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Abstract. The problem of computing induced subgraphs that satisfy
some specified restrictions arises in various applications of graph algo-
rithms and has been well studied. In this paper, we consider the follow-
ing Balanced Connected Subgraph (shortly, BCS) problem. The input is
a graph G = (V,E), with each vertex in the set V having an assigned
color, “red” or “blue”. We seek a maximum-cardinality subset V ′ ⊆ V
of vertices that is color-balanced (having exactly |V ′|/2 red nodes and
|V ′|/2 blue nodes), such that the subgraph induced by the vertex set
V ′ in G is connected. We show that the BCS problem is NP-hard, even
for bipartite graphs G (with red/blue color assignment not necessarily
being a proper 2-coloring). Further, we consider this problem for vari-
ous classes of the input graph G, including, e.g., planar graphs, chordal
graphs, trees, split graphs, bipartite graphs with a proper red/blue 2-
coloring, and graphs with diameter 2. For each of these classes either we
prove NP-hardness or design a polynomial time algorithm.

Keywords: Balanced connected subgraph · Trees · Split graphs ·
Chordal graphs · Planar graphs · Bipartite graphs · NP-hard ·
Color-balanced

1 Introduction

Several problems in graph theory and combinatorial optimization involve deter-
mining if a given graph G has a subgraph with certain properties. Examples
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include seeking paths, cycles, trees, cliques, vertex covers, matching, independent
sets, bipartite subgraphs, etc. Related optimization problems include finding a
maximum clique, a maximum (connected) vertex cover, a maximum independent
set, a minimum (connected) dominating set, etc. These well-studied problems
have significant theoretical interest and many practical applications.

We study the problem in which we are given a simple connected graph G =
(V,E) whose vertex set V has each node being “red” or “blue” (note, the color
assignment might not be a proper 2-coloring of the vertices, i.e., we allow nodes
of the same color to be adjacent in G). We seek a maximum-cardinality subset
V ′ ⊆ V of the nodes such that V ′ is color-balanced , i.e. having same number
of red and blue nodes in V ′, and such that the induced subgraph H by V ′

in G is connected. We refer to this as the Balanced Connected Subgraph (BCS)
problem:

Balanced Connected Subgraph (BCS) Problem
Input: A graph G = (V,E), with node set V = VR ∪VB partitioned into
red nodes (VR) and blue nodes (VB).
Goal: Find a maximum-cardinality color-balanced subset V ′ ⊆ V that
induces a connected subgraph H.

1.1 Connection with the Graph Motif Problem

Here we establish a connection between the BCS problem and the Graph Motif
problem [7,14,20]. In the Graph Motif problem, we are given the input as a
graph G = (V,E), a color function col : V → C on the vertices, and a multiset
M of colors of C; the objective is to find a subset V ′ ⊆ V such that the induced
subgraph on V ′ is connected and col(V ′) = M . We note that if C = {red, blue}
and the motif has same number of blues and reds, then the solution of the Graph
Motif problem gives a balanced connected subgraph (not necessarily a maximum
balanced connected subgraph).

Fellows et al. [14] showed that the Graph Motif problem is NP-complete for
trees of maximum degree 3 where the given motif is a colorful set instead of a
multiset (that is, no color occurs more than once). They also showed that the
Graph Motif problem remains NP-hard for bipartite graphs of maximum degree
4 and the motif contains only two colors. It is easy to observe that a solution
to the Graph Motif problem (essentially) gives a solution to the BCS problem,
with an impact of a polynomial factor in the running time. On the other hand
the NP-hardness result for the BCS problem on a particular graph class implies
the NP-hardness result for the Graph Motif problem on the same class. We
conclude that BCS problem is a special case of the Graph Motif problem. Note
that much of the work on the Graph Motif problem (e.g., [7,14,20]) is addressing
the parameterized complexity of the Graph Motif problem.
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1.2 Motivation and Possible Applications

In [7], the authors mentioned that the vertex-colored graph problems have
numerous applications in bioinformatics. See the references of [7] for more specific
applications. However, the Graph Motif problem is motivated by the applications
in biological network analysis [20]. This problem also has applications in social
or technical networks [4,14] or in the context of mass spectrometry [6,14].

