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Abstract We present a brief overview of random matrix theory (RMT) with the
objectives of highlighting the computational results and applications in financial
markets as complex systems. An oft-encountered problem in computational finance
is the choice of an appropriate epoch overwhich the empirical cross-correlation return
matrix is computed. A long epoch would smoothen the fluctuations in the return time
series and suffers from non-stationarity, whereas a short epoch results in noisy fluc-
tuations in the return time series and the correlation matrices turn out to be highly
singular. An effective method to tackle this issue is the use of the power mapping,
where a non-linear distortion is applied to a short epoch correlationmatrix. The value
of distortion parameter controls the noise-suppression. The distortion also removes
the degeneracy of zero eigenvalues. Depending on the correlation structures, interest-
ing properties of the eigenvalue spectra are found. We simulate different correlated
Wishart matrices to compare the results with empirical return matrices computed
using the S&P 500 (USA) market data for the period 1985–2016. We also briefly
review two recent applications of RMT in financial stock markets: (i) Identification
of “market states” and long-term precursor to a critical state; (ii) Characterization of
catastrophic instabilities (market crashes).
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Introduction

With the advent of the “Big Data” era [9, 13], large data sets have become ubiquitous
in numerous fields—image analysis, genomics, epidemiology, engineering, social
media, finance, etc., forwhichwe need new statistical and analyticalmethods [3, 5, 6,
15, 29]. Empirical correlationmatrices are of primal importance in big data analyses,
since various statisticalmethods strongly rely on the validity of suchmatrices in order
to isolate meaningful information contained in the “observational” signals or time
series [2]. Often the time series are of finite lengths, which can lead to spurious
correlations and make it difficult to extract the signal from noise [11, 26]. Hence,
it is very important to understand quantitative effects of finite-size time series in
determination of empirical correlations [8, 11, 26, 33].

Random matrix theory (RMT) tries to describe statistics of eigenvalues of ran-
dom matrices, often in the limit of large dimensions. The subject came up first in
a celebrated paper of Wishart [39] in 1929 where he proposed that the correlation
matrix of white noise time series was an adequate prior for correlation matrices.
E. Cartan proposed the classical random matrix ensembles in an important but little
known paper [4]. After that there was increasing interest in the subject among which
it is important to mention work by L.G. Hua, who published the first monographs on
the subject in 1952; an English translation is available [12].

Wigner introduced RMT to physics, based on the assumption that the interactions
between the nuclear constituents were so complex that they could be modeled as
random fluctuations in the framework of his R-matrix scattering theory [36]. This
culminated in the presentation of the Hamiltonian Ĥ as a large random matrix,
such that the energy levels of the nuclear system could be approximated by the
eigenvalues of this matrix, and indeed the spacings between the energy levels of
nuclei could be modeled by the spacing of eigenvalues of the matrix [37, 38]. The
use of RMT has spread over many fields from molecular physics [14] to quantum
chromodynamics [28]. Lately, RMT has become a popular tool for investigating the
dynamics of financial markets using cross-correlations of empirical return time series
[25, 30].

In this chapter, we present recent techniques of random matrix theory (RMT)
mainly focused on computational results and applications of correlations in financial
markets viewed as complex systems [1, 10, 30, 31]. A central problem that often
arises in computational finance is the choice of the epoch size over which the empir-
ical cross-correlation return matrix needs to be computed. A very long epoch would
smoothen thefluctuations in return time series and also the time series suffers from the
problem of non-stationarity [19], whereas a short-time epoch would result in noisy
fluctuations in return time series and the correlation matrix turns out to be highly sin-
gular (with many zero eigenvalues) [8]. Among others, an effective method to tackle
this issue has been the use of the power mapping [8, 11, 26, 33], where a non-linear
distortion is applied to a short epoch correlation matrix. Here, we demonstrate how
the value of distortion parameter controls the noise-suppression. It also removes the
degeneracy of the zero eigenvalues (which for very small values of the distortion
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parameter leads to a well separated “emerging spectum” near zero). Depending on
the correlation structures, interesting properties of the eigenvalue spectra are found.
Correlation matrices constructed from white noise were introduced by Wishart and
their eigenvalue spectrum gets a shape of Marc̆enko-Pastur distribution [16]; there
are significant deviations when a correlation structure is introduced [7]. We simulate
different correlated Wishart matrices [18, 39] to compare the results with empir-
ical return matrices computed using S&P 500 (USA) market data for the period
1985–2016 [8]. We also briefly review two recent applications of RMT in finan-
cial stock markets: (i) Identification of “market states” and long-term precursor to a
critical state [23]; (ii) Characterization of catastrophic instabilities (market crashes)
[8].

This chapter is described as follows. Section “Data Description,Methodology and
Results” discusses the data description, methodology and results in details. Section
“Recent Applications of RMT in Financial Markets” contains applications of RMT
in financial markets. Finally, section “Concluding Remarks” contains concluding
remarks.

Data Description, Methodology and Results

Data Description

We have used the database of Yahoo finance [40], for the time series of adjusted
closure prices for S&P 500 (USA) market, for the period 02/01/1985–30/12/2016
(T = 8068 days); number of stocks N = 194, where we have included the stocks
that are present in the index for the entire duration. The sectoral abbreviations are
given in Table 2.1.

