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Abstract. We propose a new numerical method for fractional ordinary
differential equation systems based on a judiciously chosen quadrature
point. The proposed method is efficient and easy to implement. We show
that the convergence order of the method is 2. Numerical results are
presented to demonstrate that the computed rates of convergence confirm
our theoretical findings.

1 Introduction

We consider the following system of fractional ordinary differential equations:

0D
α
t x(t) = f(t, x(t)), t ∈ (0, T ], satisfying x(0) = x0, (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))� ∈ R
n for a positive integer n, T > 0 is

a fixed constant, f : Rn+1 �→ R
n a given mapping, x0 ∈ R

n a given initial con-
dition, and 0D

α
t x(t) = (0Dα1

t x1(t), 0Dα2
t x2(t), . . . , 0Dαn

t xn(t))� for αi ∈ (0, 1)
with 0D

αi
t xi(t) denoting the following Caputo’s αi-th derivative

0D
αi
t xi(t) =

1
Γ (1 − αi)

∫ t

0

xi
′(τ)

(t − τ)αi
dτ

for t > 0 and i = 1, 2, ..., n, where Γ (·) denotes the Gamma function.
In the open literature, there are a number of methods for solving (1). Ado-

mian decomposition method [3,5,9], variational iteration method [11,12], differ-
ential transform method [2] and homotopy analysis method [10,14] have been
used for the problem. Recently, we proposed a new one-step numerical integra-
tion scheme for (1) [8]. This method is easy to implement and computationally
inexpensive. In this paper, we will show that the global error of the method is
of order O(h2), where h denotes the maximal mesh size to be defined.

The rest of the paper is organized as the follows. In Sect. 2, we first trans-
form Eq. (1) into an equivalent Volterra integral equation, we then propose an
approximation of Volterra integral equation based on a Taylor expansion. An
error analysis of the approximation is also presented. In Sect. 3, we propose
an algorithm for implementing the approximate equation and analyse its con-
vergence. In Sect. 4, numerical examples are presented. Section 5 concludes the
paper.
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2 Approximation

We first rewrite (1) as the following Volterra integral equation:

xi(t) = x0
i +

1
Γ (αi)

∫ t

0

(t − τ)αi−1fi(τ, x(τ)) dτ, (2)

for t ∈ (0, T ] and i = 1, 2, ..., n. It has been proven [1,4,6] that solving Eq. (1)
is equivalent to solving (2). In this section, we will develop a numerical method
based on a Taylor expansion to approximate (2) and estimate the approximation
error.

Let N be a given positive integer. We divide (0, T ) into N sub-intervals with
mesh points ti = ih for i = 0, 1, . . . , N, where h = T/N . Thus, we have

xi(tj) = x0
i +

1
Γ (αi)

∫ jh

0

(jh − τ)αi−1fi(τ, x(τ)) dτ

= x0
i +

1
Γ (αi)

j∑
k=1

∫ kh

(k−1)h

(jh − τ)αi−1fi(τ, x(τ))dτ. (3)

To approximate the integral on the RHS of (3), we assume that fi(t, x(t))
is twice continuously differentiable with respect to both t and x. For any k, we
expend fi(τ, x(τ)) at any point in ((k − 1)h, kh), denoted as τ i

jk, into

fi(τ, x(τ)) = fi(τ i
jk, x(τ i

jk)) + Ki
jk(τ − τ i

jk) + ci
jk(τ − τ i

jk)2, (4)

where ci
jk is the coefficient of the reminder of the expansion and

Ki
jk =

∂fi

∂τ

∣∣∣
(τ i

jk,x(τ i
jk))

+
n∑

l=1

∂fi

∂xl

∣∣∣
(τ i

jk,x(τ i
jk))

∂xl

∂τ
|(τ i

jk)
.

