
Raghunath Nambiar
Meikel Poess (Eds.)

 123

LN
CS

 1
11

35

10th TPC Technology Conference, TPCTC 2018
Rio de Janeiro, Brazil, August 27–31, 2018
Revised Selected Papers

Performance Evaluation
and Benchmarking for the
Era of Artificial Intelligence

Lecture Notes in Computer Science 11135

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Raghunath Nambiar • Meikel Poess (Eds.)

Performance Evaluation
and Benchmarking for the
Era of Artificial Intelligence
10th TPC Technology Conference, TPCTC 2018
Rio de Janeiro, Brazil, August 27–31, 2018
Revised Selected Papers

123

Editors
Raghunath Nambiar
Advanced Micro Systems, Inc.
Santa Clara, CA, USA

Meikel Poess
Oracle Corporation
Redwood Shores, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-11403-9 ISBN 978-3-030-11404-6 (eBook)
https://doi.org/10.1007/978-3-030-11404-6

Library of Congress Control Number: 2018967046

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-11404-6

Preface

The Transaction Processing Performance Council (TPC) is a non-profit organization
established in August 1988. Over the years, the TPC has had a significant impact on the
computing industry’s use of industry-standard benchmarks. Vendors use TPC bench-
marks to illustrate performance competitiveness for their existing products, and to
improve and monitor the performance of their products under development. Many
buyers use TPC benchmark results as points of comparison when purchasing new
computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement and characterization of complex systems. The TPC remains committed to
developing new benchmark standards to keep pace with these rapid changes in tech-
nology. One vehicle for achieving this objective is the TPC’s sponsorship of the
Technology Conference Series on Performance Evaluation and Benchmarking
(TPCTC) established in 2009. With this conference series, the TPC encourages
researchers and industry experts to present and debate novel ideas and methodologies
in performance evaluation, measurement, and characterization.

The First TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2009) was held in conjunction with the 35th International Confer-
ence on Very Large Data Bases (VLDB 2009) in Lyon, France, during August 24–28,
2009.

The Second TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2010) was held in conjunction with the 36th International Confer-
ence on Very Large Data Bases (VLDB 2010) in Singapore during September 13–17,
2010.

The Third TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2011) was held in conjunction with the 37th International Confer-
ence on Very Large Data Bases (VLDB 2011) in Seattle, Washington, USA, during
August 29 – September 3, 2011.

The 4th TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2012) was held in conjunction with the 38th International Confer-
ence on Very Large Data Bases (VLDB 2012) in Istanbul, Turkey, during
August 27–31, 2012.

The 5th TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2013) was held in conjunction with the 39th International Confer-
ence on Very Large Data Bases (VLDB 2013) in Riva del Garda, Italy, during
August 26–30, 2013.

The 6th TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2014) was held in conjunction with the 40th International Confer-
ence on Very Large Data Bases (VLDB 2014) in Hangzhou, China, during
September 1–5, 2014.

The 7th TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2015) was held in conjunction with the 41st International Conference
on Very Large Data Bases (VLDB 2015) in Kohala Coast, USA, during
August 31 – September 4, 2015.

The 8th TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2016) was held in conjunction with the 42nd International Confer-
ence on Very Large Data Bases (VLDB 2016) in New Delhi, India, during
September 5–9, 2016.

The 9th TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2017) was held in conjunction with the 43rd International Confer-
ence on Very Large Data Bases (VLDB 2017) in Munich, Germany, during
August 28 – September 1, 2017.

This book contains the proceedings of the 10th TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2018), held in conjunction with
the 44th International Conference on Very Large Data Bases (VLDB 2018) in
Rio de Janeiro, Brazil, from August 27th to August 31st, 2018.

The hard work and close cooperation of a number of people have contributed to the
success of this conference. We would like to thank the members of TPC and the
organizers of VLDB 2018 for their sponsorship; the members of the Program Com-
mittee and Publicity Committee for their support; and the authors and the participants
who are the primary reason for the success of this conference.

December 2018 Raghunath Nambiar
Meikel Poess

VI Preface

TPCTC 2018 Organization

General Chairs

Raghunath Nambiar, Cisco, USA
Meikel Poess, Oracle, USA

Program Committee

Daniel Bowers, Gartner, USA
Michael Brey, Oracle, USA
Paul Cao, HPE, USA
Alain Crolotte, Teradata Corporation, USA
Ajay Dholakia, Lenovo, USA
Karthik Kulkarni, Cisco, USA
Dhabaleswar Panda, The Ohio State University, USA
Tilmann Rabl, TU Berlin, Germany
Reza Taheri, VMware, USA

Publicity Committee

Raghunath Nambiar, Cisco, USA
Andrew Bond, Red Hat, USA
Paul Cao, HPE, USA
Vo Ngoc Phu, Duy Tan University, Vietnam
Meikel Poess, Oracle, USA
Reza Taheri, VMware, USA
Michael Majdalany, L&M Management Group, USA
Forrest Carman, Owen Media, USA
Andreas Hotea, Hotea Solutions, USA

About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a non-profit organization
focused on developing industry standards for data-centric workloads and disseminating
vendor-neutral performance data to industry. Additional information is available at
http://www.tpc.org/.

TPC Memberships

Full Members

Full Members of the TPC participate in all aspects of the TPC’s work, including
development of benchmark standards and setting strategic direction. The Full Member
application can be found at http://www.tpc.org/information/about/app-member.asp.

Associate Members

Certain organizations may join the TPC as Associate Members. Associate Members
may attend TPC meetings, but are not eligible to vote or hold office. Associate
membership is available to non-profit organizations, educational institutions, market
researchers, publishers, consultants, governments, and businesses that do not create,
market, or sell computer products or services. The Associate Member application can
be found at http://www.tpc.org/information/about/app-assoc.asp.

Academic and Government Institutions

Academic and government institutions are invited to join the TPC and a special
invitation can be found at http://www.tpc.org/information/specialinvitation.asp.

Contact the TPC

TPC
Presidio of San Francisco
Building 572B (surface)
P.O. Box 29920 (mail)
San Francisco, CA 94129-0920
Voice: (+1)415-561-6272
Fax: (+1)415-561-6120
E-mail: info@tpc.org

http://www.tpc.org/
http://www.tpc.org/information/about/app-member.asp
http://www.tpc.org/information/about/app-assoc.asp
http://www.tpc.org/information/specialinvitation.asp

How to Order TPC Materials

All of our materials are now posted free of charge on our website. If you have any
questions, please feel free to contact our office directly or by e-mail at info@tpc.org.

Benchmark Status Report

The TPC Benchmark Status Report is a digest of the activities of the TPC and its
technical subcommittees. Sign-up information can be found at the following URL:
http://www.tpc.org/information/about/email.asp.

X About the TPC

http://www.tpc.org/information/about/email.asp

TPC 2018 Organization

Full Members

Actian
Alibaba
AMD
Cisco
Dell EMC
DataCore
Fujitsu
Hewlett Packard Enterprise
Hitachi
Huawei
IBM
Inspur
Intel
Lenovo
Microsoft
Nutanix
Oracle
Pivotal
Red Hat
SAP
Teradata
Transwarp
TTA
VMware

Associate Members

IDEAS International
University of Coimbra, Portugal
China Academy of Information and Communications Technology

Steering Committee

Andrew Bond, Red Hat, USA
Michael Brey (Chair), Oracle, USA
Matthew Emmerton, IBM, USA
Raghunath Nambiar, AMD, USA
Jamie Reding, Microsoft, USA

Public Relations Committee

Andrew Bond, Red Hat, USA
Paul Cao, HPE, USA
Gary Little (Chair), Nutanix
Raghunath Nambiar, AMD, USA
Meikel Poess, Oracle, USA
Reza Taheri, VMware, USA

Technical Advisory Board

Paul Cao, HPE, USA
Matthew Emmerton, IBM, USA
Gary Little, Nutanix
Jamie Reding (Chair), Microsoft, USA
Da-Qi Ren, Huawei, USA
Ken Rule, Intel, USA
Nicholas Wakou, Dell, USA

Technical Subcommittees and Chairs

TPC-C: Jamie Reding, Microsoft, USA
TPC-H: Meikel Poess, Oracle, USA
TPC-E: Matthew Emmerton, IBM, USA
TPC-DS: Meikel Poess, Oracle, USA
TPC-DI: Meikel Poess, Oracle, USA
TPCx-HS: Tariq Magdon-Ismail, VMware, USA
TPCx-BB: Bhaskar Gowda, Intel, USA
TPCx-V: Reza Taheri, VMware, USA
TPCx-HCI: Reza Taheri, VMware, USA
TPCx-IoT: Karthik Kulkarni, Cisco, USA
TPC-Pricing: Jamie Reding, Microsoft, USA
TPC-Energy: Paul Cao, HPE, USA

Working Group and Chair

TPC-AI: Raghunath Nambiar, AMD, USA

XII TPC 2018 Organization

Contents

Industry Panel on Defining Industry Standards for Benchmarking
Artificial Intelligence . 1

Raghunath Nambiar, Shahram Ghandeharizadeh, Gary Little,
Christoph Boden, and Ajay Dholakia

UniBench: A Benchmark for Multi-model Database Management Systems . . . 7
Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen

PolyBench: The First Benchmark for Polystores . 24
Jeyhun Karimov, Tilmann Rabl, and Volker Markl

Benchmarking Distributed Data Processing Systems for Machine
Learning Workloads . 42

Christoph Boden, Tilmann Rabl, Sebastian Schelter, and Volker Markl

Characterizing the Performance and Resilience of HCI Clusters
with the TPCx-HCI Benchmark . 58

H. Reza Taheri, Gary Little, Bhavik Desai, Andrew Bond,
Doug Johnson, and Greg Kopczynski

Requirements for an Enterprise AI Benchmark . 71
Cedric Bourrasset, France Boillod-Cerneux, Ludovic Sauge,
Myrtille Deldossi, Francois Wellenreiter, Rajesh Bordawekar,
Susan Malaika, Jean-Armand Broyelle, Marc West, and Brian Belgodere

Towards Evaluation of Tensorflow Performance in a Distributed
Compute Environment . 82

Miro Hodak and Ajay Dholakia

A Comparison of Two Cache Augmented SQL Architectures 94
Shahram Ghandeharizadeh and Hieu Nguyen

Benchmarking and Performance Analysis of Event Sequence Queries
on Relational Database . 110

Yuto Hayamizu, Ryoji Kawamichi, Kazuo Goda,
and Masaru Kitsuregawa

Data Consistency Properties of Document Store as a Service (DSaaS):
Using MongoDB Atlas as an Example. 126

Chenhao Huang, Michael Cahill, Alan Fekete, and Uwe Röhm

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) . . . 140
Manan Trivedi and Zhenqiang Chen

Author Index . 155

Industry Panel on Defining Industry Standards
for Benchmarking Artificial Intelligence

Raghunath Nambiar1(&), Shahram Ghandeharizadeh2, Gary Little3,
Christoph Boden4, and Ajay Dholakia5

1 AMD, Inc., Santa Clara, USA
raghu.nambiar@amd.com

2 University of Southern California, Los Angeles, USA
shahram@usc.edu

3 Nutanix, Inc., San Jose, USA
gary@nutanix.com

4 Technischen Universität Berlin, Berlin, Germany
christoph.boden@tu-berlin.de

5 Lenovo Group Limited, Morrisville, USA
adholakia@lenovo.com

Abstract. Introduced in 2009, the Technology Conference on Performance
Evaluation and Benchmarking (TPCTC) is a forum bringing together industry
experts and researchers to develop innovative techniques for evaluation, mea-
surement and characterization. This panel at the tenth TPC Technology Con-
ference on Performance Evaluation and Benchmarking (TPCTC 2018) brought
together industry experts and researchers from a broad spectrum of interests in
the field of Artificial Intelligence (AI).

1 Transaction Processing Performance Council: A Look
Back

The Transaction Processing Performance Council (TPC) was created to develop
standards and benchmarks that can be used by vendors, customers and researchers to
characterize system performance and total cost of ownership for different types of
workloads. At first, the TPC focused on defining benchmark standards for transaction
processing. Later, in line with industry trends, the TPC expanded its focus to decision
support systems, data integration, virtualization, big data analytics, internet of things
and hyperconverged infrastructure. These benchmarks create a level playing field and
are used to drive innovation, enabling an iterative process whose end result is higher
performing, lower cost systems with more efficient energy usage [1–4].

Today, the TPC defines two benchmark classes: Enterprise and Express. See
Fig. 1 [2].

• Enterprise benchmarks are technology agnostic. They are specification-based,
typically complex, and have long development cycles. Their specifications are
provided by the TPC, but their implementation is up to the vendor. The vendor may

© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 1–6, 2019.
https://doi.org/10.1007/978-3-030-11404-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_1

choose any commercially available combination of software and hardware products
to implement the benchmark.

Enterprise benchmarks are:
TPC-C: transaction processing
TPC-E: transaction processing
TPC-H: decision support systems
TPC-DS: complex decision support systems and big data analytics
TPC-DI: data integration
TPC-VMS: database virtualization

• Express benchmarks are kit-based, typically using existing workloads, and have
shorter development cycles. Using the TPC-provided kits is required for the pub-
lication of express benchmarks.

Express benchmarks are:
TPCx-HS: big data systems (based on Hadoop)
TPCx-HS V2: big data systems (based on Hadoop and Spark)
TPCx-BB: big data systems (based on Hadoop)
TPCx-V: database virtualization
TPCx-IoT: internet of things
TPCx-HCI: hyperconverged infrastructure.

Additionally, the TPC has introduced two specifications: pricing specification
(TPC-Pricing), and energy specification (TPC-Energy). These are common across all
current standards.

Fig. 1. TPC benchmark standards

2 R. Nambiar et al.

2 Formation of TPC Artificial Intelligence Working Group

The TPC has a long history of keeping pace with innovations in technology. Artificial
Intelligence has unique qualities that introduce new challenges, and it is for this reason
the TPC has formed a working group (TPC-AI) tasked with developing industry
standard benchmarks for both hardware and software platforms associated with running
Artificial Intelligence based workloads [5]. The working group will define the key
characteristics of these systems, identify the areas with the greatest potential for
improvement through performance optimization, and work to understand the key
factors for customers when making purchasing decisions.

3 Panel Discussion

The panel talked about the market segment, use cases and some of the key
considerations.

Artificial Intelligence Today: Years of research into creating AI are finally starting to
yield practical real-world applications. The combination of increased computational
power, research enabling the creation of deep neural networks, the harnessing of big
data, and improvements in the methods to train machine learning systems has created
the opportunity for completely new, often disruptive technologies that provide concrete
value and a competitive edge to today’s organizations.

Everyday interactions with Artificial Intelligence are now commonplace in appli-
cations ranging from speech recognition and natural language processing to sentiment
analysis and recommendation engines. Applications utilizing computer vision are now
being deployed, from the relatively simple license plate reader to the very complex
facial recognition systems. More ambitious projects, like autonomous vehicles, are
being actively pursued.

Artificial Intelligence and machine learning systems operate in a fundamentally
different manner than traditional data processing systems. Unlike traditional systems,
Machine Learning systems are not programmed with specific logic. Instead, they are
supplied with huge datasets and employ algorithms that identify the patterns and
relationships in the data. This, in turn, requires new ways to evaluate the efficacy of the
various hardware and software solutions used to implement Artificial Intelligence and
Machine Learning.

Significant investments have been made in Artificial Intelligence. According to
McKinsey & Company, tech giants spent $20 billion to $30 billion in 2016 on Arti-
ficial Intelligence, 90% of this was spent on research and developments and 10% on
acquisitions.

AI Use Cases: AI is currently seeing everyday use in applications as diverse as speech
recognition, sentiment analysis and natural language processing (including language
translation), computer vision and image recognition, autonomous vehicles and rec-
ommendation engines. It is a rapidly-growing area, being evaluated for a broad array of
use cases across consumer, enterprise, and government markets [4, 6]. See Fig. 2.

Industry Panel on Defining Industry Standards 3

Benchmark Considerations: There are five key aspects that all good benchmarks
have, and benchmarks for Artificial Intelligence are no exception. See Fig. 3 [7]:

• Relevant - to the user of the benchmark (engineering, marketing, buyers,
researchers)

• Repeatable – repeatable in terms of completion time and same results
• Fairness – to the various hardware and software technologies that are part of the

system
• Verifiability – confidence that the test results are real with some sort of audit process
• Economical – economical to set up, run and publish the results.

Fig. 2. AI opportunities across industries

Fig. 3. Five characteristics of a good benchmark [7]

4 R. Nambiar et al.

4 About the Panelists

• Ajay Dholakia is a Principal Engineer, Senior Solution Architect and Chief Tech-
nologist for Software, Solutions and Networking Development within Lenovo Data
Center Group. In this role, he is leading the development of customer solutions in
the areas of AI, big data, analytics and cloud computing. He is also driving new
projects for solution development using emerging technologies including Internet of
Things (IoT) and blockchain. In his career spanning over 25 years, he has led
diverse projects in research, technology, product and solution development and
business/technical strategy. Prior to joining Lenovo, he spent 19 years at IBM
working on data communication, data storage and compute server technologies.
Ajay holds more than 50 patents and has authored over 40 technical publications
including the book “Introduction to Convolutional Codes with Applications.” Ajay
earned a B. E. (Hons.) in Electrical and Electronics Engineering from the Birla
Institute of Technology and Science in India, an MBA from the Henley Business
School in the U.K. and M.S. and Ph.D. in Electrical and Computer Engineering
from North Carolina State University, Raleigh, NC, USA.

• Christoph Boden is a research associate at the Database Systems and Information
Management group at TU Berlin and at the German Research Center for Artificial
Intelligence (DFKI). He is part of the management of the Berlin Big Data Center
(BBDC) research project. In his research he focuses on benchmarking data pro-
cessing systems for scalable machine learning workloads.

• Gary Little is a performance engineer at Nutanix focusing on the intersection of
high performance and highly resilient systems. His early career was with Sun
Solaris systems running Oracle databases. In 2015, his work on performance and
resilience came to fruition as the Nutanix X-Ray product. X-Ray allows end-users
to formulate and execute complex, resilience centered testing. He brought similar
ideas into the TPC that subsequently became part of the TPCx-HCI benchmark.

• Shahram Ghandeharizadeh directs the database laboratory at the USC Computer
Science department. His research team has been investigating design and imple-
mentation of scalable, highly available, and elastic data infrastructure for more than
two decades. He is the co-inventor of BG, a benchmark for interactive social
networking actions. His research has been recognized with numerous awards
including the prestigious ACM Software System Award.

• Raghunath Nambiar is the Corporate Vice President and Chief Technology Officer
of Datacenter Ecosystems and Application Engineering at AMD. He brings years of
technical accomplishments with significant expertise in systems architecture, per-
formance engineering, and creating disruptive technology solutions. Raghu has
served in leadership positions on industry standards committees for performance
evaluation and leading academic conferences. He is the chairman of the TPC’s
benchmark standards committee for Artificial Intelligence. He chaired the industry’s
first standards committee for benchmarking big data systems, the industry’s first
standards committee for benchmarking Internet of Things, and is the founding chair
of TPC’s International Conference Series on Performance Evaluation and Bench-
marking. Raghu has published more than 50 peer-reviewed papers and holds eight

Industry Panel on Defining Industry Standards 5

patents with several pending. He is the author of “Transforming Industry Through
Data Analytics: Digital Disruption in Cities, Energy, Manufacturing, Healthcare,
and Transportation”.

Acknowledgements. The panelists acknowledge the contributions of the TPC members to the
industry and academic community and look forward to working with the TPC AI committee in
creating a new standard for benchmarking AI systems. The panelists also thank Shane Handy for
his comments and feedback with this document.

References

1. Stonebraker, M.: A new direction for TPC? In: Nambiar, R., Poess, M. (eds.) TPCTC 2009.
LNCS, vol. 5895, pp. 11–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10424-4_2

2. Nambiar, R., Poess, M.: Keeping the TPC relevant! PVLDB 6(11), 1186–1187 (2013)
3. Nambiar, R., Wakou, N., Carman, F., Majdalany, M.: Transaction Processing Performance

Council (TPC): state of the council 2010. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010.
LNCS, vol. 6417, pp. 1–9. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
18206-8_1

4. Nambiar, R.: Towards an industry standard for benchmarking artificial intelligence systems.
In: ICDE 2018, pp. 1679–1680 (2018)

5. TPC Press Release Transaction Processing Performance Council (TPC) Establishes Artificial
Intelligence Working Group (TPC-AI). https://www.businesswire.com/news/home/
20171212005281/en/Transaction-Processing-Performance-Council-TPC-Establishes-
Artificial

6. Cisco Blog: Towards an Industry Standard for Benchmarking AI. https://blogs.cisco.com/
datacenter/towards-an-industry-standard-for-benchmarking-ai

7. Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC
2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10424-4_3

8. McKinsey Global Institute: Artificial Intelligence the Next Digital Fortier? Decision Paper,
June 2017

6 R. Nambiar et al.

http://dx.doi.org/10.1007/978-3-642-10424-4_2
http://dx.doi.org/10.1007/978-3-642-10424-4_2
http://dx.doi.org/10.1007/978-3-642-18206-8_1
http://dx.doi.org/10.1007/978-3-642-18206-8_1
https://www.businesswire.com/news/home/20171212005281/en/Transaction-Processing-Performance-Council-TPC-Establishes-Artificial
https://www.businesswire.com/news/home/20171212005281/en/Transaction-Processing-Performance-Council-TPC-Establishes-Artificial
https://www.businesswire.com/news/home/20171212005281/en/Transaction-Processing-Performance-Council-TPC-Establishes-Artificial
https://blogs.cisco.com/datacenter/towards-an-industry-standard-for-benchmarking-ai
https://blogs.cisco.com/datacenter/towards-an-industry-standard-for-benchmarking-ai
http://dx.doi.org/10.1007/978-3-642-10424-4_3
http://dx.doi.org/10.1007/978-3-642-10424-4_3

UniBench: A Benchmark for Multi-model
Database Management Systems

Chao Zhang, Jiaheng Lu(B), Pengfei Xu, and Yuxing Chen

Department of Computer Science, University of Helsinki, Helsinki, Finland
Jiaheng.Lu@helsinki.fi

Abstract. Unlike traditional database management systems which are
organized around a single data model, a multi-model database (MMDB)
utilizes a single, integrated back-end to support multiple data models,
such as document, graph, relational, and key-value. As more and more
platforms are proposed to deal with multi-model data, it becomes cru-
cial to establish a benchmark for evaluating the performance and usabil-
ity of MMDBs. Previous benchmarks, however, are inadequate for such
scenario because they lack a comprehensive consideration for multiple
models of data. In this paper, we present a benchmark, called UniBench,
with the goal of facilitating a holistic and rigorous evaluation of MMDBs.
UniBench consists of a mixed data model, a synthetic multi-model data
generator, and a set of core workloads. Specifically, the data model sim-
ulates an emerging application: Social Commerce, a Web-based applica-
tion combining E-commerce and social media. The data generator pro-
vides diverse data format including JSON, XML, key-value, tabular, and
graph. The workloads are comprised of a set of multi-model queries and
transactions, aiming to cover essential aspects of multi-model data man-
agement. We implemented all workloads on ArangoDB and OrientDB
to illustrate the feasibility of our proposed benchmarking system and
show the learned lessons through the evaluation of these two multi-model
databases. The source code and data of this benchmark can be down-
loaded at http://udbms.cs.helsinki.fi/bench/.

1 Introduction

Multi-Model DataBase (MMDB) is an emerging trend for the database manage-
ment system [16,17], which utilizes a single platform to manage data stored in
different models, such as document, graph, relational, and key-value. Compared
to the polyglot persistence technology [24] that employs separate data stores to
satisfy various use cases, MMDB is considered as the next generation of data
management system incorporating flexibility, scalability, and consistency. The
recent Gartner Magic quadrant [9] for operational database management sys-
tems predicts that, in the near future, all leading operational DBMSs will offer
multiple data models in a unified platform. MMDB is beneficial for modern appli-
cations that require dealing with heterogeneous data sources while embracing the

c© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 7–23, 2019.
https://doi.org/10.1007/978-3-030-11404-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_2&domain=pdf
http://udbms.cs.helsinki.fi/bench/
https://doi.org/10.1007/978-3-030-11404-6_2

8 C. Zhang et al.

agile development. For instance, in a Social Commerce application [27], enter-
prises often gain business insights by integrating graphs from social networks,
documents from the purchase history, and tables from customer information.
Data scientists usually write scripts for each data model separately, then wran-
gles them into a unified form to proceed with real-time and OLAP analysis.
However, as the scale and complexity of data increase, such method becomes
tedious and inefficient. By leveraging the power of MMDB, one can easily ingest
and analyze heterogeneous data in real time and hence swiftly adjust the oper-
ational strategy.

Database benchmark becomes an essential tool for the evaluation and com-
parison of DBMSs since the advent of Wisconsin benchmark [5] in the early
1980s. Since then, many database benchmarks have been proposed by academia
and industry for various evaluation goals, such as TPC-C [25] for RDBMSs, TPC-
DI [21] for data integration; OO7 benchmark [2] for object-oriented DBMSs,
and XML benchmark systems [15,23] for XML DBMSs. More recently, the
NoSQL and big data movement in the late 2000s brought the arrival of the
next generation of benchmarks, such as YCSB benchmark [4] for cloud serving
systems, LDBC [6] for Graph and RDF DBMSs, BigBench [3,10] for big data
systems. However, those general-purpose or micro benchmarks are not designed
for MMDBs. As more and more platforms are proposed to deal with multi-model
data, it becomes important to have a benchmark for evaluating the performance
of MMDBs and comparing different multi-model approaches.

In general, there are two challenges evaluating the performance of MMDBs:

Customers Invoices

Person

Orders

Products

Relational
XML

JSON Graph

Feedback

Key/value Vendors

Post

Tag

Knows

HasTag

HasInterest
HasCreated

Fig. 1. Unibench data model

The first challenge is to gen-
erate synthetic multi-model data.
First, existing data generators can-
not be directly adopted to eval-
uate MMDBs because they only
involve one model. Besides, com-
bining them reasonably is a diffi-
cult task since each generator sim-
ulates a particular scenario. In this
study, we develop a new data gen-
erator to provide correlated data in
diverse models. As shown in Fig. 1,

our benchmark system consists of five data models, i.e., Graph, Relational,
JSON, Key-value, and XML. It simulates a social commerce scenario [27]
that combines the social network with the E-commerce context. The relational
model includes the structured customers and vendors, JSON model contains
the semi-structured orders and products. The social network is modeled as
graph, which includes three entities and four relations. i.e., person, post, tag,
person knows person, person has tag, person create post, post has tag. Feedback
and Invoices are modeled as key-value and XML, respectively. These also have
correlations across the data models. For instance, customer knows friends (rela-
tional correlates with the graph model), customer makes transactions. (JSON

UniBench: A Benchmark for Multi-model Database Management Systems 9

correlates with relational model). Furthermore, we propose a three-phase frame-
work to simulate customers’ behaviors in social commerce. This framework
consists of purchase, propagation-purchase, and re-purchase, which takes into
account a variety of factors to generate the Power-law distribution data that
are widely seen in real life. Particularly, we propose a new probabilistic model
CLVSC (Customer Lifetime Value in Social Commerce) to make fine-grained
predictions in the third phase.

The second challenge is to design multi-model workloads. Such workloads are
the fundamental operations in many complex and modern applications. However,
little attention has been paid to study them. It is non-trivial to design the
workloads which not only cover the most important paradigms of multi-model
query processing but also simulate realistic use cases. In this regard, we first
simulate meaningful business cases in social commerce by dividing them into four
layers: individual, conversation, community, and commerce. Then we define a set
of multi-model queries and transactions based on the choke point technique [22],
which tests the weak points of databases to make the benchmark challenging and
interesting. Choke points of our benchmark workloads involve performances of
the multi-model aggregation, join, and transaction, demanding the database to
determine the optimal multi-model join order, handle the complex aggregations,
and guarantee the concurrency and efficiency simultaneously.
We summarize our contributions as follows:

1. We develop a new data generator, which provides correlated data in diverse
data models. We also propose a three-phase framework to generate data for
modeling the customers’ behaviors in social commerce. We implement the
generator on the top of Spark and Hadoop to provide efficiency and scalability.

2. We design a set of multi-model workloads including ten queries and two trans-
actions from technical and business perspectives.

3. We implement proposed workloads and conduct experiments on two MMDBs:
ArangoDB [1] and OrientDB [19]. We analytically report the performance
comparison and our learned lessons.

The rest of this paper is divided as follows. Section 2 introduces the back-
ground and related work. Section 3 illustrates the workflow of data generation.
Section 4 presents the multi-model workload in detail. The experimental results
are shown in Section 5. Finally, Sect. 6 concludes this work.

2 Background and Related Work

Background. Multi-model data management is proposed to address the “Vari-
ety” challenge of data in a complex world. The first evolution is the prevalence
of Polyglot Persistence [24] method, which exploits numerous databases to han-
dle different forms of data and integrates them to provide a unified interface.
Unfortunately, such method imposes further operational complexity and cost,
because the need for integrating multiple databases has a significant engineering
and operational overhead. The drawback of Polyglot Persistence leads to the

10 C. Zhang et al.

Table 1. Comparison of multi-model DBMSs

System Query language Primary model Secondary model Storage strategy

AgensGraph OpenCypher, SQL Relational Graph, JSON One engine

ArangoDB AQL JSON Graph, Key-value One engine

OrientDB SQL-like Graph JSON, Key-value One engine

Marklogic Xpath XML JSON, RDF One engine

Redis API Key-value Graph, JSON One engine

NitrosBase SparQL, SQL RDF Graph, JSON, Key-value One engine

Datastax CQL Column JSON, Graph Multiple engines

DynamoDB API, SQL - JSON, Graph, Key-value Multiple engines

CosmosDB API, SQL - ALL but XML Multiple engines

Oracle 12c SQL-extension Relational ALL Both

second evolution of multi-model data management. First, many SQL-extension
ecosystems and NoSQL systems have been transformed to multi-model systems
by integrating additional engines or functions into a unified platform for sup-
porting additional models. On the other hand, there emerge many native multi-
model databases, e.g., ArangoDB, AgensGraph, OrientDB. These systems utilize
a single store to manage the multi-model data, along with a unified or hybrid
query language. Table 1 shows the representatives of MMDBs compared by sev-
eral properties, namely, query language, primary model, secondary model, and
storage strategy. The secondary model of each system is extended in the second
evolution. Redis, for example, adds JSON and graph to its key-value store. On
the other hand, DynamoDB employs several engines to support multiple models
including JSON, graph, and key-value, and it has no specified primary model
because each model is regarded as the first-class citizen.

Related Work. There are a few works on multi-model data modeling, data gen-
eration and database benchmarking. In [16], we have envisioned a multi-model
database benchmark system (but without any detailed solution and implementa-
tion). Regarding the data modeling and data generation, TPC-DI [21] features
a multi-model input data including XML, CSV, and textual parts, which is
used to evaluate the transformation cost in data integration process. Also, Big-
bench [10] incorporates semi-structured (logs) and unstructured data (reviews)
into TPC-DS’s structured data. However, no consideration was given to JSON
and graph, which are currently two most popular models in data management.
As for the performance evaluation, several evaluation efforts [18,20] have been
done on multi-model databases recently. Nevertheless, they only focus on simple
workloads, such as CRUD operation, aggregation, graph depth traversal, which
are inadequate since they do not account for complex workloads concerning
multi-model characteristics.

The most relevant work about our approach is LDBC social network bench-
mark [6]. First, our graph generation is based on LDBC [6], we choose it as

UniBench: A Benchmark for Multi-model Database Management Systems 11

the starting point for its scalability and rich semantics in simulating social net-
works. It also supports the generation of correlated graph by leveraging the
MapReduce paradigm of Hadoop. However, since our goal is concentrating on
benchmarking multi-model databases rather than graph databases, we have sim-
plified the graph complexity to better fit our goal. Moreover, in order to generate
the E-commerce transactions with associated graph entities, we replace some of
its dictionaries by collecting commerce metadata from Amazon review [14] and
DBpedia dataset [13]. Second, our workload design is motivated by LDBC [6],
TPC-C [25] and Bigbench [10]. In particular, LDBC follows the graph-based
choke points approach, and Bigbench focuses on the business questions in five
main categories. Motivated by these two design principles, we also propose the
choke-point and business-driven query design. For the transaction design, despite
the business cases of two proposed transactions e.g., New Order and Payment
are similar to those in TPC-C [25], the data involved in our benchmark sys-
tems come from multiple data models. Therefore we focus on the multi-model
transactions rather than single-model transactions.

3 Data Generation

In this section, we introduce the process of multi-model data generation. Figure 2
shows our three-phase data generation framework. Specifically, (i) in Purchase
phase, LDBC [6] obtains metadata from the repository, then generates graph
data and initial interests of persons. These data is feed to our generator to
produce transaction data. (ii) In Propagation-Purchase phase, interests of cold-
start customers are generated based on information obtained in the previous
phase. (iii) In Re-purchase phase, interests of all customers will be generated
based on CLVSV model, which is discussed shortly. In each phase, we generate
transaction data according to the interests of customers and unite all three
portions as an integral part of the multi-model dataset. The entire generation
process is presented in Algorithm 1, and discussed in detail as follows:

Re-PurchasePropagation-Purchase

Metadata
Repository

Purchase

LDBC

Order

PowerLaw
CLVSV Model

Interests

Pe
rs

on

Interests

Pe
rs

on

Possion

Xml

Feedback

SocialNetwork

Random
Correlate

Customer
Vendor

Correlate

Product Correlate

Union

Customer
(no interests)Filtering

Rating

Interests

Pe
rs

on

Interests

Pe
rs

on

Naïve
Bayesian

Social activity

Customer
Vendor

Purchase

Order

Friendship

Interests

Pe
rs

on

Interests

Pe
rs

on

New
data

Fig. 2. Data generation workflow.

12 C. Zhang et al.

Algorithm 1. Data Generation
Input: Scale factor f , constant c controlling number of transaction, real value

λ as Poisson parameter, and meta data
Output: Multi-model dataset D

1 G ← LDBC (f) // graph data generated by the LDBC generator

2 R ← relational data transformed from graph and meta data
3 L1 ← initial list of purchase interest of persons from G
4 J, X,KV , D ← ∅ // initial sets of JSON, XML, Key-value, and output

5 Pt, Pf ← persons having interests, persons having no interests
6 foreach p ∈ Pt do

7 count ← L1/c
8 while count �= 0 do

9 r ← Poisson(λ)
10 count ← count − 1
11 J , X, KV ← Purchase(r, p) // generate transaction data

12 D ← D ∪ J ∪ X ∪ KV

13 BayesModel ← fit the bayes model based on R and KV
14 foreach p ∈ Pf do

15 L2 ← generate new interest list based on equation 1
16 D ← D ∪ Propagation-Purchase(p, L2)

17 CLVSC ← fit the CLVSC model based on a small portion of samples
18 foreach p ∈ Pt ∪ Pf do

19 L3 ← CLVSC(J ,G) // generate new interests by CLVSC model

20 D ← D ∪ Re-Purchase(p, L3) // generate new transaction data

21 return D

3.1 Purchase

In this phase, we consider two factors when generating the data. First, persons
usually buy products based on their interests. Second, persons with more inter-
ests are more likely to buy products than others. The person’s interests for the
products are generated by the LDBC. This phase is implemented on the top of
Spark SQL using Scala, which utilizes a plentiful APIs and UDFs to generate
the multi-model data. Specifically, we first determine the number of transactions
for each person by dividing the number of their interests with a constant c, then
select the size for each transaction from a Poisson distribution with parameter λ,
finally assign items to each transaction by randomly choosing items from their
interest sets. The orders will be output in JSON format with an embedded item
array of orderline. Meanwhile, The invoices will be generated with the same
information but in XML format. In addition, we randomly select the product’s
real review and corresponding rating from the Amazon dataset as the feedback.
Consequently, our data consist of five models: social network (Graph), vendor
and customer (Relation), order and product (JSON), invoice (XML), feedback
(Key-value).

UniBench: A Benchmark for Multi-model Database Management Systems 13

3.2 Propagation-Purchase

In this phase, we incorporate two ingredients from previous data generation:
(i) person’s basic demographic data, e.g., gender, age, location. (ii) feedback of
friends. This is motivated by the observation that people with same attributes
more likely have the same behaviors, and people also trust the product recom-
mendations from friends. The scoring function is defined as follow:

Sui =
∑

k

k × Pr(Rui = k|A = au) + E(Rvi : ∀v ∈ N(u)) (1)

where
∑

k k×Pr(Rui = k|A = au) is the expectation of the probability distribu-
tion of the target user u’s rating on the target item i, and A = {a1, a2, . . . , am}
is user attribute set computed based on Naive Bayesian method. The latter part
E(Rvi : ∀v ∈ N(u)) is the expectation of u’s friends’ rating distribution on the
target item, where N(u) is the friends set of user u, and the item i is from
the purchase transaction of friends. To train the bayes model, we implemented
our techniques using Python’s scikit-learn, which takes users’ profiles and rating
history from the previous phase as the training set. For each person without
interests, we take the items rated by their friends as the candidate set, then
rank them using Eq. (1). Finally, we take the first n percent portion as the new
interests, and then generate the new transactions the same as the process in the
purchase phase.

3.3 Re-purchase

The CLV (Customer Lifetime Value) model [11] is proposed to address the
RFM’s limitation in forecasting non-contractual customer behavior. We propose
a new probabilistic model CLVSC (Customer Lifetime Value in Social Com-
merce) to make fine-grained predictions by incorporating the customer’s social
activities regarding the brand. In general, the CLVSC is comprised of three com-
ponents: the expected number of behaviors, the expected monetary value, and
the expected positive social engagement of customer. The scoring function for
CLVSC is defined as follow:

Sib(CLV SC) = E(X∗ |n∗, x′, n,m, α, β, γ, δ)
× (E(M | p, q, υ,mx, x) + E(S | s̄, θ, τ))

(2)

where i and b are the customer and brand index, respectively,
E(X∗|n∗, x′, n,m, α, β, γ, δ) denote the expected number of behaviors over

the next n∗ periods by a customer with observed behavior history (x′, n,m),
where x′ is the number of behavior that occurred in n period, with the last behav-
ior m � n; (α, β) and (γ, δ) are the beta distribution parameters for active prob-
ability and inactive probability respectively, the behavior is either the purchase
or the post. Utilizing the beta-geometric/beta-binomial (BG/BB) [7] model, we
have

14 C. Zhang et al.

E(X∗ |n∗, x′, n,m, α, β, γ, δ)

=
B(α + x + 1, β + n − x)

B(α, β)

× B(γ − 1, δ + n + 1) − B(γ − 1, δ + n + n∗ + 1)
B(γ, δ)

÷ L(α, β, γ, δ|x, n,m)

(3)

where L(·) is the likelihood function. This result is derived from taking the
expectation over the joint posterior distribution of active probability and inactive
probability.

E(M | p, q, υ,mx, x) denote the expected monetary value. Following the
Fader, Hardie, and Berger’s approach [8] of adding monetary value, we have

E(M | p, q, υ,mx, x)

=
(

q − 1
px + q − 1

)
υp

q − 1
+

(
px

px + q − 1

)
mx

(4)

E(S | s̄, θ, τ) denote the expected social engagement of customer, we assume
that the number of social engagement of customer follows a Poisson process
with rate λ, and heterogeneity in λ follows a gamma distribution with shape
parameter θ and rate parameter τ across customers. According to the conjuga-
tion of Poisson-gamma model, the point estimate E(S | s̄, θ, τ) can be factorized
as follow,

E(S | s̄, θ, τ) = θ′τ ′ =
τ

1 + τ
s̄ +

τ

1 + τ
θτ (5)

The resulting point estimate is therefore a weighted average of the sample
mean s̄ and the prior mean θτ .

We implemented the CLVSC model using R’s BTYD package [26], which
takes a small portion of samples from the previous phases as the training set.
For all persons, we estimate their interests of brands, then acquire the m interests
from top n brands, finally generate the new transactions the same as the process
in the purchase phase.

4 Workload

The UniBench workload consists of a set of complex read-only queries and read-
write transactions that involve at least two data models, aiming to cover different
business cases and technical perspectives. More specifically, as for business cases,
they fall into four main levers [12]: individual, conversation, community, and com-
merce. In these four levers, common-used business cases in different granularity
are rendered. Regarding technical perspectives, they are designed based on the
choke-point technique [22] which combines common technical challenges with
new intractable problems for the multi-model query processing, ranging from
the conjunctive queries (OLTP) to analysis (OLAP) workloads. Their character-
istics are summarized in Table 2. Note that in the description column, the italic
and bold texts denote the intended input and output data, respectively.

UniBench: A Benchmark for Multi-model Database Management Systems 15

Table 2. Characteristics of workload

Label Business
category

Technique dimension Description

Q1 Individual Perform point query on a
customer’s all multi-model
data

For a given customer, find
her profile, orders,
feedback, and posts

Q2 Conversation Join data from Relation,
Graph, and JSON

For a given product, find the
persons who had bought it
and posted on it

Q3 Conversation Join data from Relation,
Graph, and Key-value, filter
structured and unstructured
data

For a given product, find
persons who have
commented and posted on it,
and detect negative
sentiments from them

Q4 Community Aggregate and sort the JSON
order, Perform the 3-hop
graph traversal in the
subgraph, return the
intersection of two sets

Find the top-2 persons who
spend the highest amount of
money in orders. Then for
each person, traverse her
knows-graph with 3-hop to
find the friends, and finally
return the common friends
of these two persons

Q5 Community Join data from Relation,
Graph, and Key-value with
two predicates, recursive
path query for Graph,
embedded array operation for
JSON, and composited-key
lookup for Key-value

Given a start customer and a
product category, find
persons who are this
customer’s friends within
3-hop friendships in
knows-graph, and they have
bought products in the given
category. Finally, return
feedback with the 5-rating
review of those bought
products

Q6 Community Perform the shortest path
calculations between two
nodes, find the correlated
JSON orders of nodes in the
path, aggregation on
returned JSON orders

Given customer 1 and
customer 2, find persons in
the shortest path between
them in the subgraph, and
return the TOP 3 best
sellers from all these
persons’ purchases

Q7 Commerce Join data from Relation,
JSON and Key-value,
compare the aggregation
results between two periods,
identify the reviews with
negative sentiment

For the products of a given
vendor with declining sales
compare to the former
quarter, analyze the reviews
for these items to see if there
are any negative sentiments

(continued)

16 C. Zhang et al.

Table 2. (continued)

Label Business
category

Technique dimension Description

Q8 Commerce Perform the embedded array
filtering and aggregation on
JSON order, aggregate the
correlated graph data for
each records

For all the products of a
given category during a given
year, compute its total sales
amount, and measure its
popularity in the social
media

Q9 Commerce Perform the embedded array
filtering, aggregation, and
sorting on JSON order, then
find the correlated graph
data

Find top-3 companies who
have the largest amount of
sales at one country, for each
company, compare the
number of the male and
female customers, and return
the most recent posts of
them

Q10 Commerce Perform the aggregation and
sort on graph data, then find
the correlated Key-value and
JSON data

Find the top-10 most active
persons by aggregating the
posts during the last year,
then calculate their RFM
(Recency, Frequency,
Monetary) value in the
same period, and return their
recent reviews and tags of
interest

T1 New order
transaction

Check the ACID properties
and evaluate the efficiency on
read-heavy multi-model
transaction that involves
JSON and XML

(i) Create and insert the
order, (ii) update the
quantity of involved
products, (iii) insert the
invoice

T2 Payment
transaction

Check the ACID properties
and evaluate the efficiency on
write-heavy multi-model
transaction that involves
Relation, JSON and XML

(i) Retrieve the unpaid
order, (ii) update the
balance of the seller and
buyer, (iii) update the
order status to paid, (iv)
update the related invoice

4.1 Business Cases

We identify two transactions and four layers of queries that include ten multi-
model queries to simulate realistic business cases in social commerce. Specifically,
the two transactions, namely, New Order and Payment transactions, simulates
the huge parallel transactions for online shopping. They represent heavy-weight,
read-write transactions with a high frequency of execution to satisfy on-line
users. As for multi-model queries, the individual level mimics the case that

UniBench: A Benchmark for Multi-model Database Management Systems 17

companies build a 360-degree customer view by gathering data from customer’s
multiple sources. There is one query for this level. conversation level focus
on analyzing the customer’s semi-structured and unstructured data, including
Query 2 and 3. The two queries are commonly used for the company to cap-
ture customer’s sentiment polarity from the feedback and then adjust the online
advertising or operation strategy. Query 4, 5, 6, in the community level target
at two areas: mining common purchase patterns in a community and analyz-
ing the community’s influence on the individual’s purchase behaviors. Finally,
commerce level aims at the assortment optimization and performance trans-
parency. Specifically, Query 7, 8, 9 identify products or vendors with downward
or upward performance and then find the cause for improvements. Query 10 is to
compute the Recency, Frequency, Monetary (RFM) value of customers regarding
the vendor, and then find the common tags in the posts.

