
Convective Motions in Water: Linear and
Nonlinear Models, Criteria of Convection

Onset

Anatoly Kistovich(B)

All-Russian Scientific Research Institute of Physico-Technical and Radio-Technical
Measurements, Moscow, Russia

kavmendeleevo@mail.ru

Abstract. The problem of convective motions adequate description on
the base of linear or nonlinear mathematic models is considered. The
criterion of convection onset is formulated in the form |Jconv|/|Jcond| > 1
where the |Jconv| and |Jcond| are the convective and conductive fluxes
of heat correspondingly. As a result of governing equations solution for
initial time moments of the problem the characteristic scales are chosen.
It is shown that for Rayleigh-Bénard convection the Rayleigh number
Ra = αg|∇T |d4/χν should be attributed not to the onset, but to the
intensity of convection and to the rate of its development after the onset.
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1 Introduction

During more than one century after the basic experimental work by Bénard [1]
and the prime theoretical investigation by the Lord Rayleigh [2], the problem of
the heat convection occupies one of the fundamental place in hydrodynamic stud-
ies. The results of linear approach to the announced problem were summarized
in [3]. The further progress in convection phenomena analysis was developed by
means of weak nonlinear models for which the different mathematical approaches
were applied [4–6].

The results of experiments [7] and correct form of mathematical model equa-
tions sufficiently depend on the substance in which the convection is developed.
The reason is the dependence of thermodynamic characteristics of liquid on the
temperature particularly in the regimes with great overheating [8]. Hence, it is
necessary at once to declare the substance for which the problem is considered.

The main goal of the presented work is to investigate the problem of convec-
tion in the water without admixtures.

c© Springer Nature Switzerland AG 2019
V. I. Karev et al. (Eds.): Physical and Mathematical Modeling of Earth
and Environment Processes (2018), SPEES, pp. 174–188, 2019.
https://doi.org/10.1007/978-3-030-11533-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11533-3_18&domain=pdf
http://orcid.org/0000-0003-3954-3945
https://doi.org/10.1007/978-3-030-11533-3_18


Convective Motions in Water 175

2 The Governing Equations

The classic system of governing equations and boundary conditions of the prob-
lem under consideration has the form

ρ (∂vi/∂t + (v · ∇) vi) = −∂p/∂xi + ∂σ′
ik/∂xk − ρgδiz

ρT (∂s/∂t + v · ∇s) = σ′
ik∂vi/∂xk + ∇ · (κ∇T )

∂ρ/∂t + ∇ · (ρv) = 0, ρ = ρ (p, s)

(1)

Here σ′
ik = η (∂vi/∂xk + ∂vk/∂xi − 2δik∇ · v/3) + ζδik∇ · v is the tensor of

viscose tension, η and ζ are the first and second dynamic viscosity correspond-
ingly, ρ is the liquid density, p is the pressure, T is the temperature, s is the
entropy per unit volume, g is gravitational acceleration, κ is heat conductivity
coefficient.

The system (1) consists of Navier-Stokes, heat transport, continuity and state
equations. In the general case, it is regarded that the density, kinetic coefficients
and coefficient of thermal expansion depend on the temperature.

From the state equation it follows

dρ =
(

∂ρ

∂p

)
s

dp +
(

∂ρ

∂s

)
p

ds =
1
c2

dp +
(

∂ρ

∂T

)
p

(
∂T

∂s

)
p

ds =
1
c2

dp − ρT

cp
αds

where c is adiabatic speed of sound, cp is heat capacity under constant pressure,
α = − (∂ρ/∂T )p /ρ is the coefficient of thermal expansion which also depend on
the temperature.

Because in convective regimes the generation of sound may be neglected then
the continuity equation reforms into equation

dρ

dt
+ ρ∇ · v = ρ∇ · v − ραT

cp

ds

dt
= 0 ⇒

⇒ ∇ · v =
αT

cp

ds

dt
=

α

ρcp

(
σ′
ik∂vi/∂xk + ∇ · (κ∇T )

)
.

(2)

On the base of thermodynamic relation ds = cpdT/T and Eq. (2) it is possible
to rewrite the system (1) in the form

ρ (∂vi/∂t + (v · ∇) vi) = −∂p/∂xi + ∂σ′
ik/∂xk − ρgδiz

∇ · v = α (∂T/∂t + v · ∇T ) =
α

ρcp

(
σ′
ik∂vi/∂xk + ∇ · (κ∇T )

)
.

