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Preface

The 17th International Workshop on Digital Forensics and Watermarking (IWDW
2018) was held in Jeju, South Korea, during October 22–24, 2018. IWDW 2018,
following the principles of the IWDW series, aimed at providing a technical program
covering the latest and most sophisticated technological developments in the fields of
digital watermarking, steganography and steganalysis, forensics and anti-forensics,
visual cryptography, and other multimedia-related security issues. Among 46 sub-
missions from Europe, Asia, and North America, 28 papers for regular sessions and a
special session were selected for publication, including three papers for the best paper
awards. The selection was based on the reviews provided by 36 Program Committee
members, the general chair, and two Special Session Committee members.

Besides the regular presentations, one special session was held. “Deep Generative
Models (DGM) for Forgery and Its Detection” was organized by the general chair,
Chang D. Yoo. The aim of the session was to introduce up-and-coming issues related
to forgery with regard to the generative models considered in artificial intelligence. The
session provided a wonderful platform to exchange ideas regarding DGM and to
identify key challenges in detecting forged generated data including text as well as
image.

In addition to the paper presentations, the workshop featured congratulatory remarks
from the dean of Jeju University, Kyung Youn Kim, and three talks: (1) plenary talk
“Opportunities and Challenges for Blockchain,” presented by Professor Yongdae Kim
(Korea Advanced Institute of Science and Technology); (2) tutorial “Introduction to
Deep Neural Networks, Convolutional Neural Networks, and Generative Adversarial
Networks,” presented by Professor Junmo Kim (Korea Advanced Institute of Science
and Technology); and (3) a special guest talk “Forensic Watermarking Application in
Media Business by MarkAny,” presented by Go Choi (VP of MarkAny Strategy and
Business Development).

The best paper awards were given to the papers titled “VPCID – A VoIP Phone Call
Identification Database” by Yuankun Huang et al. (Shenzhen University, China);
“Comparison of DCT and Gabor Filters in Residual Extraction of CNN-Based JPEG
Steganalysis” by Huilin Zheng et al. (Sun Yat-sen University, China; New Jersey
Institute of Technology, USA); and “Reconstruction of Fingerprints from Minutiae
Using Conditional Adversarial Networks” by Hakil et al. (Inha University, South
Korea).

We would like to thank all of the authors, reviewers, lecturers, and participants for
their valuable contributions to IWDW 2018. Our sincere gratitude also goes to all the
members of the Technical Program Committee, special session reviewers, and our local
volunteers for their careful work and great efforts made in the wonderful organization
of this workshop.



Finally, we are certain that the readers will enjoy this volume and hope that it will
provide inspiration and opportunities for future research.

November 2018 Chang D. Yoo
Yun-Qing Shi

Alessandro Piva
Hyoung Joong Kim

Gwangsu Kim
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A Convolutional Neural Network
Based Seam Carving Detection

Scheme for Uncompressed Digital Images

Jingyu Ye(&), Yuxi Shi, Guanshuo Xu, and Yun-Qing Shi

Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA

jy58@njit.edu

Abstract. Revealing the processing history that a given digital image has gone
through is an important topic in digital image forensics. Detection of seam
carving, a content-aware image scaling algorithm commonly implemented in
commercial image-editing software, has been studied by forensic experts in
recent years. In this paper, a convolutional neural network (CNN) architecture is
proposed for seam carving detection. Unlike the existing forensic works in
detecting seam carving, where the feature selection and the pattern classification
are two separated procedures, the proposed CNN-based deep learning archi-
tecture learns and then uses more effective features via joint optimization of
feature extraction and pattern classification. Experimental results conducted on a
large dataset have demonstrated that, compared with the current state-of-the-art,
the proposed CNN based deep learning scheme can largely boost the classifi-
cation rates as the seam carving rate is rather low.

Keywords: Seam carving detection � Digital image forensics �
Content-aware image scaling � Convolutional neural network � Deep learning

1 Introduction

Due to the rapid development of image-editing techniques in the past years, digital
images can be easily edited or tampered with popular software such as Photoshop. To
reveal malicious image editing, digital image forensics [1] have been extensively
studied for the past decade. In this paper, we present a novel forensic approach to detect
the operation of seam carving [2] in digital images, specifically in uncompressed
images. Seam carving, also known as content-aware scaling, is one popularly utilized
image scaling algorithm and has been included in many predominant image editing
software, such as Photoshop and GIMP. By recursively deleting a seam (a horizontal or
vertical path of 8-connected pixels) with the lowest energy, the image size is altered
and the visually more important image contents can be well-preserved.

A few forensic works have been reported in the past several years to reveal traces of
seam carving in digital images. In the first piece of forensic work for seam carving
detection [3], Sarkar et al. proposed to utilize Markov transition probability to reveal
the trace of seam carving in digital images, specifically in JPEG compressed images.

© Springer Nature Switzerland AG 2019
C. D. Yoo et al. (Eds.): IWDW 2018, LNCS 11378, pp. 3–13, 2019.
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Later in [4], a hybrid statistical feature model was proposed by Fillion et al. to track the
operation of seam carving in uncompressed images based on energy distribution, seam
behavior and wavelet absolute moments. In [5], Lu et al. proposed an active forensic
approach to determine whether a received uncompressed image has been attacked by
seam carving or not by comparing the SIFT features pre-extracted by the sender with
the SIFT features extracted at the receiver end. Chang et al. [6] later presented a series
of statistical features based on the blocking artefact characteristics matrix to differen-
tiate non-seam carved JPEG images from seam carved JPEG images. This work was
further extended in [7]. In [8], Liu et al. proposed to employ the calibrated neighboring
joint density of DCT coefficients for the detection of seam carving in JPEG images, and
the extended works were reported in [9, 10]. In Ryu et al.’s work [11], the authors
designed a set of features based on energy bias and noise level to unveil the operation
of seam carving in uncompressed images. In [12], Wei et al. presented an interesting
approach to detect seam carving in uncompressed images. By dividing images into
2 � 2 mini-squares and categorizing each of the squares into nine types of predefined
patches, each square was possibly recovered to its original form. Then, Markov tran-
sition probability was applied to discriminate seam carved images from non-seam
carved images. Yin et al. [13] proposed a blind forensic technique to detect seam
carving in uncompressed images based on the similar idea proposed in [11]. In [13],
twenty-four features consisting of six newly designed features and eighteen features
proposed in [11] were extracted from the local binary pattern pre-processed images for
seam carving detection in uncompressed images. In [14], Ye and Shi proposed to
employ a set of energy features which extracted from local derivative pattern encoded
images to identify seam carved images. In [15], an advanced statistical model, con-
sisting of local derivative pattern, Markov transition probabilities, and subtractive pixel
adjacency model, are designed to determine if an image has been gone through seam
carving or not. The extended work of [14, 15] was presented in [16]. In [17], Zhang
et al. designed forty-two features to unveil the statistical properties of spatial and
spectral entropies (SSE). They were combined with local binary pattern (LBP)-based
energy features to detect seam carving image with low scaling ratio.

Most of the existing methods for seam carving detection as introduced, except [5],
are focusing on feature engineering, a Support Vector Machines (SVM) based classi-
fication scheme is applied to ensure better performance. In this paper, inspired by the
substantial successes achieved by convolutional neural networks (CNN) in computer
vision [18–20], and the success obtained by the CNN-based steganalysis work [21], we
propose and report a CNN architecture that includes both the feature extraction and
classification in a joint optimization framework to unveil the process of seam carving in
uncompressed digital images. As far as we know, this is the first work that successfully
applies deep learning for seam carving detection. Furthermore, as indicated by
experimental results, the proposed approach achieves almost perfect results at higher
scaling rates, and largely outperforms the state-of-the-art at lower scaling rates. The rest
of the paper is organized as follows: In Sect. 2, seam carving is briefly introduced.
Then, the proposed CNN structures are described in Sect. 3. The experimental results
are reported in Sect. 4. The conclusion is made in Sect. 5.

4 J. Ye et al.



2 Background of Seam Carving

The image scaling is a process to resize a digital image so as to satisfy certain geo-
metric requirement. However, the conventional image scaling schemes could not
always provide a promising visual quality after resizing because the image content is
not considered carefully by these algorithms. One example is shown in Fig. 1. As a
result, seam carving is designed to protect image content from being destroyed while
scaling is conducted.

For a given energy function eð:Þ, e.g., gradient, the importance of a pixel in image I
can be evaluated with its energy as shown below,

e I x; yð Þð Þ ¼ @

@x
Iðx; yÞ

����
����þ @

@y
Iðx; yÞ

����
���� ð1Þ

where x and y are the corresponding row and column coordinates, respectively. By
assuming the less important image content consists of lower energy pixels, seam
carving is to delete a seam with the lowest cumulative energy recursively so as to alter

(a) (b) 

(c) (d) 

Fig. 1. (a) an original image from UCID with a size of 384 � 512. (b), (c) and (d) are the
resized copies of (a) with the same size of 384 � 411 but processed by different scaling
techniques respectively: (b) bilinear interpolation, (c) cropping, (d) seam carving.

A Convolutional Neural Network Based Seam Carving Detection 5



the size of a given image. Note that a seam is a path of 8-connected pixels crossing the
image either from top to bottom (vertical seam), or from left to right (horizontal seam).
For instance, a horizontal seam sH in an n � m (height � width) image I can be
defined as:

sH ¼ sHi
� �m

i¼1¼ x ið Þ; ið Þf gmi¼1; s:t:8i; x ið Þ � x i� 1ð Þj j � 1 ð2Þ

where sHi represents the coordinates of each included pixel. Therefore, the optimal
horizontal seam s� can be shown below,

s� ¼ mins E sð Þ ¼ mins
Xm

i¼1
e I sHi

� �� � ð3Þ

where E sð Þ is the cumulative energy of seam s. As the optimal seam always has the
lowest cumulative energy, it is considered to be the least visually important and
unnoticeable in the image. Therefore, by removing multiple such optimal seams, either
horizontal seams or vertical seams, not only can the image size be altered, but also the
important image content could be well-preserved consequently.

3 Proposed CNN Architecture

CNNs has aroused tremendous interests since a remarkable success was achieved in the
ILSVRC-2012 competition by utilizing this advanced artificial intelligence technology
[18]. A typical CNN hierarchical architecture starts with multiple stages of convolu-
tional modules and ends with a classification module. A common convolutional
module includes a convolutional layer, an activation layer, and a pooling layer. The
convolutional layer is a trainable filter bank which can be considered as a feature
extractor. The activation layer brings non-linearity to the network and bounds the
extracted features. The pooling layer reduces the quantity of features extracted from
immediately prior convolutional layer to avoid overfitting. By stacking a series of
convolutional modules, hierarchical feature maps are extracted and then fed into the
classification module composed of one or more fully-connected layers, and the Soft-
max layer with cross-entropy loss. The classification module can transform feature
vectors to output probabilities for each class. Through back-propagation, weights and
biases in convolutional layers will be optimized so as to reduce the training loss, and
the power of the network will then be enforced to predict the labels of unseen data.

The overall architecture of the proposed CNN is illustrated in Fig. 2. Instead of
directly feeding the original images into the network, a high-pass filtering (HPF) layer
with kernel size of 5 � 5 � 1 (height � width � number of input feature maps) [21]
is employed to pre-process input images. In this way, we use the first convolutional
layer of CNN model as a pre-processing module. The trace of seam carving, i.e.
imperceptible discontinuity of image content, is a kind of weak high frequency signal,
which is greatly impacted by image content. Therefore, high-pass filter is employed at
the beginning so as to boost the signal-to-noise ratio. This can provide a good ini-
tialization to drive the whole network, hence achieve good performance as compared to
without doing it.

6 J. Ye et al.



Fig. 2. The proposed CNN architecture. Parametric setting of each layer is included in the
corresponding box.
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Following the HPF layer is the CNN hierarchical structure which consists of six
convolutional modules and one fully- connected linear classification module. In the
first convolutional layer (Conv1), the input, i.e., the pre-processed input image, is to be
filtered by 8 kernels of size 5 � 5 � 1 each. In the following convolutional layers
(Conv2–Conv6), there are 16 kernels of size 5 � 5 � 8 in Conv2, 32 kernels of size
5 � 5 � 16 in Conv3, 64 kernels of size 5 � 5 � 32 in Conv4, 128 kernels of size
5 � 5 � 64 in Conv5 and 256 kernels of size 5 � 5 � 128 in Conv6 respectively so
as to generate hierarchical feature maps.

Different from the conventional CNN module as introduced in [18], an additional
layer, called batch normalization (BN) layer [23], is employed between each convo-
lutional layer and the following activation layer. As the outputs generated by the
convolutional layer are normalized by the corresponding BN layer, the so called ‘in-
ternal covariate shift’ [23] is reduced which helps to accelerate the training speed and to
reduce the influence caused by poor initialization.

To increase the non-linearity of the proposed deep architecture, rectified linear units
(ReLU) are served as the non-linear activation functions in each of the convolutional
modules, as shown in Fig. 3. Comparing with other popular non-linear functions, such
as hyperbolic tangent and Sigmoid, ReLU has relatively simple form, i.e., gradient is 1
for positive inputs and 0 for negative inputs. Such characteristics could accelerate the
speed on training deep neural networks, and also avoid the vanishing of gradient
happens during the training stage [24].

Since the process of seam carving will remove lower energy pixels, those higher
energy pixels which normally have large intensity value are more likely remained in the
image. Due to this characteristic, focusing on the maximum pixel value of a local
region which is normally considered in computer vision intuitively insufficient to
discover the trace of seam carving. Therefore, average pooling is employed in the

Fig. 3. Rectified linear unit (ReLU).

8 J. Ye et al.



proposed CNN framework for spatial sub-sampling instead of max pooling popularly
utilized in computer vision. In the last pooling layer, namely, Pool6, the kernel size for
pooling is fixed to the spatial size of the input feature maps. Therefore, each input
feature map will be aggregated to one single number, which serves as a feature for the
classification. As there are 256 input feature maps to Pool6, 256 features are generated
and fed into the fully-connected linear classification module for each image.

ReLU xð Þ ¼ 0; x� 0
x; x[ 0

�

4 Experimental Results

Since there is no any image database which is publicly available and designed for the
forensic research on detecting seam carving, we implemented the seam carving algorithm
[2] in MATLAB and established 12 seam carved image sets based on the BOSSbase 1.01
[25], which is a benchmark image database for the research of steganalysis. It contains
10,000 never-compressed grayscale images with the size of 512 � 512. For each image
from the BOSSbase, the pre-implemented seam carving algorithm was utilized to reduce
the height by 5%, 10%, 20%, 30%, 40% and 50%, respectively. Therefore, 6 groups of
seam carved copies were acquired. Similarly, by scaling the width of each original image
with aforementioned various scaling rates, another 6 groups of seam carved copies were
generated. Consequently, 12 seam carved copies were obtained for each image in the
BOSSbase and thus 12 seam carved image sets were formed, i.e., ‘5%H’, ‘10%H’, ‘20%
H’, ‘30%H’, ‘40%H’, ‘50%H’, ‘5%V’, ‘10%V’, ‘20%V’, ‘30%V’, ‘40%V’ and ‘50%V’.
Specifically, ‘5%H’ stands for the height of each original imagewas scaled by 5%, ‘5%V’
mean the width was decreased by 5%. As a result, each seam carved set contains 10,000
seam carved images.

To evaluate the performance of the proposed CNN architecture, the experiments
were conducted to detect the 12 designed seam carving cases. In the experiments, the
proposed CNN architecture was constructed with Caffe toolbox [26], and stochastic
gradient descent was applied to train all the CNNs with the batch size of 64 images. We
fixed the momentum as 0.9 and the weight decay as 0.0005. The learning rate was
initialized to 0.001 and forced to decrease 10% after each 5000 iterations. To fairly
compare the performance with the state-of- the-art, we not only implemented and tested
methods proposed for seam carving detection [11, 13], but also examined the perfor-
mance of rich model [22] which represents the state-of- the-art of steganalysis. Each
method was tested on the 12 seam carving cases with linear SVM as the classifier [27].
Additionally, 2-fold cross validation was applied throughout the experiments.

As shown in Table 1, the proposed CNN architecture performs significantly better
than the two state-of-the-art of seam carving detection [11, 13] when the scaling rate is
below 30%. In particularly, our method achieves, respectively, 90% and 93% detection
accuracies in the experiments of testing ‘5%H’ and ‘5%V’, the two toughest cases,
which are 20% higher than performance achieved by both state-of-the-art.

The receiver operating characteristic curves (ROC) together with the corresponding
area under ROC curves (AUC) shown in Fig. 4 indicate that the proposed method
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Table 1. The performance of proposed CNN architecture and the state-of-the-art [11, 13, 22],
on detecting 12 seam carving cases.

5%H 10%H 20%H 30%H 40%H 50%H

Ref. [11] 65.92% 72.88% 82.78% 90.31% 95.01% 97.77%
Ref. [13] 70.26% 83.60% 94.35% 97.90% 99.16% 99.71%
Ref. [22] 86.89% 93.22% 96.95% 97.98% 98.60% 99.07%
Proposed 90.37% 95.18% 97.84% 98.76% 99.21% 99.56%

5%V 10%V 20%V 30%V 40%V 50%V

Ref. [11] 71.13% 79.83% 88.36% 93.18% 96.08% 97.79%
Ref. [13] 58.74% 71.50% 85.68% 93.31% 97.25% 98.97%
Ref. [22] 87.06% 94.74% 97.98% 98.82% 99.34% 99.60%
Proposed 93.99% 96.71% 98.55% 99.08% 99.45% 99.60%

Fig. 4. The ROC curves and their corresponding AUC illustrating all four tested methods on
detecting ‘5%H’, ‘5%V’, ‘10%H’ and ‘10%V’, respectively.

10 J. Ye et al.



outperforms the two seam carving forensic methods dramatically on detecting both
‘5%’ and ‘10%’ cases. It is also observed that rich model outperforms the [11, 13] on
those low carving rate cases although it still underperforms the proposed CNNs.
Notably, the detection accuracy increases monotonically with the increased carving rate

(a) 

(b) 

(c) 

Fig. 5. Images in the first column illustrate the ground truth of carved seams in the original
images with the carving rate equal to 5%. Heat maps in the second column are learnt from the
original non-seam carved images by the proposed CNN, while heat maps learnt from the seam
carved copies are shown in the third column.
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for all tested methods, and the gap between the proposed method and the tested prior
arts is getting smaller as well. The reason behind is that, overfitting is more significant
for the methods which are more complicated and more powerful on modelling, such as
proposed CNN and rich model as well, on detecting easy cases, i.e., detecting images in
which a large number of seams are carved out.

In Fig. 5, three samples are presented. The outputs of Conv5 for each sample and
the corresponding seam carved copies are visualized as heat maps to illustrate what can
be learnt by the proposed CNN. The region in the heat maps which has large value
indicates the ROI (region of interest) learnt by the deep neural network. It is observed
that the trained deep neural network can effectively discover the region where the
seams are deleted by learning from the seam carved copies, while irrelevant regions are
learnt from the non-seam carved images. This also illustrated the effectiveness of the
proposed CNN architecture on detecting seam carving.

5 Conclusion

In this paper, a convolutional neural network architecture has been established and
utilized for seam carving detection. It is the first deep learning framework on this
research topic as far as we know. Indicated by experimental results, the proposed deep
learning method can successfully detect seam carving in uncompressed digital images
and outperform the state-of-the- art in most of the experiments. In particular, the
proposed deep convolutional neural network has achieved remarkable performance on
detecting low carving rate cases, i.e., 5% and 10% carving rate cases. The performance
of deep neural network on detecting seam carving in compressed images, i.e., JPEG
images, needs to be further investigated. Therefore, the future work will be focusing on
the remaining questions. Overall, through our work, it has been shown that deep
learning could be a new direction for the forensic research on seam carving detection.
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Abstract. This paper proposes an effective steganalytic scheme based
on CNN in order to detect steganography on larger JPEG images. Most
of the CNN schemes were designed very deep to achieve high accuracy,
resulting in inability to train large size images due to the limitation of
GPUs’ memory. Most existing network architectures use small images
of 256 × 256 or 512 × 512 pixels as their detection objects which are
far from meeting the needs of practical applications. Meanwhile, the
resizing operation on stegos will make the slight noise signal caused by
steganography become difficult to detect. In our proposed network archi-
tecture, we try to solve the problem by compressing the depth of network
structure. And in order to reduce the data dimension, we apply a his-
togram layer to transform the feature maps to feature vectors before the
fully connected layer. We test our network on images of size 512 × 512,
1024 × 1024 and 2048 × 2048. For different application scenes, we take
two methods to generate large samples. The result demonstrates that the
proposed scheme can make directly training the steganalysis detectors
on large images feasible.

Keywords: JPEG steganalysis · Larger images · Histogram layer ·
Convolutional Neural Networks (CNN)

1 Introduction

Steganography is a covert communication method which uses multimedia files
to hide message imperceptibly. On the contrary, steganalysis is designed for
detecting the existence of secret information. JPEG format image is one of the
most popular digital media in our daily life, and there are many steganographic
algorithms designed for JPEG format, such as F5 [14], JRM [8], UED [3] and
J-UNIWARD [6]. To counter these algorithms, some feature-based steganaly-
sis methods have been widely used. The feature of steganalysis is a statistic
that distinguishes between a normal image and a secret image, we can get the
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statistics feature based on the Discrete Cosine Transform (DCT) coefficients or
transform the DCT coefficients to spatial domain, then form the JPEG-phase-
aware features from the spatial domain residuals. The latter method has better
effect. DCTR [5] and GFR [12] are the representative methods which exhibit
competitive performance.

Great success achieved by deep learning in other areas of image processing
has lead researchers to apply deep learning frameworks, such as Convolutional
Neural Networks (CNN) on detecting steganography. But the CNN was only
used in spatial-domain steganalysis at the beginning. Qian et al. [9] proposed
a pioneering architecture, the method integrates feature extraction and classifi-
cation into a CNN framework, and uses backpropagation methods to optimize
parameters. Qian et al. [10] improve the detection performance of low payload
tasks through transfer learning, at first they pre-trained the CNN model using
stego with high payload, then fine-tuning for stego with low payload, they proved
that the auxiliary information from the high payload model can be used to help
analyze the stego with a low payload. Xu et al. [16] improved the network model’s
capability by using more effective network structure units, for example, batch-
normalization layer, which is used to avoid falling into a local minimum. TanH
layer, which is used for preventing overfitting. Sedighi et al. [11] proposed a
histogram layer to simulate PSRM [4] models within the CNN framework. The
proposed method indicated that it may reduce the dimensionality of the PSRM
by using the kernels trained in CNN structure.

Research on steganalysis of JPEG Images is still insufficient, Xu et al. [15]
constructed a 20-layer network to detect J-UNIWARD, borrowed idea from
Resnet which is an excellent method in the field of computer vision. Mo et al. [2]
proposed a JPEG-Phase-Aware Convolutional Neural Network, which inserted
a PhaseSplit module to split the feature map by JPEG phase for boosting the
detection accuracy.

In order to obtain better detection effect, existing schemes generally use deep
network structures, but with the limitation of GPUs’ memory, it is not possible
to train the deep CNN net using large images. We can only train the model with
small images, typically 256 × 256 or 512 × 512 pixels. This is far from meeting
the needs of practical applications. To steganalyze large images, [13] proposed an
approach in which modified an existing CNN detector. They output statistical
moments (the average, minimum, maximum, and variance) of the feature maps
before entering the fully-connected layers of the network, trained the network
with moments on small tiles, then regarded the front part of the network as
a “universal feature extractor” and retrained the fully-connected layers of the
network to adapt to a different input image size. This is an indirect method to
detect large images.

In this paper, we propose an architecture to directly detect steganography on
large images. We reduce the depth of network structure, and apply histogram
layer to reduce data dimension. People often get images from the Internet as
steganography covers, but these images are usually small. To embed more mes-
sages, people resize the images to the larger sizes. On the other hand, people take
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photos themselves as steganography covers, these images are usually very large.
For the convenience of processing and transmission, people resize the images
to appropriate size. So we take two methods to generate large samples. The
experiment, examining J-UNIWARD on standard datasets of size 512 × 512,
1024 × 1024, 2048 × 2048, has shown that directly detecting large images can
achieve a good performance.

The rest of this paper is organized as follows. In Sect. 2 we will overview the
rich model and introduce the function of histogram layer. The architecture of
our network is presented in Sect. 3. Experiments and discussion are presented in
Sect. 4. Conclusion and future work are contained in Sect. 5.

2 Overview of Rich Models and the Function
of Histogram Layer

Rich models are the most widely used method in steganalysis, and it can be used
for reference in design of CNNs network. We will give an overview of rich model,
and gather insight from it. DCTR and GFR are the most popular handcrafted
features to detect steganography on JPEG images, the extraction process is
shown in Fig. 1.

Fig. 1. The extraction process of rich model features.

First, transform the input data of JPEG format to the spatial domain. Then
let the images pass through a set of filter banks, DCT filters or Gabor filters.
Next, take the absolute values of the residual. And for convenience of calcula-
tion, quantify its value and further truncate with a threshold value. After that,
generate a series of small feature maps through down sampling. Finally, project
the residual maps to the histogram to get the histogram features.
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Histogram feature has been proved to be effectual in rich models, so
researchers try to use histogram structure in CNN framework. [11] implements
a new layer that simulates the formation of histogram to obtain the histogram
feature in CNN. They select Gaussian kernel as histogram bin to allow the back
flow of gradients through the layer, then use the back-propagation algorithm to
optimize the parameters. The values of the histogram bin B(k) of each histogram
bin center at µk ∈ {−3.5,−2.5, ..., 2.5, 3.5}, the values are computed by (1).

B(k) =
1

MN

M∑

i=1

N∑

i=1

e− (xij−μk)2

σ2 (1)

xij is the element of feature maps, this operation projects each feature map onto
a vector which only has 8 values (Fig. 2).

Fig. 2. Reducing dimension using histogram layer.

In the previous network structure, pooling layer is used to reduce the feature
dimensions and retain main properties of input data, which will undoubtedly loss
a lot of useful information. In our network structure, we modify the histogram
layer and put it before fully connected layer to replace the pooling layer, which
can make full use of all information and greatly decrease parameters to make
it possible to detect steganography directly on large images. In next section we
will illustrate the using method of histogram layer in detail.
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3 Network Architecture

In this section, we experiment two kinds of structures with histogram layer to
get the best capability. The two structures are shown in Figs. 3 and 4.

In both structures, we first transform the images from the frequency
domain to the spatial domain, then let the images go through a set of filter
banks to project single input to different frequency bands. Afterward we use
an absolute value activation (ABS) layer in structure II to facilitate statisti-
cal modeling and match different histogram layer. A truncation layer is used
in both structures to limit the range of input data. The most important block
convolutional layers are used to extract feature maps. In structure I, each block
is formed by a convolutional layer of 3 × 3 kernel, a TanH activation function
layer, and a batch normalization layer. Different from structure I, we use ReLU
activation function in structure II. After we get the feature maps, we introduce
an average pooling layer of size 16 × 16 with stride 1, which can help to enhance
model stability. After that, we project the feature maps on the histogram layers.
The fully connected layer is placed at the end to complete the tasks of classifi-
cation. Subsequently, we will introduce the function and the detailed parameter
selection of each part of the network.

3.1 High Pass Filter

The signal caused by information hiding is far slighter than the content itself in
steganography. So in order to capture the subtle distinctions introduced by the
steganography algorithm, high pass filter (HPF) is used to reduce the impact
of content information. It is worth mentioning that the type of HPFs has a
great influence on the final detection accuracy and the convergence speed of
the network. In our experiments, we test two kinds of HPFs, the DCT kernels
of size 4 × 4 used in [15] and the Gabor kernels of 8 directions and 5 scales.
In general, small size Gabor kernels extract the global features and big Gabor
kernels extract the detail features which are sensitive to interference. So we use
the Gabor kernel of size 8 × 8, as shown in Fig. 5. The experiments show that
simple application of Gabor kernel does not improve the detection performance,
on the contrary, it reduces the detection accuracy and slows the convergence
speed. It should be researched for further study.

3.2 Truncation

After passing through the high-pass filters, we take a truncate operation, it can
limit the range of input data to avoid the effects of extreme values. We test the
global threshold value of 6, 8, 12 the threshold of 8 achieves the best experimental
result.
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3.3 ABS Layer

In the structure II, we add an ABS layer after the HPF. An absolute value oper-
ation is performed on each input data, this operation can eliminate the influence
of symbol, just as the traditional methods do. We don’t do quantification, it will
slow the convergence.

Fig. 3. Proposed CNN architecture I.
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Fig. 4. Proposed CNN architecture II.



Convolutional Neural Network for Larger JPEG Images Steganalysis 21

Fig. 5. 8 directions and 5 scales Gabor kernels.

3.4 Convolutional Layer

The convolutional layer is the main component in CNN. In our proposed network,
we use convolutional layers of size 3 × 3 and stride 1 to capture the features of
input data. In the rich model methods, they obtain small feature maps through
down sampling. To get better results, we use convolutional layer of stride 2 to
get small feature maps through learning.

3.5 Batch Normalization Layer

The Batch Normalization layer (BN layer) is widely used in CNN to solve the
problem of gradient disappearing and gradient explosion. Besides, it can decrease
the danger of overfitting, accelerate the speed of convergence and increase the
detection accuracy. It is usually placed before the activation layer.

3.6 Activation Function

In order to increase the expressiveness of the model, we introduce nonlinear
factors through the activation function in eaYch convolutional block. TanH and
ReLU is the most commonly used activation function. TanH can effectively limit
the range of input data, and remove sparse or unfavorable values to the statistical
model. ReLu can avoid the problem of gradient disappearing as the network go
deep and accelerate training. According to different symbolic characteristics, we
use TanH in structure I, and ReLU in structure II.
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3.7 Average Pooling

We introduce an average pooling layer of stride 1, it can avoid overfitting without
losing information. Besides, it can enhance the capability of difference - aware-
ness. When we change one DCT coefficient in JPEG images, it will cause changes
of corresponding 8 × 8 pixels in the decompressed images, then more changes
are caused in the residual images through convolutions, as shown in Fig. 6, but
many positions are still invariable, so we use the pooling to diffuse difference.

Fig. 6. Effect of modifying DCT coefficient on residual filter image.

3.8 Histogram Layer

In structure I, we use the same histogram layer as [11], as shown in Fig. 7(a),
it obtain the positive and negative values at the same time. In structure II, we
modified the histogram layer like Fig. 7(b), it only obtain the positive values,
and we test the threshold value of 4, 6, 8. Although increasing the threshold
value can slightly improve the accuracy, the speed of training is going to drop a
lot, so we set the threshold value to 4.

3.9 Fully Connected Layer

In the network, the function of the fully connected layer is to implement the
classification. It maps the features to the label space of samples. The parameters
of FC layer account for 80% of the entire network. So reducing the parameters
of the fully connected layer is important to detect large images.

3.10 The Depth of the Network

Generally, the deeper the network is, the more expressive it is, and the more
training data it can handle. Researchers try to get a high detection rate by
using a very deep network, which makes the parameters of a model increase
a lot. In the field of computer vision, one view has been point that when the
depth reaches a certain level, simply superposing the same architecture can’t
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Fig. 7. Histogram layer: (a) Original histogram layer. (b) New histogram layer.

significantly improve the performance, new architecture and new component is
essential. And through compressing model, we can get a small network with good
performance, the deep of network should match the difficulty of the task.

Obviously, it is not possible to train very deep network on large images. In
order to reduce the number of parameters to an acceptable range, we must reduce
the depth of the network. Convolution blocks’ number of 3, 4, 5 and 6 has been
tested. Finally, to balance the detection accuracy with memory constraints, we
use three convolutions of stride 1, and two convolutions of stride 2. We managed
to fit this CNN in a single GPU with 16GB memory. It is essential for the CNNs
to reduce the spatial resolutions by pooling layer. In our CNN, reduction of
dimension is achieved by convolutional layers of stride 2, after which the spatial
sizes of data are cut by half and the number of channels doubles.

4 Experiments

4.1 Dataset and Setting

In this paper we use the dataset BOSSbase v1.01 [1] which includes 10,000 uncom-
pressed cover images. To generate covers for JPEG steganography, the images are
compressed with QF75, and then resized to 1024 × 1024 and 2048 × 2048 from
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512 × 512 BOSSbase images or from the native resolution images of RAW format
to illustrate the influence of the method to generate large samples. The correspond-
ing stegos are generated through embedding data into the compressed images using
J-UNIWARD as the steganographic method in our study, which is one of the most
secure steganography algorithms in the JPEG domains. Hence, for each classifica-
tion problem, the dataset contains 10,000 cover-stego pairs. The embedding rates
are set to 0.1, 0.2, 0.3, and 0.4 bpnzAC on 512 × 512 and 1024 × 1024 images.
Because it takes a lot of time to make large sample images, we use 0.2 and 0.4 bpn-
zAC on 2048 × 2048 images. The corresponding performances achieved by GFR
are used as contrast experiments. We train all networks on a NVIDIA Tesla P100
GPU with 16G graphics memory. The Caffe toolbox [7] is used to implement the
CNNs.

In training, we set the initial learning rate to 10−3 and we use exponential
decay function with a decay rate of 0.9. Additionally, learning rate changes
every 5000 training iterations. For 512 × 512 images, the batch size of each
iteration is 32 (16 cover/stego pairs) in training stage, and 10 (5 cover/stego
pairs) in validation stage. For 1024 × 1024 images, the batch size of each iteration
is 16 (8 cover/stego pairs) in training stage, and 10 (5 cover/stego pairs) in
validation stage. And for 2048 × 2048 images, the batch size of each iteration is 4
(2 cover/stego pairs) in both training stage and validation stage. The parameters
of the convolution layers are initialized via zero-mean Gaussian distribution with
standard deviation of 0.01, and bias learning is disabled. Fully-connected layers
are initialized using Xavier method.

4.2 Results

Tables 1, 2, 3 and 4 show the final ensemble results on the BOSSBase using
the CNN in Fig. 4. As we can see, the performance of the proposed CNN out-
performs the feature-based method GFR in almost all experiments, except for
the experiments on the 2048 × 2048 images resized from the native resolu-
tion images of RAW format. Obviously, we can see the accuracy rates detect-
ing the large images directly are excellent, which illustrates that our scheme is
feasible. Different from the [13], which detects steganography on larger spatial
domain images, our method achieves the detection of steganography on larger
JPEG images. Furthermore, the time cost does not increase significantly when
we train the models on large images. The method of resize has a great influence
on the results of the experiments. The large stego images resized from 512 × 512
BOSSbase images are easier to detect. The performance is not satisfactory when
we directly detect the 2048 × 2048 images of low embedding rate and the images
resized from the native resolution images of RAW format. Instead of training
from scratch, we use parameters obtained from the tasks of higher embedding
rates or the task of small images to fine-tine the model, and get a better result
(Fig. 8).
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Table 1. Classification errors on 512 × 512 images

Embedding rates (bpnzAC)

0.1 0.2 0.3 0.4

GFR 0.4082 0.2866 0.1785 0.1026

Proposed 0.3718 0.2432 0.1502 0.0632

Table 2. Classification errors on 1024 × 1024 images resized from small images

Embedding rates (bpnzAC)

0.1 0.2 0.3 0.4

GFR 0.358 0.1945 0.0817 0.0507

Proposed 0.3184 0.1656 0.054 0.0255

Table 3. Classification errors on 1024 × 1024 images resized from large images

Embedding rates (bpnzAC)

0.1 0.2 0.3 0.4

GFR 0.378 0.255 0.156 0.0737

Proposed 0.361 0.236 0.142 0.0526

Table 4. Classification errors on 2048× 2048 images resized from small(S) or large(L)
images

Embedding rates (bpnzAC)

(S)0.2 (S)0.4 (L)0.2 (L)0.4

GFR 0.0902 0.0272 0.1936 0.0652

Proposed 0.0682 0.0121 0.2265 0.0956

Table 5. Comparison of memory requirement with XU’s net

Memory requirement (MB)

512 × 512 1024 × 1024 2048 × 2048

XU’s net 10361 - -

Proposed 5917 12319 13933
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Fig. 8. Validation errors versus training iterations of proposed CNN at different embed-
ding rate. (a) 512 (b) 1024 (Resize from small images) (c) 1024 (Resize from large
images) (d) 2048 (Resize from small images)

4.3 Memory Size Comparison

Table 5 shows the needed memory compared with Xu’s net, and we can see that
the proposed structure greatly reduces memory requirements, which can bring
a lot of benefits, such as enhancing the network training speed, quickly testing
the effects of some structures, facilitating the adjustment of parameters. We can
train the model with even less memory by reducing the size of batchsize.

5 Conclusions

CNN-based Steganalysis has exceeded the performance of detectors using the
rich model. However, the inability to directly detect large images limits its appli-
cation. The leading CNN detectors for steganalysis use a rather small tile as
their input or fine-tune the model trained on small tiles to indirectly handle
larger images. Aiming at this issue, we propose a shallow steganalytic network
which contains histogram layer to detect steganography on large JPEG images.
We test two different structures based on the histogram layer characteristics,
then we select the better scheme and do further optimization. The experiment
show detecting large images has better detection accuracy and faster conver-
gence speed, which demonstrates directly train on large images is feasible and
effective.

In our future work, we will further optimize our CNN scheme to detect
larger images directly. We will use different steganography algorithm, and further
improve the accuracy by using more effective HPF kernels.
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Abstract. An effective feature selection method to capture the weak
stego noise is essential to image steganalysis. In the conventional JPEG
steganalysis, Gabor filter and DCT filter are both used for residual
extraction. However, there are few comparisons in existing convolutional
neural networks (CNNs) based JPEG steganalysis using Gabor filter
or DCT filter in the pre-processing stage to extract residuals. In this
paper, we compare the performance of DCT filter with Gabor filter in
the pre-processing phase of the steganalysis CNN. Firstly, we choose the
parameters empirically and theoretically for Gabor filters which are used
in CNN. Secondly, we improve the performance by removing the ABS
layer in the original XuNet. Finally, the experimental results show that
using Gabor filters or DCT filter can achieve comparable performance
whenever the parameters of pre-processing filters are fixed or learnable.
It’s different from the conventional steganalysis method where Gabor
filters have advantages over DCT filters. When the parameters of the
pre-processing filters are learnable, both Gabor filter and DCT filter
can achieve better performance compared with the condition where the
parameters are fixed.

Keywords: JPEG steganalysis · Gabor filter ·
Convolutional neural networks (CNNs)

1 Introduction

Steganography is a kind of covert communication method which embeds a secret
message into a cover object to hide the presence of the message itself. Steganaly-
sis, contrary to the steganography, is the technique to detect messages hidden in
digital media. Owing to the convenient access to digital images on the Internet
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and the extensive use of JPEG format images, the research on JPEG steganog-
raphy and steganalysis has academic significance and application value.

Modern JPEG steganographic schemes are usually content adaptive, e.g.
UED [8], UERD [9] and J-UNIWARD [10]. They minimize a carefully designed
distortion function such that embedding changes are restricted to complex
regions which are difficult to be modeled. The JPEG-phase-aware features, which
are assembled as the histogram of noise residuals split by the 8 × 8 pixel grids,
are widely used by content adaptive steganalysis methods like Phase Aware Rich
Model (PHARM) [12], DCT Residuals (DCTR) [11], and Gabor Filter Residu-
als (GFR) [18]. Remarkably, GFR extracts the statistical features from multiple
scales and orientations, and significantly improves the detection performance
against the content adaptive JPEG steganography. By incorporating the chan-
nel selection knowledge into GFR, the selection-channel-aware(SCA)-GFR [5]
has achieved the most accurate detection among the conventional methods.

Due to the overwhelming superiority of CNN in computer vision, the novel
detection architectures with CNN have been proposed for spatial steganalysis
[16,20,21] and JPEG steganalysis [2,19,24]. Zeng et al. [24] designed a hybrid
deep-learning framework containing three sub-CNNs with 5 × 5 DCT filters to
extract image residual. Xu [19] proposed a 20-layer CNN (XuNet in short) which
extract the residuals by 4 × 4 DCT filter bank and achieves the state-of-the-
art JPEG steganalysis performance in detecting J-UNIWARD. Chen et al. [2]
proposed JPEG-phase-aware steganalysis and used a combination of Gabor fil-
ter, Fkv filter ‘SQUARE5 × 5’ from the spatial rich model [6] and its comple-
mentary point high-pass filter to suppress the image content and increase the
high-frequency stego signals.

In this paper, the performance of CNN using Gabor filters and that using
DCT filters in the residual extraction of JPEG steganalysis has been compared
in two different cases: filter parameters are learnable or fixed during the training
phase. In the next section, we give a brief introduction of the Gabor filter and
its property, then present the overall CNN architecture. In Sect. 3, we evaluate
the performance of Gabor filters and DCT filters in image residual extraction of
CNN architecture and the paper is summarized in Sect. 4.

2 The CNN Architecture with Gabor Filters

In this section, we firstly introduce 2D Gabor filter and its important properties
and then the CNN architecture of JPEG steganalysis is presented.

2.1 Gabor Filters

Based on Gabor transform, Daugman proposed 2D Gabor filters [4] and pointed
out that the family of 2D Gabor filters can achieve the theoretical lower bound
of joint uncertainty in the two conjoint domains of visual space and spatial
frequency. 2D Gabor filter is a sinusoidal plane wave modulated by a Gaussian
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kernel function:

Gλ,θ,φ,σ,γ(x, y) = e(−
u2+γ2v2

2σ2 ) cos(2π
u

λ
+ φ) (1)

where

u = x cos θ + y sin θ, v = −x sin θ + y cos θ (2)

λ represents the wavelength of the sinusoidal factor, σ = 0.56λ is the standard
deviation of the Gaussian modulation and represents the scale parameter, the θ
represents the orientation of the 2D Gabor filter, γ represents the spatial aspect
ratio and specifies the ellipticity of the support of the Gabor function, and φ is
the sinusoidal wave phase offset.

For φ = {0, π/2}, Gabor filter satisfies the property:

Gλ,θ,0,σ,γ(x, y) = Gλ,θ+π,0,σ,γ(x, y) (3)
Gλ,θ,π/2,σ,γ(x, y) = −Gλ,θ+π,π/2,σ,γ(x, y) (4)

the absolute value of residuals extracted with Gλ,θ,φ,σ,γ(x, y) is the same as that
with Gλ,θ+π,φ,σ,γ(x, y). Besides, the parameters of Gλ,θ,φ,σ,γ(x, y) equal to the
filter parameters of horizontally flipped Gλ,π−θ,φ,σ,γ(x, y).

GFR [18] uses 256 Gabor filters to extract multiple residual, in which the
Gabor filter has 32 directions θ = {0, π

32 , 2π
32 , ..., 31π

32 }, two phase offset parameters
φ = {0, π/2}. Parameter σ = {0.5, 0.75, 1, 1.25} for JPEG quality factor(QF)
75 and σ = {0.5, 1, 1.5, 2} for QF 95. Besides, all the Gabor filters in GFR are
made zero-meaned by subtracting the kernel mean from all its elements to form
high-pass filters.

It’s of significance to extract steganography signal from multiple orientations
and scales for steganalysis. Orientation θ and scale σ are the most important
parameters in Gabor filter. Considering the property of Gabor filter and the
priori knowledge of GFR, we select the orientation parameter θ in CNN pre-
processing stage from 0 ≤ θ ≤ π/2 to reduce feature redundancy and computer
resource. And σ is selected from the set σ = {0.5, 0.75, 1, 1.25}. The experimental
results with different parameter selection are shown in the third part of the next
section.

2.2 The CNN Model

For the case where the pre-processing filters’ parameters are fixed, we adopt the
CNN architecture of XuNet [19], which uses sixteen 4 × 4 DCT kernels B(k,l)

to extract image residual:

B(k,l)
mn =

wkwl

4
cos(

kπ(2m + 1)
8

) cos(
lπ(2n + 1)

8
) (5)

where
w0 = 1, wx =

1√
2
for x > 0, 1 ≤ k, l ≤ 4, 1 ≤ m,n ≤ 4
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Fig. 1. The steganalysis method with Gabor filters and XuNet.

We replace the DCT kernels in XuNet with the Gabor filters to make com-
parison between the filters. The CNN architecture is shown in Fig. 1, which
consists of the residual extraction and a 20-layer CNN. In the pre-processing
stage, an input JPEG image is firstly decompressed into the spatial domain
without rounding, then is convolved by twenty 8 × 8 Gabor filters. An ABS
layer follows the residual extraction to obtain the absolute value of coefficients in
frequency subbands. Then the residual is further truncated by a global threshold
to limit the range of input data and speed up the convergence. After the residual
extraction, all the convolutional layers adopting 3 × 3 kernels and each convo-
lutional layer is followed by Batch Normalization (BN) [13] layer and Rectified



Comparison of DCT and Gabor Filters in CNN Based JPEG Steganalysis 33

Linear Unit (ReLU) activation function [15]. All pooling operations except the
last global average pooling are carried out by 3 × 3 convolution kernels with
stride of 2. The structure of shortcut connections is used in the architecture to
overcome the gradient vanishing problem. In this work, we remove the ABS layer
in XuNet(Fig. 1) to further enhance the detecting performance. Similar to [22]
and [23], we also consider using learnable pre-processing filters’ parameters to
extract more effective residual while filters parameters in XuNet are fixed during
network training.

3 Experiment and Analysis

3.1 Datasets

In this paper, we focus on the detection of UED, UERD, and J-UNIWARD.
All images of each dataset are shuffled first and then embedded with payload
sizes 0.1, 0.2, 0.3 and 0.4 bpnzAC respectively to create the corresponding stego
images. Two image datasets are used for experiments.

BOSSbase. The standard database BOSSbase v1.01 [1] contains 10,000 raw
images with size of 512 × 512. The images are first cropped from the central
256 × 256 block and then JPEG compressed with quality factor 75. For each
payload, 6,000 cover-stego pairs are randomly selected as training set, 1,500
cover-stego pairs are selected for validation and the remaining 2,500 pairs are
selected for testing.

ImageNet. 100,000 images are randomly selected from large-scale ImageNet
ILSVRC 2013 classification dataset [17]. All the images are cropped from the
central part to resize to 256 × 256, then convert to grayscale and JPEG com-
pressed with quality factor 75. For each payload, 85% of images are randomly
selected for training, 5% for validation and 10% for testing.

3.2 Platform and Hyperparameter Settings

Caffe toolbox [14] is used to implement the proposed method. We use mini-batch
stochastic gradient descent optimizer (SGD) to train the CNNs in this paper. A
batch, containing 32 cover-stego pairs in ImageNet or 16 cover-stego image pairs
in BOSSbase, is fed to network for each training iteration. The momentum is set
to 0.9, the learning rate is initialized to 0.001 and then decreased by 10% every
5000 training iterations. A zero-mean Gaussian distribution with standard devi-
ation of 0.01 is used to initialize the parameters of the convolutional kernels. Bias
learning is disabled in convolutional layers but fulfilled in BN layers. Parameters
in the final fully-connected (FC) layer are initialized using “Xavier” [7] initial-
ization. Weight decay (L2 regularization) for the FC layer and the updated filter
layer is set to 0.01.

Each input image pair is randomly rotated by a multiple of 90 degrees or hor-
izontally flipped in a synchronized manner to ensure that the difference caused
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by data embedding can be learned by the proposed CNN. The maximum number
of iterations is 90000 and the parameters of the CNN are saved after every 500
training iterations. Five models performing best on validation set are selected
for testing and the ensemble result of them is regarded as the final result.

3.3 Gabor Filter Settings

XuNet adopts sixteen DCT filters in the pre-processing stage, the number of
Gabor filters in the variant CNN should be set as a similar number to adapt
to the network architecture. We set φ = {0, π/2}, and then choose σ from
{0.5, 0.75, 1, 1.25}, and select θ from 0 ≤ θ ≤ π/2. Firstly, we set orientation
θ = {0, π/8, 2π/8, 3π/8, 4π/8} and test the influence of σ. Table 1 shows the per-
formance of detecting J-UNIWARD with different sigma parameters, σ = 0.75
and σ = 1 obtain the best performance for both high and low payload, and
σ = 1.25 is obviously worse than the others. The results on combination of two
different sigma parameters are shown in Table 2. It can be found that using
more scale values can enhance the detection performance. The best performance
is achieved when σ = {0.75, 1}, i.e. σ is chosen to be both 0.75 and 1.

Table 1. Detection Accuracy (%) of Gabor filter bank with different σ parameters for
J-UNIWARD on BOSSbase

Payload (bpnzAC) σ = 0.5 σ = 0.75 σ = 1 σ = 1.25

0.1 55.45 55.5 55.98 54.46

0.4 82.3 83.94 82.8 78.78

Table 2. Detection Accuracy (%) of Gabor filter bank with different combination of
σ parameters for J-UNIWARD on BOSSbase

Payload (bpnzAC) σ = {0.5, 0.75} σ = {0.5, 1} σ = {0.75, 1}
0.1 57.92 57.4 58.16

0.4 84.6 84.9 85.54

For σ = {0.75, 1}, the J-UNIWARD detection accuracies with different ori-
entations are shown in Table 3. For example, the orientation {0, 1, 2} × π/4 in
Table 3 means that the orientations are 0, π/4 and π/2 and each orientation
corresponds to two different scales and two phase offsets, totally 12 filters are
contained in the filter bank. It can be observed from the first three rows in Table 3
that the detection accuracy increases and then gets down along with the increas-
ing number of orientation. The turning point is θ = {0, 1, 2, 3, 4}×π/8. By com-
paring the performance of θ = {0, 1, 2, 3, 4}×π/8 with θ = {0, 1, 2, ..., 7}×π/8, we
can observe that the Gabor filter with orientation range [0, π) has no advantage
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Table 3. Detection Accuracy (%) of Gabor filter bank with different orientations for
J-UNIWARD on BOSSbase

Embedding rates (bpnzAC) 0.1 0.2 0.3 0.4

{0, 1, 2} × π/4 58.40 69.32 78.2 84.18

{0, 1, 2, 3, 4} × π/8 58.16 69.42 79.40 85.54

{0, 1, 2, ..., 7, 8} × π/16 57.78 68.70 78.44 85.40

{0, 1, 2, ..., 7} × π/8 58.44 69.16 78.20 84.16

Table 4. Detection Accuracy (%) of Gabor filter bank with different γ parameters for
J-UNIWARD on BOSSbase

Payload (bpnzAC) γ = 0.5 γ = 1

0.1 57.06 57.4

0.4 83.9 84.9

over [0, π/2], which verifies our analysis in Sect. 2 that θ should be within [0, π/2].
For the following experiments, we set orientation θ = {0, π/8, 2π/8, 3π/8, 4π/8}.

Noticeably, the aspect ratio γ is set as 1 in this paper, where the support
of the Gabor function is circular. The performance of Gabor filter with γ = 1
and γ = 0.5 is compared in Table 4. With φ = {0, π/2}, σ = {0.75, 1} and
θ = {0, π/8, 2π/8, 3π/8, 4π/8}, we can find that Gabor filter with γ = 1 achieves
better performance on detecting both 0.1 and 0.4 bpnzAC payload.

Based on theoretical analysis and experimental results, the Gabor filters
parameters used in the following experiments are set as: γ = 1, φ = {0, π/2},
σ = {0.75, 1}, θ = {0, π/8, 2π/8, 3π/8, 4π/8}.

3.4 Results on the BOSSbase

The DCT filters used in this paper are the same as the setting of XuNet [19]
which adopts sixteen 4 × 4 DCT basis patterns. As indicated above, the amount
of the 8 × 8 Gabor filters is 20. The steganalysis method with Gabor filters and
XuNet is shown in Fig. 1. In the architecture of XuNet one ABS layer is used.
When the DCT and Gabor filter parameters are fixed, the detection results
on UED, UERD, and J-UNIWARD are shown in Table 5, where “DCT” and
“Gabor” mean the filter used in residual extraction.

We remove the ABS layer in the original XuNet, which is shown in Fig. 1.
The other settings are the same as that in Table 5. From Tables 5 and 6, it can
be observed that both the CNN architecture with DCT filters and the CNN with
Gabor filters achieve a significant improvement when the ABS layer is removed
from the framework. So in the sequel, the ABS layer is removed in CNN. It may
be because absolute value operation may reject some efficient information, the
residual extraction without ABS layer can help the CNN learn more resultful
feature. The performance of Gabor filter and DCT filter are comparable in all
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Table 5. Detection Accuracy (%) for UED, UERD and J-UNIWARD with fixed filters
and ABS layer on BOSSBase

Payload (bpnzAC) 0.1 0.2 0.3 0.4

Steganography Filter

UED DCT 73.48 84.98 90.64 94.64

Gabor 74.40 85.48 91.10 95.02

UERD DCT 67.56 82.1 87.16 91.28

Gabor 66.46 81.36 88.28 90.98

J-UNIWARD DCT 56.68 67.99 77.73 84.00

Gabor 58.07 69.22 78.66 85.21

Table 6. Detection Accuracy (%) for UED, UERD and J-UNIWARD with fixed filters
and without ABS layer on BOSSBase

Payload (bpnzAC) 0.1 0.2 0.3 0.4

Steganography Filter

UED DCT 80.48 88.06 92.60 94.16

Gabor 80.96 88.42 92.40 95.06

UERD DCT 68.4 81.44 87.66 91.78

Gabor 70.1 81.64 87.94 91.86

J-UNIWARD DCT 58.77 71.40 79.47 85.26

Gabor 60.18 71.53 79.74 85.32

Table 7. Detection Accuracy (%) for UERD and J-UNIWARD with learnable filters
on BOSSBase

Payload (bpnzAC) 0.1 0.2 0.3 0.4

Steganography Steganalysis

J-UNIWARD CNN+DCT 59.58 72.32 80.20 86.69

CNN+Gabor 62.42 72.02 80.30 85.87

SCA-GFR+EC 56.93 68.07 72.05 78.85

UERD CNN+DCT 70.42 81.94 88.46 92.4

CNN+Gabor 69.24 81.96 89.04 92.22

cases. It is because CNN method has the characteristic of rotation invariant [3],
thus the directional selection of Gabor filter has no advantage in CNN.

We also evaluate the performance when the parameters of DCT or Gabor filter
are learnable during training,with the performance of themost secure conventional
steganalysis SCA-GFR as reference. The results on detecting J-UNIWARD and
UERD are shown in Table 7. Comparing with the fixed filter parameters, updating
the parameters in the training phase can enhance the performance of both Gabor
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filter and DCT filter. The most significant improvement is achieved when detecting
J-UNIWARD with 0.1 bpnzAC payload, where the CNN with learnable Gabor fil-
ters achieves 2.24% improvement than the CNN with fixed Gabor filters. When the
filter parameters are learnable, the detection accuracy of DCT filters and Gabor
filters are comparable. It is because that in this case, the performance of CNN
with learnable filter parameters mostly depends on the stochastic gradient descent
rather than the parameters of the initialized filters.

3.5 Results on the ImageNet

We train the CNN model with 250,000 iterations on dataset ImageNet which
containing 100,000 JPEG images. Table 8 lists the comparative results for the
CNN with learnable DCT and Gabor filters. Also, ABS layer is removed in
CNN in this experiment. Similar to the results on BOSSBase, using both filters
achieves comparable performance. It further states that initializing the residual
filter using Gabor filter may bring no advantage over DCT filter in CNN method.

Table 8. Detection Accuracy (%) for J-UNIWARD with learnable filters and without
ABS layer on ImageNet

Embedding rates (bpnzAC) 0.1 0.2 0.3 0.4

DCT 52.60 81.14 90.90 95.54

Gabor 53.50 79.84 88.18 94.76

4 Conclusion

In this work, we evaluate the performance of DCT filters and Gabor filters when
they are used in residual extraction of CNN steganalysis method. In addition, the
performance with learnable DCT filter and Gabor filter is also compared. Firstly,
the experimental results that detecting J-UNIWARD, UED, UERD under dif-
ferent conditions show that using Gabor filters or DCT filters brings no obvious
difference in steganalysis with CNN. It is because CNN has the characteristic
of rotational invariant, the directional selection of Gabor filters has no advan-
tage in CNN. Secondly, removing the ABS layer of original XuNet significantly
improves the detection accuracy of the architecture. Finally, a better detection
performance of the architecture can be achieved when the parameters of pre-
processing filters are learnable than that are fixed.
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Abstract. Recent studies have indicated that Convolutional Neural
Network (CNN), incorporated with certain domain knowledge, is capable
of achieving competitive performances on discriminating trivial pertur-
bation introduced by spatial steganographic schemes. In this paper, we
propose a deep residual multi-scale convolutional network model, which
outperforms several CNN-based steganalysis schemes and hand-crafted
rich models. Compared to CNN-based steganalyzers proposed in recent
studies, our model has a deeper network structure and it is integrated
with a series of proven elements and complicated convolutional mod-
ules. With the intention of abstracting features from various dimensions,
multi-scale convolutional modules are designed in three different ways.
Besides, inspired by the idea of residual learning, shortcut components
are adopted in the proposed model. Extensive experiments with BOSS-
base v1.01 and LIRMMBase are carried out, which demonstrates that
our network is able to detect multiple state-of-the-art spatial embedding
schemes with different payloads.

Keywords: Spatial steganalysis · Convolutional Neural Network ·
Deep residual network · Multi-scale convolutional module

1 Introduction

Image steganography is the technique of hiding confidential messages through the
procedure of embedding data into cover digital images [4]. The algorithms in the
spatial domain nowadays usually conceal secret information in the region with
high content complexity, which makes the stego signal less noticeable [7,9,12].
To cope with the development of steganography algorithms, Spatial Rich Model
(SRM) [5] and its variants [3,8] are proposed. Although these schemes achieve
better performance by utilizing the heuristic knowledge, it is very challenging to
design hand crafted feature sets with more complexity.

c© Springer Nature Switzerland AG 2019
C. D. Yoo et al. (Eds.): IWDW 2018, LNCS 11378, pp. 40–52, 2019.
https://doi.org/10.1007/978-3-030-11389-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11389-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-11389-6_4


A Deep Residual Multi-scale Convolutional Network 41

Inspired by the successful application of deep neural networks in the com-
puter vision field [6,10,16,19,34], a number of CNN-based steganalyzers were
proposed. Tan and Li [21] presented a structure with stacked auto-encoders to
detect secret messages. However, the result turned out to be worse than rich
model methods. In [14,15], Qian et al. proposed a 5-layer CNN with Gaussian
activation function and average pooling, which achieved a slightly worse detec-
tion error than SRM. The structure was then shrunk to 2 broader layers [13]
and obtained a better performance. Xu et al. [27] presented a CNN model incor-
porated with the absolute operation and tanh activation function. It received
a comparable performance with traditional methods and the result was further
improved by ensembling techniques [26]. In [28,29], the knowledge of selection
channel was fused into CNN-based steganalyzers. Moreover, the network model
proposed by [29] was trained on an augmented dataset and achieves a more
competitive detection result of spatial-domain steganography. Wu et al. [22–24]
proposed two CNN models with identity mapping, which led to a noticeable
improvement in terms of detection accuracy. Lately, Yedroudj et al. [31] empir-
ically designed a CNN-based steganalysis scheme which outperformed several
CNN-based spatial steganalysis schemes, and the influence of data augmenta-
tion on this network structure was thoroughly investigated in [30].

Recent studies indicate that deep learning steganalysis methods have
obtained a superior performance over traditional schemes. Yet, we have not
discovered any deep residual network models equipped with complicated con-
volutional modules and newly presented network components in the field of
spatial steganalysis. In this paper, we propose a modified deep residual net-
work model for spatial steganalysis. The network is empirically designed with
multi-scale convolutional modules and a series of proven propositions, such as
high-pass filters and truncated linear activation functions. The main contribution
of this work is summarized as follows: First, according to [11,19,20], employing
more types of receptive fields usually results in better performance for image
classification. Inspired by this, three kinds of multi-scale convolutional modules
are implemented in the proposed scheme. In addition, aggregation operations
are set to fuse features of various scales and the dimension of each convolu-
tional module’s input is reduced by a 1× 1 convolution. Second, from previous
researches [2,16,17], it is observed that the network model with larger depth can
abstract complex optimal functions more efficiently. However, deep networks are
usually plagued with the performance degradation problem. He et al. [6] pro-
posed the idea of residual learning and overcome this issue. Follow the last two
notions, we repeat the convolutional module twice in the same block and design
the network model with shortcut components. Our experimental results demon-
strate that the proposed network model obtains considerable improvement in
terms of detection performance. For multiple steganographic algorithms with a
wide range of payloads, our network outperforms various previous steganalyzers.

The rest of this paper is organized as follows. Section 2 elaborates the overall
structure and the module design of the proposed deep residual network model.
Section 3 introduces the experimental results and analysis. Finally, the conclusion
and future works are drawn in Sect. 4.
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Fig. 1. The overall architecture of the proposed DRMCN model. Detailed implemen-
tations of each block are displayed in Figs. 2, 3 and 4.

2 The Proposed Deep Residual Multi-scale Convolutional
Network Model

The overall architecture of the proposed network model is illustrated in Fig. 1, it
is referred as DRMCN. The network consists of a high-pass filter block, four resid-
ual blocks, four reduction blocks, a non-residual block and a classification block.
Implement details will be described in the rest of this section. To better distin-
guish models used in subsequent experiments, DMCN represents networks that
share the same structure with DRMCN but without identity mapping shortcut
components. The network model with the half depth of DMCN is named MCN,
which also doesn’t contain any shortcut components.

2.1 High-Pass Filter Block

Input cover/stego images are first convolved with a set of predefined kernels in
the high-pass filter block (Fig. 2). These HPF kernels are initialized with the filter
set adopted in SRM [5]. This residual computation process helps compressing
image content and restraining the dynamic range of parameters. Therefore, the
signal-to-noise ratio between the trivial stego disturbance and the image content
increased significantly and the network is able to concentrate on a more robust
stego signal. Previous studies [29,31,32] have shown that using more types of
high-pass filter in the preprocessing step tends to yield better results than using
fewer or only one filter. Similar to [29,31], the high-pass filter block employes
all 30 basic linear filters in SRM. Furthermore, it is important to note that the
weight matrix of all filters are optimized during network training. In addition,
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the truncated linear unit (TLU) is implemented as activation functions to take
account of the sign symmetry existed in noise residuals [29]. The TLU function
is defined by

TLU (x) =

⎧
⎨

⎩

−T , x < −T
x , −T ≤ x ≤ T
T , x > T

(1)

where T is the threshold, and it is set to 3 in the proposed network model.
Truncated operation restrict the feasible parameter space of feature maps, which
prevent the network from concentrating on excessive values.

Fig. 2. The high-pass filter block of the proposed DRMCN.

Table 1. The detection errors PE comparison between deep DRMCN and shallow
MCN on BOSSLIRM crop. The embedding payload is 0.4 bpp.

DRMCN MCN

HUGO 0.1722 0.2502

WOW 0.2028 0.2826

S-UNIWARD 0.2539 0.3352

2.2 Residual Block and Reduction Block

The next four residual blocks, as well as four reduction blocks, are of the essence
in abstracting features and acquiring the optimum function. Figures 3 and 4 illus-
trate their structures respectively. Residual blocks are responsible for extracting
productive features, while reduction blocks are used to reduce the dimension of
features and diversifying the characterization of output feature maps. For each
block, convolution operations are reused in order to introduce more parameters
into the network model and increase the depth of DRMCN. The essentiality
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of network depth is confirmed in Table 1. Compared to shallower MCN, deeper
DRMCN usually obtains superior results. Taking consideration of the balance
between the limitation of computing facilities and the effectiveness of feature
extraction, we repeat every convolution operation twice. Each residual block
correspond to one kind of convolutional module, e.g., residual block A only use
convolutional module A. The detailed architecture of convolutional modules is
shown in Fig. 5. Then, each convolution operation is followed by a batch nor-
malization layer (BN) and a non-linear activation function. Through BN lay-
ers, the output feature map is first normalized to zero mean and unit variance.
Then, it is recovered with scaling and shifting parameters. Both parameters
are optimized during network training, therefore, the phenomenon of internal
covariant shift is alleviated [11]. We choose ReLU as activation function since it
has a faster gradient computation procedure compared with TLU. Additionally,
inspired by [6,11,18–20], each block not only contains two convolutional mod-
ules but also includes a shortcut connection that directly links the input and the
output of this block.

With the purpose of adapting to different stages in feature extraction, three
types of convolutional modules are designed. Convolutional module A (Fig. 5(a)),
corresponding to the initial phase of feature extraction, is required to handle
large feature maps with scattered feature information. Taking computational
complexity into consideration, only 3× 3 size convolution kernel is put into use.
The purpose of convolutional module B and C (Fig. 5(b) and (c)), however, is
to capture features at a higher abstraction level. In these two models, feature
information is processed with various scales of convolution kernels and then
aggregated by a 1× 1 size kernel. Meanwhile, although the number of feature
maps is strictly restrained, multi-scale convolution operation will inevitably make
convolution computation prohibitively expensive. This issue leads to the appli-
cation of 1 × 1 convolutions as dimension reduction and projection procedures.
The number of each 1 × 1 size reduction filters is set to 32 in the first convo-
lutional module B whereas 64 in the second module B and 128 in the module
C. According to [18,29], the size of convolution kernels is empirically selected in
each convolutional module. The multi-scale convolutional structure comprising
three kinds of kernel (1 × 1, 3 × 3, 5 × 5) in convolutional module B and two
kinds of kernel (1× 1, 7 × 7) in convolutional module C, which enables the next
layer to absorb features from different scales. For the sake of saving computa-
tional cost, based on the suggestions in [20], 5 × 5 convolution is replaced with
two 3 × 3 convolution layers and 7× 7 convolution is replaced by a 1× 7 and a
7 × 1 convolution. At the end of each module, The aggregation operation allows
each convolutional module for compressing the number of feature maps to the
same level as the input.

Results in Table 2 indicate an evident superiority for multi-scale convolution
over single-scale convolution, the detection error rate decrease about 2%. And
in Table 3, the utility of the combination of multi-scale convolutional modules is
further verified. The network equipped with only one kind of multi-scale convo-
lutional modules (denoted as Multi-scale B and Multi-scale C) always achieve
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Fig. 3. The schema of residual block
A/B/C of the proposed DRMCN.
Detailed implementations of convolu-
tional modules are displayed in Fig. 5.

Fig. 4. The structure of reduction
blocks in DRMCN.

(a) (b) (c)

Fig. 5. The implementation of the convolutional modules adopted in residual blocks
of the proposed DRMCN. (a) Convolutional module A. (b) Convolutional module B.
(c) Convolutional module C.

Table 2. The performance on BOSSLIRM crop in terms of detection errors PE of the
proposed DRMCN when multi-scale convolutional modules are replaced with 3× 3 and
5× 5 convolution. The embedding payload is 0.4 bpp.

Multi-scale 3× 3 5× 5

HUGO 0.1812 0.2026 0.1984

WOW 0.2128 0.2367 0.2253

S-UNIWARD 0.2559 0.2824 0.2841
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Table 3. The performance on BOSSLIRM crop in terms of detection errors PE of
different strategies in using multi-scale convolutional modules. The embedding payload
is 0.4 bpp.

Multi-scale Multi-scale B Multi-scale C

HUGO 0.1812 0.1874 0.1925

WOW 0.2128 0.2169 0.2110

S-UNIWARD 0.2559 0.2592 0.2743

higher detection error among three steganography algorithms. In the experi-
ment of Table 3, under the condition of Multi-scale B and Multi-scale C, the
unemployed convolutional module is replaced with 5× 5 convolution.

Following the residual block, the reduction block subsequently decreases the
grid size of feature maps while doubles the channel of the network filters. It cor-
responds to the pooling operation in traditional CNN [20,25]. Inspired by [6,25],
3 × 3 convolution with stride 2, instead of max or average pooling, is employed
in reduction blocks.

As demonstrated in Figs. 3 and 4, convolution operations and shortcut com-
ponents respectively correspond to the residual mapping and the identity map-
ping in the process of residual learning. He et al. originally proposed this idea
in [6] to avert inadequate training problems caused by degeneration. Residual
learning enables CNN to approximate the residual mapping of underlying func-
tion (H (x) − x) rather than the function itself (H (x)). It is pointed out that
fitting the residual mapping is more convenient than learning original function,
especially when the optimal function is closer to an identity mapping [6,18].
Previous researches [18,23,25] also prove that this component is another effec-
tive solution to gradient vanishing issue, apart from BN layers and the ReLU
activation function. In residual blocks, the input is straightly linked to the BN
layer of second convolutional module, which enables two convolutional modules

Fig. 6. The validation errors comparison between network model with and without
shortcut component. The network model is trained and validated on BOSSLIRM crop
at 0.4 bpp embedding rate.
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to concentrate more on the stego signal [25]. Nevertheless, in reduction blocks
(Fig. 4), the pooling procedure mentioned before is added to the shortcut com-
ponents with the intention of accommodating feature map’s scale variation. At
the end of the shortcut component, element-wise addition is conducted. Figure 6
shows the performance comparison the between network model with shortcut
component (DRMCN) and without shortcut component (DMCN). It is promi-
nent that the identity mapping structure guarantees a lower detection error rate
and helps facilitate network convergence.

2.3 Non-residual Block and Classification Block

With respect to the non-residual block, it shares the same structure with the
residual block but not equipped with a shortcut component. The 5× 5 con-
volution is employed in this block. At last, with the consideration of involving
fewer parameters into the classification stage and avoiding over-fitting problems,
only one fully connected layer with two necessary neurons are implemented in
the classification block. Softmax layer then eventually generates posterior prob-
ability distribution between two labels, i.e. cover and stego.

3 Experimental Results

3.1 The Datasets

The dataset used in this paper consists of the BOSSbase v1.01 [1] and the LIR-
MMBase [13]. The original BOSSbase includes 10000 natural grey-level images
of size 512 × 512, which are captured by 17 different cameras and never com-
pressed. As regards the LIRMMBase, it comprises 9388 grey-level images of size
512 × 512, which are captured by 7 cameras that differ from those in BOSSbase
and remain uncompressed. In the early stage of the experiment, it is observed
that feeding images with a resolution of 512 × 512 pixels usually lead to a sharp
increase in training time and constantly make network models exceed the limi-
tation of the computing platform. Consequently, three datasets with 256× 256
pixels images are generated from the combination of two datasets above. We
conduct datasets transformation as below:

(1) Using the imcrop() function with default settings in Matlab to crop random
part of the original images with a size of 256× 256. The dataset is named
as BOSSLIRM crop.

(2) Using the imresize() function with default settings in Matlab to resize
original images into the size of 256× 256. The dataset is named as
BOSSLIRM resize.

(3) Each image is first randomly cropped or resized into the size of 256× 256.
Then, half of the images in the dataset are flipped or rotated with equal
probability. Flipping operation includes horizontal flop and vertical flip.
Rotating operation includes three angles: 90◦, 180◦ and 270◦. This dataset
is denoted as BOSSLIRM aug.
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During experiments, we divide each dataset into three parts, 50% of the
cover/stego pairs is assigned to the training set, 30% of the cover/stego pairs
is treated as the validation set, remaining 20% of the dataset is allocated to
the testing set. Three well known content-adaptive steganographic algorithms –
HUGO [12], S-UNIWARD [9], WOW [7] are selected to assess the discrimination
validity of steganalysis methods.

3.2 Platform and Hyperparameters Setting

We implement the proposed DRMCN architecture on Tensorflow platform. The
network model use AdaDelta [33] optimizer to update parameters. The decay
rate and the “epsilon” value for the optimizer are set to 0.95 and 1 × 10−8,
respectively. A mini-batch of 32 images with 16 cover images and 16 stego images
are used as the input for each iteration. We set the initial value of the learning
rate to 1 × 10−1, and make it decay exponentially by a factor of 0.95 for every
2000 iterations. All weights in convolution kernels are initialized using “Xavier”
initialization and the initial biases are set to 0.2. Unlike convolutional layers,
weight matrices in the classification block are initialized by zero-mean Gaussian
distribution with standard deviation of 0.01, their bias is set to be zero.

3.3 General Performance Comparisons with State-of-the-Art
Steganalyzer

In this experiment, we compare our proposed network model with several
state-of-the-art steganalysis schemes including maxSRMd2 [3], XuNet [27] and
YeNet [29]. Similar to [15,29], for steganalysis tasks with low payload, trans-
fer learning strategy is adopted. It is noticed that, from Tables 4, 5 and 6, our
DRMCN outperforms other CNN-based steganalyzers and hand-craft rich mod-
els on all three datasets.

Table 4. The detection errors PE comparison of involved steganalysis schemes. All
methods are trained and validated on BOSSLIRM crop at different embedding rates.

Payload maxSRMd2 XuNet YeNet DRMCN

HUGO 0.4 0.2235 0.2473 0.2119 0.1812

0.2 0.2892 0.3038 0.2849 0.2787

WOW 0.4 0.2709 0.2685 0.2464 0.2128

0.2 0.3513 0.3389 0.3222 0.3033

S-UNIWARD 0.4 0.2978 0.3180 0.2917 0.2539

0.2 0.3893 0.4025 0.3771 0.3452

Experimental results demonstrate the superior performance of DRMCN over
maxSRMd2, the detection error rate is decreased by an average of 4%. In con-
trast with XuNet and YeNet, there is also a clear drop in PE , especially on
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Table 5. The detection errors PE comparison of involved steganalysis schemes. All
methods are trained and validated on BOSSLIRM resize at different embedding rates.

Payload maxSRMd2 XuNet YeNet DRMCN

HUGO 0.4 0.1638 0.1362 0.1430 0.1011

0.2 0.2342 0.2095 0.2253 0.1914

WOW 0.4 0.2021 0.1833 0.1675 0.1425

0.2 0.2638 0.2697 0.2564 0.2469

S-UNIWARD 0.4 0.2369 0.2374 0.2186 0.1859

0.2 0.3105 0.3339 0.3089 0.2764

Table 6. The detection errors PE comparison of involved steganalysis schemes. All
methods are trained and validated on BOSSLIRM aug at different embedding rates.

Payload maxSRMd2 XuNet YeNet DRMCN

HUGO 0.4 0.1895 0.1924 0.1806 0.1681

0.2 0.2614 0.2527 0.2319 0.2256

WOW 0.4 0.2363 0.2103 0.2084 0.1957

0.2 0.2946 0.2716 0.2682 0.2623

S-UNIWARD 0.4 0.2415 0.2494 0.2624 0.2083

0.2 0.3295 0.3268 0.3371 0.2832

BOSSLIRM crop dataset. Under the condition of 0.4 payload, the proposed
network model achieves 1.2–3.5% improvement in detection error among three
datasets. While payload is 0.2, The average performance gap various from differ-
ent datasets and different embedding schemes, but never below 0.5%. The most
prominent decline of 3.5% is observed under the circumstance of HUGO algo-
rithm with 0.4 payloads on BOSSLIRM resize dataset. Note that it is of neces-
sity for XuNet to acquire optimal results by adopting ensemble method [26], and
extra operations, such as training set enlarging and cautious hyperparameters
choosing, need to be taken during the training process of YeNet [29]. The pro-
posed DRMCN does not require any additional operation and obtains a better
result.

4 Conclusion

In this paper, a deep residual multi-scale convolutional network (DRMCN)
is proposed to detect the minor disturbance introduced by multiple spatial
steganographic schemes for various payloads. Multi-scale convolutional modules
are equipped in the proposed network model. For the purpose of abstracting
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features from various dimensions, the multi-scale convolutional module is
designed in three different ways. And, the effectiveness of this structure in ele-
vating the detection accuracy is experimentally verified.

In addition, a series of proven elements, such as high-pass filters and trun-
cated linear activation functions, are employed for the sake of facilitating network
convergence. Inspired by the idea of residual learning, the proposed DRMCN also
adopts shortcut components.