The BCS problem is closely related to the Maximum Node Weight
Connected Subgraph (MNWCS) problem [12,16]. In the MNWCS problem, we
are given a connected graph G(V,E), with an integer weight associated with
each node in V , and an integer bound B; the objective is to decide whether
there exists a subset V ′ ⊆ V such that the subgraph induced by V ′ is connected
and the total weight of the vertices in V ′ is at least B. In the MNWCS prob-
lem, if the weight of each vertex is either +1 (red) or −1 (blue), and if we ask
for a largest connected subgraph whose total weight is exactly zero, then it is
equivalent to the BCS problem. The MNWCS problem along with its variations
have numerous practical application in various fields (see [12] and the references
therein). We believe some of these applications also serve well to motivate the
BCS problem.

1.3 Related Work

Bichromatic input points, often referred to as “red-blue” input, has appeared
extensively in numerous problems. For a detailed survey on geometric problems
with red-blue points see [17]. In [5,10,11] colored points have been considered
in the context of matching and partitioning problems. In [1], Aichholzer et al.
considered the balanced island problem and devised polynomial algorithms for
points in the plane. On the combinatorial side, Balanchandran et al. [2] studied
the problem of unbiased representatives in a set of bicolorings. Kaneko et al. [18]
considered the problem of balancing colored points on a line. Later on, Bereg
et al. [3] studied balanced partitions of 3-colored geometric sets in the plane.

Finding a certain type of subgraph in a graph is a fundamental algorithmic
question. In [13], Feige et al. studied the dense k-subgraph problem in which
we are given a graph G and a parameter k, and the goal is to find a set of
k vertices with maximum average degree in the subgraph induced by this set.
Crowston et al. [8] considered parameterized algorithms for the balanced sub-
graph problem. Kierstead et al. [19] studied the problem of finding a colorful
induced subgraph in a properly colored graph. In [9], Derhy and Picouleau con-
sidered the problem of finding induced trees in both weighted and unweighted
graphs and obtained hardness and algorithmic results. They have studied bipar-
tite graphs and triangle-free graphs; moreover, they have considered the case in
which the number of prescribed vertices is bounded.

1.4 Our Results

In this paper, we consider the balanced connected subgraph problem on various
graph families and present several hardness and algorithmic results.
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On the hardness side, in Sect. 2, we prove that the BCS problem is NP-
hard on general graphs, even for planar graphs, bipartite graphs (with a gen-
eral red/blue color assignment, not necessarily a proper 2-coloring), and chordal
graphs. Furthermore, we show that the existence of a balanced connected sub-
graph containing a specific vertex is NP-complete. In addition to that, we prove
that finding the maximum balanced path in a graph is NP-hard. Note that,
Fellows et al. [14] showed that the Graph Motif problem is NP-complete for
bipartite graphs with two colors. However, their reduction does not imply that
the BCS problem on bipartite graph is NP-hard since in their reduction the
motif is not color-balanced (i.e., does not include the same number of blues and
reds).

On the algorithmic side, in Sect. 3, we devise polynomial-time algorithms
for trees (in O(n4) time), split graphs (in O(n2) time), bipartite graphs with a
proper 2-coloring (in O(n2) time), and graphs with diameter 2 (in O(n2) time).
Here, n is the number of vertices in the input graphs.

2 Hardness Results

2.1 BCS Problem on Bipartite Graphs

In this section we prove that the BCS problem is NP-hard for bipartite graphs
with a general red/blue color assignment, not necessarily a proper 2-coloring. We
give a reduction from the Exact-Cover-by-3-Sets (EC3Set) problem [15]. In this
EC3Set problem, we are given a set U with 3k elements and a collection S of m
subsets of U such that each si ∈ S contains exactly 3 elements. The objective is
to find an exact cover for U (if one exists), i.e., a sub-collection S′ ⊆ S such that
every element of U occurs in exactly one member of S′. During the reduction,
we generate an instance G = (R ∪ B,E) of the BCS problem from an instance
X(S,U) of the EC3Set problem as follows:

Reduction: For each set si ∈ S, we take a blue vertex si ∈ B. For each element
uj ∈ U , we take a red vertex uj ∈ R. Now consider a set si ∈ S containing three
elements, uα, uβ , and uγ , and add the three edges (si, uα), (si, uβ), and (si, uγ)
to the edge set E. Additionally, we consider a path of 5k blue vertices starting
and ending with vertices b1 and b5k, respectively. Similarly, we consider a path
of 3k red vertices starting and ending with vertices r1 and r3k, respectively. We
connect these two paths by joining the vertices r3k and b1 by an edge. Finally, we
add edges connecting each vertex si with b5k. This completes the construction.
See Fig. 1 for the complete construction. Clearly, the numbers of vertices and
edges in G are polynomial in terms of the numbers of elements and sets in
X; hence, the construction can be done in polynomial time. We now prove the
following lemma.

