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The search for truth should be the goal of our
activities; it is the sole end worthy of them.

—Henri Poincaré



Preface

This volume contains essays that were mostly presented in the joint international
workshop entitled “Econophys-2017” and “APEC-2017,” held at the Jawaharlal
Nehru University and University of Delhi, New Delhi, during November 15–18,
2017. For the first time, the Econophys series and the Asia Pacific Econophysics
Conference (APEC) series merged together to have a great workshop, which was
organized jointly by the Jawaharlal Nehru University, University of Delhi, Saha
Institute of Nuclear Physics, and CentraleSupélec. We received great support and
encouragement from the steering committee of the APEC.

Economic and financial markets appear to be in a permanent state of flux.
Billions of agents interact with each other, giving rise to complex dynamics of
economic quantities at the micro- and macro-levels. With the availability of huge
data sets, researchers are able to address questions at a more granular level than
were possible earlier. Fundamental questions of aggregation of action and infor-
mation, coordination, complexity, and evolution of economic and financial net-
works have received significant importance in the current research agenda of the
Econophysics literature. In parallel, the Sociophysics literature has focused on
large-scale social data and their inter-relations. Empirical approach has become a
front-runner in finding short-lived patterns within the data. The essays appearing in
this volume include the contributions of distinguished experts and researchers and
their co-authors from varied communities—economists, sociologists, financial
analysts, mathematicians, physicists, statisticians, and others. A positive trend for
this interdisciplinary track is that more and more sociologists, economists, and
statisticians have started interacting with the physicists, mathematicians, and
computer scientists! Evidently, most have reported their recent works and reviews
on the analyses of economic and social behaviors. A few papers have been included
that were accepted for presentation but were not presented at the meeting since the
contributors could not attend due to unavoidable reasons. The contributions are
organized into three parts. The first part comprises papers on “Econophysics”. The
papers appearing in the second part include studies in “Sociophysics”. Finally, the
third part is Miscellaneous, containing a proposal for an Interdisciplinary research
center, and an “Epilogue”, which discusses the advent of “Big data” research.
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Chapter 1
Strategic Behaviour and Indicative Price
Diffusion in Paris Stock Exchange
Auctions

Damien Challet

Abstract We report statistical regularities of the opening and closing auctions
of French equities, focusing on the diffusive properties of the indicative auction
price. Two mechanisms are at play as the auction end time nears: the typical price
change magnitude decreases, favoring underdiffusion, while the rate of these events
increases, potentially leading to overdiffusion. A third mechanism, caused by the
strategic behavior of traders, is needed to produce nearly diffusive prices: waiting to
submit buy orders until sell orders have decreased the indicative price and vice-versa.

Introduction

Research in market micro-structure has focused on the dynamical properties of open
markets [5, 9]. However, main stock exchanges have been using auction phases when
they open and close for a long time.1 Auctions are known to have many advantages,
provided that there are enough participants: for example, auction prices are well-
defined, correspond to larger liquidity, and decrease price volatility (and bid-ask
spreads) shortly after the opening time and before closing time (see e.g. [8, 10, 11]).

Only a handful of papers are devoted to the dynamics of auction phases, i.e.,
periods duringwhichmarket participantsmay send limit ormarket orders specifically
for the auction. Reference [6] investigateswhen fast and slow traders send their orders
during the opening auction phase of the Paris Stock Exchange and find markedly
different behaviors: the slow brokers are active first, while high-frequency traders
are mostly active near the end of auctions. In the same vein, [3] shows how and when

1London Stock Exchange and XETRA (Germany) recently added a mid-day short auction
phase.

D. Challet (B)
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4 D. Challet

low-latency traders (identified as high-frequency traders) add or remove liquidity in
the pre-opening auction of the TokyoStockExchange.Accordingly, [12] finds typical
patterns of high-frequency algorithmic trading in the auctions of XTRA. Finally, [7]
analyzes anonymous data from US equities and compute the response functions of
the final auction price to the addition or cancellation of auction orders as a function
of the time remaining until the auction, which have strikingly different behaviors in
the opening and closing auction phases.

Auctions, Data and Notations

The opening auction phase of Paris Stock Exchange starts at 7:15 and ends at 9:00
while the closing auction phase is limited to the period 17:30 to 17:35. The auction
price maximises the matched volume.

From the Thomson Reuters Tick History, we extract auction phase data for the
2013-04-16 components of the CAC40 index. This database contains all the updates
to either the indicative match price or the indicative matched volume in the 2010-08-
02 to 2017-04-12 period, which amounts to 8,095,524 data points for the opening
auctions and 15,007,048 for the closing auctions. Note that the closing auction phase
has about twice as many updates despite being considerably shorter.

For each asset α, we denote the indicative price of auction x ∈ {open, close} of
day d at time t by π x

α,d(t), the time of auction x by t x and the auction price by
pxα,d . Dropping the index α since this paper focuses on a single asset at a time,
the i-th indicative price change occurs at physical time t xi,d and its log-return equals
δpxi,d = logπ x

d (t xi,d) − logπ x
d (t xi−1,d). It is useful to work in the time-to-auction (TTA

henceforth) time arrow: setting τ = t x − t , the log-return between the final auction
price and the current indicative is then Δpxd (τ ) = log pxd − logπ x

d (t).
Similarly, the indicative matched volume is written as Wx

d (t), while the final
volume is V x

d . Finally, when computing averages over days, since updates occur at
random times, we will use time coarsening by δτ seconds, i.e. compute quantity
averages over days within time slices of δτ seconds.

Figure 1.1 illustrates why auctions deserve attention: the relative importance of
the closing auction volume has more than doubled in the last 10 years. Note that the
relative opening auction volume of French equities is quite small (typically around
1%) and has stayed remarkably constant.

From Collisions in Event Time to Diffusion in Physical Time

It is useful to consider the price as the position of a uni-dimensional random walker
and assume that each price change is caused by a collision: if collision i shifts the
price p by δpi , after N collisions the mean square displacement equals
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Fig. 1.1 Opening and
closing fraction of the total
daily volume (median
computed over all the
tickers) since 2007, showing
the global increase of the
relative importance of the
closing auction, but not of
the opening auction. Medians
over assets of monthly
medians for single assets
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if the increments δpi are i.i.d, a straightforward consequence of the central limit
theorem. This corresponds to standard diffusion. In addition, if the collisions occur
at a constant rate ρ, then time is homogeneous and E(ti ) = iρ. As we shall see, none
of these assumptions is true during auctions, which makes them quite interesting
dynamical systems.

Event Rates

In the case of indicative auction prices, the event rate is not constant: the activity
usually increases just before the auction time. This finding is a generic feature of
auctions with fixed end time [4], and more generally of human procrastinating nature
when faced with a deadline, be it conference registration [1] or paying its fee [2].

Let us denote by Nx
d (t) = ∑

i, 0<t xi,d≤t 1 the number of price events (changes)
having occurred up to time t on day d for auction x. The activity pattern of day d can be
measured by the ratio between the number of events up to time t on day d and the total
number of events which happened that day, defined as νd(t) = Nx

d (t)/Nx
d (t x ). The

average and median ν(t) = M(νd)(t), where M stands for either average or median
over days, can be seen in Fig. 1.2. One similarly defines the fraction between the
indicative matched volume at time t and the auction volume ωd(t) = M(Wx

d (t)/V x
d ),

reported in the same figure.
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Fig. 1.2 Average activity patterns for opening and closing auctions (left and right plots, respec-
tively) for the most active asset (Total). Upper plots: scaled price change events ν at a function of
physical time t . Lower plots: scaled indicative volume fraction ω as a function of t. δτ = 30 s for
opening auctions and 5s for closing auctions

There are clear peaks of changes for both ν and ω at unimaginative physical
times such as 7:30, 8:30, etc., and at round minutes and multiples of 30 s during the
closing auction. This, of course, denotes a regular behavior of some investors. If each
peak is systematically caused by a single trader, there are reasons to think that this
regularity does inject information and that itwill be exploited bymoreflexible traders.
However, sending orders at the same time as other traders is a rational behavior as it
allows one to hide in the crowd, unless one’s orders are systematically of the same
imbalance sign as the aggregate volume at that time. Thus, from a game theoretical
point of view, the emergence of activity peaks is self-organized and stable. Nothing
constrains the number of peaks and their locations, which are hence instances of
emerging, self-organized conventions. The closing auction being much shorter than
the opening one, it is natural that the peaks should appear at round minutes, as this
somehow provides more obvious peak locations than the opening auction. When the
closing auction lasts for a much longer time, e.g. for US equities, there are much
fewer price activity peaks [7].
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The global pattern of price changes and total volume matched clearly differs
between both types of auctions. During opening auctions, the price change rate
increases much, starting from a low baseline. During closing auctions, the opposite
happens: price change activity is first large, slows down during the first 2–3 minutes
and then picks up again just before the cut-off time (17:34:45). The average relative
matched volumeω(t) behaves similarly as ν(t) during the opening auctions, probably
because prices changes aremostly caused by the arrival of newmatchable volume, not
cancellations. Indeed, half of the open auction events typically happen in the last 10
minutes formost assets, and half of the volume ismatched in the lastminutes. Closing
auctions display a different behavior: more than half of the volume is matched during
the first minute, and 80% during the first two minutes. For a few assets (TOTF.PA,
UNBP.PA, for ones), there is a peak of indicative matched volume up to 10% larger
than the auction volume about one minute before the end of the auction; the same
behavior is found in US equity markets [7].

Activity Acceleration

The acceleration pattern of price change rate follows some regularity. To characterize
it in a simpler way, it is useful to work in Time-To-Auction τ frame. Since the latter
reverts the time arrow, the activity decelerates as a function of τ . Let us denote the
average event rate ρx (τ ) so that the expected number of event in the period τ to
τ + δτ is nx (τ ) = E[Nx

d (τ + δτ) − Nx
d (τ )] = ρx (τ )δτ . Figure 1.3 shows nopen(τ )

of several assets, together with the smoothed version of nx , denoted by nx
smoothed =

Nx (τ )/τ : if nx ∝ τ−β , so does nx
smoothed but with much less noise, which helps

assessing the presence of a power-law visually. We shall drop the x superscript
when no confusion is possible.

Fig. 1.3 Average number of
price changes as a function
of the time to auction τ , in
seconds, for the opening
auction. Dashed lines refer to
nsmoothed. Time coarsing
factor δτ = 60s

1

10

100

100 1000
τ

nop
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Assuming that n(τ ) ∝ τ−β , we perform a robust linear fit of log n(τ ) = cst − βτ

for τ ∈ [100, 300] seconds and only keep the fits whose t-statistics associated with
β is larger than 5. This particular choice of interval for τ corresponds to a typical
period during which the autocorrelation of δpi at one lag is roughly constant (see
section “Diffusive Properties of Indicative Prices”). In addition, for each asset, we
only keep days during which there were at least 50 price changes.

If the typical absolute value of price change σ does not depend on τ and is still
i.i.d., Eq. (1.1) becomes

E

([ N∑
i=1

δpi

]2)
=

∑
i : ti<=τ

E(δpi )
2 ∝ στ 1−β (1.2)

hence the Hurst exponent in τ time, denoted by h, equals (1 − β)/2: the price change
rate influences the diffusive pattern in a simple way, given the above approximations.
It is worth noting at this juncture that in the normal time frame the price is overdif-
fusive if σ does not depend on τ and if β > 0, i.e., if the rate of price changes
increases near the auction end time and the Hurst exponent in the normal time arrow
is H = (1 + β)/2.

Typical Price Change

When the indicative price changes, it jumps to the next non-empty tick of the auction
order book. Thus, the typical indicative price change reflects the density of the latter,
which increases as the auction time nears. As a consequence, the typical price change
magnitude σ is not constant but decreases near the auction end time, or equivalently
increases as a function of τ . Once again, for opening auctions, we find an approximate
power-law relationship σ(τ) ∝ τα (see Fig. 1.4). We apply the same method as for
n(τ ) to estimate α: we only keep days during which there were at least 50 price
changes for a given asset; robust fits of log δp(τ ) = cst + ατ for τ ∈ [100, 300] are
carried out. Only fits whose t-statistics associated with α are larger than 5 are kept.

Diffusive Properties of Indicative Prices

It is easy to see why the increase of activity and decrease of the typical magnitude
of price changes have antagonistic and purely mechanistic effects on the diffusive
properties of the indicative auction price in the simplest case: neglecting the auto-
correlations and cross-correlations of both n(τ ) and δpi , Eq. (1.2) becomes indeed
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Fig. 1.4 Average scale of the log price increment as a function of the time to auction τ, in seconds,
for the opening auction. Dashed lines refer to the smoothed quantity

E
(
Δp2

)
(τ ) �

∑
τ ′<=τ

E(n(τ ′)δp2(τ ′)) ∝ τ h0 (1.3)

�
∑

τ ′<=τ

E(n(τ ′))E(δp2(τ ′)) ∝ τ 1+α−β = τ h(αβ)

0 , (1.4)

The first approximation assumes that all δpi within a time slice are i.i.d, while the
second one assumes no correlation between n and δp2. The relative merits of both
approximations can be assessed in Fig. 1.5. The first approximation corresponds to
the continuous black line and the second one to the black dots. Both curves are close
together; however neglecting the dependence between n and |δp| underestimates the
typicalmagnitude ofΔp. The samefiguremakes it clear that something iswrong even
in the first approximation, as

∑
τ ′<=τ E(n(τ ′)δp2(τ ′)) is about 10 times larger than

E(Δp2). This discrepancy is mainly due to the bouncing behavior of π for large τ : a
large δpi is typically followed by large δpi+1 of opposite sign, which inflates E(δp2)
and does not correspond to significant price change as the latter reverts immediately
to a value close to that before event i . This is why trimmed means, which removes a
given fraction of the largest δpi for each time slice and each day, decrease much this
discrepancy. The latter is also due in part to a simple strategic behavior: during the
auction phase, negative indicative price change triggers the sending of buy orders
and vice-versa, causing an intrinsically smaller than expected Δp(τ )2 (see below for
a more detailed discussion) (Fig. 1.6).

Let us now compare the TTA Hurst exponents of the above quantities, plotted
in Fig. 1.7 for the 6 stocks whose fits of both α and β are deemed significant. Two
features stand out. First, h0 overestimates h, evenwhen accounting for the fairly large
error bars. This implies that the dynamics caused by the interplay between typical
price change shrinking and the acceleration of the activity is more subtle than the
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Fig. 1.5 Average square difference between the auction price and the indicative price τ

seconds before the opening auction. Continuous red lines (bottom of the figure) refer to
E(Δp2)(τ ), The upper black continuous line is

∑
τ ′<=τ [n(τ ′)δp2(τ ′)], and the black dots are∑

τ ′<=τ E[n(τ ′)]E[δp2(τ ′)]. Left plot: plain averages over all values of δpi ; right plot: trimmed
means where the 20% largest (in absolute value) δpi for each day and each time slice of δτ = 30 s
have been removed in the computation of the averages of quantities based on δpi

Fig. 1.6 Autocorrelation
between two consecutive
price changes within time
slices of δτ = 60 s, averaged
over all days for TOTF.PA
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simple approximation above. In fact, interestingly, hαβ

0 also overestimates the Hurst
h0 exponent: this emphasizes the fact that the δpi are not i.i.d.

Indeed, in practice, even linear autocorrelation of both ρ(τ) and δpi and the cross-
correlationbetween themare not negligible. Let us focus on the autocorrelationof δpi ,
denoted by Cδp(δi). For each time slice [τ, τ + δτ [, we average Cδp,d(1) over all the
days for a given asset. Figure 1.6 plots this quantity versus τ for TOTF.PA, the most
active asset in our dataset. Generally, Cδp(1) < 0; even more, it becomes more and
more negative near the auction time, i.e., for small τ . Since the price changes become
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Fig. 1.7 Hurst exponents h0
and h(αβ)

0 versus the actual
Hurst exponent for the 6
assets of the CAC40 that
yield good power-law fits of
both σ 2 ∝ τα and n ∝ τ−β ;
open auction, δτ = 60[s];
Time-To-Auction arrow.
Error bars correspond to one
standard deviation. When no
error bar is visible, the error
is at most as large as the
symbol
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relatively smaller in that limit, this reflects a purposeful bounce of the indicative
auction price between two close price ticks; the large negative autocorrelation points
to strategic behavior, by which traders try to decrease the immediate impact of their
auction orders by submitting their orders after other orders of the opposite sign (hence
to hide their actions); in fact, the autocorrelation of the sign of δp, Csign δp(1) is even
smaller than Cδp(1) for small τ. For large τ, this auto-correlation also tends to have
very small values, which is reinforced by the fact that an outstandingly large δpi is
often followed by a similarly large δpi+1 of opposite sign. Thus strategic behavior is
more common for small τ.

When Cδp(1) does not depend on τ, it only modifies the prefactor of τ in Eq. (1.3)

by a factor of the order 1+Cδp(1)
1−Cδp(1)

, not the Hurst exponent, and thus explains in part

the discrepancy between E(Δp2)(τ ) and
∑N

τ ′=1 E[n(τ ′)δp(τ ′)2]. The dependence
of Cδp(1) < 0 on τ modifies the apparent Hurst exponent in a nontrivial way. This
is why we measured h for τ ∈ [100, 300], i.e., in a region where Cδp(1) < 0 is the
most constant.

Discussion

Indicative auction prices display non-trivial properties due in part to the antagonistic
effects of both the acceleration of activity and the reduction of the typical price change
magnitude. However, the indicative price is much less over-diffusive than what these
two effects alone imply. In other words, the deviation from purely mechanistic effect
points to a more subtle dynamics. This makes sense, as the traders have a clear
incentive to minimize their easily detectable impact. Their strategic behavior results
in often alternatively positive and negative indicative price changes, i.e., in a clearly
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anti-correlated price changes. Quite tellingly, this negative auto-correlation is more
and more pronounced as the auction end nears.

So far, we have used a basic data type, which nevertheless has a rich behavior.
More detailed data, such as data from the auction book, will allow us to characterize
order strategic placement, the evolution of the average auction book density and the
price impact of new orders and order cancellations much before the auction time, in
the spirit of the response function of [7], but accounting for both the volume of new
auction orders and their immediate impact on the auction order book.
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Chapter 2
Complex Market Dynamics in the Light
of Random Matrix Theory
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Abstract We present a brief overview of random matrix theory (RMT) with the
objectives of highlighting the computational results and applications in financial
markets as complex systems. An oft-encountered problem in computational finance
is the choice of an appropriate epoch overwhich the empirical cross-correlation return
matrix is computed. A long epoch would smoothen the fluctuations in the return time
series and suffers from non-stationarity, whereas a short epoch results in noisy fluc-
tuations in the return time series and the correlation matrices turn out to be highly
singular. An effective method to tackle this issue is the use of the power mapping,
where a non-linear distortion is applied to a short epoch correlationmatrix. The value
of distortion parameter controls the noise-suppression. The distortion also removes
the degeneracy of zero eigenvalues. Depending on the correlation structures, interest-
ing properties of the eigenvalue spectra are found. We simulate different correlated
Wishart matrices to compare the results with empirical return matrices computed
using the S&P 500 (USA) market data for the period 1985–2016. We also briefly
review two recent applications of RMT in financial stock markets: (i) Identification
of “market states” and long-term precursor to a critical state; (ii) Characterization of
catastrophic instabilities (market crashes).
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Introduction

With the advent of the “Big Data” era [9, 13], large data sets have become ubiquitous
in numerous fields—image analysis, genomics, epidemiology, engineering, social
media, finance, etc., forwhichwe need new statistical and analyticalmethods [3, 5, 6,
15, 29]. Empirical correlationmatrices are of primal importance in big data analyses,
since various statisticalmethods strongly rely on the validity of suchmatrices in order
to isolate meaningful information contained in the “observational” signals or time
series [2]. Often the time series are of finite lengths, which can lead to spurious
correlations and make it difficult to extract the signal from noise [11, 26]. Hence,
it is very important to understand quantitative effects of finite-size time series in
determination of empirical correlations [8, 11, 26, 33].

Random matrix theory (RMT) tries to describe statistics of eigenvalues of ran-
dom matrices, often in the limit of large dimensions. The subject came up first in
a celebrated paper of Wishart [39] in 1929 where he proposed that the correlation
matrix of white noise time series was an adequate prior for correlation matrices.
E. Cartan proposed the classical random matrix ensembles in an important but little
known paper [4]. After that there was increasing interest in the subject among which
it is important to mention work by L.G. Hua, who published the first monographs on
the subject in 1952; an English translation is available [12].

Wigner introduced RMT to physics, based on the assumption that the interactions
between the nuclear constituents were so complex that they could be modeled as
random fluctuations in the framework of his R-matrix scattering theory [36]. This
culminated in the presentation of the Hamiltonian Ĥ as a large random matrix,
such that the energy levels of the nuclear system could be approximated by the
eigenvalues of this matrix, and indeed the spacings between the energy levels of
nuclei could be modeled by the spacing of eigenvalues of the matrix [37, 38]. The
use of RMT has spread over many fields from molecular physics [14] to quantum
chromodynamics [28]. Lately, RMT has become a popular tool for investigating the
dynamics of financial markets using cross-correlations of empirical return time series
[25, 30].

In this chapter, we present recent techniques of random matrix theory (RMT)
mainly focused on computational results and applications of correlations in financial
markets viewed as complex systems [1, 10, 30, 31]. A central problem that often
arises in computational finance is the choice of the epoch size over which the empir-
ical cross-correlation return matrix needs to be computed. A very long epoch would
smoothen thefluctuations in return time series and also the time series suffers from the
problem of non-stationarity [19], whereas a short-time epoch would result in noisy
fluctuations in return time series and the correlation matrix turns out to be highly sin-
gular (with many zero eigenvalues) [8]. Among others, an effective method to tackle
this issue has been the use of the power mapping [8, 11, 26, 33], where a non-linear
distortion is applied to a short epoch correlation matrix. Here, we demonstrate how
the value of distortion parameter controls the noise-suppression. It also removes the
degeneracy of the zero eigenvalues (which for very small values of the distortion
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parameter leads to a well separated “emerging spectum” near zero). Depending on
the correlation structures, interesting properties of the eigenvalue spectra are found.
Correlation matrices constructed from white noise were introduced by Wishart and
their eigenvalue spectrum gets a shape of Marc̆enko-Pastur distribution [16]; there
are significant deviations when a correlation structure is introduced [7]. We simulate
different correlated Wishart matrices [18, 39] to compare the results with empir-
ical return matrices computed using S&P 500 (USA) market data for the period
1985–2016 [8]. We also briefly review two recent applications of RMT in finan-
cial stock markets: (i) Identification of “market states” and long-term precursor to a
critical state [23]; (ii) Characterization of catastrophic instabilities (market crashes)
[8].

This chapter is described as follows. Section “Data Description,Methodology and
Results” discusses the data description, methodology and results in details. Section
“Recent Applications of RMT in Financial Markets” contains applications of RMT
in financial markets. Finally, section “Concluding Remarks” contains concluding
remarks.

Data Description, Methodology and Results

Data Description

We have used the database of Yahoo finance [40], for the time series of adjusted
closure prices for S&P 500 (USA) market, for the period 02/01/1985–30/12/2016
(T = 8068 days); number of stocks N = 194, where we have included the stocks
that are present in the index for the entire duration. The sectoral abbreviations are
given in Table 2.1.

Methodology and Results

Correlations between different financial assets play fundamental roles in the analyses
of portfolio management, risk management, investment strategies, etc. However, one
only has finite time series of the assets prices; hence, one cannot calculate the exact

Table 2.1 Abbreviations of ten different sectors for S&P 500 index

Labels Sectors Labels Sectors

CD Consumer discretionary ID Industrials

CS Consumer staples IT Information technology

HC Health care MT Materials

EG Energy TC Technology

FN Financials UT Utilities
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correlation among assets, but only an approximation. The quality of the estimation
of the true cross-correlation matrix strongly depends on the ratio between the length
of the financial price time series T and the number of assets N . The larger the ratio
Q = T/N, the better the estimation is; though for practical limitations, the ratio
can be even smaller than unity. However, such correlation matrices are often too
noisy, and thus need to be filtered from noise. To build the correlation matrices, we
first calculate the return ri from the daily price Pi of stocks i = 1, . . . , N , at time t
(trading day):

ri (t) = ln Pi (t) − ln Pi (t − 1), (2.1)

where Pi (t) denotes the price of stock i at time t. Since different stocks have varying
levels of volatility, we define the equal-time Pearson cross-correlation coefficient as

Ci j (τ ) = 〈rir j 〉 − 〈ri 〉〈r j 〉
σiσ j

, (2.2)

where 〈. . . 〉 denotes the time average and σk denotes the standard deviation of the
return time series rk , k = 1, . . . , N , computed over an epoch of M trading days end-
ing on day τ . The elements Ci j are restricted to the domain −1 ≤ Ci j ≤ 1, where
Ci j = 1 corresponds to perfect correlations, Ci j = −1 to perfect anti-correlations,
and Ci j = 0 to uncorrelated pairs of stocks. The difficulties in analyzing the sig-
nificance and meaning of the empirical cross-correlation coefficients Ci j are due to
several reasons, which include the following:

1. Market conditions change with time and the cross-correlations that exist between
any pair of stocks may not be stationary if an epoch chosen is too long.

2. Too short epoch, for estimation of cross-correlations, introduces “noise”, i.e.,
fluctuations.

For these reasons, the empirical cross-correlation matrix C(τ ) often contains “ran-
dom” contributions plus a part that is not a result of randomness [22, 24]. Hence, the
eigenvalue statistics of C(τ ) are often compared against those of a large random cor-
relation matrix—a correlation matrix constructed from mutually uncorrelated time
series (white noise) known as Wishart matrix.

We first reproduce the basic results of RMT, e.g., the Marc̆enko-Pastur distribu-
tion, orMarc̆enko-Pastur law,whichdescribes the asymptotic behavior of eigenvalues
of square random matrices [16]. Then, we present a study of time evolution of the
empirical cross-correlation structures of return matrices for N stocks and the eigen-
values spectra over different time epochs, and try to extract some new properties or
information about the financial market [8, 23].

Wishart and Correlated Wishart Ensembles

Let us construct a large random matrix B arising from N random time series each
of length T , where the entries of a time series are real independent random variables
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drawn from a standard Gaussian distribution with zero mean and variance σ 2, such
that the resulting matrix B is N × T. Then the Wishart matrix can be constructed as

W = 1

T
BB′. (2.3)

In RMT, the ensemble of Wishart matrices is known as the Wishart orthogonal
ensemble. In the context of a time series, W may be interpreted as the covariance
matrix, calculated over N stochastic time series, eachwith T statistically independent
variables. This implies that on average, W does not have cross-correlations.

A correlated Wishart matrix can be constructed as

W = 1

T
GG′, (2.4)

where G = ζ 1/2B, is a N × T matrix; G′ is the T × N transpose matrix of G, and
the N × N positive definite symmetric matrix ζ controls the actual correlations. If
ζ is a diagonal matrix with the diagonal entries as unity and off-diagonal entries as
zero (i.e., ζ = 1, the identity matrix), then the resulting matrix W reduces to one
of the former Wishart orthogonal ensemble. If the diagonal entries of ζ are unity
and off-diagonal elements are non-zero and real, then the resulting matrices form
the correlated Wishart orthogonal ensemble. For simplicity, in this chapter, we have
generated and used ζ for which all the off-diagonal elements are same (equal to a
constant U , which lies between zero and unity).

The spectrum of eigenvalues for the Wishart orthogonal ensemble can be calcu-
lated analytically. For the limit N → ∞ and T → ∞, with Q = T/N fixed (and
bigger than unity), the probability density function of the eigenvalues is given by the
Marc̆enko-Pastur distribution:

ρ̄(λ) = Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
, (2.5)

whereσ 2 is the variance of the elements ofG, whileλmin andλmax satisfy the relation:

λmax
min = σ 2

(
1 ± 1√

Q

)2

. (2.6)

For Q ≤ 1, positive semi-definite matrices W , the density ρ̄(λ) in the above
Eq. 2.5 is normalized to Q and not to unity. Therefore, taking into account the
(N − T ) zeros, we have

ρ̄(λ) = Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
+ (1 − Q)δ(λ). (2.7)

First, we have generated a Wishart matrix W (with ζ = 1) of size N × N con-
structed from N time series of real independent Gaussian variables, each of finite
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length T , zero mean and unit variance (σ 2 = 1). Figure 2.1 shows the effect of
finite sizes of the sets of parameters N and T on the probability distributions of
the elements Wi j of the Wishart ensemble and the corresponding eigenvalue spec-
tra. Figure 2.1a shows the probability distribution of the elements of the Wishart
matrix of dimensions, where N = 1024 and T = 10240. Figure 2.1d shows the cor-
responding density of eigenvalues ρ̄(λ), which takes the shape of the theoretical
Marc̆enko-Pastur distribution (red dashed line) [16]. Similarly, Fig. 2.1b, c show
the respective probability distributions of the elements of Wishart matrices gener-
ated using the sets of parameters N = 10240 and T = 102400, and N = 30720
and T = 307200. We can see that with increase in system size (both N and T )
the shape of the distribution becomes narrower, implying that the amount of spu-
rious cross-correlations decreases. Ideally, the distribution should be a Dirac-delta
at zero, since true cross-correlations do not exist. The eigenvalue spectra are less
sensitive to the parameters N and T , as can be seen in Fig. 2.1e, f, which show
the corresponding eigenvalue spectra. For all of the above simulations, we find
the simulated data agree closely with the theoretical Marc̆enko-Pastur distributions
(red dashed lines) with λmax = 1.732 and λmin = 0.468 (theoretically calculated
using Eq. 2.6, and Q = 10).

As we have mentioned earlier, the assumption of stationarity fails for a very long
return time series, so it is often useful to break one long time series of length T into n
shorter epochs, each of size M (such that T/M = n). The assumption of stationarity
then improves for each of the shorter epochs. However, if there are N return time
series, such that N >> M , then the corresponding cross-correlation matrices are
highly singular with N − M + 1 zero eigenvalues, which lead to poor eigenvalue
statistics. We use the power map technique [11, 34] to break the degeneracy of
eigenvalues at zero. In this method, a non-linear distortion is given to each element
(Wi j ) of the Wishart matrix W (or later in each correlation coefficient Ci j of the
empirical cross-correlation matrix C) of short epoch by:

Wi j → (sign Wi j )|Wi j |1+ε, (2.8)

where ε is a noise-suppression parameter. For very small distortions, e.g., ε = 0.001
(as used here), we get an “emerging spectrum” of eigenvalues, arising from the
degenerated eigenvalues at zero which is well separated from the original spectrum.
The power mapping method suppresses noise present in the correlation structure of
short-time series (see e.g., Refs. [8, 17, 21, 23, 32] for recent studies and applica-
tions). Later in this chapter, we study different aspects of the power mapping method
by varying the value of distortion ε from 0 to 0.8.

In Fig. 2.2, we have studied the effect of non-linear distortion on the behavior of
Wishart ensemble (U = 0), where N >> M . The top row of Fig. 2.2 shows semi-
log plots of the ensembles with parameters: (a) N = 1024 and M = 512, and (b)
N = 1024 and M = 64. Then small non-linear distortions with ε = 0.001 are given
to the ensembles to display the emerging spectra, shown in Fig. 2.2c, d. Interestingly,
the shape of the emerging spectrum changes from a semi-circle to a strongly distorted
one, as M becomes shorter. Also, note that emerging spectrum shifts towards the left
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Fig. 2.1 a–c show the effect of finite size on true correlations with the dimensions of B (N = finite,
T = finite and Q(= T/N ) = 10). The probability distribution of elements (Wi j ) of the Wishart
ensemble of size, constructed from N time series, each with real independent Gaussian random
variables of length T with zero mean and variance σ 2. The variance of the distribution of Wi j

decreases with the increase of N and T and reduces to zero for N → ∞ and T → ∞ with T
N =

finite. d–f show the density of eigenvalues ρ̄(λ) of Wishart ensemble, which are numerically fitted
with the Marc̆enko-Pastur distributions [16] (red dash lines) for all N and T . The numerical values
of λmax = 1.732 and λmin = 0.468 of the spectra also match exactly with the results theoretically
calculated from Eq. 2.6. Numerical results for the probability distributions of the elements (Wi j )

and densities of the eigenvalues (ρ̄(λ)) have been generated using averages up to 200 ensembles

side as M becomes shorter. For smaller values of M , some of the eigenvalues of
emerging spectrum become negative. The number of negative eigenvalues depend
on the size of the epoch M , the distortion parameter ε and the mean correlation in
the case of a correlated Wishart ensemble [21].

Figure2.3 shows the effect of a constant correlation with strengthU on the eigen-
value spectra and the emerging spectra of correlated Wishart ensembles with param-
eters N = 1024 and M = 64. Figure2.3a–c show the eigenvalue distributions, on
the semi-log scales, for the correlatedWishart ensembles with correlationsU = 0.1,
U = 0.3, andU = 0.8, respectively. Insets show the densities of non-zero eigenval-
ues, which are closely described by the Marc̆enko-Pastur distributions in all cases.
In the bottom row, Fig. 2.3d–f show the densities of the corresponding emerging
spectra arising from non-linear distortion of the degenerate eigenvalues at zero. The
shapes of the emerging spectra change from distorted semi-circle to Lorentzian-like,
as the constant correlation values increase for the correlated Wishart ensembles.

Next, we present the effect of the distortion (or noise-suppression) parameter ε on
the eigenvalue spectra in Fig. 2.4. Figure 2.4a–f show the distributions of eigenvalues
for the correlated Wishart ensembles with parameters N = 1024 and M = 64, and
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(a)

Fig. 2.2 Semi-log plot of the eigenvalue distribution of Wishart matrix W , using the set of param-
eters a N = 1024 and M = 512; b N = 1024 and M = 64. For short epochs (N > M), the eigen-
value spectra have N − M + 1 zero eigenvalues and the remaining eigenvalues of the spectra show
a distributions similar to the Marc̆enko-Pastur distribution. Insets show the zoomed in views of
remaining M − 1 eigenvalues. c and d show the emerging spectra, generated using the power map
technique with ε = 0.001, which are deformed semi-circular. Numerical results for densities of
eigenvalues have been generated using the averages over 1000 ensemble members. Note that the
emerging spectrum shifts towards left for smaller values of M , and also some of its eigenvalues
become negative at smaller values of M

varying distortion parameter values: ε = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8, keeping a
constant correlation (U = 0.1) among all off-diagonal elements in ζ . The densities
of non-zero eigenvalues are closely described by the Marc̆enko-Pastur distributions,
but the emerging spectra move towards the main spectra as the value of ε increases.
The emerging spectra is absent at ε = 0, while it merges with the main spectrum at
high values of distortion parameter, e.g., ε = 0.8.

Eigenvalue Decomposition of the Empirical Cross-Correlation Matrix

Wealso analyze N = 194 adjusted daily closure price time series of the stocks of S&P
500 (USA) index from the Yahoo finance database [40]. As discussed in the method-
ology subsection, we construct the empirical cross-correlation matrix C(τ ) for an
epoch of M = 200 trading days, ending on trading day τ . In Fig. 2.5a, e, we choose
two correlation matrices for the time series from 07/03/2011 to 16/12/2011 (high
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Fig. 2.3 Eigenvalue spectra of correlatedWishart ensembles with parameters, N = 1024 and M =
64, shown on semi-log scales with constant correlations: a U = 0.1, b U = 0.3, and c U = 0.8.
Insets show the corresponding densities of non-zero eigenvalues, which are closely described by
theMarc̆enko-Pastur distributions. d–f show the densities of the emerging spectra, when non-linear
distortions (with ε = 0.001) are applied to the same matrices. Note that the shape of the emerging
spectrum changes from distorted semi-circle to a Lorentzian-like with the increase of constant
correlation strength U

Fig. 2.4 Semi-log plots of the eigenvalue spectra for the correlated Wishart ensemble W with
parameters N = 1024 and M = 256 at a constant correlation withU = 0.1, and distortion parame-
ters of: a ε = 0, b ε = 0.1, c ε = 0.2, d ε = 0.4, e ε = 0.6, and f ε = 0.8. For ε = 0.1, the emerging
spectrum is well separated from non-zero eigenvalues but with the increase of the distortion param-
eter ε the emerging spectrum starts moving towards the remaining non-zero eigenvalues spectra,
and eventually merges with it at higher values, e.g., ε = 0.8
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.5 a and e show the cross-correlation matrices of 194 stocks of S&P 500 for M = 200 days
during: a 07/03/2011 to 16/12/2011; b 18/04/1995 to 30/01/1996. The stocks are arranged according
to their industrial groups (abbreviations are given in Table 2.1). The blocks along the diagonal show
the correlations within the same industrial groups; the color-bar shows the amount of correlation
among the stocks. a shows the correlation matrix with high mean correlation and (e) with low mean
correlation. b and f show the eigenvalue decomposition of the correlation matrix into the market
mode, group modes and random modes. The market mode captures the mean market correlation,
which corresponds to the dominant eigenvalue of the matrix. The group modes give the sectoral
behavior of the market characterized by the subsequent 15 eigenvalues for a correlation matrix (a)
and the next 62 eigenvalues for a correlation matrix (e) of the market. The rest of the eigenvalues
show random behavior. c and g are the correlation matrix after removing the market mode and
random modes from the correlation matrix; thus the matrix is composed of group modes only. We
can visualize the block structure which shows the correlation among sectors. d and h show the
correlation matrix after removing the market mode and group modes from the correlation matrix;
so the matrix is composed of random modes only

mean correlation) and 18/04/1995 to 30/01/1996 (low mean correlation), respec-
tively.The color-bar shows the amount of correlation among the stocks.The stocks are
arranged according to their industrial groups (abbreviations are given in Table 2.1).
The blocks along the diagonal show the correlationswithin the same industrial group.
Figure 2.5b, f show the eigenvalue decomposition of the correlation matrices into
the respective market mode, the group modes and the random modes. From such
a segregation/decomposition, it is also possible to reconstruct the contributions of
different modes to the aggregate correlation matrix as we show below.

The largest eigenvalue of the correlation matrix, corresponds to a market mode
reflects the aggregate dynamics of the market common across all stocks, and strongly
correlated to the mean market correlation. The group modes capture the sectoral
behavior of the market, which are 15 eigenvalues subsequent to the largest eigen-
value of the correlation matrix of Fig. 2.5c, and the 62 subsequent eigenvalues for
correlation matrix of Fig. 2.5g. Remaining eigenvalues capture the random modes
behavior of the market (see Fig. 2.5d, h). By using the eigenvalue decomposition, we
can thus filter the true correlations (coming from the signal) and the spurious corre-
lations (coming from the random noise). For this, we first decompose the aggregate
correlation matrix as
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C =
N∑
i=1

λi aia
′
i , (2.9)

where λi and ai are the eigenvalues and eigenvectors, respectively, of the correlation
matrix C. An easy way of handling the reconstruction of the correlation matrix is
to sort the eigenvalues in descending order, and then rearranging the eigenvectors in
corresponding ranks. This allows one to decompose the matrix into three separate
components, viz., market, group and random

C = CM + CG + CR, (2.10)

= λ1a1a
′
1 +

NG∑
i=2

λi aia
′
i +

N∑
i=NG+1

λi aia
′
i , (2.11)

where NG is taken to be 15 for the high mean correlated matrix (Fig. 2.5a) and 62 for
the lowmean correlation (Fig. 2.5e), i.e., corresponding to the 15 (or 62) eigenvalues
after the largest one, for two chosen correlation matrices. It is worth noting that the
result is not extremely sensitive to the exact value of NG . As mentioned above, the
eigenvectors from 2 to NG describe the sectoral dynamics.

Figure 2.5c, g show the correlation matrices after removing the market mode and
random modes from the respective correlation matrices; so the matrices show group
modes only. We can see the block structures, which exhibit the correlations among
the sectors. Figure 2.5d, h show the correlation matrices after removing the market
mode and group modes; so the matrices display the random modes only.

An important observation is that the market mode shifts towards the right with
the increment of the mean correlation. The group modes almost coincide with the
random modes but with higher variance. Thus, the sectoral dynamics are almost
absent whereas the market mode is very strong (similar to what was observed in
Ref. [27]).

Figure 2.6a shows the average cross-correlation matrix of N = 194 stocks of
S&P 500 for the entire duration 1985–2016 (T = 8068 trading days). We decom-
posed the average cross-correlation matrix into the market mode, group modes and
random modes. As usual, the market mode captures the mean market correlation
corresponding to the maximum eigenvalue, which is separate from rest of the eigen-
values (see Ref. [35] for the comparison of the behavior of maximum eigenvalues
in correlated Wishart ensembles). The group modes, which tell about the sectoral
behavior of the market, largely coincide with the random modes and correspond to
the random behavior of the stocks. The resulting eigenvalue distribution (shown in
Fig. 2.6c) thus has part that is a Marc̆enko-Pastur distribution [16] (see Fig. 2.6c and
its inset) and some deviations. As N << T so we do not get any zero eigenvalues.
The maximum eigenvalue (λmax = 55.72) of the spectra dominates the whole mar-
ket. The next 19 eigenvalues correspond to the group modes, and the rest behave as
random modes. The smallest eigenvalue of the spectrum λmin = 0.22.
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Fig. 2.6 a Average cross-correlation matrix of 194 stocks of S&P 500 in 32-years period from
1985 to 2016. The stocks are arranged according to their industrial groups (abbreviations are given
in Table 2.1). The diagonal blocks show the correlations within the same industrial groups and off
diagonal elements show correlations with other industrial groups. b Eigenvalue decomposition of
the average correlationmatrix intomarketmode, groupmodes and randommodes. Themarketmode
captures the mean market correlation. The group modes give the sectoral behavior of the market.
The random modes of the correlation matrix yield the Marc̆enko-Pastur distribution. c Eigenvalue
spectrum of the correlation matrix, evaluated for the long return time series for the entire period
of 32-years, with the maximum eigenvalue of the normal spectrum λmax = 55.72. The largest
eigenvalue is well separated from the ‘bulk’. Inset shows the random part of the spectrum, with the
smallest eigenvalue of the normal spectrum λmin = 0.22

Figure 2.7a shows the cross-correlation matrices constructed from surrogate data
(N = 194 correlatedGaussian noises, each of length T = 10000) such that thematrix
has 10 diagonal blocks of different correlations (equal to the average correlations
of different sectors of the S&P 500 market). Figure 2.7d shows the surrogate cross-
correlation matrix (N = 194; T = 10000) but now with one big block and 6 smaller
blocks. The mean correlation of the big block is equal to the mean correlation of
four sectors (CD, FN, ID and MT of Fig. 2.6a) and they show high inter-sectorial
correlation in S&P 500 market in 32 years. Eigenvalue spectra of the correlation
matrices are shown in Fig. 2.7b, e, each of which consists of the Marc̆enko-Pastur
distributions (see insets), followed by 10 (and 7) eigenvalues corresponding to 10
(and 7) blocks (similar to sectors), respectively. Figure 2.7c, f show the 3D MDS
plots, where the points (representing stocks) are scattered based on the correlations
among the 10 and 7 blocks, respectively. In the MDS maps, more correlated stocks
are placed nearby and anti-correlated are placed far apart (see also Ref. [23]). The
k-means clustering performed on the surrogate datamatrices, with k = 10 and k = 7,
yield 10 and 7 different clusters (represented in different colors), respectively.

Dynamics of the Correlation Structure of US Market

Next, we study the time evolution of the market correlations computed with the daily
returns of N = 194 stocks of S&P 500 over the period of 32-year (1985–2016, with
T = 8068 trading days).

Figure 2.8a, b show plots of mean of correlation coefficients (< Ci j >), mean
of absolute values of correlation coefficients (< |Ci j | >) and the difference of the
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Fig. 2.7 a Cross-correlation matrices constructed from the correlated Gaussian time series with 10
diagonal blocks of different correlations (equal to the average correlation of each sector in Fig. 2.6a).
d shows the same cross-correlation matrix but with one big block and 6 smaller blocks. The mean
correlation of the big block is equal to the mean correlation of four sectors (CD, FN, ID and MT
of Fig. 2.6a). They have high inter-sectorial correlation over the last 32 years in S&P 500 market.
b and e show the eigenvalue spectra of the correlation matrices, which consist of the Marc̆enko-
Pastur distributions followed by 10 group modes corresponding to 10 sectors and 7 group modes
corresponding to 7 sectors, respectively. Insets show the enlarged pictures of the random part of
the spectrum. c and f show plots of 10 and 7 different clusters, respectively, drawn in different
colors using 3-dimensional k-means clustering technique. The clustering was performed on 3-D
multidimensional scaling (MDS) map of 194 stocks. Each point on the MDS map represents a
stock of the market. The points are scattered in the map, based on the cross-correlations among the
stocks—more correlated stocks are placed nearby and less correlated are placed far apart (see also
Ref. [23])

absolute mean and the mean of correlation coefficients d f =< |Ci j | > − < Ci j >

for short epochs ofM = 20 days,with shifts of:Δτ = 1 day (95%overlap) andΔτ =
10 days (50%overlap), respectively. Shifts toward the positive side of correlations are
pointing toward periods of market crashes (with very high mean correlation values).
The values of d f are anti-correlated with the values of the mean of correlation
coefficients. During amarket crashwhenmean of correlation coefficient is high, there
are very little anti-correlations among the stocks, then the value of d f is extremely
small, indeed near to zero (see Ref. [17]). It may act as an indicator of a market
crash, as we observe that there is a high anti-correlation between the values of d f
and < Ci j >, with leads of one or two days (ahead of the market crashes). Similarly,
Fig. 2.8c, d show the plots of variance, skewness, and kurtosis of the correlation
coefficients Ci j as functions of time with shifts of Δτ = 1 day and Δτ = 10 days,
respectively. The mean correlation is anti-correlated to variance and skewness of C,
i.e., when the mean correlation is high then both variance and skewness are low.
Kurtosis is highly correlated to the mean correlation. These observations are seen in
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(a) (b)

Fig. 2.8 Plots of mean of correlation coefficients (< Ci j >), mean of absolute values of correlation
coefficients (< |Ci j | >) and the difference (d f =< |Ci j | > − < Ci j >) as functions of time, for
short epochs of M = 20 days, and shifts of: a Δτ = 1 day and b Δτ = 10 days. We find that
during crashes (when mean correlation is very high), the difference d f =< |Ci j | > − < Ci j >

show minima (close to zero) (see Ref. [17]). Plots of variance (σ 2), skewness, and kurtosis of
the correlation coefficients as functions of time, for short epochs of M = 20 days, and shifts of:
c Δτ = 1 day and d Δτ = 10 days

the dynamical evolution of the market with epochs of M = 20 days, and shifts of
Δτ = 1, 10 day(s).

The scatter plots between < Ci j > and < |Ci j | >, and < Ci j > and d f (=<

|Ci j | > − < Ci j >) for different time lags (no-lag, lag-1, lag-2, and lag-3) of empir-
ical correlation matrices C(τ ), with 194 stocks of S&P 500 and epochs of M = 20
days, and shift of Δτ = 1 day, are shown in Fig. 2.9a, b, respectively. Here lag-1,
lag-2, and lag-3 represent time lags of 1 day, 2 days, and 3 days, respectively. The
color-bar shows the time period from 1985 to 2016 in years. The scatter plots show
the correlations among < Ci j > versus < |Ci j | > and < Ci j > versus d f , at differ-
ent time lags. The variances of the scatter plots increase with the increase of time lag,
keeping the value of linear correlation coefficient almost similar. The strong linear
correlation between < Ci j > and < |Ci j | > may give us an early information about
a crash up to 3 days ahead (from the result of lag-3). Similar linear correlations are
also visible in Fig. 2.9c, d, between < Ci j > and < |Ci j | >, and < Ci j > and d f , at
different time lags (no-lag, lag-1, lag-2, and lag-3) for a shift ofΔτ = 10 days. Here,
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Fig. 2.9 Scatter plots of < Ci j > versus < |Ci j | > and < Ci j > versus d f =< |Ci j | > − <

Ci j >, for different time lags (No lag, 1-day, 2-days and 3-days) for the correlation matrix of
epoch 20 days, with shifts of: a–b Δτ = 1 day; c–d Δτ = 10 days. The color-bar shows the time
period in years

obviously lag-1, lag-2, and lag-3 represent time lags of 10 days, 20 days, and 30 days,
respectively. The large variances in scatter plots indicate that it is hard to detect and
extract information about a crash, e.g., 30 days in advance.

Figure 2.10a shows the temporal variation of mean correlation (< Ci j >), max-
imum eigenvalue (λmax ), number of negative eigenvalues (# − ve EV ) and small-
est eigenvalue (λmin) of the emerging spectra with a shift of Δτ = 1 day. Using a
small distortion (ε = 0.01), we break the degeneracy of eigenvalues at zero and get
the “emerging spectra” of eigenvalues which contain some interesting infromation
about the market. The effect of the small distortion parameter ε = 0.01 is negli-
gible on non-zero eigenvalues of the spectrum including λmax . We observed high
correlation between < Ci j > and λmax . But the other properties of emerging spec-
trum (# − ve EV and λmin) are less correlated with mean correlation< Ci j > [21].
Figure 2.10b shows the same for the shift of Δτ = 10 days.
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Fig. 2.10 Plots for mean of correlation coefficients (< Ci j >), maximum eigenvalue (λmax ), num-
ber of negative eigenvalues (# − ve EV ) and smallest eigenvalue (λmin) of the spectrum as a
function of time for an epoch of 20 days at ε = 0.01 with shifts of: a Δτ = 1 day and b Δτ = 10
days. The correlation between < Ci j > and λmax is high, but two other properties of the “emerging
spectrum” (# − ve EV and λmin) are less correlated to mean correlation < Ci j >

Recent Applications of RMT in Financial Markets

Identification of Market States and Long-Term Precursors
to a Crash State

The study of the critical dynamics in any complex system is interesting, yet it can
be very challenging. Recently, Pharasi et al. [23] presented an analysis based on the
correlation structure patterns of S&P500 (USA) data andNikkei 225 (JPN) data, with
short time epochs during the 32-year period of 1985–2016. They identified “market
states” as clusters of similar correlation structures which occurred more frequently
than by pure chance (randomness).

They first used the power mapping to reduce noise of the singular correlation
matrices and obtained distinct and denser clusters in three dimensional MDS map
(as shown in Fig. 2.11a). The effects of noise-suppressionwere found to be prominent
not only on a single correlationmatrix at one epoch, but also on the similaritymatrices
computed for different correlation matrices at different short-time epochs, and their
corresponding MDS maps. Using 3D-multidimensional scaling maps, they applied
k-means clustering to divide the clusters of similar correlation patterns into k groups
or market states. One major difficulty of this clustering method is that one has to
pass the value of k as an input to the algorithm. Normally, there are several proposed
methods of determining the value of k (often arbitrary). Pharasi et al. [23] showed
that using a new prescription based on the cluster radii and an optional choice of
the noise suppression parameter, one could have a fairly robust determination of the
“optimal” number of clusters.
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Fig. 2.11 a Classification of the US market into four typical market states. k-means clustering is
performed on a MDS map constructed from noise suppressed (ε = 0.6) similarity matrix [20]. The
coordinates assigned in the MDS map are the corresponding correlation matrices constructed from
short-time series of M = 20 days and shifted by Δτ = 10 days. b shows the four different states of
the USmarket as S1, S2, S3 and S4, where S1 corresponds to a calm state with lowmean correlation,
and S4 corresponds to a critical state (crash) with high mean correlation. c Temporal dynamics of
the USmarket in four different states (S1, S2, S3 and S4) for the period of 1985 − 2016. dNetwork
plot for transition probabilities of paired market states (MS). The transition probability of paired
market states going from S1 and S2 to S4 is much lesser than 1% but from S3 to S4 is 6%. Figure
adapted from Ref. [23]

In the new prescription, they measured the mean and the standard deviation of
the intra-cluster distances using an ensemble of fairly large number (about 500) of
different initial conditions (choices of random coordinates for the k-centroids or
equivalently random initial clustering of n objects); each set of initial conditions
usually results in slightly different clustering of the n objects representing different
correlation matrices. If the clusters of points are very distinct in the coordinate space,
then even for different initial conditions, the k-means clustering method yields same
results, producing a small variance of the intra-cluster distance. However, the prob-
lem of allocating the matrices into the different clusters becomes problematic, when
the clusters are very close or overlapping, as the initial conditions can then influ-
ence the final clustering of the different points; so there is a larger variance of the
intra-cluster distance for the ensemble of initial conditions. Therefore, a minimum
variance or standard deviation for a particular number of clusters implies the robust-
ness of the clustering. For optimizing the number of clusters, Pharasi et al. proposed
that one should look for maximum k, which has the minimum variance or standard
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deviation in the intra-cluster distances with different initial conditions. Thus, based
on the modified prescription of finding similar clusters of correlation patterns, they
characterized the market states for USA and JPN.

Here, in Fig. 2.11b, we reproduce the results for the US market, showing four
typicalmarket states. The evolution of themarket can be then viewed as the dynamical
transitions between market states, as shown in Fig. 2.11c. Importantly, this method
yields the correlation matrices that correspond to the critical states (or crashes). They
correspond to the well-known financial market crashes and clustered in market state
S4. They also analyzed the transition probabilities of the paired market states, and
found that (i) the probability of remaining in the same state is much higher than
the transition to a different states, and (ii) most probable transitions are the nearest
neighbor transitions, and the transitions to other remote states are rare (seeFig. 2.11d).
Most significantly, the state adjacent to a critical state (crash) behaved like a long-
term “precursor” for a critical state, serving an early warning for a financial market
crash.

Characterization of Catastrophic Instabilities

Market crashes, floods, earthquakes, and other catastrophic events, though rarely
occurring, can have devastating effects with long term repurcussions. Therefore, it
is of primal importance to study the complexity of the underlying dynamics and
signatures of catastrophic events. Recently, Sharma et al. [8] studied the evolution
of cross-correlation structures of stock return matrices and their eigenspectra over
different short-time epochs for the US market and Japanese market. By using the
power mapping method, they applied the non-linear distortion with a small value
of distortion parameter ε = 0.01 to correlation matrices computed for any epoch,
leading to the emerging spectrum of eigenvalues.

