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Abstract. In this paper, we propose a dynamic database crypto-watermarking
scheme that enables a cloud service provider (CSP) to verify the integrity of
encrypted databases outsourced by different users. This scheme takes advantage
of the semantic security property most homomorphic cryptosystems have, so as
to embed a watermark into encrypted data without altering users’ data. The
incorrect detection of the watermark, not only informs the CSP the database has
been illegally modified but also indicates which data have been altered. In
addition, the proposed scheme is dynamic in the sense the watermarking and
integrity verification processes can be conducted along the database lifecycle,
i.e. even when the database owner updates his or her data (i.e. addition, sup-
pression or modification of database elements). Experimental results carried out
with the Paillier cryptosystem on a genetic database demonstrate that our
method can efficiently detect different illegal data tamper with a high location
precision.

Keywords: Confidentiality - Data outsourcing * Database watermarking -
Genetic data + Homomorphic encryption - Integrity

1 Introduction

Nowadays, cloud computing allows data owners to flexibly store and process large
amounts of data remotely, without a need to purchase and maintain their own infras-
tructure. Despite these benefits, such a data outsourcing induces critical security issues
especially in terms of data confidentiality and integrity. Indeed, users lose the control
over the data they outsource. Among available security mechanisms, encryption
ensures the confidentiality of data. In cloud environment, homomorphic encryption has
recently gained in interest due to the fact that it allows performing linear operations
(e.g. “+7, “x”) onto encrypted data with the guarantee that the decrypted result equals
the one carried out onto unencrypted data [1]. Information can thus be processed
without accessing it in a clear form. In this work, we are interested in giving to the
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cloud service provider the capacity to verify the integrity of databases outsourced
homomorphically encrypted by their owners with the help of watermarking, under the
constraint that users can update their data (i.e. modify, suppress or add data).
Different tools can be used so as to verify the integrity of a database such as: digital
signatures (DS) [2], message authentication code (MAC) [3] or, more recently,
watermarking. DS and MAC are common solutions exploited in database management
systems (DBMS). However, they introduce additional pieces of information into the
database. On the contrary, watermarking relies on the imperceptible insertion of a
message into the data by modifying them based on the principle of controlled distor-
tion. As defined, watermarking leaves access to the data while maintaining them
protected by the message. Depending on the relationship between the message and the
host data, one can ensure various security services like integrity control, in particular.
The first database watermarking method was introduced by Agrawal et al. [4]. As
most database watermarking schemes, this one focuses on copyright protection or traitor
tracing applications where the message corresponds to the buyer or user identifier [5, 6].
Embedding is conducted in a robust way so as to be able to retrieve the identifier even if
the watermarked database has been modified. Some watermarking methods have been
especially designed in order to verify the integrity of databases. Contrarily to the pre-
vious schemes, these ones embed a “fragile” watermark that will not survive any
database modifications [7-11]. Sometimes, such schemes provide the capability to
identify which database elements have been altered [9]. These methods are either
distortion-free or reversible. Distortion-free methods do not modify the values of the
database elements. The database is watermarked: by introducing new data, like some
“virtual” attributes where the watermark is dissimulated [8] or by modulating the
organization of the database elements (i.e. tuples or attributes [7]). Regarding reversible
methods, they ensure it is possible to invert the insertion process and to remove the
watermark distortion restoring thus the original attribute values of the database. They are
well adapted for verifying the integrity. In particular, one can insert a digital signature of
the database itself. At the verification stage, the digital signature is extracted and
compared with the one computed on the restored database. Such an approach has been
proposed either for numerical data [10] or categorical data [11], applying reversible
histogram shifting or difference expansion modulations. It is important to notice that the
above methods have several limitations. All of them work on static databases i.e. on
databases that are not updated. Moreover, they consider tuple additions, suppressions or
modifications as non-authorized modifications. Distortion-free methods can localize
modifications but without a really good precision (i.e. tuple level at best). On their side,
reversible methods only indicate whether a database has been modified. There is thus a
need for a watermarking scheme capable to protect database integrity in a dynamic way
with also good localization performance while being also compliant with data encryp-
tion. Several crypto-watermarking methods, i.e. solutions that combine encryption and
watermarking, have been proposed. Most of them focus on multimedia data (e.g. image,
video) in order to ensure at the same time data confidentiality and copyright protection in
their distribution [12] or watermarking-based integrity and authenticity services from
decrypted/encrypted data [13]. Crypto-watermarking schemes can be differentiated
depending on whether the embedded message is available in the clear domain, in the
encryption domain, or in both domains [14]. To the best of our knowledge, the method
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proposed by Xiang et al. [15] is the first that combines watermarking and encryption for
the protection of databases. It is based on Order Preserving Encryption (OPE), whose
encryption function preserves numerical ordering of the plain-texts, and Discrete Cosine
Transformation (DCT). To embed the watermark, the encrypted database is divided into
groups, and for each group, DCT coefficients (i.e. DC and AC coefficients) are calcu-
lated. AC coefficients are used to generate the watermark bits which are then embedded
into the DC coefficients by using quantization index modulation (QIM) [16]. After that,
the encrypted and watermarked database can be obtained after executing inverse DCT
operations. At the verification stage, integrity of the database can be verified by
matching the hash value of AC coefficients and the extracted watermark information
from DC coefficients. If this method allows verifying the integrity of an encrypted
database, it does not consider update operations. Beyond, it relies on OPE which has
several security limitations due to some of its deterministic properties [17].

