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Abstract. In this paper, we propose mathematical model and a com-
putational algorithm for simulation of thermoporoelastic medium with
damage. The model considers a two-phase medium consisting of a porous
skeleton and a mobile fluid. The medium state is described by the system
of mass, momentum and energy conservation laws. To take into account
the energy consumption for material damage, the additional term in
energy conservation law is introduced. Constitutive relation are obtained
by using the Coleman-Noll procedure, which ensures the fulfillment of the
thermodynamic consistency principle. Damage of the medium is modeled
within the framework of the continuum damage theory. The computa-
tional algorithm in fully three-dimensional formulation is based on the
finite element method. Mesh is built using tetrahedral Taylor-Hood ele-
ments. We present some verification tests and the results of the synthetic
test calculation demonstrating effects arising from thermal formation
treatment.

Keywords: Thermoporoelasticity · Continuum damage mechanics ·
Thermodynamic consistency principle · Finite element method

1 Introduction

Nowadays, one of the most recent problems in oil engineering is estimation of
efficiency of various enhanced oil recovery (EOR) techniques. With regard to
hard-to-recover oil formations, one of the most advanced enhanced oil recovery
method is thermal treatment, which consist in supplying heat to the reservoir
by heat-transfer fluid injection or by conductive heat exchange.

Simulation of the reservoir processes induced by these EOR techniques can
only be performed using coupled approaches which account for multiphysics
nature of the reservoir processes,—including but not limited to fluid flow with
temperature depended properties, chemical reactions, geomechanical processes.
In addition, under the high pressures and temperatures in the reservoir it can be
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observed significant deformations affecting the structure of the pore space, which
leads to the formation of microcracks and reservoir damage. These processes have
a significant impact on the rock’s elastic properties and flow in the reservoir.

Currently, one of the most common approaches, implemented in various com-
mercial software accurately resolve different temperature dependent flow effects,
is the so-called “compositional” modeling. These models are widely used in
applied simulation but they do not account for deformation and damage. Consid-
eration of geomechanical effects, if happen, usually is based on simplified “split”
models which are not themodynamically consistent [1,2]. In turn, thermodynam-
ically based models for coupled flow, geomechanics and damage are exists but
rarely used in industrial strength settings [3].

The present paper proposes mathematical model for description of the ther-
moporoelastic medium taking into account damage processes. The model is ther-
modynamically consistent, i.e. it satisfies second law of thermodynamics. Also,
in the work we presented computational algorithm based on the finite element
method.

2 Mathematical Model

2.1 Conservation Laws

Consider the elementary volume Ω which contains two continuums—skeleton
and fluid. At the time moment t = t0 the positions of the material volumes
of the skeleton Ωs(t0) and fluid Ωf (t0) are the same, and the phase velocities
are vs and vf respectively. Let us write the basic conservation laws for both
continuums at the time moment t = t0.

The fluid mass conservation law has the form:

∂mf

∂t
+ div(ρfw) = 0, (1)

where ρf is true fluid density, i.e. fluid mass related to the volume occupied by
it, w—flux vector equaled to w = mf/ρf (vf − vs).

Let f be external force, bint
α —interaction forces density of phase α (α = s for

skeleton, α = f for fluid) with other phases, σα—partial stress tensor. In this
case, the momentum conservation law has the form of [4]:

div (σα) + mα

(
f − dvα

dt

)
+ bint

α = 0. (2)

Denote total stress tensor by σ = σf + σs. Then, given that bint
f + bint

s = 0,
after summing up the Eq. (2) for skeleton and fluid we get:

div (σ) + mf

(
f − dvf

dt

)
+ ms

(
f − dvs

dt

)
= 0. (3)

Consider a thermoporoelastic medium in which, as a result of deformations,
can occur a fractured zone—diffuse damage, which is the micro-fracture zones
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formation in the solid phase. It is significant that the characteristic dimension
of the cracks is substantially smaller than the dimension of the medium repre-
sentative volume. For this reason, the damage is described by a quantity defined
in space (having a scalar form in the simplest case).