4.2 Technical Dimensions

Our workload design is based on the choke point technique that tests many
aspects of the database when handling the query. Typically, these aspects may
concern different components of databases, such as the query optimizer, the
execution engine, and the storage system. Moreover, the choke points in our
workload not only involve common query processing challenges for the tradi-
tional database systems but also take a few new problems of multi-model query
processing. Here we list three key points:

Choosing the Right Join Type and Order. Determining the proper join
type and order for multi-model queries is a new and non-trivial problem. This is
because it demands the query optimizer to estimate the cardinality with respect
to involved models. Moreover, it needs the query optimizer to judiciously deter-
mine the optimal join order for multi-model query. The execution time of differ-
ent join orders and types may vary by orders of magnitude due to the domination
of different data model. Therefore, this choke point tests the query optimizer’s
ability to find an optimal join type and order for the multi-model query. In our
proposed workload, all the queries involve multiple joins across different data
model.

Performing Complex Aggregation. This choke-point includes two types of
queries concerning the complex aggregation. The first type is the aggregation
towards the complex data structure which requires MMDB to deal with schema-
agnostic data when proceeding with aggregation. The second one is the query
with subsequent aggregations, where the results of an aggregation serve as the
input of another aggregation. Also, these aggregations involve the union of mul-
tiple models’ results. For instance, Query 10 requires the MMDB to access the
product array in the JSON orders when processing the first aggregation. Then
the results will be an input for the second aggregation in the Graph.

18 C. Zhang et al.

Ensuring the Consistency and Efficiency. A database transaction should
possess ACID properties. Therefore, this choke-point tests the ability of the
execution engine and the storage system to find an appropriate concurrency
control technique to guarantee the consistency and efficiency. In particular, the
transactions not only involve read-write operations on multiple entities but also
require the MMDB to guarantee the consistency across the data model.

4.3 Example

To illustrate our choke-point-based design of queries, we take Query 5 (in Fig. 3)
as an example to explain the technical challenge under the hood. Query 5 is
that: Given a start customer and a product category, find persons who are this
customer’s friends within 3-hop friendships in Knows graph, besides, they have
bought products in the given category. Finally, return the feedback with the 5-
rating review of those bought products.

{
"id": 1,
"customer_id": 33,
"total_price": 135,
"items": [
{"product_id": 85,"brand": "Nike"},
{"product_id": 86,"brand":"Adidas"}

]
}

Person
_id: 145

Person
_id: 101

Person
_id: 56

Person
_id: 33

friend

friend

Order(JSON)
Excerpt of Multi-Model Data:

Feedback(Key-value)

friend

Social Network(Graph)

Execution Plan for Q5:

CustId ProductId Rating

33

56

101

145

85 5

86 4

87 4

88 5

CustId ProductId Rating

33

56

101

145

85 5

86 4

87 4

88 5

KnowsGraph

Person_id(145)

Person_id
a(Knows*1..3)

Order

customer_id items

Brand("Nike") product_id

Feedback

ProductId Rating=5

b

c

KnowsGraph

Person_id(145)

Person_id
a(Knows*1..3)

Order

customer_id items

Brand("Nike") product_id

Feedback

ProductId Rating=5

b

c

Fig. 3. Example of multi-model join

As Fig. 3 depicts, this query involves three data models: customer with 3-
hop friends (Graph), order embedded with an item list (JSON), and customer’s
feedback (Key-value). From the business perspective, it can be used to explain
the recommendation model for better transparency and user experience. From
the technical dimension, there are three types of joins in the query: Graph-Graph
(
�a), Graph-JSON (
�b) and JSON-KV (
�c) join. Nevertheless, as the order of
filters and joins can affect the execution time, an important task for the query
optimizer is to evaluate available plans and select the best one. Note that picking
a wrong join order makes the performance drastically worse. For example, when
there is no qualified tuple in the orders, traversing one thousand tuples in the
graph and looking up thousands of key-value pairs would be a bad choice. A
judicious way for this case is to filter the orders with given parameters, and

UniBench: A Benchmark for Multi-model Database Management Systems 19

avoid the graph traversal and index lookup for key-value pairs when there are
no valid orders. Furthermore, Query 5 is challenging also because each model
arises a cardinality estimation issue to the query optimizer, i.e., recursive path
query for Graph, embedded array operation for JSON, and composite-key lookup
for key-value.

5 Experiments

In this section, we report our experimental results, including the performance
of data generation and the benchmark results. In the case of the setup, we
generate the synthetic data on a cluster of three machines, each with double 4-
core Xeon-E5540 CPU, 32 GB RAM, and 500 GB HDD. In addition, we conduct
all benchmark experiments on another machine with double 6-core Xeon-E5649
CPU, 100 GB RAM, and 500 GB HDD. The client machine has a 4-core i5-
4590 CPU with 16 GB RAM. We select two representative MMDBs: OrientDB
and ArangoDB with community version 2.2.16 and 3.3.7. On the client-side,
we develop a Node.js program integrated with each DB’s official driver. All
benchmark workloads are implemented in the program (except for the OrientDB
transaction, which can only be fully supported using JAVA API at present).

5.1 Data Generation

Table 3 presents characteristics of three generated datasets, each of which con-
sists of five data models. Unibench defines a set of scale factors (SFs), targeting
systems of different sizes. The size of the resulting dataset is mainly affected by
the number of persons (Relational entries). For benchmarking the databases, we
leverage the data generator to produce three datasets with roughly size 1 GB,
10 GB, and 30 GB by using scale factors 1, 10, and 30, respectively. In the case
of efficiency, experiment results suggest the data generator produced 1 GB and
10 GB multi-model datasets in 10 and 40 min, on our 8-core machine running
MapReduce and Spark in “pseudo-distributed” mode. In terms of scalability,
we successfully generate 30G multi-model data within 60 min on our three-node
cluster.

Table 3. Characteristics of datasets.

SF Generation

time (min)

Number (×104) & size in megabytes

Relational

entries

Key-value pairs JSON objects XML objects Nodes and edges of graph

1 10 1.2 & 1.1 25.2 & 233.7 25.2 & 219.2 25.2 & 326.5 (123.1, 338.9) & 236.6

10 40 7.4 & 6.5 234.2 & 2313.1 234.2 & 2189.8 234.2 & 3568.6 (969.3, 3208.3) & 2095.8

30 60 (3 nodes) 18.3 & 15.8 636.8 & 6367.8 636.8 & 6184.9 636.8 & 11771.31 (2674.3, 10951.5) & 6191.5

20 C. Zhang et al.

5.2 Importing Time

We import three datasets, SF1, SF10, and SF30, into ArangoDB and OrientDB
using command-line utilities arangoimp and oetl. Both are executed in a single
thread. Since both of them have no native XML support, we skip the XML
importing test (Note that one can also convert XML objects into JSON objects,
but the method is simply similar to that for JSON documents). The importing
time of key-value pairs is merged into the relational model’s because both DBs
employ the same import method. Regarding the additional cost for supporting
join operations, OrientDB needs to create inverse links between relational and
JSON data using CREATE LINK command. In comparison, there is no such
cost for ArangoDB, because once the data is imported into the system, one can
perform join queries immediately.

ArangoDB OrientDB
0

2

4

T
im

e
(m

in
)

ArangoDB OrientDB
0

10

20

30

Relational JSON Graph Additional

ArangoDB OrientDB
0

20

40

60

28.78 88.89 278.72 306.74 1149.59

(a) SF1 (b) SF10 (c) SF30

Fig. 4. Processing time for importing the multi-model datasets.

Figure 4 illustrates the result for loading three datasets. For better illustra-
tion, we measured the data loading time by four aspects, i.e., relational, JSON,
graph, and additional cost. Overall, ArangoDB is 7.5x, 3.4x, and 3.8x faster
than OrientDB for SF1, SF10, and SF30, respectively. Our observations are
as follows. (i) For relational data, OrientDB is slightly slower as it takes time
for creating unique RID to record the physical position for each row. On the
contrary, ArangoDB employs original IDs as primary keys directly. (ii) For the
JSON data, OrientDB has to transform each semi-structured JSON object into
an ODocument object, while ArangoDB imports JSON data as JSON lines for-
mat, which allows it to load data in batches. (iii) For the graph data, OrientDB
utilizes adjacency lists to store relations between all nodes. Thus an index lookup
is needed when extracting every edge. In contrast, ArangoDB imports all edges
into a edge collection as long as all imported documents have from and to
attributes. This makes ArangoDB much faster than OrientDB for loading graph
data. (iv) OrientDB requires additional cost for other tasks, e.g., creating links.
Such cost increases drastically as data grows.

5.3 Performance of Multi-model Query

In this part, we issued ten multi-model queries on three datasets against
ArangoDB and OrientDB. These queries are implemented using their query lan-

UniBench: A Benchmark for Multi-model Database Management Systems 21

guages, i.e., AQL and Orient SQL. We use default indexes which are built on
primary keys, and no secondary index is created. We provide the processing time
of these queries in Fig. 5. We expect OrientDB could perform better at queries
in the community level since these queries involve advanced graph traversal, but
surprisingly, ArangoDB wins in most of the cases. This is due to its flexible data
modeling, sophisticated query optimizer, and C++-implemented query func-
tion. Nevertheless, one exception is Q5 where OrientDB outperforms ArangoDB
because the latter’s query optimizer does not handle inner joins between graph
and JSON efficiently, while OrientDB uses composite SQL queries to fetch cor-
related data from graph and JSON at the same time.

1 2 3 4 5 6 7 8 9 10

101

102

L
og

(t
im

e(
s)
)

1 2 3 4 5 6 7 8 9 10

101

102

103

ArangoDB OrientDB

1 2 3 4 5 6 7 8 9 10

102

103

(a) SF1 (b) SF10 (c) SF30

Fig. 5. Processing time on a logarithmic scale for queries, x-axis labels are query ids,
i.e., Q1 to Q10.

5.4 Transaction Performance

We adopt Java and Node.js APIs which are only feasible ways at present to
implement multi-model transactions for OrientDB and ArangoDB, respectively.
This leads to two different patterns: synchronous processing for OrientDB, and
asynchronous processing for ArangoDB. Similar to transactional operations in
RDBMS, OrientDB utilizes begin, rollback, commit commands to proceed trans-
actions. However, no such commands exist in ArangoDB. Instead, it executes a
transaction via an executeTransaction JavaScript function. All involved data in
the transaction needs to be declared beforehand.

Table 4. Throughput (transactions/second) of multi-model transactions

Database Access method Throughput
for new order

Throughput
for payment

ArangoDB Asynchronous (Nodejs) 230.6 738.5

OrientDB Synchronous (Java) 138.3 22.9

We ran two individual transactions (i.e., New Order and Payment) with a
single thread for one minute, then compute the throughput per second. The

22 C. Zhang et al.

operations of transactions in detail can be found in Table 2. Two DBs manage
to roll back invalid transactions and commit valid ones, which means ACID
properties on two multi-model transactions are guaranteed. Table 4 illustrates
performances of both systems. The results indicate ArangoDB is better at write-
heavy transaction (Payment) and OrientDB is more efficient in performing read-
heavy transaction (New order). We believe this is due to the difference of their
storage engines, i.e., LSM-tree-based storage for ArangoDB and B-tree-based
storage for OrientDB.

6 Conclusion

Benchmarking multi-model databases is a challenging task since current public
data and workloads can not well match various cases of applications. In this
article, we introduce UniBench, a novel benchmark for multi-model databases.
UniBench consists of a mixed data model, a scalable multi-model data gener-
ator, and a set of workloads including the multi-model aggregation, join, and
transaction. Furthermore, we implement our proposed workloads on ArangoDB
and OrientDB to illustrate the feasibility and usability of UniBench.

Several lessons are learned from the experimental study: (i) MMDBs are
able to ingest a variety of data into storage without much additional efforts,
(ii) MMDBs are able to support multi-model joins, such as graph-JSON, JSON-
relational, and graph-relational. However, they lack specific algorithms to opti-
mize the execution plan. (iii) MMDBs are able to support multi-entity and
multi-model ACID transactions in the stand-alone mode, but the support for
distributed ACID transactions remain on the future schedule.

As for future work, we would like to (i) introduce the flexibility into data
generation because the data schema and data model in the real application could
be changed dynamically, (ii) evaluate the performance of multi-model databases
regarding different sharding strategies, and (iii) provide an open-source kit used
to setup and run the benchmark, including the release of data generator and
query implementations.

Acknowledgment. This work is partially supported by Academy of Finland
(310321), China Scholarship (CSC) and CIMO Fellowship.

References

1. ArangoDB: Multi-model NoSQL database (2018). https://www.arangodb.com/
2. Carey, M.J., DeWitt, D.J., Naughton, J.F.: The 007 benchmark. In: ACM SIG-

MOD, pp. 12–21 (1993)
3. Chen, Y., et al.: A study of SQL-on-Hadoop systems. In: Big Data Benchmarks,

Performance Optimization, and Emerging Hardware, pp. 154–166 (2014)
4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: ACM SoCC, pp. 143–154 (2010)
5. DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: The Bench-

mark Handbook, pp. 119–165 (1991)

https://www.arangodb.com/

UniBench: A Benchmark for Multi-model Database Management Systems 23

6. Erling, O., et al.: The LDBC social network benchmark: interactive workload. In:
SIGMOD (2015)

7. Fader, P.S.: Customer-base analysis with discrete-time transaction data. Ph.D.
thesis, University of Auckland (2004)

8. Fader, P.S., Hardie, B.G., Lee, K.L.: RFM and CLV: using ISO-value curves for
customer base analysis. J. Mark. Res. 42(4), 415–430 (2005)

9. Feinberg, D., Adrian, M., Heudecker, N., Ronthal, A.M., Palanca, T.: Gartner
magic quadrant for operational database management systems, 12 October 2015

10. Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big data
analytics. In: ACM SIGMOD (2013)

11. Gupta, S., et al.: Modeling customer lifetime value. J. Serv. Res. 9(2), 139–155
(2006)

12. Huang, Z., Benyoucef, M.: From e-commerce to social commerce: a close look at
design features. ECRA 12, 246–259 (2013)

13. Lehmann, J., et al.: DBPedia - a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6(2), 167–195 (2015)

14. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
TWEB 1(1), 5 (2007)

15. Lu, J.: Benchmarking holistic approaches to XML tree pattern query processing.
In: DASFAA Workshops, pp. 170–178 (2010)

16. Lu, J.: Towards benchmarking multi-model databases. In: CIDR (2017)
17. Lu, J., Holubová, I.: Multi-model data management: what’s new and what’s next?

In: EDBT (2017)
18. Oliveira, F.R., del Val Cura, L.M.: Performance evaluation of NoSQL multi-model

data stores in polyglot persistence applications. In: IDEAS, pp. 230–235 (2016)
19. OrientDB: Multi-model & graph database. http://orientdb.com/orientdb/
20. Pluciennik, E., Zgorzalek, K.: The Multi-model databases - a review. In: BDAS,

pp. 141–152 (2017)
21. Poess, M., Rabl, T., Jacobsen, H., Caufield, B.: TPC-DI: the first industry bench-

mark for data integration. PVLDB 7(13), 1367–1378 (2014)
22. Prat, A., Averbuch, A.: Benchmark design for navigational pattern match-

ing benchmarking (2015). http://ldbcouncil.org/sites/default/files/LDBC D3.3.
34.pdf

23. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: a benchmark for XML data management. In: VLDB, pp. 974–985 (2002)

24. Stonebraker, M.: The case for polystores (2015). http://wp.sigmod.org/?p=1629
25. Transaction Processing Performance Council: TPC Benchmark C (Revision 5.11)

(2010)
26. Wadsworth, E.: Buy’til you die-a walkthrough (2012)
27. Zhang, K.Z.: Consumer behavior in social commerce: a literature review. Decis.

Support Syst. 86, 95–108 (2016)

http://orientdb.com/orientdb/
http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf
http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf
http://wp.sigmod.org/?p=1629

PolyBench: The First Benchmark
for Polystores

Jeyhun Karimov1(B), Tilmann Rabl1,2, and Volker Markl1,2

1 DFKI, Kaiserslautern, Germany
jeyhun.karimov@dfki.de

2 TU Berlin, Berlin, Germany

Abstract. Modern business intelligence requires data processing not
only across a huge variety of domains but also across different paradigms,
such as relational, stream, and graph models. This variety is a challenge
for existing systems that typically only support a single or few different
data models. Polystores were proposed as a solution for this challenge
and received wide attention both in academia and in industry. These
are systems that integrate different specialized data processing engines
to enable fast processing of a large variety of data models. Yet, there
is no standard to assess the performance of polystores. The goal of this
work is to develop the first benchmark for polystores. To capture the
flexibility of polystores, we focus on high level features in order to enable
an execution of our benchmark suite on a large set of polystore solutions.

1 Introduction

Modern business questions frequently comprise complex analytical queries with
multiple data types and data models, residing on several data storage and pro-
cessing systems. This has led to a large number of domain-specific database
engines with diverse capabilities since it is hard to support all kinds of hetero-
geneous queries within a single data processing engine [22]. For these setups,
polystores have been proposed to combine systems that specialize in specific
execution and data models.

Similarly, there is a growing community supporting one size might fit all, such
as Apache Spark [27] and Weld [20]. These systems combine numerous analytics
in a single engine to enable generic data representation and benefit from common
intermediate representation for further optimization.

Despite the hype on heterogeneous analytics, whether on polystores or on sin-
gle generic-purpose stores, there is no consistent evaluation method. As a result,
each solution presents its own performance measurements. For example, some
polystore solutions are built for a specific use-case [9], while others use TPC
queries for their evaluation [12]. As a result, there is also no common work-
load, driver, and metrics for systems performing heterogeneous analytics. This
makes it hard for a user to compare systems with different evaluation strategies.
Although we concentrate on polystore evaluations in this paper, we also perform
a thorough comparison between polystore and single, general-purpose engine.
c© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 24–41, 2019.
https://doi.org/10.1007/978-3-030-11404-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_3

PolyBench: The First Benchmark for Polystores 25

We propose PolyBench, the first benchmark for heterogeneous analytics sys-
tems, especially for polystores, providing a complete evaluation environment.
Our aim is to provide a benchmark suite with evaluation metrics and workloads,
which will eventually lead to better baselines. Currently, a general accepted base-
line for polystore evaluation is a single, general-purpose engine. The outcome of
previous performance comparisons between polystores and single store engines
is that polystores outperform single stores [7,21]. However, as we show in this
paper, this is not always the case. We evaluate the trade-offs between polystores
and single-stores with various workloads.

PolyBench features a driver which benchmarks polystores with three main
use-cases. We also provide a set of metrics which are specific to polystores. Our
use-cases operate with structured, semi-structured, and unstructured data types
and support relational, stream, array, and graph data processing paradigms.
Our benchmark solution is not tied to a specific polystore solution, rather, it is
generic and high level enough to be applied to any polystore.

We list the main contributions of this paper below:

– We propose PolyBench, the first polystore benchmark. Our benchmark suite
consists of three main use-cases and two test scenarios. We provide a set of
metrics for PolyBench, to conduct a thorough analysis.

– The main idea behind polystores is to overcome performance bottlenecks of
single general-purpose stores. We conduct an analysis of this idea and compare
polystores and single general-purpose stores.

– We conduct an extensive experimental analysis. We evaluate the systems
under test with different parameters and combinations of parameters, pro-
vided by our benchmark driver.

We structure the rest of the paper as follows. We provide background infor-
mation about the systems under test in Sect. 2. In Section 3, we survey related
work. We explain use cases and our data model in Sect. 4. Section 5 describes
test scenarios we adopt in PolyBench. We demonstrate our experimental analysis
in Sect. 6. In Sect. 7, we discuss the results of experiments and analyze possible
directions to improve our benchmark as future work. Finally, we conclude in
Sect. 8.

2 Background

In this section, we give brief definitions of terms we utilize in this paper.
A polystore is union of different specialized stores, possibly with distinct

language and execution semantics, supporting wide range of data types and ana-
lytics. We adopt the term polystore from BigDAWG [7]; however, our definition
of polystore is more general to cover wide range of solutions. We utilize the term
query for single stores and use case with polystores.

A member-store is a fundamental unit of a polystore, specialized and opti-
mized for specific workloads. A member-store contributes most of its features to

26 J. Karimov et al.

overall feature set of a polystore. As a result, a polystore supports a set of fea-
tures and capabilities of its underlying member-stores. Once a user executes a use
case to a polystore, a polystore optimizer splits the use case into subqueries, each
of which directly addresses a particular member-store. A subquery might also
contain embedded invocations to specified member-store’s native query interface.

We differentiate three main member-stores. The first one is source member-
store. A source member-store is a member-store from which a polystore
ingests input data from outside world. The second one is sink member-store.
A sink member-store is a member-store which reside in the last ring of the
overall pipeline and provide the output of a given use case to the user. The third
type is relay member-stores. A relay member-store is a member-store, except
sink member-store, which ingests its input data from other member-stores.

In this paper, we consider a polystore as a blackbox and tune it only with high
level APIs. For example, a connection between a member-store and a polystore,
whether it is mediator-wrapper or grouped islands architecture, is a system-
specific design decision and out of the scope of this paper.

A single store is a general-purpose store or engine, which might or might
not be a specialized in one or many workloads, supporting various analytics.
We adopt the term single store to differentiate it from member-stores. In our
experimental setup a single store supports all required features to execute our
workloads. This enables us to conduct a thorough analysis between single store
and polystore.

3 Related Work

There is a large body of work on polystores, each of which features a unique
evaluation technique. In this section, we give an overview of existing polystore
evaluation techniques. Below we categorize related works based on their main
focus.

Language. Language design is an important component of polystores. It hides
complex systems programming from users. Bondiombouy et al. propose a func-
tional SQL-like query language that integrates data retrieved from different data
stores [4]. Kolev et al. propose a similar SQL-like approach [14]. The authors pro-
vide specific queries for an evaluation of their solution. However, the member-
store for data placement and query execution is hardcoded in the queries. We,
on the other hand, formulate our use cases for polystores to be transparent both
in terms of data placement and engine selection.

Tools. To enable data transparency between member-stores of a polystore, effi-
cient data transfer and transformations are required. Dziedzic et al. analyze data
migration between a diverse set of databases, including PostgreSQL, SciDB,
S-Store, and Accumulo [8]. Pipegen features a similar approach automatically
generating data pipes between DBMSs [11]. The authors of both papers evalu-
ate their solutions with data migration-/transformation-specific use cases. These
benchmarks are difficult to generalize for polystore evaluation as they are not
high level enough to cover a polystore benchmark.

PolyBench: The First Benchmark for Polystores 27

Optimizer. Workflow optimization is important to efficiently place and move
data in polystores. Chen et al. focus on the optimization of the amount of data
movement [6,25]. The main limitation of this work is that data placement and
member-stores are tightly coupled. Our benchmark on the other hand, has no
prior assumption on data placement or migration. Because PolyBench considers
systems under test as blackbox, our benchmark leaves all optimization decisions
to the optimizer of a system under test. Jovanovic et al. soften the data placement
condition in member-stores and develop an algorithm to choose member-stores
[12]. The authors adopt TPC-H and TPC-DS queries for evaluation. MISO also
adopts a similar evaluation method [15]. The main limitation is that TPC queries
are not designed for heterogeneous analytics workloads.

Specialized Benchmarks. There are also some works focusing on polystore
performance analysis. However, these typically consider only a specific poly-
store and analyze its capabilities. Kolev et al. analyze the polystore built on
the CloudMdsQL language [14] and conduct experiments on the main features
of relational and NoSQL engines [13]. Yu et al. evaluate the performance of
BigDAWG [7] with MySQL and Vertica member-stores [26]. The authors adapt
TPC-H queries for their evaluation. The main limitation of previous work is
that the benchmark design is specific to the proposed solution. We, on the other
hand, propose a generic benchmark suite that can be applied to any polystore
solution.

Currently, BigDAWG executes workloads comprising diverse queries by iden-
tifying “sweet spots” in member-stores. However, to effectively identify strengths
and weaknesses of query processing capabilities of member-stores, a formaliza-
tion the performance characteristics is required. According to one of the authors
of BigDAWG, Jennie Rogers, an important step to solve this problem is to find
minimal set of evaluation use cases [2]. For a better performance, monitoring
framework should feed the evaluation results to a polystore optimizer. Our work
is the first initiative to solve the more general issue incorporating a diverse set
of polystore solutions.

Lu et al. propose their vision to benchmark polystores concentrating on data
models [17–19]. The main limitation of this proposal is that data model con-
version and transformation is only one facet of general polystore evaluation.
Furthermore, to ensure black-box evaluation, the data models and conversion
between them should be transparent to the benchmark driver. Our benchmark
suite, on the other hand, performs analysis in with high level APIs and leave all
low-level details to system under test. BigBench is an industry standard bench-
mark for big data analytics [10]. The focus of this benchmark is benchmarking
big data processing systems. We, on the other hand, concentrate on benchmark-
ing polystores, combination of big data processing systems.

In previous works many different evaluation methods were proposed, each of
which is specific to either one polystore instance or one implementation aspect.
Our work is the first to propose a generic, holistic polystore benchmark.

28 J. Karimov et al.

4 Data Model and Use Case

PolyBench is an application level benchmark and simulates a banking business
model. We choose banking, since it features heterogeneous analytics and data
types. PolyBench’s data set comprises structured, semi-structured, and unstruc-
tured parts.

4.1 Data Model

Relational. From the Fig. 1, 1 describes the list of bank customers. 2 is the
list of people globally blacklisted. 3 is the customer transactions table.

Stream. The main characteristic of the stream data model is that data is contin-
uously arriving, possibly infinitely. There is no standard streaming data format,
it can be structured, semi-structured, and unstructured.

In Fig. 1 4 is a stream that represents online operations. This is necessary
for analyzing and debugging potential problems in real-time. One example would
be real-time fraud detection. Another example is monitoring exchange operations
and updating exchange rates based on the current assets of the bank.

Fig. 1. PolyBench data model.

Array. While traditional DBMS platforms organize data in tables, array
databases store data in array data model. The array model can have several
dimensions, resulting in n-dimensional matrices. An array data model should be
able to handle various scenarios, such as dense data (images), time series data,
sparse arrays, and etc. The main goal is to fetch required data with few disk
accesses by adjusting the tiling of the array to the access patterns. An array
data model also tries to maintain a spatial proximity on disk, reducing the disk
I/O during subsetting.

In Fig. 1 5 shows our array data. We store 3-dimensional (customer - bal-
ance - time) data in an array format, which stores the balance of a customer at
a given time.

Graph. Similar to stream data model, there is no unified way to represent graph
data. We use two graph datasets for graph data. 6 represents the relationships
between customers. This is useful for calculating credit scores of customers. If

PolyBench: The First Benchmark for Polystores 29

a customer has a financial connection with someone, that person’s name can
appear on customer credit report. As a result, when a bank looks to the cus-
tomer credit report, it also checks people the customer linked with. Thus, having
financial connections with people with low credit score can affect customer credit
score. 7 shows the RDF data extracted from 6 and 8 .

Text. Text data is an unstructured information that lacks a pre-defined data
model. 8 includes comments or public tweets about a bank. We use publicly
available customer review data set [16].

As we can see, the overall input data consists of different data models, each
of which with a separate homogeneous data set. Throughout the paper we
utilize the term heterogeneous input for the union of several homogeneous
inputs to a system under test. For example, a heterogeneous input may consist
of a set of relational, stream, and array homogeneous inputs.

4.2 Use Cases

The amount of data stored by banks is rapidly increasing triggering banks to
push new data processing technologies into their production environment [23].
To survive in a competitive world, it is necessary to adopt big data analytics as
part of their core data processing strategy Apart from the volume, the diversity
of data also increases, resulting in heterogeneous data and processing models.
Inspired by this trend, we provide three use cases in Figs. 2, 3 and 4.

INSERT INTO typed dep VALUES (
CONVERT INTO RDF (
SELECT ∗
FROM Customer c
WHERE c . updated > arg as u)
UNION
CONVERT INTO RDF (
SELECT ∗
FROM People p
WHERE p IN u)
UNION
CONVERT INTO RDF (
SELECT op in i on t ex t
FROM Opinion o
WHERE o . t s > arg)
)

Fig. 2. Use case 1

Bank Multi-model Data Integration. In this use case we combine data
residing in different sources to provide users a unified view. We integrate 1 ,

30 J. Karimov et al.

SELECT ∗
FROM (
SELECT customer . userID
FROM customer
WHERE cutomer . work = null) AS c ,
(SELECT userID
FROM c b t s
WHERE c b t s . balance > arg1
AND c b t s . year=arg2) AS c2 ,
(SELECT p . userID
FROM people p
WHERE p sp b l a c k l i s t e d < arg3)
AS p

WHERE p . userID = c . userID
AND c . userID=c2 . userID

Fig. 3. Use case 2

SELECT ∗
FROM customer c , t r an s a c t i on s t , c b t s ,
(SELECT ∗
FROM monitor m
WHERE m. userID IN b l a c k l i s t . userID)
as f raud
WHERE c . userID = fraud . userID
AND t . userID = fraud . userID
AND f raud . userID = c b t s . userID
AND c b t s . t s with in param time

Fig. 4. Use case 3

6 , and 8 into 7 , constructing a clear high level abstraction. The use case
utilizes RDF as a target data type. At the sink operator of each engine, except the
sink member-store, we put an additional operator, CONVERT INTO RDF. The
operator converts relational data (Customer table) to RDF (id - columnName
- columnValue). The conversion of graph data model is in (sourcePersonID -
relationName - destPersonID) format. For the text data, we extract (object -
predicate - subject) patterns and construct RDF1.

Customer Background Check. In this use case we check customer back-
ground to detect suspicious customers for further investigation. Schufa2 is one
example for customer background check. In our use case, if a customer is unem-
ployed but has last year overall balance above some threshold and has very
few connections to other people (for people having accounts in offshore banks)

1 We partially benefitted from the library https://github.com/codemaniac/sopex.
2 https://www.schufa.de.

https://github.com/codemaniac/sopex
https://www.schufa.de

PolyBench: The First Benchmark for Polystores 31

or some connections to blacklisted people, then the use case takes them into
further consideration.

Continuous Queries: Fraud Detection. In many financial applications, a
data processing system may consume data in the form of continuous data
streams, rather than finite stored data set. In this use case we consume and
process realtime data and enrich it with other data sources. To be more precise,
for every streaming tuple from 4 we check if the tuple ID is blacklisted. If so,
we retrieve all transactions and balance information for the last week for the
particular user for further investigation.

Based on the physical query execution plan of a polystore we categorize our
use cases into two groups: dependent and independent polystore use cases. A
dependent polystore use case is a use case, which consists of at least one
relay member-store as a result of polystore deployment plan. An independent
polystore use case is a use case which does not have any relay member-store
as a result of a polystore deployment plan.

5 Benchmark Design

5.1 Metrics

Metrics are standard units to measure the performance of a system under test.
Previous works generally adopt runtime as main metric for polystores. Although
this is a proper metric for a polystore evaluation, it is not enough to get a good
overview of polystore performance. Below we provide a set of metrics that we
adopt for our benchmark.

Runtime. We use the term runtime for test scenarios consisting of batch use
cases. Runtime is the time span between the polystore’s start time, earliest start
time of the member-stores, and end time, the latest end-time of member-stores,
for processing the given use case. Thus, runtime is associated with the whole
polystore system.

We use the term latency for interactive test scenarios consisting of continuous
and batch use cases. We compute latency metric per tuple. The latency is the
time span between tuple entering the source member-store and the related result
emission time from sink member-store.

Individual Runtime. Although we are interested mainly in the overall runtime
of a use case, to perform a thorough analysis it is important to measure individual
runtimes of subqueries running in different member-stores. Individual runtime is
the runtime of each member-store in a polystore. We adopt the term individual
latency for use cases containing continuous test scenarios.

Idle Time. The above metrics are related to the time span in which a polystore
or a member-store performs data processing. However, member-stores might stay
idle for some use cases. The idle time is a time span in which a member-store
does not perform any computation. The reason is mainly a blocking upstream

32 J. Karimov et al.

member-store, especially in dependent polystore use cases. Note that only elected
member-stores, which are selected by polystore query optimizer for executing a
given use case, are considered for this metric.

Load. In PolyBench the load is defined by the size of the heterogeneous input
data. We adopt 10 GB, 50 GB, and 100 GB heterogeneous input data each of
which consists of different homogeneous input data sizes.

5.2 Test Scenarios

Our test scenarios categorize the use cases based on their mode, which can be (i)
one-shot scenarios, (ii) continuous scenarios. We propose two main test scenarios
for PolyBench. In our experiments, we analyze each test scenario separately and
together. Because there are many parameters contributing to the performance
of a polystore, we design our test scenarios to measure the best and the worst
performance after parameter tuning.

Resource Distribution. The first test scenario is resource distribution among
member-stores. Member-stores reside in the left set and resources are in the right
set. There is a many-to-many relation between the two sets. In this test scenario,
we evaluate the result of different mapping strategies from member-stores set to
resources set.

The resource distribution scenario receives the amount of overall resources
as an input. In our case the resource includes nodes in a cluster, memory, and
CPU. The test scenario assigns each resource to a particular member-store and
ensures all resources are utilized by member-stores of a polystore. For the single
store case, it assigns all resources to the resource manager of the single store
engine.

One usage of this test scenario is scale-out/in scenarios. For example, a
user has some information about the input data. She knows with the exist-
ing resources it is inefficient to process all of input data. So, once a user decides
to add new resources, because of the performance issues, a polystore should
distribute new resources among member-stores in an optimal way.

Load Distribution. The second test scenario is load distribution among
member-stores. There are two main factors contributing to the load of member-
stores, being an input data size and assigned subqueries. Suppose a user submits
a use case to a polystore. The polystore optimizer divides the use case to several
subqueries, based on some meta-data and assigns subqueries to member-stores.
As a result of the assignment if the performance of a particular member-store is
a bottleneck to the whole use case, then there are several solutions. One option
is to share the subquery with another member-store, which also supports all
necessary features to execute the subquery. Another option is to recompile the
use case and reassign subqueries to member-stores.

Because subquery assignment to member-stores is an internal process of a
system under test and because we treat system under test as a blackbox, we
concentrate on the second factor contributing the load distribution test scenario,

PolyBench: The First Benchmark for Polystores 33

being an input data size. Because the heterogeneous input consists of different
homogeneous inputs, the idea of this test scenario is to tune the size of homoge-
neous inputs, find different ratio of homogeneous input sizes and ensure the size
of heterogeneous input data is constant.

6 Experiments

6.1 Setup

We conduct experiments with the polystore BigDAWG v0.1 and single gen-
eral purpose engine Apache Spark v2.3.0. We use Apache Giraph v1.2.0 [3] for
workloads containing graph processing. We setup our experiments on a shared-
nothing cluster. Our cluster consists of 20 nodes. Each node is equipped with
2.40 GHz Intel(R) Xeon(R) CPU with 16 cores. System clocks in all machines
throughout the cluster are synchronized via a local NTP server. Unless stated
otherwise, we deploy all member-stores of a polystore to different cluster nodes.
We utilize 10 GB, 50 GB, and 100 GB datasets for benchmarking.

6.2 Use Case 1

We convert each tuple to RDF format in the sink operator of member-stores.
Analyzing the deployment plan of BigDAWG we conclude that the use case
belongs to the dependent polystore queries. To be more precise, the result of
select operation from the People table depends on the output of the select oper-
ation from the Customer table. As a result, the latter is a blocking operation for
the former.

As we discussed in Sect. 5, the input data distribution contributes to the
member-store load. In the following experiment, we keep the deployment config-
urations of BigDAWG constant and change the size/ratio of homogeneous input
data keeping the overall heterogeneous input data size constant. The idea of the
use case is that an enterprise might lack prior knowledge of the statistics of input
data sets.

PB SB PWSW
0

5

10

D
ur
at
io
n
(s
ec
)

(a) 10GB data size

PB SB PWSW
0

20

40

Transfer Load Processing

(b) 50GB data size

PB SB PWSW
0

50

100

(c) 100GB data size

Fig. 5. Effect of tuning homogeneous data sizes with 10 GB, 50 GB, and 100 GB het-
erogeneous input data size. PB stands for BigDAWG performance with tuned data
distribution, SB stands for Spark performance with tuned data distribution (the same
distribution as PB), PW stands for the worst BigDAWG performance, and SW means
Spark performance with homogeneous input data same distribution as PW.

34 J. Karimov et al.

Figure 5 shows the effect of different homogeneous input data sizes, keeping
the heterogeneous data size constant, for systems under test. We consider two
cases: (i) the best case - input data distribution is tuned according to deploy-
ment of member-stores and (ii) the worst case - the distribution of input data
and member-stores deployment are uncorrelated. In the first case, we tune the
homogeneous input data sizes to be executed by different member-stores to max-
imize to overall performance of BigDAWG. In the second case, we show the worst
performance of BigDAWG. In both experiments we also evaluate the single gen-
eral purpose store. We observe that once we tune the ratio of homogeneous
inputs, then BigDAWG performs better than Spark, because each member-store
is specialized for special workloads and we provide such a particular workload.

We can see in Fig. 5 that Spark is more robust to the changes in input data
set, than BigDAWG. The reason is that Spark utilizes all dedicated resources,
as opposed to a member-store which utilizes only a portion of the resources
dedicated to BigDAWG. As a result, a member-store is more prone to become
a bottleneck (to the whole polystore) than Spark. Indeed, if there are more
bottleneck member-stores, then the overall performance of a polystore degrades
significantly.

We also observe a serious performance degradation for BigDAWG once we
play with the amount of homogeneous input data. Moreover, with increasing
heterogeneous data size, the gap between the best and the worst case increases
as well. One reason behind this behavior is scheduling. In BigDAWG a member-
store can belong to only one island, although it might feature several character-
istics of different islands. As a result, the BigDAWG scheduler is unable to share
a subquery to member-stores residing in different islands. This causes limitations
when the size of one homogeneous input data is larger than others.

In Spark, data sources reside in the upstream of the source operator. The
source operators receive data from external data sources while other operators
pull input data from upstream operators. When there is a blocking operation
in the upstream operator, the global scheduler of Spark, DAGScheduler, assigns
a non-blocking task to downstream task schedulers. The global scheduler might
also eliminate downstream operator for some time allocating more resources to
blocking upstream operator.

Similarly, in BigDAWG source member-stores receive input from external
data sources and other member-stores obtain input data from upstream member-
stores. The main limitation is that BigDAWG scheduler is not as dynamic as
Spark scheduler. As a result, especially for dependent polystore use cases, an
upstream member-store can easily become a bottleneck. That is, the result of the
selection query in People table depends on the result of the selection query from
Customer table. As a result, member-store associated with the former table stays
idle until the member-store linked with the latter table finishes. The problem
increases with larger input data sizes.

Another reason behind poor performance, we observe in Fig. 5, of BigDAWG
with non-tuned data distribution is data partitioning. For a single system select-
ing an optimal data partitioning is a non-trivial task [24]. Performing so for

PolyBench: The First Benchmark for Polystores 35

a polystore is more challenging task as the task includes (i) partitioning data
among member-stores and (ii) partitioning data within separate member-stores.

BigDAWG setup’s transfer and load times contribute significantly to the over-
all use case runtime. The impact increases with increasing input data size. The
main reason is that efficient data transfer strategies between different member-
stores requires n-to-m connections between one member-store with n instances
and another one with m instances. This is non-trivial as it requires changing
an engine’s communication internals and can cause synchronization issues. In
Spark, on the other hand, these details are automatically handled transparent
to a user.

PB SS PW
0

20
40
60
80

100

D
ur
at
io
n
(s
ec
)

(a) 4 Node

PB SS PW
0

20

40

60
Transfer Load Processing

(b) 8 node

PB SS PW
0

20

40

(c) 16 node

Fig. 6. Effect of scaling out in Spark and BigDAWG with 4, 8, and 16-node configura-
tions. PB stands for the best performance of scaling out BigDAWG, SS means scaling
out Spark, and PW mean the worst performance for scaling out BigDAWG.

Figure 6 shows the main idea behind scaling out in BigDAWG and Spark
environment. In this case, we fix both heterogeneous and homogeneous data size
and consider the number nodes in cluster as a variable. As a result, a user should
be able to benefit from the performance of the systems under test with adding
more resources. In this case we accept heterogeneous and homogeneous data as
a constant variable.

We can observe that once a user has knowledge about the input data domain
and engine characteristics of the member-stores, then tuning BigDAWG for scal-
ing out results with the best performance compared to Spark. Engine character-
istics of member-stores refers to an estimation of each member-store performance
with more resources.

We see a consistent scale-out performance for Spark. As we add more nodes
to the cluster, the duration of computation improves. Although there are several
parameters to tune manually such as garbage collection, serialized RDD storage,
level of parallelism, and memory usage of reduce tasks, Spark performs the main
network and I/O tuning transparent to the user. From this perspective, the
required systems expertise is less for tuning the single engine for scaling out.

