(0,1)

)
,

where C1 is positive constant. Since η̃0 = 0, the inequality (33) holds for all t � 0.
This concludes the proof of Theorem 2. �

5 Numerical Simulations

Let us first show the numerical simulations on anODE-fast PDE system (1), in which
condition (10) is not satisfied. The full system is approximated by both subsystems
under the stability conditions of the subsystems for ε sufficiently small. We next
provide the numerical simulations on an academic example of PDE-fast ODE sys-
tem (6). The Tikhonov approximation is achieved under the full system’s stability
condition (10).
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t
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0

0
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Boundary-layer subsystem

Fig. 1 Time evolutions of subsystems (4) and (5)

Table 1 Estimates of the error for different values of ε with the initial condition y0 = Kr Z0

ε 0.03 0.02 0.01

|Z(t) − Z̄(t)|2 4.8 × 10−2 2.1 × 10−2 5.0 × 10−3

‖y(., t) −
Kr Z̄(t)‖2

L2(0,1)

2.2 × 10−4 1.0 × 10−4 2.6 × 10−5

5.1 Numerical Simulations on an ODE-Fast PDE System

Let us consider system (1) with A = 1, B = −1, Λ = 1, K1 = 1
2 , K2 = 1. The

initial conditions (1d)–(1e) are selected as Z0 = 0.5 and y0(x) = cos(4πx) − 1.
The perturbation parameter ε is chosen as ε = 0.01. It is computed Ar = −1 for the
reduced subsystem (4). The initial condition (4b) is chosen as the same as for the full
system Z̄0 = Z0 = 0.5. The boundary condition for the boundary-layer subsystem
is K1 = 1

2 . The initial condition is chosen as ȳ0 = cos(4πx) − 3
2 . In view of Ar ,

condition (11) is satisfied for any P > 0. By choosing Q = 1, condition (12) holds.
Figure 1 shows that the reduced and the boundary-layer subsystems converge to the
origin as time increasing.

Let us choose ε = {0.03, 0.02, 0.01}, the initial condition y0 is selected as the
equilibrium point y0 = Kr Z0. Table 1 shows that the errors between the full system
and the reduced subsystem decrease as ε decreasing, as expected from Theorem 1.

5.2 Numerical Simulations on a PDE-Fast ODE System

We consider system (6) with A = −1, B = 1
2 and Λ = 1. The boundary condition

(6c) is given by K1 = − 1
4 , K2 = − 1

2 . The initial conditions (6d)–(6e) are selected
as Z0 = 0.2 and y0(x) = cos(4πx) − 1. The perturbation parameter is ε = 0.01. By
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12
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Slow dynamics of the full system
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Z
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Fast dynamics of the full system

Fig. 2 Time evolutions of the full system (6)

12
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t
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Solution ȳ
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0
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Reduced subsystem

t
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0
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0.16

0.2
Solution Z̄
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Fig. 3 Time evolutions of subsystems (8) and (9)

Table 2 Estimates of the error for different values of ε

ε 0.03 0.02 0.01

‖y(., t) − ȳ(., t)‖2
L2 1.9 × 10−3 5.7 × 10−4 1.4 × 10−5

choosing P = Q = 1, the stability condition (10) is satisfied. Therefore, Proposition
1 applies. In Fig. 2, the solutions of the slow and the fast dynamics of the full system
tend to zero when time increases, as expected from Proposition 1.

Moreover, we compute the boundary condition matrix for the reduced subsystem
as Kr = − 1

2 . The initial condition (8c) is chosen as ȳ0 = y0(x) = cos(4πx) − 1. It
is observed in Fig. 3 that the solutions of both subsystems converge to the origin as
time increasing.

Let us choose ε = {0.03, 0.02, 0.01}. Table 2 shows that the errors between the
slowdynamics of the full system and the reduced subsystemdecrease as ε decreasing,
as expected from Theorem 2.
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6 Conclusions

A class of singularly perturbed linear ODE coupled with linear hyperbolic PDE
systems has been considered in this work. The two subsystems have been formally
computed based on the singular perturbation method. A general sufficient stability
condition has been provided, which guarantees the stability of the full coupled ODE-
PDE system and both subsystems. The Tikhonov approximation for full systems has
been established by Lyapunov method. More precisely, based on the stability of both
subsystems, the full ODE-fast PDE system is approximated by the subsystems. The
estimate error is the order of the perturbation parameter ε. However, for PDE-fast
ODE system, the approximation is valid if the general sufficient stability condition
is satisfied.
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On Some Neutral Functional Differential
Equations Occurring in Synchronization

Vladimir Răsvan, Daniela Danciu and Dan Popescu

1 Introduction. The Elementary (Single Oscillator)
and Other Models

Synchronization is considered by now “a universal concept in nonlinear sciences”
[12]. It is thus not surprising to find that there exist in fact “several synchroniza-
tion types” i.e. several ways of conceiving (representing) synchronization. In this
paper we shall leave aside the control engineering approach to synchronization e.g.
[4] and focus on synchronization models as arising from physics. Here the basic
model is the one described by Huygens, consisting of two pendula coupled by a
distributed/lumped common support Fig. 1.

The straightforward generalization of this structure is represented by the network
of oscillators. We refer to the paper due to Hale [8] where it is stated that “there
have been many studies in recent years devoted to the dynamics induced from the
ordinary differential equations (ODEs) obtained by coupling large number of oscil-
lators on periodic lattices”. Observe first that the term oscillator is used in the sense
of Lagrange—a model of some physical device displaying “oscillations”, in fact
transients.

Here several synchronization types can be considered. For self excited (self sus-
tained) periodic motions a common (unique) period is established and a phase shift
is displayed (locking-in phenomenon). When the oscillations are subject of external
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Fig. 1 The original setting
of Huygens

excitation (which might be not only periodic but also almost periodic), there are
suggested mainly patterns involving spatial and temporal chaos [8].

We shall consider throughout this paper somemodels of the aforementioned cases,
starting from the basic case of Huygens. Our reference will be the papers [3, 10,
11]: one of them is concerned with self sustained oscillations, the other two with
forced oscillations. Before writing the basic equations we shall complete the physical
description: there are considered nonlinear mechanical oscillators (pendulum, van
der Pol type) connected through distributed support (hanging on a rope/string or
united by an elastic rod). In [10, 11] the support is an infinite length spring while
in [3] the support is a finite length elastic rod replacing the spring that is usually
connecting such oscillators.

The model of [11] might be viewed as an elementary (“toy”) application: it deals
(Fig. 2a) with a single oscillator—a nonlinear undamped pendulum—hanging on a
infinite string. Its equations are as follows [11]

ytt − c2yxx = 0 , c2 = T/ρ, −∞ < x < ∞
mη̈ + V (η) = T

(
yrx (0, t) − ylx (0, t)

)

η(t) = ylx (0, t) = yrx (0, t)

(1)

with the standard notations: y(x, t) is the local displacement of the string along its
length at the position x andmoment t while yl(x, t) and yr (x, t) are the displacements
of the string for x < 0 and x > 0 respectively. The string parameters are the elastic
tension T and the material density ρ; c is the propagation speed through the string.
It was denoted by η the displacement of the local oscillator having the mass m; by
V (η) there was denoted the nonlinear characteristic of the spring. The second model,
of [10] considers two oscillators of the aforementioned type, hanging on an infinite
string (Fig. 2b). Its equations are as follows
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Elementary application: single oscillator Two oscillators

(a) (b)

Fig. 2 Mechanical oscillators on a string

Fig. 3 Two Van der Pol
oscillators on the elastic rod

ytt − c2yxx = 0, −∞ < x < ∞, c2 = T/ρ

m1η̈1 + V1(η1) = T
(
ycx

(−L
2 , t

) − ylx
(−L

2 , t
))

m2η̈2 + V2(η2) = T
(
yrx

(
L
2 , t

) − ycx
(
L
2 , t

))

η1(t) = yl
(−L

2 , t
) = yc

(−L
2 , t

)

η2(t) = yc
(
L
2 , t

) = yr
(
L
2 , t

)

(2)

The notations are as in the case of a single oscillator. One has to distinguish, however,
among the string displacements at the left of the local oscillators, between them and
at their right. Therefore yl(x, t), yc(x, t), yr (x, t) are the displacement of the string
for x < −L/2,−L/2 < x < L/2 and x > L/2 respectively. About this model it has
been mentioned that it led to functional differential equations. It is but only natural
to obtain such equations when propagation is present.

The third model [3] is very much alike to (2) but the two van der Pol oscillators
are coupled through a finite length elastic rod (Fig. 3).

Therefore the equations are as follows

ytt − c2yxx = 0, 0 < x < L , c2 = T/ρ

m1η̈1 + V1(η1, η̇1) = T yx (0, t) ; m2η̈2 + V2(η2, η̇2) = T yx (L , t)

y(0, t) = η1(t), y(L , t) = η2(t)

(3)

By Vi (ηi , η̇i ), i = 1, 2, we denoted, in brief, the nonlinear dependencies that
characterize a standard vander Pol oscillator. Thesemodelswill be discussed from the
point of view of the so-called augmented validation [13] which incorporates standard
well posedness in the sense of Hadamard (existence, uniqueness, continuous data
dependence) and stability analysis of the steady states (equilibria and oscillations)
i.e. checking of the Stability Postulate of Četaev.

The approach will be the same as in many previous papers of us—association
of some functional differential equations (in most of the cases—of neutral type)
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by integration along the characteristics. Based on the one-to-one correspondence
between the solutions of the two mathematical objects, all results obtained for one
object are projected back on the other.

2 The Analysis of the Single Oscillator Application

We shall consider here the system of Fig. 1 described by (1). The equations define in
fact two boundary value problems, coupled at the common boundary x = 0. With-
out giving details, following [13, 16] the following representations are obtained.
Denoting first

v(x, t) := yt (x, t), w(x, t) := yx (x, t) (4)

hence assuming enough smoothness to deal with classical solutions only, the follow-
ing are true

vr (x, t) =

⎧
⎪⎨

⎪⎩

1
2 [y1(x + ct) + cy′

0(x + ct) + y1(x − ct) − cy′
0(x − ct)], 0 < t < x/c

1
2 [y1(x + ct) + cy′

0(x + ct) + η̇(t − x/c) − y1(ct − x)

−cy′
0(ct − x)], t > x/c

(5)

wr (x, t) =

⎧
⎪⎨

⎪⎩

1
2c [y1(x + ct) + cy′

0(x + ct) − y1(x − ct) − cy′
0(x − ct)], 0 < t < x/c

1
2c [y1(x + ct) + cy′

0(x + ct) + η̇(t − x/c) + y1(ct − x)

+cy′
0(ct − x)], t > x/c

(6)

and for x > 0 (the boundary value problem “at right”). Also, for x < 0 (the boundary
value problem “at left”) it follows that

vl (x, t) =

⎧
⎪⎨

⎪⎩

1
2 [y1(x + ct) + cy′

0(x + ct) + y1(x − ct) − cy′
0(x − ct)], t < −x/c

1
2 [η̇(t + x/c) − y1(ct − x) + cy′

0(−ct − x) + y1(x − ct)

−cy′
0(x − ct)], t > −x/c

(7)

wl (x, t) =

⎧
⎪⎨

⎪⎩

1
2c [y1(x + ct) + cy′

0(x + ct) − y1(x − ct) + cy′
0(x − ct)], t < −x/c

1
2c [η̇(t + x/c) − y1(−ct − x) + cy′

0(−ct − x) − y1(x − ct)

+cy′
0(x − ct)], t > −x/c

(8)

In (5)–(8) the function η(t) is the solution of the equations of the local oscillator

mη̈ + V (η) = T [wr (0, t) − wl(0, t)] (9)

where wr (0, t) and wl(0, t) are taken from the aforementioned equations leading to
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mη̈ + 2(T/c)η̇ + V (η) = 1

c
[y1(ct) + y1(−ct) + y′

0(ct) − y′
0(−ct)] (10)

In all the equations of this section we made use of the initial conditions

y(x, 0) = y0(x), yt (x, 0) = y1(x), −∞ < x < ∞ (11)

with the functions y0(x) and y1(x) smooth enough.
We shall comment nowon the representation formulae. The basic equation appears

to be (10)—anordinary nonlinear differential equation forced by the initial conditions
(11) of the boundary problem (1). The initial conditions being defined on the entire
real axis, a “steady state”—a “global (defined on R) solution” of (10) might exist
and, in order to observe it physically, be at least stable. Note also that, if y0(·) and
y1(·) are periodic (with rationally dependent periods) then a global periodic solution
might exist. Also, if y0(·) and y1(·) are almost periodic then a global almost periodic
solution might exist.

The application defined by (1) is considered elementary (a “toy”) because no
propagation appears with respect to the “boundary”—the local oscillator which is
synchronized with respect to the initial wave defined by the initial conditions of the
string.

This application is however interesting because it displays which type of oscillator
problems is involved. For instance, if V (·) is a sector restricted and globally Lipschitz
nonlinearity, the theorem of Yakubovich [17] on the forced oscillations is valid.

Suppose V (η) is subject to

0 < δ0 ≤ V (η1) − V (η2)

η1 − η2
≤ L. (12)

We check the frequency domain inequality

1

L
+ Re

1

−mω2 + 2(T/c) jω + δ0
> 0, 0 ≤ ω ≤ +∞. (13)

After some manipulation the following necessary and sufficient condition for (13) is
found:

L < 4(T/c)(
√

δ0/m + T/(mc)) (14)

If we take into account that for the second order system (10) whose linear part
has the frequency domain characteristic of (13) we haveω2

n = δ0/m, ζωn = T/(mc)
condition (14) becomes

L/m < 4ζ(1 + ζ )ω2
n (15)

According to the aforementioned theorem of Yakubovich, if (12) and (14) hold,
then (10) has an unique solution defined onR, exponentially stable, which is periodic
or almost periodic provided y0(·) and y1(·) are periodic with rationally dependent
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Fig. 4 Simulation results for the single oscillator

periods or almost periodic (possibly periodic with rationally independent periods)—
see [14]. We may say that the local oscillator is synchronized with the string.

In order to illustrate the aforementioned results, a simulation has been performed
for the dynamics of system (10) with the following numerical data: m = 0.1, T =
0.32, c = 3.2, y0(x) = sin 0.5x , y1(x) = sin 0.25x . The nonlinear function V (·) is
defined by V (η) = δ0η + (1/2) tanh(η/2) with δ0 = 0.1. The aforementioned data
will give ωn = 1, ζ = 1, L ≤ 1/2. One can check that L/m = 2 < 8 hence (15) or,
equivalently, (14) is fulfilled. The results of the simulations are given in Fig. 4.

We can see the standard stable limit cycle corresponding to the stable forced
oscillation and the time domain representations of the oscillations of the two phase
variables. Even the filtering properties are to be distinguished for the linear partwhose

bandwidth is
√√

2 − 1. Since the nonlinearity is odd, only odd higher harmonics are
present; since the frequency of the 3d harmonic is 0.75, clearly only the fundamental
harmonic 0.25 “passes” as it can be seen from Fig. 4a.

3 The Case of Two Electrical Oscillators Coupled to a
Lossless Transmission Line

We shall consider here the structure of Fig. 5.
As it can be seen, the local oscillators are composed of a RLC oscillating circuits

and a tunnel diode displaying a S outer characteristic. The infinite transmission line
is lossless—a LC transmission line described by the telegraph equations which in
this case reduce to the wave equation

Lit + vx = 0, Cvt + ix = 0 (16)



On Some Neutral Functional Differential Equations Occurring in Synchronization 25

1Li

1Ci

2Li

2Ci
1Di 2Di

l / 2 2/l x

Fig. 5 Oscillators on the LC line

with the boundary conditions given at the coupling points x = ±�/2 of the two local
oscillators

vl(−�/2, t) − vD1 = vc(−L/2, t) − vD1 = R′
1[il(−�/2, t) − ic(−�/2, t)]

iL1 + il(−�/2, t) − ic(−�/2, t) = ic1 + iD1

L1
diL1
dt

= −vD1 + E1 − R1iL1

C1
dvD1

dt
= iC1 , iD1 = f1(vD1)

(17)

and
vc(�/2, t) − vD2 = vr (�/2, t) − vD2 = R′

2[ic(�/2, t) − ir (�/2, t)]
iL2 + ic(�/2, t) − ir (�/2, t) = ic2 + iD2

L2
diL2
dt

= −vD2 + E2 − R2iL2

C2
dvD2

dt
= iC2 , iD2 = f2(vD2)

(18)

We have to observe, in the spirit of [16], that (16)–(18) define two single point
boundary value problems on semi-infinite intervals (−∞,−�/2) and (�/2,∞) and
two point boundary value problem on the finite interval (−�/2, �/2). As previously,
the subscript l accounts for the “left hand side problem” on (−∞,−�/2), the sub-
script c—for the central problem on (−�/2, �/2) etc.

We follow the same approach as in the single oscillator application suggested
by [16], integrating along the characteristics—as in [13] and using the boundary
conditions to couple the equations arising from the problems. We reproduce the dif-
ferential equations after [2]. We send the reader to this paper for the rather long and
tedious formulae describing the distributed voltages and currents along the trans-
mission lines, name (vl(x, t), il(x, t)), (vr (x, t), ir (x, t)) and focus on the two point
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boundary value problem on (−�/2, �/2). After the elimination of the superfluous
terms in (16)–(18) we obtain

L
∂ic
∂t

+ ∂vc
∂x

= 0, C
∂uc
∂t

+ ∂ic
∂x

= 0 (19)

with the non-standard boundary conditions at x = −�/2

vc(−�/2, t) + R′
1ic(−�/2, t) = vD1(t)

L1
diL1
dt

= −R1iL1 − vD1 + E1

C1
dvD1

dt
= iL1 − f1(vD1) − ic(−�/2, t) + il(−�/2, t)

(20)

and at x = �/2

vc(�/2, t) + R′
2ic(�/2, t) = vD2(t)

L2
diL2
dt

= −R2iL2 − vD2 + E2

C2
dvD2

dt
= iL2 − f2(vD2) + ic(�/2, t) − ir (�/2, t)

(21)

We call the aforementioned boundary conditions non-standard since they are in
fact a feedback connection between the standard ones and a system of ordinary
differential equations. Observe also that the boundary conditions (20)–(21) are forced
by the solution of the side boundary value problems i�(x, t), x < −�/2 and ir (x, t),
x > �/2, computed at x = ±�/2 (respectively).

Making use of the expressions of i�(−�/2, t) and ir (�/2, t) [2], the corresponding
equations of the boundary conditions become

C1
dvD1

dt
= iL1 −

[
1 + ρ1

2

√
C/L vD1 + f1(vD1)

]
− ic(−�/2, t)

+1 + ρ1

2

√
C/L

[
v0(−�/2 − t/

√
LC) + √

L/C i0(−�/2 − t/
√
LC)

]

(22)

C2
dvD2

dt
= iL2 −

[
1 + ρ2

2

√
C/L vD2 + f2(vD2)

]
+ ic(�/2, t)

+1 + ρ2

2

√
C/L

[
−v0(�/2 + t/

√
LC) + √

L/C i0(�/2 + t/
√
LC)

] (23)

where we denoted

ρi = 1 − R′
i

√
C/L

1 + R′
i

√
C/L

, i = 1, 2 (24)

while i0(x) and v0(x) are the initial current and voltage on the line; as in the previous
section, these functions can be periodic or almost periodic.
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The forcing terms E1 and E2 are constant: their role was to ensure a bias for the
equilibria of the local oscillators. Here they can be integrated in the forcing terms
since a constant is periodic of any period hence also almost periodic.

We associate now to (19)–(21)—with the modifications contained in (22)–(23)—
a system of functional differential equations by integrating the Riemann invari-
ants along the characteristics. We skip the rather standard (by now) computations
[2, 13] and write down the system of functional differential equations. We have two
(apparently) independent systems of ordinary differential equations

L1
diL1
dt

= −R1iL1 − vD1 + E1

C1
dvD1

dt
= iL1 −

[
(1 + ρ1)

√
C/L vD1 + f1(vD1)

]

+1 + ρ1

2

√
C/L η+

c (t − �
√
LC) + φ1(t)

(25)

and

L2
diL2
dt

= −R2iL2 − vD2 + E2

C2
dvD2

dt
= iL2 −

[
(1 + ρ2)

√
C/L vD2 + f2(vD2)

]

+1 + ρ2

2

√
C/L η−

c (t − �
√
LC) + φ2(t)

(26)

where we denoted

φ1(t) = 1 + ρ1

2

√
C/L

[
v0(−�/2 − t/

√
LC) + √

L/C i0(−�/2 − t/
√
LC)

]

φ2(t) = 1 + ρ2

2

√
C/L

[
−v0(�/2 + t/

√
LC) + √

L/C i0(�/2 + t/
√
LC)

] (27)

The functions η±
c (t) occur from the integration of the Riemann invariants along the

characteristics.
η+
c (t) = vc(−�/2, t) + √

L/C ic(−�/2, t)

η−
c (t) = vc(�/2, t) − √

L/C ic(�/2, t)
(28)

and
vc(�/2, t) + √

L/C ic(�/2, t) = η+
c (t − �

√
LC)

vc(−�/2, t) − √
L/C ic(−�/2, t) = η−

c (t − �
√
LC)

(29)

The following representation formulae are also useful

vc(x, t) = 1

2

[
η+
c (t − √

LC(�/2 + x)) + η−
c (t − √

LC(�/2 − x))
]

ic(x, t) = 1

2

√
C/L

[
η+
c (t − √

LC(�/2 + x)) − η−
c (t − √

LC(�/2 − x))
] (30)
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Systems (25)–(26) are coupled throughout the boundary conditions which now are
expressed as difference equations

η+
c (t) = −ρ1η

−
c (t − �

√
LC) + (1 + ρ1)vD1

η−
c (t) = −ρ2η

+
c (t − �

√
LC) + (1 + ρ2)vD2

(31)

Consider now the Eqs. (25), (26), (31): together they define a system of ordinary
differential equations coupled to a system of difference equations of the form

ẋ = A0x(t) + A1y(t − τ) −
m∑

k=1

b1kφk(c
∗
k x(t)) + f (t)

y(t) = A2x(t) + A3y(t − τ) −
m∑

k=1

b2kφk(c
∗
k x(t)) + g(t)

(32)

whereφk(σ ) are sector restricted nonlinear functions, also globally Lipschitz, subject
to

0 ≤ φk(σ1) − φk(σ2)

σ1 − σ2
≤ Lk, k = 1,m (33)

and f (t), g(t) are bounded onR, possibly periodic almost periodic sector functions.
For such systems existence and exponential stability of global (periodic/almost peri-
odic solutions have been analyzed either by frequency domain methods [7] or by
using a quadratic Lyapunov functional [15]. Worth mentioning that application of
either of the aforementioned methods can give only some estimates of the solution.
The required properties of the oscillating behavior follow by applying a theorem of
Halanay [5] on invariant manifolds for systems with time lag.

We have to recall here other two assumptions on the general system (32) in order to
ensure existence and stability of the forced oscillations. First, the difference operator
of the second equation of (32) namely

Dφ(·) := φ(0) − A3φ(−τ) (34)

must be strongly stable: in this case this means that the eigenvalues of A3 must lie
inside the unit disk. Second, the linear part of (32) i.e. the linear system of ordinary
differential and difference equations

ẋ = A0x(t) + A1y(t − τ)

y(t) = A2x(t) + A3y(t − τ)
(35)

must be exponentially stable. For our application, defined by (25), (26) and (31) the
aforementioned assumptions are valid. Indeed, it follows from (31) that the eigen-
values of the corresponding A3 are ±√

ρ1ρ2 with ρi < 1, i = 1, 2. Next, we have
to prove that the linear part of the system of our application is exponentially stable.
The characteristic equation is quite complicated but we can adopt here the energy
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function as a quadratic Lyapunov functional. Worth mentioning that if we consider
as nonlinear functions the new ones of (25)–(26) i.e. those obtained by rotation, there
exists some risk of getting an unstable linear part. Therefore it is useful to separate
a subsector in order to ensure a possibly stable linear system. This will send to the
following equations of the linear part

L1
diL1
dt

= −R1iL1 − vD1

C1
dvD1

dt
= iL1 − a1(1 + ρ1)

√
C/LvD1 + 1 + ρ1

2

√
C/L η+

c (t − �
√
LC)

L2
diL2
dt

= −R2iL2 − vD2

C2
dvD2

dt
= iL2 − a2(1 + ρ2)

√
C/LvD2 + 1 + ρ2

2

√
C/L η−

c (t − �
√
LC)

η+
c (t) = −ρ1η

−
c (t − �

√
LC) + (1 + ρ1)vD1

η−
c (t) = −ρ2η

+
c (t − �

√
LC) + (1 + ρ2)vD2

(36)

with 0 < ai < 1, i = 1, 2. It will appear from the following development how the
Lyapunov functional is structured in this case. We shall apply the method of [15] by
associating a Lyapunov functional suggested by the energy identity for (19)–(21)

E(vD1, vD2, iL1, iL2, ic(·, t), vc(·, t))
= 1

2

[
C1v

2
D1 + C2v

2
D2 + L1i

2
L1 + L2i

2
L2 +

∫ �/2

−�/2
(Li2c (x, t) + Cv2c (x, t)) dx

]

(37)
If we make use of the representation formulae (30) and introduce some free

parameters to be chosen afterwards, the following Lyapunov functional associated
to (25), (26), (31) is obtained

V(vD1, vD2, iL1, iL2, φ+
c (·), φ−

c (·)) = 1
2

[
C1v2D1 + γ1C2v2D2 + γ2L1i2L1 + γ3L2i2L2

+γ4

∫ 0

−�
√
LC

φ+
c (θ)2 dθ + γ5

∫ 0

−�
√
LC

φ−
c (θ)2 dθ

]

(38)
From now on one can follow the approach displayed in [15] to obtain existence,

uniqueness and exponential stability of the global solution (possibly periodic or
almost periodic) for (25), (26), (31). If the one-to-one correspondence [13] is used,
this solution exists for (19)–(21).

Some properties of this solution are interesting to be pointed out:

(i) The solution is imposed by the forcing term resulting from the solutions of
the side boundary value problems (on x < −�/2 and x > �/2: if the initial
conditions on the line are periodic/almost periodic, the steady states of the
local oscillators are periodic/almost periodic regardless their steady state when
isolated.
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(ii) While the steady states of the oscillators are periodic/almost periodic in the
classical sense, the steady state of the line on (−�/2, �/2) are such only “in the
average”—in the metrics of (28)—being thus Stepanov functions [1].

(iii) The coupling of the oscillators to the line introduces an additional damping
which rotates the nonlinear characteristics of the tunnel diodes which become
sector restricted—see (33)—instead of S-functions. Consequently the possible
local limit cycles are “quenched” and synchronization with the external forcing
term occurs.

4 The Case of the Two Mechanical Oscillators

This case (Fig. 2b), described by (2) has been briefly discussed in [14]. Here also,
due to the infinite string, the analysis concerns three boundary value problems—two
side, single boundary value problems and a central two point boundary value prob-
lem. When integrating along the characteristics, the solutions of the side boundary
value problems become, as in the previous section, forcing terms for the system of
functional differential equations associated to the central boundary value problem.
This system is as follows

m1 z̈1 + 2(T/c)ż1 + V1(z1) − (T/c)η−
c (t − L/c) = (T/c) f −(t)

m2 z̈2 + 2(T/c)ż1 + V2(z2) − (T/c)η+
c (t − L/c) = (T/c) f +(t)

η+
c (t) = −η−

c (t − L/c) + 2ż1
η−
c (t) = −η+

c (t − L/c) + 2ż2

(39)

where f ±(t) are the forcing terms induced by the side boundary value problems. If
(39) are examined in comparison to (2), one can see that in (39) the local oscillators
have an additional damping “induced” by the coupling to the string. The phenomenon
is called radiation dissipation [11].

System (39) is also of the type (32) but herewe do not have nonlinearity rotation—
Vi (·) remain as they were. Themain difficulty here is that A3 has now the eigenvalues
±1 i.e. on the unit disk. From the experience of the authors of this paper it follows that
all applications arising from mechanical engineering have exactly this property—
the critical case of the matrix A3 i.e. of the difference operator. The stable case may
be obtained in those applications where the “through” variables (electric currents,
fluid or thermal flows) mix with the “across” variables (electric voltages, pressures)
within at least one boundary condition. Unfortunately this does not happen, gener-
ally speaking, in the case of mechanical systems where one deals with forces and
displacements. Even in the application of Sect. 3 where the eigenvalues of A3 are
±√

ρ1ρ2, formulae (24) show that 0 < ρi < 1 provided the boundary dissipation
resistors R′

i �= 0 otherwise the critical case will occur here also.
In the critical case the theorem on forced oscillations from [7, 15] cannot be

applied. To obtain a more refined form of it would require not only more refined
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estimates of the solutions in the new case, but also relaxation of the 40 years old
basic results of [5, 9].

For these reasons and other, the case of Fig. 3 with two oscillators coupled by an
elastic rod—Eq. (3)—will be discussed elsewhere.

5 Some Conclusions

We have discussed throughout the paper several aspects concerning synchronization
viewed as an existence and stability problem for forced oscillations. The oscillating
structures at their turn were inspired by the old and classical problem of Huygens
about synchronization throughout the coupling media e.g. a wall, a rope, a string,
a rod. We constructed also an electric analogue of the aforementioned mechanical
oscillating systems—two electronic oscillators coupled to a lossless (LC) transmis-
sion line. The paper focused on those systems coupled to an infinite string or electrical
line. This concept—arising from Physics—allowed introduction of the forcing, syn-
chronizing oscillatory signal from the initial conditions of the string (line).

The mathematical approach has been based again on the association of some
functional equations (almost always of neutral type) by integrating the Riemann
invariants along the characteristics. Due to the one-to-one correspondence between
the two mathematical objects—the starting system of hyperbolic partial differen-
tial equations with non-standard boundary conditions and the associated system of
functional equations—all results obtained for one object are projected back on the
other. If basic theory (well posedness in the sense of Hadamard) is concerned, then
mainly classical solutions (at most discontinuous) are “discovered”. On the other
hand, when discussing global (on R) solutions, such as equilibria or periodic/almost
periodic solutions, existence should be accompanied by their stability analysis: we
view the problem in the perspective of the Četaev Stability Postulate—only those
solutions are observable (in the sense of noticeable, measurable, computable) which
are stable.

Referring to existence and stability of forced oscillations, this analysis strongly
relies on some mathematical results concerning invariant manifolds for flows in
Banach spaces [5, 9] and for specific estimates along the solutions of the dynamical
systems. Here also one has to consider two competing approaches: the method of
the Lyapunov function(al) and the method of Popov type frequency domain inequal-
ities [6]. It is felt that for the cases considered in this paper—mechanical or electrical
systems for which natural energy-based Lyapunov function(al)s can be easily asso-
ciated, the Lyapunov approach is more feasible. On the other hand the energy func-
tions are “weak” Lyapunov functions, only non-increasing, what requires additional
mathematical instruments. In the case of neutral functional differential equations, an
almost “compulsory” assumption appears to be the strong stability of the difference
operator. But none of the mechanical systems discussed here has this property—
their difference operator being just stable (marginally)—unlike the electrical system
which has this property.
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Analyzing systems with marginally stable difference operator appears to be a
challengewhich neverthelessmight answer to the question concerning the “complex”
a.k.a. “chaotic” behavior of such systems [3, 10]. But this would lead to relaxation
and refinement of some old date instruments of the oscillation theory.
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Dynamic Dissipativity Theory for
Stability of Time-Delay Systems

Vijaysekhar Chellaboina and Wassim M. Haddad

1 Introduction

Time delays can severely degrade system performance and in many cases drive
the system to instability and hence stability analysis of time delay dynamical sys-
tems remains an important area of research (see [7, 10, 12, 14, 15] and numerous
references therein). A key method for analyzing stability of linear time delay dynam-
ical systems is Lyapunov’s second method [8] as applied to functional differential
equations. Specifically, stability analysis of a given linear time delay dynamical sys-
tem is typically shown using a Lyapunov-Krasovskii functional [9, 11]. Standard
Lyapunov-Krasovskii functionals involve a fixed quadratic function and an integral
functional explicitly dependent on the system time delay. As in classical absolute
stability theory [13], the fixed quadratic part of the Lyapunov-Krasovskii functional
is associated with the stability of the forward delay-independent part of the retarded
dynamical system. However, the system-theoretic foundation of the integral part of
the Lyapunov-Krasovskii functional is less understood. See [3, 17] for a dissipativ-
ity based justification for the integral part. An alternative method involves frequency
domain approaches and have been very successful in arriving at multiple necessary
and sufficient conditions (typically in terms of linearmatrix inequalities) for checking
stability of linear time-delay systems (see [5, 6, 17] and references within).

As is evident, much of the literature on stability of time-delay systems is restricted
to linear time-delay systems. In this paper, by representing a time delay dynami-
cal system as a negative feedback interconnection of a (linear or nonlinear) finite-
dimensional dynamical system and an infinite-dimensional time delay operator, we
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derive new sufficient conditions for stability analysis of asymptotically stable linear
and nonlinear time delay dynamical systems by showing that the corresponding time-
delay operator is dissipative [2, 3]. Specifically, based on [4], we present extensions
to the notions of dissipativity [16] and exponential dissipativity [8], namely dynamic
dissipativity, that is, (�, Q̂)-dissipativity, where � is a dynamical system and Q̂ is
a symmetric matrix. By choosing a certain dynamical system � and a symmetric
matrix Q̂ it can be shown that a systemG is (�, Q̂)-dissipative if and only ifG is dis-
sipative with respect to a quadratic supply rate. Thus, (�, Q̂)-dissipativity provides
a nontrivial extension of dissipativity theory with respect to a quadratic supply rate.
Based on (�, Q̂)-dissipativity theory, we also provide a result on stability of nega-
tive feedback interconnection of (�, Q̂)-dissipative systems which can then be used
to establish sufficient conditions for stability of time-delay systems. Thus the over-
all approach provides an explicit framework for constructing Lyapunov-Krasovskii
functionals as well as deriving new sufficient conditions for stability analysis of
asymptotically stable linear and nonlinear time delay dynamical systems based on
the dissipativity properties of the time delay operator.

2 Mathematical Preliminaries

2.1 Notation and Definitions

In this section we introduce notation, several definitions, and some key results
concerning dynamical systems that are necessary for developing the main results
of this paper. Specifically, R denotes the reals and R

n is an n-dimensional linear
vector space over the reals with Euclidean norm ‖ · ‖. Let C([a, b],Rn) denote
a Banach space of continuous functions mapping the interval [a, b] into R

n with
the topology of uniform convergence. For a given real number τ ≥ 0 if [a, b] =
[−τ, 0] we let C = C([−τ, 0],Rn) and designate the norm of an element φ in C
by |||φ||| = supθ∈[−τ,0] ‖φ(θ)‖. If α, β ∈ R and x ∈ C([α − τ, α + β],Rn), then for
every t ∈ [α, α + β], we let xt ∈ C be defined by xt (θ) = x(t + θ), θ ∈ [−τ, 0].
Furthermore, for M ∈ R

m×n , we write MT to denote the transpose of M and M ≥ 0
(resp., M > 0) to denote the fact that the symmetric matrix M is nonnegative (resp.,

positive) definite. Let G(s) ∼
[
A B
C D

]
denote a state space realization of a transfer

function G(s); that is, G(s) = C(s I − A)−1B + D. The notation “
min∼ ” is used to

denote a minimal realization. Finally, we write In to denote the n × n identity matrix
and C0 to denote continuous functions.

In this paper we represent dynamical systems G defined on the semi-infinite
interval [0,∞) as a mapping between function spaces satisfying an appropriate set
of axioms. For the following definitionU is an input space and consists of bounded
continuousU -valued functions on [0,∞). The setU ⊆ R

m contains the set of input
values; that is, at any time t , u(t) ∈ U . The spaceU is assumed to be closed under the
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shift operator; that is, if u ∈ U, then the function uT defined by uT (t) = u(t + T )

is contained in U for all T ≥ 0. Furthermore, Y is an output space and consists
of continuous Y -valued functions on [0,∞). The set Y ⊆ R

l contains the set of
output values; that is, each value of y(t) ∈ Y , t ≥ 0. The space Y is assumed to
be closed under the shift operator; that is, if y ∈ Y, then the function yT defined
by yT (t) = y(t + T ) is contained in Y for all T ≥ 0. Finally, D is a metric space
with topology of uniform convergence and metric ρ : D × D → [0,∞). Hence, the
notions of openness, convergence, continuity, and compactness that we use in the
paper refer to the topology generated on D by the metric ρ(·, ·).
Definition 1 ([16])A stationary dynamical system onD is the octuple (D,U,U,Y,

Y, [0,∞), s, q), where s : [0,∞) × D × U → D and q : D ×U → Y are such
that the following axioms hold:

(i) (Continuity): s(·, ·, u) is jointly continuous for all u ∈ U.
(ii) (Consistency): s(0, x0, u) = x0 for all x0 ∈ D and u ∈ U.
(iii) (Determinism): s(t, x0, u1) = s(t, x0, u2) for all t ∈ [0,∞), x0 ∈ D, and u1, u2

∈ U satisfying u1(τ ) = u2(τ ), τ ≤ t .
(iv) (Semi-group property): s(τ, s(t, x0, u), u) = s(t + τ, x0, u) for all x0 ∈ D, u ∈

U, and τ, t ∈ [0,∞).
(v) (Read-out map): There exists y ∈ Y such that y(t) = q(s(t, x0, u), u(t)) for all

x0 ∈ D, u ∈ U, and t ≥ 0.

Henceforth, we denote the dynamical system (D,U,U,Y,Y, [0,∞), s, q) by
G. Furthermore, we refer to s(t, x0, u), t ≥ 0, as the trajectory or state transition
operator ofG corresponding to x0 ∈ D and u ∈ U. For a given trajectory s(t, x0, u),
t ≥ 0, we refer to x0 ∈ D as the initial condition of G. For the dynamical system G
given by Definition 1, a function r : U × Y → R is called a supply rate [16] if it is
locally integrable; that is, for all input-output pairs u ∈ U and y ∈ Y satisfying the
dynamical system G, r(·, ·) satisfies ∫ t2

t1
|r(u(s), y(s))|ds < ∞, t1, t2 ≥ 0.

Definition 2 ([8, 16]) A dynamical system G is exponentially dissipative with
respect to the supply rate r(u, y) if there exists a C0 nonnegative-definite function
Vs : D → R, called a storage function, and a scalar ε > 0 such that the dissipation
inequality

eεt Vs(x(t)) ≤ eεt1Vs(x(t1)) +
∫ t

t1

eεsr(u(s), y(s))ds (1)

is satisfied for all t1, t ≥ 0 and where x(t) = s(t, x0, u(t)), t ≥ t1, with x0 ∈ D and
u(t) ∈ U . A dynamical systemG is dissipative with respect to the supply rate r(u, y)
if there exists a C0 nonnegative-definite function Vs : D → R such that (1) is satisfied
with ε = 0.
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Fig. 1 Interconnection of G
and �

2.2 Dynamic Dissipative Systems

Consider a dynamical system � given by the octuple (D̂,W,U × Y,Z, Z , [0,∞),

ŝ, q̂), where Z ⊆ R
p, Z is an output space which consists of continuous Z -

valued functions on [0,∞), and consider the cascade interconnection of G and
� as shown in Fig. 1. We denote the interconnected dynamical system (D ×
D̂,U,U,Z, Z , [0,∞), [sT, ŝT]T, q̂) by G̃. For the following definition, let Q̂ ∈
R

p×p and Q̂ = Q̂T.

Definition 3 ([2, 4]) A dynamical system G is (�, Q̂)-exponentially dissipative if
there exists a C0 nonnegative-definite function V̂s : D × D̂ → R, called a (�, Q̂)-
storage function and a scalar ε > 0, such that the (�, Q̂)-dissipation inequality

eεt V̂s(x(t), x̂(t)) ≤ eεt V̂s(x(t1), x̂(t1)) +
∫ t

t1

eεs zT(s)Q̂z(s)ds (2)

is satisfied for all t, t1 ≥ 0 andwhere x(t) = s(t, x0, u(t)), x̂(t) = ŝ(t, x̂0, u(t), y(t)),
t ≥ t1, with x0 ∈ D, x̂0 ∈ D̂, x̂0 = 0, u(t) ∈ U , and y(t) = q(x(t), u(t)). A dynam-
ical systemG is (�, Q̂)-dissipative if there exists a C0 nonnegative-definite function
V̂s : D × D̂ → R such that (2) is satisfied with ε = 0.

The following result provides a sufficient condition for (�, Q̂)-dissipativity of G
in the case where G and � are linear dynamical systems. Specifically, let G and �

be given by transfer functions G(s) ∼
[
A B
C D

]
and Ĝ(s) ∼

[
Â B̂
Ĉ D̂

]
, respectively,

where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
l×n , D ∈ R

l×m , Â ∈ R
n̂×n̂ , B̂ ∈ R

n̂×(l+m), Ĉ ∈
R

p×n̂ and D̂ ∈ R
p×(l+m). In this case, the interconnection of G and � as shown in

Fig. 1 is given by the transfer function G̃(s) ∼
[
Ã B̃
C̃ D̃

]
, where

Ã =
[

A 0
B̂yC Â

]
, B̃ =

[
B

B̂yD + B̂u

]
, (3)

C̃ = [D̂yC Ĉ], D̃ = D̂u + D̂y D, (4)

where B̂u ∈ R
n̂×m , B̂y ∈ R

n̂×l , D̂u ∈ R
p×m , and D̂y ∈ R

p×l are such that B̂ =
[B̂u B̂y] and D̂ = [D̂u D̂y].
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Proposition 1 ([2, 4]) Consider the dynamical systemG given by the transfer func-

tion G(s) ∼
[
A B
C D

]
, let Q̂ ∈ R

p×p, Q̂ = Q̂T, and let � be a linear dynamical sys-

tem given by the transfer function Ĝ(s) ∼
[
Â B̂
Ĉ D̂

]
. Then,G is (�, Q̂)-exponentially

dissipative if and only if there exists a nonnegative-definite matrix P̃ ∈ R
(n+n̂)×(n+n̂)

and a scalar ε > 0 such that

[
ÃT P̃ + P̃ Ã + ε P̃ P̃ B̃

B̃T P̃ 0

]
≤

[
C̃T

D̃T

]
Q̂

[
C̃ D̃

]
. (5)

Furthermore,G is (�, Q̂)-dissipative if and only if there exists a nonnegative-definite
matrix P̃ ∈ R

(n+n̂)×(n+n̂) such that (5) holds with ε = 0.

Proof The proof is a direct consequence of the generalized Kalman-Yakubovich-
Popov lemma [8]. �

Remark 1 Note that it follows from Propositon 1 that if G̃(s)
min∼

[
Ã B̃
C̃ D̃

]
, then G is

(�, Q̂)-exponentially dissipative if and only if there exists a positive-definite matrix
P̃ such that (5) holds.

Next, we extend the proposition above for nonlinear dynamical systems G of the
form

ẋ(t) = f (x(t)) + G(x(t))u(t), x(t0) = x0, t ≥ t0, (6)

y(t) = h(x(t)) + J (x(t))u(t), (7)

where x ∈ R
n , u ∈ R

m , y ∈ R
l , f : Rn → R

n , G : Rn → R
n×m , h : Rn → R

l , and
J : Rn → R

l×m . We assume that f (·), G(·), h(·), and J (·) are continuously dif-
ferentiable mappings and f (·) has at least one equilibrium so that, without loss of
generality, f (0) = 0 and h(0) = 0. Furthermore, for the nonlinear dynamical sys-
tem G we assume that the required properties for the existence and uniqueness of
solutions are satisfied; that is, u(·) satisfies sufficient regularity conditions such that
the system (6) has a unique solution forward in time.

Here, we consider a cascade interconnection of the dynamical system G given by
(6), (7) and a system � (see Fig. 1) given by

˙̂x(t) = f�(x̂(t)) + G�u (x̂(t))u(t) + G�y (x̂(t))y(t), x̂(0) = 0, t ≥ 0, (8)

z(t) = h�(x̂(t)) + J�u (x̂(t))u(t) + J�y (x̂(t))y(t), (9)

where x̂ ∈ R
n̂ , y ∈ R

l , z ∈ R
l̂ , u ∈ R

m , f� : Rn̂ → R
n̂ , G�u : Rn̂ → R

n̂×m , G�y :
R

n̂ → R
n̂×l , h� : Rn̂ → R

l̂ , J�u : Rn̂ → R
l̂×m , and J�y : Rn̂ → R

l̂×l . We assume
that f�(·), G�(·), h�(·), and J�(·) are continuously differentiable mappings and
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f�(0) = 0 and h�(0) = 0. The overall cascade system consisting of G and � is
given by

˙̃x(t) = f̃ (x̃(t)) + G̃(x̃(t))u(t), x̃(0) = x̃0, t ≥ 0, (10)

z(t) = h̃(x̃(t)) + J̃ (x̃(t))u(t), (11)

where x̃ =
[
x
x̂

]
and

f̃ (x̃(t)) =
[

f (x(t))
f�(x̂(t)) + G�y (x̂(t))h(x(t))

]
,

G̃(x̃(t)) =
[

G(x)
G�u (x̂(t)) + G�y (x̂(t))J (x(t))

]
,

h̃(x̃(t)) = h�(x̂(t)) + J�y (x̂(t))h(x(t)),

J̃ (x̃(t)) = J�u (x̂(t)) + J�y (x̂(t))J (x(t)).

Proposition 2 ([4]) Consider the nonlinear dynamical systems G and � given by
(6), (7) and (8), (9) respectively.G is (�, Q̂)-exponentially dissipative (resp., (�, Q̂)-
dissipative) if and only if there exist functions Ṽs : Rñ → R, 
̃ : Rñ → R

p̃ , and
W̃ : Rñ → R

p̃×m and a scalar ε̃ > 0 (resp., ε̃ = 0), such that Ṽs(·) is continuously
differentiable and positive definite, Ṽs(0) = 0, and, for all x̃ ∈ R

ñ , where ñ = n + n̂,

0 = Ṽ ′
s (x̃) f̃ (x̃) + ε̃Ṽs(x̃) − h̃T(x̃)Q̂h̃(x̃) + 
̃T(x̃)
̃(x̃), (12)

0 = 1

2
Ṽ ′
s (x̃)G̃(x̃) − h̃T(x̃)Q̂ J̃ (x̃) + 
̃T(x̃)W̃(x̃), (13)

0 = J̃T(x̃)Q̂ J̃ (x̃) − W̃T(x̃)W̃(x̃). (14)

Proof The proof is a direct consequence of the generalized Kalman-Yakubovich-
Popov lemma [8]. �

2.3 Feedback Interconnections of Dynamic Dissipative
Systems

In this section, we present a result on stability of feedback interconnection of dissi-
pative dynamical systems. Specifically, consider the negative feedback intercon-
nection of dynamical system G with a feedback system Gd given by the octu-
ple (Dd,Ud,Ud,Yd,Yd, [0,∞), sd, qd). Note that with the feedback interconnec-
tion given in Fig. 2, u = −yd and ud = y. Hence, U = Yd and Y = Ud. Further-
more, consider a dynamical system �d given by the octuple (D̂,Wd,Ud × Yd,
Zd, Z , [0,∞), ŝd, q̂d),where ŝd(t, x̂, ud, yd) = ŝ(t, x̂0,−yd, ud) and q̂d(x̂, ud, yd) =
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Fig. 2 Feedback
interconnection of G and Gd

Fig. 3 Interconnection of
Gd and �d

q̂(x̂,−yd, ud). In addition, consider the interconnected dynamical system G̃d given
by the octuple (Dd × D̂,Ud,Ud,Zd, Z , [0,∞), [sTd ŝTd ], q̂d) (see Fig. 3). The fol-
lowing definition is needed for the statement of the next result.

Definition 4 A dynamical system G with input-output pair (u, y) is zero-state
observable if u(t) ≡ 0 and y(t) ≡ 0 implies s(t, x0, u) ≡ 0.

For the statement of the next result let ||| · |||σ and ||| · |||μ denote operator norms
on D and Dd, respectively, and let γ +(x0, xd0) = ∪t≥0{(s(t, x0, u), sd(t, xd0, ud))},
with u = −yd and ud = y, denote the positive orbit of the feedback systemG andGd.
Furthermore, recall that γ +(x0, xd0) is precompact if γ +(x0, xd0) can be enclosed in
the union of a finite number of ε-balls around elements of γ +(x0, xd0).

Theorem 1 ([4]) Let Q̂, Q̂d ∈ R
p×p be such that Q̂ = Q̂T and Q̂d = Q̂T

d . Consider
the feedback system consisting of the stationary dynamical systems G and Gd with
input-output pairs (u, y) and (ud, yd), respectively, and with ud = y and u = −yd.
Assume that G and Gd are (�, Q̂)-dissipative and (�d, Q̂d)-dissipative with C0

storage functions Vs : D × D̂ → R and Vsd : Dd × D̂d → R, respectively, such that
Vs(0, 0) = 0, Vsd(0, 0) = 0, and

α(|||x |||σ ) ≤ Vs(x, x̂), (x, x̂) ∈ D × D̂, (15)

αd(|||xd|||μ) ≤ Vsd(xd, x̂d), (xd, x̂d) ∈ Dd × D̂d, (16)

where α, αd : [0,∞) → [0,∞) are class K∞ functions. Furthermore, assume that
for each initial condition (x0, xd0) ∈ D × Dd, the positive orbit γ +(x0, xd0) of the
feedback systemG andGd is precompact. Finally, assume there exists a scalar σ > 0
such that Q̂ + σ Q̂d ≤ 0. Then the following statements hold:

(i) The negative feedback interconnection of G and Gd is Lyapunov stable.
(ii) If G is additionally (�, Q̂)-exponentially dissipative, then the negative feed-

back interconnection of G and Gd is Lyapunov stable and for every x(0) ∈ D,
|||x(t)|||σ → 0 as t → ∞.
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Proof The proof follows from standard Lyapunov theory and invariant set arguments
as applied to infinite-dimensional dynamical systems [1, 9]. �

3 Stability Theory for Time-Delay Dynamical Systems
Using Dissipativity Theory

3.1 Linear Time-Delay Systems

In this section we present sufficient conditions for stability of linear time-delay
systems [2]. Specifically, consider linear time delay dynamical systems G of the
form

ẋ(t) = Ax(t) + Adx(t − τ), x(θ) = φ(θ),−τ ≤ θ ≤ 0, t ≥ 0, (17)

where x(t) ∈ R
n , t ≥ 0, A ∈ R

n×n , Ad ∈ R
n×n , τ ≥ 0, and φ(·) ∈ C = C([−τ, 0],

R
n) is a continuous vector valued function specifying the initial state of the system.

Note that the state of (17) at time t is the piece of trajectories x between t − τ and
t , or, equivalently, the element xt in the space of continuous functions defined on
the interval [−τ, 0] and taking values in R

n; that is, xt ∈ C([−τ, 0],Rn). Hence,
xt (θ) = x(t + θ), θ ∈ [−τ, 0]. Furthermore, since for a given time t the piece of the
trajectories xt is defined on [−τ, 0], the uniform norm |||xt ||| = supθ∈[−τ,0] ‖x(t + θ)‖
is used for the definitions of Lyapunov and asymptotic stability of (17). For further
details see [9, 11].

Next, we rewrite (17) as a feedback system so that

ẋ(t) = Ax(t) − Adu(t), x(0) = φ(0), t ≥ 0, (18)

y(t) = x(t), (19)

yd(t) = Gd(ud(t)), (20)

where u(t) = −yd(t), ud(t) = y(t), and Gd : C([−τ,∞),Rn) → C([0,∞),Rn)

denotes a delay operator defined by Gd(ud(t))
= ud(t − τ). Note that (18)–(20)

is a negative feedback interconnection of a linear finite-dimensional system G with

transfer functionG(s) ∼
[
A −Ad

In 0

]
and the infinite-dimensional delay operatorGd.

Hence, stability of (17) is equivalent to stability of the negative feedback intercon-
nection of G(s) and Gd. Next, we present a key result that shows that the delay
operator Gd is dissipative with respect to a quadratic supply rate. First, however, we
show that the input-output operator Gd can be characterized as a stationary dynami-
cal system on C. Specifically, let Ud = C([−τ,∞),Rn), Yd = C([0,∞),Rn), and
Ud = Yd = R

n . Now, for every φ ∈ C, define sθ : [0,∞) × C × Ud → C by
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sθ (t, φ, ud) = ud(t + θ), θ ∈ [−τ, 0], t ≥ 0, (21)

where ud(θ) = φ(θ), θ ∈ [−τ, 0]. Finally, define qd : C ×Ud → Yd by

qd(sθ (t, φ, ud), ud(t)) = s−τ (t, φ, ud) = ud(t − τ) = Gd(ud(t)). (22)

Note that the octuple (C,Ud,Ud,Yd,Yd, [0,∞), sθ , qd) satisfies Axioms (i)–(v)

of Definition 1 which implies that the octuple (C,Ud,Ud,Yd,Yd, [0,∞), sθ , qd)
is a stationary dynamical system on C. For notational convenience we refer to this
dynamical system as Gd.

To show that Gd is (�d, Q̂d)-dissipative, let � denote a linear dynamical system
given by the octuple (D̂,W,Rn × R

n,Z,R2n, [0,∞), ŝ, q̂), where D̂ ⊂ R
2n̂ and

with transfer function Ĝ(s) ∼
[
Â B̂
Ĉ D̂

]
, where

Â = block−diag[A1, A1], B̂ = block−diag[B1, B1], Ĉ = block−diag[C1,C1],(23)

D̂ = I2n , and where A1 ∈ R
n̂×n̂ is Hurwitz, B1 ∈ R

n̂×n , and C1 ∈ R
n×n̂ . In this case,

the dynamical system�d is given by the transfer function Ĝd(s) ∼
[
Âd B̂d

Ĉd D̂d

]
, where

Âd = Â, B̂d =
[
0 −B1

B1 0

]
, Ĉd = Ĉ, D̂d =

[
0 −In
In 0

]
. (24)

Hence, the state space representation of the interconnection shown in Fig. 3 is
given by

yd(t) = Gd(ud(t)), sθ (0, φ, ud) = φ(θ), θ ∈ [−τ, 0], t ≥ 0, (25)

ẋd1(t) = A1xd1(t) − B1yd(t), xd1(0) = 0, (26)

ẋd2(t) = A1xd2(t) + B1ud(t), xd2(0) = 0, (27)

ẑd1(t) = C1xd1(t) − D1yd(t), (28)

ẑd2(t) = C1xd2(t) + D1ud(t). (29)

Lemma 1 Let Q̂d = block-diag[−Q, Q], where Q ∈ R
n×n. If φ(θ) = 0, θ ∈

[−τ, 0], then for every ud(·) ∈ Ud, then

∫ T

0
ẑTd (t)Q̂d ẑd(t)dt =

∫ T

γ

ẑTd2(t)Q̂d ẑd2(t)dt ≥ 0, T > 0, (30)

where γ = 0 if T ∈ [0, τ ], and γ = T − τ if T > τ .
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Proof Note that

xd1(t) = −
∫ t

0
eA1(t−s)B1yd(s)ds, xd2(t) =

∫ t

0
eA1(t−s)B1ud(s)ds, t ≥ 0.

Since yd(t) = ud(t − τ), t ≥ 0 and ud(θ) = φ(θ) = 0, θ ∈ [−τ, 0], it follows that
xd1(t) = 0, t ∈ [0, τ ], and for all t ≥ τ ,

xd1(t) = −
∫ t

τ

eA1(t−s)B1ud(s − τ)ds = −xd2(t − τ).

Hence, ẑd1(t) = 0, t ∈ [0, τ ], and ẑd1(t) = −ẑd2(t − τ), t > τ , which implies that

∫ T

0
ẑTd (t)Q̂d ẑd(t)dt =

∫ T

0
[ẑTd2(t)Qẑd2(t) − ẑTd1(t)Qẑd1(t)]dt

=
∫ T

T−τ

ẑTd2(t)Qẑd2(t)dt ≥ 0, T ≥ τ.

The case where T ∈ [0, τ ] follows in a similar manner. �

Theorem 2 Consider the dynamical system Gd defined by the octuple (C,Ud,Ud,

Yd, Yd, [0,∞), sθ , qd), where sθ and qd are given by (21) and (22), respectively.

Next, let�d be a linear dynamical systemwith transfer function Ĝd(s) ∼
[
Âd B̂d

Ĉd D̂d

]
,

where Âd, B̂d, Ĉd and D̂d are given by (24), and let Q̂d = block-diag[−Q, Q], where
Q ∈ R

n×n, Q > 0. Then, Gd is (�d, Q̂d)-dissipative. Furthermore,

Vsd(ψ, x̂d1 , x̂d2) = − inf
ud(·)∈Ud,T≥0

∫ T

0
ẑTd (t)Q̂d ẑd(t)dt (31)

is a (�d, Q̂d)-storage function forGd where the infimum in (31) is performed over all
trajectories of G̃d with initial conditionsφ(·) = ψ(·), xd1(0) = x̂d1 , and xd2(0) = x̂d2 .

Proof It follows from (31) that

Vsd(ψ, x̂d1 , x̂d2) = − inf
ud(·)∈Ud,T≥0

∫ T

0
ẑTd (t)Q̂d ẑd(t)dt

= sup
ud(·)∈Ud,T≥0

∫ T

0
[ẑTd1(t)Q̂d ẑd1(t) − ẑTd2(t)Q̂d ẑd2(t)]dt. (32)

Hence, Vsd(ψ, x̂d1 , x̂d2) ≥ 0, ψ(·) ∈ C, x̂d1 , x̂d2 ∈ R
n . If ψ(θ) ≡ 0, θ ∈ [−τ, 0],

x̂d1 = 0, x̂d2 = 0, then it follows from Lemma 1 that
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∫ T

0
ẑTd (t)Q̂d ẑd(t)dt =

∫ T

0
ẑTd2(t)Q̂d ẑd2(t)dt, T ≥ 0,

which implies that

Vsd(0, 0, 0) = sup
ud(·)∈Ud,T≥0

−
∫ T

0
ẑTd2(t)Q̂d ẑd2(t)dt ≤ 0.

Hence, since Vsd(0, 0, 0) ≥ 0, Vsd(0, 0, 0) = 0. Next, note that for every ud(t), t ∈
[t1, tf ], and T ∈ [t1, tf ],

−Vsd(sθ (t1, ψ, ud), xd1(t1), xd2(t2)) ≤
∫ tf

t1

ẑTd2(t)Q̂d ẑd2(t)dt

=
∫ T

t1

ẑTd2(t)Q̂d ẑd2(t)dt +
∫ tf

T
ẑTd2(t)Q̂d ẑd2(t)dt.

Hence,

−Vsd(sθ (t1, ψ, ud), xd1(t1), xd2(t1)) −
∫ T

t1

ẑTd2(t)Q̂d ẑd2(t)dt ≤
∫ tf

T
ẑTd2(t)Q̂d ẑd2(t)dt,

which implies that

−Vsd(sθ (t1, ψ, ud), xd1(t1), xd2(t2)) −
∫ T

t1

ẑTd2(t)Q̂d ẑd2(t)dt

≤ inf
ud(·)∈Ud,tf≥T

∫ tf

T
ẑTd (t)Q̂d ẑd(t)dt = −Vsd(sθ (T, ψ, ud), xd1(T ), xd2(T )),

establishing the (�d, Q̂d)-dissipativity of Gd. �

Remark 2 In the case where A1 = 0, B1 = 0, and C1 = 0, it can be shown that

Vsd(ψ, xd1, xd2) = Vsd(ψ) =
∫ 0

−τ

ψT(θ)Qψ(θ)dθ. (33)

Next, using Theorem 2, we present a sufficient condition on G(s) that guaran-
tees asymptotic stability of the negative feedback interconnection of the time delay
dynamical system given by (17). For the following result we assume that Vsd(·, ·, ·)
given by (31) is continuously differentiable.

Theorem 3 Consider the linear time delay dynamical system given by (17). Let Q̂ =
block-diag[Q,−Q], where Q ∈ R

n×n, Q > 0. Assume there exists a nonnegative
definite matrix P̃ ∈ R

(n+2n̂)×(n+2n̂) and scalars ε, η > 0 such that
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[
ÃT P̃ + P̃ Ã + ε P̃ P̃ B̃

B̃T P̃ 0

]
≤

[
C̃T

D̃T

]
Q̂

[
C̃ D̃

]
, (34)

holds and P̃ ≥ block−diag[ηIn, 0n̂×n̂, 0n̂×n̂], where

Ã =
⎡
⎣ A 0 0

0 A1 0
B1 0 A1

⎤
⎦ , B̃ =

⎡
⎣−Ad

B1

0

⎤
⎦ , C̃ =

[
0 C1 0
In 0 C1

]
, D̃ =

[
In
0

]
. (35)

Then the linear time delay dynamical system given by (17) is asymptotically stable
for every τ ∈ [0,∞).

Proof It follows from Theorem 2 that Gd is (�d, Q̂d)-dissipative with (�d, Q̂d)-
storage functionVsd(ψ, xd1 , xd2),ψ ∈ C, xd1 , xd2 ∈ R

n̂ , given by (31).Next, it follows
from Proposition 1 that G is (�, Q̂)-exponentially dissipative with (�, Q̂)-storage
function Vs(x̃) = x̃T P̃ x̃ , where x̃ = [xT, xT1 , xT2 ]T. Furthermore, note that x = ψ(0)
and as in the proof of Theorem 1, it can be shown that x̂1(t) = xd1(t), x̂2(t) =
xd2(t), t ≥ 0, and hence the state of the overall interconnection of G, Gd, and �

(see Fig. 4) is given by [ψT, x̂T]T where x̂ = [x̂T1 , x̂T2 ]T. Next, using the Lyapunov-
Krasovskii functional candidate V (ψ, x̂1, x̂2) = Vs(ψ(0), x̂1, x̂2) + Vsd(ψ, x̂1, x̂2),
it follows that

V̇ (xt , x̂1(t), x̂1(t)) ≤ −εx̃T(t)P̃ x̃(t) ≤ −εηxT(t)x(t). (36)

Now, Lyapunov stability follows from standard arguments as applied to time delay
systems (see Theorem 2.1 of [9, p. 132] for a similar proof). The proof of asymptotic
stability is similar to that of Theorem 1 and hence is omitted. �
Remark 3 Note that if Vs(x̃) and Vsd(ψ, xd1 , xd2) satisfy (15) and (16), then
Theorem 3 follows from Theorem 1. However, in the case of time delay dynam-
ical systems (15) and (16) can be replaced by a weaker condition

ηψT(0)ψ(0) ≤ V (ψ, x̂1, x̂2), ψ ∈ C, x̂1, x̂2 ∈ R
n̂. (37)

In this case, Lyapunov and asymptotic stability can be shown using the fact that
‖x(t)‖ ≤ ε, t ≥ 0, if and only if |||xt ||| ≤ ε, t ≥ 0.

Fig. 4 Interconnection of G,
Gd, and �
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Remark 4 In the case where A1 = 0, B1 = 0, and C1 = 0, it follows from Theorem
3 that if there exists a positive-definite matrix P ∈ R

n×n such that

[
ATP + PA + εP + Q −PAd

−AT
d P −Q

]
≤ 0, (38)

then the negative feedback interconnection of G and Gd is asymptotically stable.
Furthermore, it follows fromRemark2 thatVsd(ψ) = ∫ 0

−τ
ψT(θ)Qψ(θ)dθ andhence

V (ψ) = ψT(0)Pψ(0) + ∫ 0
−τ

ψT(θ)Qψ(θ)dθ is a Lyapunov-Krasovskii functional
for the linear time delay dynamical system (17).

3.2 Nonlinear Time-Delay Systems

In this section, we consider nonlinear time delay dynamical systems G of the form

ẋ(t) = f (x(t)) + fd(x(t − τ)), x(θ) = φ(θ),−τ ≤ θ ≤ 0, t ≥ 0, (39)

where x(t) ∈ R
n , t ≥ 0, f : Rn → R

n , fd : Rn → R
n , τ ≥ 0, and φ(·) ∈ C =

C([−τ, 0],Rn) is a continuous vector valued function specifying the initial state
of the system.

Next, we rewrite (39) as a feedback system so that

ẋ(t) = f (x(t)) − u(t), x(0) = φ(0), t ≥ 0, (40)

y(t) = fd(x(t)), (41)

yd(t) = Gd(ud(t)), (42)

where u(t) = −yd(t), ud(t) = y(t), and Gd : C([−τ,∞),Rn) → C([0,∞),Rn)

denotes the delay operator defined by Gd(ud(t))
= ud(t − τ). Note that (40)–(42)

is a negative feedback interconnection of a nonlinear finite-dimensional system G
given by (40), (41) and the infinite-dimensional delay operator Gd.

Theorem 4 Consider the nonlinear time delay dynamical system given by (39). Let
Q̂ = block-diag[Q,−Q], where Q ∈ R

n×n, Q > 0. Assume there exist Ṽs : Rñ →
R, 
̃ : Rñ → R

p̃ , and W̃ : Rñ → R
p̃×n and a scalar ε̃ > 0, such that Ṽs(·) is contin-

uously differentiable and nonnegative definite, Ṽs(0) = 0, and, for all x̃ ∈ R
ñ , where

ñ = n + 2n̂, such that (12)–(14) hold and Ṽs(x̃) ≥ ηxTx,

f̃ (x̃) =
⎡
⎣ f (x)

A1x1
B1 fd(x) + A1x2

⎤
⎦ , G̃(x̃) =

⎡
⎣−In

B1

0

⎤
⎦ , (43)

h̃(x̃) =
[

C1x1
fd(x) + C1x2

]
, J̃ (x̃) =

[
In
0

]
. (44)
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Then the nonlinear time delay dynamical system given by (39) is asymptotically
stable for every τ ∈ [0,∞).

Proof The proof is similar to that of Theorem 3 and hence is omitted. �

4 Conclusion

In this chapter, by representing a time delay dynamical system as a negative feedback
interconnectionof afinite-dimensional dynamical systemandan infinite-dimensional
time delay operator, we derived new sufficient conditions for asymptotic stability of
linear and nonlinear time delay dynamical systems. The overall approach provides
an explicit framework for constructing Lyapunov-Krasovskii functionals as well as
deriving new sufficient conditions for stability analysis of asymptotically stable time
delay dynamical systems based on the dissipativity properties of the time delay
operator. The results of this paper are restricted to delay-independent sufficient con-
ditions for time-delay systems and future work will focus on extending these results
to delay-dependent conditions.
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Stability of Interconnected Uncertain
Delay Systems: A Converse Lyapunov
Approach

Ihab Haidar, Paolo Mason and Mario Sigalotti

1 Introduction

In the context of time-varying delay systems, many important problems concern
their stability. Two principal approaches in the stability analysis are the Lyapunov–
Krasovskii method and Lyapunov–Razumikhin method [6]. Based on these two
approaches, a variety of stability criteria has been developed (see e.g. [1, 3, 4,
14, 16, 18] and references therein). These criteria are often formulated as linear
matrix inequalities (LMIs) which yield sufficient conditions for stability. Switched
systems theory offers a complementary insight in this context. In [8], Hetel, Daafouz
and Iung establish a theoretical link between the Lyapunov–Krasovskii approach
and the switched system representation, in the context of discrete-time systems with
time-varying delays. They prove that, looking for a delay-dependent Lyapunov–
Krasovskii functional for the initial system, is equivalent to applying the multiple
Lyapunov functions approach to the delay-free switched system representation. The
paper [5] shares the same spirit as [8] with the significant difference that it con-
siders the case of continuous-time systems with time-varying delays. An important
feature of this setting is that the switched system formulation, obtained by standard
functional representation, describes an evolution in an infinite-dimensional Banach
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space. Switched systems in Banach and Hilbert spaces have been studied for instance
in [7, 19], where some converse Lyapunov theorems have been obtained.
The main result of [5] provides a collection of converse Lyapunov–Krasovskii the-
orems for uncertain retarded differential equations. The term uncertain refers here
to the fact that delays may vary arbitrarily in a given interval, or, more generally,
that the operator describing the retarded dynamics varies arbitrarily in a given set of
modes.
In this work, we review the main result of [5] and we derive from it some robustness
properties of interconnected uncertain time-varying delay systems.
Consider linear retarded functional differential equations (RFDE) of the type

ẋ(t) = �(t)xt , (1)

where x(t) ∈ R
n , xt : [−r, 0] → R

n is the standard notation for the history function
defined by xt (θ) = x(t + θ), −r ≤ θ ≤ 0. For every time t , the operator L = �(t)
associates with xt a vector in R

n: a typical example is Lxt = A0x(t) + A1x(t − τ)

for some n × n matrices A0 and A1, and some delay τ ∈ [−r, 0]. Two phase spaces
are considered: C([−r, 0],Rn) and the Sobolev space H 1([−r, 0],Rn). The time-
varying operator �(·) is assumed to be piecewise constant with values in a given set
of operators Q, which is not necessarily finite nor countable. We are interested in
properties that are uniform with respect to �(·), which plays the role of a uncertain
retarded dynamics. It is proven in [5] that system (1) is uniformly exponentially stable
in C([−r, 0],Rn) if and only if its restriction to H 1([−r, 0],Rn) is also uniformly
exponentially stable (with respect to the H 1-norm). These properties are also shown
to be equivalent to the existence of a Lyapunov–Krasovskii functional. One of the
novelties of such results is that this functional may be weakly-degenerate, i.e., it
may not have a strictly positive norm-dependent lower bound, in contrast with what
is known in the literature. On the other hand the Lyapunov–Krasovskii functional
may be assumed to satisfy stronger regularity assumptions and in particular to be
directionally Frechet differentiable.
This chapter is organized as follows. Section 2 is devoted to the problem framework
and the switched system representation of system (1). The statement of our converse
Lyapunov–Krasovskii theorem is presented in Sect. 3. Section 4 is devoted to the
comparison of the latterwith some previously known converse Lyapunov–Krasovskii
theorems. An example that describes the applicability of our result is given in Sect. 5.
The effects of small perturbations of the dynamics on the stability of system (1) is
discussed in Sect. 6. Finally, sufficient conditions for the stability of interconnected
uncertain linear delay systems are given in Sect. 7.
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2 Problem Framework

Let r > 0 be a real number and let X = X ([−r, 0],Rn) be a linear real vector space
of functions mapping [−r, 0] into R

n . Assume that a norm ‖ · ‖X is given in X ,
and assume that (X, ‖ · ‖X ) is a Banach space. We denote by L(X) (respectively,
L(X,Rn)) the space of continuous linear operators from X into itself (respectively,
R

n) endowed with the usual operator norm ‖ · ‖L(X) (respectively, ‖ · ‖L(X,Rn)).
Two different choices of Banach spaces are considered: X =

(C([−r, 0],Rn), ‖ · ‖C) and X = (
H 1([−r, 0],Rn), ‖ · ‖H 1

)
, where

‖ψ‖C = max
θ∈[−r,0] |ψ(θ)|,

‖ψ‖H 1 =
(∫ 0

−r

(

|ψ(θ)|2 +
∣∣
∣∣

d

dθ
ψ(θ)

∣∣
∣∣

2
)

dθ

) 1
2

.

