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Preface

An QOutline of the Status and Perspective of Multicriteria Decision
Analysis

For more than four decades Multiple Criteria Decision Analysis (MCDA) has
consistently been one of the most active areas in Operations Research and
Management Science (OR/MS). Since the pioneering work by John von Neumann
and Oskar Morgenstern on utility theory, the development of decision analysis by
Howard Raiffa and Ron Howard, the contributions of Abraham Charnes and
William Cooper on goal programming, and those of Tjalling Koopmans and Arthur
Geoffrion on the foundations of efficiency measurement and multi-objective opti-
mization, Kenneth Arrow’s contributions to social choice theory, and Bernard
Roy’s foundations of outranking relations, the field of MCDA made significant
progress in terms of methodological development and applications.

MCDA deals with decision-making/aiding problems involving the consideration
of multiple (conflicting) criteria, attributes, points of view, goals, and objectives.
Such problems naturally arise in all areas of business activity, the public sector, as
well as in choices made by individuals. In contrast to the traditional framework of
single-objective problems, where the best option can be described by a single
measure, when dealing with multiple criteria the problem becomes ill-defined
because a single best solution does not exist. Therefore, various behavioral, mod-
eling, and algorithmic issues arise, which cannot be addressed unless a systematic
methodology is adopted. This procedure is not only prescriptive providing answers
to a given decision problem, but also constructive, in the sense that the actors
involved in the decision process progressively gain a better understanding of the
problem and their preferences, that ultimately leads to nontrivial solutions to
complex instances.

The field of MCDA provides an arsenal of methodologies and tools to handle the
above issues, including soft approaches for problem structuring and decision
modeling, techniques and models for aggregating criteria, optimization approaches,
and algorithms for problems involving multiple objectives, and decision support
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system (DSS) implementations. Throughout its history, MCDA has followed a
dynamic path of development. New types of decision models have been introduced,
allowing the aggregation of different types of information (qualitative, quantitative,
fuzzy, etc.), new multi-objective optimization tools have been explored for inter-
active decision support and combinatorial problems (e.g., metaheuristics), and
advanced DSSs have been developed using improved data management/
visualization and web-based technologies. Moreover, the field has progressed in
terms of behavioral issues, on aspects related to preference modeling and elicitation,
the treatment of uncertainties, imprecision, and ill-determination, while also
strengthening its connections with emerging data analytic technologies.

At the same time, the range of applications has been constantly widening and
new areas of interest arise. Except for standard business applications (finance,
logistics, marketing, human resources, etc.), many new areas now benefit from
MCDA, including environmental management, energy planning, sustainable
development, and various areas of the public sector and policy making.

For MCDA to maintain its success path there are several areas for future
development. For instance, the extension of existing decision models to allow the
modeling of more complex preference structures could provide additional flexibility
to decision analysts and decision makers with more general and less restrictive tools
for handling difficult decision aiding instances. More complex models require
axiomatization, deep understanding of their analytical properties, and tools to make
them comprehensible/accessible by decision makers. Procedures for preference
modeling and elicitation using information derived from data in a robust framework
could facilitate the construction of decision model and reduce the cognitive effort
involved. Behavioral aspects of preference modeling are also worth the investiga-
tion, together with exploring algorithmic advances in areas such as metaheuristics,
soft computing, data analytics/visualization, and computer science (e.g., web-based
technologies, tools for knowledge representation and modeling, etc.).

Addressing some of these ideas and areas requires an interdisciplinary approach,
combining elements from various areas in OR/MS, mathematical economics, and
computer science, among others. Adopting such an interdisciplinary approach could
not only lead to advances on the theory of MCDA but also promote the field in
other areas.

Aims and Scope

The aim of this book is not to constitute a reference for providing an overview of
standard and well-known MCDA approaches. Several other books and edited
volumes have already covered this area rather comprehensively. Instead, this edited
volume seeks to focus on emerging areas of research in MCDA and the perspectives
in the theory and applications of the field, thus providing researchers working in
this area with a collection of high-quality chapters indicating how the MCDA is
currently forming and how it can be shaped in the future. It is worth noting that this
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covers both theoretical aspects and applied research. While the importance of the
perspectives in the theory of MCDA is mostly obvious, we should emphasize that
the trends and perspectives in terms of applications are also important to identify
new areas that have the potential for applied MCDA research, understands the
context of these domains and design new MCDA approaches that can be suc-
cessfully applied in practice. With these remarks in mind, below we provide an
outline of the organization and the contents of this edited volume.

Organization

The book includes 16 contributions organized in four parts covering a wide range of
MCDA methodologies, recent advances, and applications.

The first part of the book includes four chapters devoted to some fundamental
methodologies and MCDA concepts. In the first chapter (New Trends in Preference,
Utility, and Choice: From a Mono-approach to a Multi-approach) A. Giarlotta
provides a comprehensive overview of some new trends in preference modeling,
utility representation, and choice rationalization. The chapter starts with the tradi-
tional “mono-approach” traditionally used in mathematical economics for
describing an agent’s preference structure. The recent trend towards using a
“multi-approach” that relies on multiple tools is introduced and some characteristic
approaches are presented. New advances in this alternative paradigm are also
analyzed in relation to MCDA.

The second chapter (Analytic Hierarchy Process and Its Extensions) by
A. Ishizaka covers the analytic hierarchy process (AHP) and its extensions. AHP
has traditionally been one of the most widely used methods in MCDA. The chapter
first introduces the main ideas and methodological steps of AHP and then presents
new advances and extensions in areas such as the analytic network process, group
decision-making, variants for sorting problems, and visualization tools.

In the third chapter (Beyond Multicriteria Ranking Problems: The Case of
PROMETHEE), Y. de Smet summarizes the recent developments in PROMETHEE
methods, which follow the principles of outranking relations theory. PROMETHEE
method have been originally introduced for multicriteria choice and ranking
problems. Recently other types of problems, such as sorting and clustering, have
also been addressed through variants of the PROMETHEE methods. The chapter
describes some of these variants and discusses the relations between ranking,
sorting, and clustering problems.

The final chapter (Preference Disaggregation for Multicriteria Decision Aiding:
An Overview and Perspectives) of the first part is devoted to preference disag-
gregation analysis. M. Doumpos and C. Zopounidis describe the principles of this
methodological stream of MCDA and its uses for constructing different types of
decision models. The perspectives in this area are also discussed, in the context of
robustness analysis, the use of alternative types of decision models, the
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optimization tools used to infer preference information from decision instances, as
well as the potential of extending this area to large data.

In the first chapter (Normed Ultility Functions: Some Recent Advances) of the
second part, R. Mesiar, A. Kolesarova, A. Stupnianové, and R. R. Yager summarize
some new results and trends in aggregation theory and introduce some new ideas
that can be useful for providing multicriteria decision aiding. More specifically, the
authors present two recently developed aggregation approaches, namely the
k-additive and k-maxitive aggregation functions. Moreover, construction techniques
are also presented.

The next chapter (Interpretation of Multicriteria Decision Making Models with
Interacting Criteria) by M. Grabisch and C. Labreuche focuses on MCDA models
that allow the modeling of interactions between criteria, such as the
generalized-additive independence (GAI) model. The chapter further describes
ways to develop an interpretation of general utility-based models through the
introduction of importance indices for the decision criteria. The issue of con-
structing a monotone decomposition of the GAI model is also discussed.

In the last chapter (New Directions in Ordinal Evaluation: Sugeno Integrals and
Beyond) of the second part of the book, M. Couceiro, D. Dubois, H. Fargier,
M. Grabisch, H. Prade, and A. Rico present new directions on the use of Sugeno
integrals for multicriteria evaluation problems in an ordinal setting. The chapter
surveys the axiomatic characterizations of Sugeno integrals and their expression in
possibilistic logic. Moreover, new developments in this area are presented such as
the use of local utility functions, the notion of bipolar qualitative evaluation, as well
as the use of Sugeno integrals and if-then rules for qualitative data analysis.

The first chapter (Advances and New Orientations in Goal Programming) of the
third part is devoted to goal programming (GP). D. Jones and C. Romero provide an
overview of the literature on different variants of GP models and proposed a
conceptual distance-metric framework that unifies/describes the existing GP mod-
els. The chapter also analyzes the connections to bounded rationality and social
choice functions and discusses future developments to expand the use and flexi-
bility of GP models.

The next chapter (Robust Goal Programming with Interactive Fuzzy Coefficients),
by M. Inuiguchi, is also devoted to GP, but in a fuzzy context where the goals and
coefficients in the objective are fuzzy. To treat the fuzziness in such elements of an
GP model, the approach of oblique fuzzy vectors is introduced. This approach
extends existing methodologies for fuzzy GP by allowing the modeling of the
interactions between fuzzy coefficients. Solution procedures are also discussed.

In the third chapter (Multiobjective Bilevel Programming: Concepts and
Perspectives of Development) of the second part, M. J. Alves, C. Henggeler
Antunes, and J. P. Costa cover the area of multi-objective bilevel programming.
Multi-objective problems that have a hierarchical structure have attracted significant
research interest. The chapter provides a novel view of the main concepts in this
area, including the optimistic/pessimistic leader’s perspectives, as well as algo-
rithmic issues. The chapter also discusses traditional and emerging application
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fields as well as pitfalls in existing approaches, which may lead to new advances
and improvements.

The fourth part of the book includes six chapters devoted to applications of
MCDA in various emerging areas. In the first chapter (Multi-criteria Evaluation in
Public Economics and Policy) of this part, G. Munda presents the contributions of
MCDA techniques in public economics and policy. The chapter starts with an
outline of cost-benefit analysis (CBA), which is the standard tool used in welfare
economics. CBA is then systematically compared against the MCDA paradigm
using ten comparison criteria, thus leading to the identification of the benefits and
possibilities that MCDA tools provide in this important area.

In the next chapter (Perspectives on Multi-criteria Decision Analysis and Life-
Cycle Assessment), L. C. Dias, F. Freire, and J. Geldermann discusses the com-
bination of MCDA and life-cycle assessment (LCA) for environmental manage-
ment. First the LCA framework is discussed and then the main characteristics of the
MCDA perspective to environmental decision-making are outlined. Finally, an
overview of the trends and perspective on the combination of the two approaches is
given.

The chapter (The Monitoring of Social Innovation Projects: An Integrated
Approach) of M. F. Norese, F. Barbiero, L. Corazza, and L. Sacco, presents a case
study regarding the application of a MCDA approach based on the ELECTRE
outranking methods for monitoring of social innovation projects by the
Municipality of Turin in Italy. Except for a MCDA approach, the proposed analysis
further combines other tools, such as cognitive mapping and actor network analysis
to analyze the behavior of funded innovated start-up companies and to evaluate
their business projects as part of an inclusive and sustainable economy.

The next chapter (Multiobjective Optimization in the Energy Sector: Selected
Problems and Challenges), by C. Henggeler Antunes, illustrates the applications of
multi-objective optimization approaches in the energy sector, focusing on electricity
smart grids. The chapter covers issues such as unit commitment and dispatch
problems, resilient systems, the usage of demand-side resources, problems asso-
ciated with electric vehicles, as well as issues related to energy markets.