We note that the worst case scaling out scenario for BigDAWG causes per-
formance problems. Worst case scaling out occurs when we increase the amount
of resources to a set of member-stores without having enough information about
the characteristics of member-stores. A lightweight monitoring system, which

36 J. Karimov et al.

BigDAWG currently lacks, might be a solution for this problem, where the frame-
work monitors the performance of operators inside member-stores and member-
stores as a whole and feed the information to the optimizer which assigns avail-
able resources among member-stores and among instances of particular member-
store in an optimal way.

Although benchmarking scenarios individually is important, testing the per-
formance of systems under test with combinations of different test scenarios
gives us more insights. In Figure 7, we benchmark the performance of the sys-
tems under test with combination of both test scenarios: resource distribution
and load distribution. The scenario occurs when a user is not an expert in Big-
DAWG and there is a little knowledge about input data. The result is that the
performance gap between BigDAWG and Spark increases more than in the above
experiments.

PB PW SW
0

50

100

D
ur
at
io
n
(s
ec
)

(a) 4 Node

PB PW SW
0

20
40
60
80

Transfer Load Processing

(b) 8 node

PB PW SW
0

20
40
60
80

(c) 16 node

Fig. 7. Effect of scaling with different homogeneous data distribution for BigDAWG
and Spark. PB stands for the best performance for BigDAWG. PW stands for the worst
BigDAWG performance. SW stands for the performance of Spark. The heterogeneous
input data size is constant.

6.3 Use Case 2

From the deployment plan of BigDAWG, we note that Use Case 2 is an indepen-
dent polystore use case. BigDAWG divides the use case into sub-queries, submits
to the relevant member-stores and merges once the results of all member-stores
are ready. Independent polystore use cases spend less time for data transforma-
tion (from one member-store format to another) and reduce the amount of idle
stay waiting for an upstream member-store.

We analyze the load distribution test scenario with BigDAWG and compare
it with Spark. Figure 8 shows the results of engine load for Use Case 2. Idle time
is the sum of periods in which member-stores stay idle. For the equal load in the
figure, we configure member-stores such that the overall idle time is minimized.
For skewed load, on the other hand, we arrange the distribution of the load to
be random and to be different from each other at least 20%.

We observe that with a shared load, BigDAWG performs better than Spark.
In this experiment, we measure the performance of a member-store with different
loads and select a load combination which ensures the best performance for the

PolyBench: The First Benchmark for Polystores 37

PE PS SE SS
0

20

40
D
ur
at
io
n
(s
ec
)

(a) 10GB input size

PE PS SE SS
0

100

200

S IR-1 IR-2 IR-3 Idle

(b) 50GB input size

PE PS SE SS
0

200
400
600
800

(c) 100GB input size

Fig. 8. Effect of engine load. PE refers to BigDAWG with equal load for member-
stores, PS refers to BigDAWG with skewed load, SE refers to Spark with same load as
PE, and SS refers to the performance of Spark with the same load as PS. Legends: S
refers to runtime of Spark, IR-n refers to the individual runtime of nth member-store,
and Idle refers to the overall idle time of BigDAWG.

whole polystore. The main reason behind the better performance of BigDAWG
with shared load is that each member-store is specialized in assigned workload,
resulting in overall improved performance.

We also perform experiment with skewed load. As a result, we can observe
significantly increased idle times. Moreover, as the data size increases, the impact
of idle time increases. We also observe a correlation between runtime of an indi-
vidual member-stores and idle time.

We can also see that Spark is less susceptible to skewed load than Big-
DAWG. The reason is better scheduling and adaptive resource allocation in
Spark. Dynamic resource allocation and scheduling is simpler in single engine
environment. As a result, idle time duration in a cluster and the impact of
skew is minimized in Spark. To avoid data skew, Spark, adopts TreeReduce and
TreeAggregate methods and new aggregation communication pattern based on
multi-level aggregation trees. At the beginning of the job, Spark’s DAGSched-
uler assigns task schedulers to combine partial aggregates on local executors.
Then, Spark shuffles the locally aggregated data to pre-scheduled reducers. For
BigDAWG case, on the other hand, the optimizer lacks similar features, which
in turn results in relatively poor performance.

PL PH SL SH
0

20

40

D
ur
at
io
n
(s
ec
)

(a) 10GB input size

PL PH SL SH
0

100

200

Runtime Idle

(b) 50GB input size

PL PH SL SH
0

200

400

(c) 100GB input size

Fig. 9. Effect of engine selectivity for BigDAWG and Spark. PL stands for BigDAWG
with low selective subqueries, PH means BigDAWG with high selective subqueries, SL
stands for Spark with low selective operators, and SH means Spark with high selective
operators.

38 J. Karimov et al.

Similarly, in Fig. 9 we analyze the effect of subquery selectivity in BigDAWG
and operator selectivity in Spark. We define low selectivity being s ≤ 0.2 and
high selectivity being s ≥ 0.8.

6.4 Use Case 3

Figure 10 shows the latency of input tuples. We can observe the skew in the
latency distribution among member-stores. For example, the streaming engine
in BigDAWG has the lowest latency. Because relational and array databases in
our polystore are not optimized for streaming workloads, we observe a relatively
high latency for the particular member-stores. Another reason for this behavior
is synchronization and scheduling overhead among member-stores. For this type
of queries BigDAWG would have benefited from caching feature among member-
stores. Spark, on the other hand, provides automatic caching of frequently used
RDDs.

4-node 8-node 16-node
0

5

10

15

L
at
en
cy

(s
ec
)

PS latency SS latency MS-1 latency MS-2 latency MS-3 latency

Fig. 10. Effect of running continuous queries on BigDAWG and Spark. PS latency
stands for the latency of BigDAWG , SS latency means the latency of Spark, MS-1 is
S-Store, MS-2 is PostgreSQL and MS-3 is SciDB.

We notice that the input/output semantics of member-stores is prone to be a
bottleneck, especially with workloads including continuous queries. For example,
the streaming member-store adopts a pull-based approach to ingest the input
data and push based approach to output. It is not desirable to accumulate data
inside the engine because once an operator state gets bigger, the performance
degrades. For relational databases the input/output semantics are more relaxed.
Depending on the size of the output, the system can stream or save the data in a
temporary table for later use. Because backpressure mechanism is not available
in polystores, adding flow controls to each engine, causes an additional latency
because of the synchronization overhead among member-stores.

7 Discussion and Future Work

In this section, we summarize the findings of our experimental results. There is a
need for better query optimizers and automation tools for polystores. Although
this is not a new area in database research, existing optimizers work best for

PolyBench: The First Benchmark for Polystores 39

(a) A polystore data
exchange via direct
socket.

(b) A polystore data
exchange through
disc.

(c) A polystore
data exchange via
intermediate system.

(d) Data transfer for
single store.

Fig. 11. Data transfer strategies for polystore and single store.

a specific set of workloads. The overhead and required knowledge for tuning
polystores is considerably higher than single store engines. Tuning a system is
important to optimize and homogenize the performance. Although there is a
large amount of research on self-tuning systems [5], performing so for a single-
store system is still non-trivial. However, having information about input data
can ease the work of database admin significantly. Tuning polystores for a given
workload is much harder problem than tuning a single store systems. Tuning a
polystore includes tuning all member-stores individually. Moreover, once there
is a correlation among member-store workloads, as we saw in our experiments,
tuning a polystore becomes even more complicated. For example, if the query
involves interchanging the data between member-stores, the exact tuning deci-
sion is non-trivial at compile time.

A two-level scheduler (local for member-store and global for polystore) leads
to non-negligible idle times. Relaxing the border between different layers of
schedulers would increase polystore performance considerably.

In our experiments, we notice data representation and transfer to be a signif-
icant issue. While some works [11,20] use a single data representation [1], others
have multiple data representation [7]. The same is true for data transfer. Espe-
cially for continuous queries data transfer layers can easily become a bottleneck.
The reason is that backpressure is non-trivial to implement for polystores, which
would lead to gathering massive amounts of data in data transfer layer. Figure 11
shows three possible data transfer strategies for polystores and the data transfer
for a single store. Although all different strategies have their own advantages
and limitations, selecting the best option for the given workload is essential to
improve the performance of polystores. BigDAWG, for example, supports the
transfer strategies depicted in Figs. 11a and b; however, these are hardcoded in
the implementation and, thus, are not considered as a variable for an optimizer.

8 Conclusion

Polystores are designed to overcome the limitations of single general purpose
data stores. To fill various gaps in data processing, there is an increasing number
of polystores, with member-stores featuring different data models and execution
models. This makes the solutions challenging to benchmark. In this paper we
present PolyBench, the first benchmark for polystores. Our benchmark is generic

40 J. Karimov et al.

and high level to support wide range of existing polystore solutions. We conduct
an experimental analysis on a single store and a polystore and provide a com-
parative analysis. Our key finding is that, although polystores are a key solution
for most enterprise use cases, there are significant limitations for evaluation in
previous works. Firstly, polystores perform better with tuned load and resource
distribution. Secondly, current polystore designs are not compatible with con-
tinuous queries. We identify the main reasons for the above behaviours as lack
of advanced optimizer, scheduler, and data transfer layer.

Considering that this work proposes the first benchmark for polystores, there
is still a research to be carried for a complete and standard benchmark. A useful
extension to our benchmark would be to support specialized polystores. Exam-
ples are graph based polystores and ML based polystores. An improvement would
be to add workloads with all possible combinations of the above. An extension for
measuring individual components would be to support benchmarking polystore
tools, such as data transfer and data representation tools. Moreover, important
metrics such as ease of use, maintainability, high availability, and performance
robustness are key in production environment, which is part of the future work.

Acknowledgments. This work has been supported by the European Commission
through Proteus (ref. 687691) and Streamline (ref. 688191) and by the German Min-
istry for Education and Research as Berlin Big Data Center BBDC (funding mark
01IS14013A).

References

1. Apache Arrow: a cross-language development platform for in-memory data.
https://arrow.apache.org/. Accessed 24 Feb 2018

2. Query modeling and optimization in the BigDAWG polystore system. http://
istc-bigdata.org/index.php/query-modeling-and-optimization-in-the-bigdawg-
polystore-system/. Accessed 10 Mar 2018

3. Avery, C.: Giraph: large-scale graph processing infrastructure on Hadoop. In: Pro-
ceedings of the Hadoop Summit, Santa Clara, vol. 11, pp. 5–9 (2011)

4. Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, P.: Integrating big data
and relational data with a functional SQL-like query language. In: Chen, Q.,
Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS,
vol. 9261, pp. 170–185. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22849-5 13

5. Chaudhuri, S., Narasayya, V.: Self-tuning database systems: a decade of progress.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
pp. 3–14. VLDB Endowment (2007)

6. Chen, Y., Xu, C., Rao, W., Min, H., Su, G.: Octopus: hybrid big data integration
engine. In: 2015 IEEE 7th International Conference on Cloud Computing Technol-
ogy and Science (CloudCom), pp. 462–466. IEEE (2015)

7. Duggan, J., et al.: The BigDAWG polystore system. ACM SIGMOD Rec. 44(2),
11–16 (2015)

8. Dziedzic, A., Elmore, A.J., Stonebraker, M.: Data transformation and migration
in polystores. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6. IEEE (2016)

https://arrow.apache.org/
http://istc-bigdata.org/index.php/query-modeling-and-optimization-in-the-bigdawg-polystore-system/
http://istc-bigdata.org/index.php/query-modeling-and-optimization-in-the-bigdawg-polystore-system/
http://istc-bigdata.org/index.php/query-modeling-and-optimization-in-the-bigdawg-polystore-system/
https://doi.org/10.1007/978-3-319-22849-5_13
https://doi.org/10.1007/978-3-319-22849-5_13

PolyBench: The First Benchmark for Polystores 41

9. Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: 2016
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE
(2016)

10. Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big data
analytics. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pp. 1197–1208. ACM (2013)

11. Haynes, B., Cheung, A., Balazinska, M.: PipeGen: data pipe generator for hybrid
analytics. In: Proceedings of the Seventh ACM Symposium on Cloud Computing,
pp. 470–483. ACM (2016)

12. Jovanovic, P., Simitsis, A., Wilkinson, K.: Engine independence for logical analytic
flows. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE),
pp. 1060–1071. IEEE (2014)

13. Kolev, B., Pau, R., Levchenko, O., Valduriez, P., Jiménez-Peris, R., Pereira, J.:
Benchmarking polystores: the cloudMdsQL experience. In: 2016 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 2574–2579. IEEE (2016)

14. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.:
CloudMdsQL: querying heterogeneous cloud data stores with a common language.
Distrib. Parallel Databases 34(4), 463–503 (2016)

15. LeFevre, J., Sankaranarayanan, J., Hacigumus, H., Tatemura, J., Polyzotis, N.,
Carey, M.J.: MISO: souping up big data query processing with a multistore system.
In: Proceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 1591–1602. ACM (2014)

16. Leskovec, J., Sosič, R.: SNAP: a general-purpose network analysis and graph-
mining library. ACM Trans. Intell. Syst. Technol. (TIST) 8(1), 1 (2016)

17. Lu, J.: Towards benchmarking multi-model databases. In: CIDR (2017)
18. Lu, J., Holubová, I.: Multi-model data management: what’s new and what’s next?

In: EDBT, pp. 602–605 (2017)
19. Lu, J., Liu, Z.H., Xu, P., Zhang, C.: UDBMS: road to unification for multi-model

data management. arXiv preprint arXiv:1612.08050 (2016)
20. Palkar, S., et al.: Weld: a common runtime for high performance data analytics.

In: Conference on Innovative Data Systems Research (CIDR) (2017)
21. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data

flows for multiple execution engines. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 829–840. ACM (2012)

22. Stonebraker, M., Cetintemel, U.: “One size fits all”: an idea whose time has come
and gone. In: Proceedings of 21st International Conference on Data Engineering,
ICDE 2005, pp. 2–11. IEEE (2005)

23. Sun, N., Morris, J., Xu, J., Zhu, X., Xie, M.: ICARE: a framework for big data-
based banking customer analytics. IBM J. Res. Dev. 58(5/6), 4:1–4:9 (2014)

24. Valduriez, P.: Parallel database systems: open problems and new issues. Distrib.
Parallel Databases 1(2), 137–165 (1993)

25. Xu, C., Chen, Y., Liu, Q., Rao, W., Min, H., Su, G.: A unified computation engine
for big data analytics. In: 2015 IEEE/ACM 2nd International Symposium on Big
Data Computing (BDC), pp. 73–77. IEEE (2015)

26. Yu, K., Gadepally, V., Stonebraker, M.: Database engine integration and perfor-
mance analysis of the BigDAWG polystore system. In: 2017 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2017)

27. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: HotCloud, vol. 10, no. 10–10, p. 95 (2010)

http://arxiv.org/abs/1612.08050

Benchmarking Distributed Data
Processing Systems for Machine

Learning Workloads

Christoph Boden1,2(B), Tilmann Rabl1,2, Sebastian Schelter1,2,
and Volker Markl1,2

1 Technische Universität Berlin, Berlin, Germany
{christoph.boden,tilmann.rabl,sebastian.schelter,

volker.markl}@tu-berlin.de
2 DFKI, Kaiserslautern, Germany

Abstract. Distributed data processing systems have been widely
adopted to robustly scale out computations on massive data sets to many
compute nodes in recent years. These systems are also popular choices
to scale out the training of machine learning models. However, there is
a lack of benchmarks to assess how efficiently data processing systems
actually perform at executing machine learning algorithms at scale. For
example, the learning algorithms chosen in the corresponding systems
papers tend to be those that fit well onto the system’s paradigm rather
than state of the art methods. Furthermore, experiments in those papers
often neglect important aspects such as addressing all aspects of scal-
ability. In this paper, we share our experience in evaluating novel data
processing systems and present a core set of experiments of a benchmark
for distributed data processing systems for machine learning workloads,
a rationale for their necessity as well as an experimental evaluation.

1 Introduction

Over the last years, we have observed a massive increase of available data. Due
to rapidly falling storage costs, the ominpresence of online web applications and
smart phones, text, audio, and video data as well as user interaction logs are
being gathered at impressive scale. These have successfully been leveraged to
build and significantly improve data-driven applications [35] and bossted scien-
tific research. With this data, it became feasible to test hypotheses on data sets
that are several orders of magnitude larger than before.

In light of the massive data sets being amassed, distributed data processing
systems commonly referred to as “Big Data Analytics” systems have been devel-
oped in order to scale out computations and analysis to such massive data set
sizes. The availability of massive data sets and these data processing systems
together with machine learning algorithms have enabled remarkable improve-
ments for a number of important tasks such as ranking web search results
[12,23] or personalized content recommendation [22,37]. In this context, tt has
c© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 42–57, 2019.
https://doi.org/10.1007/978-3-030-11404-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_4

Benchmarking Distributed Data Processing Systems 43

been observed that given enough data, comparatively simple algorithms could
deliver superior performance to more complex and mathematically sophisticated
approaches [31]. This observation and the ubiquity of data sets set of an unprece-
dented rise in demand for efficiently executing machine learning algorithms at
scale. It quickly became clear that the main representative of these new dis-
tributed data processing systems, Hadoop MapReduce, was inadequate for such
workloads, as it was inherently inefficient at their execution [36,49]. This led to
very active research and development of new systems and paradigms addressing
these drawbacks in distributed systems and database systems research commu-
nities [13,25,26,42,54].

But while the corresponding systems papers showed that these systems out-
perform Hadoop for certain iterative algorithms [5,41,54], it remains to be shown
how efficiently they actually perform at executing machine learning algorithms
at scale. On the one hand, the iterative algorithms chosen in the correspond-
ing systems papers were mostly learning algorithms that are well suited for the
underlying system paradigm rather than state of the art methods (e.g. gradient
boosted trees) which would be the preferred choice for a supervised learning
problem without the presence of such systems’ constraints and are likely to pro-
vide superior prediction quality.

While existing Benchmarks for the performance evaluation of relational
database systems for transactional workloads (TPC-C) and OLAP workloads
(TPC-H) are widely accepted in industry and academia alike, the benchmark-
ing landscape for distributed data processing systems is by no means as mature.
Efforts in the benchmarking community, notably TPCx-HS and TPCx-BB [6,28]
focused on evaluating these systems for the use case they were originally designed
for: robustly scaling out simple computations and transformations to massive
data sets. There is a need for a Benchmark to adequately assess the perfor-
mance of scaling out machine learning workloads on data processing systems,
consisting of an objective set of workloads, experiments and metrics.

Contribution: In this paper we share our experience in evaluating novel data
processing systems for scalable machine learning workloads and outline the
requirements, intricacies and pitfalls that one encounters when developing a
benchmark for this scenario. Based on these insights, we specify what we deem
to be a core set of experiments that constitute a benchmark for distributed
data processing systems for scalable machine learning workloads and provide a
rationale for their necessity.

The remainder of the paper is structured as follows: first we provide a brief
overview of the machine learning workloads in Sect. 2. Subsequently we discuss
the intricacies of evaluating machine learning workloads an the need to explore
the model quality and runtime performance trade-off for distributed and single
machine implementations of machine learning algorithms. In Sect. 4 we discuss
the different aspects of scalability in the context of benchmarking distributed
dataflow systems for machine learning workloads and subsequently conclude the
paper.

44 C. Boden et al.

2 Machine Learning for Data Processing Systems

The machine learning methods of interest in the context of distributed data pro-
cessing systems can be categorized into three major groups: Clustering, Classi-
fication and Recommender Systems. We will briefly introduce the notation and
representative algorithms chosen for our proposed benchmark experiments in
this Section. As a first pre-processing step, before the actual machine learning
algorithms can be applied, the raw data has to be transformed into a numeric
representation usually called features through so-called feature extraction. When
working with data from large-scale web applications, this processes consists of
acquiring, parsing and integrating huge log-files or raw text obtained from the
world wide web. The ultimate goal beeing the transformation of this data into
numerical feature values in the form of feature vectors x = (x1, . . . xn)T . This pre-
processing step is undoubtedly a good fit for parallel execution on distributed
data processing systems. The usually very large raw data set sizes of input
data sets as well as the simplicity of the necessary transformations and aggrega-
tions being applied to distill the feature vectors are exactly what these systems
where designed and built for. After processing the entirety of the input data, the
resulting training data set is generally represented by a numerical data matrix
X ∈ IR(n×d) consisting of all n training data points with a feature space dimen-
sionality d each.

2.1 Clustering (Unsupervised Learning)

A common task facing un-categorized data is to group data points into clusters
according to inherent structure in the data set. Such a clustering may provide
insight into the data by itself or serve as a input to further analysis or machine
learning tasks downstream. Given a data matrix A ∈ IR(n×d) without any asso-
ciated label or class information, the task in unsupervised learning or clustering
is to partition the data into subsets (or clusters) such that all elements within
one cluster are as similar as possible to each other yet as dissimilar as possible
to other clusters according to some particular similarity metric.

As a representative workload we propose the use of the popular algorithm for
clustering called k-means, which minimizes the intra-cluster distances between
the data points xi in a cluster j and it’s center (or centroid) μj : by solving the
following objective:

min
k∑

j=1

∑

i∈Cj

||xi − μj ||2

over the training data set X. The algorithm requires a Euclidean space and that
the number of clusters k is chosen a priori. The k-means algorithm solves the opti-
mization problem with the following heuristic: first, k cluster centers are initially
sampled from the data set, next, the euclidean distance to each of these so called
centroids is computed for every data point and finally every data point is assigned
to its closest centroid and thus a cluster. After this assignment, new centroids are
computed using the average of all cluster points. This iterates until convergence.

Benchmarking Distributed Data Processing Systems 45

2.2 Classification (Supervised Learning)

Contrary to the unsupervised learning setting, the main problem in supervised
learning is to fit a function f : X → Y that accurately predicts a label y ∈ Y
for unseen data points based on a set of training samples (xi, yi) ∈ X ×Y . More
concretely, the objective of a classification algorithm is to learn a function

f : IRN → {0, 1}

that accurately predicts the labels y on previously unseen data points. The core
task of a supervised learning algorithm is thus to fit the parameters (also called
model weights) w of this function fw : X → Y leveraging the training data and a
so-called loss function l : Y × Y → IR which encodes the fit between the known
label y and the function prediction fw (x). To avoid that the function simply
learns idiosyncrasies of the input data rather than generalize well to unseen
data points, a so-called regularization term Ω (w) that encodes the complexity
of the model is often simply added to the objective (e.g. the L1 or L2 norm of
w). With this addition, the canonical supervised learning optimization problem
is given by:

ŵ = argminw

⎛

⎝
∑

(x,y)∈(X,Y)

l (fw (x) , y) + λ · Ω (w)

⎞

⎠

Contrary to traditional optimization problems, the optimization of this objec-
tive is carried out on on a separate training data set that already has the cor-
responding labels labels yi and not the actual data set we want to predict on.
The optimizer ŵ, which minimizes the objective on the training data set is then
used on unseen data in the hope that it generalizes well to unseen data.

Different instantiations of the prediction function f , the loss function l and
the regularizer Ω (w) in the canonical objective outlined above actually yield a
broad set of different supervised learning algorithm including logistic regression,
Support Vector Machines or LASSO and RIDGE regression as.

Solvers. The most commonly used instantiations of the loss functions l have
actually been designed to be both convex and differentiable, which guarantees
the existence of a minimizer ŵ. This enables the application of batch gradient
descent (BGD) and similar methods as a solver. BGD iteratively updates the
model weights according to the following step using the gradient of the loss until
convergence:

w′ = w − η

⎛

⎝
∑

(x,y)∈(X,Y)

∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

⎞

⎠

Unfortunately the batch gradient des cent algorithm requires to process the
entire training data set to compute just one gradient update. In particular for

46 C. Boden et al.

very large data sets, stochastic gradient descent (SGD) is thus a more popular
alternative to BGD. Here. each data point, or a small “mini-batch” of data, is
used to compute a gradient update instead of the entire data set:

w′ = w − η

(
∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

)

2.3 Matrix Factorization

Another quite popular and successful category of machine learning algorithms
are recommender systems, where the task is to identify and recommend items
that a user might like based on historical data of user-item interactions, a tech-
nique called collaborative filtering (CF). Due to their success in the Netflix Prize,
latent factor models based on matrix factorization [37] are a popular choice for
this task. One common approach to compute such recommendations in the con-
text of distributed data processing systems is Alternating Least Squares (ALS)
[7,55]. The historical data consists of ratings r assembled in a ratings matrix
R = {ri,j} with the dimensions nu × ni where nu is the number of users and ni

is the number of items. The goal is to finds a low rank approximation to this
matrix based on the product of two, significantly smaller matrices: U and M
such that UM ≈ R, where U : nu × k and M : k × ni and k is the rank. ALS
finds the approximation by solving the following objective:

minU,M

∑

(i,j)∈I

(
ri,j − uT

i mj

)2
+ λ

⎛

⎝
∑

i

nui
||ui||2 +

∑

j

nmj
||mj ||2

⎞

⎠

where I is the set of (user, item) pairs for which ratings exist. Alternating least
squares solves this objective by alternatingly holding either U or M fixed and
solving a least squared problem to fit the “non-fixed” low-rank matrix. Alter-
natively, the objective can also be solved with Stochastic Gradient Decent [56]
as introduced above. Here we randomly calculate gradient updates for a ran-
domly chosen (u, v) pair. SGD is a fast and popular method to solve a Matrix
Factorization problem, however it is inherently sequential.

2.4 Deep Learning

The three aforementioned categories of machine learning algorithms: k-means
clustering for unsupervised learning, supervised learning based on a regular-
ized optimization approach and matrix factorization for recommendation mining
cover a large part of the machine learning applications in practice [3]. However,
next to these rather simple but quite effective methods, that have been proven
to excel in particular on very large data sets while being comparatively cheap to
train, another class of machine learning algorithm has gained significant atten-
tion over the last couple of years: the popularity of training neural networks
with several layers (so-called “deep architectures”) architectures [29] has risen

Benchmarking Distributed Data Processing Systems 47

significantly. Such deep neural network architectures (dubbed “deep learning”)
have generated stunning results on a variety of machine learning tasks that can
roughly be categorized as cognitive tasks including visual object recognition,
object detection and speech recognition [38].

However these achievements did not come for free. Training state of the art
neural network architectures for these tasks requires tremendous computational
resources. Since there is little established methodology on who to build such net-
work architectures, one often resorts to intuition, know-how and significant “try
’n error” when developing new models, adding to the overall (computational)
cost. In consequence, deep learning approaches are not necessarily the “silver
bullet” to be applied to every problem setting at hand. In a lot of application set-
tings, the “traditional” approaches presented above turn out to deliver sufficient
prediction quality while requiring substantially less computational resources to
train.

The systems used to train deep neural networks also substantially differ from
general data processing systems. Since the training of such networks is almost
exclusively carried out using backpropagation and mini-batch stochastic gradient
descent, the requirements are different than those faced by the general purpose
data processing systems discussed in Sect. 1. These were build to address the I/O
and network communication bottlenecks generally faced in massively parallel
data processing. However, the training of deep neural networks is usually bound
by computational resources. Thus, dedicated systems like TensorFlow [4], CNTK
[53] or MXNet [20] were built and optimized for the particular use case of training
deep neural networks to a degree that was not possible for general purpose
distributed data flow systems, as the training algorithm (backpropagation) as
well as the data model (tensors) was already consensus and thus fixed.

Another important reason for the recent success of deep neural networks
can also be found in the availability of additional computational resources in
the form of GPUs, which provide at least an order magnitude more floating
point operations per second while being more power and cost-efficient than tra-
ditional CPUs. These affordable computational resources being readily available
actually enabled the quite computation-intensive training of artificial neural net-
works with “deep” architectures, which often translates to solving a non-convex
optimization problem, within reasonable time-frames. The obvious successes of
deep neural networks also prompted the development of purpose-built accelera-
tion hardware, e.g. Tensor Processing Units (TPUs) by Google, to further speed
up the training process.

Not least in order to steer the development of such hardware in a sensible way,
benchmarks tailored for deep learning settings are evermore important, however
given the intricacies of training deep learning models (e.g. degrading generaliza-
tion performance with increasing batch sizes [33]), and the level of specialization
of the systems involved, this can certainly be viewed as a separate problem
domain in and of itself and orthogonal to the aspects of benchmarking general
purpose data processing systems for machine learning workloads discussed in
this work. For example, the recently introduced initiatives DAWNBench [21], an

48 C. Boden et al.

End-to-End Deep Learning Benchmark Competition that invites submissions of
runtimes for specified tasks as well as MLPerf [2] that extends this concept to a
more broad set of tasks tackle exactly this issue and are thus orthogonal to the
work discussed in this paper.

3 Model Quality

Next to traditional runtime performance, benchmark experiments for machine
learning workloads have to take into consideration an important additional
dimension: the inherent quality of trained models.

While conventional database queries have a deterministic result set which the
database system will always return, no matter which execution plan was cho-
sen by the database optimizer to produce the result, different machine learning
approaches produce models with different prediction quality when trained on the
exact same data set. Popular empirical evaluations of various supervised learning
approaches show this [16,17]. Not only do different machine learning approaches
yield models of different quality, they also have different inherent runtime com-
plexity with respect to the number of training data points. When benchmarking
data processing systems for machine learning workloads we are thus faced with
a trade-off space spawned by the runtime of algorithms and the quality of the
models that they produce. Additionally, algorithms may or may not be a suitable
fit for the underlying systems paradigm and thus lead to additional inefficien-
cies when being implemented on top of a distributed data processing sytem. As
we mentioned in Sect. 1, the algorithms chosen for evaluation experiments in
the corresponding systems papers were mostly learning algorithms those that
are well suited for the underlying system paradigm rather than state of the art
methods. In consequence, it is imperative to take into account the dimension of
model quality when benchmarking data processing systems for machine learning
workloads and to conceive experiments that explore the trade-off space spawned
by the runtime of machine learning algorithms and the quality of the models
that they produce. Additional, state of the art, single node machine learning
algorithms, that may not be a good fit of a distributed data processing systems
paradigm, should be leveraged as competitive baselines for these experiments.

3.1 Experiments and Workloads

To address the requirements and explore the trade-off space spawned by the
runtime of machine learning algorithms and the quality of the models that they
produce, we propose to run training experiments with and without evaluation
of model quality on a held-out test data sets for varying amounts of iterations.
This way we can obtain both: the runtime of training itself and the corresponding
model quality at different points during training. (As distributed data processing
systems such as Apache Spark do not allow intermediate evaluation of models,
this translates to re-running the training with different numbers of iterations
from scratch, measuring the training time and subsequently evaluating model
quality on a held out set of test data.)

Benchmarking Distributed Data Processing Systems 49

Parameter Tuning. Machine learning algorithms tend to come with tunable
parameters specific to each model. The search for the optimal values for such so-
called hyperparameters can have significant impact on the resulting model qual-
ity. To provide a level playing field, we designated equal time slots for parameter
tuning with the means provided by the libraries evaluated across all systems
and libraries. A setting which reflects the reality in which practitioners also only
have limited amounts of time available for tuning parameters [10].

Fig. 1. Matrix factorization of the Netflix prize data set using Apache Spark MLlib’s
ALS implementation on six big (24 cores, 256GB Ram) cluster nodes and LibMF one
big node. The plots show the root mean squared error (RMSE) achieved on a test
set achieved after a certain amount of training time. The Spark implementation takes
significantly more time to converge in comparison to the single machine library LibMF,
even when executed on multiple nodes.

Experiment 1: Matrix Factorization: We propose to run matrix factoriza-
tion for collaborative filtering as introduced in Sect. 2. While the presented Alter-
nating Least Squares approach is implemented in all popular distributed data
processing systems, single machine libraries using parallel SGD such as LibMF 1

[56] can be used for the single machine experiments. Next to training runtime,
we suggest to measure the Root Mean Squared Error (RMSE) as a metric for
model quality. Figure 1 shows the results of such an experiment comparing Spark
MLLib’s ALS implementation against LibMF. It becomes apparent that such an

1 https://www.csie.ntu.edu.tw/∼cjlin/libmf/.

https://www.csie.ntu.edu.tw/~cjlin/libmf/

50 C. Boden et al.

experiment shows the overhead one incurs for running a machine learning algo-
rithm on a scalable systems such as Apache Spark. The Spark implementation
takes significantly more time to converge in comparison to the single machine
library LibMF, even when executed on multiple nodes. The experiments were
executed on nodes with: We thus propose experiments to explore all of these
dimensions.2 x AMD Opteron 6238 CPU with 12 Cores @ 2.6 GHz (24 cores),
256 GB RAM, 8x 2 TB Disk, 6 × GE Ethernet via a Cisco C2969-48TD-L Rack
Switch.

Experiment 2: Supervised Learning: We propose to evaluate logistic regres-
sion and gradient boosted trees in both distributed data processing systems and
with sophisticated single machine libraries such as Vowpal Wabbit2 (LR SGD),
XGBoost3, LightGBM 4 or CatBoost5. Next to training runtime, we suggest to
use the Area Under the Curve (AuC) metric, as it is not sensitive to skew in
the test data set. As data set we suggest to use (potentially a subsample) of the
Criteo Click Log Data set presented in Sect. 4.3. (In [8] we presented results for
this experiment for Apache Spark MLLib.)

4 Scalability

The main premise of big data analytics systems is to scale out computation
across many machines in order to speed up I/O and to lower execution time. In
light of the massive data set sizes with billions of data points, this necessitates
scalable algorithms with respect to the input data size which has at worst linear
runtime complexity. With such scalable algorithms, the distributed data process-
ing systems can be leveraged and workloads can be scaled out by merely adding
machines in proportion to growing data set sizes. In light of cloud computing,
this can be automated and flexibly adjusted via auto-scaling according to the
load.

When training machine learning models on such systems, it is thus neces-
sary to utilize algorithms that fulfill the scalability requirement. As an example,
consider the common problem faced by web applications that display online
advertisement to their users: click-through rate prediction. The task is to predict
whether a user will click on a displayed ad. Given the massive user bases of
popular online web applications, these models are trained on data sets hundreds
of terrabytes in size, containing hundreds of billions of data points. This data
also tends to be quite sparse (only 10–100 non-zero features per data point)
but also very high dimensional (up to 100 billion unique features according
to a google tech talk [15]). According to relevant literature, machine learning
methods like regularized logistic regression are a popular and effective choice

2 https://github.com/JohnLangford/vowpal wabbit/.
3 https://github.com/dmlc/xgboost.
4 https://github.com/Microsoft/LightGBM.
5 https://github.com/catboost/catboost.

https://github.com/JohnLangford/vowpal_wabbit/
https://github.com/dmlc/xgboost
https://github.com/Microsoft/LightGBM
https://github.com/catboost/catboost

Benchmarking Distributed Data Processing Systems 51

for the click-through rate prediction problem [18,32,40,44] and a popular choice
by practitioners for general supervised learning settings [3] with very large data
sets [36].

As we argued in [9], the context of benchmarking data processing systems for
scalable machine learning workloads, there are several dimensions of scalability
that have to be taken into account:

1. Scaling the Data: as the term big data suggests, scaling machine learning
algorithms to extremely large data set sizes is the most obvious notion of
scalability. It is of particular importance to machine learning applications,
as it has been shown that even quite simple machine learning models can
outperform more complex approaches when trained on sufficiently large data
sets [11,31]. This notion of scalability is arguably what the distributed data
processing systems introduced in Sect. 1 have been designed and built for.

2. Scaling the Model Size: as we indicated above, generalized linear models,
which are a popular choice in light of very large amounts of available training
data, tend to exhibit very high dimensionality. For example, classification
algorithms built on textual data using n-grams of words can easily contain
100 million dimensions or more. Models for click-through rate prediction for
online advertisements can even reach up to 100 billion dimensions [15]. Thus
it is also crucial to examine how distributed data processing systems scale
with increasing model dimensionality.

4.1 Experiments and Workloads

In this section we outline the experiments proposed to address the scalability
dimensions discussed above. As the hardware setup for on-premise clusters is
generally fixed in the short term, we introduce two new experiments to ade-
quately capture the desired scaling dimensions data and model for this setting
and finally complete the scalability experiments by adding the two traditional
notions of scaling as experiments - strong scaling and weak scaling:

Experiment 3: Production Scaling: We measure the runtime for training a
model of fixed dimensionality varying the size of the training data set on a fixed
number of nodes.

Experiment 4: Model Dimensionality Scaling: We measure the runtime for
training a model of varying dimensionality on a fixed number of nodes and with
constant training data set size. We propose a way to control the dimensionality
in Sect. 4.3.

Experiment 5: Strong Scaling: We measure the runtime for training a model
on varying amounts of nodes while holding the data set size and model dimen-
sionality fixed.

52 C. Boden et al.

Experiment 6: Weak Scaling: We measure the runtime for training a model
on varying amounts of nodes while also varying the data set size accordingly,
such that the problem size per processor as well as the dimensionality of the
model remains constant.

4.2 Workloads

We propose to evaluate the following workloads for the scalability experiments
outlined above:

– Regularized Logistic Regression: run logistic regression with a gradi-
ent decent solver as suggested in [9] using the Criteo Click Log data with
sub- and super-sampling for scaling the data set size and feature hashing for
dimensionality scaling as discussed below in Sect. 4.3.

– Alternating Least Squares Matrix Factorization: run ALS on generated
data either based on characteristics of existing ratings data sets (e.g. Netflix
or MovieLens) as suggested in [49]. For the dimensionality scaling we suggest
to vary latent factor dimensionality (the rank) of the two factor matrices.

– K-Means Clustering: run the clustering algorithm on generated data dis-
cussed below in Sect. 4.3.

4.3 Data Sets

We suggest to rely on generated data for the scalability unsupervised learning as
well as the matrix factorization experiments. (E.g. 100 dimensional data from
k Gaussian distributions and add uniform random noise to the data, similar to
the data generation for k-means in Mahout [1] and HiBench [34].)

For the classification workloads, we suggest the use of the Criteo Click Logs6

data set. This dataset contains click feedback for millions of display ads drawn
from a portion of Criteo’s traffic over a period of 24 days. It was originally
released as part of a Kaggle challenge for click through rate (CTR) prediction.
The dataset contains a label indicating the user action as well as 13 numeric and
26 categorical features. The entire data set spawns about 4 billion data points,
has a size of 1.5 TB.

As a pre-processing step we propose to use the popular hashing trick [52] to
expand the categorical features in the criteo click log data set. This hashing trick
transforms the categorical variables by applying a hash function to the feature
values and using the hash values as indices of the final feature vector. This is a
standard approach when working with the CTR data set from criteo. It also has
the nice property that it allows to control the dimensionality of the training data
vectors and thus the dimensionality of the supervised machine learning model
to be trained. This can be applied in the model scaling experiment we proposed
as Experiment 4 above.

6 http://labs.criteo.com/downloads/download-terabyte-click-logs/.

http://labs.criteo.com/downloads/download-terabyte-click-logs/

Benchmarking Distributed Data Processing Systems 53

5 Related Work

Benchmarking and performance analysis of data distributed data processing
and analytics frameworks have received some attention in the research com-
munity [43,47,50,51]. However most of the research papers focus on evaluating
the runtime and execution speed of non-representative workloads with respect
to machine learning such as WordCount, Grep or Sort. The ones that do focus
on machine learning workloads [9,14] neglect quality metrics such as accuracy or
AuC completely in their experimental evaluations. Unfortunately, the actual sys-
tems papers of the data processing systems and paradigms such as Apache Spark,
Apache Flink or Graphlab [5,41,54] themselves do not contain any experiments
that would provide insight into the obtained machine learning model quality.
The MLlib paper introducing the Machine Learning library of Apache Spark
for example only reports speed-up of the runtime relative to an older version of
MLlib itself.

On the other hand there exist several efforts in evaluating a broad spectrum
of popular machine learning algorithms empirically [16,17] with a focus on pre-
diction quality. However the authors neglect the runtime of the algorithm and
do not consider distributed data processing systems.

Finally, there has been work comparing the runtime of popular graph pro-
cessing algorithms for distributed data processing systems against a competent
implementation on a single machine [45]. The authors propose COST (the Con-
figuration that Outperforms a Single Thread) as a new metric for distributed
data processing systems. The work showed that for the simple graph processing
algorithms evaluated, none of distributed data processing systems considered
managed to outperform a competent single-threaded implementation using a
high-end 2014 laptop. In contrast to the work presented here, the authors only
consider graph algorithms with a fixed result set and thus do not address issue
of model prediction quality and base their findings solely on runtimes published
in other papers, not their own experiments.

6 Conclusion

Distributed data processing systems that have originally been conceived to scale
out data-intensive computations on very large data sets to many nodes have
become popular choices to scale out the execution of machine learning algorithms
as well. However, there is still a lack of benchmarks to adequately assess the
performance of scaling out machine learning workloads on such data processing
systems, consisting of an objective set of workloads, experiments and metrics.

In this paper, we presented work on such a benchmark of distributed data pro-
cessing systems for machine learning workloads. In Sect. 3 we argued that there is
an additional challenge being faced when evaluating machine learning algorithms
the dimension of model quality. We proposed experiments to explore the trade-off
space spawned by the runtime of algorithms and the quality of the models that
they produce. We also made the case that state of the art single machine libraries

54 C. Boden et al.

should serve as sophisticated baselines in such experiments. Our empirical eval-
uation of Apache Spark MLLibs alternating least squares algorithm and LibMF
as an SGD based single machine library for matrix factorization on the netflix
prize data set indicates that latest generation distributed data processing sys-
tems like Apache Spark do incur a non-negligible overhead and thus require more
hardware resources to obtain comparable prediction quality with a competent
single machine implementation within a comparable time-frame. Additionally in
Sect. 4 we discussed several dimensions of scalability in the context of distributed
data processing systems. We proposed experiments that cover both: scalability
with respect to the input data set size as well as the model dimensionality. With
this we specified what we deem to be a core set of experiments that constitute a
benchmark for distributed data processing systems for scalable machine learning
workloads.

Acknowledgments. This work has been supported by the German Ministry for Edu-
cation and Research as Berlin Big Data Center BBDC (funding mark 01IS14013A).

References

1. https://mahout.apache.org/
2. https://mlperf.org/
3. https://www.kaggle.com/surveys/2017
4. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,

pp. 265–283. USENIX Association (2016)
5. Alexandrov, A., et al.: The stratosphere platform for big data analytics. VLDB J.

