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Abstract Pedestrian behaviours tend to depend on the type of facility. Accurate
predictions of pedestrian movement in complex geometries (including corridor,
bottleneck or intersection) are difficult to achieve for models with few parameters.
Artificial neural networks have multiple parameters and are able to identify various
types of patterns. They could be a suitable alternative for forecasts. We aim in
this paper to present first steps testing this approach. We compare estimations of
pedestrian speed with a classical model and a neural network for combinations of
corridor and bottleneck experiments. The results show that the neural network is
able to differentiate the two geometries and to improve the estimation of pedestrian
speeds.

1 Introduction

Microscopic pedestrian models are frequently used in traffic engineering to predict
crowd dynamics. Classical operational approaches are in general decision-based,
velocity-based or force-based models (see [24] and the references therein). Such
models consider physical as well as social or psychological factors. They are basic
rules or generic functions depending locally on the environment. Few parameters
having generally physical interpretations allow to adjust the model.
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Before applying simulations to make predictions, the model parameters have to
be calibrated and the models have to be validated, experimentally or statistically
by using real data. The validation can be carried out by checking whether the
models are able to describe the dynamics accurately for configurations different
from the ones used for the calibration (cross-validation) [28]. A good model should
provide realistic dynamics in different conditions (i.e. different geometries, initial
or boundary conditions) for the same setting of the parameters.

The parameter for the convection part of the models (for instance, desired speed
or time gap) can be referred to the fundamental diagram (FD), a phenomenological
relation between speed and surrounding distance spacing to the neighbours and
obstacles [25]. This relation can be explicitly used to model the speed of the
pedestrian and is then related to optimal velocity, a concept borrowed from traffic
modelling [2], see, e.g., [15, 18, 19]. It is also used as an implicit relation (see,
e.g., [3, 10, 11]) that is determined by considering uni-dimensional flows [4].
By neglecting anisotropic effects in the models (such as the vision-based effect),
microscopic models can be characterised at an aggregated level by fundamental
diagrams determining a speed to a local density given by the mean distance spacing
to the closest neighbours [6]. In the following we refer a model simply based on a
fundamental diagram as FD-based model.

Despite of their simplicity, microscopic models can describe realistic pedestrian
flows, as well as self-organisation phenomena such as lane formation or alternation
of flow at a bottleneck in bi-directional streams [12, 24]. However, the prediction
of pedestrian movement in complex spatial structures (e.g. buildings like stadia or
stations) remains problematic. Observations show that pedestrians tend to adapt
their behaviour according to the facilities [5]. For instance, the flow tends to
locally increase at bottlenecks [20, 26, 30]. This leads to geometry-dependent
characteristics and makes aggregated models based on a single fundamental diagram
unable to accurately describe transitions between different types of facilities (such
as corridor, T-junction, crossing or bottleneck), as well as from platforms to stairs.

An alternative data-driven approach for the prediction of pedestrian dynamics in
complex geometries could be provided by using artificial neural networks (ANN).
Neural networks have already proven their efficiency for motion planning in robotic
or autonomous vehicles [13, 23], and start to be used for pedestrian dynamics as well
[1, 6, 8, 16]. Such approach is data based and, by opposition to classical models,
has artificially a very large number of parameters with no explicit physical meaning
(see Fig. 1). ANN can reproduce complex patterns that FD-based models, describing
dynamics at an aggregated level, cannot.

The aim of this work is to evaluate whether ANN could accurately describe
pedestrian behaviour for different types of geometries. A feed-forward neural
network is compared to a FD-based model with data gained by experiments
at bottleneck and corridor with closed boundary conditions (in the following
‘bottleneck’ and ‘ring’ experiments) [7, 27]. The performances (i.e. the fundamental
diagram) significantly differ according to the spatial structure. Training and testing
(cross-validation) are carried out for different combinations of bottleneck and ring
experiments. The results show that the neural network is able to identify the spatial



Prediction of Pedestrian Speed with Artificial Neural Networks 329

INPUT
State of the system at t

Positions/velocities

of surroundding neigh-

bors and obstacles

OUTPUT
State of the system at t + 1

Position, velocity or

acceleration rate of

the pedestrians

Classical models

Acc = f(xi, xj , ...) or Speed = g(xi, xj , ...)

with parameters v0, d0, τ , ...