In this paper, we propose a watermarking method that allows a Cloud Service
Provider (CSP) to verify the integrity of homomorphically encrypted databases that are
outsourced, handled or updated by their owners remotely. The objective is to detect and
localize non-authorized database modifications. To do so, we take advantage of the
semantic security property of some homomorphic cryptosystems so as to embed a
watermark, a binary message, into encrypted data without altering users’ data. As we
will see, being available from the hash of subset of attribute values, this message, if not
detected properly, not only informs CSP that the database has been modified but also
indicates which data have been altered. Contrarily to all the above schemes, the pro-
posed solution is dynamic in the sense the watermarking and integrity verification
processes can be conducted along the database lifecycle.

The rest of this paper is organized as follows. In Sect. 2, we come back on some
homomorphic encryption preliminaries as well as on the database outsourcing scenario
we consider. Section 3 provides the details of the proposed solution while experimental
results and performance and security analysis are given in Sect. 4. Conclusions and
some perspectives are drawn in Sect. 5.

2 Homomorphic Encryption Preliminaries and Data
Outsourcing Scenario

2.1 Homomorphic Encryption: Paillier Cryptosystem

In this work, we opted for the well-known asymmetric Paillier cryptosystem because of its
additive homomorphic properties and its simplicity of use [18]. Its principles are as
follows. Let p and g be two large prime numbers, the user public key is given by K, = pq.

Let Zy, denotes the set of integers in Zg> = {0, L., K- 1} that have multiplicative
P 12 14

inverses modulo K[%, and select g € Z;, such that gcd (L (gK* mod K[f) , K,,) = 1, where:
14

ged(.) is the greatest common divisor function, L(s) = (s — 1)/K,, and K; = lem(p —
1, g — 1) defines the user private key with lcm(.) the least common multiple function. The
cipher-text of the clear message m € Z, is derived as
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c=E[m,r] = g"rk modK§ (1)

where E[.] is the encryption function and r € ZI*(F is a random integer that ensures the

Paillier cryptosystem satisfies the so-called “semantic security”. More clearly, the same
plain-text has different cipher-texts depending on the value of r. The decryption of the
cipher-text ¢ is based on the decryption function D].] such that

m = D[c, K| = L(c* mod Kﬁ)/L(gK‘*' mod Kﬁ) mod K, (2)

This cryptosystem has additive homomorphic properties. Considering two plain-texts
m; and m,, we have

E[my, r] x Emy, rp] = E[my +my, rir,] (3)

Elmy, "= E[mymy, r"] 4)
As we will see in Sect. 3, both semantic security and additive homomorphic properties
of the Paillier cryptosystem will be of importance in our scheme.