Lemma 1. The instance X of the EC3Set problem has a solution if and only
if the instance G of the BCS problem has a connected balanced subgraph T with
12k vertices (6k red and 6k blue).
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Fig. 1. Construction of the instance G of the BCS problem. (Color figure online)

Proof. Assume that EC3Set problem has a solution. Let S∗ be an optimal solu-
tion in it. We choose the corresponding vertices of S∗ in T . Since this solution
covers all uj ’s. So we select all uj ’s in T . Finally we select all the 5k blue and
3k red vertices in T , resulting in a total of 6k red and 6k blue vertices.

On the other hand, assume that there is a balanced tree T in G with 6k
vertices of each color. The solution must pick the 5k blue vertices b1, . . . , b5k.
Otherwise, it exclude the 3k red vertices r1, . . . , r3k, and reducing the size of
the solution. Since the graph G has at most 6k red vertices, at most k vertices
can be picked from the set s1, . . . , sm and need to cover all the 3k red vertices
corresponding to uj for 1 ≤ j ≤ 3k. Hence, this k sets give an exact cover. ��

It is easy to see that the graph we constructed from the (EC3Set) problem
in Fig. 1 is indeed a bipartite graph. Hence we conclude the following theorem.

Theorem 1. The BCS problem is NP-hard for bipartite graphs.

2.2 NP-Hardness: BCS Problem on Special Classes of Graphs

In this section, we show that the BCS problem is NP-hard even if we restrict
the graph classes to be planar, or chordal graphs.

Planar Graphs: In this section we prove that BCS problem is NP-hard
for planar graphs. We give a reduction from the Steiner Tree problem in
planar graphs (STPG) [15]. In this problem, we are given a planar graph
G = (V,E), a subset X ⊆ V , and a positive integer k ∈ N. The objective is
to find a tree T = (V ′, E′) with at most k edges such that X ⊆ V ′. Without loss
of generality we assume that k ≥ |X| − 1, otherwise the STPG problem has no
solution.

Reduction: We generate an instance H = (R ∪ B,E(H)) for the BCS problem
from an instance G = (V,E) of the STPG problem. We color all the vertices, V ,
in G as blue. We create a set of |X| red vertices as follows: for each vertex ui ∈ X,
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we create a red vertex u′
i in H, and we connect u′

i to ui via an edge. Additionally,
we take a set Z of (k + 1 − |X|) red vertices in H and the edges (zj , u

′
1) into

E(H), for each zj ∈ Z. Hence we have, B = V , and R = Z ∪ {u′
i; 1 ≤ i ≤ |X|}.

Note that |R| < |B| and |R| = (k + 1). This completes the construction. For
an illustration see Fig. 2. Clearly the number of vertices and edges in H are
polynomial in terms of vertices in G. Hence the construction can be done in
polynomial time. We now prove the following lemma.

Fig. 2. Schematic construction for planar graphs. (Color figure online)

Lemma 2. The STPG problem has a solution if and only if the instance H of
the BCS problem has a balanced connected subgraph with (k+1) vertices each of
the two colors.

Proof. Assume that STPG has a solution. Let T = (V ′, E′) be the resulting
Steiner tree, which contains at most k edges and X ⊆ V ′. If |V ′| = (k+ 1) then
the subgraph of H induced by (V ′ ∪ R) is connected and balanced with (k + 1)
vertices of each color. If |V ′| < (k+1) then we take a set Y of ((k+1)−|V ′|) many
vertices from V such that the subgraph of G induced by (V ′ ∪ Y ) is connected.
Clearly |V ′ ∪ Y | = (k + 1). Now the subgraph of H induced by (V ′ ∪ Y ∪ R) is
connected and balanced with (k + 1) vertices of each red and blue color.