Explicit nonlinear function

Artificial neural networks

Non-explicit nonlinear function

Fig. 1 Minimalistic illustrative scheme for the distinction between FD-based models, which are
explicit non-linear functions calibrated by few meaningful parameters, and neural networks, for
which the non-linear function is data based and has deliberately a large number of parameters

structure of the facility and improve the prediction in case of mixed structures. The
data and the models used are presented in Sects. 2 and 3. The fitting of the neural
network is proposed in Sect. 4 while the comparison to the FD-based model over
combinations of bottleneck and ring experiments is given in Sect. 5. Conclusions
are presented in Sect. 6.

2 Models

The pedestrian modelling approaches are continuous speed models based on the
K = 10 closest neighbours. We denote in the following (x, y) as the position of the
considered agent, v as its speed and

(
(xi, yi), i = 1, . . . , K

)
as the positions of the

K closest neighbours.
The first modelling approach is the Weidmann model for the fundamental

diagram [29] for which the speed is a function of the mean spacing (i.e. the local
density)

v = FD(s̄K, v0, T , �) = v0

(
1 − e

�−s̄K
v0T

)
. (1)

Here s̄K = 1
K

∑K
i=1

√
(x − xi)2 + (y − yi)2 is the mean spacing with the K = 10

closest neighbours while the time gap T , the pedestrian size � and the desired speed
v0 are the parameters of the model.

The second modelling approach is a feed-forward artificial neural network with
hidden layers H

v = NN
(
H, s̄K, (xi − x, yi − y, 1 ≤ i ≤ K)

)
. (2)

The network has 2K + 1 inputs: the mean spacing and the K relative positions. The
number of parameters in the network depends on the number of nodes in the hidden
layers.
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3 Data

Two datasets obtained in laboratory conditions are used to compare the FD-based
and ANN modelling approaches. The data are available on the internet (see [27]).
They are part of the online database of pedestrian experiments [7]. The first dataset,
denoted R and called the ring experiment, comes from an experiment done on
a closed geometry of length 30 m and width 1.8 m for different density levels
(ranging from 0.25 to 2 ped/m2—the participant number ranges from 15 to 230).
The second dataset, denoted B, is an experiment for a bottleneck geometry. The
width of the system in front of the bottleneck is 1.8 m while the width of the
bottleneck varies (from 0.70, 0.95, 1.20 to 1.80 m—150 participants by experiment).
See [27] for details on the data. The flow and density are measured every 10 s to deal
with pseudo-independent measurements. Each sample contains around N = 2000
observations.

The two datasets describe two different interaction behaviours (see Fig. 2). The
speed for a given mean spacing tends to be higher in the bottleneck than on the
ring when the system is congested. Consequently the estimation of the time gap
significantly differs according to the geometry (see Table 1).
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Fig. 2 Observations of the pedestrian speeds as function of the mean spacing with the ten closest
neighbours for the ring and bottleneck experiments. Two distinct relationships can be identified

Table 1 Fitting of the time
gap T , the pedestrian size �

and the desired speed v0
parameters of the Weidmann
model on the ring and
bottleneck experiment

Experiment R B

� (m) 0.64 0.61

T (s) 0.86 0.48

V0 (m/s) 1.60 1.58

The time gap significantly differs
according to the geometry
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4 Fitting the Neural Network

The neural network is fitted with cross-validation and bootstrap [14, 17] over 50 sub-
samples. The training is performed using half of the data while the network is tested
on the remaining. The training is carried out with the back-propagation method [22]
on the normalised data, by minimising from the top to the bottom of the network the
mean square error

MSE = 1

N

∑

i

(
vi − ṽi

)2
, (3)

with vi the observed speed, ṽi the predicted speed and N the number of observa-
tions. The computation is done with the statistical software R [21] and the package
neuralnet [9].