The area of energy systems is also the subject of the next chapter (Optimization
and Multicriteria Evaluation of District Heat Production and Storage), by
R. Lahdelma, G. Kayo, E. Abdollahi, and P. Salminen. The authors present a case
study about the use of MCDA techniques for the evaluation of renewable energy
technologies for district heating in Finland. The proposed methodology combines
stochastic multicriteria acceptability analysis (SMAA) with a production planning
optimization model taking into consideration various technical and economic
criteria.

The book closes with the chapter (Comparison of Routing Methods in
Telecommunication Networks—An Overview and a New Proposal Using a
Multi-criteria Approach Dealing with Imprecise Information) by J. Climaco,
J. Craveirinha, and L. Martins, on the evaluation and comparison of routing models
in telecommunication networks. The author proposes a MCDA approach based on
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the VIP (Variable Interdependent Parameter) software, with an additive aggregation
of criteria coping with imprecise information. The formulation of the MCDA model
is illustrated through an application to a problem involving the choice of a
point-to-point routing method in a transport telecom network.
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Part I
Basic Notions and Methods



New Trends in Preference, Utility, )
and Choice: From a Mono-approach L
to a Multi-approach

Alfio Giarlotta

Abstract We give an overview of some new trends in preference modeling, util-
ity representation, and choice rationalization. Several recent contributions on these
topics point in the same direction: the use of multiple tools—may they be binary
relations, utility functions, or rationales explaining a choice behavior—in place of a
single one, in order to more faithfully model economic phenomena. In this stream
of research, the two traditional tenets of economic rationality, completeness and
transitivity, are partially (and naturally) given up. Here we describe some recent
approaches of this kind, namely: (1) utility representations having multiple orderings
as a codomain, (2) multi-utility and modal utility representations, (3) a finer classi-
fications of preference structures and forms of choice rationalizability by means of
generalized Ferrers properties, (4) a descriptive characterization of all semiorders in
terms of shifted types of lexicographic products, (5) bi-preference structures, and,
in particular, necessary and possible preferences, (6) simultaneous and sequential
multi-rationalizations of choices, and (7) multiple, iterated, and hierarchical resolu-
tions of choice spaces. As multiple criteria decision analysis provides broader models
to better fit reality, so does a multi-approach to preference, utility, and choice. The
overall goal of this survey is to suggest the naturalness of this general setting, as well
as its advantages over the classical mono-approach.

Keywords Preference modeling - Utility representation - Choice rationalization -
Completeness - Transitivity + Lexicographic order - Semiorder * Z-product -

(m, n)-Ferrers property - Bi-preference - Necessary and Possible preference -
Robust ordinal regression + Multi-utility representation + Modal utility
representation + Multi-rationalization - Choice resolution
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4 A. Giarlotta

1 Introduction

In the field of mathematical economics, the modelization of an agent’s preference
structure is traditionally done by means of a mono-approach, which uses a single
binary relation satisfying the two basic tenets of economic rationality: (1) com-
pleteness, and (2) transitivity. (See, e.g., Chap. 1 of the classical microeconomics
textbooks Mas-Colell et al. (1995) and Kreps (2013)). Under topological conditions
of separability, these two properties guarantee the existence of a utility representation
of preferences by a continuous real-valued function (Aleskerov et al. 2007; Bridges
and Mehta 1995; Debreu 1954). Similarly, the traditional approach of revealed pref-
erence theory (Arrow 1959; Samuelson 1938) often employs complete and transitive
binary relations to justify an agent’s choice behavior. In some cases, the satisfaction
of the two properties of completeness and transitivity has even guided the design
of new economic theories: a striking instance of kind is given by the classical book
“Games and Economic Behavior” of von Neumann and Morgenstern (1944).

By partially giving up these two properties, here we depart from traditional
approaches, and examine: (a) alternative types of utility representations, (b) more
refined kinds of preference structures, and (c) new forms of bounded rationality for
choices. In fact, the general question that motivates this survey is the following:

(Q0) Can we design sound theories of preference modeling, utility representation,
and choice rationalization, which give up, partially or totally, the basic tenets of
economic rationality?

This paper illustrates some possible answers to question (QO0).

Specifically, first we deal with preference representations in a lexicographically
ordered codomain (Chipman 1971; Fishburn 1974), thus extending the classical
real-valued representation. This approach provides a description of preferences that
fail to have a real-valued representation (Beardon et al. 2002a,b). Successively, we
describe some novel types of preference structures, which are formed by nested
and intertwined pairs of binary relations (Giarlotta and Watson 2018b). In this bi-
preference approach, the two properties of transitivity and completeness are coher-
ently spread over the two components. This feature makes these structures well
suited to applications in operations research and economics. In particular, special
types of bi-preferences, called necessary and possible (Giarlotta and Greco 2013),
have already been successfully employed as a modeling tool in multiple criteria
analysis (Greco et al. 2008). Under suitable conditions, bi-preferences can be rep-
resented by a doubly indexed family of utility functions: this is the so-called modal
utility representation (Giarlotta and Greco 2013), which adapts to bi-preferences the
recently introduced multi-utility representation of a preorder (Evren and Ok 2011;
Ok 2002).

In parallel to a multi-approach to preference and utility, we also develop a theory
of choice multi-rationalization. Samuelson’s theory of revealed preferences (Arrow
1959; Houthakker 1950; Samuelson 1938) postulates that choices are observed, and
preferences can be derived from them. The class of rationalizable choices is espe-
cially significative in this respect, since it codifies all types of choice behavior that
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can be explained by means of the maximization of a single binary relation. How-
ever, the theory of revealed preferences yields a sharp rational/irrational dichotomy,
since any non-rationalizable choice behavior is bluntly classified as “irrational”. With
the goal of smoothening this dichotomy, several new theories of bounded rational-
ity (Simon 1955, 1982) have naturally emerged over the last few years (Cherepanov
et al. 2013; Kalai et al. 2002; Manzini and Mariotti 2007; Masatlioglu and Naka-
jima 2013; Rubinstein and Salant 2006). Here we describe a general setting for
the multi-rationalizability of a choice (Cantone et al. 2018c), which may employ
more than one binary preference to explain the behavior of an economic agent, thus
broadening the classical notion of mono-rationalizability. We also sketch the main
features of a recently introduced methodology in choice theory, called “resolution”.
This methodology, which is an adaptation of an analogous technique in general
topology (Fedorcuk 1968; Watson 1992), studies the inner structure of a complex
choice process (Cantone et al. 2018a) on the basis of a notion of delegations of tasks.
This yields a decomposition (and explanation) of a complex selection process into
independent and simpler decisional units, typically distributed in a hierarchical way.

Multiple criteria decision analysis (Greco 2005; Greco et al. 2010a) provides
powerful analytical tools to handle complex real life problems, offering more flex-
ible modelizations than mono-criterion techniques. Similarly, mutatis mutandis, a
multi-approach to the theories of preference, utility representation, and choice ratio-
nalization yields a more realistic representation of economic phenomena rather than
the classical mono-approach. The purpose of this work is to give an overview of
a multi-approach to these theories, also suggesting its naturalness, feasibility, and
potential.

Organization of the Paper

The remainder of this survey is organized into three main sections, a conclusive
section, and an appendix.

Section 2 (The Mono-approach). We start in Sect. 2.1 with a historical discus-
sion about the two properties of transitivity and completeness. Successively, we
provide an overview of basic notions and classical results in preference modeling
(Sect. 2.2), utility representations (Sect. 2.3), and choice rationalization (Sect.
2.4). These theories use a single tool for the description of an agent’s behav-
ior/attitude. In summarizing their main achievements, we shall also detect some
shortcomings, and indicate possible ways of coping with the arising issues.

Section 3 (The Transition). Here we sketch a few recent approaches to the the-
ories described in Sects. 2.2-2.4. These techniques, which suggest the use of
multiple tools to represent economic behavior, address some shortcomings of
classical theories and pave the way for more general approaches to these topics.
Specifically, we describe: utility representations using lexicographic orderings
as a codomain (Sect. 3.1), universal characterizations of semiorders based on
shifted lexicographic products (Sect. 3.2), Ferrers properties describing a dis-
crete evolution of transitivity (Sect. 3.3), choice correspondences rationalizable
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by well-structured revealed preferences (Sect. 3.4), and a process detecting the
inner structure of a choice in terms of delegations of tasks (Sect. 3.5). The goal
of this section is to provide the reader with a natural justification and a smooth
transition toward a multi-approach.

Section 4 (The Multi-approach). Here we finally describe some very recent
developments in the theories described in Sects. 2.2-2.4, which employ multiple
tools rather than a single one. Specifically, in Sect. 4.1 we introduce bi-preference
structures, and describe their advantages over mono-preferences. In Sect. 4.2, we
deal with particular types of bi-preferences, called necessary and possible, which
have been already used in multiple criteria decision analysis. In Sect. 4.3, we
recall the notion of a multi-utility representation, and show how bi-preferences
are representable by a suitably indexed type of multi-utility representation, called
modal. Within the theory of choice rationalization, we provide in Sect. 4.4 an
overview of the recent bounded rationality approaches, which use multiple binary
rationales to explain a choice behavior. Finally, in Sect. 4.5 we describe a natural
extension of the notion of choice resolution to a multiple and iterated setting.

Section 5 concludes this contribution.
The Appendix contains two figures, which graphically describe some results.
Neither original results nor proofs appear in this survey.

2 The Mono-approach

To keep the presentation as much self-contained as possible, this section recalls the
classical setting of the theories of preference modeling, utility representation, and
choice rationalization.

2.1 The Two Classical Tenets of Rationality

A preference structure on a set X of alternatives is usually modeled by a binary
relation R on X. Traditionally, R is assumed to “behave well”, in the sense that it
satisfies suitable ordering properties. The two classical properties that are assumed
to hold for R are:

(Completeness) for any distinct x, y € X, either xRy or yRx (or both)';
(Transitivity) for any x, y, z € X, if xRy and yRz, then xRz.

The reasons for which R is often supposed to be both complete and transitive are
several, some being related to their economic significance, some others to their
mathematical tractability. However, both properties have been questioned by eminent
scholars over time.

INotice that, since x and y are distinct, this formulation of completeness does not imply reflexivity.
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In their monumental work Theory of Games and Economic Behavior (von Neu-
mann and Morgenstern 1944), von Neumann and Morgenstern already acknowl-
edged, albeit rather elusively, that preferences may naturally be incomplete (pp.
19-20):

‘We have conceded that one may doubt whether a person can always decide which of two

alternatives ... he prefers. If the general comparability assumption is not made, a mathe-

matical theory ... is still possible. It leads to what may be described as a many dimensional

vector concept of utility. This is a more complicated and less satisfactory set-up, but we do
not propose to treat it systematically at this time.

In fact, von Neumann and Morgenstern limited their analysis to complete (and tran-
sitive) preferences, due to the mathematical amenability of this simplified setting,
and never published details about the mentioned “many dimensional vector concept
of utility”.

In his seminal paper on incomplete preferences, Aumann (1962) suggested (p.
449) an interpretation of von Neumann and Morgenstern’s statement:

What they probably had in mind was some kind of mapping from the space of lotteries to
a canonical partially ordered euclidian space, rather than the real-valued mappings we use
here; but it is not clear to me how this approach can be worked out.