Let Q be any subset of the space of linear operators from C([−r, 0],Rn) into Rn . A
crucial hypothesis in what follows is that Q is bounded in L (C([−r, 0],Rn),Rn),
i.e., there exists a positive constant m such that

|Lψ | ≤ m‖ψ‖C ∀ψ ∈ C([−r, 0],Rn), L ∈ Q. (2)

Let us associate with Q the linear Retarded Functional Differential Equation (RFDE)

ẋ(t) = �(t)xt , t ≥ t0, (3)

where x : [t0 − r,+∞) → R
n , xt : [−r, 0] → R

n denotes the history function
defined by

xt : θ 	→ x(t + θ), θ ∈ [−r, 0], t ≥ t0,

� : [t0,∞) → Q is piecewise constant (hence, with finitely many discontinuities on
each bounded interval). We denote by PC([t0,+∞), Q) (or simply PC) the class of
piecewise constant functions with values in Q.

Denote by φ ∈ X the initial condition for (3) at time t0, i.e.,

x(t0 + θ) = φ(θ), θ ∈ [−r, 0]. (4)

Example 1 A particular case of system (3)–(4) is the following type of linear time-
varying delay systems

ẋ(t) =
p∑

i=1

Aσ(t),i x
(

t − τi
(
σ(t)

))
, t ≥ t0 ,

xt0 = φ ∈ X,

(5)
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where τi (σ ) ∈ [0, r ] and Aσ,i is a n × n matrix for every σ in a given set � and
every i ∈ {1, . . . , p}. If the set ofmatrices {Aσ,i | σ ∈ �, i ∈ {1, . . . , p}} is bounded,
then the set Q of the operators Lσψ = ∑p

i=1 Aσ,iψ(−τi (σ )), σ ∈ �, is bounded in
L (C([−r, 0],Rn),Rn).

Example 2 Another particular case of system (3)–(4) is the following integro-
differential equation

ẋ(t) =
∫ r

0
Aσ(t),θ x(t − θ)dθ, t ≥ t0 ,

xt0 = φ ∈ X,

where Aσ,θ is a n × n matrix uniformly bounded with respect to θ ∈ [0, r ] and to
σ in a given set �, and measurable with respect to θ . In this case the set Q of the

operators Lσψ =
∫ r

0
Aσ,θ ψ(−θ)dθ , σ ∈ �, is bounded in L(C([−r, 0],Rn),Rn).

2.1 Switched System Representation

With any �(·) ∈ PC([t0,+∞), Q), we can associate an evolution operator obtained
by concatenating the flows of (3) corresponding to constant values of �(·). It is well-
known (see e.g. [6, Lemma 1.2, p. 194]) that with any L ∈ Q one can associate a
C0-semigroup TL(t) : X → X , t ≥ 0, with infinitesimal generator AL given by

D(AL) =
{
ψ ∈ X : dψ

dθ
∈ X,

dψ

dθ
(0) = Lψ

}
,

ALψ = dψ

dθ
.

(6)

By definition, TL(t) is the flow at time t of Eq. (3) with t0 = 0 and �(·) constantly
equal to L .

The evolution operator corresponding to a piecewise constant t 	→ �(t) defined
by �(t) = Lk , t ∈ [tk, tk+1), where tk < tk+1 for every k ≥ 0, is given by

T�(·)(t, t0) = TLk (t − tk)TLk−1(tk − tk−1) . . . TL0(t1 − t0)

for each t ∈ [tk, tk+1). This is exactly the notion of switched system

xt = T�(·)(t, t0)xt0 ,

xt0 = φ ∈ X,
(7)

considered in [7] for general Banach spaces.
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3 Converse Lyapunov–Krasovskii Results

The notion of uniform exponential stability is recalled in the following definition.

Definition 1 We say that system (3) is uniformly exponentially stable in X if there
exist two constants α ≥ 1 and β > 0 such that for every initial condition φ ∈ X and
every �(·) ∈ PC([t0,+∞), Q) the solution x(t, φ) of (3)–(4) satisfies

‖xt‖X ≤ αe−β(t−t0)‖φ‖X , t ≥ t0.

Since the stability properties of (3)–(4) are preserved by time shifting of �(·), we
assume from now on that t0 = 0 and we set T�(·)(t) = T�(·)(t, 0). In order to state our
converse Lyapunov–Krasovskii result we introduce the generalized Dini derivatives
of a function V : X → [0,∞) as follows

DL V (ψ) = lim
t→0+

sup
V (TL(t)ψ) − V (ψ)

t
,

DL V (ψ) = lim
t→0+

inf
V (TL(t)ψ) − V (ψ)

t
,

noting that possibly DL V (ψ), DL V (ψ) = ∞ for some ψ ∈ X and L ∈ Q. Recall
that V (·) is said to be directionally differentiable in the sense of Fréchet at ψ ∈
X if there exists a positively one-homogeneous function V ′(ψ, ·) : X → R (i.e.,
V ′(ψ, λξ) = λV ′(ψ, ξ) for ξ ∈ X and λ > 0) such that

V (ψ + ξ) − V (ψ) − V ′(ψ, ξ)

‖ξ‖X
−→ 0 as ξ → 0.

The proof of the following theorem may be found in [5]. Item (iv) is expressed
slightly differently here, rightening some loosely worded statement in [5].

Theorem 1 Let Q ⊂ L(C([−r, 0],Rn),Rn) be bounded. The following statements
are equivalent:

(i) System (3) is uniformly exponentially stable in C([−r, 0],Rn).
(ii) System (3) is uniformly exponentially stable in H 1([−r, 0],Rn).

(iii) There exists a function V : C([−r, 0],Rn) → [0,∞) such that
√

V (·) is a norm
on C([−r, 0],Rn),

c‖ψ‖2C ≤ V (ψ) ≤ c‖ψ‖2C (8)

for some constants c, c > 0 and

DL V (ψ) ≤ −‖ψ‖2C , L ∈ Q, ψ ∈ C([−r, 0],Rn).

(iv) There exists a directionally Fréchet differentiable function V : H 1([−r, 0],Rn)

→ [0,∞) such that
√

V (·) is a norm on H 1([−r, 0],Rn),
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c‖ψ‖2H 1 ≤ V (ψ) ≤ c‖ψ‖2H 1 ,

|V ′(ψ, ξ)| ≤ c‖ψ‖H 1‖ξ‖H 1 ,

V ′(ψ, ξ1 + ξ2) ≤ V ′(ψ, ξ1) + V ′(ψ, ξ2),

for some constants c, c > 0 and

DL V (ψ) ≤ −‖ψ‖2H 1 , L ∈ Q, ψ ∈ H 1([−r, 0],Rn).

If ψ ∈ D(AL) then DL V (ψ) = V ′(ψ,ALψ).
(v) There exists a continuous function

V : C([−r, 0],Rn) → [0,∞)

such that
V (ψ) ≤ c‖ψ‖2C

for some constant c > 0 and

DL V (ψ) ≤ −|ψ(0)|2, L ∈ Q, ψ ∈ C([−r, 0],Rn).

(vi) There exists a continuous function

V : H 1([−r, 0],Rn) → [0,∞)

such that
V (ψ) ≤ c‖ψ‖2H 1

for some constant c > 0 and

DL V (ψ) ≤ −|ψ(0)|2, L ∈ Q, ψ ∈ H 1([−r, 0],Rn).

Clearly, a functional V (·) satisfying condition (v) (respectively (vi)) does not
necessarily satisfy the stronger conditions appearing in condition (i i i) (respec-
tively (iv)). Hence, condition (v) (respectively (vi)) is better suited for proving
the global uniform exponential stability of a RFDE, while condition (i i i) (respec-
tively (iv)) provides more information on a linear uncertain time-delay system that
is known to be globally uniformly exponentially stable, by tightening the properties
satisfied by V (·).
Remark 1 Concerning the regularity of the Lyapunov–Krasovskii functionals sat-
isfying conditions (i i i) and (iv), recall that being a squared norm is equivalent to
be positive definite, homogeneous of degree 2, continuous and convex. Note that in
(iv) we do not require the function V to be Fréchet differentiable in the usual sense,
which is a stronger regularity assumption.
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4 Discussion

We compare here the results stated in the previous section with the Lyapunov–
Krasovskii theorems given in [6, 10]. We start by recalling a Lyapunov–Krasovskii
theorem given in [6, Theorem V.2.1] for general retarded functional differential
equation of the form

ẋ = f (t, xt ). (9)

Theorem 2 Suppose that f : R × C([−r, 0],Rn) → R
n is a continuous function.

Suppose that for any bounded set B ⊂ C([−r, 0],Rn), f mapsR × B into a bounded
set of Rn, and u, v, w : [0,+∞) → [0,+∞) are continuous nondecreasing func-
tions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there exists a
continuous function V : R × C([−r, 0],Rn) → R such that

u(|ψ(0)|) ≤ V (t, ψ) ≤ v(‖ψ‖C )

DV (t, ψ) ≤ −w(|ψ(0)|)

then the solution x = 0 of Eq. (9) is uniformly stable. If u(s) → +∞ as s → +∞, the
solutions of Eq. (2) are uniformly bounded. If w(s) > 0 for s > 0, then the solution
x = 0 is uniformly asymptotically stable.

Theorem 2 considers systemswithout switching and uniformity ismeant with respect
to the initial condition. Its proof can however be straightforwardly adapted to linear
systems of the type (3), leading to the following result.

Theorem 3 Assume that Q is bounded in L(C([−r, 0],Rn),Rn). If there exists a
continuous function V : C([−r, 0],Rn) → R such that

c|ψ(0)|2 ≤ V (ψ) ≤ c‖ψ‖2C (10)

for constants c, c > 0 and

DL V (ψ) ≤ −|ψ(0)|2, L ∈ Q, ψ ∈ C([−r, 0],Rn) (11)

then system (3) is uniformly exponentially stable in C([−r, 0],Rn).

Notice that the lower bound on the Lyapunov function appearing in (10) is less
restrictive than the one in (8), making it an easier condition to fulfill when looking
for quadratic Lyapunov–Krasovskii functionals (see e.g. [12]).

Thanks to Theorem 1, we can give a converse version for Theorem 3. More
precisely, if system (3) is uniformly exponentially stable inC([−r, 0],Rn), then there
exists a continuous function V : C([−r, 0],Rn) → R such that (10)–(11) hold.

Let us conclude this section by commenting on [10, 11, 17]. In [17] the authors
show that the existence of a Lyapunov–Krasovskii functional is a necessary and
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sufficient condition for the uniform global asymptotic stability and the global expo-
nential stability of nonlinear autonomous systems described by neutral functional
differential equations in Hale’s form.
When restricted to linear systems of the form (3), [10, Theorem 2.10] establishes the
equivalence between the uniform exponential stability inC([−r, 0],Rn) and the exis-
tence of aLyapunov–Krasovskii functional either as in the statement (v) of Theorem1
or with a lower bound as the one in (10). In the latter case, however, the Lyapunov–
Krasovskii functional is defined on a space of the type C([−r − τ, 0],Rn), for some
τ ≥ 0, on which system (3) is lifted. Similar remarks apply to the results in [11],
which extend the approach of [10] towards Lyapunov–Krasovskii characterizations
of output stability.

5 Example of Weakly-Degenerate Lyapunov–Krasovskii
Functional

In this section we discuss through an example the absence of strictly positive norm-
dependent lower bounds on V in statements (v) and (vi) of Theorem 1. The example
is an evidence of the fact that the relaxed condition on V might turn into an advantage
while looking for Lyapunov–Krasovskii functionals.

Consider the system

ẋ(t) = −x(t − r), t ≥ 0 ,

x0 = φ,
(12)

where r ≥ 0 and φ ∈ C([−r, 0],R). LetA be the infinitesimal generator of the C0-
semigroup associated with (12). The spectrum of A is discrete and is given by (see
e.g. [2])

σp(A) = {λ ∈ C : (λ) = 0} = (λk)k∈N,

where
(λ) = λ + e−λr . (13)

A useful property of σp(A) is that

R(λk) → −∞ as k → ∞ (14)

(see, e.g. [6, Lemma 4.1, p. 18]). System (12) is exponentially stable if and only if
r < π/2 (see [6]), and in such case we can define a Lyapunov–Krasovskii functional
V as

V (ψ) =
∫ +∞

0
‖T (t)ψ‖2C dt,
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where T (·) is the C0-semigroup generated byA. Notice that this classical choice of
Lyapunov-Krasovskii functional can be generalized for exponentially stable switched
systems of the type introduced in Section 2.1, taking

V (ψ) = sup
�(·)∈PC

∫ +∞

0
‖T�(·)ψ‖2X dt,

as shown in [7].
For each k ∈ N, let vk(θ) = eλk (r+θ), θ ∈ [−r, 0] be a (complex) eigenvector of

A corresponding to λk .
It follows from Eq. (13), that λ ∈ σp(A) if and only if λ̄ ∈ σp(A). Associate with

λ̄k its eigenvector v̄k(θ) = eλ̄k (r+θ), θ ∈ [−r, 0], and let νk = (vk + v̄k)/2 = R(vk) ∈
C([−r, 0],R). Then

T (t)νk(θ) = eλk (t+r+θ) + eλ̄k (t+r+θ)

2
. (15)

Hence,

V (νk) =
∫ +∞

0

‖eλk (t+r+θ) + eλ̄k (t+r+θ)‖2C
4

dt ≤
∫ +∞

0
‖eR(λk )(t+r+θ)‖2C dt

=
∫ +∞

0
e2R(λk )t dt = − 1

2R(λk)
.

Then V (νk) → 0 as k → +∞, as it follows from (14). On the other hand, we have
‖νk‖C ≥ νk(−r) = 1. Then the function V does not have a strictly positive ‖ · ‖C -
norm-dependent lower bound as in Eq. (8). Notice however that |νk(0)| → 0 as k →
+∞ faster then V (νk), hence V admits a | · |-norm-dependent lower bound as in
Eq. (10).

Another choice of Lyapunov–Krasovskii functional satisfying condition (v) of
Theorem 1 is

V̂ (ψ) =
∫ +∞

0
|(T (t)ψ)(0)|2dt.

In addition, by choosing ν̂k(θ) = R(eλkθ ), we can easily verify that V̂ (ν̂k) → 0 as
k → +∞ while ν̂k(0) = 1 for every k. Hence V̂ does not have a strictly positive
| · |-norm-dependent lower bound.
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6 Robustness of the Lyapunov–Krasovskii Functional with
Respect to Perturbations

In this section we are interested in understanding the effects of small perturbations
of the dynamics on the stability of the system. The idea is to exploit the existence
of a common Lyapunov–Krasovskii functional. We start by a simple and classical
result whose proof is provided by completeness.

Lemma 1 Let V : X → R be the square of a norm such that V (x) ≤ C‖x‖2X for
some C > 0 and for every x ∈ X. Then V is locally Lipschitz continuous and satisfies

|V (x) − V (y)| ≤ C(‖x‖X + ‖y‖X )‖x − y‖X .

Proof Since
√

V is a norm, we can apply the triangular inequality so that

|√V (x) − √
V (y)| ≤ |√V (x − y)| ≤ √

C‖x − y‖X .

Thus

|V (x) − V (y)| = (
√

V (x) + √
V (y))|√V (x) − √

V (y)| ≤ C(‖x‖X + ‖y‖X )‖x − y‖X .

�

Let Q, P be a bounded subsets of L (C([−r, 0],Rn),Rn). Here P has to be
regarded as a set of bounded perturbations of the operators in Q. We are going to
consider the case in which the system

� : ẋ(t) = �(t)xt �(t) ∈ Q (16)

is uniformly exponentially stable and to investigate the stability of the perturbed
system

�p : ẋ(t) = (�(t) + �(t))xt �(t) ∈ Q, �(t) ∈ P. (17)

Let c = sup�∈P ‖�‖L(C([−r,0],Rn),Rn) and let m as in (2). Before proceedings let us
recall an exponential boundedness property from [5].

Lemma 2 Let Q ⊂ L(C([−r, 0],Rn),Rn) be bounded by a constant λ. Then
the solutions of (3) with initial condition ψ ∈ C([−r, 0],Rn) satisfy the estimate
‖xt‖C ≤ eλt‖ψ‖C .

We then have the following result.

Lemma 3 For every t > 0 we have

‖T�(·)(t) − T�(·)+�(·)(t)‖L(X) ≤ C(t),
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where C(t) = c
e(2m+c)t − emt

m + c
.

Proof Let ψ ∈ C([−r, 0],Rn) and let y(·) = x�(·) − x�+�(·), where x� and x�+�

are, respectively, the solutions of � and �p with initial condition ψ . For t ≥ 0 and
θ ∈ [−r, 0] we have

|y(t + θ)| =
∫ max{0,t+θ}

0
|�(s)x�

s − (�(s) + �(s))x�+�
s |ds

≤
∫ max{0,t+θ}

0
|�(s)ys |ds +

∫ max{0,t+θ}

0
|�(s)x�+�

s |ds

≤ m
∫ max{0,t+θ}

0
‖ys‖C ds + c

∫ max{0,t+θ}

0
‖x�+�

s ‖C ds

≤ m
∫ max{0,t+θ}

0
‖ys‖C ds + c

∫ max{0,t+θ}

0
‖ψ‖C e(m+c)sds

≤ m
∫ max{0,t+θ}

0
‖ys‖C ds + c

e(m+c)t − 1

m + c
‖ψ‖C .

This leads to

‖yt‖C ≤ m
∫ t

0
‖ys‖C ds + c

e(m+c)t − 1

m + c
‖ψ‖C ,

from which we obtain, thanks to Gronwall’s Lemma

‖yt‖C ≤ c
e(2m+c)t − emt

m + c
‖ψ‖C .

Thus, we get the thesis. �

Corollary 1 Let V : C([−r, 0],Rn) → R be the square of a norm such that V (ψ) ≤
c‖ψ‖2X for some c > 0 and for every ψ ∈ C([−r, 0],Rn). Then

DL+�V (ψ) ≤ DL V (ψ) + 2cc‖ψ‖2C ∀L ∈ Q, ∀� ∈ P, ∀ψ ∈ C([−r, 0],Rn).

Proof Thanks to the previous lemmas we have

|V (TL+�(t)ψ) − V (TL (t)ψ)| ≤ c(‖TL+�(t)ψ‖C + ‖TL (t)ψ‖C )‖TL+�(t)ψ − TL (t)ψ‖C

≤ cemt (1 + ect )‖ψ‖C‖TL+�(t)ψ − TL (t)ψ‖C

≤ 2cC(t)e(m+c)t‖ψ‖2C .

Since C(0) = 0 and C ′(0) = c we have
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DL+�V (ψ) ≤ lim sup
t→0

|V (TL+�(t)ψ) − V (TL(t)ψ)| + |V (TL(t)ψ) − V (ψ)|
t

≤ 2cc‖ψ‖2C + DL V (ψ).

�

6.1 Example

We provide here an example of application of the previous result. This example may
be found in [5] although, in that paper, the stability proof contains some imprecision
that we fix below.

Consider the scalar time-varying delay system

ẋ(t) = −x(t − τ(t)), (18)

where τ(·) is piecewise constant and takes values in [0, r ]. System (18) is of the
type (3) with Q = {Lτ | τ ∈ [0, r ]} and Lτ ϕ = −ϕ(−τ). It is known that (18) is
uniformly exponentially stable in C([−r, 0],R) if and only if r < 3/2 [13, 15].
Fix r < 3/2 and consider the perturbed system

ẋ(t) = −x(t − τ(t)) +
∫ 0

−r̄
a(s)x(t + s)ds, (19)

where a ∈ L1([−r̄ , 0],R) and r̄ ≥ r (notice that r̄ may be larger than 3/2). We
claim that, as a straightforward consequence of our converse Lyapunov–Krasovskii
theorem and of Corollary 1, system (19) is uniformly exponentially stable in
C([−r̄ , 0],R) if ‖a‖L1 is small enough. Let � : C([−r̄ , 0],R) → R be defined by

�ψ =
∫ 0

−r̄
a(s)ψ(s)ds

and notice that |�ψ | ≤ ‖a‖L1‖ψ‖C . Hence,

DL+�V (ψ) ≤ DL V (ψ) + 2c‖a‖L1‖ψ‖2C ≤ (−1 + 2c‖a‖L1)‖ψ‖2C ,

where V is as in Theorem 1, Item (iii). If ‖a‖L1 < 1/(2c̄) then (19) is uniformly
exponentially stable in C([−r̄ , 0],R).
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7 Stability of Interconnected Uncertain Time-Varying
Delay Systems

In this section we show the stability of interconnected uncertain time-varying
delay systems under a small-gain condition by taking advantage of the previous
results. For non-uncertain interconnected delay systems, and in presence of exter-
nal inputs, a thorough study of the (input-to-state) stability properties under small-
gain conditions may be found in [9]. For i ∈ {1, 2}, let Qi be a bounded subset of
L (C([−r, 0],Rn1) × C([−r, 0],Rn2),Rni ) (with bound mi in the sense of condi-
tion (2)) and consider the linear uncertain time-varying delay systems

�1 :
{

ẋ(t) = �1(t)(xt , 0), �1(t) ∈ Q1,

x0 = ϕ1
�2 :

{
ẏ(t) = �2(t)(0, yt ), �2(t) ∈ Q2,

y0 = ϕ2,

and the interconnected system

� :
{

ż(t) = �(t)zt , �(t) ∈ Q1 × Q2,

z0 = ϕ,

where z = (x, y) ∈ R
n1 × R

n2 and ϕ = (ϕ1, ϕ2) ∈ C([−r, 0],Rn1) × C([−r, 0],
R

n2).

Theorem 4 Let X = X1 × X2 with X1 = C([−r, 0],Rn1) and X2 = C([−r, 0],
R

n2). Assume that �1 and �2 are uniformly exponentially stable in X1 and X2,
respectively. Let Vi : Xi → [0,∞), i ∈ {1, 2}, be the Lyapunov–Krasovskii func-
tional whose existence is guaranteed by Item (iii) of Theorem 1. Let c1, c2 be the
upper-bound constants for V1 and V2, respectively. Let

μ = sup{‖(L1(0, ψ2), L2(ψ1, 0))‖/‖ψ‖X | L1 ∈ Q1, L2 ∈ Q2, ψ ∈ X, ψ = 0}.

If 2max(c̄1, c̄2)μ < 1 then the interconnected system � is uniformly exponentially
stable in X.

Proof Let us introduce the function V : X → [0,∞), defined by

V (ψ) = V1(ψ1) + V2(ψ2), ψ = (ψ1, ψ2) ∈ X.

For every L = (L1, L2) ∈ Q1 × Q2, let us set Ldiag(ψ) = (L1(ψ1, 0), L2(0, ψ2))

and notice that, by definition of V1 and V2,

DLdiag V (ψ) ≤ −‖ψ‖2X .

Moreover, V is a squared norm on X and V (ψ) ≤ max(c̄1, c̄2)‖ψ‖2X .
Since μ is an upper bound for the norm of L − Ldiag, L ∈ Q1 × Q2, then, thanks

to Corollary 1, the upper Dini derivative of V along � can be bounded by
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DL V (ψ) ≤ DLdiag V (ψ) + 2max(c̄1, c̄2)μ‖ψ‖2X ≤ (−1 + 2max(c̄1, c̄2)μ)‖ψ‖2X .

The conclusion then follows from Theorem 1. �

In the case of systems in cascade form, there is no need of imposing conditions
on the non-diagonal block of the operator �, as stated below.

Corollary 2 Assume that system � is in cascade form, namely L(φ1, φ2) = L(0, φ2)

for any L ∈ Q2 and (φ1, φ2) ∈ X. Then � is uniformly exponentially stable in X if
and only if �1, �2 are uniformly exponentially stable in X1 and X2, respectively.

Proof Rewriting system � with respect to new coordinates (x̂, ŷ) = (x, ηy) in
R

n1 × R
n2 leads to a further uncertain system in cascade form where the sets of

operators corresponding to the diagonal blocks of � remain unchanged, while the
operators corresponding to the upper-right block are multiplied by a factor 1/η with
respect to the original system. Thus, if �1, �2 are uniformly exponentially stable
in X1 and X2, in order to guarantee that the functional V constructed in the proof
of Theorem 4 is a common Lyapunov–Krasovskii functional for � it is enough to
take η > 2max(c̄1, c̄2)μ. Thus � is also uniformly exponentially stable in X . The
opposite implication is trivial. �

8 Conclusion

Using the switched systems approach, we give a collection of converse Lyapunov–
Krasovskii theorems for uncertain linear time-varying delay systems. These results
are summarized by Theorem 1. One of the novelties of our results is that they
use Lyapunov–Krasovskii functionals which may not have a strictly positive norm-
dependent lower bound, in contrast with what is known in the literature. The effect
of small perturbations in the dynamics on the existence of common Lyapunov–
Krasovskii functionals guaranteeing the stability of system (1) is studied, in the case
when X = C([−r, 0],Rn). This is given by Corollary 1. Thanks to Theorem 1 and
Corollary 1, sufficient conditions for the stability of interconnected uncertain linear
time-varying delay systems are given by Theorem 4 and Corollary 2.
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ISS-Stabilization of Delayed Neural
Fields by Small-Gain Arguments

Antoine Chaillet, Georgios Is. Detorakis, Stéphane Palfi and Suhan Senova

1 Introduction

Recent technological advances open the way for real-time control of neuronal pop-
ulations. Progresses have been made both in the spatio-temporal measurement of
neuronal activity, with miniaturization of sensing electrodes, and in the actuation of
neurons, for instance with the advent of opogenetics which allows stimulation of
targeted neurons by light impulses using a gene transfer technology [5, 30].

Real-time control of neuronal populations is of significant interest not only to
decipher brain functioning, but also to develop innovative treatments. In the particular
case of Parkinson’s disease, abnormal oscillations in deep brain structures are known
to be related to motor symptoms [17]. Although the precise mechanisms by which
these pathological oscillations are generated are still debated, a possible explanation
is the increase of synaptic strength between two brain structures, the subthalamic
nucleus (STN) and the external globus pallidus (GPe). This disproportioned synaptic
gains, combined with axonal propagation delays, could result in some instability,
leading to sustained oscillations in these structures [28, 29, 34].
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The possibility to disrupt pathological oscillations by relying on real-time mea-
surements of brain activity, has been the subject of an intense research lately: see [7]
for a survey. Considered approaches include adaptive and on-demand stimulation
[15, 22, 24, 36, 37], delayed and multi-site stimulation [3, 23, 32, 40], optimal
control strategies [13], and activity regulation [14, 16, 44].

In particular, a filtered proportional strategywas proposed in [16] in amodel of the
STN-GPe network by relying on linearization around an equilibrium. Nonetheless,
the model employed in that reference abstracts the activity in these structures by a
single averaged signal, that does no take into account spatial heterogeneity. In order
to benefit from real-time spatiotemporal information in the targeted structures, and
to model the dynamics involved more finely, this model has been extended in [10]
by relying on delayed neural fields.

Neural fields are nonlinear integro-differential equations designed to model the
spatio-temporal evolution of neuronal populations. They offer a good compromise
between physiological plausibility, richness of behaviors, and analytical tractability.
They have been the subject of an intense research, with awide range of applications to
neuroscience: see [6] for a detailed survey. From an analytical point of view, several
works have been devoted to the existence and estimation of equilibrium patterns,
local and global stability analysis, and bifurcation analysis of neural fields: see e.g.
[4, 11, 21, 33, 42]. When taking into account non-instantaneous communication
between neurons, the resulting model is known as delayed neural fields [1, 2, 43].

The purpose of this chapter is to provide conditions under which the activity of
delayed neural fields can be robustly stabilized by proportional feedback. To that aim,
we consider two subpopulations. Thefirst one, denoted as the “controlled population”
receives direct influence from the stimulation device and its activity is assumed to
be measured in real time. The second one, the “uncontrolled population”, is not
accessible to measurements and receives no direct input from the stimulation device.
The main result of this chapter is to show that oscillations of such delayed neural
fields can always been disrupted by proportional feedback provided that the spatial
L2-norm of the inner synaptic weights within the uncontrolled population is below
an explicit threshold.

In order to establish this result, we rely on input-to-state stability (ISS) arguments.
ISS, introduced in [38], not only ensures global asymptotic stability in the absence of
perturbations, but also guarantees robustness to exogenous disturbances: see [39] for
a survey. Some recent works have contributed to extend ISS to infinite-dimensional
systems [9, 19, 27, 35], including retarded functional differential equations [20, 25,
31, 41]. In line with these works, we provide an extension of ISS especially suited
to the study of delayed neural fields, together with small-gain results that will be
instrumental for Sect. 3, where we provide a condition for robust stabilizability of
neural fields by a proportional feedback that relies onmeasurements of the controlled
population only. Proofs are provided in Sect. 4. We conclude by listing some lines of
future works in Sect. 5. An extended version of this work was published in [8].
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Notation. Given x = (x1, . . . , xn)T ∈ R
n , |x | denotes its Euclidean norm: |x | :=√

x21 + . . . + x2n . Given two sets�1 and�2,C(�1,�2) denotes the set of all continu-
ous functions from�1 to�2. L2(�1,�2) denotes the set of all square integrable func-
tions from �1 to �2, meaning all functions f : �1 → �2 such that

∫
�1

| f (s)|2ds <

∞. Given a set � ⊂ R
q , #� denotes its Lebesgue measure. Given f : � → R

n ,
we write

∫
�
f (r)dr to denote the multiple integral

∫
�

. . .
∫
�
f (r)dr1 . . . drq , with

r =: (r1, . . . , rq)T . We define F n := L2(�,Rn) and Cn := C([−d̄; 0],F n) for
some constant d̄ > 0. F n is a Banach space for the L2-norm ‖ · ‖F n defined as

‖x‖F n :=
√∫

�
|x(r)|2dr for each x ∈ F n . Similarly, Cn is a Banach space for the

norm ‖ · ‖Cn defined as ‖x‖Cn := supt∈[−d̄;0] ‖x(t)‖F n for all x ∈ Cn . We also denote
byUn the set of all measurable locally bounded functions fromR≥0 toF n . When the
context is sufficiently clear, we simply refer toF n ,Cn andUn asF ,C andU respec-
tively. Given x ∈ C and t ∈ [−d̄;+∞), we indicate by [x(t)](r) the value taken by
the function x(t) ∈ F at position r ∈ �. A function α : R≥0 → R≥0 is said to be of
class K if its is continuous, zero at zero and increasing. It is said to be of class K∞
if it satisfies additionally lims→+∞ α(s) = +∞. A function β : R≥0 × R≥0 → R≥0

is said to be of class KL if s �→ β(s, t) is of class K for any fixed t ∈ R≥0 and, for
any fixed s ∈ R≥0, t �→ β(s, t) is continuous and non-increasing and tends to zero
as its argument tends to +∞.

2 ISS for Spatio-Temporal Dynamics

We start by considering generic delayed spatio-temporal dynamics ruled by a func-
tional differential equation of the form

ẋ(t) = f (xt , p(t)), (1)

where f : Cn × F m → F n and p ∈ Um . x(t) ∈ F n represents the state of this sys-
tem: at each time instant t , it is a function of the space variable rather than a single
point ofRn . xt ∈ Cn represents the history of this function over the latest time interval
of length d̄; in other words, for each fixed θ ∈ [−d̄; 0], xt (θ) := x(t + θ) is a func-
tion (of the space variable) belonging to F n . A natural extension of input-to-state
stability for this class of systems is as follows.

Definition 1 (ISS) The system (1) is input-to-state stable (ISS) if there existβ ∈ KL
and ν ∈ K∞ such that, for any initial condition x0 ∈ C and any input p ∈ U, the
system (1) admits a unique solution defined over [−d̄;+∞) and it satisfies

‖x(t)‖F ≤ β(‖x0‖C, t) + ν

(
sup
τ≥0

‖p(τ )‖F
)

, ∀t ∈ R≥0.

ν is then called an ISS gain for (1).
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This definition of ISS is a particular case of the very general input-to-output
stability notion introduced in [19], which applies to a wide class of systems, satisfy-
ing a weak semigroup property and encompassing in particular retarded functional
differential equations, difference equations, and hybrid dynamics.

Definition 1 is also consistent with the one introduced for delayed systems in [25,
31]. The main difference stands in the fact that, in those papers, no spatial evolution
is considered. As a consequence, the left hand side of the above estimate involves
the L2-norm of the solution over the spatial domain (i.e. the F -norm), rather than a
Euclidean norm of the state as in the original finite-dimensional delay-free case [38,
39]. For the same reason, the magnitude of the initial condition is here estimated
through the C-norm rather than a supremum norm.

The above property is also similar to the ISS property for infinite dimensional
systems in Banach spaces introduced in [9] and extensively studied in [26]. The
main difference stands in the fact that the state estimate in the above definition
involves the F -norm of the state as a function of the C-norm of the initial condition,
whereas the ISS notion used in [9] would involve the C-norm on both sides of
this estimate. It was shown in [26, Proposition 1.4.2] that these two estimates are
qualitatively equivalent. Nevertheless, we have preferred this two-norm estimate as
the corresponding Lyapunov–Krasovskii results presented below will rely on each
of these two norms.

Similarly to all those related notions of ISS, the above property ensures global
asymptotic stability for the disturbance-free system, namely:

p ≡ 0 ⇒ ‖x(t)‖F ≤ β(‖x0‖C, t), ∀t ∈ R≥0. (2)

In particular, when no exogenous input applies, the F -norm of the solution asymp-
totically converges to zero (attractiveness), and its amplitude is arbitrarily small at all
times provided that ‖x0‖C is small enough (stability). ISS also ensures the following
asymptotic gain property:

lim sup
t→+∞

‖x(t)‖F ≤ ν

(
lim sup
t→+∞

‖p(t)‖F
)

. (3)

This means that the steady-state error in the state, measured through its F -norm,
results solely from the asymptotic value of the applied input’s F -norm and is “pro-
portional” to it, up to the scaling factor ν. This in turn shows that the original “con-
verging input-converging state” and “bounded input-bounded state” properties [39]
are also preserved.

Lyapunov–Krasovskii Condition for ISS

We now present an extension to the class of systems (1) of the Lyapunov–Krasovskii
condition for ISS. In line with [12], it relies on the upper right Dini derivative of a
functional V ∈ C(C,R≥0), Lipschitz on each bounded set of C, along the solutions
of (1), as defined by V̇ |(5.1) := lim suph→0+

V (xt+h)−V (xt )
h , where x(·) denotes any

solution of (1).
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Theorem 1 (Sufficient condition for ISS) Let α, α, α, γ ∈ K∞ and let
V ∈ C(C,R≥0) be Lipschitz on any bounded set of C. Assume that, given any ini-
tial condition x0 ∈ C and any input p ∈ U, the system (1) admits a unique solution
defined over [−d̄;+∞) and satisfying, for almost all t ∈ R≥0,

α(‖x(t)‖F ) ≤ V (xt ) ≤ α(‖xt‖C) (4)

V (xt ) ≥ γ (‖p(t)‖F ) ⇒ V̇ |(5.1) ≤ −α(V (xt )). (5)

Then the system (1) is ISS with gain α−1 ◦ γ .

This result is a spatiotemporal extension of [31, Theorem 3.1]. Its proof is omitted
as it follows along the same lines as the ISS Lyapunov sufficient condition for finite-
dimensional systems originally proposed in [38]. A similar sufficient condition for
ISS of infinite-dimensional systems was proposed in [9], and further extended to
integral ISS in [27]. The main difference with Theorem 1 stands in the fact that, in
those works, the Lyapunov functional V is assumed to be upper and lower-bounded
by a function of ‖xt‖C (whereas (4) requires only a lower-bound involving ‖x(t)‖F ).
Such a lower bound turns out to be handier for the analysis of delayed neural fields,
as will be illustrated in Sect. 3.

ISS Small-Gain Theorem

We next address the robust stability of a feedback interconnection by extending the
ISS small-gain theorem to systems as in (1). More precisely, we consider feedback
systems of the form

ẋ1(t) = f1(x1t , x2t , p1(t)) (6a)

ẋ2(t) = f2(x2t , x1t , p2(t)), (6b)

where f1 : Cn1 × Cn2 × F m1 → F n1 , f2 : Cn2 × Cn1 × F m2 → F n2 , p1 ∈ Um1 and
p2 ∈ Um2 . For these systems, we have the following result.

Theorem 2 (ISS small gain) For each i ∈ {1, 2}, let αi , αi , αi , γi , χi ∈ K∞ and
Vi ∈ C(Cni ,R≥0) be Lipschitz on each bounded set of Cni . Assume that, given any
xi0 ∈ Cni and any pi ∈ Umi , the system (6) admits a unique solution defined over
[−d̄;+∞) and satisfying, for almost all t ∈ R≥0,

αi (‖xi (t)‖F ) ≤ Vi (xit ) ≤αi (‖xit‖C) (7)

V1 ≥ max {χ1(V2), γ1(‖p1(t)‖F )} ⇒ V̇ (6a)
1 ≤ −α1(V1)

V2 ≥ max {χ2(V1), γ2(‖p2(t)‖F )} ⇒ V̇ (6b)
2 ≤ −α2(V2).

Then, under the small-gain condition χ1 ◦ χ2(s) < s for all s > 0, the feedback
interconnection (6) is ISS.

This result, whose proof is omitted, is a natural extension of the main result
in [31] to spatiotemporal dynamics, which was already a generalization to delayed
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dynamics of the ISS small-gain theorem provided in [18]. It shares strong similarities
with the small-gain result in [9], which goes beyond Theorem 2 by allowing for the
interconnection ofmore than two subsystems. As stressed before, themain difference
with that work stands in the fact that the Lyapunov function associated to each
subsystem is here required to be lower-bounded by a function of ‖x(t)‖F only (rather
than ‖xt‖C). A very general small-gain theorem for systems defined in Banach spaces
was also provided in [19]. Nonetheless, the small-gain condition presented there
relies on nonlinear gains involved in the estimate of the evolution of the Lyapunov
functionals Vi rather than those involved in their dissipation inequalities. Estimating
these nonlinear gains would thus require to first integrate the dissipation inequalities
assumed in the statement of Theorem 2

In some situations, the positive terms appearing in the dissipation inequalities can-
not be easily expressed in terms of the Lyapunov functional of the other subsystem.
The following result, proved in Sect. 4, can help tackling this situation.

Corollary 1 For each i ∈ {1, 2}, let αi , αi , αi , γi , χi ∈ K∞, Vi ,Wi ∈ C(Cni ,R≥0)

be Lipschitz on any bounded set of Cni , and k12, k21 ≥ 0. Assume that, given any
initial condition xi0 ∈ Cni and any input pi ∈ Umi , the system (6) admits a unique
solution defined over [−d̄;+∞) and satisfying, for almost all t ∈ R≥0, both (7) and

V̇ (6a)
1 ≤ −α1(V1) − W1 + k12W2 + γ1(‖p1(t)‖F )

V̇ (6b)
2 ≤ −α2(V2) − W2 + k21W1 + γ2(‖p2(t)‖F ).

Then, under the condition k12k21 ≤ 1, the feedback interconnection (6) is ISS.

3 Stabilization of Delayed Neural Fields

Based on the above ISS framework for the study of robust stability of interconnected
delayed spatiotemporal dynamics, we now address stabilization of delayed neural
fields with limited actuation and measurement.

Closed-Loop System

We consider a delayed neural field made of two interconnected subpopulations. The
controlled population, denoted with index 1, directly receives the stimulation signal:

τ1
∂z1
∂t

(r, t) = − z1(r, t) (8)

+ S1

⎛
⎝

2∑
j=1

∫

�
wi j (r, r

′)z j (r ′, t − d j (r, r
′))dr ′ + I1(r, t) + α(r)u(r, t)

⎞
⎠ .

On the other hand, the uncontrolled population, indexed by 2, is not directly influ-
enced by the stimulation signal u:
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τ2
∂z2
∂t

(r, t) = −z2(r, t) + S2

⎛
⎝

2∑
j=1

∫

�
w2 j (r, r

′)z j (r ′, t − d j (r, r
′))dr ′ + I2(r, t)

⎞
⎠ . (9)

For each each i ∈ {1, 2}, zi (r, t) ∈ R represents the neuronal activity of population i ,
at position r ∈ � and at time t ≥ 0.� denotes a set ofRp, p ∈ {1, 2, 3}, representing
the physical support of the populations; throughout this chapter, we will assume that
� is compact. τi > 0 is the time decay constant of the activity of population i . For
each j ∈ {1, 2}, the kernel wi j : � × � → R is a bounded function describing the
synaptic strength between location r ′ in population j and location r in population i .
Ii : � × R≥0 → R is a bounded function describing the external input of population
i , arising from the influence of exogenous cerebral structures. The function di :
� × � → [0; d̄], d̄ ≥ 0, is a continuous function representing the axonal, dendritic
and synaptic delays between a pre-synaptic neuron at position r ′ in population i and a
post-synaptic neuron at position r .Si : R → R is a nondecreasingLipschitz function,
known as the activation function of the neural population i . Finally, α : � → R≥0 is
a function describing the impact of the stimulation signal u at each point r ∈ �. We
refer the reader to [6] for further details on neural fields dynamics, and to [10] for
specific comments on this model.

As seen in [10] through simulations, (8)–(9) can produce sustained oscillations of
the kernel wi j are two intense. Probably the simplest closed-loop strategy one could
think of to stabilize it by relying on z1-measurements only is proportional control:

u(r, t) = −k
(
z1(r, t) − zre f (r)

)
, (10)

where k is a positive control gain and zre f : � → R represents a prescribed rate for
the controlled population. A similar strategy was adopted in [16] on an averaged
model (i.e. neglecting spatial dependency) by relying on linearization techniques.

Up to a change of variables aiming at placing the considered equilibrium at the
origin, the dynamics of the overall population (8)–(9) under the influence of the
closed-loop stimulation signal (10) reads

τ1[ẋ1(t)](r) = − [x1(t)](r) + S1
(
r,−kα(r)[x1(t)](r)

+
2∑
j=1

∫

�
w1 j (r, r

′)[x j (t − d j )](r ′)dr ′ + [p1(t)](r)
)

(11a)

τ2[ẋ2(t)](r) = − [x2(t)](r) + S2
(
r,

2∑
j=1

∫

�
w2 j (r, r

′)[x j (t − d j )](r ′)dr ′ + [p2(t)](r)
)
,

(11b)

for some functions Si : � × R → R. With this notation, (12) is in the form of (1)
with state x = (x1, x2) : [−d̄,+∞) → F 2 and input p := (p1, p2) ∈ U2. Letting
�i > 0 denote the Lipschitz constant of Si , it can be seen that



72 A. Chaillet et al.

|Si (r, a) − Si (r, b)| ≤ �i |a − b|, ∀r ∈ �,∀a, b ∈ R. (12)

From now on, such functions Si are called activation functions with slope �i . Since
Si (r, 0) = 0 for all r ∈ � and Si is non-decreasing, it can also be shown that

|Si (r, a)| ≤ �i |a|, ∀a ∈ R. (13)

Si (r, a + b) ≤ Si (r, 2a) + Si (r, 2b), ∀a, b ∈ R, (14)

for each r ∈ �. We stress that, reasoning as in the proof of [12, Theorem 3.2.1], it
can be seen that the solutions of (11b) exist at all times t ≥ 0, are unique, and are
continuously differentiable over [0;+∞), provided that the kernels wi j and initial
states are in L2, delays d j are continuous, and inputs [p j (t)](·) are continuous. This
observation simplifies the analysis provided below by replacing the Dini derivative
of Lyapunov–Krasovskii functionals by their classical time derivative.

ISS of the Uncontrolled Population

We start by providing conditions under which the uncontrolled population (11b) is
ISS with respect to inputs arising from the controlled population (11a) and possibly
exogenous structures. To that aim, we analyze the neural fields:

τ [ẋ(t)](r) = −[x(t)](r) + S

(
r,

∫

�

w(r, r ′)[x(t − d(r, r ′))](r ′)dr ′ + [ρ(t)](r)
)

.

(15)

This class of uncontrolled delayed neural fields was extensively studied in [12, 43].
A bifurcation analysis was also conducted in [1], under the additional requirement
that the kernel w depends only on the distance |r − r ′|, but allowing for higher order
dynamics. From all these works, it is a known fact that the product of the Lipschitz
constant � of the activation function S by the square of the L2-norm of the kernel w
regulates the stability of the origin of (15) in the absence of inputs ρ: if this product is
smaller than 1, then the origin is globally asymptotically stable: see [1, Theorem 2.1],
[12, Theorem 4.2.3] or [43, Proposition 3.15]. Here we show that, under the same
condition, the delayed neural fields (15) is actually ISS, and thus ensures robustness
with respect to the input ρ. The proof is provided in Sect. 4.

Proposition 1 (ISS of the uncontrolled population) Let S be any activation function
with slope �, let τ > 0, d : � × � → [0; d̄], and w : � × � → R be any bounded
functions satisfying

�

∫

�

∫

�

w(r, r ′)2dr ′dr < 1. (16)

Then (15) is ISS. Moreover, there exists β : � → R>0 and, for each c > 0 small
enough, there exists c1, c2 > 0 such that the functional V : C → R≥0 defined as
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V (xt ) := τ

2

∫

�

[x(t)](r)2dr +
∫

�

β(r)
∫

�

∫ 0

−d(r,r ′)
ecθ [x(t + θ)](r ′)2dθdr ′dr (17)

satisfies, for all x0 ∈ C, all ρ ∈ U, and all t ≥ 0,

V̇ |(5.15) ≤ −c1V − c2

∫

�

∫

�

[x(t − d(r, r ′))](r ′)2dr ′dr + c2‖ρ(t)‖2F .

We stress that the Krasovskii-Lyapunov functional in (17) cannot be lower-
bounded by a K∞ function of ‖xt‖C, thus making the results in [9] inapplicable
with this particular functional. The same observation holds for the functionals con-
sidered in Proposition 2 and in the proof of Proposition 3 below.

ISS of the Controlled Population

We now proceed to studying the controlled dynamics (11a). To this aim we consider
the delayed neural fields:

τ [ẋ(t)](r) = −[x(t)](r) + S
(
r,

∫

�

w(r, r ′)[x(t − d(r, r ′))](r ′)dr ′ (18)

− kα(r)[x(t)](r) + [ρ(t)](r)
)
.

The next proposition states that this system can bemade ISS regardless of the strength
of w by picking a sufficiently large gain k.

Proposition 2 (ISS of the controlled population) Let S be any activation func-
tion and τ > 0, and let α : � → R>0, d : � → [0; d̄], and w : � × � → R be any
bounded functions. Then there exist k∗ > 0 such that, for all k ≥ k∗, the delayed
neural fields (18) is ISS and there exist c1, c2, c3 > 0, independent of k, such that the
derivative of the functional V : C → R≥0 defined as

V (xt ) := τ

2

∫

�

[x(t)](r)2dr + τ

2#�

∫

�

∫

�

∫ 0

−d(r,r ′)
eθ [x(t + θ)](r ′)2dθdr ′dr (19)

satisfies, for all x0 ∈ C, all ρ ∈ U, and all t ≥ 0,

V̇ |(5.18) ≤ −c1V − c2

∫

�

∫

�

[x(t − d(r, r ′))](r ′)2dr ′dr + c3
k

‖ρ(t)‖2F .

This result, proved in Sect. 4, not only states that the proportional feedback (10)
allows to robustly stabilize the controlled population, but also that its ISS gain can be
made arbitrarily small by picking k large enough. As we will see below, this feature
is key in the stabilization of the overall interconnected neural fields.

Robust Stabilization of Coupled Neural Fields

Proposition 1 provides conditions under which the uncontrolled population is ISS.
Proposition 2 shows that the controlled population can be made ISS by the propor-
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tional feedback (10) and that an arbitrarily small ISS gain can be assigned. Based on
these two results, and invoking small-gain arguments, the following results provides
conditions under which the overall closed-loop system (12) can be made ISS.

Theorem 3 (ISS of the whole population) For each i, j ∈ {1, 2}, let Si be any
activation function, τi > 0, and consider any bounded functions wi j : � × � → R,
di : � × � → [0, d̄], and α : � → R>0. Let �2 denote the slope of S2 and assume
that the internal kernel w22 of the uncontrolled population satisfies

�2

∫

�

∫

�

w22(r, r
′)2dr ′dr < 1. (20)

Then there exists k∗ > 0 such that, for any k ≥ k∗, the coupled neural fields (12) is
ISS.

This result establishes that robust stabilization of coupled delayed neural fields can
be achieved by proportional feedback provided that the internal synaptic weightsw22

within the uncontrolled population are reasonably low. Noticing that condition (20)
ensures global asymptotic stability of the uncontrolled population in the absence of
exogenous inputs (see Proposition 1), the above result states that proportional feed-
back may tackle any sustained oscillation resulting either from the interconnection
between the two subpopulations or from a too strong coupling within the controlled
population, but may fail at attenuating oscillations that endogenously take place
within the uncontrolled population.

4 Proofs

Proof of Corollary 1

Let σ := k21
2 + 1

2k12
. Then, under the small-gain condition k12k21 ≤ 1, it holds that

k21 ≤ σ ≤ 1
k12
. Consider the functional defined as V (xt ) := σV1(x1t ) + V2(x2t ),

where xt := (x1t , x2t ). Then V satisfies (7) with α(s) := min{σα1(s/
√
2);

α2(s/
√
2)} for all s ∈ R≥0 (as can be seen by considering separately the cases

‖x1(t)‖F ≥ ‖x2(t)‖F and ‖x1(t)‖F ≤ ‖x2(t)‖F ) and α := σα1 + α2. Moreover, its
derivative reads

V̇ (6) =σ V̇ (6a)
1 + V̇ (6b)

2

≤ − σα1(V1) − α2(V2) − (σ − k21)W1 − (1 − σk12)W2 + σγ1(‖p1(t)‖F ) + γ2(‖p2(t)‖F )

≤ − σα1(V1) − α2(V2) + γ (‖p(t)‖F ),

where γ := σγ1 + γ2 is clearly a K∞ function. Let α(s) := min {σα1(s/2σ) ; α2

(s/2)} for all s ∈ R≥0, thenα is also aK∞ function and it holds thatα(V ) = α(σV1 +
V2) ≤ α(2σV1) + α(2V2) ≤ σα1(V1) + α2(V2). It follows that V̇ (6) ≤ −α(V ) + γ

(‖p(t)‖F ). In particular, the following implication holds:
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V (xt ) ≥ α−1 ◦ 2γ (‖p(t)‖F ) ⇒ V̇ (6) ≤ −1

2
α(V (xt )),

which concludes the proof in view of Theorem 1.

Proof of Proposition 1

In order to avoid cumbersome notation, we will omit to write the arguments of some
functions in the proof. In particular, it should be kept in mind that the delay d and
the kernel w depend on both r and r ′. Also, unless explicitly specified, we will
denote [x(t)](r) (resp. [ρ(t)](r)) as simply x (resp. ρ). In the same way, S(r, x)
will simply be denoted as S(x). We decompose the functional V given in (17) as
V (xt ) = Va(x(t)) + Vb(xt ) where

Va(x(t)) := τ

2

∫

�

[x(t)](r)2dr (21)

Vb(xt ) :=
∫

�

β(r)
∫

�

∫ 0

−d(r,r ′)
ecθ [x(t + θ)](r ′)2dθdr ′dr. (22)

With the variable change θ ← t + θ , the time derivative of Vb reads

V̇b|(5.15) =
∫

�
β(r)

∫

�

(
[x(t)](r ′)2 − e−cd [x(t − d)](r ′)2

)
dr ′dr − cVb

≤
∫

�
β(r)dr

∫

�
[x(t)](r)2dr − e−cd̄

∫

�

∫

�
[x(t − d(r, r ′))](r ′)2dr ′dr − cVb.

(23)

Furthermore, the derivative of Va can be computed as follows. First, exploiting the
fact that |S(r, a)| ≤ �|a| for all a ∈ R and all r ∈ �, as recalled in (13), it holds that

V̇a|(5.15) ≤ −
∫

�

x2dr + �

∫

�

|x |
∣∣∣∣
∫

�

wx(t − d)dr ′ + ρ

∣∣∣∣ dr

≤ −
∫

�

x2dr + �

∫

�

∫

�

|x ||w||x(t − d)|dr ′dr + �

∫

�

|x ||ρ|dr.

Using the fact ab ≤ 1
2 (λa

2 + b2

λ
) for all a, b ≥ 0 and all λ > 0, it follows that for

any functions λ1, λ2 : � → R>0,

V̇a |(5.15) ≤ −
∫

�

(
1 − w̄

2λ1
− �

2λ2

)
x2dr +

∫

�

�λ1

2

∫

�
x(t − d)2dr ′dr +

∫

�

�λ2

2
ρ2dr,

(24)

where w̄ : � → R>0 denotes any function satisfying w̄(r) ≥ �
∫
�
w(r, r ′)2dr ′, for

all r ∈ �. Under condition (16), w̄ can be picked in such a way that
∫
�
w̄(r)dr < 1.

This can be seen by picking for instance w̄(r) = ε
2#�

+ �
∫
�
w(r, r ′)2dr ′, where ε :=

1 − �
∫
�

∫
�
w(r, r ′)2dr ′dr . We claim that the proposition holds with β(r) = w̄(r)/2.
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With this choice, recalling that V = Va + Vb, the combination of (23) and (24) yields

V̇ |(5.15) ≤ −
∫

�

(
1 − w̄

2λ1
− �

2λ2
−

∫

�

w̄

2
dr ′

)
x2dr (25)

−
∫

�

(
e−cd̄ − �λ1

2

)∫

�

x(t − d)2dr ′dr − cVb +
∫

�

�λ2

2
ρ2dr.

Thus, the result is proved if we can find positive functions λ1, λ2 and a constant c > 0
such that

w̄

2λ1(r)
+ �

2λ2(r)
+

∫

�

w̄(r ′)
2

dr ′ < 1, e−cd̄ >
�λ1(r)

2
.

It can be checked that these conditions are fulfilled with any c ≤ ln
(

1
�λ1(r)

)
/d̄ if

λ1(r) = w̄(r)(3−∫
�
w(r ′)dr ′)

2(2−∫
�
w̄(r ′)dr ′) and λ2(r) = λ∗

2 > �

2−w̄(r)λ1(r)−
∫
�
w̄(r ′)dr ′ .With these choices,

it follows from (25) that there exist c′
1 > 0 such that

V̇ |(5.15) ≤ −c′
1

∫

�

x2dr − cVb − e−cd̄

2

∫

�

∫

�

x(t − d)2dr ′dr + �λ2

2
‖ρ‖2F

≤ −2c′
1

τ
Va − cVb − e−cd̄

2

∫

�

∫

�

x(t − d)2dr ′dr + �λ2

2
‖ρ‖2F .

The conclusion follows by letting c1 = min{2c′
1/τ ; c}, c2 = e−cd̄/2, and c3 = �λ∗

2/2.

Proof of Proposition 2

For the sake of readability, we rely on the same notation simplifications as the ones
used in the proof of Proposition 1 everywhere the context is explicit enough. We
decompose the functional V given in (19) as V (xt ) = Va(x(t)) + Vb(xt ) where

Va(x(t)) := τ

2

∫

�

[x(t)](r)2dr (26)

Vb(xt ) := 1

2#�

∫

�

∫

�

∫ 0

−d(r,r ′)
eθ [x(t + θ)](r ′)2dθdr ′dr. (27)

The derivative of Va along the solutions of (18) reads

V̇a|(5.18) = −
∫

�

x2dr +
∫

�

x S

(∫

�

w[x(t − d)](r ′)dr ′ − kαx + ρ

)
dr. (28)

Let α := minr∈� α(r) > 0. We consider two cases. First, consider the case when
kα|x | ≥ ∣∣∫

�
w[x(t − d)](r ′)dr ′ + ρ

∣∣. Recalling that that S(r, ·) is nondecreasing and
has the same sign as its argument for all r ∈ �, it holds that S(a + b) has the same
sign as a for all a, b ∈ R satisfying |a| ≥ |b|. Consequently,
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xS

(∫

�

w[x(t − d)](r ′)dr ′ − kαx + p

)
≤ 0. (29)

On the other hand, when kα|x | <
∣∣∫

�
w[x(t − d)](r ′)dr ′ + ρ

∣∣, the fact that |S(x)| ≤
�|x |, where � is the slope of S (see (13)), ensures that

xS
( ∫

�
w[x(t − d)](r ′)dr ′ − kx + ρ

)
≤ �|x |

(∣∣∣∣
∫

�
w[x(t − d)](r ′)dr ′

∣∣∣∣ + kα|x | + |ρ|
)

≤ �

αk

∣∣∣∣
∫

�
w[x(t − d)](r ′)dr ′ + ρ

∣∣∣∣
(
2

∣∣∣∣
∫

�
w[x(t − d)](r ′)dr ′

∣∣∣∣ + |ρ|
)

≤ 2�

αk

(∣∣∣∣
∫

�
w[x(t − d)](r ′)dr ′

∣∣∣∣ + |ρ|
)2

≤ 4�

αk

(∫

�
w2dr ′

∫

�
[x(t − d)](r ′)2dr ′ + ρ2

)
, (30)

where we used Cauchy-Schwarz inequality for the latter step. In view of (29), we
conclude that this bound (30) holds in any case. Plugging it into (28), we get that

V̇a|(5.18) ≤ −
∫

�

x2dr + 4�

αk

∫

�

(∫

�

w2dr ′
∫

�

[x(t − d)](r ′)2dr ′ + ρ2

)
dr. (31)

Let us now move to the computation of the functional Vb introduced in (27). Pro-
ceeding as in the proof of Proposition 1 (see from (27) on), we get that

V̇b|(5.18) ≤ 1

2

∫

�

x2dr − e−d̄

2#�

∫

�

∫

�

[x(t − d)](r ′)2dr ′dr − Vb.

Combining this with (31), we get that the derivative of V = Va + Vb satisfies

V̇ |(5.18) ≤ − 1

τ
Va − Vb + 4�

αk
‖ρ(t)‖2F −

∫

�

( e−d̄

2#�
− 4�

αk

∫

�
w2dr ′)[x(t − d)](r ′)2dr ′dr.

Thus, by picking k ≥ k∗ := 16�#�ed̄

α
maxr∈�

∫
�
w(r, r ′)dr ′ and by letting

c1 := min{1/τ ; 1}, c2 := ed̄

4#� and c3 = 4�/α, we obtain V̇ |(5.18) ≤ −c1V − c2
∫
�

∫
�[x(t − d)](r ′)2dr ′dr + c3

k ‖ρ(t)‖2F .
Proof of Proposition 3

First note that the subsystems (11a) and (11b) can be respectively written in the form
of the systems addressed by Propositions 2 and 1, namely (18) and (15), by consid-
ering the inputs ρ1, ρ2 ∈ U defined, for all t ∈ R≥0, as ρ1(t) := ∫

�
w12(·, r ′)[x2(t −

d2(·, r ′))](r ′)dr ′ + p1(t) and ρ2(t) := ∫
� w21(·, r ′)[x1(t − d1(·, r ′))](r ′)dr ′ + p2(t).

Under the assumptions of Proposition 3, those of Propositions 2 and 1 are satis-
fied for each relevant subsystem, and we get that there exist Lyapunov functionals
V1, V2 : C → R≥0 (respectively defined as in (19) and (17)) and positive constants
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ci j , i ∈ {1, 2}, j ∈ {1, 2, 3}, such that, for all k > 0 large enough,

V̇1|(11a) ≤ −c11V1 − c12

∫

�

∫

�

[x1(t − d1)](r ′)2dr ′dr + c13
k

‖ρ1(t)‖2F (32)

V̇2|(11b) ≤ −c21V2 − c22

∫

�

∫

�

[x2(t − d2)](r ′)2dr ′dr + c23‖ρ2(t)‖2F . (33)

Using Cauchy-Schwarz inequality, it holds that

‖ρ1(t)‖2F ≤ 2
∫

�

(∫

�

w12(r, r
′)[x2(t − d2(r, r

′))](r ′)dr ′
)2

dr + 2
∫

�

[p1(t)](r)2dr

≤ 2 ¯̄w12

∫

�

∫

�

[x2(t − d2(r, r
′))](r ′)2dr ′dr + 2‖p1(t)‖2F ,

where ¯̄w12 := maxr∈�

∫
�
w12(r, r ′)2dr ′. In the same way, defining ¯̄w21 := maxr∈�∫

�
w21(r, r ′)2dr ′, we get that ‖ρ2(t)‖2F ≤ 2 ¯̄w21

∫
�

∫
�
[x1(t − d1(r, r ′))](r ′)2dr ′dr+

2‖p2(t)‖2F . Plugging these bounds into (32)–(33) yields

V̇1|(11a) ≤ − c11V1 − c12

∫

�

∫

�

[x1(t − d1)](r ′)2dr ′dr

+ 2c13 ¯̄w12

k

∫

�

∫

�

[x2(t − d2)](r ′)2dr ′dr + 2c13
k

‖p1(t)‖2F

V̇2|(11b) ≤ − c21V2 − c22

∫

�

∫

�

[x2(t − d2)](r ′)2dr ′dr

+ 2c23 ¯̄w21

∫

�

∫

�

[x1(t − d1)](r ′)2dr ′dr + 2c23‖p2(t)‖2F .

Letting W1(x1t ) := c12
∫
�

∫
�
[x1(t − d1(r, r ′))](r ′)2dr ′dr and W2(x2t ) := c22

∫
�∫

�
[x2(t − d2(r, r ′))](r ′)2dr ′dr , we finally get that

V̇1|(11a) ≤ −c11V1 − W1 + 2c13 ¯̄w12

kc22
W2 + 2c13

k
‖p1(t)‖2F

V̇2|(11b) ≤ −c21V2 − W2 + 2c23 ¯̄w21

c12
W1 + 2c23‖p2(t)‖2F .

Invoking Corollary 1, the system is thus ISS provided that 4c13c23 ¯̄w12 ¯̄w21/kc12c22 ≤
1. The conclusion follows as this can be satisfied by picking k sufficiently large.
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5 Conclusions and Future Works

We have shown that a simple proportional feedback on the controlled subpopulation
achieves ISS of the overall neural field provided that the inner synaptic weight of the
uncontrolled subpopulation does not exceed some explicit threshold. This strategy is
appealing from an applicative viewpoint since no precise knowledge of the param-
eters involved is required. The robustness induced by ISS is likely to be exploited
to analyze stability of more advanced stimulation policies as well as delays in the
feedback stimulation [8].
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Robustness of Delayed Multistable
Systems

Denis Efimov, Johannes Schiffer and Romeo Ortega

1 Introduction

The increasing penetration of renewable distributed generation (DG) units at the low
and medium voltage levels has a strong impact on the power system structure [13,
14, 45]. This fact requires new control and operation strategies to ensure a reliable
and efficient electrical power supply [14, 17]. An emerging concept to address these
challenges is the microgrid [14, 20, 23]. A microgrid is a locally controllable subset
of a larger electrical network. It is composed of several DG units, storage devices
and loads.

Typically, most DG units in an ACmicrogrid are connected to the network via AC
inverters [17]. Under ideal conditions, an inverter-based DG unit can be modeled as
an ideal controllable voltage source [24, 33]. Furthermore, a popular control scheme
to operate inverter-based DG units with the purpose to achieve frequency synchro-
nization and power sharing in the network is droop control [6, 19]. Conditions for
stability in droop-controlled microgrids with inverters modeled as ideal controllable
voltage sources have been derived, e.g., in [27, 35, 37].
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However, in a practical setup, the droop control scheme is applied to an inverter
by means of digital discrete time control. Besides clock drifts, see, e.g. [36], digital
control usually introduces time delays [22, 25, 29]. According to [29], the main
reasons for this are (1) sampling of control variables, (2) calculation time of the
digital controller and (3) generation of the pulse-width modulation. We refer the
reader to, e.g. [29] for further details. Hence, it is important to consider time delays
in the stability analysis of microgrids.

In general, inverter-based microgrids operated with droop control have several
equilibria [35, 37]. Thus they are multistable systems. Stability analysis [4, 10, 26,
28, 31, 32, 34, 38, 44] and robust stability analysis [1, 3, 5, 7, 42] for this class
of systems is rather complicated. Recently, the ISS theory [39] has been extended
to multistable systems in [2, 3] (see also [21] for discussion on ISS property with
respect to an unbounded set).

Motivated by the abovementioned phenomenon, the papers [11, 12] have extended
the ISS framework for multistable systems [2, 3] to multistable systems with delay.
In particular, sufficient conditions for ISS of multistable systems in the presence of
delays are given in terms of a Lyapunov-Razumikhin function. It is also shown that
ISS multistable systems are robust with respect to feedback delays (a simple but
important illustration is via the example of a nonlinear pendulum). We would like to
point out that related works on ISS of time-delay systems by employing Lyapunov
functions [9, 16, 30] are limited to systems with a single equilibrium point or a
compact attracting set. Based on the results in [11, 12] (their detailed presentation is
given below), in this chapter, a condition for asymptotic phase-locking in amicrogrid
composed of two droop-controlled inverters with delay is developed. The analysis is
conducted for a simplified inverter model derived under the assumptions of constant
voltage amplitudes and ideal clocks, as well as negligible dynamics of the internal
inverter LC filter and controllers. In that scenario, the delay merely affects the phase
angle of the inverter output voltage. The stability results are illustrated by simulations.

2 Preliminaries

For an n-dimensional C2 connected and orientable Riemannian manifold M without
a boundary, let the map f (x, d) : M × R

m → TxM be of class C1, and consider a
nonlinear system of the following form:

ẋ(t) = f (x(t), d(t)), (1)

where the state x ∈ M and d(t) ∈ R
m (the input d(·) is a locally essentially bounded

and measurable signal) for t ≥ 0. We denote by X (t, x0; d) the uniquely defined
solution of (1) at time t fulfilling X (0, x0; d) = x0. Together with (1) we will analyze
its unperturbed version:

ẋ(t) = f (x(t), 0). (2)
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A set S ⊂ M is invariant for the unperturbed system (2) if X (t, x; 0) ∈ S for all
t ∈ R and for all x ∈ S. Define the distance from a point x ∈ M to the set S ⊂ M as
|x |S = mina∈S δ(x, a), where the symbol δ(x1, x2) denotes the Riemannian distance
between x1 and x2 inM , |x | = |x |{0} for x ∈ M (in this case 0 represents a designated
element ofM) or a usual Euclidean normof a vector x ∈ R

n . For a signal d : R → R
m

the essential supremum norm is defined as ‖d‖∞ = ess supt≥0 |d(t)|.

2.1 Decomposable Sets

Let � ⊂ M be a compact invariant set for (2).

Definition 1 ([28]) A decomposition of � is a finite and disjoint family of compact
invariant sets �1, . . . , �k such that

� =
k⋃

i=1

�i .

For an invariant set �, its attracting and repulsing subsets are defined as follows:

A(�) = {x ∈ M : |X (t, x, 0)|� → 0 as t → +∞},
R(�) = {x ∈ M : |X (t, x, 0)|� → 0 as t → −∞}.

Define a relation on W ⊂ M and D ⊂ M by W ≺ D if A(W) ∩ R(D) 
= �.

Definition 2 ([28]) Let �1, . . . , �k be a decomposition of �, then
1. An r -cycle (r ≥ 2) is an ordered r -tuple of distinct indices i1, . . . , ir such that

�i1 ≺ · · · ≺ �ir ≺ �i1 .
2. A 1-cycle is an index i such that [R(�i ) ∩ A(�i )] − �i 
= �.
3. A filtration ordering is a numbering of the �i so that �i ≺ � j ⇒ i ≤ j .

Aswe can conclude fromDefinition 2, existence of an r -cyclewith r ≥ 2 is equivalent
to existence of a heteroclinic cycle for (2) [18]. Furthermore, existence of a 1-cycle
implies existence of a homoclinic cycle for (2) [18].

Definition 3 The set W is called decomposable if it admits a finite decomposition
without cycles, W = ⋃k

i=1 Wi , for some non-empty disjoint compact sets Wi ,
which form a filtration ordering of W, as detailed in Definitions1 and 2.

2.2 Robustness Notions

The following robustness notions for systems represented by (1) have been introduced
in [2, 3] (see also [8] for a survey on the ISS framework).
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Definition 4 We say that the system (1) has the practical asymptotic gain (pAG)
property if there exist η ∈ K∞ and a non-negative real q such that for all x ∈ M and
all measurable essentially bounded inputs d(·) the solutions are defined for all t ≥ 0
and the following holds:

lim sup
t→+∞

|X (t, x; d)|W ≤ η(‖d‖∞) + q.

If q = 0, then we say that the asymptotic gain (AG) property holds.

Definition 5 We say that the system (1) has the limit property (LIM) with respect
to W if there exists μ ∈ K∞ such that for all x ∈ M and all measurable essentially
bounded inputs d(·) the solutions are defined for all t ≥ 0 and the following holds:

inf
t≥0

|X (t, x; d)|W ≤ μ(‖d‖∞).

Definition 6 We say that the system (1) has the practical global stability (pGS)
property with respect toW if there exist β ∈ K∞ and q ≥ 0 such that for all x ∈ M
and measurable essentially bounded inputs d(·) the following holds for all t ≥ 0:

|X (t, x; d)|W ≤ q + β(max{|x |W, ‖d‖∞}).

It has been shown in [2, 3] that to characterize pAG property in terms of Lyapunov
functions the following notion is appropriate.