Here, we reproduce some of the significant findings of the paper [8]. Interest-
ingly, it is found that the statistical properties of the emerging spectrum display
the following features: (i) the shape of the emerging spectrum reflects the market
instability (see Fig. 2.12a, b), (ii) the smallest eigenvalue (in a similar way as the
maximum eigenvalue, which captured the mean correlation of the market) indicated
that the financial market had become more turbulent, especially from 2001 onward
(see Fig. 2.12c), and (iii) the smallest eigenvalue is able to statistically distinguish
the nature of a market turbulence or crisis—internal instability or external shock (see
Fig. 2.12c). In certain instabilities the smallest eigenvalue of the emerging spectrum
was positively correlated with the largest eigenvalue (and thus with the mean market
correlation) while in other cases there were trivial anti-correlations. They proposed
that this behavioral change could be associated to the question whether a crash is
associated to intrinsic market conditions (e.g., a bubble) or to external events (e.g.,
the Fukushimameltdown). A lead-lag effect of the crasheswas also observed through
the behavior of λmin and mean correlation, which could be examined further.
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Fig. 2.12 a Non-critical (normal) period of the correlation matrix and its eigenvalue spectrum,
evaluated for the short return time series for an epoch of M = 20 days ending on 08-07-1985,
with the maximum eigenvalue of the normal spectrum λmax = 29.63. Inset: Emerging spectrum
using power map technique (ε = 0.01) is a deformed semi-circle, with the smallest eigenvalue of
the emerging spectrum λmin = −0.011. b Critical (crash) period of the correlation matrix and its
eigenspectrum, evaluated for an epoch of M = 20 days ending on 15-09-2008, with the maximum
eigenvalue of the normal spectrum λmax = 94.49. Inset: Emerging spectrum using power map
technique (ε = 0.01) is Lorentzian, with the smallest eigenvalue of the emerging spectrum λmin =
−0.014. c USA (i) market return r(t), (ii) mean market correlation μ(t), (iii) smallest eigenvalue
of the emerging spectrum (λmin), and (iv) t-value of the t-test, which tests the statistical effect over
the lag-1 smallest eigenvalue λmin(t − 1) on the mean market correlation μ(t). The mean of the
correlation coefficients and the smallest eigenvalue in the emerging spectra are correlated to a large
extent. Notably, the smallest eigenvalue behaves differently (sharply rising or falling) at the same
time when the mean market correlation is very high (crash). The vertical dashed lines correspond to
the major crashes, which brewed due to internal market reactions. Note that, the smallest eigenvalue
of the US market indicates that the financial market has become more turbulent from 2001 onward.
Figure adapted from Ref. [8]

Concluding Remarks

We have presented a brief overview of theWishart and correlatedWishart ensembles
in the context of financial time series analysis. We displayed the dependence of the
length of the time series on the eigenspectra of theWishart ensemble. The eigenspec-
tra of large randommatrices are not very sensitive to Q = T/N ; however, the amount
of spurious correlations is dependent on it. To avoid the problem of non-stationarity
and suppress the noise in the correlation matrices, computed over short epochs, we
applied the power mapping method on the correlation matrices. We showed that the
shape of the emerging spectrum depends on the amount of the correlation U of the
correlated Wishart ensemble. We also studied the effect of the non-linear distortion
parameter ε on the emerging spectrum.

Then we demonstrated the eigenvalue decomposition of the empirical cross-
correlation matrix into market mode, group modes and random modes, using the
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return time series of 194 stocks of S&P 500 index during the period of 1985-2016.
The bulk of the eigenvalues behave as random modes and give rise to the Marc̆enko-
Pastur. We also created surrogate correlation matrices to understand the effect of
the sectoral correlations. Then we studied the eigenvalue distribution of those matri-
ces as well as k-means clustering on the MDS maps generated from the correlation
matrices. Evidently, if we have 10 diagonal blocks (representing sectors) then we get
10 clusters on a MDS map. Similarly, when we merged the four blocks to one and
had 7 diagonal blocks then again we got 7 clusters on the MDS map.

Further, we studied the dynamical evolution of the statistical properties of the
correlation coefficients using the returns of the S&P 500 stock market. We computed
the mean, the absolute mean, the difference between absolute mean and mean, vari-
ance, skewness and kurtosis of the correlation coefficients Ci j , for short epochs of
M = 20 days and shifts of Δτ = 1 day and Δτ = 10 days. We also showed the evo-
lution of the mean of correlation coefficients, maximum eigenvalue of the correlation
matrix, as well as the number of negative eigenvalues and smallest eigenvalue of the
emerging spectrum, for the same epoch and shift.

Finally, we discussed the applications of RMT in financial markets. In an appli-
cation, we demonstrated the use of RMT and correlation patterns in identifying
possible “market states” and long-term precursors to the market crashes. In the sec-
ond application, we presented the characterization of catastrophic instabilities, i.e.,
the market crashes, using the smallest eigenvalue of the emerging spectra arising
from correlation matrices computed over short epochs.
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Chapter 3
A Few Simulation Results of Basic
Models of Limit Order Books

Ioane Muni Toke

Abstract We use a simplified framework for the modeling of limit order books, in
which only the best quotes (prices and volumes) are monitored. Within this frame-
work we test models in which the flows of limit and market orders are modeled by
Poisson processes, Hawkes processes, or processes with state-dependent intensities.
We provide simulation results to compare some distributions of interest, such as
volumes, price, spread, autocorrelation of orders signs, etc.

General Framework

Modeling of limit order books has been of interest in the financial microstructure
community for some time. References [1, 3, 4] provide some review elements.

Dynamics of the Limit Order Book

Weconsider a simplified frameworkmodeling the limit order book, inwhichwe focus
on the best quotes. The dynamics of X is definedby threemain types of events, namely
limit orders, market orders and cancellations. All types of orders can be submitted
either on the ask side or on the bid side. We now specify the characteristics of these
orders.

A limit order can either be submitted at the best quote or inside the spread (aggres-
sive limit order) if the spread is large enough at the time of submission (s(t−) > 1).
This ismodeled by drawing a randomvariable δ with conditional distributionπ S−

s(t−)=s
with integer support {0, . . . , s − 1}, i.e. depending on the spread at the time of sub-
mission. If δ = 0, then the limit order is submitted at the best quote: the quantity
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Table 3.1 Summary of the possible effects of a limit order with size σ L and placement δ on the
limit order book X

Side Placement Dynamics

b(t) a(t) pB(t) s(t)

Bid δ = 0 b(t−) + σ L a(t−) pB(t−) s(t−)

δ > 0 σ L a(t−) pB(t−) + δ s(t−) − δ

Ask δ = 0 b(t−) a(t−) + σ L pB(t−) s(t−)

δ > 0 b(t−) σ L pB(t−) s(t−) − δ

Table 3.2 Summary of the possible effects of a market order with size σ M on the limit order book
X . δ, qB and qA are random variables with distribution π S+, π B,2 and π A,2

Side Size Dynamics

b(t) a(t) pB(t) s(t)

Bid σ M < b(t−) b(t−) − σ M a(t−) pB(t−) s(t−)

σ M ≥ b(t−) qB a(t−) pB(t−) − δ s(t−) + δ

Ask σ M < a(t−) b(t−) a(t−) − σ M pB(t−) s(t−)

σ M ≥ a(t−) b(t−) qA pB(t−) s(t−) + δ

available at the best quote is increased by the size of the limit order σ L. If δ > 0, then
the limit order is submitted inside the spread: the spread is reduced by δ (hence the
notation π S−) and the volume of the best quote is reset to the size of the limit order
denoted by σ L. Table 3.1 summarizes the effect of a limit order on X.

If an ask market order with size σ M is submitted, two situations are possible. If
σ M < a(t−), then the best quote is reduced by σ M : a(t) = a(t−) − σ M, and the rest
of the order book is unchanged. But if σ M ≥ a(t−) (i.e. in the case of an aggressive
market order that moves the price), then the size of the best quote is reset to a random
quantity qA with some distribution π A,2 and the spread is increased by some random
quantity δ with distribution π S+ with values in N

∗. Symmetric effects occur on the
bid side. Table 3.2 summarizes the dynamics of X in case of a market order.

Finally, cancellations have the same effects as market orders, since they also con-
sist in decreasing the quantities available. When a cancellation occurs, one standing
order is selected. If its size σC is strictly less than the current best quote, then prices
do not change and the volume decreases by σC. If not, then a reset occurs as in the
case of an aggressive market order. Table 3.3 summarizes the dynamics of X in case
of a cancellation.

Common Notations

All models described below focus on bid market orders (MB), ask market orders
(MA), bid limit orders (LB) andask limit orders (LA).LetT � {MB, MA, LB, L A}
be the set of types of orders under investigation. For T ∈ T , (NT (t))t≥0 is the
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Table 3.3 Summary of the possible effects of a cancellation of an order of size σC on the limit
order book X. δ, qB and qA are random variables with distribution π S+, π B,2 and π A,2

Side Best quote size Dynamics

b(t) a(t) pB(t) s(t)

Bid b(t−) > σC b(t−) − σC a(t−) pB(t−) s(t−)

b(t−) = σC qB a(t−) pB(t−) − δ s(t−) + δ

Ask a(t−) > σC b(t−) a(t−) − σC pB(t−) s(t−)

a(t−) = σC b(t−) qA pB(t−) s(t−) + δ

counting process of all orders of type T , and λT (t) denotes its intensity process.
All subsequent models specify the four-dimensional intensity vector
λ = (λMB, λMA, λLB, λL A) of the vector process N = (NMB, NMA, NLB, NLA).

Besides limit and market orders, bid and ask cancellations are counted by the
process (NCB(t), NCA(t))t≥0). All models investigated in this study assume that
cancellations are proportional to the volume available in the book : λCB(t) � θ Bb(t)
and λCA(t) � θ Aa(t).

Distributions of the sizes of orders are the same in all models. Distribution π S+
and family of conditional distributions

(
π S−
s(t−)=n

)
n∈N

of spread movements are the

same in all models. Reset distributions π B,2 and π A,2 are also the same in all models.
The behavior of the order book is assumed to be symmetric with respect to the

bid and ask sides.

Models

Model 1—Poisson Processes

In this model, counting processes of bid/ask limit market orders are assumed to be
homogeneous Poisson processes with constant intensity. Given the assumed bid/ask
symmetry, the intensity vector is written

∀t ≥ 0,λ(t) � (μM , μM , μL , μL) ∈ (
R

∗
+
)4

. (3.1)

This Poisson model specification has thus 2 parameters to be estimated.

Model 2—Hawkes Processes

In this model, counting processes of bid/ask limit and market orders are assumed to
form a four-dimensional Hawkes process with exponential kernels:
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∀t ≥ 0,λ(t) � λ0 +
∫ t

0
(Φ ∗ dN)(s), (3.2)

where λ0 ∈ (
R

∗+
)4
, and Φ is the 4 × 4-matrix with elements ΦT,U : [0,∞) →

R+, t �→ αTUe−βTU (t) for T,U ∈ T . Again we assume a bid/ask symmetry, so that
λ0 � (μM

0 , μM
0 , μL

0 , μL
0 ), and the matrices α = (αTU )T,U∈T and β = (βTU )T,U∈T

have a specific cross structure per block:

⎛
⎜⎜⎜⎜⎝

αs
MM αo

MM αs
ML αo

ML

αo
MM αs

MM αo
ML αs

ML

αs
LM αo

LM αs
LL αo

LL

αo
LM αs

LM αo
LL αs

LL

⎞
⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎝

βs
MM βo

MM βs
ML βo

ML

βo
MM βs

MM βo
ML βs

ML

βs
LM βo

LM βs
LL βo

LL

βo
LM βs

LM βo
LL βs

LL

⎞
⎟⎟⎟⎟⎠

, (3.3)

where the exponents s and o stand for “same side” and “opposite side”. This Hawkes
model specification has thus 18 parameters to be estimated.

Model 3—Point Processes with Cox-Type State-Dependent
Intensities

In this model, counting processes of bid/ask limit and market orders are assumed to
be point processes with Cox-type state dependent intensities:

∀t ≥ 0, λT (t) � exp

(
KT∑
k=0

θT
k XT

k (t)

)
, (3.4)

where XT
k , k = 1, . . . , KT are covariates describing the state of the order book, T ∈

T . Given the assumed bid/ask symmetry, we have KMB = KMA = KM , KLB =
KLA = KL and for any i :

θMB
i = θMA

i = θM
i , and θ LB

i = θ L A
i = θ L

i . (3.5)

More specifically, we follow [9] and assume that the state of the order book is
described by the spread s(t) and the volume of the best quote qT

1 (t) (equal to b(t)
for bid orders, a(t) for ask orders), so that intensities may be written in the following
way:

λT (t) = exp
(
θT
0 + θT

1 log s(t) + θT
2 log qT

1 (t) + θT
11 (log s(t))2

+θT
22

(
log qT

1 (t)
)2 + θT

21 log s(t) log q
T
1 (t)

)
, (3.6)

where T ∈ T . This Cox model specification has thus 12 parameters to be estimated.
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Models Estimation

Likelihood Analysis of the Intensity Process

Partial log-likelihood of the point process {NT (t), t ∈ [0, τ ]}, with T ∈ T , is writ-
ten:

L T
τ (ϑ) =

∫ τ

0
log λT (t) dNM

t −
∫ τ

0
λT (t) dt, (3.7)

where ϑ is a generic notation for the parameter vector of the model. For numerical
purposes, let {t Ti }i=1,...,nTτ be the set of all events of type T ∈ T in the sample [0, τ ].
In the case of Model 1, maximization of the partial log-likelihood straightforwardly
leads to the estimators

λ̂T
0 = nTτ

τ
. (3.8)

In the case of Model 2, the partial log-likelihood is written as a function of the
parameter vector (λ0,α,β):

L T
τ (λ0,α,β) = − λT

0 τ −
∑
U∈T

nUτ∑
i=1

αTU

βTU

(
1 − e−βTU (τ−tUi )

)

+
nTτ∑
i=1

log

⎡
⎣λm

0 (t Ti ) +
∑
U∈T

∑

tUk <t Ti

αTUe
−βTU (t Ti −tUk )

⎤
⎦ . (3.9)

Recursive formulas are available for efficient computation of this quantity, and sub-
sequent maximization. Details can be found in [8] and references therein. Finally, in
the case of Model 3, if {t si } is the set of times of jumps of the spread process s, and
{tq1i } is the set of times of jumps of the first limit process q1 (equal to b for bid orders,
a for ask orders), then the log-likelihood on the sample is numerically computed as
follows:

L T
τ (θT ) = θT0 n

T
τ + θT1

∑

t Ti

log s(t Ti −) + θT11

∑

t Ti

[log s(t Ti −)]2 (3.10)

+ θT2

∑

t Ti

log q1(t
T
i −) + θT22

∑

t Ti

[log q1(t Ti −)]2

+ θT12

∑

t Ti

log s(t Ti −) log q1(t
T
i −)

−
∑

ti∈{t Si }∪{tq1i }
(ti − ti−1) exp

[
θT0 + θT1 log s(ti−) + θT11[log s(ti−)]2

+ θT2 log q1(ti−) + θT22[log q1(ti−)]2 + θT12 log s(ti−) log q1(ti−)

]
.

Details about the estimation of Model 3 can be found in [9].
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Estimation of Other Distributions

Sizes of Limit and Market Orders

Empirical sizes of orders are normalized by a common factor σ̄ and rounded to the
nearest integer. If the nearest integer is 0, then the volume is rounded above to 1.
We model the distributions (π L(n))n∈N∗ and (πM(n))n∈N∗ of the normalized sizes of
respectively limit and market orders with a one-parameter distribution:

πT (1) = 1 − e−2μT
(3.11)

πT (n) = e−(n−1)μT − e−nμT
, n ≥ 2, (3.12)

where T ∈ {M, L} and μT is the parameter. This corresponds to a discretized expo-
nential distribution, and μT can be estimated by the inverse of the mean size of
orders of type T . Figure 3.1 shows an example of the calibration of (π L(n))n∈N∗ and
(πM(n))n∈N∗ to empirical data.

Reset Distributions Upon Spread Increase

When the first limit drops to zero because of a trade or a cancellation, the volume
of the best quote is reset to π B,2 or π A,2, which are equal by the bid-ask symmetry
assumption.Wemodel the normalized reset volumes by a basic geometric distribution
with support on N

∗:

∀n ∈ N
∗, π B,2

n = π A,2
n = q(1 − q)n−1, (3.13)

where the parameter q is straightforwardly estimated. Figure 3.2 shows an example
of the calibration of (π A,2

n )n∈N∗ and (π B,2
n )n∈N∗ to empirical data.

The distribution π S+ of the spread increase is also modeled by a basic geometric
distribution with support on N

∗. Figure 3.3 shows an example of the calibration of
(π S+(n))n∈N∗ to empirical data.

Spread Decrease

When a limit order is submitted, spread is decreased by a quantity δ drawn from a
distribution with support {0, . . . , n − 1} given that s(t−) = n, denoted by π S−

s(t−)=n .
δ (resp. −δ) is thus in ticks the placement of a bid (resp. ask) limit order relatively to
the best quote.Wemodel each conditional distribution with a two-parameter (an, pn)
modification of a geometric distribution that accounts for a greater activity at the best
quote:
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Fig. 3.1 Empirical and fitted distribution (π L (n))n∈N and (πM (n))n∈N of the normalized sizes
of respectively limit orders (bottom) and market orders (top), in natural (left) and semi-log (right)
scales. Data : BNPP.PA,April 2016, all trading days from10am to 12pm.Normalizing size σ̄ = 150

∀k ∈ {0, . . . , n − 1}, π S−
s(t−)=n(k) = an1k==0 + pn(1 − pn)k

an + 1 − (1 − pn)n
, (3.14)

for n ≥ 2. When n = 1 all limit orders are obviously submitted at the best quote.
Each conditional distribution is separately fitted by likelihood maximization.
Figure 3.4 shows an example of the calibration of the distributions π S−

s(t−)=n to empir-
ical data.

Cancellation

The expected lifetime θ−1 of a pending order is the same in all models. Its estimator
is computed such that, in the estimated Poisson model, the empirical rate of share
arrival in the limit order book is equal to the empirical rate of share removal
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Fig. 3.2 Empirical and fitted distributions π B,2 = π A,2 of the normalized sizes of the best quote
upon spread increase, in natural (left) and semi-log (right) scales. Data : BNPP.PA, April 2016, all
trading days from 10am to 12pm. Normalizing size σ̄ = 150
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drops to zero, in natural (left) and semi-log (right) scales. Data : BNPP.PA, April 2016, all trading
days from 10am to 12pm

θ̂ = λ̂L
0 − λ̂M

0

τ X̄
, (3.15)

where λ̂L
0 and λ̂M

0 are the estimated Poisson rates of arrival of respectively limit
and market orders, τ is the sample length (horizon) and X̄ is the empirical average
normalized order book size.
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Fig. 3.4 Empirical and fitted distributions π S−
s(t−)=n of the placement of limit orders, for a spread

size n ranging from 2 to 10 (top left to bottom right, horizontally). Data : BNPP.PA, April 2016, all
trading days from 10am to 12pm

Simulation Results

Using TRTH data we reconstruct the order flows for the stock BNPP.PA on April
2016 using themethod described in [7]. For each of the 21 trading days of this month,
we extract a two-hour sample ranging from 10am to 12pm. All models are fitted
on each daily sample, and each sample is treated as an independent realization. We
then run simulations to generate a two-hour sample for each model. We compare
empirical distributions of interest and the ones generated by each model.

As expected,Models 2 and 3 are able to reproduce the properties that were specifi-
cally targeted by their design. On the one hand,Model 2, based onHawkes processes,
handles the distributions of orders durations much better than the Poisson (Model 1)
or state-dependent models (Model 3), as it is illustrated on Fig. 3.5. The clustering
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Fig. 3.5 Empirical and model distribution of the durations of market orders (top) and limit orders
(bottom), in natural (left) and semi-log (right) scales. Data : BNPP.PA, April 2016, all trading days
from 10am to 12pm

property of orders (here a probability peak for small durations) is partially captured
by the Hawkes setting, but not at all by the other models, which basically simulate
exponentially distributed durations. On the other hand, Model 3 provides realistic
state-dependent intensities of submissions of orders, while Poisson (Model 1) and
Hawkes (Model 2) intensities are insensitive to the order book state, as it is illustrated
on Fig. 3.6 (On these plots, the size of the markers is proportional the frequency of
observation of the value of the abscissa, either the spread s or the size of the best
quote q1).

Performances of the models can be assessed by comparing their ability to sim-
ulate realistic order books, and realistic prices. Figure 3.7 shows that all models
perform similarly with respect to the reproduction of the distribution of the size of
the simulated order book (all books are a bit too furnished). However, when focusing
on the spread distribution, illustrated on Fig. 3.8, it appears that the Poisson model
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Fig. 3.6 Empirical and model conditional intensities of market orders (top) and limit orders (bot-
tom), as functions of the spread (left) and order book size (right). Data : BNPP.PA, April 2016, all
trading days from 10am to 12pm

(Model 1) generates an order book “stuck”with a low spreadwhile theHawkesmodel
(Model 2) provides a spread distribution only marginally better. The state-dependent
model is the only one producing a spread distribution with its maximum close to
three ticks, as in the empirical data. Similarly, the state-dependent model (Model 3)
provides slightly better looking price trajectories. As an illustration, Fig. 3.9 plots
the increments distributions of the price trajectories sampled at 5 and 20s. It appears
that all models fail to accurately simulate the variance of the price increments, but
that the state-dependent model (Model 3) seems to perform slightly better than the
Hawkes one (Model 2) and much better than the Poisson one (Model 1) with respect
to this property.
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Fig. 3.7 Empirical and model distribution of the order book size, in natural (left) and semi-log
(right) scales. Data : BNPP.PA, April 2016, all trading days from 10am to 12pm
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Fig. 3.8 Empirical andmodel distribution of the spread, in natural (left) and semi-log (right) scales.
Data : BNPP.PA, April 2016, all trading days from 10am to 12pm

Further Improvements

This basic investigation of the simulated outputs of toy models of limit order books
has obviously many limitations. It uses basic, non-tuned, versions of models, with
schematic input distributions. It nonetheless shows that state-dependent modeling
of limit order book is needed for realistic simulations purposes. In particular, this
type of model is very flexible, and many covariates may be investigated to improve
the results. As an illustration of potential improvements, let us mention the use
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Fig. 3.9 Distributions of the increments of the bid price process b(t) sampled at 5 s (left) and 20s
(right). Data : BNPP.PA, April 2016, all trading days from 10am to 12pm

of the imbalance and the last traded sign (+1 for ask market orders, −1 for bid
market orders) as crucial elements influencing the submission of bid/ask market
orders (see e.g. [2, 5] for the last trade sign, and [6] for the imbalance). Let us define
a state-dependent model (hereafter Model 3b) in which market orders intensities
depend on the spread s(t), the imbalance i(t), and the last traded sign ε(t) as follows:

λT (t) = exp
(
θT
0 + θT

1 s(t) + θT
2 i(t) + θT

3 ε(t) + θT
4 s(t)ε(t)

)
, (3.16)

where T ∈ {MA, MB}. For the sake of bid and ask symmetry, θMA
k = θMB

k for
k = 0, 1 and θMA

k = −θMB
k for k = 2, 3, 4. Limit orders are submitted as in Model

3. Likelihood estimation is obviously similar to the one of Model 3.
Model 3b performs very similarly to Model 3 as for the previous properties inves-

tigated (for the sake of brevity and readability we do not reproduce updated figures).
Moreover, it turns out that the inclusion of ε as a covariate in Model 3b is sufficient
to provide a more realistic simulation of the autocorrelation of trade signs, with-
out having to include an exogenous mechanism (e.g. an autoregressive process to
model ε). Figure 3.10 plots the autocorrelation of trades up to lag 5, and shows
that some short term memory is simulated, which is not the case for other models.
This does not seem sufficient to simulate a long memory mechanism, but it nonethe-
less indicate that investigations on significant covariates are potentially fruitful for
realistic limit order book parametric simulations.
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Fig. 3.10 Empirical and model autocorrelation of trades. Data : BNPP.PA, April 2016, all trading
days from 10am to 12pm
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Chapter 4
Optimizing Execution Cost Using
Stochastic Control

Akshay Bansal and Diganta Mukherjee

Abstract We devise an optimal allocation strategy for the execution of a predefined
number of stocks in a given time frameusing the technique of discrete-timeStochastic
Control Theory for a defined market model. This market structure allows an instant
execution of the market orders and has been analyzed based on the assumption of
discretized geometric movement of the stock prices. We consider two different cost
functions where the first function involves just the fiscal cost while the cost function
of the second kind incorporates the risks of non-strategic constrained investments
along with fiscal costs. Precisely, the strategic development of constrained execution
of K stocks within a stipulated time frame of T units is established mathematically
using a well-defined stochastic behaviour of stock prices and the same is compared
with some of the commonly-used execution strategies using the historical stock price
data.

Introduction

The problem of cost-efficient execution of a given stock with a lesser known distri-
bution of its price is highly correlated with the fundamental difficulty of forecasting
stock prices. A practical solution to any one of these two would bring some insight
to solve the other. Investors and professional analysts frequently try to model stock
prices with the help of the available information and certain noise factors whose
distribution depends on various market aspects such as inflationary rates, finan-
cial status of the company and its competitive workforce. We attempt this exercise
below. The rest of this section presents a formulation of the problem at hand. Section
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“Defining Cost-Efficient Execution Strategy” discusses the execution strategy. The
optimal strategy derivations are detailed in section “Optimal Investment Strategy for
Instantaneous Stock Execution”. This section also discusses the algorithm for the
methodology and numerical results. Finally section “Conclusion” concludes.

Problem Formulation

Mathematically, the execution problem can be reformulated as follows:
Determine cost-efficient policy

π∗ = {μ∗
0(x0, R0), μ

∗
1(x1, R1) . . . μ∗

N (xN , RN )}

such that
xk+1 = g(xk, uk, εk)∀k ∈ Z

uk = μ∗
k(xk, Rk)∀k ∈ {0, 1, . . . , N }

N∑

r=0

ur = K

where g(x, u, ε) is a known functionwhich updates itself at each of the N equispaced
time points in the time duration T , Rk is the stock position held at time point tk and
xk is the stock price at time tk .

Bertsimas and Lo [2] devised one such policy by partitioning the entire time frame
into N intervals of equal length and performing the transaction of buying K/N shares
at the start of each interval. In order to analyze the expected investment cost of such
policy, Bertsimas utilized the discrete form of Arithmetic Brownian Motion (ABM)
(xt = xt−1 + h(ut ) + ηεt ) to periodically update the stock price. The major draw-
back with ABM model for stock price updation is that the non-negative behavior
of stock price prevails only for shorter time frames T and the resultant optimal
action (no. of shares bought out of the remaining stock pool) at each transaction
point remained independent of any current/previous state information. Almgren and
Chriss [1] extended the Bertismas model for limit order markets by incorporating
the variance associated with the execution shortfall in the objective function. More
recently, application of someof data-driven statistical techniques based onReinforce-
ment Learning [8] by Kakade et al. [5] and Nevmyvaka et al. [7] have resulted in
significant improvement over simpler execution strategies such as submit and leave.
In 2014, Cont and Kukanov [3] developed a more generalized mathematical frame-
work for optimal order execution in limit order markets by incorporating targeted
execution size due to bounded execution capacity of limit orders.
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Defining Cost-Efficient Execution Strategy

The uncertainty factor (ε) involved in the state-updation function of stock price leads
us to one such pathway of determining a cost-efficient policy (satisfying the condi-
tions of (4.1)) by minimizing the expected future cost leading to the application of
well-established theory of Stochastic Control. Mathematically, the exact optimiza-
tion problem reduces to determining optimal policy π∗ = {μ∗

0(x0, R0), μ
∗
1(x1, R1)

. . . μ∗
N (xN , RN )} for the objective

min
{π}

E0

[ N∑

r=0

ur xr

]
(4.1)

Subject to the conditions:

uk = μk(xk, Rk)∀k ∈ {0, 1, . . . , N }
Rk+1 = Rk − uk
xk+1 = g(xk, uk, εk)∀k
N∑

r=0

ur = K

uk ≥ 0 ∀k

(4.2)

where xk is the stock price at time point tk , Rk is the stock position held at time tk
and uk is the appropriate action (investment strategy).

Reduction to Finite Horizon Problem for Integral States

The optimal policy for the problem formulated in (4.2) is devised by reducing it to a
finite horizon problemwhere the discrete time-investment is a many-to-one mapping
from the tuple of stock price and remaining stocks to the countable and finite set of
non-negative integers. The proposed solution to (4.2) is described as following:

Given a uniform partition Π(T ) = {t0, t1, . . . , tN } with X being the finite set
of all possible stock prices and P = {r ∈ Z+ | r ≤ K } the set of all possible stock
positions. Then at any given time point t ∈ Π(T ), the state vector (x, R) ∈ X × P . If
the function f (x, u, R) computes the instantaneous cost for the current state (x, R)

and action u, the optimal policy (π∗ = {μ∗
0(x0, R0), μ

∗
1(x1, R1) . . . μ∗

N (xN , RN )})
for the objective function (4.1) can be computed dynamically for each discrete time
point using Bellman’s principle of optimality [4]. Precisely, to determine the time
tk policy function μ∗

k(xk, Rk), optimal action uoptk is tabulated as a function of all
(xk, Rk) ∈ X × P using the adaptive cost objective
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Jk(xk, Rk) = min{uk }

∞∑

i

Pr(εik |Fk)[ f (xk, uk, Rk) + Jk+1(g(xk, uk, ε
i
k), Rk − uk)]

(4.3)
where Fk is the tk-filtration (information contained till time tk).

At the final time point tN , the optimal action would be to buy all the remaining
RN . Thus JN (xN , RN ) simply reduces to f (xN , RN , RN ).

If the uncertainty parameter (εk) is independent of information Fk , then (4.3)
further simplifies to

Jk(xk, Rk) = min{uk }

∞∑

i

Pr(εik)[ f (xk, uk, Rk) + Jk+1(g(xk, uk, ε
i
k), Rk − uk)] (4.4)

At any time point tk ∈ Π(T ), the optimal action uoptk and Jk(xk, Rk) can be dynam-
ically computed using (4.4) for each of the state element (xk, Rk) ∈ X × P .

Pitfalls of Reduction to Integral Finite Horizon Case

1. The numerical algorithm for its implementation mandates the construction of a
three-dimensional matrix where each two-dimensional sub-matrix corresponds to
a unique time point. Therefore its space complexity is of the order �(xmax K N ).

2. The method imposes an additional restraint of the finiteness and countability of
the set of all possible states (X × P).

3. The numerical search for the optimal integral solution can at best be accomplished
using branch and bound algorithm [6] whose worst case complexity is still K
(initial stock position). Thus the eventual time complexity for this algorithm is
�(xmax K 2N ).

Optimal Investment Strategy for Instantaneous
Stock Execution

In this section we will develop an investment strategy based on the idea of Stochas-
tic Control Theory discussed in section “Reduction to Finite Horizon Problem for
Integral States” for the market structure which sanctions the investor to buy any
number of stocks on an instant basis at the current market price (mid-point of bid-
ask spread). Unlike Almgren and Chriss [1], we have modelled stock prices using
discretized Geometric Motion as the Bachelier’s model (xt = xt−1 + h(ut ) + ηεt )
would eventually return negative stock prices with non-zero probability in the limit
of longer time duration. The discrete time stock price model we intend to use in our
analysis is given by:

xk+1 = xk(1 + βuk + εk) (4.5)
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here xt+1 is the stock price at time tk+1, εk is a random noise with E[εt ] = 0 and
βuk is the drift in stock price due to the buying action of uk no. of stocks with β

being some kind of prominence factor which varies according to one’s influence in
the stock market. For our case, we’ll assume β belonging to the range [10−5, 10−4].
In the following subsections, we’ll establish the general nature of some of the invest-
ment strategies for different kinds of instantaneous cost functions and compare their
performance with some well-established policies.

Allocation Policy for Fiscal Cost Function

For this particular case, the instantaneous cost function is exclusively monetary
i.e f (xk, uk, Rk) (as in section “Reduction to Finite Horizon Problem for Integral
States”) is simply given by

f (xk, uk, Rk) = xkuk (4.6)

where uk ≤ Rk .
Accordingly, the expression for optimal expected cost (4.3) modifies to

Jk(xk, Rk) = min{uk }

[
xkuk +

∞∑

i

Pr(εik)Jk+1(g(xk, uk, ε
i
k), Rk − uk)

]
(4.7)

On rewriting the above expression for penultimate time point (t = tN−1) by mod-
elling the stock price using 4.5, the objective simplifies to

JN−1(xN−1, RN−1) = min{uN−1}
[xN−1uN−1 + xN−1(RN−1 − uN−1)(1 + βuN−1)]

( ∵ E[εN−1] = 0, JN (xN , RN ) = xN RN )

(4.8)
leading to the following deduction.

Deduction 1 When the nature of the instantaneous cost function is completely fiscal
i.e. f (x, u, R) = xu and the stock price is modeled using (4.5), the optimal invest-
ment policy due to stochastic control (Problem 4.1) simply converges to the purchase
of the entire stock block of size K at time t = tN . In general, the result holds for any
stock price updation function of the form xt+1 = xt (1 + h(ut ) + εt ) where h(ut ) is
a non-decreasing drift with h(0) = 0.

Proof On rearranging the terms of penultimate time objective for the drift h(u), (4.8)
modifies to

JN−1(xN−1, RN−1) = min{uN−1}
[xN−1RN−1 + xN−1(RN−1 − uN−1)h(uN−1)] (4.9)
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Table 4.1 Comparisonof total expenditure betweenBertsimas’(B) andOne-Time(OT)policy based
on their daily opening price spanning a total of 100 working days (Feb’16–Jun’16)

Stock Investment cost (B) Investment cost (OT) Ratio (OT:B)

GOOG $719770.69 $738000 1.02532

AAPL $97670.42 $106636.21 1.09179

QCOM $48983.12 $48808.40 0.99643

NVDA $36247.86 $35704.41 0.98500

LXS.DE e39972.39 e40986.76 1.02537

As (RN−1 − uN−1)h(uN−1) ≥ 0, the optimal action (uoptN−1) results in zero with
JN−1(xN−1, RN−1) = xN−1RN−1. By recursively calculating uoptk and Jk(xk, Rk)

using the functional formof Jk+1(xk+1, Rk+1) (4.7), it’s trivial to observe the identical
nature of the objective function for all 0 ≤ k ≤ N − 1. Hence the above deduction
follows.

Resultant Policy and Comparison with Bertsimas’ Model

Deduction 1 can be further generalized by observing the degenerate nature of the
objective function at the penultimate time point i.e. both 0 and RN−1 are the optimal
solutions to the objective (4.9). Henceforth, the optimal allocation policy modifies
to the total investment for the entire stock block (K ) at any one of the time point
t ∈ {t0, t1, . . . , tN }.

Tabulated below is the total expenditure resulting from Bertsimas’ policy and
one-time investment at the midpoint T/2 (Table 4.1).1

As evident from the data above, the one-time investment policy may frequently
fail to perform better than the distributed investment policy (due to Bertsimas).

Allocation Policy for Constrained Cost Function

Due to the possibility of positive accumulation of random noise (εt ) over large no.
of discrete time steps, the allocation policy devised in the last section has a ten-
dency of resulting in a greater investment cost compared to the policy of distributed
trading over the same no. of time steps. Thus, we’ve made an attempt to modify
the instantaneous cost f (x, u, R) by incorporating non-negative penalty in addition
to the fiscal cost if the current action (uk) violates certain market specific bounds.
Specifically, a pre-determined set of bounds—an upper bound (UB) and a lower
bound (LB) restricts the fractional consumption (uk/Rk) at every time point tk . The
effect of penalty imposed for the case when the fractional consumption goes below

1As per the stock data obtained from Yahoo Finance.
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the lower bound (LB) is less pronounced at initial time points compared to the later
ones as the opportunistic time window to minimize the total expenditure decreases
gradually with the passage of another transaction opportunity. The non-existence of
such a restriction would eventually result in the investor holding a large fraction of
his initial stock position at later time points with fewer opportunities to improve his
total investment cost. Similarly, by restricting the investor to buy a large fraction
of his current stock position (exceeding the upper bound (UB)) at the earlier time
points of the transaction window, one instructs the investor to employ a distributed
investment strategy till the near end of the transaction window where this constraint
is liberalized. Mathematically, these two kind of restrictions can be summarized by
modifying instantaneous cost ( f (x, u, R)) using the logarithmic barrier resulting in
the functional form:

f (xk, uk, Rk) = xkuk − xkCl

(
tk
tN

)γ

log

(
1 − max

(
0, LB − uk

Rk

))

− xkCu

(
tN
tk

)γ

log

(
1 − max

(
0,

uk
Rk

−UB

))

∀k ∈ {0, 1, 2, . . . , N − 1}

(4.10)

Here Cl ,Cu and γ are positive market specific constants with Cl � Cu .
The Bellman’s criteria for optimality (4.4) can now be applied for the instanta-

neous cost f (x, u, R) given by (4.10) resulting in another useful deduction.

Deduction 2 Let X be the set of all possible stock prices and the instantaneous cost
f (xk, uk, Rk) be taken of the form given by (4.10). Then the adaptive cost objective
(Jk(xk, Rk)) given by (4.4) is linearly dependent on xk (∀xk ∈ X).

Proof Let P(n) be the proposition that the cost Jk(xk, Rk) is linearly dependent on
xk ∀k ≥ n.

Base Case: The objective function at penultimate time point (tN−1) is given by

JN−1(xN−1, RN−1) = xN−1uN−1 − xN−1Cl

(
tN−1

tN

)γ

log

(
1 − max

(
0, LB − uN−1

RN−1

))

− xN−1Cu

(
tN

tN−1

)γ

log

(
1 − max

(
0,

uN−1

RN−1
−UB

))

+ xN−1(1 + βuN−1)(RN−1 − uN−1)

which is evidently linearly dependent on xN−1. Thus P(N − 1) holds true.
Inductive Step: Let P(k + 1) holds true for some k ≤ N − 1. Then

Jk(xk, Rk) = xkuk − xkCl

(
tk
tN

)γ

log

(
1 − max

(
0, LB − uk

Rk

))

− xkCu

(
tN
tk

)γ

log

(
1 − max

(
0,

uk
Rk

−UB

))

+ E[Jk+1(xk(1 + uk + εk), Rk − uk)]
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From the induction hypothesis, Jk+1(xk(1 + uk + εk), Rk − uk) is linearly dependent
on xk(1 + uk + εk) thus Jk(xk, Rk) is linearly dependent on xk . Hence P(n) holds
∀0 ≤ n ≤ N − 1.

This computationally useful corollary follows trivially from the previous deduc-
tion.

Corollary 1 Let X be the set of all possible stock prices and the instantaneous cost
be taken of the form given by (4.10). Then the optimal action uk for the objective
(4.4) is independent of xk ∀ k ∈ {0, 1, . . . , N − 1}.

Numerical Algorithm for Policy Evaluation

The Deduction 2 (and thus Corollary 1) is extremely advantageous to develop an
efficient algorithm for determining the policy as the optimal action resulting from
the theory of stochastic control is independent of stock price x . Hence all future
computations can be performed by assuming stock price to be unity.

Algorithm 1 An efficient algorithm to compute optimal policy for constrained cost
1: while r ∈ {0, 1, . . . , I ni tialSi ze} do
2: J [N ][r ] ← r 
 Optimal Cost at time tN for x = 1
3: U [N ][r ] ← r 
 Optimal action at tN (ind. of x from last corollary)
4: while i ∈ {N − 1, N − 2, . . . , 0} do 
 To evaluate uopt and Ji (1, r) at each time point ti
5: J [i][0] ← 0 
 Optimal Cost when stock position is null
6: U [i][0] ← 0 
 Optimal Action when stock position is null
7: while r ∈ {1, 2, . . . , I ni tialSi ze} do 
 To determine the optimal action for each possible

stock position
8: uopt ← 0
9: valopt ← f (1, uopt , r) + (1 + βuopt )J [i + 1][R − uopt ]
10: while u ∈ {1, 2, . . . , r} do 
 Brute force search to determine optimal action

dynamically
11: valu ← f (1, u, r) + (1 + βu)J [i + 1][R − u]
12: if valu ≤ valopt then
13: uopt ← u
14: valopt ← valu
15: J [i][r ] ← valopt
16: U [i][r ] ← uopt

Resultant Policy for Constrained Objective

The optimal allocation vector (in row-major form) with initial stock position of 1000
shares for β = 5 × 10−5, Cl = 1000, Cu = 10, γ = 2, LB = 0.2, UB = 0.6 and
different number of time points is depicted as under
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• N = 10
uopt = [

600 240 96 38 15 6 1 2 1 1
]

• N = 30

uopt =
⎡

⎣
0 600 110 58 47 37 30 24 19 15
12 10 8 6 5 4 3 3 2 2
1 1 1 1 1 0 0 0 0 0

⎤

⎦

• N = 50

uopt =

⎡

⎢⎢⎢⎢⎣

0 0 0 600 39 72 58 46 37 30
24 19 15 12 10 8 6 5 4 3
3 2 2 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎦

• N = 100

uopt =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 119
176 141 113 90 72 58 46 37 30 24
19 15 12 10 8 6 5 4 3 3
2 2 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

With a steady increment in the number of available time points N for transaction in
the fixed interval T , the resultant allocation policy follows a strategy of smaller stock
acquisition towards the beginning and end of the interval T whereas bigger transac-
tions are made towards the middle. Intuitively, this kind of allocation behaviour can
be explained the observing the effect of the drift βu which has a tendency to increase
the stock price resulting in a larger investment cost. Therefore, it is advantageous to
make small transactions towards the beginning in such a way that the stock prices
have a little tendency to drift upwards and at the same time a noticeable fraction
of the initial stock position is also fulfilled followed by a major acquisition towards
the middle. The resultant hefty drift would eventually have a little effect on the total
investment cost as the remaining stocks constitute a small fraction of the initial stock
position K .
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Table 4.2 Comparison of total expenditure between Bertsimas’ (B) and Cost with Risks (WR)
based on their daily opening price spanning a total of 100 working days (Feb’16–Jun’16)

Stock Investment cost (B) Investment cost (WR) Ratio (WR:B)

GOOG $719770.69 $699576.13 0.97194

AAPL $97670.42 $94117.02 0.96361

QCOM $48983.12 $45666.70 0.93229

NVDA $36247.86 $28670.91 0.79096

LXS.DE e39972.39 e35319.80 0.88360

Conclusion

The policy resulting from the analysis performed in section “Allocation Policy for
Constrained Cost Function” by incorporating several risk-factors has shown consid-
erable improvement over the Bertsimas’ policy with its total expenditure tabulated
as under2:

In summary, the non-performance of one-time investment policy (Table 4.1) and
significant improvement of the policy resulting from the modified cost function
(Table 4.2) by incorporating market risks can be safely established for the aver-
age case analysis of market model-I keeping in mind the existence of a non-zero
probability of the occurrence of a case scenario where the above deduction fails to
hold.

The instantaneous cost objective (4.10) could be improved further by factoring
constraints in a rational manner such that the penalty levied upon their violation does
not undermine or overestimate the effective fiscal cost. Another way to improve the
cost objective is by estimating the effect of current stock price before converging
to any possible action. For instance, if the bounds on the possible stock prices and
its probability distribution throughout the entire time duration T is already known,
then one can possibly make use of this information by tuning the penalty functions
appropriately as a significantly lower stock price and higher probability density
would result in a net reduced risk for the case when one intends to invest in a
large fraction even at the earlier time points. Similarly, a higher price (close to upper
bound) would levy a high penalty even when one is within the bounds of the imposed
constraints. These kind of formulations would bring in the dependence of the stock
price resulting in improved policies but with a slight trade-off of an increased time
and space complexity.

Another possible way to improve the performance of the resulting control action
is by utilizing a more general form of the stock price updation function based on the
theory of Linear Price Impact with Information as suggested in i.e. the stock price at
each successive time point can now be modeled as:

2As per the stock data obtained from Yahoo Finance.
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xt+1 = f (xt , ut , Zt , εt )

Zt = g(Zt−1, ηt )
(4.11)
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Chapter 5
Hierarchical Financial Structures
with Money Cascade

Mahendra K. Verma

Abstract In this paper we show similarities between turbulence and financial
systems. Motivated by similarities between the two systems, we construct a mul-
tiscale model for hierarchical financial structures that exhibits a constant cascade
of wealth from large financial entities to small financial entities. According to our
model, large and intermediate scale financial institutions have a power law distribu-
tion. However, it exhibits Maxwellian distribution at individual scales.

Introduction

A financial system is quite complex due to its multiscale and time-dependent nature.
Its complexity is accentuated by features such as saving, banking, corruption, stock-
market, natural calamities, etc. Despite such complicated structures, scientists have
attempted to model a financial systems using simple ideas. One of the leading ques-
tions in this field is how to model the wealth and income distributions of individuals
and companies [1]. In this paper we will address this question.

Earlier models of income distribution of individuals are motivated by equilibrium
statistical mechanics. In such models, individuals are mapped to particles in a ther-
modynamic system, and economic activities to scattering among particles. Following
this analogy, it is expected that the income distribution follows Maxwellian or Gibbs
distribution, similar to the distribution of kinetic energy in a gas container.

The above distribution however holds only for low income groups. Pareto [2] and
others showed that the individual income in a large income group exhibits power law
distribution. There have been many attempts to model this power law distribution
using nonequilibrium nature of the system. See Chakrabarti et al. [1] and references
there in.

In a financial system, wealth cascades from large financial entities to smaller
ones. This cascade is somewhat similar to the cascade of kinetic energy in a turbu-
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lent system. In addition, a well-developed financial system contains income groups
with a wide range of distribution. Also, note that these income groups interact with
each other. Motivated by the above similarities between turbulence and finance, we
construct a model for a hierarchical financial system which is quite similar to Kol-
mogorov’s model for α turbulent flow.

The structure of the paper is as follows: In section “Equilibrium Model”, we
describe a generic equilibrium model of a financial system. Section “Multiscale
Model of Turbulence” contains a brief description of Kolmogorov’s model for turbu-
lence. In section “A Model of Hierarchical Financial Entities” we construct a model
for hierarchical financial system; this model is analogous to the Kolmogorov’s model
of turbulence. We conclude in section “Discussions and Conclusion”.

Equilibrium Model

In this section, we describe an equilibrium model of wealth distribution [3]. Before
that we discuss thermodynamics of an isolated gas reservoir in which gas molecules
interact with each other via collisions. Under thermodynamic approximation, all the
molecules in the gas have approximate equal energy. The variation in the energy of
the molecules is given by Maxwell or Gibbs distribution [4]:

P(E) = exp(−E/kBT ) (5.1)

where E = mv2/2 is the kinetic energy of amolecule ofmassm, and kBT = 〈
mv2

〉
/2

is the average kinetic energy of all the molecules. Note that this system has a single
energy scale kBT . Also, the system is in equilibrium, and it obeys principle of detailed
energy balance. As a result, there is no energy transfer from one region to another,
both in real and Fourier space.

Now we are ready to describe an equilibrium model of wealth distribution [1, 3].
In the past, several researchers have shown connections between economic systems
and equilibrium thermodynamics (e.g., a gas reservoir described above) [3]. The
individuals or economic entities are analogous to the gas molecules, and wealth to
the kinetic energy of the molecules. Refer to Table 5.1 for a detailed comparison.
Using this analogy, researchers deduced that the wealth distribution P(W ) in an
economy follows Maxwell or Gibbs distribution:

P(W ) = exp(−W/ 〈W 〉), (5.2)

where 〈W 〉 is the average individual wealth in the economic system. More refined
models yield log-normal distribution [1].
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Table 5.1 Analogies
between an equilibrium
economic model and a
thermodynamic system

Thermodynamics Economics

Thermodynamic system Economy

Gas molecules Economic entities
(individuals)

Individual kinetic energy Individual wealth

Collisions Economic interactions

Average kinetic energy Average wealth

Fig. 5.1 Kolmogorov’s
picture of hydrodynamic
turbulence. The flow is
forced at large scale with an
energy injection rate of FLS.
a The energy flux is constant
in the inertial range, and it
decays in the dissipative
range. Flux is zero in the
thermodynamic range. b The
energy spectrum exhibits
k−5/3 spectrum in the inertial
range. In the thermodynamic
range, the molecules of the
fluid exhibit Maxwellian
distribution (black curve)

(a)

(b)

Multiscale Model of Turbulence

Many nonequilibrium systems have properties very different from that of the gas
reservoir described above [5]. For example, consider a turbulent fluid stirred at large
length scaless. The kinetic energy at large scales cascades to intermediate scale,
and then to small scales. The kinetic energy flux Πu is constant in the inertial
range, and then it decreases in the dissipation range. Due to the energy cascade,
principle of detailed balance is broken in such a system. The energy flux is zero
at microscopic scale where we expect thermodynamic principles to hold. This is
Kolmogorov’s picture of hydrodynamic turbulence [6–9]. See Fig. 5.1 for an illus-
tration of the energy flux and energy spectrum.

The energy spectrum Eu(k) of a turbulent flow has been derived using dimension
analysis. Using
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[Eu(k)] = [Eu/k] = [L3/T 2]; [Πu] = [Eu/T ] = [L2/T 3]; [k] = [L]−1, (5.3)

we derive the following formula for the kinetic energy spectrum:

Eu(k) = KKoε
2/3
u k−5/3, (5.4)

where KKo is Kolmogorov’s constant, and εu is the kinetic energy dissipation rate.
Pao [10] extended the above formula to the dissipation range, and obtained

Πu(k) = εu exp

(
−3

2
KKo(k/kd)

4/3

)
, (5.5)

Eu(k) = KKoε
2/3
u k−5/3 exp

(
−3

2
KKo(k/kd)

4/3

)
, (5.6)

where kd is Kolmogorov’s wavenumber [11]. The fluid kinetic energy vanishes
beyond the dissipation range, i.e., for k > kd . The above function describes the
inertial and dissipative ranges (blue and red curves of Fig. 5.1) quite well. We expect
thermodynamic ideas to work beyond this scale. The energy of the molecules would
follow Maxwell’s or Gibbs’ distribution, as shown by the black curve of Fig. 5.1b.

Shell model is a popular model of hydrodynamic turbulence. In one version of
the shell model, called GOY shell model of turbulence,

d

dt
un + νk2nun = −i(a1knu

∗
n+1u

∗
n+2 + a2kn−1u

∗
n+1u

∗
n−1 + a3kn−2u

∗
n−1u

∗
n−2), (5.7)

where un is a complex number representing the velocity field at length scale kn = 2n ,
a1, a2, a3 are constants, and ν is the kinematic viscosity [12]. In the shell model, the
kinetic energy follows

E(kn) = |un|2
2kn

∼ k−5/3
n , (5.8)

in accordance with Kolmogorov’s theory of turbulence. Our finance model has a
similar form as the above shell model, as we will describe in the next section.

AModel of Hierarchical Financial Entities

We construct a model for a hierarchical finance system in a similar lines as
Kolmogorov’s picture for hydrodynamic turbulence. In this model, we assume that
the wealth is generated at the largest scale, and then it flows from larger financial
structures to smaller structures in a steady manner. We also assume that the financial
entities of similar sizes interact with each other. This is similar to the local interac-
tions in turbulence. In addition, in the absence of financial pilferage, we expect the
cascade of money from large structures to smaller structures to be a constant. This
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Fig. 5.2 In a hierarchical
finance model, a the flux of
money Πm(k), and b the
wealth distribution of
financial entities. The large
and medium economic
entities have constant money
flux and power law
distribution of wealth. Small
economic entities exhibit
exponential distribution,
while the thermodynamic
range exhibits Maxwellian
wealth distribution and zero
money flux

(a)

(b)

Table 5.2 Analogies between turbulence and hierarchical financial system

Turbulence Financial system

Fluid structures Financial entities

Multiscale Multiscale

kinetic energy of a structure Wealth of a financial entity

Constant energy flux Constant money supply

Power law Eu(k) at intermediate scales Power law for large income entities

Exponential Eu(k) at small scales Expect similar scaling

Random motion beyond kd Gibbs distribution at individual scale

is same as the assumption of constant energy cascade in hydrodynamic turbulence.
See Fig. 5.2 for an illustration, and Table 5.2 for a listing of similarities between a
turbulent system and a hierarchical financial system.

We place these financial entities in a two-dimensional wavenumber grid.1 Let us
denote the financial asset of a financial entity at the wavenumber k as W (k). The
number of mesh points on a 2D disc of radius k is

1Dimensionality of a hierarchical financial system is an undetermined parameter. Here we choose
d = 2 using an observation that these structures reside on the surface of the Earth.
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n(k) = 2πk. (5.9)

We solve for the wealth distribution as a function of n. To illustrate, there are fewer
financial entities at small k, corresponding to financial giants (e.g. Google and Apple
of today). Large number of modes at large k correspond to small units like small
companies or individuals.

Motivated by the shell model of turbulence, we construct the following model for
the hierarchical financial entities:

dWk

dt
= akαWk−1Wk+1 − bkβWk + Qk,1, (5.10)

where a, b, α and β are constants, and Wk is analogous to the shell spectrum in
turbulence. Hence,

Wk = 2πkW (k). (5.11)

In Eq. (5.10), the first term in the RHS represents the interactions among financial
entities at scales k, k − 1 and k + 1, while the second term represents financial losses
at scale k (e.g., recurring expenses, electricity bills). The third term Qk,1 represents
the wealth generation at the largest scale, k = 1.

This is a very simple model because it ignores nonlocal interactions, as well as
other complex things like loans, savings, banks, generation of wealth at the interme-
diate and small scales, etc. Further, we assume a steady state in which money flows
from larger structures to smaller structures. The wealth is finally consumed at the
smallest structures of the system.

First, we focus on the large and intermediate scale where we expect a power law
scaling. We also assume that the financial losses at these scales are negligible. Under
a steady state,

Π = dWk

dt
∼ kαW 2

k , (5.12)

where Π is the cascade of money. We invert Eq. (5.12) that yields

Wk ∼ Π1/2k−α/2. (5.13)

Now using Eqs. (5.9, 5.11), we obtain

n(W ) ∼ Π
1

α+2 W− 2
α+2 , (5.14)

wherewewriteW (k) asW . The above formula yields the number of financial entities
n(W ) with wealth W . Clearly, α = −1 gives

n(W ) ∼ ΠW−2, (5.15)
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Fig. 5.3 Plot of wealth
distribution n(W ) versus W
that indicates number of
financial entities with
wealth W

which is similar to the Pareto’s law for the wealth distribution [1, 2] of the large
financial entities. Note however that the exponent depends quite crucially on the
choice of α. In Fig. 5.3, we exhibit the inverted form of Fig. 5.9b, or the plot of
wealth distribution n(W ) versus W .

The wealth cascades down to smaller scales, and it finally gets consumed at the
dissipation scales (individual level). It could be in the form of consumption of food
and basic needs. Following the popular equilibriummodel [3], thewealth distribution
at this scale follows Maxwellian or Gibbs distribution. We also expect an income
group between the power law regime and the Gibbs distribution. This regime may
follow a law similar to that Pao’s model for turbulence, which was discussed in
section “Multiscale Model of Turbulence”.

Several cautionary remarks are in order. Our model describes the wealth of finan-
cial entities. Pareto’s law however is stated for individual incomes. In free market, a
financial entity is essentially owned or controlled by several individuals or a group
of individuals. Therefore, it is reasonable to assume that the wealth distribution of
financial entities also reflects the wealth or income distribution of individuals. Also,
a large financial entity contains smaller entities, thus forming hierarchical structures.

A corollary to the abovemodel is as follows. Let us consider finance distribution in
a country. The central government transfers resources to various stateswhodistributes
it to lower levels in a hierarchical manner, e.g.,

states → districts → villages. (5.16)

Following the same line of arguments as before,wededuce that thefinancial resources
at hierarchical level must be a power law. If there is no corruption, then the money
supply at different levels is constant.

The above model is very simple. It ignores many important ingredients such as
savings, stocks, banking, pilferage of wealth, nonlocal interactions, etc. This model
however has certain novelty. It emphasises on multiscale nature of financial systems,
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cascade of money at different scales, and nonequilibrium nature of the financial
system.

Discussions and Conclusion

Our finance model, though simple, captures multiscale economic transaction among
financial entities and explains coexistence of power law andMaxwellian distribution
for the wealth [1]. The model has other predictions as well. Note that the model has
a free parameter α. The present multiscale model has many assumptions that need to
be studied in detail for applicability in real financial system. For example, we need
to include savings, banking, variable energy flux, etc. in a more refined model. In
addition, we need to contrast the present model with the existing financial models,
some of which are described in [1, 13–15].