(3)

The boundary conditions on the rigid surfaces consist of the condition of zero
velocity field and either fixing value of temperature

T |Σ = TΣ (4)
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or fixing thermal flux
χ∂T/∂n + γT T |Σ = qT (5)

where χ = κ/ρcp is the thermal diffusion coefficient, γT is the coefficient of heat
exchange of boundary surface and water, qT is heat flux and n is the unit normal
to the boundary. In the presented investigation the boundary conditions

T |z=0 = Tb T |z=d = Tc Tb > Tc (6)

will be used, where Tb and Tc are the temperatures of bottom and cover
respectively.

3 The Onset of Convection

As it was proclaimed in the Introduction the reason for convection onset is
nonuniform temperature distribution along the bottom or/and cover. Let in real
situation the temperature of bottom may be presented as the sum of mean
temperature Tb and some disturbances T̃ (x, y, t) with zero mean value

T = Tb + T̃ (x, y, t), 〈T̃ (x, y, t)〉 = lim
S→∞

∫
S

T̃ (x, y, t) dx dy

S
= 0 (7)

where S is a square of heater.
The density of water without sub mixtures at atmospheric pressure is defined

by the relation

ρ(T ) = ρ0 exp

(
T

(
α0 − α1

1 + α2

(
T

Tr

)α2
))

(8)

where T is the water temperature in centigrade degree, Tr = 273.15K is reference
temperature (ice melting temperature in absolute thermodynamic scale), and the
constants are ρ0 = 999.87 kg/m3, α0 = 1.83 · 10−4 K−1, α1 = 1.6 · 10−3 K−1,
α2 = 0.54. The relative error of the above relation is not greater than 10−3 [9]
for whole diapason of liquid water phase.

Substitution of (7) into (8) permits to describe the distribution of water
density near the heater by the relation

ρ = ρ0 exp

(
α(1 + T̃ /Tb)

(
1 − β

(
1 +

T̃

Tb

)α2
))

≈

≈ R0

(
1 + γx + δx2

)
, x = ˜T

Tb

(9)

where R0 = ρ0 exp(α(1 − β)) is the density of water on the heater surface in the
case of absense of temperature disturbances T̃ , α = α0Tb, β =

α1

α0(1 + α2)(
Tb

Tr

)α2

, γ = α(1−(1+α2)β), δ =
α

2
(
α − (1 + α2)(α2 + 2α)β + α(α + α2)2β2

)
.

The relative error of the (9) is not greater than 10−2.
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The goal of further actions is to calculate the dispersion and root mean
square deviation of density variations from ideal value R0 near heater surface.
Accordingly to (9) the difference of density is defined by relation

Δρ = ρ − R0 ≈ R0(γx + δx2) (10)

then with regard to 〈x〉 = 0 (because 〈T̃ 〉 = 0) the relation is valid

Δρ = R0δx2 ⇒ Δρ
2

= R2
0δ

2ax2
2

(11)

From the other hand

(Δρ)2 ≈ R2
0(γx + δx2)2 = R2

0(γ
2x2 + 2γδx3 + δ2x4) ≈ R2

0γ
2x2 (12)

where the last approximate relation is provided by the smallness of x and δ/γ
for real experimental regimes.

On the base of (11, 12) the dispersion of density variations is calculated

σ2
ρ = (Δρ)2 − (Δρ)2 = R2

0γ
2x2 − R2

0δ
2x2

2 ≈ R2
0γ

2x2 (13)

also as density rms deviation

σρ = R0|γ|σT (14)

where σT =
√

x2 is rms deviation of heater surface temperature.
Because the buoyancy force is defined as product of gravitational acceler-

ation and water density deviation from its mean value then rms deviation of
Archimedes force equals to the value

σA = gσρ = gR0|γ|σT . (15)

In Boussinesq approximation the inertial acceleration of liquid element at
initial time moments is defined by the ratio of buoyancy force to mean water
density, i.e. by the value ain = g|γ|σT . When the rms deviation of temperature
is fixed then the more the temperature of the heater, the more the rms of buoy-
ancy force (and inertial acceleration). It means that the local perturbations of
conductive mechanism of heat transfer due to convective flux are rising under
heater temperature increasing even through immutable quality of the heater
temperature stabilization.

