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1 Introduction

Spatial and spatio-temporal data are everywhere: we encounter them on TV, in
newspapers, on computer screens, on tablets, and on plain paper maps. As a
result, researchers in diverse areas are increasingly faced with the task of modeling
geographically referenced and temporally correlated data.

The geostatistical analysis of spatial data involves point-referenced data, where
Y (s) is a random vector at a location s ∈ Rr , where s varies continuously
over D, a fixed subset of Rr that contains an r-dimensional rectangle of positive
volume (Banerjee et al. 2014). The sample points are measurements of some
phenomenon such as precipitation measurements from meteorological stations or
elevation heights. The geostatistical analysis models a surface using the values from
the measured locations to predict values for each location in the landscape.

Spatial statistics methods have been frequently used in applied statistics as
well as water resources engineering. The work of Thiessen (1911) was the first
attempt in using interpolation methods in hydrology. Sharon (1972) used an average
of the observations from a number of rain gages to obtain estimates of the
areal rainfall. Soon after, Benzécri (1973), Delfiner and Delhomme (1975), and
Delhomme (1978) applied the various geostatistical methods such as variograms
and kriging methods in modeling rainfall. The work of Troutman (1983), Tabios
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and Salas (1985), Georgakakos and Kavvas (1987), Isaaks and Srivastava (1989),
Kumar and Foufoula-Georgiou (1994), Deidda (2000), Ferraris et al. (2003), Ciach
and Krajewski (2006), Berne et al. (2009), Ly et al. (2011), and Dumitrescu
et al. (2016) further advanced the application of geostatistical methods in rainfall
prediction. The theoretical basis of the geostatistical approach was strengthened
using Bayesian inference via the Markov Chain Monte Carlo (MCMC) algorithm
introduced by Metropolis et al. (1953). MCMC was subsequently adapted by
Hastings (1970) for statistical problems and further applied by Diggle et al. (1998) in
geostatistical studies. Recent developments in MCMC computing now allow fully
Bayesian analyses of sophisticated multilevel models for complex geographically
referenced data. This approach also offers full inference for non-Gaussian spatial
data, multivariate spatial data, spatio-temporal data, and solutions to problems such
as geographic and temporal misalignment of spatial data layers (Banerjee et al.
2014).

The data we are studying are monthly rainfall data measured across the state
of South Carolina from the start of 2011 to the end of 2015. The precipitation
record in 2015 is of particular interest because a storm in October 2015 in North
America triggered a high precipitation event, which caused historic flash flooding
across North and South Carolina. Rainfall across parts of South Carolina reached
500-year-event levels (NBC News, October 4, 2015). Accumulations reached
24.23 in. near Boone Hall (Mount Pleasant, Charleston County) by 11:00 a.m.
Eastern Time on October 4, 2015. Charleston International Airport saw a record
24-h rainfall of 11.5 in. (290 mm) on October 3 (Santorelli, October 4, 2015).
Some areas experienced more than 20 in. of rainfall over the 5-day period. Many
locations recorded rainfall rates of 2 in. per hour (National Oceanic and Atmospheric
Administration (NOAA), U.S. Department of Commerce, 2015).

The extraordinary rainfall event was generated by the movement of very moist
air over a stalled frontal boundary near the coast. The clockwise circulation around
a stalled upper level low over southern Georgia directed a narrow plume of tropical
moisture northward and then westward across the Carolinas over the course of
4 days. A low pressure system off the US southeast coast, as well as tropical
moisture related to Hurricane Joaquin (a category 4 hurricane) was the underlying
meteorological cause of the record rainfall over South Carolina during October 1–5,
2015 (NOAA, U.S. Department of Commerce 2015).

Flooding from this event resulted in 19 fatalities, according to the South Car-
olina Emergency Management Department, and South Carolina state officials said
damage losses were 1.492 billion dollars (NOAA, U.S. Department of Commerce
2015). The heavy rainfall and floods, combined with aging and inadequate drainage
infrastructure, resulted in the failure of many dams and flooding of many roads,
bridges, and conveyance facilities, thereby causing extremely dangerous and life-
threatening situations.