Definition 7 We say that a C1 function V : M → R is a practical ISS-Lyapunov
function for (1) if there exists K∞ functions α1, [α2], α3 and γ , and scalar q ≥ 0
[and c ≥ 0] such that

α1(|x |W) ≤ V (x) ≤ [α2(|x |W + c)],

the function V is constant on each Wi and the following dissipation holds:

DV (x) f (x, d) ≤ −α3(|x |W) + γ (|d|) + q.

If the latter inequality holds for q = 0, then V is said to be an ISS-Lyapunov function.

Notice that α2 and c are in square brackets as their existence follows (without any
additional assumptions) by standard continuity arguments.

The main result of [2, 3] connecting these robust stability properties is stated
below. It extends the results of [40, 41] obtained for connected sets.

Theorem 1 Consider a nonlinear system as in (1) and let a compact invariant
set containing all α- and ω-limit sets of (2) W be decomposable (in the sense of
Definition 3). Then the following facts are equivalent.
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1. The system admits an ISS Lyapunov function;
2. The system enjoys the AG property;
3. The system admits a practical ISS Lyapunov function;
4. The system enjoys the pAG property;
5. The system enjoys the LIM property and the pGS.

Definition 8 ([3]) Suppose that a nonlinear system as in (1) satisfies the assumptions
and the list of equivalent properties of Theorem 1. Then this system is called ISS
with respect to the setW.

3 Multistable Systems with Delays

Let τ > 0, for a function d : [−τ,+∞) → R
m and t ≥ 0 denote a function dt (·) :

[−τ, 0] → R
m defined by dt (θ) = d(t + θ) for θ ∈ [−τ, 0]. Denote by D a set of

bounded and piecewise continuous functions dt (·) : [−τ, 0] → R
m . Consider a func-

tional differential equation on an n-dimensional C2 connected and orientable Rie-
mannian manifold M without a boundary:

ẋ(t) = F(xt , dt ), x0 ∈ Cτ , (3)

where themap F : Cτ × D → TxM is of classC1 (wewill denote a set of continuous
functions ξ : [−τ, 0] → M by Cτ ), x(t) ∈ M is the state, xt ∈ Cτ and dt ∈ D for
all t ≥ 0. We denote by X (t, x0; d) the uniquely defined solution of (3) at time
t fulfilling X (θ, x0; d) = x0(θ) for all θ ∈ [−τ, 0]; Xx0,d

t (θ) = X (t + θ, x0; d) for
θ ∈ [−τ, 0]. Define as in [43]

|xt | = max
θ∈[−τ,0] |x(t + θ)|, ||x ||t0 = sup

t≥t0
|xt | = sup

t≥t0−τ

|x(t)|.

Again, together with (3), we will analyze its unperturbed version:

ẋ(t) = F(xt , 0). (4)

A set S ⊂ Cτ is invariant for the unperturbed system (4) if Xx0,0
t ∈ S for all t ∈ R+

and for all x0 ∈ S. Define the distance from a function ξ ∈ Cτ to a set S ⊂ Cτ as
||ξ ||S = infα∈S |ξ − α|.

LetW ⊂ M be a set, denote by
︷︸︸︷
W a subset ofW = {ξ ∈ Cτ : ξ(t) ∈ W ∀t ∈

[−τ, 0]} such that if ζ ∈
︷︸︸︷
W then ζ = X ξ,0

τ for ξ ∈ W. For stability analysis of
time-delay systems it is necessary to define a distance to invariant sets in two spaces:
in R

n with respect to the set W and in Cτ with respect to corresponding invariant

set
︷︸︸︷
W (functions from Cτ taking values inW and solutions of (3)). The following
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stability notions for (3) are considered in this work [12] (for a recent survey on
stability tools for time-delay systems see [16]).

Definition 9 The system (3) has the pAG property with respect to the setW if there
exist η ∈ K∞ and a non-negative real q such that for all x0 ∈ Cτ and all bounded
piecewise continuous inputs d(·) the solutions are defined for all t ≥ 0 and the
following holds:

lim sup
t→+∞

|X (t, x0; d)|W ≤ η(‖dt‖0) + q.

If q = 0, then we say that the AG property holds.

This property can be equivalently stated as

lim sup
t→+∞

||Xx0,d
t ||︷︸︸︷

W
≤ η(‖dt‖0) + q

and it implies that (a subset of)
︷︸︸︷
W is invariant for (4) if q = 0.

Definition 10 The system (3) has the pGS property with respect to the set W if
there exist β ∈ K∞ and q ≥ 0 such that for all x0 ∈ Cτ and all bounded piecewise
continuous inputs d(·) the following holds for all t ≥ 0:

|X (t, x0; d)|W ≤ q + β(max{||x0||︷︸︸︷W
, ‖dt‖0}).

To characterize pAG and pGS properties for a time-delay system (3) the Lyapunov-
Razumikhin approach is used in this work [9, 30]. Given a continuous function x :
[−τ,+∞) → M with a C1 functionU : M → R denoteU (t) = U (x(t)), if x(t) =
X (t, x0; d) is a solution to (3) for some piecewise continuous d : [−τ,+∞) → R

m

and initial condition x0 ∈ Cτ , then the upper right-hand side derivative of U along
this solution is

D+U (t) = lim sup
h→0+

U (t + h) −U (t)

h
.

Definition 11 A C1 functionU : M → R is a practical ISS-Lyapunov-Razumikhin
(ISS-LR) function for (3) if there existK∞ functions α1, [α2], α4, γ and γU , γU (s) <

s for all s > 0, and scalar q ≥ 0 [and c ≥ 0] such that

α1(|x |W) ≤ U (x) ≤ [α2(|x |W + c)],
U (t) ≥ max{γU (|Ut |), γ (|dt |), q} ⇒ D+U (t) ≤ −α4[U (t)].

If the latter inequality holds for q = 0, then U is said to be an ISS-LR function.

Definition 12 The system in (3) is said to be ISS with respect to the set W if it
admits pAG and pGS properties with respect to the setW.
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Note that Definitions 8 and 12 introduce the same property, but for different classes
of systems, (1) and (3), respectively.

Theorem 2 ([12]) Consider the system (3). Suppose there exists an ISS-LR function
U : M → R as in Definition 11. Then the system (3) admits the pAG property from
Definition 9 with η(s) = α−1

1 ◦ γ (s) and the pGS property from Definition 10.

4 ISS of Multistable Systems with Delayed Perturbations

In this section we consider the robustness of the system (1) with respect to a dis-
turbance d, which is dependent on a delayed state. The analysis is conducted under
the assumption that the system (1) is ISS with respect to a set W. The proposed
approach is illustrated via example of a nonlinear pendulum with delay.

4.1 Robustness Analysis

If (1) is ISS with respect to the set W, then by Theorem 1 there exists an ISS
Lyapunov function V as in Definition 7. From the inequalities α3[0.5α−1

2 ◦ V (x)] ≤
α3(0.5[|x |W + c]) ≤ α3(|x |W) + α3(c) we obtain

DV (x) f (x, d) ≤ −α4[V (x)] + γ (|d|) + q̃,

where α4(s) = α3[0.5α−1
2 (s)] and q̃ = q + α3(c).

Assume that the input d has two terms d1 and d2, and d2 is a function of xt ∈ Cτ

for some τ > 0, i.e.:
d = d1 + d2, d2 = g(xt), (5)

where g is a continuous function, |g(xt)| ≤ υ(|Vt |) + υ0 for υ ∈ K∞ and υ0 ≥ 0
(here Vt denotes a function Vt (·) : [−τ, 0] → R+ defined by Vt (θ) = V (t + θ) for
θ ∈ [−τ, 0]). Denote further for simplicity of notation d = d1, then (1) is transformed
to (3) with

F(xt , dt ) = f (x(t), d + g(xt )),

D+V (t) ≤ −α4(V (t)) + γ (2υ(|Vt |) + 2υ0) + γ (2|dt |) + q̃.

This estimate can be rewritten as follows:

V (t) ≥ max{γ̂V (|Vt |), γ̂ (|dt |), q̂} ⇒ D+V (t) ≤ −0.5α4(V (t)),

γ̂V (s) = α−1
4 [6γ (4υ(s))], γ̂ (s) = α−1

4 [6γ (2s)], q̂ = α−1
4 [6q̃ + 6γ (4υ0)].
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It is straightforward to see that if γ̂V (s) < s for all s > 0, then V is an ISS-LR
function for (1) with (5), and by Theorem 2 this system possesses pAG and pGS
properties.

4.2 Illustration for a Nonlinear Pendulum

Now, the procedure for a robust ISS analysis of a multistable system with delays
outlined in Sect. 4.1 is illustrated via the example of a nonlinear pendulum. First, we
prove the assumption made in Sect. 4.1 that the pendulum is ISS with respect to a
setW. Second, a condition for ISS of a pendulum with delay is derived. During our
analysis, we also establish almost global attractivity of an equilibrium of a nonlinear
pendulum with constant nonzero input. To the best of our knowledge, such result is
not available in the literature thus far.

4.2.1 Delay-Free Case

Consider a nonlinear pendulum:

ẋ1 = x2,
ẋ2 = −�2 sin(x1) − κx2 + d,

(6)

where the state x = [x1, x2] takes values on the cylinder M := S × R, d(t) ∈ R is an
exogenous disturbance, and �, κ are constant positive parameters. The total energy
of (6) is H(x) = 0.5x22 + �2(1 − cos(x1)) and Ḣ = x2d − κx22 . The unperturbed
system (6) has two equilibria [0, 0] and [π, 0] (the former is attractive and the latter
one is a saddle-point). Thus, W = {[0, 0] ∪ [π, 0]} is a compact set containing all
α- and ω-limit sets of (6) for d = 0. In addition, it is straightforward to check that
W is decomposable in the sense of Definition 3.

Lemma 1 ([12]) The system (6) is ISS with respect to the setW.

By using this result it is possible to prove that for a constant input d (with d < �2)
the pendulum still has two steady-state points with similar stability properties.

Lemma 2 ([12]) Let d < min{�2,

√
�λmin(Y )

2
π
ζ
, 0.5

√
ε�π

ζ
, ξ} be a constant input in

(6), where

� = min

[
κ − ε

1 + ε
,

1√
2π

ε�2

(�2 + (κ + 1)ε)

]
,

ζ =
√√

2π

[
ε�−2 + 1

κ − ε

]
, ξ = 2

√
�2 + κε

ζ

(
�2 + (κ + 1)ε

ε�2
+ 1√

2π�

)
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and 0 < ε < min{1, κ} is a parameter. Then the system has two equilibria,
[arcsin(d�−2), 0] and [π − arcsin(d�−2), 0]. The former one is almost globally
attractive.

4.2.2 A Delayed Case Study

Now consider a time-delay modification of (6):

ẋ1(t) = x2(t),
ẋ2(t) = −�2 sin[x1(t − τ)] − κx2(t) + d(t),

(7)

where τ > 0 is a fixed delay. The unperturbed system (7) with d(t) = 0 has the same
equilibria as (6), i.e. [0, 0] and [π, 0]. The system (7) can be represented as follows:

ẋ1(t) = x2(t),
ẋ2(t) = −�2 sin[x1(t)] − κx2(t) + d(t) + �2{sin[x1(t)] − sin[x1(t − τ)]}.

By the mean value theorem

| sin[x1(t)] − sin[x1(t − τ)]| = | cos[x1(φ)]x2(φ)τ | ≤ |x2(φ)|τ

for someφ ∈ [t − τ, t]. Thus, the system (7) can be analyzed as a perturbed nonlinear
pendulum with part of the input d dependent on the delay. Using V we obtain for
μ = ε�−2 + 1

κ−ε
:

D+V (t) ≤ −0.5[κ − ε]x22 − 0.5ε�2 sin2(x1) + μ�4x22 (φ)τ 2 + μd2.

It is straightforward to check that

V (x) ≤ 0.5[1 + ε]x22 + 0.5ε sin2(x1) + 2[�2 + κε],
x22 ≤ 2

1 − ε
V (x) + ε

1 − ε

for 0 < ε < min{1, κ}, then for ρ = min{ κ−ε
1+ε

, �2}

D+V (t) ≤ −ρ{V (t) − 2[�2 + κε]} + μ�4x22 (φ)τ 2 + μd2

≤ −ρ{V (t) − 2[�2 + κε]} + μ�4

1 − ε
τ 2[2V (φ) + ε] + μd2.

Therefore,

V (t) ≥ 6

ρ
max

{
2

μ�4

1 − ε
τ2|Vt |, 2ρ[�2 + κε] + μ�4

1 − ε
τ2ε, μd2

}
⇒ D+V (t) ≤ −0.5ρV (t) (8)
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and V is an ISS-LR function for (7) provided that

12

ρ

μ�4

1 − ε
τ 2 < 1. (9)

The inequality (9) is a delay-dependent stability condition for (7), which is always
satisfied for a sufficiently small delay τ . The set of asymptotic attraction for (7) can
be evaluated from (8).

Remark 1 If we assume that max{0, κ−�2

1+�2 } < ε < min{1, κ}, then min{ κ−ε
1+ε

, �2} =
κ−ε
1+ε

and the condition (9) can be rewritten as follows:

τ 2 <
12

�2

1 − ε

1 + ε

(κ − ε)2

ε(κ − ε) + �2
.

Since the functions 1−ε
1+ε

and (κ−ε)2

ε(κ−ε)+�2 are decreasing for ε ∈ (max{0, κ−�2

1+�2 },
min{1, κ}), selecting ε = max{0, κ−�2

1+�2 } + ε for a sufficiently small ε > 0 (if κ > �2

then the optimal choice is ε = κ−�2

1+�2 ) optimizes the value of the admissible delay τ

to

τ ∗ = κ − ε

�

√
1 − ε

1 + ε

12

ε(κ − ε) + �2
,

i.e. for any τ < τ ∗ the system (7) admits V as an ISS-LR function.

5 Application to a Microgrid Composed of Two
Droop-Controlled Inverters with Delay

In this section the theoretical results of Sect. 3 are applied to our main motivat-
ing application: a droop-controlled microgrid with delays. In particular, we are
interested in conditions for ISS of such systems. In order to tackle this problem,
we proceed along the lines detailed in Sect. 4. The analysis is conducted under a
reasonable assumption of constant voltage amplitudes. Then, a lossless droop-
controlled microgrid formed by two inverters with delay can be modeled as [35]:

θ̇ (t) = ω1(t) − ω2(t), (10)

τP1 ω̇1(t) = −ω1(t) − kP1a12 sin[θ(t − τd1)] + c1 + δ1(t),

τP2 ω̇2(t) = −ω2(t) + kP2a12 sin[θ(t − τd2)] + c2 + δ2(t),

where θ(t) ∈ [0, 2π) is the phase difference between the inverters, ω1(t), ω2(t) ∈ R

are the time-varying frequencies of the inverters; τd1 > 0 and τd2 > 0 are delays
caused by the digital controls required to implement the droop controls; τP1 > 0,
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τP2 > 0, kP1 > 0, kP2 > 0, a12 > 0, c1 and c2 = − kP2
kP1

c1 are constant parameters;
the disturbances δ1(t) and δ2(t) represent additional model uncertainties. We say
that a solution of (10) is phase-locked if θ(t) = θ0 is constant ∀t ∈ R+ for some
θ0 ∈ [0, 2π) [15]. If this property holds asymptotically, i.e., for t → +∞, we speak
about an asymptotic phase-locking.

Assumption. τd1 = τd2 = τ > 0.

Under this assumption, define the new coordinates:

x1 = θ, x2 = ω1 − ω2, x3 = kP2τP1
kP1τP2

ω1 + ω2.

Then the system (10) can be rewritten as follows:

ẋ1(t) = x2(t), (11)

ẋ2(t) = −b1x2(t) + b2x3(t) − a2 sin[x1(t − τ)] + d1(t), (12)

ẋ3(t) = −b3x3(t) + b4x2(t) + d2(t), (13)

where

b1 = τ−1
P1

+ (τ−1
P2

− τ−1
P1

)

(
1 + kP2τP1

kP1τP2

)−1 kP2τP1
kP1τP2

, b2 = (τ−1
P2

− τ−1
P1

)

(
1 + kP2τP1

kP1τP2

)−1

,

b3 = τ−1
P1

+ (τ−1
P2

− τ−1
P1

)

(
1 + kP2τP1

kP1τP2

)−1

, b4 = (τ−1
P2

− τ−1
P1

)

(
1 + kP2τP1

kP1τP2

)−1 kP2τP1
kP1τP2

,

a =
√

(kP1τ
−1
P1

+ kP2τ
−1
P2

)a12,

d1(t) = (τ−1
P1

+ τ−1
P2

kP2
kP1

)c1 + τ−1
P1

δ1(t) − τ−1
P2

δ2(t), d2(t) = kP2
kP1τP2

δ1(t) + τ−1
P2

δ2(t).

In [12] it has been also assumed that τP1 = τP2 = τP > 0. The stability analysis above
is based on the assumption that b1 > 0 and b3 > 0, which we imposed without loss
of generality. If τP2 > τP1 and the coefficients b1 < 0 or b3 < 0 for the given values
of kP1 and kP2 , then the above equations can be rewritten to have the term τ−1

P1
− τ−1

P2

insteadof τ−1
P2

− τ−1
P1

byflipping the indices. Thus, the system (10) is decomposed into
two interrelated subsystems: (11)–(13). The variable x3 converges asymptotically to
zero if b4x2 + d2 = 0 (then asymptotically the frequencies ω1 and ω2 are locked),
moreover this subsystem is ISS with respect to the input b4x2 + d2, with the ISS
asymptotic gain |b4x2 + d2| → |x3| being equal to b−1

3 (this simple result can be
obtained using an ISS Lyapunov function V3(x3) = 0.5x23 ).
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Fig. 1 Simulation results for
the system (10). The solid
lines show the state
trajectories for the case
d1(t) = d2(t) = 0. The
dashed lines correspond to
the case d1(t) = 0.8 sin(3t),
d2(t) = 0.9 sin(5t)

The dynamics (11), (12) have the form of (7) for d = d1 + b2x3 and, as it has
been established above, have pAG and pGS properties from Definitions 9 and 10
respectively if condition (9) is satisfied, which for (11), (12) takes the form:

τ 2 <
12

a2
1 − ε

1 + ε

(b1 − ε)2

ε(b1 − ε) + a2
(14)

for 0 < ε < min{1, b1}, and the asymptotic gain d2 → V is εa−2 + 1
b1−ε

. Therefore,
under the small-gain condition

b23b
2
4b

2
2

(
εa−2 + 1

b1 − ε

)
< 1 (15)

and for a sufficiently small delay τ verifying (14) the system (11)–(13) is ISS with
respect to inputs d1 and d2. In that case the inverters will demonstrate a phase-
locking behavior. According to [29], a good estimate of the overall delay introduced
by the digital control is τ = 1.75TS ,1 where TS = 1/ fS and fS ∈ R>0 is the switching
frequency of the inverter. Since usually fS ∈ [5, 20] kHz [17], τ is reasonably small
in most practical applications. Hence, the condition (14) may be satisfied for most
practical choices of parameters in (10).

The analysis is illustrated in a simulation example with the following set of
parameters for the system (10): τP1 = 2, τP2 = 1, kP1 = 10, kP2 = 20, a12 = 0.1,
c1 = 0.2 and τ = 0.05. Conditions (14) and (15) are satisfied for ε = 0.5min{1, b1}.
The simulation results are shown in Fig. 1. The solid lines represent the state
(θ, ω1, ω2)

T trajectories for the case d1(t) = d2(t) = 0, and the dashed lines cor-
respond to d1(t) = 0.8 sin(3t), d2(t) = 0.9 sin(5t). The phase-locking phenomenon
is observed in these simulation results.

1The overall delay reduces to τ = 1.5TS if no moving average function for the measurement is used
[29].
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6 Conclusions

Sufficient conditions for ISS of multistable systems with delay have been presented.
The conditions are formulated using Lyapunov-Razumikhin functions. The potential
of the approach has been illustrated by demonstrating several robustness properties
for a nonlinear pendulumwith delay. Furthermore, it has been shown that asymptotic
phase-locking in a lossless droop-controlled microgrid formed by two inverters with
delays can be analyzed based on a perturbed pendulum model. By exploiting this
fact, a delay-dependent condition for ISS of such a microgrid has been presented.
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A Small-Gain Method for the Design
of Decentralized Stabilizing Controllers
for Interconnected Systems with Delays

Pierdomenico Pepe, Hiroshi Ito and Zhong-Ping Jiang

1 Introduction

Feedback stabilization by means of static state-feedback, dynamic output-feedback
and input-output feedback linearization for nonlinear retarded systems has been
extensively studied in the literature (see, for instance, [1–5, 9–11, 16, 26–29, 43]).
Nevertheless, though many approaches are available, the stabilization problem for
general nonlinear systems, with an arbitrary number of discrete and distributed time-
delays, is still far from being fully solved. The technique of control Lyapunov func-
tions has been exploited to practically or asymptotically stabilize a large class of
time-invariant retarded systems in affine form in [16], using Lyapunov Razumikhin
functions. The domination redesign control methodology is employed (see [39]).
Results concerning the use of control Lyapunov-Krasovskii functionals (instead of
control Lyapunov-Razumikhin functions) for the design of stabilizing control laws
for retarded systems can be found in [7, 15, 21, 33, 34, 38]. In [15] a fixed type
of control Lyapunov-Krasovskii functionals is exploited. For this type of control
Lyapunov-Krasovskii functionals, remarkable results are achieved for a broad class
of retarded systems. For instance, it is shown that both Sontag’s (see [41]) and Free-
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man’s (see [8]) formulas can be successfully used for global stabilization purposes.
If the small control property holds (see [15, 41]), the proposed feedback control laws
are, at least, locally Lipschitz outside the origin and continuous at the origin. In [7]
the authors propose a predictive control schemewith guaranteed closed-loop stability
for nonlinear retarded systems, utilizing the same fixed type of control Lyapunov-
Krasovskii functionals as in [15]. In [21] the authors prove the equivalence of the
existence of a completely locally Lipschitz control Lyapunov-Krasovskii functional
satisfying the small control property (see [41] and references therein), and the stabi-
lizability property by means of completely locally Lipschitz control laws, for fully
nonlinear, retarded systems. Moreover, stabilizability is intended robust with respect
to vanishing disturbances. In [38] the inverse optimality approach for delay-free non-
linear systems is extended to time-delay systems, by the use of complete quadratic
control Lyapunov-Krasvoskii functionals. In the paper [33] it is shown how invari-
antly differentiable functionals (see [24, 25]) can play an important role for the
input-to-state practical stabilization (see Definition 2.1 in [17]) of retarded systems,
by using the Sontag’s universal formula with a slight modification. The hypothe-
ses introduced in [33] do not guarantee that the state feedback law obtained by the
Sontag’s formula, as proposed in [15], is locally Lipschitz. Therefore, the Sontag’s
formula extended to retarded systems is modified in the critical subsets of the infinite
dimensional state space where the Lipschitz property of the related feedback control
lawmay be lost. By this modification, the problem of non Lipschitz feedback control
law is solved. Then, an input-to-state stabilizing term (see [32, 35, 40]) is added to
the control law, thus achieving the twofold result of attenuation of the actuator dis-
turbance and attenuation of the bounded error due to the above modification of the
Sontag’s formula. Sontag’s stabilizer is studied in [34] also for neutral systems in
Hale’s form, which include retarded systems as a special case. Sufficient conditions
for both the global asymptotic stabilization and for the global practical stabilization,
by Sontag’s and modified Sontag’s formula, are provided. A robustifying controller
for retarded interconnected systems is studied in [12]. It is shown that, under a suit-
able small-gain condition (see [14]), decentralized controllers can be found in order
to achieve actuator disturbance attenuation, in the sense of input-to-state stability, for
interconnected systems stabilizable bymeans of decentralized state feedback control
laws. The interested reader can refer to the recent monograph [20] for an extensive
presentation of Lyapunov-based stabilization methods for nonlinear systems, in both
the finite dimensional and the retarded cases, in the continuous-time as well as in the
discrete-time. It is well known that finding control Lyapunov-Krasovskii functionals
is in general a not easy task, as well as that small-gain methods (see [18]) can provide
an important tool in order to simplify the construction of suitable Lyapunov func-
tions and Lyapunov-Krasovskii functionals (see [13, 14, 17]). For this reason, we
propose here a constructive methodology for the design of controllers for a class of
interconnected systems, which makes use of control Lyapunov-Krasovskii function-
als for each subsystem, aimed at simplifying the search of these functionals. Then,
for each subsystem, the locally Lipschitz control law proposed in [33] is found. By
means of a small-gain condition for retarded systems developed in [14], it is proved
that the resulting overall closed-loop system is input-to-state practically stable with
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respect to actuator disturbances. If the disturbances are bounded, it is proved that, by
suitably tuning a control parameter, the system state can be driven to an arbitrarily
small neighborhood of the origin. The easier search of control Lyapunov-Krasovskii
functionals is evident in the special case when delays appear on the communication
channels only. In this case, it is possible to look for just control Lyapunov functions
in Euclidean spaces, and transfer to the small-gain condition the problem of dealing
with interconnection delays (see (17) in [14]). Moreover, the provided conditions do
not include the small control property, which may well be not satisfied, as shown in
[33]. Actually, the small control property may be an additional property hard to be
satisfied for retarded systems (see examples in [33] and, in the neutral case, in [34]).
The proposed control law is locally Lipschitz in the infinite dimensional state space of
the systems described by retarded functional differential equations here considered.
Moreover, the control law is decentralized, that is, each control law depends only on
the state of each sub-system, which may be an interesting property for the practical
situation where subsystems are located far away each other, and each subsystem is
provided with a controller. A numerical example is studied in details, in order to
show the effectiveness of the proposed methodology.

A preliminary version of this chapter has been published in [36].

Notation R denotes the set of real numbers, R� denotes the extended real line
[−∞,+∞], R+ denotes the set of non-negative reals [0,+∞). The symbol | · |
stands for the Euclidean norm of a real vector. The essential supremum norm of
an essentially bounded function is indicated with the symbol ‖ · ‖∞. A function v :
R+ → Rm ,m positive integer, is said to be essentially bounded if ess supt≥0 |v(t)| <

+∞. For given times 0 ≤ T1 < T2, with v[T1,T2) : R+ → Rm we mean the function
given by v[T1,T2)(t) = v(t) for all t ∈ [T1, T2) and = 0 elsewhere. An input v is said
to be locally essentially bounded if, for any T > 0, v[0,T ) is essentially bounded. For
a positive integer n, for a positive real � (maximum involved time delay), Cn andQn

denote the space of the continuous functions mapping [−�, 0] into Rn and the space
of the bounded, continuous except at a finite number of points with jump disconti-
nuities, and right-continuous functions mapping [−�, 0) into Rn , respectively. For
φ ∈ Cn , φ[−�,0) is the function inQn defined as φ[−�,0)(τ ) = φ(τ), τ ∈ [−�, 0). For
a continuous function x : [−�, c) → Rn , with 0 < c ≤ +∞, for any real t ∈ [0, c),
xt is the function in Cn defined as xt (τ ) = x(t + τ), τ ∈ [−�, 0]. For a positive real
δ, φ ∈ Cn , Iδ(φ) = {ψ ∈ Cn : ‖ψ − φ‖∞ ≤ δ}. For given positive integers n,m, a
map f : Cn → Rn×m is said to be: completely continuous if it is continuous and
takes bounded subsets of Cn into bounded subsets of Rn×m ; locally Lipschitz in Cn

if, for any φ ∈ Cn , there exist positive reals δ, η such that, for any φ1, φ2 ∈ Iδ(φ), the
inequality | f (φ1) − f (φ2)| ≤ η‖φ1 − φ2‖∞ holds. Let us here recall that a function
γ : R+ → R+ is: of class P if it is continuous, zero at zero, and positive at any posi-
tive real; of classK if it is of classP and strictly increasing; of classK∞ if it is of class
K and it is unbounded; of class L if it is continuous and it monotonically decreases
to zero as its argument tends to +∞. A function β : R+ × R+ → R+ is of classKL
if β(·, t) is of class K for each t ≥ 0 and β(s, ·) is of class L for each s ≥ 0. The
symbol ◦ denotes composition of functions. With the symbol Ma is indicated any
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functional mapping Cn into R+ (see [32]), such that, for someK∞ functions γa, γ a ,
the inequalities γa(|φ(0)|) ≤ Ma(φ) ≤ γ a(‖φ‖∞) hold for any φ ∈ Cn . Throughout
the chapter, RFDE stands for retarded functional differential equation, ISS stands for
input-to-state stability or input-to-state stable, ISpS stands for input-to-state practical
stability or input-to-state practically stable, GAS stands for global asymptotic sta-
bility or globally asymptotically stable. A system with an equilibrium at zero is said
to be 0-GAS if the zero solution is GAS. CLF stands for control Lyapunov function,
CLRF stands for control Lyapunov-Razumikhin function, CLKF stands for control
Lyapunov-Krasovskii functional.

2 Preliminaries

Let us consider the system described by the following RFDE

ẋ(t) = f (xt ) + g(xt )u(t), t ≥ 0, a.e.,

x(τ ) = ξ0(τ ), τ ∈ [−�, 0], ξ0 ∈ Cn, (1)

where: x(t) ∈ Rn , n is a positive integer;� > 0 is themaximum involved time delay;
the maps f : Cn → Rn and g : Cn → Rn×m are completely continuous and locally
Lipschitz in Cn , f (0) = 0; m is a positive integer; u(t) ∈ Rm is the input signal,
assumed to be Lebesgue measurable and locally essentially bounded.

Given a locally Lipschitz continuous functional V : Cn → R+, the upper right-
hand derivative D+V : Cn × Rm → R� of the functional V , in the Driver’s form (see
[6, 19, 37]), is defined, for φ ∈ Cn , v ∈ Rm , as

D+V (φ, v) = lim sup
h→0+

1

h
(V (φh) − V (φ)) , (2)

where φh ∈ Cn is given, for h ∈ [0,�), by

φh(θ) =
{

φ(θ + h), θ ∈ [−�,−h),

φ(0) + ( f (φ) + g(φ)v)(θ + h), θ ∈ [−h, 0] (3)

Remark 1 It is proved in [30] that, for locally Lipschitz continuous functionals V ,
the following equality holds

lim sup
h→0+

V (xt+h) − V (xt )

h
= D+V (xt , u(t)), t ∈ [0, b), a.e., (4)
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where xt is the solution of (1) in a maximal time interval [0, b), 0 < b ≤ +∞. It
is proved in [31] that, for locally Lipschitz functionals V , the problem of the local
absolute continuity of the function t → V (xt ) is overcome.

The following definition of invariant differentiable functionals is taken from [25],
see Definitions 2.2.1, 2.5.2 in Chap.2. The formalism used in [25] is here slightly
modified for the purpose of formalism uniformity over the chapter. For any given x ∈
Rn , φ ∈ Qn and for any given continuous functionY : [0,�] → Rn withY(0) = x ,
let ψ(x,φ,Y)

h ∈ Qn , h ∈ [0,�), be defined as

ψ
(x,φ,Y)

h (s) =

⎧⎪⎪⎨
⎪⎪⎩

φ(s), s ∈ [−�, 0), h = 0,

{
φ(s + h), s ∈ [−�,−h),

Y(s + h), s ∈ [−h, 0),

}
, h ∈ (0,�)

(5)

For φ ∈ Cn , h ∈ [0,�), let φh ∈ Cn be defined as follows

φh(s) =
{

φ(s + h), s ∈ [−�,−h)

φ(0), s ∈ [−h, 0] (6)

Definition 1 (see [25]) A functional V : Rn × Qn → R+ is said to be invariantly
differentiable if, at any point (x, φ) ∈ Rn × Qn , the following conditions hold:

(i) for any continuous function Y : [0,�] → Rn with Y(0) = x , the right-hand

derivative
∂V

(
x,ψ(x,φ,Y)

h

)
∂h

∣∣∣∣
h=0

exists and such derivative is invariant with respect

to the function Y;
(ii) the derivative ∂V (x,φ)

∂x exists;
(iii) for any given continuous function Y : [0,�] → Rn with Y(0) = x , the fol-

lowing limit holds (involved z ∈ Rn and h ∈ [0,�)),

lim
z→0, h→0+

1√
|z|2 + h2

·
⎛
⎝V

(
x + z, ψ(x,φ,Y)

h

)
− V (x, φ) − ∂V (x, φ)

∂x
z −

∂V
(
x, ψ(x,φ,Y)

�

)
∂�

∣∣∣∣∣∣
�=0

h

⎞
⎠ = 0

(7)

For a given locally Lipschitz and invariantly differentiable functional V : Rn ×
Qn → R+, let V0 : Cn → R+ be the locally Lipschitz continuous functional defined,
for φ ∈ Cn , as V0(φ) = V (φ(0), φ[−�,0)). Then, the following result holds, for any
φ ∈ Cn and any v ∈ Rm ,
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D+V0(φ, v) = ∂V (x, φ[−�,0))

∂x

∣∣∣∣
x=φ(0)

( f (φ) + g(φ)v) +
∂V

(
φ(0), φh[−�,0)

)
∂h

∣∣∣∣∣∣
h=0

,

(8)

where the second term of the right-hand side of (8) is a right-hand derivative (see
point (i) in Definition 1 and (6)).

In the following, for given positive integer n, Vn is the class of functionals V :
Rn × Qn → R+ which have the following properties: i) V is locally Lipschitz in
Rn × Qn and invariantly differentiable; ii) the maps (φ ∈ Cn , involved x ∈ Rn , h ∈
[0,�))

φ →
∂V

(
φ(0), φh

[−�,0)

)
∂h

∣∣∣∣∣∣
h=0

, φ → ∂V (x, φ[−�,0))

∂x

∣∣∣∣
x=φ(0)

(9)

are completely continuous and locally Lipschitz in Cn .

3 Interconnected Retarded Systems

Consider an interconnected system � described by the following RFDEs

�

{
�1 : ẋ1(t) = f1(x1,t ) + H1(x1,t , x2,t ) + g1(x1,t )(u1(t) + d1(t))
�2 : ẋ2(t) = f2(x2,t ) + H2(x2,t , x1,t ) + g2(x2,t )(u2(t) + d2(t))

(10)

x1,0 = ξ1,0, x2,0 = ξ2,0,

where, for i = 1, 2: xi (t) ∈ Rni ; di (t) ∈ Rmi is a disturbance adding to the control
input (measurable, locally essentially bounded); ni and mi are positive integers; for
t ∈ R+, xi,t : [−�, 0] → Rni denotes (see Notation section) the function xi,t (τ ) =
xi (t + τ), τ ∈ [−�, 0], where� > 0 is themaximum involved delay; ξi,0 ∈ Cni . The
maps fi : Cni → Rni , Hi : Cni × Cn3−i → Rni , gi : Cni → Rni×mi are locally Lips-
chitz and completely continuous. We combine vectors as x(t) = [x1(t)T , x2(t)T ]T ∈
Rn , n = n1 + n2, u(t) = [u1(t)T , u2(t)T ]T ∈ Rm , d(t) = [d1(t)T , d2(t)T ]T ∈ Rm ,
m = m1 + m2, ξ0 = [ξ T

1,0, ξ
T
2,0]T ∈ Cn , f (·) = [ f1(·)T , f2(·)T ]T , H(·) = [H1(·)T ,

H2(·)T ]T and g(·) = [g1(·)T , g2(·)T ]T . The element xt ∈ Cn is defined as for its i-th
component xi,t (see Notations section). It is assumed that fi (0) = Hi (0, 0) = 0,
i = 1, 2. We use functionals Ma,i : Cni → R+ for which there exist class K∞ func-
tions γ

a,i
, γ a,i , such that

γ
a,i

(|φi (0)|) ≤ Ma,i (φi ) ≤ γ a,i (‖φi‖∞), ∀φi ∈ Cni

(11)
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For functionals Vi : Rni × Qni → R+ in the class Vni , i = 1, 2, let the maps
ai : Cni → R, bi : Cni → Rmi (row vectors), ci : Cni × Cn3−i → R, and ρi : Cni ×
Cn3−i → R be defined, for φi ∈ Cni , as follows:

ai (φi ) = ∂Vi (xi , φi[−�,0) )

∂xi

∣∣∣∣
xi=φi (0)

fi (φi ) +
∂Vi

(
φi (0), φ�

i[−�,0)

)
∂�

∣∣∣∣∣∣
�=0

,

bi (φi ) = ∂Vi (xi , φi[−�,0) )

∂xi

∣∣∣∣
xi=φi (0)

gi (φi ),

ci (φi , φ3−i ) = ∂Vi (xi , φi[−�,0) )

∂xi

∣∣∣∣
xi=φi (0)

Hi (φi , φ3−i ),

ρi (φi , φ3−i ) = −
√
a2i (φi ) + |bi (φi )|4 + ci (φi , φ3−i ) (12)

Moreover, for a positive real r , let ki,r : Cni → Rmi be defined as follows, for φi ∈
Cni ,

ki,r (φi ) =

⎧⎪⎪⎨
⎪⎪⎩

− ai (φi )+
√

a2i (φi )+|bi (φi )|4
|bi (φi )|2 bTi (φi ), |bi (φi )| > r,

− ai (φi )+
√

a2i (φi )+|bi (φi )|4
r2 bTi (φi ), |bi (φi )| ≤ r

(13)

The following assumption will be used in the forthcoming theorem (see Assumption
6 in [14], Hypothesis 4 in [33], Hypothesis 18 in [34]).

Assumption 1 There exist functionals Vi : Rni × Qni → R+, i = 1, 2, in the class
Vni , with corresponding maps ai , bi , ci , ρi , positive reals r , p, non-negative integers
h, hd , functions αi , αi , αi of class K∞, integers Si, j ∈ {0, 1}, functions σi, j of class
K and positive reals � j ∈ (0,�], j = 0, 1, . . . , h + hd , such that, ∀ φi ∈ Cni , the
following conditions hold, for i = 1, 2:

(i) αi (Ma,i (φi )) ≤ Vi (φi (0), φi[−�,0) ) ≤ αi (Ma,i (φi ));
(ii) (bi (φi ) = 0) ⇒ (ai (φi ) ≤ 0);
(iii)

ρi (φi , φ3−i ) ≤ −αi (Ma,i (φi )) + Si,0σi,0(Ma,3−i (φ3−i ))

+
h∑
j=1

Si, jσi, j
(
γ
a,3−i

(|φ3−i (−� j )|)
)

+
h+hd∑
j=h+1

Si, j

∫ 0

−� j

σi, j

(
γ
a,3−i

(|φ3−i (τ ))|
)
dτ ;

(14)

(iv) sup{ψi∈Ci , 0<|bi (ψi )|≤r}
ai (ψi )

|bi (ψi )| ≤ p.



106 P. Pepe et al.

Remark 2 By h = 0 (resp., hd = 0), it is meant that the first (resp., second) sum in
(14) vanishes. Aswell, when hd = 0, themaximum term involving hd in forthcoming
equality (15) is meant to be zero.

Theorem 1 Let Assumption 1 hold. Let σi : R+ → R+, i = 1, 2, be the functions
defined, for s ∈ R+, as

σi (s) =
(
h+hd∑
k=0

Si,k

)
max

{
max

j=0,1,...,h
Si, jσi, j (s), max

j=h+1,...,h+hd
Si, j� jσi, j (s)

}
(15)

Assume also there exist reals ci > 1, i = 1, 2, such that, ∀s ∈ R+, the small-gain
inequality holds (see (17) in [14])

c1σ1 ◦ α−1
2 ◦ α2 ◦ α−1

2 ◦ c2σ2(s) ≤ α1 ◦ α−1
1 ◦ α1(s) (16)

Then:

(1) the maps ki,r : Cni → Rmi , i = 1, 2, are completely continuous and locally
Lipschitz in Cni ;

(2) there exist a function β of class KL and a function γ of class K such that,
chosen any positive real q, for any initial state ξ0 and any measurable, locally
essentially bounded disturbance d(t), the corresponding solution x(t) of the
closed loop system (10) with decentralized control laws

ui (t) = ki,r (xi,t ) − qbTi (xi,t ), i = 1, 2, (17)

exists for all t ≥ 0 and, furthermore, satisfies the following inequality

|x(t)| ≤ β(‖x0‖∞, t) + γ

(‖d[0,t)‖∞ + 2p + r√
q

)
(18)

Proof Let the map ki : Cni → Rmi , i = 1, 2, be defined, for φi ∈ Cni , as (Sontag’s
universal stabilizer, see [33, 34, 41])

ki (φi ) =

⎧⎪⎨
⎪⎩

− ai (φi )+
√

a2i (φi )+|bi (φi )|4
|bi (φi )|2 bTi (φi ), bi (φi ) �= 0

0, bi (φi ) = 0

(19)

Under Assumption 1, it is proved in [33] that the maps ki,r are completely continuous
and locally Lipschitz in Cni and satisfy the inequality

|ki,r (φi ) − ki (φi )| ≤ 2p + r, ∀φi ∈ Cni (20)
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LetWi : Cni → R+ be defined, for φi ∈ Cni asWi (φi ) = Vi (φi (0), φi[−�,0) ), i = 1, 2.
Then, the following inequalities hold for the functional D+Wi : Cni × Cn3−i ×
Rmi → R�, for any φi ∈ Cni , di ∈ Rmi , i = 1, 2,

D+Wi (φi , φ3−i , di ) =
ai (φi ) + bi (φi )ki,r (φi ) − qbi (φi )b

T
i (φi ) + ci (φi , φ3−i ) + bi (φi )di =

ai (φi ) + bi (φi )ki (φi ) + bi (φi )(ki,r (φi ) − ki (φi )) − q|bi (φi )|2 + ci (φi , φ3−i ) + bi (φi )di

(21)

By definition of the maps ki , it is obtained

ai (φi ) + bi (φi )ki (φi ) =
{

−
√
a2i (φi ) + |bi (φi )|4, bi (φi ) �= 0,

ai (φi ), bi (φi ) = 0
(22)

Therefore, by the point (ii) in Assumption 1, taking into account of the definition of
the map ρi in (12), it follows that

ai (φi ) + bi (φi )ki (φi ) + ci (φi , φ3−i ) = ρi (φi , φ3−i ) (23)

From (20), (21), (23), by Young’s inequality, it is obtained

D+Wi (φi , φ3−i , di ) ≤ |bi (φi )|(2p + r) − q|bi (φi )|2 + bi (φi )di + ρi (φi , φ3−i ) ≤
−q|bi (φi )|2 + |bi (φi )|(|di | + 2p + r) + ρi (φi , φ3−i ) ≤
−q|bi (φi )|2 + q|bi (φi )|2 + (|di | + 2p + r)2

4q
+ ρi (φi , φ3−i ) =

ρi (φi , φ3−i ) + σRi ◦ η(|di |), (24)

where η : R+ → R+ is the function defined, for s ∈ R+, as η(s) = s+2p+r√
q , and

σRi , i = 1, 2, is the function of class K∞ defined, for s ∈ R+, as σRi (s) = 1
4 s

2. We
now remark that Lemmas 21, 23 in [14] hold as well if the argument s ∈ R+ of
the functions σRi , i = 1, 2, as defined in (14) in [14], is replaced by a continuous,
increasing function mapping R+ to R+, as, for instance, η. Then, from point (iii) in
Assumption 1, from Theorem 8 in [14] (taking into account of the above remark),
it follows that there exist a locally Lipschitz functional Wcl : Cn → R+ (see (18) in
[14]), a functional Ma : Cn → R+, functions γ

a
, γ a , α, α and αcl of class K∞, and

a function σcl of class K , such that, for any φ ∈ Cn , d ∈ Rm , the inequalities hold
(see (18) and D.4 in [14]),

α(Ma(φ)) ≤ Wcl(φ) ≤ α(Ma(φ)), γ
a
(|φ(0)|) ≤ Ma(φ) ≤ γ a(‖φ‖∞), (25)

D+Wcl(φ, d) ≤ −αcl(Ma(φ)) + σcl ◦ η(|d|) (26)
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From (25), (26), it follows that the solution exists ∀t ≥ 0 and that the inequality (18)
holds. The same reasoning used in the proof of Theorem 3.1 in [37] can be used
here in order to obtain the ISpS result (see Definition 2.1 in [17]) described by the
inequality (18).

Remark 3 We provide here a discussion on Assumption 1. The point (i) in Assump-
tion 1 is standard in the 0-GAS, ISS theory for systems described by RFDEs (see [14,
37, 44], see in particular Lemma 4 in [14] as far as the lower bound is concerned).
The point (ii) is the standard key property for a function V to be referred as a CLF
(see [16, 20, 41]) and, for a functional V , to be referred as a CLKF (see, for instance,
[15, 20, 21]). Notice that, in this case, it is allowed, for non-zero φi ∈ Ci satisfying
bi (φi ) = 0, that ai (φ) = 0 (see related discussions in [33, 34]). The point (iii) allows
that, if the control input were equal to the state feedback obtained with Sontag’s uni-
versal formula, then the derivative inDriver’s form of the functionals Vi would satisfy
a very general dissipative inequality with supply rates which may cope with both
discrete and distributed time delays, in both subsystems and interconnections (see
(13), (14) and Remark 10 in [14]). Notice that, in each dissipative inequality, only the
map describing the dynamics of the related lower dimension subsystem is involved.
This lower dimension may significantly simplify the analysis (namely, the compu-
tation of involved functions of class K and K∞). The condition (14) incorporates
the fact that, if the interconnection terms were zero (i.e., Hi (φi , φ3−i ) = 0, i = 1, 2,
∀φ j ∈ Cn, j , j = 1, 2, and Si, j = 0, i = 1, 2, j = 0, 1, . . . , h + hd ), each resulting
subsystem would satisfy a standard inequality for 0-GAS, ISS concerns (see [14, 20,
22, 23, 37, 44]). The point (iv) is a key condition by which, using the methodology
presented in [33], the problems related to non locally Lipschitz maps ki , i = 1, 2,
in (19) (i.e., the Sontag’s universal stabilizers for subsystems), can be overcome. A
similar condition was introduced in [16] in the framework of CLRFs (see Assump-
tion 1 in [16]), and in [15] in the framework of CLKFs, for exploiting the domination
redesign formula (see [39]).

Remark 4 Because of the inequality (18), the closed-loop system (10), (17) is ISpS
(see Definition 2.1 in [17]) with respect to the disturbance d(t). Notice in (18) that, if
the disturbance is bounded, the solution can achieve an arbitrarily small neighborhood
of the origin by increasing the control tuning parameter q.

4 Illustrative Numerical Example

Consider the interconnected system described by the following RFDE

ẋ1(t) = x31(t) + ω1x1(t)x2(t − �) + u1(t) + d1(t),

ẋ2(t) = x2(t) + ω2x
2
1 (t − �) + x2(t) (u2(t) + d2(t)) , (27)

where xi , ui , di ∈ R, i = 1, 2, � is a positive unknown real, ωi ∈ (−2, 2), i = 1, 2.
Let Vi : R × Q1 → R+, i = 1, 2, be defined, for xi ∈ R, ψi ∈ Q1, as Vi (xi , ψi ) =
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1
2 x

2
i . Let Ma,i : C1 → R+, i = 1, 2, be defined, for φi ∈ C1, as Ma,i (φi ) = |φi (0)|.

As far as (11) and point (i) in Assumption 1 are concerned, they are satisfied by the
functions γ

a,i
, γ a,i , αa,i , αa,i of class K∞, i = 1, 2, defined, for s ∈ R+, as

γ
a,i

(s) = γ a,i (s) = s; αi (s) = αi (s) = 1

2
s2. (28)

As far as the functions ai , bi , ρi , i = 1, 2, defined in (12) are concerned, we have,
for φi ∈ C1, i = 1, 2,

a1(φ1) = φ4
1(0); b1(φ1) = φ1(0); c1(φ1, φ2) = ω1φ

2
1(0)φ2(−�);

ρ1(φ1, φ2) = −φ2
1(0)

√
1 + φ4

1(0) + ω1φ
2
1(0)φ2(−�);

a2(φ2) = φ2
2(0); b2(φ2) = φ2

2(0); c2(φ2, φ1) = ω2φ2(0)φ
2
1(−�);

ρ2(φ2, φ1) = −φ2
2(0)

√
1 + φ4

2(0) + ω2φ2(0)φ
2
1(−�)

(29)

Point (ii) in Assumption 1 is satisfied. As far as the point (iv) in Assumption 1
is concerned, it is satisfied and, in particular, for any positive real r , we obtain
p = max{r3, 1}. As far as the point (iii) in Assumption 1 is concerned, the following
inequalities hold, for any φi ∈ C1, i = 1, 2,

ρ1(φ1, φ2) ≤ − (
Ma,1(φ1)

)4 + 1

2
|ω1|

(
Ma,1(φ1)

)4 + 1

2
|ω1|φ2

2(−�);

ρ2(φ2, φ1) ≤ − (
Ma,2(φ2)

)2 + 1

2
|ω2|

(
Ma,2(φ2)

)2 + 1

2
|ω2|φ4

1(−�)

(30)

Therefore, the point (iii) in Assumption 1 is satisfied with h = 1, hd = 0 S1,0 =
S2,0 = 0, S1,1 = S2,1 = 1, and the functions αi , σi,1, i = 1, 2, of class K∞ defined,
for s ∈ R+, as

α1(s) =
(
1 − 1

2
|ω1|

)
s4; σ1,1(s) = 1

2
|ω1|s2;

α2(s) =
(
1 − 1

2
|ω2|

)
s2; σ2,1(s) = 1

2
|ω2|s4 (31)

Let σi , i = 1, 2, be the functions of class K∞ defined, for s ≥ 0, as σi (s) = σi,1(s),
according to (15). If the inequality holds

|ω1| + |ω2| < 2, (32)
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then the small-gain inequality (16) is satisfied for this example. All the hypotheses
of Theorem 1 are satisfied for this example, provided that (32) holds. By Theorem
1, the feedback control law, for any chosen positive real q (see (13), (17)),

u1(t) =

⎧⎪⎪⎨
⎪⎪⎩

−x1(t)

(
x21 (t) +

√
1 + x41(t)

)
− qx1(t), |x1(t)| > r

− 1
r2 x

3
1(t)

(
x21 (t) +

√
1 + x41(t)

)
− qx1(t), |x1(t)| ≤ r,

u2(t) =

⎧⎪⎨
⎪⎩

−1 −
√
1 + x42(t) − qx22 (t), x22 (t) > r,

− 1
r2 x

4
2(t)

(
1 +

√
1 + x42(t)

)
− qx22 (t), x

2
2 (t) ≤ r,

(33)

is such that the closed-loop system (27), (33) satisfies the inequality (18), provided
that the inequality (32) is satisfied. The control law (33) ismemoryless, decentralized.
As can be seen, since the system (27) involves time delays only in interconnections,
the CLKFs, used for each subsystem, are actually CLFs defined in R.

Finding controllers, by Sontag’s formula, for (27) directly with an overall CLKF
would be, at least, much more complicated than the methodology here presented,
since this overall CLKF should involve integral terms to cope with the time-delays.
One could try, for instance,with the candidateCLKFV : R2 × Q2 → R+ defined, for

x ∈ R2, φ =
[

φ1

φ2

]
∈ Q2, as V (x, φ) = xT Px + ∫ 0

−�
eμθ (φ4

1(θ) + gφ2
2(θ))dθ,with

μ, g suitable positive reals and P a suitable positive definite symmetric matrix to be
chosen. Then, one should prove that the points (i) − (iv), Hypothesis 4, in [33], are
satisfied. The analytical proof is not easy and, anyway, the resulting controller would
be neithermemoryless nor decentralized.Notice also that the small control property is
not satisfied by subsystem 2 and V2. If one applied the Sontag’s universal formula for
the controller in the subsystem 2, that controller would be not continuous whenever
x2(t) = 0. This would mean discontinuity of the overall feedback control law in the

infinite dimensional subspace

{
φ =

[
φ1

φ2

]
∈ C2, φi ∈ C1, i = 1, 2, φ2(0) = 0

}
.

By the use of the results in [33] this discontinuity problem is overcome (the feed-
back control law (33) is locally Lipschitz in C2). If the disturbances di (t), i = 1, 2,
are bounded, then an arbitrarily small neighborhood of the origin can be reached,
by increasing the control parameter q (see the inequality (18)). Simulations have
been performed with r = 1, q = 10,ω1 = ω2 = 0.9, d1 = sin(2t), d2(t) = cos(2t),
t ≥ 0, x0(τ ) = [ 1 −1 ]T , τ ∈ [−�, 0], � = 1.2. The state variables are reported in
Fig. 1. As can be seen, the state variables are kept suitably bounded by the control law
(33), thus validating the theoretical results. In Fig. 2 the control signals are reported.
If u1(t) = u2(t) = 0, t ≥ 0, then simulations show divergence of the magnitude of
the state variables to∞. As well, simulations show that, increasing the tuning param-
eter q, smaller neighborhoods of the origin are asymptotically reached. In Fig.3, the
state variables are reported with the tuning parameter choice q = 100. The better
performance with the increased value of the parameter q is achieved at the price of
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Fig. 1 State variables of (27), (33), with � = 1.2, q = 10, r = 1, ω1 = ω2 = 0.9
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Fig. 2 Control signals (33), with � = 1.2, q = 10, r = 1, ω1 = ω2 = 0.9

an increased control effort (the control signals reach in this case a maximum absolute
value close to 120).

Remark 5 In general, when delays appear in the subsystems, CLKFs are involved
for subsystems and checkingAssumption 1 becomesmore difficult, even in the linear
case (the proposed control law is nonlinear also in this case), because of involved
integral terms (see [14]). Numerical software tools may often be used to provide
a sufficient confidence about satisfaction of inequalities involved in Assumption 1.
Alternative conditions, which however require the satisfaction of the small control
property, may be used in the disturbance-free case (see Hypothesis 8 in [34]). These
alternative conditions avoid the use of the Ma functionals and may return to be easier
to be checked, than the ones inAssumption 1, provided that the small control property
holds. These alternative conditions will be topic of forthcoming investigation, as far
as the control design by small-gain arguments is concerned.
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Fig. 3 State variables of (27), (33), with � = 1.2, q = 100, r = 1, ω1 = ω2 = 0.9

5 Conclusions

Since finding a CLKF, and a related controller, for retarded systems, is in general not
an easy task, this chapter has the aim to provide a constructive methodology for the
design of controllers for a class of systems which are in the interconnection form.
The approach makes use of a CLKF for each subsystem and of a suitably modified
Sontag’s universal formula. By suitable hypotheses, the resulting closed-loop system
is proved to be ISpS with respect to actuator disturbances, exploiting a small-gain
condition which copes with time delays. Here time delays in both subsystems and
interconnections are dealtwith, and a significant simplification of the control design is
achieved, with respect to the case of control design by an overall CLKF. For instance,
when the delays affect only the interconnections, the CLKF for each subsystem
becomes aCLF, defined on finite dimensional Euclidean spaces rather than on infinite
dimensional Banach spaces, with evident improvement towards simplification. On
the other hand, a small gain condition is required to be satisfied. A major goal of
this work is to make it possible to exploit, in a unified framework, some existing
results in the past literature, at the aim of the controller design. We still assume the
strict matching condition (i.e., disturbance belonging to the input space and adding to
the control law) in the chapter. This restrictive assumption may be removed through
systematic use of backstepping and small-gain techniques. An interesting research
topic may be the application of the methodology here shown to networked systems,
for instance by the use of the small-gain results provided in [13, 42]. This would
further simplify the design of decentralized, input-to-state practically stabilizing
controllers, provided that a suitable network small-gain condition can be satisfied.
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Stability Analysis of Uniformly
Distributed Delay Systems:
A Frequency-Sweeping Approach

Xu-Guang Li, Silviu-Iulian Niculescu, Arben Çela and Lu Zhang

1 Introduction

Consider the following general distributed delay system

ẋ(t) = Ax(t) + B
∫ t

−∞
κ(t − θ)x(θ)dθ, (1)

under some appropriate initial conditions, where A and B are constance matrices
and κ(θ) : [0,∞) �→ [0,∞) is a scalar kernel function. The model (1) includes the
scenario of point-wise delay systems. For instance, if κ(θ) = δ(θ − τ) (δ(θ) is the
Dirac delta function), system (1) reduces to: ẋ(t) = Ax(t) + Bx(t − τ).

In the literature on distributed delay systems, there are two common kernel func-
tions: gamma distribution and uniform distribution. One may refer to e.g., [13] for
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a detailed introduction to these distributions from the perspective of probability and
statistics.

For system (1) with gamma distribution, the characteristic function is equivalent
to a quasipolynomial (as for a point-wise delay system), see the analysis in [12].
Therefore, the existing results for systems with point-wise delays can be applied,
directly or with some slight modifications, to such distributed delay systems.

In this chapter, we consider κ(θ) of uniform distribution:

κ(θ) =
{ 1

d1+d2
, if τ − d1 < θ < τ + d2,

0, otherwise,
(2)

where τ ≥ d1 ≥ 0, d2 ≥ 0, and d1 + d2 > 0.
The system described by (1)–(2) is called a uniformly distributed delay system

(UDDS). The application of the UDDS model can be found in e.g., [1, 2, 10, 14].
The objective of this chapter is to analyze the stability of the UDDS w.r.t. τ along

the whole interval [d1,∞), given d1 and d2. Compared to the studies for retarded and
neutral systems (for which the stability in the whole τ domain now can be solved),
some additional issues need to be considered for the UDDS.

Here, Let us have a quick look at a scalar UDDS (leaving the general UDDS to
be studied in later sections), i.e., when A and B are scalars a and b, which corre-
sponds to a simple characteristic function f (λ, τ ) : C × [d1,∞) �→ C = λ − a −
b e−(τ−d1)λ−e−(τ+d2)λ

(d1+d2)λ
. To study the stability for τ ∈ [d1,∞), three technical issues arise.

(i) First, f (λ, τ ) is not defined at λ = 0. However, λ = 0 may be a potential
characteristic root. By L’Hôpital’s rule, lim

λ→0
f (λ, τ ) = −a − b. Hence, λ = 0 is a

characteristic root if and only ifa + b = 0.One can see that ifλ = 0 is a characteristic
root, it is independent of τ . The criterion for the general case will be given in this
chapter.

(ii) Second, we need to analyze the spectrum at the minimum value of τ , i.e.,
τ = d1. This is a necessary step required by the τ -decomposition idea, which will be
explained later in this chapter. For a retarded system with its characteristic function,
say, λ − a − be−τλ, it is easy to study at the minimum value τ = 0: λ = a. However,
the UDDS is still infinitely dimensional at the minimum value τ = d1.

(iii) Third, we need to analyze the asymptotic behavior of the critical imaginary
roots (CIRs) at the corresponding critical delays (CDs). This is a key step of the
stability analysis for most types of delay systems (see more details in Sect. 2.2).
Suppose λ = jω∗ is a CIR for the UDDS at a CD τ = τ ∗ (i.e., f ( jω∗, τ ∗) = 0,
ω∗ ∈ R+, τ ∗ ∈ R+ ∪ {0}). Then, λ = jω∗ is a CIR for all τ = τ ∗ + 2kπ

ω∗ ≥ 0, k ∈ Z.
That is, a CIR has infinitely many CDs and hence it is impossible to analyze the
asymptotic behavior at all the infinitely many CDs one by one.

The stability of scalar UDDSs has been extensively investigated, see e.g., [1, 2]. In
this chapter, we will address the general form of the UDDS (i.e., the coefficients are
allowed to be matrices) and study the stability along the whole semi-infinite interval
[d1,∞).

Towards this end, we need to solve all the above technical issues. For technical
issue (ii), wewill adopt amethod based on the argument principle, while for technical
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issues (i) and (iii) the solutions can be obtained by extending the recently-proposed
frequency-sweeping framework [8].

Then, we will obtain a procedure for studying the stability of UDDS. This proce-
dure, mainly based on the frequency-sweeping approach, is simple to implement.

This chapter is organized as follows. Preliminaries and prerequisites are given in
Sect. 2. The main results are presented in Sect. 3. Illustrative examples are given in
Sect. 4. Finally, some concluding remarks end the chapter in Sect. 5.
Notations: R (R+) denotes the set of (positive) real numbers and C is the set of
complex numbers.C− andC+, denote respectively the left half-plane and right half-
plane in C. C0 is the imaginary axis and ∂D is the unit circle, in C. Z, N, and N+
are the sets of integers, non-negative integers, and positive integers, respectively. ε
is a sufficiently small positive real number, mainly used to describe the infinitesimal
change of λ (�λ = ±ε j) and τ (�τ = ±ε). I is the identity matrix of appropriate
dimensions. For γ ∈ R, 	γ 
 denotes the smallest integer greater than or equal to γ .
Finally, det(·) denotes the determinant of its argument.

2 Preliminaries and Prerequisites

In this section, preliminaries and prerequisites regarding the stability problem of
UDDSs are given.

2.1 Characteristic Function

The characteristic function of the general form of the UDDS is

f (λ, τ ) = det(λI − A − B e−(τ−d1)λ−e−(τ+d2)λ

(d1+d2)λ
), λ �= 0. (3)

Clearly, the characteristic function f (λ, τ ) (3) is not defined at λ = 0. As earlier
mentioned, λ = 0 may be a potential characteristic root. The related analysis will be
given in Sect. 3.1.

The asymptotic stability of UDDS is determined by its characteristic roots (i.e.,
the roots λ for the characteristic equation f (λ, τ ) = 0): The UDDS is asymptotically
stable if and only if all the characteristic roots are located in C−.

For any τ ∈ [d1,∞), the UDDS has infinitely many characteristic roots and hence
we need to follow the τ -decomposition idea for studying the stability problem in this
chapter, see the next subsection.
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2.2 Stability Problem and τ -Decomposition Idea

Naturally, we want to determine the stability property (asymptotically stable or not)
for the UDDS along the whole interval τ ∈ [d1,∞). This stability problem is the
objective of the current chapter.

As commonly adopted in the literature (see e.g., [7]), the notation NU (τ ) ∈ N

denotes the number of characteristic roots located in C+, in the presence of delay
τ . In order to study the stability, we will inspect NU (τ ) as τ increases from the
minimum point τ = d1. Clearly, for a given τ , the UDDS is asymptotically stable
if and only if there are no critical imaginary roots (CIRs), i.e., characteristic roots
located on the imaginary axis C0, and NU (τ ) = 0.

As for retarded and neutral delay systems, in this chapter we adopt the τ -
decomposition idea (see e.g., [7]), which is based on the continuity property of
the spectra. We now briefly introduce this idea.

As τ increases from d1, NU (τ ) changes only when the system has CIRs. The
values of τ at which the system has CIRs are called the critical delays (CDs). It is
trivial to conclude that if the system has no CDs for any τ ∈ [d1,∞), then NU (τ )

is a constant for all τ ∈ [d1,∞). Thus, in the sequel we mainly consider the case
with CDs. All the CDs divide the interval [d1,∞) into subintervals and within each
subinterval NU (τ ) is a constant. If we know the change of NU (τ ) at each CD
(corresponding to a boundary point of two adjacent subintervals), we are able to
inspect NU (τ ) along the whole interval [d1,∞).

The above is the so-called τ -decomposition idea, alongwhich the stability analysis
requires to solve the following Problems1 and 2.

Problem 1 How to exhaustively detect the critical imaginary roots (CIRs).
As a straightforward application of the frequency-sweeping framework [8], Prob-

lem1 can be easily solved from the FSCs.
Letting z = e−τλ andμ(λ) = ed1λ−e−d2λ

(d1+d2)λ
, we can rewrite the characteristic function

f (λ, τ ) (3) as
p(λ, z) = det(λI − A − Bμ(λ)z), λ �= 0. (4)

Furthermore, we express p(λ, z) as a polynomial of z:

p(λ, z) = a0(λ) + a1(λ)μ(λ)z + · · · + aq(λ)μq(λ)zq , (5)

where ai (λ) are polynomials of λ such that

deg(a0(λ)) > max{deg(a1(λ)), . . . , deg(aq(λ))}.

Remark 1 We rule out a trivial case that a0(λ), . . ., aq(λ)μq(λ) have common zeros
inC+ ∪ C0 (otherwise, the UDDS is not asymptotically stable for any τ ∈ [d1,∞)).

The detection of the CIRs and CDs for f (λ, τ ) = 0 amounts to detecting the criti-
cal pairs (λ, z) (λ ∈ C0 and z ∈ ∂D) for p(λ, z) = 0. Due to the conjugate symmetry
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of the spectrum, it suffices to consider only the CIRs with non-negative imaginary
parts.

Without loss of generality, suppose there are u such critical pairs denoted by
(λ0 = jω0, z0), . . ., (λu−1 = jωu−1, zu−1) with 0 < ω0 ≤ · · · ≤ ωu−1. Once all the
critical pairs (λα, zα) are found, all the critical pairs (λ, τ ) for f (λ, τ ) = 0 can
be obtained: For each CIR λα , the corresponding (infinitely many) CDs are given

by τα,k
�= τα,0 + 2kπ

ωα
, k ∈ N, τα,0

�= min{τ ≥ d1 : e−τλα = zα} (recall that τ ≥ d1 for
the UDDS). The pairs (λα, τα,k), k ∈ N, define a set of critical pairs associated with
(λα, zα).

All the critical pairs may be detected from the frequency-sweeping curves (FSCs),
which are generated by the procedure to be introduced in Sect. 2.3.

Problem 2 How to analyze the asymptotic behavior of the CIRs w.r.t. the infinitely
many CDs.

For aCIRλα , its asymptotic behavior at a CD τα,k > d1, from the stability perspec-
tive, can be described by a notation�NUλα

(τα,k). Recall that the notation�NUα(β),
where (α, β) is a critical pair, stands for the number change of the unstable roots
caused by the variation of the CIR λ = α as τ increases from β − ε to β + ε.

The value of �NUλα
(τα,k) at a τα,k can be precisely calculated by invoking the

Puiseux series for the critical pair (λα, τα,k). The general method for invoking the
Puiseux series can be found in Chap.4 of [8]. However, since a CIR has infinitely
many CDs, such a method can not be applied to all the infinitely many CDs one
by one. That is why we need an in-depth understanding of the CIRs’ asymptotic
behavior for the UDDS.

In this chapter, we will prove that for a CIR λα , �NUλα
(τα,k) is a constant for all

τα,k > d1. With this crucial property, called the invariance property, we can solve
Problem2.

Finally, wewill obtain the explicit expression of NU (τ ) and hencewe can analyze
the stability for the UDDS in the whole τ domain.

2.3 Frequency-Sweeping Framework

For the UDDS, the frequency-sweeping curves (FSCs) can be generated by the fol-
lowing procedure.

Frequency-Sweeping Curves (FSCs): Sweep ω > 0 and for each λ = jω we have q
solutions of z such that p( jω, z) = 0 (denoted by z1( jω), . . . , zq( jω)). In this way,
we obtain q FSCs �i (ω): |zi ( jω)| vs. ω, i = 1, . . . , q. For simplicity, we denote by
I1 the line parallel to the abscissa axis with ordinate equal to 1. If (λα, τα,k) is a
critical pair, then some FSCs intersect I1 at ω = ωα .

It is easy to see that all the CIRs and CDs can be detected from the FSCs (i.e.,
Problem1 may be solved without much difficulty).
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A new idea of the frequency-sweeping framework established in [8] is that the
asymptotic behavior of the FSCs is taken into account. For a set of critical pairs
(λα, τα,k), theremust exist some FSCs such that zi ( jωα) = zα = e−τα,0λα intersecting
I1 when ω = ωα . Among these FSCs, we denote the number of those when ω =
ωα + ε (ω = ωα − ε) above I1 by NFzα

(ωα + ε) (NFzα
(ωα − ε)). We introduce a

notation �NFzα
(ωα) to describe the asymptotic behavior of the FSCs, as

�NFzα
(ωα) = NFzα

(ωα + ε) − NFzα
(ωα − ε). (6)

Remark 2 It is a useful property that for a set of critical pairs (λα, τα,k), k ∈ N,
the corresponding �NFzα

(ωα) is a constant, independent of k. For retarded- and
neutral-type delay systems, the invariance property was confirmed through proving
that�NUλα

(τα,k) = �NFzα
(ωα) (themathematical development is from an analytic

curve perspective, see [8]). This line will be used as well in this chapter.

3 Main Results

In this section, the three technical issues mentioned earlier will be solved separately
and then a procedure for the stability analysis along the whole interval τ ∈ [d1,∞)

will be presented.

3.1 Detecting Characteristic Roots λ = 0

As mentioned, f (λ, τ ) (3) is not defined at λ = 0. In this chapter, we study the case
λ → 0 by using L’Hôpital’s rule and have:

Property 1 For the uniformly distributed delay system described by (1) and (2),
λ = 0 is a characteristic root for all τ ∈ [d1,∞) if and only if det(A + B) = 0.

Proof In view of the expression (5), Property1 can be proved if the two conditions
“z = e−τ×0 = 1 is a characteristic root for p(λ, z) = 0 as λ → 0” and “det(A +
B) = 0” are equivalent.

By L’Hôpital’s rule, lim
λ→0

μ(λ) = 1 and hence

lim
λ→0

p(λ, z) = a0(0) + a1(0)z + · · · + aq(0)z
q . (7)

It is not hard to find that the limit (7) is exactly the expression of det(−A − Bz) =
det(−(A + Bz)). The equivalence can be seen and thus the proof is complete.� �

Furthermore, we may directly check the condition in Property1 from the FSCs
(without calculating det(A + B)), as stated below.
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Fig. 1 FSCs for Example1
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Property 2 For the uniformly distributed delay system described by (1) and (2),
λ = 0 is a characteristic root for all τ ∈ [d1,∞) if and only if there exists a zi ( jω)

(i ∈ {1, . . . , q}) such that lim
ω→0

zi ( jω) = 1.

(Recall that zi ( jω), i = 1, . . . , q, denote the q solutions of p( jω, z) = 0, see the
procedure for generating the FSCs introduced in Sect. 2)

Proof The FSCs are generated according to the equation p( jω, z) = 0. It follows
from (7) that

lim
ω→0

p( jω, z) = a0(0) + a1(0)z + · · · + aq(0)z
q .

Then, following the line of the proof of Property1, wemay prove Property2.� �

That is, if λ = 0 is a characteristic root, one of the FSCs must approach I1 as
ω → 0.