Let’s consider some small spherical liquid element of radius R near the bot-
tom heater (analogous procedure can be done also for cover colder). Accordingly
to probability theory its more probable overheating temperature is Tb +σT . The
mean temperature on the same horizontal level is Tb then the buoyance force
will be act on this element. Under action of this force the liquid element will
float up and as the development of motion the viscose force will arise. Let T̄ (t)
is the mean temperature of element, so its density is defined by the relation
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(8) ρ̄(t) = ρ(T̄ (t)). The initial temperature distribution of ambient liquid is
described by the formula

Tst(z) = Tb − |∇T |z, |∇T | =
Tb − Tc

d
(16)

where d is the distance between bottom and cover.
The density of stratified liquid is also defined by (8) so ρst(z) = ρ(Tst(z)).

The vertical coordinate of floating up element will be signed by the symbol
z(t). During its vertical motion the considered element will be surrounded by
ambient stratified liquid which temperature and density are equal to Tst(z(t))
and ρst(t) = ρ(Tst(z(t))) correspondingly. As a result both the mean temperature
and the mean density of the element will be changed due to thermal conductivity
with surrounding liquid. Thus the system of equations describing the motion of
considered element is the following

ρ̄(t)V z̈ =
(
ρ̄(t) − ρst(t)

)
V g − πKf ρ̄(t)Rνż, ż|t=0 = z|t=0 = 0

˙̄T (t) = −χ̃
(
T̄ (t) − Tst(t)

)
, T̄ (t)|t=0 = Tb + σT

(17)

where V = 4πR3/3 is the volume of the element, Kf is the coefficient of profile
drag of liquid sphere in the same liquid (experimental data show that Kf ∈
[1..3]), Lχ is some characteristic scale of diffusion for spherical element and
χ̃ = χ/L2

χ.
The solution of the second initial problem of (17) has the form

T̄ (t) =
(

Tb + σT + χ̃
t∫
0

Tst(τ)eχ̃τ dτ

)
e−χ̃t =

= Tst +
(

σT + |∇T |
t∫
0

ż(τ)eχ̃τ dτ

)
e−χ̃t (18)

which was produced with regard to (16).
The substitution of the result received into the first initial problem of (17)

permits to get in the crude approximation the initial problem for coordinate z(t)
of liquid element

z̈ = α0g

(
σT + |∇T |

t∫
0

ż(τ)eχ̃τ dτ

)
e−χ̃t − ν̃ż, ż|t=0 = z|t=0 = 0 (19)

where ν̃ = 3Kfν/4R2.
The solution of (19) produces the required estimation for vertical coordinate

and velocity of the floating liquid element on the initial stage of motion

z(t) =
α0gσT

k2 − Ω2

(
1 − e−kt

(
cosh(Ωt) +

k

Ω
sinh(Ωt)

))

ż(t) =
α0gσT

Ω
e−k t sinh(Ωt)

(20)
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where

k =
ν̃ + χ̃

2
, Ω =

√(
ν̃ − χ̃

2

)2

+ α0g|∇T | . (21)

As it follows from (20, 21) the character of liquid element floating depends on
relation between parameters k and Ω. If Ω > k the height of floating is restricted
only by cover so zmax = d. The dependencies of z(t) for some ratios Ω/k > 1
are shown on Fig. 1.

Fig. 1. The graphs of height z(t) of floating element when Ω > k (solid, dash and dot
lines). The thin horizontal line is the level of cover z = d.

The greater is the ratio Ω/k the greater is the value of standard Rayleigh
number Ra and the quickly the floating liquid element will reach the cover.

In the opposite case when k > Ω the height of floating has the maximum
defined by the condition

ż(t) = 0 ⇒ t → ∞
and described by the relation

zmax = lim
t→∞ z(t) =

α0gσT

k2 − Ω2
. (22)

The greater is the ratio k/Ω the small is the height of the liquid element rising
which always should be less than the liquid layer thickness d. The dependences
of z(t) for some ratios k/Ω > 1 are shown on Fig. 2.