Aumann’s criticism of the completeness property was quite direct (p. 446):

Of all the axioms of utility theory, the completeness axiom is perhaps the most questionable.
Like others of the axioms, it is inaccurate as a description of real life; but unlike them, we
find it hard to accept even from the normative viewpoint.

Since Aumann’s work, many other authors started abandoning the axiom of com-
pleteness as a basic feature of rational behavior. On the topic, Bewley (1986) and
Ok (2002) attentively elaborate on the links between the notion of rationality and the
incompleteness of preferences.

In their systematic analysis of the multi-utility representation of preferences,
Evren and Ok (2011) mention several behavioral phenomena which naturally yield
incompleteness, e.g., status-quo bias (Apesteguia and Ballester 2009; Masatlioglu
and Ok 2005), intransitive choice (Manzini and Mariotti 2007), choice defer-
ral (Kopylov 2009), and indecisiveness in revealed preferences (Eliaz and Ok 2006).
Similarly, incompleteness has been a main focus in various decision models used in
operations research and management science (Danan 2010; Greco et al. 2008; Masin
and Bukchin 2008), financial economics (Rigotti and Shannon 2005), political eco-
nomics (Levy 2004; Roemer 1999), and game theory (Bade 2005). Further, several
recent studies on (in)decisions under risk and uncertainty use incomplete preorders
to model preferences (Dubra et al. 2004; Ghirardato et al. 2003, 2004; Gilboa et al.
2010; Maccheroni 2004; Nau 2006; Ok et al. 2012). Last but not least, following the
seminal work of Bernard Roy (1985, 1990a,b), there is a large number of multiple
criteria decision methodologies which explicitly take into account incompleteness of
preferences as a natural feature of the decision maker’s attitude (Greco et al. 2010a).

The axiom of transitivity was possibly harder to abandon, even if probably ques-
tioned before completeness. In his well-known paper, Tversky (1969) was still advo-
cating the importance of transitivity in the modelization of preferences, since its
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violation could cause unpleasant phenomena of “money pump” (Davidson et al.
1955).2 This attitude was however contrasted by other authors, who had already
been designing economic models in which transitivity was partially or totally aban-
doned. The probabilistic choice model proposed by Luce (1959) can be regarded as
a pioneering example of intransitive preferences in economic theory. The obstinate
insistence of some economists to employ transitive models even brought Sen (1971)
to declare that revealed preference theory is “obsessed with transitivity”. In their
recent paper, Bleichrodt and Wakker (2015) argue that the year 1982 was a sort of
“breaking point” in the economic literature, since transitivity was given up in three
seminal papers related to regret theory: the axiomatic approach of Fishburn (1982),
a decision analysis oriented paper by Bell (1982), and the fundamental contribution
of Loomes and Sudgen (1982). From an experimental point of view, there are many
papers in mathematical psychology explaining intransitivity of preferences by ran-
dom models, insofar as the subject’s preferences vary over time from one type of
ordering to another: see, e.g., Regenwetter et al. (2010, 2011) for some models of
this kind, and Davis-Stober et al. (2018) for a recent method to test these models.

In the same stream of research that opposes the blunt assumption of fully tran-
sitive preferences, we ought to mention the extraordinary amount of literature on
semiorders, interval orders, and similar preference structures, which describe forms
of rational behavior characterized by weaker forms of transitivity. Anticipated by
the intuitions of Fechner (1860), Poincaré (1908), Georgescu-Roegen (1936), Arm-
strong (1939), and Halphen (1955), research on intransitive preference structures had
its definitive consecration by the seminal papers of Luce (1956) and Fishburn (1970),
who formally introduced the notions of semiorder and interval order, respectively.
Their approaches are based on the idea of weakening the axiom of transitivity, rather
than abandoning it all together. Indeed, Luce’s famous coffee/sugar example suggests
that the transitivity of the associated indifference should be somehow weakened and
regulated, whereas the transitivity of the strict preference may be retained as a natural
assumption of rational behavior.

The recently introduced weak (m, n)-Ferrers properties go exactly in the direc-
tion of considering binary structures with a transitive strict preference but a possi-
bly intransitive indifference (Giarlotta and Watson 2014a). Originally designed to
provide a combinatorial extension of the Ferrers condition and semitransitivity—
which coincide, respectively, with weak (2, 2)-Ferrers and weak (3, 1)-Ferrers—
these properties display a finite taxonomy of enhanced forms of the transitivity of
the strict preference. In fact, roughly speaking, weak (m, n)-Ferrers properties clas-
sify transitive strict preferences by means of the types of forbidden mixed cycles of
preference/indifference (see Sect. 4.2 in Cantone et al. (2016)). It follows that such an
approach may be relevant for economic applications insofar as weak (m, n)-Ferrers
properties prompt a possible recognition of money-pump effects due to the presence
of mixed cycles of a certain length and type.

2See Sect. 3.3 of this survey for a discussion on this point in relation to the so-called (m, n)-Ferrers
properties.
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Strict (m, n)-Ferrers properties (Giarlotta and Watson 2014a, 2018a; Oztiirk
2008) go even further in weakening the assumption of transitivity, since they do
not even postulate the transitivity of the strict preference. These properties yield an
infinite taxonomy of intransitive preference structures, which are connected to other
types of money-pump phenomena.

In this paper, we shall also mention some new approaches to preference modeling
in which both basic tenets of economic rationality are only partially retained, being
“spread over” two binary relations (see Sects.4.1 and 4.2 on bi-preferences and
NaP-preferences, respectively).

2.2 Preference Modeling

Here we summarize the basic terminology in preference theory. Two good sources
of information on this topic—as well as on utility representations, which is the topic
of the next section—are the textbooks by Bridges and Mehta (1995) and Aleskerov
et al. (2007).

Henceforth, X is a nonempty (possibly infinite) set of alternatives (courses of
action, etc.), and A(X) = {(x, x) : x € X} is the diagonal of X.

Definition 2.1 A reflexive binary relation on X is referred to as a weak preference on
X, and is henceforth denoted by —; the pair (X, ) is generically called an ordered
set. The following relations are derived from a weak preference - on X: its strict
preference > (the asymmetric part of 27), its indifference ~ (the symmetric part of
2-), and its incomparability 1 (the symmetric part of the complement of ). These
relations are formally defined as follows for each x, y € X:

x>y & Gny A0z
i~y & Gz AGEY
xly & =y A =05,

Given an ordered set (X, ), the set of maximal elements of A C X is defined by
max(A,”) = {xeA: (Fye Ay > x).

The composition of two weak preferences 7~; and 7~; on X is the binary relation
1 0 7o on X defined as follows for all x, y € X:

B
x(Diom)y & @zeX)xmizy.

Notice that a weak preference 7~ is (i) complete if and only if its incomparability L
is empty, and (ii) transitive if and only the inclusion 2~ o 7~ C 7~ holds. Whenever -
is complete, the set of maximal elements of A C X can be also written as max(A, 7)
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:={x € A: (Vy € A) x 77 y}. Finally, observe that, even when X is finite, the set
max (A, 7Z) may be empty, due to the possible presence of strict cycles (see Defini-
tion 2.2).

Definition 2.2 A weak preference 7~ on X is called (x, y, z, w are arbitrary elements
of X):

e complete (or total or connected) if x 7Z y or y 77 x always holds (x # y);

e antisymmetric if x 27 y and y 7~ x implies x = y (equivalently, ~ is the diagonal
of X);

e acyclic if there are no xy, x2, ..., x, € X, withn > 3, such that x; > x, > --- >

Xn > X15

quasi-transitive if > is transitive, i.e., (x > y and y > z) implies x > z°;

Ferrers if (x -, y and z 77 w) implies (x 7 w or z 77 y);

semitransitive if (x 7 y and y 77 z) implies (x 2 w or w 7 2);

an interval order if it is Ferrers;

a semiorder if it is Ferrers and semitransitive;

a (partial) preorder if it is transitive;

a partial order if it is an antisymmetric preorder;

a total preorder if it is a complete preorder;

a linear order if it is an antisymmetric total preorder.

Accordingly, the pair (X, 77) is called, e.g., a semiordered set, a preordered set, a
partially ordered set (also called a poset), a linearly ordered set (also called a linear
ordering or a chain), etc.

Notice that (i) any total preorder is trivially a semiorder, (ii) any semiorder is
trivially an interval order, (iii) an interval order is both complete and quasi-transitive,
and (iv) any quasi-transitive weak preference is acyclic. Moreover, the indifference
derived from a preorder is an equivalence relation, but the same does not hold for the
indifference associated to a semiorder (hence, a fortiori, for that of an interval order).
Observe also that if X is finite, then an acyclic relation on X always has maximal
elements for each nonempty subset of X.

Next, we recall some notions due to Fishburn (1970), which play an important
role in the theory of preferences, especially for defining notions of (semi)continuity
as well as for preferences that are interval orders and semiorders (but also for bi-
preference structures, see Sects.4.1 and 4.2): the “traces” of a weak preference.

Definition 2.3 Let - be a weak preference on X. For each x € X, let

(weak lower section of x) x%“~:={w e X : x = w},
(weak upper section of x) M= weX:w Z x},
(strict lower section ofx) xV" :={we X : x > w},
(strict upper section of x) x"7 i={w e X 1w > x}.

3In case = is complete, then the following statements are equivalent: (i) = is quasi-transitive; (ii)
foreachx, y,z € X,x > y 77 zimplies x 2 z; (iii) foreach x, y, z € X, x 27 y > z implies x 77 z.
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Define three binary relations* on X as follows for each x, y € X:

def
(left trace of 7) x=Fy = yhE C xbE
def

(right trace of ©-) x =%y &= xM% c yhx,

(global trace of =) x 7oy &Ly ZEY A x Ty

The next lemma collects some enlightening results about traces: see, e.g., Fishburn
(1985), Monjardet (1978), Pirlot and Vincke (1997).

Lemma 2.4 Let 7~ be a weak preference on X.

¥, =¥ =y are preorders contained in 7.
SorCr and moxtCr

SoonCr and oty C L

= is an interval order <= =* is a total preorder <= =** is a total pre-
order.

2 is a semiorder <= g is a total preorder.

e isapreorder < =

e - isatotal preorder < - = T is complete.

Many classical results on preferences are related to the possibility of (continu-
ously) representing them by a utility function, a topic that is analyzed in the next
section. There are also other issues arising from the traditional mono-approach to
preference modeling, mostly due to the limited expressive power of a single binary
relation. In this respect, a general question is:

(Q1) Can we use binary relations to represent preferences in a more flexible and
realistic way?

We shall address question (Q1) in Sects.4.1 and 4.2, where we suggest how a bi-
preference approach may enhance the modeling power of a binary representation of
agents’ preference structures by taking into account two different kinds of “attitudes”.

2.3 Utility Representations

In this section we deal with the classical setting of real-valued utility representations
of binary preferences. Two are the basic issues, the first purely order-theoretic and
the second topological:

4We follow the approach described in Bouyssou and Pirlot (2004), defining all traces in terms of
weak sections, instead of defining strict traces first and then deriving weak traces. The difference
is immaterial whenever dealing with complete and quasi-transitive preferences, in particular for
interval orders and semiorders. Notice also that the notion of global trace has been recently revised
from a different perspective, and renamed transitive core (Nishimura 2018).
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(Q2) Can we can represent a total preference relation by a real-valued utility
function?
(Q3) Can we make this utility function continuous?

