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Abstract. The far fields of surface wave perturbations excited by an oscillating
localized source moving in a heavy liquid of infinite depth are studied. It is
shown that the excited fields are a sum of two wedge-like ship waves located
insider the corresponding wave wedges. Each of the excited two waves is a
complicated wave system of transverse and longitudinal perturbations. The
properties of the dispersion curves are studied and the phase pictures describing
the structure of wave surface perturbations are calculated. The characteristics of
the excited wave fields are studied depending on the basic parameters of the
wave generation such as the velocity of motion of the perturbation source and
the frequency of its oscillations. Uniform asymptotic solutions are constructed in
terms of the Airy function and its derivative, which permits describing the far
fields of surface perturbations both outside and inside the corresponding wave
wedges.
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1 Introduction

The surface wave motions in the marine environment can either originate due to natural
causes (wind waves, flow past underwater obstacles, bottom relief variations, density
and flow fields) or be generated by the flow past natural obstacles (platforms, under-
water pipelines, complex hydraulic facilities). The general system of hydrodynamic
equations describing the surface perturbations is a rather complicated mathematical
problem from the standpoint of proving the existence and uniqueness theorems for
solutions in the corresponding function classes and from the computational standpoint
[1–6]. In the framework of the linear theory, the surface wave perturbations are ana-
lytically studied by integral representation methods and various asymptotic methods
[7–11]. The main results of solving the problems of generation of surface wave per-
turbations are represented in most general integral form, and to obtain the integral
solutions, it is thus necessary to develop asymptotic methods for their investigation
which admit a qualitative analysis and rapid estimations of the obtained solutions.
Moreover, to analyze the data of the sea surface remote sensing, it is required to know
the causes of various surface phenomena. To obtain a detailed description of a wide
class of physical phenomena related to the dynamics of surface perturbations in
inhomogeneous and unsteady natural environments, it is necessary to have sufficiently
developed mathematical models. The fact that the structure of the heavy sea surface is
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three-dimensional is also significant, and there are currently no possibilities for large-
scale computational experimental modeling of three-dimensional ocean flows at large
times with a sufficient accuracy. But in several cases, the initial qualitative concept of
the considered class of wave phenomena can be obtained by using simpler asymptotic
models and analytic methods for studying them. In this connection, it is necessary to
mention the classical hydrodynamic problems of constructing asymptotic solutions
which describe the evolution of surface perturbations excited by sources of various
nature in heavy homogeneous liquids. The model solutions permit further obtaining
representations of surface wave fields with regard to variability and unsteadiness of real
natural environments. So several results of asymptotic analysis of linear problems
describing different regions of generation and propagation of surface perturbations also
underlie the currently actively developing nonlinear theory of generation of ocean
waves of extremely large amplitude, the so-called rogue waves [3]. The contemporary
state of the art in the study of linear and nonlinear surface perturbations can be found in
[5]. In [12, 13], the problem of constructing uniform asymptotics of far fields of surface
perturbations due to an oscillating source moving with a bounded velocity was con-
sidered. The goal in the present paper is to construct uniform asymptotics of far fields
of surface perturbations excited by the fast motion of a localized oscillating source of
perturbations in a heavy homogeneous liquid of infinite depth.

2 Problem Formulation and Integral Forms of Solutions

We consider the steady-state pattern of wave perturbations on the surface of an ideal
heavy liquid of infinite depth when the perturbation source moves with velocity V in
the positive direction of the axis x. The waves are generated by a moving oscillating
point source of perturbations located at the depth H (the axis z is directed upwards from
the unperturbed liquid) whose capacity varies by the law q ¼ expðixtÞ expðetÞ
�1\t\1ð Þ. Further, we seek the limit as e ! 0 in the obtained solution. The
perturbation of the potential Uðx; y; z; tÞ with respect to the homogeneous flow moving
with velocity V (rU ¼ ðu; v;wÞ, where u; v;w are components of the vector of per-
turbations of the velocity ðV ; 0; 0Þ) is described by the following equation with an
appropriate linearized boundary condition on the surface of the liquid [1, 5, 12, 13]

dUðx; y; z; tÞ ¼ expðixtÞ expðetÞdðxÞdðyÞdðzþHÞ; z\0

@

@t
þV

@

@x

� �2

Uþ g
@U
@z

¼ 0; z ¼ 0
ð1Þ

Here D is the three-dimensional Laplace operator, and dðxÞ - is the Dirac delta
function. We seek the solution of problem (1) in the for Uðx; y; z; tÞ ¼
expðixtÞ expðetÞuðx; y; zÞ, where the function uðx; y; zÞ is determined from the problem
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Duðx; y; zÞ ¼ dðxÞdðyÞdðzþHÞ; z\0;

ixþ eþV
@

@x

� �2

uþ g
@u
@z

¼ 0; z ¼ 0:

The Fourier transform of the potential uðx; y; zÞ,

Xðl; m; zÞ ¼
Z1

�1
expðilxÞdx

Z1

�1
expðimyÞuðx; y; zÞ dy;

is determined from the boundary-value problem

@2Xðl; m; zÞ
@z2

� k2Xðl; m; zÞ ¼ dðzþHÞ; z\0;

ðixþ e� ilVÞ2Xðl; m; zÞþ g
@Xðl; m; zÞ

@z
¼ 0; z ¼ 0;

Xðl; m; zÞ ! 0; z ! �1; k2 ¼ l2 þ m2;

whose solution in the domain �H\z\0 has the form

Xðl; m; zÞ ¼ � ðx� lVÞ2shðkzÞþ gk chðkzÞ
k expðkHÞððeþ iðx� lVÞÞ2 þ gkÞ :

The free surface elevation gðx; y; tÞ is related to the potential Uðx; y; z; tÞ by the
condition [1, 5, 12, 13]

gðx; y; tÞ ¼ � 1
g

@

@t
þV

@

@x

� �
Uðx; y; z; tÞ ¼

¼ � expðixtþ etÞ
g

ðiðx� ieÞuðz; y; zÞþV
@uðx; y; zÞ

@x
Þ; z ¼ 0

Then the Fourier transform Kðl; m; tÞ of the function gðx; y; tÞ becomes

Kðl; m; tÞ ¼ iðx� lVÞ expðixtÞ expð�kHÞ
ðeþ iðx� lVÞÞ2 þ gk

In the obtained expression, the parameter e is preserved only in the denominator,
which is necessary to determine the displacement of the pole of the integrand with
respect to the real axis (into the upper or lower half-plane). Then we can obtain the
inverse Fourier transform

gðx; y; tÞ ¼ i expðixtÞ
4p2

Z1

�1
expð�imyÞdm

Z1

�1

ðx� lVÞ expð�kH � ilxÞdl
ðeþ iðx� lVÞÞ2 þ gk

: ð2Þ
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The zeros of the denominator in the integrand in (2) determine the dispersion
relation: Bðx; l; vÞ � ðx� lVÞ2 � g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ m2

p
¼ 0. The set of values of the parameter

Vx=g[ 0 is divided by two characteristic values 1=4 and
ffiffiffi
6

p
=9 into three intervals.

For Vx=g\1=4, the dispersion curve consists of three branches, one closed and two
non-closed; this case was considered in [12]. In this case, the wave picture is a sum of
two wedge-like (longitudinal) waves with half-opening angle of the wave wedge less
than p=2 and the annular-like (transverse) waves around the source. For
Vx=g[

ffiffiffi
6

p
=9, the dispersion curve consist of two unclosed branches without

extrema. In this case, the wave picture is a sum of two wedge-like ship waves with the
half-opening angle of the wave wedge less than p=2. If 1=4\Vx=g\

ffiffiffi
6

p
=9, then the

dispersion curve consists of two unclosed curves one of which has two local extrema.
One branch of the dispersion curve corresponds to the usual wedge-like waves with the
half-opening angle of the wave wedge less than p=2, and the second branch corre-
sponds to the ship waves with the half-opening angle of the wave wedge greater than
p=2 (the wave front is directed upstream away from the source). This system of hybrid
waves simultaneously has the features of both the annular (transverse) and wedge-like
(longitudinal) waves [13]. Further, we consider the case Vx=g[

ffiffiffi
6

p
=9. Then the

integrand in the inner integral in (2) has two real poles l1;2. Figure 1 illustrates the
results of calculations of the corresponding dispersion curves l1;2ðmÞ. Here and below,
the following parameters of calculations were used: H = 5 m, x = 0.5 s−1, and
V = 30 m/s.