On the base of (21) the condition Ω > k may be rewrite in equivalent form,
namely

R̃a =
α0g|∇T |

χ̃ν̃
> 1 (23)
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Fig. 2. The graphs of height z(t) of floating element when k > Ω (solid lines). Dashed
lines are asymptotic values for corresponding curves.

It is evident that received modified Rayleigh number R̃a is proportional to
the standard defined Ra = α0g|∇T |d4/χν but don’t coincide with it and has
other physical sense which is usually attributed to the Rayleigh number.

By means of consequent differentiation the Eq. (19) may be transformed into
equation

z̈ + (ν̃ + χ̃)ż +
(
ν̃χ̃ − α0g|∇T |)z = const. (24)

The characteristic equation correspondent to (24) has the form and solutions

λ2 + (ν̃ + χ̃)λ + ν̃χ̃ − α0g|∇T | = 0

λ± = − ν̃ + χ̃

2
±

√(
ν̃ − χ̃

2

)2

+ α0g|∇T |
(25)

The instability of solutions of (19) has place when λ+ > 0 that corresponds to
α0g|∇T |/ν̃χ̃ > 1. Thus the critical value of the new Rayleigh number is defined
by the relation

R̃ac = 1. (26)

It necessary to emphasize here that Rayleigh number R̃a defines the velocity
of growth of convective transport and its intensity but not the onset of convec-
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tion. The onset of convection is defined by the value of rms deviation of the
heater temperature σT . If σT = 0 then accordingly to physical sense no convec-
tive motion may be observed in water. When σT 
= 0 then convection always
has place and the criterion of convection onset is only subjective conception as
it was proclaimed in Introduction.

Prior to formulate the criterion of convective onset it is necessary to give
some subjective definition of convective motion presence. Let the definition is
the following: The convective motion in the observed space point is proclaimed as
existing if the absolute value of convective heat flux is not less than conductive
one.

For the problem under consideration it means that the ratio should be valid

(Tb − Tc)ż(t) ≥ χ|∇T | ≡ ż(t) ≥ χ

d
. (27)

In (27) the difference Tb − Tc has place because from the cover the negative
heat flux due to the same reasons as a positive flux from the bottom is presented.
The over line in (27) is the symbol of averaging through the time of floating.

In accordance to results presented on Fig. 2 there are two possible cases. The
first one is the case k > Ω when the liquid element doesn’ t reach the cover and
its maximum height is defined by relation (22). But the time of rising equals
to infinity so the average velocity is equal to zero. But the such approach is
incorrect for the case under consideration. The fact of the matter is that at the
first time moments the liquid element is accelerated upward. Through some time
period t∗ its acceleration change its sign and the element is breaking. But during
the acceleration period the possibility of (27) performance may have place. The
time t∗ of acceleration period follows from condition

z̈(t∗) = 0

from which it follows

t∗ = arctanh(k/Ω)/Ω, z(t∗) =
α0gσT

k2 − Ω2

(
1 − k exp(−kt∗)√

k2 − Ω2

)
(28)

so the condition (27) obtains the form

ż(t) =
z(t∗)
t∗

≥ χ

d
. (29)

In the second case k < Ω the liquid element float up to the cover so zmax = d
and the time t∗ of element rising is defined as solution of the equation

d =
α0gσT

k2 − Ω2

(
1 − e−kt∗(

cosh(Ωt∗) +
k

Ω
sinh(Ωt∗)

))
(30)

and the condition (27) obtains the form

tχ/t∗ ≥ 1 (31)

where tχ = d2/χ is the characteristic diffusive time of the liquid layer.
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The inverted value to χ̃, earlier introduced in (17), is the estimation of heat
loss time by the liquid element. Accordingly to well-known solution [10] for
dynamic sphere cooling in the ambient environment the time of heat losing is
proportional to square of sphere radius so one can write

Lχ ∼ R ⇒ χ̃ = Kχ
χ

R2
(32)

where Kχ is some constant.
So the value of the R̃a may be presented in the form

R̃a = KRa
α0g|∇T |R4

χν
, KRa =

4
3KfKχ

(33)

It follows from (33) that the smaller is floating liquid element the smaller is
the Rayleigh number R̃a and the smaller is the intensity of convective motion in
liquid. The existence of the fluid motion when standard Rayleigh number Ra =
0 (homogeneously temperature distribution) is shown on Fig. 3. For common
imaging all curves are normalized on its own maximum.