Methodology and Results

Correlations between different financial assets play fundamental roles in the analyses
of portfolio management, risk management, investment strategies, etc. However, one
only has finite time series of the assets prices; hence, one cannot calculate the exact

Table 2.1 Abbreviations of ten different sectors for S&P 500 index

Labels Sectors Labels Sectors

CD Consumer discretionary ID Industrials

CS Consumer staples IT Information technology

HC Health care MT Materials

EG Energy TC Technology

FN Financials UT Utilities
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correlation among assets, but only an approximation. The quality of the estimation
of the true cross-correlation matrix strongly depends on the ratio between the length
of the financial price time series T and the number of assets N . The larger the ratio
Q = T/N, the better the estimation is; though for practical limitations, the ratio
can be even smaller than unity. However, such correlation matrices are often too
noisy, and thus need to be filtered from noise. To build the correlation matrices, we
first calculate the return ri from the daily price Pi of stocks i = 1, . . . , N , at time t
(trading day):

ri (t) = ln Pi (t) − ln Pi (t − 1), (2.1)

where Pi (t) denotes the price of stock i at time t. Since different stocks have varying
levels of volatility, we define the equal-time Pearson cross-correlation coefficient as

Ci j (τ ) = 〈rir j 〉 − 〈ri 〉〈r j 〉
σiσ j

, (2.2)

where 〈. . . 〉 denotes the time average and σk denotes the standard deviation of the
return time series rk , k = 1, . . . , N , computed over an epoch of M trading days end-
ing on day τ . The elements Ci j are restricted to the domain −1 ≤ Ci j ≤ 1, where
Ci j = 1 corresponds to perfect correlations, Ci j = −1 to perfect anti-correlations,
and Ci j = 0 to uncorrelated pairs of stocks. The difficulties in analyzing the sig-
nificance and meaning of the empirical cross-correlation coefficients Ci j are due to
several reasons, which include the following:

1. Market conditions change with time and the cross-correlations that exist between
any pair of stocks may not be stationary if an epoch chosen is too long.

2. Too short epoch, for estimation of cross-correlations, introduces “noise”, i.e.,
fluctuations.

For these reasons, the empirical cross-correlation matrix C(τ ) often contains “ran-
dom” contributions plus a part that is not a result of randomness [22, 24]. Hence, the
eigenvalue statistics of C(τ ) are often compared against those of a large random cor-
relation matrix—a correlation matrix constructed from mutually uncorrelated time
series (white noise) known as Wishart matrix.

We first reproduce the basic results of RMT, e.g., the Marc̆enko-Pastur distribu-
tion, orMarc̆enko-Pastur law,whichdescribes the asymptotic behavior of eigenvalues
of square random matrices [16]. Then, we present a study of time evolution of the
empirical cross-correlation structures of return matrices for N stocks and the eigen-
values spectra over different time epochs, and try to extract some new properties or
information about the financial market [8, 23].

Wishart and Correlated Wishart Ensembles

Let us construct a large random matrix B arising from N random time series each
of length T , where the entries of a time series are real independent random variables
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drawn from a standard Gaussian distribution with zero mean and variance σ 2, such
that the resulting matrix B is N × T. Then the Wishart matrix can be constructed as

W = 1

T
BB′. (2.3)

In RMT, the ensemble of Wishart matrices is known as the Wishart orthogonal
ensemble. In the context of a time series, W may be interpreted as the covariance
matrix, calculated over N stochastic time series, eachwith T statistically independent
variables. This implies that on average, W does not have cross-correlations.

A correlated Wishart matrix can be constructed as

W = 1

T
GG′, (2.4)

where G = ζ 1/2B, is a N × T matrix; G′ is the T × N transpose matrix of G, and
the N × N positive definite symmetric matrix ζ controls the actual correlations. If
ζ is a diagonal matrix with the diagonal entries as unity and off-diagonal entries as
zero (i.e., ζ = 1, the identity matrix), then the resulting matrix W reduces to one
of the former Wishart orthogonal ensemble. If the diagonal entries of ζ are unity
and off-diagonal elements are non-zero and real, then the resulting matrices form
the correlated Wishart orthogonal ensemble. For simplicity, in this chapter, we have
generated and used ζ for which all the off-diagonal elements are same (equal to a
constant U , which lies between zero and unity).

The spectrum of eigenvalues for the Wishart orthogonal ensemble can be calcu-
lated analytically. For the limit N → ∞ and T → ∞, with Q = T/N fixed (and
bigger than unity), the probability density function of the eigenvalues is given by the
Marc̆enko-Pastur distribution:

ρ̄(λ) = Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
, (2.5)

whereσ 2 is the variance of the elements ofG, whileλmin andλmax satisfy the relation:

λmax
min = σ 2

(
1 ± 1√

Q

)2

. (2.6)

For Q ≤ 1, positive semi-definite matrices W , the density ρ̄(λ) in the above
Eq. 2.5 is normalized to Q and not to unity. Therefore, taking into account the
(N − T ) zeros, we have

ρ̄(λ) = Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
+ (1 − Q)δ(λ). (2.7)