Therefore, replacing fi(τ, x(τ)) in (3) with the RHS of (4) and by direct inte-
gration we have

1
Γ (αi)

∫ kh

(k−1)h

(jh − τ)αi−1fi(τ, x(τ))dτ

=
1

Γ (αi)

∫ kh

(k−1)h

(jh − τ)αi−1[fi(τ i
jk, x(τ i

jk)) + Ki
jk(τ − τ i

jk)]dτ + Ri
jk

=
hαi

Γ (αi + 1)
fi(τ i

jk, x(τ i
jk))[(j − k + 1)αi − (j − k)αi ]

+
Ki

jk

Γ (αi)

∫ kh

(k−1)h

(jh − τ)αi−1(τ − τ i
jk)dτ + Ri

jk, (5)

where Ri
jk =

1
Γ (αi)

∫ kh

(k−1)h

(jh − τ)αi−1ci
jk(τ − τ i

jk)2dτ .

From (5) it is clear that τ i
jk should be chosen such that the integral term in

(5) becomes zero so that the truncation error is Ri
jk. The choice of τ i

jk is given
in the following theorem.
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Theorem 1. For any feasible j and k, the unique solution to

∫ kh

(k−1)h

(jh − τ)αi−1(τ − τ i
jk)dτ = 0

is

τ i
jk = h

[(j − k + 1)αi+1 − (j − k)αi+1] + (αi + 1)[(j − k + 1)αi(k − 1) − (j − k)αik]

(αi + 1)[(j − k + 1)αi − (j − k)αi ]
.

(6)
Furthermore, (k − 1)h < τ i

jk < kh.

Proof. See the proof of Theorem 2.1 in [7].

Substituting the expression for τ i
jk in (6) into (5) and combining the resulting

expression with (3), we have the following representation for xi(tj).

xi(tj) = x0
i +

hαi

Γ (αi + 1)

j∑
k=1

fi(τ i
jk, x(τ i

jk))[(j − k + 1)αi − (j − k)αi ] + Ri
j , (7)

for j = 1, 2, . . . , N , where τ i
jk is given in (6) for k = 1, 2, . . . , j and Ri

j =∑j
k=1 Ri

jk. Omitting Ri
j in (7), we have an approximation to (3) with the trun-

cation error Ri
j . An upper bound for Ri

j is given in the following theorem.

Theorem 2. If f(t, x) is twice continuously differentiable in t and x, then we
have |Ri

j | ≤ Ch2, where C denotes a positive constant independent of h.

Proof. See the proof of Theorem 2.2 in [7].

From (7) it is clear that to compute xi(tj), we need to calculate fi(τ i
jk, x(τ i

jk)).
However, x(τ i

jk) is not available directly from the scheme. Thus, approximations
to x(τ i

jk) need to be determined. In the next section, we propose a single step
numerical scheme for implementing (7) when the remainder Ri

j is omitted.

3 Algorithm and Its Convergence

For any j and k satisfying 1 ≤ k ≤ j ≤ N , since τ i
jk ∈ (tk−1, tk) by Theorem 1,

we use the following linear interpolation to approximate xi(τ i
jk):

x(τ i
jk) = x(tk−1) + ρi

jk(x(tk) − x(tk−1)) + O(h2)En, (8)

where ρi
jk := τ i

jk−tk−1

h ∈ (0, 1) and En = (1, 1, ..., 1)� ∈ R
n. Using (8) , we

approximate fi(τ i
jk, x(τ i

jk)) as follows.

fi(τ i
jk, x(τ i

jk)) = fi

(
τ i
jk, x(tk−1) + ρi

jk(x(tk) − x(tk−1))
)

+ O(h2). (9)
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Replacing fi(τ i
jk, x(τ i

jk)) in (7) with the RHS of (9), we have

xi(tj) = x0
i +hαi

j∑
k=1

[
fi

(
τ i
jk, x(tk−1) + ρi

jk(x(tk) − x(tk−1))
)

· ((j − k + 1)αi − (j − k)αi)
]