Extensive experiments conducted on images from BOSSbase and the LIR-
MMBase has demonstrated that the proposed deep residual network model
achieves superior performance over other CNN-based steganalyzers and maxS-
RMd2.

Based on the design paradigm mentioned above, in the future, we will inte-
grate more essential domain knowledge, such as projection spatial rich model,
into the network and develop convolutional modules that provide a higher level
of robustness in feature extraction.
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Abstract. Synthetic data and generative models have been more and
more popular with the rapid development of machine learning and arti-
ficial intelligence (AI). Consequently, generative steganography, a novel
steganographic method finishing the operation of steganography directly
in the process of image generation, tends to get more attention. How-
ever, most of the existing generative steganographic methods have more
or less shortcomings, such as low security, small capacity or limited to
certain images. In this paper, we propose a novel framework for genera-
tive steganography based on autoregressive model, or rather, PixelCNN.
Theoretical derivation has been taken to prove the security of the frame-
work. A simplified version is also proposed for binary embedding with
lower complexity, for which the experiments show that the proposed
method can resist the existing steganalytic methods.

Keywords: Steganography · Provable security · Steganalysis ·
Generative model · PixelCNN

1 Introduction

Steganography is a collection of techniques for covert communication, which
aims to hide secret message into the host media without arousing suspicion by
an eavesdropper. In the last decade, the vast majority of work on steganog-
raphy has focused on digital images, with a large number of image stegano-
graphic algorithms investigated. A famous non-adaptive steganographic method
is LSB replacement. For the sake of minimizing statistical detectability, adap-
tive steganographic methods have been adopted, such as HUGO [1], WOW [2],
SUNIWARD [3], HILL [4] and MiPOD [5]. In the meanwhile, the opposite of
steganography, called steganalysis, has made advances recently. Various ste-
ganalytic methods are designed to detect the presence of secret messages, like
SPAM [6], SRM [7], maxSRM [8], Xu-Net [9] and so on.
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With the rapid development of machine learning and artificial intelligence
(AI), it is increasingly popular to produce synthetic images with generative mod-
els. There are even some mature products. For example, Microsoft has unveiled
an artificial artist, drawing bot, and Prisma is world famous App using style gen-
erative art. In order to eventually generate images with highly realistic quality,
many generative models are proposed. The most prominent ones are variational
auto-encoder (VAE) [10], generative adversarial network (GAN) [11], and autore-
gressive model (NAME [12], RIDE [13], and recently, PixelCNN [14]), each with
its own strengths and weaknesses.

Image synthesis and generative models bring about new opportunities for
steganography. With image synthesis more and more popular, it’s a good idea
to cover up information hiding with image generation. Generative steganography
is a novel steganographic method, which finishes the operation of steganography
directly in the process of image generation. It modifies the generative models
and directly generates images containing secret messages, called stego images.
The security of generative steganography lies in the indistinguishability between
the normally-generated images and stego images.

There are some generative steganographic methods proposed. Hayes et al. [15]
proposed a generative steganographic algorithm based on adversarial training
and the stego images were generated by a neural network. Wu et al. [16] focused
on texture synthesis and embedded message by selecting the non-optimal patches
for texture image synthesis. Coverless image steganography [17] generated stego
images by searching for appropriate images of which hash sequences are equiv-
alent to the secret message (I take image searching as a special case of image
generation). However, most of the existing generative steganographic methods
have more or less shortcomings, such as low security, small capacity or limited
to certain images.

We propose a novel framework of generative steganography with the help
of autoregressive model, or rather, PixelCNN. The original PixelCNN models
the conditional distributions of pixels and samples stochastically to generate an
image pixel by pixel. We weave the image generation process into steganography
using rejection sampling to encode secret messages. To improve the security, we
adopt the decoding algorithm of adaptive arithmetic coding to encode the secret
message based on the probability distribution calculated in the process of Pixel-
CNN. Theoretical analysis is given to prove the security of our framework. With
the purpose of reducing the complexity, we also propose a simplified version of
the proposed framework, with slightly weaker security. To show the effectiveness
of this framework, we test on two image sets. Experimental results have veri-
fied that our proposed algorithm can resist the existing steganalysis methods,
including SPAM [6], SRM [7] and Xu-Net [9].

The remainder of this paper is organized as follows. After introducing nota-
tions, we review the autoregressive generative model, PixelCNN. In Sect. 3, the
proposed framework and its simplified version are detailed. We experiment with
two image sets and the results are elaborated in Sect. 4. Conclusions are given
in Sect. 5.
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2 Preliminaries and Related Work

2.1 Notations

Throughout the paper, matrices, vectors and sets are written in bold face. The
image (of size n1 × n2) is denoted by X = (xi,j)n1 ×n2 , where the signal xi,j is
an integer, such as the 8-bit gray value of a pixel. As we use the autoregressive
model, the image is often scanned as a one-dimensional sequence (xj)N with
N = n1 × n2, and the corresponding steganographic image (stego image) is
denoted by (yj)N . The n bits secret message is denoted by m = (mj)n. Before
being embedded, the message usually should first be encrypted, so we can assume
that m is binary pseudo-random sequence.

2.2 PixelCNN

The PixelCNN family [14] is a powerful class of autoregressive generative models
that factorize the distribution of a natural image using the elementary chains
rule over pixels. The network scans the image one row at a time and one pixel at
a time within each row. The scan is according to a raster order: from left to right
and from top to bottom. For each pixel it predicts the conditional distribution
based on the scanned pixel values. The joint distribution over the image pixels
is factorized into a product of conditional distributions:

p(X) =
n2∏

j=1

p(xj |x1, x2, ..., xj−1). (1)

The value p(xj |x1, x2, ..., xj−1) is the probability distribution of the j-th pixel
xj , given all the previous pixels x1, x2, ..., xj−1. For the sake of simplification,
this conditional distribution is written as pxj

.
A similar setup has been used by other autoregressive models such as NADE

[12] and RIDE [13]. The difference lies in the way the condition distribution pxj

is constructed. In PixelCNN, every conditional distribution is modeled by a con-
volutional neural network. Due to the operation of convolution, the distributions
over the pixel values are computed in parallel during training and evaluation,
while the generation has to be proceeded pixel by pixel [18]. As shown in the left
part of Fig. 1, the process of generation for each pixel can be divided into two
steps: Firstly, the autoregressive model predicts the distribution of the current
pixel pxj

given all the previously generated ones. Secondly, the model samples
in the distribution and outputs a certain pixel value, denoted by

xj = O
(
pxj

)
, (2)

in which O
(
pxj

)
stands for the basic random sampling algorithm according to

the distribution pxj
.

To improve the speed and the quality of the generative model, some follow-
up researches are conducted after original PixelCNN. Condition PixelCNN [18]
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replaces the original activation function, removes the blind spot, and adds a
latent vector h for better performance and conditional image generation. Pix-
elCNN++ [19] uses a discrete logistic mixture likelihood on the pixels, rather
than a 256-way softmax, which speeds up training significantly.

3 Proposed Method

3.1 Motivation

As shown in the last section, PixelCNN is a sequential generative model, with
random sampling for each pixel. What’s more, PixelCNN can output explicit
probability distribution. Based on the characteristics above, we modify the struc-
ture of PixelCNN and adopt rejection sampling and the decoding algorithm of a
entropy encoder to embed the secret message. In this paper, we propose to use
adaptive arithmetic decoding (AAD) [20].

3.2 A Novel Framework for Generative Steganography

We propose a provably secure generative steganographic framework based on
PixelCNN, shown in Figs. 1 and 2. Assuming that the training process of Pixel-
CNN has finished, we focus on the generation of images. As introduced in Sect. 2,
the generation proceeds pixel by pixel, and the generation for each pixel can be
divided into two steps, predicting the distribution and sampling. We embed the
secret message by modifying the sampling process.

Rejection Sampling Algorithm. Before elaborating the details of our frame-
work, we introduce a sampling algorithm, which helps embed the secret message.
In numerical analysis, rejection sampling algorithm works by repeating the basic
sampling until a value satisfies the acceptable condition [21]. The construction
suggested in [22] is adopted in this paper. In this construction, the acceptable
condition is defined by a mapping function F (x) where x is the sampling value.
Then rejection sampling algorithm is denoted by G(b, px) while the original sam-
pling on px is denoted by O(px). To finish G(b, px), we obtain a sample x using
O(px) and check whether the acceptable condition F (x) = b is satisfied. If it
holds true, we accept x as a sample of G(b, px). Otherwise we reject the value
of x and return to the sampling step. In this paper, we take F (x) as a modular
function with modular L = 2, 3, · · · , or 255. For a given L, the corresponding
F (x) is denoted by FL(x) such that

FL(x) ≡ x mod L . (3)

Obviously, FL(x) is L-ary number, and its distribution pFL(x) can be easily
derived from px and the definition of FL as follows.

P (FL(x) = b) =
255∑

a=0
b≡a mod L

P (x = a), b = 0, 1 · · · , L − 1 . (4)
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With FL, we will embed a L-ary digit into each pixel. To do that, we will
transform the binary message sequence m into a L-ary sequence M = (Mj)N

according to the distribution pFL(xj) with Adaptive Arithmetic Decoding (AAD).

Adaptive Arithmetic Decoding. Now we describe how to transform the
binary message m into the L-ary message M. Because the message should be
encrypted, the message m is a binary pseudo-random sequence. Therefore we
can suppose that m is the compression result of a L-ary sequence M = (Mj)N

with Adaptive Arithmetic Encoding (AAE) [20] according to the distribution
(pFL(xj))

N . Therefore, we can decompress m into M = (Mj)N with Adaptive
Arithmetic Decoding (AAD) [20] according to the distribution (pFL(xj))

N .
The PixelCNN first yields the distribution px1 from which we derive the

distribution pFL(x1) with Eq. (4). For simplicity, we denote m1 = m. According
to pFL(x1), we decompress m1 with AAD to yield M1 such that

M1 = AAD
(
m1, pFL(x1)

)
. (5)

And then embedding M1 into the first pixel by the rejection sampling G(M1, px1)
such that

y1 = G (M1, px1) , (6)

where y1 is the first pixel of the stego image, and FL(y1) = M1. With y1 as the
condition, the PixelCNN can yield the distributions px2 from which we derive
pFL(x2).

Assume that the first k1 bits, (m1, · · · ,mk1), of m1 have been decompressed
into M1 in Eq. (5). Denote the rest bits of m1 as m2. Decompressing m2 accord-
ing to pFL(x2), we will get M2 such that

M2 = AAD
(
m2, pFL(x2)

)
, (7)

which is embedded into the second pixel by the rejection sampling such that

y2 = G (M2, px2) . (8)

Repeating the above process, we will get (M1, · · · ,MN ) and then the pixels
(y1, · · · , yN ) which composes of the stego image.

Embedding Process. The embedding process has been detailed when we intro-
duce the adaptive arithmetic decoding above. We also show the whole process
in Fig. 1. To further clarify the framework of steganography at the microscale,
in Algorithm 1 we provide a pseudo-code that describes the implementation of
embedding.

Extraction Process. At the receiver side, we inverse the operation to restore
the original secret message, shown in Fig. 2, in which the PixelCNN model
should be shared by the sender and the receiver. In fact, the PixelCNN model
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Algorithm 1. Embedding process
Input: A cover image (xj)

N ; n bits of message m; start with j = 1, m1 = m
Output: The stego image (yj)

N .

1: The PixelCNN yields the distribution of the current pixel xj , denoted by pxj .
2: Derive the distribution pFL(xj) with Eq. (4).

3: Decompress mj with AAD to yield Mj based on Mj = AAD
(
mj , pFL(xj)

)
. Assume

that the first kj bits of mj have been decompressed into Mj . Denote the rest bits
of mj as mj+1.

4: Embed Mj into the current pixel by the rejection sampling to yield yj =
G(Mj , pxj ).

5: Update j with j + 1 and repeat the above process until the last pixel.

Fig. 1. This is the diagram of embedding process in the proposed framework. The left
part is the original generation using PixelCNN. We modify the structure to embed
secret message as the right part. Rejection sampling and adaptive arithmetic decoding
(AAD) are adopted.

Fig. 2. This is the diagram of extraction process in the proposed framework. Different
from the embedding has to proceed pixel by pixel, the extraction can be calculated by
one-step.
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can be open, because we will prove that the generating processes of the cover
image and the stego image are statistically indistinguishable in the next sub-
section. With the PixelCNN model, the receiver can predict the distributions
px = (px1 , · · · , pxN

) and derive pFL
= (pFL(x1), · · · , pFL(xN )).

After receiving the stego image y = (y1, · · · , yN ), the receiver restores the
sequence M = (Mj)N by

Mj = FL(yj), j = 1, 2, · · · , N. (9)

Then the adaptive arithmetic encoding (AAE) is used to encode M to the orig-
inal secret message m such that

m = AAE (M,pFL
) , (10)

Different from the generation in which stego has to be proceeded pixel by pixel,
the extraction can be calculated by one-step. To further detail the extraction
process, we provide a pseudo-code as shown in Algorithm 2.

Algorithm 2. Extraction process
Input: A cover image (yj)

N .
Output: n bits of message m.

1: The PixelCNN yields the distribution of all pixels, px = (px1 , · · · , pxN ).
2: Derive pFL = (pFL(x1), · · · , pFL(xN )) with Eq. (4).
3: Restore the sequence M = (Mj)

N with Eq. (9).
4: Resrore the original secret message m with Eq. (10).

3.3 Proof of Security

In this subsection, we try to prove the security of the proposed framework.
Because the proposed method is based on a generative model, we only need to
prove that the generating processes of the cover image and the stego image are
statistically indistinguishable, that is, pyj

= pxj
for j = 1, 2, · · · , N .

Note that yj is generated by the rejection sampling algorithm according to
the distribution pxj

with FL as the acceptable condition, so for any 0 ≤ a ≤ 255
and 0 ≤ b ≤ L − 1 we have

P (yj = a | FL(yj) = b) = P (xj = a | FL(xj) = b) , j = 1, 2 · · · , N. (11)

On the other hand, Mj is obtained by AAD according to the distribution pFL(xj),
therefore Mj has the same distribution as FL(xj), that is,

pMj
= pFL(xj), j = 1, 2 · · · , N. (12)
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Thus, for any 0 ≤ a ≤ 255, we have

P (yj = a)

=
L−1∑

b=0

P (yj = a|FL(yj) = b)P (FL(yj) = b) (13)

=
L−1∑

b=0

P (xj = a|FL(xj) = b)P (Mj = b) (14)

=
L−1∑

b=0

P (xj = a|FL(xj) = b)P (FL(xj) = b) (15)

= P (xj = a) (16)

Herein, Eq. (14) holds due to Eq. (11) and Mj = FL(yj). And Eq. (15) holds due
to Eq. (12).

Therefore, we prove out that pyj
= pxj

for j = 1, 2, · · · , N , which means that
a steganalyzer cannot distinguish the generating process of a stego image from
that of a cover image.

3.4 A Simplified Version for L = 2

As shown in Figs. 1 and 2, both the embedding and extracting processes of
the proposed framework have high complexity. At the sender side, we should
transform m to M with AAD and then embed pixel by pixel. And at the receiver
side, the complexity is due to predict pxj

with PixelCNN. In fact, for L = 2, we
can also achieve nearly perfect security with a simple method.

When L = 2, we essentially embed the message into the LSBs (Least Signifi-
cant Bits) of the pixels. We found that the LSBs of pixels generated by PixelCNN
is very close to a random sequence. Because the message m is a pseudo-random
sequence, we don’t need to transform m to match the distributions of ((F2(xj))

N .
Instead, we can directly embed m by using rejection sampling algorithm with F2

as the acceptable condition. At the receiver side, the message can be extracted
by directly reading the LSBs of the pixels (yj)N . In this simplified method, we
proposed to keep the confidentiality of the PixelCNN model used by the sender.
The diagram of the simplified method is shown in Fig. 3, with the pseudo-code
given in Algorithms 3 and 4.

Algorithm 3. Embedding process of the simplified version
Input: A cover image (xj)

N ; n bits of message m= (mj)
n; start with j = 1.

Output: The stego image (yj)
N .

1: The PixelCNN yields the distribution of the current pixel xj , denoted by pxj .
2: Embed mj into the current pixel by the rejection sampling to yield yj = G(mj , pxj ).
3: Update j with j + 1 and repeat the above process until the last pixel.
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Algorithm 4. Extraction process of the simplified version
Input: A cover image (yj)

N .
Output: n bits of message m.

1: Repeat mj = F2(yj) for j = 1, 2, ..., n.
2: Restore the original secret message m= (mj)

n.

Fig. 3. A simplified method for L = 2, without adaptive arithmetic coding.

4 Experiment

We experiment on two image sets, gray images and color images respectively.
Since the framework using AAD as the embedding method is proved to be secu-
rity theoretically, here, we only verify the effectiveness of the simplified version
for L = 2.

4.1 Setup and Datasets

The gray image set in this paper is Frey [23], which is a series of 1,965 images of
Brendan Frey’s face taken from sequential frames of a video. The color image set
is chosen as Anime [24], containing 51,223 anime character faces crawled from a
famous anime website. The datasets are listed in Table 1.

Table 1. The two image sets used in our experiment.

Dataset Type Dimension Quantity

Frey 8-bit grayscale 20 × 28 1,965

Anime 8-bit RGB 96 × 96 51,223
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A separate PixelCNN model is trained for each dataset. For the sake of
faster training speed, we improve original Condition PixelCNN to model Frey
by replacing the 256-softmax with a continuous Gaussian distribution, as a weak-
ened version of PixelCNN++. However, different from the easy-to-model dataset,
Anime has many patterns and a single gauss is hard to fit the distribution of
pixels. So we use a mixture of 12 logistic distributions to model the likelihood
better. We also condition on whole pixels rather than R/G/B sub-pixels and
resize the original images to 32 × 32 to improve the efficiency. We collect our
experimental results on a machine with 4 T K80 GPUs and it takes us 5–8 days
to train each model.

As shown in Sect. 3, the steganography operation locates in sampling of image
generation, so there is nothing different for the training process between our
PixelCNNs and original models. When it comes to the generation process, basic
sampling is adopted to generate normal images, while in the steganography case,
we use rejection sampling to generate stego images. Without loss of generality,
we set the payload as 1.0 bpp (bit per pixel), that is, all pixels are used to carry
messages. Our goal is to verify the indistinguishability between stego images and
normally-generated images, the latter of which can be viewed as cover images.

The detectors for the experiment of Frey and Anime are trained as binary
classifiers and a separate classifier is trained for each situation. Making the results
representative enough, three kinds of steganalysis are adopted, with two con-
ventional ones (SPAM [6], SRM [7]) and a CNN-based method (Xu-Net [9]).
Note that original Xu-Net is designed on high-resolution images with dimension
512 × 512, while the size of our generated images is much smaller. So we modify
the original network and propose two shallow versions, with 5 layers for Frey and
6 layers for Anime. We report the detection error which computes the average
of the false-alarm probability and missed-detection probability by 10 times of
randomly splitting the training and the testing images.

4.2 Frey Results

Given the gray image set Frey with 1,965 images, we train a PixelCNN model
and generate 2,000 natural-generated images (denoted by COVER) and 2000
message-embedded-generated ones (denoted by STEGO), with a payload of 1.0
bpp. We show some samples of the three image sets in Fig. 4.

Then SPAM, SRM and Xu-Net are adopted respectively to detect between the
two generated image sets,with the results shown in the last columnofTable 2.All of
the three steganalysis methods get a detection error probability near 0.5, verifying
the indistinguishability between cover images and stego images.

However, there is a logical loophole that all of the steganalysis above may
not be suitable to detect steganography on this kind of image sets, especially
our proposed Xu-Net. That is to say, the generated images are secure covers,
the same as what happens in SGAN [25] and SSGAN [26]. Making the inference
more rigorous, we conduct some follow-up experiments. We use the basic LSB-
Replacement steganography with a payload of 0.4 bpp to experiment on the
original Frey images (denoted by TRAIN) and the two generated image sets
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(a) (b) (c)

Fig. 4. The results in Frey, with 16 samples of each set. Image (a) is the training
images. Image (b) is the generative cover images. And image (c) is the generative stego
images.

Table 2. Detection error of different steganalysis in terms of frey dataset.

TRAIN/
LSB TRAIN

COVER/
LSB COVER

STEGO/
LSB STEGO

COVER/
STEGO

SPAM 0.3782 0.3868 0.3899 0.5001

SRM 0.3392 0.3350 0.3436 0.4996

Xu-Net 0.3594 0.3627 0.3622 0.5300

respectively, obtaining three stego image sets LSB TRAIN, LSB COVER and
LSB STEGO. Then the steganalysis are adopted and the results are shown in
Table 2. Each column is the detection error probability for the three steganalysis
methods to detect the original image set and its LSB version. It can be concluded
that the three steganalysis methods work well to detect the LSB steganography.
So we can draw a conclusion that the assumption of the logical loophole is not
true and our generated images are not secure covers. Above all, our proposed
system succeed in finishing secure generative steganography on Frey.

4.3 Anime Results

When it comes to the color image set Anime, we train a new PixelCNN model
and generate 5,000 cover images and 5,000 stego images. Some samples of the
three image sets in Fig. 5.

Most of the experiments are the same as that of Frey. Note that the payload
of the basic LSB-Replacement steganography is chosen as 1.0 bpp, considering
the fact that the original training images have been resized and have weaker
neighboring correlation. We view an RGB image as three gray images and oper-
ate only in the R channel. The results are shown in Table 3. We can draw a
similar conclusion that our proposed system succeeds in finishing the secure
generative steganography on the color image set Anime, rather than generating
secure covers.
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(a) 1 (b) 2 (c)

Fig. 5. The results in Anime, with 16 samples for each set. Image (a) is the training
images. Image (b) is the generative cover images. And image (c) is the generative stego
images.

Table 3. Detection error of different steganalysis in terms of frey dataset.

TRAIN/
LSB TRAIN

COVER/
LSB COVER

STEGO/
LSB STEGO

COVER/
STEGO

SPAM 0.3387 0.3779 0.3861 0.4943

SRM 0.2329 0.2708 0.2869 0.4987

Xu-Net 0.2656 0.3175 0.3125 0.5021

Attention to the details that the detection error probability of training image
set and its LSB-Replacement version are much lower than that of the other
two pairs, it can be explained that the PixelCNN cannot ideally model the
distributions of Anime and cannot generate the same samples as the original
training sets, even if we adopt a complicated version. However, we focus on
the distinguishability between the two generated image sets, rather than the
distinguishability between generated images and original source images.

5 Conclusions

In this paper, we proposed a framework for provably secure generative steganog-
raphy by modifying the sampling process in PixelCNN. Theoretical derivation
has been taken to prove the indistinguishability between cover and stego. We also
propose a simplified version with much lower complexity, for which the experi-
ments on the datasets Frey and Anime show that our proposed algorithm can
perfectly resist the state-of-the-art steganalysis.
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Abstract. In this study, steganalysis of steghide embedded in Microsoft
RIFF waveform audio format (WAV) data is investigated. Spectral anal-
yses show that the conventional steganalysis utilize the statistics of
high-frequency regions and silent temporal segments of the target sig-
nals intentionally or unintentionally. Moreover, the frequency compo-
nents just below the Nyquist frequency are important for statistic-based
steganalysis in terms of the signal-to-noise ratio where the signal cor-
responds to the distortion components induced by data hiding, and the
noise corresponds to the cover signal. A novel steganalysis making full
use of the high- frequency features is proposed, and its detection per-
formance is compared with the conventional method, which showed the
best performance so far. The results show that the proposed steganalysis
outperforms the conventional method for cover data of 100 music signals
and 320 speech signals mixed with background noises.

Keywords: Signal-to-noise ratio · Anti-aliasing filter ·
Spectral analysis · Information hiding · Covert communication

1 Introduction

Covert communication is one of the applications of steganography, and con-
ceals secret information to be transmitted hidden in unrelated cover data in a
communication channel. Cryptographic communication can keep the contents
of communication as secret; however, the amount of communicated informa-
tion, frequency of communication, and sending and/or receiving destination may
become obvious in some cases. On the other hand, because cover data, where
the secret information is to be hidden, is unrelated to the secret communication,
it is difficult for a third party to detect not only the contents of the communi-
cation but also the facts of communication from the stego data where the secret
information is hidden.
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Covert communication itself is a kind of communication, but it can be a
threat of a personal nature, social nature, and even of national security through
a computer system. For example, in an article dated 5 February 2001 [13], USA
Today reported that U.S. and foreign officials said that Osama bin Laden and
his colleagues were hiding maps and photographs of terrorist targets and posting
instructions for terrorist activities in sports chat rooms, on pornographic bulletin
boards, and at other Web sites.

The replacement and/or modification of data files can be easily detected
by comparing the hash data of the original and modified files. However, when
a specific user possesses the original data and uploads their stego data to the
Web or social network service (SNS), the detection of such covert communica-
tion is difficult. Therefore, in order to detect undesirable covert communication
using audio, video, and image files, the necessity of identifying the presence or
absence of hidden information from an arbitrary content file (called steganalysis)
is increasing.

Steganalysis becomes more difficult when the modification of the content
accompanying hidden information is small. A representative hiding method is
the least significant bit (LSB) replacement method, which replaces the LSB of
the data with a secret data bit. Although this method is old-fashioned, it can
hide a relatively large amount of payload with a small amount of subjective and
objective quality degradation to the stego data.

In this paper, steghide [9], which is a type of LSB replacement method for the
waveform data of sounds (WAV), is taken up, and conventional steganalyses for
WAV data are reviewed. Conventional steganalysis have utilized high-frequency
regions and silent temporal segments of the target signals intentionally or unin-
tentionally. Moreover, the frequency components of the target signal just below
the Nyquist frequency are important for statistic-based steganalysis in terms of
the signal-to-noise ratio (SNR), where the signal corresponds to the distortion
components induced by data hiding, and the noise corresponds to the cover sig-
nal. A novel steganalysis making full use of high-frequency features is proposed,
and its detection performance is compared with the conventional method.

2 Steghide and Its Steganalysis

2.1 Steghide

Steghide [9] is a steganography program that hides data in image (JPEG, BMP)
and audio (WAV, AU) files. It replaces the LSB of sampled and quantized digital
waveform data with payload bits. A sequence of positions of samples in the cover
file is created based on a pseudorandom number generator initialized with a
passphrase. Of these positions, those that do not need to be changed (because
they already contain the correct value by chance) are sorted out. Then, a graph-
theoretic matching algorithm finds pairs of positions such that exchanging their
values has the effect of embedding the corresponding part of the secret data.
All exchanges are actually performed until the algorithm cannot find any more
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pairs of this type. The samples at the remaining positions (the positions that
are not part of such a pair) are also modified to contain the embedded data by
overwriting them. The fact that most of the embedding is done by exchanging
sample values implies that the first-order statistics are not changed.

In the case of a WAV file, the maximum amount of payload bits is half the
number of data samples. The number of payload bits is expressed as a ratio to
the maximum amount in percentages. This is called the capacity.

2.2 Previous Studies

Several steganalyses for steghide have been proposed. These methods are classi-
fied into two categories. One is extracting feature values from target signals that
correspond to the cover signals and stego signals to be fed into a machine learn-
ing process, typically a Support Vector Machine (SVM). The second category is
a calibrated method in which the machine learning uses the difference between
the feature values extracted from the target signal and its re-embedded signal.
The re-embedding algorithm is usually a random LSB replacement.

The performance is expressed by precision P that represents the correct
detection rate of stego signals and recall R that represents the correct detection
rate of cover (clean) signals. An F-measure F = 2PR

(P+R) is used as the overall
testing accuracy.

Djebbar and Ayad [2] divided each speech signal into four energetic parts
using an active speech level (ASL) algorithm, as defined in ITU-T (International
Telecommunication Union Telecommunication Standardization Sector) Recom-
mendation P.56. Maximum entropy is computed from each energy part to gen-
erate a set of features that is fed to a nonlinear SVM classifier with a radial
basis function (RBF) kernel to distinguish between cover and stego speech signals.
The researchers tested three LSB replacement-based steganographic methods: S-
tools4, Steghide, and Hide4PGP. The experimental results showed that the detec-
tion performance obtained from steghide was lowest in the F-measure at 0.797.

Ru et al. [11] investigated the wavelet coefficients obtained from a four-level
1D wavelet decomposition of the target signals for a short duration (about 20 ms)
in each subband. A linear predictor for the magnitude of the wavelet subband
coefficients extracted significant statistical features (mean, variance, kurtosis,
and skewness), and an SVM was employed to detect the existence of hidden
messages. The experimental results showed that the trained model using the
stego audio embedded at 20% capacity revealed the best detection performance
(F-measure of 0.957) for the stego audio embedded at 30% capacity.

Geetha et al. [4] applied wavelet noise reduction [3] to the target signals to
obtain calibrated signals. After that, higher-order statistics were extracted from
the Hausdorff distance between the target signal and the calibrated signal for
each subband signal of a four-level wavelet decomposition. A rule-based approach
with a family of six decision-tree classifiers (Alternating Decision Tree, Decision
Stump, J48, Logical Model Tree, Näıve Bayes Tree, and Fast Decision Tree
learner) to detect hidden audio information was introduced. An evaluation of the
enhanced feature space and the decision tree paradigm on a database containing
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4,800 clean and stego audio files was performed for classical steganography as
well as for watermarking algorithms. The best detection score of steghide was
0.9178 in the F-measure for stego audio embedded at 5% capacity.

Ghasemzadeh et al. [5–7] proposed an audio steganalysis system based on
reversed Mel-frequency cepstral coefficients (R-MFCC). This system aimed to
provide high resolution in high-frequency regions and low resolution where the
frequency was low. A 29-band reversed Mel-frequency filter bank was applied
to second-order-differentiated and segmented target signals using a 1024-sample
fast Fourier transform (FFT) with a half-overlapped hamming window. The
output of filter bank was converted to a 29-band time series of R-MFCC by
applying a logarithmic transform and a Fourier transform. A genetic algorithm
was deployed to optimize the dimensions of the R-MFCC-based features. This
sped up feature extraction and reduced the complexity of classification. The final
decision was made by a trained SVM to detect suspicious audio files. The pro-
posed method achieved F-measures of 0.954 and 0.929 for capacities of 100% and
50%, respectively. Moreover, random bits were re-embedded into the LSB of the
target signals to obtain calibrated signals [5]. After that, the significant statisti-
cal features (mean, standard deviation, kurtosis, and skewness) were extracted
from the difference of the R-MFCCs between the target signal and the calibrated
signal for each subband signal. Simulations under a universal scenario tested a
large number of steganographic and watermarking schemes at the same learning
parameters. The model revealed that the detection performance of steghide at
a capacity of 50% was 0.998 for the F-measure for 4,169 music and TV program
signals sampled at 44.1 kHz. The performance was 0.982 for the F-measure for
1,029 speech signals sampled at 16 kHz that were recorded by themselves.

Table 1 summarizes the major previous studies on the steganalysis of
steghide, including their experimental conditions and typical results of detec-
tion performance.

2.3 Effective Strategy for Steganalysis

Generally speaking, acoustic signals such as voice, music, and environmental
noise have a spectral characteristic in which the power decreases by increasing
the frequency. The change caused by the LSB replacement of the cover data can
be approximated to an additive Gaussian random signal of relatively constant
power, regardless of the amplitude and frequency of the cover signal.

In order to investigate the effect of the additive Gaussian signal induced by
LSB replacement, Fig. 1 shows spectrograms of (a) the speech signal (‘Ja f4.wav’
in ITU-T P.50 Appendix I), (b) the additive signal induced by 50%-capacity
embedding in the speech signal by steghide, and (c) the signal-to-noise ratio
where the signal and noise correspond to the additive signal and the cover
speech signal, respectively. Figure 1(b) shows that the power of the additive
signal spreads over the time and frequency plane uniformly. Figure 1(c) shows
three types of high-SNR regions that are depicted in dark gray and black: the
initial 0.4 s of zero amplitude, the highest frequency region that is just below
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Table 1. Conventional steganalysis and typical results for detecting steghide. Capacity
represents percentages relative to maximum amount of payload.

Researchers Database Capacity F-measure

Cover files Duration Sampl. Freq.,
Channels, Resol.

Djebbar and
Ayad [2]

620 speech 10 s 44.1 kHz,
mono, 16-bit

50% 0.797

Ru et al. [11] 1,000 wavsurfer 44.1 kHz∗,
stereo, 16-bit

30% 0.957

Geetha et al.
[4]

200 wavsurfer 10–60 s 44.1 kHz,
stereo, 16-bit

5% 0.918

Ghasemzadeh
and Arjmandi
[6]

4,169 wavsurfer 10 s 44.1 kHz,
mono, 16-bit

100%
50%

0.954
0.929

Ghasemzadeh
et al. [7]

4,169 wavsurfer 10 s 44.1 kH z,
mono, 16-bit

100%
50%

0.983
0.976

Ghasemzadeh
et al. [5]

4.169 wavsurfer 10 s 44.1 kHz,
mono, 16-bit

50%
6%

0.998
0.991

1,029 speech 10 s 16 kHz,
mono, 16-bit

50%
6%

0.982
0.741

∗: Sampling frequency is not clear. It supposed to be 44.1 kHz.

the Nyquist frequency, and the silent regions of no utterance. Therefore, a ste-
ganalysis that realizes high detection performance is better for extracting and
utilizing statistical features that are obtained mainly from quiet segments of low
amplitude and high-frequency regions of the target signals.

In a previous steganalysis that applied wavelet filter decomposition to the
target signal [4,11], the first-order detail coefficients represented a high-pass
signal. The reversed Mel-frequency filter bank [5–7] also extracted high-frequency
components of the target signal by narrow-band filters. Furthermore, taking the
second-order derivative of the target signal [5–7] corresponded to applying a
high-pass filter of +12 dB/oct.

2.4 Selection of Cover Data for Steganalysis

The most critical problem of conventional research on steganalysis is that the
characteristics of the audio signals used as cover data have not been clarified.
Previous studies often used data sets that were supposed to be downloaded or
purchased from “wavsurfer”, a website that provided audio tracks of TV pro-
grams and movies as WAV or MP3 files. Both types of audio files were converted
to WAV files sampled at 44.1 kHz and supplied for the cover data. However, when
perceptually encoded data such as MP3s were decoded into waveform data, the
high-frequency components near the Nyquist frequency will certainly be lost in
the encoding and decoding processes. In addition, wavsurfer may include sound
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(a) (b) (c)

Fig. 1. Spectrogram: (a) speech signal, (b) additive signal induced by steghide, (c)
signal-to-noise ratio (signal is additive signal induced by steghide, and noise is speech
signal.)

files upsampled to 44.1 kHz from sampling frequencies lower than 44.1 kHz. This
results in broad high-frequency regions of extremely low power. The results of a
simulation shown in Sect. 3.3 show that the high-frequency components of low
power, especially near the Nyquist frequency, are very effective for successful ste-
ganalysis. Even when the cover data are originally WAV files, similar problems
may occur as the recording targets are audio tracks of TV programs or movies
that were perceptually coded. When downloading audio files from the Internet
[2], the spectral characteristics discussed above are not clear.

The following databases are suitable for research on steganalysis including
music, speech, and background noise in terms of reproducibility of the experimen-
tal data. These databases are used as cover data for simulations in the next section.

The Real World Computing (RWC) music database is a copyright-cleared
database that is available to researchers as a common foundation for research. It
contains six original collections in audio CD format (44.1 kHz sampling, 16-bit
quantization, stereo): Popular Music Database (100 songs), Royalty-Free Music
Database (15 songs), Classical Music Database (50 pieces), Jazz Music Database
(50 pieces), Music Genre Database (100 pieces), and Musical Instrument Sound
Database (50 instruments). Music Genre Database RWC-MDB-G2001 [8] is used
for spectral analysis and steganalysis by extracting the initial 60 s and the left
channel of each piece of the music files.

ITU-T P.50 is a standard defined by the International Telecommunication
Union Telecommunications Division for artificial voice signals in order to test
the telephone system and its characteristics. Its Appendix I [10] is composed of
320 real speech files uttered in 20 languages, each of which corresponds to 8 male
speech files and 8 female speech files sampled at 16 kHz in monaural format with
16-bit quantization. Their lengths are 8.8 s on average, 2.7 s for the shortest, and
17.4 s for the longest, with a standard deviation of 2.5 s. Short silent sections that
are included before and after the speech sounds were removed before analysis
and simulation. This database is referred to ITU-T P.50 hereafter.

Diverse Environments Multichannel Acoustic Noise Database (DEMAND)
contains background noise sounds recorded for 300 s in 15 real environments
by a dense microphone array of 16 channels [12]. This database is used for



A Novel Steganalysis of Steghide Focused on High-Frequency Region 75

applications such as speech enhancement and speech recognition to be performed
after controlling additive background noise. A data set of 48-kHz-sampled items
and a 16-bit quantization and data set obtained by downsampling to 16 kHz by
the resample command of MATLAB R2012a have been distributed. The latter
database was used for the simulation.

3 Evaluation of Steganalysis

The steganalysis developed by Ghasemzadeh et al. [5], which exhibited the best
detection performance among the conventional methods, was implemented. They
applied a Fourier transform to the output of the reversed Mel-frequency filter
bank to calculate R-MFCC. The current simulation applied a discrete cosine
transform (DCT) to the output of the filter bank to calculate R-MFCC, because
it showed better performance than the Fourier transform.

In addition, a novel steganalysis that utilized the frequency components just
below the Nyquist frequency was developed. These steganalyses were tested to
detect information hiding by steghide in music signals and speech signals with
background noises.

3.1 Proposed Steganalysis

In order to extract feature values from the amplitude of frequency components
just below the Nyquist frequency, N -sample Hanning windowing and an FFT
were applied to a target signal by shifting half-overlapped windows. xt is a
N -sample vector of the target signal that begins with the t-th sample. w is a N -
sample vector of the Hanning window. Logarithmic amplitude spectrum Xi,j of
the j-th time frame (j = 0, 1, 2, ..., T − 1 where T is the total number of frames)
and the i-th discrete frequency (i = 0, 1, 2, ..., N/2) are expressed as follows:

Xi,j = 20log10(Abs(FFT(wxjN/2))) (1)

where FFT is the fast Fourier transform that extracts frequency components
below the Nyquist frequency, and Abs(·) is an operation taking the absolute
value. The feature values are the four statistics: average (Eq. 2), standard devi-
ation (Eq. 3), skewness (Eq. 4), and kurtosis (Eq. 5). These feature values are of
the highest m discrete frequencies i = N/2 − m + 1, N/2 − m + 2, ..., N/2.

favg,i =
1
T

T∑

j=1

Xi,j . (2)

fstd,i =

√√√√ 1
T

T∑

j=1

(Xi,j − favg,i)2. (3)

fskew,i =

∑T
j=1(Xi,j − favg,i)3

Tf3
std,i

. (4)
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fkur,i =

∑T
j=1(Xi,j − favg,i)4

Tf4
std,i

. (5)

The parameter values N = 256 and m = 9 were determined by preliminary
tests. The highest nine discrete frequencies were from 20,627 Hz to 22,050 Hz for
the music signals sampled at 44,100 Hz, and from 7,500 Hz to 8,000 Hz for the
speech signals sampled at 16,000 Hz. As a result, 9 × 4 = 36 feature values were
used to train the model of the SVM.

3.2 Conditions of Simulation and Procedure

A simulation was conducted by a tenfold cross-validation procedure. For 100
music files, 90 embedded and 90 clean files trained the model of the SVM, and
10 embedded and 10 clean files were used for detection with the trained model.

For 320 speech files, 576 files spoken in 18 languages (which were embedded
and clean files) trained the model of the SVM, and 64 embedded and clean files
spoken in the remaining 2 languages were used for detection with the trained
model. In order to simulate a background noise contained in an actual speech
recording, a noise file was randomly chosen from 15 “ch01.wav” files of the
DEMAND database. In addition, a temporal segment of the noise file whose
length was equal to the speech file was randomly chosen and added to the speech
file. The SNRs of the host speech signal (Signal) and the background noise
(Noise) were set to ∞, 80, 60, 40, and 10 dB as the parameters. In order to
simulate an anti-aliasing filter generally applied to the sound to be recorded
in an actual recording, an additional experimental condition that applies an
anti-aliasing filter to the background noise was applied. The cutoff frequency of
the anti-aliasing filter was 7400 Hz, and its gain at the Nyquist frequency was
−40 dB. This experimental condition is called “anti-alias” hereafter.

In both the conventional method and the proposed method, the RBF ker-
nel was used for the SVM. Following the method of Ghasemzadeh et al. [5,7],
a genetic algorithm (GA) was used to select an optimal set of feature values
so that the average F-measure obtained from the tenfold cross validation was
maximized. The value of γ, which is the learning parameter of the SVM, was
adjusted simultaneously by the GA. Because the intersection and mutation of
the GA were performed based on a pseudorandom sequence for each simulation,
and the noise to be added also randomly changed, the selected set of feature val-
ues, the adjusted γ value, and the resultant F-measures were slightly different
among the simulations. Therefore, the simulation was repeated 10 times, and
the average F-measures were obtained for each condition. The SVM library of
libsvm-3.22 [1] and GA package ga-0.10.0 of Octave-Forge were used.

The embedding of random data and its capacity was set to 50% and 6%,
respectively, which were often used in previous papers. In the actual use of ste-
ganalysis, the capacity of hidden messages and the power of background noises in
speech sounds are not known a priori. In order to show the effects of background
noise and the anti-aliasing filter on steganalysis, the best condition (when the
capacity of hidden messages and the relative level of background noises were
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known a priori) was tested first. This means that the stego signals of the same
capacity and the same levels of background noise were used to train the model
and for detection by the model. After that, different capacities of embedding
and different levels of background noise were used to train the model and for
detection using the model. This simulated an actual scene of steganalysis.

3.3 Results of Simulation

Figure 2 shows the detection performances of information hiding by steghide for
the music signals. The F-measures are compared between the conventional and
proposed steganalysis by combining the capacity of steghide in the training and
detection stages.

Fig. 2. Detection performances for music signals obtained from conventional and pro-
posed steganalysis.

The proposed steganalysis outperforms the conventional one in all capacity
conditions. A higher capacity in the detection stage realizes better detection
performance. Different capacities of steghide in the training stage and detection
stage lead to a lower detection performance. Training using the stego data of
small capacity achieves better detection performance for the stego data for a
wide range of capacity.

Figure 3 shows the detection performance of the previous and proposed ste-
ganalysis on the speech signals as a function of the signal-to-noise ratio (SNR),
which expresses the overall power level of the speech signal to the background
noise.

Without an anti-aliasing filter, the conventional steganalysis exhibits a
slightly better performance than the proposed method for SNRs of 40 and 60 dB.
Because the previous steganalysis utilizes the statistical features of the ampli-
tude in all frequency bands, silent intervals among utterances of speech may be
effective cues for detection. Higher levels of background noise lead to a lower
detection performance for both steganalyses. This is caused by temporal and
frequency segments of small amplitudes in the target signal that are filled with
the background noise.
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Fig. 3. Detection performances of conventional and proposed steganalysis of steghide
embedded in speech signals.

When an anti-aliasing filter is applied to the background noise, a lower SNR
does not lead to lower performance as the power of the cover signal at the fre-
quency bands just below the Nyquist frequency is small enough by applying a
low-pass anti-aliasing filter. The proposed steganalysis exhibited better perfor-
mance than the conventional method for SNRs of 10 and 40 dB, because the
proposed steganalysis made full use of the high-frequency features just below
the Nyquist frequency.

The succeeding simulations are conducted only under anti-alias filtering con-
ditions because speech recording devices generally apply an anti-aliasing filter
to the sound to be recorded.

Figure 4 shows the detection performance of the conventional steganalysis.
Training of the model and detection using the model were conducted in the same
capacity of embedding and at different SNRs. Figure 5 shows the results of the
proposed steganalysis for the same conditions as shown in Fig. 4.

Fig. 4. Detection performance of conventional steganalysis. Training of model and
detection using model were conducted in same capacity of embedding.

Figure 6 shows the detection performance of the conventional method, train-
ing of the model for 6%-capacity embedding for each SNR condition, detection
using the model for a 50% capacity of stego signals for each SNR condition, and
vice versa. Figure 7 shows the results of the same conditions in Fig. 6 for the
proposed model.
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Fig. 5. Detection performance of proposed steganalysis. Training of model and detec-
tion using model were conducted in same capacity of embedding.

Figures 4 and 6 indicate that the conventional steganalysis showed good per-
formance when the training and detection were conducted in high-SNR condi-
tions, but the performance dropped when the SNRs of the training and detection
were mismatched. By contrast, Figs. 5 and 7 show that the proposed steganaly-
sis exhibited better performance when the training was conducted at the lowest
SNR (10 dB) and with a small capacity of embedding (6%) when detecting the
stego and cover signals for all combinations of capacities and SNRs.

Fig. 6. Detection performance of conventional steganalysis. Training of model and
detection using model were conducted for different capacities of embedding.

4 Discussion

The proposed steganalysis shows superior performance to the conventional
method for both the music signals and the speech signals. This is caused by
the statistics of the frequency components just below the Nyquist frequency.
Figures 8 and 9 show the maximum, minimum, and average spectra of all files
in RWC-MDB-G2001 and ITU-T P.50, respectively. These are the arithmetic
average values of all files for each frequency. The cutoff characteristic of the
anti-aliasing filter at the Nyquist frequency of the speech signal is about −40 dB
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Fig. 7. Detection performance of proposed steganalysis. Training of model and detec-
tion using model were conducted for different capacities of embedding.

in Fig. 9. The power of the music signals significantly decreases as the frequency
increases in Fig. 8. These characteristics are generally observed for most of the
recorded sounds, thus reflecting the nature of natural sounds and recording
devices. The proposed method focuses only on the highest frequency region,
that is, just below the Nyquist frequency, where the artifacts of data hiding
are relatively emphasized, as shown in the SNR spectrogram in Fig. 1(c). This
results in superior performance.

Fig. 8. Averaged spectra of minimum, arithmetic mean, and maximum of 100 music
files from RWC-MDB-G2001.

The conventional method only showed a better performance for the speech
signals with an SNR of ∞ dB, as shown in Figs. 4 and 6. In that condition, silent
intervals with no utterance of speech that were not masked by background noises
in the target signals could be a strong cue of detection because the conventional
method utilized amplitude statistics in all frequency bands. However, this is not
a realistic condition in actual speech recordings.

The conventional steganalysis showed better detection performance for the
music and TV program sounds from wavsurfer [5] than that obtained from the
music database used in the current study, as shown in Fig. 2. The reason for the
better performance in the previous study may be the acoustic characteristics of
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Fig. 9. Averaged spectra of minimum, arithmetic mean, and maximum of 320 speech
files from Appendix I of ITU-T P.50.

the sounds included in wavsurfer. They may include upsampled WAV files and
WAV files decoded from perceptually coded files. Using these sounds as cover
data results in better detection performance, as discussed in Sect. 2.4.

For both the conventional and proposed steganalyses of a speech WAV file,
it is difficult to detect information hiding in cover signals containing background
noises without applying a steep anti-aliasing filter. From a cover signal to which
an anti-aliasing filter is applied, the proposed method extracts the statistical
features of the amplitude distribution just below the Nyquist frequency as sig-
nificant features. Combining the statistical features of the amplitude distribution
obtained from small-amplitude segments in the target signal improves the detec-
tion performance of the current steganalysis.

In this study, we examined the steganalysis of steghide for a waveform signal
that is linearly quantized and not perceptually coded. However, recorded and
distributed audio files on the Internet are often encoded as perceptually coded
data such as MP3s or AACs. The steganalysis of such coded audio files is one of
our future research targets.

5 Summary

In this paper, steganalysis for information hiding by steghide to the lower bits
of the audio waveform signal were investigated. Spectral analyses of the cover
data implied that the conventional steganalysis utilize the statistics of high-
frequency regions and silent temporal segments of the target signals. Moreover,
the frequency components just below the Nyquist frequency are important for
statistic-based steganalysis in terms of the SNR when the signal corresponds to
the distortion components induced by data hiding, and the noise corresponds
to cover components. A novel steganalysis making full use of the high-frequency
features was proposed, and its detection performance was compared with the con-
ventional method that showed the best performance so far. The results showed
that the proposed steganalysis outperformed the conventional method for cover
data of 100 music signals and 320 speech signals mixed with background noises.
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Abstract. Recapture can be used to hide the traces left by some opera-
tions such as JPEG compression, copy-move, etc. However, various detec-
tors have been proposed to detect recaptured images. To counter these
techniques, in this paper, we propose a method that can translate recap-
tured images to fake “original images” to fool both human and machines.
Our method is proposed based on Cycle-GAN which is a classic frame-
work for image translation. To obtain better results, two improvements
are proposed: (1) Considering that the difference between original and
recaptured images focuses on the part of high frequency, high pass filter
are used in the generator and discriminator to improve the performance.
(2) In order to guarantee that the images content is not changed too
much, a penalty term is added on the loss function which is the L1 norm
of the difference between images before and after translation. Experi-
mental results show that the proposed method can not only eliminate
traces left by recapturing in visual effect but also change the statistical
characteristics effectively.

Keywords: Recaptured images · Cycle-GAN ·
Fool human and machine

1 Introduction

Nowadays, with the popularity of digital cameras and the rapid development of
Internet technology, it is an indisputable fact that digital images have become
important carriers. And image editing software is widely used with the advan-
tage of operability and practicability, which makes it easy to tamper an image.
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Some tampered images in the fields of politics, military and judicature will bring
great harm to the society. Therefore, the identification of digital image authen-
ticity is of particular importance.

One common type of image tampering is recapturing images. The process of
recapture is as follows: firstly, the original image is projected onto a new media,
such as computer screen, mobile phone screen or printed paper. Then a new
image can be obtained by recapturing the projection. Recaptured images may
bring about bad effect on the society if they are used maliciously. For example,
due to that all the tampering will leave traces on the image, attackers can elimi-
nate these traces by recapturing the forged image. To against it, the most simple
and convenient way is to make a recaptured image decision in advance.

To discriminate between the recaptured and original images, numbers of algo-
rithms have been proposed and mainly include two branches: statistical character-
istics [1–3] and deep learning based [4]. In terms of statistical features, Farid et al.
first proposed a scheme which can to distinguish between natural and unnatural
images based on high-order wavelet statistical features. Unnatural images include
recaptured images and computer generated images. Cao et al. [2] proposed three
kinds of statistical features to detect good-quality recaptured images, namely local
binary pattern (LBP), multi-scale wavelet statistics (MSWS), and color features
(CF). Li et al. [3] proposed new features based on the block effect and blurriness
effect due to JPEG compression and the screen effect described by wavelet decom-
position. And the deep learning based method has been proved that it has better
detection performance than that statistical characteristics based. Yang et al. [4]
proposed a laplacian convolutional neural networks (L-CNN) and improved the
detection performance especially for small-size recaptured image.

On the other hand, from the point of view of an attacker, if he want to trans-
late a recaptured image to a fake original image, two goals need to be achieved:
the visual effect of LCD should be avoided and it can attack various detection
schemes. Generative adversarial networks have achieved many state-of-the-art
results in image translation. Generative adversarial networks include generator
network and discriminator network. The generator learns the potential distribu-
tion of the real data and generates new data and the discriminator is a binary
classifier that determines whether the input is real or generated. In training
phase, the generator need to be continuously optimized to improve its gener-
ating ability and the discriminator need to improve its discriminating ability.
The learning process is to find a Nash equilibrium between the two networks.
CGAN [5] adds extra information in the generator and discriminator to guide
the process of training. Pix2pix-GAN [6] can achieve image-to-image translation
tasks with paired images which include an input image and a corresponding tar-
get output image. Cycle-GAN [7] used two generators and two discriminators to
learn mapping functions between two domains without paired images.

Considering that it is difficult to get the paired images for original images and
recaptured images, in this work, a method based on Cycle-GAN is proposed. Due
to the fact that the difference between original and recaptured images focuses
on high frequency, generator and discriminator with high-pass filter are designed
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to make a better image translation. Additionally, to guarantee the content of
images not change a lot after being translated, a penalty term is added to the
loss function which is the L1 norm of the difference between images before and
after translation. Experimental results show that the proposed method can not
only fool human in visual effect but also the machine with a high probability.

The rest of the paper is organized as follows. In Sect. 2, proposed architecture
and object function is introduced. Experiments are conducted in Sect. 3, and
conclusions are drawn in Sect. 4.

2 Proposed Method

Our task is to translate recaptured images to target images which is similar to
original images not only in visual effect but also in statistical characteristics.
It can be formulated as learning a mapping G from recaptured images X to
the original images Y given training samples {xi} ∈ X and {yi} ∈ Y , where
i = 1, 2, ...,m. Note that X and Y are not corresponding one by one because it
is difficult to collect recaptured images which are completely same with original
images.

The overall framework of the model is shown in Fig. 1, two generators and
discriminators are used. x is present as recaptured image and y is present as
original image. Generator G learns the distribution of Y and F learns the distri-
bution of X. Discriminator DX aims to distinguish between recaptured images
{x} and fake-recaptured images {F (y)}, and DY aims to distinguish between
original images {y} and fake-original images {G(x)}. To promise the mapping
is meaningful, cycle network structure is used. As shown in dotted arrow, the
translated images {G(x)} and {F (y)} are fed into the generator F and G. By
limiting the difference between x and F (G(x)) and the difference between y and
G(F (y)), the model can be further standardized. The training process is based on
game theory and it aims at achieving the Nash equilibrium between generators
and discriminators.

Fig. 1. The overall framework of the model.
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2.1 Architecture

Generator. Two generators G and F are included. The Generator G can trans-
late X to Y and Generator F can translate Y to X. The two generators have
the same architecture which is shown in Fig. 2. Considering that the difference
between original and recaptured images focus on the high frequency part, so
only the part of high frequency is extracted and fed into generators. Generators
are only responsible for learning the difference of high frequency, which is more
easier to train than reconstructing the whole image. In this work, the laplace
filter are used:

LF =

⎡
⎣

0, −1, 0
−1, 4, −1
0, −1, 0

⎤
⎦ (1)

Fig. 2. The architecture of generator.

Fig. 3. The architecture of block.

In addition, six units and five residual blocks are combined together. Each
of the unit 1, 2, 3 and 6 include a convolution layer, a batch normalization and
a Relu function. Each of the unit 4 and 5 include a deconvolution layer, a batch
normalization and a Relu function. Each residual block includes two convolution
layers and a Relu function. The structure of residual block is shown in Fig. 3.
In the end, a TanH activation function is used. The parameters of generator are
presented in Table 1.

Discriminator. Two discriminators DX and DY are included. As shown in
Fig. 4, the discriminator is designed to distinguish real images and fake images.
Similarly, a laplace filter is used, followed by four units and one convolution layer
are used. Each unit includes a convolution layer, a batch normalization and a
Leaky-ReLU function. The parameters of discriminator are presented in Table 1.
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Fig. 4. The architecture of discriminator.

Table 1. The detailed parameters of the architecture

Generator Unit 1 Conv(7*7*32), padding = 3, stride = 1; batchnorm; Relu

Unit 2 Conv(3*3*64), stride = 2; batchnorm; Relu

Unit 3 Conv(3*3*128), stride = 2; batchnorm; Relu

Block Conv(3*3*128), stride = 1; Conv(3*3*128), stride = 1; Relu

Unit 4 Deconv(3*3*128), stride = 2; batchnorm; Relu

Unit 5 Deconv(3*3*256), stride = 2; batchnorm; Relu

Unit 6 Conv(7*7*3), stride = 1; batchnorm; Relu

Discriminator Unit 1 Conv(4*4*32), stride = 2; batchnorm; Leaky-ReLU

Unit 2 Conv(4*4*64), stride = 2; batchnorm; Leaky-ReLU

Unit 3 Conv(4*4*128), stride = 2; batchnorm; Leaky-ReLU

Unit 4 Conv(4*4*256), stride = 1; batchnorm; Leaky-ReLU

Conv Conv(4*4*1), stride = 1;

2.2 Object Function

The loss function of proposed method contains three parts: adversarial loss, cycle
consistency loss and low frequency consistency loss.

Adversarial Loss. The optimization process of GAN is actually a game between
two competing networks: the generator is responsible for generating data which is
similar to the real data, and the discriminator is responsible for distinguishing the
generated data from the real data. Formally, the game between the generator G
and the discriminator D has the minimax objective. Note that the distribution of
recaptured images is Pdata(x) and the distribution of original images is Pdata(y).
We need to translate a recaptured image x to a target image G(x) which follows
the distribution of Pdata(y). Therefore, for the mapping function G : X → Y
and its discriminator DY :

Ladv(G,DY ,X, Y ) = Ey∼pdata(y)(log DY (y))
+ Ex∼pdata(x)(1−log DY (G(x))),

(2)
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where G tries to generate images G(x) that look similar to images from domain
Y , while DY aims to distinguish between translated samples G(x) and real sam-
ples y. G tries to minimize this objective and D tries to maximum it.

Due to it is meaningless to learn the translation from original images to
recaptured images, so the results of F : Y → X is not involved in our experiment.
But it’s a essential part in the entire framework for cycle consistency. So, for
the mapping function F : Y → X and its discriminator DX , there is another
constraint:

Ladv(F,DX ,X, Y ) = Ex∼pdata(x)(log DX(x))
+ Ey∼pdata(y)(1−log DX(F (y))),

(3)

Cycle Consistency Loss. Compared with other generation models, the great-
est advantage of GAN is that it doesn’t need to formulate a target distribution,
but to learn the distribution directly using two group of images. However, this
mechanism also brings a shortcoming that the model is too free and uncontrol-
lable. A generator can map the input images to any random permutation of
images in the target domain, which may cause there is not any semantic links
between input images and output images. Thus, it’s difficult to guarantee that
the learned function can map input X to desired output Y . To ensure the map-
ping is practical, cycle consistency loss is introduced.

For each image x from domain X, the image translation cycle should be able
to bring x back to itself: x → G(x) → F (G(x)) ≈ x. And for each image y
from domain Y , the image translation cycle also need to bring y back to itself:
y → F (y) → G(F (y)) ≈ y:

Lcyc(G,F ) =Ex∼pdata(x)(‖F (G(x)) − x‖1)
+Ey∼pdata(y)(‖G(F (y)) − y‖1),

(4)

Low Frequency Consistency Loss. It has been noted that the dataset is
unpaired which is convenient to be collected. But it also bring a disadvantage
that no groundtruth for recaptured images to constrain the model when training.
Due to the deep learning model is driven by data, the generator may learn the
difference between original image and recaptured image in training dataset. So if
the dataset is not rich enough, the model is likely to be overfitting. The generator
can not only learn the difference left by recapturing, but also other difference
between two group of data, such as: color distribution, the content of images and
so on. In that cases, the translated images may have large chromatic differences
from target images. Considering the characteristic of recaptured images, the
content of images is similar with original images and the main difference is focus
on the high frequency. So an extra term need to be added to ensure that the low
frequency part is not changed. In proposed method, median filtering is used to
extract the part of low frequency:

LLow(G,F ) = Ex∼pdata(x)(‖f(G(x)) − f(x)‖1)
+ Ey∼pdata(y)(‖f(F (y)) − f(y)‖1),

(5)
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where, f(.) is a median filter function which can reserve the low frequency part.
In total, the full objective is:

L(G,F,DX ,DY ) =Ladv(G,DY ,X, Y )
+ Ladv(F,DX ,X, Y )
+ αLcyc(G,F )
+ βLlow(G,F ),

(6)

where α, β are weight coefficients. In the experiments, α is set as 10 and β is set
as 5.

Finally, by optimizing the loss function according to Eq. (7), we can get
the well-trained generators and discriminators. According to the purpose of this
work, only generator G is needed.

G∗ = min
G,F

max
DX ,DY

L(G,F,DX ,DY ), (7)

where, G∗ presents the well-trained generator G.

3 Experimental Results and Analysis

Image database in the experiments includes 20000 images: 10000 original images
and 10000 recapture images. The size of the images is 256 × 256. The images
derive from the image databases provided in [2]. We crop the block with size of
1024 × 1024 from the center of the images. Then the images are cut into non-
overlapping blocks of 512 × 512. Finally, 256 × 256 images are got by center
clipping. And training dataset, validation and test dataset are randomly divided
by percent 40/10/50. Hyper-parameter setting in the experiment is as follows:
the learning rate is 0.0001 and iteration epoch is 15. And the Adam optimizer
with β = 0.5 are used. All the results shown in this section are averaged over 6
random experiments.

In the experiment, three recaptured image detection methods are involved.
They include the method based on statistical characteristics: LBP feature [3]
and wavelet statistical feature [3] and based on deep learning: L-CNN [4]. Firstly,
these three methods are well-trained to get the different accuracies for different
images. Furthermore, to analyze the validity of model modification, a contrast
experiment is performed in which the model is original Cycle-GAN without any
modification. Finally, in order to verify the effectiveness of proposed method, it
was trained using the training dataset and the recaptured images in test set are
fed into the model to be transferred to a fake images.

In Table 2, the detection accuracies using three methods for different images
are presented. Noted that IMAGEnor means the recaptured images in test
dataset without any translation. IMAGEcyc means the images translated by
original Cycle-GAN and IMAGEprop means the images translated by proposed
method. It can be seen that there detection methods mentioned above can all
detect the recaptured images effectively. And the ability of original Cycle-GAN
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Fig. 5. The visual effect of recaptured images and corresponding translated images. In
each group, recaptured image is on the top and the translated image is on the bottom.
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to attack the detection methods is worse than the proposed method. It can be
seen that after being transferred by proposed method, the classic schemes will
be fooled with great probability. At the same time, it is noticed that the attack
effect is different for three detection methods, and the proposed method can
attack the L-CNN effectively but don’t perform very well in attacking the meth-
ods of LBP and wavelet. We guess it is because the method of L-CNN is more
similar to the discriminator of proposed method.

In the aspect of visual effects, six group of images are shown in Fig. 5. In
each group, recaptured image is on the top and the translated image is on the
bottom. From these images, we can find that proposed method can remove the
traces of texture left by recapturing LCD screen effectively.

In conclusion, the proposed method can not only eliminate of traces left
by recapturing in visual effect but also change the statistical characteristics to
attack the detection methods effectively.

Table 2. The classification accuracy using three methods for different images

Image Method

L-CNN LBP Wavlet

IMAGEnor 99.0% 95.6% 82.0%

IMAGEcyc 34.83% 70.96% 53.3%

IMAGEprop 9.4% 32.85% 39.44%

4 Conclusion

In this paper, we proposed a method to translate recaptured images to fake “orig-
inal images” based on Cycle-GAN. According to the characteristics of recaptured
images, generator and discriminator with high-pass filter are designed to make a
better image translation. Additionally, to guarantee the content of images don’t
change a lot after being translated, a penalty term is added to the loss function
which is the L1 norm of the difference between images before and after trans-
lation. Experimental results show that the proposed method can not only fool
human in visual effect but also the machine with a high probability.
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Abstract. Even though interest in spherical panorama content has
increased rapidly, few studies have examined watermarking techniques
for this content. We present a new watermarking technique to protect
spherical panorama images as well as view-images that are rendered with
a specific viewpoint. Solving the watermark synchronization problem in
the detection process requires finding the viewpoint of a view-image.
Scale Invariant Feature Transform (SIFT) and Euclidea transformation
matrix are used to find viewpoint information of a detection target view-
image. Using the viewpoint information, a view-image can be recovered
to a source image and then we can detect watermark from it. The exper-
imental results show robustness against several attacks such as JPEG
compression, Gaussian filter, and noise addition attack.

Keywords: Image watermarking · Spherical panorama ·
Omni-directional image · 360 VR watermarking

1 Introduction

Recently, interest in spherical panorama content (a.k.a. omni-directional con-
tents, 360 × 180◦ contents, VR contents) has increased rapidly. Unlike other
existing media content, it allows viewers to choose their viewpoint. Thanks to
recent improvements in hardware and software for spherical panorama content,
one can easily create, distribute, and appreciate their content. Thus, the market
for spherical panoramas has grown both qualitatively and quantitatively and
the copyright protection problem has become an important issue. Watermark-
ing techniques have been proposed as a solution to the image copyright problem.
However, watermarking techniques that can properly protect spherical panorama
content are absent.

A view-image comes from spherical panoramas source image with a specific
viewpoint. A normal user can only see view-images rather than the spherical
panoramas source image, so view-images are easier to leak than the entire source
image. Furthermore, a view-image can have sufficiently high content value and
c© Springer Nature Switzerland AG 2019
C. D. Yoo et al. (Eds.): IWDW 2018, LNCS 11378, pp. 95–109, 2019.
https://doi.org/10.1007/978-3-030-11389-6_8
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a replicated spherical panorama source image can be made using several view-
images. Therefore, spherical panorama watermarking techniques should detect
watermarks from view-images. However, existing watermarking techniques for
2D images or 3D stereoscopic images cannot be applied directly to spherical
panoramas because its distortion varies depending on viewer’s viewpoint in the
rendering process.

This paper proposes a spherical panorama image watermarking technique.
For the synchronization between location of embedding and location of detecting,
watermark is embedded and detected on spherical panorama’s source image that
has a equirectangular form. Therefore, to detect watermark from a view-image,
we should render the view-image into the source-image. The rendering needs
the view-image’s viewpoint information; we propose using the Scale Invariant
Feature Transform (SIFT) feature points matching algorithm [1] and Euclidean
matrix transformation to get viewpoint information of a view-image.

This paper is outlined as follows. First, we will explain related work involv-
ing image watermarking for various content in Sect. 2, we will show a spherical
panorama image watermarking algorithm in Sect. 3, and Sect. 4 shows the exper-
imental results. Finally, future research directions are proposed and the paper is
concluded.

2 Related Works: Image Watermarking for Various
Contents

2D image, Stereoscopic 3D, Depth Image Based Rendering (DIBR), and spherical
panoramas are the examples of various types of image content. Watermarking
methods have been proposed for various image content and since the various
types of content each have their own characteristics, a watermarking technique
should be designed that takes account of their characteristics.

To date, numerous watermarking techniques have been proposed for 2D
image. Frequency domains such as DCT [2], DFT [3], DWT [4], and contourlet
[5] are often used for invisibility and robustness. In various domains, various
methods such as spread spectrum [6] and quantization index modulation [7] are
used. Furthermore, there are many 2D image watermarking techniques that use
template [12] or feature points [8] for the robustness against geometric distor-
tion. Recently, 2D image watermarking techniques have been introduced that
uses a deep learning [17,18].

3D image have two kinds of format for 3D content distribution: stereoscopic
3D (S3D) and Depth-image-based rendering (DIBR). S3D uses two images (left
image, right image) to get one view and S3D image watermarking schemes
emphasize the Human Visual System (HVS) to reduce visual fatigue in the 3D
rendering process [11]. S3D and DIBR both use two images, but DIBR uses a
center image and a depth image; DIBR makes left and right images using the
center and depth images. Therefore, DIBR can control the degree of depth in
an image. DIBR watermarking schemes [13–15] should consider variable depth
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depending on user preference. Both DIBR and spherical panorama image water-
marking schemes should detect watermark from changing image according to
setting, but the degree of change differs. DIBR rendering can only makes local
horizontal translations; therefore, it is not adjustable to spherical panoramas.

In the case of spherical panoramas, which have recently entered the spotlight,
watermarking techniques are uncommon. Miura et al. proposed a data hiding
technique for omnidirectional images [20], but they did not consider robust-
ness because they focused on hiding information. Furthermore, they only used
equirectangular images and did not deal with view-images.

Kang et al. proposed spherical panorama image watermarking using feature
points [19]; they embedded watermarks into several original images before com-
bining them into an equirectangular image. The several combined watermarked
images become one watermarked equirectangular image; then they could detect
a watermark in the equirectangular image. Protecting only the equirectangular
image can be performed using existing 2D image watermarking techniques. Usu-
ally, several original images that are taken from a specific position to make one
equirectangular image are taken by one person. Therefore, a different watermark
is not needed for each original image. Furthermore, the view-image can easily be
stolen, while the source image (mostly equirectangular image) is relatively hard
to be stolen due to the characteristics of the spherical panorama. This is why we
embed watermarks into equirectangular images and detect from view-images.

3 Proposed Spherical Panorama Watermarking
Algorithm

This paper presents a watermarking algorithm for spherical panorama images.
As mentioned in the introduction, a spherical panorama watermarking algorithm
should not only be able to detect watermark from the entire source image but
also from view-images. Considering rendering distortion, detecting watermarks in
view-images is similar to detecting watermarks in extremely cropped and almost
randomly warped 2D images. Therefore, we propose recovering detection-targeted
view-image to equirectangular source image for watermark synchronization.

This section briefly explains spherical panorama images and then the water-
mark embedding and detection processes are described separately.

3.1 Spherical Panorama Image

Spherical panorama images are also well known as VR images, omni-directional
images, or 360◦ panorama images. They are very effective for expressing vir-
tual space as real space. Making one spherical panorama image requires several
images that include all direction views taken from one point. After that, it is
necessary to combine several images into one through a process called stitching.
Stitching multiple images containing all directions into one image is like express-
ing a three-dimensional sphere in a 2D plane. There are many ways to project
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a 3D sphere into one 2D image and no method can avoid distortion, but the
equirectangular form is most commonly used in spherical panorama images.

In equirectangular formed image, width refers to the 360◦ horizontal view
and height refers to the 180◦ vertical view. Therefore, the length of the width
is always twice that of the height in an equirectangular formed image. Common
world maps are the most well-known equirectangular formed image that express
the spherical Earth’s surface into a single 2D image.

When someone wants to view a spherical panorama image, the equirectan-
gular image is projected onto a sphere and then the viewer observes the partial
surface of the sphere from its center. Therefore, spherical panoramas have 360◦

horizontal and 180◦ vertical fields of view. The partial image depends on the
user viewpoint, which we will call the ‘view-image’. Figures 1 and 2 will clarify
this.

Fig. 1. Viewing a spherical panorama is like viewing a partial of surface from the
center. The red area refers to ‘view-image’. (Color figure online)

Fig. 2. (a): sphere, (b): equirectangular (source image), (c)–(f): view-images
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3.2 Watermark Embedding

Watermark Patches. We embed watermark into the original source image
(the equirectangular image) and we detect watermarks from view-image. This is
similar to defending against a random extreme cropping attack. We want at least
one complete watermark pattern in the view-image regardless of the viewpoint;
we do this by dividing the source image into n ∗ 2n number of blocks, each
of blocks has one watermark patch and all the blocks have same watermark
patch. Since adjacent pixels are affected by each other in the spherical panorama
rendering process, the edge areas of the blocks are not used and the center area
of the blocks is only used as watermark patch. Figure 3 shows an example of
watermark patches’ area without considering watermarks’ invisibility.

Fig. 3. Example of 9 × 18 watermark patches (80% of blocks)

Embedding Watermark Pattern. This proposed method can adapt to vari-
ous existing 2D watermarking methods. For convenience of explanation, we will
explain this using a basic DCT domain-based spread spectrum watermarking
method.

The secret key (Ks) is used to make a watermark pattern (Wp) that is a
random sequence that follows a Gaussian distribution with an average of 0 and
a variance of 1. The length of the watermark pattern is proportional to the size
of the watermark patch. Wp and the original DCT coefficients (Co) are used to
create watermarked coefficients (Cw). Making the watermarked coefficients (Co)
equation is as follows.

Cw(i,k) = Co(i,k) + αw

∣
∣Co(i,k)

∣
∣ Wp(k) (1)

In Eq. 1, i denotes the index of the watermark patches and k denotes index of
the watermarking-targeted coefficients. Watermarking-targeted coefficients are
coefficients of middle frequency in DCT domain. αw denotes watermark strength
value and this value controls the trade-off between the watermark’s robustness
and visibility. Original coefficients (Co) are replaced by watermarked coefficients
(Cw) and then a watermarked RGB-channel source-image is obtained through
inverse-DCT (Fig. 4).
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Fig. 4. Watermark embedding process

3.3 Watermark Detection

Spherical panorama watermarking schemes should be able to detect watermarks
from source images and view-images. Detecting a watermark from the source
image is the same as detecting a watermark from 2D image in this scheme. We
propose a way to detect watermarks in a view-image by recovering a view-image
to the source image. However, the recovery process needs viewpoint information
from the view-image, which is why we need a viewpoint detection process. We
divide the viewpoint detection process into two steps: a near-viewpoint detection
step and a precise-viewpoint detection step; these are explained in detail in
following subsections.

Near-Viewpoint Detection. Spherical panorama view-image is the part of
a sphere’s surface. Therefore, each view-image’s center can be expressed as two
spherical angle variables; one is horizontal (−180◦–180◦) and the other is vertical
(−90◦–90◦). Obtaining a viewpoint of a view-image by comparing all the each
of view-images is almost impossible. We propose a method to determine near-
viewpoint using the SIFT matching technique.

We need reference view-images to obtain the near-viewpoint of a detection-
targeted view-image. Reference view-images are generated from the original (or
watermarked but undamaged) source image. The reference view-images repre-
sent near view-images that have a similar viewpoint. The sum of reference view-
images should cover the whole spherical panorama image and there should be
an overlapping region between the very next neighbor reference view-images.
Too large an overlapping region increases the number of required reference view-
images and means lower efficiency. Based on empirical results, we used 26 ref-
erence view-images in a source image. Figure 5 shows the example of reference
view-images.
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Fig. 5. Example of 26 reference view-images. V: vertical, H: horizontal

If any two view-images have a similar viewpoint, then the two view-images
will likely contain several of the same objects. If there is no severe distortion,
SIFT, which is robust to Rotation, Scaling, and Translation (RST) can match
same objects between them. In other words, if there are many matched SIFT
feature points between two view-images, then the two view-images have a similar
viewpoint. A near-viewpoint can be obtained using this characteristic.

Initially, SIFT matching is performed between a detection-targeted view-
image and each reference view-images. Then, the number of matching points
becomes a measure of viewpoint similarity. If the maximum SIFT feature points
matching number is not over a specific threshold, it is determined that the tar-
geted view-image is not derived from the corresponding spherical panorama
image. Conversely, if the maximum SIFT matching number exceeds a thresh-
old value, the viewpoint of the reference view-image is determined as the near-
viewpoint.
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Precise-Viewpoint Detection. Precise-viewpoint can be obtained by search-
ing surround of near-viewpoint. SIFT feature point matching method and
Euclidean transformation are used to search.

Initially, we set the candidate-viewpoint as the near-viewpoint that was
obtained in the previous step. The candidate-viewpoint is the last guessed view-
point that could be a precise-viewpoint. After that, the Peak Signal Noise Ratio
(PSNR) value between the view-image comes from candidate-viewpoint and a
detection-targeted view-image is obtained. We can use the PSNR value to deter-
mine whether the viewpoints of the two view-images are the same. In other
words, if the PSNR value exceeds a threshold, it means that the viewpoint of
the detection-targeted view-image has been found and the candidate-viewpoint
becomes the precise-viewpoint. Then, we can move on to the next step. How-
ever, if the candidate-viewpoint does not equal the viewpoint of the targeted
view-image, the candidate-viewpoint should be changed to a reasonable guess.

SIFT matching information is obtained between view-image from the
candidate-viewpoint and targeted view-image. This information is used to guess
the vertical, horizontal, and rotation differences between the two images using
the Euclidean transformation matrix. The general Euclidean transformation
matrix that considers vertical translation, horizontal translation, and rotation
can be expressed as Eq. 2.