2.2 Data Outsourcing Scenario and Database Model

The scenario we consider is given in Fig. 1, where a data owner securely outsources his
database into the cloud after independently homomorphically encrypting its elements.
By doing so, the owner can ask the cloud service provider (CSP) to process his data
while preserving their confidentiality. Herein, the CSP honestly stores and processes
encrypted data uploaded based on the owners’ requests (processing, updating data).
The CSP is not malicious and will not try to alter owners’ data. At least, it can be
curious, aiming at inferring user data. These privacy issues are however out of the
scope of this work where we focus on the verification by CSP of the integrity of the
encrypted data under his responsibility. Notice that CSP that is authorized to store
users’ data with the help of sub-contracted service providers that can be malicious.

Encrypted
database >

Data Requests and

Owner |updates operations >

Encrypted

E resulls

Encrypted
database

——— .
Cloud Service, - Sub-contracted
E— Provider D Provider

Fig. 1. The considered data outsourcing scenario
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In the sequel, we consider the relational database model. A database DB is com-
posed of a finite set of tables {7;},_, . From here on and for sake of simplicity, we
use a database constituted of one single table of u tuples {#;},_, ,, where each tuple
has m attributes {A;,A,,...,A,}. The attribute A; takes its values within an attribute
domain and #;.A; refers to the value of the j™ attribute of the i tuple. In a database, each
tuple is uniquely identified by either one attribute or a set of attributes which is called
primary key, noted #;.PK. The encrypted version DB, of DB is obtained by indepen-
dently encrypting the values {#;.A;},_; .y, using Eq. (1)

E[ti.Aj, rij] = gt"'Af'rf;” mod Klf (5)

where K, is the public key of the database owner and r; € Z}gp is a random integer.

The objective we pursue in this work is to allow the Cloud Service Provider to
protect DB, in terms of integrity using watermarking under the constraint not altering
the owners’ data and that data can be updated during time. To do so, and as we will see,
we will take advantage of the semantic security property of homomorphic encryption.
It is important to notice that all modifications conducted at the request of one data
owner, i.e. deletion, addition or modification of tuples or attributes, are authorized.
Modifications resulting from system errors (e.g. transmission or storage errors) or from
malicious actions, by an intruder for instance, should be detected.

3 Watermarking of Homomorphically Encrypted Database

In this section, we first present our watermarking method for protecting the integrity of
homomorphically encrypted databases in the case of “static” databases, before
extending it to “dynamic” databases, i.e. when data are remotely updated by their
owners.

3.1 Watermarking of Static Homomorphically Encrypted Database

The general architecture and principles of our system are illustrated in Fig. 2. It is
based on two main processes: database protection and database integrity verification.
The protection process (see Fig. 2a), takes as input an encrypted database DB, in order
to embed a message M that will be available in the encrypted domain. This process
stands on three steps: a preprocessing step the purpose of which is to secretly reor-
ganize the database DB, into DB} based on the secret watermarking key K,,, followed
by the insertion of M in DB, to produce DB’", and the back reorganization of DB)" into
the watermarked encrypted database DB!'. The verification process works in a similar
way (see Fig. 2b). Considering a protected database EB\;V, based on the secret water-
marking key K, it first secretly reorganizes D/IEV, elements; the message M is
extracted and compared to the message M. Any differences between these two mes-

sages will: (i) alert the CSP of the database integrity loss; (ii) identify which attribute
values have been altered. We detail these different steps in the sequel.
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Fig. 2. General architecture of the proposed system. M, M and K,, are the embedded message,
extracted message and the secret watermarking key, respectively.

Data Protection. This process is constituted of three main steps:

Preprocessing — Secret Database Reorganization. The purpose of this step is to ensure
that a non-authorized user cannot access to M. It basically consists in secretly reor-
ganizing the database DB, into the database DB/, based on the secret watermarking key
K,,. In this work, we reorganize the database tuples in the ascending order of the
cryptographic hash values: hash(t;) = hash(K,||E[t;.PK, ripg]), where: || represents
the concatenation operator, #; PK is the primary key of the tuple #; and hash is the
cryptographic Secure Hash Algorithm-2(SHA-2). The security of this procedure thus
relies on the one of SHA-2 and, in particular, on its collision and diffusion properties
[19], as well on the knowledge of the watermarking key K,,.