+ O(h2) (10)

for j = 1, 2, . . . , N , where hαi
= hαi

Γ (αi+1) and τ i
jk is defined in (6). Clearly, (10)

defines a time-stepping scheme for (2) if we omit the term O(h2).
The above scheme is implicit as it is a nonlinear system in x(tj). We now

define an explicit single step scheme by further approximating the jth term in
the sum in (10) by the following Taylor expansion:

fi(τ i
jj , x(tj−1) + ρi

jj(x(tj) − x(tj−1)))

= fi(τ i
jj , x(tj−1))) +

n∑
l=1

∂fi

∂xl

∣∣∣
(τ i

jj ,x(tj−1))
(ρi

jj(xl(tj) − xl(tj−1))) + O(h2). (11)

Thus, combining (11) and (10) yields

xi(tj) =x0
i + hαi

j−1∑
k=1

[
fi

(
τ i
jk, x(tk−1) + ρi

jk(x(tk) − x(tk−1))
)

((j − k + 1)αi − (j − k)αi)
]

+ hαi
fi

(
τ i
jj , x(tj−1))

)

+ hαi

n∑
l=1

[∂fi

∂xl
|(τ i

jj ,x(tj−1)))(ρ
i
jj(xl(tj) − xl(tj−1)))

]
+ O(h2). (12)

Let xj := (xj
1, x

j
2, . . . , x

j
n)� for j = 0, 1, ..., N and omitting the truncation error

terms of order O(h2) in (12), we define the following single step time-stepping
scheme for approximating (2):

xj
i =x0

i + hαi

j−1∑
k=1

[
fi

(
τ i
jk, xk−1 + ρi

jk(xk − xk−1)
)
((j − k + 1)αi − (j − k)αi)

]

+ hαi
fi

(
τ i
jj , x

j−1
)

+ hαi

n∑
l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(ρ
i
jj(x

j
l − xj−1

l ))
]

(13)

Re-organising (13), we have the following linear system for xj :

Bjxj = Cj , j = 1, 2, . . . , N. (14)

where Bj is the n × n matrix given by

Bj =

⎛
⎜⎜⎜⎝

1 − bj
11 −bj

12 . . . −bj
1n

−bj
21 1 − bj

22 . . . −bj
2n

...
...

. . .
...

−bj
n1 −bj

n2 . . . 1 − bj
nn

⎞
⎟⎟⎟⎠ (15)
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with
bj
il = ρi

jjhαi

∂fi

∂xl

∣∣∣
(τ i

jj ,xj−1)
(16)

for i = 1, 2, . . . , n, l = 1, 2, . . . , n and Cj = (cj
1, c

j
2, . . . , c

j
n)� with

cj
i =x0

i + hαi

j−1∑
k=1

[
fi

(
τ i
jk, xk−1 + ρi

jk(xk − xk−1)
)
((j − k + 1)αi − (j − k)αi)

]

+ hαi
fi

(
τ i
jj , x

j−1
) −

n∑
l=1

xj−1
l bj

il. (17)

It is clear that to calculate xj , we need to solve the system of equations (14)–(17).
It has been shown in [8] that (14)–(17) is uniquely solvable when h is sufficiently
small.

For a given initial condition x0, using the above results, we propose the
following algorithm for solving (3) numerically.

Algorithm A

1. For a given positive integer N , let tj = jh for j = 0, 1, . . . , N , where h = T/N .
2. Calculate xj for j = 1, ..., N using (14)–(17).

Using a linear interpolation and Taylor’s theorem, we are able to prove in
the following theorem that, for any j = 1, 2, . . . , N , xj generated by the above
algorithm converges to the solution of (2) at the rate O(h2) when h → 0+.

Theorem 3. Let x(tj) and xj be respectively the solution to (3) and the sequence
generated by Algorithm A. If f(t, x) is twice continuously differentiable in t and
x, then there exists an h̄ > 0 such that when h < h̄

||x(tj) − xj ||∞ ≤ Ch2, j = 1, 2, . . . , N. (18)

Proof. In what follows, we let C denote a generic positive constant, independent
of h. We now prove this theorem by mathematical induction.