First, we have generated a Wishart matrix W (with ζ = 1) of size N × N con-
structed from N time series of real independent Gaussian variables, each of finite
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length T , zero mean and unit variance (σ 2 = 1). Figure 2.1 shows the effect of
finite sizes of the sets of parameters N and T on the probability distributions of
the elements Wi j of the Wishart ensemble and the corresponding eigenvalue spec-
tra. Figure 2.1a shows the probability distribution of the elements of the Wishart
matrix of dimensions, where N = 1024 and T = 10240. Figure 2.1d shows the cor-
responding density of eigenvalues ρ̄(λ), which takes the shape of the theoretical
Marc̆enko-Pastur distribution (red dashed line) [16]. Similarly, Fig. 2.1b, c show
the respective probability distributions of the elements of Wishart matrices gener-
ated using the sets of parameters N = 10240 and T = 102400, and N = 30720
and T = 307200. We can see that with increase in system size (both N and T )
the shape of the distribution becomes narrower, implying that the amount of spu-
rious cross-correlations decreases. Ideally, the distribution should be a Dirac-delta
at zero, since true cross-correlations do not exist. The eigenvalue spectra are less
sensitive to the parameters N and T , as can be seen in Fig. 2.1e, f, which show
the corresponding eigenvalue spectra. For all of the above simulations, we find
the simulated data agree closely with the theoretical Marc̆enko-Pastur distributions
(red dashed lines) with λmax = 1.732 and λmin = 0.468 (theoretically calculated
using Eq. 2.6, and Q = 10).

As we have mentioned earlier, the assumption of stationarity fails for a very long
return time series, so it is often useful to break one long time series of length T into n
shorter epochs, each of size M (such that T/M = n). The assumption of stationarity
then improves for each of the shorter epochs. However, if there are N return time
series, such that N >> M , then the corresponding cross-correlation matrices are
highly singular with N − M + 1 zero eigenvalues, which lead to poor eigenvalue
statistics. We use the power map technique [11, 34] to break the degeneracy of
eigenvalues at zero. In this method, a non-linear distortion is given to each element
(Wi j ) of the Wishart matrix W (or later in each correlation coefficient Ci j of the
empirical cross-correlation matrix C) of short epoch by:

Wi j → (sign Wi j )|Wi j |1+ε, (2.8)

where ε is a noise-suppression parameter. For very small distortions, e.g., ε = 0.001
(as used here), we get an “emerging spectrum” of eigenvalues, arising from the
degenerated eigenvalues at zero which is well separated from the original spectrum.
The power mapping method suppresses noise present in the correlation structure of
short-time series (see e.g., Refs. [8, 17, 21, 23, 32] for recent studies and applica-
tions). Later in this chapter, we study different aspects of the power mapping method
by varying the value of distortion ε from 0 to 0.8.

In Fig. 2.2, we have studied the effect of non-linear distortion on the behavior of
Wishart ensemble (U = 0), where N >> M . The top row of Fig. 2.2 shows semi-
log plots of the ensembles with parameters: (a) N = 1024 and M = 512, and (b)
N = 1024 and M = 64. Then small non-linear distortions with ε = 0.001 are given
to the ensembles to display the emerging spectra, shown in Fig. 2.2c, d. Interestingly,
the shape of the emerging spectrum changes from a semi-circle to a strongly distorted
one, as M becomes shorter. Also, note that emerging spectrum shifts towards the left
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Fig. 2.1 a–c show the effect of finite size on true correlations with the dimensions of B (N = finite,
T = finite and Q(= T/N ) = 10). The probability distribution of elements (Wi j ) of the Wishart
ensemble of size, constructed from N time series, each with real independent Gaussian random
variables of length T with zero mean and variance σ 2. The variance of the distribution of Wi j

decreases with the increase of N and T and reduces to zero for N → ∞ and T → ∞ with T
N =

finite. d–f show the density of eigenvalues ρ̄(λ) of Wishart ensemble, which are numerically fitted
with the Marc̆enko-Pastur distributions [16] (red dash lines) for all N and T . The numerical values
of λmax = 1.732 and λmin = 0.468 of the spectra also match exactly with the results theoretically
calculated from Eq. 2.6. Numerical results for the probability distributions of the elements (Wi j )

and densities of the eigenvalues (ρ̄(λ)) have been generated using averages up to 200 ensembles

side as M becomes shorter. For smaller values of M , some of the eigenvalues of
emerging spectrum become negative. The number of negative eigenvalues depend
on the size of the epoch M , the distortion parameter ε and the mean correlation in
the case of a correlated Wishart ensemble [21].

Figure2.3 shows the effect of a constant correlation with strengthU on the eigen-
value spectra and the emerging spectra of correlated Wishart ensembles with param-
eters N = 1024 and M = 64. Figure2.3a–c show the eigenvalue distributions, on
the semi-log scales, for the correlatedWishart ensembles with correlationsU = 0.1,
U = 0.3, andU = 0.8, respectively. Insets show the densities of non-zero eigenval-
ues, which are closely described by the Marc̆enko-Pastur distributions in all cases.
In the bottom row, Fig. 2.3d–f show the densities of the corresponding emerging
spectra arising from non-linear distortion of the degenerate eigenvalues at zero. The
shapes of the emerging spectra change from distorted semi-circle to Lorentzian-like,
as the constant correlation values increase for the correlated Wishart ensembles.