In accordance with the classical concepts of the crack propagation mechanics,
it is necessary to supply a certain amount of energy to form a unit surface area of
a crack. For this reason, it is natural to introduce into consideration the part of
the total energy of the system associated with the damage of the medium. Then
for domain volume Ω(t) = Ωs(t) = Ωf (t) the equation describing the energy
conservation law and taking into account the damage of the material has the
form of:

d (K + U)
dt

= P + Q + Π, (4)

with

K =
∫

Ω(t)

(
1
2
msv

2
s +

1
2
mfv2

f

)
dΩ, U =

∫
Ω(t)

(mses + mfef ) dΩ,

P =
∫

Ω(t)

(
msv

2
sf + mfv2

ff
)
dΩα +

∫
∂Ω

(tsvs + tfvf ) dωα,

Q = −
∫

∂Ω

qndω, Π = −
∫

Ω(t)

Y :
dD

dt
dΩ.

Here K—kinetic energy of the system, U—internal energy, P—external forces
power, Q—heat flux, Π—energy consumption for material damage per unit of
time, eα – phase specific internal phase energy, q—heat flux density vector, Y —
energy dissipation rate associated with material damage, D—damage variable
tensor.

Passing from the skeleton partial stress tensor to the total stress tensor, we
get the following expression:

∂

∂t

[
ms

(
es +

v2
s

2

)
+ mf

(
ef +

v2
f

2

)]
+ (5)

+ div
[
ms

(
es +

v2
s

2

)
vs

]
+ div

[
mf

(
ef +

v2
f

2

)
vf

]
=

= div [σf (vf − vs) + σvs] + (msvs + mfvf ) f − Y :
dD

dt
− div(q).

2.2 Derivation of Constitutive Relations

We write the second law of thermodynamics without external sources in the
form:

∂S

∂t
+ div (mfsfvf ) + div (msssvs) ≥ −div

( q

T

)
, (6)
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where S = msss + mfsf is total entropy,

ms
dss

dt
+ mf

dsf

dt
+ div

( q

T

)
≥ 0. (7)

Define the Helmholtz free energy for the phase α as ψα = eα − Tsα. Then,
applying the laws of momentum and energy conservation, entropy inequality can
be represented as the sum of skeleton δs, fluid δf and thermal dissipation δt:

δs + δf + δt ≥ 0, (8)

where

δs = −
(

ms
dψs

dt
+ msss

dT

dt
+ mf

p

ρ2
f

dρf

dt

)
+

+ [σf : grad (vf − vs) + σ : grad (vs)] − Y :
dD

dt

, (9)

δf = (vf − vs)
[
mf

(
f − ∂vf

∂t

)
+ div(σf )

]
, (10)

δt = − q

T
grad(T ). (11)

Suppose that the stress tensor of a fluid is spherical, fluid flow follows the
Darcy’s law, and the heat flux is determined from the Fourier law. In this case, it
can be shown that δf + δt � 0. Then, according to the Coleman-Noll procedure
[6], to satisfy the entropy inequality (8) it is enough that:

δs = −
(

ms
dψs

dt
+ msss

dT

dt
+ mf

p

ρ2
f

dρf

dt

)
+

+ [σf : grad (vf − vs) + σ : grad (vs)] − Y :
dD

dt
� 0. (12)

In accordance with the principle of equipresence, we obtain an expression for
skeleton dissipation:

δs =
(

σ − ms
∂ψs

∂ε

)
dε

dt
+

(
p
d (mf/ρf )

dt
− ms

∂ψs

∂p

dp

dt

)

+
(

ss − ∂ψs

∂T

)
dT

dt
−

(
Y + ms

∂ψs

∂D

)
dD

dt
� 0,

where ε—infinitesimal strain tensor, ε = (∇⊗ ξ +(∇⊗ ξ)2)/2, ξ—displacement
vector.

