
Chapter 12
White-Box Cryptography:
A Time-Security Trade-Off
for the SPNbox Family

Federico Cioschi, Nicolò Fornari, and Andrea Visconti

12.1 Introduction

Traditionally, cryptographic primitives are designed to protect data and keys in
the black-box attack model, in which the communication end points are trusted,
meaning that the cipher execution (encryption/decryption, instantiation with a secret
key) cannot be observed or tampered with. However, the assumptions made in
the past may often not be applicable in the current technology, such as DRM
applications, Pay Tv boxes, and smartphones. For this reason, we refer to the white-
box model as an attack model in which the adversary has total visibility of the
software implementation of the cryptosystem, and full control over its execution
platform.

White-Box Cryptography was originally defined [1] as an obfuscation technique
intended to implement cryptographic primitives in such a way that an adversary
having full access to the implementation and execution platform is unable to extract

Some of this work was done as part of the author Federico Cioschi’s BSc thesis, Department of
Computer Science, Università degli Studi di Milano.

Some of this work was done as part of the author Nicolò Fornari’s MSc thesis, Department of
Mathematics, University of Trento.

F. Cioschi · A. Visconti (�)
Department of Computer Science, Università degli Studi di Milano, Milano, Italy
e-mail: federico.cioschi@studenti.unimi.it; andrea.visconti@unimi.it

N. Fornari
The Akkademy, Geneva, Switzerland
e-mail: nicolo.fornari@akka.eu

© Springer Nature Switzerland AG 2019
I. Woungang, S. K. Dhurandher (eds.), 2nd International Conference on Wireless
Intelligent and Distributed Environment for Communication, Lecture Notes
on Data Engineering and Communications Technologies 27,
https://doi.org/10.1007/978-3-030-11437-4_12

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11437-4_12&domain=pdf
mailto:federico.cioschi@studenti.unimi.it
mailto:andrea.visconti@unimi.it
mailto:nicolo.fornari@akka.eu
https://doi.org/10.1007/978-3-030-11437-4_12


154 F. Cioschi et al.

key information. One may wonder why the adversary should be interested in
recovering the key when he/she controls the encryption/decryption software and
can use it to encrypt/decrypt data. The reader should be aware that such software
might be subject to restrictions as in the case of DRM applications. If a malicious
user is able to recover the secret key, then she/he can encrypt or decrypt the data
with any software on any host. In the case of applications enforcing DRM schemes
(for example, Sky Go [2], Netflix [3], and Spotify [4]), a key recovery attack would
allow an adversary to illegally distribute content to non-subscribers of the service
offered by the application. Notice that the definition of white-box cryptography
as in [1] is limited to key recovery attempts and does not take into account other
attacks such as code lifting, where the attacker attempts to isolate the program code
from the implementation environment and directly uses the code itself as a larger
key. Therefore, we refer to [5] according to which a white-box implementation
of cryptographic primitives does not present any advantage for a computationally
bounded adversary in comparison to the adversary dealing with the implementation
as a black-box.

White-Box implementations of DES and AES were first proposed by Chow et al.
in [6] and [1]. Their approach was to find a representation of the cryptographic
algorithm as a network of look-ups in randomized and key-dependent tables.
These papers, as well as some others [7, 8], are subjected to algebraic attacks [9–
12]. However, such attacks require knowledge of the internal data representation
used by the implementation, meaning in practice significant reverse engineering
efforts.

A breakthrough from the attacker’s side came with the work of Bos et al. [13]
who proposed two new attack paradigms which can be automated and do not require
reverse engineering efforts. The first attack is known as differential fault analysis
(DFA) and can be regarded as the software counterpart of fault-injection attacks
on cryptographic hardware. The second one, known as differential computational
analysis (DCA), can be thought as a side-channel attack adapted to the white-box
attack model.

The DCA attack collects software execution traces for several plaintext encryp-
tions and uses the collected data to perform an analysis similar to the well-known
differential power analysis (DPA) to recover the secret key. Since the software
traces contain time demarcated physical addresses of memory locations being read
and written to, they leak the values of the inputs to the various look-up tables
accessed during the white-box encryption operation, which leak enough information
to perform the power attack. In [14], Banik et al. further investigate the DCA attack
proposing software countermeasures such as randomization of the locations of the
look-up tables in memory, in addition to control flow obfuscation. They also develop
an attack based on software traces called zero difference enumeration (ZDE). The
attack records software traces for several pairs of strategically selected plaintexts
and performs a statistical test on the difference of the traces to extract the secret key.