On the other hand, assume that there is a balanced connected subgraph H ′

of H with (k + 1) vertices of each color. Note that, except vertex u′
1, in H all

the red vertices are of degree 1 and connected to blue vertices. Let G′ be the
subgraph of G induced by all blue vertices in H ′. Since H is connected and
there is no edge between any two red vertices, G′ is connected. Since G′ contains
(k + 1) vertices, any spanning tree T of H ′ contains k edges. So T is a solution
of the STPG problem. ��
Theorem 2. The BCS problem is NP-hard for planar graphs.

Chordal Graphs: We prove that the BCS problem is NP-hard where the
input graph is a chordal graph. The hardness construction is similar to the
construction in Sect. 2.1; we modify the construction so that the graph is chordal.



The Balanced Connected Subgraph Problem 207

In particular, we add edges between si and sj for each i 
= j, 1 ≤ i, j ≤ m. For
this modified graph, it is easy to see that a lemma identical to Lemma1 holds.
Hence, we conclude that the BCS problem is NP-hard for chordal graphs.

2.3 NP-Hardness: BCS Problem with a Specific Vertex

In this section we prove that the existence of a balanced subgraph containing a
specific vertex is NP-complete. We call this problem the BCS-existence problem.
The reduction is similar to the reduction used in showing the NP-hardness of
the BCS problem; we also use here a reduction from the EC3Set problem (see
Sect. 2.1 for the definition).

Reduction: Assume that we are given a EC3Set problem instance X = (U, S),
where set U contains 3k elements and a collection S of m subsets of U such that
each si ∈ S contains exactly 3 elements. We generate an instance G(R,B,E)
of the BCS -existence problem from X as follows. The red vertices R are the
elements uj ∈ U ; i.e., R = U . The blue vertices B are the 3-element sets si ∈ S;
i.e., B = S. For each blue vertex si = {uα, uβ , uγ} ∈ S = B, we add the 3
edges (si, uα), (si, uβ), and (si, uγ) to the set E of edges of G. We instantiate an
additional set of 2k blue vertices, {b1, . . . , b2k}, and add edges to E to link them
into a path (b1, b2, . . . , b2k). Finally, we add an edge from b2k to each of the blue
vertices si. Refer to Fig. 3.

Fig. 3. Construction of the instance G of the BCS problem containing b1. (Color figure
online)

Clearly, the number of vertices and edges in G are polynomial in terms of
number of elements and sets in the EC3Set problem instance X, and hence the
construction can be done in polynomial time. We now prove the following lemma.

Lemma 3. The instance X of the EC3Set problem has a solution iff the instance
G of the corresponding BCS existence problem has a balanced subgraph T con-
taining the vertex b1.
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Proof. Assume that the EC3Set problem has a solution, and let S∗ be the collec-
tion of k = |S∗| sets of S in the solution. Then, we obtain a balanced subgraph
T that contains b1 as follows: T is the induced subgraph of the 3k red vertices
U , together with the k blue vertices S∗ and the 2k blue vertices b1, . . . , b2k. Note
that T is balanced and connected and contains b1.

Conversely, assume there is a balanced connected subgraph T containing b1.
Let t be the number of (blue) vertices of S within T . First, note that t ≤ k.
(Since T is balanced and contains at most 3k red vertices, it must contain at
most 3k blue vertices, 2k of which must be {b1, . . . , b2k}, in order that T is
connected.) Next, we claim that, in fact, t ≥ k. To see this, note that each of the
t blue vertices of T that corresponds to a set in S is connected by edges to 3 red
vertices; thus, T has at most 3t red vertices. Now, T has 2k+t blue vertices (since
it has t vertices other than the path (b1, . . . , b2k)), and T is balanced; thus, T
has exactly 2k+ t red vertices, and we conclude that 2k+ t ≤ 3t, implying k ≤ t,
as claimed. Therefore, we need to select exactly k blue vertices corresponding
to the sets S, and these vertices connect to all 3k of the red vertices. The k sets
corresponding to these k blue vertices is a solution for the EC3Set problem. ��

Clearly, the BCS existence problem is in NP. Hence, we conclude:

Theorem 3. It is NP-complete to decide if there exists a connected balanced
subgraph that contains a specific vertex.