We introduce the Gibbs energy gs such that msgs = msψs − pmf/ρf . Then:

δs =
(

σ − ms
∂gs

∂ε

)
dε −

(
mf

ρf
+ ms

∂gs

∂p

)
dp

+
(

ss − ∂gs

∂T

)
dT −

(
Y + ms

∂gs

∂D

)
D � 0. (13)
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The implementation of the thermodynamic consistency principle requires the
validity of entropy inequality (6) for any history of states, as well as the inde-
pendence of the constitutive relations from the choice of reference configuration.
For this it is suffices to fulfill the inequality (13), setting:

σ = ms
∂gs

∂ε
; mf = −ρfms

∂gs

∂p
; ss =

∂gs

∂T
; Y = −ms

∂gs

∂D
, (14)

which provides δs = 0.
In this case, after linearization the constitutive relations for the skeleton and

fluid are of the form:

Δσ = C : Δε − bΔp − C : αT ΔT − γ : ΔD,

Δmf = ρfb : Δε + ρf
Δp

M
− αmρfΔT + ρfω : ΔD,

ΔSs = C : αΔε − αφΔp +
Cps

T 0
ΔT +

1
ms

θ : ΔD,

ΔY = γ : Δε + ωΔp + θΔT + η : ΔD,

ρf

ρf0
= 1 +

Δp

Kf
− αfΔT,

ΔSf = −αfm0
f

Δp

ρ0
f

+ Cpf
ΔT

T 0
,

(15)

where γ,ω,θ,η—tensors of damage coefficients, also the following notations are
used Δf = f − f0 for all f :

1
M

=
1
N

+
mf

ρf

1
Kf

, αm = αϕ +
mf

ρf
αf , Sα = mαsα.

Here M , N are Biot modulus, Kf stands for fluid bulk modulus, αf,ϕ tem-
perature expansion coefficients.

To proceed further we introduce the following assumptions: the influence
of inertial forces is negligible; the skeleton velocity is negligible compared to
fluid velocity; the kinetic energy of the fluid is neglected in comparison with
the value of the internal energy; the influence of external forces is neglected;
damage variable is a scalar function of the strain tensor and affects only the
elastic coefficients tensor by the formula C(D) = C(1 − D).

With regard to these assumptions, the system of Eqs. (1), (3), (5), (15), has
the form:

∂mf

∂t
+ div(ρfw) = 0, div σ = 0,

∂ (mses + mfef )
∂t

+ div (ρfefw) = div (−pw) − div(q),

w =
k

μ
[− grad(p)] , q = −κ grad(T ).

(16)
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To close this system of equations, the constitutive relations (15) and damage
propagation law [7] are used:

D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, ε̃ < ε̃c

Doff

ε̃off − ε̃c
ε̃ − Doff

εc

ε̃off − ε̃c
, ε̃c ≤ ε̃ ≤ ε̃off ,

Dlim − (Dlim − Doff)
ε̃off

ε̃
ε̃ > ε̃off ,

(17)

where ε̃ is given by:

ε̃ =

√√√√ 3∑
i=1

〈εi〉2, 〈εi〉 =
εi + |εi|

2
,

with εi being principal strains.
The system (16) is solved by the finite element method. Implicit scheme was

used for temporal discretization of the system. To solve the non-linear system
arose at each time step, the Newton method was utilized. To increase the stability
of solution, the mass matrices were lumped [8].

Space discretization of the Eq. (16) was performed on tetrahedral mesh with
quadratic basis functions for displacements and linear for pressure and temper-
ature (Taylor-Hood elements [9]). A feature of this type of finite elements is the
satisfaction of the so-called inf-sup conditions (Ladyzhenskaya–Babuska–Brezzi
condition). The fulfillment of these conditions provides stability of the solution
for the poroelasticity problem. The numerical integration was performed using
second-order Gauss quadrature formulas.

3 Numerical Results

3.1 Mandel’s Problem

Mandel [10] presented an analytical solution for the three-dimensional consoli-
dation of poroelastic material in which there is a non-monotonic pore pressure
evolution (Mandel-Cryer effect). In the original formulation, a sample of poroe-
lastic material with a length of 2a and a height of 2b saturated with fluid is
considered. The sample is fixed between two rigid impermeable plates, and a
distributed load with a force of 2F is applied to the upper face.