Whereas all published white-box implementations for standard cryptographic
algorithms such as DES and AES are prone to practical key extraction attacks as
just described, there have been two dedicated design approaches for white-box block



12 White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family 155

ciphers: ASASA by Birykov et al. [15] and SPACE by Bogdanov and Isobe [16].
While ASASA suffers from decomposition attacks, SPACE presents a design for
which security against key extraction in the white-box context reduces to the well-
studied problem of key recovery for block ciphers in the standard black-box setting.
However, SPACE imposes a sometimes prohibitive performance overhead in the
real world as it needs many AES calls to encrypt a single block. In [17], Bogdanov
et al. address the issue by designing a family of dedicated white-box block ciphers
SPNbox and a family of underlying small block ciphers with software efficiency
and constant-time execution in mind.

In this chapter, we modify the underlying small block ciphers to increase the
number of bits of the key used in each round. This approach can be exploited to make
the algorithm faster (we are using the same number of bits of the key reducing the
number of rounds) or more secure (we are using the same number rounds increasing
the number of bits of the key) than previous.

The remainder of the chapter is organized as follows. In Sect. 12.2, we briefly
introduce the white-box implementations of well-known algorithms such as AES.
In Sects. 12.3 and 12.4, we describe two families of block ciphers, i.e., the SPACE
family and the SPNbox family, designed to be white-box friendly. In Sect. 12.5, we
(a) suggest how to speed up the SPNbox family and (b) evaluate the performance of
the suggested approach. Finally, discussion and conclusions are drawn in Sect. 12.6.

12.2 White-Box Constructions and Attacks

The idea to avoid key recovery attacks is to mathematically fuse the key with the
encryption routine, formally, given a block cipher φ, one wants to construct ψ :
F

n → F
n such that, fixed a key k̄ ∈ F

l , then φ(x, k̄) = ψ(x) ∀x ∈ F
n. Clearly, the

secret key k should not be easily retrievable from an attacker knowing φ and ψ .

Example Let φ,ψ be defined as:

φ(x) := k + x mod 4 x ∈ {0, . . . , 3}
ψ(x) := S[x] S = [3, 0, 1, 2]

With k = 3, we can think of ψ as a trivial white-box implementation of φ. In terms
of implementation, we can think of ψ as a look-up table.

The first white-box construction for AES was proposed by Chow et al. in [1].
Their work came from a simple idea: given a fixed encryption key and a block
cipher, i.e., AES-128, building a look-up table mapping all the possible plaintext to
the respective ciphertext is secure against key extraction. Of course for a mapping
F

128 → F
128 such construction is utterly unfeasible if we use only a huge table.

However, many small tables could be used instead.
The approach taken by Chow et al. was to represent a block cipher φ as a network

of key-dependent look-up tables (see Fig. 12.1 and [1] for details).



156 F. Cioschi et al.

Fig. 12.1 Table-based
white-box implementation:
the key k is scrambled by a
network of look-up tables

Table 12.1 To the best of our knowledge for each white-box AES implementation available in the
literature, there exists an efficient attack

White-box AES impl. Cryptanalysis Work factor

Chow [1] [9] 230

Karroumi [7] [10, 12] 222

Xiao Lai [8] [10] 232

Xiao Lai [8] generic linear version [10] 238

Xiao Lai [8] affine/non-affine version [11] At least 249

Chow’s pioneering work became a reference point for some of the subsequent
proposals such as [7] and [8]. For each construction however, an attack was
published as summarized in Table 12.1.

Interestingly, the attacks in Table 12.1 require knowledge of the internal data
representation used by the implementation. In practice, the level of implementation
knowledge required by the attacker is only attainable through significant reverse
engineering efforts.

A significant breakthrough from the attacker’s perspective became possible by
shifting the focus from pure algebraic attacks, as in Table 12.1, to side channel
attacks. In [13], Bos et al. describe new approaches to assess the security of white-
box implementations. These approaches require neither knowledge about the look-
up tables used nor expensive reverse engineering effort.