2.4 NP-Hardness: Balanced Connected Path Problem

In this section we consider the Balanced Connected Path (BCP) Problem and
prove that it is NP-hard. In this problem instead of finding a balanced connected
subgraph, our goal is to find a balanced path with a maximum cardinality of
vertices. To prove the BCP problem is NP-hard we give a polynomial time
reduction from the Hamiltonian Path (Ham-Path) problem which is known to
be NP-complete [15]. In this problem, we are given an undirected graph Q, and
the goal is to find a Hamiltonian path inQ i.e., a path which visits every vertex in
Q exactly once. In the reduction we generate an instance G of the BCP problem
from an instance Q of the Ham-Path problem as follows:

Reduction: We make a new graph Q′ from Q. Let us assume that the graph
Q contains m vertices. If m is even then Q′ = Q. If m is odd, then we add a
dummy vertex u in Q, connect to every other vertices in Q by edges with u and
attach a path of length 2 to u. The resulting graph is our desired Q′. It is easy
to observe that, Q has a Hamiltonian path if and only if Q′ has a Hamiltonian
path.

Now we have a Ham-Path instance Q′ with even number of vertices, say n.
We arbitrary choose any n/2 vertices in Q′ and color them red and color the
remaining n/2 vertices blue. Let G be the colored graph. This completes the
construction. Clearly, this can be done in polynomial time.
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Lemma 4. Q′ has a Hamiltonian path T if and only if G has a balanced path
P with exactly n vertices.

Proof. Assume that Q′ has a Hamiltonian path T . This implies that, T visits
every vertex in Q′. Since by the construction there are exactly half of the vertices
in G is red and remaining are blue, the same path T is balanced with n/2 vertices
of each color. On the other hand, assume that there is a balanced path P in G
with exactly n/2 vertices of each color. Since, G has a total of n vertices, the
path P visits every vertex in G. Hence, P is a Hamiltonian path. ��
Theorem 4. The BCP problem is NP-hard for general graph.

3 Algorithmic Results

In this section, we consider several graph families and devise polynomial time
algorithms for the BCS problem. Notice that, if the graph is a path or cycle, the
optimal solution is just a path. Hence, one can do brute-force search to obtain
the maximum balanced path. In case of a complete graph Kn, we output a sub-
graph H of Kn induced by V , where |V | = 2|B|, B ⊂ V , and B is the set of all
blue vertices in Kn (assuming that, the number of blue vertices is at most the
number of red vertices in Kn). Clearly, H is the maximum-cardinality balanced
connected subgraph in Kn. We consider trees, split graphs, bipartite graphs
(properly colored), graphs of diameter 2, and present polynomial algorithms for
each of them.

3.1 Trees

In this section we give a polynomial time algorithm for the BCS problem where
the input graph is a tree. We first consider the following problem.

Problem 1: Given a tree T = (V,E), and a root t ∈ V where V = VR ∪ VB.
The vertices in VR and VB are colored red and blue,respectively. The objective
is to find maximum balanced tree with root t.

We now design an algorithm to solve this problem. Let v be a vertex in G. We
associate a set Pv of pairs of the form (r, b) to v, where r is the count of red
vertices and b is the count of blue vertices. A single pair (r, b) associated with
vertex v indicates that there is a subtree rooted at v having r red and b blue
vertices. Note that r may not be equal to b. Now for any k pairs, the sum is also a
pair which is defined as the element-wise sum of these k pairs. Let A1, A2, . . . , Ak

be k sets. The Minkowski sum M
∑k

i=1 Ai denotes the set of sums of k elements
one from each set Ai i.e., M

∑k
i=1 Ai = A1 ⊕A2 ⊕ . . .⊕Ak. We use ⊕ to denote

Minkowski sum between sets. For example, for the Minkowski sum of the sets A
and B, we write A ⊕ B and it means A ⊕ B = {a+ b : a ∈ A, b ∈ B}.

Now we are ready to describe the algorithm to solve Problem1. In Algo-
rithm1, we describe how to get maximum balanced subtree with root t for a
tree T rooted at t.
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Algorithm 1. Construct red-blue pair-sets in a rooted tree.
Input : (i) A rooted tree T = (B ∪ R,E) with root t.