Obviously, the UDDS can not be asymptotically stable for any τ ∈ [d1,∞) if
λ = 0 is a characteristic root.

Example 1 Consider the UDDS with

A =
⎛
⎝−1 0.5 2.5

1 3 2
−1 0 1

⎞
⎠ , B =

⎛
⎝2 0.5 −1.5
3 2 4
3 2 1

⎞
⎠ .

We may know that λ = 0 is a characteristic root for all τ ∈ [d1,∞) either by Prop-
erty1 or by Property2 (the FSCs are shown in Fig. 1). �

Although the UDDS in Example1 can not be asymptotically stable, we may use
the procedure to be developed to check if the UDDS may be marginally stable, if
needed.

Remark 3 For other types of distributed delay systems,λ = 0may be a characteristic
root only at finitely many values of τ , see [16].
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3.2 Some Spectral Properties at Minimum Value of τ

For most types of time-delay systems, the minimum value of τ is 0. For instance,
a retarded system ẋ(t) = Ax(t) + Bx(t − τ) reduces to ẋ(t) = (A + B)x(t) at the
minimum point τ = 0 whose (finite-dimensional) spectrum is simply composed of
the eigenvalues of A + B.

However, it is not as straightforward to study the UDDS at the minimum value of
τ (i.e., d1), since the UDDS retains infinitely dimensional at τ = d1.

For this reason, we will adopt an argument principle-based method to compute
NU (d1 + ε) (the value of NU (d1 + ε) is always needed for studying the stabil-
ity problem in this chapter, see Theorem3 given later). Similar applications of the
argument principle can be found in e.g., [4, 6, 15].

First, it is easy to see that any nonzero characteristic root for the UDDS must be
a characteristic root for the following characteristic equation

det(λ2 I − λA − B
e−(τ−d1)λ − e−(τ+d2)λ

d1 + d2
) = 0. (8)

As the characteristic function in (8) is a quasipolynomial of retarded type (i.e., the
highest-order termofλ does not involve a transcendental term),we have the following
properties (from Proposition 1.8 and Corollary 1.9 of [11]).

Property 3 For a finitely large τ ≥ d1, NU (τ ) for the uniformly distributed delay
system described by (1) and (2) is finite.

Property 4 If the uniformly distributed delay system described by (1) and (2) has
unstable roots, their real parts and imaginary parts must be bounded.

Therefore, if the UDDS has unstable roots, they must lie in the interior of a
positively oriented Jordan curve l, where l = l1 ∪ l2 ∪ l3 ∪ l4 ∪ l5 ∪ l6 is depicted in
Fig. 2. The construction of l is explained below:

First, since the characteristic function (3) is not defined at λ = 0, we choose a
semicircle sufficiently close to the origin, l2, to link l1 and l3. In this way, the Jordan

Fig. 2 Jordan curve

Real axis
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curve l does not pass through the origin. Second, for simplicity, the Jordan curve
l is constructed in a symmetric structure w.r.t. the real axis. Finally, to assure that
all unstable roots (if any!) are contained in the interior of l, we may simply let the
lengths of l1, l3, l4, l5, and l6 be sufficiently large.

Then, according to the argument principle (see e.g., Chap. 4 of [5]), we have the
following theorem.

Theorem 1 The value of NU (d1 + ε) equals the winding number of f (λ, d∗) w.r.t.
the origin as λ varies along the positively oriented Jordan curve l, where

d∗ =
{
d1, if d1 is not a critical delay,
d1 + ε, otherwise.

Remark 4 If d1 is a CD, then the image of f (λ, d1) passes through the origin. Thus,
for a practical application of Theorem1, it is easy to examine if d1 is a CD.

Remark 5 As will be illustrated by Examples2 and 3, Theorem1 mainly requires an
argument test. The computational load for such a graphical method is not high.

Example 2 Consider the UDDS with d1 = d2 = π
2 and

A =
(

0 1
−π4+3π2−4

π2(π2+1)
2π

π2+1

)
, B =

(
1 0

π2+4
π(π2+1)

−1
π2+1

)
.

We use Theorem1 to analyze the spectrum at the minimum value of τ . As d1 is
not a CD, we analyze the argument of f (λ, d1) as λ varies along the Jordan curve.
The image of f (λ, d1) is given in Fig. 3a, where we see that the winding number
w.r.t. the origin is 2. According to Theorem1, NU (d1 + ε) = 2. �

−10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20

Real axis

Im
ag

in
ar

y 
ax

is

Example 2

−15 −10 −5 0 5 10 15 20
−40

−30

−20

−10

0

10

20

30

40

Real axis

Im
ag

in
ar

y 
ax

is

Example 3

(a) (b)

Fig. 3 Image of f (λ, d1) for Examples2 and 3
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Example 3 Consider the UDDS with d1 = d2 = 0.2 and

A =
(
0.2 0
0.2 0.1

)
, B =

(−1 0
−1 −1

)
.

As the system has no CIRs when τ = d1, we analyze the argument of f (λ, d1)
according to Theorem1. The image of f (λ, d1) as λ varies along the Jordan curve is
shown in Fig. 3b. As the winding number w.r.t. the origin is 0, NU (d1 + ε) = 0 in
the light of Theorem1. �

3.3 Invariance Property

It was seen in Sect. 3.1 that if λ = 0 is a characteristic root then the UDDS is not
asymptotically stable for any τ ∈ [d1,∞). In this context, when considering the
asymptotic behavior of CIRs and the related invariance property, we refer to the
nonzero CIRs.

The characteristic functions for the retarded- and neutral-type delay systems are
quasipolynomials of the form

f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ, (9)

where a0(λ), . . . , aq(λ) are polynomials of λ with real coefficients.
It was confirmed in [8] that for the CIRs of f (λ, τ ) = 0 (with f (λ, τ ) in the form

(9)), the invariance property holds. The main result is given by Theorem8.5 therein
(the idea of the proof is introduced in Remark2 of this chapter).

We now analyze if the above invariance property holds for the UDDS.
First, in view of (5), the characteristic function f (λ, τ ) (3) can be expressed as:

f (λ, τ ) =
q∑

i=0

ãi (λ)e−qτλ, (10)

where
ãi (λ) = ai (λ)μi (λ).

The characteristic functions (9) and (10) have two common points: (i) They are
both polynomials of e−τλ and the corresponding coefficient functions (i.e., ai (λ) for
(9) and ãi (λ) for (10)) are all independent of τ . (ii) The coefficient functions for (9)
and (10) are all analytic near the CIRs (it is easy to see that ai (λ) are analytic in C

and that ãi (λ) are analytic in C/ {0}).
Then, based on the above common points and following the line of the proof for

Theorem8.5 in [8], we have:
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Theorem 2 Fora critical imaginary rootλa of the uniformly distributeddelay system
described by (1) and (2), �NUλa (τa,k) is a constant �NFza (ωa) for all τa,k > d1.

The contribution of Theorem2 is twofold: First, the invariance property is con-
firmed for the UDDS, with which we will be able to systematically study the stability
(see Sect. 3.4). Second, a graphical criterion is obtained to determine �NUλa (τa,k)

(since the constant value of �NFza (ωa) can be easily observed from the FSCs).

Remark 6 The invariance property for the UDDS (Theorem2) may also be proved
from the perspective of general quasipolynomials [9]. From this perspective, the
invariance property for a broader class of time-delay systems, such as retarded-type,
neutral-type, distributed-type, fractional-order time-delay systems, and systems with
incommensurate delays, can be proved.

Example 4 Consider the UDDS in Example2.
At τ = (2k + 1)π , λ = j is a CIR: λ = j is a double CIR at τ = π while λ = j

is simple at all τ = (2k + 1)π, k ∈ N+.
The FSCs are given in Fig. 4a, where we see that �NF−1(1) = 0. Then, by The-

orem2 , �NUj ((2k + 1)π) = �NF−1(1) = 0 for all k ∈ N.
Next, we verify the above result through the series analysis. The Puiseux series

for the critical pair ( j, π) is

�λ = (0.2290 + 0.2930 j)(�τ)
1
2 + o((�τ)

1
2 ).

The Taylor series for the critical pairs ( j, 3π) and ( j, 5π) are respectively:

�λ = −0.1592 j�τ + (−0.0283 + 0.0324 j)(�τ)2 + o((�τ)2),

and
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Fig. 4 FSCs and root loci for Example4
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�λ = −0.0796 j�τ + (−0.0035 + 0.0072 j)(�τ)2 + o((�τ)2).

We also numerically generate the root loci of the double CIR j near the critical
pair (λ, π) (using the MATLAB-based package DDE-BIFTOOL [3]), as shown in
Fig. 4b.

Both the series analysis and the root loci are consistent with the result derived
from Theorem2. �

3.4 Stability Analysis Procedure

Combining the results proposed in the previous subsections, we are now able to study
the stability of the UDDS along the whole delay interval τ ∈ [d1,∞). The procedure
is as follows:

Step 1: Generate the frequency-sweeping curves (FSCs).
Step 2: Check if λ = 0 is a characteristic root for all τ ∈ [d1,∞) by Property2.

If so, the UDDS can not be asymptotically stable for any τ ∈ [d1,∞).
Step 3: Determine all the critical imaginary roots (CIRs) and the corresponding

critical delays (CDs) according to the FSCs.
Step 4: Calculate NU (d1 + ε) by using Theorem1.
Step 5: For each CIR λα , we may choose any CD τα,k > d1 to compute �NUλα

(τα,k) (the value is denoted by Uλα
). Alternatively, we may directly have from the

FSCs that Uλα
= �NFzα

(ωα), according to Theorem2.
With the steps above, we obtain the explicit expression of NU (τ ) for the UDDS,

as stated in the following theorem.

Theorem 3 For any τ > d1 which is not a critical delay, NU (τ ) for the uniformly
distributed delay system described by (1) and (2) can be explicitly expressed as

NU (τ ) = NU (d1 + ε) +
u−1∑
α=0

NUα(τ ), (11)

where

NUα(τ ) =
{
0, τ < τα,0,

2Uλα

⌈
τ−τα,0

2π/ωα

⌉
, τ > τα,0,

if τα,0 �= d1,

NUα(τ ) =
{
0, τ < τα,1,

2Uλα

⌈
τ−τα,1

2π/ωα

⌉
, τ > τα,1,

if τα,0 = d1,

The UDDS is asymptotically stable if and only if τ lies in the interval(s) with
NU (τ ) = 0 excluding the CDs.
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(a) (b)

Fig. 5 FSCs and NU (τ ) plot for Example6

4 Illustrative Examples

Some examples are given to illustrate the proposed procedure for stability analysis.

Example 5 Study the stability of the UDDS in Examples2 and 4.
The FSCs were already given in Fig. 4a (Step 1). From the FSCs, we know that

λ = 0 is not a characteristic root (Step 2) and this system has only one set of critical
pairs (Step 3). Next, in Example2 we have that NU (d1 + ε) = 2 (Step 4). The
invariance property was illustrated in Example4 (Step 5).

Finally, according to Theorem3, for all τ ∈ [d1,∞) other than the CDs,
NU (τ ) = 2. �

Example 6 Consider the UDDS in Example3.
The FSCs are shown in Fig. 5a (Step 1). From the FSCs, we know that λ = 0

is not a characteristic root (Step 2) and that the system has two sets of critical
pairs: (λ0 = 0.9734 j, τ0,k = 1.4056 + 2kπ

0.9734 ) and (λ1 = 0.9885 j, τ1,k = 1.4871 +
2kπ

0.9885 ), k ∈ N (Step 3). In Example3, we have that NU (d1 + ε) = 0 (Step 4). We
have from the FSCs that, for all k ∈ N, �NUλ0(τ0,k) = +1 and �NUλ1(τ1,k) = +1
(Step 5).

Finally, we have the explicit expression of NU (τ ) (by Theorem3) as plotted in
Fig. 5b. The UDDS is asymptotically stable if and only if τ ∈ [0.2, 1.4056). �

5 Conclusion

We studied the stability of uniformly distributed delay systems (UDDSs). For such
systems, three new technical issues need to be specifically addressed, compared
to the existing results for retarded- and neutral-type delay systems. For one of the



130 X.-G. Li et al.

technical issues, we adopt an argument principle-based method and the other two
technical issues can be covered by the frequency-sweeping framework, which was
recently established for solving the stability problems of retarded and neutral delay
systems. As a consequence, the stability of UDDSs in the whole domain of delay
can be systematically studied.
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Asymptotic Analysis of Multiple
Characteristics Roots for
Quasi-polynomials of Retarded-Type

A. Martínez-González, S.-I. Niculescu, J. Chen, C. F. Méndez-Barrios,
J. G. Romero and G. Mejía-Rodríguez

1 Introduction

It is commonly accepted in the literature that the presence of delays in dynamical
systems is accompanied with “undesired” behaviors, (as, for example, instabilities,
oscillations, bandwidth sensitivity), as pointed out by [11, 22] and the references
therein. However, there exist some situations in which the delaymay induce stability;
a classical example is presented in theworkofAbdallah et al. (1993) (see, for instance,
[1]), where a simple oscillator is controlled by one delay “block” (gain, delay),
with positive gains and extremely small delay values. As discussed in [22], such
a property opens an interesting perspective in using delays as control parameters
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in some situations, as, for example in, [24] (stabilizing chains of integrators by
using delays), [16] (multiple delay blocks), and [20] (bounded input, single delay).
Nonetheless the approach appears conservative in other cases; see, for instance, [23,
29].

The above observations have been deeply explored in [8], where, for a general
retarded linear time-invariant delay system with commensurate delays, the authors
have first, fully characterized the stability properties of such a systems by finding a
set of critical delay values, at which the system’s characteristic quasi-polynomial has
critical zeros on the imaginary axis. Secondly, considering the delay as a variable
parameter and by adopting an operator based-approach they have expanded the
solutions of the quasi-polynomial in terms of a Taylor (or Puiseux) series, allowing
analyzing the solutions behavior as the delay varies around a critical delay value.

As discussed in [7], even in the case of a fixed delay, the testing of stability for
a time-delay system is not a simple task. The difficulty arises from the fact that
delay systems (and in consequence, quasi-polynomials) have always infinitely many
solutions (see, for instance, [12] and the references therein). However, in general, we
will only be interested in analyzing the behavior of a critical zero of finitemultiplicity
(for the purpose of this work, we consider only the case of multiplicity m > 1). In
fact, from one hand the analysis of multiple characteristic roots it is more challenging
than the case of single roots, where the roots tendency can be performed by applying
the implicit function theorem. On the other hand, in the recent works of [25–27] it has
been shown that multiple dominant spectral values can create an optimal asymptotic
stable behavior by means of a delay-based controller, which ensures the optimal
exponential decay rate. Hence, the study of multiple roots can be applied to explore
such properties. Further discussions on computing bounds for the eigenvalue with the
largestmultiplicity can be found in [2, 3]. In this vein, itwill be interesting if instead of
analyzing the stability behaviour of a time-delay through their corresponding quasi-
polynomial, such an analysis is performed through a polynomial (with degree equal
to the multiplicity of the critical zero) that preserve the full information concerning
the stability behaviour. Such an approach has been adopted by [4], where by means
of the calculus of residues (see, for instance, [28]) they have proposed an analytical
method to construct such a polynomial (known as Weierstrass polynomial).

This chapter focuses on the analysis of multiple characteristic roots of time-
delayed systems when the delay is subject to small parameter variations. More pre-
cisely, by means of the Weierstrass Preparation Theorem, we propose an algorithm
to construct theWeierstrass polynomial that will capture all stability information cor-
responding to the multiple critical zero. Finally, by adopting similar ideas to those
developed by [7–9] we obtain the crossing directions of the critical zeros, which is
a method to determine the asymptotic behaviour of the critical zeros when the delay
varies in a neighborhood of the critical delay. Some preliminary ideas of this chapter
can be found in [21].

The remaining chapter is organized as follows: Sect. 2 introduces some prelimi-
nary results and the problem formulation. Section3 is devoted to the main results.
More precisely, first, an algorithm is proposed to compute the Weierstrass Polyno-
mial associated with the critical zero under study; second, by means of the Newton
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Diagram method, the corresponding Puiseux series are computed; finally, the cross-
ing directions are explicitly determined. Section4 includes some numerical exam-
ples illustrating the proposed algorithms. The chapter ends with some concluding
remarks.
Notations: In the sequel, the following notations will be adopted: C (RHP, LHP) is
the set of complex numbers (with strictly positive, and strictly negative real parts),
i := √−1. For z ∈ C, ∠z ∈ [0, 2π), �(z) (I(z)): argument, real (imaginary) part of
z. Next, R+ denotes the set of positive real values. The unit open (closed) disk will
be denoted by D (D). For a matrix A ∈ C

n×n, denote its spectrum by σ (A), and the
kth eigenvalue by λk (A). For a matrix pair (A,B) denote the set of all generalized
eigenvalues by σ (A,B), i.e., σ (A,B) := {λ ∈ C : det (A − λB) = 0} . The order
of a power series f (x, y) =

∑

i,j

ai,jx
iyj will be denoted by ord (f ) and defined as

the smallest number n = i + j such that ai,j �= 0. Finally, given two polynomials

f (z) =
n∑

j=0

an−jz
j and g(z) =

m∑

j=0

bm−jz
j, the resultant of f and g is defined as

R (f , g) := det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an
a0 a1 · · · · · · an

. . .
. . .

. . .
. . .

a0 a1 · · · · · · an
b0 b1 b2 · · · bm

b0 b1 · · · · · · bm
. . .

. . .
. . .

. . .

b0 b1 · · · · · · bm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 1 It iswell known that one of the properties of this resultant (see, for instance
[5, 31], and references therein) is thatR(f , g) ≡ 0 if and only if f and g have common
non-constant factors.

2 Prerequisites and Problem Formulation

2.1 Preliminary Results

Consider a retarded linear time-invariant delay system described by:

ẋ (t) = A0x (t) +
q∑

k=1

Akx (t − kτ) , τ ≥ 0, (1)

or by the differential-difference equation
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y(n) (t) +
n−1∑

�=0

q∑

k=0

ak�y
(�) (t − kτ) = 0, τ ≥ 0. (2)

Let f : C × R+ → C be the corresponding quasi-polynomial given by:

f (s, τ ) = det

(
sI −

q∑

k=0

Ake
−skτ

)
, (3a)

=
q∑

k=0

pk (s) e−kτ s, τ ≥ 0, (3b)

where

p0 (s) = sn +
n−1∑

�=0

a0�s
�, pk (s) =

n−1∑

�=0

ak�s
�, k = 1, . . . , q.

The corresponding critical delay values can be computed as follows:

Lemma 1 ([6, 8]) Define Hn := 0, Jn := I , and for j = 0, , 1, · · · , n − 1,

Hj :=

⎡

⎢⎢⎢⎣

aq,j aq−1,j · · · a1,j
0 aq,j · · · a2,j
...

. . .
. . .

...

0 0 · · · aq,j

⎤

⎥⎥⎥⎦, Jj :=

⎡

⎢⎢⎢⎣

a0,j 0 · · · 0
a1,j a0,j · · · 0
...

. . .
. . .

...

aq−1,j aq−2,j · · · a0,j

⎤

⎥⎥⎥⎦.

For j = 0, 1, · · · , n, define further G(s) := diag
(
1, · · · 1, pq(s)

)
,

F(s):=

⎡

⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−p0(s) −p1(s) · · · −pq−1(s)

⎤

⎥⎥⎥⎦ , Tj :=
[

(i)jJj (i)jHj

(−i)jHT
j (−i)jJ T

j

]
,

T :=

⎡

⎢⎢⎢⎣

0 I · · · 0
...

...
. . .

...

0 0 · · · I
−T−1

n T0 −T−1
n T1 · · · −T−1

n Tn−1

⎤

⎥⎥⎥⎦ .

The quasi-polynomial f (s, τ ) has a critical zero on the imaginary axis if and only if
the following conditions are satisfied:

(i) σ(T ) ∩ R+ �= ∅;
(ii) For some ωj ∈ σ(T ) ∩ R+, σ(F(iωj), G(iωj)) ∩ ∂D = ∅.
The imaginary number iωj , where ωj ∈ R+ is a critical zero. The set
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T (ωj) =
{

θj + 2π�

ωj
> 0, � = 1, 2, . . .

}
,

where e−iθj ∈ σ(F(iωj), G(iωj)), θj ∈ [0, 2π ], contains all the critical delay values
corresponding to the critical zero iωj .

Now, since f is an analytic function, the following result holds:

Theorem 1 (Weierstrass Preparation Theorem [10]) Suppose that f (z, p) is an ana-
lytic function vanishing at the point z0 ∈ C, p0 ∈ C

n, where z = z0 is an m−multiple
root of the equation f (z, p) = 0, i.e.,

f (z, p) = ∂f

∂z
= · · · = ∂m−1f

∂zm−1
= 0,

∂mf

∂zm
�= 0,

where the derivatives are taken at the point z = z0, p = p0. Then, there exist a neigh-
borhood U0 ⊂ C

n+1 of the point
(
z0, p0

) ∈ C
n+1 in which the function f (z, p) can

be expressed as
f (z, p) = W (z, p) b (z, p) , (4)

where
W (z, p) = (z − z0)

m + am−1 (p) (z − z0)
m−1 + · · · + a0 (p) ,

and a0(p),…, am−1(p), b (z, p) are analytic functions uniquely defined by the function
f (z, p) and ai

(
p0
) = 0, b

(
z0, p0

) �= 0.

Remark 2 The functionW (z, p) is known as theWeierstrass polynomial (for further
details on Weierstrass polynomials, see, for instance, [13, 28]).

Given a known solution
(
z0, p0

)
of f (z, p), the local behaviour of the solution z (p) in

the neighborhoodCn of p can be obtained by means of the Newton-diagram method.
Thus, in order to introduce such a procedure, let us consider the following notation
(for more details, see, for instance, [30]). Let f (x, y) be a pseudo-polynomial in y,
i.e.,

f (x, y) =
n∑

k=0

ak(x)y
k , (5)

where the corresponding coefficients are given by,

ak (x) = x ρk

∞∑

r=0

arkx
r/q, (6)

ark are complex numbers, x and y are complex variables, ρk are non-negative rational
numbers, q is an arbitrary natural number, an(x) �≡ 0, and a0(x) �≡ 0.

Then, a solution of (5) can be written in the form of a series as
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y = y0 + α1 (x − x0)
ε1 + α2 (x − x0)

ε2 + · · · ,

where ε1, ε2, . . ., is an increasing sequence of rational numbers. To determine the
possible values of ε1, α1, ε2, α2, . . ., it is necessary to consider theNewton’s diagram.
Since by simple translation, any point on a curve can be moved to the origin, we will
only consider expansions of the solution of f (x, y) = 0 around the origin. In this
vein, we will consider solution of (5) in the form of the following series:

y(x) = yε1x
ε1 + yε2x

ε2 + yε3x
ε3 + · · · , (7)

where ε1 < ε2 < ε3 < · · · , yε1 �= 0, or, in its compact form,

y(x) = yε1x
ε1 + o (xε1) . (8)

Definition 1 (Newton Diagram) Given a pseudo- polynomial equation of the form
(5) with coefficients given by (6), plot ρk versus k for k for k = 0, 1, . . . , n (if
ak (·) ≡ 0, the corresponding point is disregarded). Denote each of these points by
πk = (k, ρk) and let

 = {πk : ak(·) �= 0}

be the set of all plotted points. Then, the Newton diagram associated with f (x, y) is
the lower boundary of the convex hull of the set .

For a given pseudo-polynomial f (x, y), Fig. 1 simply illustrates Definition1.

Theorem 2 (Puiseux Theorem, [5, 31]) The equation f (x, y) = 0, with f given in
formal power series such that f (0, 0) = 0, posses at least one solution in power
series of the form:

Fig. 1 The Newton diagram
for the pseudo-polynomial
f (x, y) given in (5)

0

(0, ρ0)

y

x

(l1, ρl1)

(l2, ρl2)

(l3, ρl3)

(ls, ρls)

n
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x = tq, s =
∞∑

i=1

cit
i, q ∈ N.

2.2 Problem Formulation

As mentioned in the Introduction, in this chapter we will focus on the following
problems:

(i) for a given quasi-polynomial f (s, τ ) and a known m−multiple solution (iω∗,
τ ∗) ∈ C × R+, find the corresponding Weierstrass polynomial W (s, τ ), such
that:

f (s, τ ) = W (s, τ ) b (s, τ ) ,

where W(s, τ ) = (s − iω∗)m + am−1 (τ ) (s − iω∗)m−1 + · · · + a0 (τ ), and
W (s, τ ), b (s, τ ) analytic functions, such that b (iω∗, τ ∗) �= 0;

(ii) for the solution s (τ ), find the first coefficients of its Puiseux series expansion,
i.e., compute γ1 such that

s (τ ) = iω∗ + γ1
(
τ − τ ∗) p

q + o
(∣∣τ − τ ∗∣∣ pq

)
, with q ≤ m, p ∈ Z;

(iii) give conditions on f (s, τ ) which describes the splitting properties of its solu-
tions s (τ ): Regular Splitting (RS) and Completely Regular Splitting (CRS);
and,

(iv) find the stability crossing directions, that is, determine whether the solution
s (τ ) enter to the right half-plane (or to the left half-plane) for τ > τ ∗.

3 Main Results

3.1 The Weierstrass Polynomial

In order to simplify the presentation, wewill assume in the sequel that s∗ = 0 is a zero
of multiplicity m > 1 of f (s∗, τ ∗) for τ ∗ = 0, making appropriate shifts s �→ s − s∗,
τ �→ τ − τ ∗ if necessary. Now, since f (s, τ ) is an analytic function, it is not difficult
to see that f (s, τ ) can be expressed as

f (s, τ ) =
∞∑

i=0

fi (τ ) si, (9)

with fi given as
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fi (τ ) := 1

i!
∞∑

j=i

1

(j − i)!
∂ j f

∂si∂τ j−i

∣∣∣∣
(0,0)

τ j−i.

As suggested by [13], let us express f as follows:

f (s, τ ) = l (s, τ ) + smh (s, τ ) , (10)

where l (s, τ ) and h (s, τ ) retain the lower and higher order terms of f , respectively,
i.e.,

l (s, τ ) :=
m−1∑

j=0

fj (τ ) sj, h (s, τ ) :=
∞∑

j=m

fj (τ ) sj−m.

Clearly, both l and h are holomorphic functions. Furthermore, h is nonvanishing and
analytic in a neighborhood of 0 ∈ C × R. From theWeierstrass Preparation Theorem
we have:

W (s, τ ) b (s, τ ) = l (s, τ ) + smh (s, τ ) , (11)

where, according to this result, b is holomorphic and b(0, 0) �= 0, implying that b−1

is analytic in a neighborhood of the origin. Thus, (11) can be rewritten as:

W (s, τ ) =
(
sm + l

h

)
hb−1. (12)

Since W is monic, then it can be written as W (s, τ ) := sm − Ŵ (s, τ ), and defining
ϕ := hb−1, (12) can be expressed as:

sm − Ŵ =
(
sm + l

h

)
ϕ, (13)

⇒ sm − l

h
ϕ = smϕ + Ŵ . (14)

Equation (14) can be solved by successive approximations, to this end it can be
written as:

sm − l

h
ϕk−1 = smϕk + Ŵk , (15)

where Ŵk is a polynomial in s of degree < m. For k = 1 set ϕ0 := 0 getting

sm = smϕ1 + Ŵ1,
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that clearly imposes the following initial conditions ϕ1 = 1 and Ŵ1 = 0, or equiva-
lently ϕ1 = 1 and Ŵ0 = 0. For k = 1, 2, . . . , Ŵk can be obtained as the remainder
after left-hand side (15) is divided by sm.

Hence, the following result is a slight modification of the Weierstrass Preparation
Theorem presented in [13, 17].

Proposition 1 Let f (s, τ ) be a quasi-polynomial written as (10), such that s = 0
is a zero of multiplicity m, with m > 1. Assume that f (0, τ ) /sm is holomorphic in
a neighborhood of 0 ∈ C and for k = 1, 2, . . ., let Ŵk (s, τ ) be obtained by the
procedure (15). Then, Weierstrass polynomial is given by

W (s, τ ) = sm − Ŵ (s, τ ) ,

where
Ŵ (s, τ ) = lim

k→∞
Ŵk (s, τ ) .

Remark 3 Even though the above result seems to be a powerful tool to derive the
Weierstrass polynomial, it has the inconvenience that it requires an infinite number
of iterations to obtain the exact Weierstrass polynomial. However, since we are just
interested in analyzing the stability behavior for the solutions around the critical pair,
then, according to the Newton procedure, we just need to know the leading terms of
each aj (τ ).

In the light of Remark3, let us adopt the following notation for Ŵ :

Ŵ (s, τ ) = wm−1 (τ ) sm−1 + wm−2 (τ ) sm−2 + · · · + w0 (τ ) ,

with

wi (τ ) := τρi

∞∑

j=0

wi,jτ
j. (16)

While for its kth approximation, Ŵk will be expressed as:

Ŵk (s, τ ) = w(k)
m−1 (τ ) sm−1 + w(k)

m−2 (τ ) sm−2 + · · · + w(k)
0 (τ ) ,

where

w(k)
i (τ ) :=

∞∑

j=1

w(k)
i,j τ j. (17)

Bearing in mind the previous notations, the following remark holds:

Remark 4 Let ordτ (a0) = ρ0. Then according to Theorem1, it is clear to see that
ρ0 ∈ N. Moreover, ρ0 satisfies the following relations:

f (s, τ ) = ∂f

∂τ
= · · · = ∂ρ0−1f

∂τρ0−1
= 0,

∂ρ0 f

∂τρ0
�= 0, (18)
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where the partial derivatives are taken at (0, 0). In fact, since f is analytic at (0, 0),
according to the Weierstrass Preparation Theorem, in a neighborhood of (0, 0), we
have thatf (s, τ ) = W (s, τ )b(s, τ ) where b(0, 0) �= 0. Then, by (4) we have that
f (0, τ ) = a0(τ )b(0, τ ) with b(0, τ ) = b0 + ∑∞

i=1 biτ
i. Thus, for i < ρ0

∂ if (0, τ )

∂τ i

∣∣∣∣
τ=0

= ∂ i

∂τ i

[
a0(τ )

(
b0 +

∞∑

i=1

biτ
i

)]∣∣∣∣∣
τ=0

,

the right hand side of the above expression must be equal zero.

Remark 5 Observe that there may be cases at which there exist a κ < m satisfying

∂ jf

∂sj

∣∣∣∣
(0,0)

= ∂ j+1f

∂τ∂sj

∣∣∣∣
(0,0)

= · · · = ∂ j+ρ0−1f

∂τρ0−1∂sj

∣∣∣∣
(0,0)

= 0, ∀ρ0 ∈ N, 0 ≤ j < κ, (19a)

∂ j+ρ0 f

∂τρ0∂sj

∣∣∣∣
(0,0)

�= 0, ρ0 ∈ N, j = κ. (19b)

in such a situation, since according to the Weierstrass preparation theorem all wj are
analytic functions, this simply implies that W can be written as

W (s, τ ) = sκ
(
sm−κ + wm−1(τ )sm−κ−1 + · · · + wκ(τ )

)
, (20)

⇒ Ŵ (s, τ ) = sm−κ + wm−1(τ )sm−κ−1 + · · · + wκ(τ ). (21)

Thus, the analysis will be focused in the remaining (m − κ)−roots. In this vein, in
order to keep the notation as simple as possible, when κ > 0 we will consider the
shifts m �→ m − κ , wj �→ wj+κ for j = 0, . . . ,m − κ − 1 and ρ0 will be defined as
satisfying (18).

We have the following result:

Proposition 2 Let s∗ = 0 be a m−multiple zero of f (s, τ ) at τ ∗ = 0 and assume
κ = 0 (18). Then, the full stability information for the m−zeros s� (τ ), with � =
1, . . . ,m is completely determined by W (s, τ ) ≈ sm − Ŵk (s, τ ) for k = ρ0.

Proof First, let us denote l/h by:

l(s, τ )

h(s, τ )
=

∞∑

i=0

qi(τ )si, (22)
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where simple computations reveal that the coefficients qi can be recursively expressed
as:

fm(τ )

∞∑

i=0

qi(τ )si =
m−1∑

i=0

(
fi −

i−1∑

k=0

qkfm+i−k

)
si −

(
m−1∑

k=0

qkfm−1−k

)
sm

−
∞∑

i=m+1

(
i−2∑

k=0

qk fm+i−k + qi−1fm+1

)
si, (23)

where q0 = f0/fm. Now, since each qi depends solely on the fj’s, it will be useful to
determine the order of each fj. From (9), it is evident that ord

(
fj
) ≥ 1 ∀j ∈ N ∪ {0}.

Since κ = 0, from Remark4 we know that ordτ (f0) = ρ0.
Then, the result will be proved if we are able to show that after ρ0−iterations the

coefficients of the approximation W (s, τ ) ≈ sm − Ŵk (s, τ ) that fall in the convex
hull of the Newton diagram remain unchanged for all k ≥ ρ0. Bearing in mind the
above observations, let us introduce the following:

ordτ (q0) ≡ ρ0; ordτ (qi) := ρqi ≥ 1, ∀i �= m; ordτ (qm) := ρqm ≥ 2.

Next, from (15), we consider Ŵk for k = 1, 2, 3. Thus, we obtain:

Ŵ1 (s, τ ) = −
m−1∑

i=0

qis
i, Ŵ2 (s, τ ) = Ŵ1 +

m−1∑

i=0

⎛

⎝
i∑

j=0

qi−jqm+j

⎞

⎠ si,

Ŵ3 (s, τ ) = Ŵ2 −
m−1∑

i=0

⎛

⎝
i∑

j=0

m+j∑

k=0

qi−jqm+j−kqm+k

⎞

⎠ si.

From the above expressions, we have that w(k)
i is given as:

w(1)
i = −qi; w(2)

i = w(1)
i + w̃(2)

i ; w(3)
i = w(2)

i − w̃(3)
i ,

where

w̃(2)
i :=

i∑

j=0

qi−j qm+j ; w̃(3)
i :=

i∑

j=0

m+j∑

k=0

qi−j qm+j−k qm+k .

From the previous expressions it is clear that ordτ

(
w(1)
i

)
≡ ρqi , whereas ordτ

(
w(2)
i

)

and ordτ

(
w(3)
i

)
depends on ordτ

(
w̃(2)
i

)
and ordτ

(
w̃(3)
i

)
, respectively. Hence, the

order of these expressions are given as follows:
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ordτ

(
w̃(2)
i

)
= min

{
ρqi + ρqm , ρqi−1 + ρqm+1 , . . . , ρq1 + ρqm+i−1 , ρq0 + ρqm+i

}
,

ordτ

(
w̃(3)
i

)
= min

{
ρqi + 2ρqm , ρqi + 2ρqm+1 , . . . , ρq0 + ρq1 + ρq2m+i−1 , 2ρq0 + ρq2m+i

}
.

Thus, the following inequalities hold:

ordτ

(
w̃(2)
i

)
≤ ordτ

(
w(1)
i

)
and ordτ

(
w̃(2)
i

)
< ordτ

(
w̃(3)
i

)
,

implying that

ordτ

(
w(2)
i

)
= min

{
ordτ

(
w(1)
i

)
, ordτ

(
w̃(2)
i

)}
and ordτ

(
w(3)
i

)
= ordτ

(
w(2)
i

)
.

For the next steps (k > 3), from the iterative construction (15) it is clear that w(k)
i is

given as
w(k)
i = w(k−1)

i + (−1)k w̃(k)
i . (24)

Moreover, since qj (for some j ∈ N ∪ {0}) is always a factor of w̃(k)
i we will have the

following relations:

ordτ

(
w̃(k)
i

)
< ordτ

(
w̃(k+1)
i

)
,

⇒ ordτ

(
w(k)
i

)
= ordτ

(
w(k+1)
i

)
.

Then, from the above discussion, we can conclude that all coefficients wi,j belonging
to the convex hull of W (s, τ ) will stop updating at most at the ρ0−th step, leading
thus to the expected result. �

Remark 6 Generally, we have κ < m and ρκ . Now, following the above proof, it
can be seen that ρκ represents an upper bound that ensures the computation of the
exact leading coefficient of W (s, τ ) that belongs to the convex hull of the Newton
diagram. However, it is worth mentioning that such coefficients can be obtained in
less number of steps.

3.2 Splitting Properties

The main goal of this subsection is to explore some qualitative properties of the
solutions s (τ ) of the quasi-polynomial f (s, τ ) around the m−multiple critical pair
(0, 0). In this vein, as discussed by Wall (2004) (for further details, see, [31]) it is
possible to characterize the root locus of f by its branches. In fact, the equation
f (s, τ ) = 0 defines a solution curve C ∈ C

2 which is composed by the finite union of
r−branches s�

(
τ 1/m�

)
, each of these branches can be expressed as a Puiseux series:
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(a) (b) (c)

Fig. 2 Splitting properties

s� (τ ) = γ�,jτ
1
m� + o

(
|τ | 1

m�

)
, � = 1, . . . , r, j = 1, . . . ,m�, (25)

where each branch has multiplicitym�, such thatm = m1 + m2 + · · · + mr . We have
the following definition.

Definition 2 We say that there is a Complete Regular Splitting (CRS) property of
the solution s∗ = 0 at τ ∗ = 0 if γ�,j �= 0, ∀�. For the Regular Splitting (RS) property
some of the coefficients γ�,j for which mj = 1 may be equal zero. Otherwise, we say
that the solution possess the Non Regular Splitting (NRS) property.

The properties introduced in Definition2 are illustrated in Fig. 2.

Remark 7 The above definitionwas inspired by thematrix case introduced byLanger
et al. (1992) in [18] (see also [14]).

The proposed approach to deal with the splitting properties is based on theNewton
diagram applied in conjunction with the Weierstrass polynomial. To this end, it can
be observed from the Theorem1, that since b(s, τ ) is an holomorphic non vanishing
function at (0, 0), then, there must exist some neighborhood �(0, 0) ⊂ C

2 on which
b(s, τ ) preserves the same property. Hence, based on this observation, we can ensure
that the root loci of the quasi-polynomial f and ofW (s, τ ) in the neighborhood� are
the same. Along these lines, based on the Newton procedure introduced in Sect. 2,
we propose the following algorithm:

The above algorithm is useful to derive the following:

Proposition 3 Let s∗ = iω∗ be a m-multiple critical root of the quasi-polynomial
f (s, τ ) at τ = τ ∗. Let W (s, τ ) be the Weierstrass polynomial of f (s + iω∗, τ + τ ∗)
given by (16), and assume that r̃, βj ,

(
ij, �j

)
and 

(j)
are given by the Algorithm1.

Define m̃j := ij − ij−1, then the following properties hold:

(i) if m̃j · βj ≡ 1 then the solution (iω∗, τ ∗) of f (s, τ ) has the completely regular
splitting property;
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Algorithm 1: Auxiliary Puiseux Series Expansion

1 Let W (s, τ ) denote the Weierstrass polynomial associated to the critical pair (iω, τ ∗) of
multiplicity m. Consider the initial values as r̃ := 0, j := 0 and k := ρ0.

Step 1) Set Ẽr :=
{

�−k
j−i : (i, �) ∈ , and i > j

}
;

Step 2) Let β̃r := maxEj and 
(r) :=

{
(i, �) ∈  : βr ≡ k−�

j−i

}
;

Step 3) Set (ĩr, �̃r) ∈ 
(̃r)

such that ĩr ≥ i, ∀(i, �) ∈ 
(̃r)
;

Step 4) Set j := ĩr , m̃r = ĩr − ĩr−1 and r̃ = r̃ + 1;
Step 5) If j < m go to step 1. Otherwise the algorithm ends.

(ii) if some βj satisfies m̃j · βj > 1 for m̃j > 1, then non regular splitting property
for the solution (iω∗, τ ∗) is possible;

(iii) if the pairs (m̃k , βk) that do not fulfill (i), satisfy the inequality βk ≥ m̃k ≡ 1,
then the solution (iω∗, τ ∗) of f (s, τ ) has the regular splitting property;

(iv) let �0 be a neighborhood of (0, 0) ∈ C
2, and assume that

R (
W, ∂

∂sW
) �= 0,∀s ∈ �0 \ {(0, 0)}. Then, there are m−different Puiseux

series solutions gi
(
τ

1
ni

)
such that,

f (s, τ ) =
m∏

i=1

(
s − gi

(
τ

1
ni

))
b(s, τ ),

where ni is arranged in terms of mj as

n1 = n2 = · · · = nm1︸ ︷︷ ︸
ni1=m1

, nm1+1 = · · · = nm2︸ ︷︷ ︸
ni2=m2

, · · · , nm1+···+mr−1+1 = · · · = nm1+···+mr︸ ︷︷ ︸
nir =mr

with
∑

mi = m.

Proof First of all, observe that r̃ in the Algorithm1 corresponds to the number of
branches for the solution (iω∗, τ ∗) and m̃j the multiplicity of each branch. Then, in
terms of the notations introduced in Sect. 3.2 we consider in the following m� = mj

and r = r̃.

(i) In this case, we have that βj = 1
mi
, then from the Newton procedure we

know that the rational numbers βj are associated to the first exponents in
the solutions, since we have r branches, thus the root locus of f (s, τ ), is
given by

s(τ )� = γ�,jτ
1
mi + o

(
τ

1
mi

)
� = 1, . . . , r j = 1, . . . ,mj.

Since γ�,j are related to the nonzero solution of a polynomial formedwith the
coefficients of the convex hull, clearly γ�,j �= 0. Then, the solution (iω∗, τ ∗)
has the CRS property.
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(ii)-(iii) These follows similar lines than those presented in (i).
(iv) This case can be stated by induction. To this end, from the Puiseux Theorem

we know that there exist some Puiseux series g1
(
τ 1/ni

)
such that f (g1, τ ) =

0, then the factor s1 can be taken out, such that f = g1f1. Assume now that
the above factorization is valid for some k ∈ N, i.e., the following relation
holds:

f (s, τ ) = g1(τ ) · · · gk(τ )fk(s, τ ).

Then, the quotient fk has orderm − k in s. Applying the induction hypothesis
to fk , leads to m different factors gi

f (s, τ ) = g1(τ ) · · · gm(τ )fm(s, τ ),

where fm(s, τ ) has order ordτ (fm) = 0.

�

Corollary 1 Consider the hypothesis proposed in Proposition3. Assume that ρ0 =
1. Then at τ = τ ∗, the m−roots of f (s, τ ) have the CRS property, i.e. these roots can
be expanded as:

s� (τ ) = iω∗ + γ�

(
τ − τ ∗) 1

m + o
(∣∣τ − τ ∗∣∣ 1

m

)
, for � = 1, 2, . . . ,m. (26)

Moreover, the following properties hold:

(i) if m = 2 and � (γ�) �= 0 with � ∈ {1, 2}. Then for τ > τ ∗ sufficiently close to
τ ∗, one of the zeros s� (τ ) will enter the RHP, whereas the other one will enter
the LHP;

(ii) if m > 2, then at least one of the zeros s� (τ ) will enter the RHP.

3.3 Crossing Directions Characterization

As mentioned in the Introduction, the Weierstrass polynomial will be our main tool
in analyzing the stability behavior of the critical characteristic roots. In the lines of
[8], we have the following:

Proposition 4 Let s∗ = iω∗ be a m−multiple root of f (s, τ ) at τ = τ ∗. Let W (s, τ )

be the Weierstrass polynomial of f (s + iω∗, τ + τ ∗), and assume that r, βj ,
(
ij, �j

)

and 
(j)
are given by the Algorithm1. Define m� := i� − i�−1 and i−1 := ρ0, then at

τ = τ ∗, the m−zeros of f (s, τ ) can be expanded as

s�,k(τ ) = iω∗ + γ�,k
(
τ − τ ∗)β� + o

(∣∣τ − τ ∗∣∣β�

)
, (27)
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for � = 0, 1, . . . , r − 1, k = 1, . . . ,m� andm = m1 + · · · + mr.Where γl,k are roots
of the polynomial P� : C �→ C,

P�(z) :=
i�∑

ν=i�−1

w
ν,0z

ν−i�−1 , s.t. (ν, ρν) ∈ (�). (28)

For τ > τ ∗ sufficiently close to τ ∗, the zeros s�,k(τ ) will enter the right half-plane
(or to the left half-plane) if

�{γ�,k} > 0(< 0). (29)

Proof By hypothesis, we have that W corresponds to the Weierstrass polynomial
associated to f . Then, by taking into account theNewton procedure, the proof follows
by observing that after applying the Algorithm1 to W , r corresponds to the number
of branches of the solution s∗ = iω∗ at τ = τ ∗, where β� is the main exponent of the
Puiseux series for the �−branch, whereas the coefficients γ�,k can be computed with
the polynomial with coefficients given by the leading terms of wj (τ ) that falls in the
convex hull 

(�)

, which is nothing else than the polynomial P. Finally, the direction
of crossing follows straightforwardly by condition (29). �

4 Illustrative Examples

In order to illustrate the effectiveness of the proposed approach, consider in the sequel
several numerical examples.

Example 1 Let us consider the following quasi-polynomial, borrowed from [15],

f (s, τ ) = (
s4 + 2s2 + 2

) + 2e−τ s + e−2τ s. (30)

In this case, the critical pair is given by (s∗, τ ∗) = (i, π), with a double multiplic-
ity, i.e., m = 2. Then, in order to apply the above results let us consider the changes
of variables s �→ s + i and τ �→ τ + π , leading to:

f̃ (s, τ ) = (
s4+4is3 − 4s2 + 1

) + (
2e−(π+τ)(i+s) + e−2(π+τ)(i+s)

)
.

By the Weierstrass Preparation Theorem, we know that f̃ can be described locally
by W (s, τ )b(s, τ ) where:

W (s, τ ) = s2 − w1(τ )s − w0(τ ),

which can be considered as a polynomial in s. This polynomial has the same root
locus as f in some neighborhood of (i, π). Now, let f̃ (s, τ ) = l (s, τ ) + s2h (s, τ ) and
compute the approximation W ≈ s2 − Ŵk . This is done by making two successive
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Table 1 Results summary for the quasi-polynomial (30)

Initial data Algorithm output Z := {z ∈ C : P(z) = 0}
m = 2, ρ0 = 2
 = {(0, 2), (1, 1), (2, 0)}

r = 1, � = 0


(0) = {(0, 2), (1, 1), (2, 0)}
m0 = m = 2

P(z̃) := z2 + 2iπ
π2−4

z − 1
π2−4{

z0,1 = − i
π+2 , z0,2 − i

π−2

}

approximations of (15), i.e.,

s2 − l

h
ϕk−1 = s2ϕk + Ŵk k = 1, 2.

The fact that only two iterations are sufficient for a good approximation ofW (s, τ ) =
w1(τ )s + w0(τ ) is due to Theorem2, since ρ0 = 2. Thus, he have that

w1(τ ) = w11τ + O (τ ) w0(τ ) = w02τ
2 + O

(
τ 2
)
,

where the leading coefficients of w1 and w0 are given by:

w11 = − 2iπ
−4+π2 and w02 = 1

−4+π2 .

After applying Algorithm1 along with Proposition3, Table1 summarizes the results
(Fig. 3).

Thus, according to the previous results, the solutions of (30) around (s∗, τ ∗) =
(i, π) can be expressed as:

s1,2(τ ) = i − i
π ± 2

(τ − π) + o (|τ − π |) .

Finally, since m = 2 and β0 = 1 > 1/m0, thus the solution s∗ = i possess the NRS
property. Such a behavior is illustrated in Fig. 1.

Example 2 Let us consider now the following example borrowed from [4],

f (s, τ ) = − (
π
2 s

5 + π
2 s

3 + s2
) + (

π
2 s

3 − s2 + π
2 s + 1

)
e−τ s + e−2τ s. (31)

The critical pair is given by (s∗, τ ∗) = (i, π), and has multiplicity m = 3. Now, in
order to apply the previous results let us consider the changes of variables s �→ s + i
and τ �→ τ + π , leading to:

f̃ (z̃, τ ) = 1

2
e−2z̃

(
1 + eπτ+(i+τ)τ (i + τ)2

) (
2 + ez̃(2 + πτ(i + τ)(2i + τ))

)
,

with z̃ := (i + s)(π + τ). From f̃ (s, τ ), let us compute the polynomial Ŵ (k)(s, τ ) =
s3 + w(k)

2 (τ )s2 + w(k)
1 (τ )s + w(k)

0 (τ ). Next, according to Proposition2,we have that:
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Fig. 3 Root loci for Example1: �(s) versus I(s)

Table 2 Results summary for the quasi-polynomial (31)
Initial data Algorithm output Z := {z ∈ C : P(z) = 0}
m = 3, ρ0 = 2
={(0, 2), (1, 1), (2, 1), (3, 0)}

r = 1, m0 = 1, β0 = 1 � = 0


(0) = {(0, 2), (1, 1)}

P0(z̃) := −2i
π(π−3i) z + 2

π
(
π2−5iπ−6

)

{
z0,1 = − 2−iπ

π2+4

}

r = 2, m1 = 2, β1 = 1
2 � = 1


(1) = {(1, 1), (3, 0)}

P1(z̃) := z2 − 2i
π(−3i+π)

1

{
z1,k = (−1)k 1+i√

π(π−3i)

}

w2(τ ) = w21τ + O (τ ) w1(τ ) = w11τ + O (τ ) w0(τ ) = w02τ
2 + O

(
τ 2
)
,

with leading coefficients given by:

w02 = 2
π(6+5iπ−π2)

, w11 = 2i
π(−3i+π)

, w21 = i(24i+39π+38iπ2−7π3)
3π(−2i+π)(−3i+π)2

.

After applying Algorithm1 along with Proposition3, Table2 summarizes the results.
Thus, according to the previous results, the solutions of (30) around (s∗, τ ∗) =

(i, π) can be expressed as:

s1(τ ) = i + 2 − iπ
4 + π2

(τ − π) + o(|τ − π |),

s2,3(τ ) = i ± 1 + i√
π(−3i + π)

(τ − π)
1
2 + o

(
|τ − π | 1

2

)
.

Then, the solution s∗ = i at τ ∗ = π with β0 = 1/m0 and β1 = 1/m1 has the CRS
property. However, it is worth mentioning that since the solution has two-branches
with multiplicities β0 = 1 and β1 = 1/2, the CRS property implies that one root will
behave as a Taylor series (s1 in Fig. 4), whereas the other branch will behave as a
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Fig. 4 Root loci for
Example2: �(s) versus I(s)

fractional series of order 1/2 (s2 and s3 in Fig. 4). Such a behavior is illustrated in
Fig. 4.

Example 3 As a final, let us consider the the following quasi-polynomial [19]:

f (s, τ ) = 1
8

(
8 − π2 + 7πs − 2π2s2 + 10πs3 − π2s4 + 3πs5

) + e−τ s.

In this case, the critical pair (i, π) has multiplicity m = 3. Now, based on Remark4
we compute ρ0 = 1. Then, in this case we have m = 3 and ρ0 = 1, allowing us to
use the Corollary1. Thus we can immediately conclude that the solution s∗ = i has
the Completely Regular Splitting property. In the light of this corollary, we know
that at least one of the solutions s�(τ ) will enter to RHP (Fig. 5).

Fig. 5 Root loci for
Example3: �(s) versus I(s)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
(s)

0.7

0.8

0.9

1

1.1

1.2

1.3 (s)
τ < π
τ > π
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5 Conclusions

In this chapter we have presented an alternative approach to the study of asymptotic
behaviour of multiple imaginary roots for quasi-polynomials of retarded-type. By
means of the Weierstrass Preparation Theorem, the structure of the root locus of
f (s, τ ) = 0 at (s∗, τ ∗) was described as a finite union of branches sj

(
τ 1/mi

)
with

multiplicity mj. In addition, the behavior of the solution s∗ for τ sufficiently close to
τ ∗ have been analyzed by means of leading coefficient of its branches. Finally, some
splitting properties of the solutions sj, such as CRS or RS were fully characterized.
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Scanning the Space of Parameters
for Stability Regions of a Class
of Time-Delay Systems; A Lyapunov
Matrix Approach

Carlos Cuvas, Adrián Ramírez, Luis Juárez and Sabine Mondié

1 Introduction

In this chapter, we study the robust stability of linear time-invariant multiple time-
delay systems with respect to delays 0 = h0 < h1 < . . . < hm = H . The system is
expressed in state-space form as

ẋ(t) =
m∑

j=0

A j x(t − h j ), t ≥ 0, (1)

where A0, . . . , Am are constant real n × nmatrices, and x(t) ∈ R
n is the state vector.

When investigating the stability of (1), one key challenge is to determine the set of all
possible delay combinations underwhich the system remains stable. One opportunity
in this endeavor is the characterization of stable regions in the delay-parameter space.
Moreover, for systems of the form (1), stability charts can help reveal such regions
and hence, all delay values favoring stability [25, 26].
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Characterization of stability charts relies on theD-decomposition principle [13],
which states that boundaries in the delay-parameter space divide the space into
regions. Their production evolves in a two-steps fashion: first; one must find the so-
called stability crossing boundaries which generate a partition of the delay-parameter
space, and second; one must determine the number of roots with positive real part
in each region, also known as the instability degree, with which stability regions can
be finally declared. Hereafter, the collection of regions with no right-hand side roots
is referred to as the stability domain.

While the production of stability charts with fixed delays is well established,
the case of two or more delays as variable parameters remains challenging. Recent
results in [22] indicate that the use of resultant theory in combination with Rekasius
transformations can facilitate the process. The method, called advanced clustering
with frequency sweeping, allows a successive reduction of the problem, shorten-
ing the computational burden of NP-hard complexity arising from the presence of
multiple delays, and ultimately revealing the stability outlook in a two-dimensional
delay-parameter space, see also [27]. The reader is referred to [23] where the Cluster
Treatment of Characteristic Roots (CTCR) paradigm is introduced and to [8] for an
elegant geometrical approach in the case of systems with two delays. Having found
the partition of the delay-parameter space, determining the instability degree in each
region can be handled by deploying, for instance, semi-discretization methods [9],
pseudospectral techniques [1], or computational approaches [20, 28]. Alternatively,
the instability degree may be obtained based on root tendency properties of the
imaginary roots, as reported in [14].

Considering that themain objective is to determine the stability domain associated
with system (1), and not the instability degree in each region, our proposal is to
obviate the tedious and prone to error unstable roots counting task by using instead
the delay Lyapunov matrix to assess the stability regions.1 This shall be done by
efficiently scanning the delay-parameter space2 equipped with a set of necessary
stability conditions that depends, exclusively, in the delay Lyapunov matrix [6].
Moreover, we state that the stability conditions presented here and summarized from
our previous contributions [3, 4, 6, 12] turn out to be a stability criterion under some
special conditions [5].

The contribution is organized as follows. Section2 revisits the main concepts and
definitions on Lyapunov–Krasovskii functionals of complete type and summarizes
the stability test in terms of the delay Lyapunov matrix. Section3 presents the scan-
ning process using the delay Lyapunov matrix. Sections4 and 5 verify our method
using various challenging examples found in the literature. Finally, some concluding
remarks are given in Sect. 6.

1Local stability analysis of non-linear systems follows from linearization, meaning that the tech-
nique presented here may be used as a first approximation to the stability analysis of non-linear
dynamics.
2It is worthy ofmention that the delay Lyapunovmatrix has exact solution only in the commensurate
delays case, in the rest of the chapter,we take advantage of this characteristic to optimize the scanning
process such that efficiency is improved.
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Notation: The Euclidean norm for vectors is denoted by ‖.‖. The norm ‖ϕ‖H =
supθ∈[−H,0] ‖ϕ(θ)‖ is used for functions. Q > 0 means that Q = Q� is positive
definite. The square block matrix with i th row and jth column element Ai j is denoted
{Ai j }ri, j=1. The symbol * indicates transposed terms in symmetric block matrices.

2 Preliminaries: Stability Conditions Based on the Delay
Lyapunov Matrix

The initial functionϕ of system (1) is taken from the set of piecewise functions defined
on the interval [H, 0], PC([−H, 0], R

n). The restriction of the solution x(t, ϕ) of
system (1) on the interval [t − H, t] is denoted by xt (ϕ) : θ → x(t + θ, ϕ), θ ∈
[−H, 0]. The delay Lyapunov matrix U (τ ), τ ∈ R of (1) associated with a positive
definite matrix W , is the solution of the boundary value problem [10]

U ′(τ ) =
m∑

j=0

U (τ − h j )A j , τ ≥ 0, (2)

U (τ ) = UT (−τ), τ ≥ 0, (3)
m∑

j=0

[
U (−h j )A j + AT

j U (h j )
] = −W. (4)

The above equations are also known as the dynamic, symmetric and algebraic prop-
erties of U (τ ). They admit a unique solution whenever the system satisfies the Lya-
punov condition.3 In the case of commensurate delays; i.e. h j = jh with h as the
basic delay, the semi-analytic method [10] provides an exact solution for (2), (3),
and (4), up to computation of exponential matrices. The main results concerning this
construction are summarized below.

Lemma 1 ([10]) Let U (τ ) be a Lyapunov matrix associated with W. Then for ξ ∈
[0, h], the auxiliary matrices

Xi (ξ) = U (ξ + hi), i = −m, . . . , 0, . . . ,m − 1, (5)

satisfy the system of linear delay-free matrix differential equations

3That is, the characteristic equation of (1), namely det(s I − ∑m
j=0 A j e−h j s) = 0, has no symmetric

eigenvalues with respect to the imaginary axis in the complex plane.
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X ′
i (ξ) =

m∑

j=0

Xi− j (ξ)A j , i ≥ 0,

X ′
i (ξ) = −

m∑

j=0

AT
j Xi+ j (ξ), i < 0,

(6)

with boundary conditions

Xi+1(0) = Xi (h), i = −m, . . . , 0, . . . ,m − 2,

−W =
m∑

j=0

[
X j (0)A j + AT

j X
T
j (0)

]
.

(7)

Corollary 1 ([10]) If the boundary value problem (6)-(7) admits a unique solution
(5), then there exists a unique Lyapunov matrix U (τ ) associated with W and defined
in [0,mh] by U (ih + ξ) = Xi (ξ), ξ ∈ [0, h], i = 0, 1, . . . ,m − 1.

Usingvectorization techniques based onKronecker products properties, the delay-
free system (6) and the boundary condition (7) can be rewritten in the form

z′(ξ) = Lz(ξ),

Mz(0) + Nz(h) = −Wv.

where z is the vectorization of the auxiliary variables, and L ,M and N are appropriate
arrangements of matrices A j , j = 0, . . . ,m.

The solution of the dynamic system of auxiliary matrices is readily computed as

z(ξ) = eLξ z(0), ξ ∈ [0, h] (8)

subject to
z(0) = (M + NeLh)−1Wv. (9)

Then, the Lyapunov matrix U (τ ) for τ ∈ (0,mh] can be retrieved from z.
In [6], necessary stability conditions formulated exclusively in terms of the delay

Lyapunov matrix were introduced. They are summarized next for completeness.

Theorem 1 If system (1) is exponentially stable, then

Kr (τ1, . . . , τr ) = {U (−τi + τ j )}ri, j=1 > 0, (10)

where τk ∈ [0, H ], k = 1, r , τi �= τ j if i �= j, and r is a natural number.

The sufficiency of these conditions was established for a special choice of the
delays and a large enough parameter r in [5].
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Theorem 2 System (1) is exponentially stable if and only if the Lyapunov condition
holds and for every natural number r ≥ 2,

{
U

(
j − i

r − 1
H

)}r

i, j=1

> 0. (11)

Moreover, if the Lyapunov condition holds and system (1) is unstable, there exists
r such that {

U

(
j − i

r − 1
H

)}r

i, j=1

� 0.

Remark 1 Afamily of conditions of increasing complexity can be obtained for exam-
ple as

r = 2 :
(
U (0) U (H)

∗ U (0)

)
> 0,

r = 3 :
⎛

⎝
U (0) U (H/2) U (H)

∗ U (0) U (H/2)
∗ ∗ U (0)

⎞

⎠ > 0,

r = 4 :

⎛

⎜⎜⎝

U (0) U (H/3) U (2H/3) U (H)

∗ U (0) U (H/3) U (2H/3)
∗ ∗ U (0) U (H/3)
∗ ∗ ∗ U (0)

⎞

⎟⎟⎠ > 0.

Remark 2 In [3, 4, 7] these results are extended to cover the case of distributed
parameter systems. This class of delay systems arises naturally in a number of control
problems, namely, optimal control of delay systems [21], control of systems with
input delays [11], and regulation of spectrally controllable delay systems where the
underlying distributed parameters ring is a Bézout ring [2].

3 Scanning Methodology

To test the stability condition (10) for equally spacedpoints in the space of parameters,
one must compute the delay Lyapunov matrix, and then test condition (11). If more
than one delay is involved, the complexity of the task can become cumbersome due
to multiple-dimensionality issues. In the following, we explain howwe can use some
underlying properties of (11) to alleviate the computational burden in the two-delay
case.
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3.1 Minimizing the Dimension of the Delay-Free System

A simple computation shows that the dimension of the delay-free system is given
by 2n2m. Testing for instance an arbitrary point h1 = 80 and h2 = 120, and taking
the basic delay as 1, the dimension of the associated delay-free system becomes
2 · 22 · 120 = 960. Noticing, however, that the largest possible basic delay might be
taken as the greatest common divisor (gcd) of h1 and h2; e.g. 40, the dimension of
the delay-free system reduces to 2 · 22 · 3 = 24. Hence, to minimize the delay-free
system dimension, we propose the following scanning organization.

(i) Take N + 1 equidistant points with separation � on each axis.
(ii) Set a counter for every axis; that is,

hk1 = k�, hl2 = l�, k, l = 0, . . . , N .

(iii) Set the basic delay as
h = gcd(k, l)�.

(iv) Define

q1 = k

gcd(k, l)
and q2 = l

gcd(k, l)
,

and compute the maximum delay qh with

q = max(q1, q2).

The dimension of the delay-free system is 2 · q · n2.
(v) Using Corollary1, obtain the Lyapunov matrix

U (ξ + jh) = X j (ξ), j = −q,−q + 1, . . . , 0, 1, . . . , q − 1,

in the interval ξ ∈ [0, h] by solving the set of equations

X ′
j (ξ) = X j (ξ)A0 + X j−q1 (ξ)A1 + X j−q2 (ξ)A2, j = 0, 1, . . . , q − 1,

X ′
j (ξ) = −AT0 X− j (ξ) − AT1 X j+q1 (ξ) − AT2 X j+q2 (ξ), j = −q,−q + 1, . . . ,−1.

The boundary conditions are

X j+1(0) = X j (h), j = −q,−q + 1, . . . , 0, 1, . . . , q − 2,

−W = AT
0 X0(0) + AT

1 Xq1−1(h) + AT
2 Xq2−1(h)

+X0(0)A0 + XT
q1−1(h)A1 + XT

q2−1(h)A2.
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Fig. 1 Example1. Highlights of the scanning methodology (search along rays). The stability cross-
ing boundaries in solid lines are computed using CTCR [24]. The pairs satisfying condition (11)
are depicted with isolated points forming various rays emanating from the origin.

3.2 Organizing the Search Along Rays

Conventionally, the scanning of the grid of the space parameters is realized through
nesting loops. In the outer loop the delay h1 is fixed and in the inner loop, the delay
h2 ranges from zero to its upper bound. In this way, scanning of the grid is usually
implemented either in a vertical or horizontal fashion.

Observe that scanning the delay-parameter space along rays significantly reduces
computational burden. Indeed, for pairs ih1, ih2, i = 1, 2, . . . located on a ray
emerging from zero, the matrices L , M and N remain the same. Moreover, the
exponential matrix in (8) can be computed as

eLih = (eLh)i = (eLh)i−1eLh, i = 1, 2, . . . .

Therefore, preallocating the term (eLh)i−1 after each scanning, allows reducing the
computational effort in the calculation of the next points of the ray.

To illustrate the above methodology, we next use an academic example studied in
[25]. Figure1 depicts the verification of condition (11) along a few number of rays.
This example will be completely analyzed later in Sect. 4.

3.3 Avoiding Redundant Verification of the Conditions

Once the matrix U (τ ), with τ ∈ [0, H ], is constructed at a given fixed point, one
can construct Kr (τ1, . . . , τr ) = {U (−τi + τ j )}ri, j=1 matrix and test condition (11).
Clearly, the complexity of the test increases with r . On the other hand, notice from
Remark1, that U (0) > 0 represents the simplest necessary condition as U (0) can
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always be found in the diagonal of Kr (τ1, . . . , τr ). Therefore, using a simpler con-
dition to discard points may speed up the process. To alleviate the computational
burden, let us propose the following algorithm.
Algorithm 1.

(i) Scan the space of parameters and test each point for the condition U (0) > 0.
Flag the points where U (0) > 0 does not hold true.

(ii) Initialize r = 2 and scan the space of parameters using (11) while skipping
flagged points. Flag the points where (11) does not hold true.

(iii) If there are new flagged points, increase r by one and repeat step 2.
(iv) If there are no new flagged points, stop the process.

Since the construction of U (θ) and the stability test are independent from each
other at every point in the delay-parameter space, parallel computing might be used.
Consequently, we shall classify each variable into one of several categories, namely,
loop variables, sliced variables, broadcast variables, among others. Notice also that
at points where the ratio between the largest and smaller delay is large, the delay-free
system is sparse, hence appropriate numerical techniques could be applied.

4 Illustrative Examples

Next, two challenging examples analyzed in [25] illustrate the interest of the above
results. The first one is a two-delay scalar system, and the second one has a cross-
talking delay. In the presented figures, the continuous lines describing imaginary
axis crossings of the roots are generated by using the CTCR technique [24], and the
isolated dots indicate points of the space of parameters where the necessary stability
conditions hold.

Example 1 Consider the scalar equation with two delays taken from [25]

·
x(t) = −1.3x(t) − x(t − h1) − 0.5x(t − h2).

For this system, the exact stability domain in (h1, h2) delay-parameter space is
detected for r = 4 and r = 8, see Fig. 2a, b. Since the delay-free system is stable, the
region connected to the origin, is stable. Choosing r = 4, we can observe fromFig. 2a
the existence of regions where the stability conditions hold, but are actually unstable
regions. As expected, an improvement is achieved increasing r = 8 as demonstrated
on Fig. 2b where the exact stability domain is found.

Example 2 Consider the characteristic equation given by

f (s, h1, h2) = s2 + s + 20 + (2s + 3)e−h1s + (s + 4)e−h2s + e−(h1+h2)s .

A representation in the time domain is



Scanning the Space of Parameters for Stability Regions of a Class … 161

0 5 10 15 20 25 30
0

5

10

15

20

25

30

h
1

h
2

r=4

0 5 10 15 20 25 30
0

5

10

15

20

25

30

h
1

h
2

r=8

(a)

(b)

Fig. 2 Candidate stability domain for Example1. The stability crossing boundaries in solid lines are
computed using CTCR [24]. The pairs satisfying the necessary stability condition (11) are depicted
with isolated points for a fixed value r .

·
x(t) = A0x(t) + A1x(t − h1) + A2x(t − h2) + A3x(t − h1 − h2),

where

A0 =
(

0 1
−20 −1

)
, A1 =

(
0 0

−3 −2

)
, A2 =

(
0 0

−4 −1

)
, A3 =

(
0 0

−1 0

)
.

The stability conditions are tested for r = 2 and r = 4. The results are shown
in Fig. 3a, b respectively. From the figures, we can conclude that the exact stability
domain is found when r increases.
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Fig. 3 Candidate stability domain for Example2. The stability crossing boundaries in solid lines are
computed using CTCR [24]. The pairs satisfying the necessary stability condition (11) are depicted
with isolated points for a fixed value r .

5 Case Study: Effect of Input Delay on IR and PIR
Controllers

In practical applications, the uncertainty induced by unavoidable measurement noise
is a significant problem, hence filtering is essential if the control energy is to be
constrained. The deliberate introduction of a delay h1 in the feedback loop has proved
to be a reasonable filtering option in the Integral-Retarded (IR) and the Proportional-
Integral-Retarded (PIR) controllers proposed in [15–19].
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As an auxiliary design tool to address the presence of an input delay, we present
stability charts depicting the non-induced input delay h2 against the controller delay
parameter h1. For each control scheme, the delay-parameter space is decomposed
deploying the CTCR technique [24] and further scanned via the necessary stability
conditions.

Example 3 IR control of first-order linear systems. Let us consider first the IR con-
troller operating on a first-order linear system. The existence of a delay h2 in the
input is assumed, resulting in the closed-loop system

ẋ(t) =
(
0 1
0 −a

)
x(t) +

(
0 0

bkir 0

)
x(t − h1 − h2) +

(
0 0

−bki 0

)
x(t − h2),

where (a, b) are the system parameters, and (ki , kir ) are the controller gains. Follow-
ing [17], in the absence of input delay the operational parameters (a, b) = (6, 42)
lead to the IR tuning (ki , kir ) = (0.9086, 0.2931), and h1 = 0.1851. For this param-
eter setting, the exact stability domain in (h1, h2) delay-parameter space is detected
for r = 4, see in Fig. 4. For this choice, the exact h2-stability interval of the system
is (0, 0.2981). Observe also that by reducing the intentional delay the upper bound
on the h2-stability interval can be increased.

Example 4 PIR control of second-order systems. We now investigate the stability
of the PIR controller regulating the behavior of a second-order linear system subject
to a non-intentional input delay. The closed-loop state-space representation is:

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

h
1

h
2

Fig. 4 Candidate stability domain for Example3. The stability crossing boundaries in solid lines are
computed using CTCR [24]. The pairs satisfying the necessary stability condition (11) are depicted
with isolated points with r = 4.
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Fig. 5 Candidate stability domain for Example4. The stability crossing boundaries in solid lines are
computed using CTCR [24]. The pairs satisfying the necessary stability condition (11) are depicted
with isolated points with r = 4.

ẋ(t) =
⎛

⎝
0 1 0
0 0 1
0 −b −a

⎞

⎠ x(t) +
⎛

⎝
0 0 0
0 0 0
0 ckr 0

⎞

⎠ x(t − h1 − h2)

+
⎛

⎝
0 0 0
0 0 0

−cki −ckp 0

⎞

⎠ x(t − h2).