Fig. 3. The acceleration z̈(t) (dot), velocity ż(t) (dash) and height z(t) (solid) of the
floating liquid element when Ra = 0.
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The explicit analytical forms of (29, 31) are some tedious to be presented here,
but for concrete situations it is easy to check out numerically the announced con-
ditions. If the condition (29) is valid then the relations (20 – 22, 28) describe the
characteristics of vertically limited convection. For the case of (31) the charac-
teristics of fully developed convection are described by (20 – 22, 30).

4 The Transformation of Governing System

For the further investigations it is useful to transform the system (3) to con-
venient form by means of some preliminary actions. Because the generation of
heat due to viscose effects is sufficiently ineffective the term σ′

ik∂vi/∂xk in the
second equation of (3) may be neglected. The velocity field is divided on two
parts

v = v̄ + ṽ ∇ · v̄ = 0, ∇ · ṽ =
α

ρcp
∇ · (κ∇T ) . (34)

Because the convective transport of temperature and advective transport of
momentum as well as viscose force are stipulated basically by solenoidal part v̄
of velocity then the approximation

σ̄′
ik ≈ η (∂v̄i/∂xk + ∂v̄k/∂xi) (35)

is used and the system (3) transforms into the new approximate system

ρ (∂v̄i/∂t + (v̄ · ∇) v̄i) = −∂p/∂xi + ∂σ̄′
ik/∂xk − ρgδiz

∂T/∂t + v̄ · ∇T = ∇ · (χ∇T ), ∇ · v̄ = 0, ∇ · ṽ = α∇ · (χ∇T ).
(36)

For the reason of very slowly varying of the term ρcp for water in the presence
of temperature variations its value was introduced under action of ∇ operator.

The standard approach to the analysis of nonlinear hydrodynamic equations
is to describe the phenomenon in dimensionless form. For this reason, some
scales are usually introduced for differential (space and time) and field (velocity,
pressure, temperature etc.) variables. The correct definition of these scales is
very complex problem on the solution of which the final results are strongly
dependent. For example, the frequently used scale for velocity field (namely
χ/d in [3–5] etc.) is in incompatible contradiction with experimental results
which show the value of velocity in dozen times greater. As a result of the
announced scale application the convective and advective terms of equations are
considered as negligible or very small in comparison with linear ones and the
solutions received (for velocity and temperature fields) are far from the observed
in experiments.

The complexity of the problem of the suitable scale choice is conditioned
by the fact that the numerous experiments show the different partial and time
scales for different convection regimes and furthermore on the different stages
of the certain regime. The standard used scales ([3–5] etc.) at once transform
the nonlinear governing system of equations into the form of linear or weakly
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nonlinear mathematical model which is not adequate to the problem under con-
sideration. This fact points to the necessity of solving of spatial and time scales
problem for correct construction of dimensionless variant of equations. And this
problem is arisen for certain regime of convection.

4.1 The Initial Stage of Convection

To investigate the characteristic features of the initial stage of convection it is
necessary to transform the system (36) into dimensionless form. The time and
space scales differ for the cases Ω > k and k > Ω. For this reason the results
will be presented separately.

In the case Ω > k the characteristic time scale follows from (20) in the form

t′ = (Ω − k)t (37)

where t′ is the dimensionless time.
When the time moments are so small that the floating height of liquid element

is less than d then accordingly to (20) the action of differentials have the forms

∂

∂z
=

Ω(Ω − k)
α0gσT

e−t′ ∂

∂t′
∂

∂t
= (Ω − k)

∂

∂t′
. (38)

The scale of the vertical velocity component follows from (20)

vz =
α0gσT

Ω
et′

v′ (39)

where v′ is the dimensionless velocity.
The temperature of water is presented in the form

T = Tst(z) +
(
ΔT + σT

)
θ (40)

where θ is the dimensionless temperature perturbation.
The above introduced dimensionless field values have the order v′, θ ∼ O(1).
On the base of (37–40) the heat transport equation of the system (36) trans-

forms into equation

θ′
t′ + λv

(
1 + λ−1θ′

t′
)

= λ−2
(
χθ′′

t′t′ + χ′
T θ′

t′
2) − χλ−1θ′

t′ (41)

where λ = α0gσT exp(t′)/Ω(Ω − k).
From (41) follows that the greater term of the ratio of convective and con-

ductive heat fluxes is defined by relation

|Jconv|
|Jcond| ≈ χλ2v. (42)

For the water and σT > 10−2 K this ratio is greater then 1 at the initial
moment t = 0 and grows with a time.