To start, we give the basic elements to properly formulate and then address question

(Q2)°

Definition 2.5 A binary relation 77 on X is representable in R if there is a function
u: X — R such that, for all x, y € X, we have

xZy <<= ulx)>u(y).

In this case, the function u is a utility representation of (X, ) in R. (We also say
that (X, 77) is order-embeddable or embeddable in R.) The chain (R, >) is the base
of the representation.

An obvious necessary condition for the representability of a weak preference -
in R is that 2~ must be a total preorder, i.e., it satisfies the two classical properties
of transitivity and completeness. This condition is also sufficient for the cases in
which the ground set X is finite or countably infinite (see, e.g., Chap. 1 of Bridges
and Mehta (1995)). In the general case, however, we need an additional property of
“separability” to ensure representability.

The first characterization of representability in R is most likely the following (Can-
tor 1895; Milgram 1939):

Theorem 2.6 (Cantor 1895; Milgram 1939) A linear ordering (X, 70) is order-
embeddable in R if and only if it includes a countable subset that is weakly order-
dense in X.°

Similar characterizations were given by Birkhoff (1948). Nevertheless, due to
an imperfect communication in the scientific community, until the early 1950s
economists considered all preference relations as representable in R. In other words,
the concepts of “preference” and“utility” were (wrongly) considered equivalent. For
a salient instance of this kind, let us cite Hicks (1956, p. 19):

If a set of items is strongly ordered, it is such that each item has a place of its own in the
order; it could, in principle, be given a number.

If the above statement were to hold, then every total preorder would be representable
in R, and the concepts of preference and utility would coincide, which is false.

5The literature also examines weaker forms of representability of a single binary relation, e.g., the
existence of (continuous, semicontinuous) Richter-Peleg utility functions (Alcantud et al. 2016;
Peleg 1970; Richter 1966). We shall deal with this topic in Sect.4.3, where we also discuss some
shortcomings of this notion, and introduce multi-utility representations.

bAsetY C X is weakly order-dense in X if, for each x|, x € X such that x| > x,, thereisy € ¥
with the property that x; 2~ y = x». Such a set is often called Debreu order-dense, and the existence
of a countable Debreu order-dense is referred to as Debreu-separability (Bridges and Mehta 1995).
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In his celebrated paper on the Open Gap Lemma, Debreu (1954) finally exhibited
an example of a natural preference that is non-representable in R: the lexicographic
plane RZ = (R?, 7Zjex). Several characterizations of representability followed, for
instance (Fleischer 1961):

Theorem 2.7 (Fleischer 1961) A chain (X, ) is representable in R if and only if it

has at most countably many jumps and the topological space (X, Ty-) is separable.”

For an extensive overview of the topic, the reader is referred to Bridges and Mehta
(1995), Mehta (1998).

In 2002, Beardon et al. (2002a,b) systematically analyzed the structure of total
and transitive preferences that fail to be representable in R, and obtain a striking
subordering classification of them. Their characterization (Beardon et al. 2002a) can
be suggestively rephrased as follows:

Theorem 2.8 (Beardon et al. 2002a) A chain is non-representable in R if and only
if it is (i) long or (ii) large or (iii) wild.®

(Here by “long” we mean that it contains a copy of the first uncountable ordinal’
wy or its reverse ordering w;*; by “large” we mean that it contains a copy of a non-
representable subordering of the lexicographic plane R, ; and by “wild” we mean
that it contains a copy of an Aronszajn line, which is defined as an uncountable
chain such that neither w; nor w;* nor an uncountable subordering of R embeds into
it.) Some more recent results in this direction, which use lexicographic orders as
modeling tools, are mentioned in Sect.3.1.

Next, we deal with question (Q3), that is, the existence of a continuous real-valued
representation. To describe the topological setting, we recall the notions of (i) the
continuity of a preorder, and (ii) the order topology induced by a preorder. (For
all undefined topological notions, the reader may consult the classical textbook by
Munkres (2000).)

Definition 2.9 Given a topological space (X, 7), a preorder 2~ on X is continuous
if 77 is a closed subset of the topological product X x X.

10

7A jump in an ordered space (X, %) is a pair (a, b) € X? such that a > b and there is no point
¢ € X such thata > ¢ > b. The topology 7+ is the order topology induced by 7. The topological
space (X, 7 ) is separable if it contains a countable set D that intersects each nonempty open set.
See Munkres (2000) for topological notions.

8This is not the terminology originally used by the authors.

9An ordinal is a well-ordered set (X, <) such that each x € X is equal to its initial segment
{y € X : y < x}. The finite ordinals are the natural numbers. The first infinite ordinal is the set
wo of all natural numbers, endowed with the usual order. The first uncountable ordinal is the set
wq of all countable ordinals, endowed with the natural order. The famous continuum hypothesis,
formulated by George Cantor in 1878, says that the cardinality of R is equal to w; (as a cardinal).
In 1963, Paul Cohen proved that the continuum hypothesis is independent from the axioms of ZFC
(Zermelo-Fraenkel axiomatic set theory, plus the Axiom of Choice), in sense that there are models in
which it is true, and models in which it is false (because |R| > wj holds). See the classical textbook
by Kunen (1980) for ZFC axiomatic set theory.

19Here we use the notion of continuity employed in some standard textbooks in microeconomic
theory, such as Mas-Colell et al. (1995, p.46). Other authors sometimes employ a weaker notion
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It can be shown that a complete preorder - on (X, 7) is continuous if and only
if (i) all weak upper sections xMZ and lower sections x*% are closed subsets of
(X, 1) if and only if (ii) all strict upper sections x ™~ and lower sections x ¥ are
open subsets of (X, 7). Conditions (i) and (ii) are sometimes called, respectively,
closed semicontinuity and open semicontinuity, whereas their joint satisfaction is
called bi-semicontinuity: see Sect.4.1. Notice that bi-semicontinuity does not imply
continuity for incomplete preorders.!!

Definition 2.10 Given a preordered set (X, ), the order topology T~ on X induced
by - is the topology having as a subbasis the family of all strict upper and lower
sections (equivalently, the topology having as a basis the family of all open intervals).

An immediate consequence of Definitions 2.9 and 2.10 is that for any totally
preordered set (X, 27), the order topology 7~ is the coarsest topology on X such that
~ is continuous.

There are many results dealing with continuous real-valued utility representations
of atotal preorder. The most classical theorems in this field are due to Eilenberg (1941)
and Debreu (1954, 1964):

Theorem 2.11 (Eilenberg 1941) In a connected separable topological space, any
continuous total preorder is continuously representable in R.

Theorem 2.12 (Debreu 1954, 1964) In a second countable topological space, any
continuous total preorder is continuously representable in R.

A miscellany of representation results followed (in the 1970s): let us recall, among
others, the approaches due to Jaffray (1975a), Neuefeind (1972), Peleg (1970),
Richter (1980), and Sondermann (1980). A common denominator of many approaches
to the topic is the Open Gap Lemma, which was (incorrectly) proved by Debreu (1954),
and then corrected by the same author ten years later (Debreu 1964). For our purpose,
the most relevant consequence of this result is the following:

Corollary 2.13 [fa total preorder on a topological space is representable in R, then
it is continuously representable in R.

The above result brings back the problem of the continuous representability of a
total preorder to that of its mere representability, on which Theorem 2.8 by Beardon
et al. (2002a) certainly sheds some light. However, Theorem 2.8 mostly provides

of continuity: see, e.g., Sect. 1.6 of Bridges and Mehta (1995). However, from the point of view of
applications, the distinction between the various notions of continuity is often immaterial. See also
Evren and Ok (2011, p.555), and Gerasimou (2013, pp.2-3).

"Herden and Pallack (2002) provide a very simple counterexample to the equivalence between
continuity and bi-semicontinuity for incomplete preferences: in fact, they show that the relation
of equality is a bi-semicontinuous non-continuous preorder in any topological space that is 7 but
not Hausdorff. On the topic, see also Gerasimou (2013), who characterizes continuity in terms of
closed semicontinuity and a property of “local expansion” of transitivity (Theorem 1 in Gerasimou
(2013)).
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negative information, since several total preorders typically fail to be representable.
Thus, it appears natural to seek more refined classifications of non-representable
preferences. More precisely, the (new) questions are:

(Q2) Can we detect weaker forms of representability for non-representable pref-
erences?
(Q3) Can we make these weaker forms of representability continuous?

A possible approach to questions (Q2') and (Q3’) is to establish a “degree of
representability” of total preferences by using more descriptive codomains rather
than the set of real numbers. In this respect, codomains (different from R) ensuring
that the content of Corollary 2.13 is preserved—in the sense that the representability
of atotal preorder implies its continuous representability—look quite appealing. This
brought Herden and Mehta (2004) to formulate the notion of a Debreu chain, which
is a linear ordering such that the representability in it also ensures the existence of a
continuous representation. (Thus, by Corollary 2.13 the linear ordering of the reals
is the prototype of a Debreu chain; however, it is not the only one.)

In the same direction of research, some other authors extended the notion of a
Debreu chain to that of a pointwise Debreu and locally Debreu chain (Caserta et al.
2008), also considering lexicographic products satisfying these properties (Giarlotta
and Watson 2009). We shall deal with these recent approaches that aim at enlarging
the representability of preference relations in Sect. 3.1, where we consider represen-
tations with lexicographic codomains. Further, in Sect. 3.2 we will present a universal
description of semiorders by means of embeddings into modified forms of lexico-
graphic products.

Nevertheless, the issues mentioned in the last two paragraphs are not the only ones.
In fact, further problems on representability arise for the lack of representations of
preferences that fail to fully possess the classical tenets of economic rationality. More
precisely, the issue—which is obviously related to the question (Q1) formulated in
Sect.2.2—is the following:

(Q4) How can we represent more refined preference structures by means of utility
functions?

We shall present possible ways to address question (Q4) in Sect. 4.3, where we deal
with multiple and modal utility representations of both a single preference and a pair
of preferences.

2.4 Choice Rationalization

Here we recall some elementary definitions on choices. We also summarize the
basics of the theory of revealed preferences, pioneered by Samuelson (1938) and
successively developed by several eminent scholars: see, among many others, Arrow
(1959, 1963), Chernoff (1954), Hansson (1968), Herzberger (1973), Houthakker
(1950), Plott (1973), Richter (1966), Sen (1971, 1986, 1993). For further details,
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the reader is referred to some textbooks on the topic, such as Aleskerov et al. (2007)
and Suzumura (1983), as well as the very recent monograph by Chambers and
Echenique (2016).

Definition 2.14 Let §2 be a family of nonempty subsets of X, which contains all
singletons and is closed under the operation of taking finite unions (hence 2 contains
all nonempty finite subsets of X).'> A choice correspondence on X isamapc: 2 —
£2 such that the inclusion c¢(A) € A holds for any A € £2. In particular, a choice
function is a single-valued choice correspondence, that is, |c(A)| = 1 forall A € £2.
The set £2 is the domain of c, elements of §2 are menus, and elements of a menu
are items. A choice space is a pair (§2, ¢), where c is a choice correspondence on X
having £2 as domain. A choice space (£2, ¢) is complete if $2 is the family 2% of all
nonempty subsets of X, and is finite if §2 is the family of all finite nonempty subsets
of X.