Next, we present the effect of the distortion (or noise-suppression) parameter ε on
the eigenvalue spectra in Fig. 2.4. Figure 2.4a–f show the distributions of eigenvalues
for the correlated Wishart ensembles with parameters N = 1024 and M = 64, and
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(a)

Fig. 2.2 Semi-log plot of the eigenvalue distribution of Wishart matrix W , using the set of param-
eters a N = 1024 and M = 512; b N = 1024 and M = 64. For short epochs (N > M), the eigen-
value spectra have N − M + 1 zero eigenvalues and the remaining eigenvalues of the spectra show
a distributions similar to the Marc̆enko-Pastur distribution. Insets show the zoomed in views of
remaining M − 1 eigenvalues. c and d show the emerging spectra, generated using the power map
technique with ε = 0.001, which are deformed semi-circular. Numerical results for densities of
eigenvalues have been generated using the averages over 1000 ensemble members. Note that the
emerging spectrum shifts towards left for smaller values of M , and also some of its eigenvalues
become negative at smaller values of M

varying distortion parameter values: ε = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8, keeping a
constant correlation (U = 0.1) among all off-diagonal elements in ζ . The densities
of non-zero eigenvalues are closely described by the Marc̆enko-Pastur distributions,
but the emerging spectra move towards the main spectra as the value of ε increases.
The emerging spectra is absent at ε = 0, while it merges with the main spectrum at
high values of distortion parameter, e.g., ε = 0.8.

Eigenvalue Decomposition of the Empirical Cross-Correlation Matrix

Wealso analyze N = 194 adjusted daily closure price time series of the stocks of S&P
500 (USA) index from the Yahoo finance database [40]. As discussed in the method-
ology subsection, we construct the empirical cross-correlation matrix C(τ ) for an
epoch of M = 200 trading days, ending on trading day τ . In Fig. 2.5a, e, we choose
two correlation matrices for the time series from 07/03/2011 to 16/12/2011 (high
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Fig. 2.3 Eigenvalue spectra of correlatedWishart ensembles with parameters, N = 1024 and M =
64, shown on semi-log scales with constant correlations: a U = 0.1, b U = 0.3, and c U = 0.8.
Insets show the corresponding densities of non-zero eigenvalues, which are closely described by
theMarc̆enko-Pastur distributions. d–f show the densities of the emerging spectra, when non-linear
distortions (with ε = 0.001) are applied to the same matrices. Note that the shape of the emerging
spectrum changes from distorted semi-circle to a Lorentzian-like with the increase of constant
correlation strength U

Fig. 2.4 Semi-log plots of the eigenvalue spectra for the correlated Wishart ensemble W with
parameters N = 1024 and M = 256 at a constant correlation withU = 0.1, and distortion parame-
ters of: a ε = 0, b ε = 0.1, c ε = 0.2, d ε = 0.4, e ε = 0.6, and f ε = 0.8. For ε = 0.1, the emerging
spectrum is well separated from non-zero eigenvalues but with the increase of the distortion param-
eter ε the emerging spectrum starts moving towards the remaining non-zero eigenvalues spectra,
and eventually merges with it at higher values, e.g., ε = 0.8
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.5 a and e show the cross-correlation matrices of 194 stocks of S&P 500 for M = 200 days
during: a 07/03/2011 to 16/12/2011; b 18/04/1995 to 30/01/1996. The stocks are arranged according
to their industrial groups (abbreviations are given in Table 2.1). The blocks along the diagonal show
the correlations within the same industrial groups; the color-bar shows the amount of correlation
among the stocks. a shows the correlation matrix with high mean correlation and (e) with low mean
correlation. b and f show the eigenvalue decomposition of the correlation matrix into the market
mode, group modes and random modes. The market mode captures the mean market correlation,
which corresponds to the dominant eigenvalue of the matrix. The group modes give the sectoral
behavior of the market characterized by the subsequent 15 eigenvalues for a correlation matrix (a)
and the next 62 eigenvalues for a correlation matrix (e) of the market. The rest of the eigenvalues
show random behavior. c and g are the correlation matrix after removing the market mode and
random modes from the correlation matrix; thus the matrix is composed of group modes only. We
can visualize the block structure which shows the correlation among sectors. d and h show the
correlation matrix after removing the market mode and group modes from the correlation matrix;
so the matrix is composed of random modes only

mean correlation) and 18/04/1995 to 30/01/1996 (low mean correlation), respec-
tively.The color-bar shows the amount of correlation among the stocks.The stocks are
arranged according to their industrial groups (abbreviations are given in Table 2.1).
The blocks along the diagonal show the correlationswithin the same industrial group.
Figure 2.5b, f show the eigenvalue decomposition of the correlation matrices into
the respective market mode, the group modes and the random modes. From such
a segregation/decomposition, it is also possible to reconstruct the contributions of
different modes to the aggregate correlation matrix as we show below.