23(6), 939–964 (2014)
6. Baru, C., et al.: Discussion of BigBench: a proposed industry standard performance

benchmark for big data. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS,
vol. 8904, pp. 44–63. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15350-6 4

7. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In: Seventh IEEE International Conference on Data
Mining (ICDM 2007), pp. 43–52, October 2007

8. Boden, C., Rabl, T., Markl, V.: Distributed machine learning-but at what cost?
9. Boden, C., Spina, A., Rabl, T., Markl, V.: Benchmarking data flow systems for

scalable machine learning. In: Proceedings of the 4th Algorithms and Systems on
MapReduce and Beyond, BeyondMR 2017, pp. 5:1–5:10. ACM, New York (2017)

10. Böse, J.-H., et al.: Probabilistic demand forecasting at scale. Proc. VLDB Endow.
10(12), 1694–1705 (2017)

11. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in
machine translation. In: EMNLP, pp. 858–867 (2007)

12. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Comput. Netw. ISDN Syst. 30(1), 107–117 (1998). Proceedings of the Seventh
International World Wide Web Conference

13. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data
processing on large clusters. Proc. VLDB Endow. 3(1–2), 285–296 (2010)

https://mahout.apache.org/
https://mlperf.org/
https://www.kaggle.com/surveys/2017
https://doi.org/10.1007/978-3-319-15350-6_4
https://doi.org/10.1007/978-3-319-15350-6_4

Benchmarking Distributed Data Processing Systems 55

14. Cai, Z., Gao, Z.J., Luo, S., Perez, L.L., Vagena, Z., Jermaine, C.: A comparison
of platforms for implementing and running very large scale machine learning algo-
rithms. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2014, pp. 1371–1382 (2014)

15. Caninil, K.: Sibyl: a system for large scale supervised machine learning (2012)
16. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of

supervised learning in high dimensions. In: Proceedings of the 25th International
Conference on Machine Learning, ICML 2008, pp. 96–103. ACM, New York (2008)

17. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learn-
ing algorithms. In: Proceedings of the 23rd International Conference on Machine
Learning, ICML 2006, pp. 161–168. ACM, New York (2006)

18. Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction
for display advertising. ACM Trans. Intell. Syst. Technol. 5(4), 61:1–61:34 (2014)

19. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016)

20. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for het-
erogeneous distributed systems. CoRR, abs/1512.01274 (2015)

21. Coleman, C., et al.: DAWNBench: an end-to-end deep learning benchmark and
competition. In: ML Systems Workshop @ NIPS 2017, vol. 100, no. 101, p. 102
(2017)

22. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable
online collaborative filtering. In: Proceedings of the 16th International Conference
on World Wide Web, WWW 2007, pp. 271–280. ACM, New York (2007)

23. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

24. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

25. Ekanayake, J., et al.: Twister: a runtime for iterative MapReduce. In: Proceed-
ings of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC 2010, pp. 810–818. ACM, New York (2010)

26. Ewen, S., Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast iterative data
flows. Proc. VLDB Endow. 5, 1268–1279 (2012)

27. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2000)

28. Ghazal, A., et al.: Bigbench: towards an industry standard benchmark for big data
analytics. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, pp. 1197–1208. ACM, New York (2013)

29. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cam-
bridge (2016)

30. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533
(1988)

31. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE
Intell. Syst. 24(2), 8–12 (2009)

32. He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In:
Proceedings of the Eighth International Workshop on Data Mining for Online
Advertising, ADKDD 2014, pp. 5:1–5:9. ACM, New York (2014)

33. Hoffer, E., Hubara, I., Soudry, D.: Train longer, generalize better: closing the gen-
eralization gap in large batch training of neural networks. In: NIPS, pp. 1729–1739
(2017)

56 C. Boden et al.

34. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: Agrawal, D., Can-
dan, K.S., Li, W.-S. (eds.) New Frontiers in Information and Software as Services.
LNBIP, vol. 74, pp. 209–228. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19294-4 9

35. Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57(7),
86–94 (2014)

36. Jimmy, L., Kolcz, A.: Large-scale machine learning at Twitter. In: SIGMOD 2012
(2012)

37. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

38. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
39. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and

Claypool Publishers, San Rafael (2010)
40. Ling, X., Deng, W., Gu, C., Zhou, H., Li, C., Sun, F.: Model ensemble for click

prediction in Bing search ads. In: Proceedings of the 26th International Conference
on World Wide Web Companion, WWW 2017 Companion, pp. 689–698, Republic
and Canton of Geneva, Switzerland. International World Wide Web Conferences
Steering Committee (2017)

41. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. Proce. VLDB Endow. 5(8), 716–727 (2012)

42. Low, Y., Gonzalez, J.E., Kyrola, A., Bickson, D., Guestrin, C.E., Hellerstein,
J.: GraphLab: a new framework for parallel machine learning. arXiv preprint
arXiv:1408.2041 (2014)

43. Marcu, O.C., Costan, A., Antoniu, G., Pérez-Hernéndez, M.S.: Spark versus flink:
understanding performance in big data analytics frameworks. IEEE CLUSTER
2016, 433–442 (2016)

44. McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: KDD
2013. ACM (2013)

45. McSherry, F., Isard, M., Murray, D.G.: Scalability! But at what cost? In: USENIX
HOTOS 2015. USENIX Association (2015)

46. Meng, X., et al.: MLlib: machine learning in Apache spark. J. Mach. Learn. Res.
17(1), 1235–1241 (2016)

47. Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.-G.: Making sense
of performance in data analytics frameworks. In: Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, NSDI 2015, pp.
293–307. USENIX Association, Berkeley (2015)

48. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-
through rate for new ads. In: WWW 2007. ACM (2007)

49. Schelter, S., Boden, C., Schenck, M., Alexandrov, A., Markl, V.: Distributed matrix
factorization with MapReduce using a series of broadcast-joins. In: ACM RecSys
2013 (2013)

50. Shi, J., et al.: Clash of the Titans: MapReduce vs. spark for large scale data
analytics. Proc. VLDB Endow. 8(13), 2110–2121 (2015)

51. Veiga, J., Expósito, R.R., Pardo, X.C., Taboada, G.L., Tourifio, J.: Performance
evaluation of big data frameworks for large-scale data analytics. IEEE BigData
2016, 424–431 (2016)

https://doi.org/10.1007/978-3-642-19294-4_9
https://doi.org/10.1007/978-3-642-19294-4_9
http://arxiv.org/abs/1408.2041

Benchmarking Distributed Data Processing Systems 57

52. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature
hashing for large scale multitask learning. In: Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 2009, pp. 1113–1120. ACM,
New York (2009)

53. Yu, D., et al.: An introduction to computational networks and the computational
network toolkit. Microsoft Technical report MSR-TR-2014-112 (2014)

54. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: NSDI 2012 (2012)

55. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative
filtering for the Netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS,
vol. 5034, pp. 337–348. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68880-8 32

56. Zhuang, Y., Chin, W.-S., Juan, Y.-C., Lin, C.-J.: A fast parallel SGD for matrix
factorization in shared memory systems. In: Proceedings of the 7th ACM Con-
ference on Recommender Systems, RecSys 2013, pp. 249–256. ACM, New York
(2013)

https://doi.org/10.1007/978-3-540-68880-8_32
https://doi.org/10.1007/978-3-540-68880-8_32

Characterizing the Performance and Resilience
of HCI Clusters with the TPCx-HCI

Benchmark

H. Reza Taheri1(&), Gary Little2, Bhavik Desai2, Andrew Bond3,
Doug Johnson4, and Greg Kopczynski1

1 VMware, Inc., Palo Alto, USA
{rtaheri,gregw}@vmware.com

2 Nutanix, Inc., San Jose, USA
{gary,bhavik.desai}@nutanix.com

3 Red Hat, Inc., Raleigh, USA
abond@redhat.com

4 InfoSizing, Inc., Manitou Springs, USA
doug@sizing.com

Abstract. We use the newly-released TPCx-HCI benchmark to characterize the
performance and resilience properties of Hyper-Converged Infrastructure clus-
ters. We demonstrate that good performance on an HCI cluster requires deliv-
ering all properties of high IOPS, low latencies, low CPU overhead, and uniform
access to data from all Nodes. We show that unless the cluster can quickly and
efficiently rebalance the VMs after a change in the workload, performance will
be severely impacted.
We use the data accessibility test of TPCx-HCI to show how performance is

impacted by rebuilding traffic after a Node goes down, and how long it takes for
the rebuilding to finish.

Keywords: Performance benchmarking � Hyper-converged infrastructure
performance � Industry-standard benchmarks

1 Introduction

1.1 The Need for TPCx-HCI

Hyper-Converged Infrastructure (HCI) is a term used to describe a combination of
hardware and software which are pooled together to form a cluster capable of running
virtual machines. Each Node runs a hypervisor on which the user virtual machines, e.g.
databases and clients, execute. Nodes within an HCI cluster cooperate to form a
filesystem which is accessible across the cluster. A shared filesystem is critical for
virtualized environments because it is expected that a virtual machine can migrate from
one Node to another without making a disk-copy.

There are many TPC benchmarks that can be used to measure against a single
machine with a single address space. The TPCx-V benchmark [4] was the first to
support aggregation of multiple independent database instances to create a single

© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 58–70, 2019.
https://doi.org/10.1007/978-3-030-11404-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_5

benchmark metric. TPCx-HCI extends the ideas of TPCx-V to measure the aggregation
of multiple Nodes in a cluster as well as multiple databases per Node.

Accordingly, the purpose of this benchmark is to measure the ability of the hard-
ware and software to work together to provide a computing resource which is scalable
and tolerant of failures. With TPCx-HCI, the database engine remains constant across
all submissions, so effectively, TPCx-HCI measures the following components

• Hardware – CPU, Memory, Storage and Network performance
• Hypervisor - Overhead of virtualization, the ability for the hypervisor to handle

consolidation and multi-tenancy
• Storage - Storage overhead, response times and resiliency, multi-tenancy
• Network - Provides the underlying capabilities of the storage and hypervisor (VM

migration & storage replication).

TPCx-HCI attempts to measure the above components for the following attributes:

• Speed - How much work can be achieved per unit of time
• Stability - How resilient is the cluster to component failures
• Scale - Given a cluster at steady state, what fraction of the additional capacity can

be consumed without intervention.

To our knowledge, no existing benchmarks measure these three dimensions in a
cohesive fashion

1.2 History of the Benchmark

The TPCx-HCI benchmark owes its origins to the TPCx-V benchmark. TPCx-V was
introduced in an earlier TPCTC Workshop [4], as well as subsequent papers detailing
the architecture [1] and tuning procedures [2] for the benchmark. TPCx-V was formally
accepted as a benchmark standard by the TPC in November 2015 [6].

In early 2017, the TPC subcommittee set out to extend the TPCx-V Specification
and Benchmark Kit to Hyper-Converged Infrastructure clusters. A TPCx-HCI Speci-
fication was approved in December 2017. A quick development cycle was possible
since extending TPCx-V from a single server to a cluster of servers was a natural next
step.

1.3 Hyper-Converged Infrastructure

Let us use the following quote from the TPCx-HCI Benchmark Specification to
describe the kind of systems this benchmark targets (a VMMS refers to a Virtual
Machine Management Software, commonly known as a Hypervisor)

A TPCx-HCI Cluster consists of at least 2 Nodes, each running a single instance of the
VMMS. The HCI software provides one or more storage abstractions that are distributed
across the Nodes and uniformly accessible from all the Nodes in the Cluster, such that any
running database can be migrated “live” to any host without a “Data Copy”. In other word, it
is expected that all the nodes in a TPCx-HCI Cluster present what is commonly known as
“Shared Storage”.

Characterizing the Performance and Resilience of HCI Clusters 59

All physical storage must be locally attached to the individual Nodes, and no external SAN
(Storage Area Network) or NAS (Network Attached Storage) nor any other physical means of
providing external shared storage among the Nodes of the Cluster may be used in the SUT.
Regardless of the number of Nodes (n) in a TPCx-HCI Cluster, every storage abstraction must
provide redundancy to meet the TPCx-HCI Data Accessibility test. A TPCx-HCI Cluster of n
Nodes must be capable of demonstrating uninterrupted Data Accessibility of all storage
abstractions and Durability of all committed transactions on (n-1) Nodes in the event of
unmanaged loss of power to any single Node.

2 Architecture of TPCx-HCI

2.1 Overview

The System Under Test (SUT) is divided into multiple Tiles. Tile is the unit of
replication of TPCx-HCI configuration and load distribution. Each Tile consists of 4
Groups, and all Tiles contribute identical proportions to the total load of the SUT. Over
the full measurement interval, each of the four Groups contributes an average of 10%,
20%, 30%, and 40% of the total throughput of the Tile, respectively.

Each Group consists of one Tier A Virtual Machine and two transaction-specific
Tier B Virtual Machines, for a total of 12 VMs in each Tile. VM1 of each Group
contains that Group’s Tier A, which runs the business logic application, and has the
frames code functions (DML) that issue the database transactions. VM1 does not
contain a database. VM2 is the Tier B VM that holds the DSS database and accepts the
two storage load-heavy DSS transactions. VM3 is the Tier B VM that holds the OLTP
database and accepts the 9 CPU load-heavy OLTP transactions.

2.2 Benchmark Kit

As noted above, the TPCx-HCI benchmark is a very modest derivative of the TPCx-V
benchmark. In fact, modification of the TPCx-V benchmark kit to support TPCx-HCI
mostly involved modifying the reporter code to print a report for either type of
benchmark. It would be fair to say that the TPCx-HCI benchmark runs the TPCx-V
benchmark, but in a hyperconverged infrastructure configuration.

As such, the five software components of the TPCx-HCI benchmark driver are the
same as those for the TPCx-V benchmark; four that are used to drive the workload and
one to provide reporting functionality:

• Prime client: The prime client (vdriver.jar) is the benchmark execution controller.
It coordinates and controls the behavior of the Customer Emulator (CE) client(s),
Market Exchange Emulator (MEE) clients(s) and Tier A SUT connectors through
RMI connections to each.

• CE client: The client emulator (vce.jar) is responsible for emulating customers,
requesting a service of the brokerage house, providing the necessary input for the
requested service, etc.

60 H. R. Taheri et al.

• MEE client: The market exchange emulator (vmee.jar) is responsible for emulating
the stock exchanges by providing services to the brokerage house, per-forming
requested trades, providing market activity updates, etc.

• Tier A SUT connector: The Tier A SUT connector (vconnector.jar) receives the
transaction requests from the CE and MEE clients and sends queries to its Tier B
databases.

• Reporter: The reporter (reporter.jar) performs the self-validation checks against the
transaction log data and (optionally) creates an executive summary report.

Except for the reporter that is run independently, the relationship between the other
four software components are represented, below (Fig. 1):

Note that the actual interaction between these components is more complex than
this illustration suggests. For example, while all communication between the Prime
client and the other three components are RMI connections for benchmark coordination
and control, the other three components also use separate connections on which they
execute transactions between the driver and the SUT.

2.3 TPCx-HCI Express Kit

TPCx-HCI is a TPC Express benchmark, meaning that a kit is provided, and the test
sponsor is required to run the kit as is. The kit has code to create and populate the
databases, run the benchmark, self-validate and self-audit the results, and produce the
Executive Summary for the Full Disclosure Report. The test sponsor does not need, nor
is allowed, to write any code for the benchmark. With its self-validation and self-
auditing features, the audit process for the benchmark should be a lot lighter than
previous Enterprise TPC benchmarks.

Fig. 1. Components of the TPCx-HCI benchmark

Characterizing the Performance and Resilience of HCI Clusters 61

3 Characteristics of the Benchmark

3.1 Elasticity Feature

One of the defining characteristics of HCI systems is uniform access to data from all
Nodes (see Sects. 1.1 and 1.3). To evaluate how well an HCI cluster delivers that
property, the TPCx-HCI workload was designed in a way that achieving good per-
formance would benefit from migration of VMs among the nodes in the cluster. Aside
from evaluating the uniformity of access to data, this measures the live migration
speed, another important property of HCI clusters.

In keeping with the tradition of TPC benchmarks, the TPCx-HCI Specification does
not require live migrations, nor does it choreograph how, when, or where the VMs
should be migrated. Instead, the benchmark relies on the following two requirements:

1. At the beginning of the benchmark run on an N-Node cluster, all the VMs should be
on N-1 of the Nodes, with one Node having no VMs. Midway through the warm-up
period, the test sponsor may enable load balancing on the cluster, allowing VMs to
float to the idle Node

2. Using the elasticity feature in the benchmark (see [3] for a full description of this
property), the proportion of the overall load sent to each VM is changed every
12 min, while maintaining a constant overall load as shown in Fig. 2.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Group 4
Group 3
Group 2
Group 1

Phase

Fig. 2. Elasticity of load sent to each of the 4 Groups in a Tile

62 H. R. Taheri et al.

The benchmark specification does not require that VMs be migrated after the initial
warm-up, or at any subsequent time. It is up to the test sponsor to use a load-balancing
feature if it is available. If not, we can still have a valid benchmark run, but a run that
leaves one Node unused, losing potential performance.

3.2 Tile Count

Using a Tile based architecture is common in virtualization benchmarks [5, 6], where
every Tile handles the same amount of load. A TPCx-HCI Tile consists of 4 Groups
[1], each with 3 VMs. The elasticity feature of the benchmark varies what percentage of
a Tile’s load is directed to each Group, while maintaining a constant load level for the
whole Tile.

So, if it were possible to place a Tile in its entirety on one Node, the overall load on
that Node would not change during the benchmark run, even if the distribution of that
load among the VMs in the Tile changes.

To encourage the use of a load balancer, and reward the vendor whose load
balancing product is fast and efficient, the specification requires a Tile count [3] that is
not an integral product of the node count. This makes it impossible to trivially achieve
balanced performance by statically assigning each Tile to a separate node.

4 Analysis

In this section, we will focus on how well TPCx-HCI can evaluate the efficiency of the
cluster load balancer, as well as testing that access to data is uniform among all the
Nodes. Of course, the benchmark also evaluates many other properties of the System
Under Test: processor hardware, underlying storage, networking, hypervisor, etc.
Testing of those properties has been covered in previous publications [1–4] regarding
the TPCx-V benchmark, which was the starting point for TPCx-HCI.

4.1 Configuration of the System Under Test

Tests in Sect. 4 were run on a

• 4-node cluster of Dell R730xd servers:
– two-socket, Broadwell processors
– 8 1.8 TB SSD capacity drives and 2 NVMe cache devices.
– 512 GB of memory.

VMware vSphere 6.5 with vSAN 6.6.1.

4.2 Performance of 4 Tiles on 4 Nodes

To see the value of the load balancing and of the uniformity of access, we use the case
of 4 Tiles on 4 Nodes as the baseline. Although this is a non-compliant TPCx-HCI
configuration (see Sect. 3.2), it establishes the performance of an ideally balanced
environment.

Characterizing the Performance and Resilience of HCI Clusters 63

In Fig. 3, it is hard to tell apart the throughput curve and the 4 CPU utilization
curves. But this is exactly the point: the 4 Nodes are nicely balanced, and the uti-
lizations track the throughput curve, which is relatively flat despite the variation in load
to each VM. The fluctuations in throughput are mostly due to PostgreSQL checkpoints,
which occur every 6 min: There are two dips in throughput in each 12-minute Phase.

4.3 Performance of 5 Tiles on 3 Nodes Without Rebalancing

A valid TPCx-HCI run on 4 Nodes requires starting with 5 Tiles (or perhaps 9, 13, etc.
depending on performance) spread over 3 Nodes. Rebalancing is not required.

Figure 4 shows that performance suffers badly when 5 Tiles are placed on 3 Nodes.
When the phase-to-phase elasticity changes the load that is directed to different Groups,
the distribution of load among Nodes is no longer balanced, resulting in deep drops in
performance, and Nodes whose utilizations no longer match. Node 1 has a very low
utilization. There are no VMs on that Node, but the Node still runs the HCI software,
and sees a 10% CPU utilization.

Fig. 3. Throughput for 4 Tiles on 4 Nodes, one tile statically placed on each Node. The CPU
utilization curves of all 4 Nodes are very similar, and track the throughput curve

64 H. R. Taheri et al.

4.4 Performance of 5 Tiles on 4 Nodes with Rebalancing

Figure 5 shows a typical TPCx-HCI run. The 60 VMs of 5 Tiles are placed on Nodes
2-4. We increased the warm-up period to 24 min to better demonstrate the rebalancing
behavior. As per TPCx-HCI specification, at the midway point of the warm-up period
(minute 12), rebalancing was enabled. The vSphere Distributed Resource Scheduler
(DRS) [8] rebalanced the load by moving some VMs to Node 1. The load remains
constant until the end of Phase 1. At this point, the load levels of all 60 VMs change,
some drastically. The load on the 4 Nodes is not balanced, and DRS has to move some
VMs around to balance the load. The rebalancing occurs automatically, there is no
manual intervention. The DRS algorithm chooses which VMs to migrate.

Figure 6 shows that 7 migrations are necessary at the very beginning when Node 1
is idle. It is interesting to note that after the initial rebalancing, migrating only 0–5 VMs
is enough to rebalance the cluster.

Although it might appear that the throughput fluctuates too much in this run, the
fluctuations are well within the limits specified by the benchmark. The Sustainable
Performance requirements are that “The aggregate throughput computed over any
period of one hour, sliding over the Steady State by increments of twelve minutes,
varies from the Reported Throughput by no more than 2%”, and “computed over any
period of twelve minutes, sliding over the Steady State by increments of one minute,
varies from the Reported Throughput by no more than 20%”. These two metrics for
this run were 1.267% and 10.297%, respectively.

Fig. 4. Throughput and CPU utilizations for 5 Tiles on 3 Nodes

Characterizing the Performance and Resilience of HCI Clusters 65

The overall throughput of the compliant, load-balancing run in Fig. 5 was 1,898.89
tpsHCI; compared to 2,087.26 tpsHCI for the baseline, non-compliant run in Fig. 3 for
a ratio of 91%. Not all of the 9% drop was due to the Nodes running unbalanced (for
short intervals). We conducted an experiment similar to the compliant, load-balancing
run in Fig. 5, but with 4 Tiles, and observed 1,980.43 tpsHCI or 95% of the throughput
of the baseline, non-compliant run in Fig. 3. So some of the performance loss was due
to having 5 Tiles.

Fig. 5. Throughput and CPU utilizations with 5 Tiles on 4 Nodes. The run started with VMs on
Nodes 2–4. Rebalancing started at minute 12.

Fig. 6. vMotion migrations to rebalance the cluster

66 H. R. Taheri et al.

5 Data Accessibility Test

5.1 Impact on Performance During the Benchmark Run

In this set of experiments, we deliberately set the database cache size to be very small
relative to the working set size (WSS) to exaggerate the impact of the accessibility test
on the database performance.

In the first experiment, there is a lot of data on the server which is powered off. The
data shows that aggressive re-synchronization can impact the database transaction rate.

The trade-off is that the resynchronization takes place very quickly and thus data is
protected sooner than if the re-synchronization were less aggressive. The benchmark
mandates that a chart showing the impact to transaction rate, as well as the overall
recovery time is included in the Full Disclosure Report (FDR). The IOPS charts are not
part of the FDR since IO is not measured directly from the workload generator (Fig. 7).

In the second experiment, there is relatively little data to synchronize. Thus, the
impact on storage response time is much less because there is little work for the storage
layer to do (Fig. 8).

As you would expect the impact on TPS is also much lower. These two experi-
ments show that the impact to the database transaction rate is highly sensitive to the
layout of data, in particular how much data resides on the Node which is powered off,
and how aggressive the HCI system is when it resyncs that data (Figs. 9 and 10).

Power Off

Power On

0

2000

4000

6000

8000

10000

12000

14000

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125

Re
sp

on
se

 ti
m

e
uS

ec

IO
PS

Time (Minutes)

IOPS & Response time

IOPS Resp Time

Fig. 7. The “spare” Node is powered off at minute 24 and powered back on at minute 48. The
storage response time spikes and IOPS drops as the back-end re-synchronizes the missing data.
Once the Node is powered back on the synchronization work ends – but replica data is now
imbalanced, and the response time is slightly increased.

Characterizing the Performance and Resilience of HCI Clusters 67

0

200

400

600

800

1000

1200

1 13 25 37 49 61 73 85 97 109 121

tp
sH

CI

Time (Minutes)

Throughput during data accessibility phase.

Throughput

Fig. 8. Impact of the loss of a Node on throughput, when Node is full of data. The TPS drops
immediately when the Node is powered off. We can clearly see that this configuration is reliant
on the underlying storage for performance.

Power Off

Power On

0

2000

4000

6000

8000

10000

12000

14000

0

10000

20000

30000

40000

50000

60000

70000

80000

1 10 20 30 40 50 60 70 80 90 100 110 120

Re
sp

on
se

m

e
uS

ec

IO
PS

Time (Minutes)

IOPS & Response me

"IOPS" Disk I/O Latency (Raw)

Fig. 9. Impact of the loss of a Node on IOPS and latency, with little data to synchronize

68 H. R. Taheri et al.

5.2 Recovery Activity After the Benchmark Run

Not all systems will choose to begin replication work immediately after the Node is
powered off. Such a design choice will generate very low impact to the DB transac-
tions. In fact, performance may improve as data is simply no-longer replicated to the
down Node. Of course the trade-off is that user data is unprotected. In such cases we
need to measure the time taken to re-replicate the data once the downed Node re-joins
the cluster. The full disclosure report includes the time taken to reach full data-
protection but does not measure the impact to transactions, since the recovery is after
the benchmark run has competed.

6 Future Work

We should add measurement to the post-accessibility phase so that the impact to front-
end work can be measured as well as the overall time to reach the fault-tolerance policy
specified by the user.

7 Conclusions

We demonstrated that the TPCx-HCI benchmark can be used to showcase several
properties of HCI systems: uniform access to data from all Nodes; convergence of
compute, storage and networking; a cluster-level scheduler to balance the load across
avilable servers; ability to tolerate the loss of a Node; speed of recovery and regaining
of resilience. The benchmark does not directly demand these properties, but the
workload and the run-time procedures are designed such that efficiencies in these areas
are rewarded.

0

200

400

600

800

1000

1200

1 13 25 37 49 61 73 85 97 109 121

tp
sH

CI

Time (Minutes)

Throughput during data accesibilty phase

Throughput

Fig. 10. Impact of the loss of a Node on throughput, with little data to synchronize

Characterizing the Performance and Resilience of HCI Clusters 69

References

1. Bond, A., Kopczynski, G., Taheri, H.R.: Two firsts for the TPC: a benchmark to characterize
databases virtualized in the cloud, and a publicly-available, complete end-to-end reference kit.
In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 34–50. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36727-4_3

2. Bond, A., Johnson, D., Kopczynski, G., Taheri, H.R.: Architecture and performance
characteristics of a PostgreSQL implementation of the TPC-E and TPC-V workloads. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2013. LNCS, vol. 8391, pp. 77–92. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04936-6_6

3. Bond, A., Johnson, D., Kopczynski, G., Taheri, H.R.: Profiling the performance of virtualized
databases with the TPCx-V benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC 2015.
LNCS, vol. 9508, pp. 156–172. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31409-9_10

4. Sethuraman, P., Reza Taheri, H.: TPC-V: a benchmark for evaluating the performance of
database applications in virtual environments. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010.
LNCS, vol. 6417, pp. 121–135. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-18206-8_10

5. SPECvirt_sc2013 benchmark info, SPEC Virtualization Committee. http://www.spec.org/
virt_sc2013/

6. TPC: TPCx-V benchmark. http://www.tpc.org/tpcx-v/default.asp
7. VMware, Inc., VMmark 3. http://www.vmware.com/products/vmmark/overview.html
8. VMware, Inc., vSphere Distributed Resource Scheduler. https://www.vmware.com/products/

vsphere/drs-dpm.html

70 H. R. Taheri et al.

http://dx.doi.org/10.1007/978-3-642-36727-4_3
http://dx.doi.org/10.1007/978-3-319-04936-6_6
http://dx.doi.org/10.1007/978-3-319-31409-9_10
http://dx.doi.org/10.1007/978-3-319-31409-9_10
http://dx.doi.org/10.1007/978-3-642-18206-8_10
http://dx.doi.org/10.1007/978-3-642-18206-8_10
http://www.spec.org/virt_sc2013/
http://www.spec.org/virt_sc2013/
http://www.tpc.org/tpcx-v/default.asp
http://www.vmware.com/products/vmmark/overview.html
https://www.vmware.com/products/vsphere/drs-dpm.html
https://www.vmware.com/products/vsphere/drs-dpm.html

Requirements for an Enterprise
AI Benchmark

Cedric Bourrasset1, France Boillod-Cerneux1, Ludovic Sauge1,
Myrtille Deldossi1, Francois Wellenreiter1, Rajesh Bordawekar2(B),

Susan Malaika2, Jean-Armand Broyelle2, Marc West2, and Brian Belgodere2

1 BULL ATOS, 396 rue du mas de verchant, 34000 Montpellier, France
cedric.bourrasset@atos.net

2 IBM Corporation, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
bordaw@us.ibm.com

https://atos.net/fr/produits

Abstract. Artificial Intelligence (AI) is now the center of attention for
many industries, ranging from private companies to academic institu-
tions. While domains of interest and AI applications vary, one concern
remains unchanged for everyone: How to determine if an end-to-end AI
solution is performant? As AI is spreading to more industries, what
metrics might be the reference for AI applications and benchmarks in
the enterprise space? This paper intends to answer some of these ques-
tions. At present, the AI benchmarks either focus on evaluating deep
learning approaches or infrastructure capabilities. Unfortunately, these
approaches don’t capture end-to-end performance behavior of enterprise
AI workloads. It is also clear that there is not one reference metric that
will be suitable for all AI applications nor all existing platforms. We will
first present the state of the art regarding the current basic and most
popular AI benchmarks. We will then present the main characteristics of
AI workloads from various industrial domains. Finally, we will focus on
the needs for ongoing and future industry AI benchmarks and conclude
on the gaps to improve AI benchmarks for enterprise workloads.

1 Introduction

In the last decade there have been many changes in AI technology and the
use of AI. It has now emerged from the niche use, to enterprise use. This is
due to a few reasons: advances in AI algorithms, large advances in hardware
compute power, and the existence of massive amounts of data. Advancement in
AI algorithms and software as illustrated in Fig. 1, accelerated and took place
in the last decade. AI uses much of the same hardware technology that was
developed for HPC, which has seen very large increase of computing power.
Some of the increase is partly due to the availability of accelerator technology,
which suits Deep Learning workloads. Additionally, HPC has progressed the
capabilities and power to handling huge volumes of data in a high-performance
manner, AI consumes huge amounts of data so these advances in hardware are
c© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 71–81, 2019.
https://doi.org/10.1007/978-3-030-11404-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_6

72 C. Bourrasset et al.

the second area that hardware is enabling AI to advance. The final reason that
AI has advanced is the large amounts of data to mine or train the algorithms is
available. Think of the volumes of data each of us are generating as we use our
smart phones or surf the World Wide Web, and that data is being captured. In
addition, there are now so many ‘connected’ devices from manufacturing plant
floors, to retail systems, to automobiles collecting data. Data by itself has little
value until you can extract the information from it; which is where AI is playing
a very important and significant role. Now that AI is being used in commercial
production use, companies are having to evaluate what AI systems they will
invest in. They have to build appropriate rationale and justification why they
purchase one system versus another. This is no easy task as there are multiple
hardware and software components that make up these systems. It would be nice
to have a single standard test that would score a full AI system on its ability to
run a given type of AI Enterprise workload. Unfortunately, the only way today
to properly perform a comparative evaluation between AI Systems is to create
a custom benchmark test suite based on the user’s specific AI workload and
data, and then invest the time and arrange access to the equipment to run the
benchmark test suite on each of the systems under consideration. This paper will
look at the metrics for Enterprise workloads, benchmark tests that are available,
and then the gaps which need to be filled. This paper will look at what are those
metrics for Enterprise workloads, what benchmark tests are available, and then
the gaps which need to be filled.

Fig. 1. AI major project and discoveries

2 Identification of AI Workflow Bottlenecks

The definition of standard AI benchmark metrics that are useful, relevant and
sustainable requires first and foremost to identify the representative workloads of

Requirements for an Enterprise AI Benchmark 73

the implementation projects and the maintenance of an end-to-end AI solution
in their widest diversity. These workloads must necessarily be selected for their
criticality and their importance in the dimensioning in time (duration of the
development project and fluidity of the life cycles) and in costs (infrastructure
and software platform) of the project.

Most of the techniques used to address modern AI issues are based on recent
academic and industrial advances in Machine Learning, which includes Deep
Learning (ML/DL). The latter consists of using algorithms that create numerical
models from datasets (supervised model training - when the training dataset
include the true values for the variables to predict - or else unsupervised), which
are then able to correctly predict results from new data.

These algorithms and typology of models are numerous and for reference one
can quote here some of the most known for the supervised learning: Decision
Tree, Logistic Regression, Bayesians Classifier, SVM (Support Vector Machine),
and the large family of supervised DNN (Deep Neural Nets) used in Deep
Learning: CNN (Convolutional Neural Networks), RNN (Recurrent Neural Net-
works). For unsupervised learning: K-means, hierarchical clustering, PCA (Prin-
cipal Component Analysis), and specifically for DL: RBM (Restricted Boltz-
man Machine), auto-encoder, GAN (Generative Adversarial Networks), Word
Embedding, and NNLM (Neural Net Language Model).

The model type and the training dataset size condition greatly the workload,
as well as the system they run best on. For instance, GPUs are considered as
cost effective solutions for standard Machine Learning models Training (Decision
Trees, PCA, SVM) if the training datasets are large enough. On the other hand,
the modern DL frameworks almost experience great performance speedup with
GPUs during DL models Training and Inference phases compared to CPUs.

The life cycle of supervised ML/DL models is usually broken down into two
phases: Training and Inference (sometimes called Prediction).

Training Phase
In the training phase, we usually identify:

– The preparatory stage. It generally includes the data gathering, the data
preparation and the annotation/labeling of this dataset, the model choice and
underlying characteristics, the feature engineering, and the technical choice
for development and execution conditions of the training (ML/DL framework,
programming language, physical platform). Otherwise, the model choice and
the dataset size usually influence the platform and the framework selection
as some framework environments are specialized for specific model training
(for example: Python sklearn covers many Machine Learning model training,
but limited for large datasets which Spark MLlib is then a good solution,
Keras could train most of the Neural Nets models but pyTorch could be more
flexible for LSTM models).

– The iterative stage of model training and optimization of the hyper-
parameters (parameters of the chosen models and the training algorithm)
until reaching the desired model accuracy. This iterative cycle often goes

74 C. Bourrasset et al.

back to the preparation stage if the dataset is incomplete or has flaws or if
the engineering features or model choice must be reviewed or the technical
environment of the training execution has reached a hard limit that blocks
the whole process.
The preparation phase depends very strongly on human factors. The data
preparation stage is one of the critical steps of the process and is entirely under
human supervision (often subject matter experts) and their total automation
is almost impossible. However, some sub-steps can be automated. One can
cite for example: the data-augmentation, the data denoising, the data for-
matting/reformatting, the signal pre-processing and the data fusion (Com-
pute vision, Acoustic, Lidar point clouds), the data semi-auto labeling. The
duration of the cycle of training and optimization of the hyper-parameters is
dominated by two factors: the training time of the models which is by far the
heavier and longer machine time and the faculty to quickly find the values
of the hyper-parameters which maximizes the model accuracy. The technical
preparation stage also depends on the context, plus human and organization
choices. The optimization of hyper-parameters is often performed by expe-
rienced data scientists and there exist optimum search techniques and tools
that automate this task.

Inference Phase
The inference phase depends first and foremost on the targeted deployment
platform: this concerns data center servers or on the edge devices (embed-
ded systems, smart camera, smart phone, embedded card in vehicles or
robots). Their platform characteristics are primarily for the Inference Per-
formance: presence or not of hardware AI Accelerators, RAM capacity, CPU,
IO, OS, framework, types of sensors, process performances and energy con-
sumption, etc.). These factors strongly condition the parameters of the stage
of model packaging to adapt them to the targeted deployment platform. This
could include the model reduction to adapt to the platform hardware foot-
print (memory size, compute capacity, energy consumption), response time
performance improvement, the integration of data pre-processing and post-
processing logics, and some extra logical processing workflow (including call-
ing other models) and then packaging in a secured format compatible with
the target deployment platform. Finally comes the model deployment followed
by the solution run-time and exploitation with the objective of achieving the
desired performance in the conditions and constraints of actual operation in
terms of model prediction accuracy and end-to-end processing time.

Another important stress factor to consider for the Training and Inference
platforms is related to the level of workload concurrency introduced by paral-
lel incoming requests. This could be illustrated for the Training phase, when
several users share the same training platform and may concurrently submit
intensive Training tasks. For the Inference phase, it is also very likely that
several incoming detection requests have to be proceed by a platform at the
same time.

Requirements for an Enterprise AI Benchmark 75

At this stage, we can now identify three AI tasks which are good candidates for
platform benchmarking: Model Training, Hyper-parameter Optimization and
Deployed Model Inference Run-time. For each of them, we identify in Table 1
their workload profile, propose some Important Performance Indicators to assess
the tasks efficiency, and potential Technical Bottleneck which could limit the AI
tasks performance delivered by a given solution.

3 Desired Enterprise AI Metrics

3.1 Important Characteristics of Enterprise Metrics

The question about how to define good benchmarks and good metrics is a ques-
tion which has been extensively discussed and debated for decades. Example
of an industry-standardized benchmark is the one developed and maintained
in the compute domain by the Standard Performance Evaluation Corporation
(SPEC) organization [12]. SPEC defines a computer benchmark as a benchmark
that performs a known set of operations by which computer performance can be
measured and this with the following characteristics [12]:

– Specifies a workload
– Produces at least one metric
– Is reproducible
– Is portable
– Is comparable
– Has run rules.

Enterprise benchmark workloads must be of course be representative of real
or typical production workloads running in standard and effective production
conditions. These workloads must exercise extensively all the components of the
solution as-a-whole (hardware, software = ecosystem including the frameworks)
and the key performance elements composing the solution (CPU, memory, IO,
Network,) in the same time. It does differ from our point of view from stan-
dard synthetic benchmark where key performance components are more exer-
cised spectrally as for instance in the HPC domain with HPL/LINPACK for the
CPU [5,6,9], memory with McCalpin’s STREAM benchmark [1,8], OSU for the
interconnect [3] and HPC Challenge (HPCC) [7] which is designed to measure a
range memory access patterns.

Another class of metrics of interest to enterprises is related to best value
for money. It includes for instance the TCO metric (Total Cost of Ownership).
TCO is a widely used metric to support acquisition and planning decisions of
standard computing installation. TCO includes:

– Investment costs or Capital expenditure (CAPEX) for investments made
upfront: hardware, software, data center construction costs

– Operational costs or expenditure (OPEX) for recurring costs: energy costs,
human resources, maintenance.

76 C. Bourrasset et al.

Table 1. Characterization of AI tasks

AI tasks Workload profile Important

performance

indicators

Potential technical

bottlenecks in

standalone scenario

More potential

technical bottlenecks

with concurrent

scenario

Model

training

Batch task Trained models,

duration of the

training process,

scalability of the

training mechanism is

any

GPU memory capacity

and

latency/bandwidth,

GPU compute

capabilities and

capacities

Platform ability to

efficiently manage the

systems resources and

schedule AI training

workload (similar to

HPC workload

management tool

benchmark)

GPU intensive

workload

Price-performance

metrics: in regard to

TCA/TCO

GPU-CPU and

CPU-RAM

communication

characteristics could

matter for large

dataset training

and/or

Out-of-GPU-memory

training

GPU-CPU

communication

characteristics could

matter for large

datasets

Minutes to days For concurrent

scenario, the level of

model training

concurrency (similar

to batch concurrency

benchmark)

Server-server

communication

characteristics could

matter for

intra-parallelism model

training (training a

single model across

multiple servers)

CPU-RAM

communication

characteristics could

matter for

Out-of-Core training

Hyper-

parameter

optimiza-

tion

Batches tasks

managed by a

workload orchestrator

and hyper-parameters

solver

Hyper-parameter

combinatorial values

to cover

Solver algorithm

limitations

All the model training

potential bottleneck

apply here as well

GPU-tasks Optimum value found

for the model

accuracy

All the model training

potential bottlenecks

apply here

Minutes to days Overall duration to

find the model with

the best

hyper-parameters

Deployed

model

inference

run-time

Online service or

library API

Latency of inference GPU latency, GPU

compute capabilities

and capacities

Platform ability to

efficiently manage the

systems

Toward real-time

request response-time

in most cases.

Milli-seconds to

seconds

Price performance

metrics: in regard to

TCA and or TCO

GPU-CPU and

CPU-RAM latency and

throughput

Mostly hardware AI

accelerator intensive

workload (GPU,

FPGA, neuromorphic

chip, embedded

solutions)

For embedded and/or

autonomous systems:

energy consump-

tion/performance

metric

Infrastructure network

communication

characteristics

For concurrent

scenario, the level of

model training

concurrency (similar

to OLTP metrics)

Requirements for an Enterprise AI Benchmark 77

3.2 End-to-End AI Performance Metrics

In recent years, the Artificial Intelligence realm has exploded in a wide range of
domains such as natural language processing, image and video recognition, fraud
detection, text translation, autonomous car driving, fire prevention, stellar clas-
sification, business intelligence and so on so forth. All these domains deal with
heterogeneous data types and a more and more complex paradigms and models,
such as Map Reduce, Convolutional Neural Network, Recurrent Neural Network
with a large variety of flavors. At the same time, these domains have to manage
their own constraints, consume as little power as possible, be real-time, be pre-
cise, or a mix of these. Potentially, complex systems have different constraints
at different levels and separate them altogether, e.g. smart cameras can capture
videos and preprocess them to send more relevant data to another model located
in a datacenter that will generate information to the screen of an operator. For
that large set of purposes, these last years have seen the emergence of several
hardware utilization coming from different horizons, such as HPC (GPUs, low
latency fabrics, rapid and large storage arrays, NUMA machines with hundreds
of computation cores and large memory areas), embedded systems (FPGA), or
newly designed ASICs dedicated to matrix or vectorized computation (Google
TPU, Intel Nervana). These devices have been selected for specific purposes,
some for optimizing specific computations, others for their parallelism capabil-
ities, other for data vectorization, others high data throughput, optimizations
for atypic data types, data exchange with low latency, or large data capacity.
At the same time, a wide range of frameworks were being developed to imple-
ment efficiently different paradigms enabling as much specific hardware access
as possible.

To compare results and give sense to them, the choice of the metrics is there-
fore crucial. One simple metric is of course the time-to-solution approach. Time-
to-solution is highly depending on the runtime conditions of the benchmark and
also about the accuracy level of the final result. For standard industry bench-
marks, as we focus on production, we need to consider optimizing throughput
(work completed per a period of time and system) rather than simple time-to-
solution; focusing only on the best as possible time-to-solution generally leads to
underuse of the system so wastes computing resources. In addition, these met-
rics only make sense if we consider accuracy level of the trained model (quality
metric). Therefore, time-to-accuracy and throughput-to-accuracy.

Energy/power consumption is more and more important for environmental
and economic reasons. Energy consumption is generally hard to measure but a
close approximation is the computation time, considering that the power per
operation ratio is almost constant with electronic devices. Consequently, com-
putation time should be measured as an indication of energy efficiency.

In Sect. 2 it was identified there are three AI tasks which need to be focused on
for platform benchmarking: Model Training, Hyper-parameter Optimization and
Deployed Model Inference Runtime. Indeed, they are time critical in the overall
AI process and their progress does not require human intervention. For each of
them we identified in Table 1 their workload profile, proposed some Important

78 C. Bourrasset et al.

Performance Indicators to assess the tasks efficiency, and potential Technical
Bottleneck which could limit the AI task’s performance delivered by a given
solution.