[
x′

y′

]

=
[
s · cos θ s · − sin θ
s · sin θ s · cos θ

] [
x
y

]

+
[
c
d

]

(2)

In Eq. 2, x and y refer to the positions before conversion and x′ and y′ refer to
the positions after conversion; c represents the degree of translation in the x-axis
and d represents the degree of translation in the y-axis. s refers to the scale and
θ represents the degree of rotation based on the origin considering the scale (s)
change. After replacing s · cos θ with a and s · sin θ with b, we can expand it and
then rewrite it with determinants a, b, c, and d. After that, n SIFT feature point
matching pairs between the two view-images can be substituted into it and then
it can be expressed as Eq. 3.
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In Eq. 3, the pseudo inverse can be used to get the best approximate values
for a, b, c, and d. Using c and d, we can estimate the degree of parallel translation
of both x-axis and y-axis. In other words, we can estimate the degree of vertical
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and horizontal translation. Furthermore, we can estimate the degree of rotation
(θ) using Eq. 4.

s =
√

a2 + b2, cos θ =
a

s
(4)

After obtaining the guessed vertical, horizontal, and rotational transfor-
mation information, the information is used to estimate the viewpoint of the
detection-targeted view-image. In other words, new candidate-viewpoint can be
obtained by adjusting the transformation information.

Newly obtained candidate-viewpoints are checked for whether one is the
precise-viewpoint. The method compares the PSNR value between the detection-
targeted view-image and the view-image comes from the candidate-viewpoint to
the threshold, and its method is the same as before. If the PSNR value exceeds a
threshold, the candidate-viewpoint becomes the precise-viewpoint and we move
on to the next step. Otherwise, we should repeat this step until we find the
precise-viewpoint.

Recover to Source Image. The obtained precise-viewpoint is used to recover
the detection-targeted view-image to the source-image. It is impossible to recon-
struct the entire source image because only information used in the rendering
process is recoverable. After reconstruction, an interpolation process is needed to
reduce the hole-effect that interferes with watermark detection. Figure 6 presents
examples of view-images and corresponding reconstructed source-images and
interpolated source-images.

Watermark Detection. Watermark patches in fully recovered areas are used
for detection. This paper only uses patches that have over 95% of recovered
pixels. The DCT coefficients are obtained from each patch, then the correlation
values between the watermark pattern and the coefficients of each patch can
be obtained. As a result, one correlation value comes from one recovered patch.
Optionally, some of the highest and lowest correlation values can be excluded to
remove outliers.

After that, the average value of the remaining correlation is obtained, and
the average value is compared to a threshold value. If the average value exceeds
that threshold value, it is determined that the watermark has been detected;
otherwise, it is determined that a watermark does not exist or the embedded
watermark pattern and the watermark pattern that the process tried to detect
are different (Fig. 7).

4 Experimental Results

The experiments used various types of a hundred equirectangular formed source
images [16]. The resolutions of equirectangular images ranged from 1024 × 2048
to 3000 × 6000, the resolution of view-image was 400 × 400, and view-image’s
horizontal and vertical field of view values were 90◦. The number of blocks of
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Fig. 6. Examples of recovering from view-image to source-image and its interpolation

a source-image was 9 × 18 and each block had one watermark patch in the
center area; the patch size was equal to 75% of the block size. The length of
the reference pattern equaled 40% of the number of pixels in a patch and the
watermark insertion strength was 0.2.

Initially, we compared four domains to find one that was robust against spher-
ical panorama rendering. We embedded watermark patterns into each spatial,
DCT, DWT, and DFT domain patch of the source-images. Except for the spatial
domain, we embedded watermark patterns into the middle frequency area. We
adjusted the other variables to make the PSNR values similar (The PSNR values
that were obtained were between the original view-images and the watermarked
view-images).

We used 20 original source-images for this experiment. We made 80 water-
marked source-images through four domains. We used four representative view-
points to make 320 watermarked view-images in total; then, we obtained average
correlation values using the proposed spherical panorama watermarking scheme.
Table 1 shows the results.

As a result, DCT domains show the best performance. Therefore, watermark
pattern values are inserted into DCT coefficients in the following experiments.

Table 2 shows the results of invisibility experiments using the average PSNR
value between the original image and watermarked images. The source-image
experiments use a hundred equirectangular formed images and the view-image
experiments use 10 random-viewpoint view-images for each source-image.
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Fig. 7. Watermark detection process

Table 1. Average correlation and PSNR values depending on the domain and view-
point

Viewpoint (vertical, horizontal)

(0◦, 0◦) (30◦, 0◦) (60◦, 0◦) (90◦, 0◦)

Spatial [8] 0.039 0.062 0.057 0.037

PSNR: 42.47 dB

DCT [2] 0.109 0.104 0.092 0.076

PSNR: 42.35 dB

DWT [4] 0.055 0.055 0.047 0.043

PSNR: 40.56 dB

DFT [3] 0.048 0.063 0.052 0.052

PSNR: 42.61 dB
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Table 2. Invisibility experimental result

Source-image View-image

PSNR 45.12 dB 46.84 dB

Figure 8 shows examples of the original and watermarked images. It is difficult
to find the difference between them by the human eye.

Fig. 8. Examples of original and watermarked images

We experimented with the detection ratio. The detection ratio means how
correctly the viewpoint of a view-image is detected. This experiment used about
1600 view-images from a hundred source images. The viewpoint of the view-
images was randomly chosen and the detection ratio was 83.15%.

Most of the viewpoint detection failures correspond to one of two types. The
first type was when view-images had almost no features, such as images of the
sky or ocean. The other type was when almost similar objects were repeatedly
present in the image. Because the algorithm uses SIFT feature points matching
technique for viewpoint detection, so the two types above can be a limitation.
However, the first limitation is not a problem because the view-images that have
almost no feature points are unlikely to be worth protecting. Figure 9 shows
examples of the two viewpoint detection failure types; the upper lined view-
images are included in the first type and the lower lined view-images are included
in the second type.

We experimented on the watermarking performance; we used about 500 view-
images for each test in this experiment. Initially, we obtained average correlation
coefficients from correct and incorrect watermarks. A correct watermark means
that the same watermark pattern is used in embedding and detecting and incor-
rect watermark means that different watermark patterns are used. The detection
ratio result was obtained by comparing the threshold with the average correlation
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coefficient. Table 3 and Fig. 10 show the results; the results show the meaningful
difference between the correct watermark and the incorrect watermark; we set
the threshold value to 0.02 to get the detection ratio.

Fig. 9. Examples of viewpoint detection failed view-images

Table 3. Correlation results without attack

Correct WM Wrong WM

Average correlation 0.0796 −0.0002

Detection rate 88.8% 0%

Further experiments were conducted to determine the robustness of the
watermarking against JPEG compression, noise addition attack, and blurring
attack; the results are as shown in Table 4.

Table 4. Correlation result with attacks

JPEG 90 JPEG 80 JPEG 70 JPEG 60 Noise Gaussian

Average correlation 0.0536 0.0516 0.0466 0.0387 0.0725 0.0665

Detection rate 83.8% 85.1% 87.2% 79.7% 88.8% 90.2%

PSNR 36.34 dB 33.57 dB 32.23 dB 31.69 dB 33.15 dB 34.22 dB

Each attack experiment used about 300 random viewpoint view-images. The
experiment used four types (90, 80, 70, and 60) of JPEG compression attack
with different compression qualities. The noise addition attack experiments used
Gaussian noise with an average of 0 and a variable of 0.0005, while the blur-
ring attack experiments used a Gaussian filter with 0.6 sigma. The PSNR val-
ues between the watermarked view-images and watermarked and attacked view-
images show the degree of attacks.
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Fig. 10. Correlation histogram using correct and wrong watermark pattern

5 Conclusion

In this paper, we proposed spherical panorama image watermarking technique.
We used equirectangular formed source image to synchronize embedding and
detecting location. Viewpoint detection process was used to recover from view-
image to source image. The experiments shows robustness against JPEG com-
pression, Gaussian filter, and noise addition attacks. Unfortunately, this pro-
posed scheme have limitations for some kinds of images and this is non-blind
watermarking technique. As we known, this is first watermarking technique for
spherical panorama contents in the right scenario and we showed the possibility
of watermarking for spherical panorama contents.
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Abstract. Watermarks are often used to protect copyright-protected
videos from illegal re-distribution. More specifically, a unique watermark
that represents the receiver’s identifier is embedded into the video. In
this way, malicious users can be identified when they leak their received
version of the video. However, when the watermark is embedded as vis-
ible text in the video, it is easy for digital pirates to delete it such that
they can no longer be identified. Therefore, copyright owners will benefit
from a technique that allows the detection of a visible watermark when it
is removed. This paper demonstrates how a visible watermark indirectly
generates imperceptible variations over the entire video. As such, these
variations in the non-watermarked area can be used as an alternative
watermark representation, and thus enable watermark detection even
after watermark removal. The experimental results prove that the water-
mark can be detected as long as the quality of the watermarked video
is not significantly reduced, especially if the originally-distributed water-
marked video has a high quality. Moreover, the watermark should be
embedded into a video with sufficient motion. In conclusion, the proposed
technique enables copyright-owners to identify pirates when they illegally
distribute visibly-watermarked videos, even when the watermarked area
is removed.

Keywords: Video security · Visible watermarking · Traitor tracing

1 Introduction

Digital watermarking is a widely-used technique that enables the identifica-
tion of digital pirates when they illegally distribute copyright-protected videos.

This work was funded by the Research Foundation – Flanders (FWO) under Grant
1S55218N, IDLab (Ghent University – imec), Flanders Innovation & Entrepreneur-
ship (VLAIO), and the European Union. Furthermore, the computational resources
(STEVIN Supercomputer Infrastructure) and services used in this work were kindly
provided by Ghent University, the Flemish Supercomputer Center (VSC), the Hercules
Foundation and the Flemish Government department EWI.

c© Springer Nature Switzerland AG 2019
C. D. Yoo et al. (Eds.): IWDW 2018, LNCS 11378, pp. 110–123, 2019.
https://doi.org/10.1007/978-3-030-11389-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11389-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-11389-6_9


Traitor Tracing After Visible Watermark Removal 111

For example, watermarks are often embedded into screeners of films or TV series
that are distributed to award voters and critics, before the official release date.
That is, a uniquely-watermarked version of the video is sent to every authorized
recipient. If a malicious award voter or critic leaks their version of the video, he
or she can be identified by the watermark. Thus, watermarking enables so-called
traitor tracing.

A watermark can be embedded either visibly or invisibly. The most simple
and straightforward way to embed a watermark is by overlaying the identifier
(ID) of the receiver as visible text in the video [3]. For example, Fig. 1a shows
such a watermark with ID 260993. In this way, a human can read the watermark
and thus identify the receiver. However, such visible watermarks are not robust:
a malicious user can easily remove the watermark by covering the text, as visual-
ized in Fig. 1b. After such an attack, the pirate can leak the video on the internet
without being identifiable. More advanced visible watermarking techniques than
overlaying text in the video exist, although even these can be destroyed rel-
atively easily [8]. Thus, it is not recommended to use visible watermarks for
traitor tracing purposes.

Although visible watermarking techniques are not useful for traitor tracing,
they may be useful for other purposes [3,9,14]. For example, they can be used
to prove ownership of intellectual property rights. More specifically, if an adver-
sary wants to steal the video and claim ownership, he has to delete the visible
logo, which inevitably leaves traces. As such, the original owner can prove that
the adversary’s video is derived from his video, thus proving ownership. Addi-
tionally, reversible visible watermarking techniques have been developed that
enable authorized users to losslessly recover the original video [16]. As a second
example, visible watermarks may be useful to discourage pirates to perform ille-
gal re-distribution. However, it should not be the sole security measure since a
pirate can easily remove the visible watermark.

For effective traitor tracing, invisible watermarking techniques should be
used. In the literature, many invisible watermarking techniques have been pro-
posed that enable the identification of digital pirates even when they attack the
watermarked videos [1,3,4,14]. Such methods make many small, imperceptible
changes over the entire video that cannot easily be removed by pirates. Although
the first invisible watermarking techniques have been proposed approximately
20 years ago [5], some pre-release screeners distributed in recent years still con-
tained visible watermarks [12]. As a result, these videos were leaked before the
official release date, with a removed watermark. In this way, they could not be
identified, assuming no invisible watermarking technique was used in addition
to the visible one [6,11,15]. Unfortunately, no state-of-the-art techniques enable
traitor tracing for visible watermarking techniques when the visible watermark
is removed.

As its contribution to the state-of-the-art, this paper investigates the detec-
tion possibilities of visible watermarks when they are deleted. More specifically,
this paper demonstrates that embedding a visible watermark into a video has
an effect on the non-watermarked area. That is, the visible watermark indirectly
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(a) Watermark visible.

(b) Watermark removed.

Fig. 1. Example of simple watermark, visible as text in the video (a), which can easily
be removed by covering the text with a black box (b).

results in imperceptible variations spread over the entire video. As such, these
variations can be used as an alternative representation of the watermark. By
detecting the alternative representation of the watermark, traitor tracing can
still be performed when the visibly-watermarked area is removed.

The rest of this paper is organized as follows. First, Sect. 2 demonstrates
how a visible watermark results in imperceptible variations over the entire video,
and proposes to exploit it for watermark detection. Then, Sect. 3 investigates in
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which conditions the watermark can be detected. Lastly, the paper is concluded
in Sect. 4.

2 Proposed Method

As its contribution to the state-of-the-art, this section demonstrates that a visible
watermark can still be detected, even if the watermarked area was removed as
in Fig. 1b. First, it proves how encoding a video with a visible watermark results
in implicitly-created variations, spread over the entire video. Then, it proposes
to extract the watermark using correlation-based detection techniques.

The most simple and straightforward way to embed a visible watermark in
a video is by overlaying the text in an uncompressed video, and encoding the
resulting video into a compressed format. As such, a watermarked video such
as the one shown in Fig. 1a is created. In order to compress the video, a video
encoder is used. A typical video encoder transforms the video into coding infor-
mation and a residual signal. The coding information describes the structure of
the video. That is, the video is divided into blocks and every block is predicted
using spatially or temporally neighboring blocks. As such, intra- and inter-frame
redundancies are effectively exploited. Since this prediction is usually not per-
fect, a residual signal is added that corrects the prediction errors. In order to
provide stronger compression, this residual signal is quantized with a certain
Quantization Parameter (QP). Because the compression process is lossy, many
small compression artifacts are introduced. A low QP signifies a high quality
level or high bitrate, and thus few compression artifacts. On the other hand, a
high QP results in many compression artifacts.

This paper proposes to take advantage of the different compression artifacts
that occur during the encoding process of a watermarked video, compared to
those made when compressing the video without a watermark. Firstly and most
notably, the region in which the text was added will be encoded differently
and therefore contain different compression artifacts. However, these differences
also propagate to other regions [10]. That is because the surrounding regions use
information from the watermarked region for their prediction. Because the water-
marked region is different, the predictions of the surrounding regions are also dif-
ferent. Then, similarly, those regions are used for the prediction of other regions.
As such, the differences continue to propagate. Since the quantized residual of
the impacted regions cannot fully correct the prediction errors, the watermarked
video will contain different compression artifacts than when no watermark was
added. Thus, these compression artifacts can be used as an alternative represen-
tation of the watermark.

As an example, Fig. 2 shows a visualization of the differences between the
watermarked, compressed video of Fig. 1 and the corresponding unwatermarked,
compressed video, for the first frame, the 100th frame, and the 200th frame.
The QP used for compression is 22, i.e., the video has a high quality and thus
relatively few compression artifacts. In the difference visualizations, blue means
that there are no differences between the two frames, green signifies a small
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change in luma pixel value, and red means a pixel difference of 20 or higher.
First, it can be observed that the textual watermark in the lower-right corner
is visualized in red, thus meaning it is the most notable difference between the
watermarked and unwatermarked video. However, one can also observe that the
surrounding regions contain differences. For the first frame, in Fig. 2a, the sur-
rounding region with differences is small and localized around the text. This is
because the different compression artifacts did not have the time to propagate
yet. When more frames are given for inter-frame prediction, the different distor-
tions continue to propagate further. For example, for the 100th frame, in Fig. 2b,
the differences propagated to approximately half the frame. Lastly, for the 200th

frame, in Fig. 2c, the differences propagated over the entire frame.
The watermarked video does not only contain different compression artifacts

compared to the unwatermarked video, but also compared to other watermarked
videos. For example, Fig. 3 visualizes the differences between the 200th frame of a
watermarked video with ID 260993 and ID 160993. Although the IDs only differ
in their first digit, the compressed, watermarked videos contain many differences.
Thus, in general, a unique visual watermark indirectly causes unique compression
artifacts to be generated over the entire video.

In order to extract the watermark, existing correlation-based detection tech-
niques can be used [3,10,17]. More specifically, the unique compression artifacts
of a watermarked video are compared to the ones observed in the pirated video.
A high correlation means that the watermark is present, whereas a low similar-
ity means it is absent. Since the compression artifacts are spread over the entire
video, the whole video is correlated pixel-by-pixel. Although several correlation
measures exist and can be used, this paper utilizes the correlation coefficient
(zcc), which is an extension of the normalized correlation (znc). These measures
are defined in Eq. (1), in which o and w are vectors of pixels, representing the
observed and watermarked video, respectively. Additionally, |o| and |w| represent
the Euclidean length of the vectors o and w, respectively, and ō and w̄ represent
the mean pixel values of o and w, respectively.

znc(o, w) =
∑

i

o[i]
|o| · w[i]

|w| ,

zcc(o, w) = znc(o − ō, w − w̄)

(1)

When comparing a pirated video to all watermarks, the correlation with one
of the watermarked videos will be significantly higher than all others, i.e., it
will be an outlier. For example, Fig. 4 shows the correlation values between a
pirated (attacked) video and 100 visibly-watermarked videos of the sequence
BlowingBubbles (with 1- and 2-digit IDs ranging from 0 to 99). The watermark
in the pirated video is covered with a black box, as in Fig. 1b, and subsequently
re-compressed. Although the visible watermark is covered, the correlation with
watermark ID 50 is clearly higher than with all other watermarks. Thus, this
means that watermark nr. 50 is detected as the present watermark, based on the
unique compression artifacts that are present in the non-watermarked area.
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(a) First frame.

(b) 100th frame.

(c) 200th frame.

Fig. 2. Visualizations of differences between the watermarked, compressed video of
Fig. 1 and its corresponding unwatermarked, compressed video, for frame 1 (a), 100
(b), and 200 (c). Blue signifies no difference, green indicates a small change in luma
pixel value, and red means a pixel difference of 20 or higher. (Color figure online)
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Fig. 3. Visualization of differences between the 200th frame of the watermarked video
with ID 260993 and the video with ID 160993. Although the IDs only differ in their
first digit, the compressed, watermarked videos contain many differences.

It should be stressed that the black box in a pirated, attacked video com-
pletely covers the visible watermark. Thus, after re-compression, the black box
will also cause different compression artifacts over the entire video. However,
they are created on top of the unique compression artifacts caused by the vis-
ible watermark. As a result, they do not completely mask the unique artifacts
generated by the watermark, hence enabling successful watermark detection.

In summary, this section demonstrated that the embedding of a visible water-
mark indirectly causes the creation of many small variations in the entire video,
due to the lossy encoding process. As such, these unique compression artifacts
are used to identify the visual watermark, even after watermark removal.

3 Evaluation

This section analyzes the robustness of the alternative representation of a visible
watermark, described in Sect. 2. More specifically, it investigates which condi-
tions should be met in order for the representation to be robust. Note that
no comparison with related methods has been performed because, to the best of
the authors’ knowledge, no state-of-the-art methods exist that enable watermark
detection after visible watermark removal.

In order to embed the visible watermarks, version 4.0.1 of the multimedia
framework FFmpeg was used. First, a textual watermark was added to every
frame of the video using the drawtext-filter. The font size equals to 1

15 of the
video height, and the color was set to white with a transparency of 50%. Two
watermarked versions were created: one where the watermark is embedded in the
lower-right corner of the frame, as in Fig. 5a, and one in the middle of the frame,
as in Fig. 5c. Then, the videos were encoded using the libx265 -encoder, which
uses the High Efficiency Video Coding (HEVC) standard [13]. More specifically,



Traitor Tracing After Visible Watermark Removal 117

Fig. 4. The correlation values between a pirated video and 100 watermarked videos.
The pirate received watermark video nr. 50, but attacked it by drawing a black box over
the visible watermark, followed by a re-compression. Although the visible watermark is
removed from the pirated video, the correlation with watermark ID 50 is clearly higher
than with the others and is thus correctly detected.

every watermarked video was encoded with four different QPs: 22, 27, 32, and
37, further represented as QPw. As mentioned in Sect. 2, a low QP signifies a
high quality level, whereas a high QP signifies a low quality. Lastly, the length
of a Group Of Pictures is set to the number of frames of the tested sequence. In
other words, only the first frame is an intra-frame, whereas all other frames are
inter-frames.

In order to attack the watermark, the region around the textual watermark
was covered using FFmpeg’s drawbox -filter, such as visualized in Fig. 1b. How-
ever, the proposed technique should also work if the visible watermark is removed
in other ways than by covering it with a black box, such as by blurring or inpaint-
ing [7]. In this paper, a black box is used since it is considered one of the strongest
attacks, as it removes a lot information and therefore leaves less traces of the
watermark. In addition, the videos were re-encoded using the libx265 -encoder
with 6 QPs: 22, 27, 32, 37, 42, and 47, further represented as QPa. Note that
a QP value of 42 or 47 results in a very low quality, which pirates generally do
not distribute.

In total, for every tested sequence and for both watermark locations, 100
watermarked videos were created using the 1- and 2-digit IDs ranging from 0 to
99, each encoded with the four different QPw values. Then, each watermarked
video was attacked with the six different QPa values. As mentioned in Sect. 2,
in order to extract the watermark, every attacked video is correlated to all 100
watermarked sequences, and the watermark corresponding to the highest corre-
lation is the extracted watermark.
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In order to evaluate the robustness, the Detection Rate (DR) is calculated.
The detection rate signifies the fraction of watermarks that are correctly detected
and is defined in Eq. (2). In the equation, TP represents a True Positive detection,
meaning that the correct watermark is extracted.

DR =
#TP Detections

Total Number of Detections
(2)

The observed detection rates for all tested sequences [2] are shown in Table 1
for watermarks embedded in the lower-right corner, and in Table 2 for water-
marks embedded in the middle of the frame. From the tables, several observa-
tions can be made. First, when inspecting the sequences BasketballDrive, Basket-
ballDrill, and BlowingBubbles, high detection rates are observed for both water-
mark locations. However, watermarks encoded with a lower QP (i.e., a higher
quality) are less robust compared to when they are encoded with a higher QP.
For example, when the sequence BlowingBubbles is watermarked in the lower-
right corner and encoded with QPw = 22, only 21% of the watermarks are
correctly detected for an attack with QPa = 32. On the other hand, when the
same sequence is encoded with QPw = 37, the detection rate is 100% for all
QPa ≤ 42. Note again that (re-)encoding a video with a QP value of 42 results
in a very low quality video that users generally do not enjoy to watch. Water-
marked videos encoded with a lower QP are less robust because they are of
higher quality and therefore contain less compression artifacts. Hence, the few
unique compression artifacts are more easily deleted when the video is attacked.

A second observation that can be made is that the sequences Traffic and
Johnny result in very low detection rates when the watermark is embedded in
the lower-right corner. For example, when the sequence Traffic is watermarked
in the lower-right corner and encoded with QPw = 32, the detection rate is only
2% for an attack with QPa = 22. This is because these sequences contain few
motion, especially in the lower-right corner, which is the region in which the
textual watermark is added. As a result, only few other regions are predicted
based on the region in which the watermark was embedded. Thus, the different
compression artifacts do not propagate over the entire video, but only within
the small region in which the watermark was added.

For example, Fig. 5a visualizes the 100th frame of the sequence Traffic, water-
marked with ID 26 and encoded with QPw = 32. Moreover, Fig. 5b visualizes
the corresponding implicitly-created differences with the unwatermarked video.
The figures demonstrate that the variations only propagate in the lower-right
corner, which contains relatively-static trees.

If the watermark is instead embedded into the middle of the frame, where
there is more motion, higher detection rates are obtained. For example, when
watermarking Traffic in the middle of the frame and encoding it with QPw = 32,
the detection rate is 100% for QPa = 22. This is because the motion allows the
implicitly-created variations to spread better. For example, Fig. 5c shows the
same frame as in Fig. 5a, but watermarked in the middle of the frame instead of
in the lower-right corner. Because the middle of the frame contains more motion
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Table 1. Detection rates for all tested sequences, when watermarking in the lower-right
corner of the frame. In general, the detection rates are higher when the watermarked
video is encoded with a lower QPw. Additionally, for Traffic and Johnny, low overall
detection rates are obtained.

Sequence Resolution Frames QPw Detection rate for QPa (%)

QPa = 22 27 32 37 42 47

(A) Traffic 2560×1600 150 22 2 2 1 1 1 1

27 4 2 2 1 1 1

32 2 2 2 1 1 1

37 3 3 3 2 1 1

(B) BasketballDrive 1920×1080 500 22 19 9 5 2 2 1

27 100 94 20 7 4 2

32 100 100 100 80 10 6

37 100 100 100 100 100 48

(C) BasketballDrill 832×480 500 22 82 14 7 4 2 2

27 100 100 72 10 5 3

32 100 100 100 100 23 10

37 100 100 100 100 100 100

(D) BlowingBubbles 416×240 500 22 100 99 21 5 2 1

27 100 100 100 39 6 3

32 100 100 100 100 56 6

37 100 100 100 100 100 5

(E) Johnny 1280×720 600 22 3 2 2 1 1 1

27 8 5 2 2 2 1

32 13 10 9 4 2 2

37 57 49 27 14 5 2

from the moving cars, the implicitly-created variations are propagated over a
larger area.

Although embedding the watermark in the middle of the frame shows
improvements in robustness for the sequences Traffic and Johnny, they are still
not as robust as the other tested sequences. For example, when watermarking
Traffic in the middle of the frame and encoding it with QPw = 27, the detection
rate is only 16% for QPa = 22. These low detection rates can be explained by
the general lack of motion in these sequences. The other tested sequences con-
tain more motion either by camera movement or by larger objects moving over
the entire frame. Therefore, the implicitly-created variations in those sequences
propagate better and are hence more robust.
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Table 2. Detection rates for all tested sequences, when watermarking in the middle
of the frame. The detection rates for Traffic and Johnny are much higher than those
of the same sequences in Table 1, although they are still low compared to the other
tested sequences.

Sequence Resolution Frames QPw Detection rate for QPa (%)

QPa = 22 27 32 37 42 47

(A) Traffic 2560 × 1600 150 22 5 3 2 2 1 1

27 16 11 5 2 2 1

32 100 88 48 10 2 3

37 100 100 100 100 15 5

(B) BasketballDrive 1920 × 1080 500 22 28 9 5 2 2 2

27 100 100 31 9 4 2

32 100 100 100 100 12 8

37 100 100 100 100 100 76

(C) BasketballDrill 832 × 480 500 22 62 12 5 2 2 2

27 100 100 44 10 4 2

32 100 100 100 100 14 9

37 100 100 100 100 100 84

(D) BlowingBubbles 416 × 240 500 22 100 78 10 5 1 1

27 100 100 100 20 4 1

32 100 100 100 100 23 5

37 100 100 100 100 100 46

(E) Johnny 1280 × 720 600 22 5 2 2 2 2 1

27 10 9 5 2 2 2

32 54 33 16 8 3 2

37 100 100 100 82 15 5

As a final observation, the watermark location has a negligible effect for the
sequences BasketballDrive, BasketballDrill, and BlowingBubbles. For example,
the sequence BasketballDrill has a detection rate of 100% when encoding it with
QPw = 27 for an attack with QPa ≤ 27, both when watermarking it in the lower-
right corner and middle of the frame. The watermark location has a negligible
effect in these sequences because they contain more motion in general, both in
the lower-right corner and middle of the frame.

In conclusion, a visible watermark can be detected in a pirated, re-compressed
video under two circumstances. First, the pirated video should not be of signifi-
cantly lower quality than the distributed watermarked video, especially when the
watermarked video is of high quality. Secondly, the watermark should be embed-
ded in a video and region with sufficient motion, such that the implicitly-created
variations are spread over the entire video.



Traitor Tracing After Visible Watermark Removal 121

(a) Watermark in lower-right corner. (b) Differences with unwatermarked.

(c) Watermark in middle. (d) Differences with unwatermarked.

Fig. 5. The 100th frame of the sequence Traffic, watermarked with ID 26 in the lower-
right corner (a) and middle of the frame (c), in addition to the corresponding implicitly-
created variations (b) (d). When the watermark is embedded in the lower-right corner,
the variations do not propagate out of the static region with trees in which the water-
mark was added. In contrast, when the watermark is embedded in the middle of the
frame, the implicitly-created variations propagate over a larger portion of the frame
because the watermark is added in a region with more motion.

4 Conclusion

Although visible watermarking is rarely used for traitor tracing purposes, some
cases exist in which it was. When these videos are illegally distributed with an
apparently-deleted watermark, state-of-the-art techniques provide no solution to
identify the culprits. Therefore, this paper assists the search for these traitors.
More specifically, this paper demonstrated how a visible watermark indirectly
causes imperceptible variations in the entire watermarked video. Hence, they
are proposed to be used to detect the visible watermark, even if the visibly-
watermarked area is removed.

The experimental results prove that the implicitly-created variations are
robust as long as two conditions are met. First, the pirated video should not
significantly reduce the quality of the video, especially when the watermarked
video was originally distributed in a high quality. Secondly, the watermark should
be embedded in an area that contains sufficient motion, such that the variations
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can propagate over the entire video. Thus, in practice, the detection should be
performed on segments that contain a lot of motion.
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Abstract. Traditional spread spectrum-based audio watermarking
methods usually use randomly generated pseudonoise sequences for
watermark embedding and extraction. In this paper, we use Hadamard
sequences, which are rows of Hadamard matrices, to embed and extract
watermarks instead of pseudonoise sequences. By exploiting the orthogo-
nality of Hadamard sequences and a technique of sign change, we propose
a new spread spectrum-based audio watermarking method. Experimen-
tal results show that, compared to the newly high embedding capac-
ity spread spectrum-based audio watermarking method, our method
achieves a better perceptual quality and a higher embedding capacity
while maintaining almost equal strong robustness. We also provide a
theoretical analysis of the security of our method.

Keywords: Spread spectrum · Audio watermarking ·
Hadamard sequences · Imperceptibility

1 Introduction

Digital audio watermarking is an important research branch of information hid-
ing, which can be used for copyright protection, authentication, and etc. The
four most important factors for the evaluation of digital audio watermarking
methods are imperceptibility, robustness, security, and capacity. Imperceptibil-
ity means that the watermarked signal should be indistinguishable with the host
signal perceptually. Robustness represents the ability to recover the watermark
information from the watermarked signal in situations with and without attacks.
Security requires that the watermarks can only be extracted by the authorized
parties. Capacity refers to the amount of information that can be embedded into
the given host data.
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After two decades of the development, digital audio watermarking has been
a fruitful research area [1]. A lot of audio watermarking methods have been pro-
posed, such as spread spectrum (SS) [2–7], echo-hiding [8,9], patchwork [10,11]
and etc. Among these methods, spread spectrum has several important advan-
tages including strong robustness, high security, etc. However, due to the host
signal interference, the PN sequences used in traditional spread spectrum meth-
ods are usually sufficient long, which will result in low embedding capacity.

Xiang et al. [4] proposed a spread spectrum-based watermarking method
for audio signals, which has high embedding capacity. Their method embeds
watermarks into DCT coefficients of the host audio signal within a certain fre-
quency range by the multiplicative spread spectrum method. To increase the
embedding capacity, they represent multiple watermark bits one to one by a
series of near-orthogonal pseudonoise (PN) sequences which are formed by cir-
cularly shifting a random seed PN sequence. In the embedding process, the PN
sequence representing multiple watermark bits is inserted into one segment of
selected DCT coefficients. Furthermore, to reduce the host signal interference,
they divide adjacent DCT coefficients of one audio segment into a pair of frag-
ments with equal length. And then they add a proportion of the corresponding
PN sequence into the first fragment, while subtract the same amount from the
second one in a multiplicative manner. Compared with three newly SS-based
watermarking methods [3,6,7], their method can obtain larger embedding rates,
meanwhile ensuring high imperceptibility and strong robustness.

Note that the method in [4] heavily relies on the near-orthogonal property
of the PN sequences. However, in practice, it is hard to ensure that a randomly
generated seed PN sequence has sufficiently small cross-relations with a large
number of its cyclic shifts, since the length of PN sequences is limited. Therefore,
it is possible to use orthogonal sequences instead of cyclic shifted PN sequences
to improve the performance of [4].

In fact, the idea of using orthogonal sequences to embed several water-
mark patterns that encoded M-ary symbols is already used in digital water-
marking [5,12,13]. This method is routinely referred to as “CDMA watermark-
ing”. The common used “orthogonal” sequences include Gold sequences, Kasami
sequences, Hadamard sequences, etc. More simply, one could rely on Gram-
Schmidt procedure to orthogonalize a collection of spreading sequences. Among
these sequences, Hadamard sequences have the advantages of being exactly
orthogonal to each other, while Gold sequences and Kasami sequences are in
fact near-orthogonal (have relatively small cross-relations), and being simple to
implement, whose elements are either +1 or −1.

In this paper, we make two improvements of the method in [4]. Firstly, we
replace cyclic shifted PN sequences by Hadamard sequences, which are randomly
chosen from the rows of a Hadamard matrix. Different from cyclic shifted PN
sequences, Hadamard sequences are strictly orthogonal to each other. Therefore,
the usage of Hadamard sequences will improve the method of [4] in principle.
Secondly, by interchanging the sign of Hadamard sequences during the water-
mark embedding process, we can further improve the embedding capacity. In
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details, if the lowest bit (LB) of multiple watermark bits is 0, similar to [4],
we embed the other higher watermark bits into one audio segment by adding a
proportion of the corresponding Hadamard sequence into the first fragment and
simultaneously subtracting the same amount from the second fragment in a mul-
tiplicative manner. Otherwise, if the LB of multiple watermark bits is 1, to embed
the other higher watermark bits, we subtract a proportion of the corresponding
Hadamard sequence from the first fragment and add the same amount into the
second fragment multiplicatively. Compared to [4], our method can embed one
more bit per segment. In practice, this usually increases the embedding capacity
at least by 10 percents. Experimental results show that under the same condi-
tions, the watermarked signals by our method have a much better perceptual
quality statistically than those by the method in [4]. Meanwhile, the average
detection rates of two methods under conventional attacks are almost the same.
Therefore, compared to [4], our method achieves a better perceptual quality and
a higher embedding capacity while maintaining almost the same robustness.

Different from PN sequences, which are randomly generated and hence have
good security performance, hadamard sequences are sophiscatedly designed.
The direct use of hadamard sequences will cause potential security problem.
In the paper, we solve this problem by adding a private key only known to both
sides of communication. The private key is actually a random permutation of
columns of a public Hadamard matrix. We provide a detailed theoretical analy-
sis in subsection III. D to illustrate the of the good security performance of the
proposed method.

The rest of the paper is organized as follows. The preliminaries of Hadamard
matrices are reviewed in Sect. 2. The proposed SS-based audio watermarking
method is presented in Sect. 3 and the experimental results are shown in Sect. 4.
Section 5 concludes the paper.

2 Preliminaries of Hadamard Matrices

In mathematics, a Hadamard matrix, named after the French mathematician
Jacques Hadamard, is a square matrix H whose entries are either +1 or −1 and
whose rows are mutually orthogonal, i.e.,

HHT = nI

where n is the order of H, I is the identity matrix and HT is the transpose of H.
In combinatorial terms, it means that each pair of rows in a Hadamard matrix
has matching entries in exactly half of their columns and mismatched entries
in the remaining columns. Hadamard matrices are widely used in many areas,
such as error-correcting codes (Hadamard code), statistics (balanced repeated
replication), compressed sensing and etc.

The order of a Hadamard matrix must be 1, 2, or a multiple of 4. Examples
of Hadamard matrices were actually first constructed by James Joseph Sylvester
in 1867. Let H be a Hadamard matrix of order n. Then the partitioned matrix[

H H
H −H

]



Improved High Capacity Spread Spectrum-Based Audio Watermarking 127

is a Hadamard matrix of order 2n. This observation can be applied repeatedly
and leads to large Hadamard matrices of order 2kn from small Hadamard matrix
H of order n. For more constructions of Hadamard matrices, see [14] and [15].

The Hadamard conjecture proposes that a Hadamard matrix of order 4k
exists for every positive integer k. From [14], for k ≤ 500, there are only 13
numbers k such that no Hadamard matrix of order 4k is known. These 4k are:
668, 716, 892, 1004, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, and 1964.
In practice, those known Hadamard matrices are enough to use for our purpose.

3 Proposed Method

In this section, the watermark embedding and extraction processes of our method
will be illustrated at length. Then, the selection of the key watermarking param-
eter β, which balances the imperceptibility and the robustness of watermarked
audio signals, will be explained and shown by diagram. At the end of the section,
the security of the proposed watermarking algorithm will be discussed, and then
summarized.

3.1 Watermark Embedding Process

The watermark embedding process is composed of three parts: correspondence
between multiple watermark bits and Hadamard sequences, DCT operation and
segmentation, and embedding of watermark bits.

Correspondence Between Multiple Watermark Bits and Hadamard
Sequences. Assume that the number of watermark bits to be embedded into
one audio segment is nb + 1. In our method, we embed higher nb watermark
bits by inserting the corresponding Hadamard sequence into the audio segment.
Meanwhile, the lowest watermark bit (LB) is embedded by interchanging the
sign of the Hadamard sequence, during the inserting process.

Viewing higher nb watermark bits as a binary number, its numerical value
m gives an integer between 0 and 2nb − 1. For example, if nb = 2, the binary
numbers of 2 watermark bits 00, 01, 10 and 11 are 0 × 2 + 0, 0 × 2 + 1, 1 × 2 + 0
and 1 × 2 + 1, respectively.

Let N > 2nb be an integer divisible by 4. Choose a public N × N Hadamard
matrix H0. Let SK1 be a random permutation of {1, 2, ..., N}, which acts as a
private key only known to both sides of communication. Using SK1 to permute
the columns of H0, we still get a Hadamard matrix H. Randomly pick up 2nb

distinct rows from H by the seed SK2 and index them as h0,h1, · · · ,hNh−1,
where Nh = 2nb . We call h0,h1, · · · ,hNh−1 Hadamard sequences. From the
properties of Hadamard matrices, the elements of h0,h1, · · · ,hNh−1 are ±1 and
hi is orthogonal to hj if i �= j. We use hm to represent higher nb watermark bits
whose corresponding binary number equals to m. Clearly this correspondence is
one-to-one.
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Hadamard sequences are orthogonal to each other, while the cyclic shifted
PN sequences used in [4] are near-orthogonal. The orthogonal property of the
sequences is vital to watermark extraction. This explains the reason we use
Hadamard sequences.

DCT Operation and Segmentation. Let x(n) be the host audio signal con-
sisting of K samples. Apply DCT to the whole signal x(n) and denote its DCT
coefficients by X(k), where k = 0, 1, · · · ,K. Since very low and high frequency
components are sensitive to attacks, similar to [4], we only select DCT coeffi-
cients X(k) corresponding to a certain frequency range [fl, fh] for watermark
embedding, where fl and fh are determined experimentally.

Split the selected DCT coefficients into Ns segments of length 2N , and denote
the ith segment as

Xi(k) = [Xi(0),Xi(1), · · · ,Xi(2N − 1)] (1)

where i = 1, 2, · · · , Ns. Then, split each Xi(k) into a pair of fragments xi,1 and
xi,2 with length N , according to the parity of k:

{
xi,1 = [Xi(0),Xi(2), · · · ,Xi(2N − 2)]
xi,2 = [Xi(1),Xi(3), · · · ,Xi(2N − 1)].

(2)

We call xi,1 and xi,2, the first fragment of Xi(k) and the second fragment of
Xi(k), respectively.

Embedding of Watermark Bits. Given nb + 1 watermark bits, let LB be
its lowest bit and m be the binary number of the other higher nb bits. Clearly,
0 ≤ m ≤ 2nb − 1. To embed the nb + 1 watermark bits into the ith segment
Xi(k), pick up hm, the Hadamard sequence corresponding to the higher nb bits
first. Then perform the following operation:

{
x̃i,1 = (1 + βhm) ◦ xi,1

x̃i,2 = (1 − βhm) ◦ xi,2

(3)

if LB = 0 and {
x̃i,1 = (1 − βhm) ◦ xi,1

x̃i,2 = (1 + βhm) ◦ xi,2

(4)

otherwise, where 1 is a length-N row vector whose elements are all one, β ∈ (0, 1)
is a small parameter and “◦” stands for the Hadamard product (i.e., the element-
wise product).

Then arrange watermarked fragments x̃i,1 and x̃i,2 into one segment X̃i(k)
by the same order. Explicitly,

X̃i(k) = [X̃i(0), X̃i(1), · · · , X̃i(2N − 1)] (5)
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where {
x̃i,1 = [X̃i(0), X̃i(2), · · · , X̃i(2N − 2)]
x̃i,2 = [X̃i(1), X̃i(3), · · · , X̃i(2N − 1)].

(6)

After obtaining all watermarked segments X̃i(k), i = 1, 2, · · · , Ns, the water-
marked signal x̃(n) is constructed by inverse discrete cosine transform (IDCT).

The parameter β in (3) and (4), which balances the perceptual quality and
the robustness of watermarked signal x̃(n), is vital to our method. Its selection
will be discussed detailedly in Sect. 3.3.

3.2 Watermark Extraction Process

Let y(n) be the post-attack counterpart of the watermarked audio signal x̃(n).
Clearly, y(n) = x̃(n) without attacks. In this subsection, we will describe
the watermark extraction process from the received signal y(n) by the known
Hadamard sequences h0,h1, · · · ,hNh−1, which are obtained from the public
Hadamard matrix H0 using private keys SK1 and SK2. Then we discuss the
validity of the proposed method.

Extraction of Watermark Bits from y(n). The DCT coefficients Y (k) are
computed by applying DCT to the received audio signal y(n). Select the DCT
coefficients corresponding to the frequency region [fl, fh] and split them into
length-2N segments Yi(k), i = 1, 2, · · · , Ns. Afterwards, these segments are fur-
ther partitioned into pairs of length-N fragments yi,1 and yi,2, i = 1, 2, · · · , Ns.
Clearly, under no attack, yi,1 = x̃i,1 and yi,2 = x̃i,2.

Define
yi,d = |yi,1| − |yi,2| (7)

where | · | stands for the element-wise absolute value. Since the elements of
(1 + βhm) and (1 − βhm) are positive, by (3) and (4),

yi,d = (|xi,1| − |xi,2|) ± βhm ◦ (|xi,1| + |xi,2|) (8)

where “±” is“+” if LB = 0 and “−” otherwise.
The decision process of nb + 1 watermark bits is divided into two steps.

Firstly, find
m̂ = argmax

j∈{0,1,··· ,Nh−1}
|yi,dh

T
j | (9)

where argmax(·) returns the j value such that the absolute value of yi,dh
T
j

yields maximum. The binary expansion of m̂ leads to the extracted higher nb

watermark bits. Secondly, the lowest bit LB is determined by the sign of yi,dh
T
m̂.

Explicitly,

L̂B =

{
0 if yi,dh

T
m̂ > 0

1 otherwise.
(10)
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Discussion about the validity of (9) and (10). From (8), it holds that

yi,dh
T
j = (|xi,1| − |xi,2|)hT

j ± β(|xi,1| + |xi,2|)(hm ◦ hj)T (11)

where “±” is “+” if LB = 0 and “−” otherwise.
The first term on the right-hand side acts as the host audio signal interfer-

ence which has negative impact on watermark extraction. Since the Hadamard
sequences are independent of the host signal, (|xi,1| − |xi,2|)hT

j are statistically
comparable for different j.

For the second term, if j = m, hm ◦ hj = 1 is an all-one vector. Otherwise,
hm ◦ hj has exactly half entries being +1 and nearly half entries being −1.
Therefore, (|xi,1| + |xi,2|)(hm ◦ hj)T reaches the peak when j = m.

As a result, for LB = 0, when β increases, yi,dh
T
m increases much more

rapidly than yi,dh
T
j̄ , where j̄ = 0, 1, · · · ,m − 1,m + 1, · · · , Nh − 1. Similarly, for

LB = 1, when β increases, yi,dh
T
m decreases much more rapidly than yi,dh

T
j̄ ,

where j̄ = 0, 1, · · · ,m−1,m+1, · · · , Nh −1. Therefore, for suitable small β, the
absolute value of yi,dh

T
m is likely to be larger than the absolute value of yi,dh

T
j̄

for j̄ �= m and the sign of yi,dh
T
m probably agrees with the sign of the second

term ±β(|xi,1| + |xi,2|)1 in (11). This verifies (9) and (10) theoretically.

3.3 Selection of the Parameter β

The parameter β in (3) and (4) balances the imperceptibility and the robustness
of watermarked audio signals. Large β will enhance the robustness but weaken
the perceptual quality, and vice versa. So it is important to select a suitable β.

For the watermarks to be detectable, yi,dh
T
m should be positive (negative,

respectively) if LB = 0 (LB = 1, respectively), and |yi,dh
T
m| should at least be

greater than all |yi,dh
T
j̄ | with j̄ �= m. From (11), β must satisfy

(|xi,1| − |xi,2|)hT
m + β(|xi,1| + |xi,2|)1T > 0,

(|xi,1| − |xi,2|)hT
m + β(|xi,1| + |xi,2|)1T >

±
(
(|xi,1| − |xi,2|)hT

j̄ + β(|xi,1| + |xi,2|)(hm ◦ hj̄)
T
) (12)

if LB = 0 and

(|xi,1| − |xi,2|)hT
m − β(|xi,1| + |xi,2|)1T < 0,

−(|xi,1| − |xi,2|)hT
m + β(|xi,1| + |xi,2|)1T >

±
(
(|xi,1| − |xi,2|)hT

j̄ − β(|xi,1| + |xi,2|)(hm ◦ hj̄)
T
) (13)

if LB = 1. In practice, the watermarking method should be robust to conven-
tional attacks. Therefore, we require that β satisfy{

yi,dh
T
m > 0 if LB = 0,

yi,dh
T
m < 0 otherwise.

(14)



Improved High Capacity Spread Spectrum-Based Audio Watermarking 131

Table 1. An algorithm for selecting β

Step 1: Set initial β to β = βmin and construct h
T
by (16).

Step 2: If LB = 0, compute

d = (|xi,1| − |xi,2|) + βhm ◦ (|xi,1| + |xi,2|).
Otherwise, compute

d = (|xi,1| − |xi,2|) − βhm ◦ (|xi,1| + |xi,2|).
Step 3: Compute

u1 = dhT
m

u2 = max |dhT |.
Step 4: If LB = 0 and u1 > 0, go to Step 5.

Else if LB = 1 and u1 < 0, set u1 = −u1, go to Step 5.

Otherwise, go to Step 7.

Step 5: If γ1u1 > γ2, set v = γ1u1.

Otherwise, set v = γ2.

Step 6: If u1 ≤ u2 + v, go to Step 7.

Otherwise, end.

Step 7: Increase β to β + Δβ. If β ≤ βmax − Δβ, go to Step 2.

Otherwise, end.

and {
|yi,dh

T
m| > max(|yi,dh

T |) + γ1|yi,dh
T
m|

|yi,dh
T
m| > max(|yi,dh

T |) + γ2
(15)

where
h
T

= [hT
0 , · · · ,hT

m−1,h
T
m+1, · · · ,hT

Nh−1], (16)

| · | stands for the element-wise absolute value, and γ1, γ2 are constants such
that 0 < γ1 < 1 and γ2 > γ1. To maintain high imperceptibility, we choose the
smallest β within the range [βmin, βmax] satisfying (14) and (15).

The actual β is selected by an incremental search with the step size Δβ such
that 0 < Δβ � βmax. We list the algorithm for selecting β in Table 1. The
parameters γ1, γ2, βmin, βmax and Δβ are determined experimentally.

3.4 Discussion of the Security

By the Kerckhoff’s principle in cryptography, the security of the watermarking
algorithm should depend on the key. In the following, we will show the security of
our method by proving that the space of private keys SK1 is very large and the
probability that two different keys SK1 and SK ′

1 have a collision is extremely
low.

For the first point, since SK1 is a random permutation of {1, 2, ..., N}, the
total numbers of SK1 is equal to N !. In practice, N ! is always a very large
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number. For example, in our experimental setting, N = 768, which implies
N ! > 10768.

For the second point, we say that two different keys SK1 and SK ′
1 have a

collision if and only if the Hadamard matrices H and H ′, obtained by permuting
columns of H0 according to keys SK1 and SK ′

1 respectively, have at least two
common rows. The motivation of this concept comes from the fact that if H and
H ′ have two many common rows, then an attacker, who knows Hadamard matrix
H ′ by randomly guessing a key SK ′

1, can perform correlation with all rows of H ′

to find the possible Hadamard sequences that are used, and therefore erase the
embedded watermarks. The following lemma proves that the probability that a
key SK ′

1 has a collision with the key SK1 is extremely low.
For simplicity of the proof, we assume that the public Hadamard matrix H0

has an all-one row vector 1N . In practice, this can always be achieved through
multiplying some columns of H0 by −1. Also, for security, we need to exclude
the row 1N out of watermark embedding sequences in this case.

Lemma 1: Let H0 be an N ×N Hadamard matrix with 1N as its row vector.
Let SK1 be a fixed permutation of {1, 2, ..., N}. The random permutation SK ′

1

has a collision with SK1 with probability less than N3/2N .
Proof: Let H and H ′ be the Hadamard matrices obtained by permuting

columns of H0 according to keys SK1 and SK ′
1, respectively. Assume SK ′

1 has
a collision with SK1.

Firstly, we will prove that the number of such permutations SK ′
1s is no

bigger than (N − 1)2((N/2)!)2. By the definition of collision, H and H ′ have
another common row vector hc besides 1N . Let hb be a row vector of H0 such
that after column permutation of H0 by SK ′

1, hb becomes to hc. Since hb is
orthogonal to 1N , hb has N/2 elements being +1 and N/2 elements being −1.
The permutation SK ′

1 should map the elements +1 (−1, respectively) of hb to
the elements +1 (−1, respectively) of hc. Therefore, for fixed hb and hc, there
are ((N/2)!)2 choices of such permutations SK ′

1. Since hb (hc, respectively) is
a row of H0 (H, respectively) distinct from 1N , the total choices of hb and hc

have (N −1)2 possibilities. Therefore, the number of SK ′
1 having a collision with

SK1 is ≤ (N − 1)2((N/2)!)2.
Secondly, since the total number of permutations of {1, 2, ..., N} is equal to

N !, the probability of random permutation SK ′
1 having a collision with SK1 is

no bigger than (N −1)2((N/2)!)2/N !. Finally, the desired result follows from the
rough estimation

N !/((N/2)!)2 ≥ 2N/(N + 1)

which can be easily shown by the binomial theorem.
The probability N3/2N is a extremely small number for large N . For example,

in our experimental setting, N = 768 which implies N3/2N = 27/2734 < 1/2729.
Summing up, the proposed method via the design of private key SK1 has a

good performance of security. It is impossible for an attacker to find the possible
used Hadamard sequences by randomly guessing a key SK ′

1 and performing
correlation with all rows of H ′. So it is hard for an attacker to erase the embedded
watermarks.
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3.5 Summary of the Proposed Method

At the end, the proposed watermarking algorithm is summarized as follows:
Watermarking embedding

1. Choose a Hadamard matrix H0 known to the public. Permute the columns
of H0 to get the Hadamard matrix H according to the private key SK1.
Randomly pick up Nh distinct rows from H by the seed SK2 and index them
as h0,h1, · · · ,hNh−1.

2. Apply DCT to x(n), select those DCT coefficients corresponding to the fre-
quency range [fl, fh], and segment them to obtain Xi(k), i = 1, 2, ..., Ns.

3. Separate the ith DCT segment Xi(k) into the fragments xi,1 and xi,2 by (1)
and (2), respectively.

4. Use the algorithm shown in Table 1 to select β.
5. Insert the Hadamard sequence hm into xi,1 and xi,2 by (3) or (4).
6. Construct the watermarked DCT segment X̃i(k) by (5) and (6).
7. After obtaining all X̃i(k), i = 1, 2, ..., Ns, construct the watermarked signal

x̃(n) by applying IDCT.

Watermark extraction

1. From the public Hadamard matrix H0 and the private key SK1 to obtain
the Hadamard matrix H. And then construct the Hadamard sequences
h0,h1, · · · ,hNh−1 from H by the seed SK2.

2. Similar to Steps 2 and 3 in the watermark embedding part, construct yi,1

and yi,2 from the received audio signal y(n), where i = 1, 2, ..., Ns.
3. Compute yi,d by (7) and then find the index m̂ and L̂B by (9) and (10),

respectively. Compute the binary expansion of m̂, which is the higher nb

watermark bits. Put L̂B behind the higher nb watermark bits. Thus the
nb + 1 watermark bits are extracted

4. List all extracted nb + 1 watermark bits successively. Then the whole embed-
ded watermark is recovered.

4 Experimental Results

In this section, the experiments are performed to evaluate the proposed method.
The method of [4] is compared with our method. In the experiments, a total of
320 randomly selected music clips (including 40 eastern classical music clips, 40
eastern folk music clips, 40 western country music clips, 40 western pop music
clips, 40 rock music clips, 40 speech clips, 40 piano clips, and 40 violin clips)
are used as host signals. Each audio clip is 10 s long, sampled at 44.1 kHz, and
quantized with 16 bits.

The PEAQ algorithm [16] is used to evaluate the perceptual quality of the
two methods. The PEAQ algorithm returns a value called objective difference
grade (ODG) ranging between −4 and 0, where ODG = 0 means no degradation
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and ODG = −4 means a very annoying distortion. The detection rate (DR),
defined as

DR =
(

Number of watermarks correctly extracted
Number of watermarks embedded

)
× 100%

is used to measure the robustness. It should be noted that we count number of
symbols correctly extracted instead of number of bits correctly extracted in the
calculation of DR. The following common attacks are used in the evaluation of
robustness:

– closed-loop attack (no attack),
– re-quantization (8-bit),
– noise attack (20 dB white Gaussian noise added),
– amplitude attack (amplitudes scaled by 1.2 and 1.8),
– MP3 compression (128 kbps and 96 kbps MP3 compression),
– HPF (High-pass filtering with 50 Hz and 100 Hz cut-off frequencies),
– LPF (Low-pass filtering with 12 kHz and 8 kHz cut-off frequencies).

For the sake of fairness, the experimental parameters of our method and those
of [4] are the same. The value of parameters are: nb = 8, N = 768, γ1 = 0.1,
γ2 = 2, βmin = 0.001, βmax = 0.2 and Δβ = 0.005. Under these settings,
the embedding rates of two methods are shown in Table 2. From Table 2, the
embedding capacity of the proposed method is larger than that of [4] by 12.5%.

Table 2. Embedding rates of two methods

Method in [4] Proposed method

Embedding rate 84 bps 94.5 bps

Table 3. Average ODGs of two methods

Imperceptibility Method in [4] Proposed method

ODG −1.1623 −0.6175

Firstly, we compare the imperceptibility of the two methods. Table 3 shows
average ODGs of 320 watermarked audio clips by the two methods. From Table 3,
it can be seen that the proposed method achieves a higher perceptual quality with
average ODG = −0.6175 and outperforms the method in [4] (average ODG =
−1.1623) by a large margin. The reason that our proposed method yields a much
better perceptual quality than the method in [4] is due to the use of Hadamard
sequences instead of cyclic shifted PN sequences. Since Hadamard sequences are
strictly orthogonal to each other while cyclic shifted PN sequences are nearly
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orthogonal to each other, our parameter β, selected by the algorithm shown in
Table 1, is usually much smaller than that of [4].

Secondly, we compare the robustness of two methods. The results of detection
rates of two methods under general attacks are displayed in Table 4. It can be
seen that the proposed method achieves more than 99.9% detection rates under
closed-loop attack, amplitude attack scaled by 1.2, MP3 attack with 128 kbps
compression bit rate, and filtering attacks. It also performs well under the other
attacks. Note that the detection rates of [4] are slightly higher than those of our
method in all cases. But the differences are very small: less than 1.6% for the case
of noise attack (20 dB), less than 0.8% for the case of amplitude attack scaled
by 1.8, less than 0.4% for the case of MP3 attack with 96 kbps compression bit
rate, and less than 0.07% for the other attacks. The reason is still due to that
our parameter β is much smaller than that of [4].

Table 4. Average detection rates of two methods

Attacks DR(%)

Method in [4] Proposed method

Closed-loop 99.9816 99.9602

Re-quantization (8 bit) 99.4700 99.4087

Noise (20 dB) 96.5165 94.9571

Amplitude (1.2) 99.9816 99.9602

Amplitude (1.8) 99.9786 99.1850

MP3 (128 kbps) 99.9816 99.9203

MP3 (96 kbps) 99.9786 99.6752

HPF (50Hz) 99.9816 99.9602

HPF (100Hz) 99.9816 99.9387

LPF (50Hz) 99.9816 99.9602

LPF (100Hz) 99.9816 99.9449

5 Conclusion

In this paper, we propose a high embedding capacity spread spectrum-based
audio watermarking method by exploiting the orthogonality of Hadamard
sequences and a technique of sign change. Experimental results show that, com-
pared to the method of [4], our method achieves a better perceptual quality and
a higher embedding capacity while maintaining almost equal strong robustness.
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Abstract. This paper presents a digital rights protection scheme for
every type of document presented as an image, by using steps that use cryp-
tography and watermarking. The entities involved in this process are two:
the owner of the document that owns its digital rights and a generic user
who can download or view a watermarked version of the original document.
The watermarked version contains a QR code that is repeatedly inserted,
and scrambled, by the document rights owner, into the frequency compo-
nents of the image, thus producing the watermarked image. The QR code
contains a signed ID that uniquely identifies every users using the system.
The schema, a non-blind type, achieves good perceptive quality and fair
robustness using the third level of the Discrete Wavelet Transform. The
experimental results show that by inserting several occurrences of a scram-
bled QR code we get an approach that is quite resistant to JPEG compres-
sion, rotation, cropping, and salt and pepper noise.

Keywords: Watermarking · Steganography · DWT

1 Introduction

In a big company data protection is a critical requirement, due to the fact that
data leaks about company strategies, assets or every other types of confidential
data could destroy the business of the entire company and its economic value.
For this reason is useful to mark documents that are given to employees or
third party in order to know who is the responsible of the possible leak. Secure
content manager systems (CMSes), like virtual data rooms, define another typ-
ical scenario where documents typically need to be watermarked for the correct
accounting of the access operations made by authorised users.

There exists an approach [6] that relies on DWT and QR code based water-
marking applied to coloured or black and white images, that are photos or
pictures. In this paper we extend the approach to the case of images describ-
ing documents and we show that the use of DWT, QR code and cryptography
assures good imperceptibility, watermark extraction performance and robustness
against most common image manipulations, like JPEG compression, rotation,
cropping and additive noise. In particular, each page of a document can be seen
as an image and a straightforward question is “can we successfully apply the
c© Springer Nature Switzerland AG 2019
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methodology presented in [6] to this new type of image?”. We show that some
changes are needed with respect to the original approach, because a document
is made up mainly of black and white components, without shades of grey (if
it has no pictures inside); in some cases however, for example coloured slides
with background, documents look very similar to classic pictures and the app-
roach [6] works with no issues. The main idea is to embed data into the image’s
lower frequency of the 3rd level Discrete Wavelet components; these data are
encrypted and uniquely identify a subject, and if the document will be leaked
we are able to extract this information, even if some modifications are made
in the document, and understand who is the responsible of the leak. Data are
encoded into a QR code that is inserted as watermark [5]; we choose a QR code
because of its error correction capability. In order to improve imperceptibility
and extraction performances, we insert it into the host image multiple times, in
a key-scrambled version. This is a non-blind schema (see next section), hence to
extract the watermark is necessary to provide the original image.

Related Work QR code has seen a variety of applications in information secu-
rity area: it can be used for secret sharing, authentication, transaction verifica-
tion and for e-voting authentication. Researchers have also proposed different
schemes for using the QR code in the area of data hiding and steganography. In
addition, QR codes have been used in a number of recent digital watermarking
schemes. Among the works carried out in this area, Panyavaraporn et al. [11]
proposed a data embedding approach using blind watermarking algorithm by
means of two-level DWT for hiding a small watermark image in a QR code.
A similar approach was proposed by Nishane and Umale [10]: in their method
the watermark can be an image or a QR code that is embedded in the third
level DWT of the image and the watermark is encrypted with random matrix.
It works under various noise attacks. Chow et al. [7] proposed an approach that
involves the use of a hybrid DWT-DCT technique in conjunction with the error
correction mechanism; this is inherent as part of the QR code structure.

2 Preliminaries

Watermarking techniques can be classified [1] into different categories accord-
ing to the type of domain in which data embedding takes place and the type
of information that is needed to extract the watermark. There are mainly two
domain types: space and frequency. When we want an invisible watermark we
usually use steganography techniques because we want to hide some payload
inside a document. In this way a user without a thorough analysis cannot dis-
tinguish between a watermarked document and a non-watermarked one; in the
other case the watermark is visible, and this makes it a possible target for a
removal. Of course mixed/hybrid approaches can be adopted.
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Regarding what is needed to extract a watermark from an image, we can
divide the cases into blind, semi-blind and non-blind schemes. A blind water-
mark, or public watermarking algorithm, requires neither the original image nor
the embedded watermark to extract it from the watermarked image; a semi-
blind, or semi-private scheme, requires only the watermark; a non-blind scheme
requires at least the cover image. In this paper we will use a non-blind schema
and only the cover image is needed to recover the original QR code inserted.
Spatial image watermarking techniques are commonly used in steganographic
contexts because, hiding data into the least significant bits of an image can
allow to embed a large quantity of data. However, the watermark will not be
robust to common manipulations, e.g., JPEG compression.

In the frequency domain there are two main techniques: the Discrete Cosine
Transform (DCT) and the Discrete Wavelet Transform (DWT). The first one
is not resistant to rotation, translation and image cropping, due to the block
divide algorithm, while the second one assures good robustness against the most
popular image manipulations [14]. Digital images rights can be better expressed
through a wavelet transform since the frequency components are quickly varying
around the image area. Through the wavelet decomposition the original signal
can be represented by its coefficients which contain the spatial information. Each
level of a DWT produces four types of coefficients: LL, or approximation coeffi-
cients, that represent the low frequency part of the image (most of information)
and the details coefficients LH, HL and HH (vertical, horizontal and diagonal).
In every level the decomposition is obtained on the LL component of the pre-
vious level. The original signal can be completely reconstructed performing the
Inverse Wavelet Transformation on these coefficients. In order to achieve a good
visual imperceptibility, according to the spectral sensitivity of human eye, the
blue component of a colour image is most suitable for hiding data and this com-
ponent will be used in our approach. Data hiding system performances [3] are
described in terms of imperceptibility, embedding capacity and robustness. For
digital watermarking the most important are imperceptibility and robustness.
Some measures will be made on the final image to measure visual imperceptibil-
ity between the original image and the watermarked one, that are Mean Squared
Error (MSE), Peak Signal to Noise Ratio (PSNR) and Structural Similarity [13]:

MSE = 1
m×n

∑m
i=1

∑n
j=1(X(i, j) − X ′(i, j))2

PSNR = 10 log10
MAX2

i

MSE

SSIM =
(2μiμj + C1)(2σij + C2)

(μ2
i + μ2

j + C1)(σ2
i + σ2

j + C2)

where m and n are the number of rows and columns of the image expressed in
pixel, X(i, j) is the value of the pixel at row i and column j of the original image,
X ′(i, j) is the value of the pixel at row i and column j of the watermarked image,
MAXi is the biggest value of a pixel, μ, σ, σij are, respectively, mean, standard
deviation and correlation, and C1, C2 are constants (Fig. 1).
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Fig. 1. (a) DWT single level decomposition, (b) two level decomposition, and (c) three
level decomposition.

The payload is contained in a QR code (Quick Response Code [4]), that is the
trademark for a type of matrix barcode first designed in 1994 for the automotive
industry in Japan. A QR code consists of black squares arranged in a square
grid on a white background, which can be read by an imaging device such as a
camera, and processed using ReedSolomon error correction until the image can
be appropriately interpreted. The required data is then extracted from patterns
that are present in both horizontal and vertical components of the image.

3 Approach

In this section we describe the process of watermarking a given document and
extracting a QR code from the watermarked image. Suppose all the documents
that will be watermarked come from a single entity, a pair of public/private keys
is given, and a message containing the ID of the user that will get the confidential
document is digitally signed by the entity by its private key. This differs from
the approach in [6] because in this case there is no collaboration between two
subjects that sign a contract: in fact a central authority signs and distributes
documents without any interaction among users of the system.

Starting from the original image and the signed message, the entity produces
the watermarked document for the user by the following steps:

1. Convert each page of the document into an image and repeat the following
steps for each image.

2. Compute the approximation coefficients of level 3 (ACLL3) by performing a
third-level decomposition of the image using a wavelet (blue component in
case of colour image).

3. Generate a QR code encoding the hmac-sha256 of the signed message using
its private key.
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4. Derives a scrambling key from a hmac-sha256 of a password and use it to
scramble the QR code repetitions necessary to fit the size of the ACLL3

(N × M) of the image obtaining WIM like in Fig. 2b.
5. Insert the watermark into the approximation coefficients of level 3 of

the watermarked image WACLL3(i, j) = ACLL3(i, j) + k × WIM(i, j), i =
1, 2, . . . , N and j = 1, 2, . . . , M , with k = 20000 for colour images and
k = 15000 for black and white ones.

6. Obtain the watermarked image by performing the inverse discrete wavelet
transform.

7. Reconstruct the document, starting from the watermarked images.

To extract the QR code starting from the original image (Fig. 6) and the
watermarked image (Fig. 7a) it is necessary to:

1. Convert each page of the document into an image.
2. Compute the approximation coefficients of level 3 by performing a third-level

decomposition of the image using a wavelet, blue component in case of colour
image, for both original (ACLL3) and watermarked image (WACLL3).

3. Reconstruct WIM:

f(x) =
{

1 if WACLL3(i, j) − ACLL3(i, j) ≥ t
0 otherwise

for i = 1, 2, . . . , N and j = 1, 2, . . . ,M , with t = 40 for colour images and
t = 22.5 for black and white ones, obtaining a scrambled watermarked image.

4. Descramble by using the key derived from the hmac-sha256 of the previously
generated password in the third step of watermark insertion.

5. Compute hmac-sha256 of the message using entity private key.
6. Recover the QR code from the single QR code repetitions occurring in the

descrambled image (Fig. 7b) and verify if the decoded value is equal to
the hmac-sha256 of the message, for payload extraction is used either each
single extracted repetition of a QR code either a reconstructed QR code based
on majority pixel value matching, upon 1 to the maximum value of them.

In the above steps, more sophisticated techniques for deriving a key from a
password could be usefully employed.

The watermark extraction procedure can be done only by the entity because
it needs its private key and the unscrambling password. If an attacker finds the
password he cannot generate another document watermarked with another ID
because the private key of the entity is unknown to him; if he is able to obtain
public and private keys of the entity, he can not once again generate another
document because he can generate an unscrambled watermarked version of the
document like Fig. 7a but he cannot scramble QR code like Fig. 7b.
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4 Applications

We implemented this technique in MATLAB using as original images the ones
represented in Figs. 6, 8a and 11a. We used the open-source library libqrencode
[9] for QR code generation and the quirc library [2] for QR code decoding. All
images were tested with the first 20 wavelets of the Daubechies family [8,12]. In
this we apply the procedure to three class of documents:

– Black and white text document;
– Text document with modified background;
– Slides with background.

Fig. 2. Unscrambled (a) and Scrambled (b) QR code.

4.1 Black and White Text Document

Black and white document needs preprocessing otherwise some information of
QR code will be lost during image reconstruction from the wavelet transform.
As we can see in Fig. 3a and b, the extracted QR code repetitions present noise
in the white area and this results into a bad extraction of the QR code (see
Fig. 4), even if changes have been made to the values of k and t. The QR code
in Fig. 4 is different from the original one in Fig. 10b and presents errors but the
information inside is not damaged and can be correctly obtained thanks to the
error correction of QR code. In order to bypass the problem, the background
is made slightly darker as we can see in Figs. 5 and 6. In this way payload is
inserted in the background of the document too and no information is lost as we
can see in Fig. 7a, where we can see the final result of the watermark insertion
algorithm that produces an image with visible artefacts in the background. This
is an example of visible watermark and a user that receives a document in this
state can read it but understands that some extra information may have been
added (Fig. 9).
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4.2 Text Document with Modified Background

In Fig. 8 we can see the final result of the watermark insertion algorithm and
the original image side by side, in this case the watermark is invisible because
it is visually imperceptible and is very difficult to notice differences between the
two images.

Fig. 3. Watermarked image (a) and Extracted QR code repetitions (b).

Fig. 4. QR code extraction failure.

4.3 Slides with Background

In Fig. 11 we can see the final result of the watermark insertion algorithm and
the original image one above the other. In this case the watermark is slightly
visible because the colours used in the slide are lighter than the example before
and we can observe some background noise in the image.
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4.4 Results

Results of the three test cases above are very good and the QR code is extracted
without error as we can see from Fig. 10. In Table 1 we can find the MSE, PSNR,
SSIM results for the three types of document.

Fig. 5. Black and White preprocessed text example.

4.5 Possible Attacks

There are some image manipulation attacks that can be performed on the water-
marked image depending on the different types of document. In the black and
white document case an attacker can simply analyze the document pixel by
pixel: if a pixel is black or white no modification is necessary, otherwise converts
the pixels into white ones obtaining a result like that shown in Fig. 5. In the
slides case an attacker can do a similar thing like converting all the shades of
a particular colour, in the example mainly red and blue, in an unique colour
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Fig. 6. Black and White postprocessed text example.

and this will result in a failure during watermark extraction. This method is
robust against compression attack thanks to the redundancy of QR code in the
images and QR code error correction feature that is implemented by adding a
Reed-Solomon code to the original data. Experiments have proven that it is pos-
sible to compress the image up to 50% of the original quality, as we can see in
Fig. 12a, and extract the QR code correctly. Salt and pepper noise attacks it is
not effective, experiments have proven that it is still possible to extract the QR
code even in presence of noise like in Fig. 12b. It is also possible to apply a func-
tion on the image, before extraction phase, that performs median filtering, where
each output pixel contains the median value in the 3-by-3 neighborhood around
the corresponding pixel in the input image in order to remove the noise. This
method it is robust against geometric modification like cropping and rotation, in
the experiments corners of the document were cropped (Fig. 13a) and a rotation
of 45 degrees was applied (Fig. 13b) but the extraction phase was successful.
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Fig. 7. (a) Scrambled and (b) unscrambled watermarked image.

Fig. 8. Side by side comparison between (a) the original image, and (b) the water-
marked one (b).
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Fig. 9. (a) Scrambled and (b) unscrambled extracted QR codes.

Fig. 10. QR code: (a) inserted into the image; (b) extracted side by side.

Table 1. MSE PSNR SSIM results.

Document type MSE PSNR SSIM

Black and White text document 22.75 79.58 0.9215

Text document with modified background 47.83 72.15 0.8208

Slides with background 47.73 72.17 0.9392
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Fig. 11. (a) The original slide; (b) the watermarked slide.
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Fig. 12. (a) 50% jpeg compression and (b) text with salt and pepper noise.

Fig. 13. (a) Cropped and (b) rotated text example.



150 N. Cardamone and F. d’Amore

5 Final Remarks and Future Works

Through these steps we can embed scrambled individual references within a
document with almost no effects on its quality. Experimental results show that
such a schema provides quite good quality and robustness and the results show
that the algorithm performs fairly good in terms of imperceptibility. Further
analysis could be done by searching for new possibilities to insert information in
a document for examples using fonts modification or introducing errors following
a certain pattern.
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Abstract. In this paper, we propose a dynamic database crypto-watermarking
scheme that enables a cloud service provider (CSP) to verify the integrity of
encrypted databases outsourced by different users. This scheme takes advantage
of the semantic security property most homomorphic cryptosystems have, so as
to embed a watermark into encrypted data without altering users’ data. The
incorrect detection of the watermark, not only informs the CSP the database has
been illegally modified but also indicates which data have been altered. In
addition, the proposed scheme is dynamic in the sense the watermarking and
integrity verification processes can be conducted along the database lifecycle,
i.e. even when the database owner updates his or her data (i.e. addition, sup-
pression or modification of database elements). Experimental results carried out
with the Paillier cryptosystem on a genetic database demonstrate that our
method can efficiently detect different illegal data tamper with a high location
precision.

Keywords: Confidentiality � Data outsourcing � Database watermarking �
Genetic data � Homomorphic encryption � Integrity

1 Introduction

Nowadays, cloud computing allows data owners to flexibly store and process large
amounts of data remotely, without a need to purchase and maintain their own infras-
tructure. Despite these benefits, such a data outsourcing induces critical security issues
especially in terms of data confidentiality and integrity. Indeed, users lose the control
over the data they outsource. Among available security mechanisms, encryption
ensures the confidentiality of data. In cloud environment, homomorphic encryption has
recently gained in interest due to the fact that it allows performing linear operations
(e.g. “+”, “�”) onto encrypted data with the guarantee that the decrypted result equals
the one carried out onto unencrypted data [1]. Information can thus be processed
without accessing it in a clear form. In this work, we are interested in giving to the
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cloud service provider the capacity to verify the integrity of databases outsourced
homomorphically encrypted by their owners with the help of watermarking, under the
constraint that users can update their data (i.e. modify, suppress or add data).

Different tools can be used so as to verify the integrity of a database such as: digital
signatures (DS) [2], message authentication code (MAC) [3] or, more recently,
watermarking. DS and MAC are common solutions exploited in database management
systems (DBMS). However, they introduce additional pieces of information into the
database. On the contrary, watermarking relies on the imperceptible insertion of a
message into the data by modifying them based on the principle of controlled distor-
tion. As defined, watermarking leaves access to the data while maintaining them
protected by the message. Depending on the relationship between the message and the
host data, one can ensure various security services like integrity control, in particular.