Bos et al. introduce a differential fault analysis (DFA) attack which is the
software counterpart of fault-injection attacks on cryptographic hardware (for more
details regarding fault-injection attacks, see [18]). They also describe a differential
computational analysis (DCA) attack, which is the software counterpart of the
differential power analysis for cryptographic hardware (for more details regarding
DPA attacks, see [19]).



12 White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family 157

There are two fundamental concepts that make DFA and DCA attacks so
effective:

• Chow’s construction is a white-box implementation of AES and, despite being
based on look-up tables, the regular structure of AES (SubBytes, Shiftrows,
MixColumns, and AddRoundKey) is still preserved.

• Traditional side channel attacks such as fault injection and differential power
analysis are extremely more effective in the white-box attack model since the
attacker has full control over the execution platform and can thus perform direct
measures.

Considering the effectiveness of DCA and DFA attacks, it is time to wonder whether
AES is a suitable cipher in the white-box attack model and to consider alternative
approaches. Instead of trying to modify well-known ciphers, designed in the black-
box model, in order to be resistant in the white-box attack model, it is worth trying
to design new ciphers with the white-box attack model in mind. An example of such
cipher is SPACE, recalled in Sect. 12.3.

12.3 SPACE

SPACE is a block cipher proposed by Bogdanov and Isobe in [16]. This cipher
presents an interesting design for which security against key extraction in the white-
box context reduces to the well-studied problem of key recovery for block ciphers
in the standard black-box setting.

12.3.1 SPACE Design

SPACE is a generalized Feistel network [20] which encrypts a message m ∈ F
n with

a secret key k ∈ K to a ciphertext c ∈ F
n. There are three positive integers that we

will often use in the description of SPACE: n, na , and nb. In [16], Bogdanov and
Isobe fix n = 128, na ∈ {8, 16, 24, 32}, and nb = n − na .

The encryption works as follows:

1. Let Xr be the state at round r . The state is seen as l vectors xr
i ∈ F

na :

Xr = {xr
0, xr

1, . . . , xr
l−1}

where l = n/na .
2. X0 is initialized with the value of the plaintext message m.



158 F. Cioschi et al.

3. For r ∈ {1, . . . , R + 1}, the state updates as follows:

Xr+1 = (
F r

na
(xr

0) ⊕ (xr
1 ||xr

2 || . . . ||xr
l−1)

) ||xr
0

where F r
na

: Fna → F
nb is the Feistel function and || denotes concatenation.

4. XR+1 is the ciphertext c.

The encryption is simple: each round takes xr
0 as input to the Feistel function,

then adds F r
na

(xr
0) to the rest of the state (xr

1 || . . . ||xr
l−1). The outcome of this

operation is saved as the first nb bits of the new state, while the last na are filled
by xr

0.

12.3.2 Feistel Function as a Look-Up Table

Let πt be a projection, with t ∈ {1, . . . , 2n}, defined as:

πt : F
2n → F

t

(x1, . . . , x2n) �→ (x1, . . . , xt )

If we think of x ∈ F
2n as a vector of bits, we can use πt to select the t most

significant bits of x.

Definition 1 Let the Feistel function F r
na

used by SPACE be defined as:

F r
na

(x) : Fna → F
nb

x �→ (πnb
(φk(

nb︷ ︸︸ ︷
0, . . . , 0 ||x))) ⊕ r

where φk is a block cipher and r is the round number represented in binary using nb

digits, thus seen as an element of Fnb .

Let us isolate the part of the Feistel function that is round independent.

Definition 2 Let F ′
na

be the round independent part of Fna , defined as:

F ′
na

: Fna → F
nb

x �→ πnb
(φk(

nb︷ ︸︸ ︷
0, . . . , 0 ||x))

Now observe that, compared to traditional Feistel networks, SPACE does not use
round keys. There is one secret key k used by φk . Such secret key cannot be
hardcoded, hence F

′
na

is implemented as a look-up table. The reader might wonder



12 White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family 159

Fig. 12.2 The value of each
image of F ′

na
(x) is saved as a

row in a look-up table. Each
row is indexed by the value of
x, x ∈ {0, . . . , 2na − 1}

Table 12.2 Table size for
different values of na and
comparison with other
white-box implementations