A small financial system without hierarchy may exhibit detailed balance and
Maxwellian distribution for the wealth distribution. As soon as a financial system
becomes sufficiently large and it follows a free-market economy, we expect wealth
inequalities to develop based on individual abilities and ambitions. Such a system
will exhibit power law distribution. Strong economic regulations may suppress the
inequality and make the power law shallower.

We believe that the finance model presented here shed important insights into
financial systems. Yet, it is a preliminary model and it needs more work and refine-
ments.
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Chapter 6
Effect of Tobin Tax on Trading Decisions
in an Experimental Minority Game

Dipyaman Sanyal

Abstract James Tobin (The new economics one decade older: the Elliot Janeway
lectures in honor of Joseph Schumpeter. Princeton University, Princeton, 1974, [1])
proposed a transactions tax for currency trading to reduce volatility in this highly
speculative market. We conduct a 40-period experiment using a financial market
mechanism and introduce a tax after 20 periods. While earlier experimental studies
have used double auctions to study the Tobin Tax, our experiment uses a completely
speculative market design (the minority game) which better emulates global cur-
rency markets. We find that trading volumes fall after the tax is imposed supporting
results from existing studies, but in contrast to these studies, we observe a significant
decrease in volatility (without any effect on market size). Our experimental findings
are largely in line with a simulation model using the minority game developed by
Bianconi et al. (J Econ Behav Organ 70(1–2):231–240, 2009, [2]) where the authors
find that “the introduction of Tobin taxes in agent-based models of currency markets
can lead to a reduction of both speculative trading and the magnitude of exchange
rate fluctuations.”

Introduction

The simple Minority Game (MG) model, which is similar to market entry or con-
gestion games in economics with multiple potential equilibriums generated a lot of
interest in the physics community with hundreds of papers and more than a dozen
books published that analyse how equilibrium is achieved, oscillations around the
equilibrium, the learning process of agents and various extensions to the basic game
(seeKets, for a survey of the literature [3]).A significant portion of this research stems
from modeling possibilities that utilize statistical mechanics, especially focusing on
its potential application to financial markets. In a financial market, a participant buy-
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ing or selling an instrument (i.e., going long or short) is betting against the market
price and hopes to be in the minority that has accurately judged the value of the
instrument. He/she is essentially questioning the collective wisdom of the market.

The Minority Game was designed by Challet and Zhang [4], inspired by Brian
Arthur’s El Farol Bar Problem [5]. To summarize Arthur’s problem: El Farol, a
Santa Fe bar, has only 60 seats for its live music shows on Thursdays, and yet,
100 people are keen to be there. This, of course, leads to a mixed-strategy Nash
equilibrium; however, it seems unlikely that each of the 100 players will model out
every possible behavior of the other 99—as they should in a game-theoretic problem.
Additionally, there is no a-priori best strategy, because if there was, all agents would
have used it and the suboptimal outcome of ‘everyone at home’ or ‘everyone at the
bar’ would have occurred. To overcome these issues, Arthur posits that agents faced
with similar problems which entail full information of a large number of players’
preferences choose inductive over deductive thinking. This might be a suboptimal
decision-making tool, but it is certainly more probable that agents take decisions
based on some rules and update their beliefs after every experience.

However, even in the inductive framework, if agents base their reasoning on M
past observations and there are N agents, the agent would need to analyze (N + 1)M

possible combinations, which is increasing in N. To simplify matters, Challet and
Zhang devised the Minority Game (MG), which simplified the analysis to only a
binary option: go to the bar or not go to the bar based on one simple predictor—
whether there were more than or less than the optimal number in the past M periods,
since the agents do not care about the actual number of people who show up at
the bar but only if it is above or below the optimal. This reduces the choice set
to 2M , which is increasing in M (number of periods of history) but not in N. This
makes the inductive reasoning framework an even more plausible representation of
human behavior in these circumstances due to the significant lower need for mental
modeling in decisionmaking (Challet and Zhang [6]; Challet [7]; Challet andMarsili
[8], Challet et al. [9]).

The MG thus provides a simple model of financial markets with N players taking
trading decisions based only on past outcomes of success or failure (Gou) [10–12].
This design of themarketmechanism is a good approximation of the currencymarkets
since, unlike a double auction market, the underlying asset in this market is primarily
speculative and does not trade around fundamental values. The currency market is
considered to be an extremely speculative market with significant disconnects from
underlying fundamentals (Frankel and Rose [13]).

In this paper, we have designed and conducted a lab experiment to test for the
outcomes of a particular inference from the MG literature, that is the introduction of
a Tobin tax in a currency market and its impact on trading behavior and volatility.
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The Economics and Econophysics of Tobin Tax

James Tobin proposed to introduce a tax on every international currency transaction
to lower speculation in these markets. Proponents of deregulation have, of course,
argued that the tax may be prohibitively expensive to impose and may, inadvertently,
lead to higher volatility.

Among developed economies, the empirical effect of the Tobin tax was studied
extensively between 1984 and 1986 when Sweden imposed the tax on equities trans-
actions and then on bonds and derivatives, and finally, increased the tax rate. The
Swedish experiment was overall disastrous and a large number of transactions and
equity offering moved from the Swedish markets to other financial centers like Lon-
don (Umlauf [14]). It should be noted here that the Tobin tax was strictly planned
for a highly speculative currency market and not for other markets like equities or
bonds. Unfortunately, there are no examples of bilateral Tobin taxes to understand
the effects of these taxes on currency pairs, which are traded against each other.

To study the potential effects of these taxes on a speculative market, Bianconi et
al. [2] introduced a Tobin tax in the canonical minority game and used it to study a
simulated currency market. Their model concludes that the Tobin tax may be useful
in “a reduction of speculative trading and reduce the magnitude of exchange rate
fluctuations at intermediate tax rates.” This outcome has serious policy implications,
especially after the financial meltdown of 2008. The imposition of a financial transac-
tions tax is under consideration and 11 European countries are seeking to potentially
introduce the proposal of a Tobin tax. Although a number of countries impose a Secu-
rities Transactions Tax (STT) that is effectively similar to a Tobin tax, forex markets
are amongst the most speculative markets of scale (see survey by Frankel and Rose,
on ‘disconnect’ between economic fundamentals and currency fluctuations [13]).
Thus, effects of an STT may not be similar to the effects of such a tax on speculative
transactions like those in the currency markets. To explore the relationship between
the tax and the markets further, we replicate a similar, and yet, simpler market with
human agents in the lab to study whether the theoretical conclusion of Tobin [1] and
the conclusions of the agent-based models of Bianconi et al. [2] hold true.

Experimental Minority Game

The minority game provides a large body of theoretical and simulated models, which
are ripe for empirical testing. However, there is a significant difference between
empirical analysis of minority games from financial markets data and from labo-
ratory experiments data. Empirical econophysics addresses the challenge of testing
thesemodels by analyzing naturally-occurring data from complex systems like finan-
cial markets and there is a large and growing literature on empirical econophysics
and minority games, where the patterns of the data-generating process in complex
systems (especially financial markets) have been extensively studied (Chalet et al.
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[7]; Chakraborti et al. [15]). But the problem faced in such analyses is the variety of
effects that are simultaneously at play in financial markets which makes it extremely
difficult to conclusively comment on the effect of individual factors. To control for
the effects of potential confounding of results (due to multiple factors changing at the
same time) has been a major reason for the growth of experimental methods in social
sciences and financial economics, despite the existence of large scale data from the
field. Experimental methods allow for a controlled environment, which allows the
scientist to make changes in single variables that help in understanding the effect of
that particular variable in a system without the confounding effects of myriad other
factors that act upon a ‘real-world’ market. Although a significant amount of theoret-
ical and simulation-based research has been done on MG, there are very few papers
(Bottazzi et al. [16, 17]; Patkowski and Ramsza [18]; Laureti et al. [19], Berg et al.
[20]) which use the methods of experimental economics to provide support (or not)
to the results generated from theory and there is only one text book on experimental
econophysics (Huang [21]).

The Tobin Tax Minority Game Experiment

The Minority Game provides an ideal setting for testing the original concepts of
the Tobin tax. Since there is no underlying fundamental value of the ‘asset’ in a
Minority Game it is a completely speculative market where market participants gain
only when they are in the minority and there is no other mechanism to affect the
demand (and thus, price) of the asset. Additionally, due to a completely neutral
nature of the asset definition itself, there is potentially limited impact of any biases
that we might observe (anchoring to names of stocks, bias towards value stocks due
to name recognition etc.). Past experiments on the Tobin tax (see Hanke et al. for
an example and a survey of the literature [22]) use the double auction mechanism to
study the effects of the tax on asset prices, trading behaviour and volatility. While
double auctions might be closer to actual securities market trading mechanisms, the
currency markets are arguably better emulated by a minority game due to its inherent
speculative nature. In the Minority Game the only process of ‘winning’ is by being
in the minority and it has no relationship to better estimating the fundamental value
of the asset (which is true for double auctions and securities markets).

We conducted a 40-period experiment of the Minority Game (as developed by
Challet andZhang [4]with 143 subjects and introduced a Tobin tax after 20 periods of
the game. Three sessions were conducted with subjects who were second-year MBA
students at the Institute of Management Technology, Ghaziabad, India, enrolled in
Business Analytics and Risk Analytics courses. Table 6.1 shows the pay-off matrix
as shown to the participants. Every 100 tokens were converted to INR 10 and an
additional extra credit (of 8 grade points) was offered—with a total maximum poten-
tial payout of INR 400 and 8% extra credit points (in classes where average grades
were approximately 70%). The experiments were designed and performed using an
online survey service and pen and paper.
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Table 6.1 Payout matrix for
the experimental minority
game

Periods 1–20 Minority Not in minority

Trade 100 0

Do not trade 100 0

Periods 21–40 Minority Not in minority

Trade 95 0

Do not trade 100 0

The subjects were offered a binary decision choice: trade or not trade. They could
win 100 tokens if they were in the minority in any period in Rounds 1–20. A Tobin
tax of 5%was imposed fromRound 21. Thus, fromRounds 21–40, if subjects did not
trade andwere in theminority, they would still make 100 tokens. However, if they did
trade and were in the minority, they would make (100–5%) 95 tokens. Additionally,
if the subjects were not in the minority, they would make 0 in any period in either
phase of the experiment.

The set-up of the payoff structure in the game is similar to a transactions tax in
completely speculative markets, and thus, akin to what a Tobin tax would be like
on currency markets. The sole difference in this pay off structure is that the tax is
implemented only in the gain frame and not in the loss frame by using a relative
(versus an absolute) tax rate, to avoid any effects of biases relating to loss aversion.
If the tax had been implemented on the loss frame, Trade-Not-in-Minority would
have yielded a payoff of negative 5 tokens in periods 21–40 since the tax is on the
transaction and not only on gains (similar to an income tax on realized capital gains).
Due to a negative number in the Trade-Not-in-Minority state, subjects would have
a negative payoff, which may lead a strong aversion towards trading and this might
confound the effects that we would see in running the experiment with a tax only on
the positive frame. Additionally, in most jurisdictions, loss making trades allow for
tax offsets which would counterbalance any impact of a small absolute tax.

Results

We utilize three metrics from the financial markets that can be considered in the
Minority Game structure to check if the taxes have the directional effect that is
expected from it from a policy perspective. First, we try to find the effect of the
Tobin tax on aggregate trading behavior—that is, do subjects tend to trade less due
to the imposition of a tax. Secondly, we try to quantify the effect of the tax on excess
demand in themarket. Excess demandmeasures the behavior of the individual traders
(and not just the aggregate trading choices) according to their decision to trade or
not. And finally, we try to measure the effect of the tax on the volatility and compare
it across the trading and non-trading periods.
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Table 6.2 Number of periods
in which ‘Trade’ was
Minority

Periods 1–20 Periods 21–40

48% 63%

Trading Choice

We find a statistically significant effect on the imposition of the Tobin tax on the
trading behavior of the experimental subjects. In Table 6.2, the numbers represent
the number of periods in which Trade was the minority choice. If Trade is in the
minority in equal number of instances in Periods 1–20 and 21–40, it would imply
that the Tobin tax has had no behavioral effect on subjects and choices have remained
the same. After the tax is imposed, Trade is a minority in significantly more periods;
thus, showcasing a fall in the number of subjects choosing to trade as an effect of the
Tobin tax. Between periods 1–20, in 29 out of the 60 non-tax periods (as mentioned
above, three sessions were conducted with a total of 60 trading periods without taxes
and 60with taxes), that is 48%of the periods, Tradewas theminority choice.Whereas
in the tax frame (periods 21–40), Trade was in minority in 63% of the periods. This
reduction is statistically significant and demonstrates a sharp fall in the propensity
to trade due to tax imposition.

Excess Demand

In each period of the game, a player provides one signal: trade or not. Thus, for every
period, Bid (bi ) is defined as:

bi (t) ∈ {−1, 1}

and the resultant excess demand in the market is given by:

N∑

i=1

A(t) = bi (t).

If the taxes had no effect on excess demand, the sum value of the bids would
remain similar in the trading and non-trading periods. In the experimental data, the
average (per period) excess demand decreases from 0.13 in the periods with tax
to −1.2 in periods without tax, implying a significant fall in excess demand in the
market.
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Volatility

Policy makers have primarily considered implementing the Tobin tax due to its
potential effects on volatility. Popular macroeconomic models of currency exchange
rates are based on concepts of purchasing power parity (Cassel, [23]) or relative
interest rates differentials (Frankel, [24]) in case of floating exchange rates. However,
actual currency exchange rates are farmore volatile than either of these theorieswould
support. Inflation data is released no more than once a month (or, in most countries,
once a quarter) and interest rates aremodified by central banks infrequently; however,
speculative demand and supply dynamics generate fairly volatile currency exchange
rates.

To understand the effect of the tax on volatility, we use the measurement process
used for theMG that is calculated from the bids, if we do not assume any price setting
mechanism and is defined as:

σ 2 = < A(t)2 >

N

where 〈.〉 is a time average in the stationary state of the model. The normalization
to the number of agents (N) is added to guarantee a finite value of σ 2 in the infinite
system limit. In our experimental setting, the introduction of the Tobin tax leads to
a 9.35% reduction in variance.

This result contrasts with existing empirical results using the securities transac-
tions taxes analyzed by Capelle-Blancard and Havrylchyck [25] or earlier papers like
Lanne andVesala [26].We believe that this difference arises from two sources: firstly,
the studies often analyze broader securities transactions taxes which differ from the
Tobin tax which was meant to be introduced in a speculative market like currency
markets; and secondly, the tax is treated as an increase in transactions cost. Huber et
al. mention that most papers in the existing literature “...consider the Tobin tax as a
particular type of transactions costs on currency markets. Therefore, they investigate
the impact of the size of transactions costs on trading volume and volatility. Using
an innovative approach to derive transactions costs from futures prices, they show
that higher transactions costs are associated with higher volatility and lower trading
volume on foreign exchange markets. Similar results are presented in Hau (2006).
Hence, there is no general agreement on the consequences of a Tobin tax on price
volatility.” We agree with that statement and propose that there is a larger behavioral
impact of a tax than a simple increase in transactions cost.

The primary shortcoming of the current mechanism is the lack of an explicit price
setting mechanism in the Minority Game. This allows us to study volume volatility
of transactions volume in the market but not explicitly the volatility of prices. To
generate a price setting mechanism, Bianconi et al. [2] use the Grand Canonical
Minority Game (GCMG) in their paper. However, in the experimental study we
study the original form of the game. The primary difference between the two is the
option in the GCMG to sell or short sell the ‘asset’, thus allowing for three options to
the participants: buy, sell or hold. We do not use that mechanism, since the primary
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focus of this experiment is to study the effects of the taxes on trading volume and
volatility and not prices. Additionally, the binary option form of the game does not
present any theoretical problems in emulating a financial market in its simplest form,
but aids in observing the direct effects of taxation on the volatility of the asset.

Conclusion and Future Work

The minority game provides an ideal framework to study the currency markets due
its completely speculative design. This is the first experimental study which uses
the minority game to study the effects of a Tobin tax on a currency market. Using
commonly calculatedmeasures for theminority game as amodel of financialmarkets,
we observe a significant reduction in excess demand, volatility and the number of
trades due to the imposition of a Tobin tax.

In ongoing research, we are attempting to understand the behavioral aspects that
lead to the outsized effect on volatility from the 5% tax rate that was imposed in
this experiment. That is, we are attempting to understand why do markets tend to
overreact to an imposition of a Tobin tax? And in conjunction, we are analyzing
individual heterogeneity in trading behavior due to the imposition of the tax that
might allow us to understand differential trader types in the market, their learning
process and their strategies under a tax regime.
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Chapter 7
Migration Network of the European
Union: Quantifying the Effects of
Linguistic Frictions

Aparna Sengupta and Anindya S. Chakrabarti

Abstract Immobility puzzle in the EuropeanUnion (EU) takes the form of observed
level of migration within the EU being substantially less than what is expected in
a union allowing free labor mobility. We use a dynamic general equilibrium model
of migration in a multi-region setting with heterogeneity in sectoral compositions,
productivity and endowments of productive inputs, to construct a flow network
of migrants (Chakrabarti and Sengupta, Econ. Model. 61:156–168 (2017)) ([7],
EconomicModelling). When tested on the US data which we consider to be a bench-
mark for institutional homogeneity compared to Europe, this model explains sub-
stantial part of the variation in both the nominal and relative flows of state-to-state
migration under suitable calibration. On the other hand, this model explains the rel-
ative flow network of the EU well but predicts a higher nominal flow than is seen in
the data, thus illustrating and quantifying the puzzle. Following the hypothesis that
institutional heterogeneity across the EU countries induces frictions on such labor
reallocation process, we use dyadic regression to analyze the effects of pair-wise
institutional distances which capture a broad spectrum of socio-cultural and political
differences between countries, on the estimatedmissingmass of migrants. Linguistic
differences appear to be the key factor explaining the missing mass of migrants.

Introduction

Migration is an outcome of a large number of people making choices over loca-
tions, based on consideration of multiple pecuniary and non-pecuniary factors. Over
and above the pecuniary motives, institutional heterogeneity between the source and
the destination might play an important role in the outcome of the decision-making
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process. Within the US, the average flow of migrants across all states was about 2%
in the last 20 years whereas in the European Union (EU) this rate is far less even
after allowing free labor mobility across member states with the formation of the
union. Reference [4] described this low level of migration as the ‘European immo-
bility puzzle’. This has often been attributed to cross-region variations in institutions
which are much larger in the EU than in the US, indicating that institutional hetero-
geneity induces substantial friction on the labor relocation process (see e.g. [2, 12]).
In this paper, we use a dynamic general equilibrium framework proposed earlier by
[7] to map the whole migration network across all constituent states of an union on
its macroeconomic fundamentals. This allows us to study the deviations of actual
migration network from the equilibrium network, to pin down the effects of institu-
tional heterogeneity between the source and the destination on the flow of migrants.
As we will show, linguistic differences appear to be more important in explaining the
migration gap in the EU than a multitude of other factors including heterogeneity in
politics, customs or social attitudes. Thus our work provides a structural explanation
of the missing mass of migrants.

Purely economic incentives e.g. higher wage or productivity in one country
vis-a-vis another [3, 13], creates economic motivation for migration. Institutional
factors also impact this decision-making process. For example, [2] argued that dif-
ferences in cultures or customs present an impediment in the process. We conjecture
that from a purely economic point of view, the phenomena of migration between
countries with similar economic characteristics can be thought of as an adjustment
process or reallocation of labor resulting from uneven productivity shocks. However,
various socio-cultural and political factors can induce frictions on that mechanism
reducing the extent of reallocation. Thus observed migration contains effects of both
types of factors, economic as well as non-economic, which may work in opposite
directions.

In the following, we first present a dynamic model with N -regions, two-sectors
augmented with sector and region-specific idiosyncratic productivity shocks. This
model had previously been developed by [7] to understand migration in presence
of multiple destinations in a frictionless world. The basic objective is to build a
migration network across countries, which can be compared with yearly data. We
consider a model with T periods and N regions (N countries belonging to the EU or
N states of theUS).Within a year, all regions receive idiosyncratic productivity shock
for T times. Each region is populated by a continuum of workers who consume and
can move to different regions depending on the relative productivity across regions.
Capital stock is fixed across regions. Workers consume tradables and non-tradables,
both of which are produced via a two-stage production process. Following [5], we
assume that trade occurs only at the intermediate stage. Due to productivity shocks,
there will be productivity differences across states. Simultaneously, productivity
shocks will have spill-over effects on other regions through the trade channel. Thus
there would be net productivity differences across regions creating opportunities for
workers to move across regions. This flow of workers from one region to another
is interpreted as bilateral migration. When all regions experience such productivity
shocks in one-period t ∈ T , some regions will be net donors and some regions will be
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Fig. 7.1 Migration network
(directed and weighted) of a
subset of European union
(year 2000)

net receivers. Figure7.1 for example, shows the net migration network and Fig. 7.2
shows the spatial distribution of migration from actual data. By aggregating the flow
network over T periods, we can construct a migration network across countries. By
calibrating the productivity shocks to the yearly t f p shocks across countries, we
interpret the migration network to be representative of the yearly migration network.

Under suitable calibration, the model is consistent with the US data in terms of
the labor network generated as well as the total mass of migrants [7]. It is important
to stress here that the model generates the full network of labor flow across all

Fig. 7.2 Net migration in (a subset of) European Union. Panel a: year 2000. Panel b: year 2005
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constituent regions, i.e. if there are N regions, it generates N × N flow matrix.
Hence it provides a systemic view to study the aggregate flow across all pairs of
regions as well as relative flows across specific pairs of regions. Since the US is
taken to a frictionless case with sufficient institutional homogeneity, a good fit of the
model to the US data indicates that the model captures economic incentives arising
due to productivity, to a reasonable degree. When calibrated to the EU, the same
model captures the relative flow of labor across the EU well but predicts higher
aggregate flow than is seen in data. This gap can be thought of representing missing
migrants in the European immobility puzzle. Such quantification of themissingmass
of migrants is the main objective of using the model in the present context.

After quantifying the missing mass of migrants across every pair of countries,
we explain the gap by using an array of various institutional factors (more than 50
variables, full list provided in Table 7.9). We see that linguistic differences is the
most persistent factor across years explaining the gap. Entry into Euro area increases
bilateralmigration across countries. Presence of informal labormarkets andHofstede
indices (socio-cultural distance) can explain the gap partially.

The rest of the paper is structured as follows. In section “A Structural Model
of Migration Network (Chakrabarti and Sengupta, 2017)”, we describe the basic
model. In section “The Migration Network of Europe”, we construct the simulated
migration network in the EU and contrast it with the actual network. Finally, in
section “European Immobility Puzzle”, we carry out regression analysis and show
that linguistic differences are important factors for explaining the missing mass of
migrants. Then we conclude.

A Structural Model of Migration Network
(Chakrabarti and Sengupta, 2017)

In this section, we briefly describe a model to generate a migration network across
regions in a frictionless economy. This model was proposed in [7] with an applica-
tion to the US interstate migration data. The mathematical structure is a simplified
version of the model proposed by [5], who used it for modeling propagation of pro-
ductivity shocks across regions. In the present context, we have used the model to
capture annual bilateral migration between different pairs of countries within EU
upon suitable calibration. We do not give the full derivation of the model here to
avoid repetition. For brevity of exposition, we broadly define the structure of the
model below and move on to the estimation in next section.

Households’ Problem

In each region a continuum of households who supply labor for the local production
process. There are two final goods, tradables (M) and non-tradables (S). For the
sake of exposition, we assume manufacturing industries to constitutes the tradables
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sector and the service producing industries to constitute the non-tradables sector.
The households’ optimization problem in the nth region at a generic time-point t is
to choose consumption of manufactured (CM

nt ) and service goods (CS
nt ) so as to

max
{CM

nt , C
S
nt }
Unt = (CM

nt )
α(CS

nt )
(1−α) subject to PM

nt C
M
nt + PS

ntC
S
nt ≤ rnt

Knt

Lnt
+ wnt ,

(7.1)
where the term on the right hand side denotes per-capita income which is the sum
of rental income earned from fixed capital stock (K ) and wage (w). Interest rate is
denoted by r and labor by L and wage rate by w. If the migrants travel through a
sequence of regions {n}1,...,T , her T periods’ utility is given by

UT = E

(
T∑

τ=1

Unτ

)
. (7.2)

Production Process

Following [5], we impose a two-tier production structure with trade in the interme-
diate goods. Manufactured goods and the service products are final goods which are
produced by bundling a continuum of intermediate goods. These intermediates are
produced by combining local labor and capital stock.

Intermediates’ Production

There are two sectors j ∈ {M, S} in each region n, each producing a continuum of
varieties of intermediate goods. Each sector has an i.i.d. productivity shock process,
ξ
j
nt and also receives shocks at the productivity level Z

j
nt . The shock process ξ

j
nt fol-

lows a Frechet distribution characterized by parameter θ j . The production functions
are symmetric across sectors ( j ∈ {M, S}) and defined as

q j
nt = ξ

j
nt Z

j
nt (k

j
nt )

β(l jnt )
1−β, (7.3)

where lowercase letters l and k denote the demand for labor and capital respectively
by a representative firm. The shock process Z j

nt follows a multiplicative random
walk,

Z j
nt (t + 1) = ψi t Z

j
nt (t) where ψi ∼ N (1, σi ) and i ∈ {M, S}. (7.4)
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Final Goods’ Production

Final goods are produced by bundling continuum of intermediates q̃ in both sectors
( j ∈ {M, S}),

Q j
nt =

[∫
(q̃ j

nt (ξ
j ))γ

j
ntφ j (ξ j )dξ j

]1/γ j
nt

, (7.5)

where φ(.) denotes the distribution of shocks,

φM(ξM) = exp

(
−

N∑
n=1

(ξM
nt )

−θM

)
, (7.6)

φS(ξ S) = exp
( − (ξ S

nt )
−θ S )

. (7.7)

The aggregate price level for the final goods can be written as

P j
nt =

⎡
⎣∫ (

p j
nt (ξ

j )
) γ

j
nt

γ
j
nt−1 φ j (ξ j )dξ j

⎤
⎦

γ
j
nt−1

γ
j
nt

. (7.8)

Market Clearing Conditions for Factors of Production

Since final goods are non-tradable in all sectors, the corresponding market clearing
condition would just state that domestic demand equals domestic supply. Moreover,
even for non-tradables, the same condition would hold. Following [5], the trade cost
between regions n and m (in units of good produced in location n) is given as

τM
nm ≥ 1 and τ S

nm = ∞, (7.9)

implying that service goods are non-tradable where as manufactured goods are trad-
ables.

For productive inputs, total inputs i.e. labor or capital, must be equal to the sum
of the sectoral allocation,

LM
nt + LS

nt = Lnt and KM
nt + K S

nt = Knt ∀n ≤ N . (7.10)

Note that since capital is immobile, we do not have market clearing condition for
capital at the aggregate level. For labor, the corresponding condition would be∑

n Lnt = L̄ , where L̄ is the total labor endowment in the whole economy.
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Equilibrium

Given labor endowments {Lnt } and the capital endowment {Knt }nt , a competi-
tive equilibrium is an utility level Ū , input prices {rnt ,wnt }nt , labor allocation
{Lnt }nt , expenditure on manufactured goods and services {XM

nt , X
S
nt }nt , consump-

tion {CM
nt ,C

S
nt }nt , prices of manufactured goods and services {PM

nt , PS
nt }nt and pair-

wise regional intermediate expenditure share in manufactured goods and services
{πM

nit , π
S
nit }nit such that all markets clear in all regions n ∈ N .

At every time point t , all regions receive shocks Ẑ j
nt . Given the values for

{θ j , α, β}Nn, j={S,M} and data for the initial allocation {Int , Lnt , π
j
ni , Ẑ

j
nt }N ,N

n,i, j={S,M},
we can find solution for changes in all real quantities {ŵnt , L̂nt , X̂

j
nt , P̂

j
nt , X

′ j
nt ,

π ′ j
ni }N ,N

n,i, j={M,S} where x̂ = xnew/xold .

Simulating the Migration Network

After the realization of productivity shocks across regions at a time point t ∈ T , work-
ers will move across regions giving rise to changes in labor allocation as {L̂nt }n∈N .
Thus, net change in labor allocation can be found as {(L̂nt − 1)Lnt }n∈N . Reference
[7] defined net flow of workers across the {i, j}th pair at time t as

Ft
ji =

(
(L̂ j t − 1)L jt∑

n∈N out (L̂nt − 1)Lnt

)
(L̂ i t − 1)Lit , (7.11)

where N out is the set of countries from which labor migrates to other countries and
j ∈ N out . Thus at each period t ∈ T , we can construct the labor flow network by
considering pairwise inflows and outflows for all pairs of regions {i, j} ∈ N 2. By
summing up labor flow networks across T periods, we can construct the aggregate
yearly migration network. See [7] for a complete derivation and discussion.

Calibration Exercise

We calibrate the parameters (see Table 7.1 for the numerical values) of the theoretical
model for 16 of the countries in Europe. We also present the analysis for the US to
make a comparison. The regions in both the cases have inherent homogeneity in
terms of economic factors. However, institutional frictions should be much clearer
in the EU countries. In the following, we discuss the calibration exercise and then
compare the results obtained from the theoretical model with the real data.

The shocks to the productivity Z Eq. (7.4) is normally distributed and scaled by
the time horizon T ,
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Table 7.1 Calibrated parameter values

Description parameter value

Service goods’ share in cost 1-α 0.6

Capital’s share in cost β 0.3

Dispersion parameter (intermediates): Manf. θm 8

Dispersion parameter (intermediates): Serv. θs 2

Std. dev. of aggregate shocks (US, 2007): Manf. σM 0.038

Std. dev. of aggregate shocks (US, 2007): Serv. σS 0.005

Std. dev. of aggregate shocks (EU, 2000): Manf. σM 0.027

Std. dev. of aggregate shocks (EU, 2001): Manf. σM 0.023

Std. dev. of aggregate shocks (EU, 2002): Manf. σM 0.028

Std. dev. of aggregate shocks (EU, 2003): Manf. σM 0.034

Std. dev. of aggregate shocks (EU, 2004): Manf. σM 0.028

Std. dev. of aggregate shocks (EU, 2005): Manf. σM 0.067

Std. dev. of aggregate shocks (EU, 2006): Manf. σM 0.042

Std. dev. of aggregate shocks (EU, 2007): Manf. σM 0.105

Std. dev. of aggregate shocks (EU, 2000): Serv. σS 0.014

Std. dev. of aggregate shocks (EU, 2001): Serv. σS 0.019

Std. dev. of aggregate shocks (EU, 2002): Serv. σS 0.010

Std. dev. of aggregate shocks (EU, 2003): Serv. σS 0.011

Std. dev. of aggregate shocks (EU, 2004): Serv. σS 0.009

Std. dev. of aggregate shocks (EU, 2005): Serv. σS 0.020

Std. dev. of aggregate shocks (EU, 2006): Serv. σS 0.014

Std. dev. of aggregate shocks (EU, 2007): Serv. σS 0.024

Length of simulation T 200

# simulations averaged – O(10)

ψi t ∼ N

(
1

T
,
σi

T

)
. (7.12)

The standard deviation of TFP (σ ) of sectors in the EU in one particular year is
matched with the cross-sectional standard deviation of the same sector across the
countries in the EU for that year. Table 7.1 presents the calibrated values of the
parameters. The values which we take to be common across regions and time, are
given at the beginning. For others, we mention the relevant unions as well as the
sectors and years. For each year, the standard deviations of the productivity shocks
are averaged over all constituents regions of the union for the purpose of simulation
over T periods.
From data, we calculate the pairwise migration as

yk = mdata
i j + mdata

ji∑
nt L

data
nt

. (7.13)
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whereas the model predicted pairwise migration is calculated as

xk = mmodel
i j + mmodel

ji∑
nt L

model
nt

. (7.14)

We also control for contiguity through a dummy variable. The basic specification for
nominal flow network is

yk = α0 + α1xk + α2Dcont. + εk (7.15)

where Dcont. is a dummy for contiguity and εk is an i.i.d. error term. If α̂0 = 0
and α1 = 1, we can say that the model captures the nominal flow network well.
As [7] had shown, the predicted total mass of migrants for US match pretty well
with the data. Calibrating the model we see that the total flow should be around
2%. From ACS data (Table 7.8) we do get the overall migration to be around 2%.
Thus the orders of the nominal flows as is seen in the data and derived from the
model, are arguably comparable. We also consider the relative flows of migrants
across regions by constructing a new dependent variable ỹk = yk/

∑
k yk and a new

explanatory variable is x̃k = xk/
∑

k xk . The relative network of migration in the US,
which was taken as the closest approximation to a frictionless place in terms of both
economic and non-economic factors, is also described well by a model emphasizing
only economic incentives behind migration.

The Migration Network of Europe

We look into migration data from 2000 to 2007 for 16 countries (See Appendix
“Sources of Data” for details on sources of data) which gives us the full 16×16
migration matrix depicting the bilateral flow. Our objective is to build the complete
matrix from the theoretical model and compare each element with the data. However,
there is incompleteness in the available data showing the bilateral flow of labor as
a few countries do not report the migration statistics at all, some countries stop
reporting after a period of time and some start only after a time point. So we extract
the maximum amount of data available and compare it with the results that the
theoretical model provides. Table 7.2 provides a summary of the data available.

From the model we get that due to TFP differences net migration in the 16 coun-
tries should be around 2%. Next, we regress the dyad specific bilateral migrations
from actual data on the TFP driven migration results (from the theoretical model).
Table 7.3 contains results of regressing data on model-predicted migration. In
Tables7.4 and 7.6 we present the panel results for the 16 countries over 2000–2007.

Wefind fromTable 7.3 that though the coefficient of TFP drivenmigration ismuch
lower than 1 which should have been the case if the model matches data perfectly,
but it is significant and in each year the model has sufficiently high R2. This is an
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Table 7.2 Descriptive summary for bilateral migration within Europe (16 countries)

Year Obeservations Mean Std. Dev Min Max

2000 66 5056.924 8813.484 0 45439

2001 66 5231.076 9290.369 0 43375.5

2002 66 5377.379 9570.473 2 41312

2003 66 5203.114 9455.308 6 49670

2004 66 5608.924 10292.27 3 59337

2005 66 5830.758 10729.29 7 57652

2006 69 5239.217 10345.33 8 56612

2007 66 4307.53 7815.329 16 34417

Table 7.3 Regression results with robust errors for the EU—Nominal

TFP driven migration
(Rob Std Err)

Contiguity
(Rob Std Err)

Intercept (Rob Std Err) Adj. R2

2000 0.05836c 0.00001c 0.00000 0.7808

(0.00781) (0.00001) (0.00000)

2001 0.05870c 0.00002b 0.00000 0.7700

(0.00683) (0.00001) (0.00000)

2002 0.06118c 0.00001c 0.00000 0.7794

(0.00613) (0.00000) (0.00000)

2003 0.05456c 0.00001b 0.00000 0.6468

(0.00980) (0.00001) (0.00000)

2004 0.05709c 0.00001b 0.00000 0.5938

(0.01216) (0.00001) (0.00000)

2005 0.06132c 0.00001b 0.00000 0.6788

(0.00921) (0.00001) (0.00000)

2006 0.06376c 0.00001b 0.00000 0.6927

(0.01324) (0.00001) (0.00000)

2007 0.06030c 0.00001b 0.00000 0.7450

(0.00512) (0.00001) (0.00000)

Note: ap<0.1, bp<0.05, cp<0.01, N = 68

interesting finding as it basically suggests that the total mass of migrants predicted
by the model is much higher than what is seen in the data. Table 7.4 presents a panel
estimate of the same. The estimated coefficients indicate a similar conclusion.

Next, we regress the relative weights of edges of the data on model. The results
are presented in Table 7.5. Clearly, after normalization the estimated coefficient
increases to about 0.8 which is much closer to 1. Note that ỹ, x̃ ∈ [0, 1] making
them comparable in order. So in relative sense the theoretical model does quite well
in explaining the migration in Europe. However, the it does not match the total
migration; in fact predicts a much higher value. Table 7.6 presents a panel estimate
on the relative flows.
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Table 7.4 Panel regression result for the EU—Nominal

Variable Coefficient
(Rob Std Err)

TFP driven migration 0.061 ∗∗∗

(0.010)

Intercept 0.000

(0.000)

N 528

R2 overall 0.6629

χ2
(2) 34.82

Table 7.5 Regression results with robust errors for the EU—Relative

TFP driven migration
(Rob Std Err)

Contiguity
(Rob Std Err)

Intercept
(Rob Std Err)

Adj. R2

2000 0.84328c 0.01700c –0.00046 0.7808

(0.11289) (0.00612) (0.00116)

2001 0.83180c 0.01779b –0.00042 0.7700

(0.09676) (0.00675) (0.00105)

2002 0.85237c 0.01418c –0.00013 0.7794

(0.08539) (0.00522) (0.00100)

2003 0.79403c 0.01494b 0.00063 0.6468

(0.14261) (0.00591) (0.00113)

2004 0.77543c 0.01344b 0.00116 0.5938

(0.16522) (0.00600) (0.00120)

2005 0.81675c 0.01351b 0.00052 0.6788

(0.12271) (0.00606) (0.00101)

2006 0.75724c 0.01441b 0.00122 0.6927

(0.15722) (0.00702) (0.00127)

2007 0.71356c 0.01980b 0.00104 0.7450

(0.06064) (0.00894) (0.00122)

Note: ap<0.1, bp<0.05, cp<0.01, N = 68

Table 7.6 Panel regression
result for the EU—Relative

Variable Coefficient
(Rob Std Err)

TFP driven migration 0.650 ∗∗∗

(0.097)

Intercept 0.005 ∗∗∗

(0.002)

N 528

R2 overall 0.6611

χ2
(2) 44.746
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Fig. 7.3 Scatter plots showing the normalized actual dyad migration data on TFP simulated results
for the European countries for year 2000

In the left panel of Fig. 7.3, we plot the normalized bilateral migration data on the
y-axis and the predicted values of the same on the x-axis. In the right panel we take
the natural log of both variables to reduce the effects of the outliers. Each point on
the scatter plot denotes the real data and the prediction for a dyad.

European Immobility Puzzle

One of the basic principles behind the formation of the European Union was to
ensure freedom of movement of productive inputs. In particular, it was supposed to
reduce the barriers to labor flowmaking themarketmore flexible.Multilateral gravity
equation helps us to pin down the relative strengths of the edges of the migration
network. However, as is clear from the above results, the model shows that under
reasonable parameterization the predicted mass of migrants are in the order of 100
times more than what is seen in Europe for the period we considered (2000–07).
This refers to the puzzle that even after the legal and political barriers have been
systematically removed thus potentially reducing economic frictions on the labor
allocation process, people did not respond immediately to the existing incentives.
This problem has attracted attentions both from a theoretical and policy-making
point of view. In particular, [2] ascribe this role to the negative effects of cultural
differences indicating that such distances can induce an extremely low migratory
response if properly addressed. In this paper,we complement this analysis usingmany
other types of frictions ranging from social to political along with the obvious factor,
linguistic differences. In this section, we look into a list of fine-grained measures
of institutional differences between the 16 European countries and argue that these
substitute some of the TFP driven migration instead of complementing and thus,
provide “frictions” opposing the incentives.
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Distances in Institution and Culture

We look at a broad list of variables which could ideally be considered as frictions.
We start with historical links between countries. We used the [6] data to determine
colonial links between countries or whether the two countries in the dyad were the
same country historically.

One of the hypothesis could be that language barrier is one of the reasons which
stops people frommigrating easily. To control for thiswe looked into several language
indices. From the CEPII, bilateral data on whether two countries speak the same
official language, native language, language proximity index and common language
index was obtained. In Table 7.7, LangIndex is the common language index. This
index gives an approximate distance between two countries due to language. If the
index is higher that means the two countries have fewer language barriers. We also
looked into ethnologue language statistics [8]—country-specific data on total number
of languages used as the first language, immigrant languages in the country and
probability that two people selected at random will have different mother tongues
(Greenberg’s diversity index).

Differences in culture could be another barrier to migration—to study this effect,
we use the Hofstede’s cultural indices [11]. This is a rich set of index encompassing
cultural aspects such as individualismversus collectivism in the economy, uncertainty
avoidance, power distance (strength of social hierarchy), masculinity-femininity
(task orientation versus person-orientation), long-term orientation and indulgence

Table 7.7 Regression results with robust errors for the EU—frictions

Contiguity LangIndex Indivi Pragm Euro ShadowEco Intercept Adj. R2

2000 0.23a 0.43b –0.12c –0.11b –0.06 –0.01b 0.72c 0.4901

(0.13) (0.19) (0.04) (0.05) (0.05) (0.01) (0.25)

2001 0.26a 0.44b –0.13c –0.12b –0.06 –0.01b 0.77c 0.4923

(0.14) (0.19) (0.05) (0.06) (0.05) (0.01) (0.26)

2002 0.21 0.45b –0.13c –0.12b –0.07 –0.01b 0.78c 0.4798

(0.13) (0.20) (0.05) (0.06) (0.05) (0.01) (0.27)

2003 0.21 0.46b –0.13c –0.12b –0.07 –0.02b 0.78c 0.4765

(0.13) (0.20) (0.05) (0.05) (0.06) (0.01) (0.26)

2004 0.18 0.49b –0.13b –0.13b –0.07 –0.01a 0.78c 0.4599

(0.13) (0.20) (0.05) (0.06) (0.05) (0.01) (0.29)

2005 0.18 0.44b –0.11b –0.10b –0.06 –0.01a 0.66c 0.4522

(0.12) (0.18) (0.04) (0.05) (0.05) (0.01) (0.23)

2006 0.18 0.53b –0.08b –0.09a –0.09 –0.01a 0.57b 0.3977

(0.13) (0.23) (0.04) (0.05) (0.06) (0.01) (0.22)

2007 0.15 0.59b –0.09b –0.10a –0.15b –0.02b 0.67c 0.4431

(0.13) (0.23) (0.04) (0.05) (0.07) (0.01) (0.23)

Note: ap<0.1, bp<0.05, cp<0.01, N = 68
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versus self-restraint. In Table 7.7 ‘Indiv’ refers to Individualism and ‘Pragm’ refers
to Pragmatism and they are two of the Hofstede cultural index. These indices are
country specific. For dyad level regression we considered the numerical differences
between these indices for the two countries as a proxy of their ‘distance’ in the
corresponding category. So a higher value in distance for ‘individualism’ between a
pair of countries would mean that one country in the pair believes in individualistic
society as a way of life and the other country believes in a relatively less individ-
ualistic society which is another way of saying that the country believes in a more
collective/family-oriented way of life.

Next, we considered several stability indices broadly related to the polity. All
data were collected from various reports compiled and made publicly available by
World Bank. We looked into government stability, democracy index, ethnic ten-
sions, religious conflicts, military in politics and external conflicts to understand the
political stability in the economy. For each of these risk rating available on coun-
try level we considered the ‘distance’ between the ratings between two countries
for dyad regressions. For socio-economic stability, we looked into corruption index,
freedom of press, socio-economic conditions and voice and accountability. Distance
between financial stability indices like financial risk, investment profile and existence
of shadow economy are also included as controls. Distance in shadow economy index
would mean in the dyad one of the countries has a huge underground economy and
the other one does not. We also looked into some of the Europe specific dummies—
such as using euro or not and entry into European Union. In the next section we look
into the regression results on all the mentioned distance variables.

A general rule we followed is that since many of these frictional variables are
extremely correlated especially so when they belong to the same family. We use
stepwise regression methodology to pin down the predictors. Most of the considered
‘friction’ variables under an umbrella term broadly defining similar characteristics
are correlated. Given the high level of correlation in the data, we do not consider
all variables simultaneously as that will not increase the predictive power. The point
is that many of the frictional variables that turn out to be important in explaining
the puzzle, are not unique. They often have some other measures, almost similarly
defined and hence very correlated, that can be almost equally effective in explaining
the same phenomena.

Explaining the Missing Flow: Effects of Institutional Factors

For the 16 countries in Europe, we computed all the institutional distance measures.
As a response variable we consider the ratio of actual bilateral migration data to
TFP driven migration. We regress this variable on various institutional measures.
The results are tabulated in Table 7.7. The reason we took the ratio of the data to the
model prediction (yk/xk as defined in Eqs. (7.13) and (7.14) resp.) as the variable to
be explained is that this way we get rid of the gravity terms which are driven solely
by economic causes. Thus the left over variations would be driven by other non-
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economic factors. Two methodological points are to be noted. One, some variation
in the data could be due to misreporting which we cannot rectify and two, we are
considering the model to capture the economic incentives completely and in the
gravity equation set up, the proportionality term captures all institutional effects,
magnifying or lessening the flow. Consider any pair of regions {i, j} and call it dyad
k. Given this notation, we see that yk = Cdata

i j .Li .L j/d
η

i j and xk = Cmodel
i j .Li .L j/d

η

i j

and numerical solutions indicate Cmodel
i, j is roughly a constant, independent of the

specific dyad considered (i.e. Cmodel
i, j = C). Hence, we have

yk
xk

=
(
Cdata
i j

C

)
di j . (7.16)

Thus after taking ratios, the gravity terms wash out and we get the pair-specific
constants capturing the socio-economic and political distances. The idea is that a
low value of the variable (yk/xk) indicates that less migration occurred between a
pair of countries consisting the dyad k in reality than in the model. Therefore, a
negative value of the coefficient of a suitably defined distance metric would indicate
presence of a friction. Alternatively, in presence of similarities in any dimension e.g.
linguistic, we would expect a higher flow.

Therefore, following the notation in Eqs. (7.13) and (7.14), the regression speci-
fication is yk

xk
= δ0 + δVk + δ1Dcont + ε′

k (7.17)

where Vk is a vector of distances measured for multiple socio-political and economic
attributes, Dcont is a dummy for contiguity and ε′ is an error term. Table 7.7 shows
the regression results for the European country dyads. For each year, from 2000 to
2007, we regress ratio of actual bilateral migration data to TFP driven migration
on Euro currency dummy and distance between-language index, Hofstede index of
individualism (vs. collectivism) and pragmatism, financial risk index and shadow
economy, controlling for contiguity. We also tested for a bunch of other variables
including various social and political factors which did not turn out to be significant.
Types and sources of all variables considered are presented in Tables 7.8 and 7.9.

Table 7.8 Data sources Data Source

Migration—EU [10]

Trade—EU [10] with [14] and [15]

Contiguity—EU [6]

TFP—EU [16]

Cultural indices [11]

Economic indicators [17]
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Table 7.9 Friction variables with source

List of variables Type Source

Power distance Cultural [11]

Individualism Cultural [11]

Masculinity Cultural [11]

Uncertainty avoidance Cultural [11]

Pragmatism Cultural [11]

Indulgence Cultural [11]

Diversity index Cultural [8]

Total number of living languages Cultural [8]

% of all living languages Cultural [8]

Indigenous languages Cultural [8]

Immigrant languages Cultural [8]

Common official language Cultural [6]

Common spoken language Cultural [6]

Common native language Cultural [6]

Unadjusted value of linguistic proximity (Tree) Cultural [6]

Adjusted value of linguistic proximity (Tree) Cultural [6]

Unadjusted value of linguistic proximity (ASJP) Cultural [6]

Adjusted value of linguistic proximity (ASJP) Cultural [6]

Common language Index based on our log specification Cultural [6]

Common language Index based on a level specification Cultural [6]

Entry in EU Institutional [9]

Euro currency use Institutional [9]

Two countries are contiguous or not Institutional [6]

Common language by 9% of the population in both countries Cultural [6]

Colonial link Cultural [6]

Common colonizer after 1945 Cultural [6]

Currently in a colonial relationship Cultural [6]

Colonial relationship after 1945 Cultural [6]

Were or are the same country Institutional [6]

Geodesic distances Institutional [6]

Geographic coordinates of the capital cities Institutional [6]

Civil liberties score and the political rights score Political [17]

Freedom of the press Political [17]

Institutionalized democracy Political [17]

Polity score Political [17]

Voice and accountability Political [17]

Political Stability Political [17]

Government effectiveness Political [17]

Regulatory quality Political [17]

(continued)
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Table 7.9 (continued)

List of variables Type Source

Rule of law Political [17]

Corruption control Political [17]

Transparency in public sector Political [17]

Age of leadership Political [17]

Excluded population in total politically relevant population Political [17]

Power sharing groups Political [17]

Ethnic groups Political [17]

Discriminated population Political [17]

Powerless population Political [17]

Regional power Political [17]

Junior partner in power sharing arrangement Political [17]

Senior parter in power sharing arrangement Political [17]

Monopoly power Political [17]

Shadow economy Political [17]

The signs of the coefficients have meaningful interpretation—for example having
similar language helps in migration (positive signs of the LangIndex) and differ-
ent cultures act as an impediment to migration (negative signs for distance between
cultural index). This exercise shows that there are factorswhich encourage or discour-
age migration, over and above mere economic incentives. We have done robustness
checks in Appendix “Frictional Variables and Additional Plots” in terms of partial
regressions. The partial residual plot for language is also shown. All results agree
with the prior interpretation. Th finding that language has an important role to play
determining the level of international migration is also corroborated by the empirical
exercise of [1]. They focus mostly on the skill and ability of people in learning lan-
guages whereas we complement our findings by incorporating related variables on
other distance measures of languages (see Table 7.9). Qualitatively similar findings
prevail.

Summary and Conclusion

We have presented a structural interpretation of the European immobility puzzle
by quantifying the mass of missing migrants in the EU in presence of relative het-
erogeneity of productivity across countries. We show that linguistic differences are
important factors for explaining the missing mass of migrants. Finally, we can ask a
seemingly obvious question: why did we take social distances as a friction? Would
it be possible to imagine a scenario where a higher social distance actually comple-
ments migratory responses rather than substituting it. The answer is, it is possible.
In south-to-north migration this may in fact provide an incentive to migrate.
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For example, people would migrate from low income countries to comparatively
prosperous ones but only selectively. Along with economic incentives, migrants also
weigh their chances on the socio-political conditions of the receiving countries.1

Thus a higher distance between a donor country and a receiver country may com-
pel individuals to migrate. However, when the countries are more-or-less similar in
these respects, this might hinder the labor reallocation process as is found in case of
the European countries. Although we have not established causality in the present
exercise, we may state that the findings here are indicative of the idea that higher lin-
guistic homogeneity contributes tomoremigration, which is in syncwith the findings
of [1].

Appendix

Sources of Data

For the European Union we looked into bilateral migration from 2000 to 2007 within
Austria, Belgium,Denmark, Spain,Germany,CzechRepublic, Finland, France, Italy,
Hungary, Ireland, Netherlands, Sweden, Slovenia, UnitedKingdom andNorway (see
Table 7.8). Migration is defined as movement across different countries of residence
in one year. More specifically, if a person was in a different country of residence in
the previous year than this year, then we count that person as a migrant.

Frictional Variables and Additional Plots

Belowwe present Table 7.10 showing correlation among a few institutional variables.
High correlation is apparent indicating possible multicollinearity problems in the
OLS estimation if we use a large number of variables simultaneously. We have used
stepwise regression to find the important variables from the large set of variables
considered in Table 7.9.

Wewould like to understand the influence of each variablewhich is used as friction
(see Table 7.9). We use the post-estimation tool partial regression plot for this. In the
dyadic regression the dependent variable is the ratio of bilateral migration as seen in
data to bilateral migration which is TFP driven (simulated). We try to understand the
importance of each variable, for example language index—for this we first regress
the dependent variable on the remaining regressors (not including language index)
and plot the residuals on the Y-axis. Next we regress language index on the remaining
regressors and plot the residuals on the X-axis. These plots show relation between
the dependent variable and each friction variable (Fig. 7.4).

1We are, of course, not considering forced migration due to political and social instability like the
Syrian crisis.
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Table 7.10 Correlation matrix for political stability indices

Voiceacc Polstab Govteffec Reg
quality

Ruleoflaw Corrupt Transparency

Voiceacc 1.00

Polstab 0.83 1.00

Govteffec 0.83 0.72 1.00

Regulation quality 0.56 0.53 0.72 1.00

Ruleoflaw 0.91 0.84 0.94 0.63 1.00

Corruptcont 0.93 0.84 0.91 0.66 0.96 1.00

TransparencyCPI 0.91 0.76 0.85 0.56 0.91 0.91 1.00

Fig. 7.4 The partial regression plot for all the variables in 2007

We use the component plus residual plot (partial residual plot) to get more clarity
on the functional form of the relation between the dependent variable and friction
variables 1-by-1. For example to understand the relation between the ratio of bilateral
migration in data to TFP driven bilateral migration (y-variable) to language index
we first regress y on all the x variables. Then we subtract the effect of all the other
regressors (not language index) from the y-variable and plot that on the Y-axis. We
call this component plus residual. We compare it with the language index which is
plotted on the X-axis in Fig. 7.5.
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Fig. 7.5 The partial residual
plot for language index in
2007
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Chapter 8
Interdependence, Vulnerability
and Contagion in Financial
and Economic Networks

Irena Vodenska and Alexander P. Becker

Abstract Financial and economic networks are neither static nor independent of
one another, but are rather quite interconnected with a high level of dependence and
mutual influence. In light of global economic convergence, countries depend on one
another through trade relations, foreign direct investments, flow of funds in interna-
tional capital markets, bank borrowing and lending operations, or foreign exchange
trading. As economic entities and financialmarkets become increasingly intertwined,
a shock in a financial network can provoke significant cascading failures throughout
the global economic system. Here we attempt to understand potential sources of
future shocks and whether bubbles and systemic risk build-up in financial networks
can be anticipated. We review approaches to study global financial markets and bank
networks to uncover system characteristics and relationships that might increase the
vulnerability of economic networks. The efficiency of regulatory responses moti-
vated by crisis and the proper level of regulation are extremely important for a sound
global economic system.

Introduction

The Global Financial and Economic System

We live in an increasingly complex and interconnected world. A major challenge
regarding the state of the financial and economic system is its vulnerability. The
stability of production, global trade, capital transfer and financial markets depend
on proper functioning and reliability of the global economic system. Another aspect
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of stability is the role of regulation and policy in light of evolving complexity of
financial products such as credit default swaps (CDSs) and mortgage-backed secu-
rities (MBOs) or collateralized debt obligations (CDOs) that contributed to the most
recent global financial crisis of 2008. Regulations usually react to crises, which often
happen after a bubble formation followed by a burst. The future of economic and
financial systems depends greatly on the actions taken by the regulators. Why is
regulation important? Why can’t we just embrace innovation and “enjoy” the ride?
Why can’t the banks behave as they have been and worry about problems when they
arise? There are more questions than answers, and here we attempt to shed light
on some underlying conditions that could potentially create instabilities in financial
systems. The financial crisis of 2008 was a period when we had more questions than
answers. What happened? Why were some banks like Lehman Brothers allowed to
fail and others were saved with injection of $700 billion of Troubled Asset Relief
Program (TARP) funds to bail out financial institutions and billions of dollars in
aid for non-financial institutions in form of low interest loans offered by the U.S.
Treasury and the Federal Reserve [1]? Maybe the banks were saved in 2008 to avoid
the scenario following the Great Depression of 1929 when the banks were allowed to
fail and the crisis deepened during the decade after, with unemployment in the U.S.
reaching unprecedented levels of 20%, in a crumbling economy. While President
Hoover believed that government should not intervene in the economy and should
not be concerned with creating jobs, after President Roosevelt was elected in 1932,
he was dedicated to economic reforms during his presidency. Under his watch, the
Federal Deposit Insurance Corporation (FDIC) was created to regain the trust of
people in the banking system. Another notable institution created by the Securities
Exchange Act of 1934 was the Securities and Exchange Commission (SEC) put
in charge of regulating financial markets. An important research question to address
though is not whether the government should be saving the banks or letting them fail,
but rather improving macro-prudential regulation to create a stable financial system
that can absorb shocks and survive without much outside intervention. Inspired by
financial crises, we study the underlying characteristics of economic and financial
systems and the impact of risk propagation throughout the system. We analyze the
interdependencies of this complex network of networks including global stock mar-
kets, foreign exchange markets, bank networks, real estate, specific bank loans and
their characteristics as well as sovereign debt networks. Interdependent networks are
shown to be more vulnerable to shocks with rapid damage propagation throughout
the networks, compared to single or isolated networks [2, 3].While financial systems
may function seamlessly in calm economic periods, at an onset of crisis, the network
dynamics changes drastically, often resulting in severe crippling of the entire system.