The first database watermarking method was introduced by Agrawal et al. [4]. As
most database watermarking schemes, this one focuses on copyright protection or traitor
tracing applications where the message corresponds to the buyer or user identifier [5, 6].
Embedding is conducted in a robust way so as to be able to retrieve the identifier even if
the watermarked database has been modified. Some watermarking methods have been
especially designed in order to verify the integrity of databases. Contrarily to the pre-
vious schemes, these ones embed a “fragile” watermark that will not survive any
database modifications [7–11]. Sometimes, such schemes provide the capability to
identify which database elements have been altered [9]. These methods are either
distortion-free or reversible. Distortion-free methods do not modify the values of the
database elements. The database is watermarked: by introducing new data, like some
“virtual” attributes where the watermark is dissimulated [8] or by modulating the
organization of the database elements (i.e. tuples or attributes [7]). Regarding reversible
methods, they ensure it is possible to invert the insertion process and to remove the
watermark distortion restoring thus the original attribute values of the database. They are
well adapted for verifying the integrity. In particular, one can insert a digital signature of
the database itself. At the verification stage, the digital signature is extracted and
compared with the one computed on the restored database. Such an approach has been
proposed either for numerical data [10] or categorical data [11], applying reversible
histogram shifting or difference expansion modulations. It is important to notice that the
above methods have several limitations. All of them work on static databases i.e. on
databases that are not updated. Moreover, they consider tuple additions, suppressions or
modifications as non-authorized modifications. Distortion-free methods can localize
modifications but without a really good precision (i.e. tuple level at best). On their side,
reversible methods only indicate whether a database has been modified. There is thus a
need for a watermarking scheme capable to protect database integrity in a dynamic way
with also good localization performance while being also compliant with data encryp-
tion. Several crypto-watermarking methods, i.e. solutions that combine encryption and
watermarking, have been proposed. Most of them focus on multimedia data (e.g. image,
video) in order to ensure at the same time data confidentiality and copyright protection in
their distribution [12] or watermarking-based integrity and authenticity services from
decrypted/encrypted data [13]. Crypto-watermarking schemes can be differentiated
depending on whether the embedded message is available in the clear domain, in the
encryption domain, or in both domains [14]. To the best of our knowledge, the method
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proposed by Xiang et al. [15] is the first that combines watermarking and encryption for
the protection of databases. It is based on Order Preserving Encryption (OPE), whose
encryption function preserves numerical ordering of the plain-texts, and Discrete Cosine
Transformation (DCT). To embed the watermark, the encrypted database is divided into
groups, and for each group, DCT coefficients (i.e. DC and AC coefficients) are calcu-
lated. AC coefficients are used to generate the watermark bits which are then embedded
into the DC coefficients by using quantization index modulation (QIM) [16]. After that,
the encrypted and watermarked database can be obtained after executing inverse DCT
operations. At the verification stage, integrity of the database can be verified by
matching the hash value of AC coefficients and the extracted watermark information
from DC coefficients. If this method allows verifying the integrity of an encrypted
database, it does not consider update operations. Beyond, it relies on OPE which has
several security limitations due to some of its deterministic properties [17].

In this paper, we propose a watermarking method that allows a Cloud Service
Provider (CSP) to verify the integrity of homomorphically encrypted databases that are
outsourced, handled or updated by their owners remotely. The objective is to detect and
localize non-authorized database modifications. To do so, we take advantage of the
semantic security property of some homomorphic cryptosystems so as to embed a
watermark, a binary message, into encrypted data without altering users’ data. As we
will see, being available from the hash of subset of attribute values, this message, if not
detected properly, not only informs CSP that the database has been modified but also
indicates which data have been altered. Contrarily to all the above schemes, the pro-
posed solution is dynamic in the sense the watermarking and integrity verification
processes can be conducted along the database lifecycle.

The rest of this paper is organized as follows. In Sect. 2, we come back on some
homomorphic encryption preliminaries as well as on the database outsourcing scenario
we consider. Section 3 provides the details of the proposed solution while experimental
results and performance and security analysis are given in Sect. 4. Conclusions and
some perspectives are drawn in Sect. 5.

2 Homomorphic Encryption Preliminaries and Data
Outsourcing Scenario

2.1 Homomorphic Encryption: Paillier Cryptosystem

In thiswork,we opted for thewell-known asymmetric Paillier cryptosystem because of its
additive homomorphic properties and its simplicity of use [18]. Its principles are as
follows. Let p and q be two large prime numbers, the user public key is given byKp ¼ pq.

Let Z�
K2
p
denotes the set of integers in ZK2

p
¼ 0; 1; ::;K2

p � 1
n o

that have multiplicative

inverses moduloK2
p , and select g 2 Z�

K2
p
such that gcd L gKs mod K2

p

� �
;Kp

� �
¼ 1, where:

gcd :ð Þ is the greatest common divisor function, L sð Þ ¼ ðs� 1Þ=Kp and Ks ¼ lcmðp�
1; q� 1Þ defines the user private keywith lcm :ð Þ the least commonmultiple function. The
cipher-text of the clear message m 2 ZKp is derived as
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c ¼ E m; r½ � ¼ gmrKp mod K2
p ð1Þ

where E :½ � is the encryption function and r 2 Z�
Kp

is a random integer that ensures the

Paillier cryptosystem satisfies the so-called “semantic security”. More clearly, the same
plain-text has different cipher-texts depending on the value of r. The decryption of the
cipher-text c is based on the decryption function D½:� such that

m ¼ D c;Ks½ � ¼ LðcKs mod K2
pÞ=L gKs mod K2

p

� �
mod Kp ð2Þ

This cryptosystem has additive homomorphic properties. Considering two plain-texts
m1 and m2, we have

E m1; r1½ � � E m2; r2½ � ¼ E½m1 þm2; r1r2� ð3Þ

E m1; r1½ �m2¼ E m1m2; r
m2
1

� � ð4Þ

As we will see in Sect. 3, both semantic security and additive homomorphic properties
of the Paillier cryptosystem will be of importance in our scheme.

2.2 Data Outsourcing Scenario and Database Model

The scenario we consider is given in Fig. 1, where a data owner securely outsources his
database into the cloud after independently homomorphically encrypting its elements.
By doing so, the owner can ask the cloud service provider (CSP) to process his data
while preserving their confidentiality. Herein, the CSP honestly stores and processes
encrypted data uploaded based on the owners’ requests (processing, updating data).
The CSP is not malicious and will not try to alter owners’ data. At least, it can be
curious, aiming at inferring user data. These privacy issues are however out of the
scope of this work where we focus on the verification by CSP of the integrity of the
encrypted data under his responsibility. Notice that CSP that is authorized to store
users’ data with the help of sub-contracted service providers that can be malicious.

Fig. 1. The considered data outsourcing scenario
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In the sequel, we consider the relational database model. A database DB is com-
posed of a finite set of tables Tif gi¼1;::;N . From here on and for sake of simplicity, we
use a database constituted of one single table of u tuples ftigi¼1;::;u, where each tuple
has m attributes fA1;A2; . . .;Amg. The attribute Aj takes its values within an attribute
domain and ti:Aj refers to the value of the jth attribute of the ith tuple. In a database, each
tuple is uniquely identified by either one attribute or a set of attributes which is called
primary key, noted ti:PK. The encrypted version DBe of DB is obtained by indepen-
dently encrypting the values fti:Ajgi¼1;...;u;j¼1;...;m using Eq. (1)

E ti:Aj; rij
� � ¼ gti:AjrKp

ij mod K2
p ð5Þ

where Kp is the public key of the database owner and rij 2 Z�
Kp

is a random integer.

The objective we pursue in this work is to allow the Cloud Service Provider to
protect DBe in terms of integrity using watermarking under the constraint not altering
the owners’ data and that data can be updated during time. To do so, and as we will see,
we will take advantage of the semantic security property of homomorphic encryption.
It is important to notice that all modifications conducted at the request of one data
owner, i.e. deletion, addition or modification of tuples or attributes, are authorized.
Modifications resulting from system errors (e.g. transmission or storage errors) or from
malicious actions, by an intruder for instance, should be detected.

3 Watermarking of Homomorphically Encrypted Database

In this section, we first present our watermarking method for protecting the integrity of
homomorphically encrypted databases in the case of “static” databases, before
extending it to “dynamic” databases, i.e. when data are remotely updated by their
owners.

3.1 Watermarking of Static Homomorphically Encrypted Database

The general architecture and principles of our system are illustrated in Fig. 2. It is
based on two main processes: database protection and database integrity verification.
The protection process (see Fig. 2a), takes as input an encrypted database DBe in order
to embed a message M that will be available in the encrypted domain. This process
stands on three steps: a preprocessing step the purpose of which is to secretly reor-
ganize the database DBe into DBr

e based on the secret watermarking key Kw, followed
by the insertion ofM in DBr

e to produce DB
wr
e , and the back reorganization of DBwr

e into
the watermarked encrypted database DBw

e . The verification process works in a similar

way (see Fig. 2b). Considering a protected database dDBw
e ; based on the secret water-

marking key Kw, it first secretly reorganizes dDBw
e ; elements; the message bM is

extracted and compared to the message M: Any differences between these two mes-
sages will: (i) alert the CSP of the database integrity loss; (ii) identify which attribute
values have been altered. We detail these different steps in the sequel.
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Data Protection. This process is constituted of three main steps:

Preprocessing – Secret Database Reorganization. The purpose of this step is to ensure
that a non-authorized user cannot access to M: It basically consists in secretly reor-
ganizing the database DBe into the database DBr

e based on the secret watermarking key
Kw. In this work, we reorganize the database tuples in the ascending order of the
cryptographic hash values: hashðtiÞ ¼ hashðKwjjE ti:PK; riPK½ �Þ; where: ‘k’ represents
the concatenation operator, ti:PK is the primary key of the tuple ti: and hash is the
cryptographic Secure Hash Algorithm-2(SHA-2). The security of this procedure thus
relies on the one of SHA-2 and, in particular, on its collision and diffusion properties
[19], as well on the knowledge of the watermarking key Kw.

Message Embedding for Integrity Control. The basic idea of this process stands in the
embedding of one bit of the message M into the hash value of a subset of encrypted
attribute values of the database. Assuming the database is constituted of k subsets, M is
thus a sequence of k uniformly distributed bits (M ¼ blf gl¼1::k , bl 2 0; 1f gÞ secretly
generated based on the watermarking key Kw. The integrity of the database will be
verified by checking the presence of M into the subset hash values. Working with
subsets provides the capacity to identify which parts or attributes of the database have
been altered. This insertion step relies on two sub-steps:

i. Database partitioning in subsets – As illustrated in Fig. 3, the secretly reorganized
encrypted database DBr

e is partitioned into k overlapping ‘subsets’ fBlgl¼1...k of
3� 3 elements.

ii. Insertion of one bit bl of M in an attribute subset Bl – Bl is watermarked into Bw
l

such that bl ¼ hash Bw
l

� �
v¼ sv, where sv represents the vth bit of the cryptographic S

hash of Bw
l , i.e. S ¼ hash Bw

l

� �
: The choice of the value of v depends on the

watermarking key Kw. Based on the fact it is not possible to predict the SHA-2
output for a given input, we use an iterative procedure so as to watermark Bl into
Bw
l . The center element of a subset (e.g. E ti:Aj; rij

� �
of the subset Bl in Fig. 3) is

modified taking advantage of the homomorphic and semantic properties of the
Paillier cryptosystem as follows

Fig. 2. General architecture of the proposed system. M, bM and Kw are the embedded message,
extracted message and the secret watermarking key, respectively.

156 D. Niyitegeka et al.



where rand(.) is a uniform random function in Z�
Kp
. Due to the “strength” of SHA-2,

there is half a chance to get the correct value of sv at each iteration.

Back Reorganization of the Watermarked Database DBrw
e . Once all subsets water-

marked, the database DBwr
e is reorganized back so as to give access to the encrypted

watermarked database DBw
e .

Message Extraction and Database Integrity Verification. The integrity verification
of a protected database works in a similar way as the database protection. Let us

consider a suspicious database dDBw
e . Based on the secret watermarking key Kw, dDBw

e is

secretly reorganized into dDBrw
e and partitioned into subsets. The cryptographic hash

value of each subset is computed and the bits of the message bM are extracted from
these hashes. Any differences in between bM and the a priori known or original
embedded message M will indicate the database has been altered. It is also possible to
identify/localize which subsets have been modified. As we will see in the experimental
section, this protection allows detecting different attacks like tuple suppression, tuple
addition or modification of encrypted attribute value.

Fig. 3. Partitioning of DBr
e into subsets. Blue areas represent subsets in the database and hatched

areas represent the intersection between blue subsets and grey subsets. Note that standalone
attribute values are regrouped into independent subsets. (Color figure online)

Dynamic Watermarking-Based Integrity Protection 157



3.2 Watermarking of Updatable Homomorphically Encrypted Database

In this scenario, the user is allowed to remotely update the database. Database tuples
can be added, suppressed or modified. Being requested by an authorized owner, such
an update should not be at the origin of an alarm. We want to detect unauthorized
modifications like addition, suppression or modification of tuples by an intruder, for
instance.

Rather than re-watermarking the whole database using the previous scheme, we
propose a dynamic watermarking method which allows protecting the database integrity
on the fly with the capability to localize data modifications as before. To do so, our
scheme takes advantage of a journal table Jt that contains some pieces of information
such as the historical details of all added or suppressed tuples. Beyond, the protection
and verification processes of this scheme are similar to those depicted in Sect. 3.1.

To give an idea about how our solution works, let us consider an already protected
database DBw

e along its journal Jt. As shown in Table 1, one record of Jt is associated to
one tuple of DBw

e . Its components correspond to: the tuple identifier (e.g. the encrypted
primary key E ti:PK; riPK½ �Þ, the action applied to this tuple: addition (A) or suppression
(S); and the binary message mið Þ that has been embedded into the tuple. Jt is organized
according to the chronological order database elements have been updated. As we will
see in the rest of this section, this organization will be used for verifying the integrity of
the database. It is important to notice that the elements of Jt should only be known from
the CSP. To do so, the CSP encrypts Jt record elements (see Table 1) and permutes
records using a permutation algorithm (PA) parameterized by a secret permutation key
Kp. PA is used in order to hide the chronological order of Jt records. We will come
back on the security of this journal in Sect. 4.3.

In the following, we go into the details of our scheme. For the sake of simplicity,
we first present how it works when new tuples are added, before presenting its prin-
ciples when considering tuple suppression and authorized attribute value modification.

Protection on the Fly When Adding One New Tuple. To illustrate this process, let
us consider an encrypted watermarked database DBw

e constituted of only two tuples as
shown in Fig. 4a. When a new homomorphically encrypted tuple indexed by ti is added
by a user, the CSP conducts the following steps:

1- The CSP decrypts Jt and reorganizes the records of Jt in their chronological order
using the permutation algorithm parameterized with the secret key Kp. Then the
CSP looks for the two previous last added tuples (that is to say the two last lines of
the database DBw

e – see Fig. 4a) accordingly to Jt.

Table 1. A sample view of the journal table Jt.

Added(A)/Suppressed(S) Identifier ðIdiÞ Embedded message ðmiÞ
E A; r1a½ � E½Id1; r1� E m1; rm1½ �
E A; r2a½ � E½Id2; r2� E m2; rm2½ �
E S; r3s½ � E½Id3; r3� E m3; rm3½ �
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2- As exposed in Fig. 4b, the CSP concatenates the new tuple to the two previous
ones and computes the relative attribute subset partitioning. This partition depends
on the position of the tuple in the database and can be simply computed based on ti;
computation we cannot detail due to paper length limitation.

3- The cloud watermarks this set of tuples accordingly the two following sub-steps:
a. Bits of the message M are extracted from pre-existing but incomplete sub-sets

(i.e. subsets some attributes of which do not exist - e.g. B1 in Fig. 4a) and are
next re-inserted into these subsets once these ones completed with the attribute
values of the new added tuple (see new version of B1 on Fig. 4b).

b. New subsets, created after the addition of the new tuple (e.g. B4 in Fig. 4b), are
watermarked. To do so, the CSP secretly generates a sequence of bits based on
the watermarking key Kw, i.e. a sub-message mi.

After watermarking, the CSP adds to Jt the record Rti such as Rti ¼ \A; Idi ¼
E ti:PK; riPK½ �;mi [ . Jt is next secretly permuted before is encrypted.

Protection on the Fly When Modifying an Attribute Value. Let us consider a
protected database DBw

e . If an attribute value E ti:Aj; rij
� �

is updated by its user, the CSP
renews the database protection as follows:

1- The CSP decrypts Jt and permutes its records based on Kp.
2- The database records are ordered accordingly the Jt and the CSP finds the position

of the tuple ti as well as the subset partition that corresponds to the attribute value
that is updated by its owner.

3- The CSP extracts the message bit embedded from the corresponding subset and re-
inserts it once attribute value updated.

Notice that as such an update does not remove or add a new tuple, Jt is not
modified.

Fig. 4. (a) Initial protected database constituted of two tuples. Blue areas represent the
uncomplete subsets B1 and B3 while grey areas represents the subset B2: t3; t4 and t5 correspond
to empty positions where new tuples should be added. (b) The database after concatenation of
new tuples to the two previous ones. Blue areas represent the subsets B1 and B3 completed. B4 is
a new subset created after the addition of new tuple in the database. (Color figure online)
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Protection on the Fly When Suppressing One Tuple. Let us now consider a pro-
tected database DBw

e and that a user modifies it by suppressing the tuple ti. To update
the protection, the CSP proceeds as follows:

1- It decrypts Jt and reorganizes its records. Then, based on Jt, it reorganizes the
database and finds the position of the tuple ti in the database.

2- The CSP extracts the message from the subsets concerned by the suppression and
replaces it by an “empty” tuple, that is to say a tuple the encrypted attribute values
of which are set to zero or any other predefined value.

3- The CSP re-watermarks subsets using the extracted message while distinguishing
two distinct cases:
a. If the suppressed tuple contains the centers of some subsets, as illustrated in the

Fig. 5a, where ti contains the center of Bw
l , then these subsets are re-

watermarked by re-inserting the bit of the message by modifying with the help
of iterative procedure presented in Sect. 3.1, one of the encrypted attributes of
the tuples ti�1 and tiþ 1 out of the intersection of two subsets (as for example
one of the attributes identified in Bw

l by a red cross in Fig. 5a).
b. If the suppressed tuple ti does not contain the centers of subsets, see Fig. 5b,

then the message is extracted from these subsets and re-embedded into them by
modifying their center element using iterative procedure presented in Sect. 3.1.

After message embedding, the CSP adds to Jt, the record Rti associated to the
suppressed tuple ti, and Jt is secretly permuted before is encrypted.

Fig. 5. (a) Update of the database protection in the case the suppressed tuple contains the
centers of subsets. Red outlines represent subsets concerned by the suppression of the tuple ti and
red cross indicates encrypted attribute values to modify when re-watermarking the data subset.
(b) Update of the database protection in the case the suppressed tuple do not contain centers of
subsets. Red and green outlines represent subsets concerned by the suppression of the tuple ti.
(Color figure online)
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Message Extraction and Integrity Verification. Let us consider a protected databasedDBw
e the CSP wants to verify the integrity. To do so, the CSP has to conduct following

three steps:

1- The CSP decrypts and reorganizes Jt and accordingly reorganizes dDBw
e .

2- The CSP starts by verifying the latest tuple updated in the database. For each tuple
ti to verify, the CSP finds tuple’s neighbors i.e. {ti�2, ti�1, tiþ 1, tiþ 2}.

3- The integrity verification is conducted according to the action applied to ti and
reported in Jt:
a. If ti has been added, only ti�1 and tiþ 1 are needed so as to compute the subset

partition around to ti. The CSP retrieves these tuples from Jt, identifies the
subsets and extracts from them the message it next compares with the ones
stored in Jt. Any difference will raise an alarm, indicating an unauthorized
alteration of ti, ti�1 or tiþ 1 and the position of the suspicious subsets.

b. If ti has been suppressed, the CSP adds an “empty” tuple so as to compute the
subset partition. Two cases have to be considered depending on whether the
suppressed tuple contains subset centers or not. In the former case, the CSP has
to retrieve the tuples ti�1 and tiþ 1 (see Fig. 5a) while in second, it needs to access
the tuples ti�2, ti�1, tiþ 1 and tiþ 2 (See Fig. 5b). Once subsets constituted, the
CSP extract the message bits and compare them to the ones stored in Jt.

It is important to notice that the above procedure allows detecting the tampering of
encrypted attributes. Other non-authorized modifications such as addition or suppression
of tuples will be identified with the help of Jt. Indeed, added tuple will not be reorganized

and will appear as extra data, while suppressed tuples will not be retrieved dDBw
e .

4 Experimental Results and Discussion

The proposed watermarking scheme was experimented on a relational database con-
stituted of one table of 10 000 tuples issued from a real genetic database containing
pieces of information related to genetic variants of 57 individuals. Each tuple or line
containing information about a position in the genome. As shown in Table 2, each
tuple is represented by eight attributes that are chromosome (#chrom), position (pos),
identifier (id), reference (ref), alternative base(s) (alt), quality (qual), filter status (filter)
and additional information (info). In the sequel, the attribute pos, or more clearly its
encrypted version, is considered as the primary key as it uniquely identify one tuple.

Table 2. Sample view of the genetic database used in these experiments. One tuple containing
information about a position in the genome

#chrom pos id ref alt qual filter Info

21 9825790 : C CT, G 1130.64 PASS CSQ=G
21 9825796 : C CGCGT 1179.35 PASS CSQ=GCGT
21 9825809 : G A 1079.59 PASS CSQ=A
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This database was encrypted using Paillier cryptosystem with a public key encoded in
2048 bits so as to ensure a high level of security. In the case of static database
watermarking, this table was divided into 11 390 subsets where a uniformly distributed
binary message of 11 390 bits was inserted (see Sect. 3.1). The permutation of the
journal table Jt records was conducted using the permutation technique based on
indices vectors and described in [20]. In the sequel, we evaluate the performance of our
scheme in terms of: computation complexity, modification detection and localization
precision.

4.1 Computation Complexity

As shown in Sects. 2 and 3, message embedding and integrity verification processes are
performed by the CSP on encrypted databases. Whatever the scheme, static or dynamic,
message embedding consists in the insertion of one message bit into one subset of
encrypted attributes. To do so, an iterative procedure is applied (see Sect. 3.1) such that
the vth bit of the hash value corresponds to the bit of the message. At each iteration, the
center of the subset (a Paillier encrypted attribute) is multiplied by the Paillier encrypted
version of the value zero with a different random value (see iterative procedure in
Sect. 3.1). Since the encryption of zero is of higher complexity than a modular multi-
plication, the computation complexity when watermarking one subset is bounded by
O(L) encryptions where L represents the number of iterations. Based on the fact, at each
iteration there is one chance out of two that the bit hash value corresponds to the
message bit, we thus have in average L = 2 with as consequence a watermarking
computation complexity bounded by O(2). Considering a static or dynamic database of
n subsets, the computation complexity is thus bounded byO(2n) encryptions. Regarding
the verification process, its computation complexity mainly depends on the calculation
of the subset hash values. However, such computation remains negligible compared to
the homomorphic encryption operations. Table 3 provides the computation time for the

Table 3. Computation time for message insertion and integrity verification in the case of the
protection of our test database.

Watermarking scheme Computation step Computation
time

Watermarking of a static encrypted
database

Database encryption 24 min 43 s
Message embedding in the database 7 min 14 s
Database integrity verification 8 s

Watermarking of a dynamic
encrypted database

Message embedding if one tuple is
added

0.1 s

Message embedding if one tuple is
suppressed

0.1 s

Integrity verification for one added
tuple

0.07 s

Integrity verification for one
suppressed tuple

0.09 s
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message embedding and the integrity verification of our test database. Notice that our
method was implemented in C/C++ with GMP library and all experiments were con-
ducted using a machine equipped with 8 GB RAM running on Ubuntu 18.04 LTS.

4.2 Dynamic Database Watermarking and Attack Detection

As stated in Sect. 3.1, three kinds of attacks have to be considered: “tuple suppression
attack”, “tuple addition attack” and “Encrypted attribute value modification attack”.
They can be the result of an intrusion in the system or of transmission errors.

“Tuple suppression” and “tuple addition” Attacks. For sake of simplicity, let us
consider the simple case where a hacker suppresses or adds one tuple in the database
DBw

e . As seen in Sect. 3.2, the integrity verification process relies on pieces information
stored in the journal table Jt. In the case of an added tuple, the CSP will not find its
identifier in Jt (see Table 1, Sect. 3.2) and will consequently raise an alarm. In the case
of a suppressed tuple, the CSP will not be able to retrieve it in the database and will
raise an alarm. In this case, in order to pursue the integrity verification of the whole

database, the CSP just has to add an empty tuple in dDBw
e (i.e. attacked version of DBw

e ).
Based on the tuple identifiers stored in Jt, the detection rate of such attacks is of 100%.

“Encrypted attribute value modification attack”. In this attack a non-authorized user
conducts homomorphic operations so as to damage or falsify some database elements.
Indeed, due to the fact data are homomorphically encrypted with the user public key;
he/she can make some operations so as to modify the database attribute values.

One can distinguish different integrity level checking: the subset level and the
database level. At the subset level, depending on the subset partitioning (Sect. 3.2 –

Fig. 4), if the altered attribute value is not at the intersection of two subsets, the
probability of not detecting such a modification is ½ due to the fact there is a half
chance that the message bit inserted in the hash subset changes (see Sect. 3.1 – per-
formance detection of SHA-2). If now the modified attribute belongs to two subsets
then the probability of non-detection is ¼. In any case, the probability of non-detection
in one subset is bounded by ½. At the database level, if a hacker modifies k subsets of
DBw

e , the probability of detection is bounded by 1� ð1=2Þk which converges rapidly to
1 with the increase of k.

To experimentally evaluate the performance of our method against this attack, a
given percentage of attributes of our protected database DBw

e were randomly modified:
0.001% (that is to say one attribute value has been modified in the database), 0.003%
(three attribute values modified), 25%, 50%, 75%, and 100%. As it can be seen in
Fig. 6 the successful detection of a tampered database depends on the number of
modified attribute values. For instance, if a hacker only modifies one attribute value we
have detection rate of 70%. We also compare in Fig. 6, the experimental detection rate
with the theoretical limit. Experimental results provide better performance.
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4.3 Security Analysis

The proposed watermarking scheme allows the CSP to control the integrity of
encrypted databases outsourced by different users. In the following, we discuss its
security in terms of data confidentiality and data integrity. We first start by analyzing
our scheme considering cryptographic attacks, which aims at breaking the data con-
fidentiality, and then focus on watermarking attacks which aims at breaking the
integrity protection of the database.

Encryption operations are performed using Paillier cryptosystem. The security
analysis of this cryptosystem has been investigated in [18]. Because we only exploit its
semantic security and homomorphic properties, there is no access to private parameters
like user’s data and private key. Even though, a hacker knows some watermarking
parameters (e.g. Kw, partitioning), this gives him no additional information about the
security parameters of the Paillier cryptosystem. Furthermore, the message embedding
does not modify the clear data thanks to properties of homomorphic encryption.
Therefore, the decryption operation is not compromised.

Regarding the integrity of the database, there are different attacks that a hacker can
perform over the database. For a static database, the message embedding in DBe and
the integrity verification of DBw

e depend on the watermarking key Kw. Without the
knowledge of Kw, it is extremely difficult for an attacker to identify and reorganize the
database subsets and find the location of the watermark. In fact, the partitioning and the
location of the bits of the message M within the hash of the watermarked subset depend
on Kw. Without this key, a hacker cannot distinguish the bits of M from the others.
Even though he knows the structure of the message M (the way it is generated), he can
only try an exhaustive search until he finds a valid message.

The security of dynamic database watermarking depends on the secret water-
marking key Kw and on the security of the journal Jt. To ensure the confidentiality of Jt,
this one is encrypted by the CSP which has to keep secret the encryption keys. Notice
that if Jt is encrypted using a deterministic cryptosystem, some cipher-texts may leak
information about the plain-texts. That will be the case of the first column of the Jt
which indicates if a tuple has been added or suppressed. Such an information leak can
support chosen plain-text attacks. Beyond, our scheme relies on a secret permutation

Fig. 6. Theoretical and experimental detection rates of our scheme in the case of the attribute
modification attack. Experimental results are given in average.
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algorithm of the records of Jt using a secret permutation key Kp so as to mask the
chronological order of users’ operations. Without Kp, it should be extremely difficult
for an attacker to identify the chronological order of records in Jt and of the tuples in
the database neither. In this work we use the algorithm issued from [20] the security
analysis of which has been established. Anyway, even though a hacker knows the
secret permutation key Kp, he cannot permute Jt because it is encrypted. Similarly,
even if a hacker knows the secret decryption key being able to decrypt the Jt, without
Kp he cannot conduct the inverse permutation operations and reorganize DBw

e . He will
thus not be able to modify the database while ensuring the correct detection of the
watermark. As conclusion, in order to break the integrity of the journal table, a hacker
should dispose of both the secret permutation key Kp and the secret journal decryption
key of the CSP.

5 Conclusion

In this paper, we have proposed the first watermarking scheme which allows verifying
the integrity of homomorphically encrypted databases taking advantage of the homo-
morphic and semantic security properties of such cryptosystems. Another main origi-
nality of this scheme is that it is dynamic, making possible to protect databases that are
updated by their owners (e.g. tuple additions, tuple suppressions and encrypted attri-
bute value modifications). Experimental results conducted on a genetic database show
that the proposed scheme provides very high detection and localization performance
capabilities; better alteration localization performance than watermarking schemes for
clear data. Future works will focus on adapting our method on genetic data so as to
ensure data integrity control when processing data.
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Abstract. Pixel-value-ordering (PVO) is a new technique for the high-
fidelity reversible data hiding (RDH). It contains a process of sorting the
pixels of a block by their values at first and then embedding into data
bits into the maximum or minimum pixels of a block. In this paper, we
propose to modify the pixel blocks differently according to how smooth
they are, and embed the adequate number of bits into different types of
blocks. The pixel blocks are first classified into five types based on the
local complexity. The maximum pixels of the most smooth block will be
embedded at most four bits, and the less smooth ones are embedded with
a lower number of bits. The block classification is dynamically adjusted
to achieve the adaptive embedding with the best trade-off between the
capacity and the embedding distortion. Experimental results show that
the proposed method can give a better performance over the previous
PVO-based methods.

Keywords: Reversible data hiding · Block classification ·
Adaptive embedding

1 Introduction

Multimedia content protection becomes a hot topic since the 21th century,
because the enormous exchange of information without protection may easily
lead to the privacy leakage in the digital age. It includes several research issues
such as copyright protection, covert communication and authentication and so
on. One special technique designed for the image protection is reversible data
hiding (RDH) [1,2]. Different from the conventional watermarking, RDH can not
only extract the secret data and also losslessly recover the original medium. As
such, it can be used for the sensitive image processing in the military, medical
and judicial fields, in which the recovery of the original medium is desired as
well as the hidden data.
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There are many algorithms that can be used to achieve a RDH process,
including lossless compression [3,4], difference expansion (DE) [5–9], histogram
shifting (HS) [10–19], prediction-error expansion (PEE) [20–32] and integer-to-
integer transform [33–35]. The key problem in RDH is to minimize the embedding
distortion on the original image for a given capacity, in order to preserve a better
visual quality of the marked image. The peak-signal-noise-ratio (PNSR) is used
to measure the extent to which the marked image is similar to the original one.
Usually, a high-fidelity marked image causes less attention from the malicious
attackers and makes the data hiding more safe as a result. For this reason, many
efforts are made in the research of high-fidelity RDH. For RDH, the “high-
fidelity” means that a pixel is added or substracted by 1 at most, and the PSNR
of the marked image is 48.13 dB at least.

Recently, a RDH technique based on pixel-value-ordering (PVO) is proposed
in [36] to make high-fidelity embedding more efficient. In contrast with the
previous RDH methods, the PVO-based method [36] modifies the image in a
block-wise manner and predicts a maximum or a minimum pixel by the second
largest or smallest pixels in the block. The prediction is determined by the inten-
sity similarity between two pixels, but not dependent on their spatial distance.
Specifically, the maximum (minimum) pixel of a block is predicted to derive
a prediction-error, and then will be either increased (decreased) or unchanged
to hide one bit. The prediction-error 0 should be kept unused, and the value 1
is employed to hide a bit. Because the marked maximum/minimum pixels will
be larger/smaller than the original values after embedding, the sorting result
of pixels in terms of the intensity can be invariant. This is the basis of PVO
to guarantee the reversible extraction and recovery. After that, Peng et al. [37]
proposed to utilize the spatial order between the pixels, and allow the prediction-
error −1 be used for embedding. Ou et al. [38] proposed to modify k maximum-
and minimum-valued pixels together to embed a bit. Qu et al. [39] proposed
to use the sorted context for the pixel prediction and therefore developed the
pixel-wise PVO. For the PVO-based methods, the most merit is the high-fidelity
embedding performance yet a very simple computational complexity.

However, the PVO embedding has not been fully exploited by the exiting
methods, because the smooth and the rough pixels are equally treated and
embedded with the same amount of bits. For the most smooth block, there usu-
ally exist multiple maximum pixels. But in the previous work, they are either
kept unchanged or modified together to embed only one bit. In fact, the multiple
maximum pixels can be embedded with multiple bits, such that the performance
can be enhanced. In this paper, we propose to first classify the blocks into five
types and embed different amount of bits into blocks. Four noise level thresh-
olds are employed to classify the blocks with their smoothness, and the multiple
maximum/minimum pixels will be separately embedded with a bit. In this way,
at most four bits will be embedded into the maximum/minmum pixels of a
block, and the derived capacity is much higher than that of the conventional
PVO methods [36–38]. To ensure the accurate recovery, both the intensity and
spatial orders between pixels are utilized. Moreover, the adaptive modification
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is achieved by dynamically adjusting the four thresholds in order to achieve
the minimum distortion-versus-capacity value. The experimental results demon-
strate that the proposed method is better than some of the state-of-the-art
methods [22,36–38].

The rest of paper is organized as follows. Section 2 describes the proposed
method, and Sect. 3 gives the experimental results to verify the superiority of
the proposed method. Section 4 concludes this paper.

2 Proposed Method

In this section, the proposed PVO-based method is presented. We first describe
the basic embedding/extraction modification on a block, and then give the
dynamical threshold selection to achieve the adaptive embedding.

2.1 Data Embedding and Extraction on the Maximum Pixels

Unlike the conventional predictors which determine the similarity of two pixels
by their spatial distance, PVO-based prediction measures the similarity by their
intensities. The PVO-based prediction defines the optimal context pixel only by
the intensity, and can obtain a better prediction for various cases. Similar to
the other PVO-based methods, we use the maximum and the minimum pixels
for data embedding. As the modifications are similar for the maximum and
the minimum pixels, we first describe the dynamical data embedding on the
maximum pixels of different blocks for simplicity. The detailed data embedding
is given as follows.

Fig. 1. The proposed block classification and the corresponding modification manner
for each category.
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Suppose the cover image I is partitioned into the non-overlapped blocks
{B1, ..., BN} with the size of a × b, and the pixels of a block are scanned in a
given spatial order as (p1, ..., pn), where n = a × b. To obtain the PVO of these
pixels, they are sorted by the intensity in an ascending order as (xσ(1), ..., xσ(n)),
where σ : {1, ..., n} → {1, ..., n} is the unique one-to-one mapping such that
xσ(1) ≤ ... ≤ xσ(n), σ(i) < σ(j) if xσ(i) = xσ(j) and i < j. Then, we have

xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n) (1)

Suppose the noise level of the block Bk is NLk, where the noise level is calculated
as the sum of the vertical and horizontal absolute differences in the local context.
The detail computation could be referred to [38]. Then, we employ four noise
level thresholds, namely, {T1, T2, T3, T4} (T1 ≤ T2 ≤ T3 ≤ T4) to classify the
modification on a block into four cases as shown in Fig. 1, and each case will be
differently treated. For a block Bk, the modification manner on the maximum
pixels is determined as below.

– Case 1: If NLk ≤ T1, we use the largest four pixels (i.e., xσ(n), ..., xσ(n−3))
for data embedding and compute three prediction-errors (d1max, ..., d4max) as

⎧
⎪⎪⎨

⎪⎪⎩

d1max = xu − xσ(n−4)

d2max = xv − xσ(n−4)

d3max = xw − xσ(n−4)

d4max = xz − xσ(n−4)

(2)

where u, v, w, z ∈ {σ(n − 3), σ(n − 2), σ(n − 1), σ(n))} and u ≥ v ≥ w ≥ z.
The marked prediction-error d̂h

maxis calculated as

d̃h
max =

⎧
⎨

⎩

dh
max, if dh

max = 0
dh
max + b, if dh

max = 1
dh
max + 1, if dh

max > 1
(3)

where the index h ∈ {1, ..., 4} and b ∈ {0, 1} is a binary bit. Consequently,
the marked maximum pixel i.e., x̃σ(n) is accordingly changed to

⎧
⎪⎪⎨

⎪⎪⎩

x̃u = xσ(n−4) + d̃1max

x̃v = xσ(n−4) + d̃2max

x̃w = xσ(n−4) + d̃3max

x̃z = xσ(n−4) + d̃4max

. (4)

In this case, at most four bits can be embedded into the maximum pixels.
– Case 2: If T1 < NLk ≤ T2, we use the largest three pixels (i.e., xσ(n), xσ(n−1),

xσ(n−2)) for data embedding and compute three prediction-errors
(d1max, d2max, d3max) as ⎧

⎨

⎩

d1max = xu − xσ(n−3)

d2max = xv − xσ(n−3)

d3max = xw − xσ(n−3)

(5)
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where ⎧
⎨

⎩

u = max(σ(n − 2), σ(n − 1), σ(n))
v = min(σ(n − 2), σ(n − 1), σ(n))
w = med(σ(n − 2), σ(n − 1), σ(n))

(6)

and max(·), min(·) and med(·) return the maximum, medium and minimum
values in the set, respectively. The marked prediction-error d̂h

max is calculated
using (11), where the index h ∈ {1, 2, 3}. Consequently, the marked maximum
pixel i.e., x̃σ(n) is accordingly changed to

⎧
⎨

⎩

x̃u = xσ(n−3) + d̃1max

x̃v = xσ(n−3) + d̃2max

x̃w = xσ(n−3) + d̃3max

. (7)

In this case, at most three bits can be embedded into the maximum pixels.
– Case 3: If T2 < NLk ≤ T3, the largest two pixels (i.e., xσ(n), xσ(n−1)) are

considered for data embedding, and the prediction-errors are calculated as
{

d1max = xu − xσ(n−2)

d2max = xv − xσ(n−2)
(8)

The marked prediction-error is obtained using (11), with h ∈ {1, 2}. The
marked pixels are given as

{
x̃u = xσ(n−2) + d̃1max

x̃v = xσ(n−2) + d̃2max

. (9)

– Case 4: If T3 < NLk ≤ T4, only the maximum pixel is used, and this case is
the same to the conventional PVO [36]. For simplicity, we omit the description
for simplicity.

– Case 5: If NLk > T4, the block is regarded as “rough” and will be kept
unmodified during the embedding.

The data embedding on the multiple minimum pixels in a block is similar to the
case of maximum pixels. We simply take the case of modifying three pixels for
illustration. For the three smallest pixels be (xσ(1), xσ(2), xσ(3)), the prediction-
errors are calculated as ⎧

⎨

⎩

d1min = xu − xσ(4)

d2min = xv − xσ(4)

d3min = xw − xσ(4)

(10)

and the marked ones are modified as

d̃h
min =

⎧
⎨

⎩

dh
min, if dh

min = 0
dh
min − b, if dh

min = −1
dh
min − 1, if dh

min < −1
(11)

The blocks are modified one by one according to the above modification, until
the capacity is fulfilled.
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At decoders, by using the same thresholds {T1, T2, T3, T4}, one can retrieve
the same classification, and recover the original pixels and the hidden data cor-
rectly. The recovery process on a block is inverse to that of data embedding. We
take the Case 2 of maximum pixels for example. We select the largest three
marked pixels (i.e., x̃σ(n), x̃σ(n−1), x̃σ(n−2)), and sort them by their local spatial
order by using (6). Note that the ranking result of the marked values (x̃u, x̃v, x̃w)
is the same to (xu, xv, xw) for each block. Then, calculate the prediction-errors
and one data bit is extracted as 0 and 1 for the cases of d̃h

min = 1 and d̃h
min = 2,

respectively. The original pixels are obtained using the dh
max.

2.2 Parameter Selection

In our method, the optimal block size a × b and the optimal thresholds should
be determined according to the capacity and the image content. Generally, the
larger block size produces a higher PSNR but a lower capacity. So, the embedding
distortion can be tuned by adjusting the block size. It is allowed to trade off the
capacity for the embedding distortion reduction. However, the relation between
the block classification and the embedding performance is not implicit. So, to
solve the optimization, for each block size, we exhaustively check all the candi-
date combinations of (T1, ..., T4) and select the best one. The optimal parameter
set (T ∗

1 , T ∗
2 , T ∗

3 , T ∗
4 ) is the one that minimizes the distortion while satisfying a

given capacity EC, and is determined as
{

(T ∗
1 , T ∗

2 , T ∗
3 , T ∗

4 ) = arg min
T1,T2,T3,T4

D1(T1) + D2(T1, T2) + D3(T2, T3) + D4(T3, T4)

subject to C1(T1) + C2(T1, T2) + C3(T2, T3) + C4(T3, T4) ≥ EC
(12)

where the functions of D1(T1), D2(T1, T2), D3(T2, T3) and D4(T3, T4) estimate
respectively the distortion on the blocks with NL ≤ T1, T1 < NL ≤ T2,
T2 < NL ≤ T3 and T3 < NL ≤ T4, and the function C1, ...C4 estimate the
corresponding capacities.

3 Experimental Results

In this section, we compare the embedding performance of the proposed method
with four state-of-the-art methods of Sachnev et al. [22], Li et al. [36], Peng et al.
[37] and Ou et al. [38]. We mainly focus on the PSNR comparison of low capacity
embedding as the PVO-based methods usually yield a higher visual quality but
provide a limited capacity. Among the four methods, [22] is a classical PEE-
based method, and modifies the pixels individually to achieve a high capacity.
The methods [36–38] are the conventional PVO-based algorithms, and can guar-
antee the high-fidelity data embedding for low capacity cases. The experimental
comparisons are tested on the eight standard gray-scale images, including Lena,
Baboon, Airplane, Barbara, Elaine, Boat, Lake and Peppers images, each of
which has the size of 512×512. The pixel block size of our method is set as a× b
with a, b ∈ {2, 3, 4, 5}. So, there are 15 block sizes, and the number of pixels
ranges from 4 to 25.
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Fig. 2. Performance comparison between our scheme and some state-of-the-art RDH
works.
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The performance comparison of distortion-capacity curve is given in Fig. 2.
It is seen that the proposed method can provide the highest PSNR value in most
cases. In addition, because the maximum capacity of a block can be increased to
4 bits, the proposed method provides a larger capacity than the compared PVO-
based methods. Since the PVO prediction cannot work well in edge area, the
PVO-based method usually performs worse on the image consisted of complex
textures. For instance, on Baboon image, the proposed method is less effective
than [22] for the capacities of 14,000 and 15,000 bits. Compared with the conven-
tional PVO-based methods [36–38], the proposed method usually gives a better
performance for the relatively larger capacity. The biggest PSNR gain can be
found on the medium range of the curve.

Table 1. Optimal parameter selection on the test images for the capacity of 10,000
bits.

Images PSNR (dB) T1 T2 T3 T4 n1 n2

Lena 60.82 34 48 73 98 5 3

Baboon 54.83 151 232 247 616 4 3

Airplane 63.68 17 19 21 29 3 3

Barbara 60.72 29 41 64 86 3 4

Boat 58.75 69 71 97 160 3 4

Elaine 58.11 57 62 89 142 3 3

Lake 60.10 41 56 62 101 3 3

Peppers 59.37 49 73 107 149 5 3

To demonstrate the adaptive embedding of the proposed method, we observe
the parameters selection for different capacities and the images. Particularly, the
first comparison is done for a capacity of 10,000 bits as shown in Table 1. The
average PSNRs of the proposed method is 59.55, and the results for the PVO-
based methods of [36,37] and Ou et al. [38] are 58.30, 58.88 and 59.17 dB,
respectively. The average gain of ours are 1.25, 0.67 and 0.38 dB, respectively.
The performance gains is mainly due to that we differently utilize the smooth
and the rough blocks for embedding, and implement a more flexible modification
on image than the other methods.

In Table 2, we investigate how the optimal parameters vary with the capacity.
For our method, the best performance trade-off is achieved by adjusting the
block size and the block classification. We can see in Table 2 that as the capacity
increases, a small block size is chosen. For low capacity case, the large block size
makes the prediction more accurate, and thus a better performance. Besides, the
block classification also controls the capacity and the distortion. The blocks that
are labeled as “smooth” will be averagely embedded more bits per block than the
rough ones. So, including more blocks as the smooth category will increase the
capacity. However, the average distortion is also increased, especially for a high
capacity embedding, most of blocks have to undertake the maximum capacity.



Pixel-Value-Ordering Based Reversible Data Hiding 177

Table 2. Optimal parameters of the proposed method from the capacity of 10,000 to
40,000 bits, where the test image is Lena.

Capacity (bits) PSNR (dB) T1 T2 T3 T4 n1 n2

10,000 60.82 34 48 73 98 5 3

20,000 56.94 38 55 75 107 5 2

30,000 54.28 67 69 97 180 5 2

40,000 51.81 85 85 154 254 3 3

4 Conclusions

In this paper, we propose a new pixel-value-ordering (PVO) based method to
dynamically embedding data bits into the multiple largest and smallest pixels in
a block according its smoothness. By separately modifying the largest/smallest
pixels, a smooth block can be at most embedded with eight bits. The smoother
a block is, the more bits are embedded into it. Four thresholds are employed
to classify the blocks into four categories and each category adopts a different
modification manner. Since a more flexible modification is designed, the overall
embedding performance can be further enhanced. Experimental results on the
standard images verify the proposed method is better than the previous PVO-
based methods [36–38] as well as one other classical method [22].
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Abstract. Recently, more and more attention is paid to reversible data
hiding (RDH) in encrypted images because of its better protection of
privacy compared with traditional RDH methods directly operated in
original images. In several RDH algorithms, prediction-error expansion
(PEE) is proved to be superior to other methods in terms of embed-
ding capacity and distortion of marked image and multiple histograms
modification (MHM) can realize adaptive selection of expansion bins
which depends on image content in the modification of a sequence of his-
tograms. Therefore, in this paper, we propose an efficient RDH method
in encrypted images by combining PEE and MHM, and design corre-
sponding mode of image partition. We first divide the image into three
parts: W (for embedding secret data), B (for embedding the least signifi-
cant bit(LSB) of W ) and G (for generating prediction-error histograms).
Then, we apply PEE and MHM to embed the LSB of W to reserve space
for secret data. Next, we encrypt the image and change the LSB of W
to realize the embedding of secret data. In the process of extraction, the
reversibility of image and secret data can be guaranteed. The utilization
of correlation between neighbor pixels and embedded order decided by
the smoothness of pixel in part W contribute to the performance of our
method. Compared to the existing algorithms, experimental results show
that the proposed method can reduce distortion to the image at given
embedding capacity especially at low embedding capacity.
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1 Introduction

The reversible data hiding is an emerging technology that uses the redundancy
of the carrier to embed secret information and ensures the reversibility of the
carrier and hidden information. Nowadays, digital images are used in reversible
data hiding which has a wide range of applications in the field of military images,
medical images and court certification.

In the past decades, a plenty of RDH algorithms have been proposed. These
techniques can be roughly divided into three categories: lossless compression
appending scheme [1,2], difference expansion [3] and histogram modification [4].
Among them, the histogram-based ones have been widely investigated because of
its high embedding capacity and low degree of distortion. This type of methods
can control the embedding distortion and has a sufficient embedding capacity.
The method called PEE was first proposed by Thodi and Rodriguez [5], which
can contribute a more sharply prediction-error histogram and higher PSNR value
because of the more peak points for embedding and less shifted points for the
guarantee of reversibility. Then, some attempts on PEE have been made and
realize higher embedding capacity and lower distortion of original image [6–8].

Generally, these RDH methods are useful for embedding secret data into
images that are open to the data-hider. However, in some application, the image
owner may be unwilling to disclose the image content to the data-hider. For
example, the private information of patient must not be revealed to the per-
son who embeds data into medical images, while the original image contain the
information of patient must be perfectly recovered and the embedded data com-
pletely extracted on the receiver end. In this case, the channel provider has to
append additional data to the encrypted version of the original image.

Many RDH method in encrypted images have been proposed in recent years.
In [9], Zhang first proposed a RDH algorithm in encrypted image: the original
image is encrypted by a stream cipher, then one bit of the secret data is embedded
into an image block by flipping the 3 least signification bits of half pixels within the
block. Data extraction and image recovering are accomplished by a smoothness
measurement function of the recovered image. In [10], an improved measurement
of smoothness is proposed to make full use of all pixels in the image, and a side
match scheme is proposed to further decrease the error rate of extracted bits, both
of which have improve the embedding capacity of the basic data hiding scheme in
the encrypted image proposed in [9]. In [11], Li et al. improve the algorithm by
using a full embedding strategy to achieve a large embedding rate. These methods
both rely on the spatial correlation of original image to extract secret data, which
mean that the encrypted image should be decrypted first before data extraction.
For solving this problem, separable RDH method in encrypted images was pro-
posed. Zhang improved his own method in [12], emptied out space for data embed-
ding following the idea of compressing encrypted images. Furthermore, in [13], Ma
et al. proposed a new framework different from previous method by vacating room
before encryption. To do this, LSB of some pixels are first embedded into other
pixels using a tradition RDH method [14], and the image is then encrypted. As a
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result, position of these LSB in the encrypted image can be used for embedding
information with the data-hider.

The algorithm in [13] is a creative one which combine traditional RDH
method with the encrypted domain of image. By using traditional RDH method,
the performance of RDH method in encrypted image will not only be increase
in embedding capacity, but also have a large promotion in the quality of marked
images. In several traditional RDH methods, PEE has become the most effec-
tive method because the local correlation of a larger neighborhood is exploited.
Moreover, in [8], Li et al. proposed a new embedding mechanism called multiple
histograms modification based on complexity measurement which can adaptively
select expansion bins in each histogram considering the image content. For each
pixel, its prediction value and complexity measurement are computed according
to its context, and multiple histograms are generated for different complexity
levels. That is to say, the pixels with a given complexity are collected together
to generate a prediction-error histogram, and by varying the complexity mea-
surement to cover the whole image, a sequence of histograms can be derived.
The key of this method is that based on an estimation of embedding distor-
tion, the expansion bins can be effectively determined such that the distortion
is minimized which will contribute to the improvement of PSNR. Inspired by
the framework in [13] and the advantage of PEE and MHM, we design a new
RDH method in encrypted image which can further improve PSNR of marked
decrypted image by combining PEE and MHM, at the same time, give a new
way of image partition so that can ensure the reversibility of algorithm.

The rest of paper is organized as follows. Section 2 briefly introduces the pre-
vious method proposed in [13]. The novel method is presented in Sect. 3 followed
by Sect. 4 on experimental results. Some conclusions are drawn in Sect. 5.

2 Previous Work

In [13], Ma et al. proposed a new reversible data hiding framework in encrypted
images. In this framework, the content owner first reserves enough space on
original image and then converts the image into its encrypted version with
the encrypted key. Now, the data embedding process in encrypted images is
reversible because the data hider only need to embed the secret data in the

Fig. 1. New framework proposed in [13]
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spare space previous emptied out. The data extraction and image recovery are
identical to that of traditional framework. This new framework is shown in Fig. 1.

In [13], the main idea of reversing space for embedding is to divide the image
into two part A and B. Then, the LSB of part A are reversibly embedded into
part B with a standard RDH algorithm in [14] so that the LSB of part A can be
used for accommodating messages. At last, the arranged image is encrypted to
generate its final version. The goal of image partition is to construct a smoother
area B so that the RDH algorithms can achieve a better performance. According
to the size of the to-be-embedded data l, compute first-order smoothness of every
several rows with a smoothness evaluated function to get the value f . Highest
f relates to blocks which contain relatively more complex textures. The content
owner select the block with highest f to be part A, and put it to the front of
the image concatenated by the rest part B with fewer textured areas as shown
in Fig. 2.

Fig. 2. Illustration of image partition and embedding process in [13]

In the process of reversing space, the algorithm in [13] is utilized which is
based on the prediction-error expansion and double-pairs histogram modifica-
tion. After rearranged self-embedded image, the encrypted image E can be cal-
culated through exclusive-or operation.

Once the data hider get the encrypted image E, he can embed data into
part A by replace the LSB of this part and further encrypted additional data
according to data hiding key to formulate marked encrypted image denoted
by E′. Since data extraction is completely independent from image decryption,
receiver can extract data from encrypted images or decrypted images which
depend on practical applications.

According to [13], in the process of choosing the LSB of some pixels, the
smoothness of image block is utilized. However, there are two disadvantage in
this method:
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1. Only through the exchange of specified block and remaining part can the
algorithm be reversible. The receiver can not acquire the marked decrypted
image directly to extract additional data from part A only if he knows the
start row and end row of part A where this two parameters are embedded in
the marginal area of B.

2. The spatial correlation between specified block and remaining part is
neglected. Ma et al. treat these two different parts as disconnected parts.
Although part A contains a more complex textures, but synthetic relation-
ship between part A and B is not clear in the process of embedding. On the
other hand, by utilizing the traditional RDH method in [14], on account of
that part B is consist of two separated part from original image, the spatial
correlation will certainly not be better utilized.

In next section, we take the integrality of the image as starting point and
divide the image into several interlaced parts, which can make better use of
spatial correlation between pixels and reduce the distortion in the process of self
reversible data hiding.

3 Proposed Method

3.1 Generation of Encrypted Image

For the generation of encrypted image, three steps are executed to generate
the encrypted image: image partition, self-reversible data hiding and image
encryption. First, we divide the image into three part: black part (B), white
part (W ) and gray part (G). The LSB of W are reversibly embedded into B
with a standard RDH algorithm to reverse space for secret data. The gray part
is regarded as a predicted area for B in the process of reversible data hiding.
At last, the self-reversible-data-hiding image is encrypted to its to-be-embedded
version.

Image Partition. According to this new mode of image partition, we can better
utilize the correlation between neighbor pixels, which can reduce the distortion
in the process of reversing space for secret data and improve PSNR of the marked
decrypted image.

In the state-of-arts RDH methods, PEE has a better performance than some
traditional algorithms such as HM and PD. The key of PEE methods is the
generation of histograms. In [6], Sachnev proposed a new RDH framework: dou-
ble layer RDH and rhombus prediction to acquire a more sharply distributed
histogram with higher peak point. Inspired by this algorithm, except for the last
row and last column, we first divide the image into two parts: white pixels with
their indices satisfying mod(i+ j, 2) = 0 and gray pixels with their indices satis-
fying mod(i + j, 2) = 1. For the integrality of the process of image recovery, the
neighbor pixels of to-be-predicted pixel should be same to those in the process
of generating histogram. Therefore, we divide the white part in two parts: the
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pixels in even-numbered rows (B) as to-be-predicted pixels and the pixels in
odd-numbered rows (W ), as shown in Fig. 3. The gray part in the original image
(G) is used for the prediction of B.

Fig. 3. Illustration of image partition and embedding process

Self-reversible Data Hiding to Reserve Space. The goal of self-reversible
embedding is to embed the LSB of part W to part B by employing traditional
RDH algorithm. In this part, we mainly employ the method combined with PEE
and MHM to show the process of self-embedding.

Rhombus Prediction and Prediction-Error Expansion. Let x from part B be the
to-be-predicted pixel value, v1, v2, v3, v4 from part G be the four neighbor pixels
of pixel x, as illustrated in Fig. 3. The predicted value of x is

x̂ = �v1 + v2 + v3 + v4
4

� (1)

The prediction error of rhombus prediction e is defined as

e = x − x̂ (2)

According to the embedding capacity, we assume that a and b are two to-be-
expanded bins selected from the prediction-error. Without loss of generality, we
assume that a < b and the zero value points on both sides of the histogram is two
minimum points. Let m be the data bit. The prediction-error after modification
e′ can be defined as

e′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e − 1 e < b
e − m e = b

e a < e < b
e + m e = a
e + 1 e > a

(3)
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Then, the pixel value of the secret image x′ is

x′ = x + (e′ − e) (4)

In the receiver, data bit can be extracted from secret image x′ and the value
of a and b by

m =
{

1 e′ = a − 1 or b + 1
0 e′ = a or b

(5)

The pixel value of original image can be calculated by

x =

⎧
⎨

⎩

x′ − 1 e′ > b
x′ a ≤ e′ ≤ b

x′ + 1 e′ < a
(6)

Generating Multiple Histogram. After calculating the predicted value and
prediction-error of pixel, we introduce the concept of complexity measurement.
It is defined as the sum of both vertical and horizontal absolute differences of
the neighbor pixels of x. CMi is computed as

CMi = |v1 − v3| + |v2 − v4| (7)

In order to reduce the number of histogram, CMi will be scaled to M values
for a relatively small M . We first select M − 1 thresholds as

sj = min
n

{ �1 ≤ i ≤ N : CMi < CM

N
≥ j + 1

M
},∀j ∈ 0, 1, · · · ,M − 2 (8)

Then, we divide CMi into M intervals I0 = [0, s0], I1 = [s0 + 1, s1], · · · ,
IM−2 = [sM−3 + 1, sM−2], IM−1 = [sM−2 + 1,+∞). CMi will be updated to j if
CMi belongs to jth interval. Finally, we get M prediction-error histograms. For
each histogram, embed data according to rhombus prediction and prediction-
error expansion.

In our experiment, the number of histogram in every image is 4. As an exam-
ple, the histograms for the image Lena, are shown in Fig. 4. One can see from
that, as expected, the histogram with a smaller complexity level has a higher
peak with more rapid two-sided decay.

Determination of Parameters. In the process of embedding, the selection of to-
be-expanded bins a and b has an impact on the PSNR value of the marked
decrypted image. According to [8], the condition of the optimization of distortion
as to multiple histograms is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min(

M−1∑

n=0
(

∑

e<an

hn(e)+
∑

e<bn

hn(e))

M−1∑

n=0
(ha(an))+ha(bn)

)

subject to
M−1∑

n=0
(ha(an)) + ha(bn))

(9)
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Fig. 4. Multiple histograms of image Lena

In order to reduce the complexity, we determine the 2M parameters (an, bn),
0 ≤ n ≤ M −1 by utilizing exhaustive search. The conditions on the parameters
are

1. For each n ∈ {0, 1, · · · ,M − 1}, an = −bn − 1
2. For each n ∈ {0, 1, · · · ,M − 1}, bn ∈ {0, 1, 7,∞}
3. b0 ≤ b1 ≤ b2 ≤ · · · ≤ bM−1

The first condition is heuristic such that the expansion bins are symmetrically
selected in each histogram. The second condition is based on the fact that the
histogram has rapid two-sided decay especially for small n. Thus only some
informative bins are exploited for expansion. For the third condition, we try to
embed more data into histogram with smaller n. By this condition, the data will
be priorly embedded into smooth pixels.

Auxiliary Information.The same with other RDH algorithms, overflow/underflow
problems cannot be prevented when the pixels change from 0 to −1 or from 255
to 256. Here, to avoid overflow or underflow, the pixels valued 0 will be changed
to 1, and the pixels valued 255 will be changed to 254. Meanwhile, a location map
will be established to record these problematic locations. The location map is a
binary sequence sized N and it will be losslessly compressed to reduce its size. In
our implementation, arithmetic coding is used for lossless compression. As a result,
each x is ranged from 1 to 254, and it can be freely increased or decreased by 1
without overflow or underflow.

In order to realize the reversibility of data embedding and image recovery,
some auxiliary information should be embedded into the original image. The
necessary auxiliary information includes bn for n ∈ 0, 1, ,M − 1(4M bits), sn
for n ∈ 0, 1, ,M − 2(10(M − 1) bits), the index of the last embedded pixel
Nend(	log2N
 bits), the length of location map used for prevent overflow and
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underflow LM(	log2N
 bits) and the compressed location map (LM bits). In
the front of the auxiliary information, we use 8 bits to represent the length of
auxiliary information in coded binary form. Supposed that the total length of
auxiliary information is Saux bits. After embedding the LSB of part W , supposed
that the last processed pixel for the secret message embedding is xN ′ , record the
LSB of first Saux pixels to form a sequence SLSB and embed this sequence into
the unprocessed pixels until the last pixel xNend

. Finally, by using LSB replace-
ment, embed the auxiliary information into the first Saux pixels to generate the
marked image. After reserving space, the part B becomes a new part denoted as
B′ which is embedded with LSB of part W . A new image denoted as I ′ consists
of part B′, W , G.

Image Encryption. After rearranged self-embedded image I ′ is generated, we
can encrypt I ′ to construct the encrypted image, denoted by E. Assume that the
image after reserving space I ′ is an 8 bits gray-scale image with its size W × L
and pixels Xi,j

′ ∈ [0, 255], 1 ≤ i ≤ W , 1 ≤ j ≤ L. The encrypted bits Ei,j(k)
can be calculated through exclusive-or operation

Ei,j(k) = X ′
i,j(k) ⊕ ri,j(k) (10)

where ri,j(k) is generated by a standard stream cipher determined by the encryp-
tion key, X ′

i,j(k) is the binary bits of X ′
i,j calculated by:

X ′
i,j(k) =

⌊
X ′

i,j

2

⌋

mod 2, k = 0, 1, , 7 (11)

After image encryption, part B′, W , G become part B′′, W ′, G′. Finally, we
embed 16 bits information into LSB of first 16 pixels in encrypted version of part
W ′ to tell data hider the number of bit in part W ′ he can embed into. After
image encryption, the data hider or any other the third party cannot access the
content of the original image with encryption key. Therefore, the privacy of the
content owner can be guaranteed.

3.2 Data Hiding in Encrypted Image

When the data hider acquires the encrypted image E, he can embed some data
into it. It is easy for the data hider to read first 16 bits information in LSB of first
16 pixels in part W ′. After knowing how many bits he can modify, the data hider
simply adopts LSB replacement to change the available bit with additional data
m and part W ′ becomes part W ′′. There is obvious that the first 7 bits of part
W ′ are same with those of W ′′. Finally, the data hider sets a label following m
to point out the end position of embedding process. Furthermore, the data hider
can encrypts m according to data hiding key to formulate marked encrypted
image consists of part B′′, W ′′, G′ denoted as E′. Therefore, anyone who does
not know the data hiding key could not acquire the additional data even he know
the principle of data extraction.
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3.3 Data Extraction and Image Recovery

In this method, data extraction and image decryption are independent from each
other. As a result, the order of them implies two different applications.

Extracting Data from Encrypted Image. In order to better protection of
image content, when the marked encrypted image come to database manager, the
order of data extraction before image encryption appear to be more important.
When someone gets the data hiding key, he can decrypt the LSB of W , which
can also be seen as W ′′, and extract the additional data m by directly reading
the decrypted version. As the whole process is operated on encrypted version, it
avoids the leakage of the image content.

Extracting Data from Decrypted Image. In the discussion above, both
embedding and extracting are operated in the encrypted domain. However, there
is a different situation that the image is decrypted firstly and then the data is
extracted from the decrypted image. The process of extracting additional data
from decrypted image will be discussed in next part.

Generating the Marked Decrypted Image. With the encryption key r, the content
owner decrypts the image except the LSB of part W ′′ by xor E′

i,j(k) and ri,j(k)
to form the I ′′

i,j(k) where E′
i,j(k) and I ′′

i,j(k) are the binary bits of E′
i,j and I ′′

i,j ,
obtained via (11) respectively. Finally, we get the marked decrypted image I ′′

via (12).

I ′′
i,j =

7∑

k=0

I ′′
i,j(k) × 2k (12)

After that, the part B′′, G′ in marked encrypted image E′ will become B′,
G as same with the parts in the image after reserving space which denoted as
I ′, the W ′′

i,j(k), k = 0, 1, 2, 3, 4, 5, 6 in part W ′′ will be same with Wi,j(k), k =
0, 1, 2, 3, 4, 5, 6 in part W . Therefore, the distortion in marked decrypted image
is introduced by the embedding of additional data to the LSB of part W and
self-reversible embedding process by embedding the LSB of W into B. The whole
process of changing in three parts is shown in Fig. 5.

Data Extraction and Image Restoration. After generating the marked decrypted
image, the content owner can further extract the additional data and recover
original image. The steps are described as follow:

–Step 1: Record and decrypted the LSB of part W to obtain the additional data
m according to the data hiding key; extract the data until the end label is
reached.

–Step 2: Determine the auxiliary information by reading LSB of the first Saux

pixels.
–Step 3: In the reverse scanning order, extract the sequence SLSB from xN ′ to

xNend
according to self-reversible extraction method, and meanwhile realize

restoration for these pixels, replace LSB of the first Saux pixels by SLSB .
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Fig. 5. Process of extracting data from decrypted image

–Step 4: In the reverse scanning order, extract the LSB of part W from the first
N ′ pixels and meanwhile realize restoration for these pixels.

–Step 5: Determine the overflow and underflow locations by decompressing LM .
For each overflow and underflow pixel, update its value as 255 if it is 254 or
0 if it is 1.

–Step 6: Replace marked LSB of part W with its original bits extracted from part
B to get original image I.

Of particular note is that in Step 4, the part G is same with the part in
image I. From the (7), it is obvious that CM is computed by v1, v2, v3 and v4
from part G. In this way, the same complexity measurement can be obtained
by receiver. According to (5) and (6), original part B and W can be recovered
without distortion.

4 Experimental Results

In this section, several experiments are conducted to demonstrate the per-
formance of the proposed method. Six standard 512 * 512 sized gray-scale
images [15] including Lena, Baboon, Peppers, Airplane, Barbara and Boat are
used in our experiments.

Lena image is taken to demonstrate the feasibility of our method. With the
result of which shown in Fig. 6, the embedding capacity is 10000 bits. Figure 6(a)
is the image after self-reversible data hiding. Figure 6(b) is the image after
encryption. The objective criteria PSNR is employed to evaluate the quality
of marked decrypted image just as Fig. 6(c). Figure 6(d) depicts the recovery
version which is identical to original image.

Some classic RDH methods in encrypted images were proposed such as [9]
which first presented the possibility of RDH in encrypted images, [10] which
improved the method in [9] by side match, [11] which proved the step of decryp-
tion and extraction are exchangeable in the dissertation. All of above methods
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were proved that the performance of them were inferior to the method in [13].
Therefore, we only compare our method with [13], which first proposed the
framework mentioned in Sect. 2.

Table 1. Ultimate embedding capacity of six images

Image e h1 h2 h3 h4 EC(bits)

Lena −1 3224 2282 1942 1084 17191

0 3330 2264 1973 1092

Baboon −1 1227 786 437 267 5530

0 1236 827 462 288

Pepper −1 1614 1795 1111 877 10898

0 1715 1745 1127 914

Airplane −1 6265 1454 394 2208 26430

0 10264 699 2920 2226

Barbara −1 2993 1824 1027 458 12961

0 3181 1878 1103 497

Boat −1 3492 2538 1292 726 16156

0 3519 2508 1292 789

(a) (b) (c) (d)

Fig. 6. (a) image after reversing space (b) encrypted image (c) marked decrypted image
(d) recovery version

Ultimate embedding capacity of every image is shown in Table 1. h1, h2, h3

and h4 represent four histograms of every image. For unartificial images, the two
peak points in prediction-error histogram are generally −1 and 0. Therefore, the
ultimate embedding capacity of image is the sum of the number of prediction
error which are equal to −1 and 0.

The quality of marked decrypted images is compared in the term of PSNR.
Figure 7 plots the PSNR results of different marked decrypted images under
given embedding capacity. From the Fig. 7, it can be observed that almost over all
range of embedding capacity except higher embedding capacity in image Peppers
and Boat, our approach outperforms RDH algorithm in encrypted images in [13].
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Fig. 7. PSNR comparison with the methods of Ma et al. (a) Lena (b) Baboon (c)
Pepper (d) Airplane (e) Barbara (f) Boat

As to the a given embedding capacity, higher PSNR value means the lower
degree of the distortion of images. The gain in terms of PSNR under ultimate
embedding capacity is obvious in all range. The PSNR value of our method and
the method in [13] when the embedding capacity is 5000 bits and 10000 bits are
shown in Table 2. Referring to Table 2, for a capacity of 5000 bits, our method
outperform [13] with an average increase of PSNR by 1.58 dB, for a capacity of
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Table 2. Comparison PSNR (in dB) between the proposed method and the method
of Ma et al. [13]

EC(bits) 5000 bits 10000 bits

Image [13] Proposed Gain [13] Proposed Gain

Lena 60.34 61.63 1.29 56.79 58.05 1.26

Baboon 52.89 55.31 2.42 / / /

Pepper 59.23 59.76 0.53 54.32 55.16 0.84

Airplane 60.71 63.22 2.51 58.13 59.28 1.15

Barbara 59.06 61.01 1.95 56.35 56.81 0.46

Boat 61.42 62.17 0.75 58.04 58.35 0.31

Average 58.94 60.52 1.58 56.73 57.53 0.80

10000 bits, our method outperform [13] with an average increase of PSNR by
0.80 dB.

In conclusion, compare with the work in [13], the superiority of proposed
method is experimentally verified. It demonstrates the effectiveness of the pro-
posed algorithm.

5 Conclusion

In this paper, we proposed a new reversible data hiding method in encrypted
images by dividing the grey images into three parts and reserving space for
embedding. Part B is used for embedding the LSB of part W and part W is
used for embedding additional data. In the process of embedding the LSB of part
W , a RDH method based on prediction-error expansion and multiple histograms
modification is utilized. Part G is used to generate prediction-error histograms.
Actually, the mode of image partition is decided by the RDH method used for
reversing space. Under the framework of [13], we design the detailed procedures
of our algorithm and realize the reversibility of both original image and addi-
tional data. The result of comparative experiments prove the superiority of the
proposed method in reducing the distortion of image. Furthermore, this novel
method realizes the independence of the process of additional data extraction
and image decryption.

Acknowledgments. This work was supported in part by the Natural Science Founda-
tion of Jiangsu Province under Grant BK20151102, in part by the Ministry of Education
Key Laboratory of Machine Perception, Peking University under Grant K-2016-03, in
part by the Open Project Program of the Ministry of Education Key Laboratory of
Underwater Acoustic Signal Processing, Southeast University under Grant UASP1502,
and in part by the Natural Science Foundation of China under Grant 61673108.



194 C. Song et al.

References

1. Fridrich, J., Goljan, M., Du, R.: Lossless data embedding for all image formats.
In: Ei SPIE Security and Watermarking of Multimedia Contents IV, vol. 4675, pp.
572–583 (2002)

2. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless generalized-LSB data
embedding. IEEE Trans. Image Process. 14(2), 253–266 (2005)

3. Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans.
Circuits Syst. Video Technol. 13(8), 890–896 (2003)

4. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits
Syst. Video Technol. 16(3), 354–362 (2006)

5. Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible
watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)

6. Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking
algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol.
19(7), 989–999 (2009)

7. Tsai, P., Hu, Y.C., Yeh, H.L.: Reversible image hiding scheme using predictive
coding and histogram shifting. Signal Process. 89, 1129–1143 (2009)

8. Li, X., Zhang, W., Gui, X.: Efficient reversible data hiding based on multiple his-
tograms modification. IEEE Trans. Inf. Forensics Secur. 10(9), 2016–2027 (2015)

9. Zhang, X.: Reversible data hiding in encrypted image. IEEE Signal Process. Lett.
18(4), 255–258 (2011)

10. Hong, W., Chen, T.S., Wu, H.Y.: An improved reversible data hiding in encrypted
images using side match. IEEE Signal Process. Lett. 19(4), 199–202 (2012)

11. Li, M., Xiao, D., Kulsoom, A.: Improved reversible data hiding for encrypted
images using full embedding strategy. Electron. Lett. 51(9), 690–691 (2015)

12. Zhang, X.: Separable reversible data hiding in encrypted image. IEEE Trans. Inf.
Forensics Secur. 7(2), 826–832 (2012)

13. Ma, K., Zhang, W., Zhao, X., Yu, N., Li, F.: Reversible data hiding in encrypted
images by reserving space before encryption. IEEE Trans. Inf. Forensics Secur.
8(3), 553–562 (2013)

14. Luo, L.: Reversible image watermarking using interpolation technique. IEEE Trans.
Inf. Forensics Secur. 5(1), 187–193 (2010)

15. Miscelaneous Gray Level Images. http://decsai.ugr.es/cvg/dbimagenes/g512.php.
Accessed 13 Mar 2014

http://decsai.ugr.es/cvg/dbimagenes/g512.php


A Multiple Linear Regression Based
High-Accuracy Error Prediction Algorithm

for Reversible Data Hiding

Bin Ma1, Xiaoyu Wang1(&), Bing Li1, and Yun-Qing Shi2

1 School of Information Science, Qilu University of Technology
(Shandong Academic of Science), Jinan 250300 China

qluwxy@163.com
2 New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract. In reversible data hiding, the higher embedding capacity and lower
distortion are simultaneously expected. Hence, the precise and efficient error-
prediction algorithm is essential and crucial. In this paper, a high-performance
error-prediction method based on Multiple Linear Regression (MLR) algorithm
is proposed to improve the performance of Reversible Data Hiding (RDH).
The MLR matrix function that indicates the inner correlations between the pixels
and their neighbors is established adaptively according to the consistency of
pixels in local area of a natural image, and thus the targeted pixel is predicted
accurately with the achieved MLR function that satisfies the consistency of the
neighboring pixels. Compared with conventional methods that only predict the
targeted pixel with fixed predictors through simple arithmetic combination of its
surroundings pixel, the proposed method can provide a sparser prediction-error
image for data embedding, and thus improves the performance of RDH.
Experimental results have shown that the proposed method outperform the state-
of-the-art error prediction algorithms.

Keywords: Reversible data hiding � Error prediction �
Multiple linear regression � Embedded capacity

1 Introduction

RDH enables the embedding of secret message into a host image without loss of any
original information. It considers not only extracting the hidden message correctly, but
also recovering the original image exactly after data extraction [1]. It is mainly used in
sensitive images that can not tolerate any mistake such as military, medical and remote
sensing images.

At present, RDH based on difference expansion and RDH based on histogram
shifting are two kinds of most prevalent methods being widely employed. Tian [2]
presented the first difference expansion based RDH scheme. The secret messages are
embedded by multiplying the difference between the targeted pixel and its predicted
value (prediction error). The RDH scheme based on histogram shifting is proposed by
Ni et al. [3]. The method achieves data embedding by translating the largest number of
prediction errors.
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As the secret messages are hidden into the redundant information of the host image,
accurate error prediction algorithm can obtain small prediction errors and thus the
histogram distributes steeper around “0”, causing the data embedding capacity is
enhanced at the same marked image quality. Therefore, the study of high performance
error predictor to improve the prediction accuracy of targeted pixel attracts more and
more attentions. Thodi and Rodríguez [4] firstly provided the prediction-error expan-
sion based RDH scheme. This new technique exploited the inherent correlations
between the targeted pixel and its neighbors better than Tian’s difference-expansion
scheme. Therefore, the prediction-error expansion method can reduced the image
distortion at low embedding capacity and mitigate the capacity control problem.
Fallahpour et al. [5] illustrated a lossless data hiding method based on the technique of
gradient-adjusted prediction (GAP), in which the prediction-errors are computed and
slightly modified with histogram shifting method, so as to hided more secret message at
high PSNR. Yang and Tsai [6] provided an interleaving error prediction method, in
which the amount of predictive values is as many as the pixels, and all prediction-errors
are transformed into image histogram to create higher peak bins to improve the
embedding capacity. Sachnev et al. [7] proposed the rhombus error prediction method
to embed secret message into an image, and a sorting technique is employed to record
the prediction-errors according to the magnitude of its local variance. Rhombus pre-
dictor has the best performance among fixed predictor. Therefore, many paper
implemented embedding algorithm based on rhombus predictor [8–11].

Dragoi and Coltuc [12] presented a local error prediction method and evaluated it
with difference expansion based RDH scheme. For each pixel, a least square predictor
is established from a square block centered on the pixel, and thus the smaller corre-
sponding prediction-errors are obtained. Lee et al. [13] proposed a novel piecewise 2D
auto-regression (P2AR) predictor that is based on a rhombus-embedding scheme is
used. The predictor utilizes six critical full-context SPs through the pixels in the TS,
enabling an identification of the shape of the region around the TP and the proper
coefficients. Thus, the method has a tendency that significant improvement happens in
high embedding capacity. Hwang et al. [14] presented an enhanced predictor by using
LASSO approach over normal LS predictor with rhombus-shaped two-stage embed-
ding scheme. It enables finding out the shape of region around the targeted pixel and
the proper weight coefficients. Therefore, the tendency of the method significantly
improves the embedding capacity, especially regarding highly variative images.