The nonempty set c(A) collects all items of A deemed “selectable” by the eco-
nomic agent; in case the problem requires that a single item is to be chosen, this is usu-
ally done at a later time and with a different procedure. However, in the special case
of a choice function, a single item is immediately selected from each menu: this is the
original setting under which Samuelson was working in his seminal paper Samuelson
(1938), later extended to the general case of choice correspondences.

Next, we recall the classical notion of the preference revealed by a choice, which
is typically employed in order to identify all cases of rational behavior.

Definition 2.15 Let (£2, ¢) be a choice space. The preference revealed by c, denoted
by 7., is the binary relation on X defined as follows for each x, y € X:

Xy &L thereis amenu A € £2 such that x, y € A and x € c(A).

Then c is called rationalizable if it can be retrieved from 2~ by maximization, that
is, for all menus A € £2, the equality c(A) = max(A, 7Z.) holds. Equivalently, c is
rationalizable if there is a (not necessarily complete) binary relation - on X such
that c(A) = max(A, ) forall A € 2.

The next example illustrates the notions introduced so far.

Example 2.16 Consider the following choice correspondences on X = {x, y, 713

12The literature on choice theory also consider other types of domains, e.g., for the case of choices
arising from consumer demand theory. For the sake of simplicity, here we limit our analysis to the
case in which £2 satisfies some rather mild closure properties (see Cantone et al. (2016), Eliaz and
Ok (2006) for a justification of this assumption).

13Selected items are underlined: thus, x yzmeans c({x, y, z}) = {x}, y zmeans c({y, z}) = {y, z},
etc. Notice that, by the very definition of a choice correspondence, we always have c({a}) = {a}
for each a € X: thus, it suffices to indicate how choices are defined for menus of size at least two.
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() xyz, Xy, xz, Yz,
() xyz, xy, Xz, Yz,
(3) xyz, xy, xz, Yz

The three relations of revealed preferences 2, , 7., and 7, are respectively defined

~C12 ~UC2

by
(c1)  X>6 Y, X>¢ 2,  Y>q2,
(62) X NCZ ya X >C2 Za y ch Zv
(c3) x~g Yy, X™~a2, Y™~ 2

Notice that ., is a linear order, ., is quasi-transitive but not transitive, and =3 is

~C] * ~C2

an equivalence relation. Further, ¢; and c; are rationalizable, whereas c; is not.

(Mono-)rationalizability coincides with the existence of an underlying preference
relation that fully describes the observed choice behavior. It is clear that a tiny per-
centage of choices are rational according to this notion, since the size of the family of
choices on a set X is much larger, in general, than the family of acyclic binary rela-
tions on X. In other words, Definition 2.15 implies that the large majority of choices
are labeled as “irrational”. This situation naturally calls for new, more refined notions
of rationalizability, which should aim at smoothening the sharp dichotomy between
rational and irrational choices, possibly identifying weaker notions of rationality. We
shall deal with some recent approaches of this kind in Sect. 4.4.

Most of the existing results on the rationalizability of a choice are stated in terms of
the satisfaction of axioms of choice consistency. These are properties codifying rules
of coherent behavior, which ought to be respected in order to qualify a selection
process as consistent. Here are a few of the plethora of axioms introduced in the
literature during the last 80 years:

O Property (o) (Standard Contraction Consistency):
Ifx € AC Bandx € ¢(B), thenx € c(A).

O Property (8)  (Symmetric Expansion Consistency):
IfACB,x,y €c(A),and y € ¢(B), then x € c(B).

¢ Property () (Standard Expansion Consistency):
If x € c(A;) foralli € I, thenx € ¢ (Uie[ A,-).

O Property (p) (Standard Replacement Consistency):
Ifyec(A)andy ¢ c(A U {x}), then x € c(A U {x}).

O WARP  (Weak Axiom of Revealed Preference):
If x € A and there are y € c(A) and B € §2 such that y € B and x € ¢(B),
then x € c(A).

O Pl (Path Independence):
c(AU B) = c(c(A) Uc(B)).
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(A universal quantification over menus and items is implicit.)

The first three properties are classical, respectively introduced by Chernoff (1954)
for (a), and by Sen (1971) for (3) and (7); on the contrary, property (p) is very
recent (Cantone et al. 2016). WARP, due to Samuelson (1938), is the most well
known axiom in choice theory. Pl is a very elegant axiom due to Plott (1973).

The semantics of these axioms of choice consistency is simple. Property («) says
that if an item x is selected from a menu B, then x is also selected from any submenu
A C B containing it. Property () states that any two items x, y selected from a menu
A are simultaneously either selected or rejected in any larger menu B. Property ()
says that if an item x is selected from all menus in a family 4, then x is also selected
from the menu obtained as the union of the elements of .A. Property (p) states that
if an item y is selected from a menu A but is rejected as soon as a new item x is
adjoined to A, then the new item x is selected from the larger menu A U {x}. WARP
says that an item x is always selected from a menu A whenever there is an item y
selected from A such that x is revealed to be preferred to y. Finally, Pl states that
if the dynamic process of selection proceeds in a “divide and conquer” manner,'*
then the final outcome is independent of the way the menu is initially divided for
consideration.

Example 2.17 For the choices defined in Example 2.16, the following holds:

(1) c; satisfies all listed axioms of choice consistencys;
(2) c; satisfies (@), (7), (p), and PI, but (3) and WARP fail,
(3) c3 only satisfies («), but none of the other properties hold for it.

We conclude this overview by listing some relationships between forms of ratio-
nalizability of a choice and the axioms of choice consistency introduced above, which
hold under very mild conditions on the choice domain: see, among several references
on the topic, the classical papers by Arrow (1959) and Sen (1971), as well as the
recent results in Cantone et al. (2016).

Theorem 2.18 The following equivalences hold for a choice space ($2, c):

(i) c is rationalizable <— (o) & () hold.
(ii) c is rationalizable by a total preorder <= WARP holds <— (o) & ()
hold.
(i) c is rationalizable by a preorder <= (a) & () & (p) hold.

The following questions naturally arise:

(Q5) Can we refine the classification of rationalizable choices given by Theo-
rem 2.18?

(Q6) Can we smoothen the classical rational/irrational dichotomy, providing a
classification of non-rationalizable choices by means of “degrees of rationality” ?

Questions (Q5) and (Q6) will be addressed in Sects. 3.4 and 4.4, respectively.

14By a “divide and conquer” manner, we mean: the menu is split up into smaller sets, a choice is
made over each of these sets, the selected items are collected, and finally a choice is made from
them.



New Trends in Preference, Utility, and Choice ... 19

3 The Transition

In this section we start a process of transition toward a multi-approach. Specifically,
we describe: some alternative tools in preference modeling, utility representations,
and choice rationalization, all of which suggest the opportunity to pursue a multi-
approach to a full extent. These techniques do solve a few of the issues arising
from the classical mono-approach. However, they are not completely satisfactory,
inasmuch as they fail to address some other important problems.

3.1 Utilities with Lexicographic Codomains

As already recalled in the previous sections, several well-behaved preferences that
naturally appear in applied fields fail to be representable by a real-valued utility
function. In fact, even in the desirable scenario in which an agent’s preferences are
transitive and complete, their representability by real-valued embeddings is not guar-
anteed in general. This consideration brought Herden and Mehta (2004) to formulate
the following question:

(Q7) Why do we only consider R-valued utility functions as representations of
preferences?

As extensively discussed in Mehta (1998), the literature on utility representations
mostly deals with utility functions with values in the linear ordering (R, >). Regret-
tably, the very same literature lacks a systematic and convincing discussion explain-
ing why R is the only considered codomain. The rationale of such a choice is pos-
sibly connected to the fact that economists naturally identify the utility of a bundle
of goods by a real number. In addition, the mathematical amenability of the linearly
ordered topological space (R, >, 7-)—which is metrizable, complete, separable,
etc.—provides further reasons of opportunity to universally implement this choice.

However, Herden and Mehta (2004) argue that these arguments do not suffice. In
fact, the two authors identify several types of problems connected to the inveterate use
of R as the codomain of utility functions. Following the presentation given in Caserta
et al. (2008), we collect these issues in two groups: (a) mathematical, which in turn
can be ordinal or cardinal'’; and (b) theoretical.

(a) Historically, the most significant example of ordinal obstruction to the repre-
sentability in R is the lexicographic plane R, (Debreu 1954): this linear ordering
is not representable in R because it does not satisfy the countable chain condi-
tion (i.e., there are uncountably many pairwise disjoint nonempty open intervals).
Another example of non-representability in R due to an ordinal obstruction is

the long line, that is, the lexicographic product w; X [0, 1) with its minimum

15We should also distinguish between purely ordinal codomains, and those which also have an
algebraic structure. Among the latter, let us mention (without getting into details) representations
that employ non-Archimedean ordered fields, introduced by Narens (1985).
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(0, 0) removed. The importance of the latter linear ordering in economic the-
ory is widely acknowledged (Estévez and Hervés 1995; Monteiro 1987). The
structural reason for which the long line cannot be embedded into R is that it
contains a copy of wy, the first uncountable ordinal. (For a throughout discussion
of ordinal obstructions to representability, see Beardon et al. (2002a,b).)
Cardinal obstructions to the representability in R are quite frequent as well.
Herden and Mehta (2004) give some examples of commodity spaces studied in
economic theory, which fail to be representable in R because their cardinality is
greater than the continuum. A first example of this kind is the infinite-dimensional
commodity space L () of essentially bounded measurable functions on a mea-
sure space; in most models used in general equilibrium theory (Bewley 1972),
this linear ordering is too large to be embedded in R. Another example of a
linear preference that is not embeddable in R for cardinal reasons is the space
(R™) of all functions from R to the commodity space R”, used in capital theory
(Diamond 1965).

(b) From the theoretical point of view, the use of R to represent preferences may
even clash with the very concept of utility. In his paper on the foundations of
utility, Chipman (1960) argues that utility is not a real number, but a vector that is
inherently lexicographic in nature. Accordingly, he proposes to employ the lex-
icographic power 2;! as a base of utility representations. (Here 2 = {0, 1} is the
linear ordering with two elements, and « is a suitable ordinal number.) Chipman
points out the convenience to use of a transfinite sequence of length « in place
of a real number to represent preferences: mathematically, every linear ordering
becomes representable; economically, the concept of utility becomes easier to
understand. Last but not least, representability of a preference space (X, ) in
R requires the topological space (X, 7-) to have a countable base, which has
no intuitive meaning from the economic point of view (Chipman 1971). For an
extensive analysis of a notion of lexicographic utility and alternative types of
utility representations, the reader is referred to the (dated but always valuable)
survey by Fishburn (1974).