Financial crises can cause harm not only locally, but can also spread to other
countries in a region like in the case of the 1997Asian financial crisis ormore globally
like the 2008 subprime mortgage crisis. Similarly, crises that start in one sector
of the economy can spread to other sectors, i.e., a banking crisis can significantly
affect the main economy, stalling production, which in turn could interrupt trade and
affect negatively economic outputs and national incomes. The economic system is
composed of various institutions, individuals, corporations, and markets that act as
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agents with different roles and objectives. Stock markets are commonplace where
investors obtain and divest specific investments, reflecting the market values of such
investments. The stock market is an important leading economic indicator that can
serve as an early warning signal to a possible economic downturn and it is widely
followed by market participants. The foreign exchange market is the largest financial
market with a daily turnover of over $5 trillion, and it is active 24h a day except for
weekends [4]. Needless to say that currency trading and exchange rates, depreciations
and appreciations among world currencies are important indicators of countries’
stabilities, economic changes, living standards, purchasing power, and global trade.
Their importance in financing production and growth in the global economy puts
banks naturally in the center of the economic network of networks. Here we survey
literature that analyzes risk propagation in the banking system based on shared asset
portfolios and studies the effect of loss propagation throughout the network.

The rest of this paper is organized as follows: in section“Interconnectedness
Across Scales” we review literature that studies the interconnectedness of financial
markets, focusing on community structure and lead-lag relationships in stockmarkets
and the foreign exchange market. Section “Systemic Risk and Shock Propagation”
summarizes literature regarding systemic risk and shock propagation in financial
systems. In section “Conclusion” we offer our conclusions and an outlook towards
open problems in network approaches to financial stability.

Interconnectedness Across Scales

An increase in global trade and technological advances have brought the world
economies closer together, and in the last decades they have become more integrated
than ever before. Many manufacturers rely on global supply chains, corporations
and financial institutions act across national borders, and global trade accounted for
almost 30 percent of the world GDP, as of 2016 [5]. All this has lead to a greater
interconnectedness on many scales. Advances in technology have not only allowed
for greater specialization in production, they have also facilitated trading in overseas
financial markets in real time.

Today trade and business relations link and intertwine national economies and
financial markets. Developments in one part of the world have the potential to influ-
ence other parts through a variety of channels. Since commerce and trade are facil-
itated through the exchange of currency, understanding the dynamics of the foreign
exchange market is essential to monitoring developments in the global economy. In
combinationwith national equitymarkets, the foreign exchangemarket forms a com-
plex economic network which is subject to a multitude of outside influences. They
include but are not limited to economic and political shocks as well as shocks arising
from long-term shifts in macroeconomic trends (e.g. inflation or unemployment).

With the increase in global trade, the financial sector has grown significantly in the
last decades as well. In the United States, for example, it makes up about 20 percent
of GDP [6]. The interdependence of banks and other financial institutions has also
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become larger and comes inmany forms. Banksmay directly interact with each other
through unsecured interbank lending, their portfolios may show significant overlap
due to similar strategies, securitization, or regulation. Similarly, theymay be exposed
to the same business partners and clients whose performance influences their ability
to repay loans.

Correlation and Communities of Global Financial Markets

The increase of global trade and business as well as technological advances have lead
to stronger interaction between financial markets, such as stock markets and foreign
exchangemarkets. Through trade relations, currency policies, financial contracts, and
cross-country investments, a financial crisis in one place has the potential to spill over
to other countries. Such spillover is not a recent phenomenon. TheRussian bond crisis
affected investors worldwide and significantly affected American markets, leading
to the collapse of Long-Term Capital Management in 1998 [7].

Financial contagion is reminiscent of disease transmission. Just like individuals
can be considered to be either in a state of illness or health, financial markets can
generally be classified to be in a crisis state or a non-crisis state. While links between
individuals in disease transmission usually describe some form of contact or inter-
action that would allow for the infection to spread, links in a financial network are
typically approximated through the similarity of characteristics among the financial
entities. Stock markets serve as proxies for the health and robustness of the underly-
ing economies, and foreign exchange markets encode macroeconomic fundamentals
like GDP growth, inflation rate and unemployment. Therefore, studying the network
structure of global financial markets becomes critical to anticipate how a shock may
propagate through the system. It is generally assumed that a high degree of corre-
lation suggests a larger likelihood of crisis spreading from one node to another. In
particular, tightly knit communities are more likely to react to a given shock in a
similar way, and therefore identifying these communities may help to anticipate the
dynamics of the shock throughout the network.

Community Analysis of Financial Markets

The relationships of financial markets is typically quantified using Pearson’s cor-
relation coefficient ρ. Correlations change over time, and financial markets tend to
cluster into distinguishable groups which can be attributed to a variety of reasons. For
example, while the stock markets in Asia trade simultaneously, there is no overlap
in their trading hours with American markets. Some economies may be closely con-
nected with each other because of geographic proximity which invites strong trade
and business relationships. In financial networks based on correlation measures, a
community structure emerges. Changes in correlations change over time translate
to changes in the community structure of financial networks. It has been well stud-
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ied that correlations among individual stocks as well as equity markets in different
countries generally increase in times of crisis [8, 9].

Thesefindings are confirmed in [10] for equitymarketswhere the non-crisis period
2002–2006 is compared with the crisis period 2007–2012. However, the foreign
exchange market exhibits the opposite behavior. In the calm period the correlation
among currencies is larger than during financial turmoil. Likewise, the correlation
between equity and foreign exchange decreases with the onset of the global financial
crisis of 2008.

Authors in [10] study the community structure differences between the crisis and
the non-crisis period for a multi-layer network comprised of equity markets and the
foreign exchange markets. The change in clustering of equity markets can be seen
Fig. 8.1. Most strikingly, the troubled eurozone countries Italy, Spain, Greece and
Portugal form their own cluster during the crisis period.

When using correlation to infer links in financial networks, a typical challenge
is filtering noise. Due to spurious relations and the finiteness of the data, even non-
relatedmarketsmay exhibit a correlation that is different from 0. In [10], this problem
is addressed by constructing a planar maximally filtered graph (PMFG), introduced
in [11]. Whereas the minimum spanning tree connects all nodes with the smallest
number of links possible, the PMFG preserves more relational information while
maintaining the planarity of the graph. The algorithm starts by sorting the empirical
correlations from largest to smallest. Then, one by one, all nodes are connected until
adding another link would make the graph non-planar.

Alternatively extracting the essential information can be achieved through a com-
bination of principal component analysis (PCA) and random matrix theory (RMT).
Originally introduced to physics to study the spectra of nuclei, physicists have suc-
cessfully used random matrix theory to analyze correlation matrices in financial
markets [12, 13]. A correlation matrix of size N × N derived from uncorrelated
time series of length L has non-zero entries even if N → ∞ and L → ∞ (as long
as N/L > 1 and constant). The eigenvalue distribution of such a random matrix is
analytically tractable. This approach can be extended to finite time series and allows
for the comparison between the eigenvalue spectrum of empirical data and of a com-
parable random matrix. In particular, the analytical solution defines a cutoff above
which eigenvalues and their corresponding corresponding eigenvalues cannot be
randomness alone. For larger data sets, this RMT procedure can be computationally
expensive. Instead of classical PCA and RMT, in [14] the authors use the complex
Hilbert principal component analysis (CHPCA), which is able to better explain the
variance in the data as well as identify lead-lag relationships. Additionally CHPCA
is less computationally costly and therefore better suited for large data sets.

Using data from equity markets as well as foreign exchange markets from 1999
to 2012, six significant eigenvectors emerge. The method is, for example, able to
single out the Icelandic banking crisis and its effects on both the krona and the
Icelandic stock market, as the corresponding eigenvalue peaks during this time, as
shown Fig. 8.2.
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(a)

(b)

Fig. 8.1 Planar maximally filtered graph (PMFG) for the stock markets during a the economically
calm period from 2002 to 2006 and b crisis period from 2007 to 2012. The countries are denoted
by their three-letter symbols and are color-coded according to their geographical locations: green
for Asia, light blue for Europe and orange for the Americas. During the calm period, five large
clusters appear which are mostly geographically divided. The clusters significantly change during
the crisis period. Most notably the troubled eurozone countries, Italy, Spain, Greece and Portugal,
form their own cluster. The Asian countries form one larger cluster centered around Hong Kong
and Singapore, the major financial centers of Southeast Asia

Lead-Lag Relationships in Financial Markets

Daily returns are calculated by comparing the closing prices of two consecutive trad-
ing days. Since foreign exchange markets trade around the clock, daily returns for
any currency pair relate to the same instance of time. Opening and closing times
of equity markets, however, are different due to various timezones. Although Asian
markets are the first to open on any given date, this does not make them leading
markets. Instead US markets set the pace for other financial markets, driven by the
reach and influence of American corporations, the importance of the US dollar for



8 Interdependence, Vulnerability and Contagion in Financial and Economic Networks 107

Fig. 8.2 The correlationmatrix of international financialmarkets yields six significant eigenvectors,
corresponding to different market modes. The sixth eigenvector is driven by Iceland as well as the
Russian and Polish stock market and negatively correlated to stock markets of some major oil
exporters from the Middle East. Part (a) shows a big spike in the signal of this eigenvector in
October 2013 which stems from the Icelandic financial collapse, illustrated in part (b)

global trade and the size of the market. Measured by total market capitalization of
stocks traded, the New York Stock Exchange (NYSE) and the NASDAQ are the two
largest exchanges in the world. Both [10, 14] study significant lead-lag relationships
among global financial markets, highlighting, for example, that the US and the Ger-
man markets are predictive of the performance of other markets. In [14], the authors
further conclude that “general currency appreciations lead or contribute to positive
equity market returns”. Similarly strong depreciations correspond to depressed stock
markets in times of severe crisis, particularly in emerging economies. Such a down-
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turn often follows a rapid appreciation of the currencies of emerging economies as a
result of large capital inflow and investments. Examples of this are the Argentinian
crisis in the early 1990s or, a few years later, Mexico [15]. In the aftermath of the
European sovereign debt crisis, however, the correlation between the euro and Euro-
pean stock markets has been observed to be strongly negative. These various types of
relationship signify that there are more underlying causes for certain financial market
and currency dynamics. This calls for identifying a method to study the position of
a currency within the foreign exchange network.

Monetary Policy and the Foreign Exchange Market

If the underlying currencies for two stock markets are different, this needs to be
taken into consideration when computing the correlation between them. Similarly,
to find the correlation between two currencies, both have to be expressed in the same
base currency. However, the base currency introduces a bias in the correlation since
many currency pairs exhibit idiosyncratic behavior. For example, the Swiss franc
is generally more correlated to the euro than to the US dollar. Choosing the euro
as base currency therefore yields different results for the correlation of the Swiss
franc with other currencies compared to choosing the US dollar as base currency.
Additionally, the currency which is chosen as the base currency has to be omitted
from the correlation analysis. This limits the ability to interpret and study the foreign
exchange market as a network.

One approach to mitigate this issue, as employed in [10, 14], is to use the Inter-
national Monetary Fund’s Special Drawing Rights (SDR). The SDR is a basket of
currencies, weighted according to international trade share and foreign exchange
reserves. Currently five currencies are included in this basket, the US dollar, the
euro, the British pound and the Japanese yen as well as the Chinese yuan as the most
recent addition. Quoting in SDR allows for inclusion of all currencies of interest as
opposed to selecting one currency as the base currency, hence excluding it from the
analysis. However, since the SDR is a linear combination of a subset of the pool of
analyzed currencies, it still introduces some bias.

Foreign exchange markets are strongly influenced by monetary policy. The for-
eign exchange market is a zero-sum game where the appreciation of one currency
corresponds to the depreciation of another. One example is the international Fisher
effect, which links the interest rate differentials of two countries to the expected
exchange rates of their respective currencies. Currency correlations can also change
significantly because of central bank interventions, and the action of one central
bank may propagate through the network of currencies. Using this perspective that
an impetus to one currency will reverberate through the system by appreciations and
depreciations of other currencies, [16] develops a new methodology to address this
challenge. The foreign exchange market consists of triads: if currency A appreciates,
that is, rises, against currency B, and currency B appreciates against currency C, it
has to follow that currency A appreciates against C and at a larger rate than B. This
allows a ranking of the currencies: first A, then B, and then C. In [16] the ranking is
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Fig. 8.3 In blue the different roles which the Swiss franc has played within the foreign exchange
market are shown. Cluster 1 corresponds to a currency with very stable behavior like a reference
currency. Cluster 6 corresponds to a currency with extremely wild swings and volatile behavior.
Following the financial crisis, the Swiss franc became very volatile due to a large amount of appre-
ciation until the Swiss National Bank intervened (indicated by red lines) and started enforcing a
cap with respect to the euro. Once the cap was lifted in a surprise move, the wild swings resumed
for a while until the Swiss franc returned to its pre-crisis behavior

extended to the full market as the “symbolic performance”. The highest ranked cur-
rency at any given time is the currency that appreciates against all other currencies,
while lowest lowest ranked currency is the currency that depreciates in relation to
all other currencies. Clustering algorithms allow to classify currencies according to
their ranking distributions, giving insight into the roles they play within the market.
The euro and the US dollar are reference currencies exhibiting a low degree of vari-
ance in their swings, while currencies of countries which rely heavily on commodity
exports prove to be more volatile. The paper shows that central bank interventions
and sudden changes in monetary policy may disrupt these roles. Case in point: the
Swiss franc and its pegging to the euro between 2011 and 2015, as Fig. 8.3 illustrates.

Shared Portfolios and Lending Relationships

Banks are public institutions, traded on financial markets, and their trading prices
reflect the health of their financial statements. In a sense the stock price is therefore
a bird’s eye view of the balance sheet consisting of investments, loans, real assets,
liabilities and equity. If financial institutions fail, this is likely due to the deterioration
of value of specific balance sheet items. This is why it is important to study in detail
specific assets and liabilities to understand systemic risk. In addition to being able
to quantify specific balance sheet items, proper modeling is required to assess the
vulnerabilities of networks of financial institutions. Financial markets show high
degrees of correlation during a crisis, and while many mechanisms contribute to
this interconnectedness, in the following we explore the impact of portfolio overlap
between financial institutions as well as their lending relationships.

As [17] points out, counter-party risk, roll-over risk, and common asset holdings
are the three major contagion channels of financial stress. Exposure to the same asset
classes or derivatives written on these asset classes could contribute to a widespread
effect of a financial crisis, such as the subprimemortgage crisis of 2008 starting in the
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US and spreading around the globe. A large overlap in asset portfolios of financial
institutions poses two major risks. One, such an overlap induces a correlation in the
performance of the banks’ portfolios, and two, financial institutionsmay have to react
similarly to market developments, potentially putting more pressure on a distressed
asset. Consider the subprime mortgage crisis when many financial institutions were
exposed to mortgage backed securities (MBSs) and collateralized debt obligations
(CDOs). MBSs are derivate instruments deriving their value from the underlying
pool of mortgages. If homeowners are unable to make mortgage payments, the cor-
responding MBS is adversely effected. Collateralized debt obligations are derivate
instruments with underlying fixed income securities whose value directly affects the
CDO. Due to inaccurate credit ratings the likelihood of default of these instruments
was underestimated by investors. As market conditions deteriorated, many institu-
tions found themselves over-leveraged and over-exposed to toxic assets, that is, assets
whose risk was significantly misrepresented. This resulted in fire sales and further
downward pressure on the value of these troubled assets.

To understand the overlapping portfolio of the banks, [17] represents the holdings
of financial institutions by a bipartite network of banks in one layer and assets in the
other as a stylized model of a financial system. The authors show that diversification
within a finite set of assets may lead to instability and global cascades. We discuss
such models of shock propagation and their implications for systemic risk in the
following section.

Using a bipartite network comprised of banks and assets as well, [18] empirically
studies the structural changes in a financial network, namely the network of credit
relationships in Japan surrounding the banking crisis following a collapse in asset
prices in the early 1990s. Analyzing the distribution of the weights of the links in the
network, differences in bank portfolios emerge which could be early warning signals
to the failure of specific banks in the late 1990s.

Systemic Risk and Shock Propagation

Research of financial networks following the global financial crisis of 2008 and
the European sovereign debt crisis of 2011 has focused on systemic risk, that is,
the risk of a system to collapse in its entirety provoked by a shock to a part of the
system, possibly as small as just one entity or institution.Approaches to the regulation
of financial networks can be categorized as micro-prudential and macro-prudential.
While micro-prudential regulation focuses of the health of individual banks and their
balance sheets, macro-prudential regulation aims to provide stability for the banking
system as a whole. A major distinction between the two approaches is the emphasis
on the importance of correlations and connectedness within the financial system.
While both micro-prudential and macro-prudential regulation consider the health of
banks as an important factor for financial stability, micro-prudential regulation looks
at the banks as isolated entities, while macro-prudential regulation incorporates the
connectivity among the banks as a source of systemic risk.
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Fig. 8.4 The banking system is comprised of commercial banks whose main business is consumer-
oriented and investment banks whose main business is investing and supporting its client with
corporate actions. Shadow banking describes the overlap where one institutions is engaged in both,
potentially with conflicting interests for their customers

The need for a macro-prudential approach became apparent following the global
financial crisis of 2008 which highlighted a high degree of interdependence among
commercial banks, investment banks and shadow banking institutions (see Fig. 8.4).

Inspired by [19], researchers andpolicymakers havedebated the network topology
and conduits of shock propagation and their consequences for systemic risk. As [20]
summarizes,

Two polar views on this relationship between the structure of the financial network and
systemic risk] have been suggested in the academic literature and the policy world. The first
maintains that the “incompleteness” of the financial network can be a source of instability, as
individual banks are overly exposed to the liabilities of a handful of financial institutions [...]
The second view, in stark contrast, hypothesizes that it is the highly inter- connected nature
of the financial system that contributes to its fragility, as it facilitates the spread of financial
distress and solvency problems from one bank to the rest in an epidemic-like fashion.

In [21] the authors argue that it is “difficult to generate contagion solely through
spillover losses”. They further find that there exist bounds to contagion and loss
amplification which are independent of the network structure. In other words, [21]
shows that knowing the size of the initial shock is enough to estimate the worst
outcome for the financial system, regardless of degree distribution and the location
of the initial shock. It is important to point out that the network structure does matter
when including other effects like bankruptcy cost or loss of trust. While [21] derives
the analytical results within the framework of payment clearing vectors by [19], more
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realistic models have to take into account mark-to-market losses. In the following
section we discuss cascading failure models and fire sale mechanics which include
mark-to-market losses and the loss of trust.

Cascading Failure Models

How do losses spread across a financial system? Let’s consider a bipartite network
in which we have banks in one layer and assets in the other layer. A connection
between a bank and an asset exists if the bank has that asset on its books, that is,
the bank is exposed to the asset. Using balance sheets of US commercial banks in
2007, [22] proposes a cascading failure model describing how losses spread through
the financial system in case of a crisis. The balance sheets of US commercial banks,
among others, includes exposures from residential and commercial real estate loans
as well as loans for land development and agriculture. If debtors fail to deliver the
agreed upon payments, they are in default, and the bank takes a loss on this loan.
From a network perspective, a node in the asset layer is distressed, and it transmits
this shock via its links to banks. If banks are highly leveraged or overexposed to a
given asset or group of assets, they are at risk of failing. This occurswhen their overall
assets, after taking the initial loss, fall below a threshold, their liabilities. The model
then marks down all assets that the failed bank owned, as their value deteriorates.
This leads to another round of asset depreciation and potential bank failures, as
Fig. 8.5 shows. Empirically testing this model and comparing it to actual defaults
in the global financial crisis of 2008, [22] concludes that this model is suitable for
systemic (macro-prudential) stress-tests of the banking system. Similarly [18] aims
to devise an early warning system for financial institutions, showing the structural
differences of bank holdings in Japan as the asset bubble burst in the early 1990s.

Fire Sale Mechanics

Many cascading failuremodels (e.g. [17, 18, 22, 23]) include a liquidity parameter or
a market impact function. This specification allows to account for market conditions
when a bank has to re-balance their portfolio, modeling the mark-to-market losses
it incurs. This does not model, however, the behavior of banks in response to a
shock. Since banks are subject to constraints on their leverage or their capital to
risk-weighted assets ratio, the so-called tier 1 capital ratio, they have to act when
a significant part of their portfolio is in distress. One way for banks to de-leverage
or to reduce their tier 1 capital ratio is to sell loans or bonds which they have on
their books. This negatively effects the price and thus the value of these loans or
bonds. In [24] the liquidity parameter on the asset side is complemented by a bank
response function on the bank side, which models the selling behavior. Any disposal
of assets by the bank leads to a value depreciation in this simple model; however, the
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Fig. 8.5 Cascading failure model as proposed by [22]. A shock to an asset may lead to defaults on
the bank level which in puts further stress on the market, propagating the crisis

Fig. 8.6 The impact of fire sale dynamics on one German bank after a shock to different asset
classes in its home country, such as sovereign debt, corporate loans or residential real estate. The
shock corresponds to an increase of 50 percent in risk weights which banks use to determine their
capital ratios and moderate liquidity for the assets. The left panel shows the scenario in which banks
are risk neutral (linear response), and the right panel the scenario in which they are risk-averse (steep
response). In the risk-neutral case the initial shock quickly dissipates and does not spread. In the
risk-averse case, however, a cascade of fire sales severely impacts the financial system

combination of liquidity parameter and bank response function determines whether
an initial shock can affect the entire system.

Figure8.6 shows that even if the initial shock is large and the liquidity of the
affected assets is limited, a spillover does not occur when the banks react in a risk-
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neutral fashion. However, when banks are averse to losses, as is arguably more
realistic, initial shocks are easily enhanced through the interconnectedness of the
network. Therefore [24] suggests that rational behavior and trust within the banking
system are necessary to maintain stability in times of crisis, making a point for
regulatory or government intervention when liquidity and/or trust erode.

Conclusion

Severe financial crises usually inflict a high cost on global societies. The development
of the European sovereign debt crisis, for example, is linked to the global financial
crisis of 2008which started as a subprimemortgage crisis in theUnited States.Wrong
estimates of credit risk, excessive leverage of financial institutions and inadequate
regulation allowed theUS housing bubble to grow to such extent that it threatened the
future of the global financial system when it burst. “Too big too fail” quickly became
“too interconnected to fail”, and in order to avoid a reprise of the Great Depression
of 1929, governments stepped in to save the banks. Some European governments,
being too indebted themselves, required bailout assistance and had to implement
strong austerity measures. Therefore, either through bail-out efforts for banks or due
to excessive sovereign debt, tax payers had to, and still have to foot the bill for saving
the banks and supporting governments.

The consequences of these financial crises have inspired a great research effort to
understand the roots of systemic risk and to build more robust economic networks.

The economy is a network of networks, and as such it is much more fragile than
any single network. Through community analysis or the study of lead-lag relation-
ships of financial markets, researchers are able to extract network characteristics and
infer indicators of potential contagion channels of distress. The dynamics of cur-
rency relations, for instance, are affected by many factors such as macroeconomic
indicators, market speculation, government intervention and political shocks like the
Brexit vote.On the other hand, bipartite network of banks and assets can offer insights
into fire sale dynamics, where such fire sales depend on market condition (e.g. asset
liquidity), the behavior of banks (e.g. their regulatory constraints and risk-aversion),
or the reaction of regulators (e.g. providing liquidity in a credit crunch). The litera-
ture shows the large risks that financial institutions may face through contagion and
spillover effects due to their investment and loan portfolios. This, however, forms
only one layer of a multiplex network of banks, in which other layers contain bank
exposures to foreign exchange, stock markets, or derivative securities.

In summary, three lessons emerge: one, the global economy is strongly interde-
pendent and can be appropriately represented as multiplex network; two, tools from
network science enable researchers to uncover the multiplex network structure; and
three, network-based spreading and propagation models can be used to study dis-
tress dynamics in financial and economic networks. Understanding such multiplex
networks will be crucial to improving regulation. While considerable progress has
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been made to investigate the sources and spreading of systemic risk, building a better
regulatory framework for financial networks is far from being done.
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Chapter 9
Multi-layered Network Structure:
Relationship Between Financial
and Macroeconomic Dynamics

Kiran Sharma, Anindya S. Chakrabarti and Anirban Chakraborti

Abstract We demonstrate using multi-layered networks, the existence of an
empirical linkage between the dynamics of the financial network constructed from the
market indices and the macroeconomic networks constructed from macroeconomic
variables such as trade, foreign direct investments, etc. for several countries across
the globe. The temporal scales of the dynamics of the financial variables and the
macroeconomic fundamentals are very different, which make the empirical linkage
even more interesting and significant. Also, we find that there exist in the respec-
tive networks, core-periphery structures (determined through centrality measures)
that are composed of similar set of countries—a result that may be related through
the ‘gravity model’ of the country-level macroeconomic networks. Thus, from a
multi-lateral openness perspective, we elucidate that for individual countries, larger
trade connectivity is positively associated with higher financial return correlations.
Furthermore, we show that the Economic Complexity Index and the equity markets
have a positive relationship among themselves, as is the case for Gross Domestic
Product. The data science methodology using network theory, coupled with standard
econometric techniques constitute a new approach to studying multi-level economic
phenomena in a comprehensive manner.
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Introduction

Financial networks are major vehicles for transmitting shocks across different
economic entities, which lead to complex dynamics. A well known phenomenon
is that financial variables are considerably more volatile than macroeconomic vari-
ables with amuch higher frequency, whereas, macroeconomic variables tend to show
a much slower dynamics. A simple inspection of data suggests, there is wide vari-
ation even in intra-day stock returns, whereas macroeconomic variables move by a
perceptible magnitude only over quarters or years if not longer time horizon. Thus
these two types of variables differ both in frequency as well as the magnitude of
oscillation. A directly related observation is that the magnitude of fluctuations of
the financial variables often seems decoupled from the fluctuations in the underlying
macroeconomic variables. This is formally known as the excess volatility puzzle.
In an aggregate sense, growth rates of macroeconomic entities like firm-size vari-
ables shows bi-exponential distributions [1]. But the corresponding financial indices
typically have a power law structure which indicates much wider dispersion than
exponential distributions. Thus, although the financial indices should reflect move-
ments in underlying macroeconomic factors, it seems unlikely that the dynamics
of individual financial time series can be readily explained by the dynamics of the
corresponding economic variable.

In this chapter, we follow a complementary approach. In the finance literature,
researchers have focused on factor models to relate economic variables to financial
ones. We propose in the following that rather than looking at the time-series proper-
ties, a more useful approach could be to analyze the cross-sectional variation in the
return structure and to find if there is any macro variable that explains the variation.
In particular, we posit that the aggregate financial network across countries are in
sync with the dynamics of underlying macroeconomic fundamentals. The main idea
stems from the work of Sharma et al. [2], which showed that at the sectoral level,
there is a one-to-onemapping between the economic size of the sectors and centrality
in the corresponding financial network. We extrapolate that idea to the country level.
The novelty of the present approach lies in two factors. First, the earlier paper consid-
ered economic size of sectors measured by three indices (total market capitalization,
revenue and employment) to be the underlying factors. Here, at the country level we
extend the analysis by constructing country-to-country macroeconomic networks
which underlie the financial network. In particular, we analyze the foreign direct
investment network and trade network. Thus, it allows us to actually create a multi-
layered network [3, 4] rather than just focusing on the size effect. Second, given that
the Gravity equations are good models to understand country-level macroeconomic
networks (see e.g. the works [5, 6] among others), we have an explanatory model
of the relationship of this multi-layered network through the gravity model. Wang
et al. [7] constructed and analyzed a cross-country financial network. They analyzed
the topological properties of the network with different clustering algorithms. We
differ significantly from their approach with our emphasis on country-level funda-
mentals and their connections with the financial network. Main problem-wise the
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closest work to ours is of Qadan and Yagil [8], who analyzed a very similar problem
with econometric techniques. But they did not explicitly consider network topology.
Hence, our results complement their findings. Finally, Bookstaber and Kenett [9]
constructed a multi-layered map of the financial system and analyzed its topology.
Our usage of multi-layered network was motivated by that paper, but our emphasis
on the macroeconomic variables provide new and different features of the data.

Themain points of this chapter are as follows: First, there is a relationship between
centrality measures of financial return correlation network across countries and the
same for trade and FDI networks. Second, from a multi-lateral openness perspective,
we show that even for individual countries, larger trade connectivity is positively
associated with higher financial return correlations. Third, we analyze the network
architecture by using different clustering algorithms, which in turn allows us to
identify the countries that are at the core or at the periphery.

Macroscopic View

In this section, we study the relationship between financial indices return network,
trade and foreign direct investment (FDI) networks as a multiplex network for 18
European countries. Next, we study the world stockmarket and relationship ofmacro
variables and indicators like economy size, Economic Complexity Index, etc.

Data Description

For the macro-level analysis, we have used the data of the adjusted closing price
for 18 European countries downloaded from Thomson Reuters Eikon database
[10], within the time period of 2001–2009. The countries are: (1) AUT—Austria
(2) BEL—Belgium (3) CZE—Czech Republic (4) DEU—Germany (5) DNK—
Denmark (6)ESP—Spain (7)FRA—France (8)GBR—UnitedKingdom(9)HUN—
Hungary (10) IRL—Ireland (11) ITA—Italy (12) LVA—Latvia (13) NLD—The
Netherlands (14) POL—Poland (15) PRT—Portugal (16) ROU—Romania (17)
SVK—Slovak Republic and (18) SWE—Sweden. Data for Foreign Direct Invest-
ment (FDI) and international trade for same 18 European countries is downloaded
from External and intra-EU trade, A statistical yearbook, 2011 edition published by
eurostat. To study the evolution of world stock markets, we have used the adjusted
closing price of 51 market indices across the globe downloaded from the Thom-
son Reuters Eikon database, within the time period of 2001–2015. The countries:
(1) USA—The United States of America (2) CAN—Canada (3) BRA—Brazil (4)
ARG—Argentina (5) MEX—Mexico (6) CHL—Chile (7) VEN—Venezuela (8)
PER—Peru (9) JPN—Japan (10) SGP—Singapore (11)CHN—China (12)AUS—
Australia (13)HKG—Hong Kong (14)KOR—Korea (15) IND—India (16) IDN—
Indonesia (17)MYS—Malaysia (18) THA—Thailand (19) PHL—Philippines (20)
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PAK—Pakistan (21) LKA—Sri Lanka (22) GBR—United Kingdom (23) FRA—
France (24) ITA—Italy (25) ESP—Spain (26) RUS—Russia (27) NLD—The
Netherlands (28) CHE—Switzerland (29) SWE—Sweden (30) POL—Poland (31)
BEL—Belgium (32) NOR—Norway (33) AUT—Austria (34) DNK—Denmark
(35) GRC—Greece (36) PRT—Portugal (37) HUN—Hungary (38) IRL—Ireland
(39)TUR—Turkey (40)ROU—Romania (41)SVK—SlovakRepublic (42)HRV—
Croatia (43) CZE—Czech Republic (44) LVA—Latvia (45) DEU—Germany (46)
QAT—Qatar (47) SAU—Saudi Arabia (48) OMN—Oman (49) KWT—Kuwait
(50) TUN—Tunisia and (51) ZAF—South Africa, spread across the continent of
Latin America, Asia, Europe and Africa. Economic complexity data is downloaded
fromAtlas of Economic Complexity [11] for the period 2001–2015. GDP (per capita
by country) data is downloaded from Knoema world data Atlas [12].

Some Basic Measures

We consider aggregate stock market indices {Pit }i∈N ,t∈T for N countries and T
periods. We construct the return series by taking simple log differences of the prices
levels

{rit }i∈N ,t∈T−1 = log
({Pit }i∈N ,t∈T /{Pi(t−1)}i∈N ,t∈T

)
. (9.1)

Next, we construct the correlation matrix ρN×N from the N time-series. We have
used eigenvector centrality (we refer to the measure as EVC) to measure centrality
of different nodes in a given network. EVC is defined by a vector eN×1 which solves

λe = ρe, (9.2)

where λ is an eigenvalue of the matrix ρ. EVC is defined as the eigenvector e corre-
sponding to

λ = max{i∈N }{λi }. (9.3)

For all variables x , we construct the z-score of the same as

xz = (x − E(x))/σx . (9.4)

The Relationship Between Financial Indices, International
Trade, and Foreign Direct Investment

In this section, we try to find the FDI-trade linkage between host and home countries
[13, 14], and their effect on financial indices in the form of a multiplex network.
Here, we show empirical evidence for 18 European countries (see data description in
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Fig. 9.1 a Multiplex network for 18 European countries for year 2008. Financial indices are the
top-level network andmacroeconomic entities (Trade and FDI) are base-level networks. Eigenvector
centrality for b Financial indices, c Trade and d Foreign direct investment (FDI). We divided the
EVC in all the networks with three different shades (light to dark)

section“Data Description”) whether financial indices and international trade of these
nations are substitute or compliments, i.e., whether a great market index held by a
nation is associated with decreases or increases of its export and imports. The effect
of FDI on trade is always a concern for the policymakers. So we studied the effect
of FDI on international trade and financial indices. For this analysis, we have chosen
both the developed and developing countries of European continent. The literature
on FDI and trade generally points to a positive growth relationship.

In Fig. 9.1, we present a multi-layered network view of the 18 European countries.
In panel (a), we construct that the base-level networks formed across countries in
terms of trade flow and FDI flow. Both of these two networks capture the connections
through economic variables. The top-layer, on the other hand, has been constructed
from the financial indices. Here, we examine the relationship between the upper layer
of financial network and lower levels of FDI and trade networks. The countries occu-
pying central positions in the correlation network are also central in the corresponding
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Fig. 9.2 Linear regression of normalized eigenvector centrality between a trade and financial
indices having β = 0.17 ± 0.07 with p − value = 0.03, b FDI and financial indices having β =
0.15 ± 0.06 with p − value = 0.03, c Trade and FDI having β = 1.04 ± 0.17 with p − value =
0.00001, of 18 European countries for year 2008

trade and FDI network. In panels (b), (c) and (d), we show the eigenvector centralities
of the corresponding countries for these three variables. We cut down the EVC at
three levels and that is reflected in the network of financial indices, trade and FDI. In
all the networks three countries: SVK, ROU and LVA are forming no link with other
countries. PRT is not forming any link in trade and FDI network. CZE, HUN, POL
are not forming links in trade networkwith rest of the countries. Germany is Europe’s
one of the developed country and strongest economy due to its highly skilled labor
force, high quality of life for its resident, etc. as visible in Fig. 9.1a trade network.We
computed the eigenvector centrality (normalized) of financial indices, international
trade and FDI. Then, we regress these three variables as shown in Fig. 9.2. EVC’s of
trade and FDI points to a positive growth relationship having β = 1.04 ± 0.17 with
p − value = 0.00001. Germany is an outlier. EVC’s of trade and financial indices
are also showing positive slope having β = 0.17 ± 0.07 with p − value = 0.03.
Latvia and Slovakia are outliers. EVC’s of FDI and financial indices are showing a
mildly positive slope having β = 0.15 ± 0.06 with p − value = 0.03.

To see the co-evolution of trade and financial indices, we regress the EVC’s of
indices and trade for the period 2003, 2005, 2007 and 2009 as shown in Fig. 9.3.
The positive slopes of the best fit line indicates that higher centrality in the financial
network is occupying more central positions in the trade network. This pattern holds
true for all four time periods, both before and immediately after the financial crisis.
Thus, we show that there exists a mapping between the financial network and the
trade network. The co-movement of three countries: SVK, LVA and ROU is traced.
In the year 2009, ROU came closer to the rest of the countries (as seen in Fig. 9.3h).
Germany is always an outlier.

We also conduct a microscopic study of the relation between trade flow and
co-evolution of financial indices at the country level. For illustrative purpose, we
have chosen two reasonably large European economies viz. Germany (DEU) and
France (FRA). In Fig. 9.4, we plot the nominal trade flow as a function of index
correlations for pairs of countries, where we fix the origin country. In Fig. 9.4, the
left column shows the analysis for Germany (DEU), whereas the right column shows
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Fig. 9.3 Mapping between the EVC’s of the financial network and the trade network for the years:
2003, 2005, 2007, 2009 across 18 European countries. The left panel (a, b, c and d) shows bar
charts of the normalized EVC’s of financial indices and trade. The right panel (e, f, g and h) shows
the scattered plots of the normalized EVC’s of financial indices and trade along with the best fit
line having slope, e 0.43 ± 0.09 for 2003, f 0.40 ± 0.09 for 2005, g 0.25 ± 0.08 for 2007 and
h 0.23 ± 0.07 for 2009. The positive slopes of the best fit line indicate that higher centrality in the
financial network is correlated with occupying more central positions in the trade network. SVK,
LVA and ROU always evolving together. DEU is an outlier
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Fig. 9.4 Mapping between financial indices correlation and log10 (trade) for Germany (DEU) and
France (FRA), for four snapshots over time, two before the crisis (2005 and 2006) and two into the
crisis period (2008 and 2009). For DEU the best fit lines having slopes: a 1.35 ± 0.27 for 2005,
b 1.35 ± 0.26 for 2006, c 1.51 ± 0.41 for 2008 and d 1.25 ± 0.31 for 2009. For FRA the best
fit line having slope, e 2.00 ± 0.23 for 2005, f 1.97 ± 0.28 for 2006, g 1.80 ± 0.47 for 2008 and
h 1.65 ± 0.35 for 2009
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the analysis for France (FRA). We have considered four snapshots over time, two
before the crisis (2005 and 2006) and two into the crisis period (2008 and 2009). For
DEU the best fit lines having slopes: (a) 1.35 ± 0.27 for 2005, (b) 1.35 ± 0.26 for
2006,(c) 1.51 ± 0.41 for 2008 and (d) 1.25 ± 0.31 for 2009. For FRA the best fit lines
having slopes: (e) 2.00 ± 0.23 for 2005, (f) 1.97 ± 0.28 for 2006, (g) 1.80 ± 0.47 for
2008 and (h) 1.65 ± 0.35 for 2009. One interesting feature is that during the crisis
period, many countries become much more correlated and hence create a cluster,
most notably in the case of Germany in periods 2008–09. However, in all the cases,
it seems to be a clear positive correlation between pairwise trade flow and index
correlation and this relationship is seemingly robust with respect to the occurrence
of the crisis period. Three countries viz. Latvia (LVA), Romania (ROU) and Slovakia
(SVK) seems to be far less correlated than the rest of the countries in the sample.
However, removal of them does not affect the direction of the relationship.

Mapping Between Economic Complexity Index (ECI)
and Financial Indices

To find out the production characteristics of large economies, Economic Complexity
Index (ECI) is a holistic measure proposed by Hidalgo and Hausmann [15] in 2009.
The goal of this index is to explain an economy as a whole rather than the sum of
its parts. To see the mapping between equity and ECI, we regress the normalized
EVC’s of financial indices and ECI of 51 countries across the globe during 2007–
2010, as shown in Fig. 9.5. Equity and ECI are sharing a positive relationship among
themselves. Also the evolution of three variables: per capita GDP, ECI and EVC’s
of financial indices during 2002–2014 is shown in Fig. 9.6.

This finding is not very surprising as there are two fundamental relationships.
One, typically larger (and more developed) countries have higher complexity index.
Two, there is a strong relationship between return centrality and size (we explore it
below in more details). Combining the two, we see that ECI could also have positive
correlation with return centrality.

Estimation Results Controlling for Variations Across Countries

All analyses done so far were essentially correlation study without controlling for
other country-specific characteristics. Here, we present a sequence of regression
tables done across years with control variables in place (2001–09; see Tables: 1–
9 in arXiv:1805.06829). We have used foreign direct investment, total credit as a
percentage of GDP, trade openness (total trade/GDP), size variables (GDP and GDP
per capita) as control variables. As can be seen, the relationship is not robust to
inclusion of aggregate size (i.e. GDP). We have discussed this issue below in details.

http://arxiv.org/abs/1805.06829


126 K. Sharma et al.

Fig. 9.5 Mapping between the EVC’s of financial indices and economic complexity index (ECI),
with the best fit lines having a slopes: a 54.5 ± 10.7 for 2007, b 73.9 ± 13.9 for 2008, c 48.5 ± 12.3
for 2009 and d 52.4 ± 11.7 for 2010

Next, we have constructed an instrumental variable based on geographic centrality
of the countries. The assumption we make is that geographic centrality should be
orthogonal to size, but related to trade centrality (because of gravity equation; see
below). The results are presented in Table 10 in arXiv:1805.06829 (2 stage least
square estimation) and Table 11 in arXiv:1805.06829 (limited informationmaximum
likelihood estimation). As can be seen, the sign is preserved and in the expected
direction but the relationship is not statistically significant at 5%. This is somewhat
problematic as it indicates that the instrument is not very good for this test.

Finally, we put all data into one balanced panel structure and find panel estimates
without incorporating the control variables (unfortunately all data are not available).
In this case, as can be expected, the relationship prevails (see Tables 12 and 13
in arXiv:1805.06829). Hausman test confirms that a random effect model is more
appropriate here. We checked if there is any relationship between EVC from trade
and EVC from return across time (rather than across countries, as we have discussed
above). In particular, it would be of interest to see if there is any strong indication of
Granger causality. The results are presented in Tables 14–31 in arXiv:1805.06829.
We see that there is no systematic relationship across these variables over time (we

http://arxiv.org/abs/1805.06829
http://arxiv.org/abs/1805.06829
http://arxiv.org/abs/1805.06829
http://arxiv.org/abs/1805.06829
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Fig. 9.6 Time evolution of a GDP per capita, b economic complexity index and c eigenvector
centrality of market indices of different countries across the globe for the period 2002–2014

have included two lags for all estimations). Note that the time length is very small
(9 years). Hence, we cannot infer much from the VAR analysis.
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Economic Interpretation and Econometric Issues

We have shown that there is a mapping between the networks of real and nominal
variables. It is important to stress that this establishes the novelty of the present
approach over and above the basic findings of Sharma et al. [2]. The main statement
of Sharma et al. [2] is that centrality in the financial market is related to the size
effect. In the present case, the same still holds true and that can be explained easily
through gravity equation of trade, which states that the trade volume (Ti j ) between
two countries is approximately proportional to the product of the size of the countries
(Yi and Y j ) and inversely proportional to their distance (di j ). This can be stated as

Ti j ∼ Yi × Y j

di j
. (9.5)

This implies that the EVC from the trade matrix is highly correlated with size itself.
This, in turn, implies that the relationship we find between the financial network and
the trade network, may actually be a manifestation of the centrality-size relationship,
similar to the finding in Sharma et al. [2].

This raises a fundamental question about the nature of the relationship. Is it
centrality-centrality or centrality-size?We cannot provide a complete answer to that.
There are three points that need to be considered. First, centrality-size identification is
an extremely difficult exercise as typically these two variables are highly correlated.
Second, to characterize spill-over effects, network structures are useful whereas the
size effect is not. Finally, the relationship between EVC of financial network and
the trade network, is not monotonic. The linear fit captures the positive relationship.
But a non-linear fit shows that the effect of higher centrality in trade diminishes
after a steep initial increase. Thus, the multi-layered network view (with EVC-EVC
as opposed to EVC-size relationship) is important to recognize the non-monotonic
behavior.

Snapshot of the World Stock Market

Figure9.7 shows the minimum spanning tree (MST) of 51 market indices obtained
from the Pearson cross-correlation matrix across the globe during the period 2013–
2014. The nodes in the tree represent the market indices of the corresponding coun-
tries and the links between the nodes represent the relative distances of the distance
matrix, d = √

2(1 − ρ), where ρ represents the correlation matrix. Thus, the min-
imum spanning tree reveals the structure of the global market indices and provides
simple visualization about the patterns of links between different markets, similar to
what was observed byWang et al. [7]. The MST indicates that geographic proximity
plays big role in shaping up the correlation structure across markets. This feature
has been noted and documented by other researchers as well [16]. One can con-
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Fig. 9.7 Minimum spanning tree of 51 market indices across the globe during the period 2013–
2014. The MST shows 6 African markets (gray diamonds), 13 Asian markets (orange circles), 24
European markets (green triangles) and 8 Latin America markets (magenta squares)

jecture that the main factor behind this observation is that financial markets react
very quickly to news and hence, any bout of volatility in a market will be transmit-
ted to another market when that opens. For example, Tokyo stock exchange opens
before London stock exchange. Hence, it is conceivable that there would be volatility
spillover from Tokyo to London. Although this qualitative explanation is intuitive, it
remains unclear how to understand the underlying mechanism quantitatively. On a
similar vein, it does not clearly explain the structure of the MST either.

Summary

In this chapter, we have demonstrated using multi-layered networks, the existence
of an empirical linkage between the dynamics of the financial network constructed
from the market indices and the macroeconomic networks constructed frommacroe-
conomic variables such as trade, foreign direct investments, etc., for several countries
across the globe. The time scales of the dynamics of the financial variables and the
macroeconomic variables are orders of magnitude different, which makes the empir-
ical linkage even more interesting and significant. Also, we found that there exist in
the respective networks, core-periphery structures (determined through eigenvector
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centrality measures) that are composed of similar sets of countries—a result that may
be related through the ‘gravitymodel’ of the country-levelmacroeconomic networks.
Thus, from amulti-lateral openness perspective, we showed that for individual coun-
tries, larger trade connectivity is positively associated with higher financial return
correlations. We have specifically studied the two countries: Germany (DEU) and
France (FRA), with respect to the other European countries. This revealed that map-
ping between the trade and financial indices correlation is quite robust across several
years.

Furthermore, we showed that the Economic Complexity Index and the equitymar-
kets have a positive relationship among themselves, as is the case for Gross Domestic
Product; the time evolution of the three variables have interesting periodicities and
correlation patterns. For certain countries the dispersions in the variables are rather
pronounced than in other countries. To reveal the structure and dynamics of the
global market indices, we have also studied the minimum spanning tree, which indi-
cated that the geographical proximity does play an important role in the correlation
structure across different markets. Perhaps the time-lagged correlation studies would
reveal further the lead-lag structure of the markets.

As noted by many researchers, network approach illuminates several interesting
facets of the structure of global economy. However, standard econometric techniques
show that all superficial observations are not necessarily robust. In particular, when-
ever one wants to move from correlations to causality, one has to use extra caution. In
the end, we note a simple point. Many proposed empirical relationships in the econo-
physics literature fail the test for robustness (both in economic and statistical sense).
Usage of econometrics combined with simple economic intuitions could remedy the
problem to a large extent.
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Chapter 10
Evolution and Dynamics of the Currency
Network

Pradeep Bhadola and Nivedita Deo

Abstract We study the statistical and spectral properties of the foreign exchange
of 21 different currencies from January 4, 1999 to March 30, 2018. The correlation
matrix is calculated for different periods with a rolling window method and the
properties are studied for each window. The basic statistics on the correlation matrix
shows that the currencies are more and more correlated with times. The distribution
of the correlation matrix was very asymmetric with non zero skewness which shows
a fat tail behavior for the initial years but approach Gaussian distribution for the
later time. The spectral properties of the correlation matrices for each window when
compare with the properties of the correlation matrix formed for the complete period
andwith analytical results forWishart matrices shows that the distribution is different
for the windows comprising the calm and the crisis period. The study of the number
of eigenvalues which are outside the randommatrix bounds for each window on both
sides of spectrum reveals that for the crisis period, the number of eigenvalues outside
the lower bound increases as compared to the calmperiod.This increase in the number
of eigenvalues on the lower side of the spectrum for a window also implies a crisis
in the near future. The lower end of the spectra contains more information than the
higher side as revealed by the entropic measures on the eigenvalues. This entropic
measure shows that the eigenvectors on the lower side are more informative and
localized. In this work, the analysis of individual eigenvector captures the evolution
of interaction among different currencies with time. The analysis shows that the set of
most interacting currencies that are active during the calm period and the crisis period
are different. The currencies which was dominating in the calm period suddenly lose
all weight and new set of currencies become active at the onset and during the crisis.
The largest eigenvector of the correlation matrix can separate currencies based on
their geographical location.
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Introduction

The foreign exchange (FX) are the market which are global, decentralized, over-
the-counter which includes all aspects of exchanging, buying or selling currencies
determining the foreign exchange rates. The financial markets are deemed as one of
the most complex systems that captures human financial activity on a global scale
with a very high trading volume leading to high liquidity. The FX market directly or
indirectly affects all other financial exchanges or markets therefore peeks the interest
of academic community to study the structure, statistical properties and topology of
the FX network. The main reasons to study the structure and nature of the world
foreign network is first, the world foreign exchange (currency) market is considered
to be the largest financial market, which according to the Triennial Central Bank
Survey show a daily average trading for over $5.09 trillion per day in April 2016 [1]
extending over all countries. Second, the inability to express the absolute price of a
given currency i.e. the absence of a reference frame, makes it more complex than
any other financial system. In FX, one has to represents a currency in terms of the
other base currency. Since internal dynamics of the base currency greatly depends
on multiple factors such as political or social changes, economy, inflation as well as
and sensitive to events in any part of the world, the local events can have a global
effects in the FX network. With the digital age, there is an enormous growth of
the electronically recorded financial data. Even with these huge data sets together
with the modern day high-throughput computational methods, the understanding
of the complex nature, structure, interaction, dynamics and behavior of the foreign
exchange rate remains a challenge. One of the important features of the financial
systems is the existence of the correlations between different financial commodities
or agents. The study of the cross correlations at different time scales between the
financial data is been widely study [2–4] and are used for portfolio optimization or
asset risk management [5, 6].

System, Data and Nomenclature

For the analysis, the data set comprises of the daily FX rates for 21 different currencies
from January 4, 1999 to March 30, 2018 which spans a period of over 18 years. The
currency is denoted according to the ISO 4217 standards using three letter code. The
list of the countries and their currencies used for the analysis is shown in Table10.1
The FX rates are expressed in term of a base currency, which in the current case is
United States Dollar (USD). The base currency serves as a frame of reference for all
other currencies. The dynamics of other currencies by using the same base currency
is equivalent to study the dynamics from the perspective of the base currency (USD).
In other words, the evolution of the all other currencies are studied in the frame in
which the base currency is at rest.
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Table 10.1 Countries and their respective currencies used for the analysis

Country Currency Country Currency Country Currency

Brazil BRL South Korea KRW Switzerland CHF

Canada CAD Mexico MXN Taiwan TWD

China CNY Norway NOK Thailand THB

Denmark DKK Sweden SEK Australia AUD

Hong Kong HKD South Africa ZAR Euro EUR

India INR Singapore SGD New Zealand NZD

Japan JPY Sri Lanka LKR United
Kingdom

GBP

The daily FX exchange rates data was first preprocessed for filtering to remove
any numerical artifacts. Let Si (t) is daily FX rate of a currency i on day t expressed
in terms of USD. The logarithmic returns Ri (t) of the currency i on day t is defined
as

Ri (t) = ln(Si (t)) − ln(Si (t − Δ)) (10.1)

where Δt = 1 day. The normalized logarithmic returns is then given by

ri (t) = Ri (t)− < Ri >

σi
(10.2)

where < Ri > is the time average of the returns over the time period and σi is the
standard deviation of Ri (t) defined as σi =< R2

i > − < Ri >2.

Correlation Coefficients

The Pearson correlation coefficients are used to estimate the correlation between
different FX rates. The correlation coefficient between currency i and j is given by

Ci, j =< ri (t)r j (t) > . (10.3)

The correlation coefficients are obtained, such that−1 ≤ Ci, j ≤ 1whereCi, j = 1
represents perfect correlation and Ci, j = −1 represents perfect anti-correlation. The
correlation matrix is a N × N symmetric matrix where N = 21 in this case. These
correlation are correlation as viewed in the frame of base currency USD.

To check the evolution of theFXexchange rates the correlationmatrix is calculated
with a rolling window of size 250 days with a shift of 50 days. Our data spans the
period from January 4, 1999 to March 30, 2018, which results in a 97 windows.
Various statistical and spectral properties of correlation matrices for each window is
studied and compared.
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Statistics Correlation Matrix

Before analyzing the spectral properties of the correlation matrices, we investigate
the statistical properties of the correlationmatrix of eachwindowalongwith the prob-
ability density function (PDF) of the independent elements of the correlation matrix
i.e. for Ci j for i < j. This results in the N (N − 1)/2 = 210 elements. Figure10.1
shows the PDFs of the correlation coefficients Ci j , calculated for the complete inter-
val from 1999–2018 and the correlation coefficients Ci j , calculated for the each
window. Where the window is represented by the starting date of the window.

From Fig. 10.1, it is evident that the PDFs of the correlation coefficients for the
complete dataset (1999–2018) is a non symmetrical distribution with a positive mean
(0.289). This distribution (differs from the Gaussian distribution) having a a right-
skewed distribution with skewness 0.65. The distribution is right tailed and with a
kurtosis of 3.10 (for Gaussian the kurtosis is 3.0). From Fig. 10.1 we can conclude
that for the FX exchange rates the positive cross-correlations are more common
than negative cross-correlations. With window (time) the PDFs for of the correlation
coefficients shifts towards right (the larger positive correlations) and amount of the
negative correlations decreases significantly with window (time).

For each window, we calculated and study the descriptive statistics (i.e., the
mean, standard deviation, skewness, and kurtosis) of the cross-correlation coeffi-
cients Ci j ; i > j , which is shown in Fig. 10.2. For first window (which starts at
04–01–1999), the mean of the correlation coefficient is low (0.10), which start to
increase with rolling windows (time). This implies that with time, the FX currency
exchange network becomes more and more correlated. An interesting observation
in plot of skewness with window Fig. 10.2, is that during the crisis period there is
a decrease in the magnitude of skewness. The skewness which was positive for the
period far from the crisis (2008), changes sign and becomes negative just before
and during the crisis. The absolute value of skewness decreases with window form
1.96 in 1999 to 0.40 in 2017, the same trend is seen in kurtosis which also shows a
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Fig. 10.1 First figure shows the color map of the correlation coefficients between the FX rates of
different currencies for the complete interval from 1999–2018. The second figure shows PDFs of
Ci j for the each window, where the date indicates the start of the window
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Fig. 10.2 First figure descriptive statistics (mean, standard deviation, skewness and kurtosis) of
the cross correlation coefficients Ci j ; i > j for each window

decrease in value with time (window), in 1999 the kurtosis was 7.8 which decreases
to 3.18 in 2017.