Message Embedding for Integrity Control. The basic idea of this process stands in the
embedding of one bit of the message M into the hash value of a subset of encrypted
attribute values of the database. Assuming the database is constituted of k subsets, M is
thus a sequence of & uniformly distributed bits (M = {b;},_, ;. bi € {0,1}) secretly
generated based on the watermarking key K,,. The integrity of the database will be
verified by checking the presence of M into the subset hash values. Working with
subsets provides the capacity to identify which parts or attributes of the database have
been altered. This insertion step relies on two sub-steps:

i. Database partitioning in subsets — As illustrated in Fig. 3, the secretly reorganized
encrypted database DBY, is partitioned into k overlapping ‘subsets’ {B;},_, , of
3 x 3 elements.

ii. Insertion of one bit b; of M in an attribute subset By — B; is watermarked into B}’
such that b; = hash (B}V)v: s,, where s, represents the v bit of the cryptographic S
hash of B}, i.e. § = hash (B;V). The choice of the value of v depends on the
watermarking key K,,. Based on the fact it is not possible to predict the SHA-2
output for a given input, we use an iterative procedure so as to watermark B; into
B}'. The center element of a subset (e.g. E [t,-.Aj, r,-j] of the subset B; in Fig. 3) is
modified taking advantage of the homomorphic and semantic properties of the
Paillier cryptosystem as follows
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B =B ;
While b, # hash(B}"),
a=rand(.);
E[ti.A]-,ri]-a] = E[ti.Aj,rij]E[O, al; % E[ti.A]-,rij] center ele-
% ment of B}Y
End

where rand(.) is a uniform random function in ZI*(,,' Due to the “strength” of SHA-2,
there is half a chance to get the correct value of s, at each iteration.

Back Reorganization of the Watermarked Database DB}". Once all subsets water-

marked, the database DB)" is reorganized back so as to give access to the encrypted
watermarked database DB}

A, 4, A, A Ay Ap A

.
t: : : 3 %//////% H] b :

i1

- B '

Fig. 3. Partitioning of DB/ into subsets. Blue areas represent subsets in the database and hatched
areas represent the intersection between blue subsets and grey subsets. Note that standalone
attribute values are regrouped into independent subsets. (Color figure online)

Message Extraction and Database Integrity Verification. The integrity verification
of a protected database works in a similar way as the database protection. Let us

consider a suspicious database D/B\g Based on the secret watermarking key K,,, D/B\y is
secretly reorganized into D/BZW and partitioned into subsets. The cryptographic hash
value of each subset is computed and the bits of the message M are extracted from

these hashes. Any differences in between M and the a priori known or original
embedded message M will indicate the database has been altered. It is also possible to
identify/localize which subsets have been modified. As we will see in the experimental
section, this protection allows detecting different attacks like tuple suppression, tuple
addition or modification of encrypted attribute value.
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3.2 Watermarking of Updatable Homomorphically Encrypted Database

In this scenario, the user is allowed to remotely update the database. Database tuples
can be added, suppressed or modified. Being requested by an authorized owner, such
an update should not be at the origin of an alarm. We want to detect unauthorized
modifications like addition, suppression or modification of tuples by an intruder, for
instance.

Rather than re-watermarking the whole database using the previous scheme, we
propose a dynamic watermarking method which allows protecting the database integrity
on the fly with the capability to localize data modifications as before. To do so, our
scheme takes advantage of a journal table J; that contains some pieces of information
such as the historical details of all added or suppressed tuples. Beyond, the protection
and verification processes of this scheme are similar to those depicted in Sect. 3.1.