When j = 1, from (12) we have

xi(t1) = x0
i +hαi

[
fi(τ i

11, x
0) +

n∑
l=1

∂fi

∂xl

∣∣∣
(τ i

11,x0)
(ρi

11(xl(t1) − x0
l ))

]
+O(h2) (19)

Re-organising (19) and using the definitions for Bj and Cj , we have

B1x(t1) = C1 + O(h2)En. (20)

Solving (20) yields

x(t1) = (B1)−1C1 + O(h2)(B1)−1En.
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From (14)–(17), we see that

x1 = (B1)−1C1.

Therefore,

||x(t1) − x1||∞ = O(h2)||(B1)−1En||∞ ≤ Ch2||(B1)−1||∞.

It has been proven [8] that Bj , j = 1, 2, . . . , N satisfies, when h < h̄,

σj := min
1≤i≤n

⎧⎨
⎩|bj

ii| −
n∑

j=1,j �=i

|bj
ij |

⎫⎬
⎭ ≥ β > 0 (21)

for a constant β, independent of h, where h̄ = min1≤i≤n (Γ (αi+1)
nM )

1
αi and M =

max1≤i≤n
1≤l≤n

∣∣∣ ∂fi

∂xl

∣∣∣. Thus, using [13] and (21), we have

||(B1)−1||∞ ≤ 1
σ1

≤ 1
β

.

Therefore, we have
||x(t1) − x1||∞ ≤ Ch2.

When i ≥ 2 and h ≤ h̄, we assume that

||x(tj) − xj ||∞ ≤ Ch2, 1 ≤ j ≤ i − 1. (22)

We now show that ||x(tj) − xj ||∞ ≤ Ch2 for 1 ≤ j ≤ i.
Note that (12) can be re-written in the following form:

xi(tj) = x0
i + Aj

i + Dj
i + O(h2), (23)

where

Aj
i = hαi

j−1∑
k=1

[
fi

(
τ i
jk, x(tk−1) + ρi

jk(x(tk) − x(tk−1))
)
((j −k+1)αi −(j −k)αi)

]
,

(24)

Dj
i = hαi

fi

(
τ i
jj , x(tj−1))

)
+ hαi

n∑
l=1

[∂fi

∂xl
|(τ i

jj ,x(tj−1))(ρ
i
jj(xl(tj) − xl(tj−1)))

]
.

(25)
Similarly, (13) can be re-written as follows.

xj
i = x0

i + Ãj
i + D̃j

i , (26)

where

Ãj
i = hαi

j−1∑
k=1

[
fi

(
τ i
jk, xk−1 + ρi

jk(xk − xk−1)
)
((j − k + 1)αi − (j − k)αi)

]
, (27)
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D̃j
i = hαi

fi

(
τ i
jj , x

j−1
)

+ hαi

n∑
l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(ρ
i
jj(x

j
l − xj−1

l ))
]
. (28)

Subtracting (26) from (23) gives

xi(tj) − xj
i = (Aj

i − Ãj
i ) + (Dj

i − D̃j
i ) + O(h2). (29)

Let us first estimate Dj
i − D̃j

i . From (25) and (28), we have

Dj
i − D̃j

i =

[
hαifi

(
τ i

jj , x(tj−1))
)

+ hαi

n∑
l=1

[∂fi

∂xl
|(τi

jj ,x(tj−1))
(ρi

jj(xl(tj) − xl(tj−1)))
]]

.