(ii) B and R are colored blue and red respectively.
Output: A set of pairs at each node in T .

1 if v is a leaf with red color then
2 Pv = {(0, 0), (1, 0)};
3 if v is a leaf with blue color then
4 Pv = {(0, 0), (0, 1)};
5 if v be a vertex with red color and v has k children u1, u2, ..., uk in T with root

at r, then

6 Pv = {(0, 0)} ∪ {M∑k
i=1 Pui ⊕ {(1, 0)}}; // Here ⊕ denotes Minkowski

Set sum.

7 if v be a vertex with blue color and v has k children u1, u2, ..., uk in T with root
at r, then

8 Pv = {(0, 0)} ∪ {M∑k
i=1 Pui ⊕ {(0, 1)}};

9 return Pt

In Algorithm1 we compute a finite set Pt of pairs {(r, b)} at the root t in T .
To do so, we recursively calculate the set of pairs from leaf to the root. For an
internal vertex v, the set Pv is calculated as follows: let the color of v is red and
it has k children u1, u2, . . . , uk. Then, Pv = {(0, 0)} ∪ {M

∑k
i=1 Pui

⊕ {(1, 0)}}.
We now prove the following lemma.

Lemma 5. Let T be rooted tree with t as a root. Then Algorithm1 produces all
possible balanced subtrees rooted at t in O(n6) time.

Proof. Notice that in Algorithm1, at each node v ∈ T , we store a set Pv of pairs
{(ri, bi)}, where each (ri, bi) indicates that there exists a subtree T ′ with root
v such that number of red and blue vertices in T ′ are ri and bi, respectively.
Note that ri may not be the same as bi. When we construct the set Pv, all the
sets corresponding to its children are already calculated. Finally, in steps 6 and
8 of Algorithm1 we calculate the set Pv based on the color of v. Hence, when
Algorithm1 terminates, we get the set Pt where t is the root of T .

Now we calculate the time taken by Algorithm1. Clearly, steps 2 and 4 take
O(1) time to construct the Pv when v is a leaf. Note that, the size of Pv, for an
internal node v is O(n2). Since there are at most n blue and red vertices in the
subtree rooted at v. If v has k children then we have to take Minkowski sum
of the sets corresponds to the children of v. To get the sum of two sets it takes
O(n4) time. As there are at most n children of node v, so the time taken by
steps 6 and 8 are O(n5). Finally, we traverse the tree from bottom to the root.
Hence, the total time taken by the algorithm is O(n6). ��

We can now improve the time complexity by slightly modifying the Algo-
rithm1. For an internal vertex v, we actually do not need all the pairs to
get the maximum balanced subtree. Suppose there are two pairs (a, b) and
(c, d) in Pv, where (b − a) = (d − c) and a < c. Then, instead of using the
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subtree with pair (a, b), it is better to use the subtree with pair (c, d), since
it may help to construct a larger balance subtree. Therefore, in a set Pv if
there are k pairs {(ai, bi); 1 ≤ i ≤ k} such that (bi − ai) = (bj − aj) when-
ever i 
= j, 1 ≤ i, j ≤ k. Then we remove the (k − 1) pairs and store only
the pair which is largest among all these k pairs. We say (am, bm) is largest
when am > ai and bm > bi for 1 ≤ i ≤ k, i 
= m. So we reduce the size
of Pv for each vertex v ∈ T from O(n2) to O(n). Let T (n) be the time to
compute red-blue pairset for the root vertex t in the tree T with size n. If
r has k children u1, u2, . . . , uk with size n1, n2, . . . , nk. Then the recurrence is
T (n) = T (n1) + T (n2) + . . .+ T (nk) +O(

∑k−1
i=1 (n1 + n2 + · · · + ni)ni+1). Now

∑k−1
i=1 (n1+n2+ . . . ni)ni+1 ≤ ∑k−1

i=1 nni+1 = n
∑k−1

i=1 ni+1 ≤ n2. which gives the
solution that T (n) = O(n3). Hence, we conclude the following lemma.

Lemma 6. Let T be rooted tree with t as a root. We can produces all possible
balanced subtrees rooted at t in O(n3) time and O(n2) space complexity.