The chapter is arranged as follows: in Sect. 2, we give an overview of our
precipitation data, in conjunction with some other variables, e.g., sea surface
temperature, which might help explain the behavior of the precipitation. In Sect. 3,
we introduce the kriging method to analyze the precipitation using a pure spatial
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analysis. In Sect. 4, some methods in seasonal trend removal are discussed. In
Sect. 5, the Gaussian process is introduced to build a spatio-temporal model.

2 Data Description

2.1 Overview

The original data used in this research are the daily precipitation records in South
Carolina from National Oceanic and Atmosphere Administration (NOAA) between
2011 and 2015. The original data files include daily precipitation, maximum
temperature, and minimum temperature, along with the latitude, longitude, and
elevation of each observation’s location.

In addition, to investigate the effect of El Niño-Southern Oscillation (ENSO)
activity on precipitation, we have calculated an index based on the monthly sea
surface temperature (SST). The derivation of our index is given in Sect. 2.3.

2.2 Data Preprocessing

We collected 281 unique meteorological locations in South Carolina with varying
completeness of data. For instance, if we look at the most recent 5 years (2011–
2015), 31 locations do not have any record of precipitation while 65 locations have
a complete record. The other 185 locations contain missing data ranging from 30%
to less than 5% of the total data set size.

In Fig. 1, we plot all the meteorological locations with an available precipitation
record on October 3, 2015, when the storm struck South Carolina. Note that
smoothing is necessary since most of observations are clustered in several regions.
See Bivand et al. (2008) for more information about the sp package, which provides
a comprehensive solution for spatial data visualization.

We aggregate the daily records into monthly variables. The monthly maximum
of precipitation is calculated since we are interested in capturing the extreme
rainfall behavior which might lead to flooding subsequently. The monthly midrange
temperature, which reflects the general warmth of that month, is computed by
averaging the highest and the lowest daily temperature for that month.

To incorporate more temperature information, we find the range of daily maxima
over a month. We similarly obtain the range of the daily minima. Lastly, for each
location, we also find an overall range, the difference of the maximum and minimum
temperature of that month.

In the data set, several variables, e.g., precipitation, elevation, and temperature
have missing values. We replace each missing observation with the weighted
average of its neighbors. The weights are determined by the distance between
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Fig. 1 The meteorological
locations with available
record of precipitation on
October 3, 2015

locations. In other words, if we denote the missing value at s∗ by Y (s∗), then∑n
i=1 w(si )Y (si ) can be used as the imputed value, where

w(si ) = K

( ||s∗ − si ||
h

)

/

n∑

i=1

K

( ||s∗ − si ||
h

)

. (1)

Note that ||si − s∗|| refers to the haversine distance rather than the Euclidean
distance. We impute missing data based on neighboring observations because doing
so takes the spatial correlation into consideration.

2.3 A Sea Surface Temperature (SST)-Related Variable

El Niño-Southern Oscillation (ENSO) is an irregular variation in winds and sea
surface temperature (SST) over the tropical eastern Pacific Ocean, affecting much
of the tropic and subtropics. Like other climate indices, ENSO occurs irregularly
and is associated with changing in physical pattern of temperature and precipitation.
Figure 2 gives the plot of sea surface temperature for ocean locations off the coast
of South Carolina in June 2015. In this figure, dark colors correspond to cooler sea
temperature values. Scientists believe that the ENSO has a significant influence on
precipitation and hence controls flood magnitude and frequency. We thus include
an SST-based index as a proxy for the ENSO activity. Since our rainfall data are
observed for inland locations, we must define our index related to SST for such
inland locations, rather than for off-shore locations where sea temperature is actually
measured.
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Fig. 2 The sea surface temperature near South Carolina

For any inland location si at a given month, we build an index based on the SST
values of the nearest n adjacent ocean observation points {zj }, where j = 1, . . . , n.
Denote this SST-based index as W(si ) for the ith inland location. It follows that

W(si ) = 1

n

n∑

j=1

(
wj

∑n
l=1 wl

)

SST(zj ), (2)

where the weight wj can be determined by the kernel function K(||si − zj ||) for
j = 1, . . . , n, which is symmetric around 0. We use the standard normal density
as the kernel function. The kernel function includes a bandwidth h, thus making
wj = 1

h
K(

||si−zj ||
h

). The bandwidth parameter h is set to 0.25 times the range of all
of the distances.