In this paper, we proposed a machine learning method for multiple linear regression
algorithm to adaptively estimate the targeted pixels. Unlike the conventional methods
just employing the fixed parameters algorithm to estimate the targeted pixel through
simple arithmetical combinations of its neighbors, the proposed method explores the
inner correlations among the targeted pixel and its neighborhoods. The method
adaptively studies the inner relations among the targeted pixel and its neighbors, and
then predicts the targeted pixel with the MLR function achieved from its nearest
neighboring pixels. According to the local consistency of the natural image, the pre-
diction accuracy is highly improved and the prediction errors are minimized, which
enable the image prediction errors to distribute around “0” closely and the histogram
distribute steep. And thus, the performance of RDH scheme based on the proposed
prediction-error image outperforms those state-of-the-art schemes clearly.
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The outline of the paper is as follows. The principle of MLR algorithm is intro-
duced in Sect. 2. The error prediction method based on MLR algorithm for RDH is
presented in Sect. 3. The experimental results of error prediction based on MLR
algorithm are shown in 4. In Sect. 5, the comparisons of RDH performance based on
the proposed prediction-error image and images from other state-of-the-art algorithms
are demonstrated. Finally, conclusions are drawn in Sect. 6.

2 MLR Algorithm

MLR is a linear approach for modeling the relationship between a scalar dependent
variable Y and independent variables denoted by X. The relationships are modeled with
the linear predictor whose unknown model parameters are estimated from the data, and
such models are called linear models. The basic purpose of MLR is utilizing the
independent variables to estimate another dependent variable and its variability.

The general model of multiple linear regression is

Y ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik þ e ð1Þ

Where, b0,b1; b2; . . .; bk are kþ 1 unknown parameters, b0 is regression con-
stant,b1; b2; . . .; bk are called regression coefficients and x1; x2; . . .; xk are variables that
can be accurately measured, and e is random error.

In a multiple variable estimated system, where the variables comply with the same
mapping regular, the MLR function can be expressed in matrix format as

Y ¼ bX þ e ð2Þ

Where, Y ; b;X are as follows

Y ¼

y1
y2

..

.

yn

2
666664

3
777775

b ¼

b0
b1

..

.

bn

2
666664

3
777775

e ¼

e1
e2

..

.

en

2
666664

3
777775
X ¼

1 x11 x12 � � � x1k
1 x21 x22 � � � x2k
..
. ..

. ..
. � � � ..

.

1 xn1 xn2 � � � xnk

2
6664

3
7775 ð3Þ

The above matrix equation can be solved with the Least-Square (LS) method, so
that the MLR function is constructed with respect to the known and unknown variables,
which enables the sum of the squared deviations between the estimated and observed
values of the model is as small as possible, i.e. the sum of squared residuals is smallest.
At last, the value of the regression coefficients b is calculated as formula (4), and the
prediction of the targeted variables is achieved effectively.

b ¼ XTX
� ��1

XTY ð4Þ
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3 MLR Algorithm Based Targeted Pixel Error Prediction

According to the consistency of pixels in local area of natural image, the neighboring
pixels generally have similar values, and the neighboring pixels and the targeted pixel
from same local area usually have close relation. Thus, the targeted pixel can be
predicted by exploiting the inner relation among its neighboring pixels.

Suppose the targeted pixel to be predicted is xm;n, its neighboring pixels are chosen
as the prediction samples, and the prediction result is x0m;n. The MLR predictor of the
targeted pixel is calculated by the M neighboring pixels as follows:

x0m;n¼
XM
k¼1

bkxk ð5Þ

where, xk are the neighbors of targeted pixel.
Considering the closely correlations of pixels distribute in local area of natural

image, the targeted pixel and its neighbors usually comply with the same pixel pre-
diction function, thus, the targeted pixel can be predicted with the same function of its
neighboring pixels precisely. In the light of this principle, the targeted pixel is not
predicted through simple arithmetical combinations with its neighboring pixels in our
proposed scheme, but through the MLR function established from the neighboring
pixels, and thus, the prediction accuracy of the targeted pixel is improved.

Let xm;n be the pixel to be predicted, choose N pixels around the targeted pixel as
the prediction samples, at the same time, choose closest two neighboring pixels of each
prediction sample as training samples. Construct the MLR matrix function with the
training samples as variables X and the prediction samples as variable Y. The MLR
coefficients that indicate the inner correlation of pixels in local area are obtained by
least-square method. Then, the targeted pixel is predicted with the achieved MLR
equation which indicates the consistency relations of neighboring pixels in local area.
The prediction sample Y be denoted by an N � 1 column vector, as follow:

Y ¼ ½x1; x2; � � � ; xN �T ð6Þ

In the first stage, choose N pixels at the top left of the targeted pixel (shown as
Fig. 1) as prediction samples Y, and every closest two pixels located on the top and left
of each prediction pixel is chosen as the training sample X. Then, the MLR matrix
function is established according to the relationship between the training samples and
the training pixels, through which the parameters are obtained adaptively (shown as
formula (7)).

x1
x2

..

.

x6

2
666664

3
777775
¼

x5 x2
x7 x8

..

.

x8 x9

2
666664

3
777775

b1
b2

..

.

b6

2
666664

3
777775
þ

e1
e2

..

.

e6

2
666664

3
777775

ð7Þ
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The MLR coefficients are obtained with Least-Squares (LS) method (Eq. 4). As the
optimal resolutions of MLR matrix function enable to minimize the sum of squared
residuals (the residual is the difference between the estimated and original pixels), the
optimal coefficients of a MLR function composed by the similar neighboring pixels are
achieved.

In the following stage, the obtained MLR function and the four pixels located at the
upper left corner of the targeted pixel are employed to predict the targeted pixel value
according to the formula (8).

x̂m;n ¼ b1x1 þ b2x3 ð8Þ

Finally, the prediction-error is obtained with the formula (8), where, the original
pixel value is subtracted by its predicted value.

eði; jÞ ¼ roundðxðm; nÞ � x̂ðm; nÞÞ ð9Þ

Apparently, the proposed method does not just rely on the simple arithmetical
combination of pixels closely adjacent to the targeted pixel to predict the targeted pixel,
but learns the inner correlations between the training samples and the prediction
samples. According to the close relation of local pixels, the targeted pixel is predicted
with the optimized MLR function established from its neighboring pixels. As the
method adaptively learns the inner correlation of pixels distribute in local area, the
accuracy of prediction is improved clearly compared with those coefficients fixed error
prediction method.

4 Experimental Results

To evaluate the performance of the proposed MLR based error prediction method, four
well known standard 512 � 512 test images (see Fig. 2) from image database of MISC
are chosen to evaluate the performance of the proposed method. As image Lena and
Tiffany have plenty of moderate frequency information, that is, it is moderate texture
complexity; while image Baboon is high texture complexity, and image Airplane is

Fig. 1. Pixel chosen method.
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with large uniform areas, experiments with these four images can evaluate the per-
formance of the proposed error prediction method comprehensively.

In the experiment, the targeted pixel is predicted by its closest two neighboring
pixels locate on its top and left. It is supposed that the data embedding is from the lower
right corner to the upper left corner, so that the value of the prediction samples are
consistent before and after data embedding, accordingly, high accurate pixel prediction
is achieved. The prediction samples on the upper left corner of the targeted pixel and
training samples of the prediction sample are employed to established the MLR
function coefficients, and the targeted pixel is predicted with the established MLR
function and the four prediction samples.

Moreover, to enable the correct extraction of the embedded message and the
lossless recovery of the original image, the left two columns as well as the top two rows
of the image are not involved in the reversible data hiding process, however, they are
reserved for additional information saving or other specific application. Therefore, the
net amount of the pixels involved for RDH is 508 � 508 actually.

The effect of the prediction samples N for the MLR prediction is important. The
greater number of prediction samples, the better result in MLR method. Figure 2 shows
that we adopted prediction samples of different size (N = 2, 4, 6) to carry out. It is
obvious that the effect of prediction samples N = 6 and N = 4 outperforms the effect of
N = 2 and significant gap exists in the result. We can also see that prediction error of
N = 6 slightly exceeds prediction error of N = 4. Conclusion, predicted effect of N = 6
produces the best result, better than N = 4 and N = 2.

Meanwhile, we compare the proposed error prediction method with other state-of-
the-art error prediction methods such as Yang et al.’s method and Sachnev et al’s
method. Yang et al. proposed the interleaving prediction methods, in which the number
of prediction-errors are as many as the pixels, Sachnev et al. presented the rhombus
error prediction method for RDH. They all have achieved excellent experimental
results in the process of targeted pixel error prediction. The experimental results show
that the performance of the proposed predictor outperforms other state-of-art predictor
clearly. Figure 2 shows that the distribution of the prediction errors range −10 to 10
with our proposed scheme is more constrained than with other schemes.

(a) (b) (c) (d)

Fig. 2. Four standard test images: (a) Lena, (b) Baboon, (c) Airplane, (d) Tiffany
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The result of the comparisons with the state-of-the-art scheme of Sachnev et al.
method, Yang et al. method, are shown in Fig. 2. It is manifested that the proposed
method outperforms Sachnev et al’s and Yang et al’s method in four images. It is well
known that Sachnev et al’s method was achieved highest performance among the fixed

N=2 N=4 N=6

(a) Lena 

N=2 N=4 N=6

(b) Baboon 

N=2 N=4 N=6

(c) Airplane 

Fig. 3. The comparison of prediction error according to the size of prediction samples.
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predictor, the proposed method outperform the other methods of Sachnev et al’s
method and Yang et al’s method. It can be concluded that the proposed method is
superior to the other three algorithms of Sachnev et al’s method and Yang et al’s
method in large embedding capacity. The reason why the proposed method outper-
forms other methods are summarized as follows. First, the proposed method employs
the multiple linear regression in machine learning adaptively to learn according to its
neighboring pixels of the local area. Furthermore, the proposed method only utilize
nearest neighboring pixel of the pixel to increase accuracy of the LS computation, take
advantage of the consistency of the local area.

Figure 4 has shown that the proposed predictor has higher accuracy than those of
Sachnev et al’s method, Yang’s method in prediction error range −10 to 10. Because
the proposed method results in higher occurrence of small prediction error values
compared to other methods. Figure 4 confirms that the proposed method is superior to
the other three methods in large embedding capacity.

(a) Lena (b) Baboon

(c) Airplane (d) Tiffany

Fig. 4. The distribution of the prediction errors from −5 to 5 for image Baboon, Barbara,
Sailboat, Boat.
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5 Comparison of RDH on Different Prediction-Error Image

To further verify the superiority of the MLR based error prediction method, we
compare the performance of difference expansion based RDH scheme on different
prediction-error image formulated with Sachnev et al.’s method, Yang et al.’s method,
Dragoi et al’s method and the proposed methods. Here, we choose difference expansion
based RDH scheme, as it is a kind of simple but effective approach for data embedding.
The comparison results on four classical images are shown in Fig. 3.

The PSNR comparison results with other schemes are shown in Fig. 5. It is ensured
that the proposed method outperforms state-of-the-art methods such as Sachnev et al’s
method, Dragoi et al’s method, Yang et al’s method. Figure 5 also shows that the
proposed scheme achieves higher performance than others at moderate to high data
embedding capacity, that is, when the data embedding capacity is low, all kinds of error
prediction algorithms can provide sufficient prediction-errors “0” for data embedding,

(a) Lena (b) Baboon

(c) Airplane (d) Tiffany

Fig. 5. Performance comparison of the proposed method with other methods
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but with the embedding capacity increase, the error image with less prediction errors
“0” brings more image distortion than others. The better the error prediction algorithm
is, the more accuracy the error prediction would be, and the higher the RDH perfor-
mance is achieved.

The reason of the experimental results can be interpreted as follows. Both the two
methods of Yang et al.’s and Sachnev et al.’s employed fixed coefficient function to
estimate the targeted pixel value. The Yang et al.’s method employed the two pixels at
the left and right of the targeted pixel, and Sachnev et al.’s method employs the four
pixels at the four directions of the targeted pixels(left, right, up and down) for targeted
pixel error prediction. As the pixels distribute differently from one region to another in
a natural image, the targeted pixel prediction accuracy different from one area to
another. The more texture the host image has, the lower the prediction accuracy would
be. Although Drogia et al.’s method predict the targeted pixel adaptively with pixels
distribute in a local area, the marked and the original pixels are both involved for error
prediction, its prediction accuracy is decreased apparently.

Our proposed scheme not just estimates the targeted pixel directly with fixed
parameters algorithm, it establishes the MLR function and deciding its coefficients
firstly from the neighboring pixels closely adjacent to the targeted pixel, and then
predicts the targeted pixel with the achieved MLR function and its surrounding pixels.
According to the consistency of pixels in local area of natural image, the error pre-
diction accuracy is improved effectively. The MLR algorithm can achieve more
accuracy pixel value prediction, the prediction-error image is sparser than others (has
more “0” elements) and thus the marked image maintains high quality even after quite a
lot data having been embedded.

6 Conclusion

In this paper, a new kind of error prediction method based on MLR algorithm is
presented. The targeted pixel is predicted with MLR function and its neighboring
pixels, where, the MLR is established from the neighboring pixels distribute closely to
the targeted pixel. According to the consistency of the pixels in local area of natural
image, the targeted pixel is predicted accurately. The experimental results compared
with some state-of-the-art schemes show that the MLR based error prediction scheme
achieves higher performance than others clearly. Moreover, the prediction-error image
achieves with the proposed method also has been employed for RDH, and the results
demonstrate that the RDH on the proposed prediction-error image outperforms the
counterparts apparently, especially for image with much texture areas. The MLR based
adaptive error prediction method can increase the targeted pixel prediction accuracy
(minimize the prediction error) largely and then improve image RDH performance in
great extent.
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Abstract. Reversible data hiding has received growing attention, which
not only protects the secret information but also can recover the cover
image accurately. Many algorithms have aimed at embedding capacity
and rarely consider the texture features of spatial images. In this paper,
to better improve the image quality, a novel strategy of distinguishing
texture feature for reversible data hiding based on histogram shifting is
proposed. Firstly, the cover image is separated into blocks of the equal
size, and the texture feature value of blocks is calculated. Then, the rela-
tively smooth blocks are selected for information embedding. Experimen-
tal results show that our method can improve image quality effectively.

Keywords: Reversible data hiding · Image texture · Image quality

1 Introduction

In recent years, the protection of privacy has received more and more atten-
tion due to the frequent occurrence of privacy leakage. Reversible data hiding
not only protects the secret information but also can recover the cover image
accurately. Therefore, it is widely utilized in various applications, e.g., image
authentication [1], medical and military image processing [2], and stereo image
coding [3], etc.

Since Barton [4] proposed the first reversible data hiding scheme in 1997,
reversible data hiding has had a lot of improved algorithms. Lossless compres-
sion [5,6], difference expansion [7,8], and histogram shifting [9–11] are three
main methods of data hiding. Histogram shiftings main idea is to select a pair
of peak and zero bins and move the pixels between peak and zero bins. When 0
is embedded, the peak points remain unchanged; when 1 is embedded, the peak
points are incremented or decremented by 1.

Linear prediction error histogram was proposed by Tsai et al. [12] in 2009.
Firstly, the cover image is divided into sized n×n blocks and the center pixel of
c© Springer Nature Switzerland AG 2019
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each block is selected as the baseline. The pixels in each block minus the central
pixel to obtain an error value table e, and the central pixel value is discarded. The
correlation between pixel values is strengthened in this method. A higher hiding
capacity is obtained and a good quality stego-image is preserved. In 2013, Chen
et al. [13] made improvements based on the method of Tsai et al. [12]. Embedding
in the first layer, firstly, the cover image is divided into sized 2 × 2 blocks and
the pixel in the lower right is selected as the baseline. Then, the pixels in each
2 × 2 block minus the baseline, and three error values e1, e2, and e3 can be
obtained. Finally, the maximum prediction error Max (e1, e2, e3) is selected as
the error value of the pixel which is the baseline. Embedding in the second layer,
the minimum predictive error Min (e1, e2, e3) is selected in the same way for
information embedding. This method improves prediction accuracy and improves
visual effect. In 2016, asymmetric-histogram based reversible data hiding scheme
using edge sensitivity detection is utilized by Lu et al. [14]. In [14], the pixels of
the cover image I is divided into two parts: blank and shadow. Taking blank as
an example, first calculate the edge sensitivity coefficients of four pixels adjacent
to the I (p, q) position and normalize it, and then calculate the prediction value
and error value of the I (p, q) position. This method not only strengthens the
correlation between adjacent pixels, but also reduces the distribution of error
values and improves the prediction accuracy. In 2017, high-fidelity reversible
data hiding using directionally enclosed prediction was implemented by Chen
et al. [15]. The error values of each pixel include the horizontal direction eh and
the vertical direction ev, and the smaller of the absolute values of the two is
selected as the prediction error of x in [15]. Jung [16] implied a high-capacity
reversible data hiding scheme based on sorting and prediction in digital images
in 2017. The proposed method could embed two bits of the secret data in each
3×1 sub-block at maximum by grouping into the max and min groups. It further
improves the embedding capacity in the same embedded capacity.

Because the texture feature of the image is not fully considered in the previ-
ous papers, a strategy of distinguishing texture feature for reversible data hiding
based on histogram shifting is proposed in this paper. In this paper, firstly, the
cover image is separated into blocks of equal size and the block texture informa-
tion is described by five parameters of mean square error, homogeneity, entropy,
contrast, energy. Then, the relative smooth blocks are selected for information
embedding. Experimental results show that the proposed strategy can improve
the image visual effect and make full use of the correlation between pixels.

The rest of the paper is organized as follows. Section 2 presents the proposed
method. The experimental results are followed in Sect. 3. Finally, the conclusions
are summarized in Sect. 4.

2 Proposed Method

In order to achieve better image quality under the same embedding capacity,
a strategy of distinguishing texture feature for reversible data hiding based on
histogram shifting is proposed in this paper. Our method mainly includes four
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sections: calculation of texture features of image blocks, weight optimization,
threshold optimization, embedding and extraction process.

2.1 Calculation of Texture Features of Image Blocks

The method proposed in this paper employs a cover image I to implement
reversible data hiding. Firstly, the cover image is separated into sized s1 × s2
blocks, and the texture feature value of blocks is computed. The block texture
information is described by five parameters: mean square error, homogeneity,
entropy, contrast, and energy in the proposed method. The meaning and calcu-
lation formula of the five parameters will be introduced below. Let i represent the
gray value of the current pixel (0 ≤ i ≤ 255), j represent the neighborhood gray
mean (0 ≤ j ≤ 255), and (i, j) constitutes the co-occurrence matrix M . f (i, j))
is the frequency at which the feature two-tuples (i, j) appears, and N is the scale
of the image. Then the probability of each two-tuples is as follows:

Pi,j =
f (i, j)
N2

(1)

Entropy is used to describe the amount of information contained in the image.
The larger the entropy value, the finer the texture; the smaller the entropy, the
smoother the image. Entropy can be obtained:

Hm,n =
s1∑

t=1

s2∑

k=1

Pi,j logPi,j (2)

Energy is utilized to reflect the distribution of image grayscale uniformity. The
greater the energy, the more uniform the grayscale distribution of the image.
Energy is calculated by (3):

Jm,n =
s1∑

t=1

s2∑

k=1

P 2
i,j (3)

Contrast can describe the clarity of the image, that is, the clarity of the texture.
The greater the difference between adjacent grayscale pixel pairs, the greater
the contrast. Contrast can be computed by (4):

Gm,n =
s1∑

t=1

s2∑

k=1

Pi,j (i − j)2 (4)

The local variation of image texture is described by homogeneity. If the image
texture has less variation between different domains and the locality is very
uniform, homogeneity is larger. Homogeneity is defined as:
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Qm,n =
s1∑

t=1

s2∑

k=1

Pi,j(
1 + (i − j)2

) (5)

Mean square error indicates the discrete degree of adjacent pixels. The larger
the mean square error, the greater the difference between adjacent gray pixel
pairs. Mean square error can be estimated by:

COVm,n =
s1∑

t=1

s2∑

k=1

(
i −

∑s1
t=1

∑s2
k=1 i

s1 · s2

)
(6)

Finally, the texture information of each block can be described by using the
above five parameters together, as shown in formula (7). Since each parameter
reflection degree to the texture of the block is different, the method assigns
weights to entropy, energy, contrast, homogeneity, and mean square error, which
are represented by w1, w2, w3, w4, and w5, respectively.

Cm,n = w1 · Hm,n + w2 · Jm,n + w3 · Gm,n + w4 · Qm,n + w5 · COVm,n (7)

Where Cm,n represents the texture feature value of the blocks.

2.2 Weight Optimization

Take Lena as the example, the weights of entropy, energy, contrast, homogeneity,
and mean square error in the texture feature are shown in Table 1 which is
optimal in the experiment. The threshold optimization of different images is
calculated in the same way as Lena. The method for finding the approximate
optimal of Lena weight is as follows:

Step 1: The initial weight of entropy, energy, contrast, homogeneity and mean
square error is set as 1.0;

Step 2: Maintain the weight of energy, contrast, homogeneity, and the mean
square error, increase or decrease the weight of the entropy, and compare the
PSNR of images before and after weight changes. Retain a set of weight values
with higher PSNR. Gradually reduce the range of weight changes, specifically:
±0.8, ±0.4, ±0.2, ±0.1;

Step 3: The operation of step 2 is performed on the other four weights;
Step 4: Repeat steps 2 and 3 until performance is no longer improved;
Step 5: The five weights obtained are normalized.

Table 1. The approximate optimal weight of Lena.

Weight w1 w2 w3 w4 w5

Value −0.1812 0.2373 0.2514 −0.0926 0.2375
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2.3 Threshold Optimization

The threshold T is closely related to the embedded capacity. When the threshold
T is too small, the embedding capacity cant be fulfilled, and when the threshold
T is too large, the improvement in image quality is not significant. In the special
case, when T > max (Cm,n), all blocks will be deemed to the smooth blocks, and
the image quality is not improved. Therefore, an optimal threshold T ∗ should
be found, which can adaptively satisfy the embedding capacity and optimize the
image quality. In our method, information embedding can only be performed at
the peak of the prediction error in the smooth blocks, so the optimal threshold
T ∗ should satisfy:

T ∗ = argmin
Cm,n ≥T

{sum (count (Pm,n)) ≥ data} (8)

Where Cm,n ≤ T represents the blocks whose texture feature values are less than
the threshold T , count (Pm,n) denotes the number of the peak bins of prediction
errors histogram in a single smooth block and sum (count (Pm,n)) is the number
of the peak bins of prediction errors histogram in all smoothing blocks. data is
the length of secret information.

2.4 Embedding and Extraction Process

In this section, the embedding process is exhibited in Sect. 2.4.1 and the extrac-
tion process is introduced in Sect. 2.4.2.

Embedding. The cover image I is separated into sized s1 × s2 blocks. Pixels
are processed in raster-scanning order starting from the upper left corner. The
embedding procedure is as follow:

Step 1: Calculate prediction value xp according to [12–14], [16];
Step 2: Compute the prediction error such as e = x − xp;
Step 3: Estimate texture feature information of blocks;

(a) Generate a co-occurrence matrix M ;
(b) Compute the frequency f (i, j) of the feature two-tuples (i, j);
(c) Evaluate the entropy, energy, contrast, homogeneity, and mean square
error respectively;
(d) Calculate the optimal weights for the five parameters separately, then get
the texture feature information of the final block;

Step 4: Select the blocks according to the threshold value;
Step 5: Embedding secret information in blocks that satisfy conditions by com-

bining existing reversible data hiding methods.

After data embedding, the smooth block selected according to the threshold
will be changed. Therefore, we use a matrix X to record which block is embedded
with secret information. The smooth blocks are denoted as 1 and the texture
blocks are denoted as 0 before embedding the secret information. Then, the
matrix X is compressed and sent to the receiver as auxiliary information. When
extracting information, the secret information can be accurately extracted and
the cover image can be restored by the receiver according to the matrix X.
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Extraction. The stego-image I
′

is divided into sized s1 × s2 blocks. Pixels
are processed in the same order as Sect. 2.4.1. The extraction procedure shows
following:

Step 1: Obtain matrix X and embedding capacity from auxiliary information;
Step 2: Compute the prediction error such as e

′
= x

′ − x
′
p;

Step 3: Extract the secret information and recover the image.

3 Experimental Results

We implement the reversible data hiding algorithms of Tsai et al. [12], Chen
et al. [13], Lu et al. [14], Jung [16], and the proposed method using MATLAB.
The proposed method is evaluated by four images of size 512 × 512, including:
Lena, Boat, Plane, Tiffany, as shown in Fig. 1. For reversible data hiding, the
image quality of the stego-image and the embedded capacity ER are important
criteria for judging an algorithm. PSNR (peak signal to noise ratio) is a widely
used measurement for evaluating the quality of data hiding algorithms.

Fig. 1. Standard test images: Lena, Boat, Plane, Tiffany.
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3.1 A Detailed Example for the Proposed Method

Since the proposed strategy combines with the method in [12–14] and [16] respec-
tively, the proposed strategy compares with their performance. Take Lena, Boats,
Plane, Tiffany as the example: vertical coordinate is PSNR and horizontal coor-
dinate is payload, as shown in Fig. 2. The threshold is uniformly set to 100 and
the image is separated into sized 4 × 4 blocks. In the same embedding capacity,
PSNR of the method [12–14], [16] is improved by combining with the proposed
method, as shown in Fig. 2. In high embedding capacity, the image quality of the
proposed method is improved obviously; in low embedding capacity, the image
quality of the proposed method is similar to that of the method [12–14], [16].
As an example, when the embedding capacity is 7000 bits, the proposed method
respectively improves the PSNR by 0.31 dB, 0.20 dB compared to that of Lu
et al. [14] and Jung [16]; when the embedding capacity is 25000 bits, the proposed
method enhance s the PSNR by 0.87 dB, 1.44 dB, as shown in Fig. 2(a).

Plane

Fig. 2. PSNR-ER comparison.

3.2 Impact of Block Size

In this section, the impact of block size on image quality will be analyzed. In
order to get the optimal block size, the threshold is uniformly set to 100, and the
cover image is divided into smaller size s1 × s2. The experiment tests the PSNR
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of the image in different block size and the same payload. Taking an example
of Lena, when the block size is 4 × 4, 5 × 5, 6 × 6, and 7 × 7 respectively, the
PSNR of the proposed method is higher than the method of [12–14], [16], as
shown in Fig. 3. With the increase in block size, the PSNR increases, but the
embedding capacity decreases. When the embedding capacity is 22000 bits, as
shown in Fig. 3(c), the 5 × 5 size block improves the PSNR by 0.33 compared to
the 4 × 4 size block, but the embedded capacity cannot be satisfied. Therefore,
according to the embedding capacity, the block should be selected, which not
only satisfies the embedding capacity but also optimizes the image quality.

Fig. 3. Performance comparisons of the block size.

3.3 Impact of the Threshold

Under the premise of satisfying the embedding capacity, the optimal threshold
should be selected to ensure the optimal image quality. The proposed strategy
also combines with the method in [12–14] and [16] respectively. Taking Lena
as an example, in the case of the same block and threshold, the image quality
with embedding capacity 10000 bits is superior to image quality with embedding
capacity 20000 bits. Furthermore, the PSNR keeps decreasing and tends to be
flat, as shown in Fig. 4. Under the same block conditions, the embedding capacity
decreases with the decrease of the threshold value. The embedding capacity is
less than 20000 bits when the block size is 5 × 5 and the threshold is 40, 50
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respectively, as shown in Fig. 4(a) and (b). At the same capacity, the image
quality of the 5 × 5 size block shows much better performance than the image
quality of the 4 × 4 size block, and the PSNR also keeps decreasing and tends
to be flat. Therefore, with the decrease of the threshold value, the embedding
capacity of the image is also reduced, but the PSNR increases with the same
embedding capacity.
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Fig. 4. Performance comparisons of the threshold.

4 Conclusions

In order to improve the stego-image quality, this paper proposes a strategy of dis-
tinguishing texture feature for reversible data hiding based on histogram shifting.
After calculating the texture feature value of each block, we select the optimal
threshold value which can achieve the optimal image quality according to the
embedding capacity. Finally, the information is embedded at the point where
the condition is satisfied. Experimental results show that the selection of block
size and threshold is closely related to the embedding capacity and the image.
Our method can improve image quality effectively.
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Abstract. For cloud storage management and security of images, more
and more attention is paid to reversible data hiding in encrypted images
(RDH-EI). This work proposes a RDH-EI method based on a novel
compression coding that can vacate more space for data hiding. To
improve the embedding capacity, several most significant bits (MSB)
of an original image are firstly predicted in turn to generate the cor-
responding prediction bit-planes, and then the XOR operation and a
shorter variable-length coding are designed to further decrease the cod-
ing length of the prediction bit-planes. The proposed scheme can achieve
a larger embedding capacity and real reversibility and lossless decryp-
tion. Experimental results demonstrate that the performance of the pro-
posed method outperforms other RDH-EI schemes, including embedding
capacity, reversibility and the ability against the cipher-only attack.

Keywords: Reversible data hiding · Image encryption ·
Cloud storage · Compression coding

1 Introduction

With the development of information technology, the growth in cloud computing
has led to serious security problems. Hackers or other illegal person threaten the
confidentiality, authentication and integrity of information [1]. The malicious use
of information by these illegal people makes the information security of people
and even the country not guaranteed. Therefore, owners need to consider reliable
storage and secure transmission of digital images. Jolfaei et al. [2] point out that
encryption is an effective and popular solution to maintain confidentiality and
privacy of data since it converts the original and meaningful image content to
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incomprehensible and noise-like one. That is, the analysis and processing of the
encrypted image is performed without knowledge of the original content during
storage or archiving. It is inevitable that people pay more and more attention
in reversible data hiding in encrypted images (RDH-EI) [3].

In the encryption process of the RDH-EI technology, the cloud manager can
embed and losslessly extract additional data for assisting in processing and pro-
tecting the encrypted image in the cloud without knowing the original content
of the image. At the receiving end, a legitimate user must rely on an encrypted
image containing additional data, also known as a marked-encrypted image, if he
wants to fully restore the original image. In recent years, researchers have pro-
posed many RDH-EI methods which can be classified into two categories: VRAE
(vacating room after encryption) and VRBE (vacating room before encryp-
tion) [3]. VRAE framework vacates embedding room from the encrypted images
directly, and the additional data are embedded by modifying some bits of the
encrypted pixels [4–6]. VRAE framework is simple for content owner since it does
not require to perform an extra pre-processing before image encryption. How-
ever, it is difficult to make space from the encrypted image because the encrypted
image is already completely close to the noise image, and the pixel correlation
is lower than the original image. As a result, the VRAE-based RDHEI methods
only achieve small payloads or generate decrypted image with poor quality for
larger payload [7]. Taking Qian’s algorithm [6] as an example, the maximum
embedding payload can be achieve 0.3 bpp, and PSNRs of decrypted images are
between 25 dB and 35 dB for different images.

On the contrary, The VRBE framework vacates the room to embed addi-
tional data in the plaintext domain. Thus, the content owner needs to process
the plaintext image before encryption to vacate room for embedding. It is worth
to increase the burden on the content owner because it makes RDH-EI achieve
real reversibility, and makes data hiding/extracting process effortless [7]. More-
over, the embedded payload has also been greatly improved owing to the local
correlation of natural images. Ma et al. [7] first proposed the VRBE framework
to vacate the room by embedding least significant bits (LSBs) of some pixels into
other pixels with a traditional RDH method, so the positions of the correspond-
ing LSBs could be used to embed data. The data hider can make data hiding
process effortless and lossless due to the extra space vacated out by the content
owner. The embedding rate can be increased to about to 0.5 bpp with the tradi-
tional method of reversible data hiding. The decrypted image is slightly altered
when compared to the original one (PSNR≈ 40 dB). In order to further increase
the embedding capacity, researchers proposed a variety of VRBE-based RDH-
EI schemes using the different strategies. For example, Xu et al. [8] proposed a
RDH-EI by adopting the interpolation prediction errors coding combined with
traditional RDH, in which a specific encryption mode was designed to encrypt
the interpolation error. Cao et al. [9] adopted a patch-level sparse representa-
tion to increase the embedding payload to close to 1 bpp. However the time
complexity of Cao et al. [9] since the preprocessing operations before encryp-
tion included the block sparse coding and traditional reversible data hiding.
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To further improved the embedding capacity, the MSB-inversion prediction-
based RDH-EI methods were proposed by Puteaux et al. [1] and Chen et al. [10],
respectively. Their time complexity was reduced. Moreover, Chen et al. [10]
reduced the difficulty of key management and broadens the scope of use of the
RDH-EI technique. Because the decrypted image of [10], which is identical to
the original one, can be obtained only by the encryption key.

From the perspective of cloud storage security, it is noted that most exist-
ing RDH-EI methods [1,4–9] generate the encrypted images by stream cipher
before data hiding. Although the stream cipher is faster and provides greater
flexibility, it is vulnerable to the Ciphertext-Only-Attack (COA) proposed by
Khelifi [11]. In this case, the data hider can break the security of the encryp-
tion system and consequently disclose the visual content of encrypted images.
Therefore, the researchers have pro-posed the scrambling encryption including
block scram-bling [12], pixel classification scrambling [13] and bit scrambling
[14,15] to improve the security of encrypted images. The embedded capacity of
some RDH-EI algorithms such as [14] and [15] has exceeded 2 bpp by using the
correlation of high significant bit planes. About 1

4 of the space is vacated to hide
additional information in such an encrypted images. However, they do not make
good use of the relevance of natural images.

In this paper, we propose a reversible data hiding scheme in encrypted image
based on prediction and compression coding. Main contribution of this paper
includes three aspects as follows. (1) An efficient prediction method is proposed
to make the bit planes smoother; (2) These smooth bit planes are compressed
with more flexible coding to make room for embedded information; (3) The
security of images in the cloud is effectively improved because the stream cipher
and bit-wise scrambling encryptions are used to generate the encrypted images.

The remainder of this paper is organized as follows. Section 2 introduces
the detail of proposed RDH-EI method. In Sect. 3, we present and analyze the
experimental results. Finally, conclusions are provided in Sect. 4.

Fig. 1. RDH-EI model for cloud storage
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2 Proposed RDH-EI Scheme

The process of RDH-EI cloud storage model is shown in Fig. 1. The existing
re-versible data hiding algorithm has been able to achieve a large embedding
rate, and cloud managers can extract data losslessly. Moreover, if cloud users
have an image encryption key, they can obtain the decrypted images with high
quality and even fully recover original images. As is well known, the embedding
capacity is an important indicator of RDH-EI technology. According to the model
shown in Fig. 1, it can be seen that both the content owners uploading the
encrypted image and the users downloading the marked-encrypted image require
network bandwidth. Moreover, saving and managing encrypted images in the
cloud require storage space. Therefore, the goal of this paper is to increase the
embedding capacity and improve the Cloud storage security (such as the ability
to resist COA attacks). On this basis, it also provides the possibility to reduce
the size of encrypted images. Next, the algorithm proposed in this paper is
introduced in detail.

2.1 Image Encryption

The proposed algorithm uses the method of vacating the space before encryption
since the correlation of natural images is well which are easy to compress. This
frame of the encryption process is shown in Fig. 2.

Fig. 2. A framework of the encryption process of the proposed algorithm

In order to enable the multi-MSB planes compressed well, the content owner
first predicts and XORs the multi-MSB planes of the original image I whose size
is M × N × 8, and then reconstructs an image that is not larger than the original
image I according to the data D that the cloud manager needs to embed. To
ensure its security, the reconstructed image is encrypted by the stream cipher
and scrambling. Each bit plane data of I is Ii (1 ≤ i ≤ 8), where I1 is the most
significant bit (MSB) planes and I8 is the least significant bit (LSB) planes.
Divide the original image I into two parts according to the bit plane k which we
choose to compress: IH (high significant k bit planes), IL(low significant 8-k
bit planes). The IL is bit-scanned into a one-dimensional matrix.
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Prediction Bit-Planes Generation. In the prediction phase, only the first
row and first column of the image are preserved. The prediction starts from
the second row and second column. The original pixel value p is derived from
Eq. (1) based on the predicted bit-plane t (1 ≤ t ≤ k), where p

′
is the pixel value

after p is flipped by the most significant bit. As shown in Eq. (2), the predicted
value x is the average of three pixels known around. By comparing the sizes of
|p(i, j) − x(i, j)| and |p′

(i, j) − x(i, j)| to obtain the tth bit plane value Ht

(i,j),(1<i≤ M,1<j≤ N) in Eq. (3).

p(i, j) =
8∑

u=t

Iu(i, j) × 28−u (1)

x(i, j) =
p(i, j − 1) + p(i − 1, j) + p(i − 1, j − 1)

3
(2)

Ht(i, j) =

⎧
⎨

⎩

0, if |p(i, j) − x(i, j)| < |p′
(i, j) − x(i, j)|

1, if |p(i, j) − x(i, j)| > |p′
(i, j) − x(i, j)|

�p(i,j)
28−t �, if |p(i, j) − x(i, j)| = |p′

(i, j) − x(i, j)|
(3)

In Eqs. (1) to (3), 1 < i ≤ M, 1 < j ≤ N . The k bit planes Hi (1 < i ≤ k) for
H are XORed from the MSB plane since the predicted neighboring bit planes
also have a correlation. Hi is obtained by

Hi+1 = Hi ⊕ Hi+1 (4)

Taking the House image as an example, the result of the predicted planes and
the XOR operation of the adjacent bit planes is analyzed. Figure 3(a)–(c) are the
three high significant bit planes binary images, Fig. 3(d)–(f) are the predicted
bit planes of Fig. 3(a)–(c), respectively, Fig. 3(g)–(h) are the bit planes after the
XOR operation of adjacent bit planes of Fig. 3(d)–(f), respectively. It can be seen
that the value of the predicted bit plane is mostly 0 (black). There are many
similarities between Fig. 3(e) and (f), so the new third high significant plane
Fig. 3(h) obtained after the XOR becomes smoother than the original third high
significant plane Fig. 3(f) and is more favorable to compression.

Compression Coding and Encrypted Image Generating. Since the high
significant bit planes of vacated image is similar to Fig. 3(d) having a large
number of black areas (value 0), there are only a small number of completely
white blocks or blocks with many white pixels, so the block type identifiers are
shown in Table 1. The block will be divided into three categories: all-zero block
G-Imost of the blocks are 0 G-IImost pixels in the block with value of 1 or
exceeding the threshold are Bad blocks. Each predicted multi-MSBs planes H is
divided into m × n blocks of size s× s.
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Fig. 3. Bit planes of House ((a)–(c) is the three high significant bit planes of the original
image (d)–(f) is the three predicted high significant bit planes of original image; (g)
The second high significant bit plane after prediction and XOR; (h) The third high
significant bit plane after prediction and XOR.).

Table 1. Block classification identification.

Condition Block type Block-labeling bits

f = n1 = 0 G-I 0

1 ≤ f ≤ na, n1 < n0 G-II 1 0

Other cases Bad 1 1

In Table 1, n0 is the number of pixel values of 0, n1 is the number of pixel
values of 1, f = min{n0, n1}. na is the threshold for classification, which is
derived from

na = arg max
x

{h − 2 − max{�log2 x�}, 1} − x�log2 h�} ≥ 0 1 ≤ x ≤ �0.16 × h�,
(5)

where h = s × s.
The G-I block only needs to record the block-labeling bits. The Bad block

needs to record all the original data in addition to the block-labeling bits. A block
of type G-II needs to record a few pixel positions as structural information in
addition to the block-labeling bits. The space occupied by a few pixels g in G-II
is p = max{�log2 na�, 1}. The relative positions with each pixels value of 1 is
given by Eq. (6). The space occupied by the relative positions is obtained by
Eq. (7).

ti =
{
zi , i = 1
zi − zi−1 , 2 ≤ i ≤ n

(6)
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qi =
{ �log2h� , i = 1
max{�log2(h − zi−1)�, 1 } , 2 ≤ i ≤ n

(7)

In Eqs. (6) and (7), zi is the one-dimensional coordinate of pixels with value
of 1 in the block from left to right and from top to bottom.

The compression length of each block in each bit plane l(i, j, t) can be
expressed as

l(i, j, t) =

⎧
⎨

⎩

1 , blcok is G − I

2 + p +
∑f

i=1qi , blcok is G − II
2 + s × s , blcok is Bad

(8)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ t ≤ k. Then the predicted bit planes H is
compressed into the One-dimensional matrix H. As can be seen from Eq. (8),
the compression length of the block of type G-I is the shortest. The block type
ratio RG of G-I for each bit plane is derived from

RGi
=

ngi

m × n
1 ≤ i ≤ k. (9)

Where ngi is the number of G-I blocks per bit plane.

Table 2. The proportion of good block types.

Condition RG1 RG2 RG3

Original bit plane 0.92 0.83 0.71

Predicted bit plane 0.98 0.89 0.80

Predicted and XOR bit plane 0.98 0.90 0.83

Table 2 shows the proportion of the good blocks of the three bit planes in
different cases in Fig. 3. The ratio of the first row is the block ratio of the pixel
value of all 0s and all 1s. The second and third rows are predicted and the bit
planes after the adjacent bit planes are XORed. Since most pixels are 0, the
good block ratio is the block ratio where the pixel value is all 0s.

It can be seen from Table 2 that the prediction greatly improves the good
block ratio of the MSB plane, and the block ratio RG3 of the predicted bit plane
with the adjacent bit plane XOR operation (as shown in Fig. 3(h)) is larger than
the predicted only bit plane (as shown in Fig. 3(f)). Therefore, prediction and
XOR operations are necessary for bit plane compression. To get the number of
actually compressed bit planes k

′
, we compare the length of each bit plane com-

pression with the original image size. k
′
is obtained by Eq. (10). The embedding

rate of each bit planes is calculated from Eq. (11). The total embedding rate is
calculated from Eq. (12).

k′ = arg min
t

(�∑m
i=1

∑n
j=1

l(i,j,t)
M×N � = 1) − 1 1 ≤ t ≤ k (10)
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ri =
m × n − ∑m

i=1

∑n
j=1 l(i, j, t)

M × N
1 ≤ t ≤ k′ (11)

R =
k′∑

t=1

rt (12)

Convert each bit planes of original image I into a one-dimensional matrix.
According to k

′
, the high k bit planes can be divided into two parts: C1 =

[H ′
1|| . . . ||H ′

k′ ], C2 = [Ik′+1|| . . . ||Ik]. The length of the compressed bitstream C
of the original image I is lc. C = [C1||C2||IL], where [||] is a matrix connection.

It is assumed that the column of the compressed encrypted image coincides
with the original image as N. In order to facilitate the restoration of the image,
some parameters P need to be stored in the image, here P includes: 3 bits of k,
3 bits of k’, 20 bits of M, The total length of P is 26 bits.

The maximum embedding capacity Max is derived from the Eq. (13). Cloud
Manager embedded capacity D ≤ Max.

Max = M × N × 8 − 26 (13)

When generating an encrypted image, the bit C compressed by the original
image is first scrambled by the encryption key KE to generate an encrypted bit
stream Z. Then, Z is combined with the embedded information DA to form a
one-dimensional bit stream B = [Z,DA, P ], where DA are the bits initialized to
all 0s. Finally, the encrypted bit stream Eb is obtained by encrypting B with
the encryption key KE . Then divide Eb into eight bit-planes of size M ×N , and
an encrypted image E of size M × N is generated.

Content owner uploaded encrypted image E to the cloud, the cloud manager
can embeds D bits data in E to obtain the marked-encrypted image X. The
cloud manager can extract the embedded information from X, and if the cloud
users hold the encryption key, they can download the image from the cloud and
decrypt it to obtain the original image.

2.2 Decrypt Image

The image decryption operations can be described as follows: (1) decrypting the
bit stream; (2) restoring the original low significant bit planes; (3) restoring the
original multi-MSB planes; (4) restoring the adjacent bit planes; (5) recovering
multi-MSB planes predictions.

(1) Decrypt the bit stream. For the encrypted image X containing the hidden
information, its bit-plane bits are scanned into a one-dimensional matrix
Db. Utilizing the key KE to decrypt Db, and the parameters are extracted:
the number of Multi-MSB planes for prediction and XOR operation, k, the
number of compressed high significant bit planes, k

′
, the number of original

image row M . The KE is used to recovery the bits other than the bitstream
of the parameter and embedding information in Db which is decrypted by
scrambling. The decrypted bit stream is Q.
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(2) Restore the original low significant bit. The bits other than the parameters
in Q are denoted by Q′. The last l bits in Q′ are the data of the recovered low
(8 − k

′
) bit planes,ReL. The bits in Q′ other than ReL are the compressed

high significant bitstream, ReH . The low significant bit planeRLi(8 − k
′
<

i ≤ 8) of the restored images are obtained by dividing the ReL into (8 − k
′
)

bit planes of size M
′ × N .

l = M × N × (8 − k
′
) (14)

(3) Restore the original multi-MSB planes. The block type is determined based
on the identification information. Scan ReHto recovery the block B′

i(1 ≤ i ≤
ReH×N×k

′

s×s based on the block type. If the block type is G-II, the position
of the pixel with a value of 1 in the block is obtained by the Eqs. (15) and
(16).

q
′
i =

{ �log2s × s� , i = 1
max{�log2(s × s − z

′
i−1)�, 1 , 2 ≤ i ≤ f

(15)

z
′
i =

{
t

′
i , i = 1
t

′
i + t

′
i−1 , 2 ≤ i ≤ n

(16)

Dividing B′
i into k

′
bit-planes of size M×N

s×s to obtain the high-level bitmap

of the recovered image ReHi
(1 ≤ i ≤ k

′
).

(4) Restore adjacent bit planes. ReHi
and ReLi

are used as the 8 bit planes of
the image to compose a image R′ of size M × N . The adjacent bit plane of
the high k bit plane of the image R′ is recovered as

R
′

k−i
= R

′

k−i
⊕ R

′

k−i−1
, 0 ≤ i < k − 1. (17)

(5) Restore multi-MSB predictions. The value of the original bit plane is restored
from the k

th
bit plane. The original pixels p, the predicted pixels value x,

and the flipped pixels value p′l are still derived from the Eqs. (1) and (2).
Denote the tth(1 ≤ t ≤ k) bit plane is Ht(i, j). When Ht(i, j) = 0, the
original bit is restored by the Eq. (18); When Ht(i, j) = 1, the original bit
is restored by the Eq. (19). In both cases, if the original pixel p(i, j) is equal
to the flipped pixel p′(i, j), the original bit is restored by the Eq. (20).

R
′
t(i, j) =

{
�p(i,j)

28−t �, if |p(i, j) − x(i, j)| < |p′(i, j) − x(i, j)|
�p′(i,j)

28−t �, if |p(i, j) − x(i, j)| > |p′(i, j) − x(i, j)| (18)

R
′
t(i, j) =

{
�p(i,j)

28−t �, if |p(i, j) − x(i, j)| > |p′(i, j) − x(i, j)|
�p′(i,j)

28−t �, if |p(i, j) − x(i, j)| < |p′(i, j) − x(i, j)| (19)

R
′
t(i, j) = �p(i, j)

28−t
�, if |p(i, j) − x(i, j)| = |p′(i, j) − x(i, j)| (20)

Where 1 < i ≤ M, 1 < j ≤ N . The decrypted image R is obtained by
combining the k high significant bit planes with the rest low significant bits.
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Fig. 4. Test images applied on the proposed algorithm. (a)–(c) are the original images
of Lena, Airplane and House respectively; (d)–(f) are the marked-encrypted images
of Lena, Airplane and House with the total embedding capacity when embedding in
three bit planes respectively; (g)–(i) is decrypted images of Lena, Airplane and House
respectively.

3 Experimental Results

In the following experiment, all the test images were gray-scale images of size
512 × 512. The parameters used in the experiment were the bit planes for pre-
diction and XOR operation k = 3, the block size s = 4. First, the embedding
capacity of the high k significant bit planes of the four images of Lena, Baboon,
Airplane, and House are tested. Then, the embedding rate of 100 images was
tested. In order to show the advantages of the algorithm in cloud storage, the
ratio of the size of the encrypted image to the original image at D = 10000 bits
was tested. Finally, the security of the proposed algorithm is analyzed.
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Lena, Airplane, and House, shown in Fig. 4, are used as examples in the
proposed algorithm. When we chose three bit planes to embed additional data,
the embedded capacity for these images are 2.23, 2.21, 2.54 bpp, respectively.
The decrypted images Fig. 4(g)–(i) is same as Fig. 4(a)–(c).

3.1 Maximum Embedding Rate

In order to illustrate the proposed algorithm can vacate more space to embed
additional data, the Lena, Airplane and House as the test images to discuss the
total embedding rate for 3 bit planes. The result is shown in Table 3.

Table 3. The embedding rate for 3 bit planes.

RDH-EI methods Lena Airplane House Average

Yi et al. [14] 1.68 1.81 2.16 1.88

Liu et al. [15] 1.58 1.72 2.04 1.78

Puteaux et al. [1] 0.99 0.99 0.99 0.99

Proposed 2.23 2.21 2.54 2.33

In Table 3, the Algorithms [14,15] are based on bit-plane block compression.
None of them changed the relevance of natural images. The proposed algorithm
vacates larger space than [14,15] because we uses the Multi-MSB prediction and
the XOR operation of adjacent bit plans to smooth the multi-MSB planes of the
natural image. The embedding rate of the proposed algorithm is larger than [1]
since the proposed algorithm uses Multi-MSB prediction and [1] only predicted
the MSB plane.

Figure 5 shows the embedding rates of [1,14,15] and the proposed algorithm
in the case that 100 images are compressed the highest 3 bit planes and the
block size is 4. As we can see, the embedded rate of proposed method is better
than [14] and [15]. This is because the compressible coding method of [14] is
better than [15], but the time complexity of [15] is lower. The reference [1]
predicts the MSB of an image and vacates it for embedding information. The
degree of embedded information is not much correlated with the texture degree of
the image. The information embedded in the reference [14,15] and the proposed
algorithm has a great relationship with the texture degree of the image. The
more texture the image is embedded, the less data is embedded. The three
texture images with the lowest embedding rate in Fig. 5 are shown in Fig. 6. The
embedding rate of the three images of Fig. 6 is as shown in Table 4. We can find
that the proposed algorithm has higher average embedding rate for images with
more complex textures than [1,14,15]. The average embedded capacity of [1,14,
15] and the proposed algorithm for 100 images is 0.996 bpp, 1.59 bpp, and 1.51
bpp, 2.15 bpp respectively. The embedding rate of the proposed algorithm is 0.56
bpp higher than [14], 0.64 bpp higher than [15], and 1.16 bpp higher than [1].
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In general, the proposed algorithm has higher embedding capacity than [1,14,15],
which shows the applicability of the proposed algorithm for images with different
textures.

Fig. 5. Comparison of embedding capacity for 100 images

Table 4. The embedding rate of texture images for 3 bit planes.

RDH-EI methods Baboon Texture1 Texture2 Average

Yi et al. [14] 0.48 0.55 0.52 0.52

Liu et al. [15] 0.52 0.59 0.55 0.55

Puteaux et al. [1] 0.99 0.99 0.99 0.99

Proposed 1.18 1.21 1.25 1.21

3.2 Security Analysis

As people pay more and more attention to privacy, the issue of cloud security has
also become a concern for many researchers. The PSNR of the encrypted images
of [1] and the proposed algorithm attacking by [11] is as shown in Fig. 7. It can be
seen from Fig. 7 that the PSNR of the encrypted image of [1] attacking by COA is
about 33, and there is a certain degree of image content leakage, because only the
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Fig. 6. Texture images. (a) Baboon; (b) Texture1; (c) Texture2.

stream cipher encryption is used in [1]. The proposed algorithm combines stream
cipher and scrambling encryption. Our encryption method not only changes the
position of the pixel, but also changes the value of the pixel. In summary, the
image uploaded to the cloud has better security. The high significant bit planes
of [14] are used to compress, and the remaining lower significant bits are used to
embed data. The encryption effect of [14] is similar to the algorithm proposed in
this paper. The image in [15] is encrypted by scrambling, so it can resist COA
attacks.

Fig. 7. PSNR of decrypted image and original image after attack with [11].

4 Conclusion

Many existing reversible data hiding algorithms can achieve a large embedding
rate and reversible recovery of images while ensuring security. However, it is also
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possible to further increase the embedding rate by utilizing the correlation of
natural images. So this paper proposes an algorithm for reversible data Hiding
scheme in encrypted-image based on prediction and compression coding. The
experimental results show that the algorithm of this paper make full use of the
image correlation to obtain a larger embedding space. The embedding rate of
the proposed algorithm is about 0.6 bpp higher than the literature [14,15] and
1.16 bpp higher than [1]. Moreover, the encrypted image uploaded to the cloud is
changed by the value of the pixel and the position of the pixel, and the security
is further improved. In addition, the embedded information can be extracted
without loss, and the decrypted image consistent with the original image can be
obtained.
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Abstract. The existing video steganographic schemes based on intra prediction
modes for video coding standards H.264/AVC and HEVC all use single-sized
blocks to embed the secret payload. Thus, the steganographic properties of
HEVC multi-sized tree-structured intra partition still need exploration. In this
paper, a novel video steganographic algorithm is presented. Base on the fact that
visual quality degradation caused by steganography is basically the same for
both large-sized Prediction Blocks (PBs) and small-sized PBs, this algorithm
tries to exploit intra prediction modes in multi-sized PBs in each Coding Tree
Units (CTU). The innovation of this paper includes: (1) Improvement in
capacity without introducing great degradation in visual quality. (2) High coding
efficiency maintained by defining cost function based on rate distortion. (3) A
new indicator to measure Bit Increase Ratio(BIR) under different capacity. The
Experimental results show that this algorithm outperforms the latest intra pre-
diction modes based HEVC steganographic algorithm in both capacity and
perceptibility while preserving coding efficiency as well.

Keywords: HEVC � Intra prediction modes � Video steganography

1 Introduction

With the development of broadband network and mobile Internet technology, the
transmission and service based on video media are booming. Video media in HEVC
format, because of its high resolution and small file size, are very suitable as carrier of
secret communication, with the possibility of large capacity communication provided.
On the other hand, unlike image steganography, HEVC video steganography can
naturally conceal that the communication is occurring from user behavior [1, 2].
While HEVC video steganography can ensure the rationality of the user’s behavior and
reduce the risk of exposing the hidden communication.

Many works have been done in both H.264/AVC and HEVC [3, 4]. Hu et al. [5]
proposed a steganographic algorithm based on intra prediction mode in H.264/AVC.
Yang et al. [6] have improved Hu’s method by matrix coding. Bouchama [7] divided
the intra prediction modes in H.264/AVC into four groups according to their prediction
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direction, the result shows a better video quality while ensuring high capacity. Zhang
et al. [8] analyzed the texture of the video, and proposed a high security adaptive
embedding algorithm using STC. Wang et al. [9] proposed intra prediction mode based
method for HEVC, a mapping between angle difference and secret message was
established to embed data. Dong et al. [10] further proposed the prediction mode
steganography technology under the HEVC standard, and made a breakthrough in the
capacity limitation of the previous HEVC intra prediction mode based algorithm, while
also improving the security.

As far as selection of intra prediction modes is concerned, previous steganographic
methods in H.264/AVC all choose to use intra prediction modes in 4 � 4 macroblock
to embed the secret message. This selection rule is reasonable in H.264/AVC since the
capacity of embedding into 16 � 16 macroblock is low, and this kind of macroblock
usually concern homogeneous areas for which the Human Visual System (HVS) is
more sensitive to small degradations. Thus, in the previous HEVC steganographic
schemes, authors in [9, 10] still use the PB of 4 � 4 size as the embedding cover.
However, this selection rule ignores some objective conditions in HEVC: (1) HEVC
partitioning is achieved using tree structures. It supports variable-sized PBs selected
according to needs of encoders in terms of video content and resolution. (2) Previ-
ous H.264/AVC steganography schemes are all tested under low resolution video
dataset. But in high resolution dataset for HEVC, larger size PBs occur more fre-
quently. Using only small size PBs will limit capacity to a great extent. In short, the
capacity of previous HEVC steganographic schemes is limited since unique techniques
in HEVC are not considered sufficiently.

In order to solve the problem mentioned above, and make full use of new features
introduced by HEVC, an extension of our previous work in [10] is made. The inno-
vation of this paper includes: (1) Improvement in capacity without introducing great
degradation in visual quality. (2) High coding efficiency maintained by defining cost
function based on rate distortion. (3) A new indicator to measure BIR under different
capacity.

The rest of this paper is organized as follows. In Sect. 2, detailed analysis on why
large-sized PBs can be modified without introducing great degradation in visual quality
is presented. Section 3 describes the proposed HEVC steganographic algorithm. In
Sect. 4, experiments and analysis on multi-resolution dataset are presented. Finally,
conclusion is drawn in Sect. 5.

2 Analysis of HEVC Intra Coding Scheme

In this section, the HEVC intra coding scheme will be first described, with which
analysis of visual quality degradation in HEVC intra steganographic algorithm can be
thoroughly introduced next.

2.1 HEVC Intra Coding Scheme

The HEVC standard introduces CTU and Coding Tree Block (CTB) structure to intra
coding scheme. Each frame in a video is first split into block-shaped CTUs, which each
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contain luma CTBs and chroma CTBs. The blocks specified as CTBs can either be
directly used as Coding Blocks (CBs) or be further partitioned into multiple CBs. As
shown in Fig. 1, Partitioning is achieved using tree structures. An intra predicted CB of
size M � M may have one of the two types of PB partitions referred to as PART-
2N � 2N and PART-N � N, the first of which indicates that the CB is not split and the
second indicates that the CB is split into four equal-sized PBs.

The PB size, which is the block size at which the intra prediction mode is estab-
lished is the same as the CB size except for the smallest CB size (usually 8 � 8) is
allowed in the bitstream. For the latter case, a flag is present that indicates whether the
CB is split into four PB quadrants, each PB with their own intra prediction mode. The
actual region size at which the intra prediction operates depends on the residual coding
partitioning.

For residual coding, a CB can be recursively partitioned into Transform Blocks
(TBs). The partitioning is signaled by a residual quadtree. Intra prediction operates
based on the TB size, and previously decoded boundary samples from spatially
neighboring TBs are used to form the prediction signal. Directional prediction with 33
different directional orientations is defined for (square) TB sizes from 4 � 4 to
32 � 32.

2.2 Analysis of Visual Quality Degradation

According to the HEVC intra coding scheme, this subsection will present the analysis
of visual quality degradation caused by HEVC steganography, in order to illustrate the
reason why large-sized PBs can be modified without introducing significant visual
distortion.

Spatial-domain intra prediction has previously been successfully used in
H.264/AVC. The intra prediction of HEVC operates similarly in the spatial domain, but
is extended significantly—compared to the eight prediction directions of H.264/AVC,
HEVC supports a total of 33 angular prediction directions with DC and Planar mode.

The residual signal of the intra prediction, which is the difference between the
original block and its prediction, is transformed by a linear spatial transform.
The coefficients are then scaled, quantized, entropy coded, and transmitted together

Fig. 1. HEVC tree structured partitioning

A High Capacity HEVC Steganographic Algorithm Using Intra Prediction Modes 235



with the prediction information. When the prediction mode m1 of i
th N � N size PB is

modified to m2. The original residual of this PB, denoted as RSoi;N , can be expressed as:

RSoi;N ¼ Po
i;N � Preoi;N ð1Þ

Where Po
i;N denotes the original pixel value in the ith PB, and Preoi;N denotes the

prediction value calculated by original mode m1. After obtaining the RSoi;N , the bits B
o
i;N

used to encode this PB can be expressed as follows:

Bo
i;N ¼ EntðRTð

DCT RSoi;N
� �

Q� QS
ÞÞ ð2Þ

Where DCT(.) denotes the integer discrete cosine transform, RT(.) denotes the
rounding and truncating operations, Ent(.) denotes entropy coding, Q denotes the fixed
quantization matrix, QS denotes the quartier scale. In the decoding process, the
reconstruction residual RSRo

i;N can be calculated as:

RSRo
i;N ¼ IDCT IEnt Bo

i;N

� �
� Q� QS

� �
ð3Þ

Where IDCT(.) denotes the inverse integer discrete cosine transform, IEnt(.)
denotes the inverse entropy coding, and decoded pixel value PRo

i;N can be expressed as:

PRo
i;N ¼ FTRðRSRo

i;N þPreoi;NÞ � Po
i;N ð4Þ

Where FTR(.) denotes deblocking filter and Sample Adaptive Offset (SAO) oper-
ations. Equation (4) shows that the difference between decoded pixel value and original
value is mostly depended on quantization. For the next M � M sized PB, its prediction
value is determined as:

Preoiþ 1;M ¼ SFNðPRo
i;NÞ ð5Þ

SFNð:Þ denotes the intra estimation, prediction and smoothing operation applied by
HEVC according to the block size. It shows that as long as we keep the size of
candidate PB unchanged, the prediction value of next PB will not be affected signif-
icantly. After modifying the prediction modes to m2, the sum of modified prediction
value and its residual is still equal to the true pixel value. So, after processing the
modified residual value with same parameters as the original, following equation can
be obtained:

PRm
i;N ¼ FTRðRSRm

i;N þPremi;NÞ � Po
i;N ð6Þ
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Where PRm
i;N denotes the modified reconstruction value and RSRm

i;N denotes the
modified reconstruction residual. Thus, the conclusion can be drawn:

PRm
i;N � Po

i;N � PRo
i;N ð7Þ

From Eq. (7), it shows that visual quality of videos generated by this kind of
steganographic algorithms will not degrade significantly. Another conclusion can be
drawn that the difference among values in Eqs. (4–7) is mainly caused by the choice of
Q and QS. Thus, the degradation of visual quality will be mainly caused by the
increment of QP, not increment of embedded bits. Intra mode steganography has more
potential capacity with multi-sized PBs.

To summarize, the visual quality of generated video file won’t be affected by
changes in the HEVC intra coding process. Thus, improving capacity by utilizing
angular intra prediction modes in multi-sized PBs is viable in theory.

3 The Proposed HEVC Steganographic Algorithm

In this section, based on the above analysis, large-sized PBs can be modified without
introducing great degradation in visual quality. The remaining problem is to keep the
coding efficiency during the process of embedding secret message. The framework of
the proposed algorithm is shown in Fig. 2.

Fig. 2. The framework of the proposed algorithm
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3.1 Selection Rule of Intra Prediction Mode

According to the recursive procedure of block partition in HEVC, when QP increases,
the number of small blocks decreases. Utilizing large-size PBs will improve the
steganography capacity in videos with high QP.

Based the 35 intra prediction directions used in HEVC, it is noticeable that unlike
the prediction directions in H.264/AVC, modes of HEVC have a regular pattern.
In HEVC, two number-adjacent directions have similar prediction direction. The
common way to modify the intra prediction mode is to replace it with a mode that is
similar in prediction direction. In this case, these modes are grouped as follows:

Mi;Mj
� �j2 Mi ¼ 2j jMj; i; j 2 ð0; 34Þ� � ð8Þ

Where the j symbol means exact division, Mi means that the current PB prediction
mode has the ith prediction direction. One element in the group denotes the bit 0,
another denotes the bit 1. According to Eq. (8), the final grouping is {(0, 1), (2, 3)…}.
However, changing mode 0 and mode 1 will significantly affect coding efficiency since
they are usually used to encode homogeneous areas. Thus, the first group (0, 1) is
removed here. Finally, all the qualified prediction modes of PBs in I frames are
extracted, and taken as cover sequence.

3.2 Rate Control Method

However, according to the analysis in the above section, if the best mode is altered,
then the coding efficiency will suffer. In HEVC, Rate Distortion Optimization
(RDO) technique is used to achieve the best prediction direction:

J ¼ Dþ kR ð9Þ

Where J denotes the RD cost, k denotes the Lagrangian multiplier which depends
on quantization parameter QP, D and R represent the distortion and the estimated
bitrate of the current PB respectively. The best intra prediction mode is judged by the
lowest RD cost. Therefore, if the corresponding RD cost of the current PB is increases,
which means residual signal of stego block is larger than original block, the number of
bits used to encode this block will increase. Thus, the total coding efficiency will
decline.

In order to reduce the proposed algorithm’s influence on coding efficiency.
The STC method is utilized to embed the secret message into cover:

HxT ¼ m ð10Þ

Where H denotes the parity check matrix generated by STC algorithm, m is the
secret message and x is the modified cover sequence. Detail description and imple-
mentation of STC can be found in [11]. According to the selection rule of Intra pre-
diction mode, one prediction mode has one candidate mode that can replace it. Thus, this
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is a binary STC problem. After grouping these prediction modes, the following equation
is used to map them into binary sequence:

ci ¼ mi mod 2 ð11Þ

Where ci denotes the binary cover and mi denotes the original cover.
From Eq. (9), each RD cost is calculated through estimated bitrate and distortion of

each PB. Thus, difference in RD cost can represent the coding efficiency reduction
caused by changing the prediction mode of the current PB. The cost of changing one
PB is defined as:

ui ¼ Ji � Jj
�� ��; i; j is from the same group ð12Þ

Where ui is the cost of changing the ith PB and Ji is the RD cost of the prediction
mode with the ith prediction direction. The difference of RD cost between two pre-
diction modes is used in the same group as the cost for changing one to another. The
total distortion Dc is present as:

Dc ¼
Xn

k¼1
uk ð13Þ

Where n presents the total number of all qualified PBs in the video file. Finally, the
secret data can be embedded into a video with little distortion.

Finally, the secret payload can be hidden into the video with little rate distortion
and high capacity while preserving high coding efficiency.

4 Experiments and Analysis

Since the proposed algorithm is the first intra prediction modes based algorithm using
multi-sized PB designed specifically for HEVC, previous single-sized PB based
algorithms in [9, 10] are selected for comparison. Performance comparisons between
the proposed steganographic algorithm and the previous one are made in terms of
embedding capacity, SSIM, and bitrate. Moreover, the effect of introducing large-sized
PBs on visual quality and effect of different QPs will also being analyzed in this
section.

4.1 Experiment Setup

Dataset and Development Environment. The proposed steganographic algorithm
has been implemented in an open source software X265. HEVC is the state-of-art video
codec standard, designed for high definition videos aiming to achieve higher coding
efficiency. For this reason, the proposed algorithm was tested on HEVC standard test
dataset with multi-resolution. In these experiments, pseudo random binary sequences
are generated as secret data, and payload is set to a = 0.5, in order to produce the stego
sets. The GOP size is 10 and coding structure is IPPP. The video coding platform for
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HEVC decoding is HM16. The algorithm is developed with Visual C++ 2013. The
details of experiment dataset in listed in Table 1.

Indicators. In this section, several indicators are used to measure the performance of
the proposed algorithm and other algorithm. Capacity, SSIM, BIR and Bit Increase
Ratio with Normalized Capacity (BIR-NC). BIR is defined as:

BIR ¼ TBsteg � TBori

TBori
� 100% ð14Þ

Where TBsteg is the total bits of modified video and TBori is the total bits of original
video.

Because the original cover length is different for these two algorithms, a new
indicator is proposed to measure the capacity under different BIR. BIR is normalized
with 1 Kbits to show the coding efficiency reduction, named as BIR-NC. The physical
meaning of BIR-NC is the bit increase ratio using secret payload of the same size. This
is very common in real application. The definition of BIR-NC is:

BIR� NC ¼ BIR=Capacity ð15Þ

4.2 Comparison Experiments

In this section, the proposed steganographic algorithm will be compared with previous
algorithms [9, 10] on a different dataset, because algorithm [9] only design a mapping
rule between secret message and cover, while proposed an individual dataset. For
objective comparison, comparison experiment of [9] is performed under the same setup
in [9]. Moreover, for algorithm [10], it also includes the distortion control method as
the proposed one, so this algorithm is performed on the above dataset.

As far as the embedding payload is concerned, the capacity of our algorithm is
240% larger than algorithm [10] in average. Even if algorithm [10] embed less payload,
the SSIM still 0.8% lower than ours. The reason for this phenomenon may be that in
our algorithm, all the block partitioning is exactly the same as in the original video, but
in algorithm [10], only the position of 4 � 4 PBs is preserved. As shown in Eq. (5),

Table 1. Details of the dataset.

Video name Resolution Frame number

Traffic 2560 � 1600 150
PeopleOnStreet 2560 � 1600 150
ParkScene 1920 � 1080 240
BasketballDrive 1920 � 1080 501
Johnny 1280 � 720 600
FourPeople 1280 � 720 600
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different smoothing filter (usually stronger) may apply to other PBs, which leads to the
degradation in SSIM. This result proves that utilizing large-sized PBs will not cause
severe visual degradation but providing high capacity.

From Table 2, it shows that our algorithm is inferior to the algorithm [10] in terms
of BIR. The average BIR of algorithm [10] is 54.5% smaller than the proposed
algorithm. However, considering capacity and BIR at the same time, our algorithm can
achieve smaller BIR at the same capacity, as shown by BIR-NC. For videos in all
resolutions, our algorithm has better BIR-NCs, which are 15.6%, 10.9%, 23.1%, 1.8%,
3.9% and 11.9% smaller than algorithm [10]. The average BIR-NCs of the proposed
algorithm are 86.7% of the algorithm [10] on 2K videos, 87.6% on 1080P videos and
92.1% on 720P video. This result draws the conclusion that our algorithm is better on
preserving coding efficiency.

It can be also observed that BIR-NC can differ even when the resolutions of video
are the same, such as 0.0035 for 2K video Traffic or 0.0014 for PeopleonStreet. Several
tools were used to analyze the difference among these videos. It shows that TBs with
complex texture often has a higher residual signal. This kind of TBs can tolerate more
bit changes than other blocks. In addition, in a high-resolution video, larger sized PBs
also often occurs in texture-rich area. As shown in Table 2 and Fig. 3, the conclusion is
drawn that under the same resolution, videos with lower BIR-NC always has more
complex texture. Thus, a texture-rich video is more suitable for our algorithm than
plain video in terms of preserving coding efficiency.

Next, Wang’s work [9] is compared with our algorithm. Algorithm [9] designs a
mapping rule between difference of intra directions and secret message, but do not
consider the distortion of HEVC intra prediction mode. Five videos named as video1,
video2, video3, video4 and video 5, which are originally used in [9], are tested in this
section. The experiment setup is the same as it in their work [9]. Comparison results in

Table 2. Comparison results with algorithm [10]

Sequences Algorithms QP Resolution SSIM Capacity
(Kbits)

BIR BIR-NC
(%/Kbits)

Traffic Proposed 40 2560 � 1600 0.9577 155.037 0.0519 0.0335
[10] 40 2560 � 1600 0.9433 60.418 0.0240 0.0397

PeopleOnStreet Proposed 40 2560 � 1600 0.9318 254.517 0.0291 0.0114
[10] 40 2560 � 1600 0.9288 122.208 0.0157 0.0128

ParkScene Proposed 40 1920 � 1080 0.9481 815.81 0.0340 0.0417
[10] 40 1920 � 1080 0.9303 310.06 0.0168 0.0542

BasketballDrive Proposed 40 1920 � 1080 0.9431 215.051 0.0702 0.0326
[10] 40 1920 � 1080 0.9394 732.22 0.0243 0.0332

Johnny Proposed 40 1280 � 720 0.9784 105.433 0.0911 0.0864
[10] 40 1280 � 720 0.9746 440.05 0.0396 0.0899

FourPeople Proposed 40 1280 � 720 0.9547 173.580 0.0758 0.0437
[10] 40 1280 � 720 0.9363 798.65 0.0396 0.0496
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capacity, BIR and difference in PSNR is shown in Table 3. PSNR and this dataset are
used here solely since they are originally used in [9] to illustrate the performance.

In Table 3, it shows that the average capacity of the proposed algorithm is 327313,
which is about 32 times larger than the average capacity of algorithm [9], 10069. In
theory, algorithm [9] only use a few 4 � 4 PBs to embed the secret message while our
algorithm using all size of PBs. In terms of preserving coding efficiency, our algorithm
has better BIR-NCs, which are 89.9%, 52.4%, 87.5%, 85.9%, and 90.6% smaller than
algorithm [9]. The average BIR-NCs of the proposed algorithm are 18.7% of the
algorithm [9] on their dataset. Furthermore, our algorithm has less difference in PSNR,
which is −0.024 dB in average. These results prove that the proposed algorithm out-
performs algorithm [9] in both capacity, perceptibility and coding efficiency.

Conclusion can be drawn that, first, our algorithm outperforms the existing HEVC
intra prediction mode algorithm with higher capacity and better coding efficiency.
Second, utilizing large-sized PBs will not cause severe visual degradation but providing

Fig. 3. (a) Content of Fourpeople in 720P. (b) Content of Johnny in 720P. Johnny has more
homogeneous areas than Fourpeople. Texture-rich video always has a lower BIR-NC.

Table 3. Comparison results with algorithm [9]

Sequences Algorithms QP Resolution DPSNR
(dB)

Capacity
(Kbits)

BIR BIR-NC
(%/Kbits)

Video1 Proposed 22 832 � 480 −0.02 357.688 0.0354 0.0099
[9] 22 832 � 480 −0.06 161.82 0.0158 0.098

Video2 Proposed 22 832 � 480 −0.02 313.863 0.0255 0.0081
[9] 22 832 � 480 −0.06 110.70 0.0190 0.017

Video3 Proposed 22 1280 � 720 −0.02 331.941 0.0339 0.010
[9] 22 1280 � 720 −0.04 9.534 0.0076 0.080

Video4 Proposed 22 1280 � 720 −0.01 322.784 0.0255 0.0079
[9] 22 1280 � 720 −0.01 8.058 0.0045 0.056

Video5 Proposed 22 1280 � 720 −0.01 310.289 0.0244 0.0079
[9] 22 1280 � 720 −0.03 5.502 0.0046 0.084
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high capacity. Third, a texture-rich high-resolution video is more suitable for our
algorithm in terms of preserving coding efficiency.

4.3 Analysis of the Influence on Performance with Different QPs

In this section, two algorithms will be performed and discussed to illustrate the
influence on algorithm performance with different QPs. The first one is the proposed
algorithm using multi-sized PBs, another is the algorithm exactly the same as the
proposed one except for using smallest single-sized PBs.

Analysis of Visual Quality. As explained in Sect. 2, video quality of stego video will
not dramatically degrade when larger size PBs are used. To prove this, SSIMs between
original video and modified video are used to demonstrate the perceptibility and visual
quality of the proposed HEVC algorithm. PSNR is not used here because SSIM can
present visual quality better. The results are shown in Fig. 4.

Fig. 4. SSIM on different videos with different QPs. (a) algorithm using multi-sized PBs
(b) algorithm using single-sized PBs
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It is shown that SSIMs between algorithm using multi-sized PBs and algorithm
using single-sized PBs are similar under the same QP. The average SSIM of the
proposed algorithm is 1.006 time higher than the algorithm using single-sized PBs.
The decreasing of SSIM is mainly caused by the increment of QPs, not by the different
sizes of PBs. The overall SSIM value ranges from 0.85 to 0.99 and decreases with the
increase of QP. It shows that under the same resolution and QP, videos with more
homogeneous areas have higher SSIM than texture-rich videos, such as Johnny and
Fourpeople. The reason may be that although texture-rich areas can tolerate more bit
changes, they also bring more pixel changes. Thus, it is totally safe to utilize larger-
sized PBs in terms of perceptibility with different QPs.

Analysis of Capacity. Figure 5 demonstrates the influence of different QPs on
capacity of proposed algorithm and algorithm using single-sized PBs. Red lines denote
results of the proposed algorithm, and blue line denotes results of algorithm using
single-sized PBs. For the sake of clear and succinct presentation, we have only drawn
six curves of three videos in Figs. 5 and 6.