In the light of the above discussion, it seems natural to consider alternative utility
representations, which use a base chain different from R. The most frequent base
chains employed in the literature are lexicographic products, e.g., 2{, (as in Chip-
man (1971)), R xe 2 (as in Wakker (1988)), R, (as in Knoblauch (2000)), and the
long line (as in Campi6n et al. (2006)). Thus, it appears useful to develop a theory
of utility representations in which the base chain is a lexicographic product of linear

orderings. To start, we recall the basic definition of lexicographic product.

Definition 3.1 LetX = {(X;, 2Z;) : j € J} be anonempty family of chains indexed

over a well-ordered set (J, <). The lexicographic product of X 1is the chain
l_[ljeé ;X = (]—[j o X ilex), where the strict linear order > is defined as fol-
lows forall x = (xj)jes, y = (¥j)jes € Hje] Xj:

X >lex ¥ &L thereis 6 € J such that x5 >5 ys and x; = y; forall j < 6.
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In particular, X Xxx ¥ denotes the lexicographic product of the two chains X and Y.
In case the well-ordered index set J is a nonzero ordinal o, we denote the correspond-
ing lexicographic product by ]_[lg’ia, X¢. Further, X!, is the lexicographic power of
a-many copies of X.

The use of lexicographic products as a codomain of utility representations can be
naturally motivated when modeling multidimensional preferences. In fact, in order
to endow a Cartesian product of some given chains with a linear order, lexicographic
utility structures come very handy, since they are linked to the existence of some
factors which are “overwhelmingly more important” than others.

For instance, assume that there are n factors X1, ..., X, of concern to the deci-
sion maker. An element x; € X; is a “level of the factor X;” (e.g., in an allo-
cation problem, x; represents the resources allocated to the j-th activity). Then
X = X X --- x X, is the set on which a preference - has to be established by
the decision maker. A lexicographic modeling of utilities requires finding whether
there exist n individual utility functions u;: X — R, j=1,...,n, such that,
for each x = (x1,...,x,), y=(1,...,yn) € X, we have x 7~ y if and only if
W1(x), ..., uny (%)) Zrex @1(), ..., u,(y)), where =1 is the lexicographic order-
ing on R”. In this way, preferences are classified according to a measure of their
“lexicographic complexity”. For instance, if a chain (X, 7Z1) can be order-embedded
into the lexicographic power Rlzex but not in R, and another chain (X,, 7~,) can be
order-embedded into R}, but not in R, , then the lexicographic complexity of the
latter is greater than the lexicographic complexity of the former. Formally, we can
define the notion of the representability number of a chain as follows (Giarlotta
2005):

Definition 3.2 A chain (X, 77) is a-representable in R if it can be embedded into
the lexicographic power R , where « is an ordinal number. The least ordinal a such
that X is a-representable in R is the representability number of X in R, denoted by
reprr (X). More generally, given a base chain B, the representability number of X
in B, denoted by reprgz(X), is the least ordinal « such that X can be embedded into

the lexicographic power By, .

The a-representability of a chain (X, ) in R corresponds to having a represen-
tation of the preference ordering 7~ in X by a well-ordered family of utility functions
u¢: X — Rindexed by the ordinal numbers £ < a. Then, for any x, y € X, we have
x > yif and only if u5(x) > us(y) holds, where § is the least ordinal number below
a at which us5(x) and us(y) differ. One can think of the ordinal indices as determining
the relative importance of the utility functions u,.

In connection with the findings of Theorem 2.8, it is well-known that long chains
are not a-representable in R for any countable ordinal « (see Fleischer (1961)): thus,
their representability number in R is w;. It follows that the family of all chains can
be partitioned in three classes:
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(i) long chains;
(i1) short (i.e., not long) chains with uncountable representability number in R;
(iii) chains with countable representability number in R.

The two classes (ii) and (iii) are very rich in variety. For instance, it is not surprising
that Aronszajn lines belong to class (ii). On the other hand, rather unexpectedly, in (ii)
we can also find several hierarchies of small chains, i.e., in the terminology of The-
orem 2.8, chains that are neither long nor wild: see Giarlotta (2004a, Chap. 5). Even
more surprisingly, class (iii) contains many types of linear orderings. For instance,
Giarlotta and Watson (2013) exhibit a hierarchy of chains having representability
number in R equal to w (the first infinite ordinal). Finally, in Giarlotta (2004b) lex-
icographic products that are representable in R (i.e., such that reprp(X) = 1) are
characterized in terms of suitable features of their factors.

Concerning the case of base chains different from R, in Giarlotta (2005) the author
determines the value of reprz(X) for several base chains B and represented chains
X, again in relation to Theorem 2.8. Specifically, the following results hold'®:

Theorem 3.3 (i) If k is a regular cardinal that is not embeddable into B, then
reprg (k) = k.

(i1) If B is an uncountable chain such that A X 2 is not embeddable in B for any
uncountable A C B, then repry(By,) = o for any ordinal c.

(1) If X is an Aronszajn line or a Souslin line, then repry(X) = w;.

In particular, Theorem 3.3(ii) yields the following known fact (Kuhlmann 1995):

Corollary 3.4 repry (R ) = « for any ordinal o.

lex

Some additional instances of theoretical results concerning the representations of
lexicographic preferences are given in Candeal and Indurdin (1999), Giarlotta and
Watson (2014b), Kuhlmann (1995).

3.2 Universal Semiorders

Semiorders are among the most studied categories of binary relations in prefer-
ence modeling. This is due to their capability to model many phenomena in eco-
nomics and psychology, whenever the agent exhibits preferences/choices with a
“threshold of perception or discrimination” (also called just noticeable difference,
see Manders (1981)). The reader may consult Chap. 2 of the monograph by Pirlot
and Vincke (1997) for an extensive list of possible applications.

The notion of a semiorder originally appeared (under a different name) in 1914,
in the work of Wiener (1914) (see Fishburn and Monjardet (1992)). Nevertheless, the
introduction of semiorders in economics is usually attributed to Luce (1956), who

16See Kunen (1980) for the undefined notions of regular cardinal and Souslin line.
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was the first to use this model to study choices in settings where the agent’s indif-
ference is naturally intransitive. Luce’s original definition is based on the reciprocal
behavior of the associated relations of strict preference and indifference. Nowadays,
a semiorder is defined as either a reflexive relation that is Ferrers and semitransitive,
or, equivalently, an asymmetric relation that is Ferrers and semitransitive (sometimes
called a strict semiorder).

Since Luce’s seminal paper, research on semiorders has been abundant, due
the universally acknowledged importance of this type of ordered structure. Sev-
eral contributions on the topic are concerned with real-valued representations of
semiorders (Beja and Gilboa 1992; Campi6n et al. 2008; Candeal and Indurdin 2010;
Gensemer 1987; Krantz 1967; Lehrer and Wagner 1985; Manders 1981; Monjardet
1978; Nakamura 2002), whereas many others deal with the more general notion of
an interval order (see, e.g., Beja and Gilboa (1992), Bosi et al. (2001) and references
therein), a preference structure introduced by Fishburn in the 1970s (Fishburn 1970,
1973b, 1985). Semiorders have been also studied in connection to the assessment of
knowledge and learning: on the topic, the interested reader may consult the mono-
graphs by Doignon and Falmagne on Knowledge Spaces (Doignon and Falmagne
1999) and Learning Spaces (Falmagne and Doignon 2011), as well as some papers
describing stochastic theories for the evolution of preference structures (Doignon
and Falmagne 1997; Falmagne 1996, 1997; Falmagne and Doignon 1997).

Concerning the utility representation of semiorders, a main contribution on the
topic is the classical paper by Scott and Suppes (1958), in which semiorders are
described by the existence of a “shifted” type of utility function (see also Rabi-
novitch (1977)). Formally, a Scott-Suppes representation of a semiordered set (X, 7)
isafunctionu: X — Rsuchthattheequivalence“x =~ y < u(x) + 1 > u(y)” holds
forall x, y € X. (Here 1 is the threshold of perception or discrimination.) It is well
known that not all semiorders admit a Scott-Suppes representation: in fact, its exis-
tence imposes strong structural restrictions, as pointed out by Swistak (1980). In this
respect, a recent result by Candeal and Indurdin (2010) characterizes Scott-Suppes
representable semiorders in terms of the properties of regularity and s-separability.
Despite these restrictions, Scott-Suppes representations have been given a lot of
attention, due to their relevance in several fields of research, e.g., modelizations of
choice with errors (Agaev and Aleskerov 1993), choice theory under risk (Fishburn
1968), extensive measurement in mathematical psychology (Krantz 1967; Lehrer
and Wagner 1985), decision making under risk (Rubinstein 1988).

Very recently, the structure of an arbitrary semiorder has been fully described
by Giarlotta and Watson (2016). This description has the flavour of a Scott-Suppes
representation, insofar as it uses “shifted” forms of lexicographic products. In fact,
any semiorder can be order-embedded into a modified form of lexicographic product
of three total preorders: here the modification is given by a shift operator, which
typically creates intransitive indifferences. Since the middle factor of this modified
product is the usual ordering (Z, >) of the integers, and the shift operator is applied
to it, these structures are called Z-products. In particular, a Z-line is a Z-product in
which the first and the third factors are linear orderings. The formal notions are as
follows:
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Definition 3.5 The Z-product of two totally preordered sets (A, 2~4) and (B, ZZg)
is the triple (P, ®l, zlq;:), where:

e P is the Cartesian product A X Z x B;

e @1 is the unary operation on P defined by (a,n,b) ® 1 := (a,n + 1, b) for each
(a,n,b) € P;

o ~Pis the canonical completion'” of the asymmetric relation > on P defined
by

(@ n.b) =2 (@, n',b) <5 (a.n,b) = @0, b) D1

lex
foreach (a, n, b), (a’,n’, b’) € P,with > being the standard lexicographic order
on P.

A Oz B denotes the Z-product of the total preorders (A, 7~4) and (B, Zp). The
Z-product of two linear orderings is a Z-line.

It turns out that Z-products (and Z-lines) are universal semiorders, in the sense
that any semiorder order-embeds into a Z-product. The process to construct such an
embedding is rather technical, but it can be summarized in the following three main
steps:

(1) first consider a “macro-ordering”, given by the transitive closure!® of the
semiorder;

(2) then partition each equivalence class of the macro-ordering into “vertical slices”
indexed by the integers, allowing only certain relationships between pairs of
slices;

(3) finally establish a “micro-ordering” to further refine the distinction among ele-
ments of the semiorder, and obtain an order-embedding into a Z-product.

The binary relations used at each stage are total preorders. This fact is clear for the
macro-ordering at stage (1). At stage (2), the partition of each indifference class of the
transitive closure uses a locally monotonic integer slicer (LMIS), which is an integer-
valued map having some ordering properties. The micro-ordering employed at stage
(3) is a modified form of trace, called sliced trace, which allows “backward paths”
with respect to an LMIS. The reader is referred to Giarlotta and Watson (2016) for
several examples of LMIS and the associated sliced traces. Then, we have (Giarlotta
and Watson 2016):

Theorem 3.6 The following statements are equivalent for a reflexive and complete
(X, 2):

(1) (X, ) is a semiordered space;
(ii) (X, =) order-embeds into a Z-product;
(iii) (X, =) order-embeds into a Z-line;
(iv) (X, ) order-embeds into (X, i) Oz (X, Zo).