Optimal Solution for BCS Problem in Tree
If there are n nodes in the tree T , then, for each node vi, 1 ≤ i ≤ n, we consider T
to be a tree rooted at vi. We then apply Algorithm1 to find maximum-cardinality
balanced subtree rooted at vi; let Ti be the resulting balanced subtree, having mi

vertices of each color. Then, to obtain an optimal solution for the BCST problem
in T we choose a balanced subtree that has max{mi; 1 ≤ i ≤ n} vertices of each
color. Now we can state the following theorem.

Theorem 5. Let T be a tree whose n vertices are colored either red or blue.
Then, in O(n4) time and O(n2) space, one can compute a maximum-cardinality
balanced subtree of T .

3.2 Split Graphs

A graph G = (V,E) is defined to be a split graph if there is a partition of V
into two sets S and K such that S is an independent set and K is a complete
graph. There is no restriction on edges between vertices of S and K. Here we
give a polynomial time algorithm for the BCS problem where the input graph
G = (V,E) is a split graph. Let V be partitioned into S and K where S and
K induce an independent set and a clique respectively in G. Also, let SB and
SR be the sets of blue and red vertices in S, respectively. Similarly, let KB and
KR be the sets of blue and red vertices in K, respectively. We argue that there
exists a balanced connected subgraph in G, having min{|SB ∪ KB |, |SR ∪ KR|}
vertices of each color.

Note that if |SB ∪ KB | = |SR ∪ KR| then G itself is balanced. Now, w.l.o.g.,
we can assume that |SB ∪ KB | < |SR ∪ KR|. We will find a connected balanced
subgraph H of G, where the number of vertices in H is exactly 2|SB ∪ KB |. To
do so, we first modify the graph G = (V,E) to a graph G′ = (V,E′). Then, from
G′, we will find the desired balanced subgraph with |SB ∪KB | many vertices of
each color. Moreover, this process is done in two steps.
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Step 1: Construct G′ = (V,E′) from G = (V,E).
For each u ∈ SB , if u is adjacent to at least a vertex u′ in KR, then remove all
adjacent edges with u except the edge (u, u′). Similarly, for each v ∈ SR, if v is
adjacent to at least a vertex v′ in KB , then remove all adjacent edges with v
except the edge (v, v′).
Step 2: Delete |SR ∪ KR| − |SB ∪ KB | vertices from G′.
Let k = |SR ∪ KR| − |SB ∪ KB |. Now we have following cases.
Case 1:|SR| ≥ k. We remove k vertices from SR in G′. Clearly, after this mod-
ification, G′ is connected, and we get a balanced subgraph having |SB ∪ KB |
vertices of each color.
Case 2:|SR| < k. Then we know, |KR| > |KB ∪ SB |. Let S′

B ⊆ SB be the
set of vertices in G′ such that each vertex of S′

B has exactly one neighbor in
KR. Then, we take a set X ⊂ KR with cardinality |KB ∪ SB | such that X
contains all adjacent vertices of S′

B. Now we take the subgraph H of G′ induced
by (SB ∪ KB ∪ X). H is optimal and balanced.
Running Time: Step 1 takes O(|E|) time to construct G′ from G. Now in
step 2, both Case 1 and Case 2 take O(|V |) time to delete |SR ∪KR|−|SB ∪KB |
vertices from G′. Hence, the total time taken is O(n2), where n is the number
of vertices in G. We conclude in the following theorem.

Theorem 6. Given a split graph G of n vertices, with r red and b blue (n = r+b)
vertices, then, in O(n2) time we can find a balanced connected subgraph of G
having min{b, r} vertices of each color.

3.3 Bipartite Graphs, Properly Colored

In this section, we describe a polynomial-time algorithm for the BCS problem
where the input graph is a bipartite graph whose nodes are colored red/blue
according to proper 2-coloring of vertices in a graph. We show that there is a
balanced connected subgraph of G having min{b, r} vertices of each color where
G contains r red vertices and b blue vertices. Note that we earlier showed that
the BCS problem is NP-hard in bipartite graphs whose vertices are colored
red/blue arbitrarily; here, we insist on the coloring being a proper coloring (the
construction in the hardness proof had adjacent pairs of vertices of the same
color). We begin with the following lemma.