The huge diversity of the features, and sometimes conflicting needs, of exist-
ing and future AI models clearly show that only measuring a unique parameter
for a given benchmark set is not sufficient at all and would not objectively reflect
the computation capabilities of an AI system. Therefore, the scoring value must
be determined by a function of other measured characteristics. For example, let
us consider a benchmark measuring the training phase of a deep learning related
model implementing natural language processing, if hardware A reaches 0.999
in one hour and hardware B 0.99 in 1 s, which one may score better? A function
such as the following would be a good function.

score = −log10(1 − accuracy)/time (1)

First of all, why such parameters have been chosen? The answer is quite
complex to address, each domain having a large (and sometimes conflicting)
variety of targets and constraints:

– Real-time latency
– Computation accuracy
– Convergence speed
– Computation time
– Computation efficiency
– Hardware resource consumption
– Thermal conditions
– Power capping
– Energy consumption.

The list above is absolutely not exhaustive and proves that a restrictive set
of parameters might not measure definitively all the possible cases. However,
if we look deeper into the different measurements, there does exist a common
denominator. As a summary, a good AI oriented system is a system that produces
a given accuracy in the shorter time slot and with as little energy as possible.

Secondly, the problem of mixing these parameters together to produce a score
reflecting the performance quality of a system is not trivial. Let us consider in
the text below the following:

– error = 1-accuracy (the lower that error is, the better)
– freq = 1

time (the larger freq is, the better)
– eval is the scoring function we would like to estimate.

The idea is that eval is a function of error and freq, and we want to con-
sider are variations of these values, i.e., the partial derivatives. For simplicity
reasons, we limit ourselves to first order polynomials and quotients and express
that the slope of the evaluation function must not vary with freq, but increase
when the error decreases. Since ∂eval

∂error ≈ 1
∂error and ∂eval

∂freq ≈ 1. Therefore,

Requirements for an Enterprise AI Benchmark 79

eval(error, freq) = K × log(error)× freq (where K is a constant). We can also
set K = −1i (since error is under 1, log will be negative), and the resulting
formula is:

eval(time, accuracy) =
−log(1 − accuracy)

time

4 Related Work

DeepBench [10] from Baidu Research was one of the first initiatives for bench-
marking AI workloads. This benchmark targets the low-level operations that are
fundamental to deep learning, such as matrix-multiplication, convolutions, and
communications, and aims to measure which hardware provides the best perfor-
mance on the basic operations used for deep neural networks. It also evaluates
forward and backward pass time during training time for a subset of existing net-
works (CNN, LSTM). These measurements are useful for identifying bottlenecks
in deep learning training and inference for hardware and software development
but fails to address specific issues of the Enterprise. Similar to DeepBench, Ten-
sorflow [2] provides a set of benchmarks focusing on throughput performance for
many well-known CNN networks. While these measurements can provide infor-
mation on pure throughput evolution from one hardware platform to another,
it is currently limited by the lack of considerations regarding model accuracy
when addressing Enterprise issues and is tied to the TensorFlow framework.
DAWNBench [4] is a Stanford University led project designed to allow different
deep learning methods to be compared by running a number of competitions.
It was the first major benchmark suite to examine end-to-end deep learning
training and inference. DAWNBench provides a reference set of common deep
learning workloads across multiple domains (currently image classification (on
ImageNet, CIFAR10) and question answering (on SQuAD) as of DAWNBench
V1) for quantifying training time, training cost, inference latency, and infer-
ence cost across different optimization strategies such as model architectures,
software frameworks, clouds environments, and hardware platforms. While the
cost and latency information are useful to the Enterprise in deciding how and
where to build their solution, it fails to address the data preparation and hyper-
parameter optimization work which accounts for a significant portion of time
to solution within an Enterprise compared to the final training time of a model
with well optimized hyper-parameters and thoroughly and correctly labeled well
represented data set of a given task. Following the precedent of DAWNBench
competition style, MLPerf defines the primary [11] metric as the wall clock time
to train a model to a target quality, often hours or days. The target quality is
based on the current state of the art publication results, less a small delta to
allow for run-to-run variance. In addition, MLPerf reports cloud service costs
and power consumption, as a proxy for cost, for mobile or on premise systems.
MLPerf [11], aims to provides a comprehensive benchmarking suite, covering
both training and inference tasks, for measuring the performance of machine
learning software frameworks, hardware accelerators, and cloud platforms. The

80 C. Bourrasset et al.

suite expands on DAWNBench’s workloads and common Machine Learning tasks
is defined by a well-known public dataset and quality target as follows:

1. Image Classification – Resnet-50 v1 applied to Imagenet.
2. Object Detection – Mask R-CNN applied to COCO.
3. Speech Recognition – DeepSpeech2 applied to Librispeech.
4. Translation – Transformer applied to WMT English-German.
5. Recommendation – Neural Collaborative Filtering applied to MovieLens 20

Million (ml-20m).
6. Sentiment Analysis – Seq-CNN applied to IMDB dataset.
7. Reinforcement Learning – Mini-go applied to predicting pro game moves.

Each task is further divided into two distinct divisions, Closed and Open
Model. The MLPerf Closed Model Division specifies the model to be used and
restricts the values of the hyper parameters (batch size, learning rate, etc.) which
can be tuned to enforce a fair and balance comparison of the hardware and
software systems. The MLPerf Open Model Division, only requires that same
task must be achieved using the same data, but provides fewer restrictions.
Similar to DAWNBench, MLPerf’s Closed Division provides the Enterprise with
guidance on deciding how and where to build solutions, but fails to address the
issues with regard to data preparation and hyper-parameter optimization work.
The Open Division provides the Enterprise with a view in advances in current
state of the art research, but fails to map to the Enterprise.

5 Summary and Next Steps

Artificial Intelligence has moved from academia and research, to many commer-
cial workloads. Companies are making purchasing decision for suitable AI solu-
tions to meet their enterprise AI workload needs. As we learned, enterprise AI
workloads have a broad and unique set of requirements for performance metrics.
Analysis of the existing benchmarks revealed gaps between the current existing
benchmarks, and the important metrics that enterprises want to measure for
their AI workloads. We discussed key metrics and areas of study that are of
concern to AI enterprise clients. These include:

– Model Training performance
• data labeling/preparation
• time-to-accuracy
• computational time/cycles
• throughput

– Hyper-parameter optimization performance
– Inference runtime performance.

As a summary, a good AI oriented system is a system that produces a given
accuracy in the shortest time slot and with as little energy as possible. But for
enterprise systems with concurrent users and workloads, not just the shortest

Requirements for an Enterprise AI Benchmark 81

time is required but the overall throughput of the system. Finally, there are mul-
tiple aspects of the system to test making comparison difficult, so we proposed
a formula to reduce to an overall score.

Our conclusion is that there is a need to fill and the community needs to
develop additional benchmarks or expand existing benchmarks. Not only that,
we need to drive to a set of standard benchmarks, which then AI system vendors
can test their solutions against, making it much easier for commercial customers
to evaluate and compare solutions before making their purchase decision.

References

1. The Stream benchmark. https://www.cs.virginia.edu/stream
2. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Pro-

ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI 2016, pp. 265–283. USENIX Association, Berkeley (2016). http://
dl.acm.org/citation.cfm?id=3026877.3026899

3. DKP et al.: OSU micro-benchmarks. http://mvapich.cse.ohio-state.edu/bench
marks

4. Coleman, C.A., et al.: DAWNBench: an end-to-end deep learning benchmark and
competition. In: Proceedings of the 31st Conference on Neural Information Pro-
cessing Systems (NIPS 2017) (2017)

5. Dongarra, J.J., Heroux, M.A., Luszczek, P.: HPCG benchmark: a new metric for
ranking high performance computing systems. Technical report UT-EECS-15-736,
November 2015

6. Heroux, M.A., Dongarra, J.J., Luszczek, P.: HPCG technical specification. Tech-
nical report SAND2013-8752, October 2013

7. Luszczek, P., et al.: S12 – the HPC challenge (HPCC) benchmark suite. In: Pro-
ceedings of SC 2006, November 2006

8. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, December 1995

9. Petitet, A., Whaley, R.C., Dongarra, J.J., Cleary, A.: HPL - a portable imple-
mentation of the high-performance Linpack benchmark for distributed-memory
computers. http://www.netlib.org/benchmark/hpl/

10. Bench Research: Deep Bench (2018). https://github.com/baidu-research/Deep
Bench

11. Bench Research: ML Perf (2018). https://mlperf.org/
12. SPEC. https://www.spec.org/cpu2017/Docs/overview.html

https://www.cs.virginia.edu/stream
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://mvapich.cse.ohio-state.edu/benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks
http://www.netlib.org/benchmark/hpl/
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://mlperf.org/
https://www.spec.org/cpu2017/Docs/overview.html

Towards Evaluation of Tensorflow
Performance in a Distributed Compute

Environment

Miro Hodak and Ajay Dholakia(&)

Lenovo, Data Center Group, Morrisville, NC, USA
{mhodak,adholakia}@lenovo.com

Abstract. Tensorflow (TF) is a highly popular Deep Learning (DL) software
framework. Neural network training, a critical part of DL workflow, is a com-
putationally intensive process that can take days or even weeks. Therefore,
achieving faster training times is an active area of research and practise. TF
supports multiple GPU parallelization, both within a single machine and
between multiple physical servers. However, the distributed case is hard to use
and consequently, almost all published performance data comes from the single
machine use case. To fill this gap, here we benchmark Tensorflow in a GPU-
equipped distributed environment. Our work evaluates performance of various
hardware and software combinations. In particular, we examine several types of
interconnect technologies to determine their impact on performance. Our results
show that with the right choice of input parameters and appropriate hardware,
GPU-equipped general-purpose compute clusters can provide comparable deep
learning training performance to specialized machines designed for AI
workloads.

Keywords: Tensorflow � Deep learning � GPU � Distributed computing
Performance

1 Introduction

Tensorflow (TF) [1] has quickly become the most popular Artificial Intelligence
(AI) software framework available. It has been developed and contributed to the open-
source community by Google, which continues to maintain control over the code. The
popularity of TF in comparison to other AI software frameworks is evident in metrics
such as Stack Overflow queries, GitHub stars, and number of forks. Its closest com-
petitor appears to be Facebook-backed PyTorch [2], which has recently seen significant
surge in adoption.

In general, the training of deep learning frameworks, especially convolutional neural
networks (CNNs), is a highly computationally demanding task. Large data sets are
needed, e.g., ImageNet, an often used labeled dataset that contains millions of images and
is hundreds of GBs in size [3]. Furthermore, training CNNs to an acceptable accuracy
target requires days or even weeks [4]. What makes this problem worse is that training
often times requires adjusting several parameters and thus researchers developing new

© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 82–93, 2019.
https://doi.org/10.1007/978-3-030-11404-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_7

models need to repeat training multiple times. Overall, the model training phase of AI
software development process can often run into months if not longer.

One way of addressing a high computational cost is using GPUs, which are efficient
in performing computational operations used in AI training. The idea of using GPUs is
becoming so well established by now that most AI tutorials simply assume that user has
access to high performing GPUs. TF, for example, defaults to using a GPU if available.

Even with high performing GPUs, training times are still considerable and as a
result, multi-GPU training is becoming commonplace. The hardware infrastructure
with multiple GPUs can be designed either by using a single computer equipped with
multiple GPUs (scale-up) or by using multiple computers with GPUs (scale-out).
While TF supports both scenarios, the scale up case has become far more common.
This is probably due to two main factors: (i) it makes parallelizing easier (no need to
support many different types of network connections) and (ii) a single machine guar-
antees high-speed communication between GPUs. This has led to rising popularity of
specialized hardware for AI workloads containing multiple GPUs within a single
machine connected with a high speed interconnect. Two examples are DGX-1 [5] and
DGX-2 [6] developed by Nvidia, consisting of 8 and 16 GPUs, respectively, connected
via NVLink [7].

Yet this approach also has disadvantages: specialized hardware is very costly
compared to general use compute servers and at some point scale-out becomes more
practical than scale-up as is the case in the high performance computing (HPC) world.
Outside of TF, the power of the scale-out approach has been demonstrated by several
recent studies: Facebook researchers who showed that training using 32 servers with
256 GPUs can reduce ImageNet training time to only about an hour [8], while another
study demonstrated distributed training in *15 min [9].

Within TF, there are several obstacles for distributed training to become com-
monplace. The main one is that current TF distributed model requires substantial
changes to the training script while single-machine parallelization requires much less
effort. In addition, adoption of distributed TF is limited by existing documentation
being aimed at expert users familiar with concepts of parallel computing rather than
targeting data scientist audience. Furthermore, distributed TF does not easily integrate
with job schedulers used to launch jobs in compute clusters.

Motivated by these challenges, our work aims to evaluate performance of dis-
tributed TF from the point of view of a typical AI user and to provide an easy-to-follow
guidance for achieving good performance in a distributed environment. To this end, we
use unmodified TF binaries as provided by the project along with publicly available
benchmarking scripts. Our work examines multiple hardware and software factors to
identify those that are critical in a distributed environment.

We find that network connection speed is the most important parameter deter-
mining scaling efficiency. At minimum, a 10 Gb Ethernet is needed to achieve good
scaling, but higher speeds provide additional performance benefit. Additionally, large
batch sizes are also desirable. With these two parameters, a performance comparable to
that of AI specialized servers can be achieved.

The rest of the paper is organized as follows. Section 2 summarizes related research
work being undertaken by teams at many academic as well as industry organizations
Sect. 3 outlines various considerations required for effective model training using

Towards Evaluation of Tensorflow Performance 83

distributed frameworks at various levels of the hardware and software system stack and
also calls out the need for appropriate user skills to achieve the task. Section 4 presents
the results of the work described in this paper. Finally, Sect. 5 outlines areas of ongoing
and future research and summarizes the conclusions.

2 Related Work

Speeding up training of deep neural networks is an active area of recent research. Many
teams have investigated software techniques as well as system designs for reducing the
training time.

In [8], the authors investigated the use of large minibatch sizes on systems with up
to 256 GPUs and reported training CNNs for ImageNet classification in one hour. This
is a significant improvement over prior published results where as many as 29 h were
needed. The authors also deployed a new warmup scheme as part of the learning rate
schedule to overcome certain optimization difficulties encountered when using larger
than typical minibatch sizes.

In [9], the authors developed a more sophisticated approach to learning rate
adaption along with the use of very large minibatch sizes. This approach, named Layer-
wise Adaptive Rate Scaling (LARS) algorithm, allowed use of large minibatch sizes
(such as 32 K) on a system with 1024 CPUs and resulting in a reported training time of
14 min.

Cho et al. [10] have developed a distributed deep learning library named
PowerAI DDL. The library implements a multi-ring communication pattern that can
achieve a nearly linear scaling for up to several hundred GPUs. It also provides a good
balance between latency and bandwidth for various hardware configurations. Com-
pared to Ref. [8], the authors claim a lower communication overhead. This library has
been integrated into Tensorflow, Caffe and Torch.

Compared to these works, we take a different approach to distributed deep learning.
Instead of developing new software, we focus on how to efficiently use existing dis-
tributed framework implemented in TF. Also, we use small clusters containing up to 16
GPUs that should constitute most common use cases.

3 Distributed TF Performance Considerations

3.1 Distributed Model Support in TF

There are two paradigms for distributing AI training workloads: data and model par-
allelisms [11]. In model parallelism, each compute device executes part of the model
using the same data. For example, each device may be responsible for training different
layers of the network. Implementing model parallelism is generally complex and model
dependent.

Data parallelism, which is used in present work, is much more common. Here, each
compute device executes the same model with a different subset of the data. TF uses a
concept of “parameter servers” and “workers”. Workers are compute devices - GPU or

84 M. Hodak and A. Dholakia

CPU – that perform computationally intensive part of the training to obtain partial
gradients. Those are sent to parameter servers that communicate with each other to
calculate global gradients.

3.2 Hardware

At hardware level, performance is mainly determined by two factors: (i) GPU pro-
cessing power and (ii) interconnect between GPUs. The former is straightforward and
is given by GPU type. For example, V100, the highest performing GPU currently
available, provides 12.3 TFLOPS of single precision operations and 112 TFLOPS at
half precision.

As for GPU communication, the current intra-machine standard is PCIe. NVLink, a
proprietary interconnect often used in AI-specialized servers, provides several times
higher bandwidth. In a distributed settings, interconnect between servers also comes
into play. Here we only consider Ethernet because it is the only network communi-
cation protocol officially supported in TF. However, it is not an optimal choice, because
Ethernet protocol has a high latency compared to Infiniband and other high-speed
fabrics that are used for HPC applications. Several Ethernet types are available for
compute clusters with speeds ranging from 1 Gb/s to 100 Gb/s. Non-Ethernet inter-
connects, such as Inifiniband or Omni-Path, can also be configured to carry Ethernet
communication and thus can also be used for distributed TF.

Clearly, NVLink-based machines provide a much higher communication speed
than PCIe/Ethernet distributed clusters. Nevertheless, the distributed case can still
provide a comparable performance if the GPU computational time is much higher that
the communications cost. CNNs, which are computationally intensive, may be such a
workload.

3.3 Job Scheduler

Job scheduler is a critical component of distributed computing environments. It ensures
that workloads are executed on appropriate resources without interfering with each
other. Unfortunately, TF distributed model does not integrate well with job scheduling
software. This is because it requires specifying IP addresses of compute nodes at
submit time, while job scheduler assigns nodes upon job execution according to
availability. While it is possible to work around this issue, it is another hurdle for user
when executing distributed TF jobs.

3.4 Libraries

The main compute libraries involved in neural network training are CUDA and cuDNN
developed by Nvidia. In general, these provide good performance out-of-the box and
there is not much user needs to do other than to ensure that installed version fully
supports his/her GPUs.

Towards Evaluation of Tensorflow Performance 85

3.5 Training Script

Training script controls setup and training of CNNs. Because of complexity of CNN
design, most users elect to reuse and modify existing scripts as needed rather than
writing one from scratch. For example, TF GitHub project Models (Tensorflow/
models) provides ready to use implementation of most commonly used CNN models.
Many of these can run in distributed mode and accept input parameters such as batch
size to adapt to existing hardware. Thus, while in principle training scripts give users
full control over training execution and provide opportunities for performance tuning,
these are usually not exercised.

3.6 User Expertise

While user expertise is important for any application, here we highlight it because
running distributed TF workloads places a high burden on a user who needs to be an
expert on AI, hardware and software simultaneously. While AI expertise may be
implicitly assumed, the level of required software and hardware skills seems too high
for a typical data scientist. On software side, user needs to be able write a parallel
training script. However, even when using an already existing script, user needs to use
the right options for parameter servers and replicated variables. Furthermore, because
TF distributed model does not provide support for launching training jobs on multiple
nodes, user also needs to be able to write his/her own script launching simultaneous
training sessions on the computational nodes in the cluster. On the hardware side, user
needs to be aware of networking setup: IP addresses need to be explicitly specified and,
as will be shown below, he/she needs to utilize a high speed Ethernet interconnect to
achieve efficient distributed training.

These issues originate in TF itself and thus it is up to TF community to make
distributed training easier to use. Otherwise, these features will remain inaccessible to
most users and/or a separate fork or a wrapper (such as Hovorod developed by Uber
[12]) will become standard for distributed deployments.

4 Results

4.1 Hardware and Software

This study was performed on an 8 node Lenovo ThinkSystem SD530 [13] compute
cluster. Each node contained 2 Intel® Xeon® Gold 6150 CPUs and 400 GB of total
memory. Additionally, each node also had 2 GPUs connected via PCIe 3.0. V100
GPUs were used to generate main results reported in Sect. 4.2, while for comparison to
Nvidia DGX-1 results (Sect. 4.3) the V100 GPUs were replaced by P100 GPUs.
Various types of network connections between compute nodes were utilized in this
work as listed in Table 1.

TF version 1.8 with CUDA, as provided by TF Docker Hub, was used for this
work. The docker container was converted into singularity container format, which is
preferable for cluster environment, and the benchmarks were run from within a sin-
gularity container.

86 M. Hodak and A. Dholakia

Performance was measured using TF benchmarking suite available from GitHub
(tensorflow/benchmarks). Specifically, tf_cnn_benchmark.py script located in
scripts/tf_cnn_benchmark directory was used. The script is often used within TF
community as a way to verify and compare performance of various hardware config-
urations. Importantly, it comes with bundled synthetic training data, which greatly
simplifies deployment. The script is designed according to TF recommendation for
achieving high performance [14]. TF projects publishes its own results for several types
of GPUs [15], which allows users to verify that they are getting expected performance
from their hardware.

The script reports number of processed images per second, effectively a measure of
processing bandwidth. The script accepts a number of command line options allowing
users to easily select a deep learning model, batch size, number of steps as well as
options controlling execution on multiple GPUs and compute nodes.

4.2 Optimum Parameters for TF Distributed Training

TF benchmark script provides several options for controlling variable distribution and
gradient aggregation. Two most important ones are parameter_device and vari-
able_update. The former can have two values: cpu or gpu, while the latter has three
possible options: replicated (single node only), parameter_server, and dis-
tributed_replicated (multi-node only). We have tested all possible combinations of
these settings for 1, 2, and 4 GPUs and the results are shown in Tables 2, 3 and 4,
respectively. Based on the results we use gpu/replicated for 1 GPU training,
cpu/parameter_server for 2 GPU 1 node training, and gpu/parameter_server for multi-
node training.

Table 1. Ethernet connections in the cluster: nominal and actual bandwidths (as measured by
iperf3 utility).

Connection type Nominal bandwidth
[Gb/s]

Actual bandwidth
[Gb/s]

1 Gb Ethernet 1 0.94
10 Gb Ethernet 10 9.41
Omni-Path IPoIB 100 32.1

Table 2. Performance of settings controlling variable distribution and gradient aggregation for
resnet50, batch size 64 on 1 V100 GPU.

Parameter device Variable update Images/second
32 bit precision

Images/second
16 bit precision

CPU parameter_server 344 574
CPU replicated 347 596
GPU parameter_server 347 599
GPU replicated 349 596

Towards Evaluation of Tensorflow Performance 87

4.3 Distributed Benchmarks

Benchmark scaling studies were performed on up to 16 V100 GPUs. The results in
terms of processed images per second are shown in Figs. 1, 2 and 3 for batch sizes of

Table 3. Performance of settings controlling variable distribution and gradient aggregation for
resnet50, batch size 64 on 2 V100 GPUs (1 node).

Parameter device Variable update Images/second
32 bit precision

Images/second
16 bit precision

CPU parameter_server 690 1181
CPU replicated 677 1170
GPU parameter_server 656 1093
GPU replicated 663 1148

Table 4. Performance of settings controlling variable distribution and gradient aggregation for
resnet50, batch size 64 on 8 V100 GPUs (4 nodes).

Parameter device Variable update Images/second
32 bit precision

Images/second
16 bit precision

CPU parameter_server 2200 3353
CPU distributed_replicated 2280 3447
GPU parameter_server 2300 3527
GPU distributed_replicated 1903 2560

Fig. 1. ResNet-50 (left) and Inception-v3 (right) V100 benchmarks for batch size of 64. Each
line corresponds to different network speed as given in the legend. Ideal dataset is a single GPU
performance multiplied by number of GPUs.

88 M. Hodak and A. Dholakia

64, 128, and, 256, respectively. ResNet-50 and Inception-v3 models are used with both
single (32 bit) and half (16 bit) precisions. Due to hardware limitation, only the IPoIB
benchmark extends to 16 GPUs, all other cases are limited to 8 GPUs.

Datasets are sorted according to network speed with datapoints labeled “Ideal”
representing 100% scaling. These are obtained by multiplying single GPU performance
by number of GPUs.

Figure 1 displays results for the smallest batch size used in this study – 64. This is
the most challenging case for the cluster environment, because GPU computational is
relatively short and thus the communication cost becomes more evident. The results
show that with the 1GbE speed the performance drops after when more than 1 node
become included in the calculation. This is clearly insufficient for this workload.
10 GbE, on the other hand, fares much better and shows a performance increase. At 8
GPUs the 1GbE scaling efficiency is between about 50–75%. Omni-Path fabric in IP
mode provides a substantial improvement with efficiencies between 70–88% on 16
GPUs depending on the model and precision.

The scaling accuracy improves with a batch size of 128 as shown in Fig. 2. While
1GbE remains insufficient for the workload, 10 GbE scaling efficiency improves to 70–
80% over 8 GPUs and Omni-Path IPoIB efficiency is 80–90% over 16 GPUs.

Fig. 2. ResNet-50 (left) and Inception-v3 (right) V100 benchmarks for batch size of 128. Each
line corresponds to a different network speed as given in the legend. Ideal dataset is a single GPU
performance multiplied by number of GPUs.

Towards Evaluation of Tensorflow Performance 89

Figure 3 shows results for batch size 256. Because of memory requirements, only
half precision can be used on the GPUs at this batch size. Here, the performance
becomes even closer to an ideal scaling with 10 GbE providing 80 and 90% efficiency
for ResNet-50 and Inception-v3, respectively at 8 GPUs. Onmi-Path IPoIB is scaling at
about 90% at 16 GPUs for both models. Note that 10GbE is competitive with IPoIB
over the tested range.

4.4 Discussion

The results reveal several trends:

• High-speed network connection is crucial for achieving speedup when increasing
number of nodes. At least 10 Gb/s is necessary

• Larger batch sizes provide better scaling performance
• More computationally intensive model (Inception-v3) provide better scaling

performance
• Half precision worsens the scaling for a given batch size. However, when run with

maximum batch size possible, the scaling mirrors that of single precision at its
maximum batch size

• When combining large batch sizes with a high speed network, PCIe/Ethernet
clusters provide a highly scalable deep learning platform

The important role of network speed was recognized in previous studies. For
example, all related works cited in Sect. 2 use Inifiniband interconnect. Ref. [8] even
estimates that a 15 Gb/s network speed is required for ResNet-50 training on P100
GPUs. Given that V100 can perform more operations than P100, the network speeds
need to be higher in V100 compute clusters. Using their formula, we can estimate that
about 20 Gb/s would be needed for single precision training, while half precision,
which is much improved in V100 s, would require about 75 Gb/s. While our results
show that these estimates are too high, they further demonstrate the need for network
speed in distributed deep learning training.

Fig. 3. ResNet-50 and Inception-v3 (right) V100 benchmarks for batch size of 256. Each line
corresponds to a different network speed as given in the legend. Ideal dataset is a single GPU
performance multiplied by number of GPUs.

90 M. Hodak and A. Dholakia

Yet, this point is not mentioned in user TF documentation, which may give users
impression that any network speed is sufficient. Indeed, several Issues in TF Bench-
marks GitHub page have been opened about distributed training not yielding any
speedup.

Our findings indicate that higher batch sizes provide better performance. This is
because increasing batch size increases GPU calculation time relative to the time spent
on communication between parameter servers. This reasoning suggests that users
should always maximize batch size up to maximum allowed by GPU memory size.
However, users should also be mindful of the fact that excessive batch sizes – over 512
for Imagenet data – lead to lower accuracy [16] and, in practice, users should always
check accuracy of their models and carefully balance processing speed vs model
accuracy. That said, current generation of GPUs come in 16 GB and 32 GB variants,
which allow maximum Imagenet batch sizes of 256 and 512, respectively for 16 bit
precision. Therefore, using close to a maximum batch size should be a safe choice for
training Imagenet-based models on P100 and V100.

It is also important to compare our data with performance obtained from scale-up
servers. TF project has published performance data from an 8 P100 DGX-1 server, in
which GPUs are connected by an NVLink connector, on its website [15]. To facilitate a
direct comparison, we have repeated previous benchmarks on P100 GPUs. The results
show that for ResNet-50, the difference is 7% at 8 GPUs and 10% for Inception-v3.

No such data is available for V100, but Nvidia has published ResNet-50 perfor-
mance of DGX-1 with 8 V100 [17]. They found that for batch size 256 and using half-
precision 5183 images/second can be processed. Our value, shown in Fig. 3, left panel,
is 5536. The difference likely comes from a different TF or Cuda version, or a different
training script - the source document does not provide detailed information on how the
benchmark was performed. Nevertheless, the values are close and this further
demonstrates value of compute clusters for AI workloads.

5 Conclusions and Future Work Directions

The goals of this work have been to evaluate TF performance in a distributed setting
and compare it to that of AI-specialized integrated clusters that are currently popular for
deep learning workloads. Distributed TF use case is not well documented and our work
provides practical guidelines for achieving good performance. These are:

1. High speed network connection is crucial. At least 10 Gb needs to be used, the
higher the speed, the better.

2. Maximize batch size.
3. Use appropriate settings for variable distribution.

Following these rules, scaling efficiency of about 90% over 16 top-of-the-line
GPUs can be achieved for deep learning training. This demonstrates that general-
purpose compute clusters provide performance that is comparable to that of tightly
integrated servers specifically designed for AI workloads. Given that AI-specialized
machines are very costly, distributed computing provides better value when used
according to the rules outlined above.

Towards Evaluation of Tensorflow Performance 91

Our investigation also shows why integrated machines are popular for AI work-
loads: Both writing and executing distributed scripts within TF is hard and requires
advanced computing skills. This needs to change to make distributed training acces-
sible to the data scientist community.

Future work will further explore different Ethernet speeds to provide a clear net-
work speed recommendation for CNN training. Additionally, direct communication
over a high-speed fabric – Infiniband and Omni-Path – using direct memory access
(DMA) will also be tested. By default, TF only supports Ethernet communication, but
VERBS implementation, providing DMA, is also part of TF codebase and can be
enabled by compilation from source. Another option is the Hovorod library [12], which
effectively turns TF into an HPC application. These will decrease network latency and
increase bandwidth and thus are expected to further improve performance.

Another direction is making TF easier to use in a compute cluster environment such
as better scheduler integration so that users can easily leverage it for their AI training
needs.

Finally, a better understanding of distributed TF performance is a stepping stone
towards using benchmarks such as very recently released MLPerf [18] so that different
types of hardware can be evaluated in a predictable manner.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16, 265–283
(2016)

2. Paszke, A., et al.: Automatic differentiation in PyTorch. https://openreview.net/forum?id=
BJJsrmfCZ

3. Imagenet. http://image-net.org/about-stats
4. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details:

Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)
5. Nvidia Corporation. https://www.nvidia.com/en-us/data-center/dgx-1/
6. Nvidia Corporation. https://www.nvidia.com/en-us/data-center/dgx-2/
7. Nvidia Corporation. https://www.nvidia.com/en-us/data-center/nvlink/
8. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677 (2017)
9. You, Y., Zhang, Z., Hsieh, C., Demmel, J., Keutzer, K.: ImageNet training in minutes.

CoRR, abs/1709.05011 (2017)
10. Cho, M., Finkler, U., Kumar, S., Kung, D., Saxena, V., Sreedhar, D.: PowerAI DDL. arXiv

preprint arXiv:1708.02188 (2017)
11. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press,

Cambridge (2016)
12. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in TensorFlow.

arXiv preprint arXiv:1802.05799 (2018)
13. Lenovo SD530. https://lenovopress.com/lp0635-thinksystem-sd530-server
14. TensorflowPerformanceGuide. https://www.tensorflow.org/performance/performance_guide
15. Tensorflow P100 Benchmarks. https://www.tensorflow.org/performance/benchmarks#results

92 M. Hodak and A. Dholakia

https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
http://image-net.org/about-stats
http://arxiv.org/abs/1405.3531
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/nvlink/
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1708.02188
http://arxiv.org/abs/1802.05799
https://lenovopress.com/lp0635-thinksystem-sd530-server
https://www.tensorflow.org/performance/performance_guide
https://www.tensorflow.org/performance/benchmarks#results

16. Mishkin, D., Sergievskiy, N., Matas, J.: Systematic evaluation of convolution neural
network advances on the Imagenet. Comput. Vis. Image Underst. 161, 11–19 (2017)

17. NVIDIA DGX-1 With Tesla V100 System Architecture. http://images.nvidia.com/content/
pdf/dgx1-v100-system-architecture-whitepaper.pdf

18. MLPerf. https://www.mlperf.org/

Towards Evaluation of Tensorflow Performance 93

http://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
http://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://www.mlperf.org/

A Comparison of Two Cache Augmented
SQL Architectures

Shahram Ghandeharizadeh(B) and Hieu Nguyen

USC Database Laboratory, Los Angeles, USA
{shahram,hieun}@usc.edu

Abstract. Cloud service providers augment a SQL database manage-
ment system with a cache to enhance system performance for workloads
that exhibit a high read to write ratio. These in-memory caches pro-
vide a simple programming interface such as get, put, and delete. Using
their software architecture, different caching frameworks can be catego-
rized into Client-Server (CS) and Shared Address Space (SAS) systems.
Example CS caches are memcached and Redis. Example SAS caches are
Java Cache standard and its Google Guava implementation, Terracotta
BigMemory and KOSAR. How do CS and SAS architectures compare
with one another and what are their tradeoffs? This study quantifies an
answer using BG, a benchmark for interactive social networking actions.
In general, obtained results show SAS provides a higher performance
with write policies playing an important role.

Keywords: Caching · Write policy · Scalability · Performance

1 Introduction

Cache Augmented Database Management Systems (CADBMSs) are a proven
technology deployed widely by popular social networking sites such as Face-
book [35], Tinder, and Wikipedia. These caches require an application developer
to identify a code path or a method (function) with a unique input as a key and
its results as a value [20,25,35,37]. Next, the code path is extended to look up
the key. If the cache returns a value then the application consumes the value
without executing the code path. Otherwise, it executes the code path to gener-
ate the corresponding key-value pair and inserts this key-value in the cache for
future look up. In the presence of updates to the database, the application may
either delete (termed write-around or invalidate) or update the impacted key-
value pairs (termed write-through or refill). These are similar to the write-around
and write-through techniques of host-side1 caches [10,26,29,30].

There is a spectrum of software architectures for CADBMSs. We term the
two extreme ends of this spectrum as the Client-Server (CS) and the Shared-
Address Space (SAS) architectures. Both provide a simple interface such as get,
1 A key difference is that the write is manipulating key-value pair instead of a disk/SSD

block.

c© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 94–109, 2019.
https://doi.org/10.1007/978-3-030-11404-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_8

A Comparison of Two Cache Augmented SQL Architectures 95

insert/put, delete, increment, decrement, and others. Moreover, both may use
leases such as those proposed by [22] to prevent undesirable race conditions that
cause the cache to generate stale data.

(a) Client Server (CS) (b) Shared Address Space (SAS)

Fig. 1. Two alternative architectures for cache augmented database management sys-
tems.

With CS, there are stand-alone cache manager processes per server. Examples
include memcached [34,43] and Redis [38]. Figure 1a shows this architecture for
memcached. An application server uses memcached’s client component, Whalin
Client [43], to issue requests to an instance of memcached process executing on a
memcached server2. With multi-core servers, a cache server may host multiple3

memcached processes, each process is termed a cache manager instance. The
memory of the cache server is partitioned across these instances. Cache entries
would be represented as key-value pairs and assigned to different instances of
memcached. This might be realized by partitioning key-value pairs using either
a hash function, by assigning ranges of keys, or a hybrid of the two [1].

With SAS, the cache manager is a library that runs in the address space of
an application, see KOSAR Client of Fig. 1b. This library manages memory and
implements a replacement technique such as LRU. We use the term cache man-
ager instance to refer to an instance of the library running as a part of an appli-
cation node. A coordinator implements leases, see KOSAR Core of Fig. 1b. As
depicted in Fig. 1b, the cache manager instances may communicate and collabo-
rate with one another to facilitate key-lookup. Different cache manager instances
may reference and compute the same key-value pair independently. A coordi-
nator, KOSAR Core, maintains consistency between different cache manager

2 A physical server may host both the Application and memcached processes. We use
such a deployment to evaluate CS architecture in Sect. 5.

3 While memcached is multithreaded, launching multiple instances reduces contention
for its synchronization primitive on its LRU queue. In our experiments with a 16
core processor, we have observed a 20% enhancement in throughput when launching
eight instances instead of one.

96 S. Ghandeharizadeh and H. Nguyen

instances. Examples of SAS architecture include Java Cache standard [27] along
with its Apache Ignite [5] and Google Guava [24] implementations, Terracotta
BigMemory [41], JBoss [11] and KOSAR [17]. Both Java Cache standard and
Google Guava are single node implementations and lack the concept of a coor-
dinator.

While hybrids of CS and SAS are possible, this study focuses on CS and SAS
only4.

Software architecture of SAS and CS are fundamentally different. With CS,
there is a cache manager client and a cache manager server that communicate via
message passing. SAS combines these two into one with a published interface for
use by the application server. Moreover, it has a coordinator that grants leases
to prevent undesirable race conditions that insert stale data in the cache.

The architectural differences cause CS and SAS to process read and write
requests differently. With CS, a read that looks up the value of a key incurs
the network overhead to issue the request to a cache manager instance. This is
in the form of serializing the command and transmitting it across the network
back to the client. If the cache manager instance finds the value then it serializes
the value and transmit it across the network. SAS avoids this network overhead
every time an application node finds its referenced key in the memory of its local
cache manager. With SAS, writes manipulate the in-memory representation of a
key-value pair. With CS, these writes incur the network overhead of transmitting
the key-value pair similar to reads.

A key question is how CS and SAS architectures compare with one another?
And, do they scale horizontally? The primary contribution of this study is an
answer to these questions using KOSAR [17] as the representative of the SAS
architecture5 and IQ-Twemcached [21] as a representative of the CS architec-
ture6. While we acknowledge the availability of other candidate systems, we
selected KOSAR and IQ-Twemcached because they are the only systems that
implement leases of [22] to provide strong consistency. To elaborate, both CS
and SAS architectures suffer from undesirable race conditions that insert stale
data in the cache [22]. Leases of [22] detect these race conditions and prevent
them from causing the state of the cache and the database to diverge.

While both KOSAR and IQ-Twemcached may be configured to control the
number of key-value replicas across the cache, we configured IQ-Twemcached
in its simplest form where clients hash partition key-value pairs with no repli-
cation. We configured KOSAR such that each client may construct a replica of
its referenced key-value pair. This means that with N cache manager instances,
KOSAR may have N replicas of a popular key-value pair in each instance while

4 Evaluation and comparison of a hybrid with CS and SAS is deferred to future work,
see Sect. 6.

5 At the time of this writing, Google Guava is not distributed and could not be used
for this evaluation. Apache Ignite is a candidate for future analysis, see Sect. 6.

6 Redis is the other obvious alternative that we intend to include in our future studies,
see Sect. 6.

A Comparison of Two Cache Augmented SQL Architectures 97

IQ-Twemcached has at most one replica of the same key-value pair in one cache
manager instance.

CADBMSs are designed for workloads that exhibit a high read to write
ratio. Examples include social networking applications with Facebook reporting
500 reads for every 1 write [9] and enterprise systems trending towards read-
dominated workloads [14,31]. For this evaluation, we use a macro benchmark
that emulates interactive social networking actions [7] and generate read-heavy
workloads.

Our evaluation highlights the following main lessons:

1. SAS provides a higher performance than CS. However, CS scales better than
SAS for some workloads.

2. Choice of a write policy (write-around versus write-through) impacts both the
performance observed with each architecture and their scalability character-
istics. The write-through policy provides superior performance and scalability
characteristics when compared with write-around. However, its resulting soft-
ware is more complex, see [19].

3. One may configure client components of a SAS architecture in either a greedy
or a cooperative mode. In the greedy mode, each client manages its key-value
pairs independent of the other clients. In the cooperative mode, a client with
a replica of a key-value pair (ki-vi) services another client’s cache miss for ki.
Our evaluation shows cooperative is superior to greedy with write-around,
enhancing both the performance and scalability of the SAS architecture. With
write-through, there is little difference between greedy and cooperative. See
Sect. 4.

4. Both architectures scale sub-linearly even with a 1000:1 read to write ratio
and a handful of nodes. While scalability of SAS is limited by the processing
capability of the RDBMS server, scalability of CS is limited due to load
imbalance across cache manager servers.

All performance numbers presented in this paper are gathered using a cluster
of servers. Each server is a 4 (8 hyper-threaded) core Intel i7-3770 3.40 GHz CPU
with 16 GB of memory, a 1 Gbps networking card, and a 1 Terabyte disk.

The rest of this study is organized as follows. We describe related work in
Sect. 2. Section 3 provides an overview of the BG benchmark and its implemen-
tation using write-around and write-through techniques. While the write-around
implementation is similar with CS and SAS, we present a fine-tuned implemen-
tation of write-through for each of CS and SAS architectures. Section 4 quantifies
the performance benefits of using a cooperating technique to manage the content
of caches with SAS, showing it is key to scaling SAS. Section 5 compares the CS
and SAS architectures using their performance and scalability characteristics.
Our conclusions and future research directions are detailed in Sect. 6.

2 Related Work

In a data center deployment, caches may be deployed either inside or outside
the RDBMS. Caches outside the RDBMS include host-side caches [10,26,29]

98 S. Ghandeharizadeh and H. Nguyen

and application-side caches [20,25,35,37]. Caches inside the RDBMS include
the buffer pool manager of a RDBMS server [28,33,36,39], client-side [13,15,42]
and mid-tier [8,32] caches.

Host-side, RDBMS server, client-side and mid-tier caches are transparent to
an application. Host-side caches are deployed seamlessly using a storage stack
middleware or the operating system (termed the caching software) [10,26,29].
They stage disk pages from disk to NAND Flash to expedite their processing.
The RDBMS server cache may employ algorithms such as LRU [12], LRU-K [36]
and its queue based implementation [28], and ARC [33] to manage buffer frames
occupied by disk pages [39]. Client-side caches [13,15,42] distribute the process-
ing of the algebraic operators that constitute a query across both the client and
server component of a RDBMS. They ship data to a client for caching and pro-
cessing. The book by Franklin [15] provides a survey of these caches. Mid-tier
caches offload part of a workload to intermediate database servers that partially
replicate data from the backend server [8,32]. These may cache entire tables,
materialized views, or query fragments, providing distributed query execution.

This study considers application-side caches that are external to the RDBMS
and managed by the application. These caches provide a simple get, insert,
delete, increment, decrement interface and have no query processing ability. We
evaluate a non-transparent version of these caches. Our initial attempt to eval-
uate a transparent version of one of these caches produced results that we could
not explain. A future research direction is to revisit this cache and others similar
to it in light of the lessons learned from this study to explain their performance
and scalability characteristics.

In [2], we compare a host-side cache named Flashcache with an application-
side cache based on the CS architecture (IQ-Twemcached [22]). The same IQ-
Twemcached is used in this study. This study is different because we compare
two application-side caches based on different software architecture with one
another, namely, KOSAR and IQ-Twemcached.

One finds studies and white papers on the web comparing the CS and SAS
architectures with one another. However, to the best of our knowledge, this study
is the first to compare the CS and SAS architectures scientifically. We show the
application’s use of write-around and write-through policies impact the final
conclusions. This level of analysis is lacking from the studies available on the
web.