"The canonical completion of an asymmetric relation transforms incomparability into indifference.
18The transitive closure of a binary relation 2= is the smallest transitive relation > containing 2.
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(In (iv), 7 is the transitive closure of the semiorder -, and - is the sliced trace asso-
ciated to some LMIS ¢: R — Z.) The following three consequences of Theorem 3.6
are noteworthy:

Corollary 3.7 Z-lines are universal semiorders.
Corollary 3.8 The Z-line Q Oy Q is a universal countable semiorder.

Corollary 3.9 (Rabinovitch 1978) The dimension'® of a strict semiorder is at
most 3.

In addition to the above consequences, the descriptive characterization of all
semiorders established in Theorem 3.6 may provide a unifying view of several results
that are currently scattered throughout the literature. For instance, many notions
of separability—Cantor, Debreu, Jaffray, strong, weak, topological, interval order,
semiorder, etc.—that have been extensively studied in the past (see, e.g., Beja and
Gilboa (1992), Candeal et al. (2012) and references therein) can be characterized
by suitable properties of embedding into Z-lines. Similarly, the geometric represen-
tations of semiorders given by Beja and Gilboa (see Theorems 3.7, 3.8, 4.4, and
4.5 in Beja and Gilboa (1992)) as well as the characterization of Scott-Suppes rep-
resentability given by Candeal and Indurdin (2010) can be described in terms of
properties of embeddability into special Z-lines.>"

3.3 (m, n)-Ferrers Preferences

Asrecalled in Sect. 2.2, an interval order can be equivalently defined as (1) a reflexive
relation satisfying the Ferrers property, or (2) an asymmetric relation satisfying the
strict Ferrers property”!: to distinguish the two cases, we shall speak of a strict interval
order in case (2). The two settings are equivalent because the canonical completion
of a strict interval order is an interval order, and, conversely, the asymmetric part of
an interval order is a strict interval order.

Similarly, a semiorder can be equivalently defined as (1) a reflexive relation satis-
fying both the Ferrers and the semitransitive properties, or (2) an asymmetric relation
satisfying both the strict Ferrers and the strict semitransitive properties: for clarity,
we speak of a strict semiorder in case (2). Again, the difference between (1) and (2)
is immaterial, since the canonical completion of a strict semiorder is a semiorder,
and the asymmetric part of a semiorder is a strict semiorder.

Interval orders and semiorders have been employed in the literature on preference
modeling as a sound alternative to total preorders, due to their ability to realistically

19The dimension of a strict semiorder > is the least number of strict linear orders whose intersection
gives >.

20This is a work in progress (Giarlotta and Watson 2018¢).

21The strict Ferrers property and the strict semitransitive property are respectively defined exactly
as the Ferrers property and the semitransitive property in Definition 2.2, with > in place of .
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describe situations in which the agent displays intransitive preferences. In fact, inter-
val orders (hence semiorders) always have a transitive strict part, but the associated
indifference fails, in general, to be transitive. The main difference between modeliza-
tions based on interval orders and those based on semiorders is that in the former
case the threshold of discrimination need not be constant.

Quite recently, in the process of defining broader types of preferences for which
the associated indifference may be intransitive—and, specifically, to generalize some
variations of semiorders proposed by Fishburn (1997)—, Oztiirk introduced the
notion of (m, n)-Ferrers properties. These properties require that the first and the last
elements of two sequences of preferences having length m and n must be suitably
related to each other. In particular, the classical Ferrers condition is the (2, 2)-Ferrers
property, whereas semitransitivity is the (3, 1)-Ferrers property.

However, Oztiirk’s definition is limited to an asymmetric (and transitive) relation,
and so it does not allow one to systematically deal with “degrees of transitivity”
of preferences. This motivated a further extension of her approach by Giarlotta and
Watson (2014a), who distinguish two types of (m, n)-Ferrers properties: weak and
strict, respectively related to sequences of preferences that are either reflexive or
asymmetric.

Definition 3.10 Let - be a weak preference on X, and > its asymmetric part. For
fixed integers m > n > 1, we say that =~ satisfies the weak (m, n)-Ferrers property
(or it is weakly (m, n)-Ferrers) if the implication

G ZTx) AT DY) = X1 TV VD X, (1)

holds forall xy, ..., X,, ¥1, ..., yu € X. Thenotion of strict (m, n)-Ferrers property
is defined similarly, substituting 77 by > in (1).

Notice that the (strict or weak) (2, 2)-Ferrers property is the classical Ferrers
condition, whereas the (strict or weak) (3, 1)-Ferrers property is semitransitivity.
Said differently, weak and strict (m, n)-Ferrers properties coincide for m +n = 4,
i.e., for interval orders and semiorders. However, they behave quite oppositely as m
and n grow:

Lemma 3.11 Let - be a total weak preference on X. For all integers m,n, p, q
suchthatm >n>1,p>qg>1,m> p,n>gq,andm+n > 3, we have:

o if = is weakly (m, n)-Ferrers, then =~ is weakly (p, q)-Ferrers;
o if = is strictly (p, q)-Ferrers and > is transitive, then = is strictly (m, n)-Ferrers.

In other words, weak (m, n)-Ferrers properties display an increasing strength as
m and n grow, whereas strict (m, n)-Ferrers properties becomes weaker and weaker
(under the hypothesis of quasi-transitivity) as m and n grow.

Weak (m, n)-Ferrers properties are simpler to study, since they display a finite
taxonomy. In fact, the family of weak (m, n)-Ferrers properties forms a finite lattice
under implication, having as maximum the (3, 3)-Ferrers property, which corre-
sponds to transitivity. Figure 6 in the Appendix (taken from Cantone et al. (2016))
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01 01 345 78 10 0 5678 10 0 2 3 78 10
(5) A semiorder (6) An interval order (7) A total quasi-preorder (8) A non-transitive relation

Fig. 1 A geometric representation of some extensions of the linear ordering ([0, 10], >)

describes all implications among combinations of weak (m, n)-Ferrers properties
(in the gray boxes): see Theorem 3.1 in Giarlotta and Watson (2014a). All reverse
implications do not hold: see Examples 3.3-3.10 in Giarlotta and Watson (2014a).
Roughly speaking, weak (m, n)-Ferrers properties are linked to the transitivity of the
associated relation of indifference. In this respect, Fig. 6 describes a sort of discrete
evolution of the transitive property: from possibly no shade of transitivity (at (1, 1)-
Ferrers), to quasi-transitivity (at (2, 1)-Ferrers), to the classical Ferrers condition (at
(2, 2)-Ferrers) and semitransitivity (at (3, 1)-Ferrers), until its full satisfaction (at
(3, 3)-Ferrers), after having described several forms of transitivity on the path to full
transitivity.

To give an idea of the possible “shape” of some weak (m, n)-Ferrers preferences,
Fig. 1 (taken from Giarlotta (2014)) describes the geometric form of a few of them,
whenever these preferences happen to be extensions of a linear continuum.?? For all
eight pictures in Fig. 1, the dark gray area represents the strict preference, whereas
the light gray area is the indifference: for instance, in picture (2) we have 7 > 5 and
7 ~ 8, in picture (8) we have 3 > 2.5 and 7 ~ 2.5, etc. Further, by strong semiorder
we mean weakly (3, 2)- and (4, 1)-Ferrers, whereas by strong interval order we
mean weakly (3, 2)-Ferrers.

Contrary to weak (m, n)-Ferrers properties, strict (m, n)-Ferrers properties are
much more complicated to classify. Roughly speaking, these properties are linked
to the transitivity of the associated relation of strict preference, hence they refine the
graph given in Fig. 6 (in the Appendix) in its lowest part (especially for the so-called
“extended preferences”).

22A linear continuum is a linear ordering with the properties that (i) every nonempty subset with
an upper bound has a least upper bound, and (ii) for every pair of distinct elements, we can always
find another element strictly in between them.
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It turns out that even the case of strict (m, 1)-Ferrers properties is difficult to
analyze, since it gives rise to an infinite taxonomy of preferences. Furthermore, even if
strict (m, 1)-Ferrers properties somehow become less and less strong as m increases,
they do not display a monotonic behavior. Specifically, the strongest strict (m, 1)-
Ferrers property is (2, 1), which implies all the other strict (m, 1)-Ferrers properties
for m > 3:in fact, a strictly (2, 1)-Ferrers preference is a total preorder. The second
strongest property is (3, 1), since it implies all strict (m, 1)-Ferrers properties for
m > 4:infact, astrictly (3, 1)-Ferrers preference is always quasi-transitive. However,
starting from the strict (4, 1)-Ferrers property, this apparent regularity of behavior
vanishes, since (4, 1) implies neither (5, 1) nor quasi-transitivity.

This erratic behavior of strict (m, 1)-Ferrers properties induced Giarlotta and
Watson (2018a) to perform a combinatorial analysis of them, which yielded the
following nontrivial characterization:

Theorem 3.12 The following statements are equivalent for all distinct integers
m,n>2:

(i) the strict (n, 1)-Ferrers property implies the strict (m, 1)-Ferrers property;
(ii) n < m and exactly one of the following conditions holds:

(ii.1) m <2n — 3 and 2n — 3 — m) divides (n — 3);
(ii.2) m = 2n — 3 and n is odd;
(ii.3) m > 2n — 3.

An interesting consequence of Theorem 3.12 is that the implications among strict
(m, 1)-Ferrers “eventually stabilize”, in the sense that a strict (m, 1)-Ferrers property
implies all strict (p, 1)-Ferrers properties for p large enough. To formally state this
result we need a notion:

Definition 3.13 Given an integer m > 2, the Ferrers stabilizer of m, denoted by
st(m), is the least integer p > m with the property that the strict (m, 1)-Ferrers
property implies the strict (g, 1)-Ferrers property for all g > p.

Roughly speaking, the Ferrers stabilizer of an integer is an index of its “limit
strength” for what concerns the satisfaction of the transitive property: the higher this
number, the less strong the property. For instance, st(2) = 2, st(3) = 3, st(4) = 6,
st(11) = 17, st(23) = 41, st(63) = 117, etc. The formula to compute the Ferrers
stabilizer of an integer is surprisingly simple (Giarlotta and Watson 2018a):

Corollary 3.14 st(m) = 2m — 3 — run(m) for each m > 2.

The notation run(m) in Corollary 3.14 stands for the running index of m, defined by

-1 for even m
run(m) := {0 form =3
max {p <m-—3:{l,..., p} C Divim — 3)} otherwise,
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with Div(m — 3) being the set of divisors of m — 3, including 1. Thus, in particular,
the running index of an odd number m > 5 is the largest integer less than or equal to
’"2_ 3 which leads a running sequence of divisors of m — 3. For instance, run(5) =
run(7) = run(11) = run(13) = run(17) =2, run(9) = run(21) = run(33) = 3,
run(15) = run(27) = 4, run(63) = 6, etc.