−
[
hαifi

(
τ i

jj , x
j−1)

)
+ hαi

n∑
l=1

[∂fi

∂xl
|(τi

jj ,xj−1)(ρ
i
jj(x

j
l − xj−1

l ))
]]

= hαi [fi(τ
i
jj , x(tj−1)) − fi(τ

i
jj , x

j−1)]

+ hαiρ
i
jj

[
n∑

l=1

[∂fi

∂xl
|(τi

jj ,x(tj−1))
(xl(tj)) − ∂fi

∂xl
|(τi

jj ,xj−1))(x
j
l )

]]

− hαiρ
i
jj

[
n∑

l=1

[∂fi

∂xl
|(τi

jj ,x(tj−1))
(xl(tj−1)) − ∂fi

∂xl
|(τi

jj ,xj−1)(x
j−1
l )

]]
. (30)

Since fi is twice continuously differentiable, using a Taylor expansion we get

∂fi

∂xl
|(τ i

jj ,x(tj−1)) =
∂fi

∂xl
|(τ i

jj ,xj−1) + ri
j , (31)

where

ri
j =

n∑
p=1

∂2fi

∂xl∂xp
|(τ i

jj ,ξ)(xp(tj−1) − xt−1
p ),

where ξ = x(tj−1)+θ(x(tj−1)−xj−1) with θ ∈ (0, 1). From the assumption (22)
we have ri

j = O(h2). Similarly, since f is twice differentiable, using (22) it is
easy to show fi(τ i

jj , xi(ti−1)) − fi(τ i
jj , x

j−1
i ) = O(h2).

Using (31) and the above estimates we have, from (30),

Dj
i − D̃j

i = hαi
O(h2) + hαi

ρi
jj

[
n∑

l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(xl(tj) − xj
l + xl(tj)ri

j)
]]

− hαi
ρi

jj

[
n∑

l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(xl(tj−1) − xj−1
l + xl(tj−1)ri

j)
]]

= hαi
ρi

jj

[
n∑

l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(xl(tj) − xj
l )

]]

+ hαi
ρi

jj

[
n∑

l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(x
j−1
l − xl(tj−1))

]]
+ O(h2+αi)

= hαi
ρi

jj

[
n∑

l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(xl(tj) − xj
l )

]]
+ O(h2+αi),



A 2nd-Order Method for Fractional ODEs 67

since hαi
= hαi/Γ (1 + αi) and (22). Thus, from the above expression and (29),

we get

xi(tj) − xj
i =(Aj

i − Ãj
i ) + hαi

ρi
jj

[
n∑

l=1

[∂fi

∂xl
|(τ i

jj ,xj−1)(xl(tj) − xj
l )

]]
+ O(h2).

Re-organising the above equation gives

Bj
(
x(tj) − xj

)
= Aj + O(h2)En, j = 1, 2, . . . , N,

where Bj is defined in (15)–(16) and Aj = (Aj
1 − Ãj

1, A
j
2 − Ãj

2, . . . , A
j
n − Ãj

n)�.
From this equation we have

x(tj) − xj = (Bj)
−1 (

Aj + O(h2)En

)
, j = 1, 2, . . . , N.

Thus, we have

‖x(tj) − xj‖∞ = ‖(Bj)
−1

(Aj + O(h2)En)‖∞ ≤ ‖(Bj)
−1‖∞

(‖Aj ||∞ + O(h2)
)

for j = 1, 2, . . . , N. Using [13] and (21), we have

||(Bj)−1||∞ ≤ 1
σj

≤ 1
β

.

Therefore, we obtain

||x(tj) − xj ||∞ ≤ 1
β

||Aj ||∞ + Ch2. (32)

We now examine ||Aj ||∞ = ||Aj
i − Ãj

i ||∞. For notational simplicity, we let
xjk = xk−1 + ρi

jk(xk − xk−1) and x(tjk) = x(tk−1) + ρi
jk(x(tk) − x(tk−1). From

(24) and (27), we have

|Aj
i − Ãj

i | ≤ hαi

j−1∑
k=1

∣∣∣[fi(τ i
jk, x(tjk)) − fi(τ i

jk, xjk)][(j − k + 1)αi − (j − k)αi ]
∣∣∣

= hαi

j−1∑
k=1

∣∣fi(τ i
jk, x(tjk)) − fi(τ i

jk, xjk)
∣∣ [(j − k + 1)αi − (j − k)αi ],

(33)

since zαi is an increasing function of z for αi ∈ (0, 1). Because f is twice contin-
uously differentiable, we have, using a Taylor expansion,