3 A Social Networking Benchmark

We use BG [4,7], a benchmark that produces interactive social networking
actions, to evaluate the alternative caching architectures. Rows of Table 1 show
the seven BG actions that constitute our focus. Three of these actions read data
while the other four write data. The read actions are View Profile, List Friends,
and View Pending Friend requests. The write actions are Invite Friend, Reject
Friend Request, Accept Friend Request, and Thaw Friendship. We configure BG
with three different mixes of these actions that emulate a different ratio of read

A Comparison of Two Cache Augmented SQL Architectures 99

to write actions, varying from 10:1 to 1000:1, see Table 1. According to [9], the
ratio of read to write actions at Facebook is 500:1.

We used the Social Action Rating (SoAR) metric of BG to compare the
SAS and CS architectures with one another. SoAR is the highest throughput
observed from the system while satisfying a service level agreement, SLA. In
all our experiments, the SLA was set at 95% of actions observing a response
time faster than 100 ms with no anomalies [3]. An anomaly refers to either stale,
inconsistent, or simply erroneous data produced by the system. This metric is
quantified during the validation phase of BG.

Table 1. Three interactive social networking workloads.

BG social actions Read to write ratio

1000:1 100:1 10:1

View Profile 33.3% 33% 30%

List Friends 33.3% 33% 30%

View Friend Req 33.3% 33% 30%

Invite Friend 0.04% 0.4% 4%

Accept Friend Req 0.02% 0.2% 2%

Reject Friend Req 0.02% 0.2% 2%

Thaw Friendship 0.02% 0.2% 2%

The three read actions of BG emulate a socialite either viewing the profile of a
member, listing her friends, or listing her pending friend requests. The referenced
member may be the same as the socialite, e.g., viewing her own profile or list of
friends. View Profile retrieves the profile of the referenced member and includes
the member’s number of friends. If this is a self reference then the number of
pending friend invitations of the member is also retrieved. List Friends shows
the profile of ten friends of a member. Similarly, List Pending Friends shows
the profile of ten members who have extended a friendship invitation to the
referenced member.

The four write actions pertain to social activities that members may perform
on one another. These actions are also invoked by a socialite on another member.
They are self explanatory based on their names and we refer the interested reader
to [7] for the details.

BG is a stateful benchmark in that it only generates valid actions. For exam-
ple, it does not emulate a socialite to extend a friend invitation (using Invite
Friend Request) to another member if they are already friends. Similarly, a
socialite performs Thaw Friendship on a member who is a friend of that socialite.
To prevent the social graph from either running out of friendships (for the Thaw
Friendship action) or members to invite (for the Invite Friend Request), we
ensured the mix of write actions is symmetric so that friendships are thawed
and created with the same probability, see Table 1.

100 S. Ghandeharizadeh and H. Nguyen

BG uses a closed emulation model to generate request where a thread emu-
lates a socialite picked using a Zipfian distribution of access. We used 0.27 as the
exponent of the distribution to generate a skewed pattern of reference where 30%
of members serve either as socialites or referenced members by 70% of generated
actions.

The version of BG used in this study is different than [7] in that all BGClients
share7 one social graph to generate requests, see Integrated DataBase (IDB)
of [4]. This ensures different application servers incur read-write, write-read,
and write-write conflicts. We used the feature of BG to detect anomalies (stale,
erroneous, or simply wrong) to verify the two architectures implement actions
correctly.

With write-around, both the representation of key-value types and their man-
agement is identical with the alternative architectures. However, an implemen-
tation of write-through with CS is different than with SAS. We fine-tune the
representation of key-value pairs with SAS because its implementation of read-
modify-write (RMW) incurs a lower overhead than CS.

In [19], we provide implementation details of BG actions with write-around
and write-through. This discussion includes use of Inhibit (I) and Quarantine (Q)
leases [22] are applied to prevent insertion of stale values in the IQ-Twemcached.
Due to lack of space, we refer the interested reader to [19] for details.

4 Cooperative Cache Management

With SAS, a cooperating cache management technique has a significant impact
on system performance and its scalability. This is specially true with write-
around even when there is enough memory to materialize all key-value pairs in
the cache.

Two cache management techniques supported by KOSAR are Greedy and
Ingest. Greedy is non-cooperative and requires each cache to manage its content
using its local replacement policy independent of the other caches. This means a
cache that observes a miss for a key-value pair must compute this key-value pair
using the RDBMS even though as many as N− 1 replicas may exist in the other
caches. With the RDBMS as the slowest component, once an update impacts a
popular key-value pair and invalidates it, this key-value pair is potentially re-
computed N times. Once by each cache that observes a miss for it. This causes
the cache servers to wait for the RDBMS, limiting the scalability of the system.

Ingest, on the other hands, is a cooperative cache management technique. It
ensures a key-value pair is computed by at most one cache. Other caches that
observe a miss for this key are directed to fetch it from the cache that has a

7 The version of BG described in [7] partitions a social graph into N logical subgraphs
and assigns each to a BGClient for request generation. It fails to evaluate the SAS
architecture objectively because its request generation results in no read-write and
write-write conflicts between different BGClients, i.e., emulated application servers
of Fig. 1.

A Comparison of Two Cache Augmented SQL Architectures 101

replica of it. In essence, each cache may serve as a producer of a key-value pair
missed by another cache as long as the producer has a copy of the referenced
key.

KOSAR implements Ingest as follows. Its Core maintains a list of caches
(KOSAR Clients of Fig. 1b) with a copy of a key-value pair. When a KOSAR
Client requests an I lease (due to a cache miss) on a key, the Core provides it
with the list of KOSAR Clients that have a replica of this key. The KOSAR
Client selects one of these randomly, fetches a replica of its required key-value
pair, and releases its I lease. The Core decides whether the client may maintain
this copy or not based on the allowed number of replicas8.

Figures 2a–c show SoAR of Greedy and Ingest with write-around and write-
through techniques. The x-axis shows the number of clients. The scale of the
y-axis changes in these figures, highlighting a significant difference in SoAR
for different workloads. Greedy and Ingest provide a comparable performance
with write-through because each experiment has a warmup phase and write-
through updates key-value pairs instead of deleting them. With write-around,
Ingest is superior to Greedy. With a 10:1 read to write ratio, Greedy provides a
lower SoAR as we increase the number of BG clients beyond 1 to 2 and higher,
see Fig. 2a. This results in a system with a poor scalability characteristics, see
Fig. 2d. In particular, the observed SoAR with 8 nodes is less than half that
observed with 1 node. With 1 node, the CPU of the application server is 100%
utilized. With 8 nodes, the CPU of the RDBMS server is 100% utilized. Every
time a write action invalidates a popular key-value pair, Greedy requires each
cache to compute it independently. This imposes a higher load onto the RDBMS
as a function of additional caches. Processing of requests using RDBMS is slower
than looking up results in the cache, causing the SoAR with 8 nodes to be lower
than that with one node.

With a 1000:1 workload, Greedy supports a higher SoAR from 1 to 4 clients.
Its SoAR drops sharply from 4 to 8 clients. The explanation for this is similar
to the above with the system switching from the application server being 100%
utilized with 1 node to the RDBMS becoming 100% utilized with 8 nodes. A
key observation is that a lower frequency of writes enhances the scalability of
Greedy.

By computing a key-value pair only once independent of the number of cache
servers, Ingest enables write-around to provide similar performance to write-
through. However, the scalability of Ingest is limited with read to write ratios
of 10:1 and 100:1 as the RDBMS must process transactions that use SQL DML
commands to implement the write actions. The RDBMS becomes the bottleneck
with all configurations to limit system scalability. For example, with 10:1, both
the RDBMS disk and CPU are heavily used. Disk shows a sustained queue of
1.25 elements (a 100% sustained utilization) and the CPU is more than 80%
utilized. The cache servers are idle most of the time waiting for the RDBMS to
finish processing the write actions. Hence, increasing the number of cache servers
does not enhance system SoAR, see Fig. 2d.

8 Release and notify are performed with 1 message.

102 S. Ghandeharizadeh and H. Nguyen

1 2 4 8
0

10

20

30

40

50

60

Number of Clients

SoAR (× 1000 actions / sec)

Write−Around:Ingest

Write−Through:Ingest

Write−Around:Greedy

Write−Through:Greedy

1 2 4 8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Clients

Scalability

Write−Around:Ingest

Write−Through:Ingest Write−Through:Greedy

Write−Around:Greedy

Linear

1:01ytilibalacS(d)1:01RAoS(a)

1 2 4 8
0

100

200

300

400

500

Number of Clients

SoAR (× 1000 actions / sec)

Write−Around:Ingest

Write−Through:Ingest

Write−Around:Greedy

Write−Through:Greedy

1 2 4 8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of Clients

Scalability

Write−Around:Ingest

Write−Through:Ingest

Write−Through:Greedy

Write−Around:Greedy

Linear

1:001ytilibalacS(e)1:001RAoS(b)

1 2 4 8
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

Number of Clients

SoAR (× 1000 actions / sec)

Write−Around:Ingest

Write−Through:Ingest

Write−Around:Greedy

Write−Through:Greedy

1 2 4 8
1

2

3

4

5

6

7

8

Number of Clients

Scalability

Write−Around:Ingest

Write−Through:Ingest

Write−Through:Greedy

Write−Around:Greedy

Linear

1:0001ytilibalacS(f)1:0001RAoS(c)

Fig. 2. Performance and scalability of SAS architecture (KOSAR), 100K member social
graph, 10 friends and 0 resources per member. The scalability with different number
of clients is computed relative to the SoAR observed with 1 client, scalability with x
clients = SoAR(x)

SoAR(1)
. With one client, scalability is 1.

A Comparison of Two Cache Augmented SQL Architectures 103

5 A Comparison of CS with SAS

This section compares IQ-Twemcached (CS architecture) with KOSAR config-
ured using Ingest (SAS architecture). We report on both system SoAR and
its scalability characteristics. With the CS architecture, there is a pairing of
BGClients with the IQ-Twemcached. Hence, with a single BGClient, there is no
physical network transmission because the IQ-Twemcached and the BGClient
issuing requests are on the same server. However, with 2 and more nodes,
the BGClients hash partitions the key-value pairs across the IQ-Twemcached
instances. As detailed in Sect. 5.2, the network overhead incurred with two or
more nodes impacts the scalability of the CS architecture when compared with
a single node. This is particularly true with 100:1 and 1000:1 workloads.

We start with a single node comparison of the two architectures. Subse-
quently, we analyze the scalability of each architecture.

5.1 Single-Node Comparison

Table 2 shows SAS is superior to CS by providing a higher SoAR with different
workloads. Both architectures enhance the performance of a RDBMS by itself,
compare column 2 with the other columns. A higher read to write ratio enhances
the performance of both caching solutions. Moreover, write-through outperforms
write-around by re-filling the impacted key-value pairs instead of deleting them.
The SoAR of SAS/KOSAR is 5 to 9 folds higher than CS/IQ-Twemcached with
100:1 and 1000:1 read to write ratios. This difference drops to 25%–60% with a
10:1 read to write ratio because the RDBMS disk becomes 100% utilized with
SAS and limits its performance.

Table 2. SoAR with a single cache node as a function of read to write ratio of BG
actions. The resource that becomes the bottleneck is identified in parentheses below
the SoAR rating.

Read to
write
ratio

No cache
SQL-X

Write-around Write-through

CS
IQ-Twemcached

SAS
KOSAR

CS
IQ-Twemcached

SAS
KOSAR

10:1 12,227
(RDBMS CPU)

20,300
(RDBMS CPU/Disk)

25,436
(RDBMS Disk)

29,898
(App Server CPU)

49,004
(RDBMS Disk)

100:1 18,516
(RDBMS CPU)

26,916
(App Server CPU)

140,857
(App Server CPU)

41,509
(App Server CPU)

215,850
(App Server CPU)

1000:1 21,969

(RDBMS CPU)

28,430

(App Server CPU)

275,317

(App Server CPU)

43,348

(App Server CPU)

292,899

(App Server CPU)

Table 2 shows the SAS architecture is generally more efficient than the CS
architecture. In particular, it does not incur the repeated overhead of fetching a

104 S. Ghandeharizadeh and H. Nguyen

key-value pair using the network stack of the operating system and deserializing
it to obtain the required value. Hence, SAS outperforms CS by a wide margin
even though the CPU of the application server is the bottleneck resource with
both architectures.

5.2 Scalability Comparison

Figures 3 and 4 show the SoAR and scalability of the different architectures with
write-around and write-through, respectively. SAS is more scalable than CS only
with the 1000:1 workload. While CS is more scalable than SAS with the 10:1
and 100:1 workloads, SAS provides either the same or a significantly higher per-
formance (SoAR) than CS with all workloads. With the 10:1 workload, both CS
and SAS architectures fails to scale. This is true with both the write-around
and write-through policies, see Figs. 3d and 4d. The frequent writes cause the
RDBMS to become the bottleneck with one cache manager instance and remain
the bottleneck with additional instances. The RDBMS is busy processing the
SQL DML commands (insert, delete, update) issued by the write actions. These
transactions result in a sustained disk queue at the RDBMS server that limits
scalability and dictates overall performance. Switching to SSD increases through-
put. However, it does not change the scalability results because the throughput
with one cache server would be higher (due to use of SSD). Below, we compare
the scalability of different architectures with write-around and write-through in
turn.

With write-around and a 100:1 workload, the CPU of the RDBMS server
becomes 100% utilizes and limits the scalability of the SAS architecture9. The
RDBMS is busy servicing queries generated by cache misses. These cache misses
are attributed to write actions that delete cached key-value pairs. An increase
to 1000:1 read to write ratio reduces the imposed load on the RDBMS to enable
SoAR to scale. However, the RDBMS continues to remain the bottleneck, pre-
venting SAS from scaling linearly.

With the CS architecture, the 1 Gbps network bandwidth of the individual
application servers has a high utilization with 100:1 and 1000:1 workloads. The
CPU utilization of the application servers is also high (>80%). The BGClients
generate approximately the same amount of load on the IQ-Twemcached servers.
This load is not evenly distributed across the IQ-Twemcached instances due
to partitioning of the key-value pairs. This imbalance explains the sublinear
scalability with the CS architecture. (The SAS architecture does not observe the
same imbalance due to replication of key-value pairs.)

Write-through reduces the dependence of an architecture on the RDBMS by
requiring the write actions to compute new key-value pairs. This reduces the
number of queries issued to the RDBMS, enhancing the observed SoAR. With
a 1000:1 read to write ratio, the SAS architecture scales almost linearly because
the CPU of the different application servers is almost 100% utilized. With the CS
architecture the network card of each node remains fully utilized to dictate both

9 With 8 nodes, the average application server utilization is lower than 30%.

A Comparison of Two Cache Augmented SQL Architectures 105

1 2 4 8
0

10

20

30

40

50

60

Number of Clients

SoAR (× 1000 actions / sec)

CS/IQ−Twemcached

SAS/KOSAR:Ingest

1 2 4 8
1

1.2

1.4

1.6

1.8

2

2.2

Number of Clients

Scalability

CS/IQ−Twemcached

SAS/KOSAR

Linear

1:01ytilibalacS(d)1:01RAoS(a)

1 2 4 8
0

20

40

60

80

100

120

140

160

180

200

220

240

Number of Clients

SoAR (× 1000 actions / sec)

SAS/KOSAR:Ingest

1 2 4 8
1

2

3

4

5

6

7

8

Number of Clients

Scalability

CS/IQ−Twemcached

SAS/KOSAR

Linear

1:001ytilibalacS(e)1:001RAoS(b)

1 2 4 8
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Number of Clients

SoAR (× 1000 actions / sec)

CS/IQ−Twemcached

SAS/KOSAR:Ingest

1 2 4 8
1

2

3

4

5

6

7

8

Number of Clients

Scalability

CS/IQ−Twemcached

SAS/KOSAR

Linear

1:0001ytilibalacS(f)1:0001RAoS(c)

Fig. 3. A comparison of CS/IQ-Twemcached and SAS/KOSAR with write-around.

the SoAR of the system and its scalability. Similar to the discussion of write-
around, CS does not scale due to load imbalance across the IQ-Twemcached
instances10.

10 Similar results is reported by other systems that partition data [16,23].

106 S. Ghandeharizadeh and H. Nguyen

1 2 4 8
0

10

20

30

40

50

60

Number of Clients

SoAR (× 1000 actions / sec)

CS/IQ−Twemcached

SAS/KOSAR:Ingest

1 2 4 8
0.8

1

1.2

1.4

1.6

1.8

2

Number of Clients

Scalability

CS/IQ−Twemcached

SAS/KOSAR

Linear

1:01ytilibalacS(d)1:01RAoS(a)

1 2 4 8
0

100

200

300

400

500

Number of Clients

SoAR (× 1000 actions / sec)

CS/IQ−Twemcached

SAS/KOSAR:Ingest

1 2 4 8
1

2

3

4

5

6

7

8

Number of Clients

Scalability

CS/IQ−Twemcached

SAS/KOSAR

Linear

1:001ytilibalacS(e)1:001RAoS(b)

1 2 4 8
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

Number of Clients

SoAR (× 1000 actions / sec)

CS/IQ−Twemcached

SAS/KOSAR:Ingest

1 2 4 8
1

2

3

4

5

6

7

8

Number of Clients

Scalability

CS/IQ−Twemcached

SAS/KOSAR

Linear

1:0001ytilibalacS(f)1:0001RAoS(c)

Fig. 4. A comparison of CS/IQ-Twemcached and SAS/KOSAR with write-through.

6 Conclusions and Future Research

Both SAS and CS architectures enhance the performance of a RDBMS dramat-
ically for workloads with a high read to write ratio. The SAS architecture is
higher performant than the CS architecture. SAS fails to scale linearly due to
the RDBMS becoming the bottleneck. One approach to resolve this limitation

A Comparison of Two Cache Augmented SQL Architectures 107

is to deploy multiple RDBMS instances and shard a database across them [6].
Challenges of this design include additional design considerations to perform
cross-shard filter or join, processing of transactions that update data in different
fragments, and others as detailed in [40]. An alternative is to use a write-back
policy that applies writes to the RDBMS asynchronously. An implementation of
this policy may buffer writes in the caching layer. A challenge is how to process
key-value references that observe a cache miss and issue a query to the RDBMS
with pending buffered writes. The cache manager requires novel algorithms to
apply the relevant buffered writes to the cache prior to processing the RDBMS
query to compute the missing cache entry.

The evaluation presented in this study can be extended in several ways. First,
this study considered only one sample system for SAS and one sample system for
CS. A future effort is to expand this evaluation to include other sample systems
such as Apache Ignite for SAS and Redis for CS. A key question is whether
strong consistency is a requirement for an apple-to-apple comparison. Use of
leases introduces delays that slows down performance. At the same time, strong
consistency may not be required for applications such as social networking. We
intend to investigate this tradeoff in greater detail.

Second, this study did not consider a hybrid of the CS and SAS architectures.
Such an architecture may deploy the cache of CS with the coordinator of SAS, see
KOSAR Core of Fig. 1a. This may enhance availability of data when application
servers fail frequently. In general, analyzing failure of caches and its impact on
the performance of alternative architectures is an open research topic.

Finally, we are aware of no study that has evaluated a write-heavy workload
such as TPC-C with alternative write policies including write-back [18]. With
these policies, a SAS architecture may provide a superior performance while
preserving the ACID property of transactions.

Acknowledgement. We thank the anonymous reviewers for their valuable comments.

References

1. Adya, A., et al.: Slicer: auto-sharding for datacenter applications. In: OSDI, pp.
739–753 (2016)

2. Alabdulkarim, Y., Almaymoni, M., Cao, Z., Ghandeharizadeh, S., Nguyen, H.,
Song, L.: A comparison of Flashcache with IQ-Twemcached. In: IEEE CloudDM
(2016)

3. Alabdulkarim, Y., Almaymoni, M., Ghandeharizadeh, S.: Polygraph: a plug-n-play
framework to quantify anomalies. In: IEEE ICDE, April 2018

4. Alabdulkarim, Y., Barahmand, S., Ghandeharizadeh, S.: BG: a scalable benchmark
for interactive social networking actions. Future Gener. Comput. Syst. 85, 29–38
(2018)

5. Apache: Ignite - In-Memory Data Fabric (2016). https://ignite.apache.org/
6. Armstrong, T., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench: a

database benchmark based on the Facebook social graph. In: ACM SIGMOD,
June 2013

https://ignite.apache.org/

108 S. Ghandeharizadeh and H. Nguyen

7. Barahmand, S., Ghandeharizadeh, S.: BG: a benchmark to evaluate interactive
social networking actions. In: CIDR, January 2013

8. Bornhövd, C., Altinel, M., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald,
B.: DBCache: middle-tier database caching for highly scalable e-Business archi-
tectures. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, San Diego, California, USA (2003)

9. Bronson, N., Lento, T., Wiener, J.L.: Open data challenges at Facebook. In: 31st
IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South
Korea, 13–17 April 2015, pp. 1516–1519 (2015)

10. Byan, S., et al.: Mercury: host-side flash caching for the data center. In: IEEE
Symposium on Mass Storage Systems and Technologies (MSST) (2012)

11. JBoss Cache. http://www.jboss.org/jbosscache
12. Denning, P.J.: The working set model for program behavior. Commun. ACM 11(5),

323–333 (1968)
13. DeWitt, D.J., Futtersack, P., Maier, D., Vélez, F.: A study of three alternative

workstation-server architectures for object oriented database systems. In: Proceed-
ings of the 16th International Conference on Very Large Data Bases, VLDB 1990
(1990)

14. Faust, M., et al.: Footprint reduction and uniqueness enforcement with hash indices
in SAP HANA. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp.
137–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44406-2 11

15. Franklin, M.J.: Client Data Caching: A Foundation for High Performance. Kluwer
Academic Publishers, AH Dordrecht (1996)

16. Ghandeharizadeh, S., DeWitt, D.J.: A multiuser performance analysis of alterna-
tive declustering strategies. In: Proceedings of the Sixth International Conference
on Data Engineering, Los Angeles, California, USA, pp. 466–475 (1990)

17. Ghandeharizadeh, S., et al.: A demonstration of KOSAR: an elastic, scalable,
highly available SQL middleware. In: ACM Middleware (2014)

18. Ghandeharizadeh, S., Ngueyn, H.: Design, implementation, and evaluation of write-
back policy with cache augmented data stores. Technical report 2018-06, USC
Database Laboratory (2018)

19. Ghandeharizadeh, S., Nguyen, H.: A comparison of two cache augmented sql
architectures. Technical report 2018-04, USC Database Laboratory (2018). http://
dblab.usc.edu/Users/papers/CSvsSAS.pdf

20. Ghandeharizadeh, S., Yap, J.: Cache augmented database management systems.
In: ACM SIGMOD DBSocial Workshop, June 2013

21. Ghandeharizadeh, S., Yap, J., Nguyen, H.: IQ-Twemcached. http://dblab.usc.edu/
users/IQ/

22. Ghandeharizadeh, S., Yap, J., Nguyen, H.: Strong consistency in cache augmented
SQL systems. In: Middleware, December 2014

23. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP 2003:
Proceedings of Nineteenth ACM SIGOPS Symposium on Operating Systems Prin-
ciples. ACM Press (2003)

24. Google: Guava: Core Libraries for Java (2015). https://github.com/google/guava
25. Gupta, P., Zeldovich, N., Madden, S.: A trigger-based middleware cache for ORMs.

In: Middleware (2011)
26. Holland, D.A., Angelino, E., Wald, G., Seltzer, M.I.: Flash caching on the storage

client. In: USENIXATC (2013)
27. Java Community Process: JCACHE - Java Temporary Caching API (2014).

https://jcp.org/en/jsr/detail?id=107

http://www.jboss.org/jbosscache
https://doi.org/10.1007/978-3-319-44406-2_11
http://dblab.usc.edu/Users/papers/CSvsSAS.pdf
http://dblab.usc.edu/Users/papers/CSvsSAS.pdf
http://dblab.usc.edu/users/IQ/
http://dblab.usc.edu/users/IQ/
https://github.com/google/guava
https://jcp.org/en/jsr/detail?id=107

A Comparison of Two Cache Augmented SQL Architectures 109

28. Johnson, T., Shasha, D.: 2Q: a low overhead high performance buffer management
replacement algorithm. In: VLDB, pp. 439–450 (1994)

29. Kim, H., et al.: Flash-conscious cache population for enterprise database workloads.
In: Fifth International Workshop on Accelerating Data Management Systems Using
Modern Processor and Storage Architectures (2014)

30. Koller, R., Marmol, L., Rangaswami, R., Sundararaman, S., Talagala, N., Zhao,
M.: Write policies for host-side Flash caches. In: FAST 2013 (2013)

31. Krüger, J., et al.: Fast updates on read-optimized databases using multi-core CPUs.
PVLDB 5(1), 61–72 (2011)

32. Larson, P., Goldstein, J.J., Guo, H., Zhou, J.: MTCache: transparent mid-tier
database caching in SQL server. In: ICDE (2004)

33. Megiddo, N., Modha, D.S.: ARC: a self-tuning, low overhead replacement cache.
In: FAST. USENIX (2003)

34. Memcached. http://www.memcached.org/
35. Nishtala, R., et al.: Scaling Memcache at Facebook. In: NSDI, pp. 385–398.

USENIX, Berkeley (2013)
36. O’Neil, E.J., O’Neil, P.E., Weikum, G.: The LRU-K page replacement algorithm

for database disk buffering. In: ACM SIGMOD (1993)
37. Ports, D.R.K., Clements, A.T., Zhang, I., Madden, S., Liskov, B.: Transactional

consistency and automatic management in an application data cache. In: OSDI.
USENIX, October 2010

38. RedisLabs: Redis. https://redis.io/
39. Stonebraker, M.: Operating system support for database management. Commun.

ACM 24(7), 412–418 (1981)
40. Stonebraker, M., Cattell, R.: 10 rules for scalable performance in simple operation

datastores. Commun. ACM 54, 72–80 (2011)
41. Terracotta: BigMemory. http://terracotta.org/products/bigmemory
42. Voruganti, K., Özsu, M.T., Unrau, R.C.: An adaptive data-shipping architecture

for client caching data management systems. Distrib. Parallel Databases 15(2),
137–177 (2004)

43. Whalin, G., Wang, X., Li, M.: Whalin Memcached Client Version 2.6.1. http://
github.com/gwhalin/Memcached-Java-Client/releases/tag/release 2.6.1

http://www.memcached.org/
https://redis.io/
http://terracotta.org/products/bigmemory
http://github.com/gwhalin/Memcached-Java-Client/releases/tag/release_2.6.1
http://github.com/gwhalin/Memcached-Java-Client/releases/tag/release_2.6.1

Benchmarking and Performance Analysis
of Event Sequence Queries on Relational

Database

Yuto Hayamizu1(B) , Ryoji Kawamichi1, Kazuo Goda1 ,
and Masaru Kitsuregawa1,2

1 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
{haya,kawamichi,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

2 National Institute of Informatics, Tokyo, Japan

Abstract. The relational database has been the fundamental technol-
ogy for data-driven decision making based on the histories of event
occurrences about the analysis target. Thus the performance of ana-
lytical workloads in relational databases has been studied intensively. As
a common language for performance analysis, decision support bench-
marks such as TPC-H have been widely used. These benchmarks focus
on summarization of the event occurrence information. Individual event
occurrences or inter-occurrence associations are rarely examined in these
benchmarks. However, this type of query, called an event sequence query
in this paper, is becoming important in various real-world applications.
Typically, an event sequence query extracts event sequences starting from
a small number of interesting event occurrences. In a relational database,
these queries are described by multiple self-joins on the whole sequence
of events. Furthermore, each pair of events to be joined tends to have a
strong correlation in the timestamp attribute, resulting in heavily skewed
join workloads. Despite the usefulness in real-world data analysis, very
little work has been done on performance analysis of event sequence
queries.

In this paper, we present the initial design of ESQUE benchmark, a
benchmark for event sequence queries. We then give experimental results
of the comparison of database system implementations: PostgreSQL v.s.
MySQL, and the comparison of historical versions of PostgreSQL. Con-
ducted performance analysis shows that ESQUE benchmark allows us
to discover performance problems which had been overlooked in existing
benchmarks.

Keywords: Event sequence query · Relational database
Performance analysis · Benchmark · Data analytics

1 Introduction

The relational database has been the fundamental technology in decision sup-
port systems. The core of data-driven decision making is data analytics based
c© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 110–125, 2019.
https://doi.org/10.1007/978-3-030-11404-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_9&domain=pdf
http://orcid.org/0000-0002-5746-1743
http://orcid.org/0000-0003-0618-4157
http://orcid.org/0000-0003-4027-2994
https://doi.org/10.1007/978-3-030-11404-6_9

Benchmarking Event Sequence Queries on Relational Database 111

on the fact: the historical collection of event occurrences about analysis tar-
gets, e.g., histories of transactions, user activities on online services and health
status changes of patients. The broader variety of event occurrences in the phys-
ical world is becoming digitally observable in the finer granularity more than
ever [24]. It means that wider and deeper data analysis is becoming potentially
feasible.

To fully utilize ever-increasing event occurrence data, performance improve-
ment of data analytics has been identified as the most critical challenge to
overcome. Thus, significant efforts have been devoted to performance studies
of analytical query processing in relational database systems. In particular, sev-
eral benchmarks for decision support systems were proposed as a foundation
to conduct performance studies, e.g., TPC-H [20], TPC-DS [17], Star Schema
Benchmark [19], and their derivatives [4,18]. These benchmarks are designed to
represent the typical workloads in the real-world analytics and widely accepted
in both academia and industry. They are not only useful to compare transac-
tions per second between multiple implementations, but also provide a common
language for performance analysis. Benchmarks with well-defined data struc-
tures and workloads such as TPC-H gives the rigorous baseline of performance
analysis. They have been empowering researchers and developers to find out
performance problems and evaluating novel technologies.

In this paper, we shed light on an emerging type of workload which has
been overlooked in conventional decision support benchmarks. The workloads of
existing decision support benchmarks mainly focus on summarization of a large
amount of event occurrence information stored in a single or the small number
of fact tables. Individual event occurrences and inter-occurrence associations
between event occurrences are rarely examined in these queries. For convenience,
we named this type of query event sequence query. In various domains, an event
sequence query is useful for analyzing rare cases. Here we present some example
scenarios:
Scenario 1: medical episode analysis at a medical institution.
Querying patients who have the episode satisfying the following event sequence
conditions: the patient diagnosed with CKD (chronic kidney disease), then
underwent dialysis, then underwent kidney transplant surgery within a month,
but again diagnosed with CKD within three months, and then underwent kidney
transplant surgery again.
Scenario 2: influential early bird customer analysis at a digital game distributor.
Querying customers who have more than 10,000 video streaming subscribers and
the purchase history satisfying the following event sequence conditions: for at
least five game titles in the annual bestseller ranking, the customer purchased
the title within a week of the release, then started video streaming of the title
within a month, and the title ranked in the monthly bestsellers.

An event sequence query is expected to become more critical as more detailed
event occurrence information is accumulated in relational databases. In a rela-
tional database, when an event occurrence is represented as a record in a fact

112 Y. Hayamizu et al.

table, subsequent event occurrences can be retrieved by applying a self-join to
the fact table. We assume that relevant events are likely to occur in the near
time; therefore, the timestamp of subsequent events tends to be strongly cor-
related, resulting in join workloads that are heavily skewed. Empirically event
sequence queries are time-consuming; however, despite their usefulness in real-
world data analysis, very little work has been done to analyze the performance
of event sequence queries1.

As a step toward performance analysis of event sequence queries, we propose
ESQUE (Event Sequence QUEry) benchmark. We describe the fundamental
properties of event sequence queries on a relational database and present the
initial design of ESQUE benchmark consisting of event sequence queries defined
for the TPC-H dataset. We present experimental results with PostgreSQL and
MySQL and point out performance problems that are overlooked by the well-
established TPC-H benchmark.

The remainder of this paper is organized as follows. Section 2 describes the
fundamental properties of event sequence queries. Section 3 presents the ini-
tial design of ESQUE benchmark. Section 4 presents the experimental results.
Section 5 summarizes the related work, and Sect. 6 concludes this paper.

2 Event Sequence Queries on Relational Database

An event sequence queries is a subset of possible relational queries defined on
a database schema which have tables with temporal attributes. While there is
no clear semantic distinction between event sequence queries and other queries,
we bravely first define the conditions of event sequence queries for the ease of
discussion in the following sections.

2.1 Event Occurrence and Event Sequence

An event occurrence is a data composed of temporal information and some addi-
tional information about the event. A simple example of event occurrence is
a record in orders table of TPC-H dataset. It has o orderdate as tempo-
ral information and other attributes like o orderkey and o custkey as addi-
tional information about the order. A single record may represent multiple event
occurrences. lineitem table in TPC-H dataset has three timestamp attributes
l shipdate, l commitdate and l receiptdate. They correspond to individual
event occurrences. Temporal information of an event occurrence may be the
point in time, a range in time, a set of ranges in time. Unless otherwise noted,
we assume that an event occurrence e has one timestamp attribute denoted as
e.t.

1 Queries 25 and 29 defined in TPC-DS [17] join multiple relations recording event
occurrences, but these queries do not clearly consider semantic relations between
individual event occurrences.

Benchmarking Event Sequence Queries on Relational Database 113

When two event occurrences e1, e2 have a connection2 described by a boolean
value expression C, it is denoted as e1 ←→

C
e2, and e1, e2 are connected by C. We

assume that C must include a condition about a relationship between temporal
information of e1, e2. Obvious examples of connection C is: C = e1.t < e2.t (e1
happens before e2) and C = e1.t < e2.t < e1.t + L (e2 happens within L after
e1 happens). When both e1 ←→

C1
e2 and e2 ←→

C2
e3 hold, e2 and e3 are also

connected.
By collecting connected event occurrences starting from e1, a finite set of

event occurrences (e1, e2, · · · , en) is formed, and we call it an event sequence.
An event sequence is also an event occurrence by regarding occurrences of
(e1, e2, · · · , en) as a single event.

2.2 Event Sequence Queries in Relational Algebra

In the following discussion, we use the term an event occurrence tuple as a tuple
corresponding to one event occurrence, and an event occurrence relation as a set
of event occurrence tuples.

Here we define an event sequence join operator TC as a particular form of join
for event occurrence relations E1, E2, and an event sequence query as a relational
query which includes at least one event sequence join operator.

E1TCE2 ≡
{

(e1, e2)
∣∣∣e1 ∈ E1 ∧ e2 ∈ E2 ∧ e1 ←→

C
e2

}
= σC(E1 × E2)

Each resulting tuple of E1TCE2 is an event sequence (a concatenated event
tuples). Since an event sequence is also an event occurrence, E1TCE2 is also an
event occurrence relation, and we can recurse TC operator like other relational
algebra operators. TC is interoperable with normal relational algebra operators
as long as two operands of TC are event occurrence relations.

2.3 Consideration on Workload Characteristics of Event Sequence
Queries

Here we look back an example scenario of medical episode analysis described
in Sect. 1: querying patients who have the episode satisfying the following event
sequence conditions: the patient diagnosed with CKD, then underwent dialysis,
then underwent kidney transplant surgery within a month, but again diagnosed
with CKD within three months, and then underwent kidney transplant surgery
again. Event sequence query of the example scenario should be defined on health
log relation H like this:

2 Although it might be better to call it a relationship between event occurrences, we
use the term connection to avoid confusion with “relation” or “relational” in this
paper.

114 Y. Hayamizu et al.

pidGdistinct(pid)

(
σCKD(H) T

after
pid=pid

σdialysis(H) T
within 1mon

pid=pid

σsurgery(H)

T
within 3mon

pid=pid

σCKD(H) T
after

pid=pid

σsurgery(H)
)

In our experiences, event sequence queries usually focus on interesting rare cases
as shown in the example above. Thus selectivity of each selection from event
occurrence relation is likely to be lower than 0.1–1% due to rarity of the analysis
target and temporal proximity of each connected event occurrences. Assuming
that such event sequence queries are typical cases, resulting workload would be
highly selective scans and heavily skewed joins.

Efficiently handling skewed joins is known to be the difficult problem [4,14].
Relational database systems often implement multiple algorithms for join, e.g.,
nested loop join, hash join, sort-merge join, and choose an algorithm which
is estimated to be optimal based on statistics such as the number of records,
data distribution of attributes, correlations between attributes, join productivity
and so on. Therefore, estimating statistical information on join operations, in
particular, the accuracy of estimating the cardinality of joins is known to affect
query processing performance significantly [14,15].

The two major causes of cardinality estimation error are (1) error amplifica-
tion by multiple joins and (2) correlations between attributes in join conditions.
Due to the nature of the join operation, cardinality estimation error is multiplied
and amplified for each join operation. For example, in joins of five relations, if
the cardinality estimation error in each combination is 20%, finally the error is
amplified to 207%. Although there are many efforts on improving the precision of
cardinality estimation in strong correlations [7], its effectiveness is still limited.
In general, the stronger the correlation between connections is, the less accurate
join cardinality estimation tends to be.

From the above discussion, it is not easy to efficiently execute event sequence
queries, which consists of highly selective scans and many self-join operations.
Despite the importance in many real-world applications, few performance stud-
ies on event sequence queries have been investigated, and at least there is no
benchmark for event sequence queries.

3 The Initial Design of ESQUE Benchmark

In this section, we describe the design of ESQUE benchmark for a performance
indicator of event sequence queries on a relational database.

Regarding generation of the dataset, we decided to adopt the TPC-H bench-
mark dataset for ESQUE benchmark instead of designing a dedicated dataset.
We believe this strategy has benefits of usability and understandability of
ESQUE benchmark for researchers and practitioners who are already familiar
with TPC-H. The TPC-H dataset has a schema which imitates the database of

Benchmarking Event Sequence Queries on Relational Database 115

wholesalers. It contains orders and lineitem tables, which can be regarded as
event occurrence relations and is suitable for ESQUE benchmark.

Table 1. Queries in ESQUE benchmark (Relational algebraic expression describes only
the outline of each query and full conditions are omitted. Please refer to SQL queries
listed in the appendix for detail.)

ESQ.1 For each order in a specified month, retrieve a set of orders from the same
customer in the month immediately following

π
(
σ(O)T L

)

ESQ.2 For specified customers, retrieve a set of parts that was bought by the
customers over a specified period of three months and sold 100 or more
within 3 months from the period

π
(
σ(O �� L)T G(σ(O �� L))

)

ESQ.3 For orders made in specified six month period and includes a part “Brand
#11”, retrieve sequences of orders in which a customer making each initial
order purchased a part “Brand #21” in next six months, and in which the
same customer purchased a part “Brand#31” in the next six months

π
(
σ(O �� L)T σ(O �� L)T σ(O �� L)

)

ESQ.4 For each order within a specified month, retrieve the first five orders in
which a given that the same customer purchased the same item

π
(
σ(O �� L)T G(σ(O �� L))T σ(O �� L)

)

ESQ.5 For a set of orders that was placed in a specified six month period, retrieve a
set of orders that includes a part purchased within the specified six months
and ordered within six months before the specified six months

π
(
G(σ(O �� L))T σ(O �� L)

)

ESQ.6 For orders by specified customers, calculate the number of orders within a
specified month, and retrieve the same number of orders within the imme-
diately following month
σ(O)T G(σ(O))

ESQ.7 Within a specified fiscal year, find the day when the cumulative sales from
the beginning of the fiscal year exceeded 1 million dollars

G
(
G (σ(O)) T G(σ(O))

)

Based on the semantics of TPC-H dataset, we formed seven event sequence
queries for the initial design of ESQUE benchmark. Table 1 lists assumed busi-
ness questions and outlines of relational query representations. All queries start
from an interesting initial set of orders such as orders by a small group of
customers, orders within a specified period, orders including parts of specified
brands, and a combination of these conditions, then retrieves event sequence.

As a first Because this is the first step of the performance study, we keep
benchmark queries in relatively simple cases, at most three-event sequence joins.

116 Y. Hayamizu et al.

Table 2. Experimental environment

Dell PowerEdge R740xd server

Processor x2 Intel Xeon Gold 6132 (14 cores, 28 threads)

Memory 96 GB (x12 8 GB 2,666 MHz DDR4 DIMM)

Storage (database) RAID6 (22D+2P) w/PERC H740P Mini controller x24
Nearline-SAS 1.2TB 10Krpm HDDs

OS CentOS 7.4 (Linux 3.10.0)

Table 3. Calibrated cost parameters in PostgreSQL

PG 8.4 PG 9.2 PG 9.6 PG 10

seq page cost 1.70 × 10−3 1.77 × 10−3 2.27 × 10−3 2.08 × 10−3

random page cost 4.83 5.08 5.21 5.25

cpu tuple cost 5.63 × 10−5 5.95 × 10−5 6.25 × 10−5 5.66 × 10−5

cpu operator cost 1.09 × 10−4 1.13 × 10−4 6.68 × 10−5 7.57 × 10−5

cpu index tuple cost 9.45 × 10−6 1.29 × 10−5 5.49 × 10−5 4.90 × 10−5

However, even for these simple queries, we discover that TPC-H benchmark
overlooks several performance problems, which will be later reported in Sect. 4.

4 Experiments with ESQUE Benchmark

To evaluate the effectiveness of ESQUE benchmark as a performance index of
event sequence queries, we conducted two experiments. The first experiment
is performance comparison between different database system implementations:
PostgreSQL v.s. MySQL and the second experiment is performance comparison
between historical versions of PostgreSQL.

4.1 Experimental Setup

We ran all experiments on a server described in Table 2. For each version of
PostgreSQL and MySQL (InnoDB), we created a 5TB ext4 partition on the
RAID6 volume consisting of 24 Nearline-SAS HDDs and prepared a database
by loading TPC-H dataset generated with scale factor = 1000 (1TB in raw).

In each version of PostgreSQL and MySQL, the size of the buffer pool3 was
set to 1 GB. We also configured parameters for cost estimation in query opti-
mization. Configured parameters set the costs of primitive I/O and CPU oper-
ation in the cost estimation model of PostgreSQL’s query optimizers. Because
every component of PostgreSQL modules has been changed over time, execution

3 shared buffers(PostgreSQL) and innodb buffer pool size(MySQL) were config-
ured.

Benchmarking Event Sequence Queries on Relational Database 117

overheads of these primitive operations should be different between released ver-
sions of PostgreSQL. Regarding cost estimation accuracy, the best configuration
for a certain version may not be the best one for other versions. Thus, we cali-
brated the costs of these operations separately for each version of PostgreSQL.
We used the calibration methods presented by Hacigumus et al. [9] to determine
parameter values because it was shown to give good estimates of the costs of
query execution plans in TPC-H queries. Configured parameters and calibration
results for each version are listed in Table 3.

In all experiments presented in this paper, we measured query execution
time under the cold start condition; on each measurement, the cache memory of
storage controller and the page cache of the Linux kernel were cleared, and the
server process of a database system was restarted.

 1

 10

 100

 1000

 10000

ESQ.1 ESQ.2 ESQ.3 ESQ.4 ESQ.5 ESQ.6 ESQ.7

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[s
ec

] PostgreSQL10
MySQL5.7

Fig. 1. Query execution time of ESQUE benchmark queries

4.2 Performance Comparison Between PostgreSQL and MySQL

We conducted performance measurements of ESQUE benchmark queries with
PostgreSQL10.0 and MySQL5.7 and examined the performance characteristics
of them.