Cipher Table size

SPACE-(8,300) 3.84 KB

SPACE-(16,128) 918 KB

SPACE-(24,128) 218 MB

SPACE-(32,128) 51.5 GB

AES (Chow et al.) 752 KB

AES (Xiao Lai) 20.5 MB

We keep the notation SPACE(na ,R) as in [16], where R is the
suggested number of rounds

the reason for designing SPACE over another block cipher φk when φk could be
implemented as a look-up table directly. It happens that this second option is not
possible. If we were to implement φk as a look-up table, we would need 2n · n bits
of space:

n
︷ ︸︸ ︷
(0, . . . 0, 0) �→

n
︷ ︸︸ ︷
φk(0, . . . 0, 0)

(0, . . . 0, 1) �→ φk(0, . . . 0, 1)
...

(1, . . . 1, 1) �→ φk(1, . . . 1, 1)

Notice that for n = 128 such look-up table would be infeasible to construct. The
idea of Bogdanov and Isobe (see Fig. 12.2) is to truncate the output of φk , computed
over a smaller domain:

Since the first nb zeros are used as padding in order to form an n-bit input to
provide to φk , there is no need to store them, hence the look-up table implementation
requires 2na · nb bits. In Table 12.2, we report the table size of SPACE for na ∈
{8, 16, 24, 32}.

It is self-evident that not all values of na are apt for a real-world application:
na = 32 requires 51.5 GB of storage and even na = 24, requiring 218 MB, is not
suitable for all applications. However, na = 16 requires only 918 KB, placing itself
at the same level of Chow [1] as storage size, see Table 12.2.



160 F. Cioschi et al.

12.4 The SPNbox Family

As shown in Sect. 12.3, the SPACE family of space-hard block ciphers [16], using a
Feistel structure, offers interesting security properties but it prevents the exploitation
of parallel execution. However, as described in [17], using an SPN-type design it is
possible to satisfy the requirement of parallelism maintaining a sufficiently high
level of space hardness. Therefore, in 2016 Bogdanov et al. described the SPNbox
[17] family of space-hard block ciphers, whose structure is shown in Fig. 12.3. Let
us explain this approach more formally.

SPNbox-nin is a substitution–permutation network (SPN) with a block length of
n bits, a k-bit secret key, and based on nin-bit substitution boxes.

State The state of SPNbox-nin can be represented as a vector of t = n/nin

elements of nin bits each:

X = {X0, . . . , Xt−1}

Key Schedule The k-bit master key is expanded—i.e., k0, . . . , kRnin
round keys of

nin bits—using a key derivation function (KDF)1:

(k0, . . . , kRnin
) = KDF(k, nin · (Rnin

+ 1))

Round Transformation We encrypt a plaintext X0 and we get a ciphertext XR , by
applying the following R transformations—e.g., R = 10:

XR = (©R
r=1(σ

r ◦ θ ◦ γ ))(X0)

Fig. 12.3 The SPNbox structure with a zoomed view on the inner round

1For example, PBKDF2 [21–23], ARGON2 [24], Scrypt [25], and so on.



12 White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family 161

The nonlinear layer γ is a substitution layer in which t key-dependent identical
bijective nin-bit S-boxes are applied to the state:

γ : F(2nin)t → F(2nin)t

(X0, . . . , Xt−1) �→ (Snin
(X0), . . . , Snin

(Xt−1))

These identical S-boxes are realized by an internal small block cipher of block
length nin bit.

The linear layer θ , a diffusion layer, applies a t × t MDS matrix to the state:

θ : F(2nin)t → F(2nin)t

(X0, . . . , Xt−1) �→ (X0, . . . , Xt−1) · Mnin

The affine layer σ r adds round-dependent constants to the state:

σ r : F(2nin)t → F(2nin)t

(X0, . . . , Xt−1) �→ (X0 ⊕ Cr
0, . . . , Xt−1 ⊕ Cr

t−1),

with Cr
i = (r − 1) · t + i + 1 for 0 ≤ i ≤ t − 1.