3 Construction of Solution Asymptotics

To calculate the inner integral in (2), it is necessary to determine the displacement of
the poles Dl for e[ 0. For this, we equate the determinant of the integrand in the inner

Fig. 1. Dispersion curves l1ðmÞ and l2ðmÞ, A and D are deflection points, and B is a root of the
equation l01ðmÞ ¼ l=m.
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integral in (2) with zero for e ¼ 0: Bðx; l; vÞ ¼ 0, and for e[ 0:
Bðx� ie; lþDl; vÞ ¼ 0. Then we obtain: Dl ¼ ie @B

@x =ð@B@lÞ. Under the assumption that

x ¼ xðl; mÞ, we have @B
@x =ð@B@lÞ ¼ �1=ð@x@lÞ and dl ¼ �ie=ð@x@lÞ. With regard to @x

@l [ 0,
we see that both poles move into the lower half-plane. Then, for x\0, the contour of
integration over the variable l in (2) becomes closed in the upper half-plane, and the
poles l1;2ðmÞ do not make contributions to the wave field. For x[ 0, the contour of
integration over l in (2) becomes closed in the lower half-plane and, taking into
account the contributions of the poles, we obtain

gðx; y; tÞ ¼ I1ðx; y; tÞþ I2ðx; y; tÞ;

Imðx; y; tÞ ¼
Z1

�1
FðlmðmÞ; mÞ expð�ixSmðm; aÞÞdm;

FðlmðmÞ; mÞ ¼
expðixtÞ

2p
ðx� lVÞ expð�kHÞ
2Vðx� lVÞþ lg=k

;

Smðm; aÞ ¼ lmðmÞþ mtga; tga ¼ y=x;m ¼ 1; 2:

ð3Þ

For large value of x[ 0, the asymptotic behavior of the integrals in the sum (3) is
completely determined by the stationary points of the phase function Smðm; aÞ which
are determined from the equation l0mðmÞ ¼ �tga. First, we consider the first term in (3).
The function l01ðmÞ has one maximum on the interval of integration over the variable m
associated with the corresponding value of the argument a, which is further denoted by
A1 . The value A1 determines the boundaries of the wave wedge (Kelvin wedge) which
are described by the equation y ¼ �x tg A1. For 0\a\A1, the phase function S1ðm; aÞ
has two stationary points on the real axis m: 0\ m2ðaÞ\ m1ðaÞ. For A1 \a\p=2, there
are two complex conjugate stationary points m1ðaÞ; m2ðaÞ, and for definiteness, we
assume that Im m1ðaÞ[ 0.

We introduce the notation: U1 ¼ �l1ðmÞ � myþxt. Then from the phase station-
arity condition l01ðmÞ ¼ �tga, we can obtain the parametric equations of the family of
constant phase lines U1 ¼ C (C ¼ const) for different values of C

xðmÞ ¼ xt � C
l1ðmÞ � ml01ðmÞ

; yðmÞ ¼ � l01ðmÞðxt � CÞ
l1ðmÞ � ml01ðmÞ

Figure 2 shows the lines of equal phase for t ¼ 0; C ¼ 2pn; n ¼ �5;�4; . . .; 5.
The right-hand branch (m[ 0) of the dispersion curve l1ðmÞ corresponds to with the
upper part of the picture (y[ 0). Since the phase portrait of the waves is symmetric
with respect to the axis x, we further consider only this domain. Point A in Fig. 1 is the
deflection point of the curve l1ðmÞ, i.e., a root of the equation l001ðmÞ ¼ 0. Therefore, the
value A is associated with the wave wedge boundary (dashed line in Fig. 2) inside
which the traveling waves described by the integral I1 are propagating. Point B in
Fig. 1 is a root of the equation l01ðmÞ ¼ l=m and is associated with dashed line 4 in
Fig. 2. The part of the dispersion curve from zero to point A (Fig. 1) is associated with
transverse crests of the waves (solid lines 2 in Fig. 2). The part of the dispersion curve
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from point A to point B in Fig. 1 is associated with longitudinal crests (solid lines 1a in
Fig. 2) located between dashed lines 3 and 4 in domain I. The part of the dispersion
curve to the right of point B (Fig. 1) is associated with longitudinal crests (solid lines
1b in Fig. 2) located between the dashed line 4 and the axis x (domain II in Fig. 2). On
the crests of longitudinal waves in domain I and on the crests of the transverse waves,
the phases U1 take the values 2pl ðl ¼ �1;�2; ::;�5Þ. The phases of the crests of
longitudinal waves in domain II in Fig. 2 are equal to 2pk ðk ¼ 1; 2; ::; 5Þ. On dashed
line 4, the wave phase U1 is zero for t ¼ 0. The longitudinal waves in domain I and the
transverse waves propagate from the origin to infinity. The longitudinal waves in
domain II propagate in the direction of dashed line 4. We present the basic charac-
teristics of the wave field for the following parameters of calculations: the wave length
along the horizontal axis is k1 ¼ 2p=l1ð0Þ ¼ 828:8 m, the half-opening angle of the
wave wedge is A1 ¼ 20:3�, and the wave front is given by the equation y ¼ x tg A1.