|fi(τ i
jk,x(tjk)) − fi(τ i

jk, xjk)| ≤ C‖x(tjk) − xjk‖∞

= C‖[x(tk−1) + ρi
jk(x(tk) − x(tk−1))] − [xk−1 + ρi

jk(xk − xk−1)]‖∞

= C‖[x(tk−1) − xk−1] + ρi
jk[x(tk) − xk] + ρi

jk[xk−1 − x(tk−1)]‖∞

≤ C
(‖x(tk−1) − xk−1‖∞ + ‖x(tk) − xk)‖∞ + ‖x(tk−1) − xk−1‖∞

)
,
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since ρi
jk ∈ (0, 1). Thus, from Assumption (22), we have

|fi(τjk, x(tjk)) − fi(τjk, xjk)| ≤ Ch2.

Replacing |fi(τij , x(tjk))−fi(τij , x
jk)| in (33) with the above upper bound yields

|Aj
i − Ãj

i | ≤ hαi
Ch2

j−1∑
k=1

[(j − k + 1)αi − (j − k)αi ] =
hαi

Γ (αi + 1)
Ch2(jαi − 1)

≤ hαi

Γ (αi + 1)
Ch2Nαi =

C

Γ (αi + 1)
h2(hN)αi

=
C

Γ (αi + 1)
h2Tαi ≤ Ch2

for i = 1, 2, ..., n. Thus, we have

‖Aj − Ãj‖∞ ≤ Ch2.

Combining the above error bound with (32), we have the estimate (18). Thus,
the theorem is proved.

4 Numerical Results

In this section, we will use Algorithm A to solve two non-trivial examples. All
the computations have been performed in double precision under Matlab envi-
ronment on a PC with Intel Xeon 3.3 GHz CPU and 16 GB RAM.

Example 1. Consider the following system of fractional differential equations:
⎧⎨
⎩

0D
α1
t x1(t) = x2(t),

0D
α2
t x2(t) = x3(t),

0D
α3
t x3(t) = Γ (5)

Γ (5−α1−α2−α3)
t4−(α1+α2+α3), t ∈ (0, 1],

x1(0) = x2(0) = x3(0) = 0,

where αi ∈ (0, 1), i = 1, 2, 3. The exact solution is

x1(t) = t4, x2(t) =
Γ (5)

Γ (5 − α1)
t4−α1 , x3(t) =

Γ (5)
Γ (5 − α1 − α2)

t4−(α1+α2).

We solve the problem using Algorithm A for various values of αi, i = 1, 2, 3 and
hk = 1/(2k × 10), k = 1, ..., 6. The computed errors Ei

hk
= max1≤j≤1/hk

|xj
i −

xi(tj)| for the chosen values of αi’s are listed in Table 1. To estimate the rates
of convergence, we calculate log2(Ehk

/Ehk+1) for k = 1, ..., 5 and the computed
rates of convergence, as well as CPU times, are also listed in Table 1. From the
results in Table 1 we see that our method has a 2nd-order convergence rate for all
the chosen values of α, as predicted by Theorem 3, indicating that our method
is very robust in α. The CPU time in Table 1 shows that our method is very
efficient.
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Table 1. Computed errors, convergence order and CPU time for Example 1.

h x1 Order x2 Order x3 Order CPU (seconds)