Additionally, we simplify the calculation by considering only locations within a
certain threshold. Figure 3 gives a demonstration to calculate the SST-related index
for Columbia, South Carolina. We first determine the sea temperature records to be
included based on a 300-mile threshold. For the included measurements, we find
their weights by calculating their distance to Columbia, and derive the SST-related
index based on (2). Note that the closer a location is to the coast, the more sea surface
temperature records are used to derive an SST-related index for that location.
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Fig. 3 A demonstration of the calculation of the SST-related variable. The red points are the
observations that are included in the calculation

3 Precipitation Modeling: A Spatial Perspective

In this section, we use a spatial model for the rainfall data without considering
the temporal aspect. Since geostatistical data feature a strong correlation between
adjacent locations, we start by modeling the covariance structure with a variogram,
and then we propose two methods of predicting the rainfall for new location.

3.1 Describing the Spatial Structure: Variogram

We assume that our spatial process has a mean, μ(s) = E(Y (s)), and that the
variance of Y (s) exists for all s ∈ D. The process Y (s) is said to be Gaussian
if, for any n ≥ 1 and any set of sites {s1 . . . , sn}, Y = (Y (s1), . . . , Y (sn))

T has
a multivariate normal distribution. Moreover, the process is intrinsic stationary if,
for any given n ≥ 1, any set of n sites {s1, . . . , sn} and any h ∈ Rr , we have
E[Y (s+h)−Y (s)] = 0, and E[Y (s+h)−Y (s)]2 = Var(Y (s+h)−Y (s)) = 2γ (h)

(Banerjee et al. 2014).
In other words, E[Y (s + h) − Y (s)]2 only depends on h, and not the particular

choice of s. The function 2γ (h) is then called the variogram, and γ (h) is called
the semivariogram. Another important concept is that of an isotropic variogram. If
the semivariogram function γ (h) depends upon the separation vector only through
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its length ||h|| (distance between observations), then the variogram is isotropic.
Otherwise, it is anisotropic. Isotropic variograms are popular because of simplicity,
interpretability, and, in particular, because a number of relatively simple parametric
forms are available as candidates for the semivariogram, e.g., linear, exponential,
Gaussian, or Matérn (or K-Bessel).

A variogram model is chosen by plotting the empirical semivariogram, a simple
nonparametric estimate of the semivariogram, and then comparing it to the various
theoretical parametric forms (Matheron 1963). For demonstration purposes, we
choose the precipitation values of October 13 in 2015, shortly after the flood struck
South Carolina. Assuming intrinsic stationarity and isotropy, the Matérn model is
used due to its better fit to the empirical semivariogram. The correlation function
of this model allows control of spatial association and smoothness. See Fig. 4 for a
plot of this fit.

Fig. 4 The empirical and parametric (Matérn) variogram for the precipitation values in October
13, 2015
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3.2 Spatial Prediction

Inverse Distance Weighted Interpolation

We use inverse distance weighting (IDW) (Bivand et al. 2008) to compute a spatially
continuous rainfall estimate as a weighted average for a given location s0,

Ẑ(s0) =
∑

w(si )Z(si )
∑

w(si )
, where w(si ) = ||si − s0||−p.

In other words, the weight of a given observed location is based on its Lp-distance
to the interpolation location. If location s0 happens to have an observation, then
the observation itself will be used to avoid the case of infinite weights. The weight
assigned to data points will be more influenced by neighboring points when they are
more clustered. The best p found by cross validation for the analysis of our data set
is approximately 2.5.

Although this method does not incorporate the covariates, it still possesses some
desirable features. For instance, we can make a prediction for the rainfall amount at
every single location with a latitude and longitude.