The different hidden layers (1), (2), (3), (4,2), (5,2), (5,3), (6,3), (10,4) and
(12,5) are tested (see Fig. 3). As expected, the training error tends to decrease as
the complexity of the network increases, while the testing error shows a minimum
before overfitting. Such a minimum is reached for the single hidden layer H = (3)
with three nodes. Note that here the calibration is done on a combination of the ring
and bottleneck experiment datasets. Yet similar results are obtained when calibrating
separately on the ring and on the bottleneck datasets.
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Fig. 3 Training and testing errors according to different hidden layer in the network. The
curves correspond to the average of 50-bootstrap estimates while the bands describe the standard
deviation. The training error systematically decreases as network complexity increases while the
testing error admits a minimum for hidden H = (3)



332 A. Tordeux et al.

5 Model Comparison

The calibrated FD-model and the trained neural network with H = 3 are compared
to different combinations of data of the ring R and bottleneck B experiments. Here
the first argument in the notation ‘. / .’ corresponds to the training phase, while the
second argument corresponds to the testing phase. The testing errors are presented
in Fig. 4. The modelling approaches are firstly analysed on the identical sets R/R
and B/B. Here the network is slightly better than the FD-model. For the ring
experiment, the performances are relatively homogeneous and the MSE is only
approximately 5% smaller by using the network. While for the bottleneck, the
performances fluctuate more and the improvement is more significant (around 15%).
The improvement is also significant when the approaches deal with unobserved
situations, i.e. for the datasets R/B and B/R (around 15%). The best results are
obtained when training the models on the combination of ring and bottleneck
experiments, i.e. the scenarios R/R+B, B/R+B and R+B/R+B. As shown in Fig. 5
and Table 2, the network is able in such situation to partially differentiate the two
geometries and to improve the speed estimation by a factor of approximately 20%.
The orders of improvement are similar to the ones obtained in [1] with the social
LSTM neural network and the social force pedestrian model [11].
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Fig. 4 Testing error of the FD-model and the neural network according to combinations of the ring
R and bottleneck B experiments. The curves correspond to the average of 50-bootstrap estimates
while the bands describe the standard deviation. The improvement of the speed is significant by
using the network when the experiments are mixed (i.e. R+B)
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Fig. 5 Prediction by the neural network of the pedestrian speed for the R+B/R+B training and
testing datasets. The network is able to, at least partially, identify the two geometries. As observed
in the real data, the speed for a given mean spacing is in average in the bottleneck higher than the
flow in the corridor for congested situations

Table 2 Fitting of the time gap T , the pedestrian size � and the desired speed v0 parameters for
the data predicted by the neural network

Experiment R B

� (m) 0.63 0.66

T (s) 0.68 0.50

V0 (m/s) 1.44 1.51

6 Conclusion

The data-driven approach using an artificial neural network is able to distinguish
pedestrian performances in ring and bottleneck experiments from the relative
positions of the K = 10 closest neighbours and the mean spacing. Consequently,
we observe that the speed prediction for mixed data can be improved by a factor up
to 20% by using a network compared to an aggregated model based on fundamental
diagrams.

The results are first steps suggesting that neural networks could be suitable tools
for the prediction of pedestrian dynamics in complex geometries. Yet, the simulation
of the networks remains to be carried out over full trajectories and compared to
the performances obtained with existing models and notably anisotropic models.
Furthermore, other inputs, hidden layers and training on different geometries have
to be investigated. Especially, one remains to test the complexity necessary to
the network for accurate precisions regarding to the size and heterogeneity of the
datasets.
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