Inside the wave wedge, the field can be calculated by the method of stationary
phase, then the contribution is made by both of the stationary m1ðaÞ; m2ðaÞ, and the field
is exponentially small outside the wave wedge. The asymptotics of the integral
I1ðx; y; tÞ for large x[ 0 calculated by the method of stationary phase has the form [14,
15]

Fig. 2. Lines of equal phase for the integral I1: lines 1a correspond to longitudinal waves in
domain I, lines 1b correspond to longitudinal wave in domain II, lines 2 correspond to transverse
waves, line 3 indicates the wave front, and line 4 separates domains I and II.
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I1ðx; y; tÞ � T1 þ T2;

Ti ¼ 2p
x ðl001 miðaÞÞj j

� �1=2

Fðl1ðmiðaÞÞ; miðaÞÞEi;

Ei ¼ expð�ixðl1ðmiðaÞÞþ miðaÞtgaÞÞ � ipsignðl001ðmiðaÞÞÞ=4Þ; i ¼ 1; 2:

The asymptotics calculated by the method of stationary phase is not uniform,
because the stationary points merge on the wave front: m1ðA1Þ ¼ m2ðA1Þ and
l001ðm1ðA1ÞÞ ¼ l001ðm2ðA1ÞÞ ¼ 0. Therefore, the asymptotics calculated by the method of
stationary phase cannot be applied near the boundary of the Kelvin wave wedge. The
uniform asymptotics of I1ðx; y; tÞ for x[ 0 applicable at far a distance from the wave
front and near it has the form [14, 15]

I1ðx; y; tÞ � 2p expðiðrkðaÞþxtÞÞ
x1=3 ð0:5ðGð ffiffiffiffiffiffiffiffiffiffi

rðaÞp ÞþGð� ffiffiffiffiffiffiffiffiffiffi
rðaÞp ÞÞAiðx2=3rðaÞÞ�

�i
ðGð

ffiffiffiffiffiffiffi
rðaÞ

p
Þ�Gð�

ffiffiffiffiffiffiffi
rðaÞ

p
Þ

2 x1=3
ffiffiffiffiffiffiffi
rðaÞ

p Ai0ðx2=3rðaÞÞÞ;
kðaÞ ¼ ðS1ðm1ðaÞ; aÞþ S1ðm2ðaÞ; aÞÞ=2;

rðaÞ ¼ 3 S1 m2ðaÞ; að Þ � S1 m1ðaÞ; að Þð Þ=4ð Þ2=3;
Gð ffiffiffiffiffiffiffiffiffiffi

rðaÞp Þ ¼ Fðl1ðm1ðaÞÞ; m1ðaÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffi
rðaÞ

p
l001ðm1ðaÞÞ

r
;

Gð� ffiffiffiffiffiffiffiffiffiffi
rðaÞp Þ ¼ Fðl1ðm2ðaÞÞ; m2ðaÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffi
rðaÞ

p
l001ðm2ðaÞÞ

r
;

ð4Þ

where AiðsÞ ¼ 1
2p

R1
�1

cosðst � t3
�
3Þdt is the Airy function and Ai0ðsÞ is the derivative

of the Airy function. The obtained asymptotics becomes non-uniform if the Airy
function and its derivative are replaced by the corresponding expansions for large
values of the argument.

Further, we consider the contribution of the dispersion curve l2ðmÞ to the resultant
wave field. Figure 3 presents the lines of equal phase of the integral I2ðx; y; tÞ for t ¼ 0;
C ¼ 2pn; n ¼ �1;�2; . . .;�5. The upper half of Fig. 3 (y[ 0) corresponds to the left
branch of the dispersion curve l2ðmÞ (m\0). The part of the dispersion curve from zero
to point D in Fig. 1 is associated with transverse waves (solid lines 2 in Fig. 3). The
part of the dispersion curve from point D to infinity is associated with longitudinal
waves (solid lines 1 in Fig. 3). The deflection point is associated with the wave front
y ¼ x tg A2 (dashed line 3 in Fig. 3), where the half-opening angle of the wave wedge
is A2 ¼ 10:1�. All lines of equal phase go from the origin to infinity. The length of the
transverse wave along the horizontal axis x is k2 ¼ 2p=l2ð0Þ ¼ 171:5 m. The uniform
asymptotics of the integral I2ðx; y; tÞ for large x[ 0 are estimated similarly to (4). We
note that the waves described by the integral I2 significantly (approximately by a factor
of three) exceed in amplitudes the waves determined by the integral I1.