For the PDFs and the basic statistics we can conclude that the FX currency net-
work becomes more and more positively correlated with time. Also, as seen with
the skewness, the distribution of the cross correlation is becoming more and more
symmetric and Gaussian like with the passage of time as the skewness approaching
close to zero and the kurtosis approaching close to 3 which are the standard for the
Gaussian distribution.

Spectral Properties

TheFXexchange correlation structure, in the reference of the base currencyUSD, can
be described by the eigen spectra of the correlation matrix C . For every correlation
matrix C , (correlation matrix corresponding to each window), the complete set of
the eigenvalues λi and eigenvectors vi , are determined from the eigenvalue equation
Cvi = λivi where i = 1 . . . N. These eigenvalues are arranged in an ascending order
such that λ1 ≤ λ2 ≤ λ3 · · · ≤ λN. The spectral properties of the correlation matrix
for each window is studied.

In the current work, we first compare the eigenvalue distribution of correlation
matrix corresponding to each window with the correlation matrix for the complete
data set. This may result in the useful insights on how the dynamics for a small scale
(window) differs from the over all system dynamics (full data set).
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To distinguish noise from the information contained in the system, we constructed
a null model by randomly shuffling the FX exchange rates data for each currency.
We find that the results from the random shuffling are numerically equivalent to the
analytical results for the Wishart matrices. The eigen-spectra of Wishart matrices is
well studied [7], where the density function for the eigenvalues P(λ) is defined as

P(λ) = Q

2πσ 2

√
(λ+ − λ)(λ − λ−)

λ
. (10.4)

with Q = N
L ≥ 1. Where N the number of currencies and L is the number of days

for which the exchange rates are observed (used) and σ = 1 the standard deviation.
Equation (10.4) is known as Marcenko–Pastur distribution where the the upper and
lower bounds for the eigenvalue λ are defined as

λ± = σ 2

(
1 + 1

Q
± 2

√
1

Q

)
(10.5)

We use the above analytical results, to established the bounds for noise in the
eigen-spectrum of the system. For the full data set N = 21, number of currencies
and the exchange rate data is taken for L = 4835 days. This gives λc+ = 1.14 and
λc− = 0.87 where c in the superscript implies that this is for the complete data set.
For each window, the number of days are fixed to 250, therefore L = 250, the size
of the window and N = 21 is the number of currencies used for the analysis giving
λ+ = 1.66 and λ− = 0.50.

For each window, we estimate the number of eigenvalues outside the RMT
bounds on each side of the eigenvalue spectra (λ ≤ λ−) and (λ ≥ λ+) and is plotted.
Figure10.3 shows that the number of eigenvalues outside the RMT upper bound is
very less, (two in most cases but the second largest eigenvalue is very close to λ+).
On the other hand, the number of eigenvalues on the lower side of the spectra for
which λ ≤ λ− are higher in number. On an average 10 out of 21, eigenvalues are
outside the lower RMT bounds, which are nearly 50% of the total eigenvalues. This
indicates that most of the information about the correlation and interactions between
different currencies is located on the lower side of the spectrum.

On of the interesting observation is the number of eigenvalues smaller than the
lower RMT bounds, increases at the time of the stress in the global economy. Just
before the 2008 crisis, the number of eigenvalues outside the lower bound increases
from9 to 11,which further increase to 13during the 2008–2009 crisis.After the crisis,
the number of eigenvalues outside the lower RMT bounds drops. But further increase
in the number (13 eigenvalues≤ λ−) is observed for thewindow corresponding to the
period 2011–09–20 to 2012–09–17, this period corresponds to European sovereign
debt crisis and the United States debt ceiling crisis [8, 9]. In Fig. 10.3, this was
followed a decrease in the number of eigenvalues ≤ λ−, and again during the 2015–
16 Chinese stock market turbulence following slowdown in China and its currency
devaluation [9], we observe a increase in number of eigenvalues ≤ λ− (again the
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Fig. 10.3 Number of eigenvalues outside the RMT bound on each side of the spectra for every
window, where the date indicates the start of the window
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Fig. 10.4 Eigenvalue distributions for different windows. Insets show eigenvalues outside the lower
bound

number is 13). The increase in number of eigenvalues on the lower side of spectra
that are less than the lower RMT bounds correlates very well with the time of the
financial crisis.

Figures10.4 and 10.5 shows the eigenvalue distribution for different windows and
for the complete period (1999–2018). For Fig. 10.4a which is the calm period (1999–
12–30 to 2000–12–22), the magnitude of the largest eigenvalue is 5.4 which is very
less compared to the period of high financial stress (crisis) window 50 (2008–09–24
to 2009–09–21, with largest λ equal to 9.6) as shown in Fig. 10.4b. We observe that
for the less financial stress the largest eigenvalue of correlation matrix for the FX
exchange is lower as compared to the period of high financial stress. The largest
eigenvalue of the correlation matrix of FX exchange rates for the complete period
is 7.8. We study the time evolution of each eigenvalue which is outside the RMT
bound.We observe the the sum of the eigenvalues on the lower side of spectra outside
the lower RMT bound is opposite to the dynamics of largest eigenvalue as shown in
Fig. 10.6.
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Information Content of Eigenvectors

The information content of each eigenvector is estimated by estimating the Shannon’s
entropy. The entropy of an eigenvector vi is defined as

Hi = −
N∑
j=1

ui ( j)logL(ui ( j)), (10.6)

where N is the total number of currencies used for the analysis (number of eigenvec-
tor components) and ui ( j) = (vi ( j))2 is the square of the j th component of the i th
normalized vector vi . The entropy estimates also helps to calculate the localization
of the eigenvector. Eigenvector with low entropy should be highly localized. In the
current analysis, we find that the eigenvector corresponding to the small eigenvalues
are very informative as well as highly localized as compared to the eigenvector cor-
responding to the large eigenvalues. These eigenvectors are further used to estimate
the strong interacting pair of currencies. For many systems especially for correlation
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Fig. 10.7 Entropy of
eigenvector for different
windows, where the date
indicates the start of the
window

0 5 10 15 20

Eigenvectors

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
tro

py

2000-03-13
2008-09-24

2011-09-20 2015-07-07 complete Random

matrices between position in a protein family, it is established that the eigenvector
corresponding to the small eigenvalues can identify important positions and inter-
action responsible for the formation of motifs and sectors [10]. In the Markowitzs
theory of optimal portfolios [11], the least risky portfolios corresponds to the lowest
eigenvalues and the corresponding eigenvectors. In recent work [12], which involves
the analysis of the correlation structure of global financial indices, it was established
that the lower side of the eigenvalue spectrum is more informative and localized
which is able to capture most of the system dynamics.

Figure10.7 compares the eigenvector entropy with for different windows with
the random shuffled system and eigenvector entropy for the complete period. The
eigenvectors corresponding to the large eigenvalues have entropy values very close to
the random system (black dashed line). But there is a clear distinction of the entropy
of the small eigenvectors with the random system. The fist few eigenvectors have
very small entropy (≈ 0.25) for all windows. These eigenvectors are highly local-
ized and gives the set of highly interacting currencies. Analyzing each eigenvector
independently reveals clusters of currencies with very close ties.

Eigenvector Components

The analysis of the eigenvector corresponding to the eigenvalues outside the RMT
bounds should contain the information present within the system. We use the square
of the eigenvector components, to determine their contribution towards that a given
eigenvalue. As it is already been discussed in the previous section, that the low
eigenvector are highly localized as compared to the high eigenvector components
(EVC). Figure10.8 shows the variation of the square of the component for each
currency with window, for the two lowest and two largest eigenvectors. From the
Fig. 10.8a it is clear that the lowest eigenvector is highly localized over all windows
and there are only a few currencies that are contributing to it. Most of the time
(window), there are only two contributing currencies (Euro (EUR) andDanish Krone
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Fig. 10.8 The square of the eigenvector components (EVC) for different windows

(DKK)) but only for a short period from window number 6–10 (period from 1999–
12–30 to 2001–10–11) Swiss Franc (CHF) have high interactions with Euro. This
implies that there exist strong interaction between the Euro (EUR) and Danish Krone
(DKK).

For the second smallest EVC Fig. 10.8b, we find the contribution depends on
the time period of observation (window). The second smallest eigenvector shows a
drastic change in the contributing currencies for the period of financial stress. The
early 2000s recession represented by window number 6–10 (period from 1999–12–
30 to 2001–10–11), contributing components changes from Euro (EUR), Danish
Krone (DKK) and Swiss Franc (CHF) to Norwegian Krone (NOK), Swedish Krona
(SEK), Australian Dollar (AUD) and New Zealand Dollar (NZD). A similar change
is observed for during the global 2008 financial crisis (window 46–50, period from
2007–12–10 to 2009–07–10), European sovereign debt crisis and the United States
debt ceiling crisis a period from 2010–02–18 to 2012–09–17 (window 57–65). The
three currencies (EUR, DKK and CHF) dominates the second smallest eigenvector
forming very close ties during the calm period but at the onset and during crisis,
their interaction cease to exist and a new interaction between NOK, SEK, AUD and
NZD is formed. These four currencies dominates forming very strong interactions
during the crisis. During the Chinese stock market turbulence captured by window
79–85, there are other currencies such as SGD, ZOR, MXN, JPY, KRW that have
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Fig. 10.9 Eigenvector components (EVC) for the complete time period 1999–2017

contribution. The largest and the second largest eigenvector for the windows are not
localized and have contribution from all the currencies and the contribution changes
with time (window) Fig. 10.8c, d.

We compare the eigenvector components obtained for each window with the
eigenvector components for the complete time period (1999–2018). Figure10.9a
shows the distribution of the square of the smallest and largest three eigenvector. The
small eigenvectors are localized and more informative where as the larger eigen-
vectors are non localized and plagued with noise. The smallest eigenvector overall
shows the same behavior as the shown by the smallest eigenvector for each win-
dow where the only contribution are from Euro (EUR) and Danish Krone (DKK).
For the second smallest eigenvector, there are a total of 7 contributing currencies
Euro (EUR), Danish Krone (DKK), Swiss Franc (CHF), Norwegian Krone (NOK),
Swedish Krona (SEK), Australian Dollar (AUD) and New Zealand Dollar (NZD).
These currencies are same as obtained analyzing the second smallest eigenvector for
all windows Fig. 10.8b, but there are divided into two set one set (EUR), DKK and
CHF) dominates during the calm period where the other set (NOK, SEK, AUD and
NZD) which is more active during the crisis period.

Analyzing the components of the largest eigenvector Fig. 10.9b, we found that
the currencies can be separated by their geographical location based on the range
of the value of their contribution. If we choose components by the magnitude, and
we define two groups, first group which has magnitude of component greater than
0.2 and the other group with magnitude less than or equal to 0.2. The details of the
currencies and their geographical location are given in Table10.2. The Asian and the
Latin American countries form a one group which corresponds to the components
less than 0.2 Fig. 10.9b, where as the other group is formed by the countries whose
component greater than 0.2. These are the countries belonging to Europe, Australia,
one each from North America, Africa and Asia.
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Table 10.2 Currencies with respective countries separated based on the magnitude of the largest
eigenvector of correlation matrix for the complete dataset

EVC <= 0.2 EVC > 0.2

Currency County Continent Currency County Continent

BRL Brazil Latin America CAD Canada North
America

CNY China Asia DKK Denmark Europe

HKD Hong Kong Asia NOK Norway Europe

INR India Asia SEK Sweden Europe

JPY Japan Asia ZAR South Africa Africa

KRW South Korea Asia SGD Singapore Asia

MXN Mexico Latin America CHF Switzerland Europe

LKR Sri Lanka Asia AUD Australia Australia

TWD Taiwan Asia EUR Euro Europe

THB Thailand Asia NZD New Zealand Australia

Conclusions

In this work, we try to study and understand the relation and interaction between the
foreign exchanges rates for a period from January 1999 toMarch 2018.All the foreign
exchange rates are expressed in terms of a base currency which for the current case
is USD. All the dynamics and properties studied in this paper will be in the reference
frame where the USD is at rest. The evolution of FX rates is studied using a rolling
window of size 250 days with a shift of 50 days. The statistics and the correlation
betweendifferent currencies is calculated and studied.The statistics on the correlation
matrix reveals that with time the currencies are getting more and more correlated. At
the start of the period (1999) the mean of the correlation matrix was very less as well
was very highly non symmetric (non zero skewness) and high Kurtosis but with time
the distribution of correlation coefficients try to approach Gaussian distribution by
approaching zero skewness 0 and Kurtosis (three) standard for Gaussian distribution.
The spectral properties of the correlation matrices are studied for each window and
then comparedwith the correlationmatrix formed from the complete data set andwith
the analytical results forWishart matrices. The distribution of eigenvalues reveals the
distribution is different for the calm and the crisis period. The number of eigenvalues
for each windowwhich are outside the randommatrix bounds are higher on the lower
sides. For the period of the crisis the number of eigenvalues outside the lower bound
increases as compared to the calm period. This may be to incorporate the addition
information generated during the crisis. We propose that the if there is increase in the
number of eigenvalues outside the rmt bound then that may indicate a crisis in the
near future. The information content and localization of each eigenvector is estimated
by the using an entropic measure. This measures shows that the eigenvalues on the
lower side of the spectra are more localized as well as informative as compared
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to the eigenvalue on the higher side of the spectra. The analysis of the individual
eigenvectors gives information about the interaction between different currencies.We
observe in the second smallest eigenvector, at each crisis period, the contribution and
interaction among the currencies changes. The currencies which was dominating in
the calm period suddenly lose all their contribution during the crisis and a new group
of interaction between currencies become active at the onset and during the crisis.
The components of largest eigenvector of the correlation matrix for the complete
period can separate the currencies based on their geographical location based on the
magnitude of the components.
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Chapter 11
Some Statistical Problems with High
Dimensional Financial data

Arnab Chakrabarti and Rituparna Sen

Abstract For high dimensional data some of the standard statistical techniques do
not work well. So modification or further development of statistical methods are
necessary. In this paper we explore these modifications. We start with important
problem of estimating high dimensional covariance matrix. Then we explore some
of the important statistical techniques such as high dimensional regression, principal
component analysis, multiple testing problems and classification. We describe some
of the fast algorithms that can be readily applied in practice.

Introduction

A high degree of interdependence among modern financial systems, such as firms
or banks, is captured through modeling by a network G(V,E), where each node in
V represents a financial institution and an edge in E stands for dependence between
two such institutions. The edges are determined by calculating the correlation coef-
ficient between asset prices of pairs of financial institutions. If the sample pairwise
correlation coefficient is greater than some predefined threshold then an edge is
formed between corresponding nodes. This network model can be useful to answer
important questions on the financial market, such as determining clusters or sectors
in the market, uncovering possibility of portfolio diversification or investigating the
degree distribution [4, 29]. See Fig. 11.1 for illustration of one such network. Using
correlation coefficients to construct the economic or financial network has a serious
drawback. If one is interested in direct dependence of two financial institutions the
high observed correlation may be due to the effect of other institutions. Therefore
a more appropriate measure to investigate direct dependence is partial correlation.
Correlation and partial correlation coefficients are related to covariance and inverse
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Fig. 11.1 Network topology of European economies in post-euro period as described in [21]

covariance matrix respectively. Therefore in order to have meaningful inference on
the complex system of financial network, estimation of covariance matrix accurately
is of utmost importance. In this paper we investigate how inference based on covari-
ance matrix for high dimensional data can be problematic and how to solve the
problem.

The rest of the paper is organized as follows. In section “Distribution of Eigen-
values” we discuss the distribution of eigenvalues of covariance matrix. In section
“Covariance Matrix Estimator” the problem and possible solution of covariance
matrix estimation is discussed. Section “PrecisionMatrix Estimator” deals with esti-
mation of precision matrix. Sections “Multiple Hypothesis Testing Problem and
False Discovery Rate” and “High Dimensional Regression” deals with multiple test-
ing procedure and high dimensional regression problem respectively. We discuss
high dimensional principal component analysis and several classification algorithms
in sections “Principal Components” and “Classification”.

Distribution of Eigenvalues

Eigenvalues of Covariance Matrix

In multivariate statistical theory, the sample covariance matrix is the most common
and undisputed estimator because it is unbiased and has good large sample properties
with growing number of observations when number of variables is fixed. But if the
ratio of the number of variables (p) and the number of observations (n) is large, then
sample covariance does not behave as expected. It can be showen that if p grows at the
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Fig. 11.2 Plot of true (dotted line) and sample (solid line) eigenvalues

same rate as n i.e. p/n → y> 0 the sample covariance matrix becomes inconsistent
and therefore can not be relied upon [28]. In Fig. 11.2 eigenvalues of population
covariance matrix and sample covariance matrix are plotted for different values of p
and nwhere the population covariance matrix is the identity matrix. It is evident that
the true and sample spectra differ a lot as the ratio p/n grows. So for high dimensional
data (p/n → y > 0) there is a need to find an improved estimator.

Even though the sample eigenvalues are not consistent anymore, the limiting
distribution of eigenvalues of the sample covariance matrix and the connection it
has with the limiting eigenvalue distribution of population covariance matrix are of
importance. Determining the limiting spectral distribution can be very useful to test
the underlying assumption of the model. In this section we will very briefly discuss
some results of randommatrix theory that answers this kind of questions. Throughout
we will denote the ratio p/n as yn.

Marchenko Pastur Law and Tracy Widom Law

Suppose that {xij} are iid Gaussian variables with variance σ 2. If p/n → y > 0 then
the empirical spectral distribution (distribution function of eigenvalues) of sample
covariance matrix Snconverges almost surely to the distribution F with the density
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f (x) = 1

2πσ 2yx

√
(b − x)(x − a)I(a ≤ x ≤ b)

if y < 1, where a = a(y) = σ 2(1 − √
y)2 and b = b(y) = σ 2(1 + √

y)2. If y > 1 It
will take additional positive mass 1 − 1

y at 0.
σ is called the scale parameter. The distribution is known as Marchenko-Pastur

distribution.
If p/n → 0 then empirical spectral distribution of Wn =

√
n
p (Sn − σ 2I) converges

almost surely to the semicircle law with density:

f (x) = 1

2πσ 2

√
4σ 2 − x2I(|x| ≤ 2σ)

Although the sample eigenvalues are not consistent estimator, the limiting spectral
distribution is related to the population covariance matrix in a particular way.

Also if p → ∞ and n → ∞ such that p
n → y > 0, then λ1−μnp

σnp

L→ W1where λ1 is

the largest eigenvalue of sample covariance μnp = (√
n + √

p
)2

and σnp = (√
n +

√
p
)(

1√
n

+ 1√
p

) 1
3 and W1 is Tracy-Widom Law distribution.

Covariance Matrix Estimator

Stein’s Approach

We see from Fig. 11.2 that the sample eigenvalues can differ a lot from the popula-
tion eigenvalues. Thus shrinking the eigenvalues to a central value is a reasonable
approach to take. Such an estimator was proposed by Stein [26] and takes the fol-
lowing form:

Σ̂ = Σ̂(S) = Pψ(Λ)P′

whereΛ = diag(λ1, λ2, . . . , λp) andψ(Λ) is also a diagonalmatrix. Ifψ(λi) = λi∀i
then Σ̂ is the usual estimator S. In this approach the eigen vectors are kept as it is, but
the eigenvalues are shrink towards a central value. As the eigen vectors are not altered
or regularized this estimator is called rotation equivariant covariance estimator. To
come up with a choice of ψ , we can use entropy loss function

L = tr(Σ̂Σ−1) − log(Σ̂Σ−1) − p

or Frobeneous loss function

L2 = tr(Σ̂Σ−1 − I)2.
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Under entropy risk (= EΣ(L)), we have ψ(λi) = λin
αi

where

αi =
(
n − p + 1 + 2λiΣi �=j

1

λi − λj

)
.

The only problem with this estimator is that some of the essential properties of
eigenvalues, like monotonicity and nonnegativity, are not guaranteed. Some modi-
fications can be adopted in order to force the estimator to satisfy those conditions
(see [18, 20]). An algorithm was proposed to avoid such undesirable situations by
pooling adjacent estimators together in [27]. In this algorithm first the negative αi’s
are pooled together with previous values until it becomes positive and then to keep
the monotonicity intact, the estimates (ψ ′s) are pooled together pairwise.

Ledoit-Wolf Type Estimator

As an alternative to the above mentioned method, the empirical Bayes estimator can
also be used to shrink the eigenvalues of sample covariance matrix. Reference [14]
proposed to estimate Σ by

Σ̂ = np − 2n − 2

n2p
α̃I + n

n + 1
S,

where α̃ = (det(S))
1/p. This estimator is a linear combination of S and I which is

reasonable because although S is unbiased, it is highly unstable for high dimensional
data and αI has very little variability with possibly high bias. Therefore a more
general form of estimator would be

Σ̂ = α1T + α2S

where T is a positive definite matrix and α1 (shrinkage intensity parameter), α2 can
be determined by minimising the loss function. For example [17] used

L(Σ̂,Σ) = 1

p
tr(Σ̂ − Σ)2

to obtain a consistent estimator with T = I. A trade off between bias and variance
is achieved through the value of shrinkage parameter. In Fig. 11.3, bias, variance
and MSE are plotted against shrinkage parameter. The optimum value of shrinkage
intensity is that for which MSE is minimum.

It can be shown that if there exists k1 and k2 independent of n such that p/n ≤ k1 and
1
p

∑p
i=1 E[Yi]8 ≤ k2 where Yi is the ith element of any row of the matrix of principal

components of X and if
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Fig. 11.3 Plot for Error
versus shrinkage intensity
[17]

lim
n→∞

p2

n2
×

∑
(i,j,k,l)∈Qn

(Cov[YiYj,YkYl])2
cardinality(Qn)

= 0

where Qn denotes the set of all quadruples made of four distinct integers between 1
and p, then the following estimator S∗

n (a convex combination of I and S) is consistent
for Σ , see [17]:

S∗
n = b2n

d2
n

mnIn + d2
n − b2n
d2
n

Sn

where Xk. is the kth row of X and

mn = 1

p
tr(S

′
nIn)

d2
n = ‖Sn − mnIn‖2

b2n = min

(
d2
n ,

1

n2

n∑

k=1

‖X ′
k.Xk. − Sn‖2

)
.

The first condition clearly deals with the interplay between sample size, dimen-
sion and moments whereas the second one deals with the dependence structure. For
p/n → 0 the last condition for dependence structure can be trivially verified as a con-
sequence of the assumption on moments. This estimate is also computationally easy
to work with. In fact as S is still unbiased estimator one possible way to reduce the
variance is to use bootstrap-dependent techniques like bagging. But that is far more
computationally demanding compared to this method.

With the additional assumption that var

(∑p
i=1 Y

2
i

p

)
is bounded as n → ∞, [17]

showed that
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limn→∞
[
E||Sn − Σn||2 − p

n

(
m2

n + var

(∑p
i=1 Y

2
i

p

))]
= 0

This result implies that expected loss of sample covariancematrix, although bounded,
does not usually vanish. Therefore consistency of usual sample covariance matrix

is achieved only when p
n → 0 or m2

n + var

(∑p
i=1 Y

2
i

p

)
→ 0. In the latter case most of

the random variables are asymptotically degenerate. The difference between these
two cases is that in the first, the number of variables is very less compared to n and
in the latter O(n) degenerate variables are augmented with the earlier lot. Both of
these essentially indicate sparsity.

A more general target matrix T can be used instead I . For example, under Gaus-
sian distribution, if T = tr(S)/pI , α1 = λ (intensity parameter) and α2 = 1 − λ, then
optimal shrinkage intensity is

min

( ∑p
i=1 ||xix′

i − S||2F
n2[tr(S2) − tr2(S)/p] , 1

)

which implies that the shrinkage estimator is a function of the sufficient statistics S
and therefore can be further improved upon by using Rao-Blackwell theorem [7].
The resulting estimator becomes λRBLWT + (1 − λRBLW )S where

λRBLW =
n−2
n tr(S) + tr2(S)

(n + 2)[tr(S2) − tr2(S)

p ]

If we take T = Diag(S), that is, the diagonal elements of S then the optimal intensity
that minimises E[‖Σ̂ − Σ‖2] can be estimated as

1
n (â2 + pâ12) − 2

n â2∗
n+1
n â2 + p

n â
2
1 − n+2

n â2∗

where â1 = 1/ptr(S), â2 = n2

(n−1)(n+2)
1
p

[
trS2 − 1

n (trS)2
]
, â∗

2 = n
n+2 tr(T

2)/p as

shown in[11]. Reference [25] chose the shrinkage parameter to be

λ∗ =
∑p

i=1 ˆvar(si) − ˆcov(ti, si) − ˆBias(si)(ti − si)∑p
i=1(ti − si)2

.

Along with conventional target matrix (I ) they used five other target matrices
summarised in the following Table 11.1.
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Table 11.1 Conventional target matrix (I ) used along with five other target matrices

Element-Wise Regularization

Under the assumption of sparsity, some element-wise regularization methods can be
used. In contrast to [17] type of estimator, where only the eigenvalues were shrunk,
here both eigenvalues and vectors are regularised.Wewill first discuss popular meth-
ods like Banding and Tapering which assume some order between the variables and
as a result, the estimator is not invariant under permutation of variables. So this is
useful for time-dependent data.

Banding

The idea behind banding is that the variables are ordered in such a way that ele-
ments of the covariance matrix, further away from the main diagonal, are neg-
ligible. An l−banded covariance matrix is defined as B(Sl) = [sijI(|i − j| ≤ l)],
where S = [sij] is the p × p sample covariance matrix and l (≤ p) is band length,
determined through cross validation. One can question- which kind of population
covariance matrix can be well approximated by Banded sample covariance matrix.
Intuitively, such a matrix should have decaying entries as one moves away from
the main diagonal. Reference [3] showed that the population covariance can be
well approximated uniformly over the following class of matrices: {Σ : maxj∑

i |σij|I(i − j ≥ k) ≤ C.k−α, and 0 < ε ≤ λmin(Σ) < λmax(Σ) ≤ ε−1}, where C is
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a constant and α captures the rate of decay of the entries σij as i goes away from j.
Although p is large, if log(p) is very small compared to n, that is, log(p)

n → 0, then
such a Σ can be well-approximated by accurately chosen band length and the error
in approximation depends on log(p)/n and α. Same result holds also for the pre-
cision matrix. Banded covariance estimation procedure does not guarantee positive
definiteness.

Tapering

Tapering the covariance matrix is another possible way and it can preserve positive
definiteness. T (S) = S ◦ T is a tapered estimator where S is the sample covariance
matrix, T is the taperingmatrix and ‘◦’ denotes the Hadamard product (element-wise
product). Properties of Hadamard product suggest that T (S) is positive definite if T
is so. The banded covariance matrix is a special case of this with T = ((1[|i−j|≤l)),
which is not positive definite.

Thresholding

The most widely applicable element-wise regularization method is defined through
Thresholding Operator. The regularized estimator is Tλ(S) = ((sijI(sij) > λ) )),
where S = ((sij)) is the sample covariance matrix and λ > 0 is the threshold param-
eter. λ can be determined through cross validation. Although it is much simpler than
other methods, like penalized lasso, it has one problem. The estimator preserves
symmetry but not positive definiteness. With Gaussian assumption, consistency of
this estimator can be shown uniformly over a class {Σ : σii ≤ C,

∑p
j=1 |σij|q ≤

s0(p), ∀ i} with 0 ≤ q ≤ 1, log(p)/n = o(1) and λ = M
√

log(p)
n for sufficiently largeM

[3]. For q = 0 the condition
∑p

j=1 |σij|q ≤ s0(p) reduces to
∑p

j=1 I(σij �= 0) ≤ s0(p).
The rate of convergence is dependent on the dimension (p), sample size (n) and
s0, the determining factor of the number of nonzero elements in Σ . Similar result
can be shown for precision matrix. For non-Gaussian case, we need some moment
conditions in order to achieve consistency result [3].

The result goes through for a larger class of thresholding operators. One such is
called generalized thresholding operators with the following three properties:

1. |sλ(x)| ≤ |x| (shrinkage)
2. sλ(x) = 0 for |x| ≤ λ(thresholding)
3. |sλ(x) − x| ≤ λ(constraint on amount of shrinkage)

Apart from being consistent under suitable conditions discussed earlier, if variance
of each variable is bounded then this operator is also “sparsistent” i.e. able to identify
true zero entries of population covariance matrix with probability tending to one.

For both thresholding and generalized thresholding operators λ is fixed for all
entries of the matrix. An adaptive threshold estimator can be developed [5] to have
different parameters for different entries where
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λij ∝
√
log(p)

n
ˆvar(Yi − μi)(Yj − μj)

Approximate Factor Model

Sometimes the assumption of sparsity is too much to demand. For such situations
estimation methods of a larger class of covariance matrices is required. A simple
extension is possible to the class of matrices that can be decomposed into sum of
low rank and sparse matrix: Σ = FFT + 
, where F is low rank and 
 is sparse
matrix. Due to similarity with Factor model where 
 is diagonal, this model is
called approximate factor model. To estimate Σ , one can decompose S similarly as,
S = ∑q

i=1 λ̂i êi êTi + R, where the first part involves the first q principal components
and the second part is residual. As R is sparse we can now use thresholding/adaptive
thresholding operators to estimate it [6].

Positive Definiteness

Sometimes positive definiteness of the estimator is required in order to be used in
classification or covariance regularised regression. As we have discussed threshold-
ing estimators do not guarantee positive definite estimator. In the following section
we will describe a couple of methods to achieve that. One possible way is to replace
the negative eigenvalues in eigen decomposition of Σ̂ by zero. But this manipulation
destroys the sparse nature of the covariance matrix. An alternative way is necessary
that will ensure sparsity and at the same time will produce positive definite output.
Let us denote sample correlation matrix by R matrix M � 0 if it is symmetric and
positive definite (M � 0 for positive semi definite) andMj,−j = M−j,j = jth column
of symmetric matrixM with it’s jth element removed.M−j,−j =matrix formed after
removing jth column and jth row ofM andM+ is the diagonal matrix with the same
diagonal elements asM . DefineM− = M − M+. Then a desirable positive definite
estimator is

Σ̂λ = (S+)
1
2 Θ̂λ(S

+)
1
2

where S+ = diag(S) and estimated correlation matrix is

Θ̂ = argminΘ�0‖Θ − R‖2F/2 − τ log|Θ| + λ|Θ−|

with λand τ > 0 respectively being tuning parameter and a fixed small value. The
log-determinant term in the optimization function ensures positive definiteness. Reg-
ularizing the correlation matrix leads to faster convergence rate bound and scale
invariance of the estimator. Under suitable and reasonable conditions this estimator
is consistent [23]. For fast computation the following algorithm has been developed.
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• Input Q- a symmetric matrix with positive diagonals, λ, τ and initialise (Σ0, Ω0)

with Ω0 > 0. Follow steps 1 − 3 for j = 1, 2, . . . , p and repeat till convergence.
Step1: σ (k+1)

jj = qjj + τω
(k)
jj and solve the lasso penalized regression:

Σ
(k+1)
j,−j = argminβ

1

2
βT

(
I + τ

σ k+1
jj

Ω
(k)
−j,−j

)
β − βTQ−j,j + λ‖β‖1

Step2: Ω(k+1)
j,−j = −Ω

(k)
−j,−jΣ

(k+1)
j,−j /σ

(k+1)
jj .

Step3: Compute ω
(k+1)
jj =

(
1 − Σ

(k+1)
j,−j Ω

(k+1)
j,−j

)/
σ

(k+1)
jj .

An alternative estimator has been proposed based on alternating direction method
[31]. If wewant a positive semi definitematrix then the usual objective function along
with l1 penalty term should be optimized with an additional constraint for positive
semi-definiteness:

Σ+ = argminΣ�0‖Σ − S‖2F/2 + λ|Σ |1.

For positive definite matrix we can replace the constraint Σ � 0 with Σ � εI for
very small ε > 0. Introducing a new variable Θ , we can write the same as

(Θ̂+, Σ̂+) = argminΘ,Σ‖Σ − S‖2F/2 + λ|Σ |1 : Σ = Θ, Θ � εI .

Now it is enough to minimize its augmented Lagrangian function for some given
penalty parameter μ:

L(Θ, Σ; Λ) = ‖Σ − S‖2F/2 + λ|Σ |1− < Λ, Θ − Σ > +‖Θ−Σ‖2F/2μ,

where Λ is the Lagrange multiplier. This can be achieved through the following
algorithm (S being Soft Thresholding Operator):

• Input μ, Σ0, Λ0.
• Iterative alternating direction augmented lagrangian step: for the ith iteration:

1. Solve Θ i+1 = (Σ
i + μΛi)+

2. Solve Σ i+1 = {S(μ(S − Λi) + Θ i+1;μλ)}/(1 + μ)

3. Update Λi+1 = Λi − (Θ i+1 − Σ i+1)/μ.

• Repeat the above cycle till convergence.

Precision Matrix Estimator

In some situations instead of covariance matrix, the precision matrix (Σ−1) needs to
be calculated. One example of such situation is financial network model using partial
correlation coefficients because the sample estimate of partial correlation between
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two nodes is ρ̂ij = −ω̂ij/
√

ω̂iiω̂jj, where ω̂ij = (Σ̂−1)ij. Of course Σ̂−1can be cal-
culated from Σ̂ but that inversion involves O(p3) operations. For high dimensional
data it is computationally expensive. On the other hand, if it is reasonable to assume
sparsity of the precision matrix, that is, most of the off-diagonal elements of the
precision matrix are zeros, then we can directly estimate the precision matrix.
Although the correlation for most of the pairs of financial institutions would not
be zero, the partial correlations can be. So this assumption of sparsity would not be a
departure from reality in many practical situations. In such cases starting from a fully
connected graph we can proceed in a backward stepwise fashion, by removing the
least significant edges. Instead of such sequential testing procedure, some multiple
testing strategy, for example, controlling for false discovery rate, can also be adopted.
We discuss this in detail in section “Multiple Hypothesis Testing Problem and False
Discovery Rate”. After determining which off-diagonal entries of precision matrix
are zeros (by either sequential or multiple testing procedure), maximum likelihood
estimates of nonzero entries can be found by solving a convex optimization prob-
lem: maximizing the concentrated likelihood subject to the constraint that a subset
of entries of precision matrix equal to zero [8, 22].

Alternatively, under Gaussian assumption a penalized likelihood approach can be
employed. If Y1, ...,Yp ∼ Np(0,Σ), the likelihood function is

L(Σ) = 1

(2π)np/2|Σ |n/2 exp
(

− 1

2

n∑

i=1

Y ′
i Σ

−1Yi

)
.

The penalized likelihood l(Σ−1) = log|Σ−1| − tr(SΣ−1) − λ‖Σ−1‖1, with penalty
parameter λ > 0, can be used to obtain a sparse solution [32]. The fastest algorithm
to obtain the solution is called graphical lasso [12], described as follows:

1. Denote Θ = Σ−1. Start with a matrix W that can be used as a proxy of Σ . The
choice recommended in Friedman et. al is W = S + λI .

2. Repeat till convergence for j = 1, 2, . . . , p:

a. Partition matrix W in two parts, jth row and column, and the matrix W11−
composed by the remaining elements. After eliminating the jth element, the
remaining part of jth column (p − 1dimensional) is denoted as w12 and simi-
larly the row is denoted as w21. Similarly, define S11, s12, s21, s22 for S matrix.

(For j = p, the partitionwill look like:W =
(
W11 w12

w21 w22

)
andS =

(
S11 s12
s21 s22

)
).

b. Solve the estimating equations

W11β − s12 + λ.Sign(β) = 0,

using cyclical coordinate-descent algorithm to obtain β̂.
c. Update w12 = W11β̂.
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Fig. 11.4 Resulting networks given by graphical lasso algorithm for different values of penalty
parameter lambda [12]

3. In the final cycle, for each j, solve for Θ̂12 = −β̂Θ̂22, with Θ̂−1
22 = w22 − w′

12β̂.
Stacking up (Θ̂12, Θ̂21) will give the jth column of Θ .

Figure 11.4 shows undirected graph from Cell-signalling data obtained through
graphical lasso with different penalty parameters [12].

Multiple Hypothesis Testing Problem and False Discovery
Rate

We can encounter large scale hypothesis testing problems in many practical situa-
tions. For example, in Section “PrecisionMatrix Estimator”, we discussed to remove
edge from a fully connected graph, we need to perform p(p − 1)/2 testing problems-
Hij :ρij = 0 vs Kij :ρij �= 0. A detailed review can be found in [9].

Suppose we have N independent hypothesis H1, H2, . . . , HN to test. In such sit-
uations it is important to control not only the type I error of individual hypothesis
tests but also the overall (or combined) error rate. It is due to the fact that the proba-
bility of atleast one true hypothesis would be rejected becomes large: 1 − (1 − α)N,
where α being the level of significance, generally taken as 0.05 or 0.01. The con-
ventional way to resolve this problem is by controlling the familywise error rate
(FWER)- P(∪N

i=1H0i is rejected when it is true). One example of such is Bonferroni
correction. The problem with this procedure is that it is overly conservative and as a
consequence the power of the test will be small. A much more liberal and efficient
method for high dimension has been proposed by Benjamini and Hochberg [1]. In
Fig. 11.5, out of N hypothesis tests in N0 cases null hypothesis is true and in N1cases
null hypothesis is false. According the decision rule, in R out of N cases null hypoth-
esis is rejected. Clearly R is observed but N0 or N1are not. The following algorithm
controls the expected false discovery proportion:

1. The test statistic of H1, H2, . . . , HN yield pvalues p1, . . . , pN.
2. Order the p values p(1), . . . , p(N ).
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Fig. 11.5 False discovery
rate a/R [10]

3. Rank the hypothesis H1, H2, . . . , HN according to the pvalues.
4. Find largest j, say j∗, such that pj ≤ j

N α.
5. Reject the top j∗tests as significant.

It can be shown that if the p values are independent of each other then the rule
based on the algorithm controls the expected false discovery proportion by α, more
precisely, E(a/R) ≤ N0

N α ≤ α.

High Dimensional Regression

In financial econometrics one can often encounter multiple regression analysis prob-
lem.A large number of predictors implies large number of parameters to be estimated
which reduces the degrees of freedom. As a result prediction error will be increased.
So in high dimensional regression regularization is an essential tool.

In this section we will briefly discuss the multivariate regression problem with
q responses and p predictors, which requires estimation of pq parameters in the
regression coefficient matrix. Suppose the matrix of regressors, responses and coef-
ficient matrix are X , Y and B respectively. As we know B̂OLS = (X ′X )−1X ′Y
(under multivariate normality, this is also the maximum likelihood estimator) with
pq parameters. Estimated covariance matrix (with q(q + 1)/2 parameters) of Y is
Σ̂ = 1

n (Y − X B̂)′(Y − X B̂). When p and q are large then both these estimators
exhibits poor statistical properties. So here again, shrinkage and regularization of
B̂ would help to obtain a better estimator. It can be achieved through Reduced Rank
Regression which attempts to solve a constrained least square problem:

B̂r = argmin
B: rank(B)=r≤min(p,q)

tr[(Y − XB)′(Y − XB)]
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The solution of this constrained optimization is B̂r = (X ′X )−1X ′YHH ′ where H =
(h1, ...., hr) with hk being normalized eigenvector corresponding to the kth largest
eigenvalue of the matrix Y ′X (X ′X )−1X ′Y. Choice of r is important because this is
the parameter that balances between bias and variance of prediction.

Alternatively, a regularized estimator can be obtained by introducing a nonnega-
tive penalty function in the optimization problem:

B̂ = argminB{tr[(Y − XB)′(Y − XB)] + λC(B)}

when C is a scalar function and λ is nonnegative quantity. Most common choices
of C(B) are lp norms. C(B) = ∑

j,k |bjk | leads to lasso estimate where as C(B) =
∑

j,k b
2
jk amount to ridge regression. C(B) = α

∑
j,k |bjk | + (1−α)/2

∑
j,k b

2
jk for

α ∈ (0, 1) and C(B) = ∑
j,k |bjk |γ for γ ∈ [1, 2] are called elastic net and bridge

regression respectively. Grouped lasso with C(B) = ∑p
i=1(b

2
j1 + · · · + b2jq)

0.5

imposes group-wise penalty on the rows of B, which may lead to exclusion of some
predictors for all the responses.

All the above mentioned methods regularize the matrix B only while leaving
Σaside. Although a little more complicated, it is sometimes appropriate to regularize
both B and Σ−1. One way to do that is to adding separate lasso penalty on B and
Σ−1in the negative log likelihood:

l(B,Σ) = tr

[
1

n
(Y − XB)Σ−1(Y − XB)

]
− log|Σ−1| + λ1

∑

j′ �=j

|ωj′j| + λ2
∑

j,k

|bj,k |

whereλ1 andλ2 are as usual tuning parameter,B = ((bjk)) andΣ−1 = Ω = ((ωj′,j)).
This optimization problem is not convex but biconvex. Note that solving the above
mentioned optimization problem forΩ withB fixed atB0 reduced to the optimization
problem:

Ω̂(B0) = argmin

{
tr(Σ̂Ω) − log|Ω| + λ1

∑

i �=j

|ωij|
}

where Σ̂ = 1
n (Y − XB0)

′(Y − XB0). If we fix Ω at a non-negative definite Ω0 it will
lead to

B̂(Ω0) = argminB

{
tr

[
1

n
(Y − XB0)Ω(Y − XB0)

′
]

+ λ2

∑

j,k

|bj,k |
}

It can be shown that the original problem can be solved by using the following
algorithm prescribed by [24]-

• Fix λ1 and λ2, initialize B̂(0) = 0 and Ω̂(0) = Ω̂(B̂(0)).

– Step 1: Compute B̂(m+1) = B̂(Ω̂(m)) by solving
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argminB

{
tr

(
1

n
(Y − XB)Ω(Y − XB)

)
+ λ2

∑

j

∑

k

|bjk |
}

by coordinate descent algorithm.
– Step 2: Compute Ω̂(m+1) = Ω̂(B̂(m+1)) by solving

argmin

{
tr(Σ̂Ω) − log|Ω| + λ1

∑

i �=j

|ωij|
}

by Graphical lasso algorithm.
– Step 3: If

∑
i,j |b̂(m+1)

ij − b̂(m)
ij | < ε

∑
i,j b̂

R
ij where ((b̂Rij)) is the Ridge estimator

of B.

Principal Components

In many high dimensional studies estimates of principal component loadings are
inconsistent and the eigenvectors consists of too many entries to interpret. In such
situation regularising the eigenvectors along with eigenvalues would be preferable.
So it is desirable to have loading vectors with only a few non-zero entries. The
simplest way to achieve that is through a procedure called SCoTLASS [16]. In this
approach a lasso penalty is to be imposed on the PC loadings. So the first PC loading
can be obtained by solving the optimization problem:

maximizevvX
′X v subject to ||v||22 ≤ 1, ||v||1 ≤ c

The next PC can be obtained by imposing extra constraint of orthogonality. Note
that this is not a minimization problem and so can be difficult to solve. However the
above problem is equivalent to the following one:

maximizeu,vu
′X v subject to ||v||1 ≤ c, ||v||22 ≤ 1, ||u||22 ≤ 1

The equivalence between the two can be easily verified by using Cauchy Schwartz
inequality to u′X v and noting that equality will be achieved for u = X ′v

||X ′v||2 . The
optimization problem can be solved by the following algorithm [30]

• Initialize v to have l2 norm 1.
• Iterate until convergence

(a) u ← Xv
||Xv||2

(b) v ← s(X ′u,�)

||s(X ′u,�)||2 , where S is a soft thresholding operator, and � = 0 if the
computed v satisfies ||v||1 ≤ c; otherwise � > 0 with ||v||1 = c.
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Classification

Suppose there are n independent observations of training data (Xi, Yi), i = 1(1)n,
coming from an unknown distribution. HereYi denotes the class of the ith observation
and therefore can take values {1, 2, 3, . . . ,K} if there are K classes. X i, generally
a vector of dimension p, is the feature vector for the ith observation. Given a new
observation X, the task is to determine the class, the observation belongs to. In
other words we have to determine a function from the feature space to {1, 2, . . . ,K}.
One very widely used class of classifiers is distance based classifiers. It assigns an
observation to a class k, if the observation is closer to class k on average compared to
other classes i.e. k = argmini dist(X, μi), where μi is the center of the feature space
of class i. As an example if there are two classes and the feature distribution for the
first class is X ∼ N (μ1,Σ) and for the second class is X ∼ N (μ2,Σ) then under
the assumption that both the classes have equal prior probabilities, the most widely
used distance measure is called Mahalanobis’s distance

dist(X , μk) =
√

(X − μk)Σ−1(X − μk), k = 1, 2.

So class 1 is to be chosen when

√
(X − μ1)Σ−1(X − μ1) ≤

√
(X − μ2)Σ−1(X − μ2)

This technique is called Fisher Discriminant Analysis. For high dimensional data
Fisher Discriminant Analysis does not perform well because it involves accurate
estimation of precision matrix [2]. In the following section we will discuss some
high dimensional classification methods.

Naive Bayes Classifier

Suppose we classify the observation, with feature x, by some predetermined func-
tion δ i.e. δ(x) ∈ {1, 2, . . . ,K}. Now to judge the accuracy we need to consider
some Loss function. Amost intuitive loss function is the zero-one loss: L(δ(x),Y ) =
I(δ(x) �= Y ), where I(.) is the indicator function. Risk of δ is the expected loss-
E(L(δ(x),Y )) = 1 − P(Y = δ(x)|X = x). The optimal classifier, minimizing the
risk, is g(x) = argmaxkP(Y = k|X = x). If π be the prior probability of an obser-
vation being in class k then by Bayes Theorem P(Y = k|X = x) = π(k)P(X=x|Y=k)∑

π(k)P(X=x|Y=k) .
So g(X) = argmaxkπ(k)P(X = x|Y = k). This is called Bayes classifier. When
X is high dimensional P(X |Y ) is practically impossible to estimate. The Naive
Bayes Classifier works by assuming conditional independence: P(X = x|Y = k) =∏

i P(Xi = xi|Y = k) where Xj is the jth component of X. Naive Bayes classifier is
used in practice even when the conditional independent assumption is not valid. In
case of the previous example, under some conditions Naive Bayes classifier outper-
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forms Fisher Discriminant function as long as dimensionality p does not grow faster
than sample size n.

Centroid Rule and k-Nearest-Neighbour Rule

The centroid rule classifies an observation to kth class if its distance to the centroid
of kth class is less than that to the centroid of any other class. The merit of this
method is illustrated for K = 2. Suppose n1and n2 are fixed and p → ∞ and within
each class observations are iid. The observation of two classes can be denoted by
Z1 = (Z11,Z12, . . . ,Z1p) and Z2 = (Z21, . . . ,Z2p) respectively. With the assumption
that as p → ∞, 1

p

∑p
i=1 var(Z1i) → σ 2, 1

p

∑p
i=1 var(Z2i) → τ 2, σ 2/n1 > τ 2/n2 and

1
p

∑p
i=1[E(Z2

1i) − E(Z2
2i)] → κ2 a new observation is correctly classified with prob-

ability converging to 1 as p → ∞ if κ2 ≥ σ 2
/n1 − τ 2

/n2[15].
The k-Nearest Neighbour rule determines the class of a new observations by help

of k nearest data points from the training data. The new observation is to be assigned
to the class closest to

g(X) = 1

k

∑

i:Xi∈Nk (X)

Yi

where Nk(x) is the set k nearest points around x.

Support Vector Machine

In Bayes classifier, as we discussed, one tries to minimize
∑

i I(g(X ) �= Y ), with
respect to g(.). But it is difficult to work with as indicator function is neither smooth
nor convex. So one can think of using a convex loss function. Support vector machine
(SVM) claims to resolve that problem. Suppose for binary classification problem, Y
takes -1 and 1 to denote two classes. The SVMreplaces zero-one loss by convex hinge
lossH (x) = [1 − x]+ where [u]+ = max{0, u}, the positive part of u. The SVM tries
tominimize

∑
i H (Yig(Xi)) + λJ (g)with respect to g. Here λ is a tunning parameter

and J is a complexity penalty of g. If the minimizer is ĝ then the SVM classifier is
taken to be sign(ĝ). J (.) can be taken as L2 penalty.

It can be shown that the function minimizing E(H (Y g(X)) + λJ (g)) is exactly
sign

(
P(Y = +1|X=x) − 1

2

)
[19]. In fact instead of working with P(Y |X = x) as in

Bayes classifier SVM directly tries to estimate the decision boundary {x : P(Y =
1|X = x) = 1

2 }.
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AdaBoost

Among the recently developed methodologies one of the most important is Boost-
ing. It is a method that combines a number of ‘weak’ classifiers to form a pow-
erful ‘committee’. AdaBoost is the most commonly used boosting algorithm. An
interesting result of this algorithm is that it is immune to over-fitting i.e. the test
error decreases consistently as more and more classifiers are added. Suppose we
have two classes represented as −1 and 1 and denoted by y. We have n train-
ing data points (x1, y1), (x2, y2), . . . , (xn, yn). We want to produce a committee
F(x) = ∑M

i=1 cmfm(x) where fm is a weak classifier (with values either 1 or −1) that
predicts better than random guess. The initial classifiers fm are trained on anweighted
version of training sample giving more weight to the cases that are currently misclas-
sified. The ultimate prediction will be based on sign(F(x)). This following algorithm
is called discrete AdaBoost (as the initial classifier can take only two discrete values
+1 and −1) [13].

Discrete AdaBoost Algorithm:

1. Start with weights wi = 1/n for i = 1(1)n
2. Repeat for m = 1(1)M :

a. Fit the classifier fm(x) ∈ {−1, 1} with weights wi on training data.
b. Compute error em = Ew[I(y �=fm(x))], where Ew is the expectation over the train-

ing data with weights w = (w1,w2, . . . , wn) and I(.) is an indicator function.
c. cm = log( 1−em

em
).

d. Set wi ← wiexp[cmI(yi �=fm(xi))] for i = 1, 2, . . . , n and then renormalize to get∑
i wi = 1.

3. Final classifier: sign(
∑M

m=1 cmfm(x))

The base classifier (fm(.)) of Discrete AdaBoost algorithm is binary. It can be gener-
alized further to obtain a modification over discrete AdaBoost algorithm.

Real AdaBoost Algorithm:

1. Start with weights wi = 1/n for i = 1(1)n.
2. Repeat for m = 1(1)M :

a. Fit the classifier to obtain the class probability estimate pm(x) = P̂w(y =
1|x) ∈ [0, 1], with weights w = (w1, w2, . . . , wn) on the training data.

b. Set fm(x) ← 1
2 log(pm(x)/(1 − pm(x))) ∈ R.

c. Set wi ← wiexp[−yifm(xi)], i = 1, 2, .., n and renormalize so that∑
i wi = 1.

3. Finale classifier sign[∑m fm(x)].
It can be shown that AdaBoost method of classification is equivalent to fitting an
additive logistic regression model in a forward stagewise manner [13].
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Concluding Remarks

With the availability of high dimensional economic and financial data many classical
statistical methods do not perform well. We have discussed some of the commonly
encountered problems related to inference for high dimensional financial data. In
many of the approaches significant improvement can be achieved by bias variance
trade off. Some feasible solutions to the problems and some efficient algorithms
are discussed. It is to be noted that there are many other challenges related to high
dimensional data. Some solutions have been proposed based on simulation studies
without desired theoretical justifications.
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Chapter 12
Modeling Nelson–Siegel Yield Curve
Using Bayesian Approach

Sourish Das

Abstract Yield curve modeling is an essential problem in finance. In this work,
we explore the use of Bayesian statistical methods in conjunction with Nelson–
Siegel model. We present the hierarchical Bayesian model for the parameters of the
Nelson–Siegel yield function.We implement theMAPestimates viaBFGS algorithm
in rstan. The Bayesian analysis relies on the Monte Carlo simulation method. We
perform the Hamiltonian Monte Carlo (HMC), using the rstan package. As a
by-product of the HMC, we can simulate the Monte Carlo price of a Bond, and
it helps us to identify if the bond is over-valued or under-valued. We demonstrate
the process with an experiment and US Treasury’s yield curve data. One of the
interesting observation of the experiment is that there is a strong negative correlation
between the price and long-term effect of yield. However, the relationship between
the short-term interest rate effect and the value of the bond is weakly positive. This is
because posterior analysis shows that the short-term effect and the long-term effect
are negatively correlated.

Introduction

In financial applications, accurate yield curve modeling is of vital importance.
Investors follow the bond market carefully, as it is an excellent predictor of future
economic activity and levels of inflation, which affect prices of goods, stocks and real
estate. The ‘yield curve’ is a curve showing the interest rates across different maturity
spans (1 month, one year, five years, etc.) for a similar debt contract. The curve illus-
trates the relationship between the interest rate’s level (or cost of borrowing) and the
time to maturity, known as the ‘term.’ It determines the interest rate pattern, which
you can use to discount the cash flows appropriately. The yield curve is a crucial
representation of the state of the bond market. The short-term and long-term rates
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are usually different and short-term is lower than the long-term rates. The long-term
rates are higher since the risk is more in long-term debt. The price of long-term bond
fluctuates more with interest rate changes. The ‘term structure’ tells us, at a given
time, how the yield depends on maturity. The most important factor in the analysis of
the fixed-income asset is the yield curve. Any analysis of the fixed-income attribution
requires evaluating how changes in the curve are estimated, and its impact on the
performance of a portfolio. Some form of mathematical modeling of the yield curve
is necessary, as it explains the curve’s movement to extrapolate.

The slope of the yield curve is an essential indicator of short-term interest rates
and is followed closely by investors [15]. As a result, this has been the center of
significant research effort. Several statistical methods and tools, commonly used in
econometrics andfinance, are implemented tomodel the yield curve (see for example,
[5, 9, 14, 20]). The [14] introduces a parametrically parsimonious model for yield
curves that has the ability to represent the shapes generally associated with yield
curves; monotonic, humped andS -shaped.

Bayesian inferencewas applied toDynamicNelson–SiegelModelwith Stochastic
Volatility which models the conditional heteroscadasticity [11]. Bayesian inference
for the stochastic volatility Nelson–Siegel (SVNS) model was introduced by [16].
This models the stochastic volatility in the underlying yield factors. Bayesian exten-
sions toDiebold-Li term structuremodel involve the use of amore flexible parametric
form for the yield curve [13]. It allows all the parameters to vary in time using a struc-
ture of latent factors, and the addition of a stochastic volatility structure to control
the presence of conditional heteroskedasticity observed in the interest rates.

TheNelson–Selgel class of functions that produces the standard yield curve shapes
associated with solutions to differential equations. If a differential equation produces
the spot rates, then forward rates, being forecasts, will be the solution to the equations.
Hence, the expectations theory of the term structure of the interest rates motivate
investigating the Nelson–Siegel class. For example, if the immediate forward rate
at maturity τ , denoted r(τ ), is given by the solution to a second-order differential
equation, with real and unequal roots, then we have

r(τ ) = β0 + β1. exp(−τ/λ) + β2.[(τ/λ). exp(−τ/λ)].

The yield to maturity on a bond, denoted by μ(τ), is average of the forward rates

μ(τ) = 1

τ

∫ τ

0
r(τ )dτ,

the resulting function is popularly known as the Nelson–Siegel function [14], which
has the form

μ(τ) = β0 + (β1 + β2)

{
1 − exp(−τ/λ)

τ/λ

}
− β2 exp

{
− τ

λ

}
, (12.1)
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where

• β0 is known as the long-run interest rate levels,
• β1 is the short-term effect,
• β2 is the midterm effect,
• λ is the decay factor.