Linear Gaussian Process Model (Kriging)

Since our precipitation data in the study are geostatistical data, we may employ
a linear Gaussian process model (Cressie 1993). We start by defining the spatial
process at location s ∈ Rd as

Z(s) = X(s)β + w(s), (3)

where X(s) is a set of p covariates associated with each site s, and β is a p-
dimensional vector of coefficients. Spatial dependence is imposed via the residual
terms, i.e., w(s). Specifically, we model {w(s) : s ∈ Rd} as a zero mean
Gaussian process. In other words, the vector w = (w(s1), . . . , w(sn))

T follows
w|� ∼ Nn(0,�(�)). We assume � to be a symmetric and positive definite matrix
in order to end up with a sensible distribution. To ensure these conditions, �(�)

can be treated as a function of � with certain constraints, which are tantamount to
specifying a variogram model.

Among several variogram structures, e.g., spherical, Gaussian, exponential, etc.
we choose the exponential covariance with parameters � = (ψ, κ, φ), where
ψ, κ, φ > 0. The exponential covariance �(�) has the form

�(�) = ψI + κH(φ), whereH(φ) = exp(−||si − sj ||)/φ).

Note that ||si −sj || is the Euclidean distance between location i and j . Another type
of distance, Geodesic, takes the curvature of the earth’s surface into consideration.
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We use Euclidean distance since most of our distances are between South Carolina
counties and the effects of curvature are thus negligible.

The exponential model enjoys a simple interpretation. The “nugget” in a
variogram graph is represented by ψ in this model, and this nugget is also the
variance of the non-spatial error. Moreover, κ and φ dictate the scale and range of
the spatial dependence, respectively. Also note that the exponential model assumes
the covariance and hence dependence between two locations decreases as distance
between locations increases, which is sensible for the study of rainfall behavior.

Letting Z = (Z(s1), . . . , Z(sn))
T , we estimate the multivariate normal distribu-

tion for Z after parameter estimation. To find the unknown parameters � and β,
we use Bayesian methods implemented by the spTimer package in R (Bakar and
Sahu 2015), which requires users to provide sensible prior information based on
sample variogram graphs. Note that this model fitting process will collapse if we
start with initial values far from the true value.

Monte Carlo Simulation for Kriging

Predictions of the process, Z∗ = (Z(s∗
1), . . . , Z(s∗

m))T , where s∗
i is the ith new

location, can be obtained via the posterior predictive distribution

π(Z∗|Z) =
∫

π(Z∗|Z,�,β)π(�,β|Z)d�dβ,

by sampling from the posterior predictive distribution in two steps:

• Step 1: Simulate �′,β ′ ∼ π(�,β|Z) by the Metropolis–Hastings algorithm.
• Step 2: Simulate Z∗|�′,β, Z from a multivariate normal density.

For step 1, it suffices to find the posterior distribution π(�,β|Z) based on (1) and
(2). The posterior distribution has low dimension as long as we do not have many
covariates. The major challenge is that since covariance parameters might be highly
correlated, one must expect autocorrelation issues in the sampler, which can be
alleviated by a block updating scheme, a scheme that generates multiple covariance
parameters in a single Metropolis–Hastings step.

For step 2, the joint distribution of Z and Z∗ is given by

[
Z
Z∗

]

|�,β ∼ N

([
μ1

μ2

]

,

[
�11 �12

�21 �22

])

based on which one can find the conditional distribution of Z∗|�′,β, Z. According
to Anderson (2003), it follows that

E(Z∗|�′,β, Z) = μ2 + �21�
−1
11 (Z − μ1),

Var(Z∗|�′,β, Z) = �22 − �21�
−1
11 �12.
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Hence, one can obtain simulated observations that follow a given covariance
structure by iterating between step 1 and step 2. Bivand et al. (2008) suggest the
method of sequential simulation: (1) compute the conditional distribution with our
given data, (2) draw a value from this conditional distribution, (3) add this value into
the data set, and (4) repeat steps (1)–(3).