The preceding discussion might suggest that weak and strict (m, n)-Ferrers prop-
erties are a mere numerical/combinatorial curiosity, being totally unsuited for poten-
tial applications to real life problems. However, such an impression would be incor-
rect. In fact, (m, n)-Ferrers properties turn out to be linked to money-pump phe-
nomena, which have been carefully analyzed in several fields of research, such as
economics, psychology, and philosophy (Davidson et al. 1955; Gustafsson 2010;
Hansson 1993; McClennen 1990; Piper 2014; Rabinowicz 2008; Restle 1961; Schick
1986; Schumm 1987; Tversky 1969). Originally observed by Davidson et al. (1955),
these phenomena are described by Tversky (1969) in relation to the failure of the
(strict) transitive property:

Transitivity, however, is one of the basic and the most compelling principles of rational
behaviour. For if one violates transitivity, it is a well known conclusion that he is acting, in
effect, as a “money-pump”. Suppose an individual prefers y to x, z to y, and x to z. It is
reasonable to assume that he is willing to pay a sum of money to replace x by y. Similarly,
he should be willing to pay some amount of money to replace y by z, and still a third amount
to replace z by x. Thus, he ends up with the alternative he started with but with less money.

Itis apparent that the presence of a strict cycle of preferences puts the economic agent
at the risk of losing all her money, since she may get involved in another cycle of
money-pump, and continue in this fashion until her financial resources are exhausted.

Admittedly, the above money-pump effect requires strict cycles of preferences,
which are forbidden starting from the satisfaction of the weak (2, 1)-Ferrers prop-
erty (which is equivalent to quasi-transitivity). However, many contributions to the
economic literature show that a money-pump effect may also arise in the presence
of mixed cycles of strict preferences and indifferences: see, e.g., Restle (1961), who
argues that a strict cycle can be easily induced by a mixed cycle using a “small
bonus” approach.”> Moreover, several other ways to induce a money-pump from
mixed cycles of strict preferences/indifferences have been proposed in the literature,
e.g., by Schumm (1987) in a multiple-criteria set up, as well as by Gustafsson (2010)
using the notion of dominance in cases of preferences under uncertainty.>*

In Sect.4.3 of their paper on choices that are rationalizable by (m, n)-Ferrers
preferences, Cantone et al. (2016) introduce a simple model of transactions of goods,
which is well suited to describe the semantics of weak (m, n)-Ferrers properties.
Specifically, they show that, in this model, whenever the binary relation modeling

23For some recent examples of this approach, see Hansson (1993) and Rabinowicz (2008).

240On the other hand, Schick (1986) and McClennen (1990) argue against the possibility of a money-
pump phenomenon, observing that, after transactions between indifferent alternatives, an economic
agent may well refuse a transaction between strictly preferred alternatives. However, as Piper (2014)
notes, the above solutions are based on the (unlikely) circumstance that the economic agent remem-
bers the past and accordingly plans the future.
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the agent’s preference structure satisfies a fixed (m, n)-Ferrers property, there exists
a strategy that prevents the agent from getting involved in mixed indifference/strict
preference cycles of a certain type. In fact, the authors exhibit a numeric relationship
between the level of transitivity of an economic agent’s preference structure (i.e., the
satisfaction of a certain weak (m, n)-Ferrers property) on one hand, and the caution
that she has to exercise whenever indulging in certain types of transactions (i.e., the
avoidance of money-pump phenomena) on the other hand.

A similar type of argument applies to strict (m, 1)-Ferrers properties. To that end,
Giarlotta and Watson (2018a) introduce a simple notion of “cash-value” preference
as follows:

Definition 3.15 Given goods X and Y, if there is a (perfectly divisible and fungible)
good G such that X is weakly preferred to G, and G is weakly preferred to Y, then
we say X is cash-value preferred to Y.

Typically, G will be money. Essentially cash-value preference is the strengthened
weak preference an agent arrives at when required to assign cash-value to goods: X
is cash-value preferred to Y if X is weakly preferred to an amount of cash which is
weakly preferred to Y. Then, we have:

Proposition 3.16 A preference - satisfies the strict (m, 1)-Ferrers property if and
only if we never have a sequence of the type x| > xp > - -+ > X, where x,, is cash-
value preferred to xy.

3.4 (m, n)-Rationalizable Choices

Here we answer question (Q5) in Sect. 2.4, refining the classification of rationalizable
choices provided by Theorem 2.18. This topic is based on a recent paper by Cantone
etal. (2016).

The basic idea of this approach to revealed preference theory is to systematically
separate two issues: (1) the rationalizability of a choice, and (2) the internal structure
of its revealed preference. This goal is achieved by designing a class of axioms of
replacement consistency, all having the same flavor: in fact, these properties exam-
ine how the addition of an item to a menu causes a substitution in the subset of
selected elements. We have already examined a property of this kind in Sect.2.4:
the standard axiom (J) of replacement consistency, which characterizes rationaliz-
able choices with a quasi-transitive revealed preference (see Theorem 2.18(iii)). The
natural extension of this approach to additional properties of the same kind aims
at characterizing rationalizable choices whose revealed preference satisfies different
levels of transitivity.

Specifically, first we examine those cases in which the revealed preference is an
interval order, a semiorder, or a total preorder: this yields an axiomatization that
is alternative to those given by Jamison and Lau (1973, 1975), Fishburn (1975),
Schwartz (1976), and Bandyopadhyay and Sengupta (1991, 1993). Successively,



New Trends in Preference, Utility, and Choice ... 31

in order to complete a taxonomic classification of rationalizable choices, we also
characterize choices with a weakly (m, n)-Ferrers revealed preference by means of
additional axioms of replacement consistency. In this way, we provide a uniform
treatment of the topic by introducing properties of choice consistency that belong to
a single category.

To start, we state three new axioms of replacement consistency:

O Property (pg)  (Ferrers Replacement Consistency):
Ifx ec(A),ye A, zec(B),and z ¢ c(B U {y}),thenx € c(B U {x}).

O Property (pst)  (Semitransitive Replacement Consistency):
Ifyec(A),ze A,zec(B),and y ¢ c(AU{x}), thenx € c(B U {x}).

O Property (pr) (Transitive Replacement Consistency):
If yec(A)and y ¢ c(A U {x}), then c(A U {x}) = {x}.

(As usual, a universal quantification over menus and items is implicit.)

The rationale of the above properties is similar to that of the standard axiom (p)
of replacement consistency, in the sense that, under suitable conditions, a new item
“replaces” an old item in the selection taste of the economic agent. The statement of
(pt) only involves two items and a single menu, hence its semantics is quite simple
to understand. In fact, the antecedent of (py) is exactly the same as that of (p), but its
consequent is drastically stronger: if y is selected from A but is rejected from it as
soon as x is adjoined to A, then x “fully replaces” y in the selection taste of the agent,
being the unique item selected from the larger menu A U {x}. On the other hand, the
rationale of axioms (pr) and (pst), despite being of the same nature, is more subtle,
since their statements simultaneously involve three items and two menus. To give
a better insight into their semantics, in what follows we reformulate all axioms of
replacement consistency (p), (pr), (pst), and (pt) using a model-theoretic notation.

First, we associate to any choice correspondence c: §£2 — 2 two new preference
relations 7= and &>, both inspired by the replacement paradigm:

xrty & @AeR) yeAd A (AU = (x)
x>y &L FAeR) yee(d) Ay dc(AUX)).

Second, we employ the following model-theoretic notation:

AEx7Z,.y standsfory € A A x € c(A),
AlEx 2z ystandsfory € A A c(AU{x}) = {x},
AExD.y standsfor y € c(A) A y ¢ c(AU{x}),

where A € £2 and x, y € X. According to the standard model theory semantics of
the employed notation, A = x ~, y means that menu A “witnesses” a revealed
preference of x over y; the meaning of A =x 7=} y and A = x >, y is similar.
Finally, we reformulate the four axioms of replacement consistency using the above
notation:
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() AExD.y = AU} EXZy
() (AExzcy) A (BEyEez) AzecB) = BUfx) Ex 2z
(ps) (AEXDcy) A (AEYZcz) Az€c(B) = BUfx}ExZcz
(pv) AExD.y = AU} ExZ Y.

Note that this alternative formulation of the four axioms of replacement consistency
reveals a complementarity of (pr) and (pst), since they both state a type of “transitive
coherence” of the two binary relations . and >,

One of the main results in Cantone et al. (2016) connects these properties of
replacement consistency to levels of transitivity of the rationalizing preference, thus
partially answering question (Q5):

Theorem 3.17 Let c: 2 — $2 be a rationalizable choice correspondence, and -
its revealed preference. The following equivalences hold:

(1) 7= is quasi-transitive <= c satisfies axiom (p);
(ii) Z.is Ferrers <= c satisfies axiom (pg);
(iii) . is semitransitive <= c satisfies axiom (pst);
(iv) . is transitive <= c satisfies axiom (py).

Theorem 3.17 readily yields

Corollary 3.18 The following equivalences hold for an arbitrary choice correspon-
dence c:

(i) c is rationalizable by a preorder <= properties (c), (), and (p) hold;
(i1) c is rationalizable by an interval order <= properties (), (), and (pF)
hold;
(iii) c is rationalizable by a semiorder <= properties (), (), (oF), and (pst)
hold;
(iv) c is rationalizable by a total preorder <= properties (o), (), and (pt)
hold.

The analysis conducted in Cantone et al. (2016) goes further in the direction
of classifying rationalizable preferences in terms of the transitive structure of their
revealed preferences. In fact, the authors design, for each relevant pair (m, n) of
positive integers, a property (p,, ) of (m, n)-replacement consistency, finally proving
the following result:

Theorem 3.19 A choice correspondence is rationalizable by an (m, n)-Ferrers pref-
erence if and only if properties (&), (), and (p,,.,) hold for it.

We refer the reader to the paper (Cantone et al. 2016) for further details about the
described approach, as well as for future directions of research on the topic.

25For the formal notion of the transitive coherence of two binary relations, see Sect.4.1 on bi-
preferences.
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3.5 Resolutions of Choices

In this section, which is entirely based on a very recent research by Cantone et al.
(2018a), we introduce a novel notion for choices, called “resolution”. This notion
is designed to better understand the inner structure of an observed choice behavior,
because it provides a constructive way to possibly decompose the overall selection
process in terms of smaller choices.

The general concept of resolution originated, however, from a different field of
research. In fact, resolutions were first introduced by Fedorcuk (1968) for the class of
topological spaces. The successive development of this notion by Watson (1992) has
proven to be very useful in providing a common point of view of many seemingly
different topological spaces (as well as for linearly ordered spaces (Caserta et al.
2006)): see the large amount of references in Watson (1992). The idea underlying
the notion of topological resolution is natural: given a base topological space, a family
of fibre topological spaces indexed by the base space, and a family of continuous
maps also indexed by the base space, the output is a larger topological space, the
resolution, in which every point is substituted by the associated fibre space. For
instance, the double arrow space—i.e., the lexicographic product R x¢x 2 endowed
with the order topology, examined by Wakker (1988) in his study on lexicographic
preferences—can be seen as a resolution of R at all points x into the discrete space
2 = {0, 1} by the functions f;: R\ {x} — 2, defined by f,(x") :=0if x’ < x, and
fr(x) =1ifx" > x.

Cantone et al. (2018a) adapt the notion of topological resolution to choice theory:
in this new setting, a resolution describes how to build up a complete choice from
independent choices on smaller ground sets. In a nutshell, the proc