The Underlying Small Block Ciphers The key-dependent identical nin-bit S-
boxes in the γ layer are block ciphers themselves. They are based on the round
transformation of AES and consist of Rnin

rounds operating on a state x =
{x0, . . . , xl−1} of l bytes, where l = nin/8 2:

Snin
: F(28)l → F(28)l

x �→ (©Rnin

i=1 (AKi ◦ MCnin
◦ SB))(AK0(x))

Notice that: (a) the number of rounds Rnin
suggested in [17] is R32 = 16,

R24 = 20, R16 = 32, and R8 = 64; (b) different matrices are adopted in the MCnin

round transformation. More precisely, for nin = 32 we use the MC matrix of AES,
while in the other cases a sub-matrix of the original one is used. Interestingly, when
nin = 8, MCnin

represents the identity mapping. Notice that, as it happens for the
Feistel function in SPACE, in the white-box setting the small block ciphers Snin

are
implemented as look-up tables.

2SB, MC, and AK refer to the AES transformations SubBytes, MixColumns, and AddRoundKey,
respectively.



162 F. Cioschi et al.

12.5 Our Contribution

Three possible issues can be identified in the solution presented in Sect. 12.4.

1. In [17], the authors proposed a black-box implementation of the cipher that uses
the AES-NI instructions. During the encryption phase, when nin = 32 bits, the
A32 matrix used by the MixColumns transformation is the same as that used in
AES MixColumns. This is true also for nin = 24 and nin = 16. However, in these
cases the A32 matrix is not fully used, but two sub-matrices of A32—respectively
called A24 and A16—are involved in the computation. On the contrary, a different
approach has to be adopted in the decryption phase. Let us suppose a scenario
in which several clients have to communicate with a server. In this scenario, a
black-box implementation of the decryption system may be needed (server side).
Such decryption requires the inverse matrices of A24 and A16 which are not sub-
matrices of the inverse of A32. The problem lies on the aesdec instruction,
provided by AES-NI for decryption, because this instruction is based only on the
inverse matrix of A32. In this case, it is not possible to use AES-NI instructions
for nin = 24, 16.

2. As mentioned in [17], the aesenc3 instruction implies an overhead which
depends on the block size (nin). Since increasing parts of the instruction state are
not used, it may happen that at halving of nin the overhead doubles. Therefore,
the number of aesenc instructions needed to encrypt a 128-bit SPNbox state
doubles too.

3. Finally, as stated in [17], a possible drawback could be an efficiency bottleneck
about the key mixing in the small internal block ciphers. Indeed, the smaller the
block size, the more rounds are needed to avoid meet-in-the-middle attacks. This
raises the question of how to design an internal block cipher with a faster and
secure key mixing.

We try to face these issues by designing an internal block cipher with a faster and
secure key mixing. In particular, we modify the inner round (shown in Fig. 12.3) and
increase the number of bits of the key used in each round. In doing so, we suggest
to replace the classical ShiftRow transformation, omitted in SPNbox [17], with a
key-dependent circular bit shift. More precisely, if nin = 8, then three bits of the
key are required to execute a circular shift on the state (see Fig. 12.4).

This approach allows us to use 11 bits of the key in each round i: eight of
them for the AKi transformation and three for the BitShift. With a larger state, i.e.,
16, 24, 32 bits, an independent circular shift is performed on each byte of the state.
This means that when nin = 16, 24, 32, the number of bits of the key used are 22,
33, and 44, respectively. Although the modified internal structure of AES precludes

3Provided by AES-NI to make one round of AES encryption.



12 White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family 163

Fig. 12.4 A BitShift
transformation to increase the
number of bits of the key
used

Fig. 12.5 A modular
multiplication to increase the
number of bits of the key
used

the possibility to make use of the fast AES-NI instructions, the idea suggested can
be exploited in two ways:

• If we leave the total number of bits of the key unchanged and increase the number
of bits used in each round, thus we are reducing the number of inner rounds, that
means speeding up the small internal block cipher;

• If we increase the total number of bits of the key used and leave the number of
inner rounds unchanged, thus we are providing the possibility to engineer a block
cipher with an improved level of security against meet-in-the-middle attacks.

A further possibility is to add a key-dependent polynomial multiplication at the
end of each round. This approach can be implemented with, or without, the BitShift
transformation (see Fig. 12.5), allowing the use of the AES-NI instructions. In both
cases, the state is multiplied by αj , where α is a primitive element of F(2nin) and j

is an nin-bit exponent provided by the KDF.