The largest eigenvalue of the correlation matrix, corresponds to a market mode
reflects the aggregate dynamics of the market common across all stocks, and strongly
correlated to the mean market correlation. The group modes capture the sectoral
behavior of the market, which are 15 eigenvalues subsequent to the largest eigen-
value of the correlation matrix of Fig. 2.5c, and the 62 subsequent eigenvalues for
correlation matrix of Fig. 2.5g. Remaining eigenvalues capture the random modes
behavior of the market (see Fig. 2.5d, h). By using the eigenvalue decomposition, we
can thus filter the true correlations (coming from the signal) and the spurious corre-
lations (coming from the random noise). For this, we first decompose the aggregate
correlation matrix as



2 Complex Market Dynamics in the Light of Random Matrix Theory 23

C =
N∑
i=1

λi aia
′
i , (2.9)

where λi and ai are the eigenvalues and eigenvectors, respectively, of the correlation
matrix C. An easy way of handling the reconstruction of the correlation matrix is
to sort the eigenvalues in descending order, and then rearranging the eigenvectors in
corresponding ranks. This allows one to decompose the matrix into three separate
components, viz., market, group and random

C = CM + CG + CR, (2.10)

= λ1a1a
′
1 +

NG∑
i=2

λi aia
′
i +

N∑
i=NG+1

λi aia
′
i , (2.11)

where NG is taken to be 15 for the high mean correlated matrix (Fig. 2.5a) and 62 for
the lowmean correlation (Fig. 2.5e), i.e., corresponding to the 15 (or 62) eigenvalues
after the largest one, for two chosen correlation matrices. It is worth noting that the
result is not extremely sensitive to the exact value of NG . As mentioned above, the
eigenvectors from 2 to NG describe the sectoral dynamics.

Figure 2.5c, g show the correlation matrices after removing the market mode and
random modes from the respective correlation matrices; so the matrices show group
modes only. We can see the block structures, which exhibit the correlations among
the sectors. Figure 2.5d, h show the correlation matrices after removing the market
mode and group modes; so the matrices display the random modes only.

An important observation is that the market mode shifts towards the right with
the increment of the mean correlation. The group modes almost coincide with the
random modes but with higher variance. Thus, the sectoral dynamics are almost
absent whereas the market mode is very strong (similar to what was observed in
Ref. [27]).

Figure 2.6a shows the average cross-correlation matrix of N = 194 stocks of
S&P 500 for the entire duration 1985–2016 (T = 8068 trading days). We decom-
posed the average cross-correlation matrix into the market mode, group modes and
random modes. As usual, the market mode captures the mean market correlation
corresponding to the maximum eigenvalue, which is separate from rest of the eigen-
values (see Ref. [35] for the comparison of the behavior of maximum eigenvalues
in correlated Wishart ensembles). The group modes, which tell about the sectoral
behavior of the market, largely coincide with the random modes and correspond to
the random behavior of the stocks. The resulting eigenvalue distribution (shown in
Fig. 2.6c) thus has part that is a Marc̆enko-Pastur distribution [16] (see Fig. 2.6c and
its inset) and some deviations. As N << T so we do not get any zero eigenvalues.
The maximum eigenvalue (λmax = 55.72) of the spectra dominates the whole mar-
ket. The next 19 eigenvalues correspond to the group modes, and the rest behave as
random modes. The smallest eigenvalue of the spectrum λmin = 0.22.
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Fig. 2.6 a Average cross-correlation matrix of 194 stocks of S&P 500 in 32-years period from
1985 to 2016. The stocks are arranged according to their industrial groups (abbreviations are given
in Table 2.1). The diagonal blocks show the correlations within the same industrial groups and off
diagonal elements show correlations with other industrial groups. b Eigenvalue decomposition of
the average correlationmatrix intomarketmode, groupmodes and randommodes. Themarketmode
captures the mean market correlation. The group modes give the sectoral behavior of the market.
The random modes of the correlation matrix yield the Marc̆enko-Pastur distribution. c Eigenvalue
spectrum of the correlation matrix, evaluated for the long return time series for the entire period
of 32-years, with the maximum eigenvalue of the normal spectrum λmax = 55.72. The largest
eigenvalue is well separated from the ‘bulk’. Inset shows the random part of the spectrum, with the
smallest eigenvalue of the normal spectrum λmin = 0.22

Figure 2.7a shows the cross-correlation matrices constructed from surrogate data
(N = 194 correlatedGaussian noises, each of length T = 10000) such that thematrix
has 10 diagonal blocks of different correlations (equal to the average correlations
of different sectors of the S&P 500 market). Figure 2.7d shows the surrogate cross-
correlation matrix (N = 194; T = 10000) but now with one big block and 6 smaller
blocks. The mean correlation of the big block is equal to the mean correlation of
four sectors (CD, FN, ID and MT of Fig. 2.6a) and they show high inter-sectorial
correlation in S&P 500 market in 32 years. Eigenvalue spectra of the correlation
matrices are shown in Fig. 2.7b, e, each of which consists of the Marc̆enko-Pastur
distributions (see insets), followed by 10 (and 7) eigenvalues corresponding to 10
(and 7) blocks (similar to sectors), respectively. Figure 2.7c, f show the 3D MDS
plots, where the points (representing stocks) are scattered based on the correlations
among the 10 and 7 blocks, respectively. In the MDS maps, more correlated stocks
are placed nearby and anti-correlated are placed far apart (see also Ref. [23]). The
k-means clustering performed on the surrogate datamatrices, with k = 10 and k = 7,
yield 10 and 7 different clusters (represented in different colors), respectively.

Dynamics of the Correlation Structure of US Market

Next, we study the time evolution of the market correlations computed with the daily
returns of N = 194 stocks of S&P 500 over the period of 32-year (1985–2016, with
T = 8068 trading days).