Figure 1 shows query execution time of ESQUE benchmark queries. Note
that the vertical axis is in logarithmic scale.

The result shows that PostgreSQL was faster than MySQL in five of the
seven queries, ESQ.1, ESQ.3, ESQ.4, ESQ.5 and ESQ.7, and PostgreSQL was
16.6 times or slower than MySQL for ESQ.2 and ESQ.6. These performance
differences come from the fact that MySQL used only nested loop joins and
index scans while PostgreSQL also used hash joins, parallel sequential scans and
bitmap index scans4 in several parts of query plans.

4 PostgreSQL’s bitmap index scan is a search algorithm on B+-tree and not an index
data structure using bitmaps. In PostgreSQL implementation, bitmap index scan
fetches only record pointers from B+-tree indices, sorts record pointers by block
address, and then fetches records from a table.

118 Y. Hayamizu et al.

For ESQ.1, ESQ.3, ESQ.4, ESQ.5 and ESQ.7, PostgreSQL used hash joins,
parallel sequential scans and bitmap index scans as part of query execution plans.
They effectively improved storage access sequentiality of query execution plans
compared to plans with only nested loop joins and index scans and resulted in
better performance than MySQL.

For ESQ.2, PostgreSQL selected a query execution plan with a hash join
which built a hash table from the whole lineitem table, which resulted in
significant I/O footprint and longer execution time than MySQL. For ESQ.6,
PostgreSQL was 16.6 times slower than MySQL because PostgreSQL used a
multi-index bitmap index scan5 instead of a single index scan for the correlated
subquery, which repeats about 27,000 times. It incurred much more CPU over-
head than a single index scan due to the computation of intersections. While the
multi-index bitmap index scan can reduce the number of table page accesses per
subquery execution, the most of page accessed were already cached in the buffer
pool by previous executions of the subquery, and the I/O footprint reduction
had little impact on total query execution time in ESQ.2.

For the richer implementations of access paths and join algorithms, Post-
greSQL has considered being faster than MySQL regarding TPC-H or decision
support queries [2,23]. On the contrary to common sense, ESQUE benchmark
revealed that there exist some event sequence queries in which PostgreSQL is
slower than MySQL at most 16.6 times. These results indicate the effective-
ness of ESQUE benchmark as a performance indicator for database system
comparison.

4.3 Performance Comparison Between PostgreSQL Versions

In this experiment, we compared the performance of historical versions of Post-
greSQL releases: 8.4, 9.2, 9.6, 10.0 with TPC-H benchmark and ESQUE bench-
mark. Figure 2(a) shows the result with TPC-H6 and Fig. 2(b) shows the result
with ESQUE benchmark. In each figure, the horizontal axis represents the ver-
sion number of PostgreSQL, and the vertical axis represents relative query execu-
tion time normalized by query execution time of PostgreSQL 8.4 for each query.
Note that the vertical axis is in logarithmic scale. When a curve of a query goes
below 1.0 as the version number increase, it means that performance is improved
regarding the query.

As clearly depicted in Fig. 2(a), all of the TPC-H queries except Q.9 ran
faster in PostgreSQL10.0 than in PostgreSQL8.4. TPC-H benchmark is the well-
established performance indicator. This result presumably indicates that TPC-H

5 When multiple B+-tree indexes are available on the single table, PostgreSQL’s opti-
mizer may choose a query execution plan using bitmap index scan on multiple B+-
tree indexes. We call it multi-index bitmap index scan. A multi-index bitmap scan
first searches multiple B+-tree indexes and compute the intersection of record point-
ers, and then fetches the records.

6 We omitted TPC-H Q.4, Q.20, and Q.21 from the measurement of this experiment
because these queries did not finish in 24 h for PostgreSQL 8.4 and 9.2.

Benchmarking Event Sequence Queries on Relational Database 119

 0.01

 0.1

 1

 10

 100

8.4 9.2 9.6 10

R
el

at
iv

e
qu

er
y

ex
ec

ut
io

n
tim

e
[s

ec
]

PostgreSQL version

Q.1
Q.2
Q.3
Q.5
Q.6
Q.7

Q.8
Q.9

Q.10
Q.11
Q.12
Q.13

Q.14
Q.15
Q.16
Q.17
Q.18
Q.19

Q.22

(a) TPC-H benchmark

 0.01

 0.1

 1

 10

 100

8.4 9.2 9.6 10

R
el

at
iv

e
qu

er
y

ex
ec

ut
io

n
tim

e
[s

ec
]

PostgreSQL version

ESQ.1
ESQ.2
ESQ.3

ESQ.4
ESQ.5
ESQ.6

ESQ.7

(b) ESQUE benchmark

Fig. 2. Historical performance trends of PostgreSQL in TPC-H benchmark and ESQUE
benchmark

performance has been continuously checked and feedbacked to the development
of PostgreSQL.

Performance degradation of Q.9 at PostgreSQL10.0 is caused by the use of
parallel sequential scan7. In PostgreSQL, worker processes of parallel sequential
scan share single scan pointer on a table file and each page fetch operation are
serialized. Therefore, parallel sequential scan tends to be slower than normal
sequential scan due to synchronization overhead for heavily I/O intensive scan
workloads.

On the contrary to TPC-H benchmark, query execution time of ESQUE
queries fluctuated up to 65 times longer over historical versions. Four of seven
queries ran slower in PostgreSQL10.0 than in PostgreSQL8.4 as depicted in
Fig. 2(b). By analyzing the measurement results and source code of PostgreSQL,
we found that these performance degradations are caused by following reasons:

1. Overestimated cost of evaluating an expression consisting of many AND-ed
expressions

2. Underestimated cost of repeated subqueries consisting of multi-index bitmap
index scans (described in Sect. 4.3)

3. The change of the cost estimation logic introduced at PostgreSQL10.0.

As far as we confirmed throughout our experiments, TPC-H benchmark could
not detect performance degradation caused by all three reasons. This result
supports the effectiveness of ESQUE benchmark as a performance indicator
of database system development. We have already submitted a patch to Post-
greSQL community for the reason 1, and currently working on patches for the
reason 2 and 3.

7 Parallel sequential scan was first introduced at PostgreSQL9.6, but it was not
selected for any queries by query optimizer of PostgreSQL9.6 in this experiment.

120 Y. Hayamizu et al.

5 Related Work

Benchmarking have been the fundamental of the evolution of database systems
both academically and commercially. As stated by Boncz et al. [5], a good bench-
mark not only allows practitioners to evaluate different technologies quantita-
tively but also stimulates technological advancements. For analytical processing
on a relational database, benchmarks for decision support systems have been
intensively investigated. TPC-H [20] is the most widely used benchmark in both
academia and industry, and there also exists several prominent benchmarks such
as TPC-DS [17] and Star Schema Benchmark [18]. Queries 25 and 29 defined
in TPC-DS [17] join multiple relations recording event occurrences, but these
queries do not clearly consider semantic relations between individual event occur-
rences. Nambiar et al. presented an approach for generating synthetic sequence
database for benchmarking [16]. However, performance studies or benchmarks of
event sequence queries have not been studied as far as we know in the literature,
despite its importance in various application domains, e.g., health care.

Event information stored in a database can be regarded as a kind of time-
series data. The common approach for analyzing time-series is pattern min-
ing. Early work on pattern mining had been discussed in the field of artificial
intelligence [8]. As initial research on pattern mining in the field of database
research, Agrawal et al. proposed several pattern mining algorithms for extract-
ing periodic patterns from transaction histories [1], and there followed a wide
variety of work, e.g., pattern mining algorithms for partially periodic patterns
[10], efficiency improvements of pattern mining algorithms [3,11], application-
oriented mining techniques [29]. Pattern mining is a technique for discovering
frequent patterns of events and technically orthogonal to event sequence queries
for retrieving individual events of interest.

Regarding data retrieval from time series data, similar pattern search in
numerical data sequence like stock chart histories have been studied. As a pio-
neering work, Faloutsos et al. proposed the approach to use R∗-tree for similar
pattern search by mapping a slice of data series to a point in a high dimensional
feature space. Jagadish et al. showed that Dynamic Time Warping (DTW) is
better than Euclidean distance for indexing in a feature space [30]. Keogh et al.
proposed a method of efficiently exact match retrieval using DTW [12]. There
are also studies such as compression of a feature space by Fourier transform [6],
its extension and generalization [21]. The target of similar pattern search is the
search based on the pattern of the numerical time-series data, while the target
of event sequence queries discussed in this paper is not limited to the numerical
time-series data.

There are also efforts to extend the data model and query description lan-
guage to make the handling of time-series data more efficient or to make it
easier in a relational database. Seshadri et al. proposed a data model SEQ, an
extension of the relational model for sequence data [26], and also showed query
optimization techniques in SEQ [27]. As a proposal to extend SQL for time-series

Benchmarking Event Sequence Queries on Relational Database 121

data applications, there exist several proposals, e.g., SRQL [22] by Ramakrishnan
et al. SQL-TS [25] by Sadri et al. TSQL2 [28] by Snodgrass, extended by stream-
ing data by Law et al. [13].

6 Conclusion

In this paper, we pointed out the importance of performance analysis of event
sequence queries in a relational database and presented an initial design of
ESQUE benchmark for the foundation of performance analysis of event sequence
queries. By conducting experiments with PostgreSQL and MySQL on 1TB TPC-
H dataset, we found multiple performance problems which cannot be detected
by well-established TPC-H benchmark and have been overlooked for years.

The presented design of ESQUE benchmark is just a first step and still
limited to example-based query definitions. In future work, we would like to
make ESQUE benchmark covering representative workloads of event sequence
queries more extensively, and evaluate its effectiveness with experiments in the
broader variety of database system implementations.

Acknowledgment. This paper is in part based on results obtained from a project
commissioned by the New Energy and Industrial Technology Development Organiza-
tion (NEDO).

Appendix. SQL Queries in ESQUE Benchmark

ESQ.1

SELECT e.o_orderkey, e.o_custkey, date_trunc(’month’, e.o_orderdate),
f.o_orderkey, f.o_custkey, date_trunc(’month’, f.o_orderdate)

FROM orders e, orders f
WHERE e.o_custkey = f.o_custkey

AND f.o_orderdate
BETWEEN date_trunc(’month’, e.o_orderdate) + INTERVAL ’[MONTHS] month’
AND date_trunc(’month’, e.o_orderdate)

+ interval ’[MONTHS] month’ * 2 - INTERVAL ’1 day’
AND e.o_orderdate BETWEEN CAST(’[DATE]’ AS date)

AND CAST(’[DATE]’ AS date) + INTERVAL ’[MONTHS] month’ - INTERVAL ’1 day’
AND e.o_custkey BETWEEN 1 AND [CUSTKEY];

Default values: [MONTHS] = 3, [CUSTKEY] = 10000, [DATE] = 1994-1-1

ESQ.2

SELECT e_orderkey, e_partkey,
e_orderdate + f_info[1] * interval ’1 day’ as f_min_orderdate,
e_orderdate + f_info[2] * interval ’1 day’ as f_max_orderdate,
f_info[3] AS f_quantity, f_info[4] AS f_order_count

FROM
(SELECT e.o_orderkey as e_orderkey, e.l_partkey as e_partkey,

e.o_orderdate as e_orderdate,
(SELECT ARRAY[min(o_orderdate) - e.o_orderdate,

max(o_orderdate) - e.o_orderdate,
sum(l_quantity), count(*)]

FROM orders fo INNER JOIN lineitem fl ON o_orderkey = l_orderkey

122 Y. Hayamizu et al.

WHERE fo.o_orderdate BETWEEN e.o_orderdate + INTERVAL ’1 day’
AND e.o_orderdate + INTERVAL ’[MONTH] month’

AND fl.l_partkey = e.l_partkey
GROUP BY fl.l_partkey) as f_info

FROM
(SELECT * FROM orders INNER JOIN lineitem ON o_orderkey = l_orderkey
WHERE o_orderdate BETWEEN cast(’[DATE]’ AS date)

AND CAST(’[DATE]’ as date)
+ INTERVAL ’[MONTH] month’ - INTERVAL ’1 day’

AND o_custkey BETWEEN 1 AND [CUSTKEY]) e) AS result WHERE f_info[3] > 100;

Default values: [MONTHS] = 3, [CUSTKEY] = 150, [DATE] = 1994-1-1

ESQ.3
SELECT e.o_orderkey, e.o_orderdate, e.o_custkey,

e.l_partkey, f.o_orderkey, f.o_orderdate,
f.l_partkey, g.o_orderkey, g.o_orderdate, g.l_partkey

FROM
(SELECT * FROM orders
INNER JOIN lineitem on o_orderkey = l_orderkey
INNER JOIN part ON l_partkey = p_partkey

AND p_brand = ’[BRAND1]’) e,
(SELECT * FROM orders
INNER JOIN lineitem on o_orderkey = l_orderkey
INNER JOIN part ON l_partkey = p_partkey

AND p_brand = ’[BRAND2]’) f,
(SELECT * FROM orders
INNER JOIN lineitem on o_orderkey = l_orderkey
INNER JOIN part ON l_partkey = p_partkey

AND p_brand = ’[BRAND3]’) g
WHERE f.o_custkey = e.o_custkey AND g.o_custkey = e.o_custkey

AND e.o_custkey BETWEEN 1 and [CUSTKEY]
AND f.o_orderdate BETWEEN (e.o_orderdate + 1)

AND (e.o_orderdate + interval ’[MONTH] month’)
AND g.o_orderdate BETWEEN (f.o_orderdate + 1)

AND (e.o_orderdate + interval ’[MONTH] month’ * 2)
AND e.o_orderdate BETWEEN CAST(’[DATE]’ AS date)

AND CAST(’[DATE]’ AS date) +
INTERVAL ’[MONTH] month’ - INTERVAL ’1 day’;

Default values: [MONTHS] = 6, [CUSTKEY] = 1000, [DATE] = 1994-1-1, [BRAND1]
= Brand#11, [BRAND2] = Brand#21, [BRAND3] = Brand#31

ESQ.4
SELECT e.o_orderkey, e.o_orderdate, e.o_custkey,

e.p_brand, f.o_orderkey, f.o_orderdate, f.o_custkey, f.p_brand
FROM

(SELECT * FROM orders INNER JOIN lineitem
ON o_orderkey = l_orderkey INNER JOIN part
ON l_partkey = p_partkey) e,

(SELECT * FROM orders INNER JOIN lineitem
ON o_orderkey = l_orderkey INNER JOIN part
ON l_partkey = p_partkey) f

WHERE f.o_custkey = e.o_custkey AND f.p_brand = e.p_brand
AND e.o_custkey BETWEEN 1 AND [CUSTKEY] AND f.o_custkey BETWEEN 1 AND [CUSTKEY]
AND (SELECT count(*) FROM orders

WHERE o_custkey = e.o_custkey
AND o_orderdate BETWEEN (e.o_orderdate + INTERVAL ’1 day’)

AND f.o_orderdate
AND o_custkey BETWEEN 1 AND [CUSTKEY]) BETWEEN 1 and 5

AND e.o_orderdate BETWEEN CAST(’[DATE]’ AS date)
AND cast(’[DATE]’ AS date) + INTERVAL ’[MONTHS] month’ - INTERVAL ’1 day’;

Default values: [MONTHS] = 1, [CUSTKEY] = 10000, [DATE] = 1994-1-1

Benchmarking Event Sequence Queries on Relational Database 123

ESQ.5

SELECT f.l_partkey, f.o_orderkey, f.o_orderdate
FROM (SELECT distinct l_partkey

FROM orders INNER JOIN lineitem ON o_orderkey = l_orderkey
WHERE o_orderdate BETWEEN CAST(’[DATE]’ as DATE)

AND CAST(’[DATE]’ AS date) + INTERVAL ’[MONTH] month’
- INTERVAL ’1 day’ AND o_custkey BETWEEN 1 AND [CUSTKEY]) e

INNER JOIN
(SELECT l_partkey, o_orderkey, o_orderdate

FROM orders INNER JOIN lineitem ON o_orderkey = l_orderkey
WHERE o_orderdate BETWEEN CAST(’[DATE]’ AS date)

- INTERVAL ’[month] month’
AND CAST(’[DATE]’ AS DATE) - INTERVAL ’1 day’

AND o_custkey BETWEEN 1 AND [CUSTKEY]) f
ON e.l_partkey = f.l_partkey

Default values: [MONTHS] = 1, [CUSTKEY] = 25000, [DATE] = 1994-1-1

ESQ.6

SELECT * FROM orders fo
WHERE fo.o_orderdate >= CAST(’[DATE]’ as date)

+ INTERVAL ’[MONTHS] month’ + INTERVAL ’1 day’
AND fo.o_custkey BETWEEN 1 AND [CUSTKEY]
AND (SELECT count(*) FROM orders co

WHERE co.o_orderdate BETWEEN
CAST(’[DATE]’ AS date) + INTERVAL ’[MONTHS] month’
+ INTERVAL ’1 day’ AND fo.o_orderdate

and o_custkey BETWEEN 1 AND [CUSTKEY])
< (SELECT count(eo.*)

FROM orders eo
WHERE o_orderdate BETWEEN CAST(’[DATE]’ AS date)
AND CAST(’[DATE]’ AS date) + INTERVAL ’[MONTHS] month’
- INTERVAL ’1 day’ AND o_custkey BETWEEN 1 and [CUSTKEY]);

Default values: [MONTHS] = 1, [CUSTKEY] = 500, [DATE] = 1994-1-1

ESQ.7

SELECT min(o_orderdate) FROM (
SELECT e.o_orderdate FROM
(SELECT distinct o_orderdate
FROM orders
WHERE o_orderdate

BETWEEN CAST(’[DATE]’ as date)
AND CAST(’[DATE]’ as date) + INTERVAL ’[MONTHS] month’

AND o_custkey between 1 and [CUSTKEY]) e
WHERE
(SELECT sum(o_totalprice) FROM orders
WHERE o_orderdate

BETWEEN CAST(’[DATE]’ as date)
AND CAST(’[DATE]’ as date) + INTERVAL ’[MONTHS] month’

AND o_orderdate <= e.o_orderdate
AND o_custkey BETWEEN 1 AND [CUSTKEY]) >=1000000

) a;

Default values: [MONTHS] = 1, [CUSTKEY] = 6000, [DATE] = 1994-1-1

124 Y. Hayamizu et al.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, ICDE 1995, pp. 3–14.
IEEE Computer Society, Washington, DC (1995)

2. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: NoDB: efficient
query execution on raw data files. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012, pp. 241–252.
ACM, New York (2012)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential PAttern mining using a
bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 429–435.
ACM, New York (2002)

4. Boncz, P., Anatiotis, A.-C., Kläbe, S.: JCC-H: adding join crossing correlations
with skew to TPC-H. In: Nambiar, R., Poess, M. (eds.) TPCTC 2017. LNCS, vol.
10661, pp. 103–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72401-0 8

5. Boncz, P., Neumann, T., Erling, O.: TPC-H analyzed: hidden messages and lessons
learned from an influential benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC
2013. LNCS, vol. 8391, pp. 61–76. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-04936-6 5

6. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings
15th International Conference on Data Engineering (Cat. No. 99CB36337), pp.
126–133, March 1999

7. Chaudhuri, S.: An overview of query optimization in relational systems. In: Pro-
ceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS 1998, pp. 34–43. ACM, New York (1998)

8. Dietterich, T.G., Michalski, R.S.: Discovering patterns in sequences of events. Artif.
Intell. 25(2), 187–232 (1985)

9. Hacigumus, H., Chi, Y., Wu, W., Zhu, S., Tatemura, J., Naughton, J.F.: Predicting
query execution time: are optimizer cost models really unusable? In: Proceedings of
the 2013 IEEE International Conference on Data Engineering (ICDE 2013), ICDE
2013, pp. 1081–1092. IEEE Computer Society, Washington, DC (2013)

10. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proceedings 15th International Conference on Data Engineering
(Cat. No. 99CB36337), pp. 106–115, March 1999

11. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: FreeSpan:
frequent pattern-projected sequential pattern mining. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2000, pp. 355–359. ACM, New York (2000)

12. Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of the 28th
International Conference on Very Large Data Bases, VLDB 2002, pp. 406–417.
VLDB Endowment (2002)

13. Law, Y.N., Wang, H., Zaniolo, C.: Query languages and data models for database
sequences and data streams. In: Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases - Volume 30, VLDB 2004, pp. 492–503. VLDB
Endowment (2004)

14. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How
good are query optimizers, really? Proc. VLDB Endow. 9(3), 204–215 (2015)

https://doi.org/10.1007/978-3-319-72401-0_8
https://doi.org/10.1007/978-3-319-72401-0_8
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5

Benchmarking Event Sequence Queries on Relational Database 125

15. Moerkotte, G., Neumann, T., Steidl, G.: Preventing bad plans by bounding the
impact of cardinality estimation errors. Proc. VLDB Endow. 2(1), 982–993 (2009)

16. Moussa, R.: Big-SeqDB-Gen: a formal and scalable approach for parallel generation
of big synthetic sequence databases. In: Nambiar, R., Poess, M. (eds.) TPCTC
2015. LNCS, vol. 9508, pp. 61–76. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31409-9 5

17. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB 2006, pp. 1049–1058.
VLDB Endowment (2006)

18. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and
augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009.
LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10424-4 17

19. O’Neil, P.E., O’Neil, E.J., Chen, X.: The star schema benchmark (SSB). Pat 200,
50 (2007)

20. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web com-
merce. SIGMOD Rec. 29(4), 64–71 (2000)

21. Rafiei, D., Mendelzon, A.O.: Querying time series data based on similarity. IEEE
Trans. Knowl. Data Eng. 12(5), 675–693 (2000)

22. Ramakrsihnan, R., Donjerkovic, D., Ranganathan, A., Beyer, K.S., Krishnaprasad,
M.: SRQL: sorted relational query language. In: Proceedings of Tenth Interna-
tional Conference on Scientific and Statistical Database Management (Cat. No.
98TB100243), pp. 84–95, July 1998

23. Ray, S., Simion, B., Brown, A.D.: Jackpine: a benchmark to evaluate spatial
database performance. In: 2011 IEEE 27th International Conference on Data Engi-
neering, pp. 1139–1150, April 2011

24. Reinsel, D., Gantz, J., Rydning, J.: Data Age 2025: The Evolution of Data to
Life-Critical. Don’t Focus on Big Data (2017)

25. Sadri, R., Zaniolo, C., Zarkesh, A., Adibi, J.: Optimization of sequence queries
in database systems. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2001, pp. 71–81.
ACM, New York (2001)

26. Seshadri, P., Livny, M., Ramakrishnan, R.: SEQ: a model for sequence databases.
In: Proceedings of the Eleventh International Conference on Data Engineering, pp.
232–239, March 1995

27. Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence query processing. In: Pro-
ceedings of the 1994 ACM SIGMOD International Conference on Management of
Data, SIGMOD 1994, pp. 430–441. ACM, New York (1994)

28. Snodgrass, R.: The TSQL2 Temporal Query Language. The Springer International
Series in Engineering and Computer Science. Springer, New York (2012). https://
doi.org/10.1007/978-1-4615-2289-8

29. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.N.: Web usage mining: discovery
and applications of usage patterns from web data. SIGKDD Explor. Newsl. 1(2),
12–23 (2000)

30. Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences
under time warping. In: Proceedings 14th International Conference on Data Engi-
neering, pp. 201–208, February 1998

https://doi.org/10.1007/978-3-319-31409-9_5
https://doi.org/10.1007/978-3-319-31409-9_5
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-1-4615-2289-8
https://doi.org/10.1007/978-1-4615-2289-8

Data Consistency Properties
of Document Store as a Service (DSaaS):
Using MongoDB Atlas as an Example

Chenhao Huang1(B), Michael Cahill2, Alan Fekete1, and Uwe Röhm1

1 School of Information Technologies, University of Sydney, Sydney, Australia
{chenhao.huang,alan.fekete,uwe.roehm}@sydney.edu.au

2 MongoDB Inc., Sydney, Australia
michael.cahill@mongodb.com

Abstract. Document-oriented database systems, also known as docu-
ment stores, are attractive for building modern web applications where
the speed of development and deployment are critical, especially due to
the prevalence of data in document-structured formats such as JSON
and XML. MongoDB Atlas is a hosted offering of MongoDB as a Ser-
vice, which is easy to set up, operate, and scale in the cloud. Like many
NoSQL stores, MongoDB Atlas allows users to accept possible tempo-
rary inconsistency among the replicas, as a trade-off for lower latency and
higher availability during partitions. In this work, we describe an empir-
ical study to quantify the amount of inconsistency observed in data that
is held in MongoDB Atlas.

Keywords: Document Storage as a Service (DSaaS)
Consistency benchmarking · NoSQL

1 Introduction

A variety of Document Storage as a Service (DSaaS) systems have become quite
popular in recent years. They provide an easy growth and pay-as-you-go choice
to the developers, who want to use a document store for their data management
and to run in a public cloud environment.

There are two characteristics of Document Storage as a Service (DSaaS).
Firstly, they are document store, which means they support a semistructured
data model based on hierarchical documents, often expressed with JSON. This
is useful in web application development. Secondly, they are hosted, as a service,
that is the management of the data is not owned by the organization with the
data. Nowadays, cloud customers have a wide range of options if they would like
to use a document store: they can either use an integrated service provided by
the cloud owner, such as Microsoft Azure DocumentDB [18], or use the service
provided by a third party, such as MongoDB Atlas1.
1 https://www.mongodb.com/cloud/atlas/.

c© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 126–139, 2019.
https://doi.org/10.1007/978-3-030-11404-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_10&domain=pdf
https://www.mongodb.com/cloud/atlas/
https://doi.org/10.1007/978-3-030-11404-6_10

Data Consistency Properties of Document Store as a Service (DSaaS) 127

MongoDB Atlas is a “containerized” version of existing MongoDB. Mon-
goDB Atlas has the same core as the open source Community Server, but with
some additional, closed source code functionality (e.g., security features). The
lower tiers (M0, M2 and M5) have a layer added on top of standalone Mon-
goDB for multi-tenant support. Customers are able to use the MongoDB Atlas
in a pay-as-you-go model, hosted on diverse cloud service platforms: Amazon
Web Service (AWS), Microsoft Azure, or Google Cloud Platform. They can also
select the service locations, memory and storage size, number of CPUs, etc. The
database can be deployed with a few clicks and around 10 min waiting. It is also
trivial to scale-up if more computational power or storage are needed. More-
over, MongoDB Atlas has various APIs for different programming languages
and applications.

Like many NoSQL data storage systems, MongoDB Atlas typically splits
large files into blocks. It replicates the blocks, places replicas in different nodes,
and balances work among the nodes. This offers many advantages, including
using low-cost commercial hardware, tolerance to network and hardware failures,
etc. However, in this case, perfect data consistency will be sacrificed in order to
tolerate partitions and keep the latency low, as described by the CAP theorem
[12] and PACELC formulation [4]. Several recent works such as [7,9,19] have
attempted to give a quantitative measure to the amount of inconsistency that
arises in execution of a NoSQL store, to help developers understand more clearly
how much risk applies to correctness of the systems they are building. So far,
this research has concentrated on key-value stores, especially those whose design
is based on that of Dynamo [13]. In this paper we seek to achieve the same kind
of measurement of data inconsistency for MongoDB Atlas.

The metric that we use to describe the consistency property of a store, is the
probability that a read will see a stale value (that is, a value that is different from
what was installed by the latest write). This probability varies, depending on the
time elapsed between the last write, and the read concerned. In 2010, on Amazon
SimpleDB, staleness probabilities up to 66% were observed, for an extended
period lasting up to 500 ms [19], suggesting that 2 out of 3 replicas were not seeing
a write for quite a while. When attempting to now do a similar measurement on
MongoDB Atlas, we found quite different properties, and these in fact required
some adjustments to the measurement approach. The contributions of our paper
are the description of how we benchmarked the consistency level of MongoDB
Atlas, the results we obtained, and the insights we draw from those.

The paper is structured as follows. Section 2 briefly introduces MongoDB and
MongoDB Atlas, and explains the replication protocol of these systems. Section 3
explains our benchmarking method. The benchmarking results are recorded in
Sect. 4, with a few different configurations of read preference, as well as the
analysis of the operation latency. In Sect. 5.2, we consider how we had to vary
the measurement details from the original model from [19]. Section 6 describes
the related work and in Sect. 7 is a summary of the paper.

128 C. Huang et al.

2 MongoDB Atlas

As mentioned in Sect. 1, MongoDB Atlas is a hosted MongoDB as a Service
provided by MongoDB. Customers only have the freedom for a limited number of
configurations, for instance, the cloud service platforms, service regions, memory
and storage size, the number of vCPUs, etc. This hosted MongoDB service is
very convenient for the end users.

MongoDB Atlas uses the default MongoDB architecture - one primary copy
and a few secondary copies. All write requests are sent to the primary copy
first, and then the written value propagates to all secondary copies later on.
The propagation mechanism is an internal setting and is not visible to the users.
However, the consumers can decide when MongoDB considers the writes are
successful and acknowledges the driver in write concerns. Concretely, the users
can specify a number, or simply put the key word “majority”, in the write
concerns [2]. In this case, the MongoDB waits until that number of replicas
(or a “majority” of replicas) reply, before it responds to the driver. Here is an
example. Suppose our MongoDB cluster has three nodes (Fig. 1). If the default
setting of the write concern is selected, then the writes are considered successful
once the primary copy replies (shown in Fig. 1(A)). Otherwise, if you choose
a certain number n for the write concerns, the MongoDB waits until n writes
confirm (shown in Fig. 1(B) and (C)), before sending a response to the driver.
In Fig. 1(B), the write concern is 2; while in Fig. 1(C), the write concern is 3.

Driver

Primary Copy

Secondary Copy

Secondary Copy

Apply

W
rite

R
esp

o
n

d

R
ep

licate

Apply

R
ep

licate

Apply

(A) Write Concern: 1
(default)

Driver

Primary Copy

Secondary Copy

Secondary Copy

Apply

W
rite

R
esp

o
n

d
R

ep
licate

Apply

R
ep

licate

Apply

Driver

Primary Copy

Secondary Copy

Secondary Copy

Apply

W
rite

R
esp

o
n

d

R
ep

licate

Apply

R
ep

licate

Apply

(B) Write Concern: 2 (C) Write Concern: 3

Fig. 1. The behavior of MongoDB with different write concern settings (Figure
adapted from [3])

On the other hand, MongoDB also allows you to choose read preference. Read
preference describes which replica(s) MongoDB clients send reading requests to.
There are five read preferences, including primary (default), primaryPreferred,
secondary, secondaryPreferred, and nearest [1]. If the read preference primary
or secondary is selected, all read requests are only sent to the primary replica or
one of the secondary members (shown in Fig. 2(A) and (B)). PrimaryPreferred
and secondaryPreferred provide the users options that most of reads go to pri-
mary or secondary copy, however, in the situation where the preferred replica

Data Consistency Properties of Document Store as a Service (DSaaS) 129

is not available, the driver sends the read request to other members. The read
preference nearest is designed so that operation reads from the replica with the
least network latency (shown in Fig. 2(C)). Here are some common use case for
using non-primary read preference: (a) The running systems have no impact on
the frond end applications; (b) When the MongoDB instance is geographically
distributed, non-primary read preference can be used to provide low latency;
(c) When there is a fail-over, non-primary read preference is able to maintain
availability.

Driver

Primary Copy

Secondary Copy

Secondary Copy

Driver

Primary Copy

Secondary Copy

Secondary Copy

Driver

Primary Copy

Secondary Copy

Secondary Copy

(A) (B) (C)

Read from
Primary (Default)

Read from
Secondary Copies

Read from
the Nearest Copy

Fig. 2. The behavior of MongoDB client with different read preferences settings
(Figure adapted from [1])

In our work, we benchmark three different read preferences: primary
(default), secondary, and the nearest.

3 Benchmarking Consistency of MongoDB Atlas

In this section, we present and analyze the client-centric benchmarking app-
roach used in our work. In general, we treat MongoDB Atlas as a “black box”,
neglecting the internal settings and configurations. This is exactly what a cus-
tomer would experience in the real world. The benchmarking method follows
that of Wada [19].

In this section, we introduce the benchmarking methods first, and then pro-
vide the implementation details, including the MongoDB Atlas cluster we bench-
mark and the AWS instance we use to run our benchmarking application.

130 C. Huang et al.

3.1 Benchmarking Methods

There are three roles in our benchmarking application: one reader, one writer,
and one MongoDB Atlas cluster (shown in Fig. 3). The writer repeatedly writes
the current time stamp (in Nanoseconds) into a data element in the MongoDB
Atlas cluster once every three seconds. The reader continuously reads from the
same data element as fast as possible. The reader and the writer are kept in
separate processes. A log is kept with entries for the start time of each operation,
and later, the time when the operation returns (and, also the return value, for
a read this is the value observed in the item). An analysis script (written in
Java) processes the log after the experiments, detecting cases where a read saw
a stale value. During the data analysis phase, we only look at those reads where,
when the reading request is sent out, the writing request before it has already
acknowledged (shown in Fig. 7(B)). The reasons for this exclusion can be found
in Sect. 5.2.

After analysis we produce a report which shows, for a given time t, the
probability of a read seeing a stale value, among all the reads which are submitted
approximately t later than the previous write. To be precise, we form a bucket
which contains all reads whose delay from the previous write is in the interval
from t ms to (t + 1) ms, and consider the ratio, among the reads in this bucket,
of the number that retrieved a stale value, to the total number of reads in the
bucket. We also look at the distribution among all operations of a kind (read or
write), of the time elapsed from the request till the response. This is the latency
of the operation.

We refer to one “measurement” of the experiment as running 50,000 reads
and 29 writes. Each “measurement” has a 200-s window to run, while the actual
time needed for each “measurement” in less than 100 s. This means that the
system rests for around 100 s between two “measurements”.

We run our benchmarking application for around 5,000 “measurements” dur-
ing April, May, and June in 2018. The total running time is more than twelve
days.

Fig. 3. The architecture of the benchmarking application. Note that the writer and
the reader are in the same EC2 instance.

Data Consistency Properties of Document Store as a Service (DSaaS) 131

3.2 Implementation

MongoDB Atlas is a Document Storage as a Service (DSaaS) provided by Mon-
goDB, and it is the main subject we benchmark in this work. We host our
MongoDB Atlas cluster on Amazon Web Service (AWS) with the region Sydney
(ap-southeast-2). For cluster tier, we use Dedicated Development Clusters M10,
which has 2 GB RAM, 10 GB storage, and 0.2 vCPU. The MongoDB version
deployed by Atlas cluster is 3.6 with WiredTiger. The replication factor is 3,
which means that all data in our MongoDB Atlas instance are replicated three
times and put on different nodes.

The Amazon Web Service (AWS) Elastic Compute Cloud (EC2)2 is used
to run our benchmark application. The instance we choose is c4.2xlarge with
Ubuntu Server 16.04 LTS (HVM) as the operation system. c4.2xlarge contains
32 GB RAM, 8 GB storage, 8 vCPUs, and the network performance is “high”.
The EC2 instance is also deployed in Sydney (ap-southeast-2) to ensure to lowest
network latency possible.

4 Benchmarking Results

In this section, we record the benchmarking results for the MongoDB Atlas.
We have measured with three different reading preferences: primary, secondary,
and nearest. As we mentioned in Sect. 2, the architecture of MongoDB Atlas
is, all writes go to the primary copy, and then the latest value propagates to
all secondary copies. We use the default write concern (1) in all experiments.
The reads, however, are configured in several ways in our experiments, including
primary (which is the default one), secondary, and nearest.

We first show the read and write operation latency, and then report the mea-
sured consistency results for three different reading preference configurations:
primary, secondary, and nearest.

4.1 Writing and Reading Latency

In this subsection, we analyze the writing and the reading latency. As we use
three different read preference configurations: primary, secondary, and nearest,
we are very interested in the actual read latency of those three settings.

Figure 4 shows the cumulative distribution function (CDF) of read and write
operation latency. From this graph, we can see that a large proportion of reading
requests finish within in the first few milliseconds. But there is not much differ-
ence for the latency among three reading preferences. We have also calculated
the average read and write operation latency in Table 1. From that table, we can
also reach the same conclusion.

The reason for lack of a latency advantage of reading from the nearest copy
might be that both our benchmarking machine and the MongoDB Atlas instance

2 https://aws.amazon.com/ec2/.

https://aws.amazon.com/ec2/

132 C. Huang et al.

are in the same region. Moreover, the MongoDB Atlas instance is not geograph-
ically distributed.

The cumulative distribution function (CDF) of write operation latency is
also recorded in Fig. 4 and the average write operation latency is displayed in
Table 1 as well. Note that in our three experiments, the writing configurations
are always the same.

Fig. 4. Read and write operation latency

Table 1. Average read and write operation latency (ms)

Read at primary copy Read at secondary copy Read at nearest copy

Read latency 1.61 1.15 1.15

Write latency 3.30 2.75 2.42

4.2 Reading from the Primary Copy

In the first study, we deploy the writer and the reader in the same EC2 instance,
but in different processes. Both the AWS EC2 instance and the MongoDB Atlas
cluster are deployed in Sydney (ap-southeast-2). In fact, we are not sure whether
the MongoDB Atlas cluster and AWS EC2 instance are in the same data center
or not, but putting them in the same geographic region should help reduce the
impact of the network latency.

In this experiment, all writes and reads go to the primary copy of MongoDB
Atlas, which are the default settings.

We run our benchmarking application for 550 “measurements”, which con-
tains around 27,500,000 reads and 15,950 writes. The total running time is more
than 30 h.

Our analysis shows that no inconsistent reads are observed, when all the
writing and reading requests are sent to the primary copy of MongoDB Atlas.

4.3 Reading from the Secondary Copy

In the second study, we again put a writer and a reader in the same EC2 instance,
yet in different processes. This time all writing requests are sent to the primary

Data Consistency Properties of Document Store as a Service (DSaaS) 133

copy of MongoDB as usual, however, the reading requests are sent to the sec-
ondary copies only.

We run our benchmarking application for 2,200 “measurements” in this cir-
cumstance, which contains around 110,000,000 reads and 63,800 writes. The
total benchmarking time is around 120 h.

When all reading requests are sent to the secondary copies, we are able to
observe some inconsistent reads.

The blue dash line in Fig. 5 shows the probability of reading a stale value
from the secondary copies. The scale of Y axis is logarithmic. Although the time
window between two writes are 3,000 ms, in Fig. 5, we only display the curve
for the first 27 ms. This is because after 27 ms each data point is only backed
up by a few stale reads (1 or 2 stale reads). The inconsistency probability is
then unreliable. If we would like to see a nice curve, we would have to run
the benchmarking application for around 10 times longer, so that one or two
inconsistent reads by chance does not have a huge impact on the results.

From the blue dash line in Fig. 5, we are able see that the probability of
reading stale value starts at a very high number, which is more than 0.9 within
the first millisecond. The probability drops rapidly between 3 ms and 5 ms - from
0.795 to 0.019. After that, the number goes down gradually.

Fig. 5. Probability of reading stale value from secondary and nearest copy (Color figure
online)

There is also one interesting observation. We refer to one write and all sub-
sequent reads as one “period”. There are two horrendous “periods” observed
during our experiments (shown in Fig. 6). Figure 6(A) shows the first horren-
dous “period”. The vertical axis displays the number of subsequent reads. The
first horrendous “period” lasts for around 526 ms. In the first 481 ms, the values
returned are two versions old (shown in green) and there are 385 reads in total.
In the next 45 ms, the values got back are one version old (shown in light green),

134 C. Huang et al.

and there are 36 reads here. The second horrendous “period” is around 241 ms
long, with 160 inconsistent reads in it, and all of them are one version old. For
both of these two “periods”, the number of stale reads is extremely large com-
pared to other normal “periods”, which usually only contains around three to
five stale reads.

One possibility for the cause of the horrendous periods, is if replicas fail
to receive an oplog entry; if so, reads would see older versions until the oplog-
containing message was successfully retransmitted. It has been suggested that
240 ms is approximately the timing till retransmission in the TCP protocol in
the Atlas setting as it was configured. If so, the horrendous period lasting 481 ms
would represent the first retransmission also being lost. Further investigation is
desirable for these cases.

Fig. 6. Two horrendous “periods” (Color figure online)

4.4 Reading from the Nearest Copy

In this experiment, we benchmark the data consistency when the read preference
is set to nearest. Again, we put a writer and a reader in the same AWS EC2
instance, but in different processes. MongoDB Atlas should be able to find the
copy which is closest to the driver and return a value to it as soon as possible.

Similar to our second experiment, we have 2,200 “measurements” in this
circumstance, and it contains about 110,000,000 reads and 63,800 writes. The
total benchmarking time is more than 120 h.

The red concrete line in Fig. 5 displays the probability of read stale value
from the nearest copy. Similar to the probability of reading stale value from the
secondary copies, the probability of reading inconsistent data starts quite high
at beginning, which is more than 0.9 within the first milliseconds. It goes down
fairly quick to 0.017 at 3 ms, and then drops gradually. The value becomes stable
after 20 ms, which is around 10−5.

Comparing the probability of read stale value within two situations, we can
see that the probability of reading stale value from nearest copy is slightly lower
than the probability from the secondary copies.

Data Consistency Properties of Document Store as a Service (DSaaS) 135

5 Discussion

In this section, we provide a short discussion on the decisions we made for doing
the data analysis phase, and why our method is slightly different that that used
in prior work on other stores [19].

5.1 Dealing with the Extreme Low Inconsistency Rates

As you can see in Sect. 4, starting at a short period after a write, there is a very
low probability of reading stale values from either secondary copies or the nearest
copy. The number is around 10−3 to 10−4. So it will be rare for an application to
observe an inconsistent read (this is good for developers), but for us it becomes
challenging to a get a stable calculation of such a low inconsistency probability -
sometimes you can have one extra or fewer stale read just by chance, which can
make the data points in a graph fluctuate a lot when each represents only a few
such reads.

Our solution to this problem is to run the benchmarking application for a
long time, to make sure that each data points in Fig. 5 is backed up by enough
(say more than 10) stale reads. In this case, one more or less stale reads tends
not to have a huge impact on our probability calculations.

5.2 Excluding “Overlapping” Reads and Writes

As mentioned, we eliminate all cases of “overlapping” between a write and sub-
sequent read operations - we only report that a read gets a stale value, if at the
time the reading request is sent out, the writing request before it has already
returned (shown in Fig. 7(B)). Figure 7(A) demonstrates the excluded cases, with
“overlapping” writing and reading requests. In the situation of the blue solid line,
the reading request reaches MongoDB Atlas after the writing request reached
the distributed system. If we observe a stale value in a case like this, it would
represent an inconsistency. However, for the case of the blue dash line, although
the reading request is sent out later than the writing request, it “hits” the dis-
tributed system earlier than the writing request. In this case, we would not see
the write for sure, and so return of the previous value isn’t evidence of inconsis-
tency among the replicas.

But the fact is, we cannot tell from observations at the consumer side,
whether a stale value we get in Fig. 7(A) belongs to the case of the solid line
or the situation of the dash line. So we eliminate all “overlapping” reading and
writing requests from inclusion as stale reads.