When the time momets are sufficiently great so the floating height of liquid
element equals d then the spatial vertical scale is defined by relation
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z = dz′. (43)

For this situation the time, velocity and temperature scales remain the same
and the heat transport equation of the system (36) transforms into equation

θ′
t′ +

λv
d

(
1 + θ′

z′
) ≈ 1

d2(Ω − k)

(
χ′

T ΔT
(
1 + θ′

z′
)2 + χθ′′

z′z′

)
(44)

from which follows |Jconv|
|Jcond| ≈ λvd(Ω − k)

χ
(45)

which for water is greater than 1 and tends to growth with a time.
In the case k > Ω the characteristic vertical scale follows from (20) in the

form
z =

α0gσT

k2 − Ω2
z′. (46)

Let the time scale is described by the relation

t = mtt
′ (47)

where mt is undefined positive time scale.
So velocity and temperature scales remain the same then on the base (46,

47) the heat transport equation of the system (36) transforms into equation

mtθ
′
t′ +

α0gσT

dΩ
v
(
1 +

d(k2 − Ω2)
α0gσT

θ′
z′

)
=

=
(

k2 − Ω2

α0gσT

)2(
χ′

T ΔT
(
1 + θ′

z′
)2 + χθ′′

z′z′

) (48)

From (48) it follows the result

|Jconv|
|Jcond| ≈ (α0gσT )2

dχΩ(Ω − k)
v exp((Ω − k)mtt

′) (49)

which value for water is less than 1 in the starting moments and decrease with
a time.

Thus in the case Ω > k the heat transport equation is strongly nonlinear
and no perturbation methods can be applied to analyze it. Such methods may
be valid only for the opposite case k > Ω.

4.2 The Quasi-stationary Regime of Convection

Because in the regime of stationary full-developed convection the velocity of
convective transport sufficiently exceeds the diffusive velocity then the system
(36) in regard of (35) may be rewrite in the form

ρv̄ · ∇v̄i = −∂p/∂xi + ηΔv̄i + ∂η/∂xk (∂v̄i/∂xk + ∂v̄k/∂xi) − ρgδiz

v̄ · ∇T ≈ 0, ∇ · v̄ = 0.
(50)
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The second equation of (50) means that in the regime of stationary convection
the fields of velocity and temperature gradient are orthogonal to each other.
Naturally this orthogonality has an approximate character for the reason of
the previously approximations done. From this equation the representation of
velocity field it follows

v̄ = A × ∇T (51)

which transforms the announced equation into identity.
The substitution of (51) into the third equation of (50) leads to the conse-

quence of relations

∇ · v̄ = ∇ · (
A × ∇T

)
= ∇T · ∇ × A − A · ∇ × (∇T ) = ∇T · ∇ × A = 0 (52)

The first way to satisfy to the last equality in consequence (52) is to proclaim
A = ∇Φ where Φ is some arbitrary scalar function. In this case the velocity field
is described by relation

v̄ = ∇Φ × ∇T (53)

The second way is to use the representation for vector field A in the form

A = Aex + Bey + Cez (54)

where A, B and C are the arbitrary functions.
As a result the velocity field has the form

v̄ =
(
BT ′

z − CT ′
y

)
ex +

(
CT ′

x − AT ′
z

)
ey +

(
AT ′

y − BT ′
x

)
ez (55)

and the condition (52) of solenoidal field type transforms into relation
(
C ′

y − B′
z

)
T ′

x +
(
A′

z − C ′
x

)
T ′

y +
(
B′

x − A′
y

)
T ′

z = 0. (56)

In the case of 2D-motion (the roll convection) the conditions T ′
y = v̄y = 0

are valid from (55) it follows

v̄x = BT ′
z, v̄z = −BT ′

x, CT ′
x − AT ′

z = 0. (57)

In the first case when A = ∇Φ it follows from (54) that , A = Φ′
x, B = Φ′

y,
C = Φ′

z and the last relation of (57) transforms into equation

Φ′
zT

′
x − Φ′

xT ′
z = 0 (58)

and because T ′
y = 0 then the first integral of (58) is the temperature T so

Φ = Φ(T ).
In this case B = Φ′

y = Φ′
T T ′

y = 0 (in accordance to 2D problem) and in the
result v̄x = v̄z = 0. It means that the first way can’t be realized.