As Z becomes a larger matrix as more data are generated, the algorithm
becomes more and more expensive. Many strategies are proposed for reducing the
considerable computational burden posed by matrix operations, including the use
of covariance functions (Hughes and Haran 2013) as well as setting a maximum
number of neighbors (Bivand et al. 2008). In our study, we used the maximum
number of neighbors with the nearest 40 observations.

We illustrate prediction by modeling rainfall in South Carolina on October 13,
2015 with a kriging model that assumes an exponential spatial covariance structure.
Using the Monte Carlo approach described above, we predict by simulating from the
posterior predictive distribution. This can be done repeatedly to give a sense of the
variability associated with the spatial predictions. Figure 5 demonstrates ten simu-

Fig. 5 Ten simulated precipitation heat maps based on kriging. The darker color indicates heavier
precipitation and vice versa. A consistent look reveals a robust performance of the kriging model
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lated predictions of the spatial distribution of rainfall amounts in a small rectangular
spatial area in the northwest corner of South Carolina. The darker color indicates
heavier predicted precipitation and the lighter color a small predicted rainfall. The
consistent pattern across all ten simulations reveals a robust performance of the
kriging model. A pointwise prediction at any spatial location could be obtained by
averaging the predicted rainfall values at that location across all ten simulations.

4 Seasonal Trend Removal

We now analyze the geostatistical rainfall data across time. Due to the nature of our
rainfall data, the seasonality is of particular interest when we model the temporal
trend. We propose two methods to remove the seasonal trend in this section.

4.1 Harmonic Regression

To remove the seasonal trend, one approach is to fit a first-order harmonic regression
model with terms sin(x) and cos(x). In addition, we set x = 2πt if the period is
1. In our case, it is justifiable to set the period as 12 since the monthly rainfall is
measured, and thus x = (π/6)t is used. Hence, one can regress the precipitation
y against dependent variables sin((π/6) t) and cos((π/6) t). The omnibus F-test to
test for the usefulness of the trigonometric terms in this multiple regression model
gives a p-value close to 1, which confirms the existence of seasonality.

One can also use a second-order harmonic model to capture more complex
behavior, in which two more terms, sin[(4π/ω)t] and cos[(4π/ω)t] are included,
where ω is the periodic parameter. However, for our rainfall data, it is unnecessary
to include these two other terms since we observe no great improvement in model
fit by introducing the extra terms (see Fig. 6).

Fig. 6 The fitted model based on the first- and second-order harmonic models. The dotted line
corresponds to the second-order model, and the solid red line corresponds to the first-order model
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4.2 Seasonality Indicator

Another approach to model seasonality in the spatio-temporal model is the seasonal
means model. Specifically, one indicator variable will be 1 if the record is collected
from January to March, and will be 0 otherwise. Similarly, another dummy variable
indicates the month April to June while a third dummy variable indicates July to
September. Lastly, if all three variables are 0, then the observation is from the last
3 months of the year. Note that one could also include dummy variables for months
in a similar way if necessary, but we have found that it is sufficient to model the
means of the four seasons.

5 Precipitation Modeling: A Spatio-Temporal Perspective

In this section, we discuss how to model spatio-temporal data with two different
methods, the Gaussian process (GP) model and autoregressive (AR) model. The
latter model is an extension of the Gaussian process model obtained by introducing
an autoregressive term.

5.1 Gaussian Process (GP) Model

The independent Gaussian process (GP) model (Cressie and Wikle 2015; Gelfand
et al. 2010) is specified hierarchically in two stages,

Zt = μt + εt (4)

μt = Xtβ + ηt , (5)

in which Zt = (Z(s1, t), . . . , Z(sn, t))
T , which defines the response variable for

all n locations at time t . It is known that s1, . . . , sn can be indexed by latitude and
longitude. In the first layer, Zt is defined by a simple mean model plus a pure white
noise term, εt . We therefore assume that

εt ∼ N(0, σ 2
ε In), (6)

where the σ 2
ε is the pure error variance and In is the identity matrix.