Here, (a, b, c) are the system parameters, and (kp, ki , kr ) are the controller gains.
The gain values (kp, ki , kr ) = (0.0789, 1.3415, 1.0858) and the delay design param-
eter h1 = 0.0789 are obtained using the tuning formulae in [19] corresponding to
the operational parameters (a, b, c) = (6, 83, 42) which ensure the stable operation
of the closed-loop system in the absence of input delay. The stability chart in Fig. 5
obtained with r = 4, shows the exact stability domain in (h1, h2) delay-parameter
space. It is now clear that the choice for h1 has a great impact on the h2-stability
margins, and that some choices are dangerous as their reduce it to zero.

Remark 3 A noteworthy advantage of the proposed approach is that at points of the
space where the test is conclusive and stability is established, the delay Lyapunov
matrix of system (1) associatedwithW , defines a Lyapunov–Krasovskii functional of
complete type introduced in [10]. This functional has a prescribed quadratic negative
derivative that depends on the complete state of the system and, if the system is
stable, it admits a quadratic lower bound. This functional satisfies the conditions of
the Krasovskii Theorem and hence, it can be used to find exponential estimates of
the response or robust stability bounds with respect to parameter uncertainty or delay
uncertainty, among other applications. Study of robustness properties with respect
to delays is of special significance, as it allows to conclude on the stability of points
in parameter space in a neighborhood of the tested commensurate points.
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Fig. 6 Candidate stability domain for Example5. The pairs satisfying the necessary stability con-
dition (11) are depicted with isolated points with r = 8.

5.1 Extension to the Three Delays Case

The introduced methodology may be further extended to produce stability maps in
a three-delay space of parameters as presented next.

Example 5 Consider the following characteristic equation taken from [24]

f (s, h1, h2, h3) =(s2 + s + 3) + (3s + 2)e−h1s + (s + 8)e−h2s + (3s + 28)e−h3s,

and associated with the system

·
x(t) =A0x(t) + A1x(t − h1) + A2x(t − h2) + A3x(t − h3),

where

A0 =
(

0 1
−3 −1

)
, A1 =

(
0 0

−2 −3

)
, A2 =

(
0 0

−8 −1

)
, A3 =

(
0 0

−28 −3

)
.

Here, each delay is consider as a variable parameter.Deploying the necessary stability
conditions with r = 8 we obtain the candidate stability domain shown on Fig. 6. In
the particular case h1 = h2 = 0, we know that the system is stable in the interval
h3 ∈ [0, 0.28), which agrees with our results based on the Lyapunov matrix.
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6 Concluding Remarks

In this contribution, we introduce a methodology for finding the stability domain of
a class of time-delay systems in the delay-parameter space. The approach is based
on the positiveness of a set of necessary stability conditions written exclusively in
terms of the delay Lyapunov matrix. An appealing by-product of our method is the
immediate availability of a Lyapunov–Krasovskii functional at every detected stable
points.
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A Symbolic Computation Approach
Towards the Asymptotic Stability
Analysis of Differential Systems
with Commensurate Delays

Yacine Bouzidi, Adrien Poteaux and Alban Quadrat

1 Introduction

This paper aims at studying the asymptotic stability of linear time-invariant differen-
tial systems with commensurate time-delays by means of computer algebra methods
and implementations recently developed by the symbolic computation community.

An example of such a system is defined by the state-space representation

ẋ(t) =
m∑

k=0

Ak x(t − k τ), (1)

where τ ∈ R+ := {τ ∈ R | τ ≥ 0},m ∈ Z≥0 := {0, 1, . . .} and A0, . . . , Am ∈ K
n×n

with K a field (e.g., K = Q, R). The characteristic function of (1) is then a quasi-
polynomialof the form f (s, τ ) = det

(
s In − ∑m

k=0 Ak e−k τ s
) = ∑l

j=0 p j (s) e− j τ s ,
where the p j ’s are polynomials in the complex variable s with coefficients in K.

In this paper, we consider retarded type linear time-invariant differential com-
mensurate time-delay systems, namely systems whose characteristic functions are
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defined by quasipolynomials of the form of f (s, τ ) = ∑l
j=0 p j (s) e− j τ s , where

deg p0 ≥ max{deg p1, . . . , deg pl} and deg p j stands for the degree of the polyno-
mial p j in s (e.g., (1)). We investigate the asymptotic stability of this class of systems
by means of the location of the complex solutions s of f (s, τ ) = 0. Recall that a
retarded type differential commensurate time-delay system is asymptotically sta-
ble [2, 12] if and only if all the complex solutions of its characteristic function
f (s, τ ) = 0 have negative real parts, i.e., f (s, τ ) �= 0 for all s in the closed right
half-plane C+ := {s ∈ C | R(s) ≥ 0} (see, e.g., [2, 12, 16]). While considering the
asymptotic stability of a quasipolynomial f (s, τ ), three different problems can be
studied: the first one consists in checking the stability for a fixed value of τ , the
second one is the study of the so-called delay independent stability property which
guarantees the stability for all values of τ in R≥0, and the last one, the stability
analysis depending on the time-delay τ , which considers τ as a parameter of the
system and aims at computing the values of τ for which the system is asymptotically
stable. In this paper, we mainly focus on the last problem. Our approach for analyz-
ing the asymptotic stability of this class of systems is based on the computation of
the so-called critical pairs of f (s, τ ), that is the pairs (ω, τ) ∈ R × R+ satisfying
f (i ω, τ) = 0. For more details, see [11, 16, 18–20] and the references therein. If
such critical pairs exist, the asymptotic stability can then be derived from the way
the first component of these pairs, called critical imaginary roots of f (s, τ ), behaves
under a small variation �τ of the time-delay τ with respect to C+. Thus, the asymp-
totic stability analysis is divided into two distinct problems. First, the critical pairs
of f (s, τ ) must be computed. Then, for each critical pair (ω0, τ0), the behavior of
the critical imaginary root ω0, particularly its real part, must be studied with respect
to a small variation of τ0. For more details, see [11, 16, 18–20].

There exist severalmethods for computing the critical pairs of a general quasipoly-
nomial. The study of the asymptotic behavior of critical imaginary roots has been
addressed for the case of simple imaginary roots (see [11, 16, 18–20] and the refer-
ences therein). For multiple imaginary roots, a recent method based on the so-called
Puiseux series [29] was developed in [15, 16].

The contributions of the paper are twofold. We first present a new approach for
the efficient computation of the critical pairs of a general quasipolynomial. After
a Möbius transformation, the problem reduces to the computation of the real solu-
tions of a system formed by two polynomial equations in two variables. An efficient
method to solve this last problem is to compute the so-called Rational Univariate
Representation (RUR) [25, 27] of the polynomial system which is a one-to-one
mapping between the solutions of the polynomial system and of the roots of a uni-
variate polynomial. The complex/real solutions of the polynomial system can then
be obtained in a certified manner by numerical isolation of the complex/real roots
of the univariate polynomial [13, 26]. The RUR of a polynomial system admit-
ting a finite number of complex solutions can be obtained by means of the command
RationalUnivariateRepresentationof theMaplepackageGroebner.
Motivated by applications in computational geometry (computation of the topology
of algebraic curves), an extremely efficient algorithm for the RUR computation was
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recently obtained in [4, 5] for systems formed by two polynomial equations in two
variables. This algorithm avoids a Gröbner basis computation [8].

Moreover, based on recent advances in the direction of Newton–Puiseux series
for algebraic curves developed in [21–23], the second contribution of the papier is to
present an efficient algorithm which efficiently computes terms of Newton–Puiseux
series of a quasipolynomial f (s, τ ) at a critical pair (ω0, τ0). These Newton–Puiseux
series can be used to study the variation �s in terms of �τ in a neighborhood of
the critical pair (ω0, τ0), which allows one to study the asymptotic stability of the
corresponding retarded type differential time-delay system as explained in [16].

This paper is based on the congress paper [6].
The paper is organized as follows. In Sect. 2, we present an efficient algo-

rithm which computes, via a Rational Univariate Representation, certified numerical
approximations of the critical pairs of a quasipolynomial. Then, an algorithm which
computes Newton–Puiseux series on these critical pairs is presented in Sect. 3.

2 An Efficient Algorithm for the Computation of the
Critical Pairs

In this section, we focus on the computation of the critical pairs of a quasipolynomial
f (s, τ ) = ∑l

j=0 p j (s) e− j τ s , namely the set {(ω, τ) ∈ R × R+ | f (i ω, τ) = 0}.
Due to the presence of transcendental terms e− j τ s in f (s, τ ), f (i ω, τ) = 0 usually
admits an infinite number of zeros (i ω, τ). Using the so-called Möbius transforma-
tion (or the Rekasius transformation [19, 20]) introduced below, we show that this
problem is reduced to the computation of the real solutions of a system defined by
two polynomial equations in two variables. An efficient computer algebramethod [5]
and its implementation in the library RS [28] can be used to solve the latter problem,
and thus to compute critical pairs of quasipolynomials in a certified manner.

When the delay τ (resp., ω) varies in R≥0 (resp., R), e−τ i ω covers the complex
torus T := {z ∈ C | |z| = 1}. The problem of studying the zeros of f (i ω, τ) then
amounts to studying the zeros of the bivariate polynomial f (i ω, z) =∑l

j=0 p j (i ω) z j , where ω ∈ R and z ∈ T.
A first approach consists in considering z = u + i v, where u, v ∈ R, which yields

f (i ω, u + i v) = R(ω, u, v) + i I(ω, u, v), where R and I are two polynomials
with real coefficients. Thus, we have to compute the real solutions (ω, u, v) of:

R(ω, u, v) = 0, I(ω, u, v) = 0, u2 + v2 − 1 = 0. (2)

Generically, the above system is zero-dimensional, i.e., it only admits a finite
number of complex solutions. Standard computer algebra methods, particularly the
so-called Rational Univariate Representation (RUR) [25], can then be used to obtain
certified numerical approximations of the real solutions of (2).
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For an efficiency issue, it is important to reduce the number of the indeterminates
(ω, u and v) of (2). To do that, we use the so-called Möbius transform defined by:

M : R ∪ {∞} �→ T

x �→ z = x − i

x + i
= x2 − 1

x2 + 1
− i

2 x

x2 + 1
,

∞ �→ 1.

Substituting e−τ i ω by x−i
x+i into f (i ω, τ) and cleaning the denominators, we obtain

a polynomial of the form R(ω, x) + i I(ω, x), where R and I are two polynomials
in ω and x with real coefficients. The critical pairs can then be computed by first
solving the following system formed by two polynomial equations in two variables:

R(ω, x) = 0, I(ω, x) = 0. (3)

Accordingly, the critical delays can easily be obtained as follows:

τk = 1

ω

(
arctan

(
2 x

x2 − 1

)
+ k π

)
, k ∈ Z. (4)

Thus, the computation of the critical pairs is reduced to searching for the real solutions
of the polynomial system (3).

Remark 1 Since z = 1 is sent to ∞ by the above Möbius transformation, this case,
which corresponds to τk ω = 2 k π , where k ∈ Z, can be independently studied. The
quasipolynomial f then becomes the pure polynomial f (i ω, 1) = ∑l

j=0 p j (i ω) in
ω whose real roots can be isolated using, e.g., classical bisection algorithms [7, 26].

Remark 2 The Rekasius transformation is defined by mapping e−τ i ω to 1−i T ω
1+i T ω

,
where T ∈ R (see [19, 20] and the references therein). Note that the Rekasius trans-
formation can be seen as a particular Möbius transform.

In what follows, we consider the case of the Möbius transformation (the approach
being similar for the Rekasius transformation). Let us now consider the polynomial
system (3). Without loss of generality, we can assume that (3) admits only a finite
number of complex solutions, whichmeans that the polynomialsR andI do not have
a non-trivial common factor (seeTheorem1below for the computation of gcd(R,I)).
Our objective is to develop an efficient approach for the certified computation of the
real solutions of (3) by means of modern computer algebra methods.

We note that the ω-coordinate of the solutions of f (i ω, τ) = 0 (called the imag-
inary roots of f ) is a root of the resultant Resx (R,I) of R and I with respect
to the variable x . Let us recall the definition of a (sub)resultant. Let A = K[ω],
R = ∑p

i=0 ai (ω) xi ∈ A[x] and I = ∑q
j=0 b j (ω) x j ∈ A[x], i.e., the ai ’s and b j ’s

belong to A. Let us suppose that ap �= 0 and bq �= 0 so that degx R = p and
degx I = q, and p ≥ q. Let A[x]n = {P ∈ A[x] | degx P ≤ n} be the set of poly-
nomials with degree at most n and {xi }i=0,...,n the standard basis of the freeA-module
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A[x]n of rank n + 1. We set A[x]n = 0 for negative integer n. For 0 ≤ k ≤ q, we
can consider the following homomorphism of free A-modules:

ϕk : A[x]q−k−1 × A[x]p−k−1 −→ A[x]p+q−k−1

(U, V) �→ UR + VI.

Using the standard basis of A[x]q−k−1 (resp., A[x]p−k−1, A[x]p+q−k−1) and identi-
fying

∑q−k−1
i=0 ui xi ∈ A[x]q−k−1 with the row vector (u0, . . . , uq−k−1) ∈ A1×(p−k),

we obtain that

ϕk(u0, . . . , uq−k−1, v0, . . . , vp−k−1) = (u0, . . . , uq−k−1, v0, . . . , vp−k−1) Sk,

where the matrix Sk is the matrix defined by:

Sk =
(

Uk

Vk

)
∈ A(q−k+p−k)×(p+q−k),

Uk =

⎛

⎜⎜⎜⎝

a0 a1 . . . aq−k . . . ap 0 . . . 0
0 a0 . . . aq−k−1 . . . ap−1 ap . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 a0 . . . . . . . . . . . . ap

⎞

⎟⎟⎟⎠ ∈ A(q−k)×(p+q−k),

Vk =

⎛

⎜⎜⎜⎝

b0 b1 . . . bp−k . . . bq 0 . . . 0
0 b0 . . . bq−k−1 . . . bq−1 bq . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 b0 . . . . . . . . . . . . bq

⎞

⎟⎟⎟⎠ ∈ A(p−k)×(p+q−k).

To be coherent with the degree of polynomials, we attach index i − 1 to the i th
column of Sk so that the index of the columns goes from 0 to p + q − k − 1.

Definition 1 For 0 ≤ j ≤ p + q − k − 1 and 0 ≤ k ≤ q, let srk, j be the deter-
minant of the submatrix of Sk formed by the last p + q − 2 k − 1 columns,
the column of index j and all the p + q − 2 k rows. The polynomial
Sresk(R,I) = srk,k xk + · · · + srk,0 is the kthsubresultant ofR andI, and its leading
term srk,k is the kthprincipal subresultant ofR andI. Thematrix S0 ∈ Ap+q)×(p+q) is
the Sylvester matrix associated withR andI and Resx (R,I) = det S0 is the resultant
of R and I.
Remark 3 For k < j ≤ p + q − 2 k − 1, we note that srk, j = 0 since srk, j is the
determinant of a matrix having twice the same column. Moreover, we can check that
we have srq,q = bp−q

q and Sresq(R, I) = bp−q−1
q I for q < p.

Since A = K[ω] is an integral domain, we can consider its field of fractions
Q(A) = K(ω) and the Euclidean domain B = Q(A)[x]. Since R, I ∈ B, we can
define the greatest common factor gcd(R, I), which is defined up to a non-zero
element of Q(A), so that we can suppose that gcd(R, I) ∈ A.
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Theorem 1 ([1]) The first Sresk(R,I) such that srk,k �= 0 is equal to gcd(R, I).

Theorem 2 ([1]) The roots of Resx (R,I) are the projection onto the ω-axis of the
common solutions of R and I and the common roots of ap and bq .

Ifwewant to checkwhether or not (3) admits imaginary roots,we canfirst compute
Resx (R,I) and then check whether or not Resx (R,I) admits real roots. A method
to do that is, for instance, to use the Descartes rule of sign [26]. If f (i ω, τ) does not
admit solutions with real ω-coordinates, then it means that the stability of the system
is independent of τ . We can then set, for instance, τ = 0 in f (s, τ ) and then apply

the Routh–Hurwitz criterion to the univariate polynomial
∑l

j=0 p j (s).

Example 1 Let us consider f (s, τ ) = s + 2 + e−τ s . Applying the Möbius transfor-
mation to f (i ω, τ) = i ω + 2 + e−i τ ω, we obtain R = −ω + 3 x and I = ω x + 1.
Then,wegetResx (R,I) = ω2 + 3whose solutions are complex.Considering τ = 0,
f (s, 0) = s + 3 is stable which proves that f is stable independently of the delay.

If K = Q, R or C, then a convenient way to express the solutions

V (〈R, I〉) := {
(ω, x) ∈ K

2 | R(ω, x) = I(ω, x) = 0
}

of the polynomial system (3) is to use the so-called Rational Univariate Represen-
tation (RUR) [25, 27], that is the following one-to-one mapping

V (〈R, I〉) −→ V (〈 fa〉)
(ω, x) �→ ξ,(

ga,ω(ξ)

ga(ξ)
,

ga,x(ξ)

ga(ξ)

)
← � ξ,

(5)

between the solutions V (〈R, I〉) of (3) and the roots V (〈 fa〉) := {t ∈ K | fa(t) = 0}
of a certain univariate polynomial fa . In order to achieve the one-to-one condition,
the representation (5) is computed with respect to a so-called separating linear form
t = a1 ω + a2 x ∈ Q[ω, x] for certain a = (a1, a2) ∈ Q

2, that takes different values
when evaluated at the different points of V (〈R, I〉). Using (5), the solutions of
V (〈R, I〉) are then defined by the following rational parametrization

fa(t) = 0, ω = ga,ω(t)

ga(t)
, x = ga,x (t)

ga(t)
, (6)

where fa, ga, ga,ω, ga,x ∈ Q[t] and fa and ga satisfy gcd( fa, ga) = 1.
Computing a RUR requires solving the following two problems:

• Find a separating linear form t = a1 ω + a2 x for V (〈R, I〉).
• Given a linear form t = a1 ω + a2 x ∈ Q[ω, x], compute a RUR-candidate, that
is to say the polynomials fa, ga, ga,ω and ga,x .
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Computation of the RUR-candidate. Given a polynomial h in Q[ω, x] (not nec-
essarily separating), a RUR-candidate with respect to h can be computed using an
algorithmgiven in [25, 27]. This algorithm requires the knowledge of aK-basis of the
finite K-vector space A := K[ω, x]/〈R, I〉 and a reduction algorithm which com-
putes normal formsmodulo the ideal 〈R, I〉 [8]. In order to explicitly characterize the
polynomials appearing in the RUR-candidate, we first define the Q-endomorphism
defined by the multiplication by h ∈ Q[ω, x] inA, i.e., we consider mh : A −→ A
defined by mh(p) = h p, where p denotes the residue class of p ∈ Q[ω, x] in A
(i.e., modulo 〈R, I〉). A representative of p is the normal form of p with respect to
the reduction algorithm (e.g., based on a Gröbner basis computation) of 〈R, I〉. For
more details, see [8].

Given a K-basis {e1, . . . , en} ofA—which can be deduced from, e.g., a Gröbner
basis computation of 〈R, I〉 for the graded reverse lexicographic order [8]—we
can compute the (n × n)-matrix Ma1 ω+a2 x associated to ma1 ω+a2 x . The polynomial
fa of the RUR-candidate is defined as the characteristic polynomial of the matrix
Ma1 ω+a2 x . If fa := fa

gcd
(

fa ,
d fa
dt

) = ∑d
i=0 vi td−i ∈ Q[t] is the square-free part of fa of

degree d, and if we note Hj = ∑ j
i=0 vi t j−i ∈ Q[t] for j = 0, . . . , d − 1, then we

have: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ga =
d−1∑

i=0

Trace(Mi
a1 ω+a2 x ) Hd−i−1,

ga,ω =
d−1∑

i=0

Trace(Mω Mi
a1 ω+a2 x ) Hd−i−1,

ga,x =
d−1∑

i=0

Trace(Mx Mi
a1 ω+a2 x ) Hd−i−1.

Finding of a separating linear form. For the computation of a separating poly-
nomial of V (〈R, I〉), a critical remark is that the number of non separating ele-
ments is bounded by m = n (n − 1)/2, where n denotes the cardinal of V (〈R, I〉),
that is the number of lines passing by two distinct points of V (〈R, I〉). Thus, a
separating form can always be found among the set {t = ω + a x | a = 0, . . . , m}.
On the other hand, the Bezout theorem [1, 8] states that for polynomials R and
I of total degree respectively d1 and d2, the cardinal of V (〈R, I〉) is bounded
by d1 d2. Hence, a strategy for computing a separating element for V (〈R, I〉) is
to consider m := d1 d2 (d1 d2 − 1)/2 + 1 distinct integers a and for each a, com-
pute the number of distinct roots of the polynomial fa (see above), i.e., the degree
of its squarefree part fa , and finally select an a for which this number is max-
imal. This ensures that the degree of fa is equal to the cardinal of V (〈R, I〉),
and thus that the roots of fa are in bijection with the points of V (〈R, I〉). This
strategy is actually time-consuming since it requires the computation of m char-
acteristic polynomials as well as their squarefree parts. In practice, noticing that
an arbitrary chosen linear form is separating with high probability, one prefers a
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strategy that consists in choosing randomly a linear form and testing that it sepa-
rates the points of V (〈R, I〉) a posteriori of the computation of a RUR-candidate.
This test is based on the fact that a linear form t is separating for V (〈R, I〉) if
and only if the polynomials uω := ga ω − ga,ω and ux := ga x − ga,x vanish on all
the points of V (〈R, I〉), i.e., belong to the radical of 〈R, I〉 [8]. In computational
terms, this condition can be translated into (Trace(Muω ei ))i=1,...,n = (0, . . . , 0) and
(Trace(Mux ei ))i=1,...,n = (0, . . . , 0) [25, 27].

Efficient RUR algorithm. The above algorithm for the computation of the RUR
is designed for general zero-dimensional systems and is thus not optimized for the
specific system (3) formed by two polynomials in two variables (i.e., ω, x). The
computation of a Gröbner basis of 〈R,C〉, required for the computation of the RUR-
candidate as well as for the separating form, is usually time-consuming.

Alternatively, we propose below an efficient method, developed in [4], that com-
putes a decomposition of the solutions of (3) into univariate representations. This
method avoids the computation of a Gröbner basis. This method first consists in
applying a change of variables on the variables (ω, x) and then using resultants
and subresultants polynomials to compute parameterizations of the solutions of (3).
These parameterizations then encode the solutions of the system in a one-to-one cor-
respondence with the roots of a univariate polynomial provided that the change of
variables shears the system into generic position. Let us introduce this last definition.

Definition 2 Let R(ω, x), I(ω, x) ∈ Q[ω, x]. If �S denotes the cardinality of a
finite set S, then the system {R,I} is said to be in generic position if we have:

∀ α ∈ C, � {β ∈ C | R(α, β) = I(α, β) = 0} ≤ 1.

Let us start with the following theorem which shows that there exists t = ω + a x
such that, up to a factor in Q, the polynomial fa is equal to the resultant of two
polynomials obtained from R and I after a change of variables.

Theorem 3 ([4]) Let R(ω, x), I(ω, x) ∈ Q[ω, x]. Define R′(t, x) = R(t − a x, x)

and I′(t, x) = I(t − a x, x), where a ∈ Z is such that the leading coefficient of R′
and I′ with respect to x are coprime. Then, the resultant of R′ and I′ with respect
to x is then equal to

Resx (R′,I′) = c
∏

(α1, α2)∈V (〈R,I〉)
(t − α1 − a α2)

μ(α1,α2) = c fa(t),

where c ∈ Q and μ(α1, α2) denotes the multiplicity of (α1, α2) ∈ V (〈R, I〉) [8].

Given a linear form t = ω + a x , it can be shown that it is separating forV (〈R, I〉)
if and only if the system {R′,I′} is in generic position (see Definition 2). Alge-
braically, this means that for each root α of Resx (R′,I′) (whereR′ andI′ are defined
as in Theorem 3), the gcd of R′(α, x) and I′(α, x), denoted G(α, x), has exactly one
distinct root.
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To check the above genericity condition, we consider a triangular description of
the solutions of {R′,I′} given by a finite union of triangular systems:

V (〈R′, I′〉) =
l⋃

k=1

{
(α, β) ∈ C

2 | rk(α) = Gk(α, β) = 0
}
.

Such a triangular description can be obtained via a triangular decomposition
algorithm based on the resultant and subresultant polynomials (see Algorithm 1
of [4] for more details). Such a triangular decomposition yields a set of triangu-
lar systems of the form {rk(t),Sresk(t, x)}k=1,...,l , where l = min{degx R′, degx I′},
Resx (R′,I′) = ∏l

k=1 rk(t), rk ∈ K[t] is the factor of Resx (R′,I′) (possibly equal to
1) whose roots α’s satisfy the property that the degree of G(α, x) (i.e., the gcd of
R′(α, x) and I′(α, x)) in x is equal to k and Sresk(t, x) = ∑k

i=0 srk,i (t) xi is the kth
subresultant ofR′ and I′. Once a triangular decomposition {rk(t),Sresk(t, x)}k=1,...,l

of {R′,I′} is computed, the genericity condition is equivalent to the fact that
Sresk(t, x) can be written as (ak(t) x − bk(t))k modulo rk(t), with gcd(ak, bk) = 1.
The next theorem checks this last condition.

Theorem 4 ([9]) Let R(ω, x), I(ω, x) ∈ Q[ω, x]. Define the polynomials R′(t, x),
I′(t, x) as in Theorem 3, and let {rk(t),Sresk(t, x)}k=1,...,l be the triangular decom-
position of {R′, I′}. Then, {R′,I′} is in generic position if and only if we have

k (k − i) srk,i srk,k − (i + 1) srk,k−1 srk,i+1 = 0 mod rk, (7)

for all k ∈ {1, . . . , l} and for all i ∈ {0, . . . , k − 1}.
If {R′,I′} is in generic position, i.e., if (7) is satisfied, then we obtain that

Sresk(t, x) = ∑k
i=0 srk,i (t) xi = (ak(t) x + bk(t))k modulo rk(t),with gcd(ak , bk)=1.

An explicit expression for x can be obtained by differentiating (k − 1)-times
Sresk(t, x) with respect to x , which yields x = − bk (t)

ak (t)
= − srk,k−1(t)

k srk,k (t)
. Finally, the solu-

tions of the system {R,I} can be parametrized as follows:

rk(t) = 0, x = − srk,k−1(t)

k srk,k(t)
, ω = t − a

srk,k−1(t)

k srk,k(t)
, k = 1, . . . , l. (8)

Numerical approximations. Once aRURof the solutions of (3) is computed (respec-
tively a parametrization by means of the subresultants (8)), we can obtain certified
numerical approximations of these solutions by first isolating the real roots of fa

(resp., rk) by means of intervals using, for instance, the algorithm in [26], and then
substituting these intervals into the rational functions ga,ω/ga and ga,x/ga (resp.,
t − a srk,k−1(t)/k srk,k(t) and −srk,k−1(t)/k srk,k(t)) in order to get isolating inter-
vals for the coordinates ω and x of the solutions of (3). Moreover, substituting these
intervals into (4) yields intervals for the delays corresponding to each solution.

An efficient algorithm for the RUR computation is implemented in the Maple
command RationalUnivariateRepresentation of the Groebner pack-
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age. The computation of the parametrization (8) is done in the external library RS
[28]. Moreover, the numerical approximations of the solutions, obtained by means
of a RUR, can be computed using the Maple command Isolate of the package
RootFinding with the option Method="RS" and Output="interval".

Example 2 Weconsider f (s, τ ) = e−3 τ s − 3 e−2 τ s + 3 e−τ s + s4 + 2 s2 studied in
[16]. To compute the critical pairs of f , we consider the polynomial system

{R(ω, x) = (
x3 − 3 x

)
ω4 + (−2 x3 + 6 x

)
ω2 + x3 − 3 x = 0,

I(ω, x) = (
3 x2 − 1

)
ω4 + (−6 x2 + 2

)
ω2 + 3 x2 + 7 = 0,

(9)

obtained by substituting s = i ω and e−τ i ω = x−i
x+i into f (s, τ ) and separating the real

and imaginary parts of the numerator of the result, aswell as the univariate polynomial
f (i ω, 2 k π) = (ω2 − 1)2 (see Remark 1), whose solutions are {−1, −1, 1, 1}. The
latter polynomial yields the critical pairs (i, 2 k π) and (−i, 2 k π) where k ∈ Z.
Computing the RUR of (9) with respect to the separating form h = ω + x , we obtain:

⎧
⎪⎪⎨

⎪⎪⎩

fa = (
t4 − 2 t2 − 7

) (
t8 − 16 t6 + 74 t4 − 32 t2 + 25

)
,

ga = t
(
t10 − 15 t8 + 66 t6 − 34 t4 − 143 t2 + 29

)
,

ga,ω = t10 − 9 t8 − 26 t6 + 234 t4 + 53 t2 + 35,
ga,x = 2

(
t4 − 2 t2 − 7

) (
t6 − 10 t4 + 17 t2 − 10

)
.

Then, isolating the real roots of fa , we obtain the two real roots

t1 ∈ [− 268918098581
137438953472 ,− 67229524645

34359738368

]
, t1 ≈ −1.956636687,

t2 ∈ [
67229524645
34359738368 ,

268918098581
137438953472

]
, t2 ≈ 1.956636687,

which, after substitution into the rational functions of the RUR, yields x1 = x2 = 0
and thus ω j = t j for j = 1, 2.

Note that the two ω-coordinates are roots of the polynomial t4 − 2 t2 − 7 which

can be solved symbolically. We then get ω j = (−1) j
√
1 + 2

√
2 for j = 1, 2.

Finally, the critical delays τ j,k can then be obtained by (4). In our case, the solutions
(ω1, x1) and (ω2, x2) yields to τ j,k = k π

ω j
, where k ∈ Z and j = 1, 2.

Alternatively,we can compute the parametrization (8) of (9). Since all the solutions
of (9) are simple (i.e., their multiplicities are equal to 1), this yields the following
single parametrization:

⎧
⎨

⎩

r1 = (
t4 − 2 t2 − 7

) (
t8 − 16 t6 + 74 t4 − 32 t2 + 25

)
,

sr1,0 = 65536 t
(
3 t6 − 18 t4 + 7 t2 + 18

)
,

sr1,1 = −327680 t6 + 1179648 t4 + 983040 t2 + 655360.

The two algorithms, based respectively on the computation of (6) and of (8), are
implemented in Maple. We report below their running times (on a laptop with an
Intel i-7 processor and L8 cache) for randomly generated quasipolynomials of total
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degree deg (i.e., the maximum of the total degree of the monomials in s and z = e−τ s

in the quasipolynomial f (s, τ )) and density dens (sparse/dense).

deg dens numsol Timing for (6) Timing for (8)
10 0.5 13 1.17 0.45
10 1 15 1.62 0.6
15 0.5 28 26.58 2.8
15 1 28 24.32 3.7
20 0.5 32 166.40 9.5
20 1 37 182.37 14.3
40 0.5 92 / 300

In the table, the timings are the running times in CPU seconds and numsol stands
for the average number of critical pairs (ω, x).

3 Computing Puiseux Series and Asymptotic
Stability Analysis

In this section, we first provide basic definitions and algorithms for the computation
of Puiseux series in the case of polynomials. This problem is well-studied in the
computer algebra literature [10, 22, 23]. We then explain how these results can be
adapted to the case of quasipolynomials. As shown in [15, 16], Puiseux series can be
used to effectively decide the stability of a linear time-invariant differential system
with commensurate delays (multiples of τ ∈ R>0) when τ changes.

Let F ∈ K[X, Y ] be a bivariate polynomial, where K is a field of characteristic
0 (e.g. K = Q, R or C). In what follows, we shall assume that the polynomial F is
square-free andmonic inY , i.e., as a polynomial inY with coefficients inK[X ], F has
no factor of multiplicity 2 and its leading coefficient is 1. Let K denote an algebraic
closure of K. With these notations, we have the following Puiseux theorem.

Theorem 5 Let d = degY F be the degree of F ∈ K[X, Y ] in Y and ζe the eth
root of unity where e ∈ Z>0. Given x0 ∈ K, there exist positive integers e1, . . . , es

with
∑s

i=1 ei = d and d distinct series Si j (X) = ∑∞
k=0 αik ζ

j k
ei (X − x0)

k
ei such that

F(X, Si j (X)) = 0 for 1 ≤ i ≤ s and 0 ≤ j ≤ ei − 1.

Over most points x0, the polynomial F(x0, Y ) has d distinct roots. In this case, the
Implicit Function Theorem ensures that the series solutions are Taylor series. Such
series can be quickly computed using, e.g., quadratic Newton iterations [14]. When
dealing with multiple roots over a point x0, this may not be the case anymore.

In what follows, we shall compute the Puiseux series using a variant of the well-
known Newton–Puiseux algorithm [3, 29], namely the rational Newton–Puiseux
algorithm [10]. Let us explain themain idea of this algorithmbymeans of an example.

Example 3 Let H = Y 6 + X Y 5 + 5 X3 Y 4 − 2 X Y 4 + 4 X2 Y 2 + X5 − 3 X4 and
let us compute the Puiseux series at x0 = 0. Note that we can always be in this
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situation via a change of the variable X ← X + x0. From Theorem 5, we know that
the first term of any series Y (X) is of the form α X

m
q , α ∈ K and (m, q) ∈ N

2. We
then get:

H
(

X, α X
m
q + · · ·

)
= α6 X

6m
q + α5 X

5m
q +1 + 5α4 X

4m
q +3 − 2 α4 X

4m
q +1

+ 4α2 X
2m
q +2 + X5 − 3 X4 + · · ·

To get H(X, Y (X)) = 0, at least two terms of the above sum must cancel, i.e.
(m, q) must be chosen so that two of the above exponents coincide.

Definition 3 The support of a polynomial F(X, Y ) = ∑
i, j ai j X j Y i is defined by:

Supp(F) = {
(i, j) ∈ N

2 | ai j �= 0
}
.

Example 3 (continued) Supp(H) = {(6, 0), (5, 1), (4, 3), (4, 1), (2, 2), (0, 5), (0, 4)}.
The condition on the pairs (m, q) can be translated as follows: two points of Supp(F)

must lie on the same line m i + q j = l for a certain l ∈ Z. To increase the X -order
of the valuation, there must be no point under this line. This leads us to the following
definition.

Definition 4 The Newton polygon N(F) of F ∈ K[X, Y ] is the lower part of the
convex hull of its support Supp(F).

Example 3 (continued) As illustrated in the figure below, N(H) is given by two
edges: �1 = ((6, 0), (2, 2)) − corresponding to the line i + 2 j = 6 (i.e., m = 1
and q = 2 − and �2 = ((2, 2), (0, 4)). The points of Supp(H) belonging to �1 are
(6, 0), (2, 2) and (4, 1). We have

H(T q , αT m) = H(T 2, αT ) = (α6 − 2α4 + 4α2)T 6 + α5T 7 + (5α4 + 1)T 10 − 3T 8 + · · ·

Since wewant to increase the T -order of H(T 2, αT ), wemust set α equal to a root of
P = Z6 − 2 Z4 + 4 Z2. We first note that P ∈ K[Z2]. Indeed, by construction, the
polynomial P always belongs toK[Zq ]. Note also that 0 is a root of P and we are not
interested in this root (we shall get the first non-zero term of the associated Puiseux
series by considering the edge �2). For these reasons, only the roots of the polyno-
mial φ = T 2 − 2 T + 4 are interesting. This polynomial is called the characteristic
polynomial of �1.
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The Newton polygon N(H)

Definition 5 If F = ∑
ai j X j Y i ∈ K[X, Y ], then the characteristic polynomial φ�

of � ∈ N(F) is defined by φ�(T ) = ∑
(i, j)∈� ai j T

i−i0
q ∈ K[T ], where i0 is the

smallest value such that (i0, j0) belongs to � for some j0.

Computing more terms. Let us sum up the computation of the first non zero term of
the Puiseux series of F at 0: we first compute the Newton polygonN(F) of F , then
the characteristic polynomialφ� for all the edges� ofN(F), and finally compute the
roots of these polynomials. Note that we assume that we can decide whether or not a
coefficient of F is 0 to be able to certify the correctness of our computations. At the
end of this section, we shall briefly discuss a symbolic-numeric strategy developed
in [21, 22] to overcome possibly costly symbolic computations.

Assuming the generalization of the above results for quasipolynomials (see the
next paragraph), if one of the roots of the characteristic polynomial leads to a purely
imaginary coefficient for one of the Puiseux series (in the sequel, such a root is
denoted by ξ ), we then have to compute its next term to decide on the stability of
the differential time-delay system. This can actually be done by applying the above

strategy to F
(

X, Y + ξ
1
q X

m
q

)
∈ K

(
ξ

1
q

) [
X

1
q , Y

]
, or similarly to the polynomial

F
(

Xq , Y + ξ
1
q Xm

)
∈ K

(
ξ

1
q

)
[X, Y ]. To avoid taking a qth root of ξ , following

[10, Sect. 4], we can consider the following polynomial

F�,ξ (X, Y ) = F(ξ v Xq , Xm (Y + ξ u))

Xl
∈ K(ξ)[X, Y ],

where u, v ∈ Z are such that u q − m v = 1 and m i + q j = l with (i, j) ∈ �.
Figure1 illustrates such a transformation.

Let us now introduce the concept of a rational Puiseux expansion.

Definition 6 A rational Puiseux expansion over K of F above 0 is a pair of non-

constant formal power series (X (T ), Y (T )) =
(
λ T e,

∑∞
j=0 β j T j

)
such that:

(i) e ≥ 1 and λ �= 0.
(ii) (X (T ), Y (T )) is a parametrization of F , i.e., F(X (T ), Y (T )) = 0.
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(iii) The parametrization (X (T ), Y (T )) of F is irreducible, namely e is minimal:
for any u > 1, Y (T ) /∈ K[[T u]].

From a rational Puiseux expansion of F , we can deduce e Puiseux series:

Yk(X) = Y
(
ζ k

e (λ−1 X)
1
e

)
=

∞∑

j=0

β j λ− j ζ k j
e X

j
e , 0 ≤ k ≤ e − 1.

The rational Newton–Puiseux algorithm [10, 22], which computes truncated
rational Puiseux expansions of F(X, Y ) = 0 at x0 = 0, is given below. It uses the
subroutine Factor(K, φ), that given a field K and φ ∈ K[T ], returns a finite
set {(φi , Mi )}i∈I of its irreducible factors and the associated multiplicities, i.e.
φi ∈ K[T ] is a monic and irreducible polynomial and φ = c

∏
i∈I φ

Mi
i , where c ∈ K

and Mi ∈ Z>0 for i ∈ I .

Algorithm RNPuiseux(F ,Ki ,π ):
Input: F ∈ K[X, Y ], monic and squarefree with K a field

π the result of previous computations (π = (X, Y ) for the initial call)
Output: Truncated rational Puiseux expansions of F

1 R ← {}; // results of the algorithm will be grouped in R
2 foreach � ∈ N(F) do
3 Compute m, q, l ∈ N s.t. q and m are coprime and m i + q j = l for all (i, j) ∈ �;
4 Compute (u, v) ∈ Z

2 such that u q − m v = 1 and φ� associated to � (see Definition 5);
5 foreach (φ, M) in Factor(K, φ�) do
6 Consider a new symbol ξ satisfying φ(ξ) = 0;
7 π1 = π(ξ v Xq , Xm (Y + ξu));
8 if M = 1 then R ← R ∪ {(π1(T, 0),K(ξ))};
9 else

10 G(X, Y ) ← F(ξ v Xq , Xm (Y + ξu))/Xl ; // Puiseux transformation
11 R ← R ∪ RNPuiseux(G,K(ξ), π1);

12 return R;

Fig. 1 Geometry of a change of variables: each diagonal becomes a horizontal line
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Thequasipolynomial case.Asmentioned in [15],we can approximate thequasipoly-
nomial by truncated power series. In [22, 23], it is shown that truncation bounds exist
to ensure the exactness of the Puiseux series. A first answer is therefore to compute
such an approximation and then apply the standard algorithm explained above.

For the computation of the first term, we can replace any coefficient access in the
polynomial case by an evaluation of some derivatives of the quasipolynomial [15].

For instance, if f (s, τ ) is a quasi-polynomial, then
(

1
2! 1!

∂3 f
∂2s ∂τ

)
(τ0, s0) corresponds

to the coefficient of the term (s − s0)2 (τ − τ0).
For higher order terms, instead of evaluating the derivatives of f at a point, we can

evaluate f at the truncated Puiseux series already computed (e.g., via the parameter
π of Algorithm RNPuiseux). It would also be interesting to develop such a strategy
and compare the two approaches.

Finally, the condition on line 8 in Algorithm RNPuiseux has to be changed.
Indeed, the aim of this algorithm is to desingularize the curve F(X, Y ) = 0, i.e.,
to stop when the multiplicity of the root ξ is 1. In our context, we stop when the
computed coefficient has a non-zero real part. This can happen before or after the
condition M = 1 is reached.

A symbolic-numeric strategy. In [21, 22], a symbolic-numeric strategy was devel-
oped to compute a numerical approximation of the Puiseux series coefficients with
correct exponents. Roughly speaking, the idea is to first compute the Puiseux series
modulo a well-chosen prime number, which gives the structure of the series (expo-
nents, etc.), and then to use it to conduct purely numeric operations. Adapting this
strategy to quasi-polynomials is an interesting challenge which will be studied.

Examples. We implemented a Maple prototype to compute the Puiseux series of
a quasipolynomial. Note that this is a symbolic algorithm. We illustrate the results
with examples and we show the logs of some computations (including the timing).

Example 4 We consider again the quasipolynomial defined in Example 2 and com-
pute its Puiseux series at (τ0, s0) = (2π, i). We get the following:

Newton polygon is [[0, 3], [2, 0]]

xi is 1/4*I

Real part of the coefficient is 1/4*2ˆ(1/2)

It took .88e-1 seconds

Thus, we obtain�s =
√
2

4
(1 + i) (�τ)

3
2 ≈ (.3535 + .3535 i) (�τ)

3
2 . Thus, for

�τ > 0 (resp., �τ < 0), i.e., for an increasing (resp., decreasing) delay τ >

2π (resp., τ < 2π ), (�τ)
3
2 = ± (�τ)

√
�τ (resp., (�τ)

3
2 = ± i (−�τ)

√−�τ ),

which yieldsR(�s) = ±
√
2

4
(�τ)

√
�τ (resp.,R(�s) = ±

√
2

4
(−�τ)

√−�τ ).

Therefore, the double root i splits into two branches toward C+ and C− = {s ∈
C | R(s) < 0}, which shows that the quasipolynomial is unstable for small variation
around τ = 2π .
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Example 5 Let us consider the quasipolynomial F(τ, s) = ∑4
k=0 ak(s) e−k s τ ,where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a4(s) = s3 + 2 s2 + 2 s + 1,
a3(s) = 3 s3 + 9 s2 + 9 s + 4,
a2(s) = 5

4 π s5 + 11
4 π s4 + 3 s3 − π s3 + 1

2 s2π + 13 s2 + 15 s − 9
4 s π + 6 − 9

4 π,

a1(s) = 5
4 π s5 + 11

2 π s4 + s3 + 7
2 π s3 + s2 π + 7 s2 + 11 s + 9

4 s π + 4 − 9
2 π,

a0(s) = 1 + 3 s + 9
2 π s3 + s2 − 45

8 π2 + 9
2 s π − 15

8 s4 π2 + 1
2 s2 π − 75

8 s2 π2

− 9
4 π + 11

4 π s4 + 15
8 π2 s6,

considered in [17]. Computing the Puiseux series at the point (5π, i), we obtain:

Newton polygon is [[0 2] [1 1] [4 0]]

Edge 1, xi is -((1/2)*I)/Pi

Real part is 0; Going for a recursive call

Newton polygon is [[0 1] [1 0]]

xi is (-3/208+(1/104)*I)*(117*Pi+2-3*I)/Piˆ2

Real part is -(27/16)/Pi, We’re done.

Edge 2, xi is ((6/5)*I)/(50*Piˆ3-30*Piˆ2-3*Pi)

Real part is 0; Going for a recursive call

Newton polygon is [[0 1] [1 0]]

xi is (see below)

real part is non zero. We’re done.

It took 3.596 seconds

We obtain the two Puiseux series �s = −0.1591 i �τ − (0.5371 − 0.3644 i) and
�s = −0.0987 i (�τ)1/3 − (0.03557 − 0.0028 i) (�τ)2/3. The coefficient growth
is important in this example. For instance, the root ξ that is not written above is:

3

25π2

200 i π2 − 180 i π − 750π3 − 21 i + 600π2

125000π6 − 225000π5 + 112500π4 − 6750π2 − 810π − 27
.

This explains that the running time is longer than for Example 4. This fact advo-
cates for the development of an efficient symbolic-numeric strategy.
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Delay-Dependent Reciprocally Convex
Combination Lemma for the Stability
Analysis of Systems with a Fast-Varying
Delay

Alexandre Seuret and Frédéric Gouaisbaut

1 Introduction

This paper aims at providing less conservatism and computationally efficient stabil-
ity conditions for linear systems subject to fast-varying delays. This class of delays
corresponds to the situation where the function representing the delay varies with
time and lies in a bounded interval of (0,∞). No assumption on the derivative of the
delay function are imposed. This topic of research has attracted many researchers
over the past decades (see for instance [1, 7, 14, 15] and the reference therein).
The main difficulties for the study of such a class of systems rely on two technical
steps that are the derivation of efficient integral and matrix inequalities. Indeed, the
differentiation of usual Lyapunov-Krasovskii functional candidates leads to integral
quadratic terms that cannot be included straightforwardly in a linear matrix inequal-
ity (LMI) setup. Including these terms requires the use of integral inequalities such
as Jensen [3], Wirtinger-based [9], auxiliary-based [5, 8] or Bessel inequalities [10].
Although these inequalities have shown a great interest for constant delay systems,
their application to time- or fast-varying delays reveals additional difficulties related
to the non convexity of the resulting terms. Therefore, some matrix inequalities are
employed to address this last problem and to derive convex conditions. A huge num-
ber of papers (see e.g. [7, 15] and the references therein) have studied the ways
to combine efficiently integral and matrix inequalities. Hence, a first method corre-
sponds to the application of Young’s or Moon’s inequalities [6], after the application
of an integral inequality, which basically results from the positivity of a square posi-
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tive definite term. It can also be noted that the recent free-matrix inequality [16] can
be interpreted as the merge of the Wirtinger-based inequality and Moon’s inequality.
Recently, the reciprocally convex lemma was proposed in [7]. The novelty of this
method consists in merging the non convex terms into a single expression to derive
an accurate convex inequality. It was notably shown that the conservatism of the
reciprocally convex combination lemma [7] and the Moon’s inequality are similar
when considering Jensen-based stability criteria, with a lower computational burden.
In the present paper, the objective is to refine the reciprocally convex lemma by intro-
ducing delay dependent terms. The resulting lemma includes the initial reciprocally
convex lemma as a particular case. Examples show a clear reduction of conservatism
at a reasonable increase of the computational cost.

Notations: Throughout the paper Rn denotes the n-dimensional Euclidean space
and R

n×m and S
n are the set of n × m real matrices and of n × n real symmet-

ric matrices, respectively. Moreover the notation P ∈ S
n+, means that P ∈ S

n and
P � 0, which means that P is symmetric positive definite. For any matrices A,B of
appropriate dimension, the matrix diag(A,B) stands for

[
A 0
0 B

]
. The matrices In and

0n,m represent the identity and null matrices of appropriate dimension and, when no
confusion is possible, the subscript will be omitted. For any h > 0 and any func-
tion x : [−h, +∞) → R

n, the notation xt(θ) stands for x(t + θ), for all t ≥ 0 and
all θ ∈ [−h, 0]. Finally, for given positive scalars h1 ≤ h2, we use the notation
h21 = h2 − h1.

2 Problem Formulation and Preliminaries

Consider a linear time-delay system of the form:

{
ẋ(t) = Ax(t) + Adx(t − h(t)), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−h2, 0], (1)

where x(t) ∈ R
n is the state vector, φ is the initial condition and A, Ad ∈ R

n×n are
constantmatrices. The delay h(t) is assumed to be a continuous time-varying function
for which there exist positive scalars h1 ≤ h2 such that

h(t) ∈ [h1, h2] , ∀t ≥ 0. (2)

No assumption on ḣ is included to represent fast-varying delays. When possible, the
time argument of the delay function h will be omitted.

Objectives

Looking at the literature, providing efficient stability conditions for time-varying or
fast-varying delay systems relies on the accuracy of matrix and integral inequalities.
There are mainly two directions for deriving less conservative stability conditions.
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First, a lot of attention has been paid recently to integral inequalities such as Jensen’s
[3], Wirtinger-based [9] or Bessel’s inequalities [10], auxiliary functions [8] or on
free-weighting matrix [16]. They indeed represent tools to efficiently reduce the
conservatism of the conditions, at least in the constant delay case. In this paper, we
will only concentrate on the Wirtinger-based inequality stated in the next lemma
taken from [9], noting that the main result of this paper can be adapted to the other
integral inequalities.

Lemma 1 (Wirtinger-Based inequality) Let R ∈ S
n+ and x be a continuously differ-

entiable function from [−h2, −h1] to Rn. The following inequality holds

h21

∫ −h1

−h2

ẋT (s)Rẋ(s)ds ≥ ωT
0 Rω0 + 3ωT

1 Rω1,

where ω0 = x(−h1) − x(−h2), and ω1 = x(−h1) + x(−h2) − 2/h21
∫ −h1
−h2

x(s)ds.

Second, when considering time-varying delays, the problem often relies on finding
lower bound �m of the parameter dependent matrix given by [7–9]

∀α ∈ (0, 1),

[ 1
α
R 0
0 1

1−α
R

]
	 �m.

There are two main methods to find lower bounds �m. The first one is based on the
Moon’s inequality (see, for instance, the survey paper [15]). The secondmethod is the
so-called reciprocally convex combination lemmadeveloped in [7]. The conservatism
induced by these two inequalities are independent. While, in some cases, such as
stability conditions resulting from the application of the Jensen inequality, the two
methods lead to equivalent results on examples, the reciprocally convex combination
lemma is in general more conservative thanMoon’s inequality (see for instance [16]).
In this paper, we present an extended version of the reciprocally convex combination
lemma, which reduces notably the conservatism of the resulting stability conditions.

3 Extended Reciprocally Convex Inequality

This section is devoted to the derivation of a new matrix inequality which refines the
reciprocally convex combination lemma from [7]. It is presented in the next lemma.

Lemma 2 Let n be a positive integer, and R in S
n. If there exist X1,X2 in S

n and
Y1,Y2 in Rn×n such that

[
R 0
0 R

]
− α

[
X1 Y1
YT
1 0

]
− (1−α)

[
0 Y2
YT
2 X2

]
	 0 (3)

for α = 0, 1, the next inequality holds, for all α ∈ (0, 1)
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[ 1
α
R 0
0 1

1−α
R

]
	

[
R 0
0 R

]
+(1−α)

[
X1 Y2
YT
2 0

]
+α

[
0 Y1
YT
1 X2

]
(4)

Proof Following [7], the proof consists in noting that

[ 1
α
R 0
0 1

1−α
R

]
=

[
R 0
0 R

]
+

[ 1−α
α
R 0

0 α
1−α

R

]
. (5)

The objective is to find a lower bound of the second term of the right-hand-side of
(5). Using a convexity argument, if (3) holds for α = 0, 1, it also holds for any α in

[0, 1]. Then, by pre- and post-multiplying inequality (3) by

⎡

⎣

√
1−α
α
I 0

0
√

α
1−α

I

⎤

⎦ , for

all α in (0, 1), we obtain

[ 1−α
α R 0
∗ α

1−α
R

]
	α

[ 1−α
α X1 Y1
YT
1 0

]
+(1−α)

[
0 Y2
YT
2

α
1−α

X2

]
=(1 − α)

[
X1 Y2
YT
2 0

]
+ α

[
0 Y1
YT
1 X2

]
.

(6)
for all α in (0, 1). Re-injecting (6) into (5) concludes the proof. �

It is worth noting that (3) is affine with respect to α, therefore it suffices to
verify the inequality at the boundary of the interval [0, 1]. The second inequality of
the previous lemma provides a lower bound which is also affine, and consequently
convex in α. Note moreover that, selecting X1 = X2 = 0 and Y1 = Y2 = Y ∈ R

n×n,
inequalities (3) and (4) recover the reciprocally convex combination lemma [7].
Therefore, Lemma 2 brings additional degrees of freedom and is potentially less
conservative.

The conditions of Lemma 2 can be straightforwardly extended to find a lower

bound of the matrix

[ 1
α
R1 0
0 1

1−α
R2

]
, where α ∈ (0, 1), R1 and R2 are in S

n+ and S
m+,

respectively, where n and m in N are not necessarily equal.

4 Stability Conditions and Potentialities

The following stability theorem is provided.

Theorem 1 Assume that there exist matrices P in S
3n+ , S1, S2,R1,R2 in S

n+, X1,X2

in S2n+ and two matrices Y1,Y2 in R2n×2n, such that the conditions

[
R̃2 0
0 R̃2

]
−

[
X1 Y1
YT
1 0

]
	0,

[
R̃2 0
0 R̃2

]
−

[
0 Y2
YT
2 X2

]
	0, (7)

�(hi) = �0(hi) − �T	(hi)� ≺ 0, (8)
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are satisfied, for i = 1, 2, where

�0(θ) = GT
1 (θ)PG0 + GT

0PG1(θ) + Ŝ + gT0 (h21R1 + h212R2)g0,
Ŝ = diag(S1,−S1 + S2, 0n,−S2, 03n),
R̃i = diag(Ri, 3Ri), ∀i = 1, 2,

(9)

	(h1) = diag

(
R̃1,

[
R̃2 0
0 R̃2

]
+

[
X1 Y2
YT
2 0

])
,

	(h2) = diag

(
R̃1,

[
R̃2 0
0 R̃2

]
+

[
0 Y1
YT
1 X2

])
,

(10)

and where the matrices g0, � and Gi, for i = 0, 1, . . . 4 are given by

g0 = [
A 0 Ad 0 0 0 0

]
,

G0 =
⎡

⎣
A 0 Ad 0 0 0 0
I −I 0 0 0 0 0
0 I 0 −I 0 0 0

⎤

⎦ ,

G1(θ) =
⎡

⎣
I 0 0 0 0 0 0
0 0 0 0 h1I 0 0
0 0 0 0 0 (θ − h1)I (h2 − θ)I

⎤

⎦ ,

G2 =
[
I −I 0 0 0 0 0
I I 0 0 −2I 0 0

]
,

G3 =
[
0 I −I 0 0 0 0
0 I I 0 0 −2I 0

]
,

G4 =
[
0 0 I −I 0 0 0
0 0 I I 0 0 −2I

]
, � =

⎡

⎣
G2

G3

G4

⎤

⎦ .

(11)

Then system (1) is asymptotically stable for all time-varying delay h satisfying (2).

Proof Consider the Lyapunov-Krasovskii functional introduced in [12], given by

V (xt, ẋt) =
⎡

⎢
⎣

x(t)∫ t
t−h1

x(s)ds
∫ t−h1
t−h2

x(s)ds

⎤

⎥
⎦

T

P

⎡

⎢
⎣

x(t)∫ t
t−h1

x(s)ds
∫ t−h1
t−h2

x(s)ds

⎤

⎥
⎦

+
∫ t

t−h1

xT (s)S1x(s)ds +
∫ t−h1

t−h2

xT (s)S2x(s)ds,

+ h1

∫ 0

−h1

∫ t

t+θ

ẋT (s)R1ẋ(s)ds + h12

∫ −h1

−h2

∫ t

t+θ

ẋT (s)R2ẋ(s)ds,

(12)

wherewe recall that h12 = h2 − h1. Note that the positive definiteness ofP, S1, S2,R1

and R2 implies the positive definiteness of the functional V . Following the same
procedure as in [12], the differentiation of the functional V along the trajectories of
system (1) leads to
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V̇ (xt, ẋt) = ζ T (t)�0(h)ζ(t) − h1

∫ t

t−h1

ẋT (s)R1ẋ(s)ds

− h12

∫ t−h1

t−h2

ẋT (s)R2ẋ(s)ds,
(13)

with �0(h) given in (9) and ζ(t)= [ζ T
1 (t), ζ T

2 (t)]T with

ζ1(t)=

⎡

⎢⎢
⎣

x(t)
x(t − h1)
x(t − h)
x(t − h2)

⎤

⎥⎥
⎦, ζ2(t)=

⎡

⎢
⎣

1
h1

∫ t
t−h1

xT (s)ds
1

h−h1

∫ t−h1
t−h xT (s)ds

1
h2−h

∫ t−h
t−h2

xT (s)ds

⎤

⎥
⎦ .

Applying Lemma 1 to the two integral terms, after splitting the second integral into
two parts, leads to

V̇ (xt, ẋt) ≤ ζ T (t)
(
�0(h) − �T	(h)�

)
ζ(t), (14)

where � is given in (11) and

	(h) = diag

(

R̃1,

[
h12
h−h1

R̃2 0
∗ h12

h2−h R̃2

])

.

Define α = (h − h1)/h12. Then Lemma 2 ensures that, if there exist matrices X1,X2

in S2n and Y1,Y2 in R2n×2n such that conditions (7) hold, then we have

	(h) 	 (1 − α)	(h1) + α	(h2).

Noting that the matrix �0(h) is affine in h, we have �0(h) = (1 − α)�0(h1) +
α�0(h2) and it holds

V̇ (xt, ẋt) ≤ ζ T (t) [(1 − α) �(h1) + α�(h2)] ζ(t).

Therefore if the two LMIs �(h1) ≺ 0 and �(h2) ≺ 0 are satisified, any linear com-
bination of these two matrices is also definite negative and we can conclude that the
system is asymptotically stable for all time-varying delay in the interval [h1 h2]. �

It is worth noting that the proof of Theorem 1 is very similar to the one provided
in [12]. The only difference relies on the use of Lemma 2. The impact in terms
of reduction of the conservatism will be exposed in the example section. It is also
possible to limit the number of additional decision variables in Theorem 1 with
respect to [12]. The following corollary is provided where only a symmetric matrix
X and a matrix Y are introduced.

Corollary 1 Assume that there exist matrices P in S3n+ , S1, S2,R1,R2 in Sn+, X in S2n+
and Y in R

2n×2n, such that the conditions (7) and (8) hold with X1 = X2 = X and
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Y1 = Y2 = Y . Then system (1) is asymptotically stable for any time-varying delay h
satisfying (2).

The only remaining difference with respect to [12] is the introduction of a sym-
metric matrix X . We will show in the example section, that the sole introduction
of this matrix leads to a notable reduction of the conservatism. We have presented
here an application of Lemma 2, which copes with the case of systems subject to a
fast-varying delay. It is worth mentioning that this lemma is also relevant for systems
subject to a slow-varying delay, which usually includes the constraints ḣ < 1. We
have only presented howLemma2 can be combinedwith theWirtinger-based integral
inequality. Other recent integral inequalities such that the auxiliary function-based
inequality [8] or the Bessel-Legendre inequality [10] can be associated to Lemma 2
in order to obtain new efficient stability conditions.

5 Illustrative Examples

Three numerical examples from the literature illustrate the efficiency of the proposed
conditions in Theorems 1 and its corollary. Before entering into the numerical results,
a discussion on the numerical complexity of the various stability conditions for
system system (1)–(2) is deserved. Table 1 points out the number of decision variables
involved in Theorem 1 and Corollary 1 compared with the ones from existing results
from the literature. For the next three examples, we expose in Tables 2, 3 and 4, the
maximal upper-bound, h2 of the delay functions for various values of h1 obtained
by solving by Theorem 1, its corollary and several recent stability conditions from
literature.

There exists a large number of papers dealing with the stability analysis of such a
class of systems. Because of space limitations, we consider only few representative
conditions from the literature. On a first side, we present conditions derived using
Jensen’s inequality [2, 7], Wirtinger-based inequality [12], auxiliary-based inequal-
ity [8] and the recent free-matrix-based inequality [16]. On the other hand, we also
discriminate conditions issued from Moon’s inequalities [2, 16], or on the recipro-
cally convex combination lemma [7, 8, 12]. At last, the theorem proposed in [8]

Table 1 Number of decision variables involved in several conditions from the literature and in
Theorem 1 and Corollary 1

Th. No. of variables Th. No. of variables

[7] 3.5n2 + 2.5n [2] 11.5n2 + 3.5n

[8] 21n2 + 6n [12] 10.5n2 + 3.5n

[16] 54.5n2 + 9.5n

Th. 1 18.5n2 + 5.5n Cor. 1 12.5n2 + 4.5n
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Table 2 Example 1: Admissible upper bounds of h2 for different h1
h1 0.0 0.4 0.7 1.0 2.0 3.0

[7] 1.86 1.88 1.95 2.06 2.61 3.31

[2] 1.86 1.89 1.98 2.12 2.72 3.45

[12] 2.11 2.17 2.23 2.31 2.79 3.49

[8] 2.14 2.19 2.24 2.31 2.80 3.50

[16] 2.18 2.21 2.25 2.32 2.79 3.49

Th. 1 2.21 2.25 2.28 2.34 2.80 3.49

Cor. 1 2.19 2.24 2.28 2.34 2.80 3.49

Table 3 Example 2: Admissible upper bounds of h2 for different h1
h1 0.0 0.3 0.5 0.8 1.0 2.0

[4] 0.77 0.94 1.09 1.34 1.51 2.40

[13] 0.87 1.07 1.21 1.45 1.61 2.47

[7] 1.06 1.24 1.38 1.60 1.75 2.58

[12] 1.19 1.35 1.47 1.67 1.82 2.63

[8] 1.19 1.35 1.47 1.67 1.82 2.63

[16] 1.20 1.35 1.47 1.67 1.82 2.63

Th. 1 1.20 1.35 1.47 1.67 1.82 2.63

Cor. 1 1.20 1.35 1.47 1.67 1.82 2.63

Table 4 Example 3: Admissible upper bound of h2 for different h1
h1 0.0 0.3 0.7 1.0 2.0

[12] 1.59 2.01 2.41 2.62 3.59

[8] 1.64 2.13 2.70 2.96 3.63

[16] 1.80 2.19 2.58 2.79 3.68

Th. 1 1.76 2.18 2.59 2.79 3.75

Cor. 1 1.69 2.11 2.50 2.71 3.67

are based on an integral inequality, which is proven to be less conservative than the
Wirtinger-based inequality.

Example 1 Consider the following much-studied linear time-delay system (1)–(2)
with

A =
[−2 0
0 −0.9

]
, Ad =

[−1 0
−1 −1

]
.

The results obtained by solving Theorem 1 and its corollary show a clear reduction
of the conservatism. Moreover, the improvements due to the use of Lemma 2 and its
corollary can be seen when comparing the results obtained with [12] and the stability
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conditions provided in the present paper. Indeed the only difference between these
two papers is the use of the delay-dependent reciprocally convex lemma. Moreover,
it is worth noting that Theorem 1 and its corollaries provide less conservative results,
on this example, than other conditions from the literature except for [8] with h1 = 3.
This improvement of [8] can be explained by the use of the auxiliary function integral
inequality, which is less conservative than theWirtinger-based inequality. As noted at
the end of Sect. 4, it is possible to reduce the conservatism of the stability conditions
by considering less conservative integral inequalities, but this will not be presented
in this note, because it is out of the scope of this paper.

It is also worth noting that Theorem 1 and its corollary leads in general to the same
results except for small lower bounds h1 = 0 even if the computational complexities
of the stability conditions are different. This is due to the fact that when the quantity
h21 is large, more decision variables need to be included to enlarge the maximal
allowable delay h2.

Example 2 We consider now the linear time-delay system (1)–(2), taken from [7],
with

A =
[
0 1

−1 −2

]
, Ad =

[
0 0

−1 1

]
.

For this example, we present in Table 3 the maximal allowable upper-bound of the
delay obtained, for different values of h1, by application of various conditions from
the literature and the ones presented in this paper. We first note that Theorem 1, its
corollary and the conditions from [8, 12, 16] deliver the same results, (except when
h1 = 0 for [8, 12]), while their associated number of decision variables are different
(see Table 1). This demonstrates again the potential of the improved reciprocally
convex lemma.

Example 3 Consider system (1) borrowed from [8] with the following matrices

A =
[

0 1
−10 −1

]
, A1 =

[
0 0.1
0.1 0.2

]
.

Table 4 presents admissible upper bound of h2 for different h1. We can see that the
method of Theorem 1 is competitive with the stability conditions.

Table 4 shows that the conditions from [8, 16] and from Theorem 1 provide less
conservative results than [12]. Then depending on the value of the lower bound of
the delay, h1, the best numerical results are obtained by the conditions from [8, 16]
or from Theorem 1. For small values of h1, deliver [16] provides less conservative
results. A possible interpretation is that the free matrix-based inequality introduces
a large number of decision variables. This example proves that this additional com-
plexity is in some case relevant. When for greater values of h1, the best results
are obtained by [8]. Again, this is due to the fact that this results relies on a less
conservative integral inequality. Finally for larger values of h1, the best numerical
results are provided by Theorem 1, which demonstrates, again, the potential of the
delay-dependent reciprocally convex combination lemma.
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6 Conclusions

In this chapter, an improved version of the reciprocally convex lemma is provided.
The novelty of this technical lemma brings a notable reduction of the conservatism
of LMI stability conditions for fast-varying delay systems, on some examples, with a
reasonable additional computational burden, which is still lower than the most recent
and efficient conditions from the literature.

In this chapter we have introduced a new stability conditions based on a refined
reciprocally convex lemma and on the application of the Wirtinger-based integral
inequality. This integral inequality has been the subject of many improvements
through, for example, the auxiliary function based inequality, the free-matrix-based
integral inequality or the Bessel-Legendre inequality. Several recent papers have
already consider similar results related to Lemma 2 and more involved integral
inequality as in [11, 17] or more involved Lyapunov-Krasovskii functionals as for
instance in [18].

References

1. Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control. Springer, Berlin
(2014)

2. Fridman, E., Shaked, U., Liu, K.: New conditions for delay-derivative-dependent stability.
Automatica 45(11), 2723–2727 (2009)

3. Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings
of the IEEE Conference on Decision and Control (2000)

4. He, Y., Wang, Q., Lin, C., Wu, M.: Delay-range-dependent stability for systems with time-
varying delay. Automatica 43(2), 371–376 (2007)

5. Hien, L., Trinh, H.: Refined Jensen-based inequality approach to stability analysis of time-delay
systems. IET Control. Theory Appl. 9(14), 2188–2194 (2015)

6. Moon, Y., Park, P., Kwon, W., Lee, Y.: Delay-dependent robust stabilization of uncertain state-
delayed systems. Int. J. Control. 74(14), 1447–1455 (2001)

7. Park, P., Ko, J., Jeong, C.: Reciprocally convex approach to stability of systems with time-
varying delays. Automatica 47(1), 235–238 (2011)

8. Park, P., Lee, W., Lee, S.: Auxiliary function-based integral inequalities for quadratic functions
and their applications to time-delay systems. J. Frankl. Inst. 352(4), 1378–1396 (2015)

9. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay sys-
tems. Automatica 49(9), 2860–2866 (2013)

10. Seuret, A., Gouaisbaut, F.: Hierarchy of LMI conditions for the stability of time delay systems.
Syst. Control. Lett. 81, 1–7 (2015)

11. Seuret, A., Gouaisbaut, F.: Stability of linear systems with time-varying delays using Bessel-
Legendre inequalities. IEEE Trans. Autom. Control. (2017, to appear)

12. Seuret, A., Gouaisbaut, F., Fridman, E.: Stability of systems with fast-varying delay using
improved Wirtinger’s inequality. In: IEEE Conference on Decision and Control, pp. 946–951,
Florence, Italy, December 2013

13. Shao, H.: New delay-dependent stability criteria for systems with interval delay. Automatica
45(3), 744–749 (2009)

14. Su, H., Ji, X., Chu, J.: New results of robust quadratically stabilizing control for uncertain
linear time-delay systems. Int. J. Syst. Sci. 36(1), 27–37 (2005)



Delay-Dependent Reciprocally Convex Combination … 197

15. Xu, S., Lam, J.: A survey of linear matrix inequality techniques in stability analysis of delay
systems. Int. J. Syst. Sci. 39(12), 1095–1113 (2008)

16. Zeng, H., He, Y., Wu, M., She, J.: Free-matrix-based integral inequality for stability analysis
of systems with time-varying delay. IEEE Trans. Autom. Control. 60(10), 2768–2772 (2015)

17. Zhang, C.-K., He, Y., Jiang, L., Wu, M., Wang, Q.-G.: An extended reciprocally convex matrix
inequality for stability analysis of systems with time-varying delay. Automatica (2017)

18. Zhang,X.-M.,Han,Q.-L., Seuret,A.,Gouaisbaut, F.:An improved reciprocally convex inequal-
ity and an augmented Lyapunov–Krasovskii functional for stability of linear systems with
time-varying delay. Automatica (2017, to appear)



Wave Equation Modelling and Freeness
Properties for Wind Power Systems

Hugues Mounier and Luca Greco

1 Introduction

We here model the electric power system with transmission lines, generators and
loads to be a continuum. A distributed placement of the string of generators leads to
a wave equation model, whose disturbances are called inter area oscillations [3, 10,
13, 16, 18]. The involved wave equations are amenable to delay systems, the study
of which has a rich literature. Quite a few authors have used algebraic techniques [1,
2, 9]. We here envision the problem using module theoretic techniques, which have
been used for delay systems ([4–6] aswell as for distributed parameter systems [7, 12,
15, 17]). The main advantages of this approach are threefold: notions are intrinsic to
the system, many controllability notions can be recast in this setting using extension
of scalars, and a complete system parametrization is obtained through the freeness
property (the linear analogue to differential flatness of lumped nonlinear systems).