In the second case for T ′
y = v̄y = 0 from (56) it follows

(
C ′

y − B′
z

)
T ′

x +
(
B′

x − A′
y

)
T ′

z = 0, CT ′
x − AT ′

z = 0 (59)
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and then the result is valid: the introduction of stream function Ψ = Ψ(T ) is
valid so

v̄x = Ψ ′
z = Ψ ′

T T ′
z, v̄z = −Ψ ′

x = −Ψ ′
T T ′

x. (60)

Thus for 2D-motion the presentation (11) provides the realization of the
second and third relations of the system (50). The exclusion of pressure from
the first equation of (50) leads to the unique equation in which (in regard to
(60)) the two unknown values are presented namely the temperature field T and
some stream function Ψ(T ). For the definite substance (water in the problem
under consideration) the temperature dependencies ρ(T ) and η(T ) are known.
The necessary derivatives of these values are calculated by means of relations

∂ρ

∂xi
= ρ′

T

∂T

∂xi
,

∂η

∂xi
= η′

T

∂T

∂xi
.

The explicit form of the announced unique equation does not presented for
the reason of its tedious size.

In 3D-motion for the regimes of the developed cell convection the descrip-
tion of velocity field into the cell it is convenient by means of toroidal-poloidal
potential because the axis z is singled out so

v̄x = Φ′
y + Ψ ′′

xz, v̄y = −Φ′
x + Ψ ′′

yz, v̄z = −Ψ ′′
xx − Ψ ′′

yy = −Δ⊥Ψ. (61)

So the experimental results point to absence of axial rotation in the individual
cell then the toroidal potential may be neglected and (61) are transformed into

v̄x = Ψ ′′
xz, v̄y = Ψ ′′

yz, v̄z = −Δ⊥Ψ. (62)

The representations (61, 62) transform the condition ∇ · v̄ into identity and
substitution of (62) into (51) reforms the equation of heat transport into equation

T ′
yΔΨ ′

x − T ′
xΔΨ ′

y = 0. (63)

The experimental observations also show that in a good approximation the
convective structures by Rayleigh-Bénard are characterized by zero helicity i.e.
the condition

v̄ · ∇ × v̄ = 0 (64)

is valid.
In the case of 2D roll convection this condition is valid automatically don’t

supply additional relations. But in the regime of cell convection

∇ × v̄ = −ΔΨ ′
yex + ΔΨ ′

xey (65)

so with regard the condition (64) the additional kinematic condition for velocity
field is formed

ΔΨ ′
xΨ ′′

yz − ΔΨ ′
yΨ ′′

xz = 0. (66)
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From (63) and (65) also follows ∇ × v̄ · ∇T = 0. It means that in any space
point the vectors v̄, ∇ × v̄ and ∇T form the orthogonal triplet. Hence, the
representation for temperature field is valid

∇T = f(x, y, z)v̄ × ∇ × v̄ ⇒ T ′
x = fΔ⊥ΨΔ⊥Ψ ′

x,
T ′

y = fΔ⊥ΨΔ⊥Ψ ′
y, T ′

z = f
(
Ψ ′′

yzΔ⊥Ψ ′
y + (Ψ ′′

xzΔ⊥Ψ ′
x

)
. (67)

The relations (66, 67) may be very helpful for the solving of nonlinear equa-
tions which arise after pressure elimination from Navier-Stokes equation.

5 Conclusions

Presented here the new approach to formation of convective flows in liquids
(particularly in water) shows that the standard Rayleigh number doesn’t char-
acterize the condition for convection start but defines the intensity and velocity
of growth of convective motion. The proposed new criterion based on new form
of the Rayleigh number has the explicit physical sense.

The one more general conclusion follows from the investigations done that the
linear or slightly nonlinear mathematical models may be applied when the mod-
ified Rayleigh number R̃a is less than unity. In the opposite case the convective
motion is described by strongly nonlinear equations.
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