The second level models μt as the sum of fixed covariates and random effects at
time t . The fixed term, Xtβ, comes from the covariates, and ηt is the spatio-temporal
random effects, ηt = (η(s1, t), . . . , η(sn, t))

T . Similar to εt , ηt also follows a
multivariate normal distribution whose mean vector is 0. However, ηt has a more
complicated covariance matrix than does εt .
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We use the exponential function to specify the correlation matrix of the random
effects. The correlation strength is solely based on the distance between si and sj ,
which is given by

�η = σ 2
η H(φ) + τ 2In,

where H(φ) = exp(−||si − sj ||)/φ), and ||si − sj || indicates the spatial distance
between location i and j . This function is used to determine each element in the
matrix Sη, where �η = σ 2

η Sη. This parameterization allows σ 2
η to capture the

invariant spatial variance, and Sη is used to capture the spatial correlation.
The posterior distribution involves three layers, i.e., the prior distribution for

parameters, the mean model, and the random effects model. We will set aside the
prior for later discussion and use π(θ) = π(β, ν, φ, σ 2

η , σ 2
ε ) to refer to the prior in

general. Thus the posterior is given by

g(θ ,μ|Z) = π(θ) ×
N∏

t=1

fn(Zt |μt , σ
2
ε )gn(μt |β, υ, φ, σ 2

η ). (7)

To be specific, we use fn(·) and gn(·) to indicate an n-dimensional distribution
function. In this case, each of them is a multivariate normal distribution, and n is
the number of locations in the data set and N is the number of time points. μt is the
vector of random effects for time t and we use μ on the left-hand side to refer to the
collection of all random effects.

Since both Zt and μt follow a multivariate normal distribution, their density
functions are given as follows:

fn(Zt |μt , σ
2
ε ) = 1

√
(2π)n|σ 2

ε In|
exp

(

− 1

2σ 2
ε

(Zt − μt )
T (Zt − μt )

)

, (8)

gn(μt |Sη, σ
2
η ,β) = 1

√
(2π)n|σ 2

η Sη|
exp

(

− 1

2σ 2
η

(μt − Xtβ)T S−1
η (μt − Xtβ)

)

,

(9)

Thus the posterior distribution is given by plugging (8) and (9) into (7). The
logarithm of the joint posterior distribution of the parameters for this Gaussian
process model is given by

logπ(σ 2
ε , σ 2

η ,μ,β, υ, φ|Z) ∝ N

2
log σ 2

ε − 1

2σ 2
ε

N∑

t=1

(Zt − μt )
T (Zt − μt )

− N

2
log |σ 2

η Sη| − 1

2σ 2
η

N∑

i=1

(

− 1

2σ 2
η

(μt − Xtβ)T S−1
η (μt − Xtβ)

)

+ log π(θ).



44 H. Liu et al.

We specify the prior π(θ) to reflect the assumption that β, ν, φ, σ 2
η , and σ 2

ε

are mutually independent, so the joint prior is the product of the marginal prior
densities, which are given as follows: All the parameters describing the mean,
e.g., β and ρ (see Sect. 5.2) are given independent normal prior distributions, with
the prior on ρ truncated to have support on (−1, 1). We assume φ and ν both
follow uniform distributions, while the prior for the precision (inverse of variance)
parameter is a gamma distribution. We choose the hyperparameters to make these
prior distributions very diffuse.

5.2 Autoregressive (AR) Model

In this section, we introduce the autoregressive model (Sahu and Bakar 2012). The
hierarchical AR(1) model is given as follows:

Zt = μt + εt

μt = ρμt−1 + Xtβ + ηt ,

where ρ denotes the unknown temporal correlation parameter assumed to be in
the interval (−1, 1). Obviously, for ρ = 0, these models reduce to the GP model
described in Sect. 5.1.