In Fig. 5, the vertical coordinate is logarithmic, the difference between red lines and
blue lines increases with the increment of QPs. This is mainly caused by the number of
larger size PBs increases with QPs, which also leads to a significant degradation in
capacity for algorithm using single-sized PBs. For example, the capacity of the Traffic
video usingmulti-sized PBswithQP50 is 40681,while reduced to 718when using single-
sized PBs. Moreover, the capacity decrease logarithmically with increment of QPs.
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WhenQP increases,more reconstruction pixelswill be calculatedwith the samequantized
value, which leads to a smaller RD cost for large partition mode. The sizes of PBs are
exponential {4, 8, 16, and 32}, meaning the large-sized PBs exponentially merge the
small-sized PBs during this process. Thismay be the reason for logarithmically decrement
in capacity. These results prove that the bigger the QP, the bigger the advantage of the
proposed algorithm using multi-sized PBs.

Analysis of Coding Efficiency. Figure 6 shows that the proposed algorithm has the
advantage of preserving coding efficiency compared with algorithm using single-sized
PBs when the payload is the same. The difference between red lines and blue lines
increases with the increment of QPs. For example, the BIR-NC of the Traffic video
using multi-sized PB with QP50 is 0.145, and raises to 0.358 when using single-sized
PBs. Furthermore, with the increase of QPs, the proposed algorithm achieves better
BIR-NC. The averaging BIR-NC of the proposed algorithm when QP equals to 40 is
89.3% of the algorithm using single-sized PBs, but reduces to 63.7% when QP equals
to 50. The conclusion can be drawn that when QP increases, the advantage of using
multi-sized PBs to embed the secret payload grows.

To summarize, first, our algorithm outperforms the existing HEVC intra prediction
mode algorithm with higher capacity and better coding efficiency. Second, utilizing
large-sized PBs will not cause severe visual degradation but providing high capacity.
Third, a texture-rich high-resolution video is more suitable for our algorithm in terms of
preserving coding efficiency. Fourth, our algorithm achieve better performance than
others when QP is high. Some interesting phenomenon in the experiment results is
discussed, which may be helpful to further improve the performance of the proposed
steganographic algorithm.
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5 Conclusion

The existing video steganographic schemes based on intra prediction modes for
H.264/AVC and HEVC all use single-sized blocks to embed the secret payload. In this
paper, a novel video steganographic algorithm is presented. The innovation of this
paper includes: (1) Improvement in capacity without introducing great degradation in
visual quality. (2) High coding efficiency maintained by defining cost function based
on rate distortion. (3) A new indicator to measure BIR under different capacity.
Detailed experiments have been conducted to prove the effeteness of the proposed
algorithm. Our algorithm outperform the latest HEVC intra prediction mode based
steganography. The conclusion is drawn that large-sized PBs can be modified without
introducing significant visual degradation, and a texture-rich high-resolution video is
preferred for our algorithm. Future work can be made in security improvement or adopt
the algorithm to an adaptive algorithm.
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Abstract. Recent works have demonstrated that images with more tex-
ture regions should be selected as the sub-batch of covers to carry the
total message when applying batch steganography to adaptive steganog-
raphy and the core challenge of which is how to evaluate the texture
complexity of image accurately according to the need of steganography
security. In this paper, we first propose three methods for measuring
the texture complexity of image to select images with highly textured
content, then put forward our universal embedding strategy for batch
adaptive steganography in both spatial and JPEG domain. To assess the
security of embedding strategies for batch adaptive steganography, we
use a pooling steganalysis method based majority decision for the omni-
scient Warden, who informed by the average payload, embedding algo-
rithm and cover source. Given a batch of images, our proposed embedding
strategy is to select images with largest residual values to carry the total
message, which is named max-residual-greedy (MRG) strategy. Experi-
mental results show that the proposed embedding strategy outperforms
the previous ones for batch adaptive steganography.

Keywords: Batch adaptive steganography · Embedding strategy ·
Texture complexity

1 Introduction

Steganography is the art of covert communication, which aims to hide secret
messages in ordinary objects such as digital images without drawing suspicion
from steganalysis [1,2]. It is challenging to design steganographic algorithms
due to the lack of accurate models. Currently, the most successful approach
is minimal additive distortion model and the practical message embedding is
usually realized by syndrome-trellis codes (STCs) [3], which can approach the
theoretical bound of embedding distortion.

Content-adaptive steganography based on minimal additive distortion model
has developed greatly in both spatial and JPEG domain. HUGO (Highly Unde-
tectable steGO) [4] is the first method based on additive distortion model, which
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computes the weighted sum of difference between feature vectors extracted from
a cover image and its corresponding stego version in SPAM (Subtractive Pixel
Adjacency Matrix) [5] feature space. In this way, a pixel after modification which
makes the feature vector deviate widely will be assigned a high cost. The embed-
ding changes of HUGO will be made within texture regions and along edges. WOW
(Wavelet Obtained Weights) [6] assigns high costs to pixels in areas that are eas-
ily to predict by directional filters. Thus the modifications will be suppressed in
the clean edges, which improves the security performance when resisting the pow-
erful steganalysis with both SRM [7] and its select-channel-aware version maxS-
RMd2 [8]. S-UNIWARD (Spatial UNIversal WAvelet Relative Distortion) [9] has
a slightly modified cost function which can be extended to an arbitrary domain,
thus WOW and S-UNIWARD have similar performance. HILL (HIgh-pass, Low-
pass and Low-pass) [10] improves WOW significantly by spreading the costs with
a low-pass filter and makes more modifications cluster in complex regions. Similar
to the spatial steganography, the modifications of the JPEG steganography is also
gathered in the texture areas, such as UERD [11], HDS [12], RBV [13].

When applying steganography to the real-world, a sender usually has multiple
images and a long message, the problem faced by this sender becomes how to
allocate message among multiple images to be the least detectable, which is the
main research issue of batch steganography. For the traditional steganography,
Ker et al. have proposed five embedding strategies in [14] and demonstrated that
the max-greedy strategy and the max-random strategy are more secure than the
linear strategy, the even strategy and the sqroot strategy when resisting the
universal blind steganalysis. The former two strategies try to use as few covers
as possible, while the latter three want to distribute the message into all available
covers. Although the max-greedy strategy has the most secure performance, it
needs to estimate the capacity of images in advance.

When batch steganography is applied to adaptive steganography, the capac-
ity of image depends on the coding scheme and the specific steganographic algo-
rithm, for instance, UERD [11] and RBV [13] can modify all types of DCT
coefficients (including the DC and zero AC coefficients) while UED [15] can only
modify the non-zero AC coefficients, thus the capacity of image is small when
it embedded by UED. The essence of adaptive steganography is to cluster as
many modifications as possible in the texture areas. When embedded the same
message, images with more texture areas will have higher security. As men-
tioned before, the max-greedy strategy is not adapted when it comes to batch
adaptive steganography, meaning that images with highest texture complexity
should be selected orderly to be fitted candidate. Therefore, the core challenge
of batch adaptive steganography is how to measure the texture complexity of
image, which has been explored in [16,17]. In [16] Zhao et al. have proposed a
method to measure the complexity of image in spatial domain based on the rela-
tion between distortion and payload. Further onwards, they improve the selecting
strategy by employing histogram equilibrium to measure the complexity of image
in [17]. However, both methods measure the complexity of image roughly and
indirectly. Therefore, it is imperative to propose a finer and more direct method
for measuring the complexity of image for batch adaptive steganography.
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In this paper, we propose a universal embedding strategy for batch adaptive
steganography in both spatial and JPEG domain. To select the most complex
images, we put forward three methods for measuring the texture complexity of
image: image residual, image energy and image fluctuation, which are extensions
of block residual [13], block energy [11] and block fluctuation [12], respectively.
We use image residual, which proved to be the securest image selection method
in Subsect. 4.2, to select the most complex images to carry the total message
and name our embedding strategy as max-residual-greedy (abbreviated as MRG)
strategy. We also propose a pooling steganalysis method based majority decision
for the omniscient Warden to evaluate the security of embedding strategies.

The rest of this paper is organized as follows. In Sect. 2, we briefly intro-
duce the minimal additive distortion model and the related work. The proposed
batch adaptive steganography embedding strategy is presented in Sect. 3 and
the experimental results are elaborated in Sect. 4. Conclusion and future work
are given in Sect. 5.

2 Preliminaries and Related Work

2.1 Notations

Throughout the paper, matrices, vectors and sets are written in bold face. The
cover image (of size n1 × n2) is represented by X = (xi,j) ∈ {ζ}n1×n2 , where
ζ is the pixel or DCT coefficient dynamic range of image. For example, ζ =
{0, ..., 255} for 8-bit grayscale image and ζ = {−1024, ..., 1024} for JPEG image.
Y = (yi,j) ∈ {ζ}n1×n2 represents the stego image. The embedding operation on
xi,j is formulated by the range I. An embedding operation is called binary if |I| =
2 and ternary if |I| = 3 for all i, j. For example, the ±1 embedding operation is
ternary embedding with Ii,j = {min(xi,j − 1, 0), xi,j ,max(xi,j + 1, 255)}, where
“0” denotes no modification.

2.2 Minimal Additive Distortion Model

In the model established in [3], the cover X is assumed to be fixed, so the distor-
tion of changing an element xi,j to yi,j can be simply denoted by ρi,j(X, yi,j).
It’s assumed that ρi,j(X, xi,j) = 0 and ρi,j(X, yi,j − 1) = ρi,j(X, yi,j + 1) =
ρi,j ∈ [0,∞). The additive distortion function of the image can be calculated as
follows:

D(X,Y) =
n1∑

i=1

n2∑

j=1

ρi,j(X, yi,j)|xi,j − yi,j |. (1)

Supposed that the flipping probability of xi,j to yi,j is πi,j , and thus the
sender can send up to H(π) bits of message on average with average distortion
Eπ(D) such that

H(π) = −
n1∑

i=1

n2∑

j=1

πi,j log πi,j , (2)
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Eπ(D) =
n1∑

i=1

n2∑

j=1

πi,jρi,j(X, yi,j). (3)

For a given message m, the sender wants to minimize the average distortion,
which can be formulated as the following optimization problems:

minπEπ(D), (4)

subject to H(π) = m. (5)

Following the maximum entropy principle, we can calculate the flipping prob-
ability via

πi,j =
exp(−λρi,j(X, yi,j))∑

yi,j∈Ii,j
exp(−λρi,j(X, yi,j))

. (6)

Where the scalar parameter λ > 0 can be determined by the payload con-
straint (5). In fact, as proven in [18], the entropy in (5) is monotone decreasing
in λ, so for a given m, λ can be fast calculated by binary search.

2.3 Review of the Related Work

Before introducing the proposed embedding strategy, we will first review the
related work. Since ESBAS [16] only applies to spatial domain and has been
improved by UES [17] which can be used in both spatial and JPEG domain, we
will only present the latter.

The embedding strategy UES contains two rules: Size-First Rule and His-
togram Equilibrium-First Rule, when embedding, images with larger “size” and
more equilibrated histogram are selected as sub-batch and set a high priority to
carry the message. The key point of the first rules is to calculate the “size” which
means the number of pixels for spatial image or the number of non-zero AC coef-
ficients for JPEG image. The reader can also associate it with the “Square Root
Law” [19], which indicates that the secure capacity of a cover is proportional to
the square root of its size. The essence of the second rule is the measurement of
histogram equilibrium that we will introduce in detail.

Whether spatial or JPEG image, the essence is still pixels, JPEG image saves
storage space merely by combining with DCT transform and quantization encod-
ing. UES has mentioned that the more gray levels an image occupies, the higher
texture complexity it has. Once an image is given, histogram of pixels can be
easily obtained. Let P = {pi|1 ≤ i ≤ n} represent the statistical probability of
pixels, n is the number of gray levels. Then the value of pixel x in this image
meets the distribution of the statistical probability. Assuming all pixels in dif-
ferent location are independent and identically distributed, then the information
entropy of pixel x can be represented as

E(x) = −
n∑

i=1

pi log pi, (7)
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and the standard deviation of statistical probability can be represented as

S(x) =

√√√√ 1
n

n∑

i=1

|pi − pi|2. (8)

The above formulas (7) (8) indicate that information entropy has a positive
correlation with the complexity of image, while standard deviation has a negative
correlation. Although the standard deviation and information entropy contain
the overlapping information, which is regarded as the fundamental information
of histogram for image and kept repetitively by UES. The histogram equilibrium
is defined as

H(x) =
E(x)

τ + γ · S(x)
, (9)

where τ and γ are parameters avoiding the value of denominator tending to zero.

3 Proposed Embedding Strategy

3.1 Methods of Measuring Image Complexity

The texture complexity of an image determines its security capacity. Images with
higher complexity will have bigger security capacity, and vice versa. Motivated
by the JPEG steganographic algorithms that contain the methods of measuring
the complexity of image block, such as RBV [13], HDS [12] and UERD [11], we
propose the following three methods for measuring the complexity of image.

Image Residual. Here, we use a wavelet filter bank to filter image to obtain
directional residual matrices and define the image residual as the sum of all
absolute residual values in the corresponding directional residual matrices. The
detailed procedures are described as follows.

(1) Given an image, we first decompressed it from DCT domain to spatial
domain if it is a JPEG image, without quantizing the pixel values to
{0, ..., 255} to avoid any loss of information.

(2) As the wavelet filter shows admirable performance in steganography [6,13],
we generate a 2-D wavelet filter bank consisting of three high-pass filters from
the wavelet’s 1-D low-pass decomposition filter h and a high-pass decom-
position filter g. Generally, a filter bank B = {K(1), ...,K(n)} consists of n
multiple directional high-pass filters represented by their kernels normalized
so that all L2-norms ||K(k)||2 are the same. We want to evaluate the texture
complexity of image along horizontal, vertical and diagonal directions by
directional residuals. Therefore, the filter bank B = {K(1),K(2),K(3)} can
be computed as follows.

K(1) = h · g(T ), K(2) = g · h(T ), K(3) = g · g(T ), (10)
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where the vector h and g denote the coefficients of decomposition low-pass
filter and high-pass filter, respectively. The matrices K(k), k ∈ {1, 2, 3} rep-
resent high-pass filters in 2-D wavelet filter bank. In fact, any kind of wavelet
families, such as Haar, Daubechies and Symlets can be selected to construct
the 2-D wavelet filter bank. We adopted the Daubechies 8-tap wavelets in
here due to its highest security performance for WOW [6] and RBV [13].

(3) Let X = (xi,j) ∈ {ζ}n1×n2 represent the spatial image or the decompressed
image from JPEG domain. The k-th residual R(k), k ∈ {1, 2, 3} is computed
as R(k) = K(k) ∗ X, where ‘∗’ is a convolution mirror-padded so that R(k)

has again the same number of elements with X.
(4) In terms of a pixel, it has three directional residuals and if the sum of

absolute values of those is large, it means the texture is complex around the
pixel. Similarly, for the entire image, if the sum of all absolute values of its
corresponding directional residuals is large, the texture is complex as well.
Therefore, we define the image residual as follows.

R =
3∑

k=1

n1∑

i=1

n2∑

j=1

|r(k)i,j |, (11)

where the r
(k)
i,j represents the residual value of pixel xi,j in the residual matrix

R(k).

Image Energy. The energy function of the DCT block for JPEG image was first
proposed in UERD [11], which can measure the distortion of the corresponding
DCT block. From the distortion function of UERD, we can conclude that the
larger the energy of a DCT block, the smaller the costs of DCT coefficients within
the block. In other words, the texture of the image block is complex when the
corresponding DCT block has large energy. Similarly, the texture of the entire
image is complex when the image has large energy.

Given a JPEG image X with size n1 × n2 (assuming that the size of X is
a multiple of 8), let xi,j (i, j ∈ {1, ..., 8}) be a DCT coefficient in position (i, j)
of a 8 × 8 DCT block in position (m,n) and qi,j represent its corresponding
quantization step, the energy of mnth block is defined as

em,n =
8∑

i=1

8∑

j=1

|xi,j | · qi,j , (12)

where x1,1 = 0 to avoid the influence of the DC coefficient. The image energy is
defined as

E =
n1/8∑

m=1

n2/8∑

n=1

em,n. (13)
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Although the concept of energy block was initially proposed for JPEG image,
we can still calculate the image energy of a spatial image by (12) (13) after
transforming it to JPEG domain. We do not demonstrate the results of image
energy in spatial domain in Sect. 4.2 due to the similar performance trends of
those in JPEG domain.

Image Fluctuation. The most direct assessment of the complexity of image
is the difference between adjacent pixels, which has been considered in [12,20].
Since the definition of block texture [20] and block fluctuation [12] are similar,
and the former is more direct and concise, we do not use the method in [12] but
adopt another proposed in [20].

Given an image X sized n1 × n2, we should first process it if it is a JPEG
image, just like we do for image residual described above, and then compute the
mean absolute value of differences between a pixel xi,j and its eight neighbors
as the complexity value of the pixel xi,j :

fi,j =
1
8

1∑

m=−1

1∑

n=−1

|xi,j − xi+m,j+n|, (14)

at last, calculate the sum value of them within the whole image as the image
fluctuation of the image:

F =
n1−1∑

i=2

n2−1∑

j=2

fi,j . (15)

It is obvious that images with larger image fluctuation values will be more
complex.

3.2 Proposed Embedding Strategy (MRG)

When applying batch adaptive steganography to practical application, we should
first calculate the texture complexity of images within a batch of covers according
to the image residual method proposed above and verified to be the most superior
image selection method in Subsect. 4.2, then select images with largest residual
values orderly from the batch of images, following the concept of “greedy”, to
embed message until reach their maximum capacity. Due to the capacity of image
determined by the coding scheme and the specific steganographic algorithm,
which has been mentioned in Introduction, we should set the maximun capacity
of image practically. For instance, we set the maximum embedding rate to 1.0
bpp (or bpnzac) for WOW (or RBV) in Subsect. 4.3.

Taking into account the receiver’s message extraction, the auxiliary informa-
tion, such as the message-embedded images, the embedding message length and
the encoding key, are necessities for the receiver. In this paper, we pay more atten-
tion to the secure performance of our proposed embedding strategy and regardless
of the auxiliary information because this information can be embedded in these
pixels determined by the secret key for each image. To further clarify the scheme
of our proposed embedding strategy, we provide a pseudo-code in Algorithm1.
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Algorithm 1. Proposed embedding strategy (MRG)
Input: the batch of covers X (with N images); L bits of message m; Distortion function
FUNC and the coding scheme (STCs).
Output: the batch of stegos Y (Partially embedded message).

1: Decompress the covers X into spatial domain if necessary.
2: Use the image residual method in subsection 3.1 to calculate the complexity of all

covers in X and sort them in descending order.
3: Set the maximum capacity of image according to the coding scheme (STCs) and

FUNC.
4: Select images with largest residual values orderly from X to embed fully, until the

message is completely embedded.
5: Combine the message-carried images with other covers and then scramble them to

obtain Y.

4 Experimental Results

4.1 Setups

All experiments in this section are conducted on BOSSbase 1.01 [21] containing
10000 grayscale images sized 512×512. Since the proposed strategy is universal to
both spatial and JPEG domain, we compress all of the images to JPEG domain
with quality factor 75. We use the optimal embedding simulator as default for all
experiments. To verify the superiority of our proposed strategy, we use the state-
of-the-art distortion functions and steganalysis features, such as WOW [6] and
HILL [10] in spatial domain, J-UNIWARD [9] and RBV [13] in JPEG domain.
In the aspect of steganalysis, we select SRM [7] and its variant maxSRMd2 [8]
in spatial domain, DCTR [22] and GFR [23] in JPEG domain.

4.2 Effectiveness of the Image Selection Methods

Since our experiments in this subsection are just to verify the effectiveness of
our proposed image selection methods, which use the methods in Subsect. 3.1
to select highly textured images, with the methods in [17] in both spatial and
JPEG domain. When selecting images from the BOSSbase 1.01 we just set it as
5000 like [17]. Then a number of 2500 images are randomly selected for training,
and the rest 2500 images are used for testing. The detectors are trained as binary
classifiers implemented using the FLD ensemble [24] with default settings. The
ensemble by default minimizes the total classification error rate under equal
priors PE = minPFA

1
2 (PFA +PMD), where PFA and PMD are the false-alarm rate

and the missed-detection rate respectively. The ultimate security is qualified by
average error rate PE averaged over ten 2500/2500 selected images splits, and
large PE means stronger security.

Effectiveness of the Image Selection Methods in Spatial Domain. Here,
we compare our proposed image selection methods with the histogram equi-
librium [17] (called “histeq”) and random (select images randomly) in spatial
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domain. We assume that all images with the same size and the relative payload
rate from 0.05 to 0.5 bpp (bits per pixel). The performance of those four methods
are shown in Figs. 1 and 2. It is obvious that the proposed methods perform bet-
ter than histeq and random all the time and the image residual has the securest
performance. When the payload is 0.05 bpp, the image residual improves the
histeq about 0.8% on average, but when the payload is bigger than 0.2 bpp, the
improvement is higher 2.0–4.7% for both WOW and HILL, especially for HILL
against SRM, the improvement is almost higher than 4.5%.
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Fig. 1. Steganalytic performance of random, histeq, image residual and image fluctu-
ation for WOW under SRM (a) and maxSRMd2 (b) detection.
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Fig. 2. Steganalytic performance of random, histeq, image residual and image fluctu-
ation for HILL under SRM (a) and maxSRMd2 (b) detection.
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Effectiveness of the Image Selection Methods in JPEG Domain. To
demonstrate the universality of our proposed image selection methods, compari-
son of performance has been made among the proposed three methods, random,
histeq and the “size-first method” [17] (called “nzac”) which selects images with
big number of non-zero AC DCT coefficients in JPEG domain. We also assume
that all images with the same size and the relative payload rate from 0.05 to 0.5
bpnzac (bits per non-zero AC DCT coefficient). As shown in Figs. 3 and 4, the
proposed three methods have comparable performance but all of them perform
better than the others and among these methods image residual has a clear
superiority too. When the payload is smaller than 0.2 bpnzac, image residual
improves the nzac 0.3% on average, but when the payload is bigger than 0.2
bpnzac, the improvement is about 0.8–1.5% for both J-UNIWARD and RBV.
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Fig. 3. Steganalytic performance of random, histeq, nzac, image energy, image residual
and image fluctuation for J-UNIWARD under DCTR (a) and GFR (b) detection.

4.3 The Performence of MRG

In Subsect. 4.2, experimental results have shown that our proposed three image
selection methods all perform better than the methods proposed in [17] and
among them the image residual method always has a clear superiority in both
spatial and JPEG domain. Therefore, we just use image residual as our image
selection method. Since our proposed embedding strategy for batch adaptive
steganography is to select images with largest residual values within a batch of
covers to carry the total message, we call our embedding strategy max-residual-
greedy (MRG) strategy.

To evaluate the performance of different embedding strategies, we put for-
ward a pooling steganalysis method based majority decision for the omniscient
Warden, under the assumption that the Warden knows the average payload,
embedding method and cover source used by the users. During detecting, the
Warden just need to count the number of stegos of the batch of images judged
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Fig. 4. Steganalytic performance of random, histeq, nzac, image energy, image residual
and image fluctuation for RBV under DCTR (a) and GFR (b) detection.

by the pre-trained classifier, and then compare whether the number of stegos is
greater than the threshold, which is set according to the number of stegos of the
innocent and guilty users.

In this experiment, we first randomly select 5000 images from BOSSbase 1.01
to train classifiers with the average payload and embedding method used by the
users, then randomly select 100 images from the rest 5000 images each time to
embed using the embedding strategies. We repeat 400 times for each embedding
strategy, 200 times for innocent users and 200 times for guilty users, respectively.
We set the maximum payload to 1.0 bpp for WOW and 1.0 bpnzac for RBV.
The experimental results are shown in Fig. 5, from which we can see that the
proposed embedding strategy always has the best secure performance in both
spatial and JPEG domain.
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Fig. 5. Image (a) is the pooling steganalytic performance of three embedding strategies
named random, histeq and proposed MRG using ROC curves for WOW against SRM
at R = 0.1 bpp. Image (b) is the pooling steganalytic performance of three embedding
strategies named random, nzac and proposed MRG using ROC curves for RBV against
DCTR at R = 0.1 bpnzac.
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5 Conclusions

Batch adaptive steganography has a wide range of applications in practice and
the key of which is to select images with highest texture complexity. In this
paper, we first propose three methods for measuring the texture complexity of
image to select images with highly textured content, then propose our universal
embedding strategy for batch adaptive steganography in both spatial and JPEG
domain. To evaluate the security of different embedding strategies, We also pro-
pose a majority decision pooling steganalysis method designed specifically for
the omniscient Warden. From the experimental results we can see that our pro-
posed embedding strategy MRG always has the best secure performance under
any condition.

Since image selection methods vary greatly, we will try to explore the effec-
tiveness of other methods. In addition, the secure capacity of image is very
important for batch steganography and has not attracted much attention, we
will try to study it in our future work.
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4. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform
highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R.
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Abstract. Modern adaptive image steganographic schemes embed
secret message into textural regions to make it difficult for steganalytic
detection. To overcome the presented challenges, existing steganalytic
methods incorporate selection-channel information into steganalytic fea-
tures so as to improve detection capability. In this paper, we extended the
maxSRM steganalytic scheme by better exploiting the selection-channel
information in two aspects. On one hand, we processed the embedding
change probabilities by highlighting the large probabilities to obtain the
so called augmented coefficients. On the other hand, we used the aug-
mented coefficients weighted by the approximated probabilities of occur-
rence of image residuals for computing co-occurrence matrix in stegana-
lytic features. In this way, we further utilized the selection-channel infor-
mation and make pixels with high embedding change probability con-
tribute more to final steganalysis features. Experiments on BOSSBase
image dateset showed that our proposed steganalytic method achieved
the state-of-the-art performance against various steganographic schemes
under different payloads.

Keywords: Content-adaptive steganography · Selection-channel ·
Steganalysis · Embedding change probability

1 Introduction

Image steganography is the technique of embedding secret information in digital
images without being noticed [1,2]. On the contrary, steganalysis aims to uncover
the existence of secret information. They are in a hunting and escaping game.
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Modern steganography methods are designed under the framework of min-
imizing a distortion function [3], where effective embedding costs should be
defined. For example, HUGO (Highly Undetectable steGO) [4] defines the cost
by a weighted norm of the difference between the SPAM (Subtractive Pixel
Adjacency Matrix) [5] vectors respectively extracted from cover images and can-
didate stego images. In WOW (Wavelet Obtained Weights) [6], wavelet-based
directional filter banks are used to detect complex regions and then the fil-
tered residuals are assembled to obtain embedding costs, while the residuals are
aggregated from high frequency subbands in S-UNIWARD (Spatial UNIversal
Wavelet Relative Distortion) [7]. Using a high-pass filter and two low-pass fil-
ters, HILL (HIgh-pass, Low-pass, and Low-pass) [8] assigns pixels in textural
areas and their neighbors lower costs. MiPOD (Minimizing the Power of Opti-
mal Detector) [9] employs the Generalized Gaussian distribution to model cover
images, and uses the Neyman-Pearson criterion to optimize the embedding cost
defined by Fisher Information between cover and stego. In MS (Micro-Scope)
scheme [10], cover image is preprocessed with a high-pass filter to obtain costs.
CPP (Controversial Pixels Prior) [11] combine several cost functions that have
comparative security level and assign controversial pixels lower cost values. Both
CMD (Clustering Modification Direction) [12] and Sync [13] assign lower costs
to pixels with synchronized modifications.

A well-designed cost function usually ensures the embedding modifications
content-adaptive. To counter such steganographic schemes, selection-channel-
aware steganalysis is developed [14–17]. It is assumed that the embedding
scheme is known and therefore the embedding costs can be estimated from the
stego images. Incorporated such additional information in existing steganalytic
schemes such as SRM (Spatial Rich Model) [18] and PSRM (Projected Spatial
Rich Model) [19], steganalytic performance can be boosted. In tSRM (thresh-
olded SRM) [14], a selection-channel-aware steganalysis scheme against WOW
is proposed by means of extracting feature from the regions with high modifica-
tion probabilities, which are located by the cost function of WOW. Similar to
tSRM, maxSRM [15] makes great progress by involving the estimated maximum
embedding change probabilities of consecutive image elements in computing co-
occurrence features. At the same time, Tang et al. proposed to use the mean
value instead of the maximum value of the embedding change probabilities [16].
Denemark et al. [17] proposed σmaxSRM and σspamPSRM by replacing the
estimated embedding change probabilities of pixels with the expectation of dis-
tortion from filtered image residuals. Besides, Ye et al. [20] and Yang et al. [21]
respectively proposed to incorporate the selection-channel information similar
to maxSRM in their CNN designs.

In this paper, we proposed an effective steganalytic method by augmenting
the utilization of selection-channel information. As pixels with higher embedding
change probability provide more information of embedding traces, we utilized
them in two ways. On one hand, we used a mapping function to strengthen the
estimated embedding change probabilities so as to further highlight the traces
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in elements with large embedding probabilities. The processed probabilities are
called augmented coefficients. On the other hand, the augmented coefficients
weighted by the approximated probabilities of the quantized image residuals
were used for computing the co-occurrence features. In this manner, pixels with
high embedding change probabilities contribute more in steganalytic features,
and resulting in improved steganalytic performance.

The rest part of this paper is organized as follows. In the next section, a brief
overview of the SRM, maxSRM, and σmaxSRM is given. In Sect. 3, the proposed
steganalytic method is described in details. In Sect. 4, experimental results are
reported, and conclusions are drawn in Sect. 5.

2 Related Work

For better understanding the improvement made in our proposed method, we
provide an overview of the SRM, maxSRM, and σmaxSRM in this section.
Throughout the paper, we use capital letters in bold to represent matrices, and
use lowercase letters for the corresponding matrix elements. Denote n1 × n2

grayscale cover image and stego image as X = (xi,j)n1×n2 and Y = (yi,j)n1×n2

(xi,j , yi,j ∈ {0, · · · , 255}), respectively. We assume ternary embedding is used
for spatial images.

2.1 SRM

Four main steps are employed in computing SRM features [18]. Firstly, sev-
eral linear and non-linear filters are utilized to suppress the image content and
capture the subtle embedding noise. The filtered residual image is denoted as
Z = (zi,j)n1×n2 . Secondly, the residuals are quantized and truncated to make
features more compact, i.e.,

ri,j = truncT

(
round

(
zi,j

q

))
, (1)

where q is the quantization step, round(·) is the rounding function, truncT (·)
is the truncation function, and T is the truncation threshold. The truncation is
performed as follows:

truncT (x) =
{

x, x ∈ [−T, T ],
T sign(x), otherwise. (2)

Thirdly, image statistical features are extracted by using the four dimensional co-
occurrence of the truncated and quantized residuals. For example, the horizontal
co-occurrence for four horizontally neighbouring residuals is computed as

CSRM
d0,d1,d2,d3

=
n1∑
i=1

n2−3∑
j=1

[(ri,j , ri,j+1, ri,j+2, ri,j+3) = (d0, d1, d2, d3)] , (3)

where [P ] is the Iverson bracket, which is equal to 1 when the statement P is
true and 0 otherwise. Finally, features are aggregated according to the symmetry
properties.
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2.2 maxSRM

The difference between maxSRM [15] and SRM is that selection-channel infor-
mation is employed in computing the co-occurrence features. Take the horizontal
fourth-order co-occurrences as example:

CmaxSRM
d0,d1,d2,d3

=

n1∑

i=1

n2−3∑

j=1

max (βi,j , βi,j+1, βi,j+2, βi,j+3)×[(ri,j , ri,j+1, ri,j+2, ri,j+3)

= (d0, d1, d2, d3)] ,

(4)

where βi,j is the estimated embedding change probability and can be computed
by optimal simulator [16] with the cost values obtained from the image under
scrutiny. It can be seen that the maximum value of the estimated embedding
change probabilities of four consecutive pixels is used, so that only the highest
change probability contributes in the feature.

2.3 σmaxSRM

σmaxSRM [17] is adapted from maxSRM by replacing the maximum value of
the estimated embedding change probabilities with the expected difference in
the filtered residual to compute the co-occurrence features. Take the horizontal
fourth-order co-occurrences as example:

CσmaxSRM
d0,d1,d2,d3

=

n1∑

i=1

n2−3∑

j=1

max (σi,j , σi,j+1, σi,j+2, σi,j+3)×[(ri,j , ri,j+1, ri,j+2, ri,j+3)

= (d0, d1, d2, d3)] .

(5)

where σi,j is an estimated value of the expected difference in the filtered residual,
i.e.,

σij = E(|zij(Y ) − zij(X)|). (6)

For linear filtered residual, it can be estimated by

σij =
√∑

k,l

w2
k,lβi−k,j−l, (7)

where wk,l is the weights of the linear filter. For non-linear filtered residual, it
can be estimated by using Monte-Carlo simulation with repeated embedding,
which is computational expensive.

3 The Proposed Steganalysis Scheme with Augmented
Selection-Channel Information

The selection-channel-aware steganalysis schemes [15,17] show effectiveness in
detecting content-adaptive steganography. It is expected that the better uti-
lization of the selection-channel information, the more effective the steganalytic
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performance. In this paper, following the framework of maxSRM, we consider to
make a better use of selection-channel information by strengthening the esti-
mated embedding change probabilities to obtain augmented coefficients and
forming co-occurrence features with augmented coefficients and processed resid-
uals. The proposed steganalytic feature extraction process is illustrated in Fig. 1,
where the two additional steps are highlighted.

Fig. 1. Flowchart of the proposed feature extraction process

3.1 Strengthening the Embedding Change Probabilities

As shown in [15] and [17], it is reasonable to make pixels with high embedding
change probabilities contribute more in steganalytic features. We follow such phi-
losophy and strengthen the embedding change probabilities with a high-pass filter.
Assume β = (βi,j)n1×n2 is the matrix of the estimated change probabilities, and
H is a high-pass filer. The high-pass filtered probabilities are computed as

ε � (εi,j)n1×n2 = β ⊗ H (8)

where ⊗ is the convolution operation. We augment the embedding change prob-
abilities by

αi,j = βi,j + λ|εi,j |, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 (9)

where λ > 0 is the parameter to control the augmentation strength and symbol
| · | is the operator of taking absolute value. In (9), since the εi,j can be negative,
we use an absolute operator to rectify the outputs, for the magnitude of negative
εi,j can also provide useful information. We call αi,j augmented coefficient. In
our implementation, we use the KV high-pass filter chosen from SRM filters as

H =
1
12

⎡
⎢⎢⎢⎢⎣

−1 2 −2 2 −1
2 −6 8 −6 2

−2 8 −12 8 −2
2 −6 8 −6 2

−1 2 −2 2 −1

⎤
⎥⎥⎥⎥⎦ . (10)
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According to our trial experiments, the KV high-pass filter, which is central-
symmetric and rotation invariant, has slightly better performance than other
SRM filters. Since the augmented coefficient is intensively involved in the pro-
posed steganalytic feature, we call our proposed feature extraction method as
αSRM. Figure 2 shows an example of embedding change probability map and
the corresponding augmented coefficient map. It can be observed that the ampli-
tudes of the elements in texture regions of the augmented coefficient map are
magnified.

(a) (b) (c)

Fig. 2. Illustration of (a) cover image, (b) embedding change probability map of
S-UNIWARD under 0.4 bpp payload, and (c) the augmented coefficient under λ = 10.
For display purpose, we scale the estimated probability and augmented coefficient to
the range of [0, 255].

3.2 Forming Residual Weighted Co-occurrence Features

In order to make the co-occurrence matrix well-populated, quantization and
truncation on image residuals are needed to perform. Following the quantization
and truncation process as shown in (1), the resultant residual for zij is denoted
as rij . We use T = 2 in our implementation according to extensive experimental
trials.

In maxSRM, the maximum value of the embedding change probabilities of
consecutive pixels is used in computing co-occurrence features, as shown in
(3). Therefore, the selection-channel information is incorporated in the feature
design. To further exploit the information, we take image residuals into account.
The image residuals with high probabilities of occurrence should have larger con-
tribution in the feature. Therefore, instead of using the augmented coefficients
directly, we use the coefficients weighted by the probabilities of occurrence of
image residuals. It is usually assumed that the image residuals follow a Lapla-
cian distribution, in which small values have large probabilities. To simply the
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computation, we have done some experiments and approximate the distribution
with a fixed non-parametric model as follows:

prij
=

⎧⎨
⎩

0.4, rij = 0,
0.2, rij = ±1,
0.1, rij = ±2.

(11)

The horizontal co-occurrence feature of the proposed αSRM is computed as

CαSRM
d0,d1,d2,d3

=
n1∑
i=1

n2−3∑
j=1

(
3∑

k=0

αi,j+k pri,j+k

)
× [(ri,j , ri,j+1, ri,j+2, ri,j+3)

= (d0, d1, d2, d3)] .

(12)

Other co-occurrence features can be obtained correspondingly.

4 Experimental Results

We performed experiments to demonstrate the effectiveness of the proposed
method. All experiments were carried out on 10,000 grayscale images of
size 512 × 512 from BOSSBase ver. 1.01 dataset [22]. Six contend-adaptive
steganographic methods, i.e. S-UNIWARD [7], HILL [8], MiPOD [9], CMD-S-
UNIWARD [12], CMD-HILL [12] and CMD-MiPOD [12] were included for eval-
uation with the payload rate from 0.1 bpp (bit per pixel) to 0.5 bpp. SRM [18],
maxSRM [15], and σmaxSRM [17] are used for comparison, and Fisher linear
discriminant (FLD) based ensemble classifier [23] is used for classification. The
cover image set is randomly split into a training set and a testing set, each con-
sists of 5,000 images. The detection accuracy is evaluated by 10 times of random
splits and denoted as P̄E .

We also employed the 5 × 2 fold cross-validated pair t-test [24] to validate if
two methods for comparison have statistical difference in performance. All the
image pairs were divided into two equal-sized image sets randomly for five times,
denoted as S1(i) and S2(i) for the i-th division. For each time, on one hand, the
classifier was trained on S1(i) and tested on S2(i) with method A and method
B to get their testing errors, denoted as p

(1)
A (i) and p

(1)
B (i) respectively. On the

other hand, the classifier was trained on S2(i) and tested on S1(i) with these
two method to get another two testing errors, denoted as p

(2)
A (i) and p

(2)
B (i). As

a result, a statistic t̃ was calculated as:

t̃ =
p
(1)
A (1) − p

(1)
B (1)√∑5

i=1
(p

(1)
A (i)−p

(1)
B (i)+p

(2)
B (i)−p

(2)
A (i))2

10

. (13)

Here we chose a significant level of 0.95 with t0.95 = 2.015. When statistic t̃
is larger than t0.95, we can say that there is a statistical significant difference
between method A and B.
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4.1 The Impact of Augmentation Parameter

As shown in Subsect. 3.1, the parameter λ is used for controlling the augmentation
strength. We make a search on λ by testing its impact on detecting S-UNIWARD
and HILL with 0.4 bpp. It can be seen from Fig. 3 that the performance with λ > 0
is better than the performance with λ = 0, implying that the augmentation takes
effect. As λ increases, the trend for S-UNIWARD and that for HILL are different.
Therefore,we chooseλ = 60 in our experiments as it achieves satisfactorydetection
performance on both two steganographic schemes.

4.2 Comparisons to Prior Arts

In order to evaluate the performance of the proposed method, we perform three
groups of experiments as follows.

0 0.5 1 3 5 10 20 30 40 50 60 70 80 90 100
0.18

0.19

0.20

0.21

0.22
S-UNIWARD 0.4bpp
HILL 0.4bpp

Fig. 3. Testing errors of the proposed αSRM scheme against two steganographic
schemes under different λ when the embedding payload is 0.4 bpp

Comparison with SRM and maxSRM: In our first group of experiment,
we compare our proposed method to SRM and maxSRM with features of
34,671-D. The steganographic algorithm and the embedding payload are assumed
to be known in maxSRM and αSRM. The results are shown in Table 1. It can
be observed that both maxSRM and αSRM outperform SRM since selection-
channel information is used in these two schemes. In most of cases, αSRM per-
forms the best. Moreover, note that for CMD-S-UNIWARD, CMD-HILL and
CMD-MiPOD, the embedding change probabilities are estimated according to S-
UNIWARD, HILL and MiPOD, respectively. It implies that the proposed method
still works when the selection-channel information is not accurate.
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Table 1. Detection errors of SRM, maxSRM, and αSRM on detecting four stegano-
graphic schemes under different payloads.

Steganographic scheme Steganalytic feature 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

S-UNIWARD SRM 0.4022 0.3208 0.2561 0.2068 0.1636

maxSRM 0.3697 0.2990 0.2440 0.1989 0.1638

αSRM 0.3625 0.2869 0.2316 0.1866 0.1499

HILL SRM 0.4324 0.3608 0.3002 0.2492 0.2051

maxSRM 0.3803 0.3167 0.2688 0.2253 0.1897

αSRM 0.3533 0.2875 0.2380 0.1973 0.1664

MiPOD SRM 0.4165 0.3459 0.2885 0.2388 0.1998

maxSRM 0.4011 0.3313 0.2792 0.2330 0.1942

αSRM 0.4006 0.3331 0.2767 0.2276 0.1889

CMD-S-UNIWARD SRM 0.4251 0.3591 0.3026 0.2544 0.2135

maxSRM 0.3822 0.3199 0.2730 0.2350 0.2027

αSRM 0.3678 0.3069 0.2611 0.2275 0.1956

CMD-HILL SRM 0.4544 0.3956 0.3427 0.2983 0.2552

maxSRM 0.4016 0.3454 0.3048 0.2696 0.2361

αSRM 0.3663 0.3080 0.2613 0.2267 0.1961

CMD-MiPOD SRM 0.4434 0.3876 0.3379 0.2922 0.2516

maxSRM 0.4246 0.3680 0.3201 0.2781 0.2398

αSRM 0.4251 0.3640 0.3177 0.2734 0.2400

Table 2. The value of the statistic t̃ in detecting four steganographic schemes. The
numerics are marked in bold fonts when αSRM performs statistically significant better
than SRM or maxSRM.

Comparison schemes Steganographic scheme 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

αSRM vs SRM S-UNIWARD 7.042 5.532 4.730 5.388 4.747

HILL 16.182 13.717 6.445 9.152 6.120

MiPOD 6.030 1.600 3.238 4.620 3.019

CMD-S-UNIWARD 15.085 16.825 5.853 5.074 3.719

CMD-HILL 9.677 9.989 13.467 13.365 11.512

CMD-MiPOD 3.662 7.255 5.272 6.968 1.655

αSRM vs maxSRM S-UNIWARD 1.859 2.503 2.528 3.814 3.806

HILL 6.165 5.567 5.426 5.435 4.714

MiPOD 0.462 −0.049 1.941 0.306 4.889

CMD-S-UNIWARD 3.071 4.337 3.464 1.489 1.594

CMD-HILL 6.837 18.874 7.424 7.732 6.251

CMD-MiPOD 0.121 0.466 2.759 3.769 0.391
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Table 3. Detection errors of three steganalytic features with non-linear mapping on
detecting four steganographic schemes under different payloads.

Steganographic scheme Steganalytic feature 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

S-UNIWARD SRM(exp-Hellinger) 0.3920 03071 0.2401 0.1860 0.1422

maxSRM(exp-Hellinger) 0.3663 0.2839 0.2262 0.1783 0.1391

αSRM(exp-Hellinger) 0.3589 0.2749 0.2146 0.1655 0.1286

HILL SRM(exp-Hellinger) 0.4066 0.3381 0.2786 0.2291 0.1853

maxSRM(exp-Hellinger) 0.3698 0.3001 0.2489 0.2055 0.1679

αSRM(exp-Hellinger) 0.3484 0.2814 0.2309 0.1886 0.1545

MiPOD SRM(exp-Hellinger) 0.4007 0.3324 0.2727 0.2229 0.1837

maxSRM(exp-Hellinger) 0.3955 0.3206 0.2636 0.2148 0.1784

αSRM(exp-Hellinger) 0.3937 0.3239 0.2655 0.2143 0.1763

CMD-S-UNIWARD SRM(exp-Hellinger) 0.4162 0.3460 0.2888 0.2400 0.1926

maxSRM(exp-Hellinger) 0.3796 0.3134 0.2630 0.2189 0.1838

αSRM(exp-Hellinger) 0.3728 0.3008 0.2452 0.2018 0.1655

CMD-HILL SRM(exp-Hellinger) 0.4313 0.3720 0.3186 0.2748 0.2354

maxSRM(exp-Hellinger) 0.3910 0.3359 0.2879 0.2495 0.2166

αSRM(exp-Hellinger) 0.3663 0.3020 0.2544 0.2204 0.1876

CMD-MiPOD SRM(exp-Hellinger) 0.4434 0.3875 0.3379 0.2921 0.2515

maxSRM(exp-Hellinger) 0.4246 0.3680 0.3200 0.2780 0.2397

αSRM(exp-Hellinger) 0.4183 0.3553 0.3088 0.2621 0.2235

Table 4. The value of the statistic t̃ under several steganographic schemes. The numer-
ics are remarked in bold fonts when αSRM performs statistically significant better than
its counterparts.

Comparison schemes Steganographic scheme 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

αSRM(exp-Hellinger)

vs SRM(exp-Hellinger)

S-UNIWARD 6.475 8.578 8.348 7.705 11.963

HILL 18.821 12.899 9.910 7.311 10.649

MiPOD 0.029 1.448 1.116 8.408 2.553

CMD-S-UNIWARD 11.532 12.057 12.114 10.189 12.238

CMD-HILL 14.147 35.369 16.578 14.537 9.875

CMD-MiPOD 7.832 3.300 6.306 5.042 4.238

αSRM(exp-Hellinger)

vs maxSRM(exp-

Hellinger)

S-UNIWARD 0.805 2.772 5.692 5.770 2.759

HILL 6.642 7.466 6.667 6.548 2.619

MiPOD 0.345 −1.797 −0.493 3.133 1.764

CMD-S-UNIWARD 0.277 4.772 3.417 3.439 5.178

CMD-HILL 3.887 13.425 10.847 9.818 10.256

CMD-MiPOD 0.054 2.233 2.281 2.742 2.569

The results of statistic t̃ are listed in Table 2, comparing αSRM with SRM and
with maxSRM, respectively. The results in Table 2 show that αSRM performs
statistically significant better than SRM in all cases except for MiPOD with 0.2
bpp and CMD-MiPOD with 0.5 bpp embedding rates. For S-UNIWARD with
0.1 bpp embedding rate, CMD-HILL with 0.4 bpp and 0.5 bpp embedding rates
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Table 5. Comparison between “spam” part of σmaxSRM and αSRM on detecting
steganographic schemes under different payloads.

Steganographic scheme Steganalytic feature 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

S-UNIWARD σmaxSRM(“spam”) 0.4113 0.3406 0.2975 0.2347 0.2010

αSRM(“spam”) 0.3879 0.3142 0.2559 0.2134 0.1733

HILL σmaxSRM(“spam”) 0.4173 0.3557 0.3075 0.2640 0.2249

αSRM(“spam”) 0.3763 0.3070 0.2594 0.2209 0.1877

MiPOD σmaxSRM(“spam”) 0.4185 0.3587 0.3062 0.2619 0.2230

αSRM(“spam”) 0.4122 0.3428 0.2898 0.2440 0.2021

CMD-S-UNIWARD σmaxSRM(“spam”) 0.4373 0.3753 0.3124 0.2856 0.2431

αSRM(“spam”) 0.4032 0.3388 0.2876 0.2483 0.2120

CMD-HILL σmaxSRM(“spam”) 0.4475 0.3944 0.3387 0.3131 0.2745

αSRM(“spam”) 0.3960 0.3370 0.2923 0.2562 0.2230

CMD-MiPOD σmaxSRM(“spam”) 0.4466 0.3993 0.3544 0.3152 0.2806

αSRM(“spam”) 0.4339 0.3781 0.3311 0.2892 0.2523

Table 6. The value of the statistic t̃ under several steganographic schemes. The numer-
ics are remarked in bold fonts when αSRM performs statistically significant better than
σmaxSRM.

Comparison
Schemes

Steganographic Scheme 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

αSRM(“spam”) vs
σmaxSRM(“spam”)

S-UNIWARD 3.582 7.612 6.754 6.343 6.025

HILL 12.994 18.836 10.370 11.826 12.796

MiPOD 2.333 4.232 3.498 4.409 7.443

CMD-S-UNIWARD 6.079 9.499 15.641 9.116 8.786

CMD-HILL 8.415 8.504 8.451 8.662 9.147

CMD-MiPOD 1.399 3.364 3.210 10.315 13.147

and majority payloads for MiPOD and CMD-MiPOD, αSRM performs as good
as maxSRM. In other cases, αSRM performs significantly better than maxSRM.

The Performance with Non-linear Feature Mapping: It has been shown
in [25,26] that non-linear mapping can boost feature performance. To investigate
whether the proposed features can be benefited from the non-linear mapping,
we perform experiments by using the exponential-Hellinger kernel mapping [25]
on steganalytic features. The experimental results are shown in Tables 3. It can
be observed that the detection performance can be further improved by the
non-linear mapping for all three steganalytic schemes. αSRM with exp-Hellinger
mapping performs the best under majority circumstances, especially for HILL
and CMD-HILL. Taking HILL as an example, αSRM with exp-Hellinger map-
ping increases the performance ranges from 3.08% to 5.82% compared with SRM
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Table 7. Testing errors of each procedure combined with maxSRM on detecting four
steganographic scheme under 0.4 bpp.

Steganalytic feature S-UNIWARD HILL CMD-S-UNIWARD CMD-HILL

maxSRM 0.1989 0.2253 0.2350 0.2696

maxSRM-S 0.1949 0.2036 0.2271 0.2302

maxSRM-W 0.1967 0.2186 0.2316 0.2648

αSRM 0.1866 0.1973 0.2275 0.2267

with exp-Hellinger mapping from 0.1 to 0.5 bpp. For steganalytic method with
exp-Hellinger mapping, the results of statistic t̃ are listed in Table 4. αSRM
performs statistically significant better than SRM and maxSRM under many
cases.

Comparison with σmaxSRM: We compare the proposed method with
σmaxSRM [17]. Due to the fact that computing non-linear residual features
is time consuming, we adopted the implementation of [17] by using the linear
residual features (“spam” type) for detecting steganographic schemes. For fair
comparison, we also use “spam” part of the features in our scheme. The results
shown in Table 5 indicate that the “spam” part of our proposed αSRM performs
better than that of σmaxSRM. Furthermore, considering that αSRM has only
marginal increasement of computation cost due to the two additional steps over
maxSRM, it is more efficient than σmaxSRM, especially for the non-linear resid-
ual feature part. The values of statistic t̃ are shown in Table 6. All the statistic
t̃ are larger than t0.95 except for CMD-MiPOD with 0.1 bpp embedding rate,
which verify that the “spam” part of αSRM is statistically performs better than
that of σmaxSRM in majority cases.

4.3 The Effectiveness of Selection-Channel Information Utilization
in Each Procedure

In our proposed method, we improve maxSRM with two additional steps. These
two procedures work together to achieve good results. In this part, we inves-
tigate the effectiveness of each procedure. The two procedures are abbreviated
by S (strengthening embedding change probability) and W (residual weighted
co-occurrence), respectively. We use these abbreviations as suffix of maxSRM to
denote the corresponding applied procedures. For instance, maxSRM-S means
that the augmented coefficients are used to replace the embedding change prob-
ability in maxSRM.

The experimental results on 0.4 bpp are shown in Table 7. The lowest testing
error for each steganographic scheme are in bold. The second best results are
highlighted with underlines. The results show that both the two procedures play
positive roles in improving in detection capability. Strengthening the embedding
change probability can boost the detection performance more.
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5 Concluding Remarks

Content-adaptive steganalysis prioritizes image pixels based on selection-channel
information. In this paper, we propose a content-adaptive steganalysis strat-
egy that utilizes selection-channel information in two novel ways. Considering
that pixels with high embedding change probability can provide more useful
information, more attention should be paid on those pixels. We firstly aug-
ment the information by a mapping function, and then incorporate the aug-
mented information with co-occurrence formation to highlight pixels with high
embedding change probability. The experimental results show that the proposed
αSRM achieves better performance against modern state-of-art steganographic
schemes compared with former steganalysis features. It is also demonstrated
that the two proposed improved techniques, strengthening embedding change
probability and utilizing weighted augment coefficients are both effective. We
should note that an “overly content-adaptive” steganalytic scheme, which relies
much on the selection channel information, might end up in the steganogra-
pher using a “less content-adaptive” embedding scheme and thus evading the
content-adaptive method. In this case, we may resort to game theory in future
for addressing this cat-and-mouse-race.
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Abstract. Most existing speech steganography breaks the continuity of
adjacent pitch delay, which obviously degrades their statistically unde-
tectability. This paper presents a novel steganographic scheme for low
bit-rate speech stream against pitch delay steganalysis. Three mea-
sures are adopted to enhance steganographic security. First, the short-
term stability of pitch delay and the statistical distribution of adja-
cent subframe are considered for designing a distortion function. Second,
syndrome-trellis codes (STCs) is utilized to minimize the overall embed-
ding impact based on the defined distortion function. Third, the subop-
timal pitch delay is searched to maintain speech quality. Experimental
results demonstrate that our scheme achieves higher level of security,
especially in the case of low embedding rate. When the relative embed-
ding rate is 0.2 for 10.2 kbit/s AMR stream, the test error rate of our
method rises by 12.44% compared with the existing algorithm.

Keywords: Adaptive steganography · Speech steganography ·
ACELP · Pitch delay · Adaptive multi-rate

1 Introduction

Steganography is a kind of covert technology. It conceals secret messages to be
conveyed under the camouflage of common and innocent cover media in order to
reduce the suspicion. In contrast, the goal of steganalysis is to detect the presence
of hidden data in a cover object. In recent years, with the increased popularity
of the social web, highly interactive multimedia such as image, video and speech
are in great demand. In 1999 Adaptive Multi-Rate (AMR) was selected as the
standard speech codec by the Third Generation Partnership Project (3GPP)
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together with European Telecommunication Standards Institute (ETSI) for the
mobile communication. Additionally, in 2002 AMR was adopted by Interna-
tional Telecommunication UnionTelecommunication Sector (ITU-T) for wide-
band speech coding. The adoption by ITU-T marks the first time the same
codec is adopted for both wireless and wireline services. Further more, many
telephone handsets select AMR as their default file format for spoken audio
storage. At the same time, AMR is extended to many popular mobile applica-
tions for voice chat audio, such as WeChat, QQ. Therefore, AMR audio codec
could be regarded as an ideal carrier for secret message passing. Pitch delay
(PD) has been utilized as the covert information carrier in a series of stegano-
graphic approaches [2,10,12,14–16,21,22]. Specifically, these PD-based schemes
are typically integrated with speech encoding by modifying the codec parame-
ters. Typically, PD describes the predicted value of pitch period which is almost
inverse proportional with the fundamental frequency of an audio waveform [6,11].
Specifically, the determination of the pitch delay is made based on adaptive code-
book search. Despite a variety of algorithms for pitch period prediction have been
proposed, pitch period is still difficult to predict accurately in speech process-
ing [6,8]. All in all, PD is a feasible embedding domain. Algorithm [2] modified
such PDs as close to the change point. The principle of pitch prediction between
Algebraic Code Excited Linear Prediction (ACELP) and Code Excited Line Pre-
diction (CELP) codec is almost same, so the PD-based embedding schemes for
G.723.1 and G.729 based on CELP is also can be applied to AMR. In [21], Wu
et al. proposed an analysis-by-synthesis-based steganography by modifying the
pitch delay of G.729. Liu et al. [14] took full advantage of both integer and frac-
tional of pitch to embed secret messages by adjusting the pitch period search
range. Huang et al. [10] implemented information hiding integrated into speech
coding by modifying the search range during the closed-loop adaptive codebook
search of G.723.1. Despite the pitch search range is adjusted, the encoder can find
a suboptimal solutions whose values are be restricted to a specified range while
introducing less embedding distortion and maintaining good imperceptibility.
Yan et al. [22] only chose even subframes to embed messages. They exploited
the characteristics of PD during the closed-loop and proposed a double-layer
embedding algorithm for G.723.1. This method reduces the steganographic dis-
tortion to achieve high imperceptibility.

To detect PD-based AMR steganographic schemes, a few steganalytic stud-
ies have been carried out in the recent years [13,17,19]. In their views, exist-
ing PD-based embedding schemes destroy the statistics of pitch delay and the
modified pitch delay is not the optimal. Consequently. The operation of modifi-
cation leaves clues of data embedding. Among existing targeted attacks, Ren’s
method [17] (called MSDPD) performs better than the others. Specifically, the
sequence of pitch period should be stable for a short time because of the quasi-
periodic characteristic of voiced speech segments, so the difference of pitch delay
which is sensitive to embedding is used as steganalytic feature. Consequently,
Ren employs Markov transition probabilities to measure the change between
the adjacent pitch delay. The experimental results show that this method can
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efficiently detect the two existing PD based steganography methods [10,22], the
former [10] performed a higher security than the latter [22].

This paper aims to enhance the steganographic security of PD-based schemes
by resisting the attack of latest steganalytical algorithms. The main problems
in the existing PD-based stegaography were analyzed. One problem ignored
the changes in statistical property caused by the embedding. The second prob-
lem is that embedding schemes did not take the suboptimal pitch delay search
into account. Motivated by the existing problems, we make two improvements.
Firstly, we designed a distortion function which considered embedding influence
from different aspects. Specifically, both the difference of pitch delay (DPD)
related to steganalytic feature and the relation between adjacent subframe within
one frame were considered into cost function. Secondly, the syndrome-trellis
codes (STCs) [4] was used to locate suitable embedding regions, then the sub-
optimal pitch period of the subframe was searched according to search principle.
Therefor, the proposed algorithm, pitch delay adaptive steganography (PDAS)
is capable of resisting the current best PD steganalysis while keeping a higher
speech quality.

The rest of paper is organized as follows. In Sect. 2, we briefly introduce the
basic knowledge of AMR codec. The implementation of the proposed method
is presented in Sect. 3, including the framework of distortion minimization for
PD-based steganograpy and the definition of the distortion function. The results
of comparative experiments are shown in Sect. 4. Finally, the conclusions and
future work are given in Sect. 5.

2 Preliminaries

2.1 Principles of AMR Codec

AMR is based on the ACELP coding model. This technique results in more
efficient codebook search algorithms. The encoder operates on frames of 20 ms,
8-kHz, 13-bit, PCM format each into a set of parameters, including Line Spectral
Pair (LSP) , pitch delay, algebraic code index and gains. These parameters are
transmitted as bit streams mode from 4.75 kbit/s to 12.2 kbit/s. The basic
block diagram of the encoding process is depicted in Fig. 1. After preprocessing,
LSP parameters analysis is aculeated every other 20 ms. The speech samples
is divided into four subframes of 5 ms (40 samples). For each subframe, the
excitation signal is reconstructed by searching appropriate adaptive codebooks
and algebraic codebooks. The criteria of search is to minimize the mean square
error of the perceptually weighted error between the original and synthesized
speeches.

2.2 Analysis of AMR Pitch Delay

To facilitate the understanding, we take the 12.2 kbit/s mode as an example. The
implementation of the PD is operated in a combination of open-loop and closed-
loop. At the first stage, the open-loop pitch period (TOL) is conducted for every
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Fig. 1. Block diagram of the ACELP synthesis model

Fig. 2. Diagram of pitch delay search based on a two step procedure: open loop and
closed loop analysis by a rigorous search strategy. The dark background indicates the
search range.

two subframes in order to simplify the pitch analysis and avoid multiples of the
pitch period. The search range is from 18 to 143 samples. At the second stage, the
closed-loop pitch period (TCL) which consist of integer pitch delay and fractional
pitch delay is computed based on the TOL. Specifically, the integer pitch delay
(T ) for the first and third subframe is computed in a small neighborhood around
the TOL, while the integer pitch delay for the second and fourth subframes are
calculated as the difference from the integer pitch delay of previous subframe T .
The corresponding diagram is illustrated in Fig. 2.
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Once the optimal integer pitch delay has been determined, a fractional pitch
delay is searched with resolutions of 1

6 in the lower delay range [76
3 , 9 3

6 ]. Integer
resolution is searched only in the range [95, 143]. For the second and fourth
subframes, a pitch with a resolution of 1

6 is always used in the range [T −5 3
6 , T +

4 3
6 ], where T is the integer part of the previous 1st or 3rd subframe, bounded by

a given range [18...143]. This procedure is shown in Fig. 3.

Fig. 3. Closed loop search consist of integer and fractional pitch delay.

3 Proposed Scheme

In this section, we describe the details of proposed hiding scheme which utilizes
the PD as data carrier for AMR. The procedure is illustrated in Fig. 4.

Fig. 4. The flow chart of adaptive steganographic algorithm. DPD2
i,j represents the

second-order difference of pitch delay, ADPDi,j represents difference of the specified
adjacent pitch delay in a frame, ρi,j represents the cost function, D(x,y) is the additive
distortion function.

3.1 Principle of Distortion Minimization

Minimizing the overall embedding distortion which stems from image steganog-
raphy is an accepted approach to improve steganography security [7,9]. Differ-
ent from operations on pixels in image steganography, PD-based steganographic
approaches perform embedding during PD process. The specific framework of
distortion-minimization is established as follows.
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In PD-based embedding scenario, n PDs are obtained during speech com-
pression, denoted by p = {p1, ..., pn}. The cover vector x = {x1, ..., xn} = {0, 1}
can be obtained by a binary mapping function P(pi) = pi mod 2, i = {1, ..., n}.
Given the embedding rate α, the α · n-length binary message m can be embed-
ded by modifying x into y = {y1, ..., yn} using a variety of steganographic codes,
which satisfies

HyT = m (1)

where H is the parity check matrix employed by the steganographic codes.
Finally, the modified PD p′ = {p′

1, ..., p
′
n} is obtained satisfying P(p′

i) = y.
Assuming that the modification of PDs is mutually independent, the mini-

mal distortion could be realized by embedding messages with a flexible coding
method-STCs. The embedding and extraction are formulated respectively as:

y = Emb(x,m) = arg min
y⊆C(m)

D(x,y) (2)

Ext(y) = HyT = m (3)

where the overall distortion is computed by D(x,y), C(m) is the coset corre-
sponding to syndrome m, and y is the binary bit stream embedded with message.
The details for the implementation of STCs can refer to [4]. The goal of syn-
drome coding process is to search the stego y which satisfy HyT = m and have
minimal distortion. Typically, once the stego objects are obtained, the message
sequence can be extracted by computing HyT .

The design of embedding distortion is an important part of the minimizing
distortion framework, and could directly affect the performance of the embedding
algorithm. Given a PD, the embedding distortion caused by modification of PD
is described in the following subsection.

3.2 Distortion Function

Existing highly practical and successful scheme to image steganography is under
the framework of minimal distortion embedding. The framework consist of a well-
designed distortion function and a method for encoding the message to minimize
the total distortion. With the development of STCs, the codec can embed near
the rate-distortion bound for additive distortion. So the remaining task left to
the steganographers is the design of the distortion. Generally, adaptive image
steganography tends to embed data into complex textural regions. Similarly, it
is intuitive that modifications in complex areas are likely to cause less suspicions
in AMR steganography. For a specific pitch delay of subframe, the richer its
difference is, the more suitable it can be used to embed message.

A. Pitch Delay’s Short Term Stability. Due to the quasi-periodic property
of voiced speech segments, pitch period of voiced speech segments should be
stable for a short time. In AMR codec, pitch delay is the prediction of pitch
period, so the pitch delay sequence of voiced speech segments should be stable
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Fig. 5. Comparison in pitch delay statistics changes between cover and stego audio. (a)
are the changes between the pitch delay of cover and stego audio, (b) are the changes
in the second order difference pitch delay between cover and stego audio.

to some degree. The local continuity between adjacent PD has been proven
in [17]. The authors first defined a steganalytic feature which is the difference of
pitch delay (DPD) and constructed a Markov transition probability matrix of
the second-order difference of pitch delay (MSDPD) to describe the difference
between cover and stego audio. As can be seen from the Fig. 5, it is clearly that
the less statistics change caused by PD modification, the less embedding impact
can be achieved. Inspired by Ren et al.’s work, we apply the second-order DPD
to measure the embedding impact on PD. To be specific, assume that there
are n subframes, denoted as vector p = (p1, p2, ..., pi, ..., pn), i = 1, ..., n. The
second-order DPD can be calculated as follows:

DPD2
i = |pi+2 − 2pi+1 + pi| (4)

the larger distortion will be obtained for PDs with less differences, which means
that the PDs with similar value are not suitable for embedding. As a result, if
the embedding modifications are made in PDs with less differences, the security
against statistical steganalysis is expected to be enhanced.

B. Characteristics of Adjacent Subframe. As described in Sect. 2, in the
close loop search of the AMR, the second and fourth subframes are performed
based on the previous subframe TCLi, i = 1, 3. The specific process can refer
to Fig. 6. It indicated that there is a very strong correlation exists between

Fig. 6. Diagram of adaptive codebook search
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the adjacent subframes compared with subframe in different frame. Specifically,
the embedding operations would influence the correlation between the adjacent
subframe, such as the first and second subframe . Additionally, existing work [22]
have confirmed this phenomenon. It is intuitive that, we should consider the
relation between adjacent subframes as another important factor in designing
out cost function. The difference between the specified adjacent PD (ADPD)
subframes in a frame can be denoted in (5).

ADPDi,j =
{ |APi,1 − APi,2| , j = 1, 2

|APi,3 − APi,4| , j = 3, 4 (5)

where APi,j = (pi,1, pi,2, pi,3, pi,4) is the index of adjacent pitch delay in one
frame sorted by time. To be specific, AP is limited to the first and second sub-
frame and the third and forth subframe. As analysis above, the modification of
PD with larger difference in adjacent subframes could cause larger embedding
impact, and thus leaving a trail for steganalyzer. In order to reduce the embed-
ding impact, the message embedded in those PD values which are associated
with large differences of adjacent PD is better.

3.3 Definition of Additive Distortion Function

Based on the framework of minimizing embedding distortions stegaography, the
embedding impact can be measured by a non-negative additive distortions imple-
mented as independent modifications. Thanks to STCs, the overall minimum
distortion can be realized by this advanced steganographic codes. In our pro-
posed method, the distortion function of AMR PD embedding domain can be
calculated by (6).

D(x,y) =
n∑

i=1

4∑
j=1

ρi,j(xi,j ,yi,j) ∗ ∣∣xi,j − yi,j

∣∣ (6)

where the variable 0 ≤ ρi,j ≤ ∞ is the designed cost function to fully measure
the changing PD xi,j to yi,j , i denotes the ith frame, j denotes the jth subframe
in a frame. Next, the embedding costs ρi,j is computed as (7).

ρi,j(PDi,j , PD′
i,j) = α(DPD2

i,j + ε)−1 + β(ADPDi,j + ε)−1, (α + β = 1) (7)

where α ia and β are adjustment parameters in order to control embedding
impact together. As seen from (7), the embedding distortion is controlled by
DPD2 and ADPD simultaneously. Besides, ε is selected as a constant to prevent
the denominator is 0.

3.4 Practical Implementation

In practice, the secret message bits are embedded in a frame-by-frame manner.
For each subframe, the embedding and extraction with one single frame are
described as follows.
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A. Procedure of Data Embedding. The full description of embedding pro-
cedure combined with one single frame is illustrated in Fig. 7.

X

Y

Fig. 7. Instance diagram of embedding with one single frame.

(1) Preprocess. For each subframe, store the corresponding PD, and calculate
the corresponding cost scalar according to (7). After that, the PD vector
p = (p1, ..., pn), and the associated cost vector ρ = (ρ1, ..., ρn) are obtained.
Based on p, construct the cover vector as x = (x1, ..., xn).

(2) STCs coding. According to (2), STCs is subsequently used to embed an
αN -bit message m by modifying x into y as Emb(x,m) = y.

(3) Speech Encoding. Encoding the original frame again. For each T , the possible
modification T is controlled by yi. Specifically, if yi = xi, the corresponding
T remain unchanged, otherwise a suboptimal T̃ is searched. Taking the first
and second subframe at 12.2 kbit/s mode as an example. The suboptimal T̃0

and T̃1 are shown in (8), (9), (10) and (11) respectively.

T̃0 =

⎧⎪⎪⎨
⎪⎪⎩

{18, 20, 22, 24}, Tolo < 21
{Tolo − 2, Tolo, Tolo + 2}, 21 ≤ Tolo ≤ 140, Tolo%2 = 0
{Tolo − 3, Tolo − 1, Tolo + 1, Tolo + 3}, 21 ≤ Tolo ≤ 140, Tolo%2 = 1
{138, 140, 142}, Tolo > 140

(8)
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T̃0 =

⎧⎪⎪⎨
⎪⎪⎩

{19, 21, 23}, Tolo < 21
{Tolo − 3, Tolo − 1, Tolo + 1, Tolo + 3}, 21 ≤ Tolo ≤ 140, Tolo%2 = 0
{Tolo − 2, Tolo, Tolo + 2}, 21 ≤ Tolo ≤ 140, Tolo%2 = 1
{137, 139, 141, 143}, Tolo > 140

(9)

T̃1 =

⎧⎪⎪⎨
⎪⎪⎩

{18, 20, 22, 24, 26}, T0 < 23
{T0 − 4, T0 − 2, T0, T0 + 2, T0 + 4}, 23 ≤ T0 ≤ 139, T0%2 = 0
{T0 − 5, T0 − 3, T0 − 1, T0 + 1, T0 + 3, T0 + 5}, 23 ≤ T0 ≤ 139, T0%2=1
{134, 136, 138, 140, 142}, T0>139

(10)

T̃1 =

⎧⎪⎪⎨
⎪⎪⎩

{19, 21, 23, 25, 27}, T0 < 23
{T0 − 5, T0 − 3, T0 − 1, T0 + 1, T0 + 3, T0 + 5}, 23 ≤ T0 ≤ 139, T0%2 = 0
{T0 − 4, T0 − 2, T0, T0 + 2, T0 + 4}, 23 ≤ T0 ≤ 139, T0%2 = 1
{135, 137, 139, 141, 143}, T0 > 139

(11)

Finally, the compressed frame is obtained with N PDs carrying αN secret
message bits.

B. Procedure of Data Extracting. The extraction of message is relatively
simple. The recipient decoder the received frame to obtain all the n PD values,
and reconstructs the binary channel y. At last, the secret message can be extracts
as m = yHT .

4 Experiments

To evaluate the performance of the proposed steganographic algorithm, we
employed different speech sample files with PCM format as cover media for
steganography to conduct experiments. Several experiments with different audio
databases are performed in this section. In the experiments, we use the we use
RBR (Relative embedding rate) to denote the embedding ratio, which represents
the ratio of length of message m to the length of cover audio n. For example,
to test our scheme with a RBR of 0.2. If the number of subframes is 100, the
length of message is 20, the RBR α = m/n = 20/100 = 0.2.

4.1 Experimental Setup

The test audio databases is comprised of 2000 WAV audios from two public
speech databases. 1000 of these WAV audios are derived from CMU speech
databases [20], the rest of them are obtained from Tsinghua open speech
database [3]. Each WAV audio is mono, 8 kHz, 16 bit quantization, and saved in
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PCM format with a length of 10 s. These WAV audios contain digital speeches
from different people and different languages, including English and Chinese. All
of these WAV audios are used to produce cover and stego AMR audio databases
respectively. The following three audio base will be explored in the next section.

1. CSB. 2000 WAV audios are encoded by 3GPP public floating-point AMR
codec [5] with encoding rate modes 10.2 kbit/s and 12.2 kbit/s. The total
number of cover AMR samples is 2000 * 2 = 4000.

2. HSB. The steganography of Huang’s [10] is implemented under same rate
modes of CSB. Secret messages are embedded with various RBR of 10%,
20%, 40%, 50%, 60%, 80% and 100% for each rate mode from CSB. The total
number of stego AMR samples in HSB is 2000 * 2 * 7 =28000.

3. ASB. The steganography of our proposed adaptive embedding method is
implemented under same rate modes of CSB. All WAV audios from CSB
are embedded with an RBR of 10%, 20%, 40%, 50%, 60%, 80% and 100%
for each rate mode. So the total amount of stego samples in this database is
2000 * 2 * 7 = 28000.

4.2 Audio Quality

Perceptual evaluation speech quality (PESQ) [18] is commonly used as a mea-
sure of quality degradation of speech signals by comparing an original signal
with a degraded signal, and the value of PESQ can be regarded as a predic-
tion of the perceived quality. We applied PESQ to test the signals decoded after
the stego codec. In the experiment, the output PESQ of 100 cover audios and
corresponding 100 stego audios generated by the two steganographic algorithms
are measured. The distribution of PESQ score between stego audios the PDAS
and Huang’s schemes under 12.2 kbit/s and 10.2 kbit/s are shown in Figs. 8
and 9 respectively. From the comparisons in the Fig. 8, we can find that fluctu-
ation of PDAS’s PESQ is less than Huang’s PESQ, and the median of PDAS is
greater than Huang’s in most case. The results indicates our proposed method
maintain a better hearing quality. The minimal embedding impact and search
of sub-optimal PD ensures that once a PD is modified, the caused error will be
handled automatically. As a major advantage, the proposed PDAS methods do
not affect PESQ much.

4.3 Statistical Security

The steganalytic work consists of attacking against our proposed embedding
scheme PDAS and Huang’s steganographic schemes. For security evaluation,
the recently proposed MSDPD feature [17] is leveraged, which performs a high
effectiveness and strong security in detecting PD-based schemes. The LibSVM
toolbox [1] is employed for classification. Default parameters of SVM with Gaus-
sian kernel are set in all experiments.

The experiment results under 12.2 kbit/s and 10.2 kbit/s are shown in
Table 1. We use the test error rate (TER) to measure the detection performance,
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Fig. 8. The distribution of PESQ for different steganography schemes for 12.2 kbit/s
mode.

Fig. 9. The distribution of PESQ for different steganography schemes for 10.2 kbit/s
mode.

which is defined as the proportion of the tested AMR audios incorrectly classified
for each of the categories. The calculation of TER is shown in (12).

TER =
PFA + PMD

2
(12)

where PFA and PMD are the false alarm probability and the miss detection
probability respectively. TER shows the error rate of the steganalysis scheme
which is used to detect the tested steganography schemes. So if the TER is
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Table 1. Average TER for our proposed PDAS scheme and Huang’s scheme [10] under
the steganalysis method [17].

RBR Scheme under 12.2 kbit/s Scheme under 10.2 kbit/s

PDAS Huang PDAS Huang

10% 0.4183 (± 0.0114) 0.3609 (± 0.0087) 0.4340 (± 0.0097) 0.3535 (± 0.0116)

20% 0.3384 (± 0.0126) 0.2140 (± 0.0072) 0.3648 (± 0.0114) 0.1979 (± 0.0098)

40% 0.1147 (± 0.0081) 0.0550 (± 0.0049) 0.1309 (± 0.0077) 0.0540 (± 0.0041)

50% 0.0670 (± 0.0049) 0.0279 (± 0.0032) 0.0706 (± 0.0048) 0.0298 (± 0.0036)

60% 0.0317 (± 0.0046) 0.0191 (± 0.0032) 0.0326 (± 0.0040) 0.0179 (± 0.0050)

80% 0.0071 (± 0.0019) 0.0069 (± 0.0032) 0.0074 (± 0.0019) 0.0068 (± 0.0023)

100% 0.0033 (± 0.0014) 0.0031 (± 0.0015) 0.0048 (± 0.0019) 0.0043 (± 0.0031)

Fig. 10. ROC curves against MSDPD steganalytical method.

larger, it means the steganography method is more safer to escape from the
detecting of the steganalysis scheme.