To give an idea about how our solution works, let us consider an already protected
database DB along its journal J,. As shown in Table 1, one record of J, is associated to
one tuple of DBY. Its components correspond to: the tuple identifier (e.g. the encrypted
primary key E[;.PK, ripk]), the action applied to this tuple: addition (A) or suppression
(S); and the binary message (m;) that has been embedded into the tuple. J; is organized
according to the chronological order database elements have been updated. As we will
see in the rest of this section, this organization will be used for verifying the integrity of
the database. It is important to notice that the elements of J; should only be known from
the CSP. To do so, the CSP encrypts J; record elements (see Table 1) and permutes
records using a permutation algorithm (PA) parameterized by a secret permutation key
K. PA is used in order to hide the chronological order of J; records. We will come
back on the security of this journal in Sect. 4.3.

Table 1. A sample view of the journal table J;.

Added(A)/Suppressed(S) | Identifier (Id;) | Embedded message (m;)
E[A, 14 E[ldy, ] E[my, ]
E[A, ry) Elldy, ;) E[my, Iy,
E[S, 3] E[lds, r3) E[m3, Iy,

In the following, we go into the details of our scheme. For the sake of simplicity,
we first present how it works when new tuples are added, before presenting its prin-
ciples when considering tuple suppression and authorized attribute value modification.

Protection on the Fly When Adding One New Tuple. To illustrate this process, let
us consider an encrypted watermarked database DB’ constituted of only two tuples as
shown in Fig. 4a. When a new homomorphically encrypted tuple indexed by ¢; is added
by a user, the CSP conducts the following steps:

1- The CSP decrypts J; and reorganizes the records of J; in their chronological order
using the permutation algorithm parameterized with the secret key K. Then the
CSP looks for the two previous last added tuples (that is to say the two last lines of
the database DB} — see Fig. 4a) accordingly to J;.
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2- As exposed in Fig. 4b, the CSP concatenates the new tuple to the two previous
ones and computes the relative attribute subset partitioning. This partition depends
on the position of the tuple in the database and can be simply computed based on #;
computation we cannot detail due to paper length limitation.
3- The cloud watermarks this set of tuples accordingly the two following sub-steps:
a. Bits of the message M are extracted from pre-existing but incomplete sub-sets
(i.e. subsets some attributes of which do not exist - e.g. B; in Fig. 4a) and are
next re-inserted into these subsets once these ones completed with the attribute
values of the new added tuple (see new version of B, on Fig. 4b).

b. New subsets, created after the addition of the new tuple (e.g. By in Fig. 4b), are
watermarked. To do so, the CSP secretly generates a sequence of bits based on
the watermarking key K,,, i.e. a sub-message m;.

After watermarking, the CSP adds to J; the record R, such as R, = <A,ld; =
E[t;.PK, ripg],m; > . J; is next secretly permuted before is encrypted.

||

(a) (b)

Fig. 4. (a) Initial protected database constituted of two tuples. Blue areas represent the
uncomplete subsets B; and Bz while grey areas represents the subset B;. t3, 14 and t5 correspond
to empty positions where new tuples should be added. (b) The database after concatenation of
new tuples to the two previous ones. Blue areas represent the subsets By and Bs completed. By is
a new subset created after the addition of new tuple in the database. (Color figure online)

Protection on the Fly When Modifying an Attribute Value. Let us consider a
protected database DB} . If an attribute value E [ti Aj, rl-]-] is updated by its user, the CSP
renews the database protection as follows:

1- The CSP decrypts J, and permutes its records based on K.

2- The database records are ordered accordingly the J; and the CSP finds the position
of the tuple #; as well as the subset partition that corresponds to the attribute value
that is updated by its owner.

3- The CSP extracts the message bit embedded from the corresponding subset and re-
inserts it once attribute value updated.

Notice that as such an update does not remove or add a new tuple, J, is not
modified.
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Protection on the Fly When Suppressing One Tuple. Let us now consider a pro-
tected database DB’ and that a user modifies it by suppressing the tuple ;. To update
the protection, the CSP proceeds as follows:

1- It decrypts J; and reorganizes its records. Then, based on J;, it reorganizes the
database and finds the position of the tuple #; in the database.

2- The CSP extracts the message from the subsets concerned by the suppression and
replaces it by an “empty” tuple, that is to say a tuple the encrypted attribute values
of which are set to zero or any other predefined value.