164 F. Cioschi et al.

Table 12.3 Comparison of
the γ layer with and without
the BitShift transformation

γ γ with BitShift

nin = 32, encryption 1.178316 s 0.955048 s

nin = 32, decryption 1.447580 s 1.168507 s

nin = 16, encryption 3.946748 s 3.222751 s

nin = 16, decryption 4.193261 s 3.308678 s

nin = 8, encryption 2.547156 s 2.192452 s

nin = 8, decryption 2.564750 s 2.250102 s

12.5.1 Performance Evaluation

We compared the performance of the internal layer γ in the black-box setting with
and without BitShift transformation for different nin sizes. We run our code on

a laptop equipped with Ubuntu 18.04.1 LTS 64 bit, 8 GB RAM, and an Intel�
CoreTM i3-330M @ 2.13 GHz processor with 3 MB cache. We compile our source
code with GCC 7.3.0, -O3 optimization enabled. Table 12.3 shows the time required
to encrypt/decrypt one million of different 128-bit plaintexts using the same key.

SPNbox layer γ (see Fig. 12.3) uses 512 key bits (in addition to those needed for
the initial AddRoundKey AK0)—i.e., 512 bit = 16 round × 32 bit (nin = 32), or
512 bit = 32 round × 16 bit (nin = 16), or 512 bit = 64 round × 8 bit (nin = 8).
Setting to 512 bit the minimum amount of key bits to be used, our solution will
execute: 12 rounds, using 528 key bits (nin = 32); 24 rounds, using 528 key bits
(nin = 16); and finally 47 rounds, using 517 key bits (nin = 8).4

12.6 Conclusions and Future Works

White-box cryptography aims to ensure the security of cryptographic algorithms
in an untrusted environment where an adversary has total visibility of the cryp-
tographic implementations and full control over the software execution platform.
In order to make well-known ciphers safe in a white-box context, researchers
suggested a number of solutions [1, 6–8]. However, such implementations are
subjected to algebraic attacks and side channel attacks, thus researchers developed
new ciphers—e.g., SPACE [16] and the SPNbox family [17]—with the white-box
attack model in mind.

In this context, our aim is to improve the approach adopted in the SPNbox
family [17], focusing on the internal small block ciphers used by Bogdanov et al. In
particular, we suggest to increase the number of bits of the key used in each round,
replacing the classical ShiftRow operation with a key-dependent circular bit shift,

4Notice that, when nin = 32, 16, 8, the number of key bits used has to be incremented by the
appropriate number of key bits used by AK0.



12 White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family 165

or introducing a key-dependent polynomial multiplication over the field F(2nin) at
the end of the round. The approach suggested can be exploited in two ways: to
make the algorithm faster than previous approach, or to make the algorithm more
secure against the meet-in-the-middle attack. The testing activities executed on a
consumer laptop showed a reduction between 12.27% and 21.10% of the execution
time (without AES-NI instructions) of layer γ . Our future work will focus on further
increasing the number of bits used by the inner round.

References

1. S. Chow, P. Eisen, H. Johnson, P.C. Van Oorschot, White-box cryptography and an AES
implementation, in: International Workshop on Selected Areas in Cryptography (Springer,
Berlin, 2002), pp. 250–270

2. Sky Go, http://go.sky.com/. Accessed 13 Nov 2018
3. Netflix, https://www.netflix.com. Accessed 13 Nov 2018
4. Spotify, https://www.spotify.com/. Accessed 13 Nov 2018
5. B. Wyseur, White-Box Cryptography. Ph.D. Thesis, KU Leuven, Department of Mathematics

(2009)
6. S. Chow, P. Eisen, H. Johnson, P.C. Van Oorschot, A white-box DES implementation for

DRM applications, in ACM Workshop on Digital Rights Management (Springer, Berlin, 2002),
pp. 1–15

7. M. Karroumi, Protecting white-box AES with dual ciphers, in International Conference on
Information Security and Cryptology (Springer, Berlin, 2010), pp. 278–291

8. Y. Xiao, X. Lai, A secure implementation of white-box AES, in 2nd International Conference
on Computer Science and its Applications, 2009, CSA’09 (IEEE, Piscataway, 2009), pp. 1–6