Figure 2.8a, b show plots of mean of correlation coefficients (< Ci j >), mean
of absolute values of correlation coefficients (< |Ci j | >) and the difference of the
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Fig. 2.7 a Cross-correlation matrices constructed from the correlated Gaussian time series with 10
diagonal blocks of different correlations (equal to the average correlation of each sector in Fig. 2.6a).
d shows the same cross-correlation matrix but with one big block and 6 smaller blocks. The mean
correlation of the big block is equal to the mean correlation of four sectors (CD, FN, ID and MT
of Fig. 2.6a). They have high inter-sectorial correlation over the last 32 years in S&P 500 market.
b and e show the eigenvalue spectra of the correlation matrices, which consist of the Marc̆enko-
Pastur distributions followed by 10 group modes corresponding to 10 sectors and 7 group modes
corresponding to 7 sectors, respectively. Insets show the enlarged pictures of the random part of
the spectrum. c and f show plots of 10 and 7 different clusters, respectively, drawn in different
colors using 3-dimensional k-means clustering technique. The clustering was performed on 3-D
multidimensional scaling (MDS) map of 194 stocks. Each point on the MDS map represents a
stock of the market. The points are scattered in the map, based on the cross-correlations among the
stocks—more correlated stocks are placed nearby and less correlated are placed far apart (see also
Ref. [23])

absolute mean and the mean of correlation coefficients d f =< |Ci j | > − < Ci j >

for short epochs ofM = 20 days,with shifts of:Δτ = 1 day (95%overlap) andΔτ =
10 days (50%overlap), respectively. Shifts toward the positive side of correlations are
pointing toward periods of market crashes (with very high mean correlation values).
The values of d f are anti-correlated with the values of the mean of correlation
coefficients. During amarket crashwhenmean of correlation coefficient is high, there
are very little anti-correlations among the stocks, then the value of d f is extremely
small, indeed near to zero (see Ref. [17]). It may act as an indicator of a market
crash, as we observe that there is a high anti-correlation between the values of d f
and < Ci j >, with leads of one or two days (ahead of the market crashes). Similarly,
Fig. 2.8c, d show the plots of variance, skewness, and kurtosis of the correlation
coefficients Ci j as functions of time with shifts of Δτ = 1 day and Δτ = 10 days,
respectively. The mean correlation is anti-correlated to variance and skewness of C,
i.e., when the mean correlation is high then both variance and skewness are low.
Kurtosis is highly correlated to the mean correlation. These observations are seen in
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(a) (b)

Fig. 2.8 Plots of mean of correlation coefficients (< Ci j >), mean of absolute values of correlation
coefficients (< |Ci j | >) and the difference (d f =< |Ci j | > − < Ci j >) as functions of time, for
short epochs of M = 20 days, and shifts of: a Δτ = 1 day and b Δτ = 10 days. We find that
during crashes (when mean correlation is very high), the difference d f =< |Ci j | > − < Ci j >

show minima (close to zero) (see Ref. [17]). Plots of variance (σ 2), skewness, and kurtosis of
the correlation coefficients as functions of time, for short epochs of M = 20 days, and shifts of:
c Δτ = 1 day and d Δτ = 10 days

the dynamical evolution of the market with epochs of M = 20 days, and shifts of
Δτ = 1, 10 day(s).

The scatter plots between < Ci j > and < |Ci j | >, and < Ci j > and d f (=<

|Ci j | > − < Ci j >) for different time lags (no-lag, lag-1, lag-2, and lag-3) of empir-
ical correlation matrices C(τ ), with 194 stocks of S&P 500 and epochs of M = 20
days, and shift of Δτ = 1 day, are shown in Fig. 2.9a, b, respectively. Here lag-1,
lag-2, and lag-3 represent time lags of 1 day, 2 days, and 3 days, respectively. The
color-bar shows the time period from 1985 to 2016 in years. The scatter plots show
the correlations among < Ci j > versus < |Ci j | > and < Ci j > versus d f , at differ-
ent time lags. The variances of the scatter plots increase with the increase of time lag,
keeping the value of linear correlation coefficient almost similar. The strong linear
correlation between < Ci j > and < |Ci j | > may give us an early information about
a crash up to 3 days ahead (from the result of lag-3). Similar linear correlations are
also visible in Fig. 2.9c, d, between < Ci j > and < |Ci j | >, and < Ci j > and d f , at
different time lags (no-lag, lag-1, lag-2, and lag-3) for a shift ofΔτ = 10 days. Here,
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Fig. 2.9 Scatter plots of < Ci j > versus < |Ci j | > and < Ci j > versus d f =< |Ci j | > − <

Ci j >, for different time lags (No lag, 1-day, 2-days and 3-days) for the correlation matrix of
epoch 20 days, with shifts of: a–b Δτ = 1 day; c–d Δτ = 10 days. The color-bar shows the time
period in years

obviously lag-1, lag-2, and lag-3 represent time lags of 10 days, 20 days, and 30 days,
respectively. The large variances in scatter plots indicate that it is hard to detect and
extract information about a crash, e.g., 30 days in advance.