3- The CSP re-watermarks subsets using the extracted message while distinguishing
two distinct cases:

a. If the suppressed tuple contains the centers of some subsets, as illustrated in the
Fig. 5a, where #; contains the center of B)’, then these subsets are re-
watermarked by re-inserting the bit of the message by modifying with the help
of iterative procedure presented in Sect. 3.1, one of the encrypted attributes of
the tuples #;_; and #;,; out of the intersection of two subsets (as for example
one of the attributes identified in B}” by a red cross in Fig. 5a).

b. If the suppressed tuple # does not contain the centers of subsets, see Fig. 5b,
then the message is extracted from these subsets and re-embedded into them by
modifying their center element using iterative procedure presented in Sect. 3.1.

After message embedding, the CSP adds to J;, the record R, associated to the
suppressed tuple #;, and J; is secretly permuted before is encrypted.

-

. . V : 3 ‘\\\§ 3 :
§ - RN

L

£ : 5 : 8 :
_

(a) (b)

Fig. 5. (a) Update of the database protection in the case the suppressed tuple contains the
centers of subsets. Red outlines represent subsets concerned by the suppression of the tuple #; and
red cross indicates encrypted attribute values to modify when re-watermarking the data subset.
(b) Update of the database protection in the case the suppressed tuple do not contain centers of
subsets. Red and green outlines represent subsets concerned by the suppression of the tuple 7.
(Color figure online)
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Message Extraction and Integrity Verification. Let us consider a protected database

D/B\”e” the CSP wants to verify the integrity. To do so, the CSP has to conduct following
three steps:

1- The CSP decrypts and reorganizes J, and accordingly reorganizes @
2- The CSP starts by verifying the latest tuple updated in the database. For each tuple

t; to verify, the CSP finds tuple’s neighbors i.e. {fi_o, t;1, tit1, tit2}-

3- The integrity verification is conducted according to the action applied to #; and

reported in J;:

a. If ¢; has been added, only #;,_; and ¢, are needed so as to compute the subset
partition around to #. The CSP retrieves these tuples from J,, identifies the
subsets and extracts from them the message it next compares with the ones
stored in J,. Any difference will raise an alarm, indicating an unauthorized
alteration of #;, ¢;_1 or #;, 1 and the position of the suspicious subsets.

b. If #; has been suppressed, the CSP adds an “empty” tuple so as to compute the
subset partition. Two cases have to be considered depending on whether the
suppressed tuple contains subset centers or not. In the former case, the CSP has
to retrieve the tuples #;_; and #; ;| (see Fig. 5a) while in second, it needs to access
the tuples #;_», t;_1, t;11 and t; . » (See Fig. 5b). Once subsets constituted, the
CSP extract the message bits and compare them to the ones stored in J;.

It is important to notice that the above procedure allows detecting the tampering of
encrypted attributes. Other non-authorized modifications such as addition or suppression
of tuples will be identified with the help of J,. Indeed, added tuple will not be reorganized

and will appear as extra data, while suppressed tuples will not be retrieved D/B\;” .

4 Experimental Results and Discussion

The proposed watermarking scheme was experimented on a relational database con-
stituted of one table of 10 000 tuples issued from a real genetic database containing
pieces of information related to genetic variants of 57 individuals. Each tuple or line
containing information about a position in the genome. As shown in Table 2, each
tuple is represented by eight attributes that are chromosome (#chrom), position (pos),
identifier (id), reference (ref), alternative base(s) (alt), quality (qual), filter status (filter)
and additional information (info). In the sequel, the attribute pos, or more clearly its
encrypted version, is considered as the primary key as it uniquely identify one tuple.

Table 2. Sample view of the genetic database used in these experiments. One tuple containing
information about a position in the genome

#chrom | pos id | ref | alt qual filter | Info

21 9825790 |. |C |CT,G |1130.64|PASS|CSQ=G

21 9825796 |. |C |CGCGT |1179.35| PASS | CSQ=GCGT
21 9825809 . |G |A 1079.59 | PASS | CSQ=A
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This database was encrypted using Paillier cryptosystem with a public key encoded in
2048 bits so as to ensure a high level of security. In the case of static database
watermarking, this table was divided into 11 390 subsets where a uniformly distributed
binary message of 11 390 bits was inserted (see Sect. 3.1). The permutation of the
journal table J;, records was conducted using the permutation technique based on
indices vectors and described in [20]. In the sequel, we evaluate the performance of our
scheme in terms of: computation complexity, modification detection and localization
precision.