The above numerical calculations show that an increase in the velocity V of motion
of the source (for a fixed frequency x of the source oscillations) leads to a decrease in
the half-opening angles of both of the wave wedges. In this case, the distance between
the neighboring wave crests increases; in particular, there is an increase in the lengths
of transverse waves k1 and k2 along the axis x. Figures 4 and 5 presents the results of
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calculations of uniform asymptotics of the integrals I1ðx; y; tÞ and I2ðx; y; tÞ for t ¼ 0.
The sum of these terms describes the total field of the free surface elevation at a far
distance from the moving oscillating source of perturbations.

Fig. 3. Lines of equal phase for the integral I2: lines 1 are longitudinal waves, lines 2 are
transverse waves, and line 3 is the wave front.

Fig. 4. Uniform asymptotics of the integral I1 at a far distance from the moving source.
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4 Conclusion

We have shown that the far fields of surface perturbations due to a rapidly moving
localized oscillating source in a heavy liquid of infinite depth are sums of two wedge-
like (ship) waves each of which is contained inside the corresponding Kelvin wave
wedge. It is shown that the amplitude of one wave is several times greater than the
amplitude of the other wave. Each of the excited two waves is a complex wave system
of transverse and longitudinal wave perturbations. The characteristics of the excited
surface perturbations were studied depending on the basic parameters of the wave
generation such as the velocity of motion of the source of perturbations and the fre-
quency of its oscillations. The constructed asymptotic solutions permit describing the
far-range fields of surface perturbations excited by a moving localized unsteady source
both outside and inside the corresponding wave wedges. The obtained asymptotics of
far-range fields of surface wave perturbations allow one efficiently to calculate the basic
characteristics of wave fields and, in addition, qualitatively to analyze the obtained
solutions, which is important for obtaining the well-posed statements of mathematical
models of wave dynamics of surface perturbations of real natural environment. The
work was carried out within the framework of the state assignment (project AAAA-
A17-117021310375-7).

Fig. 5. Uniform asymptotics of the integral I2 at a far distance from the moving source.

130 V. Bulatov and Y. Vladimirov



References

1. Lighthill, J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)
2. Pedlosky, J.: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics.

Springer, Heidelberg (2010)
3. Kharif, C., Pelinovsky, E., Slynyaev, A.: Rogue Waves in the Ocean. Springer, Berlin

(2009)
4. Bulatov, V., Vladimirov, Yu.: Waves Dynamics of Stratified Mediums. Nauka Publisher,

Moscow (2012)
5. Mei, C., Stiassnie, M., Yue, D.: Theory and Applications of Ocean Surface Waves.

Advanced Series of Ocean Engineering, vol. 42. World Scientific Publishing, London (2017)
6. Morozov, E.: Oceanic Internal Tides. Observations, Analysis and Modeling. Springer, Berlin

(2018)
7. Brown, M.: The Maslov integral representation of slowly varying dispersive wavetrains in

inhomogeneous media. Wave Motion 32, 247–266 (2000)
8. Chen, X., Wu, G.: On singular and highly oscillatory properties of the Green function for

ship motions. J. Fluid Mech. 445, 77–91 (2001)
9. Zakharov, V., Dyachenko, A., Vasilyev, O.: New method for numerical simulations of a

nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech.
B Fluids 21, 283–291 (2002)

10. Lannes, D.: Well-posedness of the water waves equations. J. Am. Math. Soc. 18, 605–654
(2005)

11. Dobrokhotov, S., Grushin, V., Sergeev, S., Tirozzi, B.: Asymptotic theory of linear water
waves in a domain with non-uniform bottom with rapidly oscillating sections. Russ. J. Math.
Phys. 23, 455–475 (2016)

12. Bulatov, V., Vladimirov, Yu., Vladimirov, I.: Far fields of the surface disturbances produced
by a pulsating source in an infinite-depth fluid. Fluid Dyn. 52(5), 617–622 (2017)

13. Bulatov, V., Vladimirov, Yu.: Hybrid surface waves from a harmonic perturbation source.
Atmos. Oceanic Phys. 54(2), 196–200 (2018)

14. Borovikov, V.: Uniform stationary phase method. In: IEE Electromagnetic Waves Series,
vol. 40, London (1994)

15. Haberman, R.: Applied Partial Differential Equations. Pearson Educations, Upper Saddle
River (2013)

Far Fields of Surface Gravity Waves Under Unsteady Generation Regimes 131


	Far Fields of Surface Gravity Waves Under Unsteady Generation Regimes
	Abstract
	1 Introduction
	2 Problem Formulation and Integral Forms of Solutions
	3 Construction of Solution Asymptotics
	4 Conclusion
	References