In this test, the linear dimensions of the sample were 1×1×1 m. The vertical
stress applied on the top face is 1 kPa. The initial pressure and displacements
are vanishing. The pore pressure distribution along the x axis and displacement
projections along the x and z axes were calculated. The obtained values were
compared with a known analytical solution. The results are presented in Figs. 1
and 2.
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Fig. 1. Normalized pore pressure distribution along x axis.

Fig. 2. Normalized projection of x (left) and z (right) displacement components.

3.2 One-Dimensional Non-isothermal Expansion

The problem of one-dimensional sample thermal deformation is considered. Sam-
ple dimensions are a × a × h. The base of the sample is fixed on the surface, the
lateral borders allow only vertical displacement, the upper boundary is free. It is
assumed that the sample is thermally isolated and has a temperature T0 at the
initial time. The upper boundary has a constant temperature equal to T0 + θ0.

The problem has an analytical solution obtained using the Laplace transform
[11]. Testing was performed for various time points from 10 to 200 h. The results
are presented in Fig. 3.

3.3 Damage Evolution Near Injection Well

Simulation the damage evolution in a small region near the well at the initial
times was carried out on a model of size 1×1×1 m. The initial reservoir pressure
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Fig. 3. Temperature distribution over the sample (left) and vertical displacement at
the upper boundary of the sample (right).

was assumed to be 200 bar, the initial temperature 100◦C, and the initial stress
in the reservoir in the x and y directions was 300 and 330 bar respectively. In
the corner point of the domain, there is an injection well with a cylindrical shape
with a radius of 0.1 m, operating with a constant injection rate of 0.5 m3/day.

To simulate the damage evolution, the following parameters were used: Dlim

Doff assumed to be equal 1, εc and εoff are equal to 0.0002 and 0.015 respec-
tively. Other model parameters are listed in the Table 1. Dynamic parameters
distribution for the moments of 2 h, 1 and 10 days after the start of the well are
presented in the Fig. 4.

Table 1. Input parameters for damage evolution test

Parameter Value

Young’s modulus, E 20 GPa

Poisson’s ratio, ν 0.3

Biot modulus, N 10 GPa

Fluid bulk modulus, Kf 3.3 GPa

Biot coefficient, b 0.79

Permeability, k 1 · 10−16 m2

Porosity, ϕ 0.1

Viscosity, μ 1 mP · s
Skeleton density, ρs 2100 kg/m3

Fluid density, ρs 1000 kg/m3

Skeleton volume temperature expansion coefficient, αs 1 · 10−6 1/K

Fluid volume temperature expansion coefficient, αf 1 · 10−4 1/K

Skeleton Specific Heat, cps 1000 J/(kg ·K)

Fluid Specific Heat, Cpf 4200 J/(kg ·K)

Effective thermal conductivity, κ 2 W/(m ·K)
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Fig. 4. Distribution of pressure p (first row), temperature T (second row), damage D
(third row) and horizontal component of stress tensor σxx (fourth row) after 2 h (left),
1 day (center) 10 days (right).

4 Conlusion

We presented a thermodynamically consistent mathematical model and a com-
putational algorithm for calculating damage in a thermoporoplastic medium.
The damage of the medium is modeled within the framework of the continuum
damage theory. The model takes into account the effects of skeleton deformation,
fluid flow, and non-isothermal effects. The system of equations consists of the
basic conservation laws (mass, momentum, energy) and the kinetic equation for
the damage variable. For the closure of a system of equations, the constitutive
relations obtained by Coleman-Noll procedure are used.
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This paper also presents a numerical algorithm based on the finite element
method in a fully three-dimensional formulation. The validity of the algorithm
is confirmed in a number of test examples. Also an example of synthetic model
test is presented for estimating the propagation of damage near injection well,
which inject fluid at high temperature. According to the calculations in the
near-wellbore zone, a significant damage of the rock is observed.
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