The small value of λ leads to slow decay and can better fit the curve at longer
maturities. Several literature [5, 9, 14, 20] reports that the model explains more
than 90% variations in yield curve. The movement of the parameters through time
reflects the change in themonetary policy of Federal Reserve and hence the economic
activity. The high correlation indicates the ability of the fitted curves to predict the
price of long term US Treasury bond. Estimations and statistical inference about the
parameters are extremely important, as each parameter space θ = (β0, β1, β2, λ) of
the model (12.1), has its own economic interpretation. In this chapter, we discuss a
Bayesian approach for the estimation of the yield curve and further inference.

Why Bayesian Method?

The Bayesian methods provides a consistent way of combining the prior information
with data,within the decision theoretical framework.We can include past information
about a parameter or hypothesis and form a prior distribution for the future analysis.
When new observations become available, the previous posterior distribution can
be used as the prior distribution. This inferences logically follow from the Bayes?
theorem. The Bayesian analysis presents inferences that are conditional on the data
and are exact, without dependence on asymptotic approximation. When the sample
size is small, the inference proceeds in the same way, as if one had a large sample.
The Bayesian analysis can estimate any functions of parameters directly, without
using the ‘plug-in’ method.

In Bayesian inference, probability represents the degree of belief. In frequentist
statistics, the probability means the relative frequency of an event. Therefore the
frequentist method cannot assign the probability to a hypothesis (which is a belief),
because a hypothesis is not an event characterized by a frequency. Instead, frequentist
statistics can only calculate the probability of obtaining the data of an event, assuming
a hypothesis is true. Therefore the Bayesian inference can calculate the probability
that a hypothesis is valid, which is usually what the researchers want to know. By
contrast, the frequentist statistics calculate the p-value, which is the probability
of the more extreme data to obtain under the assumption that the null hypothesis
is true. This probability, P(data|null hypothesis is true), usually does not equal the
probability that the null hypothesis is surely true.

Frequentist statistics has only one well-defined hypothesis—the null hypothe-
sis and alternate hypothesis is simply defined as the ‘null hypothesis’ is wrong.
However, the Bayesian method can have multiple well-defined hypotheses. The fre-
quentist methods transform the data into a test statistics and the p-value, then com-
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pares this value to an arbitrarily determined cutoff value and employs the decision-
making approach to judge the significance, for example, reject the null hypothesis (or
not reject) based on whether p < α, where 0 < α < 1. The best way to do frequen-
tist analysis would be to determine the sample size n before you start collecting the
data. In Bayesian methods, because the probabilities represent the degrees of belief,
it allows more nuanced and sophisticated analyses. We can calculate likelihoods and
posterior probabilities for multiple hypotheses.We can enter data as we collect them;
then update the degrees of belief so that we worry less about the arbitrary cut-off
values. It makes sense to choose a hypothesis with maximum posterior probabil-
ity, out of multiple hypotheses and not to worry about the arbitrary single value of
significance. We can also do useful and straightforward analysis such as marginal-
izing over nuisance parameters, calculating likelihood ratio, or Bayes factor etc. In
Bayesian methods, probability calculation follows the axiomatic foundation of the
probability theory (e.g., the sum and product rules of the probability). By contrast,
inferential frequentist method uses a collection of different test procedures that are
not necessarily obtained from a coherent, consistent basis.

Having said that one should be aware of some possible disadvantages with the
Bayesian methods. The prior distributions are often difficult to justify and can be a
significant source of inaccuracy. There can be too many hypotheses, which may lead
to the low posterior probability of each hypothesis, making the analysis sensitive to
the choice of the prior distribution. The analytical solutions can be difficult to derive.
Analytical evaluation of posterior inference can be intensive; but we can bypass this
by using the state of the art Monte Carlo methods.

Bayesian Approach to Modeling

Bayesian approach to the statistical modeling follows three steps. First, we define the
likelihood model, also known as the data model in some machine learning literature.
In the second step, we describe the prior distributions, and the third step follows to
obtain the posterior distribution model via Bayes theorem. Once we get the posterior
model, all the Bayesian statistical inferences and predictions can be carried out based
on the posterior model.

Prior Distribution

The prior probability distribution of an unknown parameter is the probability dis-
tribution that would express analysts beliefs about the quantity before any evidence
is taken into consideration. We can develop a prior distribution, using a number of
techniques [4] describe below.

1. We can determine a prior distribution, from past data, if historical data exits.
2. We can elicit prior distribution, from the subjective assessment of an experienced

expert in the domain. For example if an expert believe that long-term interest rate
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will never be more than 4%, then that can be used to define the prior distribution
for β0.

3. When no information is available, we can create an uninformative prior distribu-
tion to reflect a balance among outcomes.

4. The prior distribution can also be chosen according to some objective principle,
such as the maximizing entropy for given constraints. For examples: the Jeffreys
prior or Bernardo’s reference prior. These priors are often known as the objective.

5. If the family of conjugate priors exists, then considering a prior from that family
simplifies the further calculation.

Prior for Interest Rate Levels

In the Nelson–Siegel model as described in (12.1), the three interest rate parameters
are: (i) β0 is the long-run interest rate levels, (ii) β1 represents short-term interest
rate and (iii) β2 represents medium-term interest rate. It is very rare that interest
rate is negative. In fact, many argue if interest rate becomes negative then financial
system collapse. So all practical purposes, we can assume that interest rates are
positive and we can assume a prior probability distribution with its support only on
the positive side of the real line. For example we can assume the inverse-gamma
probability distribution over {β0, β1, β2}. The fourth parameter of the model is the
decay parameter λ, and it is natural to assign a prior distribution, the support of
which is positive. Question iswhatwould be a practical parameter value of the inverse
gammaprior distribution?One choice could be theInverge-Gamma(a=1,b=1).
The reason for such choice is if a≤ 1, then the moments of the Inverge-Gamma
distribution does not exist. If one does not have the idea about the mean and variance
of the parameters, then such choice of prior could be used. Having said that one could
check the P[0 ≤ β ≤ 30] ≈ 0.97, that is the prior belief; and there is 97% chance
that interest rates are below 30%. Such kind of probabilistic statement conveys a
vague idea about the possible values of interest rate. We assumes that in the prior
distributions the parameters are exchangeable and the there is no dependence among
the parameters. So the first prior distribution we consider is

π(β0, β1, β2, λ, σ ) = π(β0)π(β1)π(β2)π(λ)π(σ ),

where β0, β1, β2, λ, σ ∼ Inverge-Gamma(a=1,b=1).
In the history of finance, the negative yield is though rare, it has occurred. There-

fore it would be wise to consider an alternative model, which allows negative effect
on yield. Therefore we consider Normal(μβ, σβ ) prior distribution over the inter-
est rate and Inverge-Gamma(a=1,b=1) over the σβ , which models the scaling
effect of the interest rate. Such kind of model is also known as the hierarchical
Bayes model. The detail of the second model presented as Model 2 in the Table
12.1. Besides, we considered a slight variation of the Model 2 and named it as the
Model 3. In theModel 3, we considered Inverge-Gamma(a=0.1,b=0.1) over
the {λ, σ, σβ}.
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Table 12.1 Three different prior distributions for Nelson–Siegel Model. Note second and third
model allow negative effect over yield on prior distributions

Description

Model 1 (β0, β1, β2, λ, σ ) ∼ Inverge-Gamma(a=1,b=1)

Model 2 (β0, β1, β2) ∼ Gaussian(0, σβ )
(λ, σ, σβ) ∼ Inverge-Gamma(a=1,b=1)

Model 3 (β0, β1, β2) ∼ Gaussian(0, σβ )
(λ, σ, σβ) ∼ Inverge-Gamma(a=0.1,b=0.1)

Likelihood Function

Now we discuss one of the most important concept of Statistics, known as the
‘likelihood’. Note that both frequestist and Bayesian statistics agrees that there has
to be a data model or likelihood function to do any statistical inference. In order to
understand the concept of the likelihood function, we consider a simple example.

Example
Suppose y is the number insurance claims that follow Poisson distribution

P(Y = y) = e−λ λy

y! , y = 0, 1, 2, . . . ; 0 < λ < ∞,

and in the dataset we have only one data points and that is Y = 5. We don’t have
any idea about λ. Different values of λ will result into different values of P[Y = 5].
Note that P[Y = 5|λ = 3] denotes the probability of Y = 5, when λ = 3. Here we
compare the probabilities for different values of λ,

P[Y = 5|λ = 3] = e−3 3
5

5! ≈ 0.101,

P[Y = 5|λ = 4] = e−4 4
5

5! ≈ 0.156,

P[Y = 5|λ = 5] = e−5 5
5

5! ≈ 0.175,

P[Y = 5|λ = 6] = e−6 6
5

5! ≈ 0.161,

P[Y = 5|λ = 7] = e−7 7
5

5! ≈ 0.128.

We can conclude that λ = 5 justifies the data almost 75% better than λ = 3. That is
because if the value of λ is close to 5 then the the likelihood of the seeing the data
‘Y = 5’ is much higher than when λ = 3, 4, 6 or 7.

The model for the given data is presented as a function of the unknown parameter
λ, is called likelihood function. The likelihood function can be presented as
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Fig. 12.1 The plot shows
the most likely value of an
unknown parameter λ, which
generates the data Y = 5.
The y-axis represents the
likeliness of seeing the data
Y = 5 for different possible
values of λ. The curve is
known as the likelihood
curve

l(λ|Y = 5) = p(5|λ).

However, in reality we typically have themultiple observations like y = {y1, y2, . . . ,
yn}. Then of course we have to look into the joint probability models of y. The
likelihood function for such model would be

l(θ |y1, y2, . . . , yn) = p(Y1 = y1, . . . ,Yn = yn|θ),

where θ is parameters of the model and θ could be scalar or vector, depending on
the model (Fig. 12.1).

Likelihood Function for Nelson–Siegel Model

The Nelson–Siegel function is believed to be the model which explain the behaviour
of the yield curve rate. Now it is expected there will be some random shock or
unexplained error in the observed rate. Hence the expected data model would be

yi (τ j ) = μi (τ j ) + ei j , (12.2)

where

μi (τ j ) = β0 + (β1 + β2)

{
1 − exp(−τ j/λ)

τ j/λ

}
− β2 exp

{
− τ j

λ

}
,

j = 1, 2, . . . ,m, i = 1, 2, . . . , n, and ei j
i.i.d∼ N (0, σ 2). Note that in the data model

(12.2), it is the error or unexplained part which is stochastic or random. The assump-
tion of the independent and identically distributed (aka. i.i.d) error provides us to
assume that each observations yi j independently follow
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yi (τ j )
indep∼ N

(
μi (τ j ), σ

2
)
.

The likelihood function of the Nelson–Siegel function can be modeled as

l(D |θ) =
n∏

i=1

m∏
j=1

p
(
μi (τ j ), σ

2
)
, (12.3)

where θ = (β0, β1, β2, λ, σ 2) is the parameter vector needs to be estimated and
p(.) is the probability density function (pdf) of the Gaussian distribution,
D = {y11, . . . , ynm, τ1, . . . , τm} is the data or evidence.

Posterior Distribution

The posterior probability distribution of unknown parameters, conditional on the data
obtained from an experiment or survey. The “Posterior,” in this context, means after
taking into account the relevant data related to the particular study. The posterior
probability of the parameters θ given the data D is denoted as p(θ |D). On the con-
trary, the likelihood function is the probability of the evidence given the parameters
is denoted as the l(D |θ). The concepts are related via Bayes theorem as

p(θ |D) = l(D |θ) p(θ)∫
Θ
l(D |θ) p(θ) dθ

= l(D |θ) p(θ)

p(D)
. (12.4)

There are two points to note.

• The denominator of the (12.4), is free of θ . Therefore, often the posterior model
is presented as proportion of likelihood times prior, i.e.,

p(θ |D) ∝ l(D |θ) p(θ).

• The integration of the in the denominator of (12.4) is high-dimensional integration
problem. For example, in theModel 2 of the Table 12.1, there are six parameters in
the θ , i.e., θ = {β0, β1, β2, λ, σ, σβ}. So the integration will be a six-dimensional
integration problem.

• Since having an analytical solution of the six-dimensional integration problem is
almost impossible; we resort to Monte Carlo simulation methods.
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Posterior Inference

In Bayesian methodology, the posterior model for the parameter θ , contains all the
information. However, that is toomuch information to process. Hencewe look for the
summary statistics of the posterior probability distribution. The Bayesian estimation
methods consider the measurements of central tendency of the posterior distribution
as the representative value of the parameter. The measures are:

• PosteriorMedian: For one-dimensional problems, an uniquemedian exists for the
real valued parameters. The posterior median is also known as the robust estimator.
If

∫
R
p(θ | D) < ∞, then posterior median θ̃ is

P(θ ≤ θ̃ | D ) =
∫ θ̃

−∞
p(θ | D) dθ = 1

2
. (12.5)

The posterior median is Bayes estimator under squared error loss function [2].
• Posterior Mean: If there exists a finite mean for the posterior distribution, then
we can consider the posterior mean as the estimate of the parameter, i.e.,

θ̂ = E(θ | D ) =
∫

Θ

θp(θ | D) dθ. (12.6)

The posterior mean is Bayes estimator under squared error loss function [2].
• Posterior Mode: The mode of the posterior distribution, also known as the max-
imum a posteriori probability (MAP) estimate,

θ̄ = argmax
Θ

p(θ | D ). (12.7)

The posterior mode is Bayes estimator under Kullback–Leibler type loss function
[8].

Note that the posterior mean and the posterior median is an integration problem and
the posterior mode is an optimization problem.

Posterior Analysis of US Treasury Yield Data

Here we present the Bayesian posterior analysis of the Nelson–Siegel model (12.1),
with three different prior distributionmodels, presented in the Table 12.1.Weworked
all computational issues using the rstan package in R statistical software. In this
analysis, considered only six days of data (from May 01, 2018 to May 08, 2018)
presented in theTable 12.2.Note that the purpose of this toy analysis is to demonstrate
how the Bayesian analysis works!
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Table 12.2 US treasur yield curve rate ove first six business days of May 2018. [22]

Date 1 Mo 3 Mo 6 Mo 1 Yr 2 Yr 3 Yr 5 Yr 7 Yr 10 Yr 20 Yr 30 Yr

05/01/18 1.68 1.85 2.05 2.26 2.50 2.66 2.82 2.93 2.97 3.03 3.13

05/02/18 1.69 1.84 2.03 2.24 2.49 2.64 2.80 2.92 2.97 3.04 3.14

05/03/18 1.68 1.84 2.02 2.24 2.49 2.62 2.78 2.90 2.94 3.02 3.12

05/04/18 1.67 1.84 2.03 2.24 2.51 2.63 2.78 2.90 2.95 3.02 3.12

05/07/18 1.69 1.86 2.05 2.25 2.49 2.64 2.78 2.90 2.95 3.02 3.12

05/08/18 1.69 1.87 2.05 2.26 2.51 2.66 2.81 2.93 2.97 3.04 3.13

Fig. 12.2 Fitted Nelson Siegel yield curve with the three prior models described in Table 12.1.
The fitted yield curve with the prior model 1 is unrealistic, indicates undesirable prior distribution.
The fitted yield curve with prior model 2 and 3 show an excellent fit to data

The Fig. 12.2, exhibit the fitted Nelson Siegel yield curve with the three different
prior distributions illustrated in Table 12.1. The fitted yield curve with the prior
model 1 is unrealistic, indicates an unsatisfactory prior distribution. The fitted yield
curve with prior model 2 and 3 show an excellent fit to data. The MAP estimates
for the Nelson–Siegel parameters is presented in the Table 12.3, with the three prior
distributions in Table 12.1. In case of the model 1, the long-run effect β0 for the
prior model 1, is less than the medium-term effect β2, makes the prior model 1
an undesirable. The similar MAP estimates of the Nelson–Siegel parameters for
model 2 and 3 indicates robust posterior analysis, in spite of differences in the prior
parameters.

As we see the model 1 is really undesirable, hence we drop this model from
the further discussion and we only focus our discussion on the hierarchical model
considered in model 2 and 3. Having said that one must note that the Bayesian
methodology is not a magic bullet. A poorly chosen prior distribution may lead
to an undesirablemodel. TheMonte Carlo estimates of the posteriormean, standard
deviation, median, 2.5 and 97% quantile of the Nelson–Siegel parameters under the
prior distribution model 2 and 3, under Table 12.4.
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Table 12.3 TheMAP estimates for the Nelson–Siegel parameters, with the three prior distributions
in Table 12.1. Note that the long-run effect β0 for the prior model 1, is less than the medium-term
effect β2, makes the prior model 1 an undesirable. The similar MAP estimates of the Nelson–Siegel
parameters for model 2 and 3 indicates robust posterior analysis, in spite of differences in the prior
parameters

β0 β1 β2 λ σ σβ

Model 1 1.639 0.255 4.831 9.052 0.143 −
Model 2 3.111 −1.440 −0.016 0.950 0.043 1.636

Model 3 3.111 −1.440 −0.012 0.954 0.036 1.705

Table 12.4 Monte Carlo estimates of the posterior mean, standard deviation, median, 2.5 and 97%
quantile of the Nelson–Siegel parameters under model 2 and 3

Parameters Model Mean sd 2.5% Median 97.5%

β0 m2 3.11 0.01 3.08 3.11 3.14

m3 3.11 0.01 3.09 3.11 3.13

β1 m2 −1.44 0.02 −1.47 −1.44 −1.40

m3 −1.44 0.01 −1.47 −1.44 −1.41

β2 m2 0.00 0.16 −0.33 0.00 0.32

m3 0.01 0.14 −0.27 0.01 0.27

λ m2 0.97 0.12 0.76 0.96 1.23

m3 0.97 0.10 0.79 0.97 1.18

σ m2 0.05 0.00 0.04 0.05 0.06

m3 0.04 0.00 0.03 0.04 0.05

σβ m2 2.32 1.18 1.11 2.02 5.43

m3 2.70 1.81 1.13 2.21 7.36

lp m2 155.84 1.82 151.57 156.18 158.32

m3 177.40 1.80 173.18 177.72 179.87

We present the US Treasury yield curve data in the Fig. 12.3, and present theMAP
estimate of the Nelson–Siegel parameters in the Fig. 12.4. We present the scatter plot
of the dailyMAPvalues ofβ0 andβ1 ofNelson–SiegelModel in theFig. 12.5.Theplot
indicates a negative relationship between the long and short-term effect. However,
we assume independence among all the parameters in the prior distribution.

Dynamic Nelson–Siegel Model

The Dynamic Nelson–Siegel (DNS) model [5, 9, 14] for yield curve can be
presented as
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Fig. 12.3 US Tresury’s yield rate (from 02-Oct-2006 to 08-May-2018) presented in six panels.
Subtitle of each panel state the yield rate corresponding to the ‘time to maturity’. The x-axis present
the years and y-axis represent the yield rate

Fig. 12.4 The MAP estimates of the Nelson–Siegel Parameters from the US treasury yield data
[22] and presented in the Fig. 12.3

yt (τ j ) = β1t + β2t

(
1 − exp{−τ j/λ}

τ j/λ

)
+ β3t

(
1 − exp{−τ j/λ}

τ j/λ
− exp{−τ j/λ}

)
+ εt (τ j ),

εt (τ j ) ∼ N (0, σ 2
ε ),

βi t = θ0i + θ1iβi,t−1 + ηi , i = 1, 2, 3, ηi ∼ N (0, σ 2
η ), t = 1, 2, . . . , T, j = 1, 2, . . . ,m,

where yt (τ ) is the yield for maturity τ (in months) at time t . The three fac-
tors β1t , β2t and β3t are denoted as level, slope and curvature of slope respec-
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Fig. 12.5 Scatter plot of
daily MAP values of β0 and
β1 of Nelson–Siegel Model.
The plot indicates a negative
relation between the two
parameters. However, we
assume independence among
all the parameters in the prior
distribution

tively. Parameter λ controls exponentially decaying rate of the loadings for the
slope and curvature. The goodness-of-fit of the yield curve is not very sensitive
to the specific choice of λ [14]. Therefore [5] chose λ to be known. In practice,
λ can be determined through grid-search method. There are eight static parame-
ters θ = (θ01, θ02, θ03, θ11, θ12, θ13, σ

2
ε , σ 2

η ) in the model. In matrix notation the DNS
model can be presented as

β t = θ0 + Zβ t−1 + ηt , (12.8)

yt = φβ t + εt , (12.9)

where yt =

⎛
⎜⎜⎝

yt (τ1)
yt (τ2)

...

yt (τm)

⎞
⎟⎟⎠

m×1

, φ =

⎛
⎜⎜⎝
1 f1(τ1) f2(τ1)
1 f1(τ2) f2(τ2)
...

...
...

1 f1(τm) f2(τm)

⎞
⎟⎟⎠

m×3

, β t =
⎛
⎝β0t

β1t

β2t

⎞
⎠

3×1

, εt =

⎛
⎜⎜⎝

ε1
ε2
...

εm

⎞
⎟⎟⎠

m×1

, such that f1(τ j ) = ( 1−exp{−τ j/λ}
τ j/λ

)
and f2(τ j ) = ( 1−exp{−τ j/λ}

τ j/λ
−

exp{−τ j/λ}), j = 1, 2, . . . ,m, θ0 =
⎛
⎝ θ01

θ02
θ03

⎞
⎠ and Z =

⎛
⎝ θ11 0 0

0 θ12 0
0 0 θ13

⎞
⎠. Note that

εt ∼ Nm(0, σ 2
ε Im) and ηt ∼ N3(0, σ 2

η I3). Note that (12.8) is system equation and
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(12.9) is observation equation. If available, we can use the generalized linear models
(GLM) to incorporate any additional predictor variable, see [6, 7].

Relation Between DNS Model and Kalman Filter

The term “Kalman filter” refers to recursive procedure for inference. A beautiful
tutorial paper on the same was written by [12]. The key notion here is that given the
data Y t = ( yt , yt−1, . . . , y1) inference about β t and prediction about yt+1 can be
carried via Bayes theorem, which can be expressed as

P(β t |Y t ) ∝ P( yt |β t ,Y t−1) × P(β t |Y t−1). (12.10)

Note that the expression on the left of Eq. (12.10) is the posterior distribution of β

at time t , whereas the first and second expression on the left side of (12.10) is the
likelihood and prior distribution of β, respectively. At t − 1, our knowledge about
β t−1 is incorporated in the probability statement for β t−1:

(β t−1|Y t−1) ∼ N3(β̂ t−1,Σt−1), (12.11)

where β̂ t−1 and Σt−1 are the expectation and the variance of (β t−1|Y t−1). In effect,
(12.11) is the posterior distribution of β t−1. We now look forward to time t in two
steps.

1. prior to observing yt ,
2. posterior or after observing yt , and
3. inference about y∗

t at maturity τ ∗.

Step 1: Prior to observing yt , our best choice for β t is governed by the system
Eq. (12.8) and is given as θ0 + Zβ t−1 + ηt . Since β t−1 is describe in (12.11), there-
fore

(β t |Yt−1) ∼ N3(θ0 + Zβ̂ t−1 , Rt = ZΣt−1ZT + σ 2
η I3) (12.12)

is the prior distribution of β at time t . In obtaining (12.12) we use the result for any
constant B,

X ∼ N(μ,Σ) =⇒ a + BX ∼ N(a + Bμ, BΣBT ).

Step 2:Onobserving yt , our objective is to obtain the posteriorβ t using (12.10).How-
ever, to do this, we need the likelihood L (β t |Y t ), or equivalently P( yt |β t ,Y t−1).
Let et is the error in predicting yt from previous time point t − 1; thus

et = yt − ŷt = yt − φθ0 − φZβ̂ t−1. (12.13)
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Since, φ, Z, θ0 and β̂ t−1 are known, observing yt is equivalent to observing et .
Therefore (12.10) can be expressed as:

P(β t | yt ,Y t−1) = P(β t |et ,Y t−1) ∝ P(et |β t ,Y t−1) × P(β t |Y t−1),

whereP(et |β t ,Y t−1) is the likelihood.Using the fact that yt = φβ t + εt , (12.13) can
be expressed as et = φ(β t − θ0 − Zβ̂ t−1) + εt , so that E(et |β t ,Y t−1) = φ(β t −
θ0 − Zβ̂ t−1). Since, εt ∼ Nm(0, σ 2

ε Im), it follows the likelihood as

(et | β t ,Y t−1) ∼ Nm(φ(β t − θ0 − Zβ̂ t−1) , σ 2
ε Im). (12.14)

Now in order to find the posterior, we use the standard result of the Gaussian distri-
bution ([1], pp. 28–30). If X1 ∼ N (μ1,Σ11) and

(X2|X1 = x1) ∼ N (μ2 + Σ21Σ
−1
11 (x1 − μ1) , Σ22 − Σ21Σ

−1
11 Σ12), (12.15)

then
(
X1

X2

)
∼ N

[(
μ1

μ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
. (12.16)

In our case, lets consider X1 ⇐⇒ β t and X2 ⇐⇒ et . Since (β t |Yt−1) ∼ N3(θ0 +
Zβ̂ t−1 , Rt ), we note that

μ1 ⇐⇒ θ0 + Zβ̂ t−1 and Σ11 ⇐⇒ Rt .

If in (12.15), we replace X1,X2,μ1 andΣ11 byβ t , et , θ0 + Zβ̂ t−1 and Rt respectively
and compare the result (12.14), then

μ2 + Σ21R
−1
t (β t − θ0 − Zβ̂ t−1) ⇐⇒ φ(β t − θ0 − Zβ̂ t−1),

so that μ2 ⇐⇒ 0 and Σ21 ⇐⇒ φRt ; following the same method

Σ22 − Σ21Σ
−1
11 Σ12 = Σ22 − φRtφ

T ⇐⇒ σ 2
ε Im,

so that Σ22 ⇐⇒ φRtφ
T + σ 2

ε Im . Under the result (12.15) and (12.16) the joint
distribution of β t and et , given Y t−1 can be described as

(
β t

et

∣∣∣∣Y t−1

)
∼ N

[(
θ0 + Zβ̂ t−1

0

)
,

(
Rt RT

t φT

φRt φRtφ
T + σ 2

ε Im

)]
.

So we have the posterior distribution of β t at time point t is

(β t |Y t ) = (β t |et ,Y t−1) ∼ N(β̂ t ,Σt ),
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where

β̂ t = E(β t |Y t ) = θ0 + Zβ̂ t−1 + RT
t φT [φRtφ

T + σ 2
ε Im]−1et , (12.17)

and
Σt = Rt − Rtφ

T [φRtφ
T + σ 2

ε Im]−1φRt .

Step 3: Now in order to predict yield at a new maturity point(s) τ ∗ we can simply
plug-in β̂ t in observation Eq. (12.9), i.e.,

ŷt (τ
∗) = φ(τ ∗)β̂ t . (12.18)

Gaussian Process Prior

The Gaussian process prior for DNS is presented by [18]. This can be accomplished
very easily by introducing a random component in observation Eq. (12.9). The mod-
ified observation equation is

yt = φβ t + Wt (τ ) + εt ,

where yt , φ, β t and εt are defined as in (12.9) and Wt (τ ) ∼ Nm(0,K), where K =
ρ(τ, τ ′). Following the structure of the GP model [17], at time point t is

ft ∼ Nm
(
φβ t ,K

)
, εt ∼ Nm(0, σ 2

ε Im)

yt ∼ Nm(φβ t ,K + σ 2
ε Im). (12.19)

We consider the same system equation as (12.8). Since the system equation is
same, therefore step 1 and 2 for DNS with the Gaussian process prior would be same
as in the section “Relation Between DNS Model and Kalman Filter”.

Marginal Likelihood

It will be useful to compute the probability that DNS with a given set of parameters
(prior distribution, transition and observation models) would produce an observed
signal. This probability is known as the ‘marginal likelihood’ because it integrates
out the hidden state variables β t , so it can be computed using only the observed data
yt . The marginal likelihood is useful to estimate different static parameter choices
using Bayesian computation technique.

It is easy to estimate the marginal likelihood as a side effect of the recursive
filtering calculation. By the chain rule, the likelihood can be factored as the product
of the probability of each observation given previous observations,
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p(Y |θ) =
T∏
t=0

p( yt | yt−1, yt−2, . . . , y0, θ)

and because the Kalman filter describes a Markov process, all relevant information
from previous observations is contained in the current state (β t |Y t−1). Note that θ is
the static parameter(s). Thus the marginal likelihood is given by

p(Y T |θ) =
T∏
t=0

p( yt |Y t−1, θ)d yt

=
T∏
t=0

∫
p( yt |β t )p(β t |Y t−1)dβ t

consider the likelihood (12.19) and prior at time t (12.12)

=
T∏
t=0

∫
Nm( yt ;φβ t , K̃)N3(β t ; β̂ t |t−1 , Rt )dβ t

where K̃ = K + σ 2
ε Im and β̂ t |t−1 = θ0 + Zβ̂ t−1

=
T∏
t=0

Nm( yt ;φβ̂ t |t−1, K̃ + φRtφ
T ),

=
T∏
t=0

Nm( yt ;φβ̂ t |t−1, St ), whereSt = K̃ + φRtφ
T

i.e., product ofmultivariate normal densities. This can easily be calculated as a simple
recursive update. However, to avoid numeric underflow, it is usually desirable to
estimate the log marginal likelihood l = log p(Y T |θ). We can do it via recursive
update

l(t) = l(t−1) − 1

2

{
ln |St | + m ln 2π + ( yt − φβ̂ t |t−1)S

−1
t ( yt − φβ̂ t |t−1)

T
}
.

Note that computation of S−1
t involves the complexity of O(n3), where n is the

number of data point. For fast GP regression, see [19].

Computational Issues

In general, it is impossible to obtain explicit analytical form for MAP (12.7), poste-
rior mean (12.6), or posterior median (12.5). This implies that we have to resort to
numerical methods, such as the Monte Carlo, or optimization subroutine. We imple-
ment the optimization for MAP estimates using the BFGS method. This method has
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the time complexity of O(p2) per iteration where p is the number of parameters.
The order of convergence for BFGS method is super-linear.

We implement the posterior mean, posterior median, via the Hamiltonian Monte
Carlo (HMC) algorithm for hierarchical models [3, 10], using the rstan software
[21]. The rstan can also implement the BFGS optimization method.

Monte Carlo Pricing of Bond

An interesting by-product of the Monte Carlo method is it helps us to estimate the
theoretical price of a bond. We know the price of a bond is a non-linear function of
the yield curve. That is

P = f
(
Y (τ, θ)

)
, (12.20)

where P is the price of the bond and Y (τ ) is the yield curve modeled by the Nelson–
Siegel function (12.1). Suppose {θ∗

1 , θ∗
2 , . . . , θ∗

M} are the Monte Carlo simulation of
the θ in (12.1). Then we can plug-in each of the θ∗

i in the pricing Eq. (12.20) and we
can get theMonteCarlo price {P∗

i | i = 1, 2, . . . , M}, whereM is the simulation size.
Now we can estimate the posterior mean, median and 100 × (1 − α)% confidence
interval for the price of the bond. If Pl is the lower bound and Pu is the upper bound
of the interval, and if the ‘traded price’ is below the Pl then that will indicate that the
bond is undervalued. Similarly, if the ‘traded price’ is above the Pu , then that will
indicate that the bond is overvalued.

Fig. 12.6 Histogram of
5000 Monte Carlo price of
the bond
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Table 12.5 Posterior summary of bond price

Posterior mean Posterior median 95% Posterior confidence interval

806.01 806.01 (803.59, 808.46)

Fig. 12.7 Relationship between the Monte Carlo price of the bond and the parameters of the
Nelson–Siegel model. We can see the strong negative correlation between the price and long-term
effect of yield, i.e., β0 and a weak positive correlation between short-term interest rate effect β1
and the value of the bond

Experiment: We demonstrate the concept with a simple experiment. Suppose we
have a bond which will mature in 15 years, pays coupon twice a year at 4% annual
rate with a par value of $ 1000. If we have yield data as presented in Table 12.2; what
would be the Bayesian price of the bond on May 9th, 2018?

We considered the prior model 3 presented in the Table 12.1 for this task. The
parameter values of the Nelson–Siegel model were simulated from the posterior
model using the No-U turn sampler of the HMC algorithm via rstan package.
Then we calculate the 5000 Monte Carlo price of the bond and present histogram of
the 5000 simulated price in the Fig. 12.6. We present the posterior summary of the
bond price in the Table 12.5. The expected price is $ 806.01, and the traded price
should stay within ($ 803.59, $ 808.46). If the traded price goes below $ 803.59, then
we can consider the bond to be undervalued; while if the traded price goes above
$ 808.46 then we can consider the bond to be over-priced. The Fig. 12.7 presents an
exciting relationship between the Monte Carlo price of the bond and parameters of
the Nelson–Siegel function. We can see the strong negative correlation between the
price and long-term effect of yield, i.e., β0 and a weak positive correlation between
short-term interest rate effect and the value of the bond.
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Conclusion

In this work, we present the hierarchical Bayesian methodology to model the
Nelson–Siegel yield curve model. We demonstrate that ad-hoc choice of prior may
lead to undesirable results. However, the proposed the hierarchical Bayesian method
is much more robust and deliver the desired effect. We used BFGS algorithm in
rstan for the MAP estimates of the Nelson–Siegel’s parameters. We also imple-
mented full Bayesian analysis using theHMCalgorithmavailable inrstanpackage.
As a by-product of the HMC, we simulate the Monte Carlo price of a Bond, and it
helps us to identify if the bond is over-valued or under-valued. We demonstrate the
process with example and US treasury’s yield curve data. One interesting finding is
that there is a strong negative correlation between the price and long-term effect of
yield, i.e., β0. However, the relationship between the short-term interest rate effect
and the value of the bond is weakly positive. This is phenomenon is observed because
the posterior analysis shows an inverse relationship between the long-term and the
short-term effect of the Nelson–Siegel model.
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Chapter 13
Pareto Efficiency, Inequality and
Distribution Neutral Fiscal Policy—An
Overview

Sugata Marjit, Anjan Mukherji and Sandip Sarkar

Abstract A structure of taxes and transfers that keep the income distribution
unchanged even after positive or negative shocks to an economy, is referred as a
Distribution Neutral Fiscal Policy. Marjit and Sarkar (Distribution neutral welfare
ranking-extending pareto principle, 2017, [14]) referred this as a Strong Pareto Supe-
rior (SPS) allocation which improves the standard Pareto criterion by keeping the
degree of inequality, not the absolute level of income, intact. In this paper we show
the existence of a SPS allocation in a general equilibrium framework, and we provide
a brief survey of distribution neutral fiscal policies existing in the literature. We also
provide an empirical illustration with Indian Human Development Survey data.

Introduction

Marjit [15] has argued that researchers must look for robust results in economic
theory that hold across space and time. This is likely to bring economics closer to
physical sciences. In this paper we review one such robust result also referred as
the “Distribution Neutral Fiscal Policy” (DNFP). By DNFP we mean a structure of
taxes and transfers that keep the income distribution unchanged even after positive
or negative shocks to an economy. The idea of distribution neutrality evolved in
different areas of economics in different forms. For example, in a classic article [3]
uses this approach in the context of poverty decomposition analysis. Very recently,
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Marjit et al. [14] generalized the notion of Pareto efficiency by focusing on Pareto
efficient allocations that do not aggravates inequality. In this paper we discuss these
results.

The Pareto ranking or Pareto efficiency is a topic economists are exposed to very
early in their career. In particular the basic welfare comparison between two social
situations starts with the ranking in terms of a principle Pareto had talked about in
the nineteenth century. If we compare two social situations A and B, we say B is
Pareto superior to A iff everyone is as well of in B as in A and at least one is strictly
better off in situation B compared to A. This comparison is done in terms of utility
or welfare levels individuals enjoy in A and B. In the theory of social welfare this
has been a widely discussed topic with seminal contributions from [1, 4, 19, 20, 23]
and recent treatments include [2, 12] etc.

Pareto’s principle provides a nice way to compare situations when some gain
and some lose by considering whether transfer from gainers to losers can lead to
a new distribution in B such that B turns out to be Pareto superior to A, the initial
welfare distribution. It is obvious that if sum of utilities increases in B relative to A,
then whatever be the actual distribution in B, a transfer mechanism will always exist
such that transfer-induced redistribution will make B Pareto superior to A. The great
example is how gains from international trade can be redistributed in favor of those
who lose from trade such that everyone gains due to trade. Overall gains from trade
lead to a higher level of welfare under ideal conditions and therefore one can show
that under free trade eventually nobody may lose as gainers ‘bribe’ the losers. But
whatever it is Pareto ranking definitely does not address the inequality issue. There
will be situations where B will be Pareto superior to A, but inequality in B can be
much greater than A. The purpose of this survey paper is to extend the basic principle
of Pareto’s welfare ranking subjecting it to a stricter condition that keeps the degree
of inequality intact between A and B after transfer from gainers to losers, but at the
same time guaranteeing that everyone gains in the end.

In this paper we also provide the existence and uniqueness of SPS in a general
equilibrium framework. Considering the case with only two agents we show that
an SPS allocation would always exist on the contract curve i.e. in the set of Pareto
efficient allocations. Further, we also show that this point is unique. We also provide
an empirical illustration with Indian Human Development Survey data.

Thepaper is organized as follows. In section “InequalityMeasurement”wepresent
a brief discussion on themeasurement of income inequality. In section “Strong Pareto
Superiority” we present a discussion on Strong Pareto Superiority allocations. In the
next section we discuss other Distribution Neutral Fiscal policies that exists in the
literature. In section “Empirical Illustration” we provide an empirical illustration
with Indian data. The paper is concluded in section “Conclusion”.
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Inequality Measurement

In this section, we provide a discussion on the measurement of income inequality.
We begin with some well-known axioms or postulates that any income inequality
measure must satisfy. We then discuss some standard inequality measures proposed
in the literature. We also provide a discussion on the Lorenz curve that stands as a
basic tool for inequality ordering.

Inequality index is a scalar measure of interpersonal income differences within
a given population. The class of inequality measures can be classified in two broad
types, namely the relative and the absolute inequality measures. The relative inequal-
ity measures satisfy the scale invariance property, i.e., the inequality measure should
remain unchanged if we multiply income of all individuals by a positive scalar. The
absolute inequality measures are translation invariant, i.e., these inequality measures
should remain unchanged if we change the origin by a positive scalar. has referred the
relative and absolute the inequality measures as the rightists and leftists inequality
measures, respectively.

The leftist inequalitymeasures assigns a higherweight to the bottomof the income
distribution. This can be illustrated as follows: consider the following income dis-
tribution Y = {1, 100}. Now following the relative inequality measure inequality
should remain unchanged if we multiply the income of both individuals by a positive
scalar. If we choose this scalar as 10, the new distribution becomes Y ∗ = 10, 1000.
If we observe Y and Y ∗ closely, the poorer individual has gained only 9, whereas the
richer individual has gained 900. The relative inequality remains unchanged despite
the fact that absolute income differences between individuals increase. Notwith-
standing this problem, the relative inequality index is widely used. This is because
it is simple and because income inequality measures do not depend on the choice of
the units. That is income inequality measured in dollars or pounds will exhibit same
values.

We now discuss the following axioms that both absolute and relative inequality
measures are expected to satisfy. We begin with the transfer axiom.

Transfer Axiom: A progressive transfer of income is defined as a transfer of
income from a person to anyone who has a lower income so that the donor does
not become poorer than the recipient. A regressive transfer is defined as a transfer
from a person to anybody with a higher income, keeping their relative positions
unchanged. This axiom requires that inequality should decline and increase as a
result of progressive and regressive transfer, respectively. If the income distribution
is ordered either in an ascending or in a descending order, then the transfers cannot
change the rank orders of the individuals. Hence, these transfers are sometimes
referred as rank preserving transfers.

Symmetry: This axiom requires that an income measure should not distinguish
individuals by anything other than their incomes. This axiom is also referred as an
anonymity axiom.
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Normalization axiom: This axiom states that if for a society income of all indi-
viduals are same then there is no inequality. Eventually any inequality index that
satisfies this axiom should take the value zero. This axiom always ensures that an
inequality measure takes non-negative values.

Population Replication Invariance: This axiom states that inequality mea-
surement should be invariant for replication of incomes. This implies that any
inequality measure satisfying this axiom should be invariant between Y = (2, 3) and
Y ∗ = (2, 3, 2, 3, 2, 3). This is becauseY ∗ is obtained following three-fold replication
of incomes ofY. Following this axiom,we can compare two incomedistributionswith
different population size. For example, consider Y = (2, 3) and X = (1, 2, 3). If the
inequality index is population invariant, then we can compare Y ∗ = (2, 3, 2, 3, 2, 3)
and X∗ = (1, 2, 3, 1, 2, 3).

A well known relative inequality measure that satisfies all the axioms listed above
is the Gini coefficient. Variance is an absolute inequality measure that also satisfies
all the axioms discussed so far.

Researchers often expressed interest on whether different inequality indices can
rank alternative distributions of income in the sameway.Onemayconsider theLorenz
curve in order to address this issue. Before we address this issue let us formally
define Lorenz curve. Assume that the income distribution Yt = (y1, y2, . . . , yn) is
designed in an ascending order. Lorenz curve represents the share of the total income
enjoyed by the bottom p% of the population. The Lorenz curve is defined as the plot
L(Yt , k/n) = against p where p = k/n. Note that 0% of the population enjoys 0%
of the total income. Further, 100% of the population possesses the entire income.
Hence, the curve starts from the south-west corner with coordinates (0,0) of the
of unit square and terminates at the diametrically opposite north-east corner with
coordinates (1,1). In the case of perfect equality, Lorenz curve coincides with the
diagonal line of perfect equality, which is also referred to as the egalitarian line.
This follows from the fact that if everybody has equal income then every p% of the
population enjoys p% of the total income. In all other cases the curve will lie below
the egalitarian line. If there is complete inequality, i.e., in a situation where only one
person has positive income and all other persons have zero income, the curve will
be L shaped. That is the curve will run through the horizontal axis until we reach the
richest person where it will rise perpendicularly. In the context of Lorenz curve one
important concept is that of Lorenz dominance. Any income distribution Yis said
to be Lorenz dominant income distribution X if the Lorenz curve of Y lies strictly
above X for at least one point and not below X at any of the point. In this context,
we can also refer that inequality in Yis less than that of X, for all relative inequality
measures that satisfies Symmetry, Transfer, and Population Replication Invariance.
These class of measures is also referred as Lorenz consistent inequality measures.
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Strong Pareto Superiority

Pareto superiority (PS) is defined as the situation where no one loses from the initial
to the final period but at least one individual gains. However, PS allocation may
aggravate inequality. We thus introduce “Strong Pareto Superiority” (SPS). By SPS
we mean a situation where the utility of all the individuals increases and the inequal-
ity (either absolute or relative) also remains same, compared to that of the initial
distribution. In order to derive such a SPS allocation we first assume that their exists
a social planner who taxes a subgroup of the population and distributes the collected
tax to the rest of the population. Note that as we move through this paper we show
that in general the SPS allocations and their associated tax transfer vector will be
different for the relative and absolute inequality measures. From here onwards we
refer the SPS allocation’s that preserves relative and absolute inequality as RSPS and
ASPS, respectively.

In order to illustrate the existence of SPS we consider a two-period economy with
only two individuals observed in both the period. Let the distribution in the first
period be denoted by the vector Y0 = (y1, y2) and that of the second period as Y1 =
(g1y1, g2y2), where g1 and g2 denotes the growth rate of first and second individual
respectively. Let g1y1 > g2y2. In order to keep the degree of relative inequality we
must tax the first individual such that the following condition is satisfied:

y1
y2

= g1y1 − T

g2y2 + T
(13.1)

We can solve T from the above equation in the following fashion

T = y1y2(y1 − y2)

g1y1 + g2y2
(13.2)

Note that the income profiles y = (y1, y2) and ŷ = (ŷ1 = g1y1 − T, ŷ2 = g2y2 +
T ) have same level of inequality, following any measure that is relative in nature.
Further, ŷ1 > y1 and ŷ2 > y2, holds if the society enjoys positive growth (i.e., g1y1 +
g2y2 > y1 + y2). Hence ŷ = (ŷ1, ŷ2) qualifies as a relative-SPS allocation. Similarly
we can design the absolute-SPS allocation, where T has to be solved from the follow-
ing absolute inequality preserving condition: y1 − y2 = (g1y1 − T ) − (g2y2 − T ).
Note that following the results from [6, 13, 14] it can be easily established that SPS
always exists and is unique. The existence of an SPS can also follow if we do the
same exercise in the utility space. We use the well known box-diagram (Fig. 13.1) to
highlight the welfare implication of the result.

Along the contract curve AB all points are Pareto superior to M. All such points
are non-comparable in the sense of Pareto. This is because one can move from one
point to the other (within AB) only by redistribution. Thus one is made better off
and the other is worse off. However, our discussion so far ensures that among the
non-comparable Pareto points on AB there exists a unique point which is distribution
neutral. The formal proof is provided in the appendix.
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Fig. 13.1 Edgeworth Box
Digram reflecting existence
and uniqueness of SPS

So far our discussion has been limited only two the case where the number of indi-
viduals is 2. Consider the number of individuals being n. Let Y0 = (y1, y2, . . . , yn)

be the initial income distribution. Y1 = (g1.y1, g2.y2, . . . , gn.yn) as the final income
distribution. Thus gi (gi ∈ R) denotes the growth rate of income of the i th individual
∀i ∈ {1, 2, . . . , n}. The SPS allocation that have same level of relative inequality as
in Y0 is given by

RS P S = (y RS P S
1 , y RS P S

2 , . . . , y RS P S
n ) (13.3)

where y RS P S
i = yi .

( n∑
i=1

gi .yi

n∑
i=1

yi

)
.

Note that if there is growth in the economy (i.e.,
n∑

i=1
gi .yi >

n∑
i=1

yi ), then every

individual is better off in the distribution RSPS and relative inequality also remains
the same. The tax transfers vector followingwhich one can derive theRSPS allocation
form the final distribution is given by the following vector:

tRS P S = (t1, t2, . . . , tn) (13.4)

where ti = gi .yi − RS P Si . Note that if ti > 0 then the individual has to pay tax.
One the other hand if ti < 0 then he enjoys transfer.

One can also preserve absolute inequality and make every one better off consid-
ering the following distribution.

AS P S = (y AS P S
1 , y AS P S

2 , . . . , y AS P S
n ) (13.5)

where y AS P S
i = yi +

(
n∑

i=1
gi .yi −

n∑
i=1

yi

)
.

tRS P S = (t̃1, t̃2, . . . , t̃n) (13.6)
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where t̃i = gi .yi − AS P Si . The individuals pays tax (receives transfer) if t̃i > 0
(t̃i < 0).

Related Literature

The notion of distribution neutral fiscal policies exists in different forms in the liter-
ature. In this section we provide a discussion on some of the papers in this direction.
We begin with a discussion of the poverty decomposition analysis introduced in [3].
The authors introduced amethodology that decomposes poverty changes into growth
and redistribution components.1 The methodology is applicable only if the poverty
measure is a function of poverty line (z) mean income (μt ) and the underlying Lorenz
curve (Lt ). That is the poverty measure can be written as Pt = P(z/μt , Lt ). Here t
denotes the time point. Note that the level of poverty may change due to a change
in the mean income μt relative to the poverty line, or due to a change in relative
inequalities i.e. Lt . Let Lr denotes the Lorenz curve at any given reference frame.2

Following [3], a change in poverty from time t to t + n can be decomposed as

Pt+n − Pt = G(t, t + n; r) − D(t, t + n; r) + R(t, t + n; r) (13.7)

where G(t, t + n; r), D(t, t + n; r) and R(t, t + n; r) denotes the growth compo-
nent, redistribution component and the residual, respectively.

The growth component (i.e., G()) refers to the the change in poverty due to a
change in the mean while holding the Lorenz curve constant at the reference frame
(i.e., Lr ). Mathematically this can be written as:

G(t, t + n; r) = P(z/μt+n, Lr ) − P(z/μt , Lr ) (13.8)

Note that if the Lorenz curve of the initial distribution is set to be the reference
frame (i.e., Lr = Lt ) then the component G(t, t + n; r) can also be interpreted as
the change of poverty from a SPS allocation.

The redistribution component is the change in poverty due to a change in the
Lorenz curve while keeping the mean income constant at μr .

D(t, t + n; r) = P(z/μr , Lt+n) − P(z/μr , Lt ) (13.9)

Poverty reduction is an important fiscal policy, and the total reduction of poverty
following a distribution that do not aggravates inequality might also be an important
tool for policy analysis. In the next section we shed some further lights on this issue
using data from India. Note that presence of the residual term is often considered as

1Readers interested in this topics are referred to [7–9, 21].
2This can also be interpreted as the desired level of inequality the policy maker is anticipating.
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a major criticism of the [3] poverty decomposition methodology. This problem has
been addressed in [9, 21].

Poverty decomposition analysis discussed is also a widely used in the pro-poor
growth literature. The notion “pro poor growth” may be defined in two different
senses. In general growth is said to be pro poor in an absolute sense, if it raises
income of the poor and consequently poverty reduces (see [11]). Following [10],
growth is labeled as “pro-poor” in a relative sense, if it raises the incomes of poor
proportionately more than that of the non poor. For further references readers inter-
ested are referred to [5, 16–18, 22].

Empirical Illustration

In this section we provide an application of distribution neutral fiscal policies. We
show how poverty reduction which is viewed as an important fiscal policy is effected
because of presence of inequality.Or in otherwordswe are interested in the additional
poverty reduction if the final distribution being replaced by the SPS allocation. This
can also be viewed as an application of the [3] methodology that has been discussed
earlier.

For this exercise we use the India Human Development Survey (IHDS) which is
a nationally representative, multi-topic survey of households in India. The survey
consists of two rounds. The first round was completed in 2004–2005. The second
round was conducted in 2011–2012. This is an unbalanced panel data. That is, in
the second round most households in 2004–2005 were interviewed again. From here
onwards we denote IHDS data for 2004–2005 and 2011–2012 as IHDS1 and IHDS2,
respectively. Throughout this exercise, we consider IHDS1 as the initial time point
and IHDS2 as the final time point. We use monthly per-capita expenditure as a proxy
of income.3

Before we move through the formal application of the distributional fiscal poli-
cies we discuss how poverty and inequality has changed from 2004–2005 to 2011–
2012. Throughout this exercise we focus our analysis on three mutually exclusive
and exhaustive subgroups of India, namely rural, urban and the slum areas. Follow-
ing Table 13.1 it is readily observable that poverty has decreed substantially from
period 2004–2005 to 2011–2012. However, following the same table it is also readily
observable that inequality figures has also increased substantially. Clearly following
the discussions in the previous sections the poverty reduction would have been more,
had the degree of inequality remaining same as that of the initial distribution.

In Table 13.1 we present the actual poverty reduction. That is we simply compute
the difference between poverty 2004–2005 to that of 2011–2012. In the same tablewe

3Note that per-capita income data is available in this survey. However, income data have standard
problems in the sense that people often misreports their income. Furthermore, the poverty line in
India is usually constructed using the per-capita consumption figures. Thus using such figures for
income data might be incomplete.
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Table 13.1 Summary statistics

2004–2005 2011–2012

Rural Urban Slum Rural Urban Slum

Real and nominal mean

Mean 694.23 1792.67 1159.49 2881.88 828.02 2019.67

Inequality

Gini 0.36 0.38 0.37 0.39 0.32 0.33

Atkinson (a
= 0.5)

0.11 0.12 0.12 0.13 0.08 0.09

Generalized
entropy (e
= 0)

0.22 0.24 0.23 0.25 0.16 0.18

Generalized
entropy (e
= 1)

0.25 0.29 0.26 0.31 0.17 0.21

Generalized
entropy (e
= −1)

0.24 0.27 0.27 0.29 0.18 0.20

Poverty rates

Head count
ratio

0.37 0.18 0.24 0.10 0.38 0.18

Poverty gap 0.10 0.04 0.06 0.02 0.10 0.04

Poverty reduction

Head count ratio

Net poverty
reduction

−0.188 −0.140 −0.207

SPS poverty
reduction

−0.216 −0.151 −0.225

Poverty gap

Net poverty
reduction

−0.062 −0.039 −0.061

SPS poverty
reduction

−0.070 −0.043 −0.065

Squared poverty gap

Net poverty
reduction

−0.026 −0.015 −0.025

SPS poverty
reduction

−0.030 −0.016 −0.027

Notes
1Author’s calculations based on monthly per capita expenditure from IHDS data
2Poverty figures are obtained considering poverty line as suggested by the Tendulkar Committee
report for 2004–05. The poverty line for 2011–12 is obtained by inflating the 2004–05 line using
CPIAL and CPIIW for rural and urban India respectively. Thus the poverty line for rural and
urban India for 20111–12 is 611

340 × 477 = 803 and 195
112 × 579 = 1007 (ignoring the decimals),

respectively. Real Mean is also obtained following the same procedure
3Poverty differences:
Net Poverty Reduction = (poverty rate in 2011–12)–(poverty rate in 2004–05)
SPS Poverty Reduction = (poverty rate for the SPS distribution)-(poverty rate in 2004–05)
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also compute the SPS poverty reduction. This is the difference between the poverty
figures of the initial distribution and SPS distribution. It is readily observable that
the absolute value of the SPS poverty reduction rates is much higher than that of the
actual rates. For example, the net poverty reduction for rural India is 18.8% where
as the same for an SPS distribution is 21.6%. Thus moving from the final to the SPS
distribution would have reduced additional 3% poverty. Similar result also holds for
the rest of the cases.

Conclusion

In this paper, we provide a survey on distributional neutral fiscal policy and related lit-
erature highlighting the ideas of our new research in this area.We introduce the notion
of “Strongly Pareto Superior” allocation or SPS. In order to focus on inequality-
neutral or distribution neutral Pareto superior allocation we first discuss SPS allo-
cation introduced in [14] which guarantees higher individual welfare keeping the
degree of inequality same as before. Also [13] provide an analysis in the context of
international trade.

It is possible to generate a SPS allocation by taxing a subgroup of population
and redistributing the collected tax to the rest of the population. The only condition
required is that there should be growth in the society. The construction of SPS is
different when relative and absolute inequality is preserved. The SPS allocation
preserving the relative inequality is obtained by redistribution of the aggregate gains
among the individuals proportional to their utilities of the initial distribution. On the
other hand, the SPS allocation which preserves absolute inequality is obtained by
equally distributing the aggregate gains among all the individuals. SPS is a general
condition and whenever there is growth in the society one can generate both relative
and absolute SPS uniquely. This paper also provides the existence and uniqueness of
SPS in a general equilibrium framework. Considering the case with only two agents
we show that SPS allocation is a unique point in the edgeworth box and also lies in
the locus of the contract curve.Major contributions of this approach is that it provides
a new interpretation of Pareto criterion, an interpretation that should have been done
long ago. We propose that Pareto criterion IS also about inequality or distribution,
a point totally missed and misinterpreted so far.4 Additionally we rigorously prove
that a unique Pareto efficient allocation is DIFFERENT from all non-comparable
Pareto allocations on the well known contract curve.

We also provide an empirical illustration on distribution neutral fiscal policies.
We show that poverty reduction following a SPS distribution is actually 3% higher

4An Wikipedia entry argues that “It would be incorrect to treat Pareto efficiency as equivalent to
societal optimization, as the latter is a normative concept that is a matter of interpretation that
typically would account for the consequence of degrees of inequality of distribution.” (https://en.
wikipedia.org/wiki/Pareto_efficiency).

https://en.wikipedia.org/wiki/Pareto_efficiency
https://en.wikipedia.org/wiki/Pareto_efficiency
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than that of the actual poverty reduction. The exercise is somewhat similar to the
poverty decomposition analysis introduced in [3].