4.1 Computation Complexity

As shown in Sects. 2 and 3, message embedding and integrity verification processes are
performed by the CSP on encrypted databases. Whatever the scheme, static or dynamic,
message embedding consists in the insertion of one message bit into one subset of
encrypted attributes. To do so, an iterative procedure is applied (see Sect. 3.1) such that
the v bit of the hash value corresponds to the bit of the message. At each iteration, the
center of the subset (a Paillier encrypted attribute) is multiplied by the Paillier encrypted
version of the value zero with a different random value (see iterative procedure in
Sect. 3.1). Since the encryption of zero is of higher complexity than a modular multi-
plication, the computation complexity when watermarking one subset is bounded by
O(L) encryptions where L represents the number of iterations. Based on the fact, at each
iteration there is one chance out of two that the bit hash value corresponds to the
message bit, we thus have in average L = 2 with as consequence a watermarking
computation complexity bounded by O(2). Considering a static or dynamic database of
n subsets, the computation complexity is thus bounded by O(2n) encryptions. Regarding
the verification process, its computation complexity mainly depends on the calculation
of the subset hash values. However, such computation remains negligible compared to
the homomorphic encryption operations. Table 3 provides the computation time for the

Table 3. Computation time for message insertion and integrity verification in the case of the
protection of our test database.

Watermarking scheme Computation step Computation
time

Watermarking of a static encrypted Database encryption 24 min 43 s
database Message embedding in the database | 7 min 14 s

Database integrity verification 8s
Watermarking of a dynamic Message embedding if one tuple is | 0.1 s
encrypted database added

Message embedding if one tuple is | 0.1 s

suppressed

Integrity verification for one added |0.07 s

tuple

Integrity verification for one 0.09 s

suppressed tuple
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message embedding and the integrity verification of our test database. Notice that our
method was implemented in C/C++ with GMP library and all experiments were con-
ducted using a machine equipped with 8 GB RAM running on Ubuntu 18.04 LTS.

4.2 Dynamic Database Watermarking and Attack Detection

As stated in Sect. 3.1, three kinds of attacks have to be considered: “fuple suppression
attack”, “tuple addition attack” and “Encrypted attribute value modification attack”.
They can be the result of an intrusion in the system or of transmission errors.

“Tuple suppression” and “tuple addition” Attacks. For sake of simplicity, let us
consider the simple case where a hacker suppresses or adds one tuple in the database
DB} . As seen in Sect. 3.2, the integrity verification process relies on pieces information
stored in the journal table J;. In the case of an added tuple, the CSP will not find its
identifier in J; (see Table 1, Sect. 3.2) and will consequently raise an alarm. In the case
of a suppressed tuple, the CSP will not be able to retrieve it in the database and will
raise an alarm. In this case, in order to pursue the integrity verification of the whole

database, the CSP just has to add an empty tuple in @ (i.e. attacked version of DBY).
Based on the tuple identifiers stored in J;, the detection rate of such attacks is of 100%.

“Encrypted attribute value modification attack”. In this attack a non-authorized user
conducts homomorphic operations so as to damage or falsify some database elements.
Indeed, due to the fact data are homomorphically encrypted with the user public key;
he/she can make some operations so as to modify the database attribute values.

One can distinguish different integrity level checking: the subset level and the
database level. At the subset level, depending on the subset partitioning (Sect. 3.2 —
Fig. 4), if the altered attribute value is not at the intersection of two subsets, the
probability of not detecting such a modification is 2 due to the fact there is a half
chance that the message bit inserted in the hash subset changes (see Sect. 3.1 — per-
formance detection of SHA-2). If now the modified attribute belongs to two subsets
then the probability of non-detection is %. In any case, the probability of non-detection
in one subset is bounded by 5. At the database level, if a hacker modifies k subsets of

DBY, the probability of detection is bounded by 1 — (1/ 2)¥ which converges rapidly to
1 with the increase of k.