Then 500 pairs of the AMR audios (stego and clean) are randomly selected
for the training stage, and another disjoint 500 pairs are also randomly selected
for testing. Every detection experiment is always conducted over 10 splits on
the training set and testing set. The last result is shown in Table 1, for each
steganalysis scheme, the TER of the PDAS scheme is bigger than the existing
schemes [10] under the same RBR. Besides, the receiver operating characteristic
(ROC) curves using steganalyzers are depicted in Fig. 10. In comparisons with
Huang’s schemes, the detection rates and the ROC curves indicate that our
proposed method reduces the probability of detection significantly, which implies
a higher level of steganographic security.



288 C. Gong et al.

4.4 Hiding Capacity

From the principle of the proposed scheme, the secret information is embedded
in each sub-frame one bit by one bit. For example, in 12.2 kbit/s mode, there is
one frame for 20 ms. In each frame, there are 4 sub-frame for 5 ms. It means that
for 20 ms AMR audio, there are 1

20∗10−3 ∗4 = 200 bit/s bit can be embedded. So
the hiding capacity of the proposed PDAS scheme is equal to Huang’s scheme
[10] and greater than Yan’s scheme [22] (100 bit/s).

5 Conclusion

In this paper, a novel PD-based adaptive steganographic scheme is proposed.
To against the current effective steganalytic method, the results of detection is
significantly reduced, which benefits from effective STCs and suboptimal pitch
delay searched. Experimental results show that satisfactory levels of stegano-
graphic security and speech quality are achieved with adequate payloads.

As part of our future work, the more embedding impact of pitch delay is to
be further studied and the distortion definition is to be optimized. What’s more,
the multi-layered STCs is to be attempted for enhancing the statistical security.
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Abstract. This paper tackles the problem of JPEG steganography and
steganalysis for color images, a problem that has rarely been studied so
far and which deserves more attention. After focusing on the 4:4:4 sam-
pling strategy, we propose to modify for each channel the embedding rate
of J-UNIWARD and UERD steganographic schemes in order to arbitrary
spread the payload between the luminance and the chrominance compo-
nents while keeping a constant message size for the different strategies.
We also compare our spreading payload strategy w.r.t. two strategies:
(i) the concatenation of the cost map (CONC) or (ii) equal embedding
rates (EER) among channels. We then select good candidates within the
feature sets designed either for JPEG or color steganography. Our con-
clusions are threefold: (i) the GFR or DCTR features sets, concatenated
on the three channels offer better performance than ColorSRMQ1 for
JPEG Quality Factor (QF) of 75 and 95 but ColorSRMQ1 is more sensi-
tive for QF = 100, (ii) the CONC or EER strategies are suboptimal, and
(iii) depending of the quality factors and the embedding schemes, the
empirical security is maximized when between 33% (QF = 100, UERD)
and 95% (QF = 75, J-UNIWARD) of the payload is allocated to the lumi-
nance channel.

Keywords: Steganography · Steganalysis · JPEG · Color · Features

1 Introduction

Since image steganography may be used to hide potentially sensitive messages
inside mainstream image formats, it is surprising to notice that the majority
of academic contributions in steganography and steganalysis deals with exotic
image formats such as lossless raw coding (PGM, PPM) or grayscale JPEG
images. Moreover, if a steganographic implementation addresses the most popu-
lar image format of the Web, i.e. color JPEG images, it is usually done without
distinguishing the color components.
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More accurately, whenever embedding is realized on color numerical images in
the pixel domain (usually for steganalysis purposes), it is most of the time imple-
mented independently on each component [1,4,5] but more advanced schemes
use a synchronization strategy to have more coherent embedding changes across
the different channels [13]. Popular implementations of color JPEG steganogra-
phy such as F5 [15] or J-UNIWARD [8] alter DCT coefficients without taking
into account their related color channels or the related component statistics.

Regarding the steganalysis of color images, Ker et al. underlined in [10] that
most of the research carried out over the past ten years focused on grayscale
images, and that methods taking into account correlation between channels were
left to be desired. Regarding spatial steganography and RGB components, Gol-
jan et al. developed the Spatial and Color Rich Models (SCRMQ1) [5], which
can be seen as a spatial extension of the Spatial Rich Model (SRM) [3] that
uses Color Co-occurrence Matrices. These features, as well as other specific fea-
ture sets, such as the Gaussian filter bank features [1] (which is an extension of
the SCRMQ1), or the CFA-aware features [4], have been particularly designed
for color pixel-based steganography. Recently a steganalysis scheme using deep
convolutional networks [16] has been proposed, it uses 3 disjoint layers (one for
each color components) that are pooled together in the next layers. However the
complexity learning phase makes this approach prohibitive to benchmark a large
variety of different embedding strategies.

To the best of our knowledge there is no color-specific steganalysis method for
JPEG images. For grayscale JPEG images however, among the most advanced
feature sets are the DCTR (DCT residuals) [7] and the GFR (Gabor Filter resid-
uals) [14]. The DCTR extraction method computes residuals from convolutions
with 8×8 DCT basis vectors and the features are generated by computing his-
tograms on each residual. The same methodology is adopted for GFR by using
oriented Gabor kernels instead.

The overall lack of solutions for color JPEG steganography and steganalysis
can also be explained by the diversity of color JPEG images that are not all
coded in a unique way. For example, since the chroma sub-sampling option is also
variable between images (see Sect. 2), the dimensions of the color components
of a JPEG image are dependent on the acquisition device or the developing
software.

In this paper we propose to extend the popular J-UNIWARD [8] and
UERD [6] algorithms to color JPEG, and to evaluate their detectability by
designing appropriate feature sets. The next section explains how to obtain dif-
ferent versions of the embedding scheme by spreading the payload among the
color components. Section 3 presents feature sets used in this framework, they
are derived from popular feature sets in the literature (SCRMQ1, DCTR and
GFR). Section 4 provides the different results and associated conclusions related
to the paper, both on the best embedding strategy and the most sensitive feature
sets for steganalysis.
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2 Practical Optimization of the Embedding Schemes

Without loss of generality, we have decided to study here the 4:4:4 JPEG sam-
pling format. This choice is motivated by the fact that, as presented in Table 1,
certain sources such as the photo sharing website Flickr mainly use this sampling
strategy. However, note that the proposed methodology (choice of the spreading
factor in Sect. 2, choice of the most sensitive feature sets in Sect. 3), can also be
adopted for other sampling formats.

Table 1. Statistics of chroma sampling strategies for 10,000 “Explored” images down-
loaded at full resolution from Flickr.com

Chroma sub-sampling 4:4:4 4:2:2 4:2:0

Proportion 65% 8% 27%

Furthermore, because of their excellent performances, we decided to adapt
J-UNIWARD and UERD algorithms, respectively proposed by Holub et al. and
Guo et al. J-UNIWARD is a ternary adaptive embedding scheme which computes
costs for each DCT coefficients based on the impact of a ±1 modification on the
wavelet decomposition of the spatial representation of the image. UERD uses a
different approach to compute the cost, which is based on the DCT coefficients
variation within a block and its neighboring blocks.

2.1 Parametrization of the Payload Distribution
for YCbCr Components

Because a JPEG color image is composed of 3 color components, it is not
straightforward to spread the payload among Y , Cb and Cr. Note that in order
to provide a fair comparison, the same message size has to be embedded for each
spreading strategy. This problem can be seen as a problem of batch steganog-
raphy [9], and hence we can use several strategies to allocate the total payload
within the three color components. We list below 3 natural ways to deal with
this issue:

• Cost Map Concatenation (CONC): A first strategy is to compute a
common cost map by firstly concatenating the Y CbCr components, secondly
computing a joint distortion map, and finally computing the embedding prob-
ability for the embedding rate α.

• Equal Embedding Rate (EER): One straightforward way to perform the
embedding is to set the same payload rate for the three color channels, but
this strategy omits the fact that the chroma components contain on average
less information than the luminance component and that it is quantized in
a different way. Table 2 shows average number of non-zero-AC (nzAC) coeffi-
cients for BOSSBase in the JPEG 4:4:4 domain. Firstly, we can observe that

http://www.Flickr.com
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the number of luminance nzAC coefficients represents between around 36%
(QF = 100) and 80% (QF = 75) of total number of nzAC coefficients. Sec-
ondly, since chroma components are less informative, for an equal embedding
rate the embedding should be more detectable for the chroma channels. This
rational which will be practically assessed in Sect. 4, motivates the following
more flexible strategy.

• Arbitrary Repartition of the Payload Between the 3 Channels
(ARB): This strategy, which is detailed in the rest of this section, consists
in using a new embedding parameter to arbitrary spread the payload across
the Y CbCr channels.

Table 2. Statistics (average number of nzAC coefficients) of BOSSBase for quality fac-
tor of 75, 95 and 100, 4:4:4 chroma sampling. BOSSBase in color JPEG was generated
by first exporting to PPM format using the standard BOSSBase conversion routine

Component Mean (QF=75) Ratio Mean (QF=95) Ratio Mean (QF=100) Ratio

Y 41340 79% 96893 62% 183715 36%

Cb 6087 11% 29284 19% 157970 31%

Cr 5001 10% 29105 19% 167419 33%

We propose to distribute the payload among luminance and chrominance
components in the following way. Given NY , NCb

and NCr
the number of non-

zero AC coefficients (nzAC) for respectively Y , Cb and Cr, and α the total
embedding rate per nzAC for the three channels, we set:

• P : the message size, i.e. the payload, in bits, which has to stay constant for
all strategies,

• α: the total embedding rate, in bit per nzAC coefficient, as it is classically
defined in steganography

• a couple of parameters (β, γ) such that γ(1 − β) defines the embedding rate
associated to the luminance channel (in bit per nzAC luma coefficient) and
γβ the embedding rate associated to the two chrominance channels (in bit
per nzAC chroma coefficient). Note that β = 0 implies that all the payload is
embedded in the luminance channel (γ = α), and β = 1 means that the whole
payload is carried by the chroma channels. γ can be seen as a necessary degree
of freedom used to choose β ∈ [0, 1] and to be able to compare embeddings
at equal message sizes.

The embedded message size (in bits) is then given by:

P = γ [(1 − β) NY + β (NCb
+ NCr

)] . (1)
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Fig. 1. Left: allocations of the message sizes among the different channels. Right: values
of the different embedding rates w.r.t. the parameter β. For this example, the number
of nzAC coefficient is close to the one obtained for QF = 75: NY = 41000, NCb = 6000,
NCr = 5000.

The embedding rate per nzAC α is then:

α =
P

NY + NCb
+ NCr

=
γ [(1 − β) NY + β (NCb

+ NCr
)]

NY + NCb
+ NCr

. (2)

We consequently have four parameters (α, β, P, γ) and one degree of freedom
to choose the embedding rate or the payload. We can set the message size P
and choose β, and α and γ will be calculated using (2) and (1) respectively. In
a more conventional way, we can set the embedding rate α and choose β, and P
and γ will be computed using (2) and (1) respectively. If we worked on grayscale
images, we would set β = 0 which means P = αNY .

Note also that the equal embedding rate strategy is equivalent to have β = 0.5
since in this case all embedding rates are equal to α.

Moreover, the proportion of the payload RL carried by the luminance channel
is given by:

RL =
(1 − β) NY

(1 − β) NY + β (NCb
+ NCr

)
. (3)
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Figure 1 illustrates evolutions of message sizes and embedding rates for the
three components w.r.t. the parameter β for two embedding rates of 0.2 and 0.4
bit per nzAC and for arbitrary (NY , NCb

, NCr
). We can notice that the embed-

ding rate can be larger than the maximum embedding rate for J-UNIWARD
and UERD (log2(3) bits), but this happens only for low quality factors, high
embedding rates and β close to 1. In Sect. 4 we shall see that these configura-
tions provide very low practical security and will consequently never be used in
practice.

3 Feature Sets for Steganalysis of Color JPEGs

We decide to first benchmark the steganographic scheme by adapting methods
dedicated either for color spatial or JPEG grayscale steganographic schemes.

Our first choice is the Color Rich Model, which is composed of the SRMQ1
features, augmented by a collection of 3D co-occurrences of residuals between
color channels to obtain a set of 18,157 features referred in [5] as SCRMQ1.
Since the images we analyze are in the JPEG domain, we propose an alternative
version of the SCRMQ1 where residuals are computed in the Y CbCr color space.
That means that the RGB components are first converted into Y CbCr and then
all residual filtering and co-occurrence computation are performed in the exact
same way as for SCRMQ1.

Table 3 shows for UERD and J-UNIWARD the difference between computing
the SCRMQ1 in the RGB domain or in the Y CbCr domain, one can see on this
example (that generalizes to other embedding rates) the necessity of computing
features in the appropriate subspace. This can be explained by the fact the
spatial discrepancies captured by the SRMQ1 features are more significant when
applied in the same color space than the embedding. Since no synchronization
strategy is applied between the color components, the co-occurrences between
the color channels are more effective as well.

Table 3. Impact of computing the SCRMQ1 feature set in the appropriate domain for
Color-JPEG steganography. α = 0.4, β = 0.7, QF = 95

Color space RGB Y CbCr

PE (UERD) 14.38% 8.13%

PE (J-UNIWARD) 32.39% 8.02%

Because both DCTR and GFR feature sets provide excellent performance on
grayscale images, we also decide to use these features on color images by sim-
ply concatenating the features computed for each channel. Here, by definition
the features are computed directly in the Y CbCr color space (only the inverse
DCT transform is computed before filtering with DCT kernels for C-DCTR or
Gabor kernels for C-GFR), and we end up with 3 × 8000 = 24,000 features for
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Color-DCTR features (abbreviated C-DCTR) and 3×17000 = 51,000 for Color-
GFR (abbreviated C-GFR). Note that even if C-DCTR and C-GFR do not
compute co-occurrence matrices between color channels as SCRMQ1, discrep-
ancies between embedding strategies between different channels can be captured
by the concatenation operation. For example one can expect that by setting the
embedding parameter β = 0, C-DCTR and C-GFR feature sets will capture a
discrepancy between the statistical properties of the luminance channel w.r.t the
chroma channels.

4 Results

4.1 Experimental Protocol

In order to evaluate the proposed scheme we generate a version of BOSSBase [2]
from the available RAW images and we changed the script by directly generating
a JPEG image from the cropped and scaled 512× 512 PPM image. For all these
experiments we choose:

• three JPEG quality factors, 75, 95 and 100,
• two embedding rates, α = 0.2 and α = 0.4 bit per nzAC coefficient.
• two steganographic schemes J-UNIWARD and UERD (see Sect. 2)

Fig. 2. J-UNIWARD: Comparison w.r.t. β for different feature sets, JPEG QF = 75.
Horizontal lines are results for the CONC strategy.
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• the parameter β fluctuating in the range [0,1] to assess the impact of payload
allocation, recalling that β = 0.5 is tantamount to the Equal Embedding
Rate strategy. For α = 0.4, we do not benchmark the scheme for β = 0.9 or
β = 1.0 since it can be that in this case the embedding rate in the chroma
components is larger than log2(3) bits.

• for comparison purposes the CONC strategy is also benchmarked.

All detectors are trained as binary classifiers implemented using the FLD
ensemble [12], with default settings. The ensemble by default minimizes the
total classification error probability under equal priors:

PE = min
PFA

1
2
(PFA + PMD),

where PFA and PMD denote respectively the false-alarm and missed-detection
probabilities. PE is averaged over ten different training and testing sets, in which
the 10,000 cover images and the associated 10,000 stego images are randomly
divided into two equal halves for pair-training and testing. We report this value
as PE for values of γ satisfying (1) and (2).

Fig. 3. UERD: Comparison w.r.t. β for different feature sets, JPEG QF = 75. Hori-
zontal lines are results for the CONC strategy.
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Fig. 4. J-UNIWARD: Comparison w.r.t. β for different feature sets, JPEG QF = 95.
Horizontal lines are results for the CONC strategy.

4.2 Comparison Between Embedding Strategies

We look at the embedding strategies chosen between ARB, CONC and EER
(i.e. β = 0.5) that gives the highest PE considering the most efficient feature
sets, i.e. the minimum of PE over the 3 feature sets. From these results, different
comparisons can be established:

• As a general conclusion, for all feature sets the arbitrarily spreading of the
payload can allow to achieve the highest practical security.

• For QF = 75 (see Figs. 2 and 3), it is reached for β � 0.2 for J-UNIWARD and
β � 0.3 for UERD. For example for J-UNIWARD, using equations (3) and
(2), it means that on average 94% of the payload is carried by the luminance
channel which itself carries 79% of the nzAC coefficients.

• For QF = 95 (see Figs. 4 and 5), gives the same conclusions w.r.t. the optimal
values of β. In this case however, 85% of the payload is carried by the lumi-
nance channel for J-UNIWARD, which conveys 62% of the nzAC coefficients.

• For QF = 100 (see Figs. 6 and 7), the maximal empirical security is reached
for β � 0.3 for J-UNIWARD and β � 0.4 for UERD. In this case 50% of the
payload is carried by the luminance channel on average for J-UNIWARD and
33% for UERD.
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Fig. 5. UERD: Comparison w.r.t. β for different feature sets, JPEG QF = 95. Hori-
zontal lines are results for the CONC strategy.

Moreover, two important remarks can be drawn from these extensive sets of
results:

• We can see that the naive strategies of setting β = 0 (all the payload is
embedded in the luminance channel) or β = 0.5 (the embedding rates are
equal) are suboptimal. For example for J-UNIWARD at α = 0.2 and QF = 75
using the best feature set (C-GFR), the gap between β = 0.0 and β = 0.2 (the
optimal strategy) ΔPE � 2%, between β = 0.2 and β = 0.5 is ΔPE � 6%.
These two conclusions are not surprising: pushing all the payload in the lumi-
nance channel is equivalent to not taking into account possible dependencies
between luminance and chroma components. Furthermore this leads to a con-
centration of changes on the same component, hence a higher detectability.
On the other hand, the EER strategy would be optimal only if the capacity
of the scheme would be directly proportional to the number of nzAC, and we
know that it is not true in practice (see for example the Ker laws [11].

• The CONC strategy (concatenation of the c,osts then embedding), repre-
sented by the vertical lines on the different plots, is also clearly sub-optimal
for the different embedding rates, embedding schemes or quality factors. For
example for J-UNIWARD at α = 0.2 and QF = 75, the gap between β = 0.2
and CONC is ΔPE � 13%. This can be explained by (i) the fact that empir-
ical costs computed by J-UNIWARD and UERD have be designed w.r.t.
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Fig. 6. J-UNIWARD: Comparison w.r.t. β for different feature sets, JPEG QF = 100.
Horizontal lines are results for the CONC strategy.

grayscale image steganography and they do not take into account potential
dependencies between color channels and (ii) the fact that luma and chroma
components do not use the same quantization matrices except for QF = 100.
The mixing between costs computed using completely different quantization
steps can explain the non-adaptivity of the CONC strategy. When QF �= 100
we can see that the CONC strategy is however closer to the optimal solution
for UERD than for J-UNIWARD.

As a more general comparison, we can see that as for grayscale JPEG steganog-
raphy the practical security of UERD is slightly more important than the practical
security of J-UNIWARD, especially for low embedding rates. For example at QF
= 95 using C-GFR, the gap is ΔPE � 3% for α = 0.2, at QF = 100, the gap is
ΔPE � 4% for α = 0.2.

4.3 Comparison Between Feature Sets

We now draw few conclusions on the steganalysis side, depending on the JPEG
QF.

For QF=75 and QF=95: the C-GFR feature sets outperforms the C-DCTR
feature sets by a small margin for UERD (ΔPE � 3% at QF = 75, ΔPE � 5%
at QF = 95 for optimal β), and the SCRMQ1 features set by a large margin.
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Fig. 7. UERD: Comparison w.r.t. β for different feature sets, JPEG QF = 100. Hori-
zontal lines are results for the CONC strategy.

C-DCTR shows superior performance w.r.t. the two other feature sets except
for J-UNIWARD at QF = 95 and β ≥ 0.3 where C-DCTR is more performant.
However for the embedding values of β offering the best empirical security, C-GFR
are rather efficient.

For QF=100: SCRMQ1 features are more sensitive than the two other fea-
ture sets. This can be explained by the fact that lot of information from the
uncompressed image is kept at QF = 100 since all quantization steps are equal
to 1. Consequently, SCRMQ1 computed in the Y CbCr appears to be one ideal
candidate for accurate steganalysis.

5 Conclusion and Perspectives

This paper has proposed an empirical analysis of JPEG steganography and ste-
ganalysis on color images. Our conclusions are three-fold: (i) using constant
embedding rate across channel or concatenating the cost maps are not optimal
embedding strategies since they do not take into account statistical dependen-
cies between the color channels, (ii) especially for JPEG QF of 75 and 95, most
of the payload should be concentrated in the luminance channel to maximize
empirical security, (iii) over the three reputed feature sets used in color or JPEG
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steganalysis, the concatenation of GFR features on the 3 channels offer on aver-
age the best performance for QF = 75 and QF = 95, but SCRMQ1 computed
in the Y CbCr domain offers superior performances for QF = 100. Future works
will focus on implementing similar analyses for other color sampling mechanisms
such as 4:2:2 or 4:2:0, and to design deep learning schemes dedicated to color
JPEG images.

Acknowledgments. The authors would like to thank Rémi Duprès, who designed
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Abstract. Audio forensic plays an important role in the field of informa-
tion security to address disputes related to the authenticity and original-
ity of audio. However, some audio forensics methods presented in existing
references were evaluated under either non-forensic oriented databases or
private databases which were not publicly available. It creates difficulty
for researchers to make comparison between different methods. In this
paper we established VPCID, a VoIP phone call identification database
for audio forensic purpose. As there is an increasing trend of phone scams
or voice phishing via VoIP, through which the caller’s identity can be
hidden or forged easily, it is demanded to address the issues of identify-
ing VoIP phone calls. The VPCID database is comprising of 1152 VoIP
call recordings and 1152 mobile phone call recordings, each of which
has more than two minutes. Recordings were collected from 48 different
speakers using different smart phones and by considering varies recording
conditions such as VoIP software, locations etc. We used MFCC (Mel-
Frequency Cepstral Coefficients) and ACV (Amplitude Co-occurrence
Vector) based features respectively equipped with SVM (Support Vec-
tor Machine) classifier to perform classification on the database. We also
evaluated our own database on a CNN (convolutional neural network),
but the performance is not too much satisfactory. Therefore the VoIP
phone call identification problem is challenging and it calls for more effec-
tive solutions to address the problem. We hope our proposed database
will convey more than this paper and inspire the future studies, which
is openly available in below link, http://media-sec.szu.edu.cn/VPCID.
html, and we welcome the use of this database.
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1 Introduction

With the popularity of mobile phone and the development of Internet technol-
ogy, many new fraud methods based on audio have emerged [1]. One of numerous
challenges is VoIP (Voice over Internet Protocol) phone call fraud [2]. Unlike tra-
ditional landline or mobile telephone call, VoIP phone call is transmitted over
the Internet connection via VoIP servers, which allows users to communicate
without using a telephone number or a SIM (Subscriber Identity Module) card.
In these types of systems, criminals can easily forge their caller numbers without
verification, and so that their true identities (IDs) are disguised. Fraud victims
are usually confused by the caller IDs faked as being from polices, banks, or com-
panies with well-known telephone numbers [3]. Therefore, identifying whether a
phone call is via VoIP or not can help to verify the identity of a caller and
prevent possible frauds.

As a branch of digital multimedia forensics technologies, audio forensics
focuses on analysing the authenticity, originality, and reliability of audio. Audio
forensics methods may help to address the issue of VoIP phone call identifica-
tion. However, a possible difficulty that may hinder the development of effective
audio forensics methods is that there is no suitable dataset for evaluation. In fact,
although there are plenty of audio databases, only a few of them are specifically
designed for forensic purpose.

Many audio forensics methods presented in existing references were evaluated
on non-forensic oriented databases. For example, TIMIT [4] database, which was
originally designed for automatic speech recognition systems, has been used in
audio codec identification [5] and double compressed AMR detection [6]. WSJ-
CAM0 speech corpus of British English [7] was originally designed for speech
recognition and it was exploited for detecting recaptured audio [8]. NOIZEUS
[9] consists of speeches added with noise under different SNR conditions, which
was originally built for speech enhancement and was used for electronic disguised
voice identification [10].

In recent years, some datasets have also been constructed to address specific
audio forensics issues. For instance, LIVE RECORDS [11] and MOBIPHONE
[12] were built for identifying different smart phones. SAS Corpus [13] was
built for detecting spoofed speech. ASVspoof 2017 Corpus [14] was designed
for audio replay detection. In addition, many audio forensics experts built their
own databases and evaluated their proposed methods on them. For example,
Luo et al. [15] built a dataset for smart phone identification and verification.
Hicsonmez et al. [16] constructed a dataset consisting of 1,000 audio samples
from 500 songs for audio codec identification.

Unfortunately, as far as we know, for the problem of VoIP phone call iden-
tification, there is no publicly available database for evaluation. Moreover, since
audio transmitting between caller and callee undergoes a series of complex trans-
formations such as transcoding, degradation and so on, it is difficult to simu-
late the transmitted audio on existing datasets. Therefore, building a specific
database for VoIP phone call identification is of great interest for forensics
research society. To this aim, we have built a database called VPCID (VoIP
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Phone Call Identification Database). The database contains two different type
of call recordings, half of which are mobile phone call recordings and the other
half are VoIP phone call recordings. The call recordings are collected from 48
volunteers using different smart phones when they make phone calls. In order to
simulate the real-world situations as much as possible, we set different locations
for volunteers in controlled environments and we also considered using a variety
of VoIP software programs. Each call lasted more than two minutes and finally
we obtain a database with total 76-h call time and 2,304 audio files. A detailed
description of the database is presented in this paper. We have also tried two
feature based audio forensics methods and a CNN based method to differenti-
ate VoIP phone call from mobile phone call. The results indicate that existing
methods do not handle the problem well. Therefore, it calls for more advanced
methods be developed in the near future.

The rest of this paper is organized as follows. We provide a brief introduction
of audio transmission in telephony network in Sect. 2. In Sect. 3, we describe the
details of our database. In Sect. 4, we present experimental results for evaluating
existing audio forensics methods on our database. The conclusion is given in
Sect. 5.

Fig. 1. A description of telephony systems.

2 Audio Transmission in Telephony Networks

In this section, we briefly introduce some basics of the audio transmission process
in telephony networks.

As shown in Fig. 1, there are three types of telephony networks, including
landline networks, mobile networks, and VoIP networks. Audio signal is first
encoded into bit-streams and different network have different codecs. For exam-
ple G.711 is widely used in landline networks, while GSM HR, GSM FR, and
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AMR are used in mobile networks. The codecs used in VoIP networks include
G.711, G.726, G.729, iLBC, Speex, and so on. A gateway is a networking device
used for data transmission between different networks. The encoded audio data
is transcoded at gateways when it is transmitted through different networks.
Apart from going through complex encoding and decoding processes, audio
undergoes various forms of degradation when it is transmitted in telephony net-
works. Although some methods such as [17–21] have been proposed to identify
the codecs and transcoded audios [16], it seems that it is less effective to iden-
tify VoIP call based on codecs because there are many forms of degradation in
telephony networks as disturbance factors for codec identification.

A possible solution is to identify the source of the received audio directly.
But the received audio from telephony network is also affected by many factors,
some of which are listed as follows:

– Device. The hardware devices used in telephony networks play an important
role. For the caller and callee, the brands and the models of their phones
should be taken into account for audio quality.

– VoIP software. There are a variety of VoIP software programs can be used
for communication. Different software programs may utilize different codec
which leads to different coding efficiency and quality.

– Location. With different locations of caller and callee, the communication
channels can be different. Therefore the quality of a call varies from location
to location.

– Network traffic. The network traffic varies from time to time. To avoiding
network collapse, congestion control techniques are used. If the number of
user suddenly increases at a sudden, the call quality may be affected.

As we can see, there are a lot of factors that may affect the audio signal
received by a callee. To build a database for VoIP call identification, we need to
take these factors into account as many as possible. Since almost everyone uses
a smart phone for communication, we limit our study on the communication
between mobile network and VoIP network, which is shown in the dash box of
Fig. 1.

3 The VPCID Database

In this section, we give a detailed description of VPCID—the VoIP Phone Call
Identification Database. We first introduce the data collecting process and the
distributions of recording data. Then we give the annotations of the data.

3.1 Data Collection

The VPCID database is designed to provide various kinds of mobile phone call
recording data and VoIP phone call recording data for forensics researchers so
that they can develop and evaluate their methods for identifying the source of a
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phone call. For simulating the real-world situations as much as possible, we take
into account the following factors and set various configurations when collecting
our data:

1. The influence of smart phone devices.
2. The influence of speakers.
3. The influence of background noise.
4. The influence of network traffic.
5. The influence of VoIP software.
6. The influence of recording formats.

Table 1. The brands and the models of 48 smart phones.

Index Brand Model Index Brand Model

#1 iPhone 6s plus ML6G2CH/A #25 iPhone 5s A1530

#2 Huawei Honor 8 FRD-AL00 #26 MI MI6

#3 iPhone 6s MKT12LL/A #27 iPhone 6 MG492ZP/A

#4 MI Redmi Note3 #28 MX 6 M685C

#5 iPhone 6 plus MGAK2ZP/A #29 iPhone 7 MN8L2ZP/A

#6 MI Redmi Note2 #30 MI MI 5S

#7 iPhone 7 MNGQ2CH/A #31 Huawei P9 EVA-AL10

#8 MI MI 6 #32 Huawei Honor 8 FRD-AL10

#9 iPhone 6 plus MGA82CH/A #33 iPhone 6s plus MKU72ZP/A

#10 MI MI Note LTE #34 Nubia Z9mini

#11 iPhone 6s ML7H2CH/A #35 MI Redmi Note4

#12 OnePlus 1 A0001 #36 Huawei Honor 8 FRD-AL10

#13 iPhone 6 MG4H2ZP/A #37 iPhone 6 MG4J2ZP/A

#14 MI MI 4S #38 Samsung GT-I9070

#15 iPhone 6 MG4J2ZP/A #39 Oppo R9tm

#16 Huawei Honor 6 H60-L11 #40 MX 3 M356

#17 iPhone 6 MG4J2CH/A #41 MI MIX2

#18 Nubia Z11 mini NX549J #42 Lenovo Zuk z2 pro

#19 iPhone 6s MKQP2J/A #43 iPhone 6s NKU92ZP/A

#20 Huawei Honor 9 STF-AL00 #44 Huawei Honor 8 PRA-AL00

#21 Samsung GALAXY S4 I9500 #45 iPhone 6 plus MGAK2ZP/A

#22 MI MI 4 #46 Oppo R9sk

#23 iPhone SE MLXQ2CH/A #47 iPhone 6s ML7M2CH/A

#24 MI Redmi Note 4X #48 Huawei Honor 6 H60-L03
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Fig. 2. Distribution of different brands.

The database is collected with the help of 48 volunteers from Shenzhen Uni-
veristy, including 6 females and 42 males. They are identified as speakers and
indexed by a number from S1 to S48. Among them, S4, S33, S39, S44, S45, and
S47 are females. The volunteers provide their smart phones for data collection,
and as a result, there are 48 different smart phones. The devices are indexed by a
number from #1 to #48. In Table 1, we show the brands and the specific models
of the smart phones used by the volunteers. Figure 2 shows the distribution of
smart phone brands.

In order to consider different background noise, we set 4 locations for callers
and 2 locations for callees, leading to a combination of 8 different source-and-
destination configurations for data collection. The scenes of each location are
shown as Fig. 3. To take account the network traffic, the phone calls are con-
ducted in three different time periods of the day, i.e., morning (8:00–12:00),
afternoon (13:00–17:00), and night (19:00–23:00).

In our data collection process, a volunteer players the role of a caller, who
is required to make a mobile phone call and then a VoIP phone call for each
time period. Each phone call should last at least 2 min. Only the caller speaks,
while the callee records the speech with the smart phone being dialed. In order to
eliminate the influence of speakers, two volunteers share the same data collection
configuration. The detailed data collection processes are designed as follow.

Step 1. The caller X in Location A uses a smart phone x to make a phone
call to callee Y in Location E via mobile network. The callee records
the speech of X with the called smart phone y. This step simulates the
process of the communication between two mobile networks.

Step 2. The caller X in Location A uses the smart phone x to make a VoIP
phone call to callee Y in Location E by using a VoIP software program.
The callee records the speech of X with the called smart phone y. This
step simulates the process of the communication from a VoIP network
to a Mobile network.

Step 3. The caller X changes his or her calling position to Location B, Location
C, and Location D, respectively. And then X repeats Step 1 and Step 2.
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(a) Location A (b) Location B (c) Location C

(d) Location D (e) Location E (f) Location F

Fig. 3. The scene of different locations

Step 4. The callee Y changes his or her recorded position to Location F , and
then repeats from Step 1 to Step 3.

Step 5. The caller X and the callee Y repeat the above steps in the other two
time periods.

We use 8 different kinds of VoIP software for the caller. Table 2 shows the
smart phones and the VoIP software used by each volunteer. The recordings are
recorded under a variety of parameters and are saved in AMR, MP3, or AAC
format, which depends on the native recording software of the called smart
phone. Detailed parameters of the recordings and corresponding speakers are
shown in Table 3.

Data collection starts from April 2017 and ends in June 2018. After all 48
volunteers complete the above process, we obtain a database with more than
76.8 h call recordings, taken a storage space of approximately 600 MB. The
database consists of 2304 (48 volunteers × 2 calls × 4 caller positions × 2 callee
positions × 3 time periods = 2304) call recordings, including 1152 mobile phone
call recordings and 1152 VoIP phone call recordings. Specifically, we have 144
mobile phone call recordings and 144 VoIP phone call recordings for each source-
and-destination configuration. Among the recorded data, 54.2% of the recordings
are saved in AMR format, 41.7% are MP3, and the rest are AAC.
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Table 2. List of smartphones and VoIP software used by each speaker.

Speaker Caller’s
device

Callee’s
device

Speaker Caller’s
device

Callee’s
device

Software on caller’s
device

S1 #1 #2 S2 #1 #2 Wetalk v28.0.0

S3 #3 #4 S4 #3 #4

S5 #5 #6 S6 #5 #6

S7 #7 #8 S8 #7 #8

S9 #9 #10 S10 #9 #10 Start v1.5.0

S11 #11 #12 S12 #11 #12

S13 #13 #14 S14 #13 #14

S15 #15 #16 S16 #15 #16 WeiweiMultiparty v2.0

S17 #17 #18 S18 #17 #18

S19 #19 #20 S20 #19 #20

S21 #21 #22 S22 #22 #21

S23 #23 #24 S24 #23 #24 Vhua v4.7.5

S25 #25 #26 S26 #25 #26

S27 #27 #28 S28 #27 #28

S29 #29 #30 S30 #29 #30

S31 #31 #32 S32 #31 #32 Skype v6.3.5

S33 #33 #34 S34 #33 #34

S35 #35 #36 S36 #36 #35

S37 #37 #38 S37 #37 #38 Uwewe v4.5

S39 #39 #40 S40 #39 #40

S41 #41 #42 S42 #41 #42 Ailiao v6.8.6

S43 #43 #44 S44 #43 #44

S45 #45 #46 S46 #45 #46 Alicall v6.9.9

S47 #47 #48 S48 #47 #48

3.2 Data Annotation

Since the VPCID database is built under different recording conditions, we anno-
tate every recording file in the database with the corresponding recording con-
dition so that researchers can conveniently retrieve a specific file. The syntax of
the filename is designed as:

[type][software][speaker][caller location][callee location][timeperiod].[format]

where each field is explained as follows.

– type: mobile|voip. It represents the type of phone call.
– software: wetalk|start|weiweimultiparty|vhua|skype|uwewe|ailiao|alicall. It

represents the used VoIP software if the call is a VoIP phone call. It is absent
if the call is mobile phone call.
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Table 3. Parameters of different recordings.

Sampling rate Bit depth Channel Bit rate Format Speaker

16 kHz 16 bits Mono 13.2 kbps AMR S1, S2, S19
S20, S31, S32, S33
S34, S36, S43, S44

8 kHz 16 bits Mono 8 kbps MP3 S3, S4, S5, S6, S9
S10, S22, S23, S24

48 kHz 16 bits Mono 32 kbps MP3 S7, S8, S13, S14
S25, S26, S29, S30

16 kHz 16 bits Stereo 25 kbps AAC S11, S12

8 kHz 16 bits Mono 12.8 kbps AMR S15, S16, S17
S18, S21, S37, S38
S39, S40, S41, S42
S45, S46, S47, S48

44.1 kHz 16 bits Mono 64 kbps MP3 S27, S28

16 kHz 16 bits Stereo 24 kbps MP3 S35

– speaker: 1|2|3| · · · |47|48. It represents the index of speakers.
– caller location: a|b|c|d. It represents the location of a speaker when the

speaker is making a call.
– callee location: e|f. It represents the location of callee when the speaker is

making a call.
– time period: 1|2|3. It represents the first call or the second call or the third

call in a specific location since we record three times at different times for
each location.

– format: amr|aac|mp3. It represents the format used for storage which
depends on the used smart phone.

For example, voip skype 3 c e 2.mp3 represents a recording for speaker S3
in location C making a VoIP phone call via Skype in the second time period
to the callee, while the callee being in location E and saving the speech in a
MP3 file. In this way, one can easily divide the VPCID database into training
sets, validation sets, and test sets, by retrieving corresponding files according to
the filenames. It is convenient for researchers to evaluate the robustness of their
proposed methods under different recording conditions.

4 Experiments on the Database

In this part, we investigate whether some existing forensics or audio classification
methods [22–24] can be used to identify the VoIP phone calls on the proposed
database.
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4.1 Evaluation Methods

Two kinds forensic features with SVM classifier and a convolutional neural net-
work (CNN) have been used for evaluation. Their details are as follows.

MFCC Features. In [25], MFCC (Mel-Frequency Cepstral Coefficients) fea-
tures are used to evaluate microphone and environment classification. MFCC
was designed based on human auditory system, and it is widely used not only
for speech recognition and speaker recognition systems but also for many audio
forensics applications. The procedure of extracting MFCC features is shown in
Fig. 4, which includes the following steps:

Fig. 4. Procedure of extracting MFCC features

Step 1. Increase the magnitude of the high frequency part of signal by a pre-
emphasis filter and segment the signal into frames with a window func-
tion. We use Hamming window in our implementation.

Step 2. Take the fast Fourier transform (FFT) of each frame and calculate the
power spectrum of FFT.

Step 3. Calculate Mel-scale spectrum by applying Mel filter banks to the FFT
power spectrum. We use triangular filter banks in our implementation.

Step 4. Compute the logarithm of Mel-scale spectrum. Perform discrete cosine
transform (DCT) on the log Mel-scale spectrum to obtain basic MFCC
coefficients.

Step 5. Compute the energy of the input frame signal and then take logarithm
of the output. The resulting coefficient is called energy coefficient.

Step 6. Concatenate the basic MFCC coefficients with the energy coefficient.
The resulting coefficients for each frame are called MFCC coefficients.
There are 13 MFCC coefficients for each frame.
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Step 7. Take the average value of MFCC coefficients over all frames and obtain
a 13-D feature vector.

Step 8. Compute the first order frame-to-frame differential signal [26] of MFCC
coefficients, and take the average value over all frames. A 13-D feature
vector can be obtained.

Step 9. Compute the second order frame-to-frame differential signal of MFCC
coefficients and take the average value over all frames. Another 13-D
feature vector can be obtained.

Step 10. Concatenate the features extracted from Step 6 to 8 to obtain 39-D
MFCC features.

In our implementation, we set the frame length to be 30 ms and the frame shift
to be 15 ms.

ACV Features. ACV (Amplitude Cooccurrence Vector) is proposed in [23] for
detecting audio postprocessing operations. The details of ACV feature extraction
procedures are as follows.

Step 1. Normalize the given audio signal and filter the normalized signal using
a high-pass filter.

Step 2. Choose a threshold T to quantize the high-passed signal X(x1, x2, ..., xn)
by

yi =

⎧
⎨

⎩

−1 , xi ≤ −T
0 , −T ≤ xi < T
1 , xi ≥ T

(1)

where yi represents the i-th sample of quantized signal Y (y1, y2, ..., yn).
Step 3. Compute the w-D co-occurrence features for Y (y1, y2, ..., yn). Since yi ∈

{−1, 0, 1}, there are a total number of 3w patterns.

In our implementation, we set the threshold T = 0.02 and the window size w = 5
to obtain 243 (35 = 243) dimensional ACV features.

Fig. 5. Architecture of ESR-CNN.

Environmental Sound Recognition CNN (ESR-CNN). In [24], a series of
convolutional model have been proposed for environmental sound recognition.
We choose the “M5 model” to detect VoIP phone call. As shown in Fig. 5, the
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M5 model accepting raw waveform as input is composed of four convolutional
modules. Each convolutional module consists of a convolutional layer, a batch
normalization layer, a ReLU activation function, and a max pooling layer. The
kernel size and stride in each convolutional layer and max pooling layer can
be found in Fig. 5. At the end of the last group, a global average pooling layer
is adopted while a fully connected layer and a softmax function are used for
classification. In our implementation, the number of output channel was set to
128 in the first and the second convolutional layer, 256 in the third convolutional
layer, and 512 in the last convolutional layers.

4.2 Experimental Setup

We investigated the performance of MCFF features, ACV features, and ESR-
CNN respectively on VPCID in detecting VoIP phone calls. We decoded each
audio file from our database to waveform (with 16 bits per sample and 8,000 Hz
sampling rate). Then we divided each waveform into segments. The duration
of each segment was two seconds. In this way, we obtained a total number of
71,249 mobile phone call segments and 71,411 VoIP phone call segments. We
randomly selected 71,000 mobile phone call segments and corresponding 71,000
VoIP phone call segments for our experiments. Among them, 60% mobile phone
call segments and the corresponding VoIP phone call segments were randomly
selected for training, while the rest segments were for testing.

In our experiments, we used LIBSVM [27] as the classifier for MFCC feature
and ACV feature. Specifically, we chose C-SVM equipped with RBF kernel. In
order to obtain optimal hyper-parameters, we set different pairs of C and γ,
where (C, γ) ∈ {(2i, 2j)|i ∈ (−5,−3,−1, ..., 15), j ∈ (5, 3, 1, ...,−15)}. The best
performing model in three-fold cross-validation on the training set was used for
testing.

For ESR-CNN, we used the same 60% data for training and then selected
others 20% mobile phone call segments and VoIP phone call segments for val-
idation. The best performing model was used for testing on the rest segments.
The batch size was set to 100 in our implementation. We used training data to
train ESR-CNN with 100 epochs and evaluate them every 100 iterations on the
validation set. The best performing model on the validation set was used for
testing. The remaining parameters are set according to [24].

4.3 Results

In this subsection we show experimental results by measuring TPR (true pos-
itives rate), TNR (true negatives rate), and ACC (detection accuracy), which
are respectively defined as:

TPR =
TP

TP + FN
(2)

TNR =
TN

TN + FP
(3)
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ACC =
TP + TN

TP + FN + TN + FP
(4)

where TP, TN, FP, FN represent the number of true positive segments, true
negative segments, false positive segments, and false negative segments, respec-
tively. In this paper, the VoIP phone call recording is defined as positive class.
The experimental results are shown in Table 4. From the table, it can be observed
that the MFCC scheme and the ACV scheme respectively achieved the accuracy
of 69.35% and 67.27%. Since audio go through a series of complex encoding and
decoding process, various forms of degradation and others transformations in
telephony networks, the MFCC and ACV can not capture the difference between
mobile phone calls and VoIP phone calls. From Table 4 we can find that the ESR-
CNN achieved the accuracy of 85.51%. However, this result is still unsatisfactory.
It is obvious that the audio forensics issues of VoIP phone call identification is
challenging.

Table 4. Results for different methods.

Method TPR TNR ACC

MFCC+SVM 71.82% 66.89% 69.35%

ACV+SVM 77.02% 57.52% 67.27%

ESR-CNN 85.86% 85.10% 85.51%

5 Conclusions

In this paper, we introduce a new database named VPCID which was built for
audio forensics researchers to address the issues of VoIP phone call identifica-
tion. The database contains 2,304 recordings, half of which are mobile phone
call recordings and the others are VoIP phone call recordings, each of which last
two minutes. The database was built under a variety of recording conditions
which include different speakers, different devices, different software, and differ-
ent calling and recording locations. We have also evaluated two state-of-the-art
audio forensic features and a CNN based method on VPCID. The experimental
results show that the VoIP phone call identification problem on VPCID dataset
is challenging.

Since the recorded audio data in VPCID were collected by 48 individual
speakers and then recorded by 26 smart phones, the database may also be used
for others audio forensic purpose. For instance, they can be used for the issues
of device source identification and speaker verification. The VPCID database is
publicly online available at http://media-sec.szu.edu.cn/VPCID.html. We wel-
come the use of this database and hope it can help the research community to
advance the techniques on VoIP phone call identification and other related audio
forensics issues. We acknowledge that the audio in VPCID is mainly recorded
under the low background noise with Chinese language. The next version of the
database may be extended by considering more outdoor scenes and using more
languages.

http://media-sec.szu.edu.cn/VPCID.html
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Abstract. In this work, we propose an outsourced Secure Multilayer
Perceptron (SMLP) scheme where privacy and confidentiality of the
data and the model are ensured during its training and the classification
phases. More clearly, this SMLP: (i) can be trained by a cloud server
based on data previously outsourced by a user in an homomorphically
encrypted form; its parameters are homomorphically encrypted giving
thus no clues about them to the cloud; and (ii) can also be used for
classifying new encrypted data sent by the user while returning him the
encrypted classification result. The originality of this scheme is threefold:
To the best of our knowledge, it is the first multilayer perceptron (MLP)
secured homomorphically in its training phase with no problem of con-
vergence. It does not require extra-communications with the user. And,
is based on the Rectified Linear Unit (ReLU) activation function that
we secure with no approximation contrarily to actual SMLP solutions.
To do so, we take advantage of two semi-honest non-colluding servers.
Experimental results carried out on a binary database encrypted with
the Paillier cryptosystem demonstrate the overall performance of our
scheme and its convergence.

Keywords: Secure neural network · Multilayer perceptron ·
Homomorphic encryption · Cloud computing

1 Introduction

Nowadays, cloud technology allows outsourcing the processing and the storage
of huge volume of data, these ones being personal data or data issued from
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many sources for big data analysis purposes. In healthcare for example, different
initiatives aim at sharing medical images and Personal Health Records (PHR)
between either health professionals or hospitals with the help of cloud [9]. They
take advantage of the medical knowledge, volume of data represents so as to
develop new decision making tools based on machine learning techniques. Among
such techniques, there is the multilayer perceptron (MLP) method which belongs
to Neural Network (NN) family and which is a core element of deep learning
methods; methods that are broadly studied and used nowadays. A MLP consists
of multiple layers of interconnected perceptrons (see Fig. 2). A perceptron is a
classifier that maps its inputs with a vector of weights followed by an activation
function. The output of a perceptron is the input of the next perceptron layer. As
all machine learning algorithms, MLP works in two distinct ways: the training
phase and the classification of new data. In a supervised mode, the training phase
aims at inferring the network parameters from a labeled database by optimizing
some objective function. Once trained, a MLP scheme is used so as to classify
new data.

Despite the attractive benefits provided by MLP, one of the actual limits
of its outsourcing in a cloud environment stands on the security of the data
used for the training phase or for classification purposes as well as of the MLP
parameters. At the same time, the parameter of a process, like those of a trained
MLP, may have some important added value for a company. There is thus an
interest to develop secured MLP (SMLP) methods that can be trained remotely
using outsourced data while respecting data privacy and confidentiality.

Different approaches have been proposed to secure neural network methods.
Some of them are based on additive secret sharing that allows several parties
to jointly compute the value of a target function f(.) without compromising
the privacy of its input data. For instance, [17] presents a privacy preserving NN
learning protocol where each participant performs most of the learning computa-
tions in the clear domain except the NN weight update which is performed with
secret additive sharing (e.g. secure sum and secure matrix addition). One limit
of this solution is that, at each iteration, all updated weights are revealed to all
participants which may leak information about the training data. To reduce such
information leakage, [18] proposes to share through a server only a small fraction
of the parameters; parameters on which the NN weights update can be performed
using a synchronous stochastic gradient descent (ASGD) instead of a stochastic
gradient descent. This method consequently establishes a compromise between
accuracy and privacy. Higher the number of shared parameters, better is the clas-
sification accuracy but lower is privacy. Recently, in [1], the authors demonstrate
that in [18], even a small portion of shared gradients of weights (gradients that
are used to update the weight values) can leak useful information about training
data. To overcome this problem, they suggest a solution based on homomorphic
encryption to secure ASGD. The interest of homomorphic encryption is that it
allows performing operations (e.g. +, ×) onto encrypted data with the guaran-
tee that the decrypted result equals the one carried out with unencrypted data
[2–4,6]. In [1], all users: (i) share the same homomorphic cryptosystem pub-
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lic and secret keys (ii) train locally a NN over their data (iii) computes their
weight gradients and send them in homomorphic encrypted form to the server.
When the server receives the encrypted gradients, it updates the weights in the
encrypted domain and (iv) sends them back to the users. Since each user has
the secret key, they decrypt the weights and train again their NN based on the
new weights. In this scheme, homomorphic encryption is just used for the NN
update, one computation of the NN learning process. Beyond, due to the fact
this solution is based on AGSD [1,17], it suffers of the delayed gradient problem,
i.e. a converge issue of the training phase problem [22].

An alternative to these approaches is to train neural networks in the clear
domain and by next use them with encrypted data. Most solutions make use of
homomorphic encryption. In this work, we are focusing on conducting all the
computations of the training phase in the homomorphic encrypted domain. To
the best of our knowledge, such an issue has only been theoretically studied in [21]
where is shown that NN can be trained using fully homomorphic encryption data
and by approximating activation functions with polynomials as homomorphic
encryption only allows linear operations.

However, due to the fact fully homomorphic cryptosystems add noise to the
data after each multiplication or addition operation. Both the computational
complexity and the length of cipher-texts increase with the number of desired
operations to guarantee the correct polynomial evaluation. In order to main-
tain a fixed cipher-text length, a practical implementation requires a de-noising
process so as to be feasible or restrict the computation just on low degree poly-
nomials. Moreover, the efficiency of the homomorphic computations depends on
the multiplicative depth. To avoid a multiplicative depth too big which increases
the computation complexity, after a certain number of iteration, the encrypted
updated weights are sent to the parties to be decrypted and re-encrypted. Never-
theless, this solution leads to a higher communication complexity of the scheme.

Beyond this theoretical work, all other proposals [5,8] focus on securing the
NN classification phase. For instance, [5] proposes three privacy homomorphic
encryption based classifiers: the linear model and two low degree models. In [8] a
fully homomorphic convolutional neural networks classifier (CNN) is proposed.

In this paper, we propose a secure multilayer perceptron (SMLP) method,
the training and classification procedures of which do not suffer of convergence
issues. To do so, we take advantage of the rectified linear unit (ReLU). Beyond its
accuracy and its contribution to MLP efficiency [11], ReLU can be secured with
homomorphic encryption and two non-colluding semi-honest servers avoiding
thus the need to use of an approximation procedure of the perceptron’s output
as proposed by the above methods. Another originality of our SMLP, is that its
output is also encrypted. That is not the case of actual solutions that provide
unencrypted output. Furthermore, our SMLP is entirely outsourced in the sense
it does not require extra-communications overhead in-between the servers and
the user to conduct the training and classification phases. The user just has to
send his data homomorphically encrypted to the cloud server that will train the
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SMLP or classify data, without the cloud being able to infer information about
the SMLP model parameters, the data or the classification result.

The rest of this paper is organized as follows. Section 2 regroups preliminaries
related to Multilayer Perceptron and the Paillier cryptosystem on which relies
the implementation of our SMLP. We also provide the basic properties and
the operations one can implement over Paillier encrypted data when using two
non-colluding semi-honest servers. In Sect. 3, we detail our secure multilayer
perceptron. Section 4 provides some experimental results conducted to model
the “AND” logic function on a binary database, and the security analysis of our
proposal. Section 5 concludes this paper.

Fig. 1. Secure neural network architecture in a cloud environment

2 Preliminaries on the Paillier Cryptosystem
and Multilayer Perceptron

2.1 The Paillier Cryptosystem

Being asymmetric, the Paillier cryptosystem [16] makes use of a pair of private
and public keys. Let p and q be two large primes. Let also Kp = pq, ZKp

=
{0, 1, ...,Kp−1}, Z∗

Kp
denotes the set of integers that have multiplicative inverses

modulo Kp in ZKp
. We select also g ∈ Z

∗
K2

p
such that

gcd(L(gλ mod K2
p),Kp) = 1 (1)

where: gcd(.) is the greatest common divisor function; λ = lcm(p − 1, q − 1) is
the private key (Ks), with lcm(.) the least common multiple function; the pair
(Kp, g) defines the public key; and, L(s) = s−1

Kp
. Let m ∈ ZKp

the message to be
encrypted. Its cipher-text is derived as

c = E[m, r] = gmrKp mod K2
p (2)

where E[.] is the encryption function, r ∈ Z
∗
Kp

is a random integer. Since r is
not fixed, the Paillier cryptosystem satisfies the so-called “semantic security”.
More clearly, depending on the value of r, the encryption of the same plain-text
message yields to different cipher-texts even though the public encryption key
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is the same. The plain-text m is recovered using the decryption function D[.]
defined as follow

m = D[c, λ] =
L(cλmodK2

p)
L(gλmodK2

p)
mod Kp (3)

The Paillier cryptosystem has an additive homomorphic property. Considering
two plain-texts m1 and m2, then

E[m1, r1].E[m2, r2] = E[m1 + m2, r1.r2] (4)

E[m1, r1]m2 = E[m1.m2, r
m2
1 ] (5)

For the sake of simplicity, in the sequel we denote E[m, r] simply by E[m].

2.2 Operations over Paillier Encrypted Data

As stated above, the Paillier cryptosystem allows implementing linear opera-
tions. It can however be used so as to compute multiplications, divisions and
comparisons with the help of two non-colluding semi-honest servers P1 and P2.

– Multiplication operator in Paillier encrypted domain MulP1,P2
e (.; .)

Let us consider two messages a and b and their respective Paillier encrypted
versions E[a] and E[b] obtained with the user public key Kp. In order to
compute E[a × b] without revealing any information about a and b, one can
take advantage of blinding and of two servers P1 and P2. Assuming that P1

possesses (E[a], E[b]), the objective is that P2 returns E[a × b] to P1 while
ensuring that no clues about a and b are revealed to P1 and P2. Under the
hypothesis P2 knows the user secret key Ks and that it does not collude with
P1, this objective can be reach according to the following procedure we will
refer as MulP1,P2

e (a; b):
1. Data randomization - P1 firstly randomizes E[a] and E[b] such that

a′ = E[a] × E[ra] = E[a + ra] (6)
b′ = E[b] × E[rb] = E[b + rb] (7)

where ra and rb are two random numbers only known from P1 and uni-
formly chosen in ZKp

. Then P1 sends a′ and b′ to P2.
2. Multiplication computation phase - On its side, using the user private
key Ks, P2 decrypts a′ and b′ and multiplies the result

M = (a + ra)(b + rb) (8)

P2 next encrypts M into E[M ] using the user public key Kp and sends it
to P1.
3. Multiplication denoising - In order to get E[a×b], P1 just has to remove
the extra-random factors as follow
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E[a × b] = E[M ] × E[b]−ra × E[a]−rb × E[−ra × rb] (9)

– Division operator in Paillier encrypted domain: DivP1,P2
e (.; .)

Different ways, based on two servers, have been proposed so as to compute
the division. The one used in this paper works as follows [19]. Let us consider
P1 has an encrypted message E[a] and that it wants to divide a by d. At this
time d can be encrypted or not, that is to say known or unknown from P1.
Again, we don’t want P1 and P2 to learn details about a. The computation of
E[a/d] from E[a] and d is also based on blinding. As above, it is assumed that
P2 possesses the decryption key Ks. Our division operation DivP1,P2

e (a; d) is
thus a procedure defined as

1. Data blinding - P1 randomly chooses a number r ∈ ZKp
and computes

E[z] = E[a + r] = E[a]E[r]. P1 then sends E[z] to P2.
2. Division computation - P2 decrypts E[z] with the user private key Ks

and computes c = z/d. P2 encrypts the division result E[c] and sends it
to P1.
3. Division denoising - P1 computes E[a/d] such as:

E[a/d] = E[c] × E[−r/d]. (10)

Fig. 2. Example of MultiLayer perceptron (MLP)

2.3 Multilayer Perceptron (MLP)

The common architecture of a MLP is given in Fig. 2. It is constituted of per-
ceptrons organized in different layers: the input and the output layers and, in-
between them, a given number of hidden layers (two in the given example of
Fig. 2). The first layer takes as input the user data set X = {xn}n=1...N where
each vector xn = {xn(1), xn(2), ..., xn(q)} represents the nth training vector with
q the number of perceptron inputs. The output layer provides the class of the
input data t

′
n (i.e. MLP (xn) = t

′
n where MLP (.) refers to the function that

computes the output of the network).
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A perceptron is a classifier that maps its input to an output value, for example
the output of the ith perceptron of the lth layer is given as Z:

Z = Al
i(N

l
i ) = Al

i(
∑

j

W l−1
j,i .Al−1

j ) (11)

where W l−1
j,i denotes the weight between the jth perceptron in layer l − 1 and

the ith perceptron in layer l. Al
i() is the activation function of the ith perceptron

of the lth layer. Notice that many activation functions have been proposed (e.g.
Sigmoid, Tanh, ReLU). In this work, we opted for the rectified linear unit (ReLU)
activation function, one of the most used function due to its accuracy and its
efficiency [11]. Another reason is that it can be secured by means of homomorphic
operators. We will come back in details on this point in Sect. 3. ReLU is defined
such as

A(y) =
{

y if y ≥ 0
0 otherwise (12)

To make such a MLP scheme operational, it should be trained so as to find the
perceptron weight values. This training can be supervised or unsupervised. In the
former case, the classes of data the MLP should distinguished are a priori known.
Thus to train a MLP scheme, the user provides labeled data T = {tn}n=1...N

where N is the size of the training set and tn indicates the label of the nth

training input data xn. In the second case, the perceptron identifies by itself the
different classes of data. The solution we proposed in this work is trained on
labeled data.

The supervised training of NN relies on two phases that are iteratively
applied: the feed-forward and the back-propagation phases. Before starting the
first feed-forward phase, all perceprons’ weights are initialized with random val-
ues, for instance. Then training data are provided as input to the MLP. By
next, the error between the original label and the ones computed by the MLP
is calculated using an objective function (called also cost function) (e.g. cross
entropy, Mean Square Error, Minkowski distance). This error is then used in the
back-propagation phase, so as to update all perceptrons’ weights applying gra-
dient descent. Once weights updated, a new feed-forward starts using the same
labeled data.

Many solutions have been proposed so as to decide when to stop the train-
ing phase [7]. Among these conditions, one can fix a number of iterations (“aka
epochs”): the MLP will stop once a number of epochs have elapsed. An alter-
native stands in thresholding the training set Mean Squared Error (MSE) (i.e.
MSE between the training set labels and the MLP outputs). The smaller MSE,
the network better performs. Thus the training stops when MSE is smaller than
a given threshold value. Instead, it has been proposed to use the Training Set
Accuracy; that is the number of correctly classified data over the total number
of data in the training set for an epoch. In this work, we opted for a fix number
of iterations.

Once a MLP model or scheme trained, i.e. once the perceptrons’ weights
known, it can be used so as to classify new data. This classification process simply
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consists in applying the feed-forward phase with new data as input, considering
that the MLP output will give the data class.

3 Secure Multilayer Perceptron

3.1 General Framework and System Architecture

The general framework we consider in this work is given in Fig. 1, where a user
outsourced into the cloud Paillier encrypted data; data on which the user wants
the cloud service provider to train our secure multilayer perceptron (SMLP).
Once trained, this SMLP will be used by the user so as to classify new data.
The user will also send it encrypted to the cloud. In our view, the data, the
classification data result as well as all the parameters of the SMLP should be
unknown from the cloud. As it can be seen in Fig. 1 and as we will see in the
sequel, the computations of both the SMLP training and classification phases are
distributed over two servers, P1 and P2, of two distinct cloud service providers.
We consider them as honest but curious [14]. More clearly, they will try to
infer information about the data, the classification results as well as about the
SMLP parameters. In our scenario, P1 interacts with the user, stores and handles
his data. P2 cooperates with P1 so as to conduct some operations (division,
multiplication, etc. ...) involved into the training or classification phases of ours
MLP.

3.2 Proposed Secure Multilayer Perceptron

Securing a multilayer perceptron consists in implementing the feed-forward and
back-propagation phases over encrypted data. The MLP that we propose to
secure, both in its learning and classification phase, is based on: (i) perceptrons,
the activation function of which ReLU, (ii) the mean squared error (MSE) as cost
function. The secure version of this MLP, we describe it in the following, works
with the Paillier cryptosystem and takes advantage of the above two servers
based system architecture so as to exploit the secure multiplication and division
operators depicted in Sect. 2. As we will see, different issues have to be overcome
in order to ensure the convergence of such a Secure MLP. In particular, we
propose a new “Max” function operator so as to secure ReLU.

Secure MLP Feed-Forward Phase. The feed-forward phase consists in cal-
culating the MLP output for a given input. Based on the fact a MLP is consti-
tuted of different layers of perceptrons, securing the feed-forward phase relies on
securing each perceptron independently. As seen in Sect. 2, the ith perceptron in
the lth layer performs a weighted sum of the input vector {Al−1

j (N l−1
j )}j=1...S

where S is the number of perceptron in the l − 1 layer (see Eq. (11)), the
result of which is provided to an activation function (see Eq. (12)). Consider-
ing that all pieces of information provided by the user are Paillier encrypted, i.e.
{E[Al−1

j (N l−1
j )]}i=1...S , the weighted sum in the encrypted domain becomes:

E[N l
i ] =

n∏

i=0

MulP1,P2
e (E[W l−1

j,i ], E[Al−1
j (N l−1

j )]) (13)
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where P1 and P2 are the two independent servers (see Fig. 1), E[N l
i ] is the secure

weighted sum and {E[W l−1
j,i ]}j=1...n the encrypted perceptron weights which are

also confidential.
In this computation as well as in all others, one important constraint to

consider stands on the fact that the Paillier cryptosystem only works with plain-
text and cipher-text constituted of positive integers in ZKp

. More clearly, all data
and parameters of the SMLP should be represented by integers. To overcome
this issue, taking as example the input data, these ones are turned into integer
values by scaling and quantizing them as follow

X = [Qx] (14)

where [.] is the rounding function and Q is an expansion or scaling factor. Beyond,
even if the SMLP parameters and inputs are integers, their processing may lead
to negative values. In order to represent such values in ZKp

, integer values greater
than (Kp+1)/2will correspond to negative values and the others to positive values.

By next, the secure perceptron’s output is computed by applying a secure ver-
sion of the ReLU activation function to the encrypted weighted sum E[N l

i ]. One
key issue to overcome in securing ReLU (see Eq. (12)) stands in the calculation
of the function Max(a, b) in-between two integer values a and b in the Paillier
encrypted domain. Different solutions have been proposed so as to securely com-
pare encrypted data [4,10,13,20]. Most of them are based on blinding and two
non-colluding parties. However, with all these approaches, the comparison result
is provided in a clear form. More clearly, if P1 asks P2 to compare E[a] and E[b],
P1 will know if E[a] is or not greater than E[b]. In our framework, this leads to an
information leak. Indeed, P1 is not authorized to get some information about the
SMLP parameters. To solve this problem, the authors of [15] propose a protocol
so as to compare two input values in a secure distributed fashion between two
or more participants using the Paillier cryptosystem and secret sharing schemes.
However, this scheme has several issues: (i) they consider the public key of the
Paillier cyrptosystem as a secret key, a concept in contradiction with the one of
public key, (ii) they assume that the computation of the multiplicative inverse
of a ciphertext is possible without the knowledge of the public key, which math-
ematically speaking is not possible. Indeed the inverse is defined in the multi-
plicative group Z

∗
Kp

where Kp is the public key of Paillier cryptosystem; (iii)
they compute the multiplication in the Paillier cryptosystem domain without
explaining “how” the Paillier cryptosystem is homomorphically additive. In this
work, we propose a novel comparison operator CompP1,P2

e which overcomes these
issues. Its output is encrypted and it will be used so as to compute MaxP1,P2

e

operator in our secure version of ReLu. CompP1,P2
e works accordingly two steps:

– Data randomization. The objective of this step is to apply blinding to data P1

will send to P2. To do so, and as given in [15], P1 selects two random values
r and r′ from ZKp

such that r is significantly greater than r′ (r >> r′) and
that it verifies the constraint

log2(Kp) > log2(r) + l + 2 (15)
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where l is the number of bits used to encode the input. Then, P1 computes

E[r(a − b) − r′] = (E[a]E[b]−1)r × E[r′]−1 (16)

and sends the result to P2.
– Secure comparison. P2 decrypts the data and compare them to 0 and sends

an encrypted bit i such as:

CompP1,P2
e (E[a], E[b]) = E[i] =

{
E[1] if r(a − b) − r′ > 0
E[0] if else (17)

Then P2 sends E[i] to P1.
Based on CompP1,P2

e (E[a], E[b]), P1 can compute the MaxP1,P2
e operator

MaxP1,P2
e (E[a], E[b]):

MaxP1,P2
e (E[a], E[b]) = E[max(a, b)]

= MulP1,P2
e (E[a]E[b]−1, E[i]) × E[b]

= E[i(a − b) + b] =
{

E[a] if i = 1
E[b] if i = 0 (18)

With CompP1,P2
e (E[a], E[b]), P1 accesses to the encrypted version of the max-

imum value between two integers without knowing which value is greater than
the other one. Such a security level is achieved based on fact the Paillier cryp-
tosystem uses random values which multiply after each multiplication (i.e.
E[a, r1]E[b, r2] = E[a + b, r1r2] - see Sect. 2). Finally, based on the MaxP1,P2

e

operator, the output of our secure ReLU based perceptron is given by:

E[max(0, y)] = MaxP1,P2
e (E[0], E[y]) (19)

Based on this results, a secure MLP is based on secure perceptron layers.

Secure Back-Propagation Phase. As stated in Sect. 3, the objective of the
back-propagation phase is to update the MLP weights of each perceptron. In the
supervised mode, for a given input, one computes the error between the MLP
output and the input data label according to an objective or cost function. In
this work, the Mean Square Error (MSE) is used. Then, the MLP weights are
updated so as to minimize this function.

Let us consider a MLP network composed of ML layers (see Fig. 2) and an a
priori known vector input data xn along with its label tn. If t

′
n corresponds to

the MLP output (see Fig. 2), then the error en in the clear domain is such that

en = MSE(t
′
n, tn) = ||t′

n − tn||22. (20)

This cost function can be expressed in the Paillier encrypted domain by

E[en] = MulP1,P2
e (E[t

′
n − tn], E[t

′
n − tn]) (21)
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Let us recall, that in our framework, P1 holds E[t
′
n] and E[tn]. It computes

E[t
′
n − tn] thanks to the homomorphic Paillier properties, and interacts with P2

so as to compute E[en] = MulP1,P2
e (E[t

′
n − tn], E[t

′
n − tn]).

Once the error computed en, the next step stands in back propagating it so
as to update the MLP weights of each perceptron. This update is based on the
descent gradient. The updated value of a MLP weight wl

i,j is given by

wl
i,j = wl

i,j − 1
λ−1

∂en

∂wl
i,j

(22)

where: wl
i,j represents the weight between the ith perceptron in layer l and the

jth perceptron in layer l + 1; λ is the learning rate factor.
The descent gradient can be computed with the help of the chain rule algo-

rithm so as to calculate all partial derivatives, even those of intermediary layers.
According to this algorithm, the gradient is given as

∂en

∂wl
i,j

= N l
i .δ

l+1
j (23)

δl+1
j is the fraction of the network error that is caused by the jth perceptron

in the layer l + 1. The computation of the error depends on the location of the
perceptron in the network and is such as

δl
i =

{
A

′l
i (t

′
n(i))(tn(i) − t

′
n(i)) if l = ML

A
′l
i (N l

i )
∑

j wl
i,jδ

l+1
j if l = ML

(24)

where Ai(.) is the activation function of the ith perceptron and tn denotes the
label of the data placed at the input of the MLP. Notice that, derivate of the
ReLU function is A

′
i(y) = 1(y>0), where 1(.) represents the unit step function

the value of which is zero for negative input or one, otherwise. The same update
operation in the encrypted domain becomes

E[wl
i,j ] = E[wl

i,j ]DivP1,P2
e (E[

∂en

∂wl
i,j

], λ) (25)

The back-propagation phase in the encrypted domain can be easily derived

E[
∂en

∂wl
i,j

] = MulP1,P2
e (E[N l

i ], E[δl+1
j ]) (26)

where

E[δl
i] =

{
MulP1,P2

e (E[A
′l
i (t

′
n(i))]E[(tn(i) − t

′
n(i))] if l = ML

MulP1,P2
e (E[A

′l
i (N l

i )],
∏

j MulP1,P2
e (E[wl

i,j ], E[δl+1
j ])) if l = ML

(27)
It is important to underline that the encrypted version of the unit step function
E[1(y>0)] is equivalent to E[1(y>0)] = CompP1,P2

e (E[0], E[y]).
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By iteratively applying the secure feed-forward and back-propagation phases,
it is possible to train our SMLP without compromising the security of the input
data, of the SMLP parameters and of its output. It is the same when classifying
new data.

Fig. 3. SMLP architecture used to learning the AND function

4 Experimental Results and Security Analysis

The proposed SMLP solution has been implemented so as to learn the And −
Logic function in a supervised training mode. This function takes as input two
real numbers x1 and x2 in the interval [0, 1] and its output is a binary value such
that:

y = [x1]AND[x2] (28)

where [.] denotes the rounding function.

4.1 Dataset and MLP Architecture

The training data set is constituted of 10000 lines of three columns each, where
each line represents a training input sample. The first two columns contain two
real values between 0.0 and 1.0, while the last column contains their AND value.

Figure 3 provides the architecture of the implemented SMLP. It is composed
of an input layer and of two hidden layers, both containing two perceptrons,
followed by an output layer of one perceptron. As stated above, the network is
based on our secure ReLU activation function (see Sect. 3). In all following tests,
the expansion factor Q was fixed to 106 so as to ensure the SMLP works with
integer values with a training phase limited to 100 epochs and 8000 samples
of the training data set are used for the learning phase and the 2000 other for
the testing phase. The expected result is that, upon the entry of two values
contained between 0.0 and 1.0, the activation of the output layer after feed-
forward contains the value of the AND between the two inputs, that is, either
0 or 1.
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4.2 Secure MLP Performance

The performance of our secure MLP, which is expressed in terms of classifica-
tion accuracy and also convergence, depends on the learning rate. Precision is
the number of correct predictions made divided by the total number of predic-
tions made. We recall that the learning rate factor λ plays a critical role in the
convergence of the network. Indeed, it influences the modification step in the
weights update in the back-propagation phase (see Sect. 3). We tested several λ
values in the range [10−12; 10−4]. We give in Table 1, the precision of our SMLP
in average after 10 tries, and if yes or no it has converged after the training. It
can be seen that SMLP converges for values of λ smaller than λ = 10−8. We
thus recommend taking initial weights distributed in the range [10−5, 105] and
a learning rate factor λ = 10−10.

Table 1. Convergence and precision of our SMLP for different learning rate factor
values

λ 10−12 10−10 10−8 10−6 10−4

Convergence (Y/N)/Accuracy Yes/72% Yes/83% Yes/93.1% No No

We also have trained the equivalent MLP in the clear domain under the same
conditions with a learning rate factor of 0.005 and 100 epochs. The obtained
MLP precision is about 98.3% with of course no convergence issues. It can be
seen based on Table 1, that SMLP always provides lower performance. This can
be explained by the use of an expansion factor so as to convert real values into
integer values. Anyway, these results show that it is possible to train a MLP in
a secure outsourced way.

4.3 Security Analysis Under the Semi-honest Model

The following analysis considers the semi-honest cloud adversary model as pre-
sented in Sect. 3. Due to the fact all data (i.e. input data and SMLP parameters)
are encrypted with the Paillier cryptosystem the security of which has been demon-
strated in [16], the security of the feed-forward and back-propagation phases stand
on the security of the operators MulP1,P2

e (.), DivP1,P2
e (.) and CompP1,P2

e (.).

– Security of MulP1,P2
e (.) - As shown in Sect. 2, MulP1,P2

e (E[a], E[b]) relies on
a data blinding operation. P1 applies on E[a] and E[b] to compute E[a × b].
To do so, P1 generates two random values ra and rb from ZKp

and computes
E[a+ ra] and E[b+ rb]. P2 decrypts by next these values. Since ra and rb are
randomly chosen in ZKp

and only known from P1, they give no clues to P2

regarding a and b.
– Security of DivP1,P2

e (.) - We let the reader refer to [19], where Thijs Veugen
proved the security of the operator DivP1,P2

e (.).
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– Security of CompP1,P2
e (.) and consequently of MaxP1,P2

e (., .)− As explained in
Sect. 3, MaxP1,P2

e (E[a], E[b]) = E[max(a, b)] depends on the CompP1,P2
e (; )

operator. Let us consider P1 possesses the couple (E[a], E[b]) and that he wants
to compute MaxP1,P2

e (E[a], E[b]). To do so, it computes E[r(a − b) − r′] where
r and r′ are chosen uniformly from ZKp

under the constraint that r >> r′. P2

accesses to r(a − b) − r′ from which it cannot deduce any information about a
and b nor about a − b since it does not know r and r′. P2 compares this value
to zero. This comparison gives not more information to P2. By next, in order to
avoid that P1 knows the comparison result, P2 encrypts using the user public
key the bit 0 or 1 (see Sect. 3) and it sends it to P1. P1 can derive the results of the
function MaxP1,P2

e (E[a], E[b]), because all these computations are conducted
over encrypted data, P1 has no idea about a, b and Max(a, b).
The rest of the computations (e.g. MSE, error derivatives) are based on either
encrypted or randomized data. As consequence, if P1 and P2 do not collude,
no information related to the user data or to the SMLP model is disclosed.
Since all operations involved in the computation of the feed-forward and back-
propagation phases are in cascade, then according to the sequential Compo-
sition theorem [12], SMLP is completely secure under the semi-honest model.

5 Conclusion

In this paper, we have proposed a new Secure Multilayer Perceptron (SMLP)
which can be deployed in the cloud. Its main originality, compared to actual
homomorphic encryption based SMLP schemes, is that it can be trained with
homomorphically encrypted data with no extra communications between the
user and the servers. With this scheme, all data; input data and SMLP output
and parameters, are encrypted. Our SMLP is based on: an original secure version
of the Max(., .) function we propose, the result of which is encrypted and a ReLU
activation function secured with no linear approximation. Such a SMLP has been
implemented so as to learn or model the AND function in-between real values.
Experimental results demonstrate that SMLP converges in its training phase
under some parameter initialization constraints. Beyond the complexity of our
SMLP, which is based on homomorphic encryption, these preliminary results are
very encouraging.
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Abstract. Inter-frame forgery is a common type of surveillance video
forgery where a tampered process occurs in a temporal domain such as
frame deletion, insertion, and shuffling. However, there are a number of
methods that have been proposed for detecting this type of tampering,
most of the methods have been found to be deficient in terms of either
accuracy or running time. In this paper, a new approach is proposed
as an efficient method for detecting frame deletion, insertion, and shuf-
fling attacks. Firstly, the video is extracted into frames and the temporal
average for each non-overlapping subsequence of frames is computed for
examination instead of exhaustive checking which can be reduced the
running time. Then, the universal image quality index is used for detect-
ing the inter-frame forgery and determining its location. The experi-
mental results show the efficiency of the proposed method for detecting
inter-frame forgery with high accuracy and low running time.