The paper is consistent with the concern raised in [15] regarding robust results in
economics. Independent of the country or context we focus, we can always find out a
Pareto efficient allocation that will keep the distribution intact. Our idea convincingly
proves the point that Pareto criterion could be refined to include distribution and
would have wider applications in the areas of growth, trade and public policy.
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Mathematical Appendix

Let {W i } : endowment vectors i = 1, 2, . . . , n;∑
i

W i = W .

Utility functions, real valued, assumed to be continuous, increasing, strictly qua-
siconcave : {Ū i } The consumption possibility set is Rn+ the non-negative orthant.
The set of feasible allocation vectors F = {{Y i } : Y i ≥ 0,

∑
i Y i ≤ W }; {W i } ∈

F; U = {{U i } : ∃{Y i } ∈ F, U i (Y i ) = Ū i∀i} is the set of feasible utilities. Notice
{U i (W i )} ∈ U.

Statement 1 U is a nonempty compact subset of Rn+
Proof : The above follows given the continuity of U i over a compact set F.

Let U i (W i ) = Û i∀i ; there is a P∗ = (P∗
1 , P∗

2 , . . . , P∗
n ) which is a competitive

equilibrium i.e., Xi∗ solves the problem maxU i (.) subject to P∗x ≤ P∗.W i∀i and∑
i X i∗ = W . Let U i (Xi∗) = U i∗.
Define UP = {{Ū i } : {Ū i } ∈ U, ∃{U i } ∈ U such that , U i > Ū i∀i}: Pareto

Frontier. The First Fundamental Theorem assures us that {U i∗} ∈ UP.
Consider next θ̄ < θ̂ ; from the property of the supremum, there is θ̃ > θ̄ such that

U (θ̃) ∈ U i.e., there is Ỹ i such that {Ỹ } ∈ F and U i (Ỹ i ) = θ̃U i (W i )∀i . Now there
must be a scalar 1 > αi ≥ 0 such that U i (αi Ỹ i ) = θ̄ .U i (W i ) since by shrinking the
scalar αi we can make the left hand side go to zero (U is increasing), whereas for
αi = 1, the left hand side is greater; also then we can claim {αi Ỹ i } ∈ F since

αi Ỹ
i ≥ 0

and ∑
i

αi Ỹ
i ≤ maxiαi

∑
i

Ỹ i ≤ W

�
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Statement 3 U (θ̂) ∈ V

Thus one may conclude that {Ŷ i } is a Pareto optimal configuration with the prop-
erty that U i (Ŷ i ) = θ̂U i (W i )∀i . And since θ̂ is uniquely determined, so is the con-
figuration {Ŷ i }.
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Chapter 14
Tracking Efficiency of the Indian Iron
and Steel Industry

Aparna Sawhney and Piyali Majumder

Abstract Recycling of steel scrap has been one of the key drivers of improving
energy efficiency in steel manufacturing worldwide. Energy intensity of Indian steel
plants is higher than the world average, and the strategy of scrap recycling to enhance
energy efficiency has gained policy momentum. We track the energy intensity of
Indian steel plants during the period 1999–2014, to determine whether scrap-use
provided energy-savingbenefits.Weconsider energy intensity as a functionof various
plant characteristics,while controlling for plant heterogeneity and industry sub-group
(by 5-digit National Industrial Classification).We find that energy-intensity of Indian
steel plants has declined significantly over the years, andmore so for privately-owned
steel plants, but the use of scrap in the production process has not helped reduce
energy consumption. Indeed scrap users have lower energy-efficiency that may be
driven by poor quality of raw materials which our analysis is unable to capture.

Introduction

Enhancing energy efficiency with economic growth has increasingly gained priority
in India as the country grapples with twin challenges of economic poverty and energy
poverty. The institutional framework to reduce energy intensity of the economy is
provided by the Energy Conservation Act of 2001, whereby standards, regulations
and norms have been implemented. The Bureau of Energy Efficiency, established in
2002, under the Act, facilitates the implementation of different initiatives for energy
conservation and efficiency. In order to promote energy conservation in the industrial
sector, the Bureau is implementing the National Mission for Enhanced Energy Effi-
ciency (NMEEE) under the National Action Plan on Climate Change 2008, which
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aims to reduce the specific energy consumption of the most energy-intensive indus-
tries. In particular, the NMEEE identified nine energy-intensive sectors of the coun-
try for target energy efficiency norms to achieve a low carbon path for the economy,
including iron and steel, a key infrastructure development industry.

India is one of the leading producers of steel in the world—third largest produc-
ing country after China and Japan, and the growth prospects continue to be high.
However, energy consumption of Indian iron and steel plants are much higher than
steel plants abroad—according to the Ministry of Steel the integrated steel plants
require 6–6.5 Giga calories per tonne of crude steel compared to 4.5–5 in steel plants
abroad. The higher energy intensity of Indian steel production is attributed to obso-
lete technologies (added problem of retrofitting modern technologies in old plants),
old operating practices and poor quality of raw materials.

While steel production is energy-intensive, modern energy management systems
recycling steel scrap have reduced energy intensity of steel production in the world.
Recycling scrap helps in conservation of energy as remelting of scrap requires much
less energy than production of iron or steel from iron ore. Steel is infinitely recyclable
and the recycling of steel accounts for significant energy and raw material savings:
estimated to be over 1,400kg of iron ore, 740kg of coal and 120kg of limestone
saved for every 1,000kg of steel scrap converted into new steel [1]. In India, the
re-use of iron and steel scrap serves as a critical input substituting for ore in basic
metal manufacturing and as well as other large manufacturing sectors like metal
casting, machinery equipment, etc. The consumption of scrap is mainly reported
by Induction Furnace and Electric Arc Furnace units, integrated steel plants and
alloy steel and foundry industries in India. The consumption of iron and scrap by
remelting also reduces the burden on land fill disposal facilities and prevents the
accumulation of abandoned steel products in the environment [2]. Since recycling
of steel scrap offers significant energy saving, it is pertinent to understand whether
recycling strategy has enhanced energy-efficiency in the Indian iron and steel industry
during the last two decades. Our analysis examines the energy efficiency and overall
productivity performance of Indian iron and steel plants, distinguishing the use of
scrap as an input in the production process.

Energy Efficiency of Iron and Steel Industry
in the Post-Liberalization Period

Following deregulation and de-licencing in 1991–92, the iron and steel private sector
has grown in leaps and bounds in India and now accounts formore than three-quarters
of total production of crude steel and finished steel products in the country [3]. During
the last decade, several initiatives were undertaken to improve energy efficiency in
the industry. For example, a UNDP project during 2004–13 facilitated low carbon
technologies in 34 Indian steel re-rolling mills to bring down energy consumption
and reduce GHG emissions by 25–50%. This was followed by a replication project
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during 2013–16 covering 300 mini steel mills, including 5 Induction furnace units.
An analysis of the Indian iron and steel sector had found that in the decades prior
to liberalization, productivity had been declining with poor energy efficiency, but
following deregulation the trend began to reverse in the latter half of 1990s [4]. The
study observed that technological change in Indian iron and steel industry has been
biased towards energy and material-use, although it has been improving since late
1990s. More recent estimates confirm that energy efficiency in the industry has been
improving since 1998 [5]. A decomposition of the energy efficiency improvement
in the iron and steel industry during 1991–2005 showed that the decline in energy
intensity was due to technical change, which more than offset an adverse effect from
structural change (towards more energy-intensive products) [6].

Recycling Scrap—An Energy Conservation Strategy

Recycling scrap conserves energy, as remelting of scrap requires less energy than
production of virgin metal from ore. The production of secondary steel, utilizing
scrap, uses 74% less energy than the production of steel from iron ore [7]. The use
of recycled scrap serves to substitute for virgin ore as well as conserve energy in the
production process. One can thus expect to see higher factor productivity (including
energy) in scrap-recycling plants compared to non-scrap steel plants.

The consumption of scrap is mainly reported by Induction Furnace and Electric
Arc Furnace units, integrated steel plants and alloy steel and foundry industries
in India. It is understood that integrated steel plants are more resource efficient
since they use better technology compared to the smaller plants manufacturing other
steel products. Indeed, product and process mix has significant impact on energy
performance.

The question of interest that arises, is whether plants in the Indian iron and steel
industry using recycled scrap have experienced gains through lower energy use.
So here we consider the energy efficiency of plants in the Indian iron and steel
industry, while distinguishing between the scrap users and non-scrap users. Since
existing studies have recorded an improvement in the energy efficiency in the iron
and steel industry in the post-liberalization period, the energy saving from scrap
usage should be observable after controlling for this trend as well as other plant
characteristics that impact energy consumption of plants. It is established that specific
energy consumption among the steel plants varies due to different processes, quality
ofmaterial, types of products produced by the plants. Thus,when tracking the energy-
efficiency of production we control for these factors, as well as other features. We
use the measure of autonomous energy efficiency of plants, which is measured by
the total energy used per unit of output.
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Model and Estimation Results

In order to track the energy efficiency of the iron and steel plants, we use a simple
log linear specification of the physical energy intensity of output of the plant. The
energy intensity of the plant is a function of the technology, scale of operation,
products produced, ownership, and location characteristics of the plants.Ourmeasure
of physical energy intensity is given by real energy used per unit of real output,
measured in MJ per constant thousand Rs. In order to calculate the energy used in
production, we aggregate the energy in the fuels reported by each plant—including
electricity and coal. The value of total output produced by a plant is deflated by the
wholesale price index of that industry for that year, in order to obtain the value of
output in constant money value (base year 2004–05). We use manufacturing plant
level data from the Annual Survey of Industries, to analyze the energy-intensity of
iron and steel plants for the period 1998–99 through 2013–14. We deflate all money
values (in Indian rupees) by the appropriate price indices. For example, our measure
of physical capital is calculated as the value of plant and machinery deflated by price
index of plant and machinery.

While we consider plants in the basic iron and steel industry, we distinguish
them by their industry sub-group based on the main products produced by them
(since these are multi-product firms). We utilize the most dis-aggregated industrial
classification available, namely the 5-digit National Industrial Classification 2008
(concorded for earlier years beginning 1998). In our analysis we have seven industry
sub-groups under the basic iron and steel manufacturing, including manufacture of
steel ingot, ferro alloys, direct reduced iron, hot-rolled and cold-rolled products, rail
track material, and other basic iron-steel products. Since integrated iron and steel
plants (produced pig iron as well as steel products) are structurally very different in
nature to other plants, we analyze the energy intensity behavior of plants by dropping
them from one sample. Our econometric model of the energy-intensity of plants is
as follows:

log(Eit ) = T + log(kit) + log(sit ) + Oit + Cit + Ri + εi t (14.1)

Where E denotes the energy intensity of plant i in year t, T is the time trend
of energy intensity of plant i during the 16-year period, kdenotes the capital labour
ratio of plant i in year t , s denotes the scale of operation of the plant, O denotes the
ownership status (1 for private, 0 for public) of plant i in year t , C is the scrap use
of plant i in year t ; R is the location dummy (30 Indian states) of the plant, ε is the
error term (controlling for the product group classification of plant i in year t).

Wede-trend the energy intensity of plants over the 16-year period in order to isolate
the impact of scrap use on the energy consumption per unit output. The nature of
technology used in the plant is captured by the capital-labour ratio (k), while the scale
or size of the plant is measured by the employment. Ownership of the firm, whether it
is private or public, is a dichotomous variable taking on value 1 for private sector and
0 for public sector units. We also incorporate state fixed effects, to account for time-



14 Tracking Efficiency of the Indian Iron and Steel Industry 207

invariant location factors that affect plant efficiency. We use two measures of scrap
recycled in production, C: first, as a dichotomous variable (1 when a plant uses scrap,
0 if scrap is not used); and second, as a continuous variable measured by the value
share of scrap in total raw material used in production. Our multivariate regression
controls for plant heterogeneity, distinguishing between plants belonging to separate
product groups at the 5-digit NIC codes, and estimating with heteroskedastic robust
standard errors. The results are summarized in the Table. Column (1) and (3) show
the regression estimation for all plants in the manufacturing of basic iron and steel
industry; while columns (2) and (4) show the regression estimations for the sample
without the integrated steel plants. It should be noted here that the sample of plants
in the regressions (2) and (4) are on average smaller than in the integrated steel plants
and use far less capital-intensive technological processes.

The results indicate that energy intensity of production in the iron and steel indus-
try has indeed been declining over time, especially considering the integrated steel
plants—since the time trend is significant and negative in regressions (1) and (3), but
less so in the sample without the integrated steel plants regression (2). It is important
to note that the negative time trend observed for the sample with large integrated
steel plants re-confirms the observation in the existing literature that energy effi-
ciency has improved in the industry since the late 1990s. However, energy efficiency
improvement is not readily observed in the smaller steel plants—as the magnitude
of the trend coefficient in regression (2) is lower and is less significant compared
to regression (1). With the alternative measure of scrap usage, in regression (4), the
negative time trend for the smaller steel plants becomes insignificant. The positive
significant coefficients of capital-labour ratio and plant size shows that the energy
intensity is higher in more capital-intensive larger plants. After controlling for plant
characteristics and location, we find that energy intensity in the plants that recycled
scrap is significantly higher than those which did not (regressions 1 and 2) or those
which used less scrap in the material mix (regressions 3 and 4). Alternatively, we can
examine the total factor productivity of steel plants to measure efficiency of plants
recycling scrap versus non-scrap users (summarized in the Appendix). An analysis
of total factor productivity gives us the same qualitative result, where scrap-using
plants are found to have lower factor productivity than non-scrap users (discussed in
the appendix).

Concluding Observations

While recycling has been identified as one of the keydrivers of improvement in energy
efficiency in the iron and steel industry, we do not find support for this phenomenon
for Indian iron and steel manufacturing industry. Our analysis suggests that scrap
recycling in steel plants in India are less efficient in total factor use aswell as in energy
use. The lower energy-efficiency of the plants using scrap may not be energy saving
due to the other factors, like poor quality of rawmaterial used that our analysis has not
been able to capture. This has important implications for the strategy to encourage
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growth in the secondary steel production in India, as envisioned in the National Steel
Policy 2017. Going forward, the government intends to encourage scrap-based steel
manufacturing in order to save energy. However, promoting scrap-use may not be
energy-efficient unless the overall factor productivity of the scrap-using plants is also
improved.

Appendix: Total Factor Productivity of Plants in Basic Iron
and Steel Manufacturing

Efficiency in production is widely measured through factor productivity, which mea-
sures the output per factor use. As a robustness check of our result obtained in energy
intensity, we also estimated the total factor productivity across the plants in basic iron
and steel manufacturing during 1998–99 to 2013–14, using the same data from the
Annual Survey of Industries of India (Table14.1). Utilizing a standard production
function specification given by the Eq.14.2, we estimate the plant productivity as the
residual of this functional relationship.

Yit = Ait K
βk
i t L

βl
i t M

βm
it (14.2)

K , L and M are the capital, labour and material employed by the firm. A is the
efficiency parameter of the firm which is unobserved to the researchers. If we take a

Table 14.1 Regression results for iron and steel plants, 1998–99 to 2013–14. (Dependent variable:
log of energy intensity of plant in MJ/’000 constant Rs)

(1) all plants (2) non-integrated
plants

(3) all plants (4) non-integrated
plants

Year −0.009a [0.003] −0.006b [0.003] −0.006c [0.003] –0.002 [0.003]

Log(capital
labour ratio)

0.052a [0.008] 0.047a [0.008] 0.068a [0.008] 0.064a [0.008]

Ownership −0.613a [0.115] −0.608a [0.124] −0.535a [0.113] −0.534a [0.121]

Log(plant size) 0.033a [0.009] 0.018b [0.009] 0.070a [0.009] 0.057a [0.009]

Scrap use dummy 1.033a [0.026] 1.055a [0.026]

Scrap usage 1.352a [0.032] 1.370a [0.032]

Observations 16,464 15,800 16,413 15,754

R-squared 0.174 0.175 0.174 0.175

State fixed effects Yes Yes Yes Yes

F-test 109.7 110.5 111.7 112.2

Prob>F 0.00 0.00 0.00 0.00

All regressions control for heterogeneity across plants in the different product groups (at the 5-digit
NIC classification)
Robust standard errors in parentheses ap<0.01, bp<0.05, cp<0.1
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log transformation of the above equation and add an error term:

yit = β0 + βkkit + βl li t + βmmit + εi t (14.3)

where, y = log(Y ), k = log(K ), l = log(L),m = log(M), β0 + εi t = log(Ait) β0

is the mean efficiency level across firms and over time. εi t is the time and producer
specific deviation from that mean which can be further decomposed into an observ-
able and unpredictable part.We empirically estimated the total factor productivity Ait

as a residual of the production function represented by Eq.14.3 using the Levinsohn
Petrin Methodology [8]. An important problem while estimating productivity is the
correlation between observable productivity shocks and input levels. For a positive
(negative) productivity shock a firm will try to make certain adjustments in the input
to expand (reduce) the output. Therefore, if the firm has prior knowledge about the
productivity shock, then at the time of input decision endogeneity may arise and
the input quantities are partly determined by prior beliefs of productivity. In Levin-
sohn Petrin methodology firm’s intermediate material inputs or fuels are used as a
proxy to control the effect of unobservable productivity shocks thereby correcting
for the simultaneity bias under the assumption that demand for intermediate inputs
is a monotonic function of productivity. Our sample for productivity estimation is an
unbalanced panel of 6811 firms, with 17,836 observations, for the period 1998–99
to 2013–14. On comparing the total factor productivity between scrap vs. non-scrap
users, we observed that scrap-using firms exhibited lower total factor productivity
as compared to the non-scrap using firms. Our result suggests that using scrap as an
intermediate raw material did not have productivity enhancing effect across firms in
the iron and steel industry.
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Chapter 15
Social Integration in a Diverse Society:
Social Complexity Models of the Link
Between Segregation and Opinion
Polarization

Andreas Flache

Abstract There is increasing societal and scholarly interest in understanding how
social integration can be maintained in a diverse society. This paper takes a model of
the relation between opinion polarization and ethnic segregation as an example for
social complexity. Many argue that segregation between different groups in society
fosters opinion polarization. Earlier modeling work has supported this theoretically.
Here, a simple model is presented that generates the opposite prediction based on
the assumption that influence can be assimilative or repulsive, depending on the
discrepancy between interacting individuals. It is discussed that these opposite results
from similar models point to the need for more empirical research into micro-level
assumptions and the micro-to-macro transformation in models of opinion dynamics
in a diverse society.

Introduction

Migration bothwithin and between countries has strongly increased in recent decades
[11]. FormanyWestern societies this comeswithmore ethnic and cultural diversity of
their population. Other societies, like India, know high levels of diversity already for
manycenturies. Ethnic and cultural diversity havemanybenefits, for example in terms
of a broader pool of talent or more creativity in diverse teams in organizations [16].
But diversity also constitutes a challenge for societies. Often diversity is associated
with high levels of segregation between different groups [9], or with differences
betweengroups in attitudes on fundamental issues such as civil rights of homosexuals,
legalization of abortion, or gender equality [38].

There are no easy answers to the question under which conditions diversity can
endanger societal integration and foster instead persistent disagreement or even polar-
ization. Polarization can be described as the tendency of a population to fall apart
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into a small number of subgroups with large agreement within and disagreement
between them [6]. Whether and under which conditions polarization arises is notori-
ously hard to predict. The evolution of the distribution of opinions in a society results
from numerous simultaneous interactions between individuals both within their own
cultural subgroups as well as across intergroup boundaries. Some of these interac-
tions may drive groups apart, others may foster consensus. For example, research in
the tradition of contact theory emphasizes that intergroup contacts reduce prejudice
and promote agreement [1, 14, 40], but negative interactions at the individual level
can also result in deeper divisions between groups [43, 44]. Polarization can thus
be an outcome that results from the interactions of multiple individuals who neither
expect nor intend to bring it about. One reason is the possibility that small changes
in opinion distributions can have large unexpected consequences, for instance when
disagreement emerging between some individuals in a local region of a network
spreads and then quickly becomes amplified by social contagion [7, 20]. Identifying
the conditions and mechanisms under which social influence dynamics in a diverse
population result in polarization is therefore a major scientific issue with a long
tradition of vivid debate [34].

In search for tools to tackle the inherent complexity of collective opinion dynam-
ics, researchers used in recent decades increasingly agent-based computational mod-
eling [5, 22, 28]. While this has greatly helped to understand the complex interplay
of individual-level social interactions with macro-level outcomes, it also highlighted
that the outcomes of opinion dynamics can sensitively depend on the exact assump-
tions researchers make about the process of social influence at the micro-level. In
this paper, I will illustrate this with a model of the relationship between segregation
and polarization in a diverse society. According to many, segregation between differ-
ent subgroups is one of the important reasons for persistent disagreement between
groups. Segregation is the separation of different groups, for example between res-
idential areas of a city [9], or between different clusters in a social network [12,
36]. Segregation can reduce the extent of intergroup contact [8] and thus exacerbate
prejudice. A further problem is that segregation can create ‘bubbles’ within which
only like-minded people meet and interact. As former U.S. president Obama pointed
out in his farewell address, in such a bubble we are “surrounded by people who look
like us and share the same political outlook and never challenge our assumptions”,
such that “we become so secure ... that we start accepting only information, whether
it’s true or not, that fits our opinions” [39].

The argument that segregation fosters polarization seems compelling, but social
complexity models showed how different equally plausible micro-level theories of
social influence can generate radically different implications. A number of formal
models is consistent with Obama’s intuition. Building on persuasive argument theory
[37, 46], models proposed by Mäs and coauthors [31, 33] assume that agents with
more similar opinions are more likely to persuade each other to strengthen their
already prevailing opinion tendency. Simulations demonstrated how then opinions
in different subgroups can be pushed towards opposing poles of an opinion spectrum
if agents prefer interacting with similar others, based on the principle of homophily
[35]. Similar dynamics have also been derived from models of “biased assimilation”
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[4, 13] in which agents are assumed to put more weight on those influences in the
process of assimilation that are in line with their current opinion.

Models of persuasive arguments and biased assimilation suggest that segregation
fosters opinion polarization. Building on earlier work [17], I will show in this paper
that radically different conclusions can be drawn from another class of models. I
follow a number of studies [2, 3, 15, 18, 20, 26, 29, 30, 41] which incorporated into
models of social influence the assumption that influence can not only be assimila-
tive, reducing opinion differences, but also repulsive. When influence is repulsive,
individuals strive to be dissimilar to people they dislike, accentuating disagreement
with others. But this only happens when those others are perceived as being too
discrepant, otherwise influence is assimilative. This combination of assimilative and
repulsive influence is suggested by theories of fundamental psychological processes
in the formation of attitudes, like Heider’s balance theory [23] or Festinger’s theory
of cognitive dissonance [19]. In a number of formal models elaborating this idea, it
has in particular been assumed that perceived discrepancy not only arises from dis-
agreement in opinions between individuals, but also from ‘demographic’ differences
representing fixed characteristics like gender, race or ethnicity [17, 21, 30].

I will demonstrate in what follows that a model combining assimilative and repul-
sive influence implies that more segregation reduces opinion polarization between
groups. The model will be presented in section “Modelling the Link Between
Segregation and Opinion Polarization”, results are described in section “Results”.
Section“Discussion and Conclusion” concludes with a more general reflection on
the role of social complexity models for our understanding of social integration in a
diverse society.

Modelling the Link Between Segregation and Opinion
Polarization

First, the micro-level assumptions about social influence are introduced in section
“Microlevel Assumptions About Social Influence”. Second, the model of spatial
network segregation is described in section“Modeling the Spatial Structure: Local
Interaction and Segregation”.

Microlevel Assumptions About Social Influence

The model contains a population of N individuals i who are throughout members of
either group 0 or group 1, indicated by groupmembership gi ∈ {0, 1}. For simplicity,
I assume that both subgroups are always equally large. Every individual i adopts at
every timepoint t an opinionoit , with 0 ≤ oit ≤ 1. Following [17, 20], individuals are
connected in a static interaction network (see section“Modeling the Spatial Structure:
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Local Interaction and Segregation” for details) and can only interact with network
neighbors.

Dynamics of the model unfold in consecutive discrete time steps t . In every time
step, a pair of two different network neighbors i and j is selected at random with
equal probability. All individuals k who are not involved in an interaction at time
point t do not change their opinions, thus ok,t+1 = okt . If i and j interact, then both
can modify their current opinions to move closer towards or away from the opinion
of the interaction partner as given by Eqs. (15.1) and (15.2).

oi,t+1 = oit + �oit = oit + μwi jt (o jt − oit ) (15.1)

o j,t+1 = o jt + �o jt = o jt + μwjit (oit − o jt ) (15.2)

The parameter μ (0 < μ ≤ 0.5) in Eqs. (15.1) and (15.2) defines the rate of opinion
change and will be kept at μ = 0.5 in the present paper. The influence weights wi jt

and wjit in Eqs. (15.1) and (15.2) represent the direction and magnitude of the influ-
ence of i on j and j on i , respectively. Weights are constrained by −1 ≤ wi j ≤ 1.
A positive weight wkm entails assimilative influence (k moving her opinion closer
towardsm’s opinion), whereas a negativeweight imposes repulsive influence (k mov-
ing her opinion away fromm’s opinion). A zero weight implies no change, reflecting
indifference towards the source of influence. In this basic form, Eqs. (15.1) and (15.2)
allow interactions to push the opinion outside of the opinion interval [ 0, 1] if weights
are negative. In this case, the resulting opinion is truncated to the interval boundary
that was crossed by the opinion shift. In some models that combine assimilation and
repulsive influence, opinions are constrained with smoother functions [20, 21, 25],
but this seems to have little effect on the main model dynamics.

The link between diversity, disagreement and social influence is implemented as
follows. The influence weight wi jt expresses the similarity that i experiences at time
point t between herself and j . More precisely, the influence weight declines in the
current level of disagreement |o jt − oit |, and is reduced if i and j belong to different
groups. Equation (15.3) formalizes the computation of influence weights.

wi jt = 1 − 2
(
βO |o jt − oit | + βD|g j − gi |

)
. (15.3)

Equation (15.3) shows that influence becomes repulsive when the discrepancy
βO |o jt − oit | + βD|g j − gi | exceeds 0.5, half of the theoretical maximum of 1. The
parametersβO andβD in Eq. (15.3) scale the relative impact that respectively, opinion
disagreement and demographic differences have on discrepancy. For convenience, I
impose the constraint βO + βD = 1.

The model assumed here uses a simple linear transformation of discrepancy into
influence weights wi jt . Some studies have adopted a non-linear weight function
in an otherwise similar framework [26, 32], but did only consider disagreement
in opinions. Future work should combine a non-linear weight function with both
disagreement and intergroup differences to explore possible new implications.
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Fig. 15.1 Example for result
of desegregation algorithm
with desegregation rate
d = 0.5 (right), starting from
initially maximally
segregated ring lattice (left).
N = 20, range of interaction
= 2

(a) segregated network (b) desegregated network

Modeling the Spatial Structure: Local Interaction and
Segregation

The key condition of interest in the simulation experiments is segregation between
groups. Modeling local interaction in a simple way, I employ a ring-lattice network
in which all agents have the same number of local network neighbors to the left and
to the right, called range of interaction r . Figure15.1a shows the baseline condition
of maximal segregation between the two groups for r = 2, N = 20, and two equally
large subgroups. In both subgroups, only 4 out of 10 agents have any outgroup-
neighbor among their 4 network neighbors. Of those 4 agents, half have 2 outgroup
neighbors and the other half has only 1.

The degree of segregation is manipulated as follows.1 Starting from a maximally
segregated network (see Fig. 15.1a), a subset of Ns distinct agents from group 0 is
randomly chosen for relocation. Ns is given by the desegregation rate d, (0 ≤ d ≤
0.5), rounded to the integer nearest to d N/2. For every chosen agent of group 0,
a unique randomly selected agent from group 1 is picked. In all the selected pairs
thus formed, network positions of the group 0 agents are swapped with those of
the group 1 agents. Figure15.1b shows an example for a network generated with a
desegregation rate of d = 0.5.

To quantify segregation, a segregation measure S is computed. S indicates the
fraction of same-group neighbors among all network neighbors of an agent, averaged
over all agents and divided by the theoretically possible maximal fraction of ingroup
neighbors, given N and r . The exact value of S given d varies randomly, depending
on which pairs of agents were selected for a position swap.

The relation between desegregation rate d and average segregation S is non-linear.
The closer the desegregation rate comes to 0.5, the less impact further increase has on
the segregation level S. To account for this, the average value of S per level of d will
be used to show how segregation affects polarization in the experiments that follow,
whereas segregationwill bemanipulatedwith stepwise variation in the desegregation
rate d.

1All computations, simulations and graphics in this paper were produced with WolframMathemat-
ica©Version 11.2.
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Results

In Section“Design and Measures”, design and outcome measures of the computa-
tional experiments are described. Two experiments are conducted in both of which
segregation S is manipulated. In the first experiment it is assumed that there is no
initial group-specific disagreement in opinions. In the second experiment, a moder-
ate group-specific disagreement is introduced. Results of experiment 1 and experi-
ment 2 are described in sections “Experiment 1” and “Experiment 2”, respectively.
Section“Robustness Tests” is devoted to a brief description of some robustness tests.

Design and Measures

The following simple baseline scenario was used in both experiments. Population
size was set to N = 100 with 50 members in groups 0 and 1, respectively. The
network was a circular ring lattice with interaction range r = 5. The relative impact
of demographic dissimilarity on the influence weight wi jt was set to βD = 1/3. With
this value, polarization between groups is possible but not trivial.

In both experiments, the desegregation rate d was varied from 0 to 0.5 in steps of
0.025, over 21 different levels. This resulted in variation of the average segregation
measure S between S = 1 at d = 0 and S ≈ 0.522 at d = 0.5. Except for d ≥ 0.45
the 95% confidence intervals of mean S were non-overlapping for consecutive levels
of d in a sample of 500 independent realizations per condition. For every level of d,
500 independent realizations of the simulation model were conducted, each running
for 1000 N = 100, 000 time steps. This was more than enough for all conditions in
experiment 1 and 2 to reach stable outcomes.

It is an important question whether opinion polarization between groups can arise
even if these groups have no systematic disagreement prior to interaction. For this rea-
son, I drew in experiment 1 initial opinions randomly from the same Beta distribution
Beta(3, 3) for both groups, shown in Fig. 15.2a. This distribution has expected mean
value of 0.5 and a standard-deviation of about 0.189. For culturally salient issues it
is, however, more plausible that different groups also have different initial opinion
tendencies. To model this, initial opinions were in experiment 2 randomly drawn
from two symmetric Beta distributions Beta(3, 3.5) and Beta(3.5, 3) for groups
0 and 1, respectively, as shown in Fig. 15.2b. Mean opinions were about 0.462 for
group 0 and 0.538 for group 1. Initial opinions in both groups had the same expected
standard deviation of approximately 0.182.

The key outcome of interest in the simulation experiments was the degree of
polarization both within the population as a whole and between the two groups. To
assess between-group polarization, I measured the absolute value of the difference
between the mean opinions in both groups, Pg

t = |ot,g=1 − ot,g=0|. If this difference
is close to one, this is a clear sign of strong between-group polarization. A low
difference between the mean opinions of the groups, however, does not necessarily
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Fig. 15.2 Initial opinion distributions

show that there is no polarization at all. The population can also fall apart into
two opposed factions that both contain members of both groups. To distinguish
this form of ‘population polarization’ from between-group polarization, population
polarization P p

t at time point t is computed as the variance of all pairwise opinion
distances in the population (adapted from [20]), as given by Eq. (15.4).

P p
t = 4

N 2

i=N , j=N∑

i j

(|o jt − oit | − |okt − omt |
)2

. (15.4)

In Eq. (15.4), |okt − omt | denotes the average opinion distance across all pairs
(km) in the population. The minimum level of polarization (P = 0) obtains when
all pairwise distances are zero, corresponding to full consensus in the population.
P p obtains its maximal value of 1 if the population is split into two equally large
factions with maximal mutual disagreement and full agreement within each of the
factions.

Experiment 1

I beginwith showing the dynamics for twoprototypical runs. Figure15.3a shows a run
with maximal segregation S = 1, Fig. 15.3b displays a run with minimal segregation
S ≈ 0.522.

Figure15.3 reveals remarkable differences between the two runs. In themaximally
segregated population (Fig. 15.3a), members of both groups were quickly drawn
to almost perfect population-wide consensus on an opinion at approximately 0.5.
After 100,000 time steps, the standard deviation of opinions declined to practically
zero.2 This outcome occurred in about 90% of all runs in this condition. In the
maximally desegregated population (Fig. 15.3b), the result was strikingly different.

2Perfect consensus is only obtained in the time limit. The simulation program computed a standard
deviation of about 2.31 10−9 after 100,000 time steps for this run.
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Fig. 15.3 Change opinions in single runs without initial difference between group means (N =
100, βD = 1/3, r = 5). Dark: group 0, Light: group 1

The population was split almost perfectly into two opposing camps after 5000 time
steps. Population polarization reached in this condition a level of P p

t ≥ 0.99 in
97% of all runs at t = 100,000. Yet, the emergent camps were not perfectly divided
between groups. On average, between-group polarization was about Pg

t = 0.497 in
the final state.

The strong difference between the two scenarios can be explained as follows.With
high segregation, only fewagents hadneighborswhobelong to another group. If inter-
acting agents i and j belong to the same group, it is highly unlikely that their initial
opinion disagreement is large enough to trigger repulsive influence (wi j < 0). This
happens onlywhen their disagreement exceeds |o jt − oit | = 0.75. However, with the
initial distribution of Beta(3, 3) this was practically impossible.3 Thus, within both
groups influence was overwhelmingly assimilative, pulling all agents towards the
mean value of the initial distribution (0.5). Only those few agents who were located
on the interface between groups had outgroup-neighbors. With outgroup-neighbors,
disagreement only needed to exceed |o jt − oit | = 0.5 to trigger repulsive influence.
In a randomly chosen pair of neighbors from different groups, this happens at the
outset with a probability of about 0.056. The few events of repulsive influence that
occurred pushed agents to move away from each other towards the extremes of the
opinion space. However, in most cases they were pulled back towards less extreme
opinions in subsequent interactions with moderate ingroup members. This explains
why in this condition about 90% of all runs ended in consensus. Yet, in the remaining
approximately 10% of runs, interactions on the interface of groups became repul-
sive, driving agents on opposite sides of the boundary towards opposite extremes
in the opinion space. Consensus within groups remained high at the same time. As
a consequence, opinions of the two groups were driven apart. These runs ended in
almost perfect between-group polarization.

In a highly desegregated population outcomes were different. With S ≈ 0.522
agents had on average about 50% outgroup-neighbors. Likely, on at least some places
in the network neighboring agents disagreed enough to develop repulsive influence.
As a consequence, they increasingly shifted opinions away from each other, towards

3The probability was about 0.00155.
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Fig. 15.4 Experiment 1:
Effect of segregation on
polarization measures. Bars
indicate 0.95 CI around
mean values

opposing extremes on the opinion scale. The dynamic of increasing differentiation
between neighboring agents occurred simultaneously in different local regions of
the network, because groups were well-mixed in this condition. This explains why
population polarization reached its maximum of P p = 1.0 here. At the same time,
members of the two groups differentiated in different ways from each other in differ-
ent local regions of the network. Thus, within both groups, members moved to both
extreme ends of the opinion spectrum. Within the same group different poles were
adopted at different places in the network. This was the reason why between-group
polarization fell far below its theoretical maximum, with about Pg = 0.5 on average
in the final state.

Figure15.4 reports the results of experiment 1 for the entire range of segrega-
tion levels that were inspected. More precisely, the figure shows how the level of
segregation S affected between-group polarization Pg and population polarization
P p in the final state, averaged across 500 realizations per condition. In line with the
explanation given above, less segregation was on the whole associated with more
population polarization. Also between-group polarization is on the whole higher
in desegregated networks than in highly segregated ones. However, Fig. 15.4 also
shows a non-linear association. When segregation increased from its minimum of
S ≈ 0.522, average between-group polarization remained fairly constant up to about
S ≈ 0.8, then increased to its peak-level at S ≈ 0.85, to finally drop to a minimum
of Pg = 0.102 in maximally segregated networks.

Figure15.5 helps explaining the non-linearity identified by Fig. 15.4. Figure15.5
shows the effect of segregation on the proportion of three types of outcomes in
the final state, consensus (P p ≤ 0.01), group-split (Pg ≥ 0.99) and population-split
(P p ≥ 0.99). The share of runswith population-split andwith consensuswere largely
mirror images of each other in this experiment. The more runs generated population-
split, the less runs ended in consensus. In other words, lower segregation increasingly
drove populations into a polarized state. But this state did not need to be group-split.
In the region between about S = 0.8 and S = 0.9 population-split decreased with
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Fig. 15.5 Experiment 1:
Effect of segregation on
proportions of three outcome
types

more segregation, while group-split increased. Above S = 0.9 both lines move again
in the same direction.

The reason for the difference between group-split and population-split is the spa-
tial coherence of groups under high segregation. This can be best understood by
traversing the change of outcome proportions from right to left in Fig. 15.5, starting
from a maximally segregated population. As the figure shows, moderate amounts of
‘mixing’ induce more polarization. This is due to more between-group interactions.
But moderate mixing does not yet disrupt the spatial connectedness of groups, which
therefore can still develop internal consensus. Thus, population polarization largely
was found to be between-group polarization between S = 0.9 and S = 1. Once the
segregation level was reduced further below S = 0.9, more interactions across group
boundaries fueled more polarization, while consensus within groups was disrupted
at the same time, due to more disconnectedness within groups. This explains the
simultaneous decline of group-split and increase of population polarization when
segregation moves downward from S = 0.9 to S = 0.8. Only when segregation lev-
els further declined, even more individuals were spread across the network so that
again most had at least some members of their own group in their local network,
allowing for more within-group coordination in the process of population polariza-
tion. As a consequence, group-split and population-split moved again in the same
direction when segregation levels were lower than about S = 0.8. However, the low
levels of group-split between about S = 0.75 and S = 0.9 do not show that there was
no systematic disagreement between groups at all.With an interaction range of r = 5,
most individuals are connected with ingroup peers at all levels of segregation. Thus,
some degree of coordination remains, explaining that on average between-group dis-
agreement never fell below about 0.5, as shown by Fig. 15.4. Moreover, declining
levels of group-split between S = 0.5 and S = 0.8 did not show up in declining aver-
age between-group polarization Pg , because also the proportion of runs in consensus
declined in favor of more runs with medium-levels of between-group polarization.
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Fig. 15.6 Experiment 2:
Effect of segregation on
polarization measures. Bars
indicate 0.95 CI around
mean values

Experiment 2

Experiment 1 showed that considerable levels of between-group polarization came
about in an unsegregated population, even when there was no systematic initial
disagreement between groups. Experiment 2 tested whether the effect of segregation
remained the same when mean opinions of the two groups differed from the outset.

Figures15.6 and 15.7 report results of the ceteris-paribus replication of experi-
ment 1, the only difference being that initial opinions were randomly drawn from the
Beta-distributions shown in Fig. 15.2b. Comparison of Fig. 15.6 with the correspond-
ing result for experiment 1 shows that on average between-group polarization in the
final state was considerably higher across all levels of segregation. While in exper-
iment 2 between-group polarization declined from about Pg = 0.75 to Pg = 0.25
between the lowest and the highest level of segregation, this decline happened at a
lower level (Pg ≈ 0.5 to Pg ≈ 0.1) in experiment 1. Also population polarization
was consistently higher in experiment 2, but this difference was less pronounced.
A further noteworthy difference was that there was no longer a discernible non-
monotonous effect of segregation on between-group polarization.

Figure15.7 further confirms these differences and helps to explain them. The share
of runs ending in group-split was slightly but consistently above the levels found in
experiment 1, while the share of runs ending in consensus was slightly but consis-
tently below this level. Population-split clearly was at a considerably higher level.
The most striking qualitative difference was that group-split did no longer increase
when small amounts of mixing were added to a maximally segregated network, but
instead started to drop immediately. This illustrates the most important explanation
for the differences between the experiments. In experiment 2, initial between-group
differences were high enough to trigger mutual distancing on the interface between
groups. Thus about 25% of runs were ending in group-split in the maximally segre-
gated networks. While reducing segregation from this point fueled more population
polarization - like in experiment 1 - it also blurred the boundaries between the groups
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Fig. 15.7 Experiment 2: Effect of segregation on proportions of three outcome types

at the global level. Locally, agents from different groups were evenmore prone to end
up on opposing sides of the spectrum than in experiment 1, but this was globally less
coordinated than in the maximally segregated networks. This explains why start-
ing from a maximally segregated network, mixing groups immediately decreased
group-split in experiment 2, unlike it did in experiment 1.

Robustness Tests

The results of experiment 1 and experiment 2 rest on a number of assumptions about
the model and the specific scenario. A full exploration of the robustness of results
against meaningful variations is impossible in the space of this paper. As a start,
I conducted two main robustness tests. First, a ceteris-paribus replication of both
experiments was conducted with the range of interaction reduced from r = 5 to
r = 1. A smaller range of interaction greatly reduces the interface between groups in
highly segregated populations and inhibits the spreading of locally emergent extreme
opinions in the network. The robustness test showed that this did not change the
main qualitative effects of segregation found in experiments 1 and 2. More pre-
cisely, replicating experiment 1 with r = 1, it was found that increasing segregation
from its minimal level first slightly increased, then reduced between-group polariza-
tion, while population polarization was reducedmonotonously. Similarly, replicating
experiment 2 it was found that there was no more non-monotonicity under higher
initial between-group disagreement, but more segregation still reduced polarization
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both in the population and between groups. However, it should be noted that N1000
time steps were not enough to obtain stable outcomes in all conditions with r = 1.
This is especially not the case in highly segregated networks, where polarization that
starts on the interface between groups can take a long time to spread and pull all
group members into opposing camps in the sparse network with r = 1.

The second robustness testwas to reduce the relative impact of demographic group
differences on discrepancy in the influence process.A relatively lower value ofβD can
be expected to reduce the overall potential for polarization, because individuals from
different groups needmore disagreement to develop amutually negative relationship.
To assess this, a ceteris-paribus replication of experiments 1 and 2 was conducted,
setting βD = 1/4 (vs. βD = 1/3 in the baseline condition). As expected, both forms
of polarization declined. Most importantly, segregation still reduced polarization,
where the difference between segregated and desegregated networks was actually
larger than for βD = 1/3 across both experiments.

Discussion and Conclusion

Intuitive reasoning aswell as a number of formalmodels of opinion dynamics suggest
that cultural diversity can under certain conditions be a threat to societal consensus,
despite all its undoubted benefits. It has been argued that polarization between groups
in a diverse society may be particularly likely when the society is highly segregated,
echoing concerns raised by formerU.S. president BarackObama and results obtained
with formal models of socially complex opinion dynamics. In these models, interac-
tions between like-minded people can make them more and more convinced of their
prevailing opinion tendencies, resulting in opinions that are increasingly extreme
and different from those outside of their segregated world [13, 31, 33]. I presented
in this paper a formal model drawing on social-psychological theories of cognitive
balance that points to the opposite conclusion. Building on earlier work [17, 20, 21,
26, 29], this model combines assimilative with repulsive social influence, assuming
that mutual disagreement between interacting agents is particularly likely to become
accentuated and extreme when they interact with members of other groups that are
separated from them by socially salient boundaries.

The point of my paper is not to show that the one or the other line of modeling is
right or wrong about the link between segregation and polarization.What I would like
to demonstrate is that formal modeling of socially complex dynamics can help us to
better understand counter-intuitive and often unanticipated consequences of simple
and familiar principles of social interaction. Principles such as influence, repulsion,
persuasion, homophily or xenophobia are well known from our daily lives and from
research conducted by social scientists. However, their possible implications at the
societal level are often less well understood. An important contribution of social
complexity models is that they can focus attention of empirical researchers on testing
those assumptions in models that can be particularly critical for key social outcomes,
such as polarization between groups.
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The two lines of modeling work discussed in this chapter serve as an example in
case. The obvious contradiction between their implications hasmotivated researchers
in recent years to conduct systematic behavioral experiments. While this endeavor is
still in progress, some of this work speaks to the models presented here. For example,
while several empirical studies point to some evidence for repulsive influence in
experimental and field settings [24, 27], recent experimental research tested repulsive
influence more systematically in a controlled lab setting and found no support [10,
45]. This suggests that repulsive influence may be less easily triggered in social
interactions than most formals models assume. At the same time, experimental tests
have been conducted that lend some support to models of argument persuasion [31].
However, it would be premature to therefore entirely discard the possibility that
segregation may sometimes preclude polarization. Experimental tests hitherto could
not capture situations of strong between-group antagonism nor could they observe
groups withmutually strongly exclusive social identities, conditions that appear to be
plausible candidates for triggering repulsive influence that may drive groups apart.

Social complexity models have revealed important challenges for our scientific
understanding of polarization. In line with calls from recent reviews of the field [22,
42], I believe that for tackling these challenges, we need to move forward towards a
deeper connection of formal models with empirical insights from behavioral experi-
ments and field research in the social sciences. The potential threat from polarization
in diverse societies is an issue important enough to merit this effort.
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Chapter 16
Competitive Novel Dual Rumour
Diffusion Model

Utkarsh Niranjan, Anurag Singh and Ramesh Kumar Agrawal

Abstract Rumors have been present in society for very long. In modern days with
the better penetration of online social media technologies, we have been able to share
anything with anybody. Rumors have become an undesirable but built-in feature of
social networking technologies. In this work, we represent a model of dual rumor
propagation in population. Our model is an extension of the basic SIR model with
six states. We present a detailed numerical analysis of our model to show the impact
of various parameters on the density of nodes in different states. When two rumors
are competing in the population the rumor with high spreading rates wins the race.
In our model, we also present a study of the impact of individuals biasness toward
one type of rumor. This biasness arises if a rumor is originating from a popular and
credible source. For a relatively high stifling rate with respect to spreading rate, we
find that a large fraction of population remains ignorant of rumors.

Introduction

A mammoth volume of individuals is online spreading all sort of information.
According to the Facebook newsroom, 1.47 billion active daily users and 2.23 billion
active monthly users access their Facebook accounts to perform social networking
activities. Official YouTube google blog states that 1.9 billion logged-in users come
to YouTube every month to create and/or enjoy videos. Similarly, WhatsApp also
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provides messenger services to more than 1 billion users daily. With the help of
online social media networking technologies, People are able to share information
with any number of individuals simultaneously. In summary, we can say that online
social networking is a great technology. It provides easy access to information to the
people. Every new technology comes with its own set of challenges.

One of the challenges of social networking is the reliability and truth value of
the available information. Information available online finds its way to you through
various sources. The identity of these sources is sometimes unknown. A widely dis-
seminated opinion or information from the discernible source is called rumor. These
rumors are present in every section of society. Rumors are present in educational cam-
puses, political arenas, movie industry, and product market. Any sector you name it
rumors are present there. Rumors have great power to influence individuals opinion
about things they are connected. Rumors can make a new product a phenomenon
overnight. Rumors can change the outcome of an election. Rumors can also tarnish
the image of any public figure in a few hours.

Information, rumors, malicious computer programs (viruses, worms etc.), and
disease-causing microorganisms (viruses, bacteria, fungi etc.) disseminate in similar
fashion on any given contact network [7, 8, 12]. This similarity in the dissemina-
tion process stimulated researchers to use already well-developed science of human
epidemiology in the field of rumor spreading mechanism and computer epidemics.
Susceptible-Infected-Removed/Recovered (SIR)model [3] is one of the earlymodels
of human epidemiology. SIRmodel was proposed byKermack,McKendrick in 1927.
In this model whole population of individuals is divided into three groups namely
susceptible, infected and removed/recovered. An individual in the susceptible state
is free from contagion but can acquire contagion from any of infected neighbor. The
infected state represents the group of individuals who are carrying in the contagion
and also able to spread it to their neighbors. Individuals in the recovered state are free
from infection and immune to the infection. The Initial model of rumor spreading
proposed by Daley and Kendall [1] was also inspired by SIR model. This model is
also known as the DK model. Another model of rumor spreading was proposed by
Maki and Thompson [6] in 1973. Both of these models assume homogeneous mix-
ing of the population. A variant of Susceptible-Exposed-Infected-Removed (SEIR)
model for rumor propagation is presented by Xia et al. [10]. In this model, they
consider hesitating mechanism with the help of exposed (E) state. An individual
in the exposed state is hesitating to spread the rumor. They also presented simula-
tion on the small world and BA networks. Agent-based model for rumor spread-
ing analysis is presented by Serrano et al. [9]. In this study, they used two twitter
rumor datasets. Their model depends on the hypothesis that a recovered user will
not influence any neighbor in the network to change their state as recovered. Zhao
et al. [11] proposed an extension of the SIR model for rumor propagation based on
Propagation force. They defined propagation force as a fuzzy variable. They also
introduced a fuzzy reproduction number. Li and Ma [4] studied the role of govern-
ments policies and individuals sensitivity toward rumor with SIR and SIS model.
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They also present a study on Facebook and POK social networks. In their analysis,
they find out that increasing punishment for spreading false rumor and individual
sensitivity towards rumors can control the spreading rumor. Hu et al. [2] presented
a rumor spreading model with wisemen present in the network. Wisemen act as a
sink for the rumor. In their work authors presents a system of differential equations.
They also presented stability analysis of Rumor-free and Rumor equilibrium using
Routh–Hurwitz criteria. An extended version of SIR model is proposed by Liu et
al. [5] for competitive information diffusion. They called their model Susceptible-
Hesitated-Infected-Removed (SHIR). In this model, two competing pieces of infor-
mation are spreading in the network. They also gave a detailed analysis of their
model. Zhuang et al. [13] proposed an information diffusion model for dual infor-
mation propagation in the network. They considered possibilities of cooperation and
competition between the dual information on any topic. In this model Zhaung et
al. also presented an analysis of real-world data from weibo.com. Another chal-
lenge with the rumors present in social networking is that often we find two or more
rumors spreading online about the same topic. These rumors can be either competing
or cooperation piece of information. Real issues arise with competing rumors. It is
very difficult to decide which rumor is true. Very few previous works [5, 13] focuses
on the competing rumor spreading modeling. In the SHIR model authors assume the
diffusion of two competing information. In this model, they assume that a node in
the ignorant state can acquire both the information simultaneously and move to a
hesitator state. Hesitators are the nodes which are influenced by both information and
also spreading both information. In a real-world scenario getting two information
at the same instance of time is almost impossible so this transmission is not very
realistic. In the Zhuangs [13] model there is no state for the nodes influenced by
both the pieces of information. They assumed that spreading rate is same for both
the piece of information.

In ourwork,wepropose amore accuratemodel for competing rumors/information.
In our work, we present a model with six states. We consider different spreading
rates for different rumor. In our model, no ignorant node can directly become hes-
itater/vacillator. Stiflers of different rumors are considered to be different in our
model. Information coming from a famous and credible source is considered to be
truer than information coming from an ordinary source. Individuals in a population
has a bias towards such rumor. In our work, we also model this biasness. No other
previous study considers biasness of the population towards one type of information.
We present a detailed numerical analysis of our model comprising the impact of
different parameters.

Remaining sections of the paper are organized as follows. Section “Model”
explains the model. Section “Numerical Simulation Experiments” presents the
numerical and result analysis. In section “Conclusion” we present the conclusion
of our paper.
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Fig. 16.1 Block diagram of
model

Model

In this paper, we propose a model of dual information diffusion. In this model, there
are six states. A node can exist in any of the six states at any point of time. These
sates are shown in Fig. 16.1 and detail description of states is given below.

State Description

There are six states in the proposed model namely S, A, B, AB, a and b. Nodes in
state S are susceptible/ignorant and are unaware of any information. The population
density of susceptible/ignorant nodes at time t is denoted by SS(t). A node in state A
is capable of information A and node in state B is capable of spreading information
B. SA(t) and SB(t) denote the population densities in state A and state B respectively
at time t . A vacillator node in state AB is capable of spreading both information A
and B and SAB(t) represents the population density in state AB at time t . Sa(t) and
Sb(t) denote the population of striflers of information A and information B at time t .
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Table 16.1 Different notation and their meaning

Notation Definition

N Total number of nodes in the system

SS(t) Population density in state S, or ignorant nodes

SA(t) Population density in state A, or spreaders of Information A

SB(t) Population density in state B, or spreaders of Information B

SAB(t) Population density in state AB, or spreaders of both information A and B

Sa(t) Population density in state a, or stiflers of Information A

Sb(t) Population density in state b, or stiflers of Information A

α1, α2 Frequencies with which a vacillator node spreads information A and Information B
respectively

β1, β2 Spreading rates for information A and Information B respectively

μ1, μ2 Stifling rates for information A and Information B respectively

The sum of the nodes in all these state is N at any time, i.e. SS + SA + SB + SAB +
Sa + Sb = N , where N is population of the system the total. Different symbols used
and their definition have been given in Table 16.1.

State Transition Dynamics

From state S,a node can have following transitions,

• When a an ignorant node in S state communicates with a node in state A or AB,
it can move to state A with the rate β1.

• When a an ignorant node in S state communicates with a node in state B or AB,
it can move to state B with the rate β2.

From state A, a node can have following transitions,

• When a spreader node in state A communicates with a node in state AB or B, it
can move to state AB with the rate β2.

• When a spreader node in state A communicates with a node in the state a or A, it
can move to state a with the rate μ1.

From state B, a node can have following transitions

• When a spreader node in state B communicates with a node in state AB or A, it
can move to state AB with the rate β1.

• When a spreader node in state B communicates with a node in state B or b, it can
move to state b with the rate μ2.

From state AB, a node can have following transitions

• When a spreader node in state AB communicates with a node in state A or a, it
can move to state a with the rate μ1.