α1 = α2 = α3 = 0.9

1/20 0.0041 - 0.00296 - 0.0022 0.2496

1/40 0.0010 2.00 7.1406e−04 2.05 5.7828e−04 1.93 0.2652

1/80 2.4856e−04 2.01 1.7308e−04 2.04 1.4936e−04 1.95 0.3588

1/160 6.1488e−05 2.02 4.2162e−05 2.04 3.8314e−05 1.96 0.4212

1/320 1.5238e−05 2.01 1.0315e−05 2.03 9.7768e−06 1.97 0.5928

1/640 3.7822e−06 2.01 2.5328e−06 2.03 2.4845e−06 1.98 1.6848

α1 = 0.8, α2 = 0.6, α3 = 0.4

1/20 0.0036 - 0.0021 - 0.0028 - 0.2184

1/40 9.1509e−04 1.98 5.4008e−04 1.96 7.0318e−04 1.99 0.2808

1/80 2.3067e−04 1.99 1.3723e−04 1.98 1.7557e−04 2.00 0.3588

1/160 5.7981e−05 1.99 3.4680e−05 1.98 4.3850e−05 2.00 0.3900

1/320 1.4547e−05 1.99 8.7325e−06 1.99 1.0954e−05 2.00 0.6864

1/640 3.6451e−06 2.00 2.1936e−06 1.99 2.7371e−06 2.00 1.6692

α1 = 0.1, α2 = 0.3, α3 = 0.2

1/20 0.0018 - 9.6495e−04 - 0.00145 - 0.2652

1/40 4.9549e−04 1.86 2.6383e−04 1.87 3.7287e−04 1.96 0.3120

1/80 1.3425e−04 1.88 7.0393e−05 1.90 9.5368e−05 1.97 0.3432

1/160 3.5823e−05 1.91 1.8472e−05 1.93 2.4300e−05 1.97 0.4524

1/320 9.4522e−06 1.92 4.7897e−06 1.95 6.1738e−06 1.98 0.6552

1/640 2.4728e−06 1.93 1.2311e−06 1.96 1.5648e−-06 1.98 1.5912

Example 2. Consider the following fractional differential equation used in [14].
⎧⎨
⎩

0D
α1
t x1(t) = x1(t),

0D
α2
t x2(t) = 2x2

1(t),
0D

α3
t x3(t) = 3x1(t)x2(t), t ∈ (0, 1]

x1(0) = 1, x2(0) = 1, x3(0) = 0.

The exact solution when α1 = α2 = α3 = 1 is

x1(t) = et, x2(t) = e2t, x3(t) = e3t − 1.

It is solved using Algorithm A for various values of h and αi, i = 1, 2, 3. The
computed errors and rates of convergence when α1 = α2 = α3 = 1 are listed
in Table 2 from which we see that the computed rates of convergence is O(h2),
confirming our theoretical result.

Since the exact solution to this Example 2 is unknown when αi < 1 for any i,
we are unable to compute the rates of convergence. Instead, we solve the problem
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Table 2. Computed errors, convergence order and CPU time for Example 2.

h α1 = α2 = α3 = 1

x1 Order x2 Order x3 Order CPU (seconds)

1/20 5.6658e−04 - 0.0026 - 0.0159 - 0.2496

1/40 1.4159e−04 2.00 7.1349e−04 1.87 0.0045 1.82 0.2808

1/80 3.5395e−05 2.00 1.8530e−04 1.94 0.0012 1.91 0.3120

1/160 8.8486e−06 2.00 4.7210e−05 1.97 3.1080e−04 1.95 0.3588

1/320 2.2121e−06 2.00 1.1914e−05 1.99 7.8895e−05 1.98 0.5616

1/640 5.5304e−07 2.00 2.9925e−06 1.99 1.9874e−05 1.99 0.8112
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Fig. 1. Computed solutions of Example 2

for α1 = 0.7, α2 = 0.5, α3 = 0.2 using h = 1/640 and plot the computed solution,
along with the solution for αi = 1 for i = 1, 2, 3, in Fig. 1. From Fig. 1 we see
that x1, x2 and x3 from the fractional system grow much faster than those from
the integer system.

5 Conclusion

We have proposed and analysed a 1-step numerical integration method for a
system of fractional differential equations, based a superconvergent quadrature
point we have derived recently. The proposed method is unconditionally stable
and easy to implement. We have shown the method has a 2nd-order accuracy.
Non-trivial examples have been solved by our method and the numerical results
show that our method is 2nd-order accurate for all the chosen values of the
fractional orders, demonstrating our method is very robust.
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