136 C. Huang et al.

MongoDB
Atlas

ReaderWriter

Time

MongoDB
Atlas

ReaderWriter

Time

(A) (B)

Fig. 7. Message diagram for overlapping writing and reading requests (Color figure
online)

6 Related Work

Due to the limitation of the CAP theorem or the PACELC formulation [4,12],
people usually sacrifice data consistency for availability or low latency in dis-
tributed storage systems. On the other hand, understand the data consistency
behavior is of vital importance for the developers. As a result, there are many
works focusing on benchmark the consistency performance of various distributed
storage systems. In general, there are three categories of consistency benchmark:
empirical measurement, trace analysis, and prediction [14,15].

Wada et al. [19] propose to benchmark distributed storage systems from the
customers’ view. They set a writer updating the current time stamp into an item,
and the frequency is once every three seconds. The reader reads 50 times each
second. Each “measurement” runs for 5 min. They repeat their experiments once
every hour for a week. They benchmark a number of distributed storage systems,
including Amazon SimpleDB3, Amazon S34, Azure Table5 and Blob Storage6,
and Google App Engine Datastore7. They have observed very interesting con-
sistency behaviour in Amazon SimpleDB, however, there were no inconsistent
reads recorded in other distributed data storages. Our work use a similar method
as Wada’s with a few differences described above.

Bermbach et al. [8,9,11] use a slightly different approach. Instead of updating
the value in the item for a specific time period, Bermbach et al. do not update
the value until “the old value no longer returns”. They set the maximum time
interval between two successive writes as 100 s. They benchmark Amazon S3,

3 https://aws.amazon.com/simpledb/.
4 https://aws.amazon.com/s3.
5 https://azure.microsoft.com/en-au/services/storage/tables/.
6 https://azure.microsoft.com/en-au/services/storage/blobs/.
7 https://cloud.google.com/appengine/.

https://aws.amazon.com/simpledb/
https://aws.amazon.com/s3
https://azure.microsoft.com/en-au/services/storage/tables/
https://azure.microsoft.com/en-au/services/storage/blobs/
https://cloud.google.com/appengine/

Data Consistency Properties of Document Store as a Service (DSaaS) 137

and got some interesting results. After the original experiment, they contacted
Amazon, who quickly changed their service behavior [10].

Polygraph [5] is a framework which allows empirical benchmarking of trans-
actional consistency. Rather than defining a particular workload (as in [8,19],
or the current paper), Polygraph is combined with a workload from an existing
benchmark. The workload is typically one that was originally aimed at perfor-
mance, such as TPC-C or YCSB; during execution, Polygraph captures the trace
of operations on various entities (chosen by the user), and then post-execution
analysis determines whether an equivalent serial execution would give the same
result in each read; if not an anomaly is reported.

Trace analysis is another method to observe inconsistency. It observes the
trace of a workload, and then checks whether it meets the definition [14]. Trace
analysis can be used to measure the actual impact of inconsistency and the
amount of inconsistency varies when the workload changes. Golab et al. [16]
propose a trace analysis method and a novel consistency metric called Γ consis-
tency. According to the authors, Γ consistency can be used to detect how often
consistency anomalies occur and how bad they are. Lu et al. [17] conduct trace
analysis on the real data from Facebook. They first log operations on a subset
of some items, and then check trace for a few consistency guarantees, including
linearizable, read-my-write, etc.

In addition to empirical measurement and trace analysis, there are a few
researchers going a step further. They model and predict the consistency per-
formance. Usually, they first design a model, and then use Monte Carlo simula-
tion to predict the performance. Bailis et al. [6,7] propose the Probabilistically
Bounded Staleness (PBS) model to simulate consistency behavior on Dynamo-
style [13] quorum system. They present a model called WARS, and implement
the simulation using Monte Carlo Simulation. The PBS model can be used to
predict the probability of seeing stale value against the network and in-system
latency. However, the Probabilistically Bounded Staleness (PBS) model does
not consider the operation failures. Bermbach [8] proposes a more general pre-
diction model, which can predict more than Dynamo-style quorum system and
can somewhat handle operation failures.

7 Conclusion

In this paper, we benchmark the data consistency properties of MongoDB Atlas
which is a Document Storage as a Service (DSaaS). The benchmarking results
show that (as expected) there are no inconsistent reads if the data is accessed
from the primary copy, but some inconsistent reads are observed if the data is
retrieved from the secondary copies and the nearest copy. The probability of
reading a stale value decreases briskly with duration since the latest write, as
replicas are caught up to the primary. Within a few milliseconds, the probability
of a stale read is only a few percent. We also observed one or two writes where
propagation somehow failed, and so subsequent reads continued to see stale
values for a very long time.

138 C. Huang et al.

We also look at the operation latency, and we find there is no significant
improvement in read latency when reading from the nearest copy, in the cases
where the benchmarking application and the MongoDB Atlas cluster are in the
same region. On the other hand, the consistency performance of reading from the
nearest copy is worse than reading from the primary copy. So we may conclude
that sacrificing consistency for low latency is not sensible, if the application
and the MongoDB Atlas cluster are in the same region and the cluster is not
geographically distributed.

Acknowledgments. This research forms part of the Australian Research Coun-
cil (ARC) Linkage Project LP160100883. We thank Gary Little, Shahram Ghande-
harizadeh, and Raghunath Nambiar for their comments on this paper. We also thank
AWS Cloud Research Credits for their support.

References

1. Read preference - mongodb manual. https://docs.mongodb.com/manual/core/
read-preference/. Accessed 02 June 2018

2. Write concern - mongodb manual. https://docs.mongodb.com/manual/reference/
write-concern/. Accessed 02 June 2018

3. Write concern for replica sets - mongodb manual. https://docs.mongodb.com/
manual/core/replica-set-write-concern/. Accessed 02 June 2018

4. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
cap is only part of the story. Computer 45(2), 37–42 (2012)

5. Alabdulkarim, Y., Almaymoni, M., Ghandeharizadeh, S.: Polygraph. Technical
report 2017-02, Database Laboratory, Computer Science Department, University
of Southern California (2017)

6. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Stoica, I.: Proba-
bilistically bounded staleness for practical partial quorums. Proc. VLDB Endow.
5(8), 776–787 (2012)

7. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Stoica, I.: Quanti-
fying eventual consistency with PBS. VLDB J. 23(2), 279–302 (2014)

8. Bermbach, D.: Benchmarking eventually consistent distributed storage systems
(2014)

9. Bermbach, D., Tai, S.: Eventual consistency: how soon is eventual? An evaluation
of Amazon S3’s consistency behavior. In: Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing, p. 1. ACM (2011)

10. Bermbach, D., Tai, S.: Benchmarking eventual consistency: lessons learned from
long-term experimental studies. In: 2014 IEEE International Conference on Cloud
Engineering (IC2E), pp. 47–56. IEEE (2014)

11. Bermbach, D., Wittern, E., Tai, S.: Cloud Service Benchmarking. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-319-55483-9

12. Brewer, E.A.: Towards robust distributed systems. In: PODC, vol. 7 (2000)
13. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: ACM

SIGOPS Operating Systems Review, vol. 41, pp. 205–220. ACM (2007)
14. Fekete, A.: Consumer-view of consistency properties: definition, measurement,

and exploitation. https://www2.ucsc.edu/papoc-2016/Fekete-PaPoC-London.pdf.
Accessed 03 June 2018

https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/core/replica-set-write-concern/
https://docs.mongodb.com/manual/core/replica-set-write-concern/
https://doi.org/10.1007/978-3-319-55483-9
https://www2.ucsc.edu/papoc-2016/Fekete-PaPoC-London.pdf

Data Consistency Properties of Document Store as a Service (DSaaS) 139

15. Golab, W., Rahman, M.R., AuYoung, A., Keeton, K., Li, X.S.: Eventually consis-
tent: not what you were expecting? Queue 12(1), 30 (2014)

16. Golab, W., Rahman, M.R., AuYoung, A., Keeton, K., Gupta, I.: Client-centric
benchmarking of eventual consistency for cloud storage systems. In: 2014 IEEE
34th International Conference on Distributed Computing Systems (ICDCS), pp.
493–502. IEEE (2014)

17. Lu, H., et al.: Existential consistency: measuring and understanding consistency
at Facebook. In: Proceedings of the 25th Symposium on Operating Systems Prin-
ciples, pp. 295–310. ACM (2015)

18. Shukla, D., et al.: Schema-agnostic indexing with Azure DocumentDB. Proc.
VLDB Endow. 8(12), 1668–1679 (2015)

19. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties and
the trade-offs in commercial cloud storage: the consumers’ perspective. In: CIDR,
vol. 11, pp. 134–143 (2011)

Lessons Learned from the Industry’s
First TPC Benchmark DS (TPC-DS)

Manan Trivedi1(&) and Zhenqiang Chen2(&)

1 Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
matrived@cisco.com

2 Transwarp Technology (Shanghai) Co., Ltd.,
11F&12F, Bld B, No. 88 Hongcao RD, Shanghai, China

zhenqiang.chen@transwarp.io

Abstract. The TPC Benchmark DS (TPC-DS) is a decision support benchmark
that models several generally applicable aspects of a decision support system,
including queries and data maintenance, which is representative of modern
decision support and big data applications. TPC-DS was initially designed for
Relational Database Management Systems (RDBMS), later extended support for
Apache Hadoop. This paper provides the lessons learned including hardware
and software tuning parameters from the first TPC-DS publication which was on
Cisco UCS® Integrated Infrastructure with Transwarp Data Hub.

Keywords: Industry standards � Performance � Hadoop � Data warehouse
TPC-DS

1 Introduction

The TPC Benchmark DS (TPC-DS) is a decision support benchmark that models
several generally applicable aspects of a decision support system [1]. “It is intended to
provide a fair and honest comparison of various vendor implementations by providing
highly comparable, controlled and repeatable tasks in evaluating the performance of
decision support systems (DSS). Its workload is expected to test the upward boundaries
of hardware system performance in the areas of CPU utilization, memory utilization,
I/O subsystem utilization and the ability of the operating system and database software
to perform various complex functions important to DSS - examine large volumes of
data, compute and execute the best execution plan for queries with a high degree of
complexity” [2]. From Version 2, TPC-DS benchmark was extended for big data
system.

Hundreds of publications have been written by academia and industry on various
aspects of the workloads leading to innovation, better performance and lower price per
performance systems. Also, some vendors have published, only in blogs, cherry-
picking performance measures of a small subset of the full TPC-DS benchmark, or with
many modifications to the queries. There has been no fully audited TPC-DS benchmark
published until “Cisco UCS Publishes the First Ever Audited Result of the TPC-DS
Benchmark with Transwarp Hadoop” [4]. The benchmark was run on Cisco UCS
Integrated Infrastructure for Big Data and Analytics, and Transwarp Data Hub v5.1. It

© Springer Nature Switzerland AG 2019
R. Nambiar and M. Poess (Eds.): TPCTC 2018, LNCS 11135, pp. 140–154, 2019.
https://doi.org/10.1007/978-3-030-11404-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11404-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-11404-6_11

achieves, at a 10,000 GB scale factor, a composite query per hour of 1,580,649 QphDS
and a price/performance of $0.64 USD/QphDS [5]. See Table 1.

2 Transwarp Data Hub

Apache Hadoop started as a framework to store and process very large data sets in a
distributed manner in a cost-effective way. Initially, this distributed data processing was
limited to batch processing only. More recently, tools have been developed that extend
the power of Hadoop big data processing directly into the realm of decision support
systems or for a Data Warehouse. In recent years, the explosion of data has strained
traditional decision support systems with enterprises looking beyond traditional data
warehouse for their needs. Compared with traditional data warehouse, modern data
warehouse have several advantages, such as scalability, processing semi/non-structure
data, real-time processing, analysis and judgment, Data mining and deep learning.

The Transwarp Data Hub (TDH) is a full suite of Hadoop distribution components,
including a supplemental SQL engine (Inceptor), machine learning & deep learning
components, a NoSQL search engine and stream processing. Figure 1 shows a logical
data view managed by Transwarp Inceptor in logic data warehouse (LDW). In this
framework, Transwarp Inceptor unifies the SQL interfaces. It analyzes all data from
different sources through SQL with dialects support for different RDMS. It also extends
the SQL for full text search and streaming from remote Kafka. Inceptor SQL engine
supports both standard SQL and stored procedures (like Oracle PL/SQL). After
semantics analysis, the Inceptor optimizer will optimize the SQLs with CBO, RBO etc.
The optimized execution plan will be sent to Inceptor vectorized and distribution
execution engine. In the data access layer, Inceptor provides drivers to access different
kind of databases and data on HDFS. All the data are in a unified view managed by
Metadata management.

In modern DW, SQL is still the most popular ETL approach and query. TPC-DS is
still the most popular benchmark for most big data vendors.

3 TPC-DS

TPC-DS benchmark workloads include 99 queries; but the benchmark test is not just
about those queries. The test process and metrics include the following six steps (refer
TPC-DS Specification for more detail [3]):

Table 1. TPC-DS with Cisco UCS and transwarp data hub

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) 141

• Data Load test (LD).
• Power test (PT), which runs the 99 queries in one stream.
• Throughput test 1 (TT1), which runs the 99 queries in multiple streams.
• Maintenance test 1 (DM1), which updates the databases with the refresh

functions.
• Throughput test 2 (TT2), which reruns the 99 queries in multiple streams.
• Maintenance test (DM2), which re-updates the databases with the refresh

functions.

The 99 queries are defined as templates. Each query has several parameters which
are determined by dsqgen with SEED, specifically “is selected as the timestamp of the
end of the database load time (Load End Time) expressed in the format mmddhh-
mmsss”. This timestamp “guarantees that the query substitution parameter values are
not known prior to running”. In addition to the parameters, the query orders of different
streams are different. Figure 2 shows the execution order

Text
Search

Streaming
Analysis

BI tools

Metadata
Mgmt

Batch
Processing

Interactive
Analysis

StreamSQLSQL Search
ExtensionSQL SQLMessage data

Logs, images
JSON, XML

K-V files

Text
Web pages

RDBMS logs
Sqoop files

RDBMS
Logs

Kafka

Hyperbase
Bulkload
Search

Bulkload

Inceptor SQL Engine

Data Access Layer & Proxy

Inceptor Execution Engine

ODS

Hyperbase

Data Lakes

HDFS

Unstructured

Search

Graphee

…DB2 Oracle

MySQL …

CRM, ERP …

Fig. 1. Logical data view managed by Transwarp Inceptor in LDW

LD PT TT1 DM1 TT2 DM2Generate
SQL for test

Fig. 2. TPC-DS execution order

142 M. Trivedi and Z. Chen

Let

• SF be the scale factor in the benchmark test, which might be 1000, 3000, 10000,
etc.

• Sq be the number of streams executed in a Throughput test.
• TLoad be the data load time.
• TPower be the Power test time.
• TTT1 be the first Throughput test time.
• TTT2 be the second Throughput test time.
• TDM1 be the first Maintenance test time.
• TDM2 be the second Maintenance test time.
• Q = Sq * 99

The primary performance metric of the benchmark is QphDS@SF, the effective sort
throughput of the benchmarked configuration. Here is an example (using the sum-
mation method):

QphDS@SF ¼ SF � Q
ffi

TPT � TTT � TDM � TLD4
p

� �

Here,

• TTT ¼ TTT1 þTTT2

• TDM ¼ TDM1 þTDM2

• TPT ¼ TPower � Sq
• TLD ¼ 0:01 � Sq � TLoad

• TPT, TTT, TDM and TLD quantities are in units of decimal hours with a resolution
of at least a second.

The price-to-performance metric for the benchmark is defined as follows:

$=QphDS@SF ¼ P
QphDS@SF

Here, P is the total cost of ownership (TCO) of the system under test (SUT).
TPC-DS also reports the following numerical quantities:

• Execution time of each query in each stream.
• Execution time of each refresh function in maintenance tests.

4 System Under Test (SUT)

The tests were conducted a series of TPC-DS to characterize the performance in various
deployment scenarios. The test configuration consisted of Cisco UCS Integrated
Infrastructure for Big Data and Analytics cluster with 17 Cisco UCS C240 M4 Rack
Servers. The Cisco UCS Integrated Infrastructure for Big Data and Analytics is built
using the following components:

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) 143

• Cisco UCS 6296UP 96-Port Fabric Interconnect: Fabric interconnects are central to
the Cisco Unified Computing System™ (Cisco UCS). They provide low-latency,
lossless 10 Gigabit Ethernet, Fibre Channel over Ethernet (FCoE), and Fibre
Channel functions with management capabilities for the system. All servers
attached to fabric interconnects become part of a single, highly available manage-
ment domain.

• Cisco UCS C240 M4 Rack Server: Cisco UCS C-Series Rack Servers extend
Cisco UCS in standard rack-mount form factors. The Cisco UCS C240 M4 Rack
Server is designed to support a wide range of computing, I/O, and storage-capacity
demands in a compact design. It supports two Intel® Xeon® processor E5-2600 v4
series CPUs, up to 1.5 TB of memory, and 24 small-form-factor (SFF) disk drives
plus two internal SATA boot drives and Cisco UCS Virtual Interface Card
(VIC) 1387 adapters.

The System under test configuration consists of two Cisco UCS 6296 fabric
interconnects, 17 Cisco UCS C240 M4 servers with two Intel Xeon processor E5-2680
v4 series CPUs, 512 GB of memory, and 24 SFF disk drives plus two internal SATA
boot drives and Cisco UCS VIC 1287 adapters, as shown in Fig. 3. Table 2 lists the
software versions used.

5 Test Results

The details of the test results are shown in Table 3.

Table 2. Software versions

Layer Component Version or release

Software Red Hat Enterprise Linux (RHEL) server Version 6.7 (x86_64)
Cisco UCS manager Release 3.1(1 g)

DBMS Transwarp data hub Version 5.1

Fig. 3. SUT cluster configuration

144 M. Trivedi and Z. Chen

6 Hardware and Software: Performance Characterization

In the following section, we will do an in-depth performance analysis with various
permutations of these hardware and software. Many factors come into play when
tuning a system as complex as big data systems. Performance tuning involves making
modifications to hardware, software, and network.

Infrastructure tuning helps achieve optimal utilization of resources. It also helps the
application run faster and perform better.

• Server
• BIOS

– CPU parameters
– Intel Turbo Boost Technology
– Intel Hyper-Threading Technology
– Prefetcher
– C-states
– Power control policy
– Memory tuning

• Network
• Network tuning parameters
• Network interface card (NIC) bonding
• Jumbo frame (maximum transmission unit [MTU])

• Storage
• RAID 0

– Write back
– Read ahead
– Stripe size

• JBOD
• JBOD Versus RAID 0

6.1 Operating System

OS performance tuning is used to manage and improve resources that respond to
individual requests. OS scalability is managed by monitoring the resource consumption
of varying volumes of requests, from low to very high, by changing default OS settings.

• File system
• XFS
• Agcount
• Mount
• Fstab

• Post-OS tuning
• sysctl.conf
• limits.conf
• CPU frequency and scaling governor
• Transparent huge pages
• Linux swappiness
• I/O scheduler

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) 145

Table 3. TPC-DS test results

146 M. Trivedi and Z. Chen

6.2 Server Tuning

Hadoop is based on a new approach to storing and processing complex data, with data
movement reduced. Hadoop distributes the data across the cluster that each machine in
a Hadoop cluster stores, and it also processes the data. Therefore, it is important to tune
the processing, or computing, aspect of the system to achieve optimal performance
from the cluster.

BIOS settings can have a significant performance impact, depending on the
workload and the applications. Table 4 lists the optimal CPU settings for Hadoop based
on the tests reported in this document.

Table 5 lists optimal memory settings for Hadoop based on the tests reported here.

Table 4. Optimal CPU settings

Parameter Setting

Intel turbo boost Enabled
Enhanced intel speedstep Enabled
Intel hyper-threading Enabled
Core multiprocessing All
Virtualization technology Disabled
Hardware prefetcher Enabled
Adjacent cache line prefetcher Enabled
Data Cache Unit (DCU) streamer prefetcher Enabled
DCU IP prefetcher Enabled
Direct cache access Enabled
Processor C-State Disabled
CPU performance Enterprise
Power technology Performance
Energy performance Performance
Frequency floor override Enabled
P-state coordination Hw-all
DRAM clock throttling Performance

Table 5. Optimal Memory Settings

Parameter Setting

Memory RAS configuration Maximum performance
NUMA Enabled
Low-voltage double data rate (LV DDR) mode Performance mode
DRAM refresh rate 1 time
DDR3 voltage selection Platform default

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) 147

6.3 Network Tuning

The impact of the network on big data is enormous. An efficient and resilient network is
a crucial part of a good Hadoop cluster because the network is what connects all the
nodes. The network is also crucial for writing data, reading data, and signaling and for
HDFS operations A job may need to be restarted, or a workload may be pushed to the
remaining nodes, resulting in delay. Therefore, networks must be designed to provide
redundancy, with multiple paths between computing nodes, and they must be able to
scale.

Table 6 lists some network performance settings that can increase Hadoop per-
formance. These options increase the read and write cache sizes for the network stack.
These parameters can be tested with the systctl –w command or made permanent by
adding the variable to the /etc./sysctl.conf file.

You can tune NIC bonding. A NIC is a computer hardware component that con-
nects a computer to a computer network. Network bonding is a method of combining
(joining) two or more network interfaces together into a single interface. This com-
bination increases network throughput and provides redundancy. If one interface is
down or unplugged, the remaining interfaces will keep the network traffic up and alive.
Network bonding can be used in situations in which you need redundancy, fault
tolerance, or load balancing.

Table 6. Optimal network tuning parameters for hadoop

Parameter Tuned
value

Description

net.core.somaxconn 1024 Changing the net.core.somaxconn Linux kernel
settings from the default of 128 to 1024 helps with
burst requests from the name node and job tracker.
This option sets the size of the listening queue, or the
number of connections that the server can set up at one
time

net.ipv4.tcp_retries2 5 This variable helps forward the packets between
interfaces. This variable is special; its change resets all
configuration parameters to their default state

net.core.rmem_max 16777216 These settings increase the TCP maximum buffer size.
The four options shown here increase the TCP send and
receive buffers, allowing an application to move its data
out faster so it can serve other requests. This adjustment
also improves the client’s ability to send data to the
server when it gets busy

net.core.wmem_max 16777216
net.ipv4.tcp_rmem 16777216
net.ipv4.tcp_wmem 16777216

net.core.
netdev_max_backlog

10000 The netdev_max_backlog is a queue within the Linux
kernel where traffic is stored after reception from the
NIC, but before processing by the protocol stacks (IP,
TCP) etc.

148 M. Trivedi and Z. Chen

Linux allows bonding of multiple network interfaces into a single channel using a
special kernel module called a bonding module. The Linux bonding driver provides a
method for aggregating multiple network interfaces into a single logical “bonded”
interface. The behavior of the bonded interface depends on the mode. In general, the
mode provides either hot-standby or load-balancing services. Additionally, link-
integrity monitoring can be performed.

7 Transwarp Inceptor Tuning Parameters

The key production used in the test is Transwarp Inceptor. The database is in ORC
format, which is stored on HDFS. Figure 4 show the architecture of Inceptor.

Data�Access�Layer�&�Proxy�

Inceptor�Optimizer
Rule-based�Optimizer

Inter-SQL�Optimizer

Materialized�View
based�Optimizer

Cost-based�Optimizer

SQL�Compiler Stored�Procedure�Compiler

Semantics

Data�Dictionary

Cube�Designer

Statistics
data

Cube
Model

Transaction Manager

Distributed�CRUD

Concurrency�Controller

Vectorized and�Distribution�
Execution�Engine

HDFS Oracle DB2 MySQL …

Fig. 4. Transwarp Inceptor architecture

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) 149

7.1 HDFS Tuning

During Maintenance test 1, the auditor will select a disk to make it no accessible. To
make the HDFS work without reporting error, the parameter dfs.datanode.failed.vol-
umes.tolerated must be set a value greater or equal than 1.

Note: By default, HDFS data replication is 3. One disk fail does not impact the
data access.

For better IO throughput, the HDFS Data node should use all the data disks.
dfs.datanode.data.dir is set as:

/data/disk1/hadoop/data, /data/disk10/hadoop/data, /data/disk11/hadoop/data,
/data/disk12/hadoop/data, /data/disk13/hadoop/data, /data/disk14/hadoop/data,
/data/disk15/hadoop/data, /data/disk16/hadoop/data, /data/disk17/hadoop/data,
/data/disk18/hadoop/data, /data/disk19/hadoop/data, /data/disk2/hadoop/data,
/data/disk20/hadoop/data, /data/disk21/hadoop/data, data/disk22/hadoop/data,
/data/disk23/hadoop/data, /data/disk24/hadoop/data, /data/disk3/hadoop/data,
/data/disk4/hadoop/data, /data/disk5/hadoop/data, /data/disk6/hadoop/data,
/data/disk7/hadoop/data, /data/disk8/hadoop/data, /data/disk9/hadoop/data

All other HDFS parameters do not have big impact for the test and ban be set as
default values.

7.2 Transwarp Inceptor Tuning

(1) Inceptor shuffle directories configuration
Similar as the Data node configuration, to get better IO throughput, the shuffle
directories are configured to use all the data disks:

EXPORT NGMR_LOCALDIR = “
/data/disk1/hadoop/ngmr/inceptorsql1, /data/disk10/hadoop/ngmr/inceptorsql1,
/data/disk11/hadoop/ngmr/inceptorsql1, /data/disk12/hadoop/ngmr/inceptorsql1,
/data/disk13/hadoop/ngmr/inceptorsql1, /data/disk14/hadoop/ngmr/inceptorsql1,
/data/disk15/hadoop/ngmr/inceptorsql1, /data/disk16/hadoop/ngmr/inceptorsql1,
/data/disk17/hadoop/ngmr/inceptorsql1, /data/disk18/hadoop/ngmr/inceptorsql1,
/data/disk19/hadoop/ngmr/inceptorsql1, /data/disk2/hadoop/ngmr/inceptorsql1,
/data/disk20/hadoop/ngmr/inceptorsql1, /data/disk21/hadoop/ngmr/inceptorsql1,
/data/disk22/hadoop/ngmr/inceptorsql1, /data/disk23/hadoop/ngmr/inceptorsql1,
/data/disk24/hadoop/ngmr/inceptorsql1, /data/disk3/hadoop/ngmr/inceptorsql1,
/data/disk4/hadoop/ngmr/inceptorsql1, /data/disk5/hadoop/ngmr/inceptorsql1,
/data/disk6/hadoop/ngmr/inceptorsql1, /data/disk7/hadoop/ngmr/inceptorsql1,
/data/disk8/hadoop/ngmr/inceptorsql1, /data/disk9/hadoop/ngmr/inceptorsql1”

150 M. Trivedi and Z. Chen

(2) Executor configuration
Tests show JVM does not work well with too many cores in one executor. And GC
overhead is unacceptable if the executor is configured too much memory. In the test, 4
executors are configured for each work node, each executor is configured with 12
vcores and 32 G memory:

export INCEPTOR_YARN_EXECUTOR_MEMORY = 32000 M
export INCEPTOR_YARN_EXECUTOR_CORES = 12
export INCEPTOR_YARN_NUMBER_EXECUTORS = 64

8 Transwarp Query Optimization Tuning

In the following section, we will show how the Inceptor components apply to the TPC-
DS test and do an in-depth performance analysis with Transwarp Inceptor.

8.1 SQL and Stored Procedure Compiler

Stored Procedure compiler is compatible with Oracle’s PL/SQL. Users can write more
complex application with procedures. The SQL compiler is compatible with SQL 2003.
The 99 query templates are primarily phrased in compliance with SQL 1999 core (with
OLAP amendments) [3]. So Inceptor only has 5 minor changes to run the TPC-DS
workloads. Here is a summary.

• Add and use column alias: Q32 and Q92
• Add Parentheses around union all: Q2
• Ordinal position in ORDER BY replaced by column name: Q47 and Q57
• Query results are inserted in a file (clause 4.2.5): Q64

Note: These settings or changes were audited by TPC auditor and also under TPC
committee

8.2 Optimization Tuning

Inceptor Optimizer implements lots of optimizations such as Rule Based Optimization
(RBO), Cost Based Optimization (CBO), Inter-SQL-Optimization (ISO), Materialized
View Based Optimization, Partition Prune and so on.

According to TPC-DS Specification [3], Materialized View Based Optimization is
restricted and can only be applied to catalog_sales. And there are too combination of
parameters. If taking the time to prepare view into according, Materialized view is too
expensive to use in TPC-DS test. Among all the optimizations, CBO join reorder,
Common Expression Elimination (CSE) and Predicate Pushdown (PPD) are the key
optimizations. Without them, it is hard to PASS the 99 workload tests.

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) 151

(1) Common Expression Elimination
In most cases, inner join is faster than cross join + filter. To transfer a cross join to inner
join, the optimizer must identify the join conditions. This is straightforward for most
workloads except query 13 and 48, in which the join condition is in an OR expression.
The optimizer must extract them first. For query13, it must extract join condition:

ss hdemo sk ¼ hd demo sk and cd demo sk ¼ ss cdemo sk

(2) Predicate Push Down (PPD)
The predicate push down (PPD) is a simple, but very useful optimization for perfor-
mance. By pushing the predicate in join conditions or where clause down to data
source, it significantly reduces the number of join result. PPD can be applied to most
queries in TPC-DS test. Take query52 as an example. Figure 5(b) shows the query
segment after PPD. With PPD, the result of dt join store_sales will include only one
month’s data. Without PPD, the result of dt join store_sales will includes all rows in
store_sales except the NULL ss_sold_date_sk.

(3) CBO Join Reorder
Lots of queries in the TPC-DS use snowflake schema. Figure 6 shows the join schema
of query 72, which includes 3 fact tables and 8 dimension tables. For such pattern, join
order is the key for performance. In most DBMS, join reorder is implemented as part of
Cost Based Optimization (CBO) [6–9].

select ...
from date_dim dt

,store_sales
,item

where dt.d_date_sk = ss_sold_date_sk
and ss_item_sk = item.i_item_sk
and item.i_manager_id = 1
and dt.d_moy=[MONTH]
and dt.d_year=[YEAR]

group by ...

(a) Query52 segment

select ...
from (select * from date_dim dt

where dt.d_moy=[MONTH]
and dt.d_year=[YEAR]) dt

,store_sales
, (select * from item
where item.i_manager_id = 1) item

where d_date_sk = ss_sold_date_sk
and ss_item_sk = i_item_sk

group by ...

(b) After PPD

Fig. 5. PPD example

d2 warehouse

hdcd

item

d1d3

promotion catalog
_returns

inventory
catalog
_sales

Fig. 6. Query72 join pattern

152 M. Trivedi and Z. Chen

Firstly, CBO will collect statics of tables and columns by pre-analyze or dynamic
samples. Then do some basic optimization and compute the cost of different join orders
based on the estimation model. And finally CBO will select the join orders with the
lowest cost. With CBO, the Transwarp Inceptor will join the tables in cycle (Fig. 6)
first then join with other tables. Without join reorder, query 72 is out of memory
(OOM).

(4) Misc Other Optimizations
In addition to the above optimizations, misc other optimizations are required to get
better performance, such as window function optimization, sub-query transformation,
with as optimization and vectorization.

The total tests include both single and multiply stream executions. We need some
trade-off among parallel tasks to get overall better result. Here is the optimization list
used in the test:

• set ngmr.o4.join = true;
• set inceptor.optimize.intersect.groupby.pushdown = true;
• set hive.window.iterator.directly = true;
• set hive.support.subquery.join.conversion.count = true;
• set inceptor.onlineiso.enabled = true;
• set ngmr.mapjoin.partitionprune = true;
• set hive.mapjoin.smalltable.filesize = 900000;
• set ngmr.partition.automerge = true;
• set hive.join.aggregateratio = 0.52;
• set mapred.minreduce.tasks = 379;
• set hive.cbo.enable = true;
• set inceptor.decimal.display.padding.zero = true;

8.3 Transaction Support

Data maintenance tests are performed as a must-have part of the benchmark execution
[3]. The tests simulate the periodical synchronization with source OLTP databases [1],
which is an integral part of the data warehouse lifecycle. Maintenance tests include a
set of refresh runs. Refresh functions are defined in Sect. 5 of TPC-DS Specification
[3], take Method 2 as an example:

Delete rows from � returns with corresponding rows in � sales
where d date betweenDate1 and Date2
Delete rows from � sales
where d date betweenDate1 and Date2

According to the Specification [3], all the transformations must be SQL-based. As
mentioned in [1], the maintenance test can be taken as the “the first industry-standard
evaluation of the ETL process (Extract, Trans-formation and Load)”. To support the
ETL process, transaction is required for the DBMS, which is a big challenge in a
distribute environment [10, 11]. Transwarp Inceptor has full transaction support, while
most engines in Hadoop world do not support transaction.

Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS) 153

9 Conclusions

TPC-DS is a challenge for any DBMS, especially for big-data tests. It is not just to run
99 queries. It covers all the stages in data warehouse. Although some optimizations are
discussed in the paper, there are still lots of missing chances for better results. With
more investigation, you may find more chances. In addition to the performance, the
stability of the system (both hardware and software) is another challenge since the test
will last long-time with high workload. This paper provides a summary of lessons
learned from performance tuning for the TPC-DS benchmark. The tuning parameters
have broad applicability across big data systems.

References

1. Nambiar, R., Poess, M.: The Making of TPC-DS. In: VLDB 2006 (2006)
2. Poess, M., Nambiar, R., et al.: Why you should run TPC-DS: a workload analysis. In: VLDB

2007 (2007)
3. TPC-DS specification. http://www.tpc.org/tpcds/default.asp
4. https://blogs.cisco.com/datacenter/cisco-ucs-publishes-the-first-ever-audited-result-of-the-

tpc-ds-benchmark-with-hadoop
5. http://www.tpc.org/tpcds/results/tpcds_advanced_sort.asp
6. Oracle Optimizer. https://docs.oracle.com/cd/B10500_01/server.920/a96533/optimops.htm
7. Spark CBO. https://issues.apache.org/jira/browse/SPARK-16026
8. Hortonworks Hive. https://hortonworks.com/blog/hive-0-14-cost-based-optimizer-cbo-

technical-overview/
9. DB2 Optimizer. https://www.ibm.com/developerworks/data/library/techarticle/dm-

1025db2accessplan/index.htm
10. Fox, A., Brewer, E.: Harvest, yield and scalable tolerant systems. In: Proceedings of 7th

Workshop Hot Topics in Operating Systems (HotOS 1999), pp. 174–178. IEEE CS (1999)
11. Brewer, E.: CAP twelve years later: how the “rules” have changed. Computer 45(2), 23–29

(2012)
12. http://www.transwarp.io/about/download?lang=en

154 M. Trivedi and Z. Chen

http://www.tpc.org/tpcds/default.asp
https://blogs.cisco.com/datacenter/cisco-ucs-publishes-the-first-ever-audited-result-of-the-tpc-ds-benchmark-with-hadoop
https://blogs.cisco.com/datacenter/cisco-ucs-publishes-the-first-ever-audited-result-of-the-tpc-ds-benchmark-with-hadoop
http://www.tpc.org/tpcds/results/tpcds_advanced_sort.asp
https://docs.oracle.com/cd/B10500_01/server.920/a96533/optimops.htm
https://issues.apache.org/jira/browse/SPARK-16026
https://hortonworks.com/blog/hive-0-14-cost-based-optimizer-cbo-technical-overview/
https://hortonworks.com/blog/hive-0-14-cost-based-optimizer-cbo-technical-overview/
https://www.ibm.com/developerworks/data/library/techarticle/dm-1025db2accessplan/index.htm
https://www.ibm.com/developerworks/data/library/techarticle/dm-1025db2accessplan/index.htm
http://www.transwarp.io/about/download?lang=en

Author Index

Belgodere, Brian 71
Boden, Christoph 1, 42
Boillod-Cerneux, France 71
Bond, Andrew 58
Bordawekar, Rajesh 71
Bourrasset, Cedric 71
Broyelle, Jean-Armand 71

Cahill, Michael 126
Chen, Yuxing 7
Chen, Zhenqiang 140

Deldossi, Myrtille 71
Desai, Bhavik 58
Dholakia, Ajay 1, 82

Fekete, Alan 126

Ghandeharizadeh, Shahram 1, 94
Goda, Kazuo 110

Hayamizu, Yuto 110
Hodak, Miro 82
Huang, Chenhao 126

Johnson, Doug 58

Karimov, Jeyhun 24
Kawamichi, Ryoji 110

Kitsuregawa, Masaru 110
Kopczynski, Greg 58

Little, Gary 1, 58
Lu, Jiaheng 7

Malaika, Susan 71
Markl, Volker 24, 42

Nambiar, Raghunath 1
Nguyen, Hieu 94

Rabl, Tilmann 24, 42
Röhm, Uwe 126

Sauge, Ludovic 71
Schelter, Sebastian 42

Taheri, H. Reza 58
Trivedi, Manan 140

Wellenreiter, Francois 71
West, Marc 71

Xu, Pengfei 7

Zhang, Chao 7

	Preface
	TPCTC 2018 Organization
	About the TPC
	TPC 2018 Organization
	Contents
	Industry Panel on Defining Industry Standards for Benchmarking Artificial Intelligence
	Abstract
	1 Transaction Processing Performance Council: A Look Back
	2 Formation of TPC Artificial Intelligence Working Group
	3 Panel Discussion
	4 About the Panelists
	Acknowledgements
	References

	UniBench: A Benchmark for Multi-model Database Management Systems
	1 Introduction
	2 Background and Related Work
	3 Data Generation
	3.1 Purchase
	3.2 Propagation-Purchase
	3.3 Re-purchase

	4 Workload
	4.1 Business Cases
	4.2 Technical Dimensions
	4.3 Example

	5 Experiments
	5.1 Data Generation
	5.2 Importing Time
	5.3 Performance of Multi-model Query
	5.4 Transaction Performance

	6 Conclusion
	References

	PolyBench: The First Benchmark for Polystores
	1 Introduction
	2 Background
	3 Related Work
	4 Data Model and Use Case
	4.1 Data Model
	4.2 Use Cases

	5 Benchmark Design
	5.1 Metrics
	5.2 Test Scenarios

	6 Experiments
	6.1 Setup
	6.2 Use Case 1
	6.3 Use Case 2
	6.4 Use Case 3

	7 Discussion and Future Work
	8 Conclusion
	References

	Benchmarking Distributed Data Processing Systems for Machine Learning Workloads
	1 Introduction
	2 Machine Learning for Data Processing Systems
	2.1 Clustering (Unsupervised Learning)
	2.2 Classification (Supervised Learning)
	2.3 Matrix Factorization
	2.4 Deep Learning

	3 Model Quality
	3.1 Experiments and Workloads

	4 Scalability
	4.1 Experiments and Workloads
	4.2 Workloads
	4.3 Data Sets

	5 Related Work
	6 Conclusion
	References

	Characterizing the Performance and Resilience of HCI Clusters with the TPCx-HCI Benchmark
	Abstract
	1 Introduction
	1.1 The Need for TPCx-HCI
	1.2 History of the Benchmark
	1.3 Hyper-Converged Infrastructure

	2 Architecture of TPCx-HCI
	2.1 Overview
	2.2 Benchmark Kit
	2.3 TPCx-HCI Express Kit

	3 Characteristics of the Benchmark
	3.1 Elasticity Feature
	3.2 Tile Count

	4 Analysis
	4.1 Configuration of the System Under Test
	4.2 Performance of 4 Tiles on 4 Nodes
	4.3 Performance of 5 Tiles on 3 Nodes Without Rebalancing
	4.4 Performance of 5 Tiles on 4 Nodes with Rebalancing

	5 Data Accessibility Test
	5.1 Impact on Performance During the Benchmark Run
	5.2 Recovery Activity After the Benchmark Run

	6 Future Work
	7 Conclusions
	References

	Requirements for an Enterprise AI Benchmark
	1 Introduction
	2 Identification of AI Workflow Bottlenecks
	3 Desired Enterprise AI Metrics
	3.1 Important Characteristics of Enterprise Metrics
	3.2 End-to-End AI Performance Metrics

	4 Related Work
	5 Summary and Next Steps
	References

	Towards Evaluation of Tensorflow Performance in a Distributed Compute Environment
	Abstract
	1 Introduction
	2 Related Work
	3 Distributed TF Performance Considerations
	3.1 Distributed Model Support in TF
	3.2 Hardware
	3.3 Job Scheduler
	3.4 Libraries
	3.5 Training Script
	3.6 User Expertise

	4 Results
	4.1 Hardware and Software
	4.2 Optimum Parameters for TF Distributed Training
	4.3 Distributed Benchmarks
	4.4 Discussion

	5 Conclusions and Future Work Directions
	References

	A Comparison of Two Cache Augmented SQL Architectures
	1 Introduction
	2 Related Work
	3 A Social Networking Benchmark
	4 Cooperative Cache Management
	5 A Comparison of CS with SAS
	5.1 Single-Node Comparison
	5.2 Scalability Comparison

	6 Conclusions and Future Research
	References

	Benchmarking and Performance Analysis of Event Sequence Queries on Relational Database
	1 Introduction
	2 Event Sequence Queries on Relational Database
	2.1 Event Occurrence and Event Sequence
	2.2 Event Sequence Queries in Relational Algebra
	2.3 Consideration on Workload Characteristics of Event Sequence Queries

	3 The Initial Design of ESQUE Benchmark
	4 Experiments with ESQUE Benchmark
	4.1 Experimental Setup
	4.2 Performance Comparison Between PostgreSQL and MySQL
	4.3 Performance Comparison Between PostgreSQL Versions

	5 Related Work
	6 Conclusion
	References

	Data Consistency Properties of Document Store as a Service (DSaaS): Using MongoDB Atlas as an Example
	1 Introduction
	2 MongoDB Atlas
	3 Benchmarking Consistency of MongoDB Atlas
	3.1 Benchmarking Methods
	3.2 Implementation

	4 Benchmarking Results
	4.1 Writing and Reading Latency
	4.2 Reading from the Primary Copy
	4.3 Reading from the Secondary Copy
	4.4 Reading from the Nearest Copy

	5 Discussion
	5.1 Dealing with the Extreme Low Inconsistency Rates
	5.2 Excluding ``Overlapping'' Reads and Writes

	6 Related Work
	7 Conclusion
	References

	Lessons Learned from the Industry’s First TPC Benchmark DS (TPC-DS)
	Abstract
	1 Introduction
	2 Transwarp Data Hub
	3 TPC-DS
	4 System Under Test (SUT)
	5 Test Results
	6 Hardware and Software: Performance Characterization
	6.1 Operating System
	6.2 Server Tuning
	6.3 Network Tuning

	7 Transwarp Inceptor Tuning Parameters
	7.1 HDFS Tuning
	7.2 Transwarp Inceptor Tuning

	8 Transwarp Query Optimization Tuning
	8.1 SQL and Stored Procedure Compiler
	8.2 Optimization Tuning
	8.3 Transaction Support

	9 Conclusions
	References

	Author Index