The module properties of torsion freeness, projectivity and freeness, as well as
the change of base ring through tensor product (i.e. extension of scalars) give rise to
a huge number of possible controllability notions. One can then combine the choice
of the base ring (the simplest, i.e. the nearest to a principal ideal domain, the better)
and the module property (the strongest, i.e. the nearest to freeness, the better) to
obtain a basis which can generate all the distributed system (such a system can be
viewed as a collection of input/output systems parametrized by the spatial variable).
The present contribution is based on a first version which appeared in [11].
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The goal of this chapter is first to propose a seemingly new type of model for the
inter area oscillations in wind power systems, and second to give some controllability
(e.g. flatness) results for very simple configurations, as a first step.

The paper is organized as follows: in Sect. 2, the module theoretic setting is
recalled. In Sect. 3, two models are reviewed, one stemming from the literature,
and another new one. The control appearing at the boundary is supposed to come
from a wind farm. In Sect. 4, the controllability properties of the two systems are
given, wherefrom a placement of the wind farm can be deduced.

2 Module Theoretic Setting

2.1 R-Linear Systems

We shall consider in this section quite general definitions for linear systems viewed
as modules over a ring R (see, e.g., [5]).

Definition 1 An R-system �, or a system over R, is an R-module. A presentation
matrix of a finitely presentedR-system� is a matrixP such that� ∼= [v]/[Pv]where
[v] is free with basis v. An output y is a subset, which may be empty, of �.

Remarks 1 (i) Finite dimensional systems will be modules over R = R[ d
dt ]; sys-

tems with pointwise delays will be modules over R = R[ d
dt , δ], where δ =

(δ1, . . . , δr) are the pointwise delay operators, i.e. δif (t) = f (t − hi) for some
hi ∈ R, the amplitude of the delay.

(ii) Recall that a module is a linear structure admitting the very same axioms as
the ones of vector spaces, the sole difference being that the scalars are taken in
a ring instead of being taken in a field. In informal terms, a finite dimensional
system with equations

a
(
d
dt

)
y = b

(
d
dt

)
u

where a, b ∈ R = R[ d
dt ] will be represented by a set formed of all the linear

combinations of y, u and their derivatives, such that the above relation is satisfied

� =
{
p
(
d
dt

)
y + q

(
d
dt

)
u

∣∣∣ p, q ∈ R, a
(
d
dt

)
x = b

(
d
dt

)
u
}

(iii) A finitely generated module over R[ d
dt , δ] is entirely specified by the datum of

generators and of a set of relations (the latter being itself a module) verified by
the latter. The module is then said to be given by generators and relations. We
then have generators � = [w1, . . . ,wα] = [w] and relations,

P�( d
dt , δ)w = 0
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where P� ∈ R[ d
dt , δ]β×α and rk

R[ ddt ,δ]
P� = β. The matrix P� is named a pre-

sentation matrix of �. Let us remark that this matrix is not unique.

The next definition allows, by extension of scalars, to obtain much nicer algebraic
properties when needed.

Definition 2 Let A be an R-algebra and � be an R-system. The A-module A ⊗R �

is an A-system, which extends �.

Examples 1 (i) Let �1 be an R[ d
dt , δ]-system (i.e. a pointwise delay system) with

y, u as generators and

ẏ = δu, or ẏ(t) = u(t − h)

as relation. In such a system, no advance is allowed. In the extended system
R[ d

dt , δ, δ
−1] ⊗

R[ ddt ,δ]
�1, advances are allowed, and one may write

u = δ−1ẏ, or u(t) = ẏ(t + h)

Similarly, let �2 be the R[ d
dt , δ]-system with y, u as generators and

ẏ = (1 + δ)u, or ẏ(t) = u(t) + u(t − h)

as relation. In the extended system R[ d
dt , δ, (1 + δ)−1] ⊗

R[ ddt ,δ]
�2, one may

write

u = (1 + δ)−1ẏ, or u(t) = 1

1 + δ
ẏ(t + h)

2.2 System Controllabilities

In this sectionwe emphasize several controllability notionswhich are defined directly
without referring to a solution space (see e.g., [5]). We shall explicit three algebraic
properties of modules, which are directly relevant to controllability.

Torsion. Let us first explicit an important notion for controllability studies: that
of torsion Consider a finite dimensional system �, modelled by a module over the
ring R[ d

dt ]. An element w of � is said torsion if it exists a non void polynomial p of
R[ d

dt ] such that
p( d

dt )w = 0

Note that this phenomenon cannot happen in a non trivial manner in a vector space;
indeed, a relation of the form pw = 0 in a vector space implies w = 0, since p
is invertible as element of a field. A torsion element of � satisfies a differential
equation with coefficients in R. A module whose elements are all torsion is said
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torsion. On the contrary, a module with no torsion element is said torsion free. The
absence of torsion means that no variable satisfies an autonomous differential (resp.
difference-differential,…, according to the ring R) equation, i.e. non influenced by
the input.

Freeness and Projectivity. The freeness amounts to the existence of a basis, i.e. a
maximally independent and minimally generating set of the module. A basis always
exists in a vector space, which is far from being the case for modules, since non
constant scalars may not be invertible.

The projectivity covers the notion of sub space of a freemodule. On the one hand, a
sub-moduleM of a freemoduleN may be free but not necessarily a term in direct sum
ofN ; on the other hand, there may be terms in direct sum ofN which are not free. It is
this latter concept which furnishes a natural generalisation of the notion of sub-space.
AmoduleM over a commutative ringR is said to be projective ifN = M ⊕ M̃ where
N is a free module; M̃ is then also projective for the same reason. A characterization
of projectivity is the following: being given a module M over a commutative ring
R, M is projective if a presentation matrix PM (PM ∈ Rβ×α, rkRPM = β) is right
invertible (if there exists Q ∈ Rα×β such that PMQ = Iβ).

Note that this characterization is directly linked to matrix Bezout equations. If we
consider a dynamics � with equations

ẋ = F(δ)x + G(δ)u

with F and G matrices with coefficients in R[δ] of appropriate size, the projectivity
of � amounts to the existence of matrices F and G with coefficients in R[δ] such
that [

d

dt
In − F(δ)

]
F( d

dt , δ) + G(δ)G( d
dt , δ) = In.

This type of equations has be used for stabilization purposes by Vidyasagar and
others.

Definition 3 Let A be an R algebra. An R-system � is said to be A-torsion free
controllable (resp. A-projective controllable, A-free controllable) if the A-module
A ⊗R � is torsion free (resp. projective, free). An R-torsion free (resp. R-projective,
R-free) controllable R-system is simply called torsion free (resp. projective, free)
controllable.

Examples 2 (i) Consider the model �1 with equations

ẋ1 = x1
ẋ2 = x1 + u

The element x1 is torsion, hence �1 is not free.
(ii) Consider the model �2 with equations
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ẋ1 = x1 − u

ẋ2 = x1 + u

The model �2 is free, with basis ω = x1 + x2. Indeed, by summing up the two
equations, we have

x1 = 1

2
ω̇

then, the definition of ω yields

x2 = ω − 1

2
ω̇

and, through the first equation

u = x1 − ẋ1 = 1

2
(ω̇ − ω̈)

Remark 1 The presence of torsion elements is a severe obstruction to controllability.
In example i above, one has ẋ1 = x1 whatever the value of u may be. The torsion
freeness character could have been taken as the definition for a controllability notion,
but it is not constructive, whereas the freeness is.

Elementary homological algebra (see, e.g., [14]) yields

Proposition 1 A-free (resp. A-projective) controllability implies A-projective (resp.
A-torsion free) controllability.

Proposition 2 R-free controllability implies A-free controllability for any R-algebra
A. More generally, given any R-system � that is a direct sum of a torsion module
t� and a free module �, the extended system A ⊗R � is a direct sum of the torsion
module A ⊗R t� and the free module A ⊗R �.

Definition 4 Take an A-free controllable R-system � with a finite output y. This
output is said to be A-flat, or A-basic, if y is a basis of A ⊗R �. If A ∼= R then y is
simply called flat, or basic.

3 Modelling

3.1 Distributed Parameter System Models

The following derivation is taken from [3, 10]. Consider a transmission line with
series of generators. The generation Gi and power angle change δi are supposed to
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be continuously distributed over the spatial dimension z. The Rotor dynamics of the
ith generator is taken to be (see, e.g. [8])

(
2Hi

�s

)
δ̈i + χδ̇i = Pi (1)

with Hi the inertia constant, �s the electrical frequency with 60Hz base, Pi the real
power flowing out the ith machine, and χ a damping coefficient. Then, the real power
flow from node i to node i + 1 over a lossless line is

Pi,i+1 = EiEi+1 sin(δi − δi+1)

xi

with Ei the voltage magnitude at bus i and xi is the linearized effective impedance
betweenmachine i and i + 1.We thenmake the following two standard assumptions:
the change angle δi is small and Ei = 1. With these, we get

Pi = Pi+1,i − Pi,i+1 = (δi−1 − δi)(δi − δi+1)

xi

By substitution and division by 
L = xi+1 − xi, one obtains

2

�i

Hi


L
δ̈i + χ


L
δ̇i = 
L

xi

δi − δi−1

(
L)2
− 
L

xi

δi − δi+1

(
L)2

Then, taking the limit 
L → 0, and setting

HT = 1

L

∫ L

0
dH (z), H (L) = LHT , γ = x(L)

L
, η = χ(L)

L

yields, with ν = √
377/2HTγ (see, e.g. [10])

∂2
t δ(z, t) + η ∂tδ(z, t) = ν2 ∂2

z δ(z, t) (2)

The quantity dH/dz is the inertia density of the continuous model, whereas Hi is the
density of generator i in a discrete model. The corresponding power flow is

P(z, t) = − 1

γ
∂zδ(z, t) (3)

This type ofmodel has beenused to take into account inter area oscillation phenomena
(see, e.g. [3, 8, 10, 13, 16, 18]). Adding power injection to the previous model leads
to

∂2
t δ(z, t) + η ∂tδ(z, t) − ν2 ∂2

z δ(z, t) = W (z, t) (4)
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with boundary conditions

P(0, t) = P(1, t) = 0, or ∂zδ(0, t) = ∂zδ(1, t) = 0

A first model, used in [10], is a point source injection

W (u, t) = ρPg(t)
(z − α)

where 
 denotes the delta Dirac distribution, α the injection location, and Pg the net
power injected. Another possible model, which we introduce here, is a power flow
injection

W (u, t) = −γPg(t)

′(z − α)

with 
′ is the Dirac’s derivative, in the sense of distributions. The previous model
(4) with point source injection

∂2
t δp(z, t) + η∂tδp(z, t) − ν2∂2

z δp(z, t) = ρPg(t)
p(z − α)

is equivalent to the following model

∀z ∈ [0, α], ∂2
t δ

−
p (z, t) + η ∂tδ

−
p (z, t) − ν2 ∂2

z δ
−
p (z, t) = 0 (5a)

∂zδ
−
p (0, t) = 0 (5b)

δ−
p (α, t) = ρPg(t) (5c)

∀z ∈ [α,L], ∂2
t δ

+
p (z, t) + η ∂tδ

+
p (z, t) − ν2 ∂2

z δ
+
p (z, t) = 0 (5d)

δ+
p (α, t) = ρPg(t) (5e)

∂zδ
+
p (L, t) = 0 (5f)

Hence, δ−
p (z, t) = δp(z, t) for z ∈ [0, α] and δ+

p (z, t) = δp(z, t) for z ∈ [α,L]. The
other model we introduce, corresponding to the model (4) with power flow injection:

∂2
t δf (z, t) + η∂tδf (z, t) − ν2∂2

z δf (z, t) = −γPg(t)

′
f (z − α)

is equivalent to the following model

∀z ∈ [0, α], ∂2
t δ

−
f (z, t) + η ∂tδ

−
f (z, t) − ν2 ∂2

z δ
−
f (z, t) = 0 (6a)

∂zδ
−
f (0, t) = 0 (6b)

∂zδ
−
f (α, t) = −γPg(t) (6c)

∀z ∈ [α,L], ∂2
t δ

+
f (z, t) + η ∂tδ

+
f (z, t) − ν2 ∂2

z δ
+
f (z, t) = 0 (6d)

∂zδ
+
f (α, t) = −γPg(t) (6e)
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∂zδ
+
f (L, t) = 0 (6f)

Hence, δ−
f (z, t) = δf (z, t) for z ∈ [0, α] and δ+

f (z, t) = δf (z, t) for z ∈ [α,L].
Remark 2 Note that a point source actuation (as in (5c)) implies that the actuator
is able to directly modify the controlled variable (here the angular variable). A flow
actuation (as in (6c)) includes a form of actuation model, which is consistent with
power as space derivative of angle change depicted in (3). The first model implies
highly powerful actuation, to be able to directly steer the angle change. Following a
electromechanical analogy, consider the torsional displacements of a metallic rod of
length L with wave speed c and actuation u. Two models are

c2∂2
z θ(z, t) − ∂2

t θ(z, t) = 0, z ∈ [0,L]
∂zθ(0, t) = 0, θ(L, t) = u(t)

for point actuation and

c2∂2
z θ(z, t) − ∂2

t θ(z, t) = 0, z ∈ [0,L]
∂zθ(0, t) = 0, ∂zθ(L, t) = u(t)

for flow actuation. Here, in the second model, the actuation ∂zθ(L, t) is a torque
actuation model. In the first one, the actuator is supposed to be sufficiently powerfull
to act directly on the displacement.

3.2 Point Source Model Solution

General Solution

Let us consider the first half point source model for z ∈ [0, α] (Eqs. (5a)–(5c)):

∂2
t δ

−
p (z, t) + η ∂tδ

−
p (z, t) − ν2 ∂2

z δ
−
p (z, t) = 0 (7a)

∂zδ
−
p (0, t) = 0 (7b)

δ−
p (α, t) = ρPg(t) (7c)

The temporal Laplace transform of (7) yields

s2δ̂−
p (z, s) + ηsδ̂−

p (z, s) − ν2∂2
z δ̂

−
p (z, s) = 0

∂z δ̂
−
p (0, s) = 0

δ̂−
p (α, s) = ρP̂g(s)

For fixed s one obtains the ODE in space as the boundary value problem:
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s2δ̂−
p (z) + ηsδ̂−

p (z) − ν2
d2δ̂−

p

dz2
(z) = 0 (8)

d δ̂−
p

dz
(0) = 0, δ̂−

p (α) = ρP̂g(s) (9)

where we have kept the symbol δ−
p (since δ−

p is a function of two variables z and s)
by abuse of notation.

The general solution of the previousODE is investigated through the characteristic
equation in X :

s2 + ηs − ν2X 2 = 0

yielding

X = ± ς
√
s2 + ηs = ± σ(s), with ς = 1/ν

Thus, the general solution of (8) is

δ̂−
p (z) = eςz

√
s2+ηs λ̂1 + e−ςz

√
s2+ηs λ̂2 = eσ zλ̂1 + e−σ zλ̂2

Boundary Value Problem Solution

This general solution, and its spatial derivative can be rewritten as

δ̂−
p (z, s) = Ĉz(s)μ̂

−
p1(s) + Ŝz(s)μ̂

−
p2(s), ∂z δ̂

−
p (z, s) = σ 2Ŝzμ̂

−
p1 + Ĉzμ̂

−
p2 where

Ĉz(s) = cosh(σ z), Ŝz(s) = sinh(σ z)

σ

Similarly, the general solution of the second half point source model for z ∈ [α,L]
(Eqs. (5d)–(5f)) and its spatial derivatives are

δ̂+
p (z, s) = Ĉzμ̂

+
p1 + Ŝzμ̂

+
p2 ∂z δ̂

+
p (z, s) = σ 2Ŝzμ̂

+
p1 + Ĉzμ̂

+
p2

The boundary conditions of the point source model (5)

∂zδ
−
p (0, t) = 0, δ−

p (α, t) = ρPg(t), δ+
p (α, t) = ρPg(t), ∂zδ

+
p (L, t) = 0

are then expressed as, in the Laplace domain

μ̂−
p2 = 0 Ĉαμ̂−

p1 + Ŝαμ−
p2 = ρP̂g(s) (10a)

Ĉαμ̂+
p1 + Ŝαμ̂+

p2 = ρP̂g(s) σ 2ŜLμ̂
+
p1 + ĈLμ̂

+
p2 = 0 (10b)
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Recalling the general solutions and/or spatial derivatives:

δ̂−
p (z, s) = Ĉzμ̂

−
p1, δ̂+

p (z, s) = Ĉzμ̂
+
p1 + Ŝzμ̂

+
p2, ∂z δ̂

+
p (z, s) = σ 2Ŝzμ̂

+
p1 + Ĉzμ̂

+
p2

we get the following expressions for μ̂−
p1, μ̂

+
p1 and μ̂+

p2:

μ̂−
p1 = δ̂−

p (0, s) = δ̂−
p0 μ̂+

p1 = δ̂+
p (0, s) = δ̂+

p0 (11a)

μ̂+
p2 = ∂z δ̂

+
p (0, s) = δ̂+′

p0 (11b)

Thus, the preceding Eqs. (10) become

Ĉαδ̂+
p0 + Ŝαδ̂+′

p0 = Ĉαδ̂−
p0 (12a)

σ 2ŜLδ̂
+
p0 + ĈLδ̂

+′
p0 = 0 (12b)

which form the relations of the RQ-system �
p
Q

= [δ̂−
p0, δ̂+

p0, δ̂+′
p0 ]RQ

, where the ring
RX is given by

RX = C(∂t)[SX] ∩ E′∗ with SX = {Ĉzα, Ŝzα | z ∈ X}

with E′∗ a ring of compactly supported Gevrey ultradistributions. The presentation
of �

p
Q
is then

(−Ĉα Ĉα Ŝα

0 σ 2ŜL ĈL

)
⎛

⎜
⎝

δ̂−
p0

δ̂+
p0

δ̂+′
p0

⎞

⎟
⎠ = 0 (13)

To be more specific from a physical viewpoint, the model can be written as

Ĉαδ̂+
p0 + Ŝαδ̂+′

p0 = Ĉαδ̂−
p0 (14a)

σ 2ŜLδ̂
+
p0 + ĈLδ̂

+′
p0 = 0 (14b)

ρP̂g = Ĉαδ̂−
p0 (14c)

δ̂−
pz = Ĉz δ̂

−
p0 (14d)

δ̂+
pz = Ĉz δ̂

+
p0 + Ŝz δ̂

+′
p0 (14e)

with δ−
pz = δ−

p (z, s), δ+
pz = δ+

p (z, s).
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3.3 Power Flow Model Solution

General and Boundary Value Problem Solution

The general solution of power flow model (6) and its spatial derivatives are

δ̂−
f (z, s) = Ĉzμ̂

−
f 1 + Ŝzμ̂

−
f 2 ∂z δ̂

−
f (z, s) = σ 2Ŝzμ̂

−
f 1 + Ĉzμ

−
f 2

δ̂+
f (z, s) = Ĉzμ̂

+
f 1 + Ŝzμ̂

+
f 2 ∂z δ̂

+
f (z, s) = σ 2Ŝzμ̂

+
f 1 + Ĉzμ̂

+
f 2

The boundary conditions of the power flow model (6)

∂zδ
−
f (0, t) = 0, ∂zδ

−
f (α, t) = −γPg(t), ∂zδ

+
f (α, t) = −γPg(t), ∂zδ

+
f (L, t) = 0

are then expressed as

μ̂−
f 2 = 0 (15a)

σ 2Ŝαμ̂−
f 1 + Ĉαμ−

f 2 = −γ P̂g(s) (15b)

σ 2Ŝαμ̂+
f 1 + Ĉαμ+

f 2 = −γ P̂g(s) (15c)

σ 2ŜLμ̂
+
f 1 + ĈLμ̂

+
f 2 = 0 (15d)

The following expressions are obtained for μ̂−
f 1, μ̂

+
f 1 and μ̂+

f 2:

μ̂−
f 1 = δ̂−

f (0, s) = δ̂−
f 0 μ̂+

f 1 = δ̂+
f (0, s) = δ̂+

f 0 (16)

μ̂+
f 2 = ∂z δ̂

+
f (0, s) = δ̂+′

f 0 (17)

We then get the following equations

σ 2Ŝαδ̂f
+
0 + Ĉαδ+′

f 0 = σ 2Ŝαδ̂−
f 0 (18a)

σ 2ŜLδ̂
+
f 0 + ĈLδ

+′
f 0 = 0 (18b)

which form the relations of the RQ-system �
f
Q

= [δ̂−
f 0, δ̂

+
f 0, δ̂

+′
f 0 ]RQ

. The presentation

of �
f
Q
is then

(−σ 2Ŝα σ 2Ŝα Ĉα

0 σ 2ŜL ĈL

)
⎛

⎜
⎝

δ̂−
f 0

δ̂+
f 0

δ̂+′
f 0

⎞

⎟
⎠ = 0 (19)
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To be more specific from a physical viewpoint, the model can be written as

σ 2Ŝαδ̂f
+
0 − Ĉαδ+′

f 0 = σ 2Ŝαδ̂−
f 0 (20a)

σ 2ŜLδ̂
+
f 0 − ĈLδ

+′
f 0 = 0 (20b)

−γ P̂g = σ 2Ŝαδ̂−
f 0 (20c)

δ̂−
fz = Ĉz δ̂

−
f 0 (20d)

δ̂+
fz = Ĉz δ̂

+
f 0 + Ŝz δ̂

+′
f 0 (20e)

with δ−
fz = δ−

f (z, s), δ+
fz = δ+

f (z, s).

3.4 Associated I/O Systems

Point Source I/O System

To obtain the input/output system, we should extract from (14) the relation between
δ−
pz and P̂g on the one hand and between δ+

pz and P̂g on the other hand. From (14c)
and (14c), we get

Ĉαδ̂−
pz = ρ ĈzP̂g (21)

Then, from (14a) and (14b):

(
Ĉα Ŝα

σ 2ŜL ĈL

)(
δ̂+
p0

δ̂+′
p0

)

=
(
Ĉαδ̂−

p0

0

)

Hence, we get

ĈL−α

(
δ̂+
p0

δ̂+′
p0

)

=
(

ĈL −Ŝα

−σ 2ŜL Ĉα

) (
Ĉαδ̂−

p0

0

)

wherefrom the expression involving δ̂+
pz:

ĈL−αδ̂+
pz = ĈzĈL−αδ̂+

p0 + ŜzĈL−αδ̂+′
p0 = (

ĈzĈL − σ 2ŜzŜL
)
Ĉαδ̂−

p0

= ρ ĈL−zP̂g (22)

And, gathering (21) and (22), we get the point source injection input/output model:

Ĉαδ̂−
pz = ρ ĈzP̂g (23)

ĈL−αδ̂+
pz = ρ ĈL−zP̂g (24)
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on which we can see that this model is a purely discrete one, i.e. from a system
dynamics viewpoint, it has no dynamics.

Power Flow I/O System

Similarly to obtain the input/output system, we should extract from (20) the relation
between δ−

fz and P̂g on the one hand and between δ+
fz and P̂g on the other hand.

From (20c) and (20c), we get

σ 2Ŝαδ̂−
fz = −γ ĈzP̂g (25)

Then, from (20a) and (20b):

(
σ 2Ŝα −Ĉα

σ 2ŜL −ĈL

)(
δ̂+
f 0

δ̂+′
f 0

)

=
(

σ 2Ŝαδ̂−
f 0

0

)

Hence, we get

−ŜL−α

(
δ̂+
f 0

δ̂+′
f 0

)

=
( −ĈL Ĉα

−σ 2ŜL σ 2Ŝα

) (
σ 2Ŝαδ̂−

f 0

0

)

wherefrom the expression involving δ̂+
fz :

ŜL−αδ̂+
fz = ĈzŜL−αδ̂+

f 0 + ŜzŜL−αδ̂+′
f 0 = (

ĈzĈL − σ 2ŜzŜL
)
σ 2Sαδ̂−

f 0

= −γ ĈL−zP̂g (26)

And, gathering (25) and (26), we get the power flow injection input/output model:

σ 2Ŝαδ̂−
fz = −γ ĈzP̂g (27)

ŜL−αδ̂+
fz = −γ ĈL−zP̂g (28)

on which we can see that this model is a second order neutral distributed delay
system. In the temporal domain, the preceding equations rewrite

σ 2(δ−
fz (t + α) − δ−

fz (t − α)
) = −γ

(
Ṗg(t + z) + Ṗg(t − z)

)
(29)

δ+
fz

(
t + L − α

) − δ+
fz

(
t − L + α

) = −γ
(
Ṗg(t + L − z) + Ṗg(t − L + z)

)
(30)
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4 Structural Properties

4.1 Point Source System

The presentation matrix associated to �
p
Q
is

P�
p
Q

=
(−Ĉα Ĉα Ŝα

0 σ 2ŜL ĈL

)
(31)

and the associated minors are:

m1(s) = −σ 2Ĉα ŜL, m2(s) = −ĈαĈL, m3(s) = ĈαĈL − σ 2ŜLŜα = ĈL−α (32a)

We then have the following proposition

Theorem 1 The RQ-system �
p
Q
is RQ-free controllable if, and only if, ĈL−α and Ĉα

have no common zeros in C.

Proof Common zeros between the minors m1 and m2 can only be the ones of their
common factor Ĉα . Thus, if ĈL−α and Ĉα have no common zeros, �

p
Q
is RQ-free

controllable. �

4.2 Power Flow System

The presentation matrix associated to �
p
Q
and the associated minors are:

P�
p
Q

=
(−σ 2Ŝα σ 2Ŝα Ĉα

0 σ 2ŜL ĈL

)
(33a)

m1(s) = −σ 4Ŝα ŜL, m2(s) = −σ 2ŜαĈL, m3(s) = σ 2ŜαĈL − σ 2ŜLĈα = σ 2Ŝα−L

(33b)

We then have the following proposition and theorem

Proposition 3 The RQ-system �
f
Q
is not RQ-free controllable.

Proof The minorsm1 tom3 have σ = 0 (corresponding to s = 0) as a common zero.
Hence, �f

Q
is not RQ-spectrally controllable, and hence not RQ-torsion free. �

Let Rσ
Q
be the ring Rσ

Q
= C(∂t)[σ−1,SQ] ∩ E′∗ Then we have:

Theorem 2 The system Rσ
Q

⊗RQ
�

f
Q
is Rσ

Q
-free controllable if, and only if, Ŝα and

ŜL−α have no common zeros in C.
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Proof Common zeros between the minors m1 and m2 can only be the ones of their
common factor Ŝα . Thus, if ŜL−α and Ŝα have no common zeros, �

f
Q
is RQ-free

controllable. �

5 Discussion

We see that the controllability properties depend on the location of the source (the
control): the fact that ŜL−α and Ŝα may have common zeros. This leads to some
transcendental properties between L and α. This yields a simple rule for actuator
placement.

6 Conclusion

Wehave established a novelmodel for inter area oscillations inwind power networks.
We have then derived the associated delay system models and input/output models.
We then have examined the flatness properties of the most simple networks, i.e. with
one source. The controllability properties we have established are a first step towards
the investigation of the network structural properties, which shall be the object of
further studies.
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A Delayed Mass-Action Model for the
Transcriptional Control of Hmp, an NO
Detoxifying Enzyme, by the Iron-Sulfur
Protein FNR

Marc R. Roussel

1 Introduction

Protein expression in living organisms involves, at minimum, two steps: transcription
of the corresponding gene to a messenger RNA (mRNA), and translation of that
mRNA to protein. Transcription and translation are among the slower processes in
cells [46]. For a typical bacterial gene of 900nt (nucleotides) [55], transcription at a
rate of 24 nt s−1 [8] means that the mRNA is synthesized in 38s. A 900nt transcript
encodes a 300aa (amino acid) protein. Under optimal conditions, Escherichia coli
ribosomes translate an mRNA at a rate of roughly 17 aa s−1 [56], so translation of a
300aa protein transcript would take 18s.

It is possible to model a gene expression network by including detailed models
of transcription and translation, i.e. explicitly modeling every nucleotide addition to
an mRNA, and every amino acid addition to a protein [33, 34, 43]. In most cases
however, this is an undesirable level of detail, avoided by replacing the repetitive
steps of transcription and translation by delays, which were perhaps first used in
gene expression models in the 1970s [2, 6, 29].

As part of their immune response, mammals generate nitric oxide (NO), which
inhibits a number of bacterial enzymes [31] and causes DNA damage. In many
bacteria, Hmp, an enzyme that converts nitric oxide into nitrate ions, is a key part
of the defenses against NO [31, 39]. Hmp is synthesized under the control of an
NO-responsive repressor protein known as FNR [32]. Understanding the control
system that regulates the production of Hmp could therefore prove useful in devising
strategies for weakening bacterial defenses against nitrosative stress, thus helping
the immune system combat pathogenic bacteria.
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Tolla, Savageau and coworkers developed amodel for FNR’s role as a regulator of
the aerobic/anaerobicmetabolic switch inE. coli [50, 51], but did not consider FNR’s
role in the nitrosative stress response. Robinson and Brynildsen have constructed a
general model for NO metabolism in E. coli [39, 40] that includes detoxification
by Hmp. However, they use an empirical equation for the dependence of the rate of
synthesis of Hmp on [NO]. In Sect. 2, a detailed biochemical model for the control
of the synthesis of Hmp is developed, based on the delayed mass-action framework
[42]. Parameter estimates are obtained in Sect. 3. The steady-state solutions of this
model are studied in Sect. 4. The paper concludes with some perspectives for future
work.

2 A Model for the Controlled Synthesis of Hmp

We consider a cell that is exposed to an external source of nitric oxide, leading to a
net inflow of this dissolved gas into the cytoplasm at a constant rate:

kin−−→ NO. (1)

Hmp catalyzes the conversion of NO to nitrate [39]:

2NO + 2O2 + NAD(P)H −−→ 2NO−
3 + NAD(P)+ + H+

For catalysis to occur, the substrates must bind in order, NAD(P)H first, then O2,
then NO [16]. We can assume that the enzyme is constantly saturated with NADH
or NADPH, given that the Michaelis constant of Hmp for NADH, the concentration
of NADH required for half-maximal saturation of the enzyme, is 4.8µM [16], and
that the concentration of NADH in an E. coli cell is at least 83µM [5]. The relevant
reactions are therefore

Hmp + O2
k1�
k−1

Hmp · O2, (2a)

Hmp · O2 + NO
k2�
k−2

Hmp · O2 · NO k−3−−−→ Hmp + NO−
3 , (2b)

Hmp + NO
k4�
k−4

Hmp · NO. (2c)

Equation (2c) is a substrate inhibition reaction, forming the catalytically inactive
speciesHmp · NO. Each of these reactions is assumed to obey the law ofmass-action,
which states that the rate of an elementary reaction is proportional to the product of
the reactant concentrations. The products are taken to appear instantaneously. The
proportionality constant is known as a rate constant, and is written over (under) the
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arrow corresponding to the forward (reverse) reaction. For example, the rate of the
forward reaction in (2a) is k1[Hmp][O2].

Because of the recycling of RNA polymerase (RNAP) following the completion
of transcription, the pool of free RNAP is roughly constant. Accordingly, we can
subsume the dependence of the transcription initiation rate on [RNAP] into the cor-
responding rate constant. The transcription process can then be modeled as follows,
using the delayed mass-action notation [42]:

Prohmp(t)
ktc−−→ Prohmp(t + τ1) + RBShmp(t + τ2), (3)

where RBShmp represents the ribosome binding site of the mRNA. The interpretation
of this equation is that, if there is a transcription initiation event at time t, the RNAP
clears the promoter τ1 time units later, and the ribosome binding site becomes avail-
able τ2 time units later. The initiation event itself proceeds at a rate governed by the
law of mass-action, in this case at a rate ktc[Prohmp].

Translation of the mRNA can be similarly modeled, assuming a constant pool of
ribosomes:

RBShmp(t)
ktl−−→ RBShmp(t + τ3) + Hmp(t + τ4), (4)

τ3 is the time required for the ribosome to clear the RBS, and τ4 is the time required
to translate the mRNA.

We must also consider the decay of the mRNA, which typically starts at the
ribosome binding site, allowing translation events already initiated to run off [8, 25].
This explains the focus on the RBS in reactions (3) and (4).

RBShmp
k5−−→ ∅, (5)

where ∅ represents decay products. Hmp also decays. We assume for simplicity that
all of the enzyme-substrate complexes decay with similar kinetics:

Hmp
k6−−→ ∅, (6a)

Hmp · O2
k6−−→ O2 + ∅, (6b)

Hmp · O2 · NO k6−−→ O2 + NO + ∅, (6c)

Hmp · NO k6−−→ NO + ∅. (6d)

Hmp transcription is repressed by FNR binding to the hmp promoter [9]. The
active form of FNR (the holoprotein) is a dimer, with each monomer containing a
[4Fe-4S] cluster [26]. Reactions of the iron-sulfur cluster with NO cause the dimer
to dissociate into its constituent monomers [9] and the affinity of FNR for the hmp
promoter to decrease [12], allowing transcription to proceed. We focus here on the
FNR monomer, for a number of reasons: First of all, the reactions at the two iron-
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sulfur clusters appear to be independent and to proceed with identical kinetics [9].
More importantly, dimerization of FNR or dissociation of these dimers is, under
metabolic conditions, rapid and nearly quantitative [27].

Each iron-sulfur cluster reacts with NO in a 1:8 stoichiometry. This sequence
of reactions is not fully understood at this time, so what follows, while based on
the observations and interpretations of Crack and coworkers [9], will necessarily
be somewhat speculative. Of the nine possible nitrosylation states, correspond-
ing to the addition of 0–8 NO molecules, only five, labeled A to E (FNRA ≡
FNR,FNRB, . . . ,FNRE), are kinetically distinguishable, and each of these is formed
by a process which is kinetically of the first order in [NO]. The other four states are
presumably transient species rapidly converted to kinetically more stable forms by
further reactions with NO. The following is a plausible reaction sequence, based on
the kinetic and spectroscopic analysis of Crack and coworkers:

FNR + NO −−→ FNRB, vAB = kAB[FNR][NO]; (7a)

FNRB + NO −−→ FNRC, vBC = kBC[FNRB][NO]; (7b)

FNRC + 2NO −−→ FNRD, vCD = kCD[FNRC][NO]; (7c)

FNRD + 4NO −−→ FNRE, vDE = kDE[FNRD][NO]. (7d)

Spectroscopic evidence indicates that FNRD is the net product of the addition of four
NOmolecules [9], which required the allocation of an “extra” NO to one of reactions
(7a)–(7c), arbitrarily added to (7c). Further assume that FNRE is monomeric, unlike
FNR A to D.

Not only does nitrosylated, monomerized FNR have a lower affinity for its DNA
binding site than the holoprotein, it also has a lower specificity, i.e. it will bind
to DNA sequences different from its natural binding site [12]. These two factors
taken together along with the abundance of potential binding sites in the genome
of a bacterial cell mean that very little of the monomerized form may bind to the
promoter in the end. Therefore, assuming that FNRE has negligible occupation of
the promoter, repression of hmp by FNR is modeled by the following reactions:

Prohmp + FNR
kA�
k−A

Prohmp · FNR, (8a)

Prohmp + FNRB
kB�
k−B

Prohmp · FNRB, (8b)

Prohmp + FNRC
kC�
k−C

Prohmp · FNRC, (8c)

Prohmp + FNRD
kD�
k−D

Prohmp · FNRD. (8d)

It is not known whether NO can react with FNR bound to the promoter. However,
oxygen does react with the FNR-promoter complex [10]. It is therefore likely that
NO does too:
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Prohmp · FNR + NO −−→ Prohmp · FNRB, vProAB = αkAB[Prohmp · FNR][NO];
(9a)

Prohmp · FNRB + NO −−→ Prohmp · FNRC, vProBC = αkBC[Prohmp · FNRB][NO];
(9b)

Prohmp · FNRC + 2NO −−→ Prohmp · FNRD, vProCD = αkCD[Prohmp · FNRC][NO];
(9c)

Prohmp · FNRD + 4NO −−→ Prohmp + FNRE, vProDE = αkDE[Prohmp · FNRD][NO].
(9d)

Note the dissociation of the monomerized FNRE from the promoter in the last step.
Lacking detailed information, the rate constants in reactions (9) are assumed to be
uniformly scaled by a factor of α relative to those in reactions (7).

Dibden and Green showed that FNR recycling is more important than de novo
protein synthesis [14] to the dynamics of this system, so a constant pool of FNR
should be a good approximation. Let us suppose that the FNR recycling pathway
operates on FNRE in a reaction with effective first-order kinetics:

FNRE
kr−−→ FNR. (10)

The Hmp-FNR model thus consists of reactions (1)–(10). The assumption of a
constant pool of FNR leads to the following conservation law:

[FNR]total = [FNR] + [FNRB] + [FNRC] + [FNRD] + [FNRE]
+ [Prohmp · FNR] + [Prohmp · FNRB] + [Prohmp · FNRC] + [Prohmp · FNRD].

(11)

Assuming that the oxygen concentration is constant, the delayed mass-action
framework [42] gives the following set of delay-differential equations (DDEs), using
the notation [A]−τ ≡ [A](t − τ).

d [NO]
dt

= kin − k2[Hmp · O2][NO] + k−2[Hmp · O2 · NO] − k4[Hmp][NO]
+ k−4[Hmp · NO] + k6 ([Hmp · O2 · NO] + [Hmp · NO])
− vAB − vBC − 2vCD − 4vDE − vProAB − vProBC − 2vProCD − 4vProDE , (12a)

d [Hmp]
dt

= −k1[Hmp][O2] + k−1[Hmp · O2] + k−3[Hmp · O2 · NO]
− k4[Hmp][NO] + k−4[Hmp · NO] + ktl[RBShmp]−τ4 − k6[Hmp], (12b)

d [Hmp · O2]
dt

= k1[Hmp][O2] − (k−1 + k6)[Hmp · O2]
− k2[Hmp · O2][NO] + k−2[Hmp · O2 · NO], (12c)
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d [Hmp · O2 · NO]
dt

= k2[Hmp · O2][NO] − (k−2 + k−3 + k6)[Hmp · O2 · NO],
(12d)

d [Hmp · NO]
dt

= k4[Hmp][NO] − (k−4 + k6)[Hmp · NO], (12e)

d [Prohmp]
dt

= −ktc[Prohmp] + ktc[Prohmp]−τ1 − kA[Prohmp][FNR]
+ k−A[Prohmp · FNR] − kB[Prohmp][FNRB] + k−B[Prohmp · FNRB]
− kC[Prohmp][FNRC] + k−C[Prohmp · FNRC] − kD[Prohmp][FNRD]
+ k−D[Prohmp · FNRD] + vProDE , (12f)

d [RBShmp]
dt

= ktc[Prohmp]−τ2 − ktl[RBShmp] + ktl[RBShmp]−τ3

− k5[RBShmp], (12g)

d [FNR]
dt

= −vAB − kA[Prohmp][FNR] + k−A[Prohmp · FNR] + kr[FNRE], (12h)

d [FNRB]
dt

= vAB − vBC − kB[Prohmp][FNRB] + k−B[Prohmp · FNRB], (12i)

d [FNRC]
dt

= vBC − vCD − kC[Prohmp][FNRC] + k−C[Prohmp · FNRC], (12j)

d [FNRD]
dt

= vCD − vDE − kD[Prohmp][FNRD] + k−D[Prohmp · FNRD], (12k)

d [FNRE]
dt

= vDE + vProDE − kr[FNRE], (12l)

d [Prohmp · FNR]
dt

= kA[Prohmp][FNR] − k−A[Prohmp · FNR] − vProAB , (12m)

d [Prohmp · FNRB]
dt

= kB[Prohmp][FNRB] − k−B[Prohmp · FNRB] + vProAB − vProBC ,

(12n)

d [Prohmp · FNRC]
dt

= kC[Prohmp][FNRC] − k−C[Prohmp · FNRC] + vProBC − vProCD·
(12o)

In these equations, all terms are evaluated instantaneously unless otherwise noted.
Production delays in reactions (3) and (4) give rise to the delayed terms in Eqs. (12b),
(12f) and (12g).

Chemical rate equations, including delayed mass-action systems [42], are conser-
vation equations describing the transformation of matter from one form to another.
Delayed reactions can be understood using a pipe metaphor: the delayed terms repre-
sent matter that has entered a reaction channel and that will emerge from this channel
at some later time. Thematerial “in the pipe”must be accounted for inmass balances.
The promoter in this model is neither created nor destroyed, although it is occluded
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by the polymerase for a period of time τ1 following initiation of transcription (Eq.3).
This gives rise to an integral conservation relationship, which can be verified by
differentiation with respect to time:

[Prohmp]total = [Prohmp] + [Prohmp · FNR] + [Prohmp · FNRB] + [Prohmp · FNRC]
+[Prohmp · FNRD] + ktc

∫ t

t−τ1

[Prohmp](t′) dt′.
(13)

3 Parameter Estimates

This study targets physiological conditions for E. coli, which would imply among
other things a temperature of 37 ◦C. The parameters for reactions (2) were generally
taken from the kinetic study of Gardner and coworkers [16]. When rate constants
were unavailable at 37 ◦C, the rule of thumb that rate constants roughly double for
every 10◦ rise in temperature [30], corresponding to an activation energy of about
50 kJmol−1, was used to estimate rate constants at 37 ◦C.

In the lower gastrointestinal (GI) tract, the oxygen tension is about 11 torr [21].
The concentration of oxygen there can be calculated from the Henry’s law coefficient
of oxygen in water at 37 ◦C of 1.409 × 10−6 M torr−1 [37].

τ1 can be estimated to be roughly 1.9 s based on the requirement for the poly-
merase to move 30–60nt in order to clear the promoter [36], and the typical rate of
transcription elongation of 24 nt s−1 [8]. Since there are no data on initiation frequen-
cies from the hmp promoter, data from the well-characterized lac promoter are used
instead, where under optimal conditions, transcription initiates on average every 3.3 s
[24]. Given that 1.9 s is spent clearing the promoter, this means that the average wait
time for initiation at an empty promoter is 1.4 s, corresponding to a rate constant of
ktc = 0.71 s−1. The transcriptional delay τ2 was estimated from the gene length for
Hmp (1191nt [52]) and the elongation rate.

For translation, given an RBS clearance time of approximately 2 s [38] and amean
time between translation initiations, again for the lac transcript, of 3.2 s [24], we can
calculate a translation initiation rate constant of ktl = 0.83 s−1. At a translation rate
of 17 aa s−1 [56], the 396aa Hmp protein would be translated in a time τ4 = 23 s.
This estimate assumes that transcription and translation are spatially and temporally
separated, in accord with recent evidence in E. coli [3].

Throughout this paper, we assume that an E. coli cell has a volume of 1.7 fL [19].
Cell growth has the effect of diluting the cellular contents. Under anaerobic

conditions, E. coli grows at a median rate of 0.25 h−1 [20]. Adding this to the
chemical decay constant calculated from the 66min half-life of Hmp in Salmonella
Typhimurium [53], we obtain an effective value of k6 of 2.4 × 10−4 s−1.
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The in vivo concentration of FNR can be calculated from the number of molecules
of FNR present in an E. coli cell grown at 37 ◦C under anaerobic conditions, which
is approximately 2600 [48].

For reactions (8), if we assume a typical bimolecular rate constant for all four
steps of 107 M−1s−1 (similar to the rate constant for binding of the structurally
related protein CAP to the lac operator [17]), then we can calculate the dissociation
rate constants given the dissociation equilibrium constants (Kd ). For the holopro-
tein, Kd = 1 × 10−6 M [12]. It is also known that adding NO loosens the complex.
Assuming a moderate loosening (i.e. an increase in Kd ) of 0.5 × 10−6 M per step
keeps the Kd within the measured range for nitrosylated FNR [12].

All of the parameter estimates obtained are shown in Table1. The only model
parameters not estimated in this section are kr and α, for which literature values are
not available, and kin, which is treated as a control parameter in this study.

Table 1 Model parameters. Values carrying the notation [T ] in the reference field were adjusted
for temperature as described in the text. The notation [a] indicates an assumed value, while [c]
indicates that the value was calculated as described in the text. The [s] notation indicates that data
from E. coli were unavailable and that data from another bacterial species were therefore used. For
k−A, the first value given was calculated in Sect. 3, and the second is proposed in Sect. 4

Parameter Value Ref. Parameter Value Ref.

Hmp catalysis FNR dynamics

[O2] 16µM [c] [FNR]total 2.5µM [c]

k1 8 × 106 M−1s−1 [16] kAB 6.1 × 105 M−1s−1 [9][T ]

k−1 1.4 s−1 [16][T ] kBC 4.1 × 104 M−1s−1 [9][T ]

k2 2.5 × 109 M−1s−1 [16] kCD 1.0 × 104 M−1s−1 [9][T ]

k−2 6.2 × 10−4 s−1 [16][T ] kDE 1.6 × 103 M−1s−1 [9][T ]

k−3 6.2 × 102 s−1 [16][T ] α 1 [a]

k4 8.0 × 107 M−1s−1 [16][T ] kA 107 M−1s−1 [a]

k−4 6.2 × 10−4 s−1 [16][T ] k−A 10 s−1 → 0.11 s−1 [c]

Hmp expression kB 107 M−1s−1 [a]

ktc 0.71 s−1 [c] k−B 15 s−1 [c]

τ1 1.9 s [c] kC 107 M−1s−1 [a]

τ2 50 s [c] k−C 20 s−1 [c]

ktl 0.83 s−1 [c] kD 107 M−1s−1 [a]

τ3 2 s [38] k−D 25 s−1 [c]

τ4 23 s [c] kr 0.1 s−1 [a]

k5 0.014 s−1 [22][s]

k6 2.4 × 10−4 s−1 [c]
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4 Steady-State Analysis

In the steady state, Eq. (13) becomes

[Prohmp]total = [Prohmp](1 + ktcτ1)+[Prohmp · FNR] + [Prohmp · FNRB]
+ [Prohmp · FNRC] + [Prohmp · FNRD]. (14)

The steady states satisfy Eqs. (11), (12a)–(12e), (12g)–(12o) and (14). Since, in
a steady state, x(t − τ) = x(t), the values of the delays typically drop out of the
steady-state analysis of models with delays. This is not necessarily the case in gene
expression models, as we see here. The delay τ1, while small, has an effect on the
steady state via Eq. (14) because it accounts for the period during which access to
the promoter is blocked by the polymerase. Note that ktcτ1 = 1.3 ∼ 1, so τ1 is not
negligible.

The steady-state equations were solved in Maple using the fsolve() function.
Branches of steady states were followed by taking small steps along a branch and
using the solution at the last step as an initial guess.

The NO-free (kin = 0) steady state using the parameters of Table1, with k−A =
10 s−1 as calculated in the previous section, and [Prohmp]total = 0.98 nM, correspond-
ing to one promoter per cell, has [Prohmp] = 0.20 nMand [Prohmp · FNR] = 0.51 nM.
The remaining 0.27 nM of the promoter is “in the pipe”, i.e. occluded by a poly-
merase. A single promoter cannot be divided in this manner. Rather, we should think
about these “concentrations” as being related to probabilities over a large ensemble
of cells. In particular, only 52% of the hmp promoters in an ensemble of cells are
repressed at any given time. The rest are either waiting for a polymerase, or have a
polymerase engaged in transcription initiation. As a result, the total Hmp concentra-
tion in this calculation is very high ([Hmp] + [Hmp · O2] = 35µM). In the absence
of NO however, we expect a low level of Hmp. A lower level of Hmp expression
could be obtained by lowering ktc, a parameter estimated based on data from a dif-
ferent gene. However, the very low level of repression of the hmp promoter, which
depends on an experimentally measured Kd [12], seems more anomalous than does
the value of ktc. Thus assume, arbitrarily, that the affinity of holo-FNR for the hmp
promoter is sufficiently high for 99% repression. Given the large size assumed for
kA, k−A is adjusted to a value of 0.11 s−1, a hundredfold lower than the estimate of
Sect. 3. The rate constants associated with the binding of the nitrosylated forms of
FNR to DNA have not been adjusted, on the assumption that there is a significant
drop-off in affinity as FNR is progressively nitrosylated.

Figure1 shows a bifurcation diagram obtained by numerically following branches
of solutions in Maple as described above. As kin increases from zero, a bifurcation to
bistability occurs near kin = 0.084 783µMs−1, with two branches of stable steady
states (verified by numerical integration of the DDEs (12) supplemented by the
conservation relation (11) using the “stiff” integrator in Xppaut [15]) separated by a
branch of unstable steady states. In the bistable region, the lower branch corresponds
to the desired behavior as the sub-nanomolar concentrations obtainedhere correspond
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Fig. 1 Steady states of the
model vs kin obtained for the
parameters of Table1 with
the lower value of k−A. The
initial conditions were
chosen to correspond to one
promoter per cell. The inset
is a blowup of the small-kin
region. Solid curves: stable
steady states; dotted curve:
unstable steady state

Fig. 2 Concentrations of
key complexes of Hmp for
the high- and low-NO steady
states shown in Fig. 1
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to less than onemolecule ofNOper cell. In this steady state, Hmp · O2 is the dominant
form of the Hmp enzyme (Fig. 2). Accordingly, the cell’s biochemical state is primed
for NO detoxification, and NO does not accumulate. In the high-NO steady state,
the unproductive complex Hmp · NO has become dominant (Fig. 2). Because k4 is
approximately ten times larger than k1, once an enzyme has completed a cycle of
catalysis, at high NO levels, it becomes more likely to add a molecule of NO than
a molecule of O2. The small value of k−4 then results in very effective inhibition of
Hmp’s catalytic activity. The high-NO state is therefore self-reinforcing, leading to
the observed bistability. Note that substrate inhibition has previously been shown to
be a potential cause of bistability in biochemical systems [1, 13, 45].

It may be askedwhether the ad hoc adjustment of k−A had any effect on the results.
A bifurcation diagram computed with the larger value of k−A (not shown) is identical
to the one shown in Fig. 1 to within the numerical resolution of the calculations.
There are differences in some variables, particularly at lower values of kin, but the
NO concentration being the key variable from the point of view of the cell’s health,
we can conclude that the network’s steady-state response is robust with respect to the
value of k−A. Themodelwith a lower value of k−A ismuch lesswasteful, accumulating
roughly half as much Hmp (all forms combined) at lower values of kin (below about
0.1µMs−1; data not shown). Further calculations were carried out, again somewhat
arbitrarily, with the lower value of k−A.

The unknown parameters kr and α were varied (results not shown). Neither of
these parameters changes the qualitative dynamics.While there are clear quantitative
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Fig. 3 Steady states as a
function of [O2]. All
parameters are as in Fig. 1
with kin = 0.5µMs−1
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effects associated with varying kr , notably a steep increase in the high-NO steady
state at lower values of kr , the solutions are remarkably insensitive to α.

E. coli experiences varied oxygen concentrations during its life cycle, including
its transit through the GI tract [21]. We would expect that higher O2 concentrations
would shift the balance towards the Hmp · O2 complex relative to the Hmp · NO
complex, and thus increase the rate of NO removal, possibly abolishing bistabil-
ity. The latter hypothesis is correct, as can be seen in Fig. 3. However, the oxygen
concentrations at which bistability gives way to a monostable low-[NO] solution
are unrealistically high. For comparison, consider that water in equilibrium with air
at normal atmospheric pressure at 37 ◦C would hold 225µM of dissolved O2. The
saddle-node bifurcation at [O2] ≈ 596µM is therefore of no physiological conse-
quence.

Robinson and Brynildsen used the following empirical equation to model the net
dependence of the translation rate of Hmp on [NO] [40]:

vRB2016tl = kbasal + (kmax − kbasal)[NO]/ (KNO + [NO]) . (15)

We can compute the steady-state translation rate in the Hmp-FNR model, vtl =
ktl[RBShmp], with [NO] as a parameter, by dropping Eq. (12a) and solving the remain-
ing steady-state conditions, including the conservation equations (11) and (14). The
solid curve in Fig. 4 is the rate of translation calculated from the Hmp-FNR model.
Treating [NO] as a parameter eliminates the feedback that leads to bistability, and
only one steady state is found for any given value of [NO]. Interestingly, this steady
state is a high-[Hmp · NO] steady state. Coupling of the NO concentration to the
catalytic degradation of NO by Hmp is thus critical to the creation of the low-[NO],
low-[Hmp · NO] steady state that allows cells to survive nitrosative stress. The dashed
curve in Fig. 4 is the best fit of Eq. (15) to the steady-state translation rate curve over
the concentration range shown in the figure. The shape of the translation curve gen-
erated by the Hmp-FNR model is clearly quite different from the shape assumed by
Robinson and Brynildsen. Whether this has any material effect on the results of their
calculations is unknown.
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Fig. 4 Steady-state translation curve from the Hmp-FNR model (solid curve), treating [NO] as a
parameter, for the parameters of Table1 using the lower value of k−A. The dashed curve is a fit
of Eq. (15) to the translation rate from the Hmp-FNR model, yielding kbasal = 0.010 75µMs−1,
kmax = 0.013 71µMs−1, and KNO = 2.7µM. The inset magnifies the small-[NO] region

5 Discussion and Conclusions

The reactions in this model were, insofar as was possible, drawn from the literature.
Still, the model contains some assumptions whose effects on the qualitative and
quantitative behavior of the solutions are yet to be examined. Perhaps the most
important modeling decision was the focus on nitrosylation states of monomers
rather than explicitly considering dimers. A lumping analysis [54] to be presented
elsewhere however suggests that this is a tenable approximation.

It is possible that the low-NO steady state is selected by additional regulatory or
biochemical interactions. For instance, in E. coli, hmp transcription is regulated both
by FNR and by NsrR [41]. NsrR is, like FNR, an iron-sulfur protein that represses
hmp transcription while its iron-sulfur cluster is intact. The kinetics of nitrosylation
of the iron-sulfur cluster in NsrR is analogous to that of FNR [11]. It would be
interesting to model the joint control of hmp transcription by FNR and NsrR.

Figure1 suggests that, in the bistable range, the basin of attraction of the desired
low-NO steady state is relatively small with respect to the NO concentration, neglect-
ing the dependence of this basin on the initial function [49]. In vivo, the NO inflow
rate (kin) will not be a fixed parameter but will have a time course dictated by the
dynamics of the immune system and by the kinetics of permeation of NO through
the cell membrane. Accordingly, it would be interesting to study the basin of attrac-
tion of the low-NO steady state with respect to a family of parameterized temporal
programs for kin(t). Is there a critical rate of increase of kin beyond which the system
jumps to the high-NO steady state? How long and how intense a pulse of NO can
the system handle and still return to the low-NO steady state?

In principle, all of the delays can be manipulated experimentally by changing the
gene’s sequence. In particular, the promoter clearance delay τ1 hides a number of
mechanistic details, including repeated rounds of abortive initiation, during which
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the polymerase “scrunches” the DNA as it adds the first few nucleotides to the new
mRNA, then either releases an abortive transcript and returns to its starting position,
or escapes from the promoter [23]. The mean number of cycles of abortive initiation,
and thus the mean promoter clearance time, depends on the sequence of the promoter
and of the initially transcribed region [47].Whether there are any qualitative changes
in the behavior of the model over a plausible range of τ1 values remains to be seen.

Gene expression raises a modeling complication not addressed here, namely that
of the low copy numbers of various species. For instance, the number of active pro-
moters is not a continuous variable as modeled here, but a discrete one that can only
take on integer values, limited by the gene copy number. Similarly, free ribosome
binding site (mRNA) concentrations generated by this model correspond to one to
two dozenmolecules per cell, again in a rangewhere a continuous description is prob-
lematic. A differential equation model provides population-level average behavior,
but it cannot describe the dynamics in a single cell. Accordingly, we need models
that incorporate both delays and stochasticity due to finite populations. Methods
for simulating systems with these two features have recently been developed [4, 7,
18, 44], and software implementing some of these algorithms is available [28, 35].
In addition to finite population effects, the intrinsic unpredictability of certain pro-
cesses, such as the random number of rounds of abortive initiation prior to promoter
escape, are more easily incorporated into a stochastic model than into a differential
equation model. Studying a stochastic counterpart of the DDE model described here
is therefore an important next step for this project.

Acknowledgements I would like to thank Professor Nick Le Brun of the University of East Anglia
for answering some of my questions about this system. This work was supported by the Natural
Sciences and Engineering Research Council of Canada.

References

1. Aguda, B.D.: Emergent properties of coupled enzyme reaction systems. 1. Switching and
clustering behaviour. Biophys. Chem. 61, 1–7 (1996)

2. an der Heiden, U.: Delays in physiological systems. J. Math. Biol. 8, 345–364 (1979)
3. Bakshi, S., Siryaporn, A., Goulian, M., Weisshaar, J.C.: Superresolution imaging of ribosomes

and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012)
4. Barrio, M., Burrage, K., Leier, A., Tian, T.: Oscillatory regulation of Hes1: discrete stochastic

delay modelling and simulation. PLoS Comput. Biol. 2, e117 (2006)
5. Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J., Rabinowitz, J.D.: Abso-

lute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Nat. Chem. Biol. 5, 593–599 (2009)

6. Bliss, R.D.: Analysis of the Dynamic Behavior of the Tryptophan Operon of Escherichia coli:
The Functional Significance of Feedback Inhibition. PhD Thesis, University of California
Riverside (1979)

7. Bratsun, D., Volfson, D., Tsimring, L.S., Hasty, J.: Delay-induced stochastic oscillations in
gene regulation. Proc. Natl. Acad. Sci. USA 102, 14593–14598 (2005)

8. Chen, H., Shiroguchi, K., Ge, H., Xie, X.S.: Genome-wide study of mRNA degradation and
transcript elongation in Escherichia coli. Mol. Syst. Biol. 11, 781 (2015). Errata: Mol. Syst.
Biol. 11, 808 (2015)



228 M. R. Roussel

9. Crack, J.C., Stapleton, M.R., Green, J., Thomson, A.J., Le Brun, N.E.: Mechanism of [4Fe-
4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators. J. Biol. Chem.
288, 11492–11502 (2013)

10. Crack, J.C., Stapleton, M.R., Green, J., Thomson, A.J., Le Brun, N.E.: Influence of association
state and DNA binding on the O2-reactivity of [4Fe-4S] fumarate and nitrate reduction (FNR)
regulator. Biochem. J. 463, 83–92 (2014)

11. Crack, J.C., Svistunenko, D.A., Munnoch, J., Thomson, A.J., Hutchings, M.I., Le Brun, N.E.:
Differentiated, promoter-specific response of [4Fe-4S] NsrR DNA binding to reaction with
nitric oxide. J. Biol. Chem. 291, 8663–8672 (2016)

12. Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M.N., Scott, C., Thomson, A.J., Green, J.,
Poole, R.K.: NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavo-
haemoglobin, Hmp. EMBO J. 21, 3235–3244 (2002)

13. Degn, H.: Bistability caused by substrate inhibition of peroxidase in an open reaction. Nature
217, 1047–1050 (1968)

14. Dibden,D.P.,Green, J.: In vivo cycling of theEscherichia coli transcription factor FNRbetween
active and inactive states. Microbiology 151, 4063–4070 (2005)

15. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Philadel-
phia (2002)

16. Gardner, A.M., Martin, L.A., Gardner, P.R., Dou, Y., Olson, J.S.: Steady-state and transient
kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). J. Biol. Chem. 275,
12581–12589 (2000)

17. Gerstle, J.T., Fried,M.G.:Measurement of binding kinetics using the gel electrophoresismobil-
ity shift assay. Electrophoresis 14, 725–731 (1993)

18. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many
species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)

19. Grossman, N., Ron, E.Z., Woldringh, C.L.: Changes in cell dimensions during amino acid
starvation of Escherichia coli. J. Bacteriol. 152, 35–41 (1982)

20. Hasona, A., Kim, Y., Healy, F.G., Ingram, L.O., Shanmugam, K.T.: Pyruvate formate lyase and
acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J. Bacteriol.
186, 7593–7600 (2004)

21. He, G., Shankar, R.A., Chzhan, M., Samouilov, A., Kuppusamy, P., Zweier, J.L.: Noninvasive
measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of
living mice with spatial and spectral EPR imaging. Proc. Natl. Acad. Sci. USA 96, 4586–4591
(1999)

22. Hu, Y., Butcher, P.D., Mangan, J.A., Rajandream, M.-A., Coates, A.R.M.: Regulation of hmp
gene transcription in Mycobacterium tuberculosis: effects of oxygen limitation and nitrosative
and oxidative stress. J. Bacteriol. 181, 3486–3493 (1999)

23. Kapanidis, A.N., Margeat, E., Ho, S.O., Kortkhonjia, E., Weiss, S., Ebright, R.H.: Initial tran-
scription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314,
1144–1147 (2006)

24. Kennell, D., Riezman,H.: Transcription and translation initiation frequencies of theEscherichia
coli lac operon. J. Mol. Biol. 114, 1–21 (1977)

25. Kennell, D., Talkad, V.: Messenger RNA potential and the delay before exponential decay of
messages. J. Mol. Biol. 104, 285–298 (1976)

26. Kiley, P.J., Beinert, H.: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur
cluster. FEMS Microbiol. Rev. 22, 341–352 (1999)

27. Lazazzera, B.A., Beinert, H., Khoroshilova, N., Kennedy, M.C., Kiley, P.J.: DNA binding
and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by
oxygen. J. Biol. Chem. 271, 2762–2768 (1996)

28. Lloyd-Price, J., Gupta, A., Ribeiro, A.S.: SGNS2: a compartmental stochastic chemical kinetics
simulator for dynamic cell populations. Bioinformatics 28, 3004–3005 (2012)

29. MacDonald, N.: Time lag in a model of a biochemical reaction sequence with end product
inhibition. J. Theor. Biol. 67, 549–556 (1977)

30. Pauling, L.: General Chemistry. Dover, New York (1988)



A Delayed Mass-Action Model for the Transcriptional … 229

31. Poole, R.K.: Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33,
176–180 (2005)

32. Poole, R.K., Hughes, M.N.: New functions for the ancient globin family: bacterial responses
to nitric oxide and nitrosative stress. Mol. Microbiol. 36, 775–783 (2000)

33. Potapov, I., Lloyd-Price, J., Yli-Harja, O., Ribeiro, A.S.: Dynamics of a genetic toggle switch
at the nucleotide and codon levels. Phys. Rev. E 84, 031903 (2011)

34. Potapov, I., Mäkelä, J., Yli-Harja, O., Ribeiro, A.S.: Effects of codon sequence on the dynamics
of genetic networks. J. Theor. Biol. 315, 17–25 (2012)

35. Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regula-
tory networks. J. Bioinform. Comput. Biol. 3, 415–436 (2005)

36. Record Jr., M.T., Reznikoff, W.S., Craig, M.L., McQuade, K.L., Schlax, P.J.: Escherichia coli
RNA polymerase (Eσ 70), promoters, and the kinetics of the steps of transcription initiation.
In: Neidhardt, F.C. (ed) Escherichia coli and Salmonella: Cellular and Molecular Biology, vol.
2, 2nd edn, pp. 792–820. ASM Press, Washington (1996)

37. Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 22. High-precision deter-
mination of Henry’s law constants of oxygen in liquid water from T = 274K to T = 328K.
J. Chem. Thermodyn. 32, 1145–1156 (2000)

38. Ribeiro, A.S.: Stochastic and delayed stochastic models of gene expression and regulation.
Math. Biosci. 223, 1–11 (2010)

39. Robinson, J.L., Brynildsen, M.P.: A kinetic platform to determine the fate of nitric oxide in
Escherichia coli. PLoS Comput. Biol. 9, e1003049 (2013)

40. Robinson, J.L., Brynildsen, M.P.: Discovery and dissection of metabolic oscillations in the
microaerobic nitric oxide response network of Escherichia coli. Proc. Natl. Acad. Sci. USA
113, E1757–E1766 (2016)

41. Rodionov, D.A., Dubchak, I.L., Arkin, A.P., Alm, E.J., Gelfrand, M.S.: Dissimilatory
metabolism of nitrogen oxides in bacteria: Comparative reconstruction of transcriptional net-
works. PLoS Comput. Biol. 1, e55 (2005)

42. Roussel, M.R.: The use of delay differential equations in chemical kinetics. J. Phys. Chem.
100, 8323–8330 (1996)

43. Roussel, M.R., Zhu, R.: Stochastic kinetics description of a simple transcription model. Bull.
Math. Biol. 68, 1681–1713 (2006)

44. Roussel, M.R., Zhu, R.: Validation of an algorithm for delay stochastic simulation of transcrip-
tion and translation in prokaryotic gene expression. Phys. Biol. 3, 274–284 (2006)

45. Seelig, F.F., Denzel, B.: Hysteresis without autocatalysis: Simple enzyme systems as possible
binary memory elements. FEBS Lett. 24, 283–286 (1972)

46. Shamir, M., Bar-On, Y., Phillips, R., Milo, R.: Snapshot: Timescales in cell biology. Cell 164,
1302 (2016)

47. Skancke, J., Bar, N., Kuiper, M., Hsu, L.M.: Sequence-dependent promoter escape efficiency is
strongly influenced by bias for the pretranslocated state during initial transcription. Biochem-
istry 54, 4267–4275 (2015)

48. Sutton, V.R., Mettert, E.L., Beinert, H., Kiley, P.J.: Kinetic analysis of the oxidative conversion
of the [4Fe-4S]2+ cluster of FNR to a [2Fe-2S]2+ cluster. J. Bacteriol. 186, 8018–8025 (2004)

49. Taylor, S.R., Campbell, S.A.: Approximating chaotic saddles for delay differential equations.
Phys. Rev. E 75, 046215 (2007)

50. Tolla, D.A., Savageau, M.A.: Regulation of aerobic-to-anaerobic transitions by the FNR cycle
in Escherichia coli. J. Mol. Biol. 397, 893–905 (2010)

51. Tolla, D.A., Kiley, P.J., Lomnitz, J.G., Savageau,M.A.: Design principles of a conditional futile
cycle exploited for regulation. Mol. Biosyst. 11, 1841–1849 (2015)

52. Vasudevan, S.G., Armarego, W.L.F., Shaw, D.C., Lilley, P.E., Dixon, N.E., Poole, R.K.: Iso-
lation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in
Escherichia coli K-12. Mol. Gen. Genet. 226, 49–58 (1991)

53. Wang, Z., Han, Q.-Q., Zhou, M.-T., Chen, X., Guo, L.: Protein turnover analysis in Salmonella
Typhimurium during infection by dynamic SILAC, Topograph, and quantitative proteomics. J.
Basic Microbiol. 56, 801–811 (2016)



230 M. R. Roussel

54. Wei, J., Kuo, J.C.W.: A lumping analysis in monomolecular reaction systems. Analysis of the
exactly lumpable system. Ind. Eng. Chem. Fundam. 8, 114–123 (1969)

55. Xu, L., Chen, H., Hu, X., Zhang, R., Zhang, Z., Luo, Z.W.: Average gene length is highly
conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. Mol.
Biol. Evol. 23, 1107–1108 (2006)

56. Young, R., Bremer, H.: Polypeptide-chain-elongation rate in Escherichia coli B/r as a function
of growth rate. Biochem. J. 160, 185–194 (1976)



Delay Systems: Stabilization
and Control Strategies



A Comparison of Shaper-Based
and Shaper-Free Architectures
for Feedforward Compensation
of Flexible Modes

Dan Pilbauer, Wim Michiels and Tomáš Vyhlídal

1 Introduction

Techniques modifying a reference input and filtering undesired frequency by a time
delay filter (an input shaper) are broadly used. The input shaping idea was firstly
proposed in [13] and named “Posi-cast”, for a review on input shaping since then
see [12]. The architecture using Posi-cast is shown in Fig. 1. The scheme depicts
a classical feedback scheme with input shaper S connected on the input reference
r and flexible structure F on the output, and P denoting the plant and C the con-
troller. The goal of such a scheme is to compensate oscillatory modes of the flexible
structure represented by a couple of oscillatory poles, as a rule, by including the
input shaper that compensates the poles by dominant zeros from its infinite spec-
trum. Since the introduction of the input shaper technique, many modifications of
the control scheme have been developed. Modifications with shapers incorporated
directly in feedback loop were motivated by filtering not only the reference signal
but also external disturbances. A first attempt to develop this scheme was in [13],
where a rather complicated schemewith the shaper and compensator is combined. As
shown in [17], such a scheme is limited by the controller and the system which both
have to be biproper. Later on, the hybrid control approach proposed in [7] combined
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Fig. 1 Classical feedforward application of input shaper

the Posi-cast principle with a classical feedback system design followed by [5, 14],
where the authors anaylse the closedloop stability of systems with shapers within the
feedback via root locus plots. The scheme with the shaper within the feedback loop,
where the shaper is placed in between controller and the system, is effective only
when disturbances appear on the sensor but not on the actuator, see [6]. The novel
architecture proposed in [16, 17] suggests to use an inverse shaper in the feedback
loop.

Here we show an alternative scheme without shaper and with only one controller.
The controller’s parameters are designed with constraints on its zeros which results
in similar properties as the scheme with shaper. However, as will be shown, this
approach has limited usage.

Firstly in Sect. 2, we introduce feedback architecture for feedforward compensa-
tion. This section shows a technique without inverse shaper and describes limitations
for this method. A shaper-free method is motivating shaper-based method, described
in Sect. 3. Section3 firstly introduces the classical input shaping techniques and con-
tinues with inverse shaper based technique. Both, the shaper-free and shaper-based
techniques, are compared in numerical simulations in Sect. 4.

2 Architecture Without Input Shapers

Consider a system with a block scheme depicted in Fig. 2, where system P with
strictly proper transfer function P(s), and with input u and output x. System F , the
flexible structure, has transfer function F(s) = FN (s)

FD(s) with y being the input and z
the output. The inputs d1,2 are unmeasurable input and output disturbances actuating

C P F
x zr u

−

d2d1
y

Fig. 2 Block schemeof the classical configurationwith controllerC, plantP andflexible structureF
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on system P(s) = PN (s)
PD(s) . The controller C(s) = CN (s)

CD(s) is assumed to be a fixed-order
controller of the form

C

{
ṗ(t) = Acp(t) + Bc(r(t) − y(t))

u(t) = Ccp(t)
(1)

where capital letters are real-valued matrices of appropriate dimensions. We assume
for the moment a single input single output (SISO) system and controller. Therefore
(1) is described in the frequency domain by a single transfer function

C(s) = Cc(sI − Ac)
−1Bc. (2)

Closing the loop with the controller and system, the following transfer functions are
in the scope of interest. The first transfer function is from reference r to output z

Tzr = CP

1 + CP
F =

CNPN
CDPD

CDPD+CNPN
CDPD

FN

FD
= CNPN

CDPD + CNPN

FN

FD
(3)

and the transfer functions from disturbances d1,2 to output y are

Tzd1 = P

1 + CP
F =

PN
PD

CDPD+CNPN
CDPD

FN

FD
= CDPN

CDPD + CNPN

FN

FD
(4)

Tzd2 = 1

1 + CP
F = 1

CDPD+CNPN
CDPD

FN

FD
= CDPD

CDPD + CNPN

FN

FD
(5)

in order to compensate the oscillatory pole pole ofF(s) by zeros, the transfer function
Tzr requires the numerator of the controller CN to have zeros placed on the position
of poles of the flexible structure whereas transfer functions Tzd1 and Tzd2 require
denominatorCD to have zeros placed there. These two requirements are contradictory
because they cannot be satisfied simultaneously.When the numerator of the controller
has required zeros, a change of reference does not excite the oscillatory mode of the
flexible structure but the disturbance does. On the other hand, when the denominator
of the controller has required zeros, the disturbance does not excite the flexible
structure but the change of reference does. As only one one requirement can be
satisfied the specific application decides what is the most important. Here, we show
how to achieve partial zero placement for controller’s numerator.