Figure 2.10a shows the temporal variation of mean correlation (< Ci j >), max-
imum eigenvalue (λmax ), number of negative eigenvalues (# − ve EV ) and small-
est eigenvalue (λmin) of the emerging spectra with a shift of Δτ = 1 day. Using a
small distortion (ε = 0.01), we break the degeneracy of eigenvalues at zero and get
the “emerging spectra” of eigenvalues which contain some interesting infromation
about the market. The effect of the small distortion parameter ε = 0.01 is negli-
gible on non-zero eigenvalues of the spectrum including λmax . We observed high
correlation between < Ci j > and λmax . But the other properties of emerging spec-
trum (# − ve EV and λmin) are less correlated with mean correlation< Ci j > [21].
Figure 2.10b shows the same for the shift of Δτ = 10 days.
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Fig. 2.10 Plots for mean of correlation coefficients (< Ci j >), maximum eigenvalue (λmax ), num-
ber of negative eigenvalues (# − ve EV ) and smallest eigenvalue (λmin) of the spectrum as a
function of time for an epoch of 20 days at ε = 0.01 with shifts of: a Δτ = 1 day and b Δτ = 10
days. The correlation between < Ci j > and λmax is high, but two other properties of the “emerging
spectrum” (# − ve EV and λmin) are less correlated to mean correlation < Ci j >

Recent Applications of RMT in Financial Markets

Identification of Market States and Long-Term Precursors
to a Crash State

The study of the critical dynamics in any complex system is interesting, yet it can
be very challenging. Recently, Pharasi et al. [23] presented an analysis based on the
correlation structure patterns of S&P500 (USA) data andNikkei 225 (JPN) data, with
short time epochs during the 32-year period of 1985–2016. They identified “market
states” as clusters of similar correlation structures which occurred more frequently
than by pure chance (randomness).

They first used the power mapping to reduce noise of the singular correlation
matrices and obtained distinct and denser clusters in three dimensional MDS map
(as shown in Fig. 2.11a). The effects of noise-suppressionwere found to be prominent
not only on a single correlationmatrix at one epoch, but also on the similaritymatrices
computed for different correlation matrices at different short-time epochs, and their
corresponding MDS maps. Using 3D-multidimensional scaling maps, they applied
k-means clustering to divide the clusters of similar correlation patterns into k groups
or market states. One major difficulty of this clustering method is that one has to
pass the value of k as an input to the algorithm. Normally, there are several proposed
methods of determining the value of k (often arbitrary). Pharasi et al. [23] showed
that using a new prescription based on the cluster radii and an optional choice of
the noise suppression parameter, one could have a fairly robust determination of the
“optimal” number of clusters.
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Fig. 2.11 a Classification of the US market into four typical market states. k-means clustering is
performed on a MDS map constructed from noise suppressed (ε = 0.6) similarity matrix [20]. The
coordinates assigned in the MDS map are the corresponding correlation matrices constructed from
short-time series of M = 20 days and shifted by Δτ = 10 days. b shows the four different states of
the USmarket as S1, S2, S3 and S4, where S1 corresponds to a calm state with lowmean correlation,
and S4 corresponds to a critical state (crash) with high mean correlation. c Temporal dynamics of
the USmarket in four different states (S1, S2, S3 and S4) for the period of 1985 − 2016. dNetwork
plot for transition probabilities of paired market states (MS). The transition probability of paired
market states going from S1 and S2 to S4 is much lesser than 1% but from S3 to S4 is 6%. Figure
adapted from Ref. [23]

In the new prescription, they measured the mean and the standard deviation of
the intra-cluster distances using an ensemble of fairly large number (about 500) of
different initial conditions (choices of random coordinates for the k-centroids or
equivalently random initial clustering of n objects); each set of initial conditions
usually results in slightly different clustering of the n objects representing different
correlation matrices. If the clusters of points are very distinct in the coordinate space,
then even for different initial conditions, the k-means clustering method yields same
results, producing a small variance of the intra-cluster distance. However, the prob-
lem of allocating the matrices into the different clusters becomes problematic, when
the clusters are very close or overlapping, as the initial conditions can then influ-
ence the final clustering of the different points; so there is a larger variance of the
intra-cluster distance for the ensemble of initial conditions. Therefore, a minimum
variance or standard deviation for a particular number of clusters implies the robust-
ness of the clustering. For optimizing the number of clusters, Pharasi et al. proposed
that one should look for maximum k, which has the minimum variance or standard
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deviation in the intra-cluster distances with different initial conditions. Thus, based
on the modified prescription of finding similar clusters of correlation patterns, they
characterized the market states for USA and JPN.

Here, in Fig. 2.11b, we reproduce the results for the US market, showing four
typicalmarket states. The evolution of themarket can be then viewed as the dynamical
transitions between market states, as shown in Fig. 2.11c. Importantly, this method
yields the correlation matrices that correspond to the critical states (or crashes). They
correspond to the well-known financial market crashes and clustered in market state
S4. They also analyzed the transition probabilities of the paired market states, and
found that (i) the probability of remaining in the same state is much higher than
the transition to a different states, and (ii) most probable transitions are the nearest
neighbor transitions, and the transitions to other remote states are rare (seeFig. 2.11d).
Most significantly, the state adjacent to a critical state (crash) behaved like a long-
term “precursor” for a critical state, serving an early warning for a financial market
crash.