9. O. Billet, H. Gilbert, C. Ech-Chatbi, Cryptanalysis of a white box AES implementation, in
International Workshop on Selected Areas in Cryptography (Springer, Berlin, 2004), pp. 227–
240

10. Y. De Mulder, P. Roelse, B. Preneel, Cryptanalysis of the Xiao–Lai white-box AES imple-
mentation, in International Conference on Selected Areas in Cryptography (Springer, Berlin,
2012), pp. 34–49

11. W. Michiels, P. Gorissen, H.D. Hollmann, Cryptanalysis of a generic class of white-box
implementations, in International Workshop on Selected Areas in Cryptography (Springer,
Berlin, 2008), pp. 414–428

12. T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, B. Preneel, Two attacks on a white-box AES
implementation, in International Conference on Selected Areas in Cryptography (Springer,
Berlin, 2013), pp. 265–285

13. E.A. Bock, J.W. Bos, C. Brzuska, C. Hubain, W. Michiels, C. Mune, E.S. Gonzalez, P. Teuwen,
A. Treff, White-box cryptography: don’t forget about grey box attacks. Cryptology ePrint
Archive, Report 2017/355 (2017)

14. S. Banik, A. Bogdanov, T. Isobe, M. Jepsen, Analysis of software countermeasures for
whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307–328 (2017)

15. A. Biryukov, C. Bouillaguet, D. Khovratovich, Cryptographic schemes based on the ASASA
structure: black-box, white-box, and public-key (extended abstract), in P. Sarkar, T. Iwata (eds.)
Advances in Cryptology – ASIACRYPT 2014 (Springer, Berlin, 2014), pp. 63–84

16. A. Bogdanov, T. Isobe, White-box cryptography revisited: space-hard ciphers, in Proceedings
of the 22nd ACM SIGSAC conference on computer and communications security (ACM, New
York, 2015), pp. 1058–1069

http://go.sky.com/
https://www.netflix.com
https://www.spotify.com/


166 F. Cioschi et al.

17. A. Bogdanov, T. Isobe, E. Tischhauser, Towards practical whitebox cryptography: optimizing
efficiency and space hardness, in International Conference on the Theory and Application of
Cryptology and Information Security (Springer, Berlin, 2016), pp. 126–158

18. P. Dusart, G. Letourneux, O. Vivolo, Differential fault analysis on AES, in International
Conference on Applied Cryptography and Network Security (Springer, Berlin, 2003), pp. 293–
306

19. P. Kocher, J. Jaffe, B. Jun, P. Rohatgi, Introduction to differential power analysis. J. Cryptogr.
Eng. 1(1), 5–27 (2011)

20. H. Feistel, Cryptography and computer privacy. Sci. Am. 228(5), 15–23 (1973)
21. K. Moriarty, B. Kaliski, A. Rusch, PKCS# 5: Password-Based Cryptography Specification

Version 2.1. RFC 8018 (2017)
22. A. Visconti, S. Bossi, H. Ragab, A. Calò, On the weaknesses of PBKDF2, in ed. by M. Reiter,

D. Naccache. Cryptology and Network Security (Springer, Berlin, 2015), pp. 119–126
23. A. Visconti, F. Gorla, Exploiting an HMAC-SHA-1 optimization to speed up PBKDF2. IEEE

Trans. Dependable Secure Comput. (2018). https://doi.org/10.1109/TDSC.2018.2878697
24. A. Biryukov, D. Dinu, D. Khovratovich, Argon2 (version 1.2). https://password-hashing.net/

submissions/specs/Argon-v3.pdf. Accessed 13 Nov 2018
25. C. Percival, S. Josefsson, The scrypt Password-Based Key Derivation Function. RFC 7914

(2016)

https://doi.org/10.1109/TDSC.2018.2878697
https://password-hashing.net/submissions/specs/Argon-v3.pdf
https://password-hashing.net/submissions/specs/Argon-v3.pdf

	12 White-Box Cryptography: A Time-Security Trade-Offfor the SPNbox Family
	12.1 Introduction
	12.2 White-Box Constructions and Attacks
	12.3 SPACE
	12.3.1 SPACE Design
	12.3.2 Feistel Function as a Look-Up Table

	12.4 The SPNbox Family
	12.5 Our Contribution
	12.5.1 Performance Evaluation

	12.6 Conclusions and Future Works
	References