The autoregressive model requires specification of the initial term, the first
random effect, which has mean β0 and covariance matrix σ 2

0 S0. The correlation
matrix S0 is obtained using the exponential correlation function. The derivation of
the posterior distribution is similar to that in GP model with ρ = 0. The logarithm
of the posterior distribution of the parameters is now given by

logπ(σ 2
ε , σ 2

η ,μ,β, υ, φ|Z) ∝ N

2
log σ 2

ε − 1

2σ 2
ε

N∑

t=1

(Zt − μt )
T (Zt − μt )

− N

2
log |σ 2

η Sη|

− 1

2σ 2
η

N∑

i=1

(

− 1

2σ 2
η

(μt − ρμt−1 − Xtβ)T S−1
η (μt − ρμt−1 − Xtβ)

)

− 1

2
log |σ 2

0 S0| − 1

2σ 2
0

(μ0 − β0)
T S−1

0 (μ0 − β0) + log π(θ)

Note that β0 is only a mean vector for the initial random effect term, which is
different from β, which refers to regression coefficients corresponding to covariates
X. In other words, the terms in the last line (except log π(θ)) derive from the initial
random effect term.
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5.3 Model Fitting

In this section, we fit the AR(1) model with monthly precipitation data from the
beginning of year 2011 to the end of year 2015. A natural log transformation was
initially applied to the precipitation to improve the model fit and ensure positive
predicted rainfall values once we back-transform by exponentiating the predicted
log-rainfall values. We include temperature range, sea surface temperature, and
elevation as monthly covariates.

We initially found that ordinary temperature measurements such as the monthly
average temperature were not apparently related to precipitation after accounting for
the season and thus we did not include these in the model. However, measurements
of variability in temperature over each month, e.g., the range of daily maxima and
the range of daily minima over a month, were believed to have an effect on precip-
itation and thus we include these to determine whether their effects are significant.

We also include a flood-year indicator as a dummy variable, where data
from 2015 is labeled as 1 and otherwise 0, to account for the unusual October
precipitation amounts in this year. Interaction terms involving the dummy variable
were also tested, none of which were statistically significant and were thus removed
from the final model. The acceptance rate from Metropolis step for all parameters is
42.97% and a brief summary of model fitting details is given as follows:

-----------------------------------------------------
Model: AR
Call: LOG ~ RANGE_OVERALL + RANGE_LOW + RANGE_HIGH
+ SST + ELEVATION + SST * RANG E_LOW + Year2015

Iterations: 5000
nBurn: 1000
Acceptance rate: 29.76
-----------------------------------------------------
Parameters

Mean Median SD Low2.5p Up97.5p
(Intercept) 0.3635 0.3689 0.1363 0.0894 0.6265
RANGE_OVERALL -0.0006 -0.0006 0.0017 -0.0039 0.0027
RANGE_LOW 0.0017 0.0017 0.0030 -0.0040 0.0078
RANGE_HIGH 0.0006 0.0007 0.0011 -0.0016 0.0028
SST -0.0057 -0.0058 0.0045 -0.0142 0.0033
ELEVATION 0.0001 0.0001 0.0001 0.0000 0.0002
Year2015 0.0808 0.0810 0.0180 0.0450 0.1154
RANGE_LOW:SST -0.0001 -0.0001 0.0001 -0.0003 0.0001
rho 0.0756 0.0757 0.0151 0.0466 0.1054
sig2eps 0.0054 0.0054 0.0002 0.0051 0.0057
sig2eta 0.0764 0.0739 0.0121 0.0617 0.1073
phi 0.0501 0.0502 0.0090 0.0322 0.0659
-----------------------------------------------------
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Fig. 7 The residual plot and QQ plot from AR(1) prediction

The dummy variable for year 2015 is significant. After back-transforming, we
can say the predicted monthly rainfall for 2015 is exp(0.0808) = 1.084 times
greater than the predicted monthly rainfall in other years, holding other predictors
fixed. This is consistent with the flooding event in the fall of 2015. Another finding
is that elevation might be an explanatory factor to the rainfall since higher elevation
relates to higher volumes of precipitation. In addition, a statistically significant and
positive ρ indicates that a rainy month might tend to precede another one. On the
other hand, the SST has a marginally negative effect on the rainfall prediction but is
not significant based on the 95% credible interval.