Characterization of Catastrophic Instabilities

Market crashes, floods, earthquakes, and other catastrophic events, though rarely
occurring, can have devastating effects with long term repurcussions. Therefore, it
is of primal importance to study the complexity of the underlying dynamics and
signatures of catastrophic events. Recently, Sharma et al. [8] studied the evolution
of cross-correlation structures of stock return matrices and their eigenspectra over
different short-time epochs for the US market and Japanese market. By using the
power mapping method, they applied the non-linear distortion with a small value
of distortion parameter ε = 0.01 to correlation matrices computed for any epoch,
leading to the emerging spectrum of eigenvalues.

Here, we reproduce some of the significant findings of the paper [8]. Interest-
ingly, it is found that the statistical properties of the emerging spectrum display
the following features: (i) the shape of the emerging spectrum reflects the market
instability (see Fig. 2.12a, b), (ii) the smallest eigenvalue (in a similar way as the
maximum eigenvalue, which captured the mean correlation of the market) indicated
that the financial market had become more turbulent, especially from 2001 onward
(see Fig. 2.12c), and (iii) the smallest eigenvalue is able to statistically distinguish
the nature of a market turbulence or crisis—internal instability or external shock (see
Fig. 2.12c). In certain instabilities the smallest eigenvalue of the emerging spectrum
was positively correlated with the largest eigenvalue (and thus with the mean market
correlation) while in other cases there were trivial anti-correlations. They proposed
that this behavioral change could be associated to the question whether a crash is
associated to intrinsic market conditions (e.g., a bubble) or to external events (e.g.,
the Fukushimameltdown). A lead-lag effect of the crasheswas also observed through
the behavior of λmin and mean correlation, which could be examined further.
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Fig. 2.12 a Non-critical (normal) period of the correlation matrix and its eigenvalue spectrum,
evaluated for the short return time series for an epoch of M = 20 days ending on 08-07-1985,
with the maximum eigenvalue of the normal spectrum λmax = 29.63. Inset: Emerging spectrum
using power map technique (ε = 0.01) is a deformed semi-circle, with the smallest eigenvalue of
the emerging spectrum λmin = −0.011. b Critical (crash) period of the correlation matrix and its
eigenspectrum, evaluated for an epoch of M = 20 days ending on 15-09-2008, with the maximum
eigenvalue of the normal spectrum λmax = 94.49. Inset: Emerging spectrum using power map
technique (ε = 0.01) is Lorentzian, with the smallest eigenvalue of the emerging spectrum λmin =
−0.014. c USA (i) market return r(t), (ii) mean market correlation μ(t), (iii) smallest eigenvalue
of the emerging spectrum (λmin), and (iv) t-value of the t-test, which tests the statistical effect over
the lag-1 smallest eigenvalue λmin(t − 1) on the mean market correlation μ(t). The mean of the
correlation coefficients and the smallest eigenvalue in the emerging spectra are correlated to a large
extent. Notably, the smallest eigenvalue behaves differently (sharply rising or falling) at the same
time when the mean market correlation is very high (crash). The vertical dashed lines correspond to
the major crashes, which brewed due to internal market reactions. Note that, the smallest eigenvalue
of the US market indicates that the financial market has become more turbulent from 2001 onward.
Figure adapted from Ref. [8]

Concluding Remarks

We have presented a brief overview of theWishart and correlatedWishart ensembles
in the context of financial time series analysis. We displayed the dependence of the
length of the time series on the eigenspectra of theWishart ensemble. The eigenspec-
tra of large randommatrices are not very sensitive to Q = T/N ; however, the amount
of spurious correlations is dependent on it. To avoid the problem of non-stationarity
and suppress the noise in the correlation matrices, computed over short epochs, we
applied the power mapping method on the correlation matrices. We showed that the
shape of the emerging spectrum depends on the amount of the correlation U of the
correlated Wishart ensemble. We also studied the effect of the non-linear distortion
parameter ε on the emerging spectrum.

Then we demonstrated the eigenvalue decomposition of the empirical cross-
correlation matrix into market mode, group modes and random modes, using the
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return time series of 194 stocks of S&P 500 index during the period of 1985-2016.
The bulk of the eigenvalues behave as random modes and give rise to the Marc̆enko-
Pastur. We also created surrogate correlation matrices to understand the effect of
the sectoral correlations. Then we studied the eigenvalue distribution of those matri-
ces as well as k-means clustering on the MDS maps generated from the correlation
matrices. Evidently, if we have 10 diagonal blocks (representing sectors) then we get
10 clusters on a MDS map. Similarly, when we merged the four blocks to one and
had 7 diagonal blocks then again we got 7 clusters on the MDS map.

Further, we studied the dynamical evolution of the statistical properties of the
correlation coefficients using the returns of the S&P 500 stock market. We computed
the mean, the absolute mean, the difference between absolute mean and mean, vari-
ance, skewness and kurtosis of the correlation coefficients Ci j , for short epochs of
M = 20 days and shifts of Δτ = 1 day and Δτ = 10 days. We also showed the evo-
lution of the mean of correlation coefficients, maximum eigenvalue of the correlation
matrix, as well as the number of negative eigenvalues and smallest eigenvalue of the
emerging spectrum, for the same epoch and shift.

Finally, we discussed the applications of RMT in financial markets. In an appli-
cation, we demonstrated the use of RMT and correlation patterns in identifying
possible “market states” and long-term precursors to the market crashes. In the sec-
ond application, we presented the characterization of catastrophic instabilities, i.e.,
the market crashes, using the smallest eigenvalue of the emerging spectra arising
from correlation matrices computed over short epochs.
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