To experimentally evaluate the performance of our method against this attack, a
given percentage of attributes of our protected database DB’ were randomly modified:
0.001% (that is to say one attribute value has been modified in the database), 0.003%
(three attribute values modified), 25%, 50%, 75%, and 100%. As it can be seen in
Fig. 6 the successful detection of a tampered database depends on the number of
modified attribute values. For instance, if a hacker only modifies one attribute value we
have detection rate of 70%. We also compare in Fig. 6, the experimental detection rate
with the theoretical limit. Experimental results provide better performance.
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Fig. 6. Theoretical and experimental detection rates of our scheme in the case of the attribute
modification attack. Experimental results are given in average.

4.3 Security Analysis

The proposed watermarking scheme allows the CSP to control the integrity of
encrypted databases outsourced by different users. In the following, we discuss its
security in terms of data confidentiality and data integrity. We first start by analyzing
our scheme considering cryptographic attacks, which aims at breaking the data con-
fidentiality, and then focus on watermarking attacks which aims at breaking the
integrity protection of the database.

Encryption operations are performed using Paillier cryptosystem. The security
analysis of this cryptosystem has been investigated in [18]. Because we only exploit its
semantic security and homomorphic properties, there is no access to private parameters
like user’s data and private key. Even though, a hacker knows some watermarking
parameters (e.g. K,,, partitioning), this gives him no additional information about the
security parameters of the Paillier cryptosystem. Furthermore, the message embedding
does not modify the clear data thanks to properties of homomorphic encryption.
Therefore, the decryption operation is not compromised.

Regarding the integrity of the database, there are different attacks that a hacker can
perform over the database. For a static database, the message embedding in DB, and
the integrity verification of DB} depend on the watermarking key K,,. Without the
knowledge of K, it is extremely difficult for an attacker to identify and reorganize the
database subsets and find the location of the watermark. In fact, the partitioning and the
location of the bits of the message M within the hash of the watermarked subset depend
on K,,. Without this key, a hacker cannot distinguish the bits of M from the others.
Even though he knows the structure of the message M (the way it is generated), he can
only try an exhaustive search until he finds a valid message.

The security of dynamic database watermarking depends on the secret water-
marking key K,, and on the security of the journal J;. To ensure the confidentiality of J;,
this one is encrypted by the CSP which has to keep secret the encryption keys. Notice
that if J; is encrypted using a deterministic cryptosystem, some cipher-texts may leak
information about the plain-texts. That will be the case of the first column of the J;
which indicates if a tuple has been added or suppressed. Such an information leak can
support chosen plain-text attacks. Beyond, our scheme relies on a secret permutation
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algorithm of the records of J; using a secret permutation key K, so as to mask the
chronological order of users’ operations. Without K, it should be extremely difficult
for an attacker to identify the chronological order of records in J; and of the tuples in
the database neither. In this work we use the algorithm issued from [20] the security
analysis of which has been established. Anyway, even though a hacker knows the
secret permutation key K, he cannot permute J; because it is encrypted. Similarly,
even if a hacker knows the secret decryption key being able to decrypt the J;, without
K he cannot conduct the inverse permutation operations and reorganize DB'. He will
thus not be able to modify the database while ensuring the correct detection of the
watermark. As conclusion, in order to break the integrity of the journal table, a hacker
should dispose of both the secret permutation key K, and the secret journal decryption
key of the CSP.

5 Conclusion

In this paper, we have proposed the first watermarking scheme which allows verifying
the integrity of homomorphically encrypted databases taking advantage of the homo-
morphic and semantic security properties of such cryptosystems. Another main origi-
nality of this scheme is that it is dynamic, making possible to protect databases that are
updated by their owners (e.g. tuple additions, tuple suppressions and encrypted attri-
bute value modifications). Experimental results conducted on a genetic database show
that the proposed scheme provides very high detection and localization performance
capabilities; better alteration localization performance than watermarking schemes for
clear data. Future works will focus on adapting our method on genetic data so as to
ensure data integrity control when processing data.
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