Keywords: Passive forensics · Inter-frame forgery detection ·
Temporal average · Universal image quality index

1 Introduction

Video surveillance systems are widely used for controlling crimes. The avail-
ability of video editing tools has made the work of editing to be very easy. On
the other hand, some people misuse these tools to change events by inserting,
deleting, or shuffling a sequence of video frames to destroy the evidence. This
forces the necessity of verifying the authenticity and integrity of a surveillance
video especially if it is used as an evidence in the court. However, more efforts
have been spent on detecting image forgeries compared with video forgeries; the
challenges of video forensics compared with image forensics are a large number
of data to be examined based on the spatial and temporal domain which need
to high computational time.
c© Springer Nature Switzerland AG 2019
C. D. Yoo et al. (Eds.): IWDW 2018, LNCS 11378, pp. 337–350, 2019.
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In [11,12], video forgeries have been classified into two types of attacks: (1)
Intra-frame forgeries, these attacks are done in either spatial or spatio-temporal
domain, such as region splicing (where foreign regions from one video are com-
posited into the original video to modify its content) and copy-move (where
portions of a frame are copied and pasted into other locations in the same frame
or where particular regions from a sequence of frames are copied and pasted into
another sequence in the same video); and (2) Inter-frame forgeries, these attacks
are done in temporal domain, such as duplication (where a clip is copied and
pasted into another location in the same video), insertion (where a foreign clip is
inserted into the original video), deletion (where some of the frames are deleted),
and shuffling (where the order of some frames is changed to change the order of
events). Inter-frame forgery is commonly used in surveillance videos because of
its convenience and imperceptibility.

Forged video can be examined by active techniques such as digital watermark-
ing or media fingerprints [1,2,6,10] and passive detection techniques [8,16,18].
Digital watermark and fingerprint are not available making passive detection
techniques (use statistical information) dominant.

Wang et al. extracted the discontinuity points using the optical flow varia-
tion sequence to detect anomalies and identify the inter-frame based forgery [17].
Their method requires a high computational time because of the optical flow esti-
mations. Zheng et al. used block-wise brightness variance descriptor for detecting
frame deletion and insertion, but it has a low precision rate in the localization of
forgery [23]. Liu et al. used zernike opponent chromaticity moments (ZOCM) and
a coarseness feature analysis. Then, abnormal points were extracted based on
the difference in ZOCM among adjacent frames [5]. Their method used Tamura
Coarse feature analysis to reduce false positives which increases the method’s
precision, but also increases the execution time. Zhao et al. used Hue-Saturation-
Value (HSV) color histogram comparison to detect tampered frames in a shot.
Then, Speeded Up Robust Features (SURF) feature extraction and Fast Library
for Approximate Nearest Neighbors matching (FLANN) were used for double-
checking [22]. Their method has a high accuracy, but requires high computational
time; besides it fails to detect a deleted shot which has a small number of frames.

Ulutas et al. used the Bag-of-Words (BoW) model to detect the forged videos
[15]. Their method can only detect duplication forgery type and fails in other
types. Fadl et al. [4] used discrete cosine transform coefficients (DCT) as features
for the residual frames to detect the tampered clips. Their method detects the
duplicated clips only and fails in other forgeries. In [14], the authors used binary
features of frames and determined the similarity among them; their method
detects duplication forgery only.

Most of the current inter-frame forensics techniques are based on the exhaus-
tive examination of the spatial and temporal properties among video frames.
Hence, checking all frames in spatial and temporal domains is computationally
expensive. In this paper, we detect inter-frame (deletion, insertion, and shuf-
fling) forgery with high accuracy and low running time. The proposed method



Surveillance Video Authentication 339

detects inconsistencies using image quality measurements for the average images
of non-overlapping subsequence frames instead of entire frames.

The rest of this paper is organized as follows: In Sect. 2, some related works
are briefly reviewed. The proposed method is detailed in Sect. 3. We present the
experimental results in Sect. 4 and conclude this paper in Sect. 5.

2 Related Works

2.1 Temporal Average

In the field of digital video forensics, most of the previous methods have not
achieved high accuracy and low running time simultaneously. So, if we have
a sequence of images, and we want to collect these images in one image for
reducing the number of comparisons and reducing the processing time. One way
to determine the collected image is an average of images which called temporal
average (TP). It can be described for N number of images as

TP =
1
N

N∑

i=1

Fi, (1)

where each point in the TP image is the average of points in the same positions
in each of the image F . The result of TP image shows the background with
a pale version of a moving object, as shown in Fig. 1. The pale version of the
object occurs when the image brightness is affected by its movements, but the
object is still there. If we use more images, then the presence of the object will
become much pallid. TP has been used in many application of computer vision
such as moving object detection and background estimation [7]. In this paper,
TP is used to detect inter-frame forgeries for the first time in the literature.

2.2 Image Quality Measure

Image quality measure is an important field in image processing that is used for
many applications such as compression, de-noising and so on. It can be classified
into two types: full-reference, and no-reference [20,21]. In the first type, the
comparison between the reference image (original image) and the distorted image
(tested image) is required, meaning that the reference image must be known. In
the second type, the reference image is not available and not required.

In this paper, we focus on the full-reference image quality assessment, con-
sidering that the reference and tested images are two adjacent TP images in the
video. There are two classes of quality assessment techniques: mathematically
techniques and human visual system based techniques. Mathematically methods
are attractive because they are easy to calculate, have low computational time
and independent of viewing conditions [20]. We use the universal image quality
index (UQI) which has been proposed by Bovik et al. [19] to detect inter-frame
forgeries.
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(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) TP(1−5)

Fig. 1. An example of the temporal average for the sequence of images.

UQI. Assume x and y are the original and test images with the same size
(m × n), the quality index Q can be described as:

Q =
4σxyμxμy

(σ2
x + σ2

y)(μ2
x + μ2

y)
, (2)

where μ, σ2 represent the average of pixels and the variance of each x and y; σxy

is the covariance of x and y. They can be described as follows:

μx =
1

m × n

m∑

i=1

n∑

j=1

xij , μy =
1

m × n

m∑

i=1

n∑

j=1

yij ,

σ2
x =

1
(m × n) − 1

m∑

i=1

n∑

j=1

(xij − μx)2,

σ2
y =

1
(m × n) − 1

m∑

i=1

n∑

j=1

(yij − μy)2,

and

σxy =
1

(m × n) − 1

m∑

i=1

n∑

j=1

(xij − μx)(yij − μy).

Q is applied to local regions using the sliding window method with size (b × b).
If w is the total number of windows in an image, then the overall Q is given by

Q =
1
w

w∑

i=1

Qi. (3)
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The output range of Q is [−1, 1], where the best value is 1 which indicates a high
similarity between x and y; if the similarity decreases, the value of Q becomes
lower.

3 Proposed Method

The proposed method uses image quality measure (UQI) of temporal averages
for non-overlapping subsequence frames to detect the inter-frame illegal attacks
(i.e. frame deletion, insertion, and shuffling) instead of checking all entire frames
for saving the running time. We assume that the digital video has been taken
from a surveillance stationary camera with a static background. Firstly, the
video is extracted into frames, then TP is computed for each non-overlapping
subsequence of frames. UQI of each two adjacent TP images is applied to extract
abnormal events as illegal candidates because of video continuity and regularity;
if the video is subjected to deletion, insertion or shuffling, the similarity will
become lower and Q values at the border of the tampered clip will become lower
than others. Finally, the locations of inter-frame attack are determined by the
least Q value of corresponding frames of TP candidates and their neighbors. The
steps of our proposed will be illustrated in the next subsections.

3.1 TP Candidate Selection

The input video is extracted into frames as F = {Fi|i = 1, 2, . . . , Nf}. Then, F
is divided into non-overlapping subsequences with size N (e.g. if the size of each
subsequence is N, the first subsequence starts from 1 to N, the second starts
from N + 1 to 2N, the third starts from 2N + 1 to 3N, and so on.), and TP is
calculated for each subsequence by Eq.(1) as TP = {TPi|i = 1, 2, . . . , (Nf/N)}.

According to Eqs.(2) and (3), Q of each two adjacent TPs is computed (where
x = TPi and y = TPi+1) as Q = {Qi|i = 1, 2, . . . , (Nf/N) − 1}. If |mean(Q) −
min(Q)| is less than a threshold Tshf , frame shuffling is detected; if it is less
than a threshold Tdel, frame deletion is detected; if it is less than a threshold
Tins, frame insertion is detected. For each Qi, if its value is less than a threshold
τ (τ = min(Q)/c), the corresponding TPi is selected as a forged candidate
(where c is a small constant between 0.95 and 1 to make sure that the selection
points have the minimum values of Q). According to persistence phenomenon
of human vision [23] and the number of frames that have a small variation with
short time intervals such 0.4 s, we assume N = 10 in our schema to achieve
simultaneously high accuracy with low execution time. It is noticed the value of
N should be (N > 1 and N ≤ Nf/3) to make sure that the proposed method
works well because the number of comparisons must be greater than 2 to detect
the abnormal measure, and the number of frames of TP should be greater than
1 to achieve our proposed for reducing time. Figure 2 illustrates the diagram of
calculating Q values for TP candidates selection.
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Fig. 2. An illustration for TP candidates selection.

3.2 Determination of Attack Location

After TP candidates selection, a further analysis is necessary to determine the
attack locations. The corresponding frames of the selected TPi, and its neighbors
are grouped in SF as:

SF =

{
F (TPi, TPi+1), if i = 1
F (TPi−1, TPi, TPi+1), if i > 1 and i ≤ (Nf/N) − 1

(4)

Then, Q values are computed among each two adjacent frames in SF using
Eqs.(2) and (3). Attack location is selected as the minimum value of Q.

The abnormal points are detected at the border of the fake clip (i.e. start
and end) for shuffling and insertion forgeries; and the start of the deleted clip.
Figure 3 shows an example of deletion attack detection; Fig. 3a shows TP can-
didate selection at 20th; Fig. 3b shows the location of attack at 200th frame.
Figure 4 shows an example of insertion attack detection; Fig. 4a shows TP can-
didates selection at 12th and 17th; Fig. 4b,c show the locations of insertion attack
which observed at the beginning and the ending of the inserted clip at the frames
122nd and 172nd. Frame shuffling forgery is the most difficult to detect because
its frames are original but they have been put in different times; this process
causes distortion of the video regularity; in this paper, we consider shuffling
attack to be a flipping. Figure 5 shows an example of shuffling attack detection;
Fig. 5a shows TP candidates selection, where the order of frames from 102nd to
145th are changed and TPs are selected at 10th and 14th; Fig. 5b,c show the
locations of the beginning and the ending of the shuffled clip at the frames 102nd
and 145th. Finally, the block diagram of the proposed method is summarized in
Fig. 6.
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Fig. 3. An example of deletion attack detection.
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Fig. 4. An example of insertion attack detection.
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Fig. 5. An example of shuffling attack detection.

4 Experimental Results

4.1 Video Dataset

We selected some videos from SULFA [9], LASIESTA [3], and IVYLAB [13]
for creating our forgery dataset because of unavailability of a single dataset
to detect inter-frame forgeries. It contains 15 tampered videos under dele-
tion, insertion and shuffling forgeries. For example, Fig. 7 shows the original
and tampered video from SULFA, where the order of frames from 124th to
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Fig. 6. The block digram of the proposed method.
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145th has been changed to change the ball moving direction. Figure 8 shows
the original and tampered video from IVYLAB, where the frames from 417th
to 536th have been deleted to eliminate the fact that the person climbed to
the top floor. Figure 9 shows the original and tampered video from LASI-
ESTA, where the foreign frames from 261st to 455th have been inserted into
the original video in order to prove that the girl came back again and entered
the room. Our test dataset can be available at https://drive.google.com/open?
id=1 JAhq0223kMADdZcjWABtenzstvYZqb7; the details of forged videos of our
dataset are listed in Table 1.

4.2 Results Analysis

The detection results of the proposed method for all videos in our dataset with
execution times are listed in Table 2. The proposed method is able to achieve the
detection of inter-frame forgeries with a low running time; the average runtime
of each frame is less than 0.03 s. It is noticed that the detection results of
our method cannot be affected by weather conditions such as rain (V8), or
light conditions (V9); furthermore, it can detect the deleted clip which has a
small number of frames such as V3 (five frames have been deleted); these results
demonstrate the robustness of our proposed method.

Fig. 7. An example of video from SULFA dataset; original frames in the first row;
tampered frames in the second row.

Fig. 8. An example of video from IVYLAB dataset; original frames in the first row;
tampered frames in the second row.

https://drive.google.com/open?id=1_JAhq0223kMADdZcjWABtenzstvYZqb7
https://drive.google.com/open?id=1_JAhq0223kMADdZcjWABtenzstvYZqb7
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Fig. 9. An example of video from LASIESTA dataset; original frames in the first row;
tampered frames in the second row.

Table 1. The details of tested videos

Video Original length Tampered length Resolution fps Forgery type Forgery location

V1 319 319 320 × 240 30 shuffling 124–145

V2 321 241 320 × 240 29.97 deletion 107–186

V3 361 355 320 × 240 29.97 deletion 105–110

V4 332 332 320 × 240 29.97 shuffling 75–273

V5 203 203 320 × 240 30 shuffling 85–135

V6 315 510 320 × 240 29.97 insertion 183–377

V7 313 349 320 × 240 29.97 insertion 130–165

V8 1400 1400 352 × 288 30 shuffling 921–989

V9 300 350 352 × 288 30 insertion 21–70

V10 275 470 352 × 288 30 insertion 261–455

V11 350 232 352 × 288 30 deletion 156–273

V12 525 555 352 × 288 30 insertion 406–435

V13 729 648 704 × 576 25 deletion 20–100

V14 708 588 704 × 576 30 deletion 417–536

V15 662 662 704 × 576 30 shuffling 511–600

4.3 Evaluation Metrics

To evaluate the performance of the proposed method, we used precision, recall
and F1score. The precision and recall rates refer to the correctly detected videos
among all the detected videos, and all tampered videos, respectively. They are
given by the formulas

precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

and
F1 = 2 ∗ precision ∗ Recall

precision + Recall
. (7)

where TP and FP denote the number of correctly and falsely detected video
forgeries, respectively. FN denotes the number of undetected video forgeries.
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4.4 Detection Performance

In this section, we report the detection performance of the proposed method;
the thresholds for detecting the type of forgery were configured empirically as
follows: Tshf = 0.04, Tdel = 0.09, and Tins = 0.35. We compare our method
with similar previous methods in [5,17,22,23] under frame deletion forgery type
in Table 3; under frame insertion forgery type in Table 4; under frame shuffling
forgery type in Table 5. From the above tables, the proposed method achieves
the highest rates under all types of forgery compared with the previous methods.
Although there are some failures in detecting the frame deletion from a static
scene because of a high similarity between its frames; this situation is contrary
to reality because there is no need to delete a clip from a static scene.

Table 2. The detection results of the tested videos

Video TP candidates Forgery localization Execution time

Total time(s) Time(s/frame)

V1 12, 15 123, 145 7.86 0.02

V2 10 106 5.01 0.02

V3 11 104 7.23 0.02

V4 7, 27 74, 273 9.40 0.02

V5 8, 12 85, 135 4.51 0.02

V6 18, 38 182, 377 10.79 0.02

V7 13, 16 129, 165 7.01 0.02

V8 92, 98 920, 953 31.6 0.02

V9 2, 7 20, 70 8.29 0.02

V10 26, 45 260, 455 10.39 0.02

V11 14 155 5.36 0.02

V12 40, 43 405, 435 13.23 0.02

V13 2 19 22.89 0.03

V14 41 416 21.81 0.03

V15 51, 60 510, 600 23.49 0.03

Table 3. The detection performance for our proposed compared with others under
deletion attack.

Method Precision Recall F1 score

Wang [17] 0.89 0.85 0.86

Zheng [23] 0.83 0.89 0.85

Liu [5] 0.97 0.93 0.95

Zhao [22] 0.96 0.98 0.97

Ours 0.98 0.99 0.98
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Table 4. The detection performance for our proposed compared with others under
insertion attack.

Method Precision Recall F1 score

Wang [17] 0.93 0.90 0.91

Zheng [23] 0.82 0.92 0.86

Liu [5] 0.96 0.97 0.96

Zhao [22] 0.97 0.98 0.97

Ours 0.99 0.99 0.99

4.5 Running Time

The average running time of our method and the methods in [5,17,22,23] are
listed in Table 6. Our proposed has the lowest time compared with others because
the temporal averages of non-overlapping subsequence frames are checked instead
of checking all entire frames which can reduce the running time. For example,
if each frame needs to t time for checking and a video has Nf frames, the video
needs t ∗ Nf time for checking in the previous methods; but in our proposed the
video needs (t ∗ (Nf/N)) + Lt time for checking and determining the tampered
locations, where Lt = 2N ∗ t or 3N ∗ t according to the position of the selected
TP as mentioned in Sect. 3.2.

Table 5. The detection performance for our proposed compared with others under
shuffling attack.

Method Precision Recall F1 score

Wang [17] 0.73 0.75 0.74

Zheng [23] 0.82 0.81 0.81

Liu [5] 0.89 0.78 0.83

Zhao [22] 0.92 0.93 0.92

Ours 0.96 0.97 0.96

Table 6. Average execution time of the different methods.

Method Time (s)

Total Time Time/frame

Wang [17] 90830.4 189.23

Zheng [23] 441.6 0.92

Liu [5] 427.2 0.89

Zhao [22] 220.8 0.46

Ours 12.5 0.026
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5 Conclusion

In this paper, we have proposed an efficient method for frame deletion, insertion,
and shuffling forgeries detection. UQI of TP is used for detecting illegal attacks in
a surveillance video. TP of each non-overlapping subsequence frames is computed
after the video is extracted into frames. Q values are calculated among each two
adjacent TPs for selecting illegal candidates and among their corresponding
frames for determining the attack locations.

The experimental results show that the proposed method outperforms the
state of art methods with the lowest running time. In the future, we intend to
increase our dataset by adding some modifications to the tampered clips such as
noise, etc.
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Abstract. Fingerprint recognition systems have been known to be
exposed to several security threats. Those are fake fingerprints, attacking
at communication channels and software modules, and stealing finger-
print templates from database storages. For a long time, stolen templates
are not seriously investigated because it was believed that fingerprint
templates did not reveal the original fingerprints used to extract the
templates. However, recent studies have proved that a fingerprint can
be reconstructed from its minutiae, although the reconstructed finger-
prints may have many spurious minutiae and unnatural patterns. This
paper proposes an algorithm based on conditional generative adversar-
ial networks (conditional GANs) to reconstruct fingerprints from sets of
minutiae. The fingerprints generated by the proposed networks are very
similar to the real fingerprints and can be used to fool fingerprint recog-
nition systems. The acceptance rates of the generated fingerprints range
from 42% to 98%, depending on the features and security levels used in
the matching algorithms.

Keywords: Fingerprint reconstruction ·
Conditional adversarial network · Synthetic fingerprint

1 Introduction

Verifying the identity of one person can be done in different ways which can be
categorized into three classes. The first category is based on what a person knows;
this class includes but not limited to password, and PIN. The second category
is based on what a person has, such as a smart card, token, and certificate.
The last class is based on whom a person is, called biometrics. Biometrics is
identifying individuals using their biological characteristics, such as fingerprint,
face, iris, vein, and behavioral characteristics, such as speech. Biometrics offers
certain advantages such as negative recognition and non-repudiation that cannot
be provided by tokens and passwords.

Among the biological characteristics, the fingerprint is one of the most popu-
lar traits due to its permanence and uniqueness. More than 50 years have passed
since the first automatic fingerprint recognition system introduced by Trauring
c© Springer Nature Switzerland AG 2019
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[11]; fingerprint recognition systems have been widely incorporated into foren-
sic, civilian, and many commercial applications [8]. The deployment of portable
devices capable of capturing fingerprint images, such as mobile phones, leads to
a growing demand for fingerprint-based authentication applications.

Despite the advantages, fingerprint recognition systems encounter several
problems. One of them is presentation attack which is spoofing the systems with
fake fingerprints. Other threats are attempting to change the system decision by
attacking communication channels or software modules and stealing fingerprint
templates from database storages. Stolen templates can be used to replace the
true templates when a person attacks commutation channels or software mod-
ules. However, this paper presents another threat which comes from synthetic
fingerprints created from fingerprint templates. For a long time, people believed
that a template, particularly minutiae, did not disclose the original fingerprint
used to extract the template. That is, given a template, it is impossible to gen-
erate a fingerprint that is the same as the original fingerprint from which the
template comes. However, the experiments in this paper prove that this state-
ment is no longer correct.

Research on reconstructing fingerprint images from minutiae started in 2001
with the study of Hill [5]. After this very first attempt, there are several studies on
this problem [1,3,4,7,10]. Existing algorithms consist of two main steps, which
are fingerprint orientation map reconstruction and ridge pattern reconstruction.
Orientation maps, which describe the basic structure of fingerprints, can be
reconstructed using the Zero-pole model [3,5]. However, these methods require
that singular points, i.e., core and delta, exist in fingerprints. Other approaches
estimate orientation maps by sets of three or eight neighborhood minutiae [4,7,
10]. Each set of minutiae provides the orientation field of a fingerprint block. Cao
et al. [1] learned a dictionary of orientation patches from high-quality fingerprints
and used the dictionary to reconstruct fingerprint orientations. Figure 1 shows
the orientation reconstructed by different algorithms.

Fig. 1. Reconstructed orientation using different algorithms: (a) Zero-pole model [3],
(b) minutiae in eight sectors [4], (c) orientation patch dictionary [1]
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After obtaining orientation maps, linear interpolation starting from a minutia
point can be applied to generate ridge lines [10]. Ridge pattern also can be
reconstructed by an algorithm called iterative pattern growing, which iteratively
applies Gabor filters to an image formed by minutiae [3]. Since it is possible to
represent a fingerprint image as a 2D amplitude and frequency modulated (AM-
FM) signal, Feng et al. [4] and Li et al. [7] used the AM-FM model to reconstruct
fingerprint ridges. In the work of Cao et al. [1], ridge patterns are restored from
a continuous phase patch dictionary which is learned from a set of enhanced
rolled fingerprints. Several examples of reconstructed fingerprints are shown in
Fig. 2.

Fig. 2. Examples of reconstructed fingerprints: (a) Real fingerprint image from which
minutia set was extracted, (b) fingerprint reconstructed by AM-FM model [4], (c)
fingerprint reconstructed by continuous phase patch dictionary [1].

The existing works can reconstruct fingerprint images from sets of minutiae;
however, the fingerprint areas in the output images are smaller than the original
fingerprint areas because there is often no minutia point near the fingerprint
boundary. Besides, there are spurious minutiae introduced in the outputs. The
reconstructed images do not look real either. This paper proposes an algorithm
to reconstruct fingerprints from minutiae by applying conditional GANs which
were designed for the problem of image-to-image translation [6]. The fingerprint
reconstruction can be considered as an image-to-image translation, in which a
fingerprint image is generated from an image that contains minutia informa-
tion. In this study, we successfully build a single network to produce fingerprint
images from minutia sets. The experiments show that the generated fingerprints
resemble the real fingerprints well.

The rest of the paper is organized as follows. Section 2 describes the archi-
tecture of the proposed network and the process of generating fingerprints from
minutia sets. Section 3 explains how the network was trained and provides the
evaluation on generated fingerprints. Conclusions and future works are stated in
Sect. 4.
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2 Proposed Network for Fingerprint Reconstruction

Network Architecture. Before presenting the proposed fingerprint reconstruc-
tion network, we define our problem as follows. Let x be a fingerprint image;
Sx = {(i, j, θij)} be the set of minutiae extracted from x, where (i, j) and θij

are the location and direction of the ith minutia. Our problem is building a deep
neural network capable of generating a fingerprint image from Sx. The generated
fingerprint should be as similar to the original one x as possible.

The proposed network for reconstructing fingerprints from minutiae is based
on the original work from [6]. The network consists of a generator G and a
discriminator D and is trained in an adversarial manner. That is, the generator
G is trained to generate fingerprint images which can fool the discriminator D;
meanwhile, the discriminator D is trained to do well in discriminating between
the images created by G and the real fingerprint images.

Since this study adopts the network proposed by Isola et al. [6], inputs of
the generator G should be images instead of minutia sets. Thus, minutia sets
are converted into images before feeding into G. Given a minutia set Sx of a
fingerprint image x, the minutia map mx created from Sx is an image that has
the same size as x. The pixel values of mx are defined in Eq. 1. Samples of
minutia maps are shown in the experiment section.

mx(ib, jb) =

{⌊ θij

2

⌋
+ 1 if (i, j) ∈ Sx and |ib − i| ≤ 5, |jb − j| ≤ 5

0 otherwise
(1)

The generator G has 16 modules, and the discriminator D has five modules.
Each module is formed by 4×4 convolutional filters, a batch normalization, and
an activation function. Tables 1 and 2 detail the structure of the generator and
discriminator. The generator G accepts a 256 × 256 minutia map as its input
and produces a grayscale fingerprint image, called the reconstructed fingerprint.
There are special connections, named skip connections, between modules in the
generator G. These connections happen between the module G − k and G −
(16 − k), where k is from 1 to 7. If there is a skip connection between G − k and
G−(16−k), the output of G−k is concatenated with the output of G−(16−k),
and the merged output will be the input of G − (16 − k + 1).

The inputs of the discriminator D are pairs of images. Each pair consists of a
minutia map and a real or generated fingerprint image. If the fingerprint image
is the real one used to extract the minutiae, this pair is a “real” pair. However,
if the fingerprint image comes from G, this pair is a “fake” pair. The output of
D is the probability of being “fake” or “real” of a pair.

Fingerprint Reconstruction. The discriminator D plays a role in the training
stage only. In the reconstruction stage, the generator G is used as an independent
generator. Let Sx be a set of minutiae which is extracted from a fingerprint
image. The process of reconstructing the fingerprint from Sx includes two steps.
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Table 1. Structure of the generator G

Module Input size Output size Conv. filter
size/stride

# of filters Activation
function

G-1 256× 256× 1 128× 128× 64 4× 4/2 64 Leaky ReLU

G-2 128× 128× 64 64× 64× 128 4× 4/2 128 Leaky ReLU

G-3 64× 64× 128 32× 32× 256 4× 4/2 256 Leaky ReLU

G-4 32× 32× 256 16× 16× 512 4× 4/2 512 Leaky ReLU

G-5 16× 16× 512 8× 8× 512 4× 4/2 512 Leaky ReLU

G-6 8× 8× 512 4× 4× 512 4× 4/2 512 Leaky ReLU

G-7 4× 4× 512 2× 2× 512 4× 4/2 512 Leaky ReLU

G-8 2× 2× 512 1× 1× 512 4× 4/2 512 Leaky ReLU

G-9 1× 1× 512 2× 2× 512 4× 4/2 512 ReLU

G-10 2× 2× 1024 4× 4× 512 4× 4/2 512 ReLU

G-11 4× 4× 1024 8× 8× 512 4× 4/2 512 ReLU

G-12 8× 8× 1024 16× 16× 512 4× 4/2 512 ReLU

G-13 16× 16× 1024 32× 32× 256 4× 4/2 256 ReLU

G-14 32× 32× 512 64× 64× 128 4× 4/2 128 ReLU

G-15 64× 64× 256 128× 128× 64 4× 4/2 64 ReLU

G-16 128× 128× 128 256× 256× 1 4× 4/2 1 Tanh

Table 2. Structure of the discriminator D

Module Input size Output size Conv. filter
size/stride

# of filters Activation
function

D-1 256 × 256 × 2 128 × 128 × 64 4 × 4/2 64 Leaky ReLU

D-2 128 × 128 × 64 64 × 64 × 128 4 × 4/2 128 Leaky ReLU

D-3 64 × 64 × 128 32 × 32 × 256 4 × 4/2 256 Leaky ReLU

D-4 32 × 32 × 256 31 × 31 × 512 4 × 4/1 512 Leaky ReLU

D-5 31 × 31 × 512 30 × 30 × 1 4 × 4/2 1 Sigmoid

The first step builds a map from Sx by following the minutia map creation
process described above (Eq. 1). In the second step, the generator G is used
to produce a fingerprint image from the minutia map. Figure 3 displays the
fingerprint reconstruction flowchart.

3 Experiments

3.1 Training of the Proposed Network

The training process uses 3,600 image pairs; each includes a fingerprint image
and the corresponding minutia map. All fingerprints in the training set are from
a private database, namely CVLab database. The images were captured by an
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Fig. 3. The flowchart of reconstructing a fingerprint from minutiae.

Fig. 4. Examples of image pairs used in training. Each pair consists of a fingerprint
image and the corresponding minutia map.

optical sensor and are 280 pixels in width and 320 pixels in height; the resolution
is 500 dpi. The minutia map is created from a fingerprint image as described
in Sect. 2. Minutiae are extracted from fingerprints using the VeriFinger SDK
extractor [9]. Samples of training pairs are shown in Fig. 4.

Because the training image size is 280×320 but the proposed network inputs
have the size of 256 × 256, the training images and their minutia maps are
resized to 320 × 320 by padding them with ones and zeros, respectively. After
padding, they are downscaled to the size of the network inputs. The deep learning
framework used in both training and testing is TensorFlow 1.7. The computing
platform is a desktop with Windows 10, Intel Core i5 3.30 GHz, 12 GB RAM,
and NVIDIA GTX 1080.

3.2 Evaluation of the Reconstructed Fingerprints

1900 fingerprint images were selected randomly from the CVLab database to
evaluate the performance of the reconstructed fingerprints. These test finger-
prints come from 380 fingers, i.e., each finger has five impressions. 1900 corre-
sponding minutia sets are extracted from test fingerprints using the VeriFinger
extraction algorithm [9]. These minutia sets are used to generate fingerprint
images as described in Sect. 2. Several examples of real fingerprints, their corre-
sponding minutia maps, and the generated fingerprints produced by the proposed
generator G are in Fig. 5.

The purpose of this study is to prove that the fingerprint image obtained from
a set of minutiae can resemble the original fingerprint from which the minutiae
are extracted. Therefore, the matching results between fingerprints generated
by the proposed network and real fingerprints are used to evaluate the goodness
of the reconstructed fingerprints. Let x and y be the different impressions of
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Fig. 5. Samples of reconstructed fingerprints. First rows: minutia maps; second row:
fingerprints generated from the minutia maps by the proposed network; third row: real
fingerprints from which the minutiae were extracted.

the same finger; mx be the minutia map corresponding to x; G(mx) be the
image generated from mx by the generator G. There are two types of matching
performed in the experiments. The first is matching the generated fingerprint
against the same impression from which the minutiae are extracted, i.e., match
G(mx) against x. The second type involves matching the generated fingerprint
against a different impression of the finger from which the minutiae are extracted,
i.e., match G(mx) against y. The matching scores can be used to measure how
good the generated images are. The higher is the matching score, the better is the
reconstructed fingerprint. The experiments use two matching algorithms, one is
a minutiae-based matcher [2], and the other is a fusion feature-based matcher [9].

The histograms of matching scores using the minutiae-based matcher and
fusion features-based matcher are in Figs. 6 and 7, respectively. The matching
score between G(mx) and x is called type 1 genuine matching score and shown in
red in the histograms. The matching score between G(mx) and y is called type
2 genuine matching score and shown in blue. Furthermore, the imposter match-
ing scores are computed to show the similarities between pairs of fingerprints
of different fingers. The observation reveals that the distributions of imposter
matching scores between pairs of a reconstructed fingerprint and a real finger-
print are similar to those of real fingerprint pairs (displayed as green and black
in Figs. 6 and 7).
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Fig. 6. Histogram of genuine and imposter matching scores using the minutiae-based
matcher.

Fig. 7. Histogram of genuine and imposter matching scores using the fusion features-
based matcher.

The acceptance rates computed at several security levels based on match-
ing scores are also used to measure the reconstructed fingerprints (Eq. 2). The
threshold value (thr@FAR) are linked to the false acceptance rates (FAR) of the
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matching algorithm. The higher is the threshold, the lower is FAR and higher
FRR (false rejection rate). That is, a high threshold indicates a strict security
system. The acceptance rate shows the capability of fooling a fingerprint recog-
nition system of the fingerprints produced by the proposed network.

AR@FAR =
Number of pairs that have matching scores above thr@FAR

Total number of pairs
(2)

Table 3 contains the acceptance rates of the minutiae-based and fusion
features-based matcher at three security levels. Since only the information of
minutiae is used to reconstruct fingerprint images, it is expected that the accep-
tance rates when using minutiae-based matching algorithms are higher than the
fusion features-based. The type 2 genuine matching scores usually are smaller
than the type 1 genuine scores because there are translations, rotations, and
distortions in different impressions of the same finger. The acceptance rates on
the test database have supported our theory.

Table 3. Acceptance rates when using different matching algorithms. Type 1 means
matching the reconstructed fingerprint against the same impression from which the
minutiae are extracted. Type 2 means matching the reconstructed fingerprint against
a different impression of the finger from which the minutiae are extracted.

FAR (security level) Acceptance rate

Type 1 Type 2

Minutiae-based matcher 0.1% 98.4% 83.9%

0.01% 94.5% 69.1%

0.001% 91.3% 62.4%

Fusion features-based matcher 0.1% 86.1% 71.4%

0.01% 75.6% 56.7%

0.001% 61.5% 41.9%

4 Conclusions and Future Works

This paper proposed a deep learning-based approach to generate fingerprint
images from sets of minutiae. The fingerprints generated by the proposed net-
work are similar to the real fingerprints from which minutia sets were extracted.
These similarities were proved by two matching algorithms, one is based on minu-
tiae only, and the other is based on multiple features. The acceptance rates of
generated fingerprints show that generated fingerprints are significant threats to
fingerprint recognition systems. Hence, it leads to the requirement of protecting
fingerprint templates. In this study, only minutia locations and directions were
used to generate fingerprints; we will include minutia types in the future works.
Also, applying deep neural networks to create massive databases of synthetic
fingerprints for evaluating the performance of fingerprint recognition systems
will be considered.
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Abstract. As the research on deep learning has become more active,
the need for a lot of data has emerged. However, there are limitations
in acquiring real data such as digital forensics, so domain adaptation
technology is required to overcome this problem. This paper considers
distribution matching in various feature level for unsupervised domain
adaptation for object detection with a single stage detector. The object
detection task assumes that training and test data are drawn from the
same distribution; however, in a real environment, there is a domain gap
between training and test data which leads to degrading performance sig-
nificantly. Therefore, we aim to learn a model to generalize well in target
domain of object detection by using maximum mean discrepancy (MMD)
in various feature levels. We adjust MMD based on single shot multibox
detector (SSD) model which is a single stage detector that learns to local-
ize objects with various size using a multi-layer design of bounding box
regression and infers object class simultaneously. The MMD loss on high-
level features between source and target domain effectively reduces the
domain discrepancy to learn a domain-invariant feature in SSD model.
We evaluate the approaches using Syn2real object detection dataset.
Experimental results show that reducing the domain shift in high-level
features improves the cross-domain robustness of object detection, and
domain adaptation works better with simple MMD method than com-
plex method as GAN.

Keywords: Object detection · Unsupervised domain adaptation ·
Maximum mean discrepancy

1 Introduction

Object detection is one of the fundamental problems in computer vision.
Object detection is a task to localize all object instances in an image and
also classify their categories. Due to the development of convolutional networks
(CNNs), many CNN-based supervised object detection algorithms have been
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proposed and they have achieved considerable performances. While they dras-
tically improve the performances, the deep learning based algorithms rely on
a huge amount of labeled data. Annotating a large amount of real data is an
expensive and time-consuming procedure. Especially in the field of digital foren-
sics, it is also difficult to acquire real data itself. Crawling synthetic data can be
an alternative to real data; however, there is a difference in distributions between
synthetic and real data. Such a distribution mismatch referred to as domain shift
leads to performance degradation. Domain adaptation attempts to alleviate this
domain discrepancy and reduces the burden of collecting and annotating the real
data.

In this paper, we address an unsupervised domain adaptation problem for
object detection. The instance level annotation that is composed of a category
label and a location of a bounding box is given in the source domain while
the target domain does not have any annotations. We build an end-to-end deep
learning model based on single shot multibox detector (SSD) [5] with distribution
matching in various feature level. The domain shift could occur on feature level
in single stage detector, which motivates us to minimize the domain gap on var-
ious feature level. The multi-level feature maps in single stage detector contain
different instance level information (e.g. size of an object and appearance of an
object). Therefore, we match a variety of feature levels using maximum mean dis-
crepancy (MMD) [7] to learn robust features that are domain-transferable. This
leads to reduce domain gap and the detector become generalized for the target
domain. We conduct experiments on Syn2real [6] which is the visual domain
adaptation dataset for object detection. The experimental results show that the
matching distribution in high-level features improves cross-domain adaptation
performance.

The rest of the paper is organized as follows. The previous algorithms for
unsupervised domain adaptation for object detection are introduced in Sect. 2.
Our method is described in Sect. 3. In Sect. 4, we discuss our experimental results
on the benchmark dataset. Section 5 concludes the paper.

2 Related Works

2.1 Object Detection

Most object detection algorithms have been driven by deep learning models
recently [1–5]. The object detection algorithms would be categorized into (1)
two-stage detectors and (2) one-stage detectors. The two-stage detectors [1–
3] are region-based CNNs and these algorithms extract region proposals from
the image and a network is trained to classify each region of interest (RoI)
independently. R-CNN [1] is a baseline model of region-based CNN detectors
and it is extended to share the convolution feature map among all RoIs in Fast
R-CNN [2]. Faster R-CNN [3] proposes region proposal networks (RPN) for
learning to produce object proposals with end-to-end detection and it achieves
considerable results in object detection algorithm. In single stage detectors, the
algorithms conform detection without explicit region proposal step. YOLO [4]
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consists of a single convolutional network that simultaneously predicts multiple
bounding boxes and class probabilities for those boxes. SSD [5] is one of the
most representative one-stage detectors and it is also composed of the single
CNN architecture that localizes the objects in an image as well as classifies the
categories of the objects. SSD has less number of weights and faster speed than
those of Faster R-CNN and it has competitive performance.

2.2 Unsupervised Domain Adaptation

Unsupervised domain adaptation has been widely studied for classification in
computer vision. Recent methods are based on deep learning architectures and
aim to improve the domain adaptability with various methods. Previous algo-
rithms have focused on learning transferable feature by minimizing the discrep-
ancy between the source and target feature distributions. Tzeng et al. [9] have
used the MMD loss as regularization term for minimizing the discrepancy of two
distributions of features between the source and target domain. On the other
hand, Sun et al. [10] propose a correlation alignment (CORAL) loss to match
the mean and covariance of two distribution in feature space between the source
and target domain. Ganin et al. [11] use adversarial training to learn a domain-
invariant representations. The domain adversarial neural network (DANN) is
composed of a shared network for extracting transferable representation with
two classifiers. One classifier is trained to predict the class of the data from the
source domain and the other is trained to predict where the input data is from.
The domain classification loss makes the shared feature extractor in adversar-
ial training by using gradient reversal layer (GRL). In this paper, we focus on
the object detection problem in unsupervised domain adaptation, which is more
challenging as both categories of the object and the location of the bounding
box are jointly predicted.

2.3 Unsupervised Domain Adaptation for Object Detection

There has been an approach to domain adaptation for object detection. Chen
et al. [8] have proposed minimizing discrepancy using GRL in image level and
instance level to learn domain-invariant features. Also, they propose consistency
regularization in both levels to learn the cross-domain robustness for bounding
box regressor.

3 Method

3.1 Preliminaries

Generative Adversarial Networks (GAN). Generative adversarial net-
works (GAN) [13] is composed of generator G and discriminator D that are
trained by an adversarial process for the minimax game. A generator G receives
noise z and produces samples G(z). A discriminator D outputs the probability
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that an input is drawn from real data x. The goal of a generator is to generate
samples that have the same distribution from real data, and the goal of the dis-
criminator is to distinguish whether the input is drawn from real data or fake
samples from the generator. Both networks are trained by solving.

min
G

max
D

Ex∼pdata [log D(x)] + Ez∼p(z)[log(1 − D(G(z)))]. (1)

3.2 Single Shot Detector (SSD)

For domain adaptation of object detection task, SSD was used as a baseline
model. SSD is composed of a combination of VGG-16 [12] and several additional
convolutional feature layers. In SSD, 6 features with a variety of sizes in the
network are extracted to detect objects of different sizes, where the more deeper
the features in the network, the bigger the size of the objects can be detected.
As keeping the area based on a square bounding box, several bounding boxes
(default boxes) are considered according to aspect ratios. When the number of
categories is c and the number of default boxes used is k, output per one pixel
in features has 4k location information with coordinates of each bounding box
and ck class information. Using this, output dimension of each feature map with
size m ∗ n is (c + 4)kmn. As used feature map sizes are 38 ∗ 38, 19 ∗ 19, 10 ∗ 10,
5 ∗ 5, 3 ∗ 3, and 1 ∗ 1, the total number of observed bounding boxes in SSD is
8732 ∗ (c + 4). Applying score and nms threshold, bounding boxes are refined to
detect more precisely (Fig. 1).

Fig. 1. Single Shot Detector (SSD)

SSD loss L is calculated as weighted sum of confidence loss Lconf and local-
ization loss Lloc as follows. Confidence loss is the softmax for the score of multi-
ple classes and localization loss is the Smooth L1 loss. N means the number of
default boxes which is matched and α is set to 1.

L =
1
N

(Lconf + αLloc)

Using this formula with multiple feature maps, detection loss considering both
location and class category of each bounding box is obtained.
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3.3 Loss Function

Our task is to detect objects in the target domain data with trained model in
source domain data. Let’s assume that xs and ys are source image inputs and
its annotation that contains location of boxes bs and labels ls. For the target
domain, xt is input images and yt is annotation with box location bt and lt. For
unsupervised domain adaptation problem, yt is not given.

When doing our task, main problem is that there exists some gap in feature
levels between source domain and target domain. Therefore, it is crucial to reduce
the gap between domains (Fig. 2).

Fig. 2. Method using MMD in SSD

Maximum Mean Discrepancy (MMD) Loss. To diminish the domain gap
of features, we apply maximum mean discrepancy (MMD) into features of SSD.
Let features that extracted to predict location of the bounding boxes in SSD be
{f (i)}5i=0 in order of shallow level in network. Based on original MMD equation
MMD(fs, y) = E{K(x, x)} + E{K(y, y)} − 2E{K(x, y)} with kernel K, MMD
loss can be defined as follows:

L(i)
mmd(f

(i)
source, f

(i)
target) = E{K(f (i)

source, f
(i)
source)} + E{K(f (i)

target, f
(i)
target)}

− 2E{K(f (i)
source, f

(i)
target)}, for i = 0, 1, ..., 5.

(2)

In this network, Gaussian kernel is used.

Gaussian Kernel K(xi,xj) = e
−‖xi−xj‖2

2σ2

This MMD loss matches the distribution of features in different domains. There-
fore, if MMD loss is applied into higher feature level, higher level features of
source domain and target domain are matched to be similar. This allows the
detector to better detect objects in the target domain.
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Detection Loss. As with other domain adaptation tasks, the detection perfor-
mance of the source domain basically has a significant impact on the detection
performance of the target domain. Therefore, the detection loss Ldetection for
the source domain is obtained so that the detector works well for source domain
data through learning. When source data is inserted into SSD as an input, the
detection loss is calculated as a combination of Lconf and Lloc.

Total Loss. Combining SSD detection loss related to location and class of
bounding boxes from source data and MMD loss to match features between
different domains, total loss can be defined.

Ltotal = Ldetection + λL(i)
mmd, for i = 0, 1, ..., 5.

N is the number of matched default boxes and α is set to 1 as same as original
model. λ is found to 0.01 when best performance of the detector was found after
several experiments.

4 Experiments

4.1 Dataset

In this experiment, a synthetic-to-real (Syn2Real) visual domain adaptation
benchmark was adopted to detect objects in the target domain using models
trained by the source domain. The training set is used through the learning pro-
cess, and the validation set is operated for measuring the performance of the
model. In that dataset, CAD-Synthetic images are used as source domain data.
It is generated by 1,907 rendering 3D models of the 12 object classes; aeroplane,
bicycle, bus, car, horse, knife, motorcycle, person, plant, skateboard, train and

Fig. 3. A Syn2Real visual domain adaptation benchmark 2018 detection track dataset
(a) CAD-Synthetic images (b) filtered MS COCO images



Unsupervised Domain Adaptation for Object Detection 369

truck. With a variety of conditions such as angles, lighting, scaling, rotating,
translating, and texturing, numerous synthetic source domain images can be
obtained easier. The size of all images is fixed at 540 by 540. It does not take
into account the ratio of object sizes in the real world. For example, the train
can be smaller than the horse like in the image Fig. 3(a).

Target domain dataset was a refined version of Microsoft COCO dataset
which is real images as shown in Fig. 3(b). As original MS COCO dataset is com-
posed of 80 category and 12 categories of the Syn2Real benchmark dataset are
the subset of the COCO dataset category, COCO dataset images were cropped
only for the 12 category objects of Syn2Real visual domain adaptation bench-
mark dataset. Each image has a different width and height.

4.2 Results

Quantitative Results. In the experiments, SSD300 was used with ImageNet
pretrained model. The IoU threshold for NMS is set to 0.45 as same as original
SSD [5]. Score threshold for guaranteeing the confidence of bounding box outputs
is employed as 0.2. For fine-tuning, SGD is used with initial learning rate 1e–3,
0.9 momentum, 1e–4 weight decay and batch size 24. For SSD, score threshold
and nms threshold are set to 0.2 and 0.45. Pascal VOC’s mAP metric is used to
evaluate detection performance. Table 1 shows the results; AP for each class and
mAP for baselines and our methods according to feature level used. To analyze
our method more precisely, we additionally proceeded the experiments using
DANN [11] in order to match the features in SSD levels using discriminator.

Performance of source only model is evaluated without MMD loss term (only
detection loss). MMD loss term for domain adaptation is applied into each SSD
feature level; 0, 4, and 5. As shown in Table 1, mAP value increases, as MMD loss
is applied to deeper level of features. This implies that the domain adaptation
method using MMD for deeper layer shows better performance while matching
distributions of different features effectively.

For DANN, as similar to the results of the MMD experiment, the domain
adaptation performance was higher when the distributions of deeper level fea-
tures were matched. However, due to the unstable properties of GAN, the mAP

Table 1. Object detection performance in mAP for domain adaptation method

mAP (%)

Source only 8.030

grl w/ f 0 8.379

grl w/ f 4 8.626

grl w/ f 5 8.663

MMD w/ f 0 8.423

MMD w/ f 4 8.670

MMD w/ f 5 8.823
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Table 2. Object detection image result in mAP for domain adaptation method

(a)

ground truth DANN w/ f 0 DANN w/ f 4 DANN w/ f 5

source only MMD w/ f 0 MMD w/ f 4 MMD w/ f 5

(b)

ground truth DANN w/ f 0 DANN w/ f 4 DANN w/ f 5

source only MMD w/ f 0 MMD w/ f 4 MMD w/ f 5

performance of DANN was not as good as that of MMD. Therefore, it can be
said that a more simple approach than the unstable method such as GAN is
effective in the domain adaptation problem.

Qualitative Results. Table 2 shows the image results by our methods. The
images used in Table 2 are the part of the MS COCO 2017 validation dataset as
target domain used to measure our method. For the source only model, it does
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not detect real objects well. It shows improved performance after training SSD
with our methods. As can be seen from the mAP values, the results observed in
the data image with predicted bounding boxes were also better when applied to
MMD than DANN and to a deep layer with f5 rather than f0.

5 Conclusion and Future Work

We consider distribution matching in various feature levels for unsupervised
domain adaptation for object detection. We adjust MMD based on an SSD model
which is a single stage detector that learns to localize objects with various size
using the multi-layer design of bounding box regression and infers object class
simultaneously. The distribution matching in high-level features between the
source and target domain alleviates the domain discrepancy in SSD model. We
evaluate the approaches using Syn2real object detection dataset. Experimental
results show that reducing the domain shift in high-level features improves the
cross-domain robustness of object detection using the simple method as MMD.
We will perform the experiments on other object detection datasets.
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7. Quiñonero-Candela, J., et al.: Covariate shift and local learning by distribution
matching (2008)

8. Chen, Y., et al.: Domain adaptive faster R-CNN for object detection in the wild. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018)

9. Tzeng, E., et al.: Simultaneous deep transfer across domains and tasks. In: Pro-
ceedings of the IEEE International Conference on Computer Vision (2015)

10. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adap-
tation. In: Hua, G., Jégou, H. (eds.) ECCV 2016, Part III. LNCS, vol. 9915, pp.
443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8 35

https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1806.09755
https://doi.org/10.1007/978-3-319-49409-8_35


372 H. Park et al.

11. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2096–2030 (2016)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems (2014)

http://arxiv.org/abs/1409.1556


Towards Robust Neural Networks
with Lipschitz Continuity

Muhammad Usama and Dong Eui Chang(B)

School of Electrical Engineering,
Korea Advanced Institute of Science and Technology,

Daejeon, Republic of Korea
dechang@kaist.ac.kr

Abstract. Deep neural networks have shown remarkable performance
across a wide range of vision-based tasks, particularly due to the avail-
ability of large-scale datasets for training and better architectures. How-
ever, data seen in the real world are often affected by distortions that
not accounted for by the training datasets. In this paper, we address the
challenge of robustness and stability of neural networks and propose a
general training method that can be used to make the existing neural
network architectures more robust and stable to input visual perturba-
tions while using only available datasets for training. Proposed training
method is convenient to use as it does not require data augmentation or
changes in the network architecture. We provide theoretical proof as well
as empirical evidence for the efficiency of the proposed training method
by performing experiments with existing neural network architectures
and demonstrate that same architecture when trained with the proposed
training method perform better than when trained with conventional
training approach in the presence of noisy datasets.

Keywords: Deep neural networks · Robust neural networks ·
Lipschitz continuity

1 Introduction

Recent advances in deep learning have immensely increased the representational
capabilities of the neural networks and made them powerful enough to be applied
to different vision-based tasks including image classification [1–4], object detec-
tion [5,6], image captioning [7] as well as to deep reinforcement learning [8,9].
Some important factors that explain the rapid development of deep learning
include emergence of dedicated mathematical frameworks for deep neural net-
works [10], availability of large scale annotated datasets [11,12], improvements in
the network architectures [3,13] and open source deep learning libraries [14,15].

Availability of large amounts of high-quality and distortionless image data
is often assumed and the visual quality of training images is often overlooked
while designing deep learning based applications. It has been shown that mod-
els trained with clean data suffer with depreciation in their performance when
c© Springer Nature Switzerland AG 2019
C. D. Yoo et al. (Eds.): IWDW 2018, LNCS 11378, pp. 373–389, 2019.
https://doi.org/10.1007/978-3-030-11389-6_28
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Table 1. Effect of input image quality on the deep learning model prediction. We
trained resnet-20 architecture with standard and proposed training procedure and
tested them on a CIFAR-10 dataset image. Model trained with standard method fails
to correctly classify the image as the severity of distortion increases while that trained
with proposed method correctly classifies all images with high confidence.

tested on samples that are distorted with blur or noise distortions [16,17]. In
most real-world applications, the images undergo various forms of distortions
owing to formatting, compression and post-processing that are routinely applied
to visual datasets and often are unobservable to a human eye. Therefore, the
availability of clean data is no longer guaranteed. One way to alleviate this
problem can be to train the networks with noisy data expected to be seen in the
real-world. However, the commonly used large scale datasets [11,12] for train-
ing the deep learning models do not provide training data with these artifacts
and distortions. Therefore, it is imperative to develop training techniques that
can give more robust deep learning models while using only available large scale
popular datasets that do not cater for these distortions.

The problem discussed in this work is about improving the robustness and
stability of deep neural networks. This is a fundamental problem in computer
vision and has recently received increased interest by the community [18–20]. Our
focus is on improving the training process rather than the DNN architecture.
We introduce a general training technique that can be applied to any standard
state-of-the-art deep learning model and lets them learn a mapping that is more
robust and insensitive to input visual perturbations and distortions. We note that
a deep neural network can be considered as a mathematical model and the least
we can expect from a stable mathematical model is that a small perturbation or
distortion in its input will not produce a large change in its behavior. In order to
realize this, we utilize some fundamental concepts including Lipschitz functions
and Lipschitz continuity. According to the perturbation theory, if the input is
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perturbed by a small amount, the output of the system stays close to its nominal
output when there is no perturbation in the input provided that the system
dynamics are continuous and locally Lipschitz. In order to motivate the dynamics
of the deep neural network to remain locally Lipschitz, we include an additional
term in the loss function called LLipschitz. We provide theoretical justification for
the proposed training method in Sect. 4, proving that for admissible distortions
in the neighborhood of input image, the Locally Lipschitz neural network is
guaranteed to be stable, thus improving the performance in presence of noisy
data. We verify the theoretical results by performing extensive experiments on
MNIST, CIFAR-10 and STL-10 datasets.

We summarize the paper findings in Table 1 where resnet-20 network archi-
tecture, trained without the proposed method, when presented with distorted
input images fails to classify them as the severity of the distortion increases. Even
for correctly classified distorted images, the prediction confidence is very low. On
the other hand, the same architecture trained with the proposed method when
presented with same distorted images correctly classifies them with reasonable
prediction confidence.

2 Related Work

While training the deep neural networks, availability of high quality and artifact-
free image data is often assumed. However, this may not always be true due to
distortions the images encounter during accusation, transmission and storage
phases. Moreover, with the increasing demand of DNN based mobile applica-
tions, the assumption for high quality of the availability of high quality input
data needs to be relaxed. [16,17] showed that the deep neural networks trained
on clean datasets are all susceptible to poor performance when tested to blur
and noise distortions while being resilient to compression artifacts such as JPEG
and contrast. They propose to train the networks on low quality data to alleviate
this problem, which may cause networks to perform poorly to high quality data.
The VGG [18] architecture was shown to perform better than AlexNet [4] or
GoogleNet [1] to the considered types of distortions. [1] showed that standard
architectures trained on high-quality data suffered significant degradation in
performance when tested with distorted data due to blurring or camera motion.
They showed that fine-tuning the trained models with a mix of blurry and sharp
training examples helps to regain the lost performance to a degree at the cost of
minor computational overhead. [21] proposed two approaches to alleviate poor
performance due to blurred and noisy images: re-training and fine-tuning with
noisy images, showing that fine-tuning is more practical than re-training. [22]
also shows that fine-tuned networks on distorted data outperform the original
networks when tested on noisy data, but these fine-tuned networks show poor
performance on quality distortions that they have not been trained for. [22]
propose the concept of mixture of experts ensemble, where various experts are
trained on different types of distortions and the final output of the model is
the weighted sum of these expert models’ outputs. A separate gating network
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is used to determine these weights. [19] presents BANG which is the training
algorithm that assigns more weight to the correctly classifies samples. Since the
correctly classified training samples do not contribute much to the loss as com-
pared to the incorrectly classified training samples, therefore, training is more
focused on learning those samples that are badly classified. [19] proved that
increasing the contribution of correctly classified training samples in the batch
helps flatten the decision space around these training samples, thus training more
robust DNNs. In addition to above mentioned issues, [23] showed the inability of
many machine learning models to deal with slightly, but intentionally, perturbed
examples which are called adversarial examples. These adversarial examples are
indistinguishable to human observers from their original counterparts. Authors
in [23] were first to introduce a method of finding adversarial perturbations while
[24] introduced a computationally cheaper adversarial example generation algo-
rithm called Fast Gradient Sign Method (FGSM). Our work differs drastically
from [20] as instead of flattening the neural network dynamics function f alto-
gether, we are more focused on setting a soft upper bound on the gradient of f
that does not adversely affects the representational power of the neural network.
Our work also differs from data augmentation as we propose a way to improve
the training process without using any extra training samples, while data aug-
mentation uses standard training techniques and instead increases the number
of training samples.

3 Background

In this section, we present the basic concepts of Lipschitz functions and Lipschitz
continuity.

Let S be an open set in some R
n. A function f : Rn → R

m is called Lips-
chitz continuous on S if there exists a nonnegative constant Lf ∈ R≥0, called a
Lipschitz constant of function f on S, such that the following condition holds:

‖f(x) − f(y)‖ ≤ Lf‖x − y‖ (1)

for all x, y ∈ S. We call the function f to be locally Lipschitz continuous if for
each z ∈ R

n, there exists a constant r such that f in Lipschitz continuous on
the open ball Br(z) of center z and radius r, where Br(z) is mathematically
written as Br(z) = {y ∈ R

n : ‖y − z‖ < r}. The function f is said to be globally
Lipschitz continuous if it is Lipschitz continuous on its entire domain R

n. We
note that if the function f(x) is Lipschitz continuous with a Lipschitz constant
Lf , then it is also Lipschitz continuous with any L such that L ≥ Lf .

Lipschitz continuity is a measure designed to measure the change of the
function values versus the change in the independent variable. Let f : Rn → R

m

be a Lipschitz continuous function with a Lipschitz constant Lf , so it satisfies
(1), i.e.

‖f(x) − f(y)‖
‖x − y‖ ≤ Lf (2)
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for all x �= y ∈ R
n. In other words, the average rate of change in the value of

f for any pair of points x and y in R
n does not exceed the Lipschitz constant

Lf . Here we note that the Lipschitz constant Lf depends upon the function f .
It may vary from being large for one function to being small for another. If Lf

is small, then f(x) may only vary a little as the input is changed. But if Lf is
large, the function output f(x) may vary a lot with only a small change in its
input x. In particular, when the Lipschitz function f is real-valued, i.e. m = 1,
then by taking the limit of (2) as y → x we obtain ‖f ′(x)‖ ≤ Lf , where f ′(x) is
the derivative function of f(x). In other words, the magnitude of (instantaneous)
rate of change in f does not exceed the Lipschitz constant Lf when the Lipschitz
continuous function f is differentiable.

Lipschitz continuity, therefore, quantifies the idea of sensitivity of the func-
tion f(x) with respect to its argument using the Lipschitz constant Lf . We note
here that the Lipschitz constant Lf represents only the upper bound on how
much the function f(x) can change with the change in its input, the actual
change might also be smaller than that indicated by Lf .

4 Approach

Neural networks can be considered as a sequence of layers that attempt to learn
the arbitrary mapping f : X → Y . The network is parameterized with many
parameters that are optimized given the training data x ∈ X and y ∈ Y .
Therefore, imposing the condition of Lipschitz continuity on the neural net-
work dynamics implies that a small perturbation in the input will not result in
large change at the output of the network, thus increasing the robustness and the
stability of the network. Theoretical justification for our approach is provided in
the following theorem.

Theorem 1. Let Λ = {y1, y2, . . . , yl} be the set of l labels used and let ρ =
1/2 min

1≤i<j≤l
‖yi −yj‖ be half of the minimum distance between any two labels. Let

f(x) be the neural network dynamics. Let Ln be the chosen Lipschitz constant
hyperparameter. If f(x) is Lipschitz, then for all distortions d in input space
such that ‖d‖ < ρ/Ln, x and x̃ are guaranteed to be mapped to the same label
where x̃ is the distorted input of the form x + d.

Proof. From the Lipschitz assumption, we have ‖f(x + d) − f(x)‖ ≤ Ln/‖d‖.
Since we have ‖d‖ < ρ/Ln, we get ‖f(x + d) − f(x)‖ < ρ. Since f(x) is discrete-
valued in Λ, taking into consideration the definition of ρ, we conclude that both
x and x̃ get mapped to the same label in set Λ.

The Lipschitz property of f(x) guarantees that for any distortion d such that
‖d‖ < ρ/Ln, the output of the distorted input lies within a sphere of radius ρ
about the output of the nominal input where ρ gives the half of the maximum
distance between any two labels. Thus, it is guaranteed that distorted input gets
mapped to the same label as the nominal input. For the case when the network is
trained without the proposed method, we do not impose any upper bound on the
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slope of f(x). Therefore, we have Lipschitz constant Ln = ∞ which in Theorem
1 gives ‖d‖ = 0, which trivially implies that there is no distortion d for which
the network is guaranteed to be robust.

5 Method

Let R
H×W×C → Rl, where l denotes the number of labels, represents the map-

ping performed by the deep neural network. Let x ∈ R
H×W×C be the input that

the network takes, for example an image in the case of a convolutional neural
network. In order to encourage the network to be locally Lipschitz continuous, we
perturb the network input during the training process with zero mean Gaussian
Noise to get a perturbed copy of the input, x̄, i.e.

x̄ = x + N (0, σ) (3)

where we note that in (3), N (0, σ) has same dimensions as the input image x
i.e. N (0, σ) ∈ R

H×W×C and each component of N (0, σ) is a single valued zero
mean Gaussian random variable N (0, σ) with standard deviation σ. Here, σ is
treated as a hyperparameter in the experiments.

In general, the derivative f ′(x) of a function f(x) at a point a point x is
defined by

f ′(x) = lim
y→x

f(y) − f(x)
y − x

,

it can be approximated by

f ′(x) ≈ f(y) − f(x)
y − x

,

where y is a point near x. Hence, if we take y = x̄ = x + N (0, σ) from (3), we
then have

‖f ′(x)‖ ≈ ‖f(x̄) − f(x)‖
‖x̄ − x‖ =: k(x). (4)

In order to encourage the neural network to become locally Lipschitz con-
tinuous, we add an additional term, called LLipschitz, in the usual loss function,
termed here as Lusual, to get an aggregated loss function L, i.e.

L = Lusual + LLipschitz,

where Lusual is the loss term corresponding to the task to be performed by the
network, for example cross-entropy loss, while LLipschitz is defined as:

LLipschitz = β ∗ max(0, k(x) − Ln) (5)

where β is the weighting factor for the added loss term LLipschitz, Ln serves the
purpose of the Lipschitz constant for the neural network dynamics, and k(x) is
given in (4). We treat both β and Ln as hyperparameters.

The effect of the hyperparameters will be studied in Sect. 7.



Towards Robust Neural Networks with Lipschitz Continuity 379

Table 2. Classification accuracies for experiments with MNIST. Results are shown for
various levels of distortions in test dataset as described by the value of σtest. Here σtest =
0.0 corresponds to undistorted test data. We used β = 10 for MNIST experiments.

Network training details σtest

0.0 0.5 1.0

Standard method 0.97 0.92 0.65

σtrain = 0.5, Ln = 0.01 0.98 0.95 0.70

σtrain = 0.75, Ln = 0.005 0.98 0.96 0.78

σtrain = 0.75, Ln = 0.01 0.98 0.96 0.77

6 Experiments

In order to evaluate our approach, we tested our proposed training procedure
with MNIST [25], CIFAR-10 [26] and STL-10 [27] datasets. Details about these
experiments and their results are explained in following subsections. When we
train the network without using the proposed training method, we refer to the
training method as standard training method.

Justification for Using Gaussian Noise: In experiments, we use Gaussian noise
to corrupt test data. To see why Gaussian model can approximate realistic dis-
tortions, we see that any distortion of an image x can always be expressed as
x̄ = Tσ(x), where Tσ(·) is a map close to the identity map, i.e. T0(x) = x,
parameterized by a parameter σ. Hence, for all small values of σ, x̄ = Tσ(x) =
T0(x) + O(|σ|) = x + O(|σ|) in Taylor expansion of Tσ(x) in σ around σ = 0,
where O(|σ|) represents the terms of order 1 or higher in σ and can be inter-
preted as a perturbation term that vanishes when σ = 0. Hence, it is reasonable
to use Gaussian noises N (0, σ) to simulate various realistic distortions to the
image x.

Due to space constraints, some tables and figures are given in the supple-
mentary material and will be referenced in the subsequent sections as required.

6.1 MNIST

Experiment Details. We used a convolutional neural network consisting of
one convolutional layer, one fully-connected layer and an output layer for exper-
iments with MNIST dataset. 5 epochs of 550 iteration were performed and learn-
ing rate was set to 10−4. For training the network with standard training method,
we set β = 0 in (5). Network was trained with and without the proposed train-
ing mechanism. (σtrain, β, Ln) ∈ {0.5, 0.75} × {10} × {0.005, 0.01} were used as
hyperparameters.



380 M. Usama and D. E. Chang

We tested trained networks with test data distorted with zero mean Gaussian
noise with standard deviation values of σtest = 0.0, 0.5 and 1.0. Networks trained
with various percentages of training data were also tested.

Fig. 1. Plots of classification accuracy versus ratio of training data used in training
process.
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Table 3. Top-1 accuracies for models trained with σtrain = 0.25 on CIFAR-10 dataset

For ResNet-20 architecture

Training Ln Test data distortion σtest

σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 92.77 92.77 92.77 38.28 38.28 38.28 18.01 18.01 18.01

Proposed 0.01 88.02 82.49 88.18 50.56 45.80 58.56 23.49 21.68 29.70

0.1 88.86 88.21 89.00 63.01 59.05 57.92 34.73 31.17 25.84

For Preresnet-20 architecture

Training Ln Test data distortion σtest

σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 92.59 92.59 92.59 30.80 30.80 30.80 15.91 15.91 15.91

Proposed 0.01 86.91 87.86 88.34 63.52 58.86 59.47 32.84 26.99 26.33

0.1 86.55 88.11 87.80 58.51 61.25 64.98 35.14 32.76 39.41

We also investigated the effects of using only a proportion of training data for
training purpose. We trained the networks with various percentages of training
data and tested them on entire test data. We randomly sample a percentage
of training data at the start of training. We hypothesize that a robust neural
network trained with only a portion of training data should be able to generalize
well across the entire test dataset.

Results. Table 2 presents classification accuracies for models trained with dif-
ferent combinations of hyperparameters. We see that networks trained with
Lipschitz continuity loss perform better than the network obtained with stan-
dard training procedure. With undistorted test data, the gain in performance is
small but as the severity of distortion increases, the networks trained with pro-
posed method show significant performance improvement over network trained
with standard training process. As the value of Ln is increased keeping other
hyperparameters the same, the performance slightly deteriorates in accordance
with the conclusion of Theorem 1, where the region of admissible distortions d
decreases as Ln is increased i.e. ‖d‖ ≤ ρ/Ln.

In order to test the robustness of proposed training procedure, we trained
the networks with various portions of training data. These models were then
tested with entire test dataset, undistorted as well as distorted (σtest = 0.5).
Figure 1 shows that networks trained with Lipschitz loss always perform better
than those trained with standard training process, thus proving their robustness.

6.2 CIFAR-10

Experiment Details. We used ResNet-20 [3] and PreResNet-20 [17] as our
network architectures for classification task with CIFAR-10 dataset. Both net-
works have 16-16-32-64 channels and 0.26 million parameters each. Each model
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Table 4. Top-1 accuracies for models trained with σtrain = 0.05 on CIFAR-10 dataset

For ResNet-20 architecture

Training Ln Test data distortion σtest

σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 92.77 92.77 92.77 38.28 38.28 38.28 18.01 18.01 18.01

Proposed 0.01 92.39 92.44 92.68 32.5 36.56 34.09 15.68 19.65 16.33

0.1 92.57 92.32 93.02 34.15 38.48 42.06 13.67 20.63 21.56

For Preresnet-20 architecture

Training Ln Test data distortion σtest

σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 92.59 92.59 92.59 30.80 30.80 30.80 15.91 15.91 15.91

Proposed 0.01 92.50 92.40 92.56 41.31 35.18 34.66 22.25 18.39 16.46

0.1 92.36 92.66 92.34 34.92 28.37 33.67 17.54 16.12 14.83

Table 5. Top-1 accuracies for models trained with σtrain = 0.5 on CIFAR-10 dataset

For ResNet-20 architecture

Training Ln Test data distortion σtest

σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 92.77 92.77 92.77 38.28 38.28 38.28 18.01 18.01 18.01

Proposed 0.01 82.97 82.72 82.55 70.31 67.60 66.89 46.47 43.91 41.15

0.1 81.36 83.20 84.62 58.55 60.09 72.40 36.25 40.75 45.53

For Preresnet-20 architecture

Training Ln Test data distortion σtest

σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 92.59 92.59 92.59 30.80 30.80 30.80 15.91 15.91 15.91

Proposed 0.01 82.43 80.88 80.00 70.83 64.34 72.08 45.54 33.10 47.19

0.1 80.08 85.17 82.42 53.92 58.37 65.94 31.77 26.48 47.28

was trained for 300 epochs with batch size of 128 and learning rate of 0.1. Learn-
ing rate was decreased by a factor of 10 first at epoch 150 and then at epoch 225.
(σtrain, β, Ln) ∈ {0.05, 0.25, 0.5}×{1, 5, 10}×{0.001, 0.1} were used as hyperpa-
rameters. For training the network with standard training method, we set β = 0
in (5).

We tested the trained networks with corrupted test data generated by distort-
ing the test data set with zero mean Gaussian Noise having standard deviation
values ranging from σtest = 0.0 to σtest = 0.5 with step size of 0.01.
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Table 6. Top-1 accuracies for models trained with σtrain = 0.25 on STL-10 dataset

Test data distortion σtest

Training Ln σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 80.44 80.44 80.44 50.67 50.67 50.67 34.94 34.94 34.94

Proposed 0.01 75.65 77.41 78.19 66.11 59.00 62.91 48.77 40.94 44.52

0.1 78.88 79.71 77.21 68.34 65.47 64.60 47.42 46.26 42.24

Results. Table 3 shows the top-1 classification accuracies for networks trained
with σtrain = 0.25 and σtest values of 0.0, 0.3 and 0.5. Similarly, Tables 4 and 5
show results in similar fashion for σtrain = 0.05 and σtrain = 0.5 respectively.
Figures 2, 3 and 4 show plots for test accuracies versus σtest = 0.0 − 0.5 for net-
works trained with σtrain = 0.05, 0.25, 0.5 respectively for better visualization.

Fig. 2. Plots of the top-1 CIFAR-10 test accuracies for models trained with σtrain =
0.05 and with standard training. (a) shows results for resnet-20 and (b) shows results
for preresnet-20.

We see that the models trained with σtrain = 0.05 perform comparable to
the original baseline with the undistorted test data. As the distortion severity is
increased, they perform better than the baseline confirming that they are more
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Fig. 3. Plots of the top-1 STL-10 test accuracies for σtrain = 0.05

Fig. 4. Plots of the top-1 CIFAR-10 test accuracies for σtrain = 0.25

robust to input visual distortions. As the value of σtrain is increased, we get the
models that tend to lose performance with the undistorted dataset but perform
much better as the distortion severity in increased. Therefore, models trained
with increased values of σtrain are much more robust and insensitive to input
distortions with some loss in performance with undistorted input data. We also
note that as the value of β is increased, the performance difference of models
trained with different Ln values tends to diminish as they start to performance
equally well. This is due to high value of β that makes the effect of different Ln

values in the training loss ineffective.
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Table 7. Top-1 accuracies for models trained with σtrain = 0.05 on STL-10 dataset

Test data distortion σtest

Training Ln σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 80.44 80.44 80.44 50.67 50.67 50.67 34.94 34.94 34.94

Proposed 0.01 80.44 80.88 80.79 56.54 67.81 56.56 41.74 51.58 37.25

0.1 81.34 80.90 80.64 55.46 52.88 49.86 39.51 39.51 34.84

Table 8. Top-1 accuracies for models trained with σtrain = 0.5 on STL-10 dataset

Test data distortion σtest

Training Ln σtest = 0.0 σtest = 0.3 σtest = 0.5

β = 1 β = 5 β = 10 β = 1 β = 5 β = 10 β = 1 β = 5 β = 10

Standard - 80.44 80.44 80.44 50.67 50.67 50.67 34.94 34.94 34.94

Proposed 0.01 73.16 72.08 70.90 60.19 66.97 65.89 48.83 53.21 51.33

0.1 71.75 75.35 71.83 62.79 69.10 67.88 46.40 55.95 52.21

6.3 STL-10

Experiment Details. We used PreResNet-32 [1]as our baseline architecture for
classification task with STL-10 dataset. The network has 16–16–32–64 channels
and 0.46 million parameters. Training conditions and hyperparameters’ values
are same as for CIFAR-10 experiments. Test data was also generated similar to
CIFAR-10 experiments.

Results. Table 6 shows the top-1 classification accuracies for networks trained
with σtrain = 0.25 and σtest values of 0.0, 0.3 and 0.5. Similarly, Tables 7 and
8 show results in similar fashion for networks trained with σtrain = 0.05 and
σtrain = 0.5 respectively. Figures 5, 6 and 7 in the supplementary material show
plots for test accuracies versus σtest = 0.0−0.5 for networks trained with σtrain =
0.05, 0.25, 0.5 respectively for better visualization.

We see that the models trained with σtrain = 0.05 perform comparable to
the original baseline with the undistorted test data. As the distortion severity is
increased, they perform better than the baseline confirming that they are more
robust to input visual distortions. As the value of σtrain is increased, we get the
models that tend to lose performance with the undistorted dataset but perform
much better as the distortion severity in increased. Therefore, models trained
with increased values of σtrain are much more robust and insensitive to input
distortions with some loss in performance with undistorted input data. We also
note that as the value of β is increased, the performance difference of models
trained with different Ln values tends to diminish as they start to performance
equally well. This is due to high value of β that makes the effect of different Ln

values in the training loss ineffective.
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Fig. 5. Plots of top-1 STL-10 test accuracies for σtrain = 0.25

Fig. 6. Plots of the top-1 CIFAR-10 test accuracies for σtrain = 0.5

7 Sensitivity Analysis of Hyperparameters

The impact of hyperparameters is best studied using the sensitivity analysis. The
hyperparameters introduced in this study are (σtrain, β, Ln) ∈ {0.05, 0.25, 0.5}×
{1, 5, 10}×{0.01, 0.1}. For sensitivity analysis, let’s take nominal values of hyper-
parameters be (σtrain, β, Ln) = (0.25, 5, 0.01). Let acc denote the percentage
accuracy of the model trained with Lipschitz term in loss function. We change
the hyperparameters σtrain, β and Ln as follows: Δσtrain = 0.25,Δβ = 5 and
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Fig. 7. Plots of the top-1 STL-10 test accuracies for σtrain = 0.5

ΔLn = 0.09. Experiments are performed with new hyperparameters values
on CIFAR-10 dataset. The sensitivities of model performance with respect to
σtrain, β and Ln are given as:

Δacc/Δσtrain = 87.20, Δacc/Δβ = 2.55

and
Δacc/ΔLn = −28.89

respectively.
We see that the network performance is most sensitive to change in σtrain.

Performance is least sensitive to change in β. Performance is fairly sensitive to
change in Ln where the negative value of Δacc/ΔLn indicates that the perfor-
mance deteriorates as Ln increases, which is consistent with the conclusion of
Theorem 1 in Sect. 4 where the radius of admissible distortions d is inversely
proportional to the magnitude of Ln i.e. ‖d‖ ≤ ρ/Ln.

8 Conclusion

In this paper, we presented a method for training neural networks using Lips-
chitz continuity that can be used to make them more robust to input visual per-
turbations. We provide theoretical justification and experimental demonstration
about the effectiveness of our method using existing neural network architectures
in the presence of input perturbations. Our approach is, therefore, easy-to-use
and effective as it improves the network robustness and stability without using
data augmentation or additional training data.
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