We also obtain the residuals and the QQ plot in Fig. 7. There is no obvious pattern
in the residual plots. However, the residuals show deviations in the tails to some
extent from normality based on the QQ plot on the right panel, which indicates a
heavy-tailed error distribution and lack of symmetrical pattern (e.g., Samadi et al.
2017).

6 Model Comparison: State-Space Model vs. Gaussian
Process

Another framework for spatio-temporal data analysis is the dynamic state-space
model. A formulation of the spatio-temporal framework (Stroud et al. 2001) is
specified as follows:

yt (s) = xt (s)T β t + ut (s) + εt (s), εt (s) ∼ N(0, τ 2
t )

β t = β t−1 + ηt , ηt ∼ N(0,�η)

μt (s) = μt−1(s) + wt(s), wt (s) ∼ GP(0, Ct (·, θ t )).
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Fig. 8 The 95% confidence interval for β1 (the SST-related variable) and β2 (elevation) over
12 months in 2015

Here xt (s) is a p × 1 vector of predictors and β t is a p × 1 vector of coefficients.
The GP(0, Ct (·, θ t )) denotes a spatial Gaussian process with covariance function
Ct(·, θ t ). We further specify Ct(s1, s2; θ t )) = σ 2

t ρ(s1, s2;φt ), where θ t = {σ 2
t , φt }

and ρ(·;φ) is a correlation function with φ controlling the correlation decay.
The same response variable and covariates with AR(1) model are used when

fitting the state-space model. The R package spBayes (Finley et al. 2007) provides
a framework to sample from parameters and posterior. The 95% credible interval for
sea surface temperature and elevation are plotted for all 12 months in 2015.

The state-space model allows for a more detailed monthly look of the effect
of covariates. For instance, one can conclude that, based on Fig. 8, the SST-based
variable effects the rainfall amount in a more significant manner during the first
few months of the year. These results strengthen the previous findings of Häkkinen
(2000), Mehta et al. (2000), Wang et al. (2006), and Dima and Lohmann (2010), and
further support the hypothesis that the variability of North Atlantic SST is coherent
with the fluctuations of the rainfall pattern and occurrence. In other words, intense
ocean–atmosphere coupling exists in the North Atlantic, particularly during winter.
In contrast, elevation is more related to the precipitation in June and October, when
heavier rainfall data are observed. This covariate specifies a convective mode that is
widely recognized as an important contributor to the probability and type of severe
convective rainfall during summer and early fall in the southeast region. The residual
plot and the QQ plot for the state-space are shown in Fig. 9. We see the heavy-tailed
error pattern is still apparent in this model, based on the QQ plot.
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Fig. 9 The residual plot and QQ plot from the state-space model

7 Discussion

We have presented both spatial and spatio-temporal models for rainfall in South Car-
olina during a period including one of the most destructive storms in state history.
Our models have allowed us to determine several covariates that affect the rainfall
and to interpret their effects. In particular, the flood year of 2015 was an important
indicator of rainfall and elevation also had a positive significant effect on precip-
itation. There was a significant positive correlation in rainfall measurements over
time. Finally, our novel SST index provided some evidence that cooler nearby sea
temperatures corresponded to higher rainfall at in land sites although this SST effect
was not significant at the 0.05 level based on a 95% credible interval for its effect.

A spatial prediction at a new location and a temporal prediction at a future time
point can be obtained based on the posterior predictive distribution for Z(s0, t

′),
where s0 denotes a new location and t ′ is a future time point. Further details
regarding these predictions are provided in Cressie and Wikle (2015) for the GP
models, and Sahu and Bakar (2012) for the AR models.

A limitation of the study, and a direction for future research, is that the model
does not account for the apparent heavy-tailed nature of the errors. Methods
involving generalized extreme value distribution (Rodríguez et al. 2016) could
possibly be adapted to this model to help handle this heavy-tailed error structure,
but such research is still relatively new in the spatio-temporal modeling literature.
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