• When a spreader node in state AB communicates with a node in state B or b, it
can move to state b with the rate μ2.
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α1 and α2 are the frequencies with which a vacillator (state AB) node spreads infor-
mation A and B respectively. The average probability of receiving information A at
any node

RA = β1

(
SA(t) + α1

α1 + α2
SAB(t)

)
(16.1)

The average probability of receiving information B at any node

RB = β2

(
SB(t) + α2

α1 + α2
SAB(t)

)
(16.2)

The average probability of becoming stifler information A at any node

Ra = μ1 (Sa(t) + SA(t)) (16.3)

The average probability of becoming stifler information B at any node

Rb = μ2 (Sb(t) + SB(t)) (16.4)

With the help of state transition dynamics and probabilities defined in
Eqs. (16.1–16.4), we can establish the following mathematical model.

dSS(t)

dt
= −SS(t)

(
kβ1

(
SA(t) + α1

α1 + α2
SAB(t)

)
+ kβ2

(
SB(t) + α2

α1 + α2
SAB(t)

))

(16.5)
dSA(t)

dt
= SS(t)kβ1

(
SA(t) + α1

α1+α2
SAB(t)

)
− SA(t)kβ2

(
SB(t) + α2

α1+α2
SAB(t)

)
−SA(t)kμ1 (Sa(t) + SA(t)) (16.6)

dSB(t)

dt
= SS(t)kβ2

(
SB(t) + α2

α1+α2
SAB(t)

)
− SB(t)kβ1

(
SA(t) + α1

α1+α2
SAB(t)

)
−SB(t)kμ2 (Sb(t) + SB(t)) (16.7)

dSAB(t)

dt
= SA(t)kβ2

(
SB(t) + α2

α1+α2
SAB(t)

)
+ SB(t)kβ1

(
SA(t) + α1

α1+α2
SAB(t)

)
−SAB(t) (kμ1 (Sa(t) + SA(t)) + kμ2 (Sb(t) + SB(t))) (16.8)

dSa(t)

dt
= (SA(t) + SAB(t)) kμ1 (Sa(t) + SA(t)) (16.9)

dSb(t)

dt
= (SB(t) + SAB(t)) kμ2 (Sb(t) + SB(t)) (16.10)

Where k is the average degree of the network.
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Numerical Simulation Experiments

To examine the impact of different parameters in the model on the process of com-
petitive Information/rumor diffusion, we perform numerical analysis of our model
equation (16.5–16.10). Initial conditions for numerical solutions are given below

SS(0) = N − 2, SA(0) = 1, SB(0) = 1, SAB(0) = 0, Sa(0) = 0, Sb(0) = 0.
(16.11)

For simplicity, we have taken values of all parameters to be same. We also present
visual results in the form of plots for mathematical analysis. Densities of nodes in
different states are plotted in all plots. In Fig. 16.2 we present a plot for the numerical
solutions and simulation on a homogeneous network. In Fig. 16.2a we have overlap-
ping curves for the population densities of spreaders and stiflers in both the states.
These overlapping curves are present in results because our model is symmetric
and we have taken the same values for parameters. Figure16.2a, b are not in proper
agreement because numerical simulation executes in continuous time and network
simulation runs in discrete time steps. We are using random numbers to compare
probability so we are not getting overlapping curves in Fig. 16.2b, like numerical
solutions.

Single Information Diffusion and Reproduction of SIR Model

In Fig. 16.3 we represent the population dynamics when only single rumor/
information is spreading. When only single information is spreading, parameters

Fig. 16.2 The population density of nodes in different states aNumerical Solution bHomogeneous
network simulation



236 U. Niranjan et al.

Fig. 16.3 The population density of nodes in different states a with Information A only b with
information B only

related to the other information are zero i.e. if only information A is spreading
in the network then we consider parameters related to Information B to be zero
(α2 = 0, β2 = 0 and μ2 = 0). So initial condition for a numerical solution in the
presence of information A are

SS(0) = N − 1, SA(0) = 1, SB(0) = 0, SAB(0) = 0, Sa(0) = 0, Sb(0) = 0.
(16.12)

Similarly, we can have initial conditions when only information B is spreading in
population by exchanging values of SA(0) and SB(0). Figure16.3a presents popu-
lation dynamics in the presence of information A only and Fig. 16.3b presents the
population dynamics in the presence of information B only. Model represented by
Eqs. (16.5–16.10) is an extension of the basic SIR model. So in the presence of only
single information, we are able to reproduce the results of the basic SIR model.

Effect of Spreading Rates

In Fig. 16.4 we have plotted the effect of spreading rate on the density of stifler
nodes. In Fig. 16.4a we vary the value of β1 only and in Fig. 16.4b we vary the
values of β2 only. In both cases, all other parameters are kept fixed. We find that with
the increase in the value of spreading rate the prevalence of information increase
in the population. Since our model is symmetric so we have symmetric plots in
Fig. 16.4a, b. In Fig. 16.5 we present the covariation of β1 and β2 on the penetration
of rumors in the population. Population density of spreaders of both information
are plotted in Fig. 16.5a–c for a different pair of β1 and β2 values. Similarly, we
present the population density of Stiflers in Fig. 16.5d–f. The difference in the value
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Fig. 16.4 The population density of nodes in Stifler state a for different values of β1 b for different
values of β2

of β1 and β2 is more in Fig. 16.5a, c. In these figures, we can observe that the
density of spreaders for the smaller β value persists for a longer period of time as
compared to the density of spreaders for the larger β value, i.e. in Fig. 16.5a density
of spreaders of information A (β1 = 0.3) persist for a longer duration (t ≈ 40) as
compared to density of spreader of information B(β2 = 0.5). Similarly in Fig. 16.5c
density of spreaders of information B (β2 = 0.5) persists for longer duration (t ≈ 60)
than density of spreader of information A (β1 = 0.9). Such behavior is present due
to the fact that the average transition probability (equations 16.3 and 16.4) from
spreaders to stiflers is function of stiflers density. So when the density of spreader is
more the probability of transmission to stiflers is also more, which results in quick
transmission to stiflers from spreaders. From Fig. 16.5d, f we can clearly notice
that the density of stiflers is high for the information with higher spreading rate. In
Fig. 16.5d, β1 = 0.3 and β2 = 0.5 sowe have higher density of stiflers of information
B. In Fig. 16.5f, β1 = 0.9 and β2 = 0.5, so we have a higher density of stiflers of
informationA. Therefor a rumorwith higher spreading ratewins the race and become
more prevailing with a high density of followers.

Effect of Population Biasness

An information either originating from some popular sources like some famous
movie actors, players, politicians etc. or citing some credible source such as BCC,
NASA, UNICEF etc. is considered to be truer than the information originating from
some ordinary source. Such information creates a bias in population towards the
information. In our model, we try to analyze this behavior with the help of parameter
α. α1 and α2 are the frequencies with which a vacillator node spreads information A
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Fig. 16.5 Covariation of spreading rate a, b, c density of nodes in spreader state d, e, f density of
nodes in stifler state

and B respectively. A higher value of α1 than α2 implies that more individuals in a
population are supporting information A. From Fig. 16.6 it is clear that information
with higher α value has more penetration in population. Which is very intuitive. This
is the reason why big brands uses famous celebrities to endorse their products.

Effect of High Stifling Rates

Figure16.7 analyzes the effect of relatively high stifling rates. If the values of stifling
rates (μ1, μ2) are high as compared to the spreading rates (β1, β2) a large density
of population remains in the ignorant state. This can be observed form Fig. 16.7.
This behavior occurs because with the higher value of stifling rate, spreaders quickly
become stiflers and a less population of the spreader is available to spread the infor-
mation.
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Fig. 16.6 Effect of biasness on the stiflers density of nodes

Fig. 16.7 Effect of relatively
high stifling rate as compared
with spreading rates
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Conclusion

In this work, we present a new model for competitive dual rumor diffusion. In our
model, we present six different states namely S, A, B, AB, a and b. We have per-
formed a detailed numerical analysis for the impact of various parameters of models.
We noted that to gain more penetration for a rumor relatively high spreading rate is
required. In the presence of only one rumor in the population, we have successfully
reproduces SIR model like behavior in our model. Which strengthen the fact that
our model is an extension of the basic SIR model. We have also analyzed our model
when there is individuals’ bias towards one type of rumor. It is noted that the rumor
with bias has more coverage in the population. If the stifling rate is relatively high
as compared with spreading rate we find that a large fraction of population remains
ignorant of rumors.
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Chapter 17
Dynamical Evolution of Anti-social
Phenomena: A Data Science Approach

Syed Shariq Husain and Kiran Sharma

Abstract Human interactions can be either positive or negative, giving rise to dif-
ferent complex social or anti-social phenomena. The dynamics of these interactions
often lead to certain spatio-temporal patterns and complex networks, which can be
interesting to a wide range of researchers—from social scientists to data scientists.
Here, we use the publicly available data for a range of anti-social and political
events like ethnic conflicts, human right violations and terrorist attacks across the
globe. We aggregate these anti-social events over time, and study the temporal evo-
lution of these events. We present here the results of several time-series analyses like
recurrence intervals, Hurst R/S analysis, etc., that reveal the long memory of these
time-series. Further, we filter the data country-wise, and study the time-series of
these anti-social events within the individual countries. We find that the time-series
of these events have interesting statistical regularities and correlations. Using multi-
dimensional scaling technique, the countries are then grouped together in terms of the
co-movements with respect to temporal growths of these anti-social events. The data
science approaches to studying these anti-social phenomena may provide a deeper
understanding about their formations and spreading. The results can help in framing
public policies and creating strategies that can check their spread and inhibit these
anti-social phenomena.

Introduction

Humans prefer to form groups and act collectively. These groups have evolved from
simple settlements in ancient times to huge nations in modern times; defined by mul-
tiple causes like languages, common heritage, geographical boundaries, and even
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ideologies. Often human cooperation has been the motivating force behind the rapid
progress of man. This cooperation [1] has extended from blood relatives to totally
unrelated individuals. Contrarily, evolution has been responsible for drawing distinc-
tions among themselves in their bids for the “survival of the fittest”. The segregation
[2, 3] can be seen in various forms of race, caste, class, religion, political ideology,
etc. The assortment of positive and negative aspects of human social behavior makes
it extremely complex and convoluted with multiple parameters playing crucial roles.
Thus, it is extremely difficult to assess and model the complexity of human social
behavior, ranging from bonding, co-operation, support to greed, jealousy, conflict,
aggression, coup, war, etc.

Entire world has seen time and again different forms of conflicts, aggression, war,
and terrorism, which have plaguedmankind from antiquity. Anti-social phenomenon
notably possesses very different characteristics than normal social behavior. The
interactions among anti-social agents are very low and the occurrences of events
tend to be independent of each other. A conflict is an activity which takes place
between conscious (not necessarily rational) beings when their interests are mutually
inconsistent with each other. A conflict is usually associated with violent activities.
The human society has been riddled with conflicts. The first known conflict, a case of
inter-group violence, was in eastern Africa around 10,000 years ago as an attempt to
seize resources - territory, women, food stored in pots, which resulted in the killing
of over two dozen prehistoric men, women, and children [4]. However, as there has
been more progress in civilization, humans have become more materialistic and self-
centered, and gone beyond competition for tangible resources; they have adopted
causes like religion, racial superiority, etc., as pretexts for killing others.

Many people, including Karl Marx and Friedrich Engels, have proposed theories
of social conflicts. Apart from social scientists, physicists and data scientists have
recently tried to perform in-depth studies and provide mathematical models, statis-
tical and time series analysis of the empirical data and tried to propose potential
solutions to the menaces of terrorism, conflicts and other social phenomena, leading
to the development of the field of sociophysics [5–8]. Sociophysics is marked by
the belief that large-scale statistical measurement of social variables reveals under-
lying relational patterns that can be explained by theories and laws found in natural
sciences, and physics in particular.

In this chapter, we focus on the data dependent statistical analyses of three major
anti-social phenomena, viz., ethnic conflicts (EC), human right violations (HR), and
terrorism (GTD) [9–11]. An ethnic conflict is a conflict between two or more con-
tending ethnic groups where each group fights for its position within the society on
the basis of ethnicity, derived from common descent, culture, language and some-
times, even a common identity. Similarly, a human right violation is said to occur
when the basic fundamental rights of a person or a group of persons are infringed
upon. Both these anti-social phenomena are based on the conflicts between one or
more contesting parties (two sets of actors). However, terrorism differs from these
conflicts in the sense that the casualties occurring in a terrorist event are direct or
indirect targets of the terrorist groups (sources). The aim of terrorism is not limited
to eliminating the target group or destruction of resources, rather it is specifically
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carried out to send out a psychological message to the adversary [12]. In other words,
unlike in ethnic conflicts and human rights violations, the terrorist attacks are carried
out to send across a message to the opponent [13].

Here, we use the publicly available data from: (a) GDELT database [14, 15],
which has news reports in media consisting of records of a wide range of socio-
economic and political events, viz. ethnic conflicts and human rights violations, over
a long period of time, and (b) GTD project [16, 17], which has recorded the terrorist
attack incidents that occurred in the last half-century across the globe. We aggregate
these anti-social events over time, and study the temporal evolution of these events.
We present here the results of several analyses like recurrence intervals, Hurst R/S
analysis, etc., that reveal the long memory of these time series [18]. Further, we
filter the data country-wise, and study the correlations of these anti-social events
within the individual countries. Using the multi-dimensional scaling, we cluster the
countries together in terms of the co-movements with respect to temporal growths of
these anti-social events. The time series of these events reveal interesting statistical
regularities and correlations.

The article is organized as follows. Section “Data description, Methodology and
Results” describes the data description, methodology and results in detail. Section
“Concluding Remarks” contains the concluding remarks.

Data Description, Methodology and Results

Data Description

We have used the Global Database of Events, Language, and Tone (GDELT) [14, 15]
which is an open source database hosted and managed by GDELT project through
Google Cloud. GDELT monitors the world’s news media from nearly every corner
of every country in print, broadcast, and web formats, in over 100 languages, every
moment of every day. The GDELT project is a real-time open database, where the
human society is seen through the eyes of the world’s news media, reaching deeply
into local events, reaction, discourse, and emotions of the most remote corners of
the world. The entire GDELT event database is available and can be extracted using
Google BigQuery. We filtered all events related to ethnic conflicts (EC) and human
rights violations (HR) happening around the world spanning over a large time scale.
We procured 45, 942 events for EC and 48, 295 for HR for a 15 year period, 2001–
2015.

We have also analysed the data on terrorism events. For the analysis we have used
the Global Terrorism Database (GTD) which is an open-source database provides
a detailed account of terrorist events around the world from 1970–2017 [16, 17].
The event database is hosted by the National Consortium for the Study of Terrorism
and Responses to Terrorism (START), University of Maryland. We procured 72, 521
events for the same 15 year period, 2001–2015.
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Fig. 17.1 a Plots for the time evolution of the number of events n reported daily for EC, HR
and GTD during the period 2001–2015 with trends (black solid curves). b The complementary
cumulative density function (CCDF) Q(n) that n or more events are reported on a particular day.
The data seems to fit well to a stretched exponential of the form (exp[−anb]) for EC (red circles),
HR (green diamonds) and GTD (blue squares), with exponents given in Table17.2

The list of all the countries analysed, containing names along with their three
letter ISO codes, is given in Table17.1.

Methodology and Results

The GDELT and GTD data sets contain detailed information about the anti-social
events, viz. ethnic conflicts (EC), human rights violations (HR) and terrorist attacks
(GTD), on the scale of a day. Our overarching aim is to observe nature of the memory
of each of the time-series (EC, HR andGTD) and the cross-correlations among them,
within a country. Further, we would like to group the countries together on the basis
of their long-term evolution trends and correlations. First, we study simple statistics
of auto-correlations, Hurst R/S analysis and recurrence intervals distribution, of the
detrended time series. Later, we study the co-movements of the countries on the
events spaces using the multidimensional scaling technique.

We have considered the data for the period 2001–2015, and generated daily time
series of EC, HR and GTD, as shown in Fig. 17.1a. The black curves show the long
time trends, which imply that the time-series are not stationary. To see the spread of
the events, we computed the complementary cumulative density function (CCDF) of
the events: For the probability density function (PDF) P(n) as n reported events per
day, the cumulative density function (CDF) is F(n) = P(N ≤ n); then, the CCDF
is Q(n) = 1 − F(n), such that it estimates the probability of the events are above a
particular level n, P(N > n). As the empirical PDFs are often too noisy (specially
toward the tails) to be relied upon for statistics, it is known that integrating a signal
improves its “Signal-to-Noise ratio”. So, we plot the CCDF as it reduces the noise
content and makes the information contained by the signal clearer.
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Table 17.1 List of countries and their 3-letter ISO codes

S.
No.

Code Country S.
No.

Code Country S.
No.

Code Country

1 AFG Afghanistan 36 GEO Georgia 71 NLD Netherlands

2 AGO Angola 37 GHA Ghana 72 NOR Norway

3 ALB Albania 38 GMB Gambia 73 NPL Nepal

4 ARG Argentina 39 GRC Greece 74 PAK Pakistan

5 ARM Armenia 40 HKG Hong Kong 75 PER Peru

6 AUS Australia 41 HRV Croatia 76 PHL Philippines

7 AZE Azerbaijan 42 HTI Haiti 77 POL Poland

8 BDI Burundi 43 HUN Hungary 78 PRK North
Korea

9 BEL Belgium 44 IDN Indonesia 79 RUS Russia

10 BGD Bangladesh 45 IND India 80 RWA Rwanda

11 BGR Bulgaria 46 IRL Ireland 81 SAU Saudi
Arabia

12 BIH Bosnia-
Herzegovina

47 IRN Iran 82 SDN Sudan

13 BLR Belarus 48 IRQ Iraq 83 SEN Senegal

14 BRA Brazil 49 ISR Israel 84 SLE Sierra
Leone

15 BTN Bhutan 50 ITA Italy 85 SLV El Salvador

16 CAN Canada 51 JOR Jordan 86 SOM Somalia

17 CHE Switzerland 52 JPN Japan 87 SRB Serbia

18 CHL Chile 53 KEN Kenya 88 SWE Sweden

19 CHN China 54 KGZ Kyrgyzstan 89 SYR Syria

20 CIV Cote
D’ivoire

55 KHM Cambodia 90 TCD Chad

21 COG Democratic
Republic of
the Congo

56 KOR South Korea 91 THA Thailand

22 COL Colombia 57 KWT Kuwait 92 TUN Tunisia

23 CUB Cuba 58 LBN Lebanon 93 TUR Turkey

24 CYP Cyprus 59 LBR Liberia 94 TWN Taiwan

25 CZE Czech
Republic

60 LBY Libya 95 UGA Uganda

26 DEU Germany 61 LKA Sri Lanka 96 UKR Ukraine

27 DNK Denmark 62 LVA Latvia 97 USA United
States

28 DZA Algeria 63 MDA Moldova 98 UZB Uzbekistan

29 ECU Ecuador 64 MEX Mexico 99 VEN Venezuela

30 EGY Egypt 65 MKD Macedonia 100 VNM Vietnam

31 ESP Spain 66 MMR Myanmar 101 YEM Yemen

(continued)
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Table 17.1 (continued)

S.No. Code Country S.No. Code Country S.No. Code Country

32 ETH Ethiopia 67 MNP Northern
Mariana
Islands

102 ZAF South
Africa

33 FJI Fiji 68 MYS Malaysia 103 ZMB Zambia

34 FRA France 69 NAM Namibia 104 ZWE Zimbabwe

35 GBR United
Kingdom

70 NGA Nigeria

Table 17.2 Exponent values
for events of EC, HR, and
GTD

Exponents

Series a b

EC 0.50 ± 0.01 2.49 ± 0.01

HR 0.76 ± 0.01 2.91 ± 0.01

GTD 0.48 ± 0.01 3.17 ± 0.01

As the number of news entries n per day is a stochastic variable, we often see
bursts of activities for all the three anti-social phenomena: EC, HR and GTD. Due to
large inter-day fluctuations in the number of reports and the bursty nature, the CCDF
shows a broad distribution. Figure17.1b shows the plots for the CCDF Q(n) that n
or more events are reported on a particular day, for the three time-series. Each of
the curves is well-fitted by a stretched exponential of the form, (exp[−anb]) with
exponents given in Table17.2.

The auto-correlation is the correlation of a signal with a time-delayed copy of
itself, as a function of delay or lag. In simple words, it is the similarity between
observations as a function of the time lag between them, which can be used for
finding repeating patterns or periodicity obscured by noise. The Hurst exponent is
a popular measure of long-term memory in a time series, which relates to the auto-
correlations of the same and the rate at which these auto-correlations decrease as the
time-lag between the pair of values increases.

Extreme events are rare in natural as well as social phenomena, but it is essential
to study their properties as the consequences of extreme events are often enormous
[19–21]. As researchers, we are often interested in the question that how long would
we have to wait for extreme events of a certain magnitude to recur. We thus fix a
threshold X (q) and consider only the events of magnitude higher than X (q), where q
denotes the quantile. We define the recurrence interval as the time interval between
two consecutive extreme events:

Rt =
{
NA, X (t) < X (q)

inf
{
τ > 0 | X (t + τ) ≥ X (q)

}
, X (t) ≥ X (q)

, (17.1)

where X (t) is an event occurring at time t , X (q) is the threshold, and τ is a time lag.
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Fig. 17.2 a Detrended time series for EC, HR and GTDwith a flat trend (black solid line). b shows
the plots of complementary cumulative density function Q(r) that r events recurred at quantiles
q = 0.7 and q = 0.9. The data for quantiles q = 0.7 and q = 0.9 have been found to fit well to
stretched exponentials, (a exp[−bnc]) with parameters given in Tables17.3 and 17.4

Table 17.3 Parameter values
for recurrence CCDF at
q = 0.7

Parameters

Series a b c

EC 3.53 ± 0.37 1.27 ± 0.10 0.49 ± 0.03

HR 3.69 ± 0.46 1.31 ± 0.12 0.49 ± 0.03

GTD 6.95 ± 0.71 1.94 ± 0.10 0.38 ± 0.01

A real data series usually exhibit non-stationarity of various forms such as “sea-
sonal effects”, “trends”, etc. Though it is very difficult to completely eliminate non-
stationarity, its effect can be reduced by introducing some corrective measures. Each
type of non-stationarity requires a different type of correction. Here, none of the
original time series of events is stationary, as can be seen in Fig. 17.1, where the
black dashed line shows the inherent trend of the time series. We calculate the trend
with a polynomial of degree 10, and then divide the original signal by the computed
trend, resulting in a detrended series. Figure17.2a shows the events time series after
detrending it. The black dashed line, which shows trend of this detrended time series,
is thus flat. The detrended events time series can be assumed to be weakly stationary.

We hence analyse the CCDF of the recurrence time intervals on the detrended time
series (see Fig. 17.2a) to quantify the extreme events or duration of recurrences of an
event. Figure17.2b shows the plots of CCDF Q(r) that r events recurred at quantiles
q = 0.7 and q = 0.9. The data for quantiles q = 0.7 and q = 0.9 seem to fit well
to stretched exponentials, (a exp[−bnc]), with parameters given in Tables17.3 and
17.4. It should bementioned that as the quantile q increases, the distribution becomes
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Table 17.4 Parameter values
for recurrence CCDF at
q = 0.9

Parameters

Series a b c

EC 1.67 ± 0.09 0.54 ± 0.04 0.50 ± 0.02

HR 1.69 ± 0.10 0.56 ± 0.05 0.51 ± 0.02

GTD 4.72 ± 0.72 1.58 ± 0.15 0.28 ± 0.02

fatter, i.e., lower recurrence time intervals occur less frequently. This observation is
quite obviously explained by the fact that at higher values of q there are fewer extreme
events and they are spread apart.

It is often not possible to comprehend certain effects using empirical data. Thus,
the results obtained by analyses of empirical data generally need to be compared
against standard benchmarks. In such situations, artificial data can be simulated
according to required specifications and the simulated data can then serve as reli-
able benchmarks. Therefore, we first use Gaussian noises (white and fractional) to
understand certain effects and use them as benchmarks for comparing the empirical
statistics.

Gaussian noise is a statistical noise having a probability density function equal to
that of the Normal (or Gaussian) distribution; a special case is the white Gaussian
noise (wGn) orBrownianmotion, inwhich the increments (values at anypair of times)
are identically distributed and statistically independent (and hence uncorrelated).
Thus, it has no auto-correlation for positive lags, and an exponentially decreasing
recurrence interval distribution. We illustrate a white Gaussian noise in Fig. 17.3a.

A fractional Brownian motion is a generalization of Brownian motion. The main
difference between fractional Brownian motion and regular Brownian motion is
that the increments in Brownian motion are independent, whereas increments for
fractional Brownian motion are not. A fractional Gaussian noise (fGn) with Hurst
exponent 0 ≤ H ≤ 1, is defined as a continuous-time Gaussian process BH (t) on
[0, T ], which starts at zero, has expectation zero for all t in [0, T ], and has a co-
variance function. Mathematically,

∀(t, s) ∈ R
2
+,

E[BH (t)] = 0 (17.2)

E[BH (t)BH (s)] = |t |2H + |s|2H − |t − s|2H
2

. (17.3)

The auto-correlation function (ACF) of a fractional Gaussian noise with Hurst expo-
nent H is given by:

ACF(τ ) → | τ + 1 |2H + | τ − 1 |2H −2 | τ |2H
2

. (17.4)
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For a stationary process with auto-correlations decaying ACF(τ ) ∼ τ−γ (long-
memory processes), it can be shown mathematically γ = 2 − 2H [22].

Figure17.3b shows the ACF and PDF of recurrence time intervals for fractional
Gaussian noise with Hurst exponent H = 0.8. If the underlying time series has
auto-correlation, then the extreme events are auto-correlated as well. Evidently the
presence of the auto-correlation renders the probability density function of the recur-
rence time intervals to be a stretched exponential, instead of a pure exponential as
observed in the case of white Gaussian noise.

The Hurst exponent is a useful statistical method for inferring the properties of a
time series. There are various methods to calculate Hurst exponent, which measures
the existence of trend or ‘persistence’ or long-range memory present in the time
series. We used the rescaled range (R/S) method to compute the Hurst exponent [23].
The rescaled range (R/S) method is calculated for a time series, X1, X2, . . . , XT , as
follows [24]: We first break the long time series with T data points, into shorter
windows of n data points, such that there are m = T/n windows. For each of the
m windows of size n, we have the partial time series X1, X2, . . . , Xn , for which we
calculate the rescaled range:

1. Calculate the mean μ = 1
n

∑n
i=1 Xi .

2. Create a mean adjusted series Yi = Xi − μ for i = 1, 2, . . . , n .
3. Calculate the cumulative deviate series Zt = ∑t

i=1 Yi for t = 1, 2, . . . , n.
4. Compute the range R(n) = max (Z1, Z2, . . . , Zn) − min (Z1, Z2, . . . , Zn).

5. Compute the standard deviation S(n) =
√

1
n

∑n
i=1 (Xi − μ)2, where μ is the

mean for the partial time series X1, X2, . . . , Xn .
6. Calculate the rescaled range R(n)/S(n) and average over all the partial time series

of length n.

The Hurst exponent is estimated by fitting the power law: E[R(n)/S(n)] = CnH to
the empirical data,whereC is a constant. This canbedonebyplotting log[R(n)/S(n)]
as a function of log n, and fitting a straight line. The value of the slope gives the Hurst
exponent H , such that

• A value in the range 0 ≤ H < 0.5 indicates a time series with ‘anti-persistent’
behavior,

• a value in the range 0.5 < H ≤ 1 indicates a time series with long-term positive
auto-correlation (‘persistent’ behavior),

• a value of H = 0 indicates a pink noise,
• a value of H = 0.5 indicates a completely uncorrelated series (Brownian motion).

Figure17.4 shows the auto-correlation of the detrended time series and Hurst
exponent based on R/S analysis having exponent for (a) EC 0.75 ± 0.01, (b) HR
0.78 ± 0.01 and (c) GTD 0.82 ± 0.01. The auto-correlation for GTD is decaying
exponentially. As the value of the exponent is greater than 0.5 so the time series
shows the persistence behavior for all EC, HR and GTD.

Next, we study the co-movements among the different countries across the globe.
Figure17.5a shows the time series of n events (EC,HR andGTD) during the period of
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Fig. 17.3 a Time series for white Gaussian noise, probability density function for white noise
(independent and identically distributed variables), auto-correlation function of time series, prob-
ability density function of recurrence time intervals at q = 0.75. The time series was generated
using the rnorm() function in R-software for statistical computing. b Time series for fractional
Gaussian noise with Hurst index H = 0.8, probability density function of the fractional Gaussian
noise (dependent and identically distributed variables), auto-correlation function of the time series,
probability density function for recurrence intervals at q = 0.75. The time series was generated
using the simFGN0() function in R-software for statistical computing
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Fig. 17.4 Plot for the auto-correlation of detrended time series and Hurst exponent based on R/S
analysis having exponent for a EC 0.75 ± 0.01, b HR 0.78 ± 0.01 and c GTD 0.82 ± 0.01. As the
value of the exponent is greater than 0.5 so the time series shows the persistence behavior for all
EC, HR and GTD

2001–2015 for a few countries chosen arbitrarily.We take N countries and aggregate
the events over a year, producing T = 15 data points for the period 2001–2015. To
build the correlation matrices, we define the equal-time Pearson cross-correlation
coefficient for the time series of the number of events per year ci as

ρi j (τ ) = 〈ci c j 〉 − 〈ci 〉〈c j 〉
σiσ j

. (17.5)
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Fig. 17.5 a Time series plots for number of events n of different countries for EC, HR and GTD
during the period of 2001–15. The list of country names can be seen in Table17.1. b Correlation
matrices for EC, HR and GTD. As number of countries N are more than length of time series T ,
i.e. N >> T , the power mapping technique with a distortion ε = 0.6 is applied to the correlation
matrix to suppress the noise. c 2D MDS plots for EC, HR and GTD during the period 2001–2015.
The MDS plots show the co-movement of the countries: similar countries are grouped together and
dissimilar ones placed far apart

where σi =
√

〈c2i 〉 − 〈ci 〉2 is the standard deviation of ci , i, j = 1, . . . , N , and 〈· · · 〉
denotes average over the time period τ. The elements ρi j are restricted to the domain
−1 ≤ ρi j ≤ 1, where ρi j = 1 signifies perfect correlations, ρi j = −1 perfect anti-
correlations, and ρi j = 0 corresponds to uncorrelated pairs.

It is difficult to estimate the exact correlation among N time series, each of
length T , as spurious correlations or ‘noise’ are present in the finite time series
(see Ref. [25]). The quality of the estimation of true correlation in a matrix strongly
depends upon the ratio of the length of the time series T and the number of time series
N , Q = T/N . Correlation matrices are less noisy for higher value of Q. As N > T ,
the corresponding cross-correlation matrices are also singular with N − T + 1 zero
eigenvalues, which leads to poor eigenvalue statistics. Thus, we use the power map
technique [25–27] to break the degeneracy of eigenvalues at zero and suppress the
noise. In this method, a non-linear distortion is given to each cross-correlation coef-
ficient (ρi j ) of the correlation matrix ρ by: ρi j → (sign ρi j )|ρi j |1+ε, where ε is
the distortion parameter; here we used ε = 0.6 (see Refs. [25, 27] for choice of the
parameter).
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Figure17.5b shows the correlation matrices (after using the power mapping
method), computed over different time series across the countries by using Eq.17.5.
The correlation matrix for EC shows more correlations (colored red) among the
countries as compared to anti-correlations (colored blue). The correlation matrices
for HR and GTD look very different. In order to visualize the correlations, we apply
the multidimensional scaling (MDS) technique. First, we transform the correlation
matrix ρ into distance matrix D, as

di j = √
2(1 − ρi j ), (17.6)

such that 2 ≥ di j ≥ 0. After transforming the correlationmatrix into distance matrix,
we generate theMDSmap. TheMDSalgorithm is used to display the structure of sim-
ilarity in terms of distances, as a geometrical map where each country corresponds to
a set of coordinates in the multidimensional space. MDS arranges different countries
in this space according to the strength of the pairwise distances between them. Two
similarly behaving countries are represented by two points that are close to each
other, and two dissimilarly behaving countries are placed far apart in the map. In
general, we choose the embedding dimension to be 2, so that we are able to plot the
coordinates in the form of a map. It may be noted that coordinates are not necessarily
unique, as we can arbitrarily translate and rotate them, as long as such transforma-
tions leave the distances unaffected. Figure17.5c shows the 2D MDS plots for EC,
HR and GTD based on the similarities/ distances among them.

At the end, we also calculated the correlation among the different time series
for individual countries. The correlations are computed among EC-HR, EC-GTD
and HR-GTD. Few countries like ESP, IDN, ITA and RUS have low correlations
among EC-HR, whereas ESP, FRA, ITA, LKA and RUS show anti-correlations for
EC-GTD; countries like ESP, FRA, GRC, IDN, ITA, LKA show anti-correlations
for HR-GTD. For further details, see Table17.5. It must be noted that these are just
linear correlations, and causal relations cannot be inferred.

Concluding Remarks

In this paper, our goal was to do the time series analysis and apply data science
approaches to the study of the daily anti-social events like ethnic conflicts (EC),
human right violations (HR) and terrorist attacks (GTD). As the time series were
non-stationary, so we made them stationary by detrending them. We computed the
recurrence interval distribution of events and made attempts to relate it with its auto-
correlation function. Then we computed the Hurst exponent using the rescaled range
(R/S) analyses, which gives the information about whether long memory is present
or not. Further, our interest was to study the co-movements of the countries in the
respective events spaces. To visualize the co-movements, we computed the cross-
correlations among different countries, transformed the correlations into distances
and then projected the distances into 2D multidimensional scaling maps.
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Table 17.5 Cross-correlation among events across countries

S.No. Country EC-HR EC-
GTD

HR-
GTD

S.No. Country EC-HR EC-
GTD

HR-
GTD

1 AFG 0.72 0.80 0.84 11 IRQ 0.61 0.73 0.85

2 CHN 0.81 0.64 0.89 12 ISR 0.90 0.43 0.33

3 DEU 0.65 0.95 0.49 13 ITA 0.21 −0.05 −0.09

4 ESP 0.47 −0.52 −0.28 14 LKA 0.57 −0.22 −0.39

5 FRA 0.91 −0.08 −0.10 15 NGA 0.73 0.77 0.77

6 GBR 0.81 0.72 0.84 16 PAK 0.83 0.65 0.82

7 GRC 0.91 0.18 −0.01 17 RUS 0.29 −0.07 0.04

8 IDN 0.42 0.69 −0.10 18 TUR 0.97 0.95 0.90

9 IND 0.94 0.85 0.89 19 USA 0.61 0.38 0.11

10 IRN 0.80 0.11 0.45 20 ZAF 0.96 0.21 0.17
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Chapter 18
International Center for Social
Complexity, Econophysics and
Sociophysics Studies: A Proposal

Bikas K. Chakrabarti

Abstract In the concluding session of the Joint International Conference titled
‘Econophys-2017 and Asia Pacific Econophysics Conference (APEC)-2017’, held
in Jawaharlal Nehru University and Delhi University during November 15–18, 2017,
a brief version of this Proposal was presented. There were several enthusiastic com-
ments, received from the participants. This note is based on these discussions.

Introduction

More than twenty years have passed since the formal coining of the term and
hence the launch of econophysics as a research topic (since 1995; see the entry by
Barkley Rosser on Econophysics in ‘The New Palgrave Dictionary of Economics’
[1]: “Econophysics: According to Bikas Chakrabarti, the term ‘econophysics’ was
neologized in 1995 at the second Statphys-Kolkata conference in Kolkata (formerly
Calcutta, India) by the physicist H. Eugene Stanley ...”). Soon, econophysics had
been assigned the Physics and Astronomy Classification Scheme (PACS) number
89.65Gh by the American Institute of Physics. According to Google Scholar, typi-
cally today more than thousand papers and documents, containing the term ‘econo-
physics’, are published each year (many more research papers are, in fact, published
today on the topic without ever calling it econophysics) in almost all physics journals
covering statistical physics, general science journals and a few economics journals.
More than fifteen books on econophysics (with the word econophysics in the title
of the book), including some textbooks and monographs written by pioneers and
active researchers in the field, have already been published by Cambridge University
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Press, Oxford University Press, Springer and Wiley. Many more edited books and
conference proceedings are published (search of ‘econophysics’ titles in the ‘ama-
zon.com:books’ today gives more than 140 entries; with some double counting of
course!). Similar has been the story for ‘sociophysics’.

Regular interactions and collaborations between the communities of natural
scientists and social scientists, however, are rare even today! Though, as mentioned
already, interdisciplinary research papers on econophysics and sociophysics are reg-
ularly being published at a steady and healthy rate, and a number of universities
(including Universities of Bern, Leiden, London, Paris and Tufts University) are
offering the interdisciplinary courses on econophysics and sociophysics, not many
clearly designated professor positions, or other faculty positions for that matter,
are available yet (except for econophysics in Universities of Leiden and London).
Neither there are designated institutions on these interdisciplinary fields, nor separate
departments or centres of studies for instance. We note however, happily in passing,
a recently published highly acclaimed (‘landmark’ and ‘masterful’) economics book
[2] by Martin Shubik (Seymour Knox Professor Emeritus of Mathematical Insti-
tutional Economics, Yale University) and Eric Smith (Santa Fe Institute) discusses
extensively on econophysics approaches and in general on the potential of interdis-
ciplinary researches inspired by the developments in natural sciences. Indeed, this
massive 580-page book can also serve as an outstanding ‘white-paper’ document in
favor of our intended Proposal.

Though the inter-disciplinary interactions have not grown much, some sure signs
of positive impact for the research achievements in econophysics and sociophysics
have been documented in the literature. The precise characterizations of stockmarket
fluctuations by Mantegna and Stanley [3] has already made a decisive mark in finan-
cial economics and all the related subjects (with more than 4000 citations already
for the book [3]; Google scholar). In the section on ‘The position of econophysics
in the disciplinary space’ in the book ‘Econophysics and Financial Economics’ [4],
the authors write (pp. 83, 178): “To analyze the position of econophysics in the dis-
ciplinary space, the most influential authors in econophysics were identified. Then
their papers in the literature were tracked by using the Web of Science database of
Thomson-Reuters ... The sample is composed of Eugene Stanley, Rosario Mantegna,
Joseph McCauley, Jean Philippe Bouchaud, Mauro Gallegati, Benoit Mandelbrot,
Didier Sornette, Thomas Lux, Bikas Chakrabarti, and Doyne Farmer.” The book [2]
by Shubik and Smith noted (pp. 75–76) that while simple kinetic exchange market
model (see e.g., [5]) leads to exponentially decaying distributions, “it was shown in
[6] that uniform saving propensity of the agents constrains the entropy maximizing
dynamics in such a way that the distribution becomes gamma-like, while (quenched)
nonuniform saving propensity of the agents leads to a steady state distribution with
a Pareto-like power-law tail [7]. A detailed discussions of such steady state distri-
butions for these and related kinetic exchange models is provided in [8]”. Shubik
and Smith [2] also noted the important contributions by physicists in the study of
multi-agent iterative (and collective) learning game models for efficient resource
sharing ([9] for binary choice iterative learning games and [10] for multi-choice
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iterative learning games1). This book [2] also discusses in details on the impact
of the pioneering work by physicist Per Bak and collaborators in the context of
self-organizing dynamics of complex markets. The Econophysics course offered by
Diego Garlaschelli in the Physics department of the Leiden University, where the
first economics Nobel laureate (statistical physicist Jan Tinbergen) came from, fol-
lows exclusively the book ‘Econophysics: An Introduction’ [11] since its inception
in 2011 (see e.g., [12] for the 2017–2018 and 2018–2019 e-prospectuses). Discus-
sions on some more impact of econophysics [3, 4, 13, 14] and sociophysics [15–18]
researches will be continued later.

Proposal in Brief and Some Earlier Attempts

In view of all these, it seems it is time to try for an international centre for
interdisciplinary studies on complexity in social and natural sciences; specifically
on econophysics and sociophysics. The model of the Abdus Salam International
Centre for Theoretical Physics (ICTP), Trieste (funded by UNESCO and IAEA),
could surely be helpful to guide us here. We are contemplating, if an ICTP-type
interdisciplinary research institute could be initiated for researches on econophysics
and sociophysics (see also [19]).

We note that Dirk Helbing (ETH, Zurich) and colleagues have been trying for
an European Union funded ‘Complex Techno-Socio-Economic Analysis Center’
or ‘Economic and Social Observatory’ for the last six years (see Ref. [20] con-
taining the White Papers arguing for the proposed centre). We are also aware that
Indian Statistical Institute had taken a decision to initiate a similar centre in India
(see ‘Concluding Remarks’ in [21]). Siew Ann Cheong (Nanyang Technological
University, Singapore) had tried for a similar Asian Center in Singapore [22]. In
view of some recent enthusiasms at the Japan-India Heads of States or Prime Min-
ister level, and signing of various agreements (predominantly for business deals,
infrastructure development, technical science and also cultural exchanges) by them,
possibility of an Indo-Japan Center for studies on Complex Systems is also being

1Important developments have taken place in such many-player, multi-choice iterative learning
games for limited resource utilizations, since publication of The Kolkata Paise Restaurant Problem
and Resource Utilization, A. S. Chakrabarti, B. K. Chakrabarti, A. Chatterjee andM.Mitra, Physica
A, 388, pp. 2420–2426 (2009). For applications to quantum cryptography physics, computer job
scheduling, on-line car hire, etc., see e.g., Strategies in Symmetric Quantum Kolkata Restaurant
Problem, P. Sharif and H. Heydari, Quantum Theory: Reconsideration of Foundations 6: AIP Conf.
Proc. 1508, pp. 492–496 (2012); Econophysics of the Kolkata Restaurant Problem and Related
Games; B. K. Chakrabarti, A. Chatterjee, A. Ghosh, S. Mukherjee and B. Tamir, Springer (2017);
Econophysics and the Kolkata Paise Restaurant Problem: More is Different, B. Tamir, Science and
Culture, 84, pp. 37–47 (2018); The Vehicle for Hire Problem: A Generalized Kolkata Paise Restau-
rant Problem, L. Martin and P. Karaenke, https://mediatum.ub.tum.de/doc/1437330/1437330.pdf
(2018); Kolkata Paise Restaurant Game for Resource Allocation in the Internet of Things, T. Park
andWSaad, IEEEXplore, DOI: https://doi.org/10.1109/ACSSC.2017.8335666, https://ieeexplore.
ieee.org/abstract/document/8335666/(2018).

https://mediatum.ub.tum.de/doc/1437330/1437330.pdf
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explored, including the possibility of a center in Tokyo with private support [23].
There are several other similar initiatives (e.g., Ref. [24]).

These proposals are, or had been, for regular research centers on such interdisci-
plinary fields, where regular researchers are expected to investigate such systems. In
view of the extreme interdisciplinary nature of econophysics and sociophysics, such
efforts may be complemented by another visiting center model.

Unlike the above-mentioned kind of intended centers, this proposed centre may
be just a visiting center where natural and social scientists from different univer-
sities and institutions of the world can meet for extended periods to discuss and
interact on various interdisciplinary issues and collaborate for such researches, fol-
lowing the original ICTP model. Here, as in ICTP, apart from a few (say, about ten to
start-with) promising young researchers on econophysics and sociophysics as perma-
nent faculty who will continue active research and active visiting scientist programs
(in physics, economics and sociology) etc. can be pursued, The faculty members, in
consultation with the advisers from different countries, can choose the invited vis-
itors and workshops or courses, on economics and sociological complexity issues,
can be organized on a regular basis (as for basic theoretical sciences in ICTP or in
Newton Centre, Cambridge, etc.). In two short communications [25], Martin Shubik
(Yale University, New Haven) supported the idea very enthusiastically and encour-
aged us with some very precise suggestions. He also noted that such a center can
play a much more inclusive role for the whole world (as is being done by the ICTP),
compared to what the Santa Fe Institute has been successful to do for the US. Gene
Stanley (Boston University, Massachusetts) supported enthusiastically such a pro-
posal (“... you already thought of all the ideas I might have had ... I will continue to
think ... congratulations on your ambitious idea ... ” [26]).

Some Responses Received From the Participants

After my brief presentation of this proposal in the Concluding session of our Con-
ferences, there were several appreciative comments made by the participants and a
number of precise suggestions mailed to me later by many participants including
Frederic Abergel (Centrale Supelec, Chatenay-Malabry Cedex), Bruce Boghosian
(Tufts University, Massachusetts), Anirban Chakraborti (Jawaharlal Nehru Univer-
sity,Delhi), SiewAnnCheong (NanyangTechnologicalUniversity, Singapore),Acep
Purqon (Institute for Technology, Bandung) and Irena Vodenska (Boston University,
Massachusetts). I append below parts of a few detailed comments, summarizing the
past achievements and some suggestions for possible structural organisation, received
from them:

1. Regarding the “discoveries of important economics and finance phenomena that
were unknown to economists and financial economists before, the following few
come to my mind:
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a. The distribution of wealth and income. While Pareto was the first to examine
the tail end of the wealth distribution, and found it to be a power law, little
was known and understood about the full distribution until you and Victor
Yakovenko came along, to (i) examine empirical distributions of wealth and
income [27], and (ii) build kinetic theory/agent-based models to show that the
full distribution is an exponential distribution crossing over to a power-law
tail [6, 28] and this arise because for rich people, they can gain from return
on investment or through interests generated by savings, whereas the rest of
us, repeated random exchange of income/wealth shape the exponential part
of the distribution. During Econophys APEC 2017, we heard Bruce talking
about his further results showing that if wealth is inadequately redistributed
through taxation, oligarchs emerge, leading to the most extreme form of wealth
inequality that we can possibly imagine [29, 30].

b. Home prices and property bubbles. Following your lead, and more recently
the work by Ohnishi et al. [31], my students and I have started looking into the
distribution of home prices around various markets. Interestingly, the equilib-
rium distribution of home prices is similar to the income/wealth distribution,
consisting of an exponential body and a power-law tail [32]. We see this in
Singapore, Hong Kong, Taiwan, UK, and Japan so far, and believe this result
is universal. We also found that in bubble years, the home price distribution
develop dragon kings, which are strong positive deviations from the equilib-
rium distribution. We have evidence to suggest that such dragon kings are the
results of speculation, but have yet to test regulations that can help defuse
them in agent based models that we are currently building. More alarmingly,
we have seen from the historical home price data of London and Tokyo that
their distributions once contained an exponential body, but after experienc-
ing a couple of property bubbles, have become asymptotic power laws with
no exponential body. This is another manifestation of economic inequality, in
that for cities like London and Tokyo, homes are priced out of the reach of
the middle class. From the historical data for UK, we see this trend repeating
itself for cities like Birmingham and Manchester. This calls for action on the
part of government, but they cannot act until we understand the processes that
drive this trend.

c. Louis Bachelier was the first to propose that stock returns perform
Brownian motion, and laid the mathematical foundation for finance.
However, for a long time, it has not occurred to financial economists to check
the validity of Bacheliers assumptions. Benoit Mandelbrot did so in 1967, and
found that the tail of the return distribution is a power law [33]. Rosario and
Gene then demonstrated more convincingly using a large data set of returns
for the S and P 500 in their 1995 Nature paper that the return distributions
for different time horizons follow a scaling form, and this scaling form can
be fitted better to a Levy distribution than to a Gaussian distribution [34].
Since then, many different agent based models have been developed to explain
the emergence of fat tails in the return distribution. More recently, Hideki
and Misako Takayasu examined high-frequency order data, and demonstrated
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convincingly that stock price is an invisible particle performing stochastic
motion as a result of it being bombarded on either side by bid and ask orders
[35]. For regular Brownian motion, this noise is uncorrelated in time, and
therefore we end up with long autocorrelations in the velocity of the Brownian
particle. For stock returns, we know from many previous works that they are
nearly uncorrelated in time. The Takayasus explained that this is the conse-
quence of the noise being strongly correlated in time, pointing to what they
observe in the order book data. This duality is surprising!

d. Economists Ricardo Haussmann and Cesar Hidalgo became world famous
for publishing their Atlas of Economic Complexity [36], visualising the net-
work of international trade over time. Not convinced that the economists have
extracted the most important insights from the data, Luciano Pietronero went
in to the data set to plot the economic performances of countries on a two-
dimensional plot, with capabilities on the x-axis, and GDP on the y-axis [37].
Luciano found that he could classify countries into undeveloped, developing,
and developed economies by where they appear on the plot. Undeveloped
countries are problematic, and are mostly African, because their GDPs are
low, and their capabilities are also low. These countries can potentially be
stuck in a poverty trap, because they earn so little that they cannot reinvest into
their education system to increase their capabilities. Developing countries like
China, India, and Vietnam are countries that have in the past invested heavily
into education and are therefore ranked highly in terms of their capabilities.
China has already started to benefit from its past investment, to see a steady
rise in its GDP. India can be seen to be following suit, and Vietnam will likely
take off soon. When Luciano produced such plots using data from different
years, he found that the developing countries are in a region where economic
trajectories are fairly deterministic, and therefore we can have confidence in
the economic futures of India and Vietnam, for example. On the other hand, the
undeveloped countries are in a region of the plot where economic trajectories
appear to be chaotic and turbulent, where countries can experience periods of
enhanced GDP because of exploitation of resources (like Brazil), but can also
fall from grace just as quickly because of political turmoil. In creating this
list, I am leaving out interesting results obtained by people working on urban
complexity, because they rarely attend econophysics conferences. Besides the
most important scaling work done by Geoffrey West and Luis Bettencourt,
showing that there are urban variables that scale sub linearly with the size
of cities, and other urban variables (like GDP, patents, crime, etc.) that scale
super linearly with size [38]. Hyejin Youn and her collaborators have also
found that cities are not equally diverse in terms of job opportunities [39].
Small cities tend to have fewer types of jobs, and more people working on the
same type of jobs. Large cities tend to have more types of jobs, and fewer peo-
ple working on each type of job. More importantly, they have discovered that
wealth is unequally concentrated in large cities, and that large cities tend to
have a better educated populace, and because of this, is more resilient against
the ongoing economic restructuring due to automation. Finally, besides telling
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success stories, we also need to frame a few key questions that we hope the
international center can address. Here, we should be ambitious, and go for
questions that individual investigators, or even individual universities would
not have the capability, resource, or correct composition of different experts
to address.”

2. In this connection, it may be worthy to note that “the German Physical Society
has a working group on Physics of Socio-Economic Systems since 2009 (see e.g.,
[40]: ... This dedicated scientific community is rapidly growing and involves,
besides sociologist and economists, also physicists, mathematicians, computers
scientists, biologists, engineers, and the communities working on complex systems
and operations research ...). Apart from supporting researches and recognizing
regularly active young researchers (with ‘Young Scientist Award for Socio- and
Econophysics’) in such interdisciplinary fields, they organise many conferences
within Germany with participants from all over Europe.”

3. Regarding a possible financial structure, “I note, following Shubik, we want to
raise funds for it to be endowed in perpetuity and cost of the regular activities
can be met from the (fixed deposit) interests. As we discussed in Delhi after the
Conference, this is not easy but I am hopeful. Also, I agree with Shubik, it is worth
trying. ... Presumably, to begin with, the founding faculty members would need
only a fraction of their salary, and the bulk of the interest money could be used for
postdocs, graduate student support, visitor travel, etc. For a different institutional
model, have a look at the web page of ICERM at Brown University (https://icerm.
brown.edu/home/index.php). From our conversations in New Delhi, I understand
that you would like to see a more extensive and inclusive model for this purpose,
located somewhere in Eurasia, and I am very supportive of this idea. To raise
funds for this kind of thing, it will be necessary to create a clear proposal that
addresses—at the very minimum—the following items:

a. First, we need a list of names and bios of international faculty who would
be willing lend their names to such a center. In fact, it would be better to
partition this list into categories: Some more senior faculty with administrative
experience could serve on an Advisory Board. Other faculty would be willing
to visit the Center from time to time, and perhaps organize conferences there.
Some would send their graduate students during the summer, etc.

b. Second, we need a clear business model for the Center, along with a gover-
nance model and sample budget. Again, we might learn from the models of
ICERM, ICTP and SFI, but we probably want something that is unique to what
we have in mind.

c. Third, we need a list of benefits from this proposed Center that would accrue
to the hosting institution and the hosting country.”

https://icerm.brown.edu/home/index.php
https://icerm.brown.edu/home/index.php
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Concluding Remarks

We think, it is an appropriate time to initiate such a project for the healthy growth
of this ‘Fusion of Natural and Social Sciences’, through active dialogue among
the students and experts from different disciplines (e.g., physics, computer science,
mathematics, economics and sociology), engaged in researches in their respective
disciplines and institutions, from all over the world. We find, both the experts in the
related disciplines aswell as the researchers already initiated in such interdisciplinary
researchers have deep feelings about the need for such a Center, where short and
long term visits would be possible and enable them to participate in interdisciplinary
schools, workshops, and research collaborations.
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Epilogue

Kiran Sharma and Anirban Chakraborti

“The aim of life is inquiry into the Truth, and not the desire for enjoyment in heaven by
performing religious rites,
Those who possess the knowledge of the Truth, call the knowledge of non-duality as the
Truth...”
—Sūta, Bhagavata Purana 1.2.10–11 (800 and 1000 CE); Translated by Daniel Sheridan.

From times immemorial, human beings have been pursuing the Truth. Philosophers
and scientists have been discovering the Truth in different forms through various
phenomena in life and in nature. While the scientists were more interested in the
external nature and tangible things, philosophers have been dwelling on the abstract,
intangible things, and internal nature. In actuality, scholars have been taking glimpses
of the Truth from different angles. While the spirit of inquiry and the ultimate aim
has been similar, the methods of inquiry started differing with the passage of time.
In the modern day, few dialogues exist between the philosophers and the scientists.

For that matter, even within the scientific disciplines there is often a lack of cross-
dialogues. Even less, when it comes to the exchange of ideas between the natural
sciences and social sciences. There have been some progress in this respect, e.g.,
between the fields of economics and physics, or sociology and physics, leading to
the interdisciplinary fields named “Econophysics” and “Sociophysics”. The series
of conferences that we have been organizing since 2005 have been efforts to bridge
the gaps between the parent fields.

Today, data has become easily available and indispensable in many spheres of
life. We often hear the buzz words like “Big data” and “Data science”. What is Big
data? Big data is a term used to refer to vast and voluminous data sets that may be
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structured, semi-structured or unstructured. Big data can typically be characterized
by 4Vs- Volume, Variety, Velocity and Veracity. Big data is getting vast as compared
to the traditional sources through which the data used to be captured (Volume); data
is captured from various sources (Variety); the speed with which data is generated is
phenomenal (Velocity), and given the volume and the variety of data, the quality of
data (Veracity) is very important.

One needs to note that merely capturing data is not beneficial, but to understand
what insights one can get from that data is of paramount importance in decision
making. Big data eliminates intuition so that all imperative decisions can be made
through a structured approach andwith a data driven insight. Challengeswith big data
include analysis, capture, curation, search, sharing, storage, transfer, visualization,
and information privacy.

“Data science” is an interdisciplinary field that requires data analysis, model-
ing/statistics and engineering/prototyping to extract knowledge and insights from
large sets of data. Diving in at a granular level to mine and understand complex
behaviors, trends and inferences. Data science focusses on analyzing the data, mak-
ing sense of the large amount of data and discovering relevant patterns and designs in
them, so that the data can be effectively utilized to realize future goals and objectives.
There is a large amount of data available across almost all sectors in the world today
and data science is taking on a big and prime role to utilize the data in a propermanner
and make better decisions. Data science is all about being inquisitive – asking new
questions, making new discoveries, and learning new things.

Data science is also needed to make valid, objective inferences from data, free
from human bias. By examining large amounts of data, it is possible to uncover
hidden patterns and correlations. So one needs to be very good at that or else the
collective data could get wrong and give wrong information and can result in wrong
decisions. Data science is a more forward looking approach, which helps answering
the open-ended questions as to “what” and “how” events occur.

Our observation has been thatwith the advent of “Data science” and the era of “Big
data” [1, 2], scholars have been coming closer to each other andmore andmore focus
is being laid on interdisciplinary approaches. There has been also a growing need for
new statistical and analytical methods, the kinds of which were being developed e.g.,
in econophysics [3–7]. So, in the coming years, we have many challenges ahead. We
sincerely hope that the scientific community can bring forth a change in focus as
well as the methods, which will serve mankind in a wholesome and purposeful way.

It was a pleasure co-hosting and co-organizing the joint international workshop.
We hope to organize more such events. To reminisce the memories of the past event,
we put two photos here (Fig.A.1).
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Fig. A.1 Group photographs of the participants in Econophys-2017 and APEC-2017 meeting
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