Consider system P as a linear SISO system described by sets of differential equa-
tions

P

{
ẋ(t) = APx(t) + BPu(t)

y(t) = CPx(t)
(6)

where capital letters are real-valued matrices of appropriate dimensions.
The flexible structure F is an oscillatory, low damping system with transfer func-

tionF(s) = FN
FD
, where denominator FD is defined by flexible mode as s1,2 = f (ζ, ω),
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where ζ is the damping ratio and ω the natural frequency. The controller C is defined
by (1)–(2). To maintain linearity in the design of the parameters the controller is
considered in canonical form with matrices

Ac =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0
. . . 0

0 0 0 1
−an −an−1 · · · −a1

⎤
⎥⎥⎥⎦ ,Bc =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ ,Cc = [

cn cn−1 · · · c1
]
, (7)

where parameters ck modify system’s zeros. Parameters ck together with ak modify
poles of the system.

The primary goal is to a achieve zero pole cancellation in the transfer function
Tzr . Coefficients ck can be tuned in a way that at least one couple of zeros is placed
at position of poles to be compensated ẑ1,2 = s1,2. To place a couple of zeros, the
following set of constraints are

R{ẑn1 + c1ẑ
n−1
1 + · · · + cn−1ẑ1 + cn} = 0, (8)

�{ẑn1 + c1ẑ
n−1
1 + · · · + cn−1ẑ1 + cn} = 0. (9)

When a couple of complex zeros is placed the controller exhibits filtering properties.
This can be seen in the example of a magnitude frequency response of Tzr in Fig. 3,
where the drop of the amplitude at the given frequency is shown.

Each constraint (8), (9) removes one degree of freedom of the controller, where
total number of degrees is determined by the order of the controller Nc. Therefore, to
place one couple of complex conjugated zeros Nc ≥ 2 and the remaining parameters
of ck and ak can be used for further purposes, e.g. H∞ optimization, minimization
of the spectral abscissa etc.

The set of Eqs. (8)–(9) can be rewritten into form

HCc = R, with Cc = [c1 · · · cn]T , (10)

10-2 10-1 100 101 102
-30

-20

-10

0

10

Fig. 3 Magnitude frequency response of a controller designed with partial zero placement
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and by applying the singular value decomposition which gives us H = U�G∗, the
gains can be then separated in two parts

Cc = C0 + EL (11)

where

Cc = [g1| · · · |gm]
⎡
⎢⎣
l1
...

lm

⎤
⎥⎦

︸ ︷︷ ︸
C0

+[gm+1| · · · |gn]︸ ︷︷ ︸
E

⎡
⎢⎣
lm+1

...

ln

⎤
⎥⎦

︸ ︷︷ ︸
L

(12)

where li = ēi
σi
, U ∗R = [ē1 · · · ēm]T and � = [diag(σ1 · · · σm)]. A size of the first

part of (12) is determined by m which is given by a number of constraints (8)–
(9). The remaining degrees of freedom is defined as n − m, where n is given by an
order of the controller (1). This separation of the controller’s coefficients provides
elimination of the constraints (8)–(9) which would be very difficult to incorporate
into an optimization routine.

Connecting a system (6) and the controller (1), with Cc matrix defined in (12),
the following system is obtained

{
ẋ(t) = APx(t) +BP(C0 + EL)T (r(t) − y(t)),
ṗ(t) = BcCx(t) +Ac(r(t) − y(t)).

(13)

Now, the remaining parameters in L and ac are available to modify the closed loop
system. To show the functionality of the proposed method, the minimization of
the spectral abscissa c is presented here. The spectral abscissa is in general a non-
convex functionwhere differentiabilitymaynot occurwhenmore thanone eigenvalue
is active, i.e., an eigenvalue whose real part equals the spectral abscissa [8, 9].
Lipschitz continuity fails when an active eigenvalue is multiple and non-semisimple.
On the other hand, the spectral abscissa function is differentiable at points where
there is only one active eigenvalue with multiplicity one. Since this is the case with
probability one when randomly sampling parameter values, the spectral abscissa is
smooth almost everywhere. The above properties exclude classical methods to solve
the problem Hybrid algorithm for non-smooth optimization (HANSO) software [10]
where combination of BFGS with Wolfe weak line search algorithm is able to solve
such problems. The software only requires objective function and its derivatives with
respect to controller parameters wherever the objective function is differentiable. The
objective is to minimize the spectral abscissa of the closed loop system. Defining a
vector of variables p = [L a1 · · · an]T of lengthNp, the optimization can be then
defined as

min
p

c(p), (14)

where the spectral abscissa is defined as
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c(p) := sup {R(s) : s ∈ M (s; p)} , (15)

with
M (s; p) := {s ∈ C : det (sI − A ) = 0} . (16)

where

A =
[

AP BP(C0 + EL)T

−BcCP Ac

]
(17)

is the matrix of the closed loop system (13). The software also requires derivatives of
the objective function with respect to controller parameters. If only one characteristic
root with multiplicity one is active then the spectral abscissa is differentiable and
expressed as

∂c

∂p
=

[
∂c

∂p1
. . .

∂c

∂pNp

]T

= R

{
− 1

v∗ ∂M
∂s w

[
v∗ ∂M

∂p1
w . . . v∗ ∂M

∂pNp

w

]T
}

,

(18)
where v and w are the left and right eigenvectors corresponding to the rightmost
eigenvalue.

It is important to note that the technique used to eliminate controller parameters
requires that the polynomial, which determines its zeros, linearly depends on the
controller parameters. This reduces the applicability to SISO systems. Furthermore
a linear dependence also requires that throughput gainDc is not part of the controller
(1).

3 Architectures with Input Shapers

The technique utilizing the inverse shaper is based on classical reference input shap-
ing. Hereby, this section introduces basics of input shapingwith time delays followed
by a method with an inverse shaper. The section points out the main advantages of
inverse shapers, which will be compared with the technique from Sect. 2.

3.1 Input Shaping Background

The classical feedforward scheme with input shaper is show in Fig. 1. The main idea
is to filter undesirable frequency coming from the reference signal. Filtering with
time delays has main advantage that the modified input reference can be preserved
as non-decreasing which is hard to achieve with a classical notch filter.

Utilizing time delays every delay-based input shaper can be described with a
Stieltjes integral as
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h(t) =
∫ T

0
r(t − μ)dλ(μ) (19)

where r, u ∈ R are the input and the output, respectively. The function λ(μ) is the
distribution of the delay over time interval [0,T ],T ∈ R and T > 0. The delay can
be distributed in a different ways. The distribution can be made of discrete delays
and the shaper then has the form

h(t) = A0r(t) +
N∑

k=1

Akr(t − τk) (20)

where Ak ∈ R are gains and τk > 0 are delays. The classical Posicast (also called
ZV) shaper has one only delay and has form h(t) = A0r(t) + A1r(t − τ) with first,
non-delayed parameter 0 < A0 < 1 and the gain for the delayed part A1 = (1 − A0).
For more general discrete distributions see [1].

The distribution of the delay can also be continuous. Then the shaper is in the
form

h(t) = A0r(t) +
N∑

k=1

Ak

∫ τk

0
gk(μ)r(t − μ)dμ, (21)

where the gk(μ) functions can be linear (equally distributed delay, the shaper is then
called DZV [18, 19] or even more complicated distributions as shown in [15]). The
delay distributed with smooth polynomial functions is described in [11]. The shaper
in form (21) has retarded spectrum whereas the shaper with discrete delays (20) has
undesirable neutral spectra ([3]). Neutrality brings difficulties in dynamic analysis
and requires special attention in the feedback design [2, 4], which would be crucial
in method using an inverse shaper. For this reason, we focus only on shapers with
retarded dynamics.

3.2 Inverse Shaper

The closed loop architecture with inverse shaper proposed in [17] is show in Fig. 4.
The shaper S has spectrum consisting only of zeros and the inversion of the shaper
S−1 turns its zeros into the poles of transfer function 1

S(s) . Of course, thismathematical
operation is only possible when the transfer function is proper. In case of shapers in
form of (20) or (21) the inversion always exists if A0 > 0.

The main idea of including the inverse shaper in the feedback is to project its
filtering properties in the transfer functions from all possible inputs. For reference
input as
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C P F
x zr u

−

d2

S−1

d1
y

Fig. 4 Block scheme with inverse shaper in the feedback

Tzr = CP

1 + CP 1
S

F =
CNPN
CDPD

CDPDS+CNPN
CDPDS

FN

FD
= CNPNS

CDPDS + CNPN

FN

FD
(22)

and for the input d1 and output d2 disturbances

Tzd1 = P

1 + CP 1
S

F =
PN
PD

CDPDS+CNPN
CDPDS

FN

FD
= CDPNS

CDPDS + CNPN

FN

FD
(23)

Tzd2 = 1

1 + CP 1
S

F = 1
CDPDS+CNPN

CDPDS

FN

FD
= CDPDS

CDPDS + CNPN

FN

FD
(24)

As can be seen in the transfer functions (22)–(24), infinitely many zeros of the shaper
S appear in all numerators of the transfer functions. Then the dominant zeros can be
used to compensate the oscillatorymodes ofF(s). Thismeans, that neither a reference
change, nor an input or input disturbance excite the given frequency. On the other
hand, the quasi-polynomial form of the shaper also appear in the denominator of the
transfer functions and projects its zeros into poles of the system spectra. The main
advantage of the shapers with retarded spectra is revealed now. If the shaper has
retarded spectra also the closed loop with inverse shaper has retarded spectra and
stability issues with small delay perturbations (see, [2, 4]) are omitted.

The closed loop system with the inverse shaper can be unstable or relatively slow.
To stabilize the system or modify system spectra, a fixed-order controller can be
used to perform the tasks. A fixed-order controller design for infinite dimensional
system allows to obtain relatively simple controller and the order of the controller
does not necessary need to be the same as the open-loop system. As in the previous,
shaper-free, case the design of the controller can be executed for various objective
functions, e.g. minimizing the spectral abscissa or H-infinity norms. For the fixed-
order controller and the mentioned objectives, the optimization problem is in general
non-convex, non-smooth etc. Such problems can once again be handled by recently
developed non-smooth, non-convex optimization techniques that are implemented
in the package HANSO.

To demonstrate the applicability of the schemewith an inverse shaper, one specific
shaper is chosen and applied to the system. The system is then optimized in sense of
minimizing the spectral abscissa.
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Firsty, we define the input shaper which will be used. The shaper is in form

h(t) = ar(t) + (1 − a)
∫ T

0
r(t − μ)dλ(μ) (25)

where r and h are the shaper input and output, respectively, a ∈ R+, a < 1 is the gain
parameter, and the distribution of the delays is prescribed by the non-decreasing
function λ(μ). Considering that the overall delay consists of a series of lumped and
equally distributed delay of the lengths T the input shaper has transfer function

SDZV (s) = a + (1 − a)
1 − e−sT

Ts
e−sτ (26)

which consists of lumped delay τ and equally distributed delay of the length T . The
interpretation of the given transfer function is shown in the time domain in Fig. 5 and
in frequency domain in Fig. 6, where its filtering properties for the given nominal
frequency ω0 = 1 rad/s is obvious.

The inversion of the shaper is realized by the following formula

h(t) = 1

a
(y(t) − (1 − a)b(t)) (27)

0 +T
0

a

1

Fig. 5 Step response of the shaper
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Fig. 6 Magnitude frequency response of the shaper
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where

b(t) = 1

τ

∫ t−τ

t−(T+τ)

h(μ)dμ (28)

which can be implemented as a dynamic equation

ḃ(t) = 1

T
(h(t − T ) − h (t − (T + τ))) . (29)

Connecting equations for shaper (27) and (29) togetherwith the system (6) the system
can be described by a set of Delayed Differential and Algebraic Equations (DDAEs)
as ⎧⎨

⎩
ẋ(t) = APx(t) + BPu(t),

h(t) = 1
aCPx(t) − 1−a

a b(t),
ḃ(t) = 1

T h(t − T ) − 1
T h(t − (T + τ)).

(30)

The next task is to design a controller that stabilizes and optimizes the system. To get
a good comparison with the shaper-free method the spectral abscissa is the objective
function for both cases. The controller is in form (1)with no requirements on structure

as in shaper-free method. The vector of variables is here defined as q = vec

[
Ac Bc

Cc 0

]

with length Nq. The spectral abscissa for the closed loop is defined as

c(q) := sup {R(s) : s ∈ MS(s, q)} , (31)

with

MS(s, q) := {
s ∈ C : det (sE − A0 − A1

(
e−sT + e−s(T+τ)

)) = 0
}
. (32)

where

A0 =

⎡
⎢⎢⎣

AP −BPDc 0 BPCc
1
aCP −1 − 1−a

a 0
0 0 0 0

BcC 0 0 Ac

⎤
⎥⎥⎦ ,A1 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 1

T 0 0
0 0 0 0

⎤
⎥⎥⎦ . (33)

The function of spectral abscissa has the same properties as in previous shaper-
free case and HANSO software can be chosen to handle the problem. Also here,
derivatives are necessary for the optimization and the same rules for derivatives as
in (18) applies.

4 Numerical Simulations

Consider the mechanical system depicted in Fig. 7 where the primary structure is a
2DOF system described by
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m1 m2 ma

k

cc

ka

caca

f (t)

Primary structure
Secondary structure

Fig. 7 Mechanical scheme of 2 degrees of freedom primary structure with attached secondary
structure. Note that we neglect the coupling between primary and secondary structure asm2 << ma

Table 1 Parameters of the system

m1 c k m2 ma ca ka ω ζ

1kg 10kgs−1 1000Nm−1 10kg 1kg 1kgs−1 1Nm−1 1 rad s−1 0.01

AP =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

− k
m1

k
m1

− c
m1

c
m1

k
m2

− k
m2

c
m2

− c
m2

⎤
⎥⎥⎦ ,BP =

⎡
⎢⎢⎣
0
0
1
m1

0

⎤
⎥⎥⎦ (34)

with the parameters given in Table 1. The secondary structure is attached to the
primary structure by a spring and a damper. We assume that mass ma � m2 and
therefore the dynamic of the primary structure may be considered as decoupled from
the dynamics of the secondary structure. The oscillatory mode of the secondary

structure is defined by its natural frequency ω =
√

ka
ma

and damping ratio ζ = ca
2
√
maka

as s̄1,2 = −β ± j
, where β = ωζ,
 = ω
√
1 − ζ 2.

The both cases, shaper-free scheme and scheme with inverse shaper, are designed
for the same system. The results are compared in both the compared in frequency
and time domain. The results can be seen in the Fig. 8, where zeros and poles of the
system are shown. As shown, the initial system without a controller is at the stability
boundary with a double pole at the origin and has no zeros. Closing the feedback
with designed controller makes the system stable with required zeros in the transfer
function from reference to system output (5). In case with the inverse shaper, the
zeros of the shaper merge with poles of the system and introduce its dynamics into
the closed loop.

Unfortunately, in case without inverse shaper the couple of assigned zeros appear
only in this particular transfer function (5) but not in ones coming from the distur-
bances d1,2. Zeros for different transfer functions are compared in Fig. 9. For the
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Fig. 8 Spectra of the shaper-free (left) and shaper-based (right) systems
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Fig. 9 Comparison of zeros of: left-from reference, middle-from input disturbance d1, right-from
output disturbance d2
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Fig. 10 Red-Response of the system without inverse shaper, designed with partial zero placement;
Blue- Response of the system with inverse shaper. Response to the chane of reference r at time
t = 5s, input disturbance d1 appears at time t = 100 s and output disturbance d2 at time t = 450 s.
The upper figure shows the position of the second cart x2 and the lower figure shows the position
of the flexible structure xa

case with shapers, part of infinitely many zeros are shown. In fact, the spectrum is
retarded, hence the chain of zeros have real parts moving off to minus infinity.

As shown in Fig. 10, the oscillations do not appear when the reference signal
is changed but appear when one of the disturbances are present. This behaviour
disappear when the inverse shaper is applied in the feedback. Note, that, the response
to the disturbance has non-zero steady state error. The error could be eliminated by
putting another constraints on the controller or implementing additional integrator.
Another advantage of the inverse shaper scheme is the tendency to form smoother
responses, even though the desirable monotonous responses have not been achieved
in this particular example due to ‘fast’ controller setting.
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5 Summary

We shown how certain constraints can help to construct controllers with properties
mimickingfilteringproperties of the inverse shaper. This approach allowsonly certain
channels, either a single reference input or a couple of input and output disturbances,
to have filtering properties, and applies only to SISO system only. Moreover, com-
pared to the input shaping, the responses do not tend to have desirable monotonous
character.

In order to address both the set-point and disturbance cases, the controller would
need to be separated into two blocks analogously as it is done in Fig. 4. Instead of
the inverse shaper, one can place the filter with the flexible mode as its poles. By this
option however, the monotonicity of the response from the set-point changes cannot
be achieved neither.

The inverse shaper introduces additional disturbance rejections without exciting
oscillatory modes of the flexible structure. On the other hand, infinitely many zeros
of the shaper turn into poles of the system and make design of the controller more
complicated. Stability issues of neutral systems are removed by using shapers with
distributed time delay, whereas the shaper-free method does not need any special
stability treatment.
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Proportional-Retarded (PR) Protocol
for a Large Scale Multi-agent Network
with Noisy Measurements; Stability
and Performance

Adrián Ramírez and Rifat Sipahi

1 Introduction

Study of multi-agent systems has attracted tremendous attention especially in the
past decade, with applications involving robotic networks [1], traffic flow dynamics
[2], human-machine interactions and collaborative human-robot systems [3]. While
such systems can enjoy rich information flow amongst the agents with the network
interconnectivity, distributed nature of the agents and the need to utilize advanced
technologies to tailor these agents inevitably bring about a number of unique chal-
lenges to the design and control of multi-agent systems. One key challenge is the
presence of time delays in the network dynamics [4], which may arise due to various
reasons including agents’ actuation times, the need to use a communication medium
to enable the agents to exchange information, and necessary computation times to
process and interpret large stream of data. The presence of time delay in a dynam-
ical system often imports undesirable characteristics, including poor performance,
oscillatory response, and instability [5]. Nevertheless, if carefully engineered, time
delay can also be used as a vehicle to craft the dynamic response, including fast
stabilization [6–11].

In the context of multi-agent networks however, use of delays as a design param-
eter to achieve fast stabilization is under-explored although this is of high interest
[12, 13]. One opportunity in this endeavor is to utilize reliable computational tools to
approximate the rightmost eigenvalues of the dynamics [14], or to use those tools to
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tune the controller gains via optimization schemes [15]. Other ideas to achieve fast
stabilization include strategically removing certain links between some of the agents
to expedite consensus reaching [16], or re-designing their coupling strengths [17].

Recent results on linear time-invariant (LTI) single-input single-output (SISO)
systems [9, 10] indicate that analytical tuning rules can be developed with certain
classes of controllers to optimize the spectrumof the closed-loop system.Specifically,
in [18, 19], authors analytically designed Proportional-Retarded (PR) protocols that
can assign a closed-loop system’s spectral abscissa to a user-defined location on the
complex plane. These results point out opportunities also for large scale LTI network
control problems see, e.g., [20–27] for studies utilizing PR controllers in network
settings.

In this chapter we seek to develop distributed PR-based protocols for a bench-
mark large-scale LTI consensus system. The main objective is to utilize Lambert W
functions to analyze the stability of the system in terms of PR protocol parameters.
For this, we first take advantage of standard decomposition tools to break down the
corresponding characteristic equation into subsystems and treat each subsystem sta-
bility one by one. This result provides a transparent understanding in terms of which
specific eigenvalue of the graph Laplacian underlying the network governs directly
the stability of the entire consensus system. Furthermore, it connects with our recent
study in [28] where, with each subsystem being in a particular form, we utilized
some inherent features of Lambert W functions to tune the PR protocol without any
approximation while shifting the spectrum of the subsystems all at once, thereby
yielding fast stabilization. With the novelty of the results pertaining to this tuning
approach left to [28], here we summarize some key findings from the cited work for
the completeness of the presentation. Overall, in an undirected network, the proposed
approach as we demonstrate is scalable and easy to implement, even in the presence
of signals with high-frequency noise components.

The rest of the chapter is organized as follows. Section2 describes the consensus
dynamics under analysis and states the problem formulation in light of the Lambert
W function. Section3 starts with a useful factorization of the system that enables
a comprehensive study of the stability of the complete network using dimensional
analysis. Section4 summarizes some results without proofs from [28] regarding
the design of the spectral abscissa of the system ensuring fast consensus. Section5
verifies the findings via the analysis of a challenging numerical example. Finally
some concluding remarks and further directions on research are given in Sect. 6.

2 Preliminaries and Problem Formulation

In the following we consider a system with n identical agents whose dynamics is
captured by the integrator plant

ẋi (t) = ui (t), (1)
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where xi (t) is the state of the i th agent and ui (t) is the control input by which
agent i communicates with the rest of the agents. The communication topology of
the network is described by an undirected weighted graph G = (N , E, A) where
N = {1, 2, . . . , n} is the set of nodes, E ⊂ N × N is the set of edges (communi-
cation channels), and A = [ai j ] is the weighted adjacency matrix. We assume that
each edge has an associated weight ai j = a ji , also known as the coupling strength,
where the indices (i, j) ∈ E indicate that agent i ∈ N receives information either
instantaneously or with delay from agent j ∈ N whenever ai j > 0.

Let L = [li j ] ∈ R
n×n be the Laplacian matrix with

li j =
{∑n

m=1,m �=i aim i = j,

−ai j i �= j,
(2)

then L is symmetric li j = l ji and accepts the diffusive property
∑n

j=1 li j = 0. Hence,
from the spectral theorem for Hermitian matrices [29], its eigenvalues are real.

The control objective, as proposed in [28], is to achieve agreement of the states
amongst all the agents of the network. To this end, we consider that the agents are
coupled via the Proportional-Retarded (PR) protocol originally developed for SISO
systems [11],

ui (t) = kp

n∑
j=1

ai j [x j (t) − xi (t)] − kr

n∑
j=1

ai j [x j (t − h) − xi (t − h)]. (3)

Here, kp and kr determine respectively the strength of the proportional and retarded
actions, and h > 0 is an intentional delay induced as part of the input with the aim of
obtaining a delayed term by which high-frequency measurement noise is attenuated.
We say that protocol (3) solves the consensus problem if lim

t→∞ ‖xi (t) − x j (t)‖ = 0,

for all i, j ∈ N .
Note that the introduction of the retarded part in the PR protocol mimics a pure

derivative action, thus improving transient response but being insensitive tomeasure-
ment noise. To see this, observe that (3) can be written in terms of the entries of L
as: ui (t) = −∑n

j=1 �i j [kpx j (t) − kr x j (t − h)]. Introducing the null term ±kr x j (t)

into the above and defining k̃ p ≡ kp − kr and k̃r ≡ hkr we obtain the following
alternative representation

ui (t) = −
n∑

j=1

�i j

[
k̃ px j (t) + k̃r

1

h

∫ t

t−h
ẋ j (τ )dτ

]
. (4)

Hence, the proposed protocol performs an averaged derivative action [11] distributed
throughout the network by which high-frequency noise components are attenuated
without relying on measurements or approximations of ẋ j (t).
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Let x = (
x1 · · · xn

)	
be the stack vector of the states at all nodes and {A0, A1} =

{−kp, kr } · L , then system (1) with (3) can be conveniently expressed in matrix form
as

ẋ(t) = A0x(t) + A1x(t − h), (5)

whose stability properties are defined by the location of the characteristic roots of
the function

f (s, kp, kr ) = det(s I − A0 − A1e−sh) = 0, (6)

which is also known as the characteristic equation of system (5). Let � be the
collection of all characteristic roots satisfying (6) and define the spectral abscissa

γ ∗ = max{R(s) | s ∈ �}. (7)

Then, γ ∗ < 0 implies that the spectrum of the system, �, lies in the open left-half of
the complex plane, thus leading to the following definition [10, 30].

Definition 1 The system (5) is exponentially stable if andonly if the spectral abscissa
is strictly negative.

Remark on the solution of DDEs via the Lambert W function: A Lambert W
function is any function W : C → C satisfying

W (z)eW (z) = z, (8)

for all z ∈ C. Due to the fact that W is multi-valued, it possesses infinitely-many
branches [31]. For a Delay-Differential Equation (DDE), such as the one in (1) with
(3), each of these branches can be associated to an element of its spectrum; i.e., to an
eigenvalue. In particular, the Lambert W function is useful for the stability analysis
and control of LTI-TDS represented byDDEs [32]. For example, the principal branch
W0 can be employed to find the system’s dominant root s0. Then, ifR(s0) is negative,
we can conclude that the system is stable.1 Computation of W0 follows from the
Lagrange inversion theorem [31] as the series expansion

W0(z) =
∞∑

r=1

(−r)r−1

r ! zr . (9)

Moreover, W0 may also be defined as the only branch of W that is analytic at 0.2 In
addition, the Lambert W function can also be extended to design feedback controllers
placing s0 at a desired position by using numerical procedures [33].

1It is worthy ofmention that the radius of convergence of the series is e−1. For practical computation,
the reader is referred to [31] where additional asymptotic formulae can be found considering all the
branches of the Lambert W function.
2The scalar Lambert W function is available as embedded function in MATLAB, see the function
lambertw.
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3 Stability of the Network

Next, we present a decomposition of system (5) by which stability conditions can be
derived using the Lambert W function [33] and the D-subdivision method [34].

Factorization of the Consensus Dynamics

Let us begin with a modal transformation that rotates the vector fields of system
(5) aiming at obtaining a diagonal representation of it. Similar transformations have
been widely utilized in the context of time delay systems, see for example [35–38].
Here, we will say that both systems are equivalent if they share the same stability
properties in terms of their spectrum.

Proposition 1 Let {λ1, . . . , λn} be the set of eigenvalues of L ordered increasingly.
Then, system (5) is equivalent to the diagonal system

ξ̇ξξ(t) = ���0ξξξ(t) + ���1ξξξ(t − h), (10)

where {���0,���1} = {−kp, kr } · ���, and ��� = diag{λ1, . . . , λn}.
Proof Since the graph is undirected the Laplacian matrix is symmetric, hence the
Schur’s theorem [29] guarantees the existence of a nonsingular orthogonal matrix
U ∈ R

n×n , such that the following representation holds: L = U���U−1. Introducing
the change of variable x(t) = Uξξξ(t), system (5) is reduced to the diagonal form (10),
which can be treated as a set of n decoupled subsystems with dynamics

ξ̇m(t) = −λmkpξm(t) + λmkrξm(t − h), m = 1, . . . , n. (11)

The characteristic equation of any subsystem of the form (11) is

fm(s, kp, kr ) = s + λmkp − λmkr e−sh = 0. (12)

The fact that the matrix coefficients of systems (5) and (10) share the same set of
eigenvalues implies that each fm(s, kp, kr ) in (12) is a factor of f (s, kp, kr ) in (6);
i.e.,

f (s, kp, kr ) =
n∏

m=1

[
s + λmkp − λmkr e−sh

] = 0. (13)

Then, the spectra and thus the stability properties of (10) and (5) are equivalent.
� �

Proposition 2 The system (5) is exponentially stable if and only if

γ ∗ = max
{
γ ∗

m

}n

m=1 < 0, (14)

where
γ ∗

m = R
(
h−1W0

(
λmkr heλm kph

) − λmkp
)
, (15)
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and W0 is the principal branch of the Lambert W function.

Proof Consider the mth factor fm(s, kp, kr ) in (12). Multiplying both sides of this
equation by heλm kph yields

h
(
s + λmkp

)
eh(s+λm kp) = λmkr heλm kph . (16)

Comparing (8) and (16), we can see that h
(
s + λmkp

) = W (λmkr heλm kph). Solving
the above equation for s leads to the solution

s = h−1W
(
λmkr heλm kph

) − λmkp. (17)

Then, Eq. (15) follows from the real part of (17) using the principal branch W0. As
per Definition 1, the exponential stability of the system is equivalent to (14).� �

Assuming that agents are connected, matrix L has a zero eigenvalue λ1 = 0
corresponding to the consensus state, and with �i j > 0, its remaining eigenvalues
λ2, . . . , λn are positive [39]. Therefore, while ignoring the case of m = 1 since this
corresponds to the consensus state s = 0, we have the following corollary.

Corollary 1 Let γ ∗
m be the spectral abscissa corresponding to the mth subsystem

(11). Then, if γ ∗
m < 0 for all m = 2, . . . , n, system (5) is exponentially stable around

the consensus state of the network.

Proof Note that γ ∗
m < 0 for all m = 2, . . . , n guarantees γ ∗ < 0. � �

Corollary 1 states that separately analyzing the stability of the individual subsystems
is equivalent to analyzing the stability of the complete system.

Decomposition of the Space of Parameters

The above discussion indicates that the stability analysis of system (5) can be per-
formed by studying a finite set of subsystems with reduced complexity. With this in
mind, using the D-subdivision method, we next decompose the space of controller
parameters to study the stability switches of each subsystem (11) with the aim of
obtaining a complete stability picture of the system. First, we transform the char-
acteristic Eq. (12) into a dimensionless form. To this end, let the quasipolynomial
fm(s, kp, kr ) be scaled by h and introduce the time-scaled Laplace operator s̃ = hs,
this then transforms (12) into

h fm(s̃/h, kp, kr ) = s̃ + λmkph − λmkr he−s̃ = 0. (18)

Note that the new quasipolynomial retains the stability properties of the original one
but with a time delay transformed to unity and where h is now acting as a gain in
the system. Defining the lumped gains ρp = λmkph and ρr = λmkr h and the scaled
function f̃ (s̃, ρp, ρr ) = h fm(s̃/h, kp, kr ), we can recast (18) as

f̃ (s̃, ρp, ρr ) = s̃ + ρp − ρr e−s̃ = 0. (19)



Proportional-Retarded (PR) Protocol for a Large Scale Multi-agent Network … 255

Remark 1 Observe that under this transformation, all factors fm(s, kp, kr ) in (12)
share the uniform structure (19). Hence, for the sake of generality, we temporarily
drop the index m associated with the mth eigenvalue.

Following the same logic as in Proposition 2, we multiply (19) by a factor e(s̃+ρp)

and obtain (s̃ + ρp)e(s̃+ρp) = ρr eρp with which, using the real part of the principal
branch W0 of the Lambert W function, we find the spectral abscissa

γ̃ ∗ = R(W0 (ρr eρp ) − ρp). (20)

As per Corollary 1, stability of any subsystem of the form (11) follows from (20) if
and only if γ̃ ∗ < 0.Moreover, a stability switch can only occur if some characteristic
roots cross the imaginary axis. Therefore, we next search for the lumped crossing
points (ρ



p, ρ



r ) and the corresponding scaled crossing frequencies ω̃ = ωh such that

f̃ ( jω̃, ρ

p, ρ



r ) = 0. (21)

Due to symmetry of the characteristic roots with respect to the real axis, we can
consider only nonnegative frequencies.

Proposition 3 For a given ω̃ �= kπ , k ∈ N the corresponding lumped crossing point
(ρ



p, ρ



r ) is given by

(ρ

p, ρ



r ) = (−ω̃ cos(ω̃)

/
sin(ω̃),−ω̃

/
sin(ω̃)

)
. (22)

Moreover, any point on the line

ρ

p − ρ


r = 0, (23)

is also a lumped crossing point.

Proof Collecting real and imaginary parts of (21) and some algebraic manipulations
generate (22), which are well defined for ω̃ �= kπ , k ∈ N. Corresponding to a root
on the origin of the complex plane, (23) satisfies (21) as ω̃ → 0. � �

Let (ρ

p, ρ



r ) be a lumped crossing point and define

C̃ = {
(ρ


p, ρ


r ) | ω̃ ∈ [0,∞), ω̃ �= kπ, k ∈ N

}
. (24)

The collection of points in (24) generates almost-everywhere smooth curves [40]
known as stability crossing boundaries. Then, C̃ decomposes the lumped space of
parameters D̃ = {(ρp, ρr ) ∈ R × R} into a finite number of regions. Since the spec-
trum of system (5), �, behaves continuously with respect to small variations of the
lumped parameters, each of these regions is characterized by the same number of
unstable roots ν. Let us denote each region by D̃(ν), thus,

D̃ =
∞⋃

ν=0

D̃(ν), (25)
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Fig. 1 (Left panel) Stability map obtained with the quasipolynomial (19), the stability crossing
boundaries C̃ are shown in solid lines and the (ρp, ρr ) pairs satisfying γ̃ ∗ < 0 are depicted with
isolated points. (Right panel) The stability crossing boundaries Cm obtained with Proposition 4 are
shown in solid lines and the (kp, kr ) pairs satisfying γ̌ ∗ < 0 are depicted with isolated points

forms a partition of the lumped space of parameters. Here, D̃(0) is referred to as the
lumped stability domain.

From Proposition 3, we compute the stability crossing boundaries depicted in
solid line in Fig. 1 (Left panel). The stability condition γ̃ ∗ < 0 is next tested, with γ̃ ∗
in (20), using the embedded function lambertw in MATLAB and sweeping both ρp

and ρr . The isolated points in Fig. 1 (Left panel) correspond to (ρp, ρr ) pairs where
the stability condition holds. Here, the stability domain is given by

D̃(0) = {(ρp, ρr ) | γ̃ ∗ < 0}, (26)

whose outlook, shaped by C̃ , remains invariant with respect to both the eigenvalues
of the Laplacian and the amount of induced delay.

To determine the impact of λm and h in the stability properties of the system in
the original coordinates (kp, kr ), we now consider a network with an infinite number
of agents (n → ∞) represented by an undirected graph. According to the spectral
theorem for Hermitianmatrices [29], all the eigenvalues of L are real.Without loss of
generality, let the set of eigenvalues {λ1, . . . , λn} ⊂ R

∞ be ordered increasingly and
define the merged parameter κm = λmh. Once again, we ignore λ1 = 0 as explained
above, and therefore κm > 0. Then, the following proposition is well defined.

Proposition 4 For a given κm > 0, m = 2, 3, . . ., and ω̃ �= kπ , k ∈ N the corre-
sponding crossing point (k


p, k

r ) is given by

(k

p, k


r ) = (−κ−1
m ω̃ cos(ω̃)

/
sin(ω̃),−κ−1

m ω̃
/
sin(ω̃)

)
. (27)

Moreover, any point on the line
k


p − k

r = 0, (28)

is also a crossing point.
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Proof The result follows directly from Proposition 3. � �

Since n → ∞ and �i j = � j i is a free parameter, the eigenvalues of L are allowed to
take any real value, then κm ∈ (0,∞) and κm+1 > κm withm = 2, 3, . . .. Considering
a fixed value of κm , the crossing points (k


p, k

r ) define the stability crossing boundary

Cm = {
(k


p, k

r ) | ω̃ ∈ [0,∞), ω̃ �= kπ, k ∈ N

}
. (29)

Associated with κm , let us define the stability domain

Dm(0) = {
(kp, kr ) | γ̌ ∗

m < 0
}
, (30)

where γ̌ ∗
m = hγ ∗

m follows from (15) and is given by

γ̌ ∗
m = R

(
W0

(
κmkr eκm kp

) − κmkp
)
. (31)

Corollary 1 states that the stability of all subsystems in (12) implies the stability of
the complete network. Moreover, as per Proposition 2, the stability of the complete
network implies

γ̌ ∗ = max
{
γ̌ ∗

m

}n

m=2 < 0. (32)

Conversely, condition (32) implies the stability of the complete network. FromPropo-
sition 4, we compute the stability crossing boundaries depicted in solid line in Fig. 1
(Right panel) with several values of κm → ∞. Condition γ̌ ∗ < 0 in (32) is next
tested, using the embedded function lambertw in MATLAB and sweeping both kp

and kr . The isolated points in Fig. 1 (Right panel) corresponds to (kp, kr ) pairs where
the stability condition of (32) holds. Here, the stability domain is given by

D(0) =
n⋂

m=2

Dm(0), (33)

where D(0) is the stability domain of the overall system (5). Note that D2(0) ⊃
D3(0) ⊃ · · · ⊃ Dn(0), therefore (33) reduces to

D(0) = Dn(0). (34)

Since Dn(0) is related to κn , and κn is related to λn , we can conclude that ensuring the
stability of the subsystem that corresponds to the largest eigenvalue of the Laplacian
will ensure the stability of the complete system. That is,

D(0) = {
(kp, kr ) | γ̌ ∗

n < 0
}
. (35)

The above result is formalized in the following proposition.
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Proposition 5 The stability domain of the consensus dynamics (5) in the parameter
space (kp, kr ) is equivalent to the stability domain of its subsystem associated with
the largest Laplacian eigenvalue in (11). �

Now, the problem is to find the setting for the parameters h, kp and kr as a function
of the Laplacian eigenvalues such that stability of (5) is guaranteed through (35).

4 Tuning of the PR Protocol

The approach presented below is summarized from [28] for completeness. Readers
are referred to the cited study for all relevant proofs. Here, we wish to show how
PR protocol can be tuned for the network system in (5). As concluded above, the
stability of the subsystem related to the largest eigenvalue of the Laplacian implies
the stability of (5). This is now connected to the results in [28] where the objective
is to place the spectral abscissa of the consensus dynamics at a desired position γd .

First, choose an arbitrary eigenvalue λ̄ of L . Associated with λ̄ we have that

γ̄ ∗ = R

(
h−1W0

(
λ̄kr heλ̄kph

)
− λ̄kp

)
. (36)

Using the delay and the gains

(h, kp, kr ) = (1/λ̄, W0(1) − γd/λ̄, e−kp ), (37)

into (36) reduces γ̄ ∗ to
γ̄ ∗ = γd , (38)

where γd is a free parameter introduced to arbitrarily place γ̄ ∗.
Second, study the impact of h, kp and kr in the rest of the subsystems. To this

end, consider a generic spectral abscissa γ̂ ∗ associated with the eigenvalue λ̂ > λ̄.
Employing (37) along with λ̂ into (15) we have the spectral abscissa

γ̂ ∗ = λ̄R
(

W0

(
λ̂λ̄−1e

kp

(
λ̂λ̄−1−1

))
− λ̂λ̄−1kp

)
. (39)

Define δ = λ̂λ̄−1, since λ̂ > λ̄ > 0, then δ > 1. Moreover, whenever kp remains
positive, W0 is real and positive [31]. Hence, (39) is equivalent to

γ̂ ∗ = λ̄
[
W0

(
δekp(δ−1)

)
− δkp

]
. (40)

Third, introduce the identity

F(δ) = γ̄ ∗ − γ̂ ∗, (41)
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relating the spectral abscissas. Here, if F(δ) > 0 for all δ ∈ (1,∞), this would imply
that the systems associated with λ̂ and with λ̄ are both stable provided that γd in (38)
is strictly negative. As per proofs in [28], indeed F(δ) > 0 holds so long as kp > e−1.

Fourth, let λ̄ = λmin = min{λm}n
m=1 �= 0. Since F(δ) > 0 holds for kp > e−1, it

follows that γ̄ ∗ > γ̂ ∗, where γ̄ ∗ is the spectral abscissa associated with λmin, and
γ̂ ∗ is the spectral abscissa associated with any of the remaining eigenvalues of L .
Here, λ1 = 0 is once again ignored as explained above. We conclude that, under
parameters (h, kp, kr ) in (37), the spectral abscissa of the overall network is a function
of λmin and can be placed at any desired position; i.e., γ ∗ = γ̄ ∗ = γd . Moreover, if
λ̂ = λmax = max{λm}n

m=1, choosing γd < 0 such that kp > e−1 implies γ̂ ∗ < 0. In
other words, the subsystem associated with λmax is stable and hence, system (5) is
stable as per our result in the previous section.

Finally, we have the following proposition by which the γ -stability of system (5)
is ensured by means of the tuning of the parameters of the PR protocol.

Proposition 6 ([28]) Let λmin = min{λm}n
m=1 �= 0 be the smallest eigenvalue of L ,

and let γd < 0 be a desired locus for the spectral abscissa γ ∗ of system (5), then a
dominant root at γd is placed by the following tuning of the PR protocol gains

(h, kp, kr ) =
(

1

λmin
,
λmin� − γd

λmin
, e−kp

)
, (42)

where � = W0(1) = 0.5671 is the omega constant.

To summarize, on the network system at hand controlled by PR protocol, we have
two key messages: (a) The maximum of the eigenvalue λmax of the graph Laplacian
L dictates the ultimate stability characteristics in terms of PR protocol gains, and
(b) the minimum of the eigenvalue λmin of the graph Laplacian L dictates how the
PR protocol gains must be designed to place the dominant root of the dynamics at a
user-defined spectral abscissa γd .

5 Numerical Examples

In this section, we present numerical results for the consensus dynamics in (5) where
the parameters of the PR protocol are tuned using Proposition 6.

We investigate a fully connected topology of 5 agents with heterogeneous cou-
pling strengths. Here, {0, 25.74, 41.84, 58.08, 70.76} is the set of eigenvalues of the
Laplacian matrix L given by

L =

⎛
⎜⎜⎜⎜⎝
45.7273 −14.9896 −9.7127 −17.2060 −3.8190

∗ 49.0701 −1.9947 −13.1760 −18.9099
∗ ∗ 26.8209 −0.8211 −14.2924
∗ ∗ ∗ 34.5030 −3.2999
∗ ∗ ∗ ∗ 40.3212

⎞
⎟⎟⎟⎟⎠ . (43)
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With the eigenvalues λm at hand, the quasipolynomial f (s, kp, kr ) = det(s I − A0 −
A1e−sh), where {A0, A1} = {−kp, kr } · L , is factorized with Proposition 1 as

f (s, kp, kr ) = s ×
f (λmin)↑[

s + 25.74kp − 25.74kr e−sh
] × [

s + 41.84kp − 41.84kr e−sh
]

× [
s + 58.08kp − 58.08kr e−sh

] × [
s + 70.76kp − 70.76kr e−sh

]
↓

f (λmax)

.

(44)

Using Proposition 6, one can now place the spectral abscissa of f (λmin) in (44) at
a stable locus, which in turn implies that F(δ) in (41) remains strictly positive for
any δ > 1, and therefore the spectral abscissa of f (λmax) must also be placed at a
stable locus.3 We can conclude that the subsystem associated with λmax is stable and
hence, as per Proposition 5, the complete consensus network is stable.

Figure2 shows the time simulations for the 5-agent network and considering
γd ∈ {−10,−20,−30}. The initial states of the agents in the time interval t ∈ [−h, 0]
are [−0.19, 0.19,−0.59, 0.05, 0.89]	. In addition, we have injected uniformly dis-
tributed random signals into the network’s communication channels to mimic high-
frequency noise measurements of the states with a flat power spectral density and
infinite total energy. Two observations are in order: i) agents’ dynamics are only
minimally affected by the simulated high-frequency noise in the measurements as
opposed to using a controller with pure derivatives (plots suppressed due to lack
of space) and ii) pushing the spectral abscissa deeper into the left-hand side of the
complex plane increases the velocity of response of the system. Following these
observations, we can say that the PR protocol can process the noisy measurements
without any need for further filtering. Moreover, the convergence rate of the consen-
sus network is dictated by the tuning rules in Proposition 6, hence, faster consensus
can be achieved by choosing smaller negative γd values.

6 Conclusions

This chapter studies the stability of a LTI consensus dynamics under a PR protocol
that utilizes delays as tuning parameters. We present how the PR protocol gains
influence the stability of the dynamics and how the maximum eigenvalue of the
underlying graph Laplacian alone ultimately determines the stability of the overall

3Note that Proposition 6 uses λmin to guarantee the placement of γ ∗ at a desired location γd through
a stabilizing pair (kp, kr ). Since γd < 0 is a necessary and sufficient condition for the stability of
the consensus network, it can be conjectured that the stabilizing pair (kp, kr ) must lie within the
stability domain associated with λmax. Therefore, one may consider Proposition 6 as a link between
two important Laplacian eigenvalues, namely, λmin and λmax.
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Fig. 2 5-agent network subject to high-frequency noise measurements. (Left panels) Agents’ states
with respect to time. (Right panels) Spectrum distribution of the consensus dynamics computedwith
QPMR [14]. (Top) γd = −10. (Center) γd = −20. (Bottom) γd = −30

network dynamics. Recent results from [28] are then summarized showing how to
tune the PR protocol to achieve fast consensus. Further research directions include
the analysis of different consensus protocols and the use of multiple delays.
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Inversion of Separable Kernel Operator
and Its Application in Control Synthesis

Guoying Miao, Matthew M. Peet and Keqin Gu

1 Introduction

A necessary and sufficient condition for stability of coupled differential-difference
equations (of which delay-differential equations is a special case) is the existence
of a so-called “complete quadratic” Lyapunov-Krasovskii functional. Such func-
tionals have the form V = 〈x,Px〉 where P is defined by a combination of mul-
tiplier and integral operators, the inner product is defined on L2, and the state,
x ∈ R

n × L2[−τ, 0]m is a combination of the present state and memory of cer-
tain delayed channels. The first numerical algorithm to use semidefinite program-
ming(SDP) to parameterize and optimize over the set of complete-quadratic function-
als was the discretized Lyapunov-Krasovskii functional method in [3], later refined
in [4], wherein the multiplier and kernel of the Lyapunov-Krasovskii functional were
assumed to be piecewise linear.Amore recent SDP-based approach to parameterizing
and optimizing these functionals is the Sum-Of-Squares (SOS) method presented in
[13]. In the SOSmethod, themultiplier and kernel are parameterized by polynomials.

In this chapter, we focus on the problem of full-state feedback controller synthesis
for coupled differential-difference equations of the form

ẋ(t) = Ax(t) + By(t − r) + Fu(t),

y(t) = Cx(t) + Dy(t − r),
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where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
m×n , F ∈ R

n×p, D ∈ R
m×m and r > 0 is the

delay. For most practical systems, the number of delayed channels is signifi-
cantly smaller than the total number of state variables (m � n). For such systems,
the complexity of the complete-quadratic functional associated with the coupled
differential-difference form is significantly lower than that associated with the delay-
differential framework. By exploiting this reduced functional, the complexity of
numerical algorithms such as the discretized and SOS approaches can be signif-
icantly reduced—resulting in more efficient and accurate tests for stability. Such
reductions were explored and documented for the discretized Lyapunov-Krasovskii
functional approach in [5, 6, 8], and for the SOS formulation in [14].

Full-state feedback controller synthesis means that u(t) = K [
xT (t) yT

t

]T
where

yt is the history of y(t) on the interval [t − r, t] and K : Rn × L2[−r, 0]m → R
p.

That is, the feedback controller uses knowledge of the entire state in determining
the input. This is in contrast to most work on controller synthesis for time-delay
systems which only use more directly measurable parts of the state such as x(t) to
determine the control input. The use of subsets of the state for controller synthesis are
best classified as output feedback. However, the use of state-estimation for delayed
systems in the output-feedback framework has not hitherto been explored.

More generally, conditions for control synthesis of delayed systems based on the
complete quadratic Lyapunov-Krasovskii functional is still rare. An early example
is [2], in which a more limited class of Lyapunov-Krasovskii functional is used, and
some parameter constraints are imposed. Recently, a synthesis condition based on the
inverse of the multiplier/kernel operators associated with the complete Lyapunov-
Krasovskii functional for time-delay systems of retarded type in the SOS formulation
was developed in [10, 12]. This chapter extends this method to coupled differential-
difference equations. The inverse operator is derived using a direct algebraic approach
rather than the series expansion approach in [10, 12]. The basic idea of such synthesis
is outlined as follows.

Consider the coupled differential functional equations either in closed-loop or
autonomous form:

ẋ(t) = Ax(t) + By(t − r) +
∫ 0

−r
H(θ)y(t + θ)dθ, (1)

y(t) = Cx(t) + Dy(t − r), (2)

where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
m×n , H(θ) ∈ R

n×m , D ∈ R
m×m and r > 0.

Eqs. (1)–(2) have a unique solution (x(t), y(t)) for any initial condition

x(0) = ψ ∈ R
n, y(t) = φ(t) ∀t ∈ [−r, 0] φ ∈ PC(r, m),

where PC(r, m) represents the set of piecewise continuous functions from [−r, 0]
to R

m . For any piecewise-continuous function y(t) and τ ∈ R
+, we define yτ ∈

PC(r, m) by yτ (θ) = y(τ + θ), −r ≤ θ ≤ 0. Let
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Z := R
n × PC(r, m). (3)

Then any initial condition (ψ, φ) ∈ Z uniquely defines a solution, which may be
represented by a strongly continuous semigroup (C0-semigroup) S : Z → Z ,

z(t) = S(t − τ)z(τ ). (4)

Solutions of System (1)–(2) satisfy an abstract differential equation on Z ,

ż = Az, (5)

where A is the infinitesimal generator of the C0-semigroup S.
Stability of solutions of the system defined by Eqs. (1)–(2) is equivalent to the

existence of a quadratic Lyapunov-Krasovskii functional of the form

V (z) =< z,Pz >, (6)

where P is a self-adjoint operator, and 〈·, ·〉 represents the inner product on L2 [1].
The system is stable if P is coercive, and its derivative along the system trajectory

V̇ (z) =< z, (PA + A∗P)z >,

is negative definite in the sense that −PA − A∗P is coercive, where A∗ is the
adjoint operator ofA. Stability analysis is therefore equivalent to the existence of an
operator P which satisfies the above conditions. Then, by using positive matrices to
parameterize a suitably rich cone of positive operators, as described in [11] or [4], and
by observing that the operator P appears linearly in V (z) and V̇ (z), the problem of
stability analysis can be reduced to a SDP problem. Specifically, the methods defined
in [11] consider the case where the operators are the combination of multiplier and
integral operators with polynomial multipliers and kernels. The approach in [4] uses
piecewise linear multipliers and kernels.

For the problem of controller synthesis, however, we search for both a Lyapunov
operator P and a feedback operator K . This poses a challenge in that, while we
can parameterize both operators, the resulting expression for V̇ (z) is bilinear in K
and P and is hence non-convex. To illustrate this, consider a system with input u(t)
described by the abstract differential equation

ż = Az + F u. (7)

If we want to design a linear feedback control in the form of

u = Kz, (8)
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such that the closed-loop system is stable, and use the Lyapunov-Krasovskii func-
tional given in (6), then its derivative becomes

V̇ (z) =< z, (PA + A∗P + PFK + (PFK)∗)z > . (9)

Because we need to determine the feedback gain K in addition to the operator P,
V̇ (z) becomes a bilinear function of the variables which define these operators. Since
no reliable and efficient numerical method to solve bilinear matrix inequalities is
currently available, we conclude that any solution to the controller synthesis problem
must involve a reformulation or change of variables.

The approach we describe in this chapter is to use the transformation of variables

Q = P−1, (10)

K̂ = KP−1. (11)

Clearly, given coercive Q > 0 and K̂ , and a procedure for finding the inverse Q−1,
we can recover the original operators P and K as P = Q−1 and K = K̂P. Now, by
examination of V and V̇ and by defining the transformed state ẑ = Pz, we obtain

V (z) = 〈ẑ,Qẑ〉, (12)

V̇ (z) = 〈ẑ, (AQ + QA∗ + F K̂ + K̂∗F ∗)ẑ〉, (13)

which are linear with respect to the new operator-variables Q and K̂ . Therefore, if
P : Z → Z and we can parameterize operators which are positive on Z , then the
controller synthesis problem can be represented as an SDP.

Critical to implementation of this approach, however, is to enforce the condition
P : Z → Z and the ability to invert the bounded linear operatorQ.While inversion of
combined multiplier and integral operators is, in general, difficult, in the following
sections we will show that it is possible to obtain an analytic expression for this
inverse in the case where Q is separable, similar to the case discussed in [11]. Of
course, numerical approximations to the inverse are possible through series expansion
methods, as described in [10]. However, the existence of a closed-form analytic
expression eliminates the approximation error due to finite truncation of the series
and significantly reduces the complexity of the resulting inverse operator.

2 Preliminaries

Consider the coupled differential functional equations given in (1) and (2). If ρ(D) <

1, stability of this system is equivalent to the existence of a complete Lyapunov-
Krasovskii functional of the following form,
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V (ψ, φ) = rψT Pψ + 2rψT
∫ 0

−r
Q(η)φ(η)dη +

∫ 0

−r

∫ 0

−r
φT (ξ)R(ξ, η)φ(η)dξdη

+
∫ 0

−r
φT (η)S(η)φ(η)dη, (14)

where

P = PT ∈ R
n×n, Q(η) ∈ R

n×m, (15)

R(ξ, η) = RT (η, ξ) ∈ R
m×m, S(η) = ST (η) ∈ S

n, (16)

where S
n ⊂ R

n×n represents the set of symmetric matrices. The use of complete
Lyapunov-Krasovskii functionals of this form was described in [6, 8], and these
results imply the following lemma.

Lemma 1 System (1)–(2) with ρ(D) < 1 is exponentially stable if and only if there
exists a quadratic Lyapunov-Krasovskii functional of the Form (14)–(16), such that
ε||ψ ||2 ≤ V (ψ, φ), and

V̇ (ψ, φ) � lim sup
t→0+

V (x(t, ψ, φ), yt (ψ, φ)) − V (ψ, φ)

t
(17)

satisfies V̇ (ψ, φ) ≤ −ε||ψ ||2 for some ε > 0, where (x(t, ψ, φ), yt (ψ, φ)) is the
solution of (1) and (2) with initial condition (ψ, φ).

Define the inner product on Z (Recall Z is defined in (3)),

〈[
ψ1

φ1

]
,

[
ψ2

φ2

]〉
= rψT

1 ψ2 +
∫ 0

−r
φT
1 (s)φ2(s)ds.

For a matrix P and matrix functions Q, R, S that satisfy (15)–(16), we define the
linear operator P : Z → Z as follows

P
[

ψ

φ

]
(s) =

[
Pψ + ∫ 0

−r Q(θ)φ(θ)dθ

r QT (s)ψ + ∫ 0
−r R(s, θ)φ(θ)dθ + S(s)φ(s)

]

. (18)

Obviously, (15)–(16) implies that P is a bounded and self-adjoint linear operator.
The complete Lyapunov-Krasovskii functional may now be expressed as

V (ψ, φ) =
〈[

ψ

φ

]
,P

[
ψ

φ

]〉
.

System (1)–(2) defines a C0-semigroup S : Z → Z that satisfies (4). The cor-
responding abstract differential equation is (5). Let the domain of definition of A
be X . Then, X :=

{[
ψ

φ

]
∈ Z

∣∣φ̇(s) ∈ C, φ(0) = Cψ + Dφ(−r)

}
, where C repre-
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sents the set of continuous functions. As is standard for abstract differential equation
(5), the domain of definition X for A is only a subset of the solution space Z. Sim-
ilar to [7], the stability in the more restricted space X implies the stability in larger
space Z. For controller synthesis, we would like to restrictP so that X is an invariant
subspace of P,

PX ⊂ X. (19)

The conditions for P to satisfy (19) are as follows, which is a generalization of
Theorem 3 in [9].

Lemma 2 P, as defined in (18), satisfies (19) if and only if the following conditions
are satisfied,

r QT (0) + S(0)C = C P + r DQT (−r),

R(0, s) = C Q(s) + DR(−r, s), ∀s,

DS(−r) = S(0)D.

(20)

(21)

(22)

Proof Let h(s) = r QT (s)ψ + ∫ 0
−r R(s, θ)φ(θ)dθ + S(s)φ(s) and

g = Pψ + ∫ 0
−r Q(s)φ(s)ds. Then, PX ⊂ X is equivalent to

h(0) = Cg + Dh(−r), (23)

for all ψ and φ that satisfy

φ(0) = Cψ + Dφ(−r). (24)

Using (24), we have

h(0) = r QT (0)ψ + S(0)φ(0) +
∫ 0

−r
R(0, θ)φ(θ)dθ

= (r QT (0) + S(0)C)ψ +
∫ 0

−r
R(0, θ)φ(θ)dθ + S(0)Dφ(−r), (25)

Cg + Dh(−r) = C Pψ +
∫ 0

−r
C Q(s)φ(s)ds + r DQT (−r)ψ +

∫ 0

−r
DR(−r, s)φ(s)ds

+DS(−r)φ(−r)

= (C P + r DQT (−r))ψ +
∫ 0

−r
(C Q(s) + DR(−r, s))φ(s)ds

+DS(−r)φ(−r). (26)

Therefore, the right-hand sides of (25)–(26) are equal for arbitrary ψ and φ if and
only if (20)–(22) are satisfied. �
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3 Inverting Separable Operators

In this section, we present an analytical expression for the inverse of the operator
P when it is separable. Similar to [10], such an analytic expression for the inverse
operator can be used to expedite the construction of the stabilizing controller in the
controller synthesis problem.

Definition 1 An operator P, as defined in (18), is said to be separable if

R(s, θ) = Z T (s)
Z(θ), Q(s) = H Z(s), (27)

for some constant matrices 
 = 
T and H , and matrix-valued function Z(s). Note
that a sufficient condition for P to be separable is that R and Q are polynomials.

Theorem 1 AssumeP in (18) is separable. Then, provided that all the inverse matri-
ces below are well defined, its inverse may be expressed as

P−1

[
ψ

φ

]
(s) =

[
P̂ψ + ∫ 0

−r Q̂(θ)φ(θ)dθ

r Q̂T (s)ψ + Ŝ(s)φ(s) + ∫ 0
−r R̂(s, θ)φ(θ)dθ

]

, (28)

where R̂(s, θ), Q̂(θ) and Ŝ(s) are given as follows

R̂(s, θ) = Ẑ T (s)
̂ Ẑ(θ), (29)

Q̂(θ) = Ĥ Ẑ(θ), Ŝ(s) = S−1(s), Ẑ(s) = Z(s)S−1(s), (30)

and Ĥ , P̂ and 
̂ are given below,

Ĥ = −P−1H T, P̂ = [I + r P−1H T K H T ]P−1, (31)


̂ = [rT T H T P−1H − 
](I + K
)−1, T = (I + K
 − r K H T P−1H)−1, (32)

where K = ∫ 0
−r Z(s)S−1(s)Z T (s)ds, and I denotes the identity matrix with appro-

priate dimension.

Proof Let the operator defined by the right hand side of (28) be denoted as P̂, then

P̂P
[

ψ

φ

]
(s) =

[
�1

�2

]
,

�1 = ∫ 0
−r

(
P̂ Q(θ) + Q̂(θ)S(θ) + ∫ 0

−r Q̂(ξ)R(ξ, θ)dξ
)

φ(θ)dθ

+
(

P̂ P + ∫ 0
−r r Q̂(θ)QT (θ)dθ

)
ψ,

�2 = r
(

Q̂T (s)P + Ŝ(s)QT (s) + ∫ 0
−r R̂(s, θ)QT (θ)dθ

)
ψ + Ŝ(s)S(s)φ(s)

+ ∫ 0
−r

(
r Q̂T (s)Q(θ) + Ŝ(s)R(s, θ) + R̂(s, θ)S(θ)

+ ∫ 0
−r R̂(s, ξ)R(ξ, θ)dξ

)
φ(θ)dθ.
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Using (27) and (29)–(32), we obtain

P̂ Q(θ) + Q̂(θ)S(θ) +
∫ 0

−r
Q̂(ξ)R(ξ, θ)dξ

=
(

P̂ H + Ĥ + Ĥ K
)Z(θ)

=
(
[I + r P−1H T K H T ]P−1H − P−1H T − P−1H T K


)
Z(θ)

=
[

P−1H + P−1H T (r K H T P−1H − I − K
)
]

Z(θ)

=
(

P−1H − P−1H
)

Z(θ) = 0,

P̂ P + r
∫ 0

−r
Q̂(θ)QT (θ)dθ

= P̂ P + r Ĥ K H T

= [I + r P−1H(I + K
 − r K H T P−1H)−1K H T ] − r P−1H T K H T = I,

Q̂T (s)P + Ŝ(s)QT (s) +
∫ 0

−r
R̂(s, θ)QT (θ)dθ

= Ẑ T (s)(Ĥ T P + H T + 
̂K H T )

= Ẑ T (s)
{
−T T H T P−1P + H T + [rT T H T P−1H − 
](I + K
)−1K H T

}

= Ẑ T (s)
{

I − T T (I − r H T P−1H(I + K
)−1K ) − 
(I + K
)−1K
}

H T

= Ẑ T (s)
{

I − T T (I − r H T P−1H K (I + 
K )−1) − 
K (I + 
K )−1
}

H T

= Ẑ T (s)
{

I − T T (I + 
K − r H T P−1H K )(I + 
K )−1 − 
K (I + 
K )−1
}

H T

= Ẑ T (s)[I − (I + 
K )−1 − 
K (I + 
K )−1]H T = 0,

r Q̂T (s)Q(θ) + Ŝ(s)R(s, θ) + R̂(s, θ)S(θ) +
∫ 0

−r
R̂(s, ξ)R(ξ, θ)dξ

= Ẑ T (s)(r Ĥ T H + 
 + 
̂ + 
̂K
)Z(θ)

= Ẑ T (s)
{
−rT T H T P−1H + 
 + [rT T H T P−1H − 
](I + K
)−1(I + K
)

}
Z(θ)

= Ẑ T (s)
(
−rT T H T P−1H + 
 + rT T H T P−1H − 


)
Z(θ) = 0.

Thus, we have shown
P̂P

[
ψ

φ

]
=

[
ψ

φ

]
, (33)

for all

[
ψ

φ

]
∈ Z . Similarly, we can show

PP̂
[

ψ

φ

]
=

[
ψ

φ

]
. (34)

From (33) and (34), we conclude that P̂ = P−1. �
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Theorem 2 If the separable operator P satisfies PX ⊂ X and if its inverse is well
defined, Then, P−1X ⊂ X holds.

Proof Let the linear operator P satisfy PX ⊂ X . By Lemma 2, this is equivalent to
(20)–(22), from which, we obtain

C P−1 = r S−1(0)(DZ T (−r) − Z T (0))H T P−1 + S−1(0)C, (35)

C H = (Z T (0) − DZ T (−r))
, (36)

S−1(0)D = DS−1(−r). (37)

Applying (35)–(37) to the operator P−1 defined in (28), after tedious calculations,
we can obtain the following equation,

r Q̂T (0)ψ + Ŝ(0)φ(0) + ∫ 0
−r R̂(0, θ)φ(θ)dθ = C

(
P̂ψ + ∫ 0

−r Q̂(θ)φ(θ)dθ
)

+D
(

r Q̂T (−r)ψ + Ŝ(−r)φ(−r) + ∫ 0
−r R̂(−r, θ)φ(θ)dθ

)
,

from which, we conclude that P−1X ⊂ X . �

4 Controller Synthesis

In this section, we consider a system with control input as follows

ẋ(t) = Ax(t) + By(t − r) + Fu(t), (38)

y(t) = Cx(t) + Dy(t − r). (39)

For this system, let us define the infinitesimal generator A as follows

(
A

[
x
yt

])
(s) =

[
Ax + By(t − r)

d
ds yt (s)

]
.

Likewise, we define the input operator F : Rq → X as

(F u)(s) :=
[

Fu
0

]
.

We define the controller synthesis problem as the search for matrices K0, K1 and
matrix-valued function K2(s) such that the closed-loop system described by (38),
(39) and

u(t) = K
[

x(t)
yt

]
(40)
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is stable. In (40), K : X → R
q is defined as

(
K

[
x
yt

])
(s) = K0x(t) + K1y(t − r) +

∫ 0

−r
K2(s)y(t + s)ds. (41)

Before we give the main result of the section, we briefly address SOSmethods for
enforcing joint positivity of coupled multiplier and integral operators using positive
matrices. These methods have been developed in a series of papers, a summary of
which can be found in the survey paper [11]. Specifically, for matrix-valued func-
tions M(s) and N (s, θ), we say that{M, N } ∈ �, if M and N satisfy the conditions
of Theorem 8 in [11]. The constraint {M, N } ∈ � can be cast as an LMI using SOS-
TOOLS as described in [11] and this constraint ensures that the operator P, defined
as

(
P

[
ψ

φ

])
(s) =

[
M11ψ + ∫ 0

−r M12(θ)φ(θ)dθ

r MT
21(s)ψ + ∫ 0

−r N (s, θ)φ(θ)dθ + M22(s)φ(s)

]

,

is positive on X . Furthermore, we note that {M, N } ∈ � implies that P is separable
and P = ∫

M11(s)ds and S = M22 are invertible. We now state the main result.

Proposition 1 Suppose there exist matrices M0, M1, P = PT , matrix-valued func-
tions M2(s), Q(s), R(s, θ), S(s) = ST (s) ∈ S

n, and scalar ε > 0 such that (20)–(22)
are satisfied and the following conditions hold

{T, R} ∈ �, (42)

{−U,−W } ∈ �, (43)

where

T (s) =
[

P r Q(s)
r QT (s) S(s)

]
− ε I, (44)

U (s) =
⎡

⎣

 + ε I BS(−r) + F M1 + 1

r CT S(0)D ϒ

∗ −1
r (S(−r) − DT S(0)D) 0

∗ ∗ Ṡ(s)

⎤

⎦ , (45)

W (s, θ) = ∂

∂s
R(s, θ) + ∂

∂θ
R(s, θ), (46)

where ∗ denotes entries in the matrix determined by symmetry,


 = AP + P AT + r(B QT (−r) + Q(−r)BT ) + 1
r CT S(0)C + F M0 + MT

0 F,

ϒ = r [Q̇(s) + B R(−r, s) + AQ(s) + F M2(s)].



Inversion of Separable Kernel Operator … 275

Then System (38)–(39) is stabilizable with a controller (40). In other words, let

u(t) = K0x(t) + K1y(t − r) + ∫ 0
−r K2(s)y(t + s)ds, (47)

where

K0 = M0 P̂ + r M1 Q̂T (−r) + r
∫ 0

−r
M2(s)Q̂T (s)ds, (48)

K1 = M1 Ŝ(−r), (49)

K2(s) = M0 Q̂(s) + M1 R̂(−r, s) + M2(s)Ŝ(s) +
∫ 0

−r
M2(θ)R̂(θ, s)dθ, (50)

and P̂, Q̂, R̂ and Ŝ are defined in Theorem 1. Then the closed-loop System (38)–(39)
and (47) is stable.

Proof DefineP by (18). ThenP is bounded and self-adjoint. Per Lemma 2,PX ⊂ X .
(42) impliesP ≥ ε I . Per Theorem 1, the inverseP−1 can be expressed as in (28) and
is likewise bounded and coercive with P−1 ≥ ε′ I . Furthermore, from Theorem 2,
P−1X ⊂ X and P−1 = P−∗. In other words, the Lyapunov-Krasovskii functional
satisfies

V =
〈[

ψ

φ

]
,P−1

[
ψ

φ

]〉
≥ ε′

∣∣∣∣

∣∣∣∣
ψ

φ

∣∣∣∣

∣∣∣∣

2

(51)

for some ε′ > 0 and all

[
ψ

φ

]
∈ X . Furthermore,

〈[
ψ

φ

]
,P−1A

[
ψ

φ

]〉
+

〈
A

[
ψ

φ

]
,P−1

[
ψ

φ

]〉

=
〈
P−1

[
ψ

φ

]
,APP−1

[
ψ

φ

]〉
+

〈
APP−1

[
ψ

φ

]
,P−1

[
ψ

φ

]〉
.

Next, we note that if we define K as in (41) and M as follows

(
M

[
x
yt

])
= M0x(t) + M1y(t − r) + ∫ 0

−r M2(s)y(t + s)ds.

Then (48)–(50) impliesK := MP−1. Now we define a new state

[
ψ̂

φ̂

]
= P−1

[
ψ

φ

]

∈ X . Continuing, if u = K
[

x
yt

]
= KPP−1

[
x
yt

]
= MP−1

[
x
yt

]
, then the closed-

loop system is stable if V̇ < 0, where
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V̇ =
〈[

ψ̂

φ̂

]
,AP

[
ψ̂

φ̂

]〉
+

〈
AP

[
ψ̂

φ̂

]
,

[
ψ̂

φ̂

]〉

+
〈
FM

[
ψ̂

φ̂

]
,

[
ψ̂

φ̂

]〉
+

〈[
ψ̂

φ̂

]
,FM

[
ψ̂

φ̂

]〉
.

To show that V̇ < 0, we examine AP and FM separately. First, we have

AP
[

ψ̂

φ̂

]
(s) =

[
�

�(s)

]
, (52)

where

� = APψ̂ + ∫ 0
−r AQ(s)φ̂(s)ds + Br QT (−r)ψ̂ + BS(−r)φ̂(−r) + ∫ 0

−r B R(−r, θ)φ̂(θ)dθ,

�(s) = r Q̇T (s)ψ̂ + Ṡ(s)φ̂(s) + S(s) ˙̂
φ(s) + ∫ 0

−r
d
ds R(s, θ)φ̂(θ)dθ.