Lemma 7. Consider a tree T (which is necessarily bipartite) and a proper 2-
coloring of its nodes, with r red nodes and b blue nodes. If r < b, then T has at
least one blue leaf.

Proof. We prove it by contradiction. Let there is no blue leaf. Now assign any
blue node say br as a root. Note that it always exists. Now br is at level 0 and
br has degree at least 2. Otherwise, br is a leaf with blue color. We put all the
adjacent vertices of br in level 1. This level consists of only red vertices. In level 2
we put all the adjacent vertices of level 1. So level 2 consists of only blue vertices.
This way we traverse all the vertices in T and let that we stop at kth-level. k
cannot be even as all the vertices in even level are blue. So k must be odd. Now
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for each 0 � i � k−1
2 , in the vertices of (level 2i ∪ level (2i+1)), number of blue

vertices is at most the number of red vertices. Which leads to the contradiction
that r < b. Hence there exists at least one leaf with blue color. ��

Now we describe the algorithm. We first find a spanning tree T in G. If r = b
then T itself is a maximum balanced subtree (subgraph also) of G. Without loss
of generality assume that r < b. So by Lemma 7, T has at least 1 blue leaf. Now
we remove that blue leaf from T . Using similar reason, we repetitively remove
(b − r) blue vertices from T . Finally, T becomes balanced subgraph of G, with
r vertices of each color.

Running Time: Finding a spanning tree in G requires O(n2) time. To find
all the leaves in the tree T requires O(n) time (breadth first search). Hence the
total time is needed is O(n2).

Now, we state the following theorem.

Theorem 7. Given a bipartite graph G with a proper 2 coloring (r red or b blue
vertices), then in O(n2) time we can find a balanced connected subgraph in G
having min{b, r} vertices of each color.

3.4 Graphs of Diameter 2

In this section, we give a polynomial time algorithm for the BCS -problem where
the input graph has diameter 2. Let G(V,E) be such a graph which contains b
blue vertex set B and r red vertex set R. We find a balanced connected subgraph
H of G having min{b, r} vertices of each color. Assume that b < r. This can be
done in two phases. In phase 1, we generate an induced connected subgraph
G′ of G such that (i) G′ contains all the vertices in B, and (ii) the number of
vertices in G′ is at most (2b − 1). In phase 2, we find H from G′.

Phase 1: To generate G′, we use the following result.

Lemma 8. Let G = (V,E) be a graph of diameter 2. Then for any pair of non
adjacent vertices u and v from G, there always exists a vertex w such that both
(u,w) ∈ E and (v, w) ∈ E.

We first include B in G′. Now we have the following two cases.
Case 1: The induced subgraph G[B] of B is connected. In this case, G′ is G[B].
Case 2: The induced subgraph G[B] of B is not connected. Assume that G[B]
has k(> 1) components. Let B1, B2, . . . , Bk be k disjoints sets of vertices such
that each induced subgraph G[Bi] of Bi in G is connected. Now using Lemma
8, any two vertices vi ∈ Bi and vj ∈ Bj are adjacent to a vertex say u� ∈ R.
We repetitively apply Lemma8 to merge all the k subgraphs into a larger graph.
We need at most (k − 1) red vertices to merge k subgraph. We take this larger
graph as the graph G′.

Phase 2: In this phase, we find the balanced connected subgraph H with b
vertices of each color. Note that the graph G′ generated in phase 1 contains b
blue and at most (b−1) red vertices. Assume that G′ contains b′ red vertices. We
add (b− b′) red vertices from G\G′ to G′. This is possible since G in connected.
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Running Time: In phase 1, first finding all the blue vertices and it’s induced
subgraph takes O(n2) time. Now to merge all the k components into a single
component which is G′ needs O(n2) time. In phase 2, adding (b−b′) red vertices
to G′ takes O(n2) time as well. Hence, total time requirement is O(n2).

Theorem 8. Given a graph G = (V,E) of diameter 2, where the vertices in G
are colored either red or blue. If G has b blue and r red vertices then, in O(n2)
time we can find a balanced connected subgraph in G having min{b, r} vertices
of each color.
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6. Böcker, S., Rasche, F., Steijger, T.: Annotating fragmentation patterns. In:
Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 13–24.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04241-6 2
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