Then,

〈[
ψ̂

φ̂

]
,AP

[
ψ̂

φ̂

]〉

= ∫ 0
−r ψ̂T �ds + ∫ 0

−r φ̂T (s)�(s)ds

= rψ̂T APψ̂ + r
∫ 0
−r ψ̂T AQ(s)φ̂(s)ds + rψ̂T Br QT (−r)ψ̂ + rψ̂T BS(−r)φ̂(−r)

+r
∫ 0
−r ψ̂T B R(−r, θ)φ̂(θ)dθ + ∫ 0

−r r φ̂T (s)Q̇T (s)ψ̂ds + ∫ 0
−r φ̂T (s)Ṡ(s)φ̂(s)ds

+ ∫ 0
−r

∫ 0
−r φ̂T (s) d

ds R(s, θ)φ̂(θ)dsdθ + ∫ 0
−r φ̂T (s)S(s) ˙̂

φ(s)ds

= ∫ 0
−r

⎡

⎣
ψ̂

φ̂(−r)

φ̂(s)

⎤

⎦

T ⎡

⎣
AP + r B QT (−r) BS(−r) �

0 0 0
r Q̇T (s) 0 Ṡ(s)

⎤

⎦

⎡

⎣
ψ̂

φ̂(−r)

φ̂(s)

⎤

⎦ ds

+ ∫ 0
−r

∫ 0
−r φ̂T (s) ∂

∂s R(s, θ)φ̂(θ)dsdθ + ∫ 0
−r φ̂T (s)S(s) ˙̂

φ(s)ds,

where � = r(AQ(s) + B R(−r, s)). Since

[
ψ̂

φ̂(s)

]
∈ X , we have φ̂(0) = Cψ̂ +

Dφ̂(−r). Then,

∫ 0
−r φ̂T (s)S(s) ˙̂

φ(s)ds

= φ̂T (0)S(0)φ̂(0) − φ̂T (−r)S(−r)φ̂(−r) − ∫ 0
−r φ̂T (s)Ṡ(s)φ̂(s)ds − ∫ 0

−r
˙̂
φT (s)S(s)φ̂(s)ds

= 1
2

(
φ̂T (0)S(0)φ̂(0) − φ̂T (−r)S(−r)φ̂(−r)

)
− 1

2

∫ 0
−r φ̂T (s)Ṡ(s)φ̂(s)ds

= 1
2

∫ 0
−r

⎡

⎣
ψ̂

φ̂(−r)

φ̂(s)

⎤

⎦

T ⎡

⎣
1
r CT S(0)C 1

r (CT S(0)D) 0
1
r (DT S(0)C) − 1

r (S(−r) − DT S(0)D) 0
0 0 −Ṡ(s)

⎤

⎦

⎡

⎣
ψ̂

φ̂(−r)

φ̂(s)

⎤

⎦ ds.

Thus,
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V̇ =
〈[

ψ̂

φ̂

]
,AP

[
ψ̂

φ̂

]〉
+

〈
AP

[
ψ̂

φ̂

]
,

[
ψ̂

φ̂

]〉

+
〈
FM

[
ψ̂

φ̂

]
,

[
ψ̂

φ̂

]〉
+

〈[
ψ̂

φ̂

]
,FM

[
ψ̂

φ̂

]〉
.

= ∫ 0
−r

⎡

⎣
ψ̂

φ̂(−r)

φ̂(s)

⎤

⎦

T ⎡

⎣

 BS(−r) + F M1 + 1

r (CT S(0)D) ϒ

∗ − 1
r (S(−r) − DT S(0)D) 0

∗ ∗ Ṡ(s)

⎤

⎦

⎡

⎣
ψ̂

φ̂(−r)

φ̂(s)

⎤

⎦ ds

+ ∫ 0
−r

∫ 0
−r φ̂T (s)

(
∂
∂s R(s, θ) + ∂

∂θ
R(s, θ)

)
φ̂(θ)dsdθ.

From conditions (43), (45) and (46), we have V̇ < 0, which, along with (51) means
that the closed-loop system defined by (38)–(39) and (47) is stable. �

Remark 1 When D = 0, System (38)–(39) may be written in the standard delay-
differential framework studied in [9, 10]:

ẋ(t) = A0x(t) + A1x(t − r1) + Fu(t)
x(t) = φ(t).

The primary computational advantage of the differential-difference framework over
control of System (38)–(39) is that we can replace A1 ∈ R

n×n with BC where B ∈
R

n×m and C ∈ R
m×n and m is typically strictly less than n. Because the dimension

of the decision variables in the optimization problem defined in this paper scale as
n + 2m as opposed to 3n using the framework in [9, 10], the complexity of the
resulting algorithm is significantly reduced.

Remark 2 Although not explicitly stated, in order to use SOS to enforce the condi-
tions of Theorem 1 and Proposition 1, we choose our decision variables to be polyno-
mial and use SOSTOOLS and the Positivstellensatz to enforce positivity/negativity
on the interval [−r, 0]. This approach is described in more detail in [9, 10].

In the following, we present a numerical example to illustrate the controller obtained
from the condition in Proposition 1. We consider the following system with a feed-
back controller as follows

ẋ(t) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0 0.5 0 0 0 0
−0.5 −0.5 0 0 0 0
0 1 0.1 1 0 0
0 0 −2 0.2 0 0
0 0 0 1 −2 0
0 0 0 0 0 −0.9

⎤

⎥⎥⎥⎥
⎥⎥
⎦

x(t) + By(t − r) + Fu(t), (53)

y(t) =
[−0.2 0 0 0 0 0

0 0 0 0 0 1

]
x(t), (54)
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Fig. 1 System (53)–(54) is unstable in open loop

where r = 1.6s, B =
[
0.5 0 0 0 0 0
0 0 0 0 0 1

]T

, F = [
1 0 0 0 0 1

]T
. By using Proposi-

tion1, together with the tools of MuPad, Matlab, SOSTOOLS and polynomials with
degree 2, we obtain the controller

u(t) = K0x(t) +
[−0.239

−0.343

]T

y(t − r) +
∫ 0

−1.6
K2(s)y(t + s)ds, (55)

K0 = [−1.874 2.232 −0.830 3.099 0.030 −1.033
]
,

K2(s) =
[ −0.246 + 0.221s + 0.122s2 − 0.012s3 − 0.032s4

0.238 − 0.398s + +0.007s2 + 0.037s3 + 0.010s4,

]T

.

Let u(t) = 0 in (53), System (53)–(54) is unstable, which is shown in Fig. 1. Using
Controller (55) coupled with System (53)–(54) we simulate the closed-loop system,
which is illustrated in Fig. 2.
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Fig. 2 States of system (53)–(54) coupled with a stabilizing controller from Proposition1

5 Conclusions

In this chapter, we have obtained an analytic formulation for the inverse of jointly
positive multiplier and integral operators as defined in [9]. This formulation has the
advantage that it eliminates the need for either individual positivity of the multiplier
and integral operators or the need to use a series expansion to find the inverse.
This inversion formula is applied to controller synthesis of coupled differential-
difference equations. The use of the coupled differential-difference formulation has
the advantage that the size of the resulting decision variables is reduced, thereby
allowing for control of systems with larger numbers of states. These methods are
illustrated by designing a stabilizing controller for a system with 6 states and a
2-dimensional delay channels.
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Delay Margin for Robust Stabilization
of LTI Delay Systems

Tian Qi, Jing Zhu and Jie Chen

1 Introduction

With a steadily growing interest, over the last two decades or so there have been sig-
nificant advances in the study of time-delay systems, thanks to the development of
analysis methods drawing upon robust control theory, and the development of com-
putational methods in solving linear matrix inequality (LMI) problems. In particular,
an extraordinary volume of the literature is in existence on stability problems, and
various time- and frequency-domain stability analysis approaches have been devel-
oped (see, e.g., [8, 16, 17, 21, 25], and the references therein).

Despite the considerable advances on stability studies, stabilization of time-delay
systems poses a more difficult problem. The existing work has been largely focused
on synthesis problems for systems with a fixed delay. Feedback design for such
systems can be conducted based on LQR and H∞ techniques (see, e.g., [20, 30]
and the references therein), via predictor feedback [14, 31], or using LMI-based
solutions [6, 17]. On the other hand, fundamental robustness of stabilization in the
presence of uncertain, variable delays has been seldom investigated. Nor is it clear
how the above methods may be extended to address the robust stabilization problem.
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In this vein, particularly noteworthy is the problem of delay margin [18], which by
nature addresses a system’s robust stabilization against uncertain delays and seeks
to answer the question: What is the largest range of delay such that there exists a
single feedback controller that can stabilize all the plants subject to delays within
the range? An age-old problem by itself [3, 5], this problem bears a close similarity
to the gain margin and phase margin problems, which are two classical stability
margin optimization problems solvable analytically by solving a finite-dimensional
H∞ optimal control problem [4]. Unlike the gain and phase margin however, the
delay margin problem proves fundamentally more challenging, due to obstacles in
solving infinite-dimensional optimization problems. Indeed, the problem has been
open except in isolated cases. In [17, pp. 154], the delay margin was determined for
first-order systems achievable by static feedback, while in [27], the delay margin was
found for first-order systems when PID controllers are used instead. Other related
results concerning stabilizability via delayed feedback can be found in, e.g., [13, 22].

In [10, 18], upper bounds on the delay margin were obtained for general SISO
systems subject to an uncertain constant delay. These bounds serve to provide a limit
beyondwhich no single LTI output feedback controller may exist to robustly stabilize
the delay plant family within the margin. The results show that this fundamental limit
is determined by the unstable poles and nonminimum phase zeros in the plant. In its
essence, however, the work of [18] is by and large limited to systems with no more
than one unstable pole and nonminimum phase zero, for which the bounds were
found to be exact; otherwise, under more general circumstances, the bounds may be
crude and pessimistic. Moreover, the analysis in [18] was carried out largely case
by case, and for this reason, its technique does not appear readily generalizable. The
same can be said of the improvement in [10].

This chapter aims at developing lower bounds on the delay margin. Unlike in
[18], which addresses the question when a delay system is not stabilizable, we ask
when it is stabilizable. Thus, the results provide a guaranteed range of delay ensuring
robust stabilization. Built on small-gain stability conditions, our approach employs
rational approximation of delay elements, which enables us to cast the problem as
one of finite-dimensional, parameter-dependentH∞ optimization; the lattermay then
be tackled and solved using such analytic interpolation techniques as Nevanlinna-
Pick interpolation [1]. This operator-theoretic approach ensures not only that the
bounds can be efficiently computed, but also that it can be cohesively extended, and
indeed, in a unified manner, to more general classes of systems with more general
classes of delays, e.g., systems with time-varying delays. Furthermore, since the
approach amounts to solving a standard H∞ control synthesis problem, it in fact
yields a robustly stabilizing controller that achieves the bounds and guarantees the
stabilization for all possible delay values within the bounds.

We consider LTI output feedback controllers. Our contribution is twofold. First,
for a SISO system with an arbitrary number of plant unstable poles and nonmini-
mum phase zeros, we provide an explicit bound on the delay margin, which requires
computing only the largest real eigenvalue of a constant matrix. Second, we extend
our analysis to systems subject to time-varying delays, which yield similar bounds.
In both cases, which are unified in our interpolation approach, the results not only
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are computationally attractive, but shed useful conceptual insights; when specialized
to more specific cases, e.g., to plants with one unstable pole and one nonminimum
phase zero, they furnish analytical expressions exhibiting explicit dependence of
the bounds on the pole and zero, showing how fundamentally unstable poles and
nonminimum phase zeros may limit the range of delays over which a plant may be
robustly stabilized by a LTI controller. It should be emphasized nonetheless that the
results and conclusions presented herein address only the limitation of LTI controllers
in stabilizing time-delay systems. More general controllers with varying degrees of
implementation complexity, such as linear periodic controllers [19], nonlinear peri-
odic controllers [7], and nonlinear adaptive controllers [15, 23] can be constructed to
lend an infinite delaymargin, allowing a LTI delay plant to be stabilized for arbitrarily
long uncertain delays.

The notation used throughout this chapter is fairly standard. LetR be the space of
real numbers,Rn the space of n-dimensional real vectors, andRn+ the n-dimensional
space of positive real numbers. For any complex number z, we denote its conjugate
by z̄. For any complex vector x , we denote its transpose by xT and its conjugate
transpose by xH . Similarly, for any complex matrix A, AH denotes its conjugate
transpose. The largest real eigenvalue of a matrix A will be written as σmax(A), and
if A is a Hermitian matrix, its largest eigenvalue will be written as λ̄(A). We write
A ≥ 0 if A is nonnegative definite, and A > 0 if it is positive definite. The symbol
⊗ denotes the Kronecker product. LetC− := {s : Re(s) < 0},C+ := {s : Re > 0},
and C̄+ := {s : Re ≥ 0} be the open left and the open right-half of the complex
plane, and the closed right-half of the complex plane, respectively. For any stable
transfer function matrix G(s), define its H∞ norm by ‖G(s)‖∞ = sup

ω

σ̄ (G( jω)) ,

where σ̄ (·) stands for the largest singular value. For any unitary vectors u, v ∈ C
n , we

denote the principal angle between the directions spanned by u and v as cos∠(u, v) =
∣
∣uHv

∣
∣ .

We note that subsequent to this chapter, an extended version reporting the results
herein has appeared in [24], which develops in full the approach with extensions to
multi-input multi-output delay systems. We refer to [24] as well for all the proofs of
the results in this chapter.

2 Bounds on Delay Margin of SISO Systems

In this section, we present the results for SISO delay systems, which consist of a
general lower bound on the delay margin that amounts to computing an eigenvalue
problem. We also present explicit bounds for more specialized cases, which exhibit
the dependence of the delay margin on the plant’s unstable poles and nonminimum
phase zeros.
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Fig. 1 Standard feedback
control structure Pτ (s)

K(s)

−

The Delay Margin Problem

Weconsider the feedback control system depicted in Fig. 1, inwhich Pτ (s) represents
a family of plants subject to an unknown delay τ , with P0(s) being the delay-free
plant:

Pτ (s) = e−τ s P0(s), τ ≥ 0. (1)

Suppose that P0(s) is stabilized by a certain finite-dimensional LTI controller K (s).
By continuity, K (s) can stabilize Pτ (s) for sufficiently small τ > 0. But how large
may τ be, before the system loses closed-loop stability?

The delay margin problem seeks to answer the above question, which amounts to
computing

τ ∗ = sup {ν : K (s) stabilizes Pτ (s), ∀τ ∈ [0, ν)} .

In other words, we want to determine the largest delay range within which Pτ (s)
can be stabilized by a finite-dimensional LTI controller K (s). Note that for K (s) to
stabilize Pτ (s), it is both necessary and sufficient that

1 + Pτ (s)K (s) 	= 0, ∀s ∈ C̄+.

Under the condition that P0(s) is stabilized by K (s), this condition is equivalent to

1 + T0(s)
(

e−τ s − 1
) 	= 0, ∀s ∈ C̄+, (2)

where T0(s)= P0(s)K (s) (1 + P0(s)K (s))−1 is the system’s complementary sensi-
tivity function. It is clear that there exists some stabilizing K (s) for all τ ∈ [0, τ̄ ]
if

sup
τ∈[0, τ̄ ]

inf
K (s)

∥
∥T0(s)(e

−τ s − 1)
∥
∥∞ < 1. (3)

Define

φτ̄ (ω) = sup
τ∈[0, τ̄ ]

|e− jωτ − 1| =
{

2 sin (ωτ̄/2) , |ωτ̄ | ≤ π,

2, |ωτ̄ | > π.
(4)

Evidently, the condition (3) holds whenever

inf
K (s)

|T0( jω)φτ̄ (ω)| < 1, ∀ω ∈ R. (5)
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Unfortunately, the problems in (3), (5) and the delay margin problem itself all pose a
formidable challenge, for they all require solving infinite-dimensional optimization
problems due to the presence of the weighting function

(

e−τ s − 1
)

.
One instrumental step in our approach is to construct a parameter-dependent

rational approximation

wτ (s) = bτ (s)

aτ (s)
= bq(τ s)q + · · · + b1(τ s) + b0

aq(τ s)q + · · · + a1(τ s) + a0
, (6)

such that
φτ (ω) ≤ |wτ ( jω)| , ∀ω ∈ R. (7)

We require that wτ (s) be stable and have no nonminimum phase zero, excluding the
origin where wτ (s) might have a zero, that is wτ (0) = 0. This latter condition may
be imposed to ensure a close-fit of |wτ ( jω)| to φτ (ω) at low frequencies. Note that
under this requirement, with no loss of generality, it is necessary that ai > 0 for i =
0, 1, . . . , q, and bi > 0 for i = 1, . . . , q. Some of specific, low-order approximants
in this spirit can be found in, e.g., [9, 24, 28]:

w1τ (s) = τ s, (8)

w2τ (s) = τ s

1 + τ s/3.465
, (9)

w3τ (s) = 1.216τ s

1 + τ s/2
, (10)

w4τ (s) = τ s(2 × 0.21522τ s + 1)

(0.2152τ s + 1)2
, (11)

w5τ (s) = τ s

1 + τ s/2

0.1791(τ s)2 + 0.7093τ s + 1

0.1791(τ s)2 + 0.5798τ s + 1
, (12)

w6τ (s) = τ s

1 + τ s/2

0.02952(τ s)4 + 0.210172(τ s)3 + 0.70763(τ s)2 + 1.3188τ s + 1

0.02952(τ s)4 + 0.191784(τ s)3 + 0.64174(τ s)2 + 1.195282τ s + 1
.

(13)

Note that w6τ (s), with a highest order, betters all other wiτ (s), for i = 1, . . . , 5.
Figure 2 shows the magnitude responses of these rational functions.

With the rational approximant alluded to above, we may then attempt to compute

τ = sup

{

τ ≥ 0 : inf
K (s)

‖T0(s)wτ (s)‖∞ < 1

}

, (14)

which, unlike in (5), amounts to solving a finite-dimensional H∞ optimal control
problem, nonetheless parameterizedby anonnegative parameter τ ≥ 0; for a different
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Fig. 2 Rational approximation for φ(ω)

wiτ (s), a corresponding H∞ problem is solved, resulting in a different τ i . Clearly,
the condition (5) holds for φτ (ω) whenever

inf
K (s)

∥
∥T0(s)wτ (s)

∥
∥∞ < 1. (15)

Note that φτ (ω) is monotonically increasing with τ ≥ 0 within the range of 0 ≤
ωτ ≤ π . As such, τ serves as a lower bound on the delay margin τ ∗, and in turn
provides a range guaranteeing the stabilizability of Pτ (s): there exists a controller
K (s) that can stabilize Pτ (s) for all τ ∈ [0, τ ).

A Computational Formula

We compute the lower bound τ with a general rational approximant given in (6),
by casting the problem (14) into one of the Nevanlinna-Pick interpolation [1]. The
following result illustrates this point.

Theorem 1 Let pi ∈ C+, i = 1, . . . , n and zi ∈ C+, i = 1, . . . , m be the distinct
unstable poles and nonminimumphase zeros of P0(s), respectively. Assume that P0(s)
has neither zero nor pole on the imaginary axis. Then for any wτ (s) in (6),
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τ = σ−1
max

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

−	−1
0 	1 · · · −	−1

0 	2q−1 −	−1
0 	2q

I · · · 0 0
...

. . .
...

...

0 · · · I 0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

,

where 	0 =
[

Qp b0
b0 a20 Z

−1

]

,

	k =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎣

0 bk(DH
p )k

bk Dk
p

k∑

l=0
alak−l Dl

p Z
−1(DH

p )k−l

⎤

⎦ , k = 1, . . . , q,

diag

(

0,
q∑

l=k−q
alak−l Dl

p Z
−1(DH

p )k−l

)

, k = q + 1, . . . , 2q,

Z = Qp + QH
zpQ

−1
z Qzp, Dp = diag (p1, . . . , pn) ,

Qz =
[

1

zi + z̄ j

]

, Qp =
[

1

p̄i + p j

]

, Qzp =
[

1

zi − p j

]

.

We note that Theorem 1 can be extended to accommodate multiple poles and
zeros in P0(s), using a more sophisticated result on the mixed Nevanlinna-Pick and
Carathéodory-Fejér interpolation problem [26, 29]. Imaginary poles and zeros can
also be incorporated in the analysis as boundary interpolation constraints [1, 2]. For
technical simplicity, however, we choose not to address such poles and zeros herein.

In view of Theorem 1, a lower bound τ on the delay margin can be found by
solving rather efficiently an eigenvalue problem, which guarantees that Pτ (s) can be
stabilized by a certain LTI controller K (s) for all τ ∈ [0, τ ). Since τ corresponds
to an optimal H∞ optimization problem, a robustly stabilizing controller can be
synthesized accordingly. Indeed, to synthesize this robustly stabilizing controller
K (s), it suffices to solve the standardH∞ control problem in (15), once τ is computed
according to Theorem 1. This gives rise to an optimal controller K (s) depending on
τ . In this vein, it is worth pointing out that a lower order wτ (s), such as those given
in (8)–(13), can be particularly desirable, since they potentially result in low-order
controllers.

Special Cases

A number of special cases are further examined in this section. The first result con-
cerns the circumstance where P0(s) has only a single unstable pole. In this case, an
explicit lower bound is obtained which exhibits how the plant unstable pole may
confine the delay margin.

Corollary 1 Suppose that P0(s) has only one unstable pole p ∈ C+, and no non-
minimum phase zero. Then for any wτ (s) in (6) with b0 < a0,
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τ = λmin

p
, (16)

where

λmin = min

{

λ > 0 :
q∑

k=0
(bk − ak)λk = 0

}

. (17)

In particular, if wτ (s) = wiτ (s) for wiτ (s), i = 1, . . . , 6 given in (8)–(13), then we
have τ = τ i , with

(1) τ 1 = 1/p; (2) τ 2 ≈ 1.406/p; (3) τ 3 ≈ 1.397/p; (4) τ 4 ≈ 1.5582/p;
(5) τ 5 ≈ 1.7008/p; (6) τ 6 ≈ 1.722/p.

In other words, for plants with a sole unstable pole, it suffices to solve the smallest
positive real root of a polynomial.

While Corollary 1 shows a varying degree of conservatism in the various lower
bounds resulted from their respective approximantswiτ (s), it is interesting to observe
thatw5τ (s) andw6τ (s), despite being only a third-order and a fifth-order approximant
respectively, provide rather accurate estimates of the true delay margin; in these
cases, τ 5 = 1.7008/p, and τ 6 = 1.722/p, respectively, as opposed to the exact delay
margin τ ∗ = 2/p, obtained in [18]. Note however that the exact delay margin τ ∗ =
2/p may not be attainable in a realistic sense, for the robustly stabilizing controller
corresponding to τ ∗ will result in an arbitrarily small loop bandwidth [18] and thus
will be hardly of use. In practice, one must then accept to find a robustly stabilizing
controller for a smaller range of delay, which will be even closer to the lower bounds
obtained herein.

More generally, Corollary 1 can be extended to systems containing nonminimum
phase zeros as well, as demonstrated by the following result.

Corollary 2 Suppose that P0(s) has only one unstable pole p ∈ C+ and distinct
nonminimum phase zeros zi ∈ C+, i = 1, . . . , m. Let

M =
m∏

i=1

∣
∣
∣
∣

zi − p

z̄i + p

∣
∣
∣
∣
.

Then for any wτ (s) in (6) with b0 < Ma0,

τ = λmin

p
, (18)

where

λmin = min

{

λ > 0 :
q∑

k=0
(bk − Mak)λk = 0

}

. (19)
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Furthermore, for wτ (s) = wiτ (s), i = 1, 2, 3 given in (8)–(10), we have τ = τ i ,
with

(1) τ 1 = M

p
; (2) τ 2 = M

(1 − 0.289M)p
; (3) τ 3 = M

(1.216 − 0.5M)p
.

Evidently, Corollary 2 shows that in the presence of nonminimum phase zeros,
the range of delay with guaranteed stabilizability will be further shrunk. This is
consistent with the finding of [18], which shows that it is less likely to stabilize a
delay plant containing nonminimum phase zeros. The explicit relations given in (1)–
(3) of Corollary 2 show that τ is a monotonically increasing function of M . In the
limit when M → 0, stabilization is rendered impossible. This scenario occurs when
the plant has a pair of closely located unstable pole and nonminimum phase zero.
Note also that for the fourth, fifth, and sixth order approximants w4τ (s), w5τ (s), and
w6τ (s), similar yet more complex expressions of τ can be found explicitly in terms
of M , by more tedious calculations.

3 Systems with Time-Varying Delays

With an added advantage, the interpolation approach can be expanded to analyze
linear systems with time-varying delays. Consider the system

{

ẋ = Ax + B u(t − τ(t)),

y = Cx .
(20)

It is customary to confine the time-varying delay τ(t) to a given range [0, τ̄ ), i.e.,

0 ≤ τ(t) ≤ τ̄ , (21)

and bound the variation rate τ̇ (t) as,

|τ̇ (t)| ≤ δ < 1. (22)

Let P0(s) = C(s I − A)−1B be the transfer function of the delay-free system. We
want to find a LTI controller K (s) so as to stabilize the delay system (20) by way of
the output feedback u(s) = K (s)y(s) within a region defined by (τ̄ , δ).

Rate-Independent Bound

It is readily recognized that the closed loop system can be represented by Fig. 3, in
which � is a linear time-varying operator such that

�u(t) = u(t − τ(t)).
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Fig. 3 Feedback system
with time-varying input
delay
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Fig. 4 Small-gain setup of
systems with time-varying
delay
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By employing the model transformation [8],

u(t − τ(t)) = u(t) −
∫ t

t−τ(t)
u̇(σ )dσ,

the system can be transformed into the one depicted in Fig. 4, where

�̂x = −
∫ t

t−τ(t)
x(σ )dσ. (23)

It is well-known [8] that the system in Fig. 3, i.e., the original system (20) with the
controller K (s), is stable whenever the system in Fig. 4 is stable. Thus, by applying
the small-gain condition developed in [12, 32], we conclude that K (s) stabilizes the
system (20) if it stabilizes P0(s) and the small-gain condition

‖τ̄ sT0(s)‖∞ < 1 (24)

holds. As a result, in much the same manner, a lower bound on τ̄ can be found by
solving theH∞ optimization problem in (24), which will guarantee the existence of a
controller K (s) that can stabilize the system (20) for all τ(t) ∈ [0, τ̄ ) regardless of δ.
Evidently, this problem coincides with that in (14), with wτ (s) = τ̄ s. The following
result is thus clear.

Theorem 2 Let pi ∈ C+, i = 1, . . . , n and zi ∈ C+, i = 1, . . . , m be the distinct
unstable poles and nonminimumphase zeros of P0(s), respectively. Assume that P0(s)
has neither zero nor pole on the imaginary axis. Then the system (20) can be stabilized
by some K (s) for all τ(t) ∈ [0, τ̄ ) with

τ̄ = λ̄− 1
2

(

Q
− 1

2
p1 (Qp2 + QH

zpQ
−1
z Qzp)Q

− 1
2

p1

)

,
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where

Qz =
[

1

zi + z̄ j

]

, Qp1 =
[

1

p̄i + p j

]

, Qp2 =
[

p̄i p j

p̄i + p j

]

, Qzp =
[

p j

zi − p j

]

.

Rate-Dependent Bound

More generally, it is possible to employ more elaborate approximations of the time-
varying operator �. It may also be useful to incorporate the delay variation rate
in the approximation. One such approximation scheme is suggested in [11], which
stipulates that for any τ̄ ≥ 0 and 0 ≤ δ < 1, K (s) can stabilize the system (20)
whenever

|T0( jω)ψε( jω)| < 1, ∀ω ∈ R, (25)

where ψε(s) is a stable rational function meeting the condition

|ψε( jω)| ≥
√

2

2 − δ
φτ (ω) + ε

and hence can be constructed so that

|ψε( jω)| =
√

2

2 − δ
|wτ ( jω)| + ε,

for any ε > 0 and any rational function wτ (s) given in (6) and satisfying (7). Since
ε > 0 can be made arbitrarily small, the condition (25) is met whenever

inf
K (s)

‖T0(s)wτ (s)‖∞ <

√

2 − δ

2
. (26)

As a consequence, the stabilizability of the system (20) can also be ascertained using
the same interpolation approach. The following result extends Theorem 1 to systems
described by (20), with time-varying delays.

Theorem 3 Let pi ∈ C+, i = 1, . . . , n and zi ∈ C+, i = 1, . . . , m be the distinct
unstable poles and nonminimumphase zeros of P0(s), respectively. Assume that P0(s)
has neither zero nor pole on the imaginary axis. Then the system (20) can be stabilized
by some K (s) for all τ(t) ∈ [0, τ̄ ), |τ̇ (t)| ≤ δ if

τ̄ = σ−1
max

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

−	−1
0 	1 · · · −	−1

0 	2q−1 −	−1
0 	2q

I · · · 0 0
...

. . .
...

...

0 · · · I 0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

,
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where for any wτ (s) in (6), 	k , k = 1, . . . , 2q are defined as in Theorem 1, and
	0 is given by

	0 =
[2 − δ

2
Qp b0

b0 a20 Z
−1

]

,

with Qp and Z defined in Theorem 1 as well.

Analogously, explicit bounds can be obtained for more special cases. The fol-
lowing corollary summarizes the time-varying counterparts to Corollaries 1 and 2.

Corollary 3 Suppose that P0(s) is minimum phase and has only one unstable pole
p ∈ C+. Define

N =
√

2 − δ

2
.

Then the system (20) can be stabilized by some K (s) for all τ(t) ∈ [0, τ̄ ) with
τ̄ = τ̄i , i = 1, . . . , 4, where

(1) τ̄1 = 1/p; (2) τ̄2 = N

(1 − 0.289N )p
; (3) τ̄3 = N

(1.216 − 0.5N )p
;

(4) τ̄4 = 10.81 − 4.654N − √
116.9 − 57.32N

(N − 2) p
.

Additionally, suppose also that P0(s) has distinct nonminimum phase zeros zi ∈ C+,
i = 1, . . . , m. Let M be defined in Corollary 2. Then the system (20) can be
stabilized by some K (s) for all τ(t) ∈ [0, τ̄ ) with τ̄ = τ̄i , i = 1, . . . , 4, where

(1) τ̄1 = M/p; (2) τ̄2 = N

(1 − 0.289N )p
M; (3) τ̄3 = N

(1.216 − 0.5N )p
M;

(4) τ̄4 = 10.81 − 4.654N − √
116.9 − 57.32N

(N − 2) p
M.

Theorems 2 and 3 differ from each other due to the incorporation of the variation
rate δ, which results from the difference between (24) and (26). Similarly, inCorollary
3, the bound τ̄1 is derived using the condition (24), while τ̄2, τ̄3 and τ̄4 are obtained
using (26), together with w2τ (s), w3τ (s) and w4τ (s), respectively. Among the rate-
dependent bounds, τ̄i , i = 2, 3, 4becomeprogressively less conservative.Compared
to the rate-independent τ̄1, they may or may not be advantageous depending on the
value of δ. It is also worth noting that for δ = 0, the condition (26) reduces to (15),
and hence the results in this section all recover the bounds for LTI systems presented
in Sect. 3.
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4 Examples

We now consider a number of illustrating examples. Example 1 presents a system
with a constant delay, while Example 2 addresses systems with a time-varying delay.
In both examples, we assume that the plant is excited by a unit step input.

Example 1 Consider the plant

P0(s) = 0.1(s − 10)(s − 0.1659)

(s − 0.1081)(s2 + 0.2981s + 0.06281)
. (27)

This system has an unstable pole p = 0.1081 and two nonminimumphase zeros z1 =
10, z2 = 0.1659. Using the approximant w6τ (s), we find τ 6 = 2.0741, achievable
by the optimal controller K (s) solving (15):

K (s) = 10643(s + 0.9643)(s2 + 0.2981s + 0.06282)

(s + 1044)(s + 30.13)(s + 1.134)(s + 0.7959)

× (s2 + 1.965s + 1.109)(s2 + 1.167s + 1.651)

(s + 0.617)(s2 + 1.27s + 1.647)
. (28)

The closed-loop output response is plotted in Fig. 5 for τ = 0.6, 1, 1.5, 2, respec-
tively. For τ = 2, Fig. 6 shows the state responses of the system (27). Clearly, the
system is internally stable. Moreover, Fig. 7 shows the magnification of the output
responses for t ∈ [0, 25], exhibiting the typical undershoot behavior of nonminimum
phase systems.

Example 2 The following system, given in state-space form, contains a time-varying
delay τ(t):

ẋ(t) =
[−599 600

1 0

]

x(t) +
[

1
0

]

u(t − τ(t)),

y(t) = [

1 − 3
]

x(t).

(29)

The delay-free part of the system has an unstable pole p = 1 and a nonminimum
phase zeros z = 3. The time-varying delay under consideration is described by

τ(t) = α(1 − sin(βt))

for someα > 0, β > 0. It is evident that 0 ≤ τ(t) ≤ 2α, and δ = αβ.FromTheorem
2, we assert that the system (29) is robustly stabilizable regardless of β whenever
α < 0.25. For all α ∈ [0, 0.25), the system (29) can be stabilized by the feedback
controller K (s) solving the H∞ optimal control problem in (24):

K (s) = −1.0273 × 108
(s + 600)(s + 100)

(s + 3.2 × 106)(s + 1640)(s + 5.853)
. (30)
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Figure 8 shows the stable output responses of the closed-loop system for various
combinations of α within the interval [0, 0.25) and arbitrarily selected β. For α =
0.24, β = 0.5, Fig. 9 shows the state responses.

5 Conclusion

In this chapter we have studied the delay margin and delay robust stabilization prob-
lems for linear delay systems. Our solutions seek to ascertain the existence of a
finite-dimensional LTI output feedback controller that can robustly stabilize an entire
family of plants subject to uncertain, possibly time-varying delays within a given
range. Built on small-gain stability conditions, we employed analytic interpolation
and rational approximation techniques to develop bounds on the delay margin. The
development has led to a unified interpolation-based approach, applicable to SISO
systems with constant and time-varying delays. The results consist of readily com-
putable bounds on the delay margin of SISO systems, within which a delay plant is
guaranteed to be stabilizable. The bounds can in general be computed by solving an
eigenvalue problem. For more special plants admitting, e.g., only one unstable pole,
explicit results are found which show how unstable poles and nonminimum phase
zeros may fundamentally confine the range of delay allowed for robust stabilization.
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Nonlinear Sampled-Data Stabilization
with Delays

Salvatore Monaco, Dorothée Normand-Cyrot and Mattia Mattioni

1 Introduction

Several recent approaches (see among them [3, 9, 12, 13, 21, 23]) discuss the
compensation of delays for nonlinear continuous-time systems in terms of reduc-
tion, descriptor or predictor-based strategies. Simultaneously, mainly motivated by
implementation issues, a growing interest has been addressed toward systems under
sampling. In particular, robustness of sample-and-hold stabilizing controllers with
respect to actuators uncertainties (see [28] and the references therein) or with respect
to delays are investigated in the literature [8, 10, 11, 19, 20, 22, 27, 29]. These
contributions are essentially concerned with implementation of existing feedback
laws designed over the continuous plant or a priori assuming the existence of ad-
hoc sampled-data controllers for the delay free model. That sampling is instrumen-
tal when dealing with time delays is even more clear when considering nonlinear
dynamics affected by fixed and known input or measurements delays. In this case,
sampled-data predictor based schemes (see [10, 11]) can be exactly computed for
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particular classes of systems admitting closed-form (possibly finitely computable)
expressions of the predictor map.

The purpose of this work is to go further in the direct design of sampled-data
feedback laws for input-delayed dynamics and investigate some simple extensions
to special classes of systems affected by state delays. The results stated by the authors
for the class of input-affine dynamics in some recent works [15, 24, 25, 31] are in
the sequel extended to more general classes of nonlinear time-delayed systems with
several comments on some open perspectives.

Throughout the paper we address the problem of designing sampled-data con-
trollers for a given continuous input-delayed dynamics starting from its sampled
equivalent model; the resulting control laws admit parametrized expressions in the
sampling period which can be used to underline the possible advantages of sampling.
The design is developed in three steps starting by showing how to get global asymp-
totic stabilization of the equivalent sampled delay free dynamics; then a sampled-data
predictor-based controller is proposed, and, finally, robustness improvement of the
prediction errors is achieved through a suitable redesign.

Section 2 states the problem and specifies the classes of systems under study: non-
linear systems affected by input-delays; strict feedforward-like dynamics, admitting
finitely computable predictor map, directly or via preliminary coordinates change
and feedback; strict feedback-like systems, characterized by a delay in the connec-
tion state variable. Section 3 reports on the sampled-data predictor based stabilizing
controller with discrete-time predictor map. Section 4 discusses a modified sampled-
data predictor based controller via Immersion and Invariance (I&I) design. Section 5
deals with the specific case of a two block cascade dynamics with delay in the state
connection variable. Again it is shown how to recast the stabilizing problem in the
Immersion and Invariance context. Academic examples illustrate the computational
aspects. No complete proofs are reported but adequately referred to from previous
authors’ work.

2 Sampled-Data Models of Differential Dynamics
with Delays

2.1 The Class of Systems Under Study

We consider nonlinear dynamics over Rn with scalar valued input u ∈ R

ẋ(t) = f (x(t), u(t − τ)) (1)

with equilibrium x∗ ( f (x∗, 0) = 0) and known constant delay τ ≥ 0; when τ = 0 in
(1) the so called delay-free dynamics is recovered as
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ẋ(t) = f (x(t), u(t)) (2)

Throughout the paper, maps and vector fields are assumed smooth over the respec-
tive definition spaces (i.e. infinitely differentiable - C∞) and the delay-free system
corresponding to (1) when τ = 0 forward complete.1 In (1), u ∈ M [−τ,∞)

U where M I
U

denotes the space of measurable and locally bounded functions u : I ⊂ R
+ → U

(u : I → U , with U ⊆ R).

The following standing assumptions are set:

• measures are available only at the sampling instants t = kδ; k ≥ 0; δ ∈]0, T [,
where δ is the constant sampling period and T is themaximum allowable sampling
period;

• the control is constant over time intervals of length δ; i.e. u ∈ Uδ = {u ∈ MU s.t.}
{u(t) = uk,∀t ∈ [kδ, (k + 1)δ[; k ≥ 0} (sampled-data control);

• δ is chosen so that τ = Nδ for a suitable integer N .
• AssumptionA -The delay free dynamics associated to (1) is smoothly stabilizable;
i.e. there exists a smooth continuous-time feedback u = γ (x) with γ (x∗) = 0 and
a proper Lyapunov function V : Rn → R≥0 with V (x∗) = 0 such that V̇ (x) =
L f (·,γ (·))V (x) < 0 and with ∂L f (·,u)V (·)

∂u

∣
∣
u=γ (x)


= 0 for all x ∈ R
n/{x∗}.

Remark 1 Smoothness of the feedback γ (·) is instrumental to computational pur-
poses.

Under these assumptions, the objective of this work is to discuss direct sampled-data
strategies which make the equilibrium x∗ of (1) S-GAS in the sense of the following
definition.

Definition 1 Consider the sampled-data system ẋ = f (x, uk). We say that the
closed-loop equilibrium of ẋ = f (x, α(xk)) is sampled-data globally asymptotically
stable (S-GAS) for some piecewise constant feedback uk = α(xk) if the equilibrium
of its sampled equivalent xk+1 = F δ(xk, α(xk)) is globally asymptotically stable
(GAS) at the sampling instants t = kδ, k ≥ 0.

Remark 2 The scalar input case is developed for the sake of simplicity but multi-
input illustrative examples are reported in [5, 31].

2.2 Equivalent Sampled-Data State Representations

As, well know, when setting u(t) = uk for t ∈ [kδ, (k + 1)δ[ and assuming τ = Nδ,
(1) rewrites as the interconnection of a continuous-time delay free dynamics and
a discrete-time finite dimensional linear dynamics; namely, one gets the so-called
equivalent hybrid dynamics

1Assuming the delay free dynamics forward complete ensures that the delayed one (1) is too: ∀x0
and u ∈ M [−τ,∞)

U the solution x(t) of (1) with initial condition x(0) = x0 ∈ R
n exists ∀t ≥ 0.
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ẋ(t) = f (x(t), v1k ); t ∈ [kδ, (k + 1)δ[ (3a)

v1k+1 =v2k ; . . . ; vN
k+1 = uk (3b)

that is now free of delays. By integrating (3a) over [kδ, (k + 1)δ[ and initial condition
xk := x(kδ), one describes the equivalent sampled-data dynamics in the form of a
map (or a difference equation) over Rn × R

N as

xk+1 =F δ(xk, v1k ) = e
δL f (·,v1k ) x

∣
∣
xk

(4a)

v1k+1 =v2k ; . . . vN
k+1 = uk . (4b)

The dynamics (4a) describes the exact sampled-data equivalent of the (3a). In most
cases, a closed form of (4a) cannot be computed and the map F δ(·, v1) is described
by its series expansion2 in powers of δ

F δ(x, v1) = eδL f (·,v1) x = x +
∑

i≥1

δi

i ! L
i
f (·,v1)x .

Finite order approximations in O(δ p)3 are currently used in practice though the above
series might possess a finite number of terms in δ (finite discretizability of f (·, v1))
in some specific cases.

Stabilization of the input-delayed dynamics (1) can be thus reformulated in terms
of stabilization of the extended dynamics (4) so clearly involving nonlinear discrete-
time control strategies. However, by exploiting the cascade structure exhibited by (4)
and assuming the existence of a discrete-time stabilizing controller for the delay free
dynamics (i.e., when v1k = uk , N = 0 in (4)), predictor-based control with discrete-
time prediction map can be worked out.

Remark 3 The case of measurement delays can be treated analogously.

Remark 4 In case of non entire delays (say τ = Nδ + σ with σ ∈]0, δ[), the
extended sampled dynamics can be defined over Rn × R

N+1 as below 4

xk+1 =F δ
1 (xk, σ, v1k , v2k ) = e

σL f (·,v1k ) ◦ e
(δ−σ)L f (·,v2k ) x

∣
∣
xk

v1k+1 =v2k ; . . . ; vN
k+1 = uk .

F δ
1 (σ, v1k , v2k ) is parameterized by both the fractional part of the delay σ and past

values of the input variables so that the design strategies developed in the sequel

2L f denotes the Lie derivative operator, L f = ∑n
i=1 fi (·) ∂

∂xi
. eL f (or e f , when no confusion arises)

denotes the associated Lie series operator, eL f := 1 + ∑

i≥1
Li

f
i ! .

3A function R(x, δ) = O(δ p) is said of order δ p; p ≥ 1 if whenever it is defined it can be written as
R(x, δ) = δ p−1 R̃(x, δ) and there exist a function θ ∈ K∞ and δ∗ > 0 s.t.∀δ ≤ δ∗, |R̃(x, δ)| ≤ θ(δ).
4◦ denotes the composition of operators and functions.
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need to be suitably modified. The extension of predictor-based techniques to this
case has been proposed in [16] while an alternative solution relying on the concept
of reduction has been discussed in [18].

2.3 Finite Sampling Under Coordinates Change
and Feedback

As previously anticipated, the existence of a closed form (possibly finitely com-
putable) expression of the sampled model may be useful. As well known, upper
triangular (say strict-feedforward) forms as

ẋ1(t) = f1(x2(t), . . . , xn(t), u(t − τ))

ẋ2(t) = f2(x3(t), . . . , xn(t), u(t − τ))

. . .

ẋn(t) = fn(u(t − τ))

(5)

where xi ∈ R (i = 1, . . . , n) can be finitely integrated through a bottom-up iterative
procedure. When assuming the input piecewise constant and affected by delay τ =
Nδ, the associated sampled-data model still preserves finite discretizability in δ.

Several mechanical systems exhibit those triangular forms (as the chained forms
or their extensions) either from direct modeling or through preliminary coordinates
changes and continuous-time feedback [4, 30]. Accordingly, in [7] we examine the
conditions allowing finite discretizability through coordinates change and feedback.
In the present context, we underline that if such a transformation exists on the delay
free dynamics associated to (1), then it can be extended to the input-delayed ones.
This fact is easily verified and stated as follows.

Proposition 1 Let the dynamics (1) and consider when τ = 0 the delay-free dynam-
ics (2). Assume the existence of coordinates change x̃ = φ(x) and a state feedback
u(t) = k(x(t), v(t)) with v ∈ M [−τ,∞)

U making (2) finitely discretizable in δ of order
p. Then, for τ > 0, the retarded feedback u(t − τ) = k(x(t), v(t − τ)) and the same
x̃ = φ(x) make (1) finitely discretizable at the same order p in δ.

Basically, Proposition 1 implies that the predictor map is finitely computable
once a preliminary feedback is applied. Denoting by f̃ (x̃, v) the continuous-time
dynamics in the (x̃, v) coordinates and by F̃ δ(x̃, v) its sampled model, the design
is performed in the (x̃k, vk) coordinates. Then, the original control is expressed in
terms of the computable predictor map F̃ δ(·, vk) so getting the piecewise continuous
control signal

u(kδ + s) = k(x((k + N )δ + s), vk) = k̃(x̃((k + N )δ + s), vk)

for s ∈ [0, δ[, k ≥ 0 and x̃(kδ + s) = F̃ s(x̃(kδ), vk) for N = 0 and
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x̃((k + N )δ + s) =F̃ s(·, vk) ◦ F̃ δ(·, vk−1) ◦ · · · ◦ F̃ δ(x̃(kδ), vk−N ) for N ≥ 1.

Dynamics admitting chained form-like representations generally do not admit
continuous-time smooth stabilizing control laws. Thus, sampled-data multirate con-
trol strategies have been proposed in [6] to deal with trajectory planning or finite-time
tracking objectives. In presence of delays, Proposition 1 suggests to resettle these
control problems in the sampled-data context by taking advantage of the simplified
transformed dynamics. Arguing so, Assumption A is naturally relaxed and sampling
becomes properly an instrumental tool of the design.

2.3.1 The Unicycle: an Illustrative Example

Let the kinematics equations of a wheeled vehicle over R3

ẋ(t) = v(t) cos θ(t); ẏ(t) = v(t) sin θ(t); θ̇ (t) = ω(t) (6)

where v andω denote respectively the forward and steering velocities.Aswell known,
the change of coordinates

(

x1 x2 x3
) = (

x cos θ + y sin θ sin θ − y cos θ, θ
)

(7)

and state feedback

u1(t) = v(t) − x2(t)ω(t); u2(t) = ω(t) (8)

transform the dynamics (6) into the nonholonomic integrator

ẋ1(t) = u1(t); ẋ2(t) = u2(t)x1(t); ẋ3(t) = u2(t).

When setting ui (t) = uik for t ∈ [kδ, (k + 1)δ[, i = 1, 2 and xik = xi (kδ) for i =
1, 2, 3, one gets an exact sampled equivalent dynamics of finite order 2 in δ; namely,

x1k+1 =x1k + δu1k; x2k+1 = x2k + δu2k x1k + δ2

2
u2ku1k x3k+1 = x3k + δu2k .

Accordingly, introducing a delay of length τ > 0 over the inputs, the coordinate
change (7) and the delayed version of feedback (8) transform (6) into the retarded
chained form

ẋ1(t) = u1(t − τ); ẋ2(t) = u2(t − τ)x1(t); ẋ3(t) = u2(t − τ)

which still admits a finite sampled model. Assuming now τ = δ, the sampled-data
model in the extended coordinates (x1, x2, x3, w1, w2) with wi = uik−1 (i = 1, 2)
takes the form
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x1k+1 = x1k + δw1k; x2k+1 =x2k + δw2k x1k + δ2

2
w2kw1k; x3k+1 = x3k + δw2k

w1k+1 =u1k; w2k+1 = u2k .

Once a control solution over (u1, u2) is computed, the piecewise continuous controller
in terms of (v, ω) is described for s ∈ [0, δ[ as

v(kδ + s) =u1k + x2(kδ + δ + s)u2k; ω(kδ + s) = u2k

with x2(kδ + δ + s) = x2k+1 + su2k x1k+1 + σ 2

2 u2ku1k , so getting after substitutions

v(kδ + s) = u1 + x2u2 + sx1(u2)
2 + δx1u2w2 + sδw1(u2)

2 + s2

2
u1(u2)

2 + δ2

2
u2w2w1.

For the interested reader, we refer to [31] for a complete discussionwhile mechan-
ical structures of this type can be worked out along these lines [5].

2.4 Cascade Dynamics With State Delays

Let us now extend the previous arguments to the case of feedback-like cascade
dynamics affected by state delays. Consider the dynamics

ẋ1(t) = f1(x1(t), x2(t)); ẋ2(t) = u(t) (9)

with x1 ∈ R
n1 , x2 ∈ R and f1(x1∗, x2∗) = 0 and assume that a time delay τ is affect-

ing the connection variable x2; i.e.,

ẋ1(t) = f1(x1(t), x2(t − τ)); ẋ2(t) = u(t). (10)

By setting xr
2(t) = x2(t − τ), the delay τ is moved onto the input variable u; namely,

one gets
ẋ1(t) = f1(x1(t), xr

2(t)); ẋr
2(t) = u(t − τ) (11)

that exhibits the form (1) with x = (x
1 , xr

2)
. Analogously, one can consider a delay

in the connection variable x2 in the feedforward like extension of (9)

ẋ1(t) = f1(x1(t), x2(t − τ))

ẋ2(t) = g2(x2(t), x3(t − τ), u(t))
...

ẋn(t) = gn(xn(t), u(t))

(12)
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with x1 ∈ R
n1 , xi ∈ R for i = 2, . . . , n and f1(x1∗, x2∗) = 0. By setting xr

i (t) =
xi (t − τ) for i = 2, . . . , n, onemoves the delay τ onto the successive interconnecting
variable xi+1 and onto the input u until one recovers a specific case of (1) with
x = (x1, xr

2, . . . , xr
n). In Sect. 5, we prove sampled-data stabilizability of (10) by

assuming the existence of a fictitious feedback law x2 = k(x1) ensuring stabilization
of the x1-dynamics (thus replacing Assumption A).

3 Sampled-Data Predictor-Based Stabilization

Consider now the input delayed dynamics (1) with extended sampled equivalent
model (4). The design of predictor-based controllers with discrete-time prediction
map is described below.Wefirst recall that fromAssumptionA, one directly infers the
existence of a sampled-data feedback uk = γ δ(xk) stabilizing the delay-free sampled
dynamics while guaranteeing, at the sampling instants, the same Lyapunov perfor-
mances as in continuous time. The following result is recalled from [26].

Theorem 1 (Input-Lyapunov Matching - ILM) Consider the delay free dynamics
associated to (1) under A. Then, there exist T > 0 and for each δ in ]0, T [, a sampled
feedback γ δ(x) which satisfies the ILM equality

V (F δ(xk, uk)) − V (xk) =
∫ (k+1)δ

kδ

L f (·,γ (·))V (x(s))ds (13)

i.e. S-GAS is yielded by uk = γ δ(xk).

The proof is constructive and γ δ(·) is described by its series expansion around γ (x);
i.e. γ δ(x) = γ (x) + ∑

i≥1
δi

(i+1)!γi (x) with γ δ(x∗) = 0. This result is developed in
[32] when considering f (x, u) = f (x) + ug(x) with constructive algorithms for
computing the feedback solution.

Stabilization of the input delayed dynamics (4) follows through state prediction; i.e.
uk = γ δ(xk+N )with N -steps ahead prediction and suitably chosen initial conditions.

Theorem 2 Consider (1) under the assumptions of Theorem 1. Then, x p
k :=

F δ(·, uk−N ) ◦ ... ◦ F δ(xk, uk−1) is a predictor for (1) with dynamics

x p
k+1 = F δ(x p

k , uk) (14)

and initial conditions x p
0 = F δ(·, u−N ) ◦ ... ◦ F δ(x0, u−1). Moreover, the feedback

uk = γ δ(x p
k ) makes the closed-loop equilibrium of (1) S-GAS.

The above result underlines how sampled-data stabilizability is directly ensured
by smooth stabilizability of the continuous-time delay-free dynamics. Contrarily to
existing works dealing with sample-and-hold solutions, the proposed compensating
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feedback is based on a two step redesign procedure: first, for τ = 0, a sampled-
data feedback ensuring GAS in closed-loop is constructed through Input Lyapunov
Matching (ILM); then, the final sampled-data stabilizing predictor-based feedback
for the retarded dynamics is built by defining a discrete-time predictor dynamics.

Remark 5 Contrarily to the predictor-based techniques proposed in [10, 11], we
describe a discrete-time prediction map (14) that exploits the piecewise constant
nature of the input. This implies that prediction of the full state at any time instant t
is unnecessary for stabilizing purposes so overcoming some tough numerical issues.

4 Immersion and Invariance Stabilization with Input
Delays

As well known, predictor-based techniques strongly suffer from robustness to pre-
diction errors. In this context, stabilization through invariant sets offers interesting
refinements to Lyapunov-based control by exploiting the system structure. Taking
advantage of the underlying cascade of (4), in [24] we have shown that Immersion
and Invariance [1, 2] provides a natural set-up for input-delayed dynamics under sam-
pling. More in detail, the delay-free stable closed loop dynamics identifies the target
systems evolving over a stable manifold. Accordingly, I&I stabilization requires
to drive the off-the manifold trajectories to zero with boundedness of the full state
ones.Manifold invariance guarantees that the on-the-manifold closed-loop dynamics
recover the predictor evolutions defining the target. The I&I feedback modifies the
predictor-based one so preventing from big control effort and improving robustness
when predictor-based controllers cannot be exactly computed.

4.1 I&I Stabilization

Immersion and Invariance was firstly introduced in continuous time in [2] and then
proposed for discrete-time adaptive control in [33]. It is reformulated below in the
discrete-time and sampled contexts for completeness (see also [1, 14, 17]).

Theorem 3 Consider a nonlinear discrete-time dynamics in the form of a map

xk+1 = F(xk, uk) (15)

with x ∈ R
n, u ∈ R and equilibrium state x∗ to be stabilized. Assume that there

exists a p < n so that there exist mappings α(·) : Rp → R
p, π(·) : Rp → R

n, c(·) :
R

p → R, φ(·) : Rn → R
n−p and ψ(·, ·) : Rn×(n−p) → R such that the following

four conditions hold:
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(I1) the target dynamics ξk+1 = α(ξk) with ξ ∈ R
p has a GAS equilibrium at ξ∗

and x∗ = π(ξ∗);
(I2) F(π(ξk), c(ξk)) = π(α(ξk));
(I3) the following set-identity holds:

{

x ∈ R
n|φ(x) = 0

} = {

x ∈ R
n|x = π(ξ) for ξ ∈ R

p
} ;

(I4) setting z = φ(x) with z0 = φ(x0), the trajectories of

zk+1 = φ(F(xk, ψ(xk, zk))); xk+1 = F(xk, ψ(xk, zk))

are bounded and satisfy limk→∞ zk = 0 and ψ(π(ξ), 0) = c(ξ).

Then, x∗ is a globally asymptotically stable equilibrium of the closed loop dynamics

xk+1 = F(xk, ψ(xk, φ(xk))). (16)

Definition 2 Any discrete-time system (15) satisfying conditions I1 to I4 of Theorem
3 is said I&I stabilizable with target dynamics ξk+1 = α(ξk).5

Definition 3 The continuous-time dynamics ẋ = f (x, u) is said sampled-data I&I
stabilizable if its sampled equivalent dynamics xk+1 = F δ(xk, uk) = eδ f (·,uk )x

∣
∣
xk

with u ∈ Uδ is I&I stabilizable in the sense of Definition 2.

4.2 I&I Stabilization With Input Delays

Further exploiting the structure of the extended sampled model (4), we show that
Assumption A implies its I&I stabilizability. We are now extending the result in [24]
to more general systems of the form (1). Let us rewrite (4) in compact form as

xe
k+1 = F δ

e (xe
k , uk) (17)

with xe = (x, v̄)T ∈ R
n+N , v̄ = (v1, . . . , vN ) ∈ R

N and equilibrium xe∗ =
(x∗ , 0). According to Theorem 3, one defines the target dynamics

xk+1 = αδ(xk) := F δ(xk, γ
δ(xk)) (18)

whose equilibrium x∗ is GAS by construction of γ δ(·) in Theorem 1. Setting now

z̄ := (z1, · · · , zN ) := φδ(xe) = (φδ
1(xe), . . . , φδ

N (xe)) (19)

5Mappings and dynamics are parameterized by δ as indicated with superscript (·)δ .



Nonlinear Sampled-Data Stabilization with Delays 309

with

φδ
i (xk, v̄k) := vi

k − γ δ(xk+i−1), xk+i = eδ f (·,v1k ) ◦ · · · ◦ eδ f (·,vi−1
k )

︸ ︷︷ ︸

i times

x
∣
∣
xk

and πδ(·) := ((·), γ δ(·), . . . , γ δ((αδ)N−1(·))), the following result can be stated.
Theorem 4 Let the continuous-time input delayed dynamics (1) satisfy Assumption
A and the delay-free stabilizer γ δ(·) be the solution of (13). Then (1) is sampled-data
I&I stabilizable; i.e. its sampled equivalent dynamics (17) is I&I stabilizable with
target dynamics (18).

Consider γ δ(·) as defined in (13) with control Lyapunov function V (·). Computing
now πδ(·) : Rn → R

n+N as above, it is a matter of computations to verify that con-
ditions I1 to I3 of Theorem 3 are satisfied by construction with φδ(·) described in
(19) and

cδ(xk) = γ δ(xk+N ) = γ δ ◦ αδ ◦ · · · ◦ αδ

︸ ︷︷ ︸

N times

(xk). (20)

On these bases and from Theorem 3, one directly infers that any feedback u =
ψδ(x, v̄, z̄) such that ψδ(πδ(x), 0) = cδ(x) and ensuring I&I stabilization also
achieves GAS of the equilibrium of the extended system

xk+1 = F δ(xk, v1k ); v1k+1 = v2k ; . . . ; vN−1
k+1 = vN

k ; vN
k+1 = ψδ(xk, v̄k, z̄k)

whenever it is designed to drive z̄ to zero with boundedness of the state trajectories
of the full dynamics

z1k+1 = z2k; . . . ; zN−1
k+1 = zN

k ; zN
k+1 = uk − γ δ(xk+N )

xk+1 = F δ(xk, v1k ) (21)

v1k+1 = v2k ; . . . ; vN−1
k+1 = vN

k ; vN
k+1 = uk .

As a consequence of the structure of (21), condition I4 of Theorem 3 relaxes
to requiring limk→∞ ψδ(xk, v̄k, z̄k) − ψδ(xk, v̄k, 0) = 0 with ψδ(xk, v̄k, 0) = γ δ ◦
(αδ)N (xk). In [24], a multi-rate control strategy is proposed for stretching z̄ to zero
in exactly N steps. However, for implementation issues, an approximate controller
of the form

uk = γ δ ◦ (αδ)N (xk) + Lδ(xk)z̄k (22)

with suitably defined gain matrix |Lδ(x)| < 1 is needed. The approximate feed-
back (22) achieves, at least locally, asymptotic stabilization of the equilibrium with
improved robustness performances with respect to uncertainties on the delay length
or discarded higher order components in the predictor dynamics. As a matter of
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fact, I&I introduces a feedback term over the prediction error while prediction-based
feedback usually work in open-loop (see [24] for a more complete discussion).

Remark 6 When the stable manifold is reached (i.e., z̄ = 0), cδ(x) in (20) recovers
the N -steps ahead predictor-based feedback γ δ ◦ (αδ)N (x) while in the delay free
case (N = 0), cδ(x) reduces to the original ILM-based feedback γ δ(x).

Remark 7 When N = 1, the I&I feedback is reminescent of the first step of a back-
stepping design with Lyapunov function V̄ (x, z) = V (x) + 1

2 z2. When N > 1, the
N -steps ahead I&I strategy recalls the N -rate backstepping design developed in [32].

4.2.1 An Example

The following two block cascade system is exploited as an illustrative example
throughout the paper. Let

ẋ1(t) =x1(t)x2(t); ẋ2(t) = u(t) (23)

be stabilized by the feedback u = −2x2 − x2
1e2x2 and Lyapunov function V (x) =

1
2 (x2

1e2x2 + x2
2 ). The exact sampled model of (23) takes the form

x1k+1 =eδ(x2k+ δ
2 uk )x1k; x2k+1 = x2k + δuk . (24)

and a stabilizing sampled-data controller can be computed through ILM design as

uk = γ δ(xk) = −2x2k

(

1 − δ

2

)

− x2
1ke2x2k

(

1 − δ

2
(1 + x2

1ke2x2k )
)

+ O(δ2)

which is approximated in O(δ2). Assuming now an input delay of amplitude δ (i.e.
u(t − τ) = u(t − δ)) in (23), one defines the extended sampled equivalent dynamics

x1k+1 =eδ(x2k+ δ
2 vk )x1k; x2k+1 = x2k + δvk; vk+1 = uk . (25)

Accordingly, the sampled predictor-based feedback is uk = γ δ(x p
k )with x p

k = xk+1:

γ δ(x p) = −2aδ(x) − bδ(x) + δ

2
(2aδ(x) + bδ(x)(1 + bδ(x)) (26)

withaδ(x) = x2 + δγ δ(x); bδ(x) = e2(x2+γ δ(x))e2δ(x2+ δ
2 γ δ(x))x2

1 .Asdiscussed, amod-
ified I&I feedback with sampled-data target dynamics

x1k+1 = eδ(x2k+ δ
2 γ δ(xk ))x1k; x2k+1 =x2k + δγ δ(xk). (27)

and off-the-manifold component z = v − γ δ(x), can be designed to bring z to zero
for the dynamics
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x1k+1 = eδ(x2k+ δ
2 γ δ(xk )+ δ

2 zk )x1k; x2k+1 = x2k + δγ δ(xk) + δzk; zk+1 = uk − γ δ(xk+1).

Accordingly, one computes (omitting the k-dependency)

ψδ(x) = − 2aδ(x) − 2δz − bδ(x)e3δz + δ

2
(2aδ(x) + 2δz + bδ(x)e3δz(1 + bδ(x)e3δz)

so recovering γ δ(x p
k ) when z = 0 with robustness improvement when z 
= 0.

5 Sampled-Data I&I Stabilization with State Delays

In this section, stabilization of the strict-feedback dynamics (10) with delays on
the connecting state variable is addressed. Since (10) exhibits the form (1), the for-
mer arguments still apply for sampled stabilization when setting as extended state
x = (xT

1 , x2)T . A different solution exploiting the interconnection structure of (9) is
described below when reformulating Assumption A over f1(·) in (9) as follows.
AssumptionB -There exists a smoothmapping x2(t) = k(x1)with k(x1∗) = x2∗ and a
proper Lyapunov functionW : Rn1 → R≥0 such that Ẇ (x1) = L f (x1,k(x1))W (x1) < 0

and
∂L f1 W

∂x1

∣
∣
x2=k(x1)


= 0 for any x1 
= x1∗.

Remark 8 Through easy backstepping-like arguments, one can prove that Assump-
tion B implies Assumption A.

Consider (9) underAssumptionB (equivalently (11)when setting xr
2(t) = x2(t − τ))

with sampled equivalent dynamics described over Rn1+1 × R
N as

x1k+1 = F δ
1 (x1k, xr

2k, v1k ); xr
2k+1 = xr

2k + δv1k ; v1k+1 = v2k ; . . . ; vN
k+1 = uk

(28)
or, in a more compact form, as xe

k+1 = F δ
e (xe

k , uk) with xe = (x
1 , xr

2, v1, . . . , vN ).
Two preliminary results are instrumental for extending to (9) the results provided in
[14, 17] for delay-free input-affine systems. More in detail, we show what follows:

• when τ = 0, Assumption B implies I&I stabilizability of the delay free dynamics
(9) which implies I&I stabilizability of its equivalent sampled model (Proposition
2);

• sampled I&I stabilizability of the delay-free (9) implies sampled-data I&I stabi-
lizability of the retarded (10) (Theorem 5).

Proposition 2 Let (9) satisfy Assumption B. Then, its sampled equivalent dynamics

x1k+1 =F δ
1 (x1k, x2k, uk); x2k+1 = x2k + δuk

is I&I stabilizable with target dynamics

x1k+1 = F δ
1 (x1k, kδ(x1k), γ

δ(x1k)) (29)
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where kδ = k + ∑

i≥1
δi

(i+1)!ki and γ δ = k̇ + ∑

i≥1
δi

(i+1)!γi are solutions of the equal-
ities

W (x1k+1) =W (x1k) +
∫ (k+1)δ

kδ

L f (·,k(·))W (x1(τ ))dτ (30a)

kδ(x1k+1) =kδ(x1k) + δγ δ(x1k). (30b)

Equality (30a) ensures ILM at the sampling instants of the closed loop Lyapunov
function W (x1) on the target dynamics (29) and, hence, the stability of its closed-loop
equilibrium. Equality (30b) guarantees invariance of the correspondingmanifold that
is implicitly defined by the condition z = x2 − kδ(x1) = φδ(x1, x2) ≡ 0. On these
bases, the sampled I&I stabilizing delay-free feedback u = ψδ(x, z) is designed to
drive z to zero while preserving boundedness of the complete state trajectories

x1k+1 = Fδ
1 (x1k , x2k , uk); x2k+1 = x2k + δuk; zk+1 = zk + δuk − kδ(x1k+1) + kδ(x1k).

GAS of the closed-loop x-dynamics follows (delay free case) with

ψδ(x1, kδ(x1), 0) = γ δ(x1) = 1

δ

(

kδ(F δ
1 (x1k, kδ(x1k), γ

δ(x1k))) − kδ(x1k)
)

when z = 0 as implied by (30b).

Remark 9 The existence of solutions to equalities (30) is guaranteed by the cascade
structure of (9) and

∂L f1 W
∂x1

∣
∣
x2=k(x1)


= 0,∀x1 
= x1∗.

Remark 10 It is a matter of computations to verify that the pair (k, k̇) satisfies equal-
ities (30) in O(δ2) so emphasizing the fact that the sampled-data pair (kδ, γ δ) is
computed around the continuous-time solution (k, k̇).

The following result generalizes Theorem 3.1 in [15]

Theorem 5 Consider the continuous-time dynamics (10) with τ = Nδ. Suppose
that when τ = 0, (10) satisfies Assumption B with

∂L f1 W
∂x1

∣
∣
x2=k(x1)


= 0,∀x1 
= x1∗.
Then, the extended sampled equivalent dynamics (28) is I&I stabilizable with target
dynamics (29).

The above result follows when defining the pair (kδ, γ δ) as in Proposition 2. Accord-
ingly, the subsequent extended immersion mapping π̄ δ : Rn1 → R

n1+1 × R
N takes

the form
π̄ δ(x1k) = (x

1k, kδ(x1k), γ
δ(x1k), . . . , γ

δ(x1k+N−1))
 (31)

while the extended φ̄δ : Rn1+1 × R
N → R

N+1 with v̄ = (v1, . . . , vN ) is provided
by
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z1k = φ̄δ
1(x1k, xr

2k, vk) = xr
2k − kδ(x1k); z2k = φ̄δ

2(x1k, xr
2k, vk) = v1k − γ δ(x1k)

. . .

zN+1k = φ̄δ
N+1(x1k, xr

2k, vk) =vN
k − γ δ(x1k+N−1).

On these bases, I&I stabilization of (10) at the sampling instants is achieved by any
feedback uk = ψ̄δ(x1k, xr

2k, z̄k) satisfying ψ̄δ(x1, kδ(x1), 0) = γ δ(x1) and designed
to bring z̄ to zero with boundedness of the trajectories of the (x

1 , x2, z̄)-dynamics.
We showed in [17] that multi-rate digital control strategies of order equal to the
dimension of z̄, the off-the manifold component, are suitable to ensure invariance of
the manifold and drive z̄ to zero.

5.1 Example

Consider again the system (23) but now notice that for x2 = − 1
2 x2

1 the sub-system
ẋ1 = − 1

2 x3
1 has a GAS equilibrium at the origin with Lyapunov function V0(x1) =

1
2 x2

1 . Suppose now that a delay τ is acting on the transmission variable x2, namely,

ẋ1(t) =x1(t)x2(t − τ), ẋ2(t) = u(t).

Under state transformation xr
2(t) = x2(t − τ) and dynamical extension, one gets

ẋ1(t) =x1(t)xr
2(t); ẋr

2(t) = vk; vk+1 = uk

with exact (single-rate) sampled equivalent model

x1k+1 = eδ(xr
2k+ δ

2 vk )x1k; xr
2k+1 = xr

2k + δvk; vk+1 = uk .

Accordingly, I&I applies to the above system by setting the target dynamics as
x1k+1 = eδ(kδ(x1k )+ δ

2 cδ(x1k )x1k with the solutions to (30a)–(30b) in O(δ4) as

kδ(x1) = − 1

2
x21 − δ2

6

(

x21 + 1

8

)

x41 + O(δ3) cδ(x1) = 1

2
x41 + δ

(
1

8
− x21

)

x41 + O(δ2).

Setting z1 := x2 − kδ(x1), z2 := v − cδ(x1) and uik = u(kδ + (i−1)
2 δ) for i = 1, 2,

one computes the double-rate equivalent model as

x1k+1 = e
δ
2 (2(z1+k

δ
2 (x1k ))+ 3δ

4 (z2+c
δ
2 (x1k ))+ δ

4 u1k )x1k; xr
2k+1 = xr

2k + δ

2
(vk + u1

k); vk+1 = u2
k

z1k+1 = z1k + k
δ
2 (x1k) − k

δ
2 (x1k+1) + δ

2
(z2 + c

δ
2 (x1k) + u1k), z2k+1 = u2k − c

δ
2 (x1k+1).

Accordingly, the feedback u = col(u1, u2) solution to



314 S. Monaco et al.

δ

2
u1 = k

δ
2 (x1k+1) − k

δ
2 (x1k) − δ

2
(z2 + c

δ
2 (x1)), u2 = c

δ
2 (x1k+1)

guarantees I&I stabilization in closed-loop.

6 Conclusion

The paper revisits recent authors’ works by emphasizing the role of sampling for sta-
bilizing nonlinear time-delay systems. While assuming entire delays, we show that
smooth stabilizability of the continuous-time delay-free system is enough for deduc-
ing the existence of a stabilizer for the retarded dynamics. The proposed solution
employs a discrete-time predictor which is instrumental for designing the stabiliz-
ing feedback. Finally, a robust redesign is carried out by extending the Immersion
and Invariance approach to time-delay systems. The proposed design methodologies
are constructive. Perspectives are opened toward more general classes of time-delay
systems (non-entire, distributed and multi-channel delays) together with a suitable
comparison with